29 Th EDITION • 1952

THE STANDARD MANUAL OF AMATEUR RADIO COMMUNICATION

$\$ 3.00$
U.S.A. Proper

[^0]
THE RADIO AMATEUR'S HANDBOOK ${ }^{\bullet}$

By the HEADQUARTERS STAFF
of the
AMERICAN RADIO RELAY LEAGUE
WEST HARTFORD, CONN., U.S.A.

1952

Twenty-Ninth Edition

Copyright secured under the Pan-American Convention

International Copyright secured

This work is Publication No. 6 of The Radio Amateur's Library, published by the League. All rights reserved. No part of this work may be reproduced in any form except by written permission of the publisher. All rights of translation are reserved. Printed in U. S. A.

Quedan reservados todos los derechos

Foreword

This twonty-ninth edition of The Radio Amateur's Handbook is the latest of a series extending over twenty-six years of continuous publication, a period during which the total circulation has elimbed to well over two million. The immediate and enthusiastic acceptance of the first edition by the radio amateurs of 1926 has been matched by continuing popularity throughout the intervening years - a popularity based on the //endhook's practical utility, its treatment of radio communication problems in terms of how-to-do-it, and its long-established policy of presenting the soundest and best aspects of current amateur practice rather than merely the new and novel. These same features have won for the Handbook universal acceptance in other segments of the technical radio world - engineering, educating, servicing, operating - even though the book is written primarily for the radio amateur. Its preparation and production is the work of the headquarters staff of the amateur's own organization, the American Radio Relay League.
The changes that have taken place in the technical practices of amateur radio during the past year are, as always, reflected in the present edition. A considerable amount of new equipment in all categories - transmitting, rereiving, v.h.f., measurements - appears throughout the brook. Continuing the trend of the past few years, all transmitting equipment has been designed with Whe reduction of harmonics in the television broadeasting bands as a primary feature, and in view of the large number of television transmitting stations now in operation, the problems of amateur interference with this service are given special attention. As compared with previous editions, the sections on theory and design fundamentals have been extensively rewritten and rearranged. The varuum tule data chapter, one of the most comprehensive sources of tube information in the world, has been made even more valuable by the last-minute addition of newly-announced tube types.
Those to whom the Handbook has for years been an indispensable companion are well aware of it, but for new readers it is worth pointing out that in contrast to most publications of a comparable nature, the II andbook is printed in the convenient format of the League's monthly magazine, QST. This, together with extensive and usefully-appropriate catalog advertising by reputable manufacturers producing equipment for radio amateurs, makes it possible to distribute for a very modest charge a work which in volume of subject matter and profusion of illustration surpasses most available radio texts selling for several times its price.
It is sincerely hoped that this new edition will succeed in bringing as murl assistance and inspiration to amateurs and newcomers to the hobby as have its many predecessors.

A. L. Budlong
Secretary, A.R.R.L.

West IIartford, Conn.
December, 1951
*

CONTRNTS

Frontispiece 2
The Amateur's Code 8
Chapter 1......Amateur Radio 9
Chapter 2......Electrical Laws and Circuits 15
Chapter 3......Vacuum-Tube Principles 52
Chapter 4......High-Frequency Communication 70
Chapter 5......High-Frequency Receivers 76
Chapter 6.......High-Frequency Transmitters 129
Chapter 7......Power Supplies 208
Chapter 8.......Keying and Break-In 231
Chapter 9......Speech Amplifiers and Modulators 240
Chapter 10...... Amplitude Modulation 266
Chapter 11.......Frequency and Phase Modulation 285
Chapter 12...... Reduced-Carrier and Single-Sideband Transmitting Techniques 293
Chapter 13......Transmission Lines 307
Chapter 14...... Antennas. 331
Chapter 15...... About V.H.F 362
Chapter 16......V.H.F. Receivers 366
Chapter 17......V.H.F. Transmitters 389
Chapter 18......V.H.F. Antennas 413
Chapter 19......U.H.E. and Microwave Communication 422
Chapter 20. Mobile Equipment 434
Chapter 21.......Measuring Equipment 458
Chapter 22......Assembling a Station 491
Chapter 23.......BCI and TVI 497
Chapter 24...... Construction Practices 514
Chapter 25...... Operating a Station 522
Chapter 26.......Miscellaneous Data 537
Chapter 27......Vacuum-Tube Data V1Catalog SectionIndex

THE

7

AMATEUR'S CODE

ONETHE AMATEUR IS GENTLEMANLY . . . He never knowingly uses the air for his own amusement in such a way as to lessen the pleasure of others. He abides by the pledges given by the ARRL in his behalf to the public and the Government.

TWOTHE AMATEUR IS LOYAL . . . He owes his amateur radio to the American Radio Relay League, and he offers it his unswerving loyalty.

卫卫R $\begin{aligned} & \text { THE AMATEUR IS PROGRESSIVE . . He } \\ & \text { keeps his station abreast of science. It is }\end{aligned}$ built well and efficiently. His operating practice is clean and regular.

FOURTHE AMATEUR IS FRIENDLY... Slow and patient sending when requested, friendly advice and counsel to the beginner, kindly assistance and coöperation for the broadcast listener; these are marks of the amateur spirit.

FIVE
THE AMATEUR IS BALANCED . . . Radio is his hobby. He never allows it to interfere with any of the duties he owes to his home, his job, his school, or his community.

STX THE AMATEUR IS PATRIOTIC . . . His knowledge country and his community.

- Paul M. Segal

CHAPTER 1

Amateur Radio

A mateur radio is a scientific hobby, a means of gaining personal skill in the fascinating art of electronies and an opportunity to communicate with fellow citizens by private shortwave radio. Scattered over the globe are nearly 150,000 amateur rarlio operators who perform a service defined in international law as one of "self training, intercommunication and technical investigations carried on by . . . duly authorized persons interested in radio technique solely with a personal aim and without pecuniary interest."

From a humble beginning at the turn of the century, amateur radio has grown to become an established institution. Today the American followers of amateur radio number nearly 100,000, trained communicators from whose ranks will come the professional communications specialists and executives of tomorrow just as many of today's radio leaders were first attracted to radio by their early interest in amateur radio communication. A powerful and prosperous organization now provides a bond between amateurs and protects their interests; an internationally-respected magazine is published solely for their benefit. The Army and Navy seck the coöperation of the amateur in developing communications reserves. Amateur radio supports a manufacturing industry which, by the very demands of amateurs for the latest and best equipment, is always up-to-date in its designs and production techniques - in itself a national asset. Amateurs have won the gratitude of the nation for their heroic performances in times of natural disaster. Through their organization, amateurs have coöperative working agreements with such agencies as the Inited Nations and the Red Cross. Amateur radio is, indeed, a magnificently useful institution.

Although as old as the art of radio jtiolf, amaterur radio did not always enjoy such prosige Its first enthusiasts were private citizens of an experimental turn of mind whose imaginations went wild when Mareoni first proved that messages actually could be sent buy wireless. They set about learning enough about the new scientific marvel to build homemade stations. By 1912 there were numerous Government and commercial stations, and hundreds of amateurs; regulation was needed, so laws, licenses and wavelengt h sperifications for the various services appeared. There was then no amateur organization nor spokesman.

The official viewpoint toward amateurs was something like this:
"Amateurs? . . . Oh, yes. . . . Well, stick 'en on 200 meters and below; they'll never get out of their backyards with that."

But as the years rolled on, amateurs found out how, and DX (distance) jumped from local to 500 -mile and even occasional 1,000 -mile twoway contacts. Because all long-distance messages had to be relayed, relaying developed into a fine art - an ability that was to prove invaluable when the Government suddenly called hundreds of skilled amateurs into war service in 1917. Meanwhile U. S. amateurs began to wonder if there were amateurs in other countries across the seas and if, some day, we might not span the Atlantic on 200 meters.

Most important of all, this period witnessed the birth of the American Radio Relay League. the amateur radio organization whose name was to be virtually synonymous with subsequent amateur progress and short-wave development. Conceived and formed by the famous inventor, the late Hiram Percy Maxim, ARRII, was formally launched in early 1914. It had just begun to exert its full foree in amateur activities when the I'nited states declared war in 1917, and by that act sounded the knell for amateur radio for the next two and a half years. There were then over 6000 amateurs. Over 4000 of them served in the armed forees during that war.

Today, few amateurs realize that World

HIRAM IPERCY MAXIM
President ARRL, 1914-1936

War I not only marked the close of the first phase of amateur development but came very near marking its end for all time. The fate of amateur radio was in the balance in the days immediately following the signing of the Armistice. The Govermment, having had a taste of supreme authority over communications in wartime, was mork han half inclined to keep it. The war had not been ended a month before Congress was considering legislation that would have made it impossible for the amateur radio of old ever to be resumed. AIRIRL's President Maxim rushod to Washington, pleaded, argued, and the bill was defeated. But there was still no amateur radio: the war ban continued. Repeated representations to Washington met only with silence. The League's offiees had been closed for a year and a half, its records stored away. Most of the former amateurs had gone into service: many of them would never come back. Would those returning be interested in such things as amateur radio? Mr. Maxim, determined to find out, called a meeting of the old Board of Directors. The situation was diseouraging: amateur radio still banned by law, former members seattered, no organization, no membership, no funds. But those few determined men finaneed the publication of a notice to all the former amateurs that could be located, hired Kenneth I3. Warner as the League's first paid secretary, floated a bond issue among old League members to obtain money for immediate running expenses, bought the magazine $Q S T$ to be the Leagne's official organ, started activities, and dunned oflicialdom until the wartime ban was lifted and amateur radio resumed again, on October 1, 1919. There was a headlong rush by amateurs to get back on the air. (iangway for King Spark! Manufacturers were hard put to supply radio apparatus fast enough. Each night saw additional dozens of stations crashing out over the air. Interference? It was bedlam!

But it was an era of progress. Wartime needs had stimulated technical development. Vacuum tubes were being used both for receiving and transmitting. Amateurs immediately adapted the new gear to 200 -meter work. langes promptly increased and it became possible to bridge the continent with but one intermediate relay.

TRANS-ATLANTICS

As DX became 1000, then 1500 and then 2000 miles, amateurs began to dream of transAtlantic work. Could they get across? In December, 1921, ARIRL sent abroad an expert amateur, Paul F. Godley, 2ZE, with the hest receiving equipment available. Tests were run, and thirty American stations were heard in Europe. In 1922 another trans-Atlantic test was carried out and 315 American calls were logged by European amateurs and one French and two British stations were heard on this side.

Everything now was centered on one objective: two-way amateur communication across the Atlantic! It must be possible - but somehow it couldn't quite be done. More power? Many already were using the legal maximum. Better receivers? They had superheterodynes. Another wavelength? What about those undisturbed wavelengths below 200 meters? The engineering world thought they were worthless - but they had said that about 200 meters. So, in 1922, tests between Hartford and l Boston were made on 130 meters with encouraging results. Early in 1923, ARRI-sponsored tests on wavelengths down to 90 meters were successful. Reports indicated that as the wavelength dropped the results were better. A growing excitement began to spread through amateur ranks.

Finally, in November, 1923, after some months of careful preparation, two-way amateur trans-Atlantic communication was accomplished, when Schnell, 1 MO, and Reinartz, 1XAM (now W9UZ and K6B.J, respectively) worked, for several hours with Deloy, 8A13, in France, with all three stations on 110 meters! Additional stations dropped down to 100 meters and found that they, too, could easily work two-way across the Atlantic. The exolus from the 200 -meter region had started. The "short-wave" era had begun!

By 1924 dozens of commercial companies had rushed stations into the 100 -meter region. Chaos threatened, until the first of a series of national and international radio conferences partitioned off various bands of frequencies for the different services. Although thought still centered around 100 meters, League officials at the first of these frequency-determining conferences, in 1924, wisely obtained amateur bands not only at 80 meters but at $40,20,10$ and even 5 meters.

Eighty meters proved so successful that "forty" was given a try, and QSOs with Australia, New Zealand and South Africa soon beeame commonplace. Then how about 20 meters." This new band revealed entirely unexpeeted possibilities when 1 . A AM worked 6 Ts on the West Coast, direct, at high noon. The dream of amateur radio - daylight DX! was finally true.

PUBLIC SERVICE

Amateur radio is a grand and glorious hobby but this fact alone would hardly merit sueh wholehearted support as is given it by our Government at international conferences. There are other reasons. One of these is a thorough appreciation by the Army and Navy of the value of the amateur as a source of skilled radio personnel in time of war. Another asset is best described as "public service."

About 4000 amateurs had contributed their skill and ability in '17-’18. After the war it was only natural that cordial relations should prevail between the Army and Navy and the amateur. These relations strengthened in the nex
few years and, in gradual steps, grew into eooperative activities which resulted, in 1925, in the establishment of the Naval Communications Reserve and the Army-Amateur Radio System (now the Military Amateur Radio System). In World War II thousands of amateurs in the Naval Reserve were called to active duty, where they served with distinction, while many other thousands served in the Army, Air Forces, Coast Guard and Marine Corps. Altogether, more than 25,000 radio, amateurs served in the armed forces of the United States. Other thousands were engaged in vital civilian electronie research, development and manufacturing. They also organized and manned the War Energency ladio Service, the communications seetion of OCl).
The "public-service" record of the amateur is a brilliant tribute to his work. These activities can be roughly divided into two classes, expeditions and emergencies. Amateur cooperation with expeditions began in 1923 when a League member, Don Mix, 1TS, of 13 ristol, Conn. (now assistant technical editor of QST), accompanied MacMillan to the Arctic on the schooner Bowdoin with an amateur station. Amateurs in Canala and the U.S. provided the home contacts. The success of this venture was such that other explorers followed suit. During subsequent years a total of perhaps two hundred voyages and expeditions were assisted by amateur radio, and for many years no expedition has taken the field without such plans.

Since 1913 amateur radio has been the principal, and in many cases the only, means of outside communication in several hundred storm, flood and earthquake emergencies in this country. The 1936 eastern states flood, the 1937 Ohio River Valley flood, the Southern California flood and Long Island-New England hurricane disaster in 1938, and the FloridaGulf Coast hurricancs of 1947 called for the amateur's greatest emergency effort. In these disasters and many others - tornadoes, sleet storms, forest fires, blizzards - amateurs played a major rôle in the relief work and earned wide commendation for their resourcefulness in effecting communication where all other means had failed. During 1938 ARRL inaugurated a new emergency-preparedness program, registering personnel and equipment in its Emergency Corps and putting into effect a comprehensive program of coöperation with the Red Cross, and in 1947 a National Emergency Coördinator was appointed to full-time duty at league headquarters.

The amateur's outstanding record of organized preparation for emergency communications and performance under fire has been largely responsible for the decesion of the Federal Government to set up special regulations and set aside special frequencies for use by amateurs in providing ausiliary communications for civil defense purposes in the event of war. Vider the banner, "Radio Amateur Civil Emergency Service," amateurs are setting up and manning community and
area networks integrated with civil defense functions of the municipal governments. Should a war cause the shut-down of routine amateur aetivities, the RACES will be immediately available in the national defense.

- TECHNICAL DEVE OPMENTS

Throughout these many years the amateur was careful not to slight experimental development in the cnthusiasm incident to international DN. The experimenter was constantly at work on ever-higher frequencies, devising improved apparatus, and learning how to cram several stations where previously there was room for only one! In particular, the amateur pressed on to the development of the very high frecuencies and his experience with five meters is especially representative of his initiative and resourcefulness and his ability to make the most of what is at hand. In 1924, first amateur experiments in the vicinity of 56 Mc . indicated that band to be practically worthless for 1)X. Nonetheless, great "short-haul" activity eventually came about in the band and new gear was developed to meet its special problems. Beginning in 1934 a series of investigations by the brilliant experimenter, Ross Hull (later QST's editor), developed the theory of v.h.f. wave-bending in the lower atmosphere and led amateurs to the attainment of better distances; while occasional manifestations of ionospheric propagation, with still greater distances, gave the band uniquely erratic performance. By Pearl Harbor thousands of amateurs were spending much of their time on this and the next higher band, many having worked hundreds of stations at distances up to several thousand miles. Transcontinental 6meter DN is now a commonplace occurrence; even the oceans have been bridged! It is a tribute to these indefatigable amateurs that today's concept of v.h.f. propagation was developed largely through amateur research.

The a mateur is constantly in the forefront of technical progress. His incessant curiosity, his eagerness to try anything new, are two reasons. Another is that ever-growing amateur radio continually overcrowds its freguency assignments, spurring amateurs to the development and adoption of new techniques to permit the

A corner of the ARRL laboratory.
accommodation of more stations, For examples, amateurs turned from spark to c.w., dosigned more selective receivers, adopted crystal control and pure d,c. power supplies. From the AIRI?L's own laboratory in 1932 came James Lamb's "single-signal" superheterodyne - the world's most advanced high-frequency raditelegraph receiver and, in 1936, the 'noise-silencer'" circuit. Amateurs are now turning to speech "rlippors" to reduce handwidths of 'phone transmissions and investigating "single-sideband suppressed-carrier" systems which promise to halve the spectrum space required by a voice-modulated signal.

During World War II, thousands of skilled amateurs contributed their knowledge to the development of secret radio devices, both in Government and private laboratories. Equally as important, the prewar technical progress by amateurs provided the keystone for the development of modern military communications equipment. Perhaps more important today than individual contributions to the art is the mass coopperation of the amateur body in Government projects such as propagation studies; each participating amateur station is in reality a separate field laboratory from which reports are made for correlation and analysis.

Fmergency relief, expedition contact, experimental work and countless instances of other forms of public service - rendered, as they always have been and always will be, without hope or expectation of material reward - made amateur radio an integral part of our peacetime national life. The importance of amateur participation in the armed forces and in other aspects of national defense have emphasized more strongly than ever that a mateur radio is vital to our national existence.

THE AMERICAN RADIO RELAY LEAGUE

The ARRL is today not only the spokesman for amateur radio in this country but it is the largest amateur organization in the world. It is strictly of, by and for amateurs, is noncommercial and has no stockholders. The members of the League are the owners of the ARRL and QST.

The Ieague is pledged to promote interest in two-way amateur communication and experimentation. It is interested in the relaying of messages by amateur radio. It is concerned with the advancement of the radio art. It stands for the maintenance of fraternalism and a high standard of conduct. It represents the amateur in legislative matters.

One of the League's principal purposes is to keep amateur activities so well conducted that the amateur will continue to justify his existence. Amateur radio offers its followers countless pleasures and unending satisfaction. It also calls for the shouldering of responsi-

The operating room at WIAW.
blities - the maintenance of high standards, a roñperative loyalty in the traditions of amateur radio, a dedication to its ideals and primeiples, so that the institution of amateur radio may continue to operate "in the publie interost, convenimore and neressity."

The operating territory of ARIKL is divided into filteren IT, S. artul five Canadian divisions. Tae affairs of the League are managed by a Board of Directors. One director is elected every two years by the membership of each I'. S. division, and one by the Canadian membership. These directors then choose the prosident and vier-president, who are also mombers of the Board. The secretary and iroasurer are aso appointed by the I Board. The directors, as representatives of the amatenps in their divisions, ment anmaly to examiae current amateur problems and formulate AIRIR1, policies thereon. The directors appoint a geaeral manager to supervise the operations of the leagut and its headquarters, and to carry out the policies and instructions of the Buard.

ARRL owns and publishes the monthly magazine, QST. Acting as a bulletin of the League's organized activities, QST also serves as a medium for the exchange of ideas and fostees amateur spirit. Its technical articles are renowned. It has grown to be the "amateur"s bihle," as well as one of the foremost radia magazines in the world. Membership dues include a subscription to QST.

ARKL maintains a model headquarter; amateur station, known as the lliram Percy Maxins Memorial Station, in Newington, Conn. Its call is W1AW, the call held by Mr . Maxim until his death and later transierred to the League station by a special FCC artion. Separate transmitfers of maximum legal power on each amateur band have permitted the station to be heurd regmlarly all over the world. More important, W1AW transmits on regular schedules bulletins of general interest to amateurs, conducts code practice as a training feature, and engages in two-way work on all popular bands with as many amateurs as time permits.

At the headquarters of the League in West Hartford, Conn., is a well-equipped laboratory to assist staff members in preparation of technical material for QST and the Radig Amaleur's Handbook. Among its other ac-
tivities, the League maintains a Communications Department concerned with the operating activities of League members. A large field organization is headed by a section Communications Manager in each of the League's seventy-t wo sections. There are appoint ments for qualified members as Official Relay Station or Official 'Phone Station for traffic handling; as Official Observer for monitoring frequencies and the quality of signals; as Route Manager and 'l'hone Activities Manager for the establishment of trunk lines and networks; as Emergency Coordinator for the promotion of amateur preparedness to cope with natural disasters; and as Official Exporimental station for those pioncering the frequencies above 50 Mc. Mimeographed bulletins keep, appointees informed of the latest developments. special activities and contests promote operating skill. A special section is reserved each month in QST for amateur news from every section of the country.

- amateur licensing in the UNITED STATES

The Communications Aet lodges in the Federal Communications Commission authority to classify and liconse radio stations and to prescribe regulations for their operation. 1'ursuant to the law, FCC has issued detailed rogulations for the amateur service.

A radio amateur is a duly authorized person interested in radio technique solely with a personal aim and without pecuniary interest. Amateur operator licenses are given to U. S. citizens who pass an examination on operation and apparatus and on the provisions of law and regulations affecting amateurs, and who demonstrate ability to send and receive code There are five basie classes of amateur license (Noviee, Technician, General-Conditional, Advanced, and Amateur Extra), each having different requirements and each conveving different privileges as to frequencies available and choioe of emission. Station licenses are granted only to licensed operators and permit communication between such stations for amateur purposes, i.e., for personal noncommercial aims flowing from an interest in radio technique. An amateur station may not be used for material compensation of amy sort nor for broadcasting. Narrow bands of froquencies are allocated exclusively for use by amateur stations. Tramsmissions may be on any frequency within the assigned bands. All the frequencies may be used for c.w. telegraphy and some are available for radiotelephony by any amateur, while others are reserved for radiotelephone use by persons holding higher grades of liconse. The input to the final stage of amateur stations is limited to 1000 watts and on frequencies below 144 Mc . must be adequatelyfiltered direct current. Emissions must be free from spurious radiations. The licensee must provide for measurement of the transmitter frequency and establish a procedure for checking it regularly. A complete log of station oper-
ation must be maintained, with specified data. The station license also authorizes the holder to oprate portathle and mobile stations subject to further regulations. An amate ur station may be operated onty by an amateur operator licensee, hut any licensed amateur operator may operate any amateur station within the scope of privileges conveyed by the licenses all radio licensees are subject to penalties for volation of regulations.

Amateur licenses are issued entirely free of charge. They can be issued only to citizens but that is the only limitation, and they are given without regard to age or physical condition to antone who successfully completes the examination. When you are able to copy code at the required speed, have studied basic transmitter theory and are familiar with the law and amateur regulations, you are ready to give serious thought to securing the Government amateur licenses which are issued you, after examination at a local district office or examining points in most of our larger cities, through FCC at Washington. A complete up-to-theminute diseussion of license requirements, and study guides for those preparing for the examinations, are to be found in an ARRL publication, The Radio Amateur's License Manual, available from the American Radio Relay League, West Hartford 7, Conn., for 50\&, postpaid.

LEARNING THE CODE

In starting to learn the code, you should consider it simply another means of conveying

A didah	N dahdit
B dahdididit	O dahdahdah
C dahdidahdit	P didahdahdit
D dah didit	Q dahdahdidah
E dit	R didahdit
F dididahdit	S dididit
G dahdahdit	T dah
H didididit	U dididah
I didit	V didididah
J didahdahdah	W didahdah
K dahdidah	\mathbf{X} dahdididah
L didahdidit	Y dahdidahdah
M dahdah	Z dahdahdidit
1 didahdahdahdah	6 dalhdidididit
2 dididahdahdah	7 dahdahdididit
3 didididahdah	8 dahdahdahdidit
4 dididididah	9 dahdahdahdahdit
5 dididididit	0 dahdahdahdahdah

Period: didahdidahdidah. Comma: dahdahdididahdah. Question mark: dididahdahdidit. Error:didididididididit. Doubledash:dahdidididah. Wait: didahdididit. End of message: didahdidahdit. Invitation to transmit: dahdidah. End of work: didididahdidah. Fraction bar: dahdididahdit.
Fig. 1-1 - The Continental (International Morse) code.
information. The spoken word is one mothod, the printed page another, and typewriting and shorthand are additional examples. Learning the code is as easy - or as difficult - as learning to type.

The important thing in beginning to study code is to think of it as a language of sound, never as combinatiof of dots and dashes. It is rasy to "speak" coide equivalents by using "dit" and "dah," so that A would be "didah". (the " t " is dropped in such combinations). The sound "di" should be staccato; a eode character sueh as " 5 " should sound like a machinegun burst: dididididit! Stress each "dah" equally; they are underlined or italicized in this text because they should be slightly arernted and drawn out.

Take a few eharacters at a time. Learn them thoroughly in didah language before going on to new ones. If someone who is familiar with code can be found to "send" to vou. either by whistling or by means of a buzzer or code oscillator, entist his coöperation. Learn the eode by listening to it. Don't think about speed to start; the first requirement is to learn the characters to the point whem yon ran recognize each of them without hesitation. Concentrate on any dif! : ult letters. Learning the code is not at all hard; a simple booklet treating the subject in detail is another of the beginner publications available from the League, and is entitled, Learning the Radiotelegraph Code, 25¢ postpaid.

THE AMATEUR BANDS

Imateurs are assighed bands of frequemeies at approximate octave intervals throughout the spectrum. Like assignments to all services. they are subject to modifacation to fit the changing picture of world communications needs.

In the adjoining table is a summary of the I. S. amateur bands on which operation is permitted as of our press date. Figures are megatceves. A0 means an unmodulated carrier, A1 means c.w. telegraphy, A2 is m.e.w., A3 is AMI phone, A4 is facsimile, 15 is television, NFM designates narrow-hand freguency- or phasemodulated radiotclephony, and FM means frequency modulation, phone (includitis NFM) or telegraphy. In addition, amatours are assigned portions of the band 1800-2000 ke., subject to certain power and goographical restrictions, as shown in the table below; either c.w. or voice may be used.

Area	Rand, k c	Power (watts)	
		Day	Night
Mississippi River to East	1800-1825 ke	500	200
Coast C.is. (except Flor-	1875-1900 ke		*20'
ida and states bordering		*500	
Gulf of Mexieo)			
Mississippi River to West	1900-192.5 ke		
Coast L'S. (exerent states	1975-2000 ke		
bordering (inlf of Mexien)			
Florida and states bor-	1800-1825 ke	$2(1)$	Xo operation
dering diulf of Mexioo			
lucres Ries amd Virgin	1!106 1925 ke	500	50
1slands	1975-200) ke		
Hawaiian lsamds	1900-192.5 ke	500	200
	1985-200 kc		

[^1]The 19.17 International Radio Conference resulted in certain plamed ehanges in present bands which may become effective some time in 1952 . They are: a reduction in the 20 -meter hand to make it thenceforth $14,000-14,350 \mathrm{ke}$., suld : hew band $21,000-21,450 \mathrm{kc}$. Further, at press time changes in amateur rules had been proposed to permit XFM operation on all amatteur bands open to voice (except in 1800-2000 ke.) and to make certain additional emissions permissible in the 7000 -ke. band. Because of the possibility of these and other changes cach amateur should keep himself currently informed by consulting QSTH or be writing ARIRL, for latest information.

$$
\begin{aligned}
& 3.500-4.000-A 1 \\
& 3.800-4.000-.13 \text {. Advanced or Exatra (lass } \\
& \text { 3 (N) } 3 \text { - } 3.300-\text { NFM. Advaned or lixtra } \\
& \text { (lans } \\
& 7.0 \mathrm{mH}-7.300-\mathrm{Al} \\
& 4.900-14.400-.11 \\
& \text { 14.200-11.30\% - A3, Advanced or Extra ('lass } \\
& \text { 14.20)-11.250 - NFM. Advanced or Extra } \\
& \text { () liss } \\
& 26.960-27.230-10 . \text { A1. A2. A3. A4, FM } \\
& \text { 28.0ッ10-29.7ต0-. } 11 \\
& 2 x .5(5)-243.700-13 \\
& 28.50-240 \text { - NFM } \\
& \text { 2!9.(MH1-29.7(M) - FM } \\
& \text { i(), } 11 \text {-it. } 0 \text { - A1.A2, A3, A4, NFM } \\
& 52.5-54.0-\mathrm{FM} \\
& \text { 1it - Its - At, Ai, A2, A3, At, FM } \\
& 220-2.5-A 14, A 1, A 2,13,14, \text { FM } \\
& \text { 420* - } 450 \text { (0) - A0, A1, A2, A3, A4, A5. FMI } \\
& 1.215-1.300-\mathrm{Ab}, \mathrm{~A}, \mathrm{~A} 2, \mathrm{~A} 3, \mathrm{~A} 4, \mathrm{~A} . \mathrm{FM} \\
& 2.300-2.450 \\
& 3.300-3.500 \\
& 5,650-5,025 \text { A6, A1. A2. A3, A4, A5, FM. } \\
& 10,000-10,500 \\
& 21,000-22,000 \\
& \text { All above } 30.000 \\
& \text { * Peak antenna powror mist not evceed } \overline{0} 0 \text { watts. }
\end{aligned}
$$

Electrical Laws and Circuits

- ELECTRIC AND MAGNETIC FIELDS

When something ocrurs at one point in spare because something else hippened at another point, with no visible means by which the "cause" gan be related to the "effert," we say the two events are comeeted by in field. The fields with which we are concerned are the electric and magnetic, and the combination of the two called the electromagnetic ficld.

I field has two important properties, intensity (magnitude) and direction, The field exerts a force on an object immersed in it; this forere represents potential (ready-to-be-used) energy, so the potential of the fied is a measure of the field intensity. The direction of the field is the direction in which the object on which the force is exerted will tend to move.

An electrically-charged object in an electric field will be acted on by a fore that will tend to move it in a direction determined by the direction of the field. Similarly, a magnet in a magnetic field will be subject to a force. Everyone has seen demonstrations of magnetic fields with pocket magnets, so intensity and direction are not hard to grasp.

A "static" field is one that neither moves nor changes in intensity. Such a field can be set up by a stationary electric charge (electrostatic field) or by a stationary magnet (magnetostatic field). But if either an clectric or magnetic field is moving in space or changing in intensity, the motion or change sets up the other kind of field. That is, a dhanging electrife field sets up a magnetic field, and at changing magnetic field generates an cectric field. This interrelationship) between magnetic and electric fields makes possible such things as the electromanet and the electric motor. It also makes possible the electromagnetic waves by which radio communication is carried on, for such waves are simply traveling fields in which the energy is alternately handed back and forth between the electric and matrnetic fields.

Lines of Force

Although no one knows what it is that composes the fiold itsolf, it is useful to invent a picture of it that will help in visualizing the forces and the way in which they act.

A field can be pictured as being made up of lines of force, or flux lines. These are purely imaginary threads that show, by the direction in which they lie, the dirertion the object on
which the fore is exerted will move. The number of lines in at chosen cross section of the field is a measure of the intensity of the force. The number of lines per square inch, or per square centimeter, is called the flux density.

- ELECTRICITY AND THE ELECTRIC CURRENT

Everything physical is built up of atoms, particles so small that they cannot be seen even through the most powerful microscope. But the atom in turn fonsists of several different kinds of still smaller particles. One is the electron, essentially a small partiole of electricity. The quantity or charge of eleatricity represented by the elortron is, in fart, the smallest quantity of electricity that can exist. The kind of clectricity associated with the electron is called negative.

An ordinary atom consists of a central core called the nucleus, around which one or more electrons circulate somewhat as the earth and other planets circulate around the sun. The nucleus has an electric charge of the kind of electricity called positive, the amount of its charge being just exactly equal to the sum of the negative charges on all the electrons associated with that nucleus.

The important fart about these two "opposite" kinds of clectricity is that they are strongly attracted to atch other. Aso, there is a strong force of repulsion between two charges of the same kind. The positive nucleus and the negative electrons are attracted to each other, but two electrons will be repelled from each other and so will two nuclei.

While in a normal atom the positive charge on the mucleus is exactly balanced by the negative charges on the electrons, it is possible for an atom to lose one of its electrons. When that happens the atom has a little less negative charge than it should - that is, it has a net positive charge. Such an atom is satid to be ionized, and in this case the atom is a positive ion, If an atom pieks up an extra clectron, ins it sometimes does. it has a net negative charge and is called a negative ion. A positive ion will attract any stray electron in the vicinity, including the extra one that may be attached to a nearby negative ion. In this way it is possible for electrons to travel from atom to atom. The movement of ions or electrons constitutes the electric current.

The amplitude of the current (that is, its intensity or magnitude) is determined by the rate at which electric charge - an accumulation of elec-
trons or ions of the same kind - moves past a point in a circuit, since the charge on a single electron of ion is extremely smatl, the number that must mone as a group to form even a tiny current is almost inconceivably large.

Conductors and Insulators

Atoms of some marreials, notably metals and acids, will give up an electron readily, but atoms of other materials will not part with any of their clectrons even when the clectric for or is extremely strong. Materials in which electrons or ions can be moved with relative ease are called conductors, while those that refuse to permit such movement are called nonconductors or insulators. The following list shows how some common materials divide between the conductor and insulator chassifications:

Conductors	Insulaturs
Metals	Dry Air
Carbon	Wood
Acids	Porcelain
	Textiles
	(ilass
	Rubler
	Resins
	Electromotive

The electric force or potential (ralled electromotive force, and abbreviated e.m.f.) that cialuses current flow may be developed in several ways. The action of certain chemical solutions on dissimilar metals sets up an e.m.f.; such a combination is called a cell, and a group of cells forms an electric battery. The amount of current that such cells can carry is limited, and in the course of current flow one of the metals is eaten away. The amount of electrical encrgy that can be taken from a battery conseduently is rather small. Where a large amount of energy is needed it is usually furnished by an electric generator, which develops its e.m.f. by a combination of magnetic and mechanical means.

In picturing eurrent flow it is matural to think of a single, constant force causing the electrons to move. When this is so, the electrons always move in the same direction through a path or circuit made up of conductors romberted together in a contimuous chatin. Surh a courent is called a direct current, aboreviated d.c. It is the type of aurent furnished by hatteries athel hy certaith types of gemorators. Howerer, it is akso prosible to have ath em.if. that periodically reverses. With this kind of e.m.f. the emernt flems first in whe dieedion through the eirenit and then in the wher. such ath e.m.f. is called an alternating c.mif., athd the cument is called an alternating current (abbreviated a.c.). The reversals (alternations) may orour at any rate from a few per serond up to several billion per seeond. Two reversals make a cycle; in one recle the forer aters first in one direction, then in the other, and theon returns to the first direction. The number of cycles in one second is called the frequency of the alternating current.

Direct and Alternating Currents

The difference between direct current and alternating current is shown in Fig. 2-1. In these graphs the horizontal axis measures time, inrrasing toward the right away from the vertical axis. The vertical axis represents the amplitude of strength of the current, increasing in either the up or down direction away from the horizontal axis. If the graph is above the horizontal axis the current is flowing in one direction through the circuit (indicated by the + sign) and if it is below the horizontal axis the current is flowing in the reverse direction through the eircuit (indirated by the - sign). Fig. 2-1 A shows that, if we close the circuit - that is, make the path for the current complete - at the time indicated by N, the current instantly takes the amplitude indicated by the height A. After that, the current continues at the same amplitude as time goes on. This is an ordinary direct current.

In lig, 2-113, the current starts flowing with the amplitude A at time X, continues at that amplitude until time Γ and then instantly ceases. After an interval $Y Z$ the current again begins to flow and the same sort of start-and-stop performance is repeated. This is an intermittent dirent current. We could get it by alternately closing and opening a switch in the circuit. It is a direct current because the direction of current flow dow: mot change; the graph is always on the + side of the horizontal axis.

In Fig. 2-10 the current starts at zero, increases in amplitude as time goes on until it reaches the amplitude A_{1} while flowing in the + direction, then decreases until it drops to zero amplitude once more. At that time (X) the

Fig. 2.1-Three types of eurrent flow. A - direct current; B - intermittent direct current; C - alternat. ing current.
direction of the current flow reverses; this is indicated by the fact that the next part of the graph is below the axis. As time goes on the amplitude increases, with the current now fowing in the direction, until it reaches amplitude A_{2}. Then the amplitude decreases until finally it drops to zero (Y) and the direction reverses once more. This is an alternating current.

Waveforms

The type of alternating current shown in Fig. 2-1 is known as a sine wave. The variations in many a.c. waves are not so smooth, nor is one half-cycle neressarily just like the preceding one in shape. However, these complex waves can be shown to be the sum of two or more sine waves of frequencies that are exact integral (whole-number) multiples of some lower frequency: The lowest frequency is called the fundamental frequency, and the higher frequencies (2 times, 3 times the fundamental frequency, and so on) are called harmonics.

Fig. 2-2 shows how a fundamental and a second harmonic (twice the fundamental) might add to form a complex wave. Simply by changing the relative amplitudes of the two waves, as well as the times at which they pass through zero amplitude, an infinite number of waveshapes can be constructed from just a fundamental and second harmonic, Waves that are still more complex can be constructed if more harmonics are used.

Electrical Units

The unit of electromotive force is called the volt. An ordinary flashlight cell generates :n e,m.f. of ahout 1.5 volts. The e.m.f. commonly supplied for domestic lighting and power is 115 volts, usually a.c. having a frequency of 60 cycles per second. The voltages used in radio receiving and transmitting circuits range from a few volts (usually ace.) for filament heating to as high as as few thousand d.c. volts for the operation of power tubes.

The flow of electric current is measured in amperes. One ampere is eguivalent to the movement of many billions of electrons past a point in the circuit in one secoud. Currents in the neightwhond of an ampere are reguired for heating the filaments of small prower tulnes. The direct currents used in anatent radio coupment usaally are not so large, and it is customary to measure surh "urrents in miliamperes. Onc milliampere is coplat to ome ine-thoustadth of :an ampere, or

I "doe, ampere" is a tusasure of at strady currell, but the "atr", ampere" must measure a curvent that is continually varying in amplitude and periodically reversing direction. To put the two on the same basis, an anc. ampere is defined as the amount of current that will cause the same heating effect (see later section) ass one ampere of steady direct current. For sine-wave a.e., this effective (or r.m.s.) value is equal to the Mraximunn amplitude (A_{1} or A_{2} in Fig. 2-1 () multiplied by 0.707 . The instantaneous value is the value

Fig. 2-2- A complex waveform. A fundamental (top) and second harmonic (center) added together, point ly point at cach instant, result in the waveform shown at the bottom. When the two components have the same polarity at a selected instant, the resultant is the simple sum of the two. When they have opposite polarities, the resultant is the difference: if the negative-potarity component is larger, the resultant is negative at that instant.
that the current (or voltage) has at any selected instant in the cyele.

If all the instantancous values in a sine wave are averaged over a half-cyele, the resulting figure is the average value. It is equal to 0.636 times the maximum amplitude. The average value is useful in comertion with rectifier systems, as deseribed in a later chapter.

FREQUENCY AND WAVELENGTH

Frequency Spectrum

Frequencies ranging from about 15 to 15,000 cycles per second are called audio frequencies, because the vibrations of air particles that our ears recognize as sounds ore ar at a similar rate. . Iudio frequencies (abbreviated a.f.) are used to actuate loudspeakers and thus create sound waves.

Frequencies abowe about 1 ,000 cycles are called radio freflumenes (r.f.) becalase they are useful in radio transmission. Fregueneies all the
 have breol used for radio purposes, it radio fregucneces the mumbers leecome so large that it hecomes convenient to use a larger unit than the cycle. Two such units are the kilocycle, which is equal to 1000 (ycles and is abhreviated kc., and the megacycle, " hich is equal to $1,0001,000$ cycles or 1000 kilorycles and is abbreciated Mc.

The various radio frequencies are divided off into chasifications for ready identification. These classifications, listed below, constituie the frequency spectrum so far as it extend for radio, purposes at the present time.
\quad Frequency
10 to 30 kc .
30 to 300 kc.
300 to 3000 kc.
3 to 30 Mc.
30 to 300 Mc.
300 to 3000 Mc .
3000 to $30,000 \mathrm{Mc}$.
Classification
Very-low frequencics
Low frequencics
Medium frequencies
High frequencies
Very-high frequeneies
Ultrahigh frequencies
Superhigh frequencies
Abbreviation
v.l.f.
l.f.
im.f.
h.f.
v.h.f.
u.h.f.
s.h.f.

Wairength

Radio waves travel at the same speed as light - $300,000,000$ meters or about 186,000 miles a second in spare. They can be set up by a radiofrequency current flowing in a cirruit, because the rapidly-changing current sets up a magnetic field that changes in the same way, and the varying magnetie field in turn sets up a varying electric fied. And whenever this happens, the two fields move outward at the speed of light.
suppose an r.f. current has a frequency of $3,000,000$ cycles per second. The fields will go through complete reversals (one cyele) in $1 / 3,000,000$ second. In that same periond of time the fields - that is, the wave - will move $300,000,000 / 3,000,000$ meters, or 100 meters. By the time the wave has moved that distance
the next cycle has begun and a new wave has started out. The first wave, in other words, covers a distance of 100 meters before the beginning of the next, and so on. This distance is the wavelength.

The longer the time of one cycle - that is, the lower the frequency - the greater the distance occupied by each wave and hence the longer tho wavelength. The relationship between wavelength and frequency is shown by the formula

$$
\lambda=\frac{300,000}{f}
$$

where $\lambda=$ Wavelength in meters
$f=$ Frequency in kilocycles
Ol°

$$
\lambda=\frac{300}{f}
$$

where $\lambda=$ Wavelength in meters $f=$ Frequency in megaryoles
Example: The wavelength corresponding to a frecpuency of 3650 kilocseles is

$$
\lambda=\frac{300.000}{3650}=82.2 \text { metere }
$$

Resistance

Given two conductors of the same size and shape, but of different materials, the amount of current that will flow when a given e.m.f. is applied will be found to vary with what is called the resistance of the material. The lower the resistance, the greater the current for a given value of e.m.f.

Resistance is measured in ohms. A circuit has a resistance of one ohm when an applied e.m.f. of one volt causes a current of one ampere to flow. The resistivity of a material is the resistance, in ohms, of a cube of the material measuring one centimeter on each edge. One of the best conductors is copper, and it is frequently convenient, in making resistance calculations, to compare the resistance of the material under consideration with that of a copper conductor of the same size and shupe, Table $2-1$ gives the ration of the resistivity of various conductors to that of eopper.

The longer the path through which the eurrent flows the higher the resistance of that condurtor. For direct current and low-fregaency alternating

TABLE 2-I	
Relative Resistivity of Metals	
Material	Resistirity Compared to Copper
Aluminum (pure)	1.70
Brass.	3.57
(admium.	5.26
Chromium	1.82
Copper (hardelrawn)	1.12
(iopper (annealed).	1.00
Iron (pure).	5.6 .5
Lead.	14.3
Nichel. .	.6.25 to 8.38
Phosphor Bronze	2.78
Silver.	0.91
'I'in	7.70
Zinc.	3.54

currents (up to a few thousand cycles per second) the resistance is inversely proportional to the cross-sectional area of the path the current must travel; that is, given two conductors of the same material and having the same length, but differing in cross-sectional area, the one with the larger area will have the lower resistance.

Resistance of Wires

The problem of determining the resistance of a round wire of given diameter and length - or its opposite, finding a suitable size and length of wire to supply a desired amount of resistance can be easily solved with the help of the copperwire table in the Miscellaneous Data chapter. This table gives the resistance, in ohms per thousand fect, of each standard wire size.

Example: Suphose a resistance of 3.5 ohms is needed and some No. 28 wire is on hund. The wire table in the Niscellaneous Data chapter shows that №. 28 his a resistance of 6 f .17 ohms per thousand fect. Ninee the desired resistance is 3.5 ohms, the length of wire reguired will be

$$
\frac{3.5}{66.17} \times 1000=52,89 \text { feet. }
$$

Or. suppose that the resistanee of the wire in the circuit must not execed 0.05 ohm and that the length of wire repuired for making the connections totals 14 feet. Then

$$
\frac{14}{1000} \times R=0.05 \mathrm{ohm}
$$

where R is the maximum allowable resistanee in ohms per thousand feet. Rearranging the formula gives

$$
R=\frac{0.05 \times 1000}{14}=3.57 \text { olims } / 1000 \mathrm{ft}
$$

Reference to the wire table shows that No. 15 is the smallest size having a resistance less than this value.
When the wire is not copper, the resistance values given in the wire table should be multi-

Types of resistors used in radio equip. ment. Those in the foreground with wire leads are carbon types, ranging in size from $1 / 2$ watt at the left to 2 watts at the right. The larger resistors use resistance wire wound on ceramie thbes; sizes shown range from 5 watts to 100 watts. Three are the adjustable type, using a sliding contact oll an exposed seetion of the resistance winding.

plied by the ratios given in Table 2-I to obtain the resistance.

$$
\begin{aligned}
& \text { Example: If the wire in the first example were } \\
& \text { iron instead of copper the length refuired for } \\
& 3.5 \text { ohms would be } \\
& \frac{3.5}{66.17 \times 5.65} \times 1000=9.35 \text { feet. } \\
& \text { Temperafure Effects }
\end{aligned}
$$

The resistance of a conductor changes with its temperature. Although it is seldom necessary to consider temperature in making resistance calculations for amateur work, it is well to know that the resistance of practically all metallic conductors increases with increasing temperature. Carbon, however, acts in the opposite way; its resistance decreases when its temperature rises. The temperature effect is important when it is necessary to maintain a constant resistance under all conditions. Sperial materials that have little or no change in resistance over a wide temperature range are used in that case.

Resistors

A "parkage" of resistance made up into a single unit is called a resistor. Resistors having the same resistance value may be comsiderably different in size and construction. The flow of current through resistance causes the conductor to become heated; the higher the resistance and the larger the current, the greater the amount of heat developed. Resistors intended for carrying large currents must be physically large so the heat cat be radiated quickly to the surrounding air. If the resistor does not get rid of the heat cuickly it may reach a temperature that will cause it to melt or burn.

Skin Effect

The resistance of a conductor is not the same for alternating current as it is for direct current. When the current is alternating there are internal effects that tend to force the current to flow mostly in the outer parts of the conductor. This decreases the effective cross-sectional area of the conductor, with the result that the resistance increases.

For low audio frequencies the increase in resistance is unimportant, but at radio frequencies this skin effect is so great that practically all the current flow is confined within a few thousandths of an inch of the conductor surface. The r.f. resistance is consequently many times the d.c. resistance, and increases with increasing frequency. In the r.f. range a conductor of thin tubing will have just as low resistance as a solid conductor of the same diameter, berause material not dose to the surface carries practically no current.

Conductance

The reciprocal of resistance (that is, $1 / R$) is called conductance. It is usually represented by the symbol (i. A circuit having large conductance has low resistance, and vice versa. In radio work the term is used chiefly in connection with vacuum-tube characteristics. The unit of conductance is the mho. A resistance of one ohm has a conductance of one mho, a resistance of 1000 ohms has a conductance of 0.001 mho , and so on. A unit frequently used in connection with vacuum tubes is the micromho, or one-millionth of a mho. It is the conductance of a resistance of one megohm.

OHM'S LAW

The simplest form of electric circuit is a battery with a resistance comerted to its terminals, as shown by the symbols in Fig. 2-3. A complete circuit must have an unbroken path so current

Fig. 2.3-A simple eircuit eonsisting of a battery and resistor.

can flow out of the battery, through the apparatus connected to it, and back into the battery. The circuit is broken, or open, if a connection is removed at any point. A switch is a device for making and breaking connections and thereby closing or opening the circuit, either allowing current to flow or preventing it from flowing.

TABLE 2-II Conversion Factors for Fractional and Multiple Units			
To change from	To	Dicide by	Maltiply br
Lnits	Micro-units Milli-units Kilo-uniss Mega-is	$\begin{gathered} 1000 \\ 1,000,000 \end{gathered}$	$\begin{gathered} 1,000,000 \\ 1000 \end{gathered}$
Micromnits	Milli-units Units	$\begin{gathered} 1000 \\ 1,(100,0000) \end{gathered}$	
Milli-units	Miero-units Units	1(6)O	1000)
Kilo-units	Units Mega-mits	10010	1000
Mega-units	$\begin{aligned} & \text { L'nits } \\ & \text { Kilo-units } \end{aligned}$		$\begin{gathered} 1.000,000) \\ 1000 \end{gathered}$

The values of current, voltage and resistance in a circuit are by no means independent of each other. The relationship between them is known as Ohm's Law. It can be stated as follows: The current flowing in a circuit is directly proportional to the applied e.m.f. and inversely proportional to the resistance. Expressed as an equation, it is

$$
I(\text { amperes })=\frac{E(\mathrm{volts})}{R(\mathrm{ohms})}
$$

The equation above gives the value of current when the voltage and resistance are known. It may be transposed so that each of the three quantities may be found when the other two are known:

$$
E=I R
$$

(that is, the voltage acting is equal to the current in amperes nultiplied by the resistance in ohnss) and

$$
R=\frac{E}{I}
$$

(or, the resistance of the circuit is equal to the applied voltage divided by the current).

All three forms of the equation are used almost constantly in radio work. It must be remembered that the quantities are in volts, ohms and amperes; other units camot be used in the equations without first being converted. For example, if the current is in milliamperes it must be changed to the equivalent fraction of an ampere before the value can be substituted in the equations.
Table 2-II shows how to convert between the various units in common use. The prefixes attached to the basic-unit name indicate the nature of the unit. These prefises are:

$$
\begin{aligned}
& \text { micro - one-millionth (abbreviated } \mu \text {) } \\
& \text { milli - one-thousandth (abbreviated } m \text {) } \\
& \text { kilo - one thousand (abbreviated } k \text {) } \\
& \text { mega - one million (abbreviated } M \text {) }
\end{aligned}
$$

For example, one microvolt is one-millionth of a volt, and one megohm is $1,000,000$ ohms. There are therefore $1,000,000$ microvolts in one volt, and 0.000001 megohm in one ohm,

The following examples illustrate the use of Ohm's law:

The current flowing in a resistaner of 20,000 ohms is 1.50 milliamperes. What is the voltame? sinere the voltage is to be found, the cruation to use is $E=I R$. The current must first be converted from milliamperes to amperes, and reference to the table shows that to do so it is necessary to divide by 1000 . Therefore.

$$
E=\frac{150}{1000} \times 20,000=3000 \text { volts }
$$

When a voltage of 150 is applied to a circuit the current is measured at 2.5 amperes. What is the resistance of the circuit? In this case R is the unknown, so

$$
R=\frac{E}{I}=\frac{150}{2.3}=60 \mathrm{ohms}
$$

No conversion was necessary because the voltace and current were siven in volts and amperes.

How much current will flow if 250 volts is applied to a 5000 -ohm resistor? Since I isunknown,

$$
I=\frac{E}{R}=\frac{250}{5000}=0.0 .5 \text { stupere }
$$

Milliampere units would the more convenient for the current, and 0.05 amp. $\times 1000=50$ milliamperes.

SERIES AND PARALLEL RESISTANCES

Very few actual electric circuits are as simple as the illustration in the preceding section. Commonly, resistances are found comected in a

Fig. 2.4-Resistors connected in serics and in parallel.
\approx

variety of ways. The two fundamental methods of connecting resistances are shown in Fig. 2-4. In the upper drawing, the current flows from the source of e.m.f. (in the direction shown by the arrow, let us say) down through the first resistance, R_{1}, then through the second, R_{2}, and then back to the source. These resistors are connected in series. The current everywhere in the circuit has the same value.

In the lower drawing the current flows to the common connection point at the top of the two resistors and then divides, one part of it flowing through R_{1} and the other through R_{2}. At the lower connection point these two currents again combine; the total is the same as the current that flowed into the upper common connection. In this case the two resistors are connected in parallel.

Resistors in Series

When a circuit has a number of resistances conmerted in series, the total resistance of the circuit is the sum of the individual resistances. If these are numbered R_{1}, R_{2}, R_{3}, etc., then $R \quad($ total $)=R_{1}+R_{2}+R_{3}+R_{4}+$
where the dots indirate that as many resistors as necessary may he added.

$$
\begin{aligned}
& \text { Example: Suppose that three resistors are } \\
& \text { connected to a source of com.f. as shown in Fig. } \\
& 2-n . \text { The com.f. is } 250 \text { volts, } R_{1} \text { is } 5000 \text { ohms, } \\
& R_{2} \text { is } 20,000 \text { ohms, wnd } R_{3} \text { is } 8000 \text { ohms. The } \\
& \text { total resistance is then } \\
& \begin{array}{c}
R=R_{1}+R_{2}+R_{3}=5000+20,000+8000 \\
=33,000 \text { ohms }
\end{array}
\end{aligned}
$$

The eurrent flowing in the cireuit is then

$$
I=\frac{E}{R}=\frac{250}{33,000}=0.007 .57 \mathrm{amp}=7.57 \mathrm{ma}
$$

(We need not carry calculations bryond three significant figures, and often two will suffice because the accuracy of measurements is seldom better than a few per cent.)

Voltage Drop

Ohm's Law applied to any part of a circuit as well as to the whole circuit. Although the current is the same in all three of the resistances in the example, the total voltage divides among them. The voltage appearing across each resistor (the voltage drop) can be found from Ohm's Law.

Example: If the voltage across R_{1} (Fig. 2-5) is called E_{1}, that across R_{2} is called E_{2}, and that across R_{3} is called E_{3}, then
$E_{1}=I R_{1}=0.00757 \times 5000=37.9$ volts
$E_{2}=I R_{2}=0.00757 \times 20,000=151.4$ volts
$E_{3}=I R_{3}=0.00757 \times 8000=60.6$ volts
The total voltage must erpual the sum of the individual voltage drops:

$$
\begin{gathered}
E=E_{1}+E_{2}+E_{3}=37.9+151.4+60.6 \\
=249.9 \mathrm{volts}
\end{gathered}
$$

The answer would have been more nearly exact if the current had been calculated to more decimal places, but as explained aloove a very high order of accuracy is not necessary.
In problems such as this considerable time and trouble can be saved, when the current is small enough to be expressed in milliamperes, if the

Fig. 2-5-An example of resistors in series. The solution of the circuit is worked out in the text.
resistance is expressed in kilohms rather than ohms. When resistance in kilohms is substituted directly in Ohm's Law the current will be in milliamperes if the e.m.f. is in volts.

Resistors in Parallel

In a circuit with resistances in parallel, the total resistance is less than that of the lowest value of resistance present. This is because the
total current is always greater than the current in any individual resistor. The formula for finding the total resistance of resistances in parallel is

$$
R=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\frac{1}{R_{4}}+\cdots \cdot}
$$

where the dots again ir ate that any number of resistors can be combined by the same method. For only two resistances in parallel (a very common case) the formula is

$$
K=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

Example: If a 000 -ohm resistor is paralleled with one of 1200 ohms, the total resistance is

$$
\begin{aligned}
R=\frac{R_{1} R_{2}}{R_{1}+R_{2}} & =\frac{500 \times 1200}{500+1200}=\frac{600,000}{1700} \\
& =353 \mathrm{ohms}
\end{aligned}
$$

It is probably easier to solve practical problems by a different method than the "reciprocal of reciprocals" formula. Suppose the three re-

Fig. 2-6 - An example of resistors in parallel. The solution is worked out in the text.
sistors of the previous example are connected in parallel as shown in Fig. 2-6. The same e.m.f., 250 volts, is applied to all three of the resistors. The current in each can be found from Ohm's Law as shown below, I_{1} being the current through R_{1}, I_{2} the current through R_{2} and I_{3} the current through R_{3}.

For convenience, the resistance will be expressed in kilohms so the current will be in milliamperes.

$$
\begin{aligned}
& I_{1}=\frac{E}{R_{1}}=\frac{250}{5}=50 \mathrm{ma} \\
& I_{2}=\frac{E}{R_{2}}=\frac{250}{20}=12.5 \mathrm{ma} \\
& I_{3}=\frac{E}{R_{3}}=\frac{250}{8}=31.25 \mathrm{ma}
\end{aligned}
$$

The total current is

$$
\begin{gathered}
I=I_{1}+I_{2}+I_{3}=50+12.5+31.25 \\
=93.75 \mathrm{ma}
\end{gathered}
$$

The total resistance of the circuit is therefore $\mathrm{R}=\frac{E}{I}=\frac{250}{93.75}=2.66$ kilohms $(=2660 \mathrm{ohms}$)

Resistors in Series-Parallel

An actual circuit may have resistances both in parallel and in series. To illustrate, we use the same three resistances again, but now connected as in Fig. 2-7. The method of solving such a circuit such as Fig. 2-7 is as follows: Consider R_{2} and R_{3} in parallel as though they formed a single resistor. Find their equivalent resistance. Then this resistance in series with R_{1} forms a simple series circuit, as shown at the right in Fig. 2-7.

Fouivalent Circuit
Fig. 2.7 - An example of resistors in series-parallel. The solution is worked out in the text.

Example: The first step is to find the eduivalent resistance of R_{2} and R_{3}. From the formula for two resistances in parallel,

$$
\begin{aligned}
R_{\mathrm{cq}}= & \frac{R_{2} R_{3}}{R_{2}+R_{3}}=\frac{20 \times 8}{20+8}=\frac{160}{28} \\
& =5.71 \text { kilohms }
\end{aligned}
$$

The total resistance in the eirenit is then

$$
\begin{aligned}
\mathbf{R}=R_{1} & +R_{\text {ni, }}=\tilde{j}+\overline{5} .71 \text { kilohms } \\
& =10.71 \text { kilohms }
\end{aligned}
$$

The current is

$$
I=\frac{E}{R}=\frac{250}{10.71}=23.4 \mathrm{ma}
$$

The voltage drols across R_{1} and $R_{\text {pq. }}$ are
$E_{1}=I R_{1}=23.4 \times 5=117$ volts
$E_{2}=I R_{\text {etl }}=23.4 \times$ is. $71=133$ volts
with sufficient accurary. These total 250 volts, thus checking the calculations so far, becanse the sum of the voltage drops must equal the total voltage, Ninee E2 appears apross both R2 and R_{3},

$$
\begin{aligned}
& I_{2}=\frac{R_{2}}{R_{2}}=\frac{133}{20}=6.75 \mathrm{ma} \\
& I_{3}=\frac{R_{2}}{R_{3}}=\frac{133}{8}=16.6 \mathrm{ma}
\end{aligned}
$$

where $I_{2}=$ (iurrent through R_{2}
$I_{3}=$ furrent through R_{3}
The total is 23.3is man, which checks elosely enough with 23.4 ma., the eurrent throurh the whole eircuit.

POWER AND ENERGY

lower - the rate of doing work - is ecpual to voltage multiplied by current. The unit of electrical power, called the watt, is equat to one volt multiplied by one ampere. The equation for power therefore is

$$
I=E I
$$

where $P=$ Power in watts
$E=\mathrm{F}, \mathrm{m}, \mathrm{f}$. in volts
$I=$ Curront in amperes
Common fractional and multiple units for power are the milliwatt, one one-thousandth of a watt, and the kilowatt, or one thousand watts.

Example: The plate voltage on a transmitting vacuum tube is 2000 volts and the pate current is $3 \overline{0} 0$ militanneres. (The current must tre ehanged to ammeres before substitution in the formula, and so is 0,35 atmp, 'Then

$$
P=E I=2000 \times 0.35=700 \text { watts }
$$

By substituting the Ohm's Law equivalents for E and I, the following formulas are oltatined for power:

$$
\begin{aligned}
& P=\frac{E^{2}}{R} \\
& P=I^{2} R
\end{aligned}
$$

These formutas are useful in power caleulations
when the resistance and either the current or voltage (but not both) are known.

Example: How much power will be used up in a 4000 -ohm resistor if the voltage applied to it is 200 volts? From the equation

$$
P=\frac{E^{2}}{R}=\frac{(200)^{2}}{4000}=\frac{40,000}{4000}=10 \mathrm{watts}
$$

Or, suphose a current of 20 milliamperes flows through a 300 -ohm resistor. Then

$$
\begin{gathered}
P=I^{2} R=(0.02)^{2} \times 300=0.0004 \times 300 \\
=0.12 \text { watt }
\end{gathered}
$$

Note that the current was changed from milliamperes to amperes before substitution in the formina.

Electrical power in a resistance is turned into heat. The greater the power the more rapidly the heat is generated. Resistors for radio work are made in many sizes, the smallest being rated to "dissipate" (or carry safely) about 1/4 watt. The largest resistors used in amateur equipment will dissipate about 100 watts.

Generalized Definition of Resistance

Electrical power is not always turned into heat. The power used in rumning a motor, for example, is converted to mechanical motion. The power supplied to a radio transmitter is largely converted into radio waves. Power applied to a loudspeaker is changed into sound waves. Ibut in every cise of this kind the power is completely "used up" - it cannot be recovered. Also, for proper operation of the device the power must be supplied at a definite ratio of voltage to current. Both these features are characteristies of resistance, so it can be said that any device that dissipates power has a definite value of "resistance." This concept of resistance as something that absorbs power at a definite voltage/current ratio is very useful, since in circuit work it permits substituting a simple resistance load for the power-ronsuming part of the device receiving power, often with eonsiderable cireuit simplifieation. Of course, every electrical device has some resistance of its own in the more narrow sense, so a part of the power supplied to it is dissipated in that resistance and hence appears as heat even though the major part of the power may be converted to another form.

Efficiency

In devices such as motors and vacuum tubes, the object is to obtain power in some other form that heat. Therefore power used in heating is considered to be a loss, beanse it is not the uscful power. The efficiency of a device is the useful power output (in its converted form) divided by the power imput to the device. In a varuum-tube transmitter, for example, the object is to convert power from a d.c. source into a.c. power at some radio frequency. The ratio of the r.f. power output to the d.c. input is the efficiency of the tube. That is,

$$
E f f .=\frac{P_{0}}{P_{\mathrm{i}}}
$$

where Eff. = Efficiency (as a decimal)
$P_{\mathrm{o}}=$ Power output (watts)
$P_{\mathrm{i}}=$ Power input (watts)
Example: If the d.c. input to the tube is 100 watts and the r.f. power output is 60 watts, the efficiency is

$$
E f .=\frac{P_{0}}{P_{\mathrm{i}}}=\frac{60}{100}=0.6
$$

Efficiency is usually expressed as a percentage; that is, it tells what per cent of the imput power will be available as useful output. The efficiency in the above example is 60 per cent.

Energy

In residences, the power company's bill is for electric energy, not for power. What you pay for is the work that electricity does for you, not the rate at which that work is done.

Electrical work is equal to power multiplied by time; the common unit is the watt-hour, which means that a power of one watt has been used for one hour. That is,

$$
W=P T
$$

where $W=$ Energy in watt-hours
$P=$ Power in watts
$T=$ Time in hods
Other energy units are the kilowatt-hour and the watt-second. These units should be selfexplanatory.

Energy units are seldom used in amateur practice, but it is obvious that a small amount of power used for a long time can eventually result in a "power" bill that is just as large as though a large amount of power had been used for a very short time.

Capacitance and Condensers

Suppose two flat metal plates are placed close to each other (but not touching) as shown in Fig. 2-8. Normally, the plates will be electrically "neutral"; that is, no electrical charge will be evident on either plate.

Now suppose that the plates are connerted to a battery through a switch, as shown. At the

Fig. 2-8-A simple con. denser.
instant the switch is closed, electrons will be attracted from the upper plate to the positive terminal of the battery, and the same number will be repelled into the lower plate from the negative battery terminal. This electron movement will continue until enough electrons move into one plate and out of the other to make the e.m.f. between them the same as the e.m.f. of the battery.

If the switch is opened after the plates have been charged, the top plate is left with a deficiency of electrons and the bottom plate with an exress. In other words, the plates remain charged despite the fact that the battery no longer is connected. Ilowever, if a wire is touched between the two plates (short-circuiting them) the excess electrons on the bottom plate will flow through the wire to the upper plate, thus restoring electrical neutrality to both plates. The plates have then been discharged.

The two plates constitute an electrical capacitor or condenser, and from the discussion above it should be clear that a condenser possesses the property of storing electricity. It should also be clear that during the time the electrons are moving - that is, while the condenser is being charged or discharged - a current is flowing in the circuit even though the circuit is "broken" by the gap between the condenser plates. However, the current flows only during the time of
charge and discharge, and this time is usually very short. There can be no continuous flow of direct current "through" a condenser.

The charge or quantity of electricity that can be placed on a condenser is proportional to the applied voltage and to the capacitance or capacity of the condenser. The larger the plate area and the smaller the spacing between the plates the greater the capacitance. The capacitance also depends upon the kind of insulating material between the plates; it is smallest with air insulation, but substitution of other insulating materials for air may increase the capacitance of a condenser many times. The ratio of the capacitance of a condenser with some material other than air between the plates, to the capacitance of the same condenser with air insulation, is called the specific inductive capacity or dielectric constant of that particular insulating material. The material itself is called a dielectric. The dielectric constants of a number of materials

TABLE 2-III		
Dielectric Constants and	Breakdown	Voltages
Material	Dielectric Constant	Puncture Voltage*
Air	1.0	19.8-22,8
Alsimag Al96	5.7	2.40
Wakelite (paper-base)	3.8-5.5	6.30-750
Bakelite (mica-filled)	5-6	475-600
Celluloid	4-16	
Cellulose acetate	6-8	300-1000
Fiber	5-7.5	150-180
Formica	4.6-4.9	450
Glass (window)	7.6-8	200-250
Glass (photographic)	7.5	
Glass (l'yrex)	4.2-4.9	335
l.neite	2.5-3	480-500
Mica	2.5-3	
Mica (elear India)	6.4-7.5	600-1500
Mycalex	7.4	250
I'aper	2.0-2.6	1250
Polyethylene	2.3-2.4	1000
Polystyrene	2.4-2.9	500-2500
Porcelain	6.2-7.5	40-100
Rubler (hard)	2-3.5	450
Steatitc (low-loss)	4.4	150-315
Wood (dry oak) 2.5-6.8		
* In volts per mil (0.00	1 inch).	

commonly used as dielectrics in condensers are given in Table 2-III. If a sheet of photographic glass is substituted for air between the plates of a condenser, for example, the capacitance of the condenser will be increased 7.5 times.

Units

The fundamental unit of capacitance is the farad, but this unit is much too large for practical work. Capacitance is usually measured in microfarads (abbreviated $\mu \mathrm{fd}$.) or micromicrofarads ($\mu \mu \mathrm{fd}$.). The microfarad is one-millionth

Fig. 2-9 - A multiple-plate condenser. Alternate plates are conneeted together.
of a farad, and the micromicrofarad is one-millionth of a microfarad. Condensers nearly always have more than two plates, the alternate plates being connected together to form two sets as shown in Fig. 2-9. This makes it possible to attain a fairly large capacitance in a small space as compared with a two-plate condenser, since several plates of smaller individual area can be stacked to form the equivalent of a single large plate of the same total area. Also, all plates, except the two on the ends, are exposed to plates of the other group on both sides, and so are twice as effective in increasing the capacitance.

The formula for calculating the capacitance of a condenser is:

$$
C=0.224 \frac{K A}{d}(n-1)
$$

where (' = Cipacitance in $\mu \mu \mathrm{fd}$.
$K=$ Dielectric constant of material between plates
$A=$ Area of one side of one plate in square inches
$d=$ separation of plate surfaces in inches
$n=$ Number of plates

If the plates in one group do not have the same area as the plates in the other, use the area of the smaller plates.

Examule: A "variable" condenser has 7 semicircular plates on its rotor, the diameter of the semicircle being 2 inches. The stator has 6 rectangular plates, with a semieircular eut-ont to clear the rotor shaft, but otherwise large enough to face the entire area of a rotor plate. The diameter of the eut-out is $1 / 2$ inch. The distance between the adjacent surfaces of rotor and stator plates is $1 / 8 \mathrm{inch}$. The dielectric is air. What is the capacitance of the condenser with the plates fully meshed?

In this case, the "effective" area is the area of the rotor plate minus the area of the cut-ont in the stator plate. The area of either semicircle is $\pi r^{2} / 2$, where r is the radius. The area of the rotor plate is $\pi / 2$, or 1.57 s guare inches (the radius is 1 inch). The area of the cut-ont is $\pi(1 / 4)^{2} / 2=\pi / 32=0.10$ square ineh, approximately. The "effective" area is therefore $1.57-$ $0.10=1.47$ square inches. The capacitance is therefore

$$
C=0.2 \cdot 2 \cdot \frac{K .4}{d}(n-1)=0.224 \frac{1 \times 1.47}{0.125}(13-1)
$$

$$
=0.224 \times 11.76 \times 12=31.6 \mu \mu \mathrm{fl}
$$

(The answer is only approximate, becanse of the difficulty of accurate measurement, jlus a "fringing" effect at the edges of the plates that makes the actual capacitance a little higher.)

The usofulness of a condenser in electrical cireuits lies in the fact that it can be charged with electricity at one time and then discharged at a later time. In other words, it is capable of storing electrical energy that can be released later when it is needed; it is an "electrical reservoir."

Condensers in Radio

The types of condensers used in radio work differ considerably in physical size, construction, and caparitance. Some representative types are shown in the photograph. In variable condensers (almost always constructed with air for the dielectric) one set of plates is made movable with respert to the other set so that the capacitance can be varied. Fixed condensers - that is, having fixed capacitance - also cou be made with metal plates and with air as the dielectric, but usually

Fixed and variahle comberners. "The lottonn row inclodis, left to right, a highevoltage mica tixed eondenser, a tubindar alecerolytie, tubular paper, two sizas of "portage-stamp" mina, a small ceramio type (temperature compersating), an adjustable colldensar with ceramice insulation (for nen!ralizing in transmitters), a "hatton* cramic condenser, and an all. justahle "padding" condenser. Vinur sizes of variable condensers are shown in the sreond row. The twoplate combenser with the micrometer adjustment is nsed in tramsmittera. 'The condenser endosed in the metal case is a high-voliage paper type nisol in power-sumply filtors.
are constructed from plates of metal foil with a thin solid or liquid dielectric sandwiched in between, so that a relatively large capacitance can be secured in a small unit. The solid dielectries commonly used are mica, paper and special ceramics. An example of a liquid dielectric is mineral oil. The electrolytic condenser uses alumi-num-foil plates with a semiliquid conducting chemical compound between them; the actual dielectric is a very thin film of insulating material that forms on one set of plates through electrochemical action when a d.c. voltage is applied to the condenser. The caparitance oftained with a given plate area in an electrolytic rondenser is very large, compared with condensers having other dielectries, berause the film is so extrencly thin - much less than any thickness that is prasticable with a solid dielectric.

Voltage Breakdown

When a high voltage is applied to the plates of a condenser, a considerable force is cxerted on the electrons and nuclei of the dielectric. Because the dielectric is an insulator the clertrons do not become detached from atoms the way they do in conductors. However, if the force is great enough the dielectric will "break down"; usually it will puncture and may char (if it is solid) and permit current to flow. The breakdown voltage depends upon the kind and thickness of the dielectric, as shown in the table. It is not directly proportional to the thickness; that is, doubling the thickness does not quite double the breakdown voltage. If the dielectrie is air or any other gas, breakdown is evidenced by a spark or are between the plates, but if the voltage is removed the are ceases and the condenser is ready for use again. Breakdown will ocrur at a lower voltage between pointed or sharp-edged surfaces than between rounded and polished surfaces; consequently, the breakdown voltage between metal plates of given sparing in air can be increased by buffing the edges of the plates.

Since the dielertric must be thick to withstand high voltages, and since the thicker the dielectric the smaller the capacitance for a given plate area, a high-voltage condenser must have more plate area than a low-voltage condenser of the same capacitance. Iligh-voltage high-capacitance condensers are physically large.

- CONDENSERS IN SERIES AND PARALLEL

The terms "parallel" and "series" when used with roference to condensers have the same circuit meaning as with resistances. When a number of condensers are connected in parallel, as in Fig. $2-10$, the total capacitance of the group is equal to the sum of the individual caparitances, so
$C^{\prime}($ total $)=C_{1}+C_{2}+C_{3}+C_{4}+\ldots \ldots .$.
However, if two or more condensers are connected in series, as in the second drawing,

the total eapacitance is less than that of the smallest condenser in the group. The rule for finding the capacitance of a number of scriesconnected condensers is the same as that for finding the resistance of a number of parallelconnerted resistors. That is,
and, for only two condensers in series,

$$
C(\text { total })=\frac{C_{1} C_{2}^{\prime}}{C_{1}^{\prime}+C_{2}^{\prime}}
$$

The same units must he used throughout; that is, all capacitances must be expressed in either $\mu \mathrm{fd}$. or $\mu \mu \mathrm{fd}$; you cannot use both units in the same equation.

Condensers are connected in parallel to olbtain a larger total capacitance than is available in one unit. The largest voltage that cin be applied safely to a group of condensers in parallel is the voltage that can be applied safely to the condenser having the lowest voltage rating.

When condensers are connected in series, the applied voltage is divided up among the various condensers; the situation is much the same as when resistors are in series and there is a voltage drop across each. Ilowever, the voltage that appears across each condenser of a group connerted in series is in inverse proportion to its capacitance, as compared with the capacitance of the whole group.

Example: Thrce condensers having capaci-
tances of 1,2 and 4μ fil, respectisely, are con-

Fig. 2-11-An example of condensers connected in geries. The solution to this arrangement is worked out in the text.
neeted in series as shown in Fig. 2-11. The total capacitance is

$$
\begin{gathered}
C=\frac{1}{\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}}=\frac{1}{\frac{1}{1}+\frac{1}{2}+\frac{1}{4}}=\frac{1}{\frac{7}{4}}=\frac{4}{7} \\
=0.571 \mu \mathrm{fd}
\end{gathered}
$$

The voltage across each condenser is pronortional to the total capacitance divided by the capacitance of the conisuser in question, so the voltage across C_{1} is

$$
\begin{gathered}
E_{1}=\frac{0.571}{1} \times 2000=1142 \text { volts } \\
\text { Similarly, the voltages across } C_{2} \text { and } C_{3} \text { are } \\
E_{2}=\frac{0.571}{2} \times 2000=571 \text { volts }
\end{gathered}
$$

$$
E_{3}=\frac{0.571}{4} \times 2000=286 \text { volts }
$$

totaling approxinately 2000 volts, the applied voltage.

Condensers are frequently connected in series to enable the group to withstand a larger voltage (at the expense of decreased total capacitance) than any individual condenser is rated to stand. However, as shown by the previous example, the applied voltage does not divide equally among the condensers (except when all the rapacitances are the same) so care must be taken to see that the voltage rating of no condenser in the group is exceeded.

Inductance

It is possible to show that the flow of current through a conductor is acompanied by magnetic effects; a compass needle brought near the conductor, for example, will be deflected from its normal north-south prsition. The curent, in other words, sets up a magnetic field

If a wire conductor is formed into a coil, the same current will set up a stronger magnetic field than it will if the wire is straight. Also, if the wire is wound around an iron or steel Core the field will be still stronger. The relationship between the strength of the field and the intensity of the current causing it is expressed by the inductance of the conductor or coil. If the same current flows through two coils, for example, and it is found that the magnetic field set up by one coil is twice as strong as that set up by the other, the first coil has twice as much inductance as the sccond. Inductance is a property of the conductor or coil and is determined by its shape and dimensions. The unit of inductance (corresponding to the ohm for resistance and the farad for capacitance) is the henry.

If the current through a conductor or coil is made to vary in intensity, it is found that an e.m.f. will appear across the terminals of the
conductor or coil. This e.m.f. is entirely separate from the e.m.f. that is causing the current to flow. The strength of this induced e.m.f. becomes greater, the greater the intensity of the magnetic field and the more rapidly the current (and hence the field) is made to vary. Since the intensity of the magnetic field depends upon the inductance, the induced voltage (for a given current intensity and rate of variation) is proportional to the inductance of the conductor or coil.
The induced e.m.f. (sometimes called back e.m.f.) tends to send a current through the circuit in the opposite direction to the current that flows because of the external e.m.f. so long as the latter current is increasing. However, if the current caused by the applied e.m.f. decreases, the induced e.m.f. tends to send current through the circuit in the same direction as the current from the applied e.m.f. The effect of inductance, therefore, is to oppose any change in the eurrent flowing in the circuit, regardless of the nature of the change. It accomplishes this by storing energy in its magnetic field when the current in the circuit is being increased, and by releasing the stored energy when the current is being decreased.

Inductance eoils for power and radio freguencies. 'I'he two iron-core coils at the upper left are "chokes" for power-supply filters. The three "pie". wound coils at the lower right are used as ehokes in radio-frequeney cireuits, 'The other coils are for r.f. tuned circuits ranging in power from 25 watts to a hilowatt.

The values of inductance used in radio equipment vary over a wide range. Inductance of several henrys is required in power-supply circuits (see chapter on Power Supplies) and to obtain such values of inductance it is necessary to use coils of many turns wound on iron cores. In radio-frequency circuits, the inductance values used will be measured in millihenrys (a millihenry is one one-thousandth of a henry) at low frequencies, and in microhenrys (one one-millionth of a henry) at medium frequencies and higher. Although coils for radio frequencies may be wound on special iron cores (ordinary iron is not suitable) most r.f. coils made and used by amateurs are the "air-core" type; that is, wound on an insulating form consisting of nonnagnetic material.

Inductance Formula

The inductance of air-core coils may be calculated from the formula

$$
L(\mu \mathrm{~h} .)=\frac{0.2 a^{2} n^{2}}{3 a+9 b+10 c}
$$

where $L=$ Inductance in microhenrys
$a=$ Average diameter of coil in inches
$b=$ Length of winding in inches
$c=$ Radial depth of winding in inches
$n=$ Number of turns
The notation is explained in Fig. 2-12. The quantity 10 c may be neglected if the coil only has one layer of wire.

Example: Assume a coil having 35 turns of No. 30 d.s.c. wire on a form 1.5 inches in diameter. Consulting the wire table (Miscellaneous Data chapter), 35 turns of No. 30 d.s.c. will occupy 0.5 inch. Therefore, $a=1.5, b=0.5$, $n=35$, and

$$
L=\frac{0.2 \times(1.5)^{2} \times(35)^{2}}{(3 \times 1.5)+(9 \times 0.5)}=61.25 \mu \mathrm{~h}
$$

To calculate the number of turns of a singlelayer coil for a required value of inductance:

$$
N=\sqrt{\frac{3 a+9 b}{0.2 a^{2}} \times L}
$$

Example: Suppose an inductance of 10 microhenrys is required. The form on which the coil is to be wound has a diameter of one inch and is long enough to accommodate a coil length of $11 / 4$ inches. Then $a=1, b=1,25$, and $L=10$ Substituting,

$$
\begin{aligned}
N & =\sqrt{\frac{(3 \times 1)+(9 \times 1.25)}{0.2 \times 1^{2}} \times 10} \\
& =\sqrt{\frac{14.25}{0.2} \times 10}=\sqrt{712.5} \\
& =26.6 \text { turns }
\end{aligned}
$$

A 27-turn coil would be close enough to the required value of inductance, in practical work.

Fig, 2-12-Coil dimensions used in the inductance formula.

Since the coil will be 1.25 inches long, the number of turns per ineh will be $27 / 1,2.5=21.6$. Consulting the wire table, we find that So. 18 enameled wire (or any smaller size) can be used. We obtain the proper inductance by winding the repuired number of turns on the form and then adjusting the spacing between the turns to make a uniformly-spaced coil 1.25 inches long.
Every conductor has iuctance, even though the conductor is not formed into a coil. The inductance of a short length of straight wire is small - but it may not be negligible, berause if the current through it changes its intensity rapidly enough the induced voltage may be appreciable. This will be the case in even a few inches of wire when an alternating current having a frequency of the order of 100 Mc . is flowing. However, at much lower frequencies the inductance of the same wire could be left out of any calculations because the induced voltage would be negligibly small.

IRON-CORE COILS

Permeability

Suppose that the coil in Fig. 2-1:3 is wound on an iron core having a cross-sectional area of 2 square inches. When a certain current is sent through the coil it is found that there are 80,000 lines of force in the core. Since the area is 2

Fif, 2-13- I'ypical construction of an iron-core coil. 'The small air gap prevents magnetic saturation of the iron and increases the inductance at high currents.
square inches, the flux density is 40,000 lines per square inch. Now suppose that the iron core is removed and the same current is maintained in the coil, and that the flux density without the iron core is found to be 50 lines per square inch. The ratio of the flux density with the given core material to the flux density (with the same coil and same current) with an air core is called the permeability of the material. In this case the permeability of the iron is $40,000 / 50=800$. The inductance of the coil is increased 800 times by inserting the iron core, therefore.

The permeability of a magnetic material varies with the flux density. At low flux densities (or with an air core) increasing the current through the coil will cause a proportionate increase in flux, but at very high flux densities, increasing the current may cause no appreciable change in the flux. When this is so, the iron is said to be saturated. "Saturation" causes a rapid decrease in permeability, because it decreases the ratio of flux lines to those obtainable with the same current and an air core. Obviously, the inductance of an iron-core coil is highly dependent upon the current flowing in the coil. In an air-core
coil, the inductance is independent of eurrent because air does not "saturate,"

In amateur work, iron-core coils such as the one sketched in Fig. 2-13 are used chiefly in power-supply equipment. They usually have direct current flowing through the winding, and the variation in inductance with current is usually undesirable. Ft may be overcome by keeping the flux density below the saturation point of the iron. This is done by cutting the core so that there is a small "air gap," as indicated by the dashed lines. The magnetic "resistance" introduced by such a gap is so large - even though the gap is only a small fraction of an inch - compared with that of the iron that the gap, rather than the iron, eontrols the flux density. This naturally reduces the indurtance compared to what it would be without the air gap - but the inductance is practically constant regardless of the value of the current.

Eddy Currents and Hysteresis

When alternating current flows through a eoil wound on an iron core an e.m.f. will be induced, as previously explained, and since iron is a ronductor a current will flow in the core. Such currents (called eddy currents) represent a waste of power because they flow through the resistance of the iron and thus cause heating. Eddycurrent losses can be reduced by laminating the core; that is, by cutting it into thin strips. These strips or laminations must be insulated from each other by painting them with some insulating material such as varnish or shellace,

There is also another type of energy loss in an iron core: the iron tends to resist any change in its magnetic state, so a rapidly-changing current such as a.c. is forced continually to supply energy to the iron to overcome this "inertia." Losses of this sort are called hysteresis losses.

Eddy-current and hysteresis losses in iron incroase rapidly as the frequency of the alternating current is increased. For this reason, we can use ordinary iron cores only at power and audio frequencies - up to, say, 15,000 cycles. liven so, a very grood grade or iron or steel is necessary if the core is to perform well at the higher audio frequencies. Iron rores of this type are completely useless at radio frequencies.

For radio-frequency work, the losses in iron cores can be reduced to a satisfactory figure by grinding the iron into a powder and then mixing it with a "binder" of insulating material in such a way that the individual iron particles are insulated from each other. By this means cores ean be made that will function satisfactorily even through the v.h.f. range - that is, at frequencies up to perhaps 100 Mc . Because a large part of the magnetic path is through a nonmagnetic material, the permeability of the iron is low compared with the values obtained at power-supply frequencies. The core is usually in the form of a "slug" or cylinder which fits inside the insulating form on which the coil is wound. Despite the fact that, with this construc-
tion, the major portion of the magnetic path for the flux is in the air surrounding the coil, the slug is quite effective in increasing the coil induetance. I3y pushing the slug in and out of the coil the inductance can be varied over a considerable range.

O INDUCTANCES IN SERIES AND PARALLEL

When two or more inductance coils (or inductors, as they are frequently called) are connected in series (Fig. 2-14, left) the total induc-
rig. 2-14-Inductances in series and parallel.

tance is equal to the sum of the individual inductances, provided the coils are sufficientl! separated so that no coil is in the magnctic field of another. That is,

$$
L_{\text {total }}=L_{1}+L_{2}+L_{3}+L_{4}+\ldots \ldots .
$$

If inductances are connected in parallel (Fig. 2-14, right), the total inductance is

$$
L_{\text {total }}=\frac{1}{\frac{1}{L_{1}}+\frac{1}{L_{2}}+\frac{1}{L_{3}}+\frac{1}{L_{4}}}+\ldots \ldots .
$$

and for two inductances in panallel,

$$
L=\frac{L_{1} L_{2}}{L_{1}+L_{2}}
$$

Thus the rules for combining inductances in series and parallel aro the same as for resistances, if the coils are far enough apart so that each is unaffected by another's magnetic field. When this is not so the formulas given above camnot be used.

MUTUAL INDUCTANCE

If two coils are arranged with their axes on the same line, as shown in Fig. 2-15, a current sent through Coil 1 will cause a magnetic field which "cuts" Coil 2. Conserquently, an e.m.f. will be induced in Coil 2 whenever the field strength is changing. This induced e.m.f. is similar to the e.m.f. of self-induction, but since it appears in the second coil because of current flowing in the first, it is a "mutual" effect and results from the mutual inductance between the two coils.

If all the flux set up by one coil cuts all the turns of the other coil the mutual inductance has its maximum possible value. If only a small part

Fig. 2.15-Mutual inductance. When the switch, S, is closed carrent flows through coil No. 1, setting up a magmetic field that induces an e.m.f. in the turns of coil No. 2.
of the flux set up by one coil cuts the turns of the other the mutual inductance is relatively small. Two coils having mutual inductance are said to be coupled.

The ratio of artual mutual inductance to the maximum possible value that could theoretically be obtained with two given coils is called the coefficient of coupling between the eoils. Coils that have nearly the maximum possible mutual inductance are said to be closely, or tightly, coupled, but if the mutual inductance is relatively small the coils a said to be loosely roupled. The degree of coupling depends upon the physieal spacing between the coils and how they are placed with respect to each other. Maximum coupling exists when they have a common axis and are as close together as possible (one wound over the other). The coupling is least when the coils are far apart or are placed so their axes are at right angles.

The maximum possible coefficient of coupling is closely approached only when the two roils are wound on a closed iron core. The coefficient with air-core coils may run as high as 0.6 or 0.7 if one coil is wound over the other, but will be much less if the two coils are separated.

Time Constant

Capacitance and Resistance

In lig. 2-16.1 a hattery having an e.m.f., E, a switch, S, a resistor, R, and condenser, C, are connected in series, suppose for the moment that R is short-circuited and that there is no other resistance in the circuit. If s is now closed, condenser C will charge instanlly to the battery voltage; that is, the electrons that constitute the charge redistribute themselves in a time interval so small that it can be considered to le zero. For just this instant, therefore, a very large current flows in the eircuit, because all the electricity needed to charge the condenser has moved from the battery to the condenser at an extremely high rate.

When the resistance R is put into the circuit the eondenser no longer can be charged instantaneously. If the battery e.m.f. is 100 volts, for example, and R is 10 ohms, the maximum current that can flow is 10 amperes, and even this much can flow only at the instant the switch is closod. But as soon as amy current flows, condenser (' begins to acquire a charge, which moans that the voltage between the condenser plates rises. Nince the upper plate (in Fig. 2-16.1) will be positive and the lower negative, the voltage on the condenser tries to send a eurrent through the circuit in the opposite direction to the current from the batters. Immediately after the switeh is cosed, therofore, the current drops below its

I'ig. 2-I! - schematics illustrating the time comatant of an RC circuit.
initial Ohm's Law value, and as the condenser continues to acquire charge and its potential or e.m.f. rises, the current becomes smaller and smaller.

The length of time required to complete the charging process depends upon the rapacitance of the condenser and the resistance in the circuit. Theoretically, the charging process is never really finished, but eventually the current drops to a value that is smaller than anything that can be measured. The time constant of such a circuit is the length of time, in seconds, required for the voltage across the condenser to reach $6: 3$ per cent of the applied e.m.f. (this figure is chosen for mathematical reasons). The voltage arross the condenser rises logarithmically, as shown by Fig. 2-17.

The formula for time constant is

$$
T=C R
$$

where $T=$ Time constant in seconds $C=$ (apacitance in farads
$R=$ Resistance in ohms
If $('$ is in microfarads and R in megohms, the time constant also is in seconds. These units usually are more convenient.

$$
\begin{aligned}
& \text { Example: The time eonstant of a } 2-\mu \mathrm{fd} \text {. con- } \\
& \text { denser and a } 250,000-\mathrm{ohm} \text { resistor is } \\
& \qquad T=C R=2 \times 0.25=0.5 \text { second }
\end{aligned}
$$

> If the applied e.m.f. is 1000 volts, the voltage across the condenser plates will be 630 volts at the end of $1 / 2$ second.

If a charged condenser is discharged through a resistor, as indicated in lig. 2-1613, the same time constant applies. If there were no resistance, the condenser would discharge instantly when S was elosed. However, since R limits the current flow the condenser voltage cannot instantly go to zero, but it will decrease just as rapidly as

Fig, 2.17 - llow the voltage across a condenser rises, with time, when a condenser is charged through a re. sistor. The fower curve shows the way in which the voltage decreases across the condenser terminals on discharging through the same resistor.
the condenser can rid itself of its charge through R. When the condenser is discharging through a resistance, the time constant (calculated in the same way as above) is the time, in seconds, that it takes for the condenser to lose 63 per cent of its voltage; that is, for the voltage to drop to 37 per cent of its initial value.

Example: If the condenser of the example above is charged to 1000 solts, it will discharge to 370 volts in $1 / 2$ second through the $250,000-$ ohm resistor.

Inductance and Resistance

A comparable situation exists when resistance and inductance are in series. In Fig. 2-18, first consider L to have no resistance and also assume that R is zero. Then closing S would tend to send a current through the circuit. However, the instantaneous transition from no current to a finite value, however small, represents a very rapid change in current, and a back e.m.f. is developed by the self-inductance of L that is practically equal and opposite to the applied e.m.f. The result is that the initial current is very small.

The back e.m.f. depends upon the change in current and would cease to offer opposition if the current did not eontinue to increase. With no resistance in the circuit (which would lead to an infinitely-large current, by Ohm's Law) the current would inerease forever, always growing just fast enough to keep the e.m.f. of self-induction equal to the applied e.m.f.

When resistance is in series, Ohm's Law sets a limit to the value that the current can reach. In such a circuit the current is small at first, just as in the case without resistance. But as
the current increases the voltage drop across R beromes larger. The back e,m.f. generated in L has only to equal the difference between E and the drop across R, because that difference is the voltage actually applied to L. This difference becomes smaller as the current approaches the final Ohm's Law value. Theoretically, the back e.m.f. never quite disappears (that is, the current never quite reaches the Ohm's Law value) but prartically it beromes unmeasurable after a time. The difference between the actual current and the Ohm's law value also becomes undetectable. The time constant of an inductive circuit is the time in seconds required for the current to reach 63 per cent of its final value. The formula is

$$
T=\frac{L}{R}
$$

where $T=$ Time constant in seconds
$L=$ Inductance in henrys
$R=$ Resistance in ohms
The resistance of the wire in a coil acts as though it were in series with the indurtance.

Example: A coil having an inductance of 20 henrys and a resistance of 100 ohms has a time constant of

$$
T=\frac{L}{R}=\frac{20}{100}=0.2 \text { second }
$$

if there is no other resistance in the circuit. If a d.c. e.mif. of 10 volts is apjlied to such a coil. the final current, by Ohm's Idaw, is

$$
I=\frac{E}{R}=\frac{10}{100}=0.1 \mathrm{smp} . \text { or } 100 \mathrm{~ms}
$$

The current would rise from zero to 63 milliamperes in 0.2 sccond after closing the switch.

An inductor cannot be discharged in the same way as a condenser, because the magnetic field disappears as soon as current flow ceases. Opening S does not leave the inductor

Fig. 2.18 - 'lime constant of an $L R$ circuit.
"charged." The energy stored in the magnetic field instantly returns to the circuit when S is opened. The rapid disappearance of the field causes a very large voltage to be induced in the roil - ordinarily many times larger than the voltage applied, because the induced voltage is proportional to the speed with which the field changes. The rommon result of opening the switch in a circuit such as the one shown is that a spark or are forms at the switch contacts at the instant of opening. If the inductance is large and the current in the circuit is high, a great deal of energy is released in a very short period of time.

It is not at all unusual for the switch contacts to burn or melt under such circumstances.

Time constants play an important part in numerous devices, such as electronic keys, timing
and control circuits, and shaping of keying characteristics by vacuum tubes. The time constants of circuits are also important in such applications as automatic gain control and noise limiters.

Alternating Currents

PHASE

The term phase essentially means "time," or the time interval between the instant when one thing occurs and the instant when a second related thing takes place. When a baseball pitcher throws the ball to the catcher there is a definite interval, represented by the time of flight of the ball, between the act of throwing and the act of catching. The throwing and catching are "out of phase" because they do not occur at exactly the same time.

Fig. 2-19 - An a.c. cycle is divided off into 360 degrees that are used as a measure of time or phase.

Simply saying that two events are out of phase does not tell us which one occurred first. To give this information, the later event is said to lag the earlier, white the one that occurs first is said to lead. Thus, throwing the ball "leads" the catch, or the catch "lags" the throw.

In a.c. circuits the current amplitude changes continuously, so the concept of phase or time becomes important. Phase can be measured in the ordinary time units, such as the second, but there is a more convenient method: Since each a.c. cycle occupies exactly the same amount of time as every other cycle of the same frequency, we can use the cycle itself as the time unit. Using the cycle as the time unit makes the specification or measurement of phase independent of the frequency of the current, so long as only one frequency is under consideration at a time. If there are two or more frequencies, the measurement of phase has to be modified just as the measurements of two lengths must be reconciled if one is given in feet and the other in meters.

The time interval or "phase difference" under consideration usually will be less than one cycle. Phase difference could be measured in decimal parts of a cycle, but it is more convenient to divide the cycle into 360 parts or degrees. A phase degree is therefore $1 / 360$ of a cycle. The reason for this choice is that with sine-wave alternating current the value of the current at any instant is proportional to the sine of the angle that corresponds to the number of degrees - that is, length
of time - from the instant the cycle began. There is no actual "angle" associated with an alternating current. Fig. 2-19 should help make this method of measurement clear.

Measuring Phase

To compare the phase of two currents of the same frequency, we measure between corresponding parts of cycles of the two currents. This is shown in Fig. 2-20. The current labeled A leads the one marked B by 45 degrees, since A 's cycles begin 45 degrees sooner in time. It is equally correct to say that 33 lags A by 45 degrees.

Two important special cases are shown in Fig. 2-21. In the upper drawing B lags 90 degrees behind A; that is, its cycle begins just onequarter cycle later than that of A. When one wave is passing through zero, the other is just at its maximum point.

In the lower drawing A and B are 180 degrees out of phase. In this case it does not matter which one is to lead or lag. B is always positive while A is negative, and vice versa. The two waves are thus completel!/ out of phase.

The waves shown in Figs. 2-20 and 2-21 could represent current, voltage, or both. A and B might be two currents in separate circuits, or A might represent voltage while B represented current in the same circuit. If A and B represent two currents in the same circuit (or two voltages in the same circuit) the total or resultant current (or voltage) also is a sine wave, because adding any number of sine waves of the same frequency always gives a sine wave also of the same frequency.

Phase in Resistive Circuits

When an alternating voltage is applied to a resistance, the current flows exactly in step with the voltage. In other words, the voltage and current are in phase. This is true at any frequency if the resistance is "pure" - that is, is free from the reactive effects discussed in the next section. Practically, it is often difficult to obtain a purely

Fig, 2-20 - When two waves of the same frequency start their eycles at slightly different times, the time difference or phase difference is measured in degrees. In this drawing wave B starts 45 degrees (one-eighth cycle) later than wave A, and so lags 45 degrees behind A.

Fig. 2-21 - Two important special cases of phase difference. In the upper drawing, the phase difference between A and B is 90 degrees; in the lower drawing the whase difference is 180 degrees.
resistive circuit at radio frequencies, because the reactive effeets become more pronounced as the frequeney is inereased.

In a purely resistive eireuit, or for purely resistive parts of circuits, Ohm's Law is just as valid for a.c. of any frequency as it is for d.e.

REACTANCE

Alternating Current in Condensers

Suppose a sino-wave ace voltage is applied to a condenser in a circuit containing no resistance, as indicoted in Fig, 2-22. In the period $0 . A$, the applied voltage increases from zoro to 38 volts; at the end of this period the condenser is rharged to that voltage. In interval $A B$ the voltage increases to 71 volts; that is, 33 volts : 10 ditional. In this interval a smaller quantity of charge has been added than in ().A, berause the voltage rise during interval 13 is smatler. Consequently the average current during $A B$ is smaller than during $0 d$. In the third interval, $B C$, the voltage rises from 71 to 92 volts, an incruase of 21 volts. This is less than the voltage increase during $A B$, so the quantity of eleetricity added is less: in other words, the average curront during interval $B C$ is still smaller. In the fourth interval, ('D), the voltage inereases only 8 volts; the charge added is smaller than in any preceding interval and therefore the current also is smaller.

Thus as the instantaneous value of the applied voltage increases the current decreases.

By dividing the first quarter cycle into a very large number of intervals it could be shown that the current charging the condenser has the shape of a sine wave, just as the applied voltage does. The current is largest at the begimning of the cyrle and becomes zero at the maximum value of the voltage (the condenser camnot be charged to a higher voltage than the maximum applied, so no further current can flow) so there is a phase difference of 90 degrees between the voltage and current. During the first quarter cycle of the applied voltage the current is flowing in the nor-
mal way through the circuit, sinere the condenser is being rharged. Hence the current is positive during this first quarter rycle, as indicated by the dashed line in Fig. 2-2?.

In the second quarter cyrle - that is, in the time from I to I, the voltage applied to the condenser decreases. During this time the condenser loses the charge it arquired during the first quarter cycle. Applying the same reasoning, it is plain that the current is small in interval $I D E$ and continues to increase during earh succeeding interval. However, the current is flowing against the applied voltage because the condenser is discharging into the circuit. Hence the current is negative during this quarter cycle.

The third and fourth quarter corles repeat the events of the first and second, respectively, with this difference - the polarity of the applied voltage has reversed, and the current changes to correspond. In other words, an altornating curvent flours "through" a condenser when at" a.c. voltuge is applied to it. (Actually, current never flows "through" a condenser. It flows in the associated circuit because of the alternate charging and discharging of the caparitance.) Is shown by Fig. $2-2 \cdot 2$, the current starts its eycle 90 degrees before the voltage, so the current in a condenser leads the applied voltage b, 90 degrees.

Capacitive Reactance

The amount of eharge that is alternateiy stored in and released from the condenser is proportional to the applied voltage and the capacitance. ('omsequently, the current in the circuit will be proportional to both these quantitics, since current is simply the rate at which charge is moved. The current also will be proportional to the frequency

Fig. 2-22 - Voltage and current phase refationships when an alternating woltage is applied to a rondenser.
of the a.c. voltage, because the same charge is being moved back and forth at a rate that is proportional to the number of cycles per second.

The fart that the current is proportional to the applied voltage is important, berause it is the same thing that Ohm's Law says about current flow in a resistive circuit. That being the case, there must be something in the condenser that corresponds in a general way to resistance something that tends to limit the current that can flow when a given voltage is applied. The "something" clearly must include the effect of capaci-
tance and frequency, since these also affect the amount of current that flows. It is called reactance, and its relationship to capacitance and frequency is given by the formula

$$
X_{C}=\frac{1}{2 \pi f C}
$$

where $X_{C}=$ Condenser reactance in ohms
$f=$ Frequency in cycles per serond
$c^{\prime}=$ Caparitance in farads
$\pi=3.14$
Reactance and resistance are not the same thing, but because they have a similar currentlimiting effect the same unit, the ohm, is used for both. Conlike resistance, reartance does not consume or dissipute power. The encrgy stored in the condenser in one quarter of the cyrle is simply returned to the circuit in the next.

The fundamental units (cyoles per socond, farads) are too large for practical use in radio (ircuits. However, if the caparitance is in microfarads and the frequency is in megacyeles, the reartance will come out in ohms in the formula,

$$
\begin{aligned}
& \text { Example: The reactance of a condenser of } 470 \\
& \mu \mu \mathrm{fd.}(0.00047 \mu \mathrm{fd} .) \text { at a frequency of } 7150 \mathrm{kc} \text {. } \\
& (7.15 \mathrm{Mc}) \text { is } \\
& X=\frac{1}{2 \pi f C}=\frac{1}{6.28 \times 7.15 \times 0.00047}=47.4 \mathrm{ohms} \\
& \text { Inductive Reactance }
\end{aligned}
$$

When an alternating voltage is applied to a circuit containing only inductance, with no resistance, the current always changes just rapidly enough to induce a back e.m.f. that equals and opposes the applied voltage. In Fig. $2-23$, the cycle is again divided off into equal intervals. Assuming that the curront has a maximum value of 1 ampere, the instantaneous current at the end of each interval will be as shown. The value of the induced voltage is proportional to the rate at which the current changes. It is therefore greatest in the intervals $O A$ and $G H$ and least in the intervals $C D$ and $D E$. The induced voltage actually is a sine wave (if the current is a sine wave) as shown by the dashed curve. The applied voltage, becanse it is always equal to and opposed by the induced voltage, is equal to and 180 degrees out of phase with the induced voltage, as shown hy the second dashed curve. The result, therefore, is that the current flowing in an inductance is 90 degrees out of phase with the applied voltage, and hags behind the applied voltage. This is just the opposite of the condenser case.

Since the value of the induced e.m.f. is proportional to the rate at which the current changes, a small current changing rapidly (that is, at a high frequency) can generate a large back e.m.f. in a given inductance just as well as a large current changing slowly (low frequency). Consequently, the current that flows through a given inductance will decrease as the frequency is raised, if the applied e.m.f. is held constant. Also,
when the applied voltage and frequency are fixed, the value of current required becomes less as the inductance is made larger, because the induced e,m.f. also is proportional to inductance.

When the frequency and inductance are constant but the applied e.m.f. is varied, the necessary rate of current change (to induce the proper back e.m.f.) can bo obtained only if the amplitude of the current is dir tly proportional to the voltage. This is Ohm's Law again, and again the rurrent-limiting reffert is similar to, but not identical with, the offert of resistance. It is called inductive reactance and, like caparitive reactance, is measured in ohms. There is no energy loss in inductive reactance; the energy is stored in the magnetic field in one quarter cyole and then returned to the circuit in the next.

The formula for indurtive reactance is

$$
N_{1_{0}}=2 \pi f L_{1}
$$

where $X_{L}=$ Inductive reactance in ohms
$f=$ Frequency in cycles per second
$L=$ Inductance in henrys $\pi=3.14$
Example: The reactance of a coil having an induetance of 8 henrys, at a frequency of 120 eycles, is

$$
X_{\mathrm{L}}=2 \pi f L=6.28 \times 120 \times 8=6029 \text { ohms }
$$

In radio-frequency circuits the inductance values usually are sinall and the frequencies are large. If the inductance is expressed in millihenrys and the frequency in kilocycles, the conversion factors for the two units cancel, and the formula for reactance may be used without first

Fig. 2-23 - Phase relationships between voltage and current when an alternating voltage is applied to an inductance.
converting to fundamental units, Similarly, no conversion is necessary if the inductance is in microhenrys and the frequency is in megacycles.

$$
\begin{aligned}
& \text { Example: The reactance of a } 15 \text {-microhenry } \\
& \text { coil at a frequency of } 14 \mathrm{Me} \text { is } \\
& X_{\mathrm{L}}=2 \pi f L=6.28 \times 14 \times 15=1319 \mathrm{ohms}
\end{aligned}
$$

The resistance of the wire of which the coil is wound has mo cffere on the reartance, but simply acts as though if were a separate resistor connected in series with the eoril.

Ohm's Law for Reactance

Ohm's Law for an a.c. circuit eontaining only reactance is

$$
\begin{aligned}
& I=\frac{E}{X} \\
& E=I X \\
& X=\frac{E}{I}
\end{aligned}
$$

where $E=$ E.m.f. in volts
$I=$ Current in amperes
$\boldsymbol{X}=$ Reatance in ohms
The reactance may be either inductive or capacitive.

Example: If a current of 2 amperes is flowing through the condenser of the previous example (reactance $=47.4$ ohms) at 7150 ke ., the voltage dron aeross the condonser is

$$
E=I X=2 \times 47.4=9.8 \text { volts }
$$

If 400 volts at 120 cycles is applied to the 8 henry inductance of the previous example, the current through the coil will be

$$
I=\frac{E}{\mathrm{X}}=\frac{400}{6029}=0.0663 \mathrm{amp} .(66.3 \mathrm{ma})
$$

When the circuit consists of an inductance in series with a capacitance, the same current flows through both reactances. However, the voltage across the coil leads the curront by 90 degreas, and the voltage across the condenser lugs behind the current by 90 degrees, The mil and condensor voltages therefore are 180 degrees out of phatse.

A simple circuit of this type is shown in Fig. $2-24$. The same figure also shows the rurrent (heavy line) and the voltage drops arross the inductance $\left(E_{\text {L }}\right)$ and capacitance $\left(E_{C}\right)$. It is assumed that X_{1}, is larger than X_{C} and so has a larger voltage drop. Since the two voltages are completely out of phase the totol voltage (that is, the applied voltage E_{Ac}) is equal to the differones between them. This is shown in the drawing as $E_{\mathrm{L}}-E_{C}$. Notice that, because $F_{1,}$ is larger than E_{C}, the resultant voltage is exaretly in phase with E_{L}. In other words, the cirruit as a whole simply acts as though il were an inductance - an inductance of smaller value than the actual inductance present, since the effect of the actual indurtive reactance is reduced by the caparitive reactance in series with it. If X_{C} is larger than X_{f}, the arrangement will behave like a capacitane - again of smaller reactance than the atual capacitive reactance present in the rircuit.

The "equivalent" or total reactance of any circuit containing inductive and rapacitive reactances in series is equal to X_{1}, X_{c}. If there are several coils and condensers in series, simply add up all the inductive reartances, then add up all the capacitive reactances, and then subtract the latter from the former. It is customary to call inductive reactance "positive" and capacitive reactance "negative." If the equivalent or net reactance is positive, the voltage leads the current by 90 degrees; if the net reactance is negative, the voltage lags the current by 90 degrees.

Fis. 2.2. - Current and voltages in a circuit having inductive and capacitive reactances in series.

Reactive Power

In Fig. 2-24 the voltage drop across the coil is larger that the voltage applied to the circuit. This might seem to be an impossible condition, but it is not; the explanation is that while energy is being stored in the coil's magnetic field, energy is being returned to the rirmuit from the ecimlenser's electrie field, and viee versa. This stored energy is responsible for the fact that the voltages aeross reactances in series can be larger than the voltage applied to then.

In a resistance the flow of current causes heating and a power loss equal to $I^{2} R$. The power in a reactance is equal to $I^{2} \lambda$, but is not a "loss"; it is simply power that is transferred back and forth between the field and the circuit but not used up in heating anything. To distinguish this "nondissipated" power from the power which is actually consumed, the unit of reactive power is called the volt-ampere instead of the watt. Reactive power is sometimes called "wattless" power.

IMPEDANCE

The fact that resistance, inductive reastance and monditive reactance all are measured in ohms does not indieate that they ean be combined indiseriminately. Voltage and current are in phase in resistance, but differ in phase by a quarter cyele in reactance. In the simple circuit shown

Fig. 2.25-Resistance and inductive reactance conneeted in series.
in Fig. 2-25, for example, it is not possible simply to add the resistance and reactance together to obtain a quantity that will indirate the opposition offered by the combination to the flow of current. Inasmuch as hoth resistance and reactance are present, the total effect can obviously be neither wholly one nor the ot her. ln circuits containing both reactance and resistance the opposition effect is called impedance (Z). The unit of impedance is also the ohm.

The term "impedance" also is gencralized to include any quantity that can be expressed ats it ratio of voltage to eurrent. l'ure resistance and pure reartance are both included in "impedance" in this scuse. A cireuit with resistive impedance is one with either resistance alone or one in which the effects of any reactane present have been eliminated, similarly, a reactive impedance is one having reactance only. A complex impedance is one in which both resistance and reactance effects are observable.

It can be shown that resistance and rearetance can be eombined in the same way that a rightangled triangle is constructed, if the resistance is laid off to proper seale as the hase of the triangle and the reactance is laid off as the altitude to the same soale. This is also indicated in Fig. 2-25. When this is done the hypotenuse of the triangle represents the impedance of the circuit,

Fig, $2.26-1 R c$. sistance and capacitive reactance in series.
to the same scale, and the angle between Z and R (usually called θ and so indieated in the drawing) is equal to the phase angle between the applied e.m.f. and the current. By geometry,

$$
Z=\sqrt{R^{2}+N^{-2}}
$$

In the case shown in the drawing,

$$
Z=\sqrt{(75)^{2}+(100)^{2}}=\sqrt{15,(625}=125 \text { whms. }
$$

The phase angle can be found from simple trigonometry. Its tangent is equal to X / R; in this case $X / R=100 / 75=1.33$. From trigonometric tables it ean be determined that the angle having a tangent equal to 1.33 is approximately is3 degrees. In ordinary amateur work it is soldom necessary to give much consideration to the phase angle.

A circuit containing resistance and caparitance in series (Fig. $2-26$) can be treated in the same way, The difference is that in this case the erurent leads the applied e.m.f., while in the resistanceinductance case it lags behind the voltage.

If either X or R is small compared with the other (say $1 / 10$ or less) the impedance is very nearly equal to the larger of the two quantities. For example, if $R=1$ ohm and $X=10$ ohns,

$$
\begin{aligned}
Z=\sqrt{R^{2}+X^{2}} & =\sqrt{(1)^{2}+(10)^{2}} \\
& =\sqrt{101}=10.05 \text { ohms. }
\end{aligned}
$$

Hence if either X or R is at least 10 times as large as the other, the error in assuming that the impedance is equal to the larger of the two will not exced ! of of iper cent, which is usually negligible.
since one of the components of impedance is reartance, and since the reactance of a given coil or condenser changes witb the applied frequency, impedanee also changes with frequency. The change in impedance as the frequeney is changed may be very slow if the resistance is eonsiderably lauger than the reactance. Ilowever, if the impedance is mostly reactance a change in frequency will cause the impedane to change practically as rapidly as the reartance itself ehanges.

Ohm's Law for Impedance

Ohm's Law ean be applied to cireuits containing impedance just as reidily as to circuits having resistance or reatance only. The formulas are

$$
\begin{aligned}
I & =\frac{E}{Z} \\
E & =I Z \\
Z & =\frac{E}{I}
\end{aligned}
$$

where $E=$ E.m.f. in volts
$I=$ ('urrent in amperes
$Z=I$ mpedance in ohms
Example: Assume that the e.m.f, applied to the circuit of $\mathrm{Fig} .2-25$ is 250 volts. Then

$$
I=\frac{E}{Z}=\frac{2.50}{125}=2 \text { amperes. }
$$

The same current is flowing in both R and X_{L}, and Ohm's Law as applied to either of these quantities says that the voltage drop across k should equal $/ R$ and the voltage drop across \mathcal{I}_{L} should equal $/ X_{\text {L. }}$ Sulostituting.

$$
\begin{aligned}
E_{18}= & I R=2 \times 75=150 \text { volts } \\
& E_{\mathrm{X}_{\mathrm{L}}}^{\prime}=I X_{\mathrm{L}}=2 \times 100=200 \text { volts }
\end{aligned}
$$

The: arithmetical sum of these voltages is greater than the applied voltage. However, the actual sum of the twe when the phase relationship is taken into account is "urual to 250 volts r,ms., as shown by lig. :2-27, where the instantancous values are added throughout the rycle. Whenever resistance and reactance are in series, the

Fig. 2-27-Voltage drops around the circuit of Fig. 2.25 . Beranse of the phase relationships, the applied voltage is lese than the arithmetical sum of the drops across the resistor and inductor.
individual voltage drops always add up, arithmetically, to more than the applied voltage. There is nothing fictitious about these voltage drops; they can he measured readily by suitable instruments. It is simply an illustration of the importance of phase in a.ce eircuits.

A more complex series circuit, containing resistance, inductive reactance and capacitive reactance, is shown in Fig. 2-28, In this case it is necessary to take into account the fact that the phase angles between current and voltage diffor

Fig. 2-28-Resistance, inductive reactance, and eapaeitive reactance in series.
in all three elements, since it is a series circuit, the current is the same throughout. Considering first just the indurtance and rapacitance and neglecting the resistance, the net reactane is
$X_{\mathrm{L}}-X_{\mathrm{C}}=150-50=100$ ohms (inductive)
Thus the impedance of a circuit containing resistance, inductance and capacitance in series is

$$
Z=\sqrt{R^{2}+\left(X_{\mathrm{L}}-X_{\mathrm{C}}\right)^{2}}
$$

Fxample: In the circuit of lig. $2-28$, the impedance is

$$
\begin{aligned}
Z & =\sqrt{R^{2}+\left(X_{\mathrm{t}}-N_{0}\right)^{2}} \\
= & \sqrt{(20)^{2}+(150-50)^{2}}=\sqrt{(20)^{2}+(100)^{2}} \\
& =\sqrt{10,400}=102 \text { ohus }
\end{aligned}
$$

The phase angle can be found from N / h, where $X=X_{L}-X_{C}$.

Parallel Circuits

Suppose that a resistor, condenser and coil are connected in parallel as shown in Fig. 2-29) and an a.c. voltage is applied to the combination. In any one branch, the rurrent will be unchanged if one or both of the other two branches is disconnected, so long as the applied voltage romains unchanged. Hence the current in each branch can be calculated quite simply by the Ohm's Law formulas given in the preveding sections. The total current, I, is the sum of the currents through all three branches - not the arithmetical sum, but the sum when phase is taken into areomit.

Fig. 2-29 - Resistance, inductance and capacitance in parallel. Instruments connected as shown will read the total current, I, and the individual corrents in the three branches of the eircuit.

The currents through the various branches will be as shown in Fig. 2-30, assuming for purposes of illustration that X_{L} is smaller than X_{O} and that Y_{C} is smaller than R, thus making I_{L} larger than I_{C}, and I_{C} larger than I_{R}. The current throngh (r leads the voltage by 90 degrees and the current through L lags the voltage by 90 degrees, so these two eurrents are 180 degrees out of phase. .Is shown at E , the total reactive current is the difference between I_{0} and I_{L}. This resultant current lags the voltage by 90 degrecs, because I_{L} is larger than I_{C}. When the reartive current is added to I_{R}, the total current, I, is as shown at F . It can be seen that $/$ lags the applied voltage by an angle smaller than 90 degrees and that the total current, while less than the simple sum (neglecting phase) of the three branch currents, is larger than the current through R alone.

The impedance looking into the parallel circuit from the source of voltage is equal to the applied

Fig. 2-30 - Phase relationships between branch rurrents and applied voltage for the cirenit of Fig. 2-29. The total current through I. and C in parallel ($I \mathrm{~L}+I \mathrm{C}$) and the total current in the entire circuit (I) also are shown.
voltage divided by the total or line current, I. In the case illustrated, l is greater than I_{R}, so the impedance of the circuit is less than the resistance of R. IIow much less depends upon the net reactive current flowing through L and C in parallel. If X_{L} and J_{C} are very nearly equal the net reactive current will be quite small because it is equal to the difference between two nearly equal currents. In such a case the impedance of the circuit will be almost the same as the resistance of R alone. On the other hand, if X_{L} and
X_{C} are quite different the net reactive current (an be relatively large and the total current also will be appreciably larger than I_{R}. In such a rase the circuit impedance will be lower than the resistance of R alone.

Power Factor

In the circuit of Fig. 2-25 an applied e.m.f. of 250 volts results in a current of 2 amperes. If the circuit were purely resistive (containing no reactance) this would mean a power dissipation of $250 \times 2=500$ watts. However, the circuit actually consists of resistance and reactance, and only the resistance consumes power. The power in the resistance is

$$
P^{\prime}=I^{2} R=(2)^{2} \times 75=300 \text { watts }
$$

The ratio of the power consumed to the apparent power is called the power factor of the circuit, and in the case used as an example would be $300 / 500=0.6$. Power factor is frequently expressed as a percentage; in this case, the power factor would be 60 per cent.
"IReal" or dissipated power is measured in watts; apparent power, to distinguish it from real power, is measured in volt-amperes (just like the "wattless" power in a reactance). It is simply the product of volts and amperes and has no direat relationship to the power actually used up or dissipated unless the power factor of the circuit is known. The power factor of a purely resistive circuit is 100 per cent or 1 , while the power factor of a pure reactance is zero. In this illustration, the reactive power is

$$
\begin{aligned}
V A(\text { volt-amperes })=I^{2} X & =(2)^{2} \times 100 \\
& =400 \text { volt-amperes. }
\end{aligned}
$$

Complex Waves

It was pointed out early in this chapter that a complex wave (a "nonsinusoidal" wave) can be resolved into a fundamental frequency and a series of harmonic frequencies. When such a complex voltage wave is applied to a circuit containing reactance, the current through the circuit will not have the same waveshape as the applied voltage. This is beranse the reartance of a coil and condenser depend upon the applied frequency. For the second-harmonic component of a complex wave, the reactance of the coil is twice and the reactance of the condenser one-half their values at the fundamental frequency; for the third harmonic the coil reactance is three times and the condenser reartance one-third, and so on,

Just what happens to the current waveshape depends upon the values of resistance and reactance involved and how the circuit is arranged. In a simple circuit with resistance and inductive reactance in series, the amplitudes of the harmonics will be reduced berause the inductive reactance increases in proportion to frequency. When a condenser and resistance are in series, the harmonic current is likely to be accentuated because the condenser reactance becomes lower as the frequency is raised. When both inductive and capacitive reartance are present the shape of the current wave can be altered in a variety of ways, depending upon the circuit and the "constants," or values of L, C, and R, selected.

This property of nonuniform behavior with respect to fundamental and harmonirs is an extremely useful one. It is the basis of "filtering," or the suppression of undesired frequencies in favor of a single desired frequency or group of such frequencies.

Transformers

Two coils having mutual inductance constitute a transformer. The coil comnected to the somrce of energy is called the primary coil, and the other is called the secondary coil.

The usefulness of the transformer lies in the fact that electrical energy can be transferred from one circuit to another without direst connection, and in the process can be readily changed from one voltage level to another. Thus, if a device to be operated requires, for example, 115 volts and only a 440 -volt source is available, a transformer can be used to change the source voltage to that required. A transformer can be used only with a.c., since no voltage will be induced in the secondary if the magnetic field is not changing. If d.c. is applied to the primary of a transformer, a voltage will be induced in the serondary only at the instant of closing or opening the primary circuit, since it is only at these times that the field is changing.

The Iron-Core Transformer

As shown in Fig. 2-31, the primary and secondary coils of a transformer may be wound on a core of magnetie material. This increases the inductance of the eoils so that a relatively small number
of turns may be used to induce a given value of voltage with a small current. .I closed core (one having a continuous magnetir path) such as that shown in Fig. 2-31 also tends to insure that practically all of the field set up by the current in the primary coil will cut the turns of the secondary coil. Ilowever, the core introduces a power loss because of hysteresis and eddy currents so this type of construction is practicable only at power and audio frequencies. The discussion in this section is confined to transformers operating at such frequencies.

SYMBOLS
Fig. 2-31 - The transformer. Power is transferred from the primary coil to the secondary by means of the mag. netic field. The upper symbol at right indicates an ironcore transformer, the lower one an air-core transformer.

Voltage and Turns Ratio

For a given varying magnetic field, the voltage induced in a coil in the field will be proportional to the number of turns on the coil. If the two coils of a transformer are in the same field (which is the case when both are wound on the same closed core) it follows that the indued voltages will be proportional to the number of turns on each coil. In the primary the induced voltage is practically equal to, and opposes, the applied voltage. Ilence,

$$
E_{\mathrm{s}}=\frac{n_{\mathrm{s}}}{n_{\mathrm{p}}} E_{\mathrm{p}}
$$

where $E_{\mathrm{s}}=$ Secondary voltage
$E_{\mathrm{p}}=$ Primary applied voltage
$n_{\mathrm{s}}=$ Number of turns on secondary
$n_{p}=$ Number of turns on primary
The ratio n_{s} / n_{p} is called the turns ratio of the transformer.

Example: A transfornier has a primary of 400 turns and a sccondary of 2800 turns. and 115) volts is applied to the primary. The sercondary voltage will be

$$
\begin{aligned}
E_{\mathrm{s}}=\frac{n_{\mathrm{A}}}{n_{\mathrm{p}}} E_{\mathrm{r}} & =\frac{2800}{400} \times 115=7 \times 115 \\
& =805 \text { volts }
\end{aligned}
$$

Also, if 80% volts is appliod to the 2800 -turn winding (which then becomes the primary) the output voltage from the 400 -turn winding will be 115 volts.

Fither winding of a transformer can be used as the primary, providing the winding has enough turns (enough inductance) to induec a voltage equal to the applied voltage without requiring an exeessive current flow

Effect of Secondary Current

The current that flows in the primary when no current is taken from the secondary is called the magnetizing current of the transformer. In any properly-designed transformer the primary inductance will be so large that the magnetizing current will be cquite small. The power consumed by the transformer when the secondary is "open" - that is, not delivering power - is only the amount neeessary to supply the losses in the iron eore and in the resistance of the wire of which the primary is wound.

When power is taken from the secondary winding, the sccondary current sets up a magnetic field that opposes the field set up by the primary current. But if the induced voltage in the primary is to equal the applied voltage, the original field must be maintained. Consequently, the primary must draw enough additional current to set up a field exactly equal and oppessite to the field set up by the secondary current.

In practical calculations on transformers it may be assumed that the entire primary current is caused by the secondary "load." This is justifiable because the magnetizing current should be very small in comparison.

If the magnetic fields set up by the primary and sceondary eurrents are to be equal, the primary current multiplied by the primary turns
must equal the sceondary current multiplied by the secondary turns. From this it follows that

$$
I_{\mathrm{p}}=\frac{\mu_{\mathrm{s}}}{\mu_{\mathrm{p}}} I_{\mathrm{s}}
$$

where $I_{p}=$ Primary current
$I_{s}=$ secondary current
$n_{p}=$ Number of turns on primary
$n_{s}=$ Number of turns on secondary
Example: Suppose that the secondary of the transformer in the previons example is delivering a current of 0.2 ampere to atoad. Then the primary current will be
$I_{\mathrm{n}}=\frac{n_{n}}{n_{\mathrm{D}}} I_{\mathrm{n}}=\frac{2800}{400} \times 0.2=7 \times 0.2=1.4 \mathrm{amp}$, Although the secomdary mollage is higher thatn the primary voltage, the secondary current is lomer than the primary current, and hy the same ratio.

Power Relationships; Efficiency

A transformer cannot create power; it ean only transfer and transform it. Hence, the power taken from the secondary amot exceed that taken by the primary from the source of applied e.m.f. There is always some power loss in the resistane of the coils and in the irom core, so in all practical ases the power taken from the soure will exceed that taken from the secondary. Thus,

$$
l_{\mathrm{o}}^{\prime}=n I_{\mathrm{i}}
$$

where $P_{o}=$ Power output from secondary
$I_{i}^{\prime}=$ Power input to primary
$n=$ Efficiency factor
The efficiency, ", alwas is less than 1 . It is usually expressed as a preentage; if n is 0.65 , for instance, the efficiency is 6.5 per cent.

Example: A transformer has an efficiency of $85^{\circ}, \mathrm{c}$ at its full-load output of 150 watts. The power imput to the primary at full secondary load will be

$$
P_{\mathrm{i}}=\frac{P_{0}}{n}=\frac{150}{0.85}=176.5 \mathrm{watts}
$$

A transformer is usually designed to have its highest efficiency at the power output for which it is rated. The efficiency deereases with either lower or higher outputs. On the other hand, the losses in the transformer are relatively small at low output but increase as more power is taken. The amount of power that the transformer can handle is determined by its own losses, berause these heat the wire and core and raise the operating temperature. There is a limit to the temperature rise that cin be tolerated, berause tow-high

Fig. 2-32 - The equivalent circuit of a transformer includes the effects of leakagr inductance and resistance of luith primary and seeondary windings. The resistance R cis an equivalent resistance representing the constant pore losses, Since these are comparatively small, their effeet may be neglected in many approximate calculations.

ELECTRICAL LAWS AND CIRCUITS

temperature either will molt the wire or cause the insulation to break down. A transformer always can be operated at reduced output, cven though the efficiency is low, because the actual loss also will be low under such conditions.

The full-load efficiency of small power transformers such as are used in radio receivers and transmitters usually lies between about 60 per rent and 90 per cent, depending upon the size and design.

Leakage Reactance

In a practical transformer not all of the magnetic flux is common to both windings, although in well-designed transformers the amount of flux that "cuts" one coil and not the other is only a small percentage of the total flux. This leakage flux causes an e.m.f. of self-induction; consequently, there are small amounts of leakage inductance associated with both windings of the transformer. Leakage inductance acts in exactly the same way as an equivalent amount of ordinary inductance inserted in series with the circuit, It has, therefore, a rertain reactance, depending upon the amount of leakage inductance and the frequency. This reartance is called leakage reactance.

Current flowing through the leakuge reactance causes a voltage drop. This voltage drop increases with increasing current, hence it increases as more power is taken from the secondary. Thus, the greater the secondary current, the smaller the secondary terminal voltage becomes. The resistances of the transformer windings also rause voltage drops when current is flowing; although these voltage drops are not in phase with those caused by leakage reactance, together they result in a lower secondary voltage under load than is indicated by the turns ratio of the transformer.

At power frequencies (60 rycles) the voltage at the secondary, with a reasonably well-designed transformer, should not drop more than about 10 per cent from open-circuit conditions to full load. The drop in voltage may be considerably more than this in a transformer operating at audio frequencies beause the leakage reactance incroases directly with the frequency.

Impedance Ratio

In an ideal transformer - one without losses or leakage reactance - the following relationship is true:

$$
Z_{10}=Z_{\mathrm{s}} N^{2}
$$

where $Z_{\mathrm{p}}=$ Impedance looking into promary terminals from source of power
$Z_{s}=$ Impedance of load connected to secondary
$N=$ Turns ratio, primary to secondary
That is, a load of any given impedance connected to the secondary of the transformer will be transformed to a different value "looking into" the primary from the source of power. The impedance transformation is proportional to the square of the primary-to-secondary turns ratio.

Example: A transformer has a irimary-tosecondary turns ratio of 0.6 (primary has 6/10) as many turns as the secondary) and a load of 3000 ohms is connected to the secondary. The impedance looking into the primary then will be

$$
\begin{gathered}
Z_{\mathrm{p}}=Z_{\mathrm{B}} N^{2}=3000 \times(0.6)^{2}=3000 \times 0.36 \\
=1080 \text { ohms }
\end{gathered}
$$

By choosing the proper turns ratio, the impedance of a fixed load can be transformed to any desired value, within practical limits. The transformed or "reflected" impedance has the same phase angle as the actual load impedance; thus if the load is a pure resistance the load presented by the primary to the source of power also will be a pure resistance.

The above relationship may be used in prattical work even though it is based on an "ideal" transformer. Aside from the normal design requirements of reasonably low internal losses and low leakage reactance, the only requirement is that the primary have enough inductance to operate with low magnetizing current at the voltage applied to the primary.

The primary impedance of a transformer as it looks to the source of pouver - is determined wholly by the load connected to the secondary and by the turns ratio. If the characteristics of the transformer have an appreciable effect on the impedance presented to the power source, the transformer is either poorly designed or is not suited to the voltage at which it is being used. Most transformers will operate quite well at voltages from slightly above to well below the design figure.

Impedance Matching

Many devires require a specific value of load resistance (or impedance) for optimum operation. The impedance of the artual load that is to dissipate the power may differ widely from this value, so a transformer is used to transform the actual load into an impedance of the desired value. This is called impedance matching. From the preceding,

$$
N=\sqrt{\frac{Z_{\mathrm{B}}}{Z_{\mathrm{p}}}}
$$

where $N=$ Required turns ratio, secondary to primary
$Z_{\mathrm{s}}=$ Impedance of load connected to secondary
$Z_{p}=$ Impedance required
Exannle: A vacumutule a.f. amplifier requires a load of 5000 ohths for optimum performance, and is tw be eonnected to a loudspeaker having an impedance of 10 ohms. The turns ratio, seeondary to primary, required in the coupling transformer is

$$
N=\sqrt{\frac{Z_{8}}{Z_{0}}}=\sqrt{\frac{10}{5000}}=\sqrt{\frac{1}{i 00}}=\frac{1}{22.4}
$$

The primary therefore must have 22.4 times as many turns as the secondary.
Impedance matching means, in general, adjusting the load impedince - by means of a transformer or otherwise - to a desired value. However, there is also another meaning. It is
possible to show that any source of power will have its maximum possible output when the impedance of the load is equal to the internal impedance of the source. The impedance of the source is said to be "matched" under this comdition. The efficiency is only 50 per cent in such a case; just as much power is used up in the source as is delivered to the load. Because of the poor efficiency, this type of impedance matching is limited to cases where only a small amount of power is a vailable.

Transformer Construction

Transformers usually are designed so that the magnetic path around the core is as short as possible. A short magnetic path means that the transformer will operate with fewer turns, for a given applied voltage, than if the path were long. It also helps to reduce flux leakage and therefore minimizes leakage reactance. The number of turns required also is inversely proportional to the cross-sectional area of the core.

Fig, 2-3.3 - 'Two common types of transformer construction. Core pieces are interleaved to provide a continuous magnetie path with as low reluctanee as possible.

Two core shape's are in common use, as shown in Fig. 2-33. In the shell type both windings are placed on the inner leg, while in the core type the primary and secondary windings may be placed on separate legs, if desired. This is sometimes done when it is necessary to minimize caparity effects between the primary and seeondary, or when one of the windings must operate at very high voltage.

Core material for small transformers is usually
silicon steel, called "transformer iron." The core is built up of laminations, insulated from each other (by a thin coating of shellac, for example) to prevent the flow of eddy currents. The laminations overlap at the ends to make the magnetic path as continuous as possible and thus reduce flux leakage.

Fig. 2.34 - The autotransformer is based on the transformer principle, hut uses only one winding. The line and load eurrents in the common winding (A) flow in opposite directions, so that the resultant current is the difference between them. The voltage across A is proportional to the turns ratio.

The number of turns required on the primary for a given applied e.m.f. is determined by the size, shape and type of core material used, and the frequency. As a rough indication, windings of small power transformers frequently have about six to eight turns per volt on a core of 1 -square-inch cross section and have a magnetic path 10 or 12 inches in length. A longer path or smaller cross section requires more turns per volt. and vice versa.

In most transformers the coils are wound in layers, with a thin sheet of papor insulation between each layer. Thicker insulation is used between coils and between coils and core.

Autotransformers

The transformer principle can be utilized with only one winding instead of two, as shown in lig. 2-34; the principles just discussed apply equally well. A one-winding transformer is called an autotransformer. The current in the common section (A) of the winding is the difference between the line (primary) and the load (secondary) currents, since these currents are out of phase. Hence if the line and load currents are nearly equal the common section of the winding may be wound with comparatively small wire. This will be the case only when the primary (line) and secondary (load) voltages are not very different. The autotransformer is used chiefly for boosting or reducing the power-line voltage by relatively small amounts.

Radio-Frequency Circuits

RESONANCE

Fig. 2-35 shows a resistor, condenser and coil connerted in series with a source of alternating current, the frequency of which can be varied over a wide range. At some low frequency the condenser reactance will be much larger than the resistance of R, and the inductive reactance will be small compared with either the reactance of C or the resistance of R. (R is assumed to be the same at all frequencies.) On the other hand, at some very high frequency the reactance of (' will be very small and the reactance of L will be very
large. In either case the current will be small, because the reartance is large at either low or high frequencies.

At some intermediate frequency, the reactances of C and L will be equal and the voltage drops across the coil and condenser will be equal and 180 degrees out of phase. Therefore they cancel each other completely and the current flow is determined wholly by the resistance, R. It that frequency the current has its largest possible value, assuming the source voltage to be constant regardless of frequency. A series circuit in which
the inductive and capacitive reactances are equal is said to be resonant.

Although resonance can occur at any frequency, it finds its most extensive application in radio-frequency circuits. The reactive effects assoriated with even small inductances and capacitances would place drastic limitations on r.f. cireuit operation if it were not possible to "cancel them out" ley supplying the right amount of reartance of the opposite kind -in other words, "tuning the circuit to resonance."

Resonant Frequency

The frequency at which a series circuit is resonant is that for which $X_{\mathrm{L}}=X_{\mathrm{c}}$. sulstituting the formulas for inductive and caparitive reactance gives

$$
f=\frac{1}{2 \pi \}
$$

where $f=$ Frequency in cycles per second
$L=$ Inductance in henrys
${ }^{\prime}=$ Chpacitance in farads $\pi=3.14$
These units are inconveniently large for radiofrequency circuits. . formula using more appropriate units is

$$
f=\frac{10^{6}}{2 \pi \sqrt{L C^{\prime}}}
$$

where $f=$ Frequency in kilocycles (ke.) $L=$ Inductance in microhenrys ($\mu \mathrm{h}$. .) $C=$ Capacitance in micromicrofarads ($\mu \mu \mathrm{fd}$.) $\pi=3.14$

Fxample: The resonant frequency of a sories circuit containing a $\bar{j}-\mu \mathrm{h}$. coil and a $35-\mu \mu \mathrm{fd}$. condenser is

$$
\begin{aligned}
& =\frac{10^{8}}{2 \pi \sqrt{L C}}=\frac{10^{8}}{6.28 \times \sqrt{5 \times 35}} \\
& =\frac{10^{8}}{6.28 \times 13.2}=\frac{10^{9}}{83}=12,050 \mathrm{kc}
\end{aligned}
$$

The formula for resonant frequency is not affected by the resistance in the circuit.

Resonance Curves

If a plot is drawn of the current flowing in the circuit of Fig. $2-3 \overline{5}$ as the frequency is varied (the applied voltage being constant) it would look like one of the curves in Fig. 2-36. The shape of the resonance curve at frequencies near resonance is determined by the ratio of reartance to resistance at the particular frequency considered.

Fig. 2-3.5- I serics circuit containing L, C and R is "resonant" at the applied frequency when the reactance of C is equal to the reactance of L.

PER CENT CHANGE FROM RESONANT FREQUENCY
Fig. 2-36-Current in a series-resonant cireuit with various values of series resistanere. The values are arbitrary and would not apply to all circuits, lut represent a typical case. It is asstmed that the reactances (at the resonant frequency) are 1000 ohms (minimum $Q=10$). Note that at frequencies at least plus or minus ten per cent away from the resonant frequency the eurrent is substantially unaffected by the resistance in the circoit.
If the reartance of either the coil or condenser is of the same order of magnitude as the resistance, the current decreases rathor slowly as the frequency is moved in either direction away from resonance. such a curve is said to be broad. On the other hand, if the reactance is considerably larger than the resistance the current decreases rapidly as the frequency moves away from resonance and the circuit is said to be sharp. A sharp circuit will respond a great deal more readily to the resonant frequency than to frequencies quite close to resonance; a broad circuit will respond almost equally well to a group or band of frequencies centering around the resonant frequener.

Both types of resonance curves are useful. A sharp circuit gives good selectivity - the ability to respond strongly (in terms of current amplitude) at one desired frequency and discriminate against others. A broad circuit is used when the apparatus must give about the same response over a band of frequencies rather than to a single frequency alone.

Most diagrams of resonant circuits show only inductance and capacitance; no resistance is indicated. Nevertheless, resistance is always present. At frequencies up to perhaps 30 Mc . this resistance is mostly in the wire of the coil. Above this frequency energy loss in the condenser (principally in the solid dielectric which must be used to form an insulating support for the condenser plates) becomes appreciable. This energy loss is equivalent to resistance. When maximum sharpness or selectivity is needed the object of design
is to reduce the inherent resistance to the lowest possible value.

The value of the reactane of either the enil or condenser at the resomant frequency, divided by the resistance in the cirouit, is called the Q (quality factor) of the cirruit, or

$$
Q=\frac{\lambda}{R}
$$

where $Q=$ (uality factor
$X=$ Reactance of cit her coil or condenser, in ohms
$R=$ IResistance in ohms
Example: The roil and condenser in a series cireuit cach have a reatance of 350 ohmas at the resonant frequency, The resistance is whas. Then the Q is

$$
Q=\frac{X}{R}=\frac{3.50}{5}=70
$$

The effect of () on the sharpmess of resonamee of a circuit is shown by the curves of lig. $9-37$. In these curves the frequency change is shown in percentage above and below the resonant frequency. Qs of $10,20,80$ and 100 atre shown; these values rover much of the range commonly used in radio work.

Voltage Rise

When a voltage of the resonant frepuency is inserted in series in a resonant circuit, the voltage that appears across aither the eoil or condenser is considerathy higher than the appliod voltage. The current in the circuit is limited only. by the actual resistance of the eoil-eomadenser combination in the cireuit and maty have a relatively high value; however, the same current

Fig. 2.37-Current in serics-resmant eircuits having different Qs. In this graph the current at resoname is assumed to be the same in all rases. The lower the Q, the more slowly the eurrent derrases as the applied fres quency is moved away from resonance.
flows through the high reactances of the eoil and eondenser and eatuses large voltage drops. The ratio of the reactive voltage to the applied voltage is crgat to the ratio of reactance to resistance. This ratio is the () of the cerenit. Therefore, the voltage ateross wither the roil or eondenser is equal to () times the voltage insonted in sories with the circuit.

Abstract

Example: 'IThe inductive reartance of acercuit is 200 ohms, the caparitive reactance is 200 ohmes, the resistaneo 5 ohms, and the applied voltage is $\delta 0$. The two reartances eaned and there will be lut 5 ohms of pure resistance to limit the eurrent flow. Thus the enerent will be 20/5, or 10 amperes. The voltage develomed across either the eoil or the condenser will be erpial to itw reactance times the current, or $200 \times 10=2000$ volts. An aternate method: The ℓ of the circulit is $N / R=200 / 5=40$. The reantive voltage is erfabl to Q times the applind voltage or $40 \times 50=2000$ volts.

Parallel Resonance

When a variablo-fregueney sourer of constant voltage is applied to a paralled eireuit of the type shown in loig. 2-38 there is a resoname affect

similar to that in a serios circuit. However, in this case the current (measured at the point indicated) is smallest at the frequenery for which the coil and rondenser roactances are equal, At that frequeney the current through L is exactly canceled by the out-of-phase current through ${ }^{\dot{4}}$, so that only the current taken by R flows in the line. At freepuencies below resonamee the current through L is bager than that through (', berause the reactance of L is smatler and that of C^{*} higher at low frequencios there is only partial cancellation of the two reactive eurrents and the line current therefore is larger than the current taken by R alone. At frequencies above resonance the situation is reversed and more current flows through C then through L, so the line current again increases. 'The current at resomance, being determined wholly be R, will be small if R is large and latge if R is small.

The resistance $/\{$ shown in ligg. 2-38 soldom is an actual resistor. In most cases it will be an "equivalont" resistance that represents the actual congry low in the cimuit. This lose can be inherent in the erol or condenser, or may represent energy tramsforred to a load by means of the resonant circuit. (For example, the resonant circuit may be usod for transforing power from a vacuum-tube amplifor to an antenna system.)

Parallel and sories resonant eireuits are quite alike in some resperts. For instance, the circuits given at A and B in lig. 2-39 will behave identically, when an external voltage is applied, if (1) L and C are the same in both eases; and (2) R_{p}
multiplied by R_{n} equals the square of the reatetance (at resonance) of either L or (". When these conditions are met the two direuits will have the same Qs. (These statements are approximate, but are quite atecurate if the Q is 10 or more.) The circuit at A is a series circuit if it is viowed from the "inside" - that is, going around the loop formed by L, C and R - so its Q can be found from the ratio of X to R_{s}.

Thus a circuit like that of Fig. 2-39A has an equivalont parallel impedance (at resonamer equal to R_{p}, the relationship betwern R_{s} and R_{p}, being as explaned aloove. Although R_{p}, is not an actual resistor, to the souree of voltage the paralld-resonant circuit "looks like" at pure resistance of that value. It is "pure" resistance because the eoil and condenser currents are 180 degrees out of phase and atre equal; thus there is no reatetive current in the line. At the resonamt frecpuency the parallel impedance of a resonant circuit is

$$
Z_{\mathrm{r}}=(Q X
$$

where $Z_{r}=$ Resistive imperdance at resonance
$Q=$ (Quality factor
$X=$ Reactance (in ohms) of either the eoil or condenser

Exansple: The parallel inperdance of a circuit having a Q of 50 and having inductive and capacitive reactances of 300 ohms will be
$Z_{r}=Q . N=50 \times 300=15,000$ ohtus.
At frequencios off resonance the impedance is no longer purely resistive because the coil and condenser currents atre not equal. The offresonat impodanoe therefore is complex, and

is lower than the resonant impedance for the reasons previously outlined.

The higher the $(2$ of the circuit, the higher the paralle impedance. Curves showing the variation of impedance (with frequency) of a parallel circuit have just the same shape as the curves showing the variation of current with frequency in a series circuit. Fig. 2-40 is a set of such curves.

Parallel Resonance in Low-Q Circuits

The preceding discussion is accurate only for Qs of 10 or more. In a circuit such as Fig. 2-39A, where resistance is present in series, there is a set of values for L and (' that will make the parallel impedance a pure resistance, but the impedance does not have its maximum possible value. For maximum impedance it is necessary to use a different value for either L or C, but the maximum possible parallel impedance is not a pure resistance.

PER CENT CHANGE FROM RESONANT FREQUENCY
Fig. 2-fo - Relative impedance of parallel-resonant eircuits with different Qs. Ihese rurves are similar to those in l-ig. 2-37 for current in a series-resonant eircuit. The effert of Q on impedance is most marhed near the resonant frequency.

Since either condition could be called "resonance," it is clear that for low-() circuits it becomes necessary to distinguish between maximum impedance and resistive impedance parallel resunance. The difference in tuning is appreciable when the Q is in the vicinity of 5 , and becomes more marked with still lower Q values.

Q of Loaded Circuits

In many applications of resonant circuits the onlv power lost is that dissipated in the resistance of the circuit itself. At frequencies below 30 Mc . most of this resistance is in the coil. Within limits, increasing the number of turns on the coil increases the reactance faster than it raises the resistance, so coils for circuits in which the Q must the high may have reactances of 1000 ohms or more at the frequency under consideration.

However, when the circuit delivers energy to a load (as in the case of the resonant circuits used in transmitters) the energy consumed in the cirruit itself is usually negligible compared with that consumed by the load. The equivalent of such a circuit is shown in Fig. 2-41A, where the parallel resistor represents the load to which power is delivered. If the power dissipated in the

Fig. 2-41-The equivalent circuit of a resonant circuit delivering power to a load. 'The resistor K represents the loid reaistance. At 13 the load is tapped across part of I, which by transformer ation is equivalent to using a higher load resistance aeross the whole eircuit.
load is at least ten times as great as the power lost in the coil and condenser, the parallel impedance of the resonant circuit itself will be so high compared with the resistance of the load that for all practical purposes the impedance of the combined circuit is equal to the load resistance. Inder these conditions the () of a paralleJresonant circuit loaded by a resistive impedance is

$$
Q=\frac{Z}{X}
$$

where $Q=$ Quality factor
$Z=$ Parallel load resistance (ohms)
$X=$ Reactance (ohms) of either the coil or condenser
Example: A resistive load of 3000 ohms is connected across a resonant circuit in which the inductive and capacitive reactances are each 250 ohms. The circuit Q is then

$$
Q=\frac{Z}{I}=\frac{3000}{250}=12
$$

The "effective" () of a circuit loaded by a parallel resistance becomes higher when the reartances of the coil and condenser are decreased. A circuit loaded with a relatively low resistance (a few thousand ohms) must have low-reactance elements (large caparitance and small inductance) to have reasonatly high (Q.

Impedance Transformation

l'arallel-resonant circuits are used in connection with vacuum-tube amplifiers, as desoribed in the rhapter on vacuum tubes, and it is frequently the case that the load into which the tule is to deliver power is much lower that the load resistance required for proper tube oneration. The effert of a given load resistane on the parallel impedance ran be changed by connerting the load arross only part of the circuit. One method is to tap the lond across part of the coil, as shown in Fig. 2-4113. Tapping the load "down" is equivalent to commeeting a higher value of load resistance arross the whole circuit. This is similar in principle to impedance transformation with an iron-eore transformer. In highfrequency resonant circuits the impedance ratio does not vary exactly as the square of the turns ratio, berause all the magnetir flux lines do not cut every turn of the coil. A desired reflected impedance usually must be obtained by experimental adjustment.

When the load resistance has a very low value (say below 100 ohms) it may be comnerted in series in the resonant circuit (as in Fig. 2-39.1, for example), in which ease it is transformed to an equivalent parallel impedanee as previously described. If the ($)$ is at least 10 , the equivalent parallel impedance is

$$
Z_{\mathrm{r}}=\frac{X^{2}}{R}
$$

where $Z_{r}=$ Resistive impedance at resonance
$X=$ Reartance (in ohms) of either the coil or condenser
$R=$ Load resistance inserted in series

If the Q is lower than 10 the reactance will have to be adjusted somewhat, as described previously, to obtain a resistive impedance of the desired value.

L/C Ratio

The formula for resonant frequency of a circuit shows that the same frequency always will be obtained so long as the product of L and $(\prime$ is constant. Within this limitation, it is evident that L. can be large and $('$ small, L small and © large, etr. The relation between the two for a fixed frequency is called the L / C ratio. A high- C circuit is one which has more "apacity than "normal" for the frequency; a low-C circuit one which has less than normal caparity. These terms depend to a considerable extent upon the particular application considered, and have no exart numerical meaning.

LC Constants

It is frequently convenient to use the numerical value of the $L C$ constant when a number of calculations have to be made involving different $L / C^{(}$ ratios for the same frequency. The constant for any frequency is given by the following equation:

$$
L C^{\prime}=\frac{25,3,3: 30}{f^{2}}
$$

where $L=$ Indurtance in mierohenrys ($\mu \mathrm{h}$.)
$C^{*}=$ ('apacitance in mieromierofarads ($\mu \mu \mathrm{d}$.)
$f=$ Frequency in megaryales
Example: Find the inductance required to resonate at 3 fino ke, (3.65 Mc M with caparitances of $25,50,100$, and 500 , $\mu \mu \mathrm{fd}$. The I, C constant is

$$
\begin{aligned}
& L C=\frac{25.330}{(3.65)^{2}}=\frac{25,330}{13.35}=13400 \\
& \text { With } \quad 25 \mu \mu \mathrm{fd}, L=1400 / \mathrm{C}=1900 / 2 \% \\
& =76 \mu \mathrm{~h} \text {. } \\
& \text { 50 } \mu \mu \mathrm{fd} . ~ L=1900 / \mathrm{C}=1900 / 50 \\
& =38 \mu \mathrm{~h} \text {. } \\
& 100 \mu \mu \mathrm{fd} . L=1900 / \mathrm{C}=1900 / 100 \\
& =19 \mu \mathrm{~h} \text {. } \\
& 500 \mu \mu \mathrm{fd} . L=1900 / C=1900 / 500 \\
& =3.8 \mu \mathrm{~h} \text {. }
\end{aligned}
$$

COUPLED CIRCUITS

Energy Transfer and Loading

Two circuits are coupled when energy can be transforred from one to the ather. The circuit delivering power is malled the primary cire uit; the one receiving power is called the secondary circuit. The pewer may be practically all dissipated in the secondary circuit itself (this is usually the (ase in receiver (ircuits) or the secondary may simply act as a medium through which the power is transferred to a load. In the latter mase, the coupled eircuits may act as a radio-frequency impedance-matching device. The matching can be accomplished by adjusting the loading on the secondary and by varying the amount of coupling between the primary and secondary.

ELECTRICAL LAWS AND CIRCUITS

Coupling by a Common Circuit Element

One method of coupling between two resonant circuits is through a circuit element common to both. The three variations of this type of coupling shown at A, B and C of Fig. 2-42, utilize a common inductance, capacitance and resistance, respectively. Current circulating in one $L C^{\prime}$ branch flows through the common element ($L_{\mathrm{c},} \mathrm{C}_{\mathrm{c}}$ or R_{c}) and the voltage developed across this element causes current to fow in the other $L C$ branch.

Fig. 2-12- Four methouls of cirroit coupling.
If both circuits are resonant to the same frequency, as is usually the case, the value of coulpling reactance or resistance required for maximum energy transfer is generally quite small compared with the other reactances in the circuits. The common-circuit-element method of coupling is used only occasionally in amateur apparatus.

Capacitive Coupling

In the circuit at 1) the coupling increases as the eapacitance of (${ }^{c}$, the "coupling condenser," is made greater (reartance of C_{0} is decreased). When two resonant circuits are coupled by this means, the capacitance required for maximum energy transfer is quite small if the Q of the secondary circuit is at all high. For eximple, if the parallel impedance of the secomdary circuit is 100,000 ohms, a reactance of 10,000 ohms or so in the condenser will give ample coupling. The corresponding capacitance required is only a few micromicrofarads at high frequencies.

Inductive Coupling

Figs. 2-43 and 2-44 show inductive coupling, or coupling by means of the mutual inductance between two coils. Circuits of this type resemble the
iron-core transformer, but because only a part of the magnetic flux lines set up by one coil cut the turns of the other coil, the simple relationships between turns ratio, voltage ratio and impedance ratio in the iron-core transformer do not hold.

Two types of inductively-coupled circuits are shown in Fig. 2-43. Only one circuit is resonant. The circuit at Λ is frequently used in receivers for coupling between amplifier tubes when the tuning of the circuit must be varied to respond to signals of different frequencies. (ircuit 13 is used principally in transmitters, for coupling a radiofrequency amplifier to a resistive load.

In these circuits the coupling between the primary and secondary coils usually is "tight" that is, the coefficient of coupling between the coils is large. With very tight coupling either circuit operates nearly as though the devise to which the untuned coil is connected were simply tapped across a corresponding number of turns on the tuned-circuit coil. Any resistance in the circuit to which the untuned coil is connected absorbs power, through the mutual inductance, from the tuned circuit. This has the same effect as increasing the effective series resistance of the tuned circuit, so that resistance is said to be "coupled into" the tuned "ircuit. The selectivity, Q, and parallel impedance of the tuned circuit are thereby lowered similarly, reactance in the circuit to which the untuned coil is connected is "coupled into" the tuned circuit, and since coupled reactance tunes the circuit just as the reactances of the coil and condenser tune it, it becomes necessary to readjust the tuning whenever the coupling is changed. In radio-frequency circuits there is always a certain amount of coupled-in reactance except when both circuits are independently tuned to resonance before being coupled together.

These circuits may be used for impedance transformation by adjusting the mutual inductance. By proper choice of the number of turns on the untuned coil, and by adjustment of the coupling, the parallel impedance of the tuned circuit may be adjusted to the value required for the proper operation of the device to which it is connected. In any case, the maximum energy transfer possible for a given coefticient of coupling is obtained when the reactance of the untuned coil is equal to the resistance of its load.

Fig. 2-43 - Single-tuned inductively-coupled circuits.

Coupled Resonant Circuits

When the primary and secondary circuits are both tuned, as in Fig. 2-4.4, the resonancer effects in both circuits make the operation somewhat more complicated than in the simpler circuits just considered. Imagine first that the two circuits are not coupled and that each is independently tuned to the resonant frequency. The imperdance of each will be purely resistive. If the two are then coupled, the secondary will couple resistance into the primary, causing its parallel impedance to decrease. As the coupling is made preater (without changing the tuming of either cirenit) the coupled resistance becomos larger and the paralled impedance of the primary eontinues to derrease. Also, as the coopling is made tighter the amount of power transferred from the primary to the

Fig. 2-4.4 - Indactively -eouphel resonant circuits. (iirruit A is used for high-resistance toads (at lrast several times the reactance of either l_{2} or C_{2} at the resonant frequency). Circuit 13 is suitable for how resistance loads. where the reactance of either L_{2} or C_{2} is at leatst several times the load resistance.
secondary will increase to a maximum at critical coupling, but then decreases if the coupling is tightened still more.

Critical coupling is a function of the (s. of the two circuits. A higher corflicient of compling is required to reach aritical compling when the (bs are low ; if the (ss are high, as in rereiving applications, a coupling coofficient of a few per cent may give eritical coupling.

With loaded circuits such as are used in transmitters it is not impossible for the () to reach such low values that eritical coupling amot be obstained even with the highest practicable eroefficient of coupling (eoils as physically elose as possible). In such (anse the only way to secure sufficient coupling is to increase the (a) of one or both of the erompled circuits. In the primary (input) cireuit this can be done by decreasing the $L /($ ' ratio beanse this circuit is its effere loaded by a parallel resistance (effere of coupled-in resistance). In the parallel-tuned wecondary (irenit, Fig. 2-44. , the (Q also (an bee increased by decreasing the L / C^{\prime} ratio; in addition, it may be increased by tapping the load down (see lig.

Fig. 2-15 - Showing the effect on the output voltage from the secomlary circuit of changing the coeflicient of conpling between two resonant circnits independently tumed to the same frequency. 'The voltage applied to the primary is held constant in amplitude while the frefurney is varied, and the output voltage is measured across the secondary.

2-41). In the series-tuned secondary aircuit, Fig. 2-1413, the () may be increased by increasing the L/f ratio.

There will generally be modificulty in securing sufficient coupling, with practicable eroils, if the Q of each circuit is at least 10 . smaller values will suffice if the coil construction permits tight coupling.

Selectivity

In Fig. 2-4.3 only one circuit is tuned and the selertivity $\begin{gathered}\text { eurve will be that of a single resonant }\end{gathered}$ circuit having the appormiate (). As stated, the effective () depends upon the resistance comnerted to the untmed coil.

In Fig, $2-44$, the selectivity is the same as that of a single tuned cireuit having a () equal to the pronluct of the (Ss of the individual circuits - if the eotupling is well below eritioal and both circuits are tumed to resomance. 'The (os of the individual circuits are affocted by the degree of eoupling, because cath couples resistance into the other: the tighter the roupling, the fower the individual (ss and therefore the lower the over-all sclectivity.

If both circuits are independently tuned to resonamere, the over-all selectivity will vary about as shown in l'ig. 2-45 as the coupling is varied. With loose coupling, d, the output voltage (across the secondary cireuit) is small and the selectivity is high. Is the coupling is increased the secondary voltage also increases until critical coupling, I, is reached. At this point the output voltage at the resonant frequency is maximum but the selectivity is lower than with looser coupling. At still tighter coupling, (', the output voltage at the resonant frequency decreases, but as the frepuency is varied either side of resonance it is found that there are two "humps" to the curve, one on either side of resomance. With very tight coupling, I, there is a further dererease in the out put voltage at resomance and the "humps" are farther away from the resomant frecueney. Resonance curves such as those at ('and I) are called flat-topped berause the output voltage dowes not change much over an appreciable band of frequencies.

Note that the off-resonance humps have the

ELECTRICAL LAWS AND CIRCUITS

same maximum value as the resomant output voltage at eritical coupling. These humps are caused by the fart that at frequencies off resonane the secondary circuit is reative and couples reactance as well as resistance into the primary. The roupled resistance derreases off resomance and the humps represent a new eondition of eritieal conpling, at a frequeney to which the primary is detuned by the coupled-in reactance from the secomdary.

When the two circuits are tuned to slightly different frequencies a double-humped resomance curve results even though the coupling is bow critical. This is to te expected, beeause ewh rivcuit will respond best to the frequency to which it is tuned. Tuning of this type is called stagger tuning, and often is used when substantially uniform response over a wide band of freguencies is desired.

Link Coupling

A modification of inductive coupling, called link coupling, is shown in lig. 2-46. This gives the effect of inductive compling between two coils that have no mutual inductance; the link is simply a means for providing the mutual indurtance, The total mutual inductance between two coils coupled by a link camnot be made as great as if the coils themselves were coupled. This is because the coeflicient of coupling between aircore coils is considerably less than 1 , and sime there are two coupling points the over-alk coupling coeflicient is less than for any puir of coils. In practice this need not be disadvantageons berause the power transfer can be made great enough by making the tumed circuits sufficiently high-(i). Link coupling is convenient when ordinary inductive coupling would in impracticable for constructional reasons. It finds wide use in transmitters, for example.

The link coils usually have a small number of turns compared with the resonant-circuit coils. The number of turns is not greatly important, because the coeflicient of coupling is relatively independent of the number of turns on either coil; it is more important that both link coils should have about the sume inductance. The length of the link between the coils is not critical if it is very small compared with the wavelength; if the length beeomes an appreciable fraction of a wavelength the link operates more as a trunsmission line than as a means for providing mutual inductance. In such case it should be treated by the methods described in the chapter on Transmission Lines.

Fig. 2-16 - Link enopling. The muthal indoctances at luth ends of the link are eguivalent to mutnal induetance between the tuned circuits, and serve the same purpose.

Piezoelectric Crystals

A number of crystalline substances found in nature have the ability to transform mechanical strain into an clectrical charge, and vice versa. This property is known as piezoelectricity. A small plate or bar cut in the proper way from a quart\% (rystal, for example, and placed between two conducting efectrodes, will he mechanically strained when the electrodes are comected to a source of voltage. Conversely, if the crystal is squeezed between two electrodes a voltage will develop between the electrodes.

Piezoeleotric erystals can be used to transform mechanical energy into electrical energy, and vice versa. They are ased, for example, in microphones and phonograph pick-ups, where mechanical vibrations are trassormed into alternating voltages of corresponding frequency. They are also used in houdsots and loudspeakers, transforming electrical energy into mechanical vibration. Crystal plates for these purposes are cut from large crystals of liochelle salts.

Fip, 2-17- Eiquivalent circuit of a crystal resonator. L, C and K are the eleetrical equivalents of merhanisal properties of the crytal; fis is the capacitance of the electrodes with the crystal plate between them.

Crystalline plates also are mechanical vibrators that have natural frequencies of vibration ranging from a few thousand cyeles to several megaeycles per second. The vibration frequency depends on the kind of arystal, the way the plate is cut from the natural crystal, and on the dimensions of the pate. Because of the piezoelectric effect, the crystal phate can be coupled to an electrical circuit and made to substitute for a coil-and-condenser resonant circuit. The thing that makes the crystal resonator valuable is that it has extremely high Q, ranging from 5 to 10 times the $Q s$ obtainable with good $L C$ ' resonant eircuits.

Analogies can be drawn between various mechanical properties of the crystal and the electrical characteristics of a tuned circuit. This leads to an "equivalent circuit" for the crystal. The electrical coupling to the erystal is through the electroles between which it is sandwiehed; these electroles form, with the crystal as the dielectric, a small condenser like any other condenser constructed of two plates with a dielectric between. The erystal itself is equivalent to a scries-resonant circuit, and together with the caparitance of the electrodes forms the equivalent circuit shown in Fig. 2-47. The equivalent inductance of the crystal is extremely large and the series capacitance, ${ }^{\prime}$ ', is correspondingly low; this is the reason for the high ℓ of a crystal. The electrode caparitance, (${ }_{1}$, is so very large compared with the series caparitance of the erystal that it has only a very small effect on the resonant frequency.

Crystal plates for use ats resonatoms in radiofrequency circuits are almost always cut from quartz erystals, because for merhanical reasoms quartz is by far the most suitable material for
this purpose. (Quart\% crystals are used as resonators in receivers, to give highly-solective rereption, and as frequence-controlling elements in transmitters to give a high order of frequenco stability.

Practical Circuit Details

COMBINED A.C. AND D.C.

Most radio circuits are built around vacum tubes, and it is the nature of these tubes to require direct current (usually at a fairly high voltage) for their operation. They convert the direct current into an alternating current (and sometimes the reverse) at frequencies varying from well down in the audio range to well up in the superhigh range. The conversion process almost invariably requires that the direct and alternating currents meet some where in the circuit.

In this meeting, the a.c. and d.e. are actually combined into a single current that "pulsates" (at the are. frequency) about an average value equal to the direct current. This is shown in Fig. $2-48$. It is convenient to consider that the alternating current is superimposed on the direct current, so we maty look upon the actual current as having two components, one d.e, and the other a.e.

Pis. 2-18-Pulvat ind. componed of an alternating current or voltage sumerimpetised on at steady dirert current or voltake.

In an altemating corrent the positive and negat tive altermations have the same average amplitude, so when the wave is superimposed on a direct current the latter is alternately increased and decreased b!! the same amonnt. There is thus no average change in the direct current. If a d.e. instrument is being used to read the current, the reading will be exactly the same whether or not the a.e. is superimposed.

Ilowever, there is actually more power in such a combination current than there is in the direct current alone. This is lecause power varies as the semare of the instantaneons value of the current, and when all the instantaneous squared values are averaged over a eyale the total power is greater than the d.e. powor alone. If the atse is a sine wave having a pak value just equal to the d.e., the power in the rircuit is 1.5 times the dee. power. An instrument whese readings are proportional to power will show such an inerease.

In many circuits, also, we may have two alternating currents of different frequencies; for example, an audio frequency and a radio frequency may be eombined in the same rireuit. The two in turn may be combined with a direct current. In some cases, too, two r.f. currents of widelydifferent frequencies may be rombined in the same rircuit.

Series and Parallel Feed

Fig. $9-19$ shows in simplified form how d.e and a.c. may be combinced in a varuum-tube rircuit. (The tube is shown only in bare outline; so far as the d.e. is concemed, it can be looked upon as a resistance of rather high value. On the other hand, the tube may be looked upon as the gencrator of the a.c. The mechanism of tube operation is described in the next (chapter.) In this "ase, it is assumed that the a.ce, is at radio frequency, as suggested hy the coil-and-condenser tuned circuit. It is also assumed that r.f. current can easily flow through the d.e. supply; that is, the impedance of the supply at radio frequencies is so small as to be negligible.

In the circuit at the left, the tube, tuned circuit, and d.e. supply all are connected in series. The dirert current flows through the 1 r.f. eoil to get to the tube; the r.f. current generated by the tube flows through the d.e. supply to get to the tuned rircuit. This is series feed. It works because the impedane of the d.e. supply at radio frequencies is so low that it does not affert the flow of r. f. current, and hocause the d.e, resistance of the coil is so low that it does not affect the flow of direct current.

In the rircuit at the right the direct current does not flow through the r.f. tuned circuit, but instrad goes to the tube through a second coil, $R F^{\prime \prime}$ (radio-frequency choke). Direct eurrent ramot flow through I because a blocking condenser, C, is placed in the circuit to prevent it. (Without (', the d.e. supply would be short(ireuited by the low resistance of 2 .) On the ot her hand, the r.f. current generated by the tube cun casily flow through c to the tuned circuit becatue the caparitance of C is intentionally chosen to have low reactance (compared with the impedance of the tuned cireuit) at the radio frequency. The r.f. current camot flow through the d.e. supply because the inductance of $R F('$ is intentionally made so large that it has a very high rametance at the radio frequency. The resistance of $R F^{\prime}$, however, is too low to have an appe-

Fig, 2-49-Illustrating series and prarallel feed.
ciable effect on the flow of direct current. The two currents are thus in parallel, hence the name parallel feed.

Either type of feed may be used for both a.f. and r.f. circuits. In parallel feed there is no d.c. voltage on the a.c. circuit, a desirable feature from the viewpoint of safety to the operator, because the voltages applied to tubes - particularly transmitting tubes - are dangerous. On the other hand, it is somewhat difficult to make an r.f. choke work well over a wide range of frequencies. Series feed is usually preferred, therefore, because it is relatively easy to keep the impedance between the a.c. circuit and the tube low.

By-Passing

In the series-feed circuit just discussed, it was assumed that the d.e. supply had very low impedance at radio frequencies. This is not likely to be true in a practical power supply, partly

\approx
Fig, 2-50-Typical use of a by-pass condenser in a series-feed circuit.
\approx
beause the normal physical separation between the supply and the r.f. circuit would make it necessary to use rather long connecting wires or leads. At radio frequencies, even a few feet of wire can have fairly large reactance - too large to be considered a really "low-impedance" connection.

An actual circuit would be provided with a by-pass condenser, as shown in Fig. 2-i0). Condenser (${ }^{\prime}$ is chosen to have low reactance at the operating frequency, and is installed right in the circuit where it can be wired to the other parts with quite short connerting wires. Hence the r.f. rurrent will tend to flow through it rather than through the d.c. supply.

To be effective, the reartance of the by-pass rondenser should not be more than one-tenth of the impedance of the hy-passed part of the circuit. Very often the latter impedance is not known, in which case it is desirable to use the largest capacitance in the hy-pass that circumstances permit. To make doubly sure that r.f. current will not flow through a non-r.f. circuit such as a power supply, an r.f. choke may be connected in the lead to the latter, as shown in Fig. 2-i0.

The same type of by-passing is used when audio frequencies are present in addition to r.f. Because the reactance of a condenser changes with frequency, it is readily possible to choose a capari-
tance that will represent a very low reartance at radio frequencies but that will have such high reactance at audio frequencies that it is practically an open circuit. A capacitance of $0.001 \mu \mathrm{fd}$. is practically a short circuit for r.f., for example, but is almost an open circuit at audio frequencies. (The actual value of capacitance that is usable will be modified by the impedances concerned.) I3y-pass condensers also are used in audio circuits to carry the audio frequencies around a d.c. supply.

Distributed Capacitance and Inductance

In the discussions earlier in this rhapter it was assumed that a condenser has only caparitance and that a coil has only inductance. Infortunately, this is not strictly true. There is always a certain amount of inductance in a conductor of any length, and a condenser is bound to have a little inductance in addition to its intended capacitance. Also, there is always capacitance between two conductors or between parts of the same conductor, and thus there is appreciable capacitance between the turns of an inductance coil.

This distributed inductance in a condenser and the distributed capacitance in a coil have important practical effects. Actually, every condenser is a tuned circuit, resomant at the frequency where its caparitance and distributed inductance have the same reactance. The same thing is true of a coil and its distributed capacitance. At frequencies well below these natural resonances, the condenser will act like a nomal caparitance and the coil will act like a normal inductance. Near the natural resonant points, the coil and condenser act like self-tuned circuits. Above resonance, the condenser acts like an inductance and the coil acts like a condenser. Thus there is a limit to the amount of capacitance that can be used at a given frequency. There is a similar limit to the inductance that can be used. It audio frequencies, capacitances measured in microfarads and inductances measured in henrys are practicable. It low and medium radio frequencies, inductances of a few millihenrys and capacitances of a few thousand micromicrofarads are the largest practicable. It high radio frequencies, usable inductance values drop to a few microhenrys and capacitances to a few hundred micromicrofarads.

Distributed capacitance and inductance are important not only in r.f. tuned circuits, but in by-passing and choking as well. It will be appreciated that a by-pass condenser that actually acts like an inductance, or an r.f. choke that arts like a condenser, cannot work as it is intended they should.

Grounds

Throughout this book there are frequent references to ground and ground potential. When a connection is said to be "grounded" it does not mean that it actually goes to earth (although in many cases such earth comnections are used). What it means is that an actual earth comection
could he made to that point in the circuit without disturbing the operation of the circuit in any way. The term also is used to indicate a "common" point in the rircuit where power supplies and metallic supports (such as a metal chassis) are cectrically tied together. It is customary, for example, to "ground" the negative terminal of a d.c. power supply, and to "ground" the filament or heater power supplies for vacuum tubes. Since the eathode of a vacuum tube is a junction point for grid and plate voltage supplies, it is a natural point to "ground," Also, since the various cirruits comnerted to the tube elements have at least one point connerted to cathode, these points also are "returned to ground." "(iround" is therefore a rommon referonee point in the radio circuit, "(iround potential" means that there is no "difference of potential" - that is, no voltage - between the circuit point and the earth.

Single-Ended and Balanced Circuits

With reference to ground, a cirouit may bo either single-ended (unbalanced) or balanced. In a single-ended circuit, one side of the circuit is commeded to ground. In a balanced circuit, the rlectrieal midpoint is connerted to

Single-ended

Single-ended

Balanced Output

Fig. 2-51 - Single-cnded and balanoed cirenits.
ground, so that the circuit has two ends each at the same voltage "above" ground.
Typical single-ended and batanced circuits are shown in Fig. - --51. 1R.f. circuits are shown in the upper row, while iron-eore transformers (surh as are used in power-supply and audio cireuits) are shown in the lower row. The r.f. eirenits may be balanced aither by connecting the conter of the eoil to ground or by using a "halaned" or "split-stator" condenser and connerting the emo denser rotor to ground. In the iron-core transformer, one or both windings may be tapped at the center of the winding to provide the ground connertion.

In the single-ended circuit, only one side of
the circuit is "hot" - that is, has a voltage that diffors from ground potential. In the balanced circuit, both ends are "hot" and the grounded center point is at ground potential.

Shielding

Two rircuits that are physically near each other usually will be coupled to earh other in some degree even though no coupling is intended. The metallic parts of the two circuits form a small capacitance through which energy can be transferred by means of the electric field. Also, the magnetic field about the coil or wiring of one circuit can couple that rircuit to a second through the latter's coil and wiring. In many cases these unwanted couplings must be prevented if the cireuits are to work properly.
(aparitive coupling may readily be prevented by enclosing one or both of the aircuits in grounded low-resistance metallic containers, called shields. The elertrie field from the eireuit components does not penetrate the shield. A motallic plate, called a baffle shield, inserted betweon two romponents also may suffice to prevent electrostatic coupling between them. It should tre large enough to make the components invisible to earh other.

Similar metallie shielding is used at radio frequancies to prevent magnetic coupling. The shiolding effect increases with frequency and with the ronductivity and thickness of the shielding material.

A closed shichl is required for good magnetic shiclding; in some cases separate shields, one about eath roil, may be required. The baffle shield is rather ineffertive for mannetic shielding, although it will give partial shielding if placed at right angles to the axes of, and between, the coils to be shielded from each other.

Shielding a coil reduces its inductanee, hecause part of its field is canceled by the shield. Also, there is always a smill amount of resistance in the shield, and there is therefore an energy loss. This loss raises the effective resistance of the coil. The decrease in inductance and increase in resistance lower the Q of the eoil. The reduction in inductance and () will be small if the shield is sufficiently far away from the coil; the spacing between the sides of the eoil and the shield should be at least half the eoil diameter, and the spacing at the ends of the coil should at least equal the coil diancter. The higher the eonductivity of the shied material, the less the effeet on the induetince and ($)$. Copper is the best material, but aluminum is quite satisfactory.
lior good mannetic shielding at audio frequencies it is neressary to enelose the coil in a container of high-permeability iron or steel. In this case the shield am be quite close to the eoil without harming its performance.

Modulation, Heterodyning and Beats

Since one of the most widespread uses of radio frequencies is the transmission of speech and musie, it would be very convenient if the audio
spectrum to be transmitted eonld simply be shifted up to some radio frequency, transmitted as radio wives, and shifted bark down to the audio spec-
trum at the receiving point. Suppose the audio signal to be transmitted by radio is a pure 1000 cycle tone, and we wish to transmit it at some frequency around 1 Mc . ($1,000,000$ eycles). (he possible way might be to add $1,000,000$ cycles and 1,000 eycles together, thereby obtaining a radio frequency of $1,001,000$ cycles. Infortunately, no simple method for doing such a thing directly has cever been devised, although the effect is obtained and used in some advanced commurnications techniques.

Actually, when two different frefuencies are present sinultaneously in an ordinary circuit (sperifically, one in which Ohm's Law holds) each behaves as though the other were not there. It is true that the total or resultant voltage (or current) in the circuit will be the sum of the instantancous values of the two at every instant. This is beanuse there can be only one value of eurvent or voltage at any single point in a circoit at any instant. lig. $2-i)^{2} 1$ and 13 show two surh frequencies, and C shows the resultant. The amplitude of the $1,000,000-$ erole current is not afferted by the presence of the 1000 -revele curvent, hut meroly has its axis shifted back and forth at the 1000-cycle rate. An attempt to transmit such a

Fig. 2.52-Amplitulde-rs.-time and amplitude-oss. fremency plots of varions signals. (A) It 12 ryedes of a I000-eycle signal. (B) A 1,000 , 0100 -ryele signal photited to the same scale as A. Breanse there are 1.00 eycles during this time, they cannot be shown aceurately. (C) The signals of 1 and 13 flowing in the same cirruit. (I)) The signats of \backslash and 13 combinerd in a cirenit where

 (G), (II) Amplitude-es.-frequency plots of the signals in $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D .
combination as a radio wave would result simply in the transmission of the $1,000,000-$ cycle frequency, since the 1000 -rycle frequency retains its identity an an audio frequency and hence will not be rudiated.
'There are devires, however, which make it possible for one frequency to control the amplitude of the other. If, for example, a 1000 -cycle tone is used to control a 1 -. Me. signal, the maximum r.f. output will be oltained when the 1000 -cycle signal is at one peak and the minimum will occur at its other peak. The process is called amplitude modulation, and the effect is shown in Fig. 2-52D). The resultant signal is now entirely at radio frequence, but with its amplitude varying at the modulation rate (1000 cyrles). Receiving equipment adjusted to receive the $1,000,000-\mathrm{cyc}$ ye r.f. signal can reprodure these changes in amplitude, and thus tell what the audio signal is, through a process called detection or demodulation.

It might be assumed that the only radio frequency present in such a signal is the original $1,000,000$ eyeles, but such is not the case. It will be found that two new frergencios have appearod. These are the sum $(1,000,000+1000)$ and difference $(1,000,000-1000)$ frequencies, and howe the radio frequencies appearing in the circait after modulation are $999,000,1,000,000$ and $1,001,(O) O$ eveles.

Many circuits have been devised for ohtaining amplitude modulation, and they will be treated in detail in later chapters. lihen an sudio frequency is used to control the amplitude of a radio frequency, the process is gencrally called "amplitude modulation," as mentioned previously, but when a radio frequence mondulates another radio frequency it is called heterodyning. However, the promesses are identioal. A general term for the sum and difference frequencies gonerated during beterodyning or amplitude modulation is "beat frequencies," and a more specific one is upper side frequency, for the sum frequency, and lower side frequency for the difference frequency.

In the simple example, the modulating signal was assumed to be a pure tone, but the modulating signal can just as well be a band of frequencies making up speech or music. In this case, the side frequencies are grouped into what are called the upper sideband and the lower sideband. In any fase, the frequency that is modulated is called the carrier frequency.

In A, 13, (' and I) of Fig. 2-is2, the sketches are obtained by plotting amplitude against time. However, it is equally helpful to be able to visualize the spectrum, or what a plot of amplitude $v s$. frequeney looks like, at any given instant of time. $1 \mathrm{E}, \mathrm{F}$, (iand 11 of Fig . $2-\mathrm{j} 2$ show the signals of Fig. 2-52A, 13, (and D) on an amplitude-vs.frequency basis. Any one frequency is, of course, represented by a vertical line. Fig. 2-52II shows the side frequencies appearing as a result of the modulation process.

Amplitude modulation (AM) is not the only possilbe type nor is it the only one in use. This and other types of modulation are treated in detail in later chapters,

CHAPTER 3

Vacuum-Tube Principles

CURRENT IN A VACUUM

The outstanding difference between the vacuum tube and most other electrical devires is that the electric current does not flow through a conductor but through empty space - a vacuum. This is only possible when "free" electrons - that is, electrons that are not attached to atoms - are somehow introduced into the vacuum. Free electrons in an evaruated space will be attracted to a positivelycharged object within the same space, or will be repelled by a negatively-charged object. The movement of the electrons under the attraction or repulsion of such charged objects constitutes the current in the vacuum.
The most practical way to introduce a suffi-ciently-large number of electrons into the evacuated space is by thermionic emission.

Thermionic Emission

If a thin wire of filament is heated to incandescence in a vacuum, clectrons near the surfare are given enough energy of motion to fly off into the surrounding space. The higher the temperature, the greater the number of electrons emitted. I more general name for the filament is cathode.

If the catnode is the only thing in the varuum, most of the emitted electrons stay in its immediate vicinity, forming a "cloud" about the rathode. The reason for this is that the elertrons in the space, being negative electricity, form a negative charge (space charge) in the region of the athode. The space charge repels

Hepresentatise the types. The miniature, metalenvelope and small glass tubes in the foreground are receiving types. The two tubes with eonnections at the top of the bulb, lying down, are transmitting triotes of moderate power ratings. Those in the rear are trans-mitting-type heam tetrodes.
those electrons nearest the eathode, tending to make them fall back on it.

Now suppose a second conductor is introduced into the vacuum, but not ronnerted to anything else inside the tube. If this serond conductor is given a positive charge by connecting a source of e.m.f. between it and the

Hig. 3.I-Conduction by thermionic cmission in a vacumm tube. One battery is used to heat the filament to a temperature that will cause it to emit electrons. The other battery makes the plate positive with respect to the filament, thereby causing the emitted electrons to be attracted to the plate. Electrons captured by the plate flow back through the battery to the fitament.
(athode, as indicated in Fig. 3-1, electrons emitted by the cathode are attracted to the positivelycharged conductor. An electrio current then flows through the rireuit formed by the cathode, the charged conductor, and the source of e.m.f. In Fig, 3-1 this e.m.f. is supplied by a battery ("B" battery); a second battery ("A" battery) is also indicated for heating the cathode or filament to the proper operating temperature.

The positively-charged conductor is usually a metal plate or cylinder (surrounding the cathode) and is called an anode or plate. Like the other working parts of a tube, it is a tube element or electrode. The tube shown in Fig. $3-1$ is a two-element or two-electrode tube, one element being the cathode or filament and the other the anode or plate.
Since electrons are negative electricity, they will be attrarted to the plate only when the plate is positive with respert to the cathode. If the plate is given a negative charge, the clectrons will be repelled bark to the cathode and no current will flow. The varuum tube therefore can conduct onl! in one dircetion.

Cathodes

Before electron emission can ocrur, the cathode must be heated to a high temperature. However, it is not essential that the heating cur-

Fig. 3.2-Types of cathode construction. Directly-heated cathodes or filaments are shown at A, B, and C . 'The inverted V filament is used in small receiving tubes, the M in both recciving and transmitting tubes. The spiral filament is a transmittingtule type. The indirectly-heated cathodes at 1) and E show two types of heater construction, one a twisted loop and the other bunched heater wires. Both types tend to cancel the magnetic fields set up by the eurrent through the heater.
rent flow through the actual material that does the emitting; the filament or heater can be electrically separate from the emitting cathorle. Such a cathode is called indirectly heated, while an emitting filament is called directly heated. Fig. :3-2 shows both types in the forms in which they are commonly used.

Much greater electron emission can be ohtained, at relatively low temperatures, hy using special cathode materials rather than pure metals. One of these is thoriated tungsten, or tungsten in which thorium is dissolved. Still greater efficiency is achieved in the oxide-coated rathorle, a cathode in which rare-earth oxides form a coating over a metal base.

Although the oxide-coated cathole has much the highest efficiency, it can be used surcessfully only in tubes that operate at rather low plate voltages. Its use is therefore confined to receiv-ing-type tubes and to the smaller varieties of transmitting tubes. The thoriated filament, on the other hand, will operate well in high-voltage tubes.

Plate Current

If there is only a small positive voltage on the plate, the number of electrons reaching it will be small because the space charge (which is negative) prevents those electrons nearest the cathode from being attracted to the plate. . t s the plate voltage is increased, the effert of the space chatge is increasingly overome and the number of electrons attracted to the plate becomes larger. That is, the plate current incroases with increasing plate voltare.
Fig. :3-3 shows a typical plot of plate current vs. plate voltage for a two-element tube or diode. A rurve of this type ran be obt:aned with the circuit shown, if the plate voltage is increased in small steps and it current reading taken (by means of the current-indicating instrument - a "milliammeter") at each voltage. The plate current is zero with no plate voltage and the curve rises until a saturation point is reached. This is where the positive charge on the plate has substantially overcome the space charge and
almost all the electrons are going to the plate. At higher voltages the plate current stays at practically the same value.

The plate voltage multiplied by the plate current is the power input to the tube. In a circuit like that of Fig, 3-3 this power is all used in heating the plate. If the power input is large, the plate temperature may rise to a very high value (the plate may hecome red or even white hot). The heat developed in the plate is radiated to the bulb of the tube, and in turn radiated by the bull, to the surrounding air.

RECTIFICATION

Since current can flow through a tube in only one direction, a diode can be used to change altermating current into direct current. It does this by permitting current to flow when the plate is positive with respect to the cathode, but by shutting of current flow when the plate is negative.
lig. :3-4 shows a representative circuit. Alternating voltage from the secondary of the transformer, T, is applied to the diode tube in series with a load resistor, R. The voltage varies as is usual with a.c., but current flows through the tube and R only when the plate is positive with respect to the cathode - that is, cluring the half-cycle when the upper end of the transformer winding is positive. During the negative half-rycle there is simply a gap in the current flow. This rectified alternating current therefore is an intermittent direct current.

The load resistor, R, represents the actual circuit in which the rectified alternating current does work. All tubes work into a load of one type or another; in this respect a tube is much like a generator or transformer. A circuit that did not provide a load for the tube would be like a short-rireuit across a transformer; no usoful purpose would be areomplished and the only result would be the generation of heat in the transformer. So it is with vacuum tubes, they must deliver power to a load in order to serve a useful purpose. Also, to be efficient most of the power must do useful work in the load and not be used in heating the plate of the tube. This meins that most of the voltage should appear as a droparross the load rather than as a drop between the plate and cathode.

Fig. 3.3- The diode, or two-element tube, and a typical curve showing how the plate current depends upon the voltage applial to the plate.

With the diode connected as shown in Fig. 3-4, the polarity of the voltage drop aeross the load is such that the end of the load nearest the cathode is positive. If the connertions to the diode elements are reversed, the direetion of rectified current flow also will be reversed through the load.

Fig. 3-4 - Rectification in a diode. Current flows only when the plate is positive with resperet to the cathode, so that only halfeyeles of current flow through the load resistor, R.

Vacuum-Tube Amplifiers

TRIODES

Grid Control

If a third element - called the control grid, or simply grid - is inserted between the eathode and plate as in lrig, $3-5$, it can be used to control the effect of the spare charge. If the grid is given a pasitive voltage with respect to the cathode, the positive rhage will tend to neutralize the negative space charge. The

Fïr. 3-5 - Comitruction of an elomemary trimbe vanum tube, showing the filament, grid (with an "nd view of the erid wires) and plate. The relative density of the spare charge is imblicated roughly by the dot density.
result is that, at any selected plate voltage, more electrons will fow to the plate than if the grid were not present. On the other hand, if the grid is made negative with respect to the cathode the negative charge on the grid will ard to the spare eharge. This will reduce the number of electrons that ean reach the plate at any selected plate voltage.
The grid is inserted in the tube to control the space charge and not to attract relectrons to itself, so it is made in the form of a wire mesh or spiral. Eleetrons then (an go through the open spaces in the grid to reach the plate.

Characteristic Curves

For any particular tube, the effect of the grid voltage on the plate current can be shown hy a set of characteristic curves. I trpical sot of eurves is shown in lig. : $3-6$, together with the circuit that is used for getting them. For each value of plate voltage, there is a value of nerative grid voltage that will reduce the plate current to zero; that is, there is
a value of negat ive grid voltage that will cut off the plate current.

The curves could be extended by making the grid voltage positive as well as negrative. When the grid is negative, it repels electrons and therefore none of them reaches it; in other words, no current flows in the grid circuit. However, when the grid is positive, it attracts electrons and a current (grid current) flows, just as current flows to the positive plate. Whenever there is grid corrent there is an accompanying power loss in the grid circuit, but so long as the grid is negative no power is used.

It is obvious that the grid can act as a valve to control the flow of plate current, Aetually, the grid has a much greater effect on plate current flow than does the plate voltage. A small change in grid voltage is just as efferetive in bringing about a given change in phate current as is a large change in plate voltage.

The fact that a small voltage acting on the grid is equivalent to a large voltage acting on the plate indicates the possibility of amplification with the triode tube. The many uses of the electronic tube nearly all are based upon this amplifying feature. The amplifiod output is not obtained from the tube itself, but from the source of e.m.f. commected between its phate and cathode. The tube simply controls the power from this source, changing it to the desired form.

To utilize the controlled power, a load must be comnected in the plate or "output" cireuit, just as in the diode case. The load may be

Fig 3-6-Grid-woltage-rs.-plate-current curves at varions fixed values of plate voltage (1 F) for a tygical small triode. Characteristic curves of this type can be taken by varying the battery voltages in the circuit at the right.
either a resistance or an impedance. The term "impedance" is frequently used even when the load is purely resistive.

Tube Characteristics

The physical construction of a triode determines the relative effertiveness of the grid and plate in controlling the plate current. If a very small change in the grid voltage has just as much effect on the plate current as a very large change in plate voltage, the tube is said to have a high amplification factor. Amplification factor is commonly designated by the (ireck letter μ. An amplification factor of 20 , for example, means that if the grid voltage is changed by 1 volt, the effect on the plate current will be the same as when the plate voltage is changed by 20 volts. The amplification factors of triode tubes range from 3 to 100 or so. A high- μ tube is one with an amplification fartor of perhaps 30 or more; medium- μ tubes have amplifiration factors in the approximate range 8 to 30 , and low- μ tubes in the range below 7 or 8 .

It would be natural to think that a tube that has a large μ would be the best amplifier, but to obtain a high μ it is necessary to construct the grid with many turns of wire per inch, or in the form of a fine mesh. This leaves a relatively small open area for eleatrons to go through to reach the plate, so it is difficult for the plate to attract large numbers of electrons. (Quite a large change in the plate voltage must be made to effect a given change in plate current. This means that the resistance of the plate-cathode path - that is, the plate resistance - of the tube is high. Since this resistance acts in series with the load, the amount of current that can be made to flow through the load is relatively small. (n) the other hand, the plate resistance of a low- μ tube is relatively low.

The best all-around indication of the effectiveness of the tube as an amplifier is its transconductance - also called mutual conductance. This characteristic takes account of both amplification factor and plate resistance, and therefore is a figure of merit for the tube. Transconductanee is the change in plate current divided by the change in grid voltage that causes the platecurrent change (the plate voltage being fixed at a desired value). Since current divided by voltage is conductance, transconductance is measured in the unit of conductance, the mho. Practical values of transconductance are very small, so the micromho (one-millionth of a mho) is the commonly-used unit. Different types of tubes have transconductances ranging from a few hundred to several thousand. The higher the transconductance the greater the possible amplification.

AMPLIFICATION

The way in which a tube amplifies is best shown by a type of graph called the dynamic characteristic. Such a graph, together with the
circuit used for obtaining it, is shown in Fig. 3-7. The curves are taken with the plate-supply voltage fixed at the desired operating value. The difference between this circuit and the one shown in Fig, $3-6$ is that in Fig, :3-7 a load resistance is connected in series with the plate of the tulse. Fig. :3-7 thus shows how the plate current will vary, with different grid voltages, when the plute current is made to flow through a load and thus (d) useful work.

Fig. 3-7 - Dynamic characteristics of a small triode with various load resistances from 5000 to 100,000 ohms.

The several curves in Fig. 3-7 are for various values of load resistance. When the resistance is small (as in the case of the 5000 -ohm load) the plate current changes rather rapidly with a given change in grid voltage. If the load resistance is high (as in the 100,000 -ohm curve), the change in plate current for the same grid-voltage change is relatively small, so the curve tends to be straighter.

Fig. $3-8$ is the same type of curve, but with the circuit arranged so that a source of alternating voltage (signal) is inserted between the grid and the grid battery (" C " battery). The voltage of the grid battery is fixed at -5 volts, and from the curve it is seen that the plate current at this grid voltage is 2 milliamperes. This current flows when the load resistance is 50,000 ohms, as indicated in the circuit diagram. If there is no a.c. signal in the grid circuit, the voltage drop in the load resistor is $50,000 \times 0.002=100$ volts, leaving 200 volts between the plate and cathode.

When a sine-wave signal having a peak value of 2 volts is applied in series with the bias voltage in the grid circuit, the instantaneous voltage at the grid will swing to -3 volts at the instant the signal reaches its positive peak, and to -7 volts at the instant the signal reaches its negative peak. The maximum plate current will occur at the instant the grid voltage is -3 volts. As shown by the graph, it will have a value of 2.65 milliamperes. The minimum plate current occurs at the instant the grid voltage is -7 volts, and has a value of 1.35 ma . At intermediate values of grid voltage, intermediate plate-current values will occur.

The instantaneous voltage between the plate

Fig. 3-8 - Amplificr operation. When the plate current varies in response to the signal applied to the grid, a varying voltage drop appears arross the load, $R_{\text {p }}$ as shown by the dashed eurve, $E_{p} I_{p}$ is the plate eurrent.
and cathode of the tube also is shown on the graph. When the plate current is maximum, the instantaneous voltage drop in R_{p} is 50,000 $\times 0.00265=132, \overline{3}$ volts; when the plate current is minimum the instantaneous voltage drop in R_{p} is $50,000 \times 0.00135=67.5$ volts. The actual voltage between plate and cathode is the difference between the plate-supply potential, 300 volts, and the voltage drop in the load resistance. The plate-to-cathode voltage is therefore 167.5 volts at maximum plate current and 232.5 volts at minimum plate current.

This varying plate voltage is an a.c. voltage superimposed on the steady plate-rathode potential of 200 volts (as previously determined for no-signal conditions). The peak value of this a.c. output voltage is the difference between either the maximum or minimum plate-cathode voltage and the no-signal value of 200 volts. In the illustation this difference is $2: 32.5$ - 200 or $200-$ 167.5 ; that is, 32.5 volts in either case. Since the grid signal voltage has a peak value of 2 volts, the voltage-amplification ratio of the amplifier is $32.5,2$ or 16.25 . That is, approximately 16 times as much voltage is obtained from the plate circuit as is applied to the grid circuit.

As shown by the drawings in Fig. 3-8, the alternating component of the plate voltage swings in the negrative direction (with reference to the no-signal value of plate-cathode voltage) when the grid voltage swings in the positive direction, and vice versa. This means that the alternating component of plate voltage (that is, the amplified signal) is 180 degrees out of phase with the signal voltage on the grid.

Bias

The fixed negative grid voltage (called grid bias) in Fig. 3-8 serves a very useful purpose. One object of the type of amplification shown in this drawing is to obtain, from the plate circuit, an alternating voltage that has the same waveshape as the signal voltage applied to the grid. To do so, an operating point on the straight part of the curve must be selected. The eurve must be straight in both directions from the operating point at least far enough to accommodate the maximum value of the signal applied to the grid. If the grid signal swings the plate current back and forth, over a part of the curve that is not straight, as in lig. 3-9, the shape of the a.c. wave in the plate circuit will not be the same as the shape of the grid-signal wave. In such a case the output waveshape will be distorted.

A second reason for using negative grid bias is that any signal whose peak positive voltage does not exceed the fixed negative voltage on the grid cannot cause grid current to flow. With no current flow there is no power consumption, so the tube will amplify without taking any power from the signal source. (IIowever, if the positive peak of the signal does exceed the negative bias, current will flow in the grid circuit during the time the grid is positive.)

Distortion of the output waveshape that results from working over a part of the curve that is not straight (that is, a nonlinear part of the curve) has the effect of transforming a sine-wave grid signal into a more complex waveform, As explained in an earlier chapter, a complex wave can be resolved into a fundamental and a series of harmonics. In other words, distortion from nonlinearity causes the generation of harmonic frequencies - frequencies that are not present in the signal applied to the grid. Harmonic distortion is undesirable in most amplifiers, although

Fig. 3-9- Harmonic distortion resulting from choice of an operating point on the curved part of the tube characteristic. The lower half-eycle of plate current does not have the same shape as the upper half-eycle.
there are oceasions when harmonies are deliberately generated and used.

Amplifier Output Circuits

The useful output of a vacuum-tube amplifier is the alternating eomponent of plate current or plate voltage. The d.e. voltage on the plate of the tube is essential for the tube's operation, but it almost invariably would cause diffieulties if it were applied, along with the a.c. output voltage, to the load. The output circuits of vacuum tubes are therefore arranged so that the a.c. is transferred to the load but the d.c. is not.

Three types of coupling are in common use at audio frequencies. These are resistance coupling, impedance coupling, and transformer coupling. They are shown in Fig, 3-10. In all three cases the output is shown coupled to the grid circuit of a subsequent amplifier tube, but the same types of eircuits can be used to eouple to other devices than tubes.

In the resistance-coupled cireuit, the a.c. voltage developed across the plate resistor R_{p} (that is, between the plate and eathode of the tube) is applied to a second resistor, R_{g}, through a coupling condenser, (ce. The condenser "blocks off" the voltage on the plate of the first tube and prevents it from being applied to the grid of tube B. The latter tube has negative grid bias supplied by the battery shown. No eurrent flows in the grid circuit of tube B and there is therefore no d.e. voltage drop in R_{4}; in other words, the full voltage of the bias battery is applied to the grid of tube B.

The grid resistor, R_{g}, usually has a rather high value (0.5 to 2 megohms). The reactance of the eoupling condenser, (${ }_{c}$, must be low enough compared with the resistance of K_{k} so that the a.c. voltage drop in (C_{c} is negligible at the lowest frequency to be amplified. If R_{g} is at least 0.5 megohm, a $0.1-\mu \mathrm{fd}$. condenser will be amply large for the usual range of audio frequencies.
so far as the alternating component of plate voltage is concerned, it will be realized that if the voltage drop in C_{c} is negligible then R_{p} and R_{g} are effectively in parallel (although they are quite separate so far as d.e. is concerned). The resultant parallel resistance of the two is therefore the artual load resistance for the tube. That is why R_{g} is made as high in resistance as possible; then it will have the least effect on the load represented by R_{p}.

The impedance-eoupled circuit differs from that using resistance coupling only in the substitution of a high-induetance eoil (usually several hundred henrys for audio frequencies) for the plate resistor. The advantage of using an inductance rather than a resistor is that its impedance is high for alternating currents, but its resistance is relatively low for d.c. It thus permits obtaining a high value of load impedance for a.c. without an excessive d.e. voltage drop that would use up a good deal of the voltage from the plate supply.

The transformer-coupled amplifier uses a transformer with its primary eonnected in the plate

Fis, 3-10- Three hasic forms of coupling between vacuum-tube amplifiers.
circuit of the tube and its secondary eonnected to the load (in the circuit shown, a following amplifier). There is no direct connection between the two windings, so the plate voltage on tube A is isolated from the grid of tube B. The trans-former-coupled amplifier has the same advantage as the impedanee-coupled circuit with respert to loss of voltage from the plate supply. Also, if the secondary has more turns than the primary, the output voltage will be "stepped up" in proportion to the turns ratio.

Resistance coupling is simple, inexpensive, and will give the same amount of amplification - or voltage gain - over a wide range of frequencies; it will give substantially the same amplification at any frequency in the audio range, for example Impedance coupling will give somewhat more gain, with the same tube and same plate-supply voltage, than resistance coupling. However, it is not quite so good over a wide frequeney range; it tends to "peak," or give maximum gain, over a comparatively narrow band of frequencies. With a good transformer the gain of a trans-former-coupled amplifier can he kept fairly constant over the audio-frequency range. On the
other hand, transformer roupling in voltage amplifiers (see belon) is best suited to triodes having amplification factors of about 10 or less, for the reason that the primary inductance of a praticable transformer camot be made barge enough to work well with a tube having high plate resistance.

An amplifier in whirh voltage gain is the primary consideration is called a voltage amplifier. Maximum voltage gain is serured when the load resistance or impedance is made as high as possible in comparison with the phate resistance of the tube. In such a case, the manor portion of the voltage generated will appear arross the load and only a relatively small part will be "lost" in the plate resistance.

Voltage amplifiers belong to a group ralled Class A amplifiers. A (lass A amplifier is one operated so that the waveshape of the output voltage is the same as that of the signal voltage applied to the grid. If a Class A amplifice is biased so that the grid is always nogative, even with the largest signal to be handled by the grid, it is called a Class A_{1} amplifier. Voltage amplifiers are always Class A_{1} amplifiers, and their primary use is in driving a following Class λ_{1} amplifier.

Power Amplifiers

The end result of any amplification is that the amplified signal does some worti. For example, an audio-frequency amplifier usually drives a londspeaker that in turn produces sound waves. The greater the amount of a.f, power supplied to the 'speaker, the louder the sound it will produce.

Figs, 3-11 - An elementary power-amplifier circuit in which the power-consuming load is coupled to the plate circuit through an impedanee-matching transformer.
l-ig, 3-11 shows an elementary power-amplifier circuit. It is simply a transformer-coupled amplifier with the load connerted to the seomdary. Mthough the load is shown as a rexistor, it artually would be some devier, such as a loudspeaker, that employs the powor usefully. Every power tube requires a specific value of load resistance from plate to cathode, usually some thousands of ohms, for optimum operation. The resistance of the actual load is rarely the right value for "matching" this optimum load resistance, so the transformer turns ratio is chowen to reflect the proper value of resistance into the primary. The turns ratio may be either step-up or step-down, depending on whether the actual load resistance is higher or lower than the load the tube wants.

The power-amplification ratio of an amplifier is the ratio of the power output obtained from the phate circuit to the power raquired from the a.c. signal in the grid circuit. There is no power lost in the gride cireuit of a Claws.$_{1}$ anplifier, so such an amplifier has an infinitely large power-amplification ratio. However, it is quite possible to operate a Class A amplifier in such a way that current flows in its grid cireuit during at least part of the cycle. In such a case power is used up in the grid circuit and the power amplification ratio is not infinite. I tube operated in this fashion is known as a Class A_{2} amplifier. It is necessary to use a power amplifier to drive a (lass A_{2} amplifier, because a voltage amplifier camot deliver power without serious distertion of the wave-shape.

Inother term used in connection with power amplifiers is power sensitivity. In the case of a (lass λ_{1} amplifier, it means the ratio of power output to the grid signal voltage that causes it. If grid current flows, the term usually means the ratio of plate power output to grid power input.

The a.e. power that is delivered to a load by an amplifier tube has to be paid for in power taken from the source of plate voltage and current. In fact, there is always more power going into the plate circuit of the tube than is coming out as useful output. The difference between the input and output power is used up in heating the plate of the tube, as explained previously. The ratio of useful power output to d.c. plate input is called the plate efficiency. The higher the pate efficiency, the greater the amount of power that can le taken from a tube having a fixed plate-dissipation rating.

Parallel and Push.Pull

When it is necessary to obtain more power output than one tube is capable of giving, two or more similar tubes may be connerted in parallel. In this case the similar elements in all tubes are comected together. This method is shown in Fig. 3-12 for a transformer-coupled amplifier. The power output is in proportion to the number of tubes used; the grid signal or exciting voltage required, however, is the same as for one tube.

If the amplifier operates in such a way as to romsume power in the grid cireuit, the grid power required is in proportion to the number of tubes used.

An increase in power output also ean be secured by eonnerting two tubes in push-pull. In this case the grids and plates of the two tubes are comerted to opposite ends of a balanced circuit as shown in Fig. 3-12. It any instant the ends of the secondary winding of the input transformer, T_{1}, will be at opposite polarity with respect to the cathode connection, so the grid of one tube is swung positive at the same instant that the grid of the other is swung negative. Ilence, in any push-pull-comnected amplifier the voltages and currents of one tube are out of phase with those of the other tube.

Push-Pull
Fig. 3-12 - Parallel and push-pull a.f. amplifier circuits.
In push-pull operation the even-harmonic (second, fourth, etc.) distortion is balanced out in the plate circuit. This means that for the same power output the distortion will be less than with parallel operation.

The exciting voltage moasured between the two grids must be twice that repuired for one tube. If the grids consume power, the driving power for the push-pull amplifier is twice that taken by either tube alone.

Cascade Amplifiers

It is readily possible to take the output of one amplifier and apply it as a signal on the gried of a second amplifier, then take the serond amplifier's output and apply it to a third, and so on. Earh amplifier is ralled a stage, and a number of stages used suceessively are saicl to be in cascade.

Class B Amplifiers

Fig. :3-1:3 shows two tubes connected in a push-pull cireuit. If the grid biats is set at the point where (when mo sigmal is applied) the plate current is just cut off, then a signal can cause plate current to flow in either tube onl! when the signal voltage applied to that particular tube is positive. Since in the balaned gride circuit, the sigmal voltages on the grids of the two tubes always have opposite polarities, plate current flows only in one tube at a time.

The graphs show the operation of such an amplifier. The plate current of tube B is drawn inverted to show that it flows in the opposite direction, through the primary of the output transformer, to the plate current of tube A. Thus each half of the output-transformer primary works alternately to induce a half-cycle of voltage in the secondary. In the secondary of T_{2}, the original waveform is restored. This type of operation is called Class B amplification.
The Class 13 amplifier is considerably more efficient than the Class A amplifier. Further-
more, the d.c. plate current of a Class 13 amplifier is proportional to the signal voltage on the grids, so the power input is small with small signals. The d.c. plate power input to a (Class I amplifier is the same whether the signal is large, small, or athent altogether; therefore the maximum input that ean be applied to a Class a amplifior is egual to the rated plate dissipation of the tube or tubes. Two tubes in a Class 13 amplifier rath deliver appoximately twolve times as much audio power as the same two tubes in a ('asss A amplifier.

A Class 13 amplifier usually is operated in such a way as to secure the maximum prsible power sutput. This requires rather large values of plate current and to oltain them the grids must be driven positive with respect to the rathede during at least part of the cyele, so grid current flows and the grid circuit consumes power. While the power requirments are fairly low (as compared with the power output), the fart that the grids are positive during only part of the cyele means that the load on the preceding amplifier or driver stage varies in magnitude during the cyde; the effective lowd resistance is high when the grids are not drawing eurrent and relatively fow when they do take current. This must be allowed for when designing the driver.
Certain types of tubes have been designed sperifically for Class 13 service and can be operated without fixed or other form of grid hiats ("zero-bias") tubes). The amplification fater is so high that the plate current is small without signal. Because there is no fixed bias, the grids start drawing current immediately whenever a signal is applied, so the gride-current flow is rontinuous throughout the crole. This makes the load on the driver much more constant than is the case with tubes of lower μ hiased to platecurrent cut-sff.
(lass 13 amplifiers used at radion frequencies are known as linear amplifiers bectuse they are

Fig. 3-13- Class 13 amplitier operation.
adjusted to operate in such a way that the power output is proportional to the square of the r.f. exciting voltage. This permits amplification of a modulated r.f. signal without distortion, Pushpull is not required in this type of operation; a single tube can be used equally well.

Class AB Amplifiers

A Class AB amplifier is a push-poll amplifier with higher bias than would he normal for pure Class A operation, but less than the cut-off bias required for Class B, At low signal levels the tubes operate practically as Class A amplifiers, and the plate current is the same with or without signal. At higher signal levels, the plate eurrent of one tube is cut off during part of the negative cycle of the signal applied to its grid, and the plate current of the other tube rises with the signal. The plate current for the whole amplifier also rises above the no-signal level when a large signal is applied.

In a properly-designed (lass AB amplifier the distortion is as low as with a Class I stage, but the efficieney and power output are considerably higher than with pure Class A operation. A Class AB amplifier can be operated either with or without driving the grids into the positive region. A Class $A B_{1}$ amplifier is one in which the grids are never positive with respect to the cathode; therefore, no driving power is required - only voltage. A Class AB_{2} amplifier is one that has grid-eurrent fow during part of the cycle if the applied signal is large; it takes a small amount of driving power. The Class AB_{2} amplifier will deliver somewhat more power (using the same tubes) but the Class AB_{1} amplifier avoids the prohlem of designing a driver that will deliver power, without distortion, into a load of highly-variable resistance.

Operating Angle

Inspection of Fig. 3-1:3 shows that either of the two tubes aetually is working for only half the a.e. cycle and idling during the other half. It is convenient to describe the amount of time during which plate current flows in terms of electrical degrees. In Fig, 3-13 each tube has "180-degree" excitation, a half-rycle being equal to 180 degrees. The number of degrees during which plate eurrent flows is called the operating angle of the amplifier. From the descriptions given above, it should be clear that a Class A amplifier has 360 -degree excitation, because plate current flows during the whole cycle. In a Class AB amplifier the operating angle is between 180 and 360 degrees (in earh tube) depending on the particular operating conditions chosen. The greater the amount of negative grid bias, the smaller the operating angle becomes.

An operating angle of less than 180 degrees leads to a considerable amount of distortion, beeause there is no way for the tube to reproduce even a half-eycle of the signal on its grid. Using two tubes in push-pull, as in Fig. 3-13, would merely put together two distorted half-eycles. An operating angle of less than 180 degrees
therefore cannot be used if distortionless output is wanted.

Class C Amplifiers

In power amplifiers operating at radio frequencies distortion of the r.f. waveform is relatively unimportant. For reasons described later in this chapter, an r.f. amplifier must be operated with tuned circuits, and the selectivity of such circuits "filters out" the r.f. harmonics resulting from distortion.

A radio-frequency power amplifier therefore can be used with an operating angle of less than 180 degrees. This is called Class C operation. The advantage is that the plate efficiency is increased, because the loss in the plate is proportional, among other things, to the amount of time during which the plate current flows, and this time is reduced by decreasing the operating angle.

Depending on the type of tube, the optimum load resistance for a Class (' amplifier ranges from about 1500 to 5000 ohms. It is usually secured by using tuned-circuit arrangements, of the type described in the chapter on circuit fundamentals, to transform the resistance of the actual load to the value required by the tube. The grid is driven well into the positive region, so that grid current flows and power is consumed in the grid rircuit. The smaller the operating angle, the greater the driving voltage and the larger the grid current required to develop full output in the load resistance. The best compromise between driving power, plate efficiency, and power output usually results when the minimum plate voltage (at the peak of the driving cycle, when the plate current reaches its highest value) is just equal to the peak positive grid voltage. Under these conditions the operating angle is usually from 150 to 180 degrees and the plate efficiency lies in the range of 70 to 80 percent. While higher plate efficiencies are possible, attaining them requires excessive driving power and grid bias, together with higher plate voltage than is "normal" for the particular tube type.

With proper design and adjustment, a Class (; amplifier can be made to operate in such a way that the power input and output are proportional to the square of the applied plate voltage. This is an important consideration when the amplifier is to be plate-modulated for radiotelephony, as deseribed in the chapter on amplitude modulation.

FEED-BACK

It is possible to take a part of the amplified energy in the plate circuit of an amplifier and insert it into the grid circuit. When this is done the amplifier is said to have feed-back.

If the voltage that is inserted in the grid eircuit is 180 degrees out of phase with the signal voltage acting on the grid, the feed-back is called negative, or degenerative. On the other hand, if the voltage is fed back in phase with the grid signal, the feed-baek is called positive, or regenerative.

Negative Feed-Back

With negative feed-back the voltage that is fed back opposes the signal voltage. This decreases the amplitude of the voltage acting between the grid and cathode and thus has the effect of reducing the voltage amplification. That is, a larger exciting voltage is required for ohtaining the same output voltage from the plate circuit.

The greater the amount of negative feed-tack (when properly applied) the more independent the amplification becomes of tube characteristios and circuit conditions. This tends to make the frequency-response characteristic of the amplifier flat - that is, the amplification tends to be the same at all frequencies within the range for which the amplifier is designed. Also, any distortion generated in the plate circuit of the tube tends to "buck itself out." Amplifiers with negative feed-back are therefore comparatively free from harmonic distortion. These advantages are worth while if the amplifier otherwise has enough voltage gain for its intended use.

Fig. 3-14 - Simple circuits for producing fecd-back.
In the cirouit shown at λ in Fig, $3-14$ resistor R_{c} is in series with the regular plate resistor, R_{p}, and thus is a part of the load for the tube. Therefore, part of the output voltage will appear across R_{c}. Ilowever, R_{c} also is connected in series with the grid circuit, and so the output voltage that appears across R_{c} is in series with the signal voltage. The output voltage across R_{c} opposes the signal voltage, so the actual a.c. voltage between the grid and cathode is equal to the difference between the two voltages.

The circuit shown at B in Fig. 3-14 can be used to give either negative or positive feed-back. The secondary of a transformer is connected hack into the grid circuit to insert a desired amount of feed-back voltage. Reversing the terminals of either transformer winding (but not both simultaneously) will reverse the phase.

Positive Feed-Back

Positive feed-back increases the amplification because the feed-back voltage adds to the original signal voltage and the resulting larger voltage on
the grid causes a larger output voltage. The amplification tends to be greatest at one frequency (depending upon the particular circuit arrangement) and harmonic distortion is increased. If enough energy is fed back, a selfsustaining oscillation - in which energy at essentially one frequency is generated by the tube itself - will be set up. In such case all the signal voltage on the grid can be supplied from the plate circuit; no external signal is needed because any small irregularity in the plate current - and there are always some such irregularities - will be amplified and thus give the oscillation an opportunity to build up. Oscillations obviously would be undesirable in an ordinary audiofrequency amplifier, and for that reason (as well as the others mentioned above) the use of positive fred-back is confined to "oscillators."

INTERELECTRODE CAPACITANCES

Wach pair of elements in a tube forms a small condenser, with each element acting as a condenser "plate," There are three such caparitances in a triode - that between the grid and cathode, that between the grid and plate, and that between the plate and cathode. The capacitances are very small - only a few micromicrofarads at most - but they frequently have a very pronounced effect on the operation of an amplifier circuit.

Input Capacitance

It was explained previously that the a.e. grid voltage and a.c. plate voltage of an amplifier having a resistive load are 180 degrees out of phase, using the cathode of the tube as a reference point. However, these two voltages are in phase going around the circuit from plate to grid as shown in Fig. 3-15. This means that their sum is acting between the grid and plate; that is, across the grid-plate capacitance of the tube.

As a result, a capacitive current flows around the circuit, its amplitude being directly proportional to the sum of the a.e. grid and plate voltages and to the grid-plate apacitance. The source of grid signal must furnish this amount of current, in addition to the capacitive current that flows in the grid-cathode capacitance. Ifence the signal source "sees" an effective capacitance that is larger than the grid-rathode capacitance. The greater the voltage amplification the greater this effective input capacitance. The input capaci-

Fig. 3-15 - The a.e. voltage appearing between the grid and plate of the amplifier is the sum of the signal voltage and the output voltage, as shown hy this simplified circuit. Instantaneons polarities are indicated.
tanee may be as much as several hundred midromicrofarads when the voltage amplification is large (as with a high- μ tube), even though the grid-plate and grid-eathode caparitaness are only 2 or $3 \mu \mu \mathrm{f}$. Such a cilpuritane is not negligithe, even at audio frequencios, when it is in parallel with a resistance of 50,000 ohms or more.

Tube Capacitance at R.F.

At radio frequencies the reatennes of even very smadl interelertrode apacitances drop to very low values. I resistanereroupled amplifier camot be used at r,f., for example, because the reartances of the interelectrode "rondensers" are so low that they practically short-circuit the input and output eireuits suld thas the tube is unable to amplify. This is overoome at radio frequencios low using tumed rircuits for the grid and plate, making the tube caparitaners part of the tuning capacitances. In this way the eircuits (an have the high resistive impedanees necessary for satisfatory amplifieation.

The grid-plate caparitance is important at radio frequencies beratme it is, in effert, a coupling condenser between the grid and plate cireuits. since its reactance is relatively low at r.f., it offers a path over which energy can be fed buck from the plate to the grid. In pradically every ease the feed-back is in the right phase and of sufficient :mplitude to cause oveillation, so the eircuit beomos useless an anmplifier.

Special "neutralizing" rireuits can be used to prevent feed-back but they are, in gencral, mot too satisfactory when used in radio receivers. They are, however, widely used in trinsmitters.

SCREEN-GRID TUBES

The grid-phate capacitance can be reduced to a negligible value by inserting a second grid between the control grid and the phate, as indicated in Fig. :3-16. The second grid, called the screen grid, adts as an electrostatio shieh to prevent eapacitive eoupling between the eontrol grid and plate. It is made in the form of a grid or conse sereen so that electrons can pats through it.

Because of the shielding action of the sereen grid, the positively-charged phate camot attract electrons from the rathode as it does in a trionde. In order to get electrons to the plate, it is also necessary to apply a pasitive voltage (with respect to the aathode) to the soreen. The sareen then attrarts electrons much as does the plate in a triode tuhe. In traveling toward the screen the electrons acquire such velocity that most of them shoot between the sereon wires and then are attracted to the pate. I rertain proportion do strike the sereen, however, with the result that some current also flows in the sereen-grid cireuit.
To be a grod shield, the sereen grid must be connered to the cathode through a direuit that has low impedance at the frequency being amplified. I br-pass comdenser from soreen grid to cathode, having a reactance of not more than a few hundred ohms, is generatly used.

A tube having a cathode, control grid, screen grid and plate (four clements) is called a tetrode.

Fig. 3-16 - Represen. tative arrangement of elfments in a sereen. grid tube, with front part of plate and sicreen grid cut away. In this draw. ing the control-grid connaction is made through a cap on the top of the tube, thas eliminating the capacitance that would exist between the plate-andgrid-lead wires if both paseed through the base. "Single-ended" tulues that have buth leads going through the hatse use merecial shielde. ing and ronstruction to eliminate interlead capacitance.

Pentodes

When an electron traveling at appreciable velority through a tube strikes the plate it dislodges other electrons which "splash" from the plate inter the interelement space. This is called secondary emission. In a triode the negative grid repels the secondary electrons back into the phate and they cause no disturbance. In the sereen-grid tube, however, the positively-rharged screen attracts the secondary eleatrons, causing a reverse current to fow between sereen and phate.

To overcome the efferts of secondary emission, a third grid, called the suppressor grid, may be inserted between the sereen and plate. This grid, which usually is comnerted directly to the eathode, repels the relatively low-velocity secondary electrons. They are driven batek to the pate without apperiably onstructing the regular phate-current flow. A five-eloment tube of this type is called a pentode.

Although the sereen grid in cither the tetrode or pentore greatly roduces the influmee of the phate upon plate-adirent flow, the control grid still ean eontrol the phate current in essentially the same way that it does in a triode. Consequently, the grid-plate transeonductince (or mutual condurtance) of a tetrode or pentode will be of the same order of value as in a triode of corresponding structure. (On the other hand, since the phate voltage has very little offect on the plate-eurrent flow, both the amplification factor and plate resistane of a pentode or tetrende are very high. In small receiving pentodes the amplification factor is of the order of 1000 or higher, while the plate resistanee may be from 0.5 to 1 or more megohms. Beause of the high phate resistance, the atual voltage amplification possible with a pentode is very much less than the large amplification factor might indiate. A voltare gain in the vicinity of 50 to 200 is typieal of a pentode stage.

In practical sereen-grid tuhes the grid-plate eapacitance is only a small fraction of a micromicrofarad. This capacitance is too small to cause an appreciable increase in input capacitance as described in the preceding scation, so the input capacitance of a screen-grid tube is simply the sum of its grid-cathode raparitance and control-grid-to-screen caparitance. The output capacitance of a screen-grid tube is cqual to the capacitance between the plate and suren.

Pentode R.F. Amplifier

Fig. 3-17 shows a simplified form of r.f. ambplifier circuit using a pentode tube laadiofrequency energy in the small coil eoupled to L_{1} is built up in voltage in the tuned circuit, $L_{1} 1^{\prime}{ }_{1}$, when $L_{1} C_{1}$ is tuned to resonance with the frequency of the incoming signal. The voltage that appears across $L_{1} \mathrm{C}_{1}$ is applied to the grid and cathode of the tube and is amplified by the tube. A second resonant circuit, $L_{2}{ }^{\prime}{ }_{2}$, is the load for the plate of the tube, its parallel impedance being high because it is tuned to resonance with the frequency applied to the grid. R.f. output can he taken from the coil coupled to L_{2}. The sereengrid voltage is obtained from a tap on the plate battery; most tubes are designed for operation with the screen voltage considerably lower than the plate voltage. In this circuit the batteries are assumed to have low impedance for the r.f. current; in a practical circuit, by-pass condensers would be used to make sure that the impedances of the return paths are so low as to be negligible.

Audio Amplification

In addition to their applications as radiofrequency amplifiers, pentode or tetrode sereengrid tubes also can be constructed for audiofrequency power amplification. In tubes designed for this purpose the chief function of the sereen is to serve as an accelerator of the electrons, so that large values of plate current can be drawn at relatively low plate voltages. Such tubes have quite high power sensitivity eompared with triodes of the same power output, although harmonic distortion is somewhat greater.

Beam Tubes

A beam tetrode is a four-element screen-grid tube constructed in such a way that the electrons are formed into concentrated heams on their way to the plate. Aditional design features overome the effects of secondary emission so that a suppressor grid is not necded. The "beam" construction makes it possible to draw large plate

Fig. 3.17 - Simplified pentode r.f-amplifier cireuit. $L_{1} C_{1}$ and $L_{2} C_{2}$ are tuned to the same frequeney.

Fig, 3-18-Curves showing the relationship between motnal conductance and negative grid bias for two small receiving pentodes, one a sharp cot-off type and the other a variable- - type.
currents at relatively low plate voltages, and increases the power sensitivity.

For power amplification at both audio and radio frequencies beam tetrodes have largely supplanted the pentode type beatuse large power outputs can be secured with very small amounts of grid driving power. The errenits with which they are used are practically identical with those used for pentodes.

Variable- μ Tubes

The mutual conductance of a vacuum tube decreases with increasing negative grid bias, assuming that the other electrode voltages are held constant. Since the mutual condurtane eontrols the amount of amplification, it is possible to adjust the gain of the amplifier by adjusting the grid hias. This method of gain control is universally used in radio-frequency amplifiers designed for receivers. Some means of controlling the r.f. gath is essential in a receiver having a number of amplifiers, because of the wide range in the strengthe of the incoming signals.

The ordinary type of tube has what is known as a sharp cut-off characteristic. The mutual conductance decreases at a uniform rate as the negative bias is increased, as shown in Fig. 3-18. The amount of signal voltage that such a tube can handle without rausing distortion is not sufficient to take care of very strong signals. To overcome this, some tubes are made with a variable- μ chararteristic (that is, the amplification factor changes with the grid bias), resulting in the type of curve shown in Fig. 3-18. The variable- μ tube can handle a much larger signal than the sharp cutoff type before the signal swings either leyond the zero grid-bias point or the plate-current cut-off point.

OTHER TYPES OF AMPLIFIERS

In the amplifier circuits so far discussed, the signal has been applied between the grid and cathode and the amplified output has been taken from the plate-to-cathode circuit. That is, the cathode has been the meeting point for the input and output circuits. However, it is possible to use any one of the three principad elements as the common point. This leads to two different kinds of amplifiers, commonly called the grounded-grid amplifier (or grid-separation circuit) and the cathode follower.

Fig. 3.19 - In the upper circuit, the grid is the junction point betwern the input and output circuits. In the lower drawing, the plate is the junction. In either case the output is de. veloped in the load resistor, R, and may he coupled to a following amplifier by the usual methods.

These two circuits are shown in simplified form in Fig. 3-19. In both circuits the resistor R represents the load into which the amplifier works; the actual load may be resistance-raparitanceeoupled, transformer-coupled, may be a tuned eircuit if the amplifier operates at radio frequencies, and so on. Also, in both circuits the batteries that supply grid bias and plate power are assumed to have such negligible impedance that they do not enter into the operation of the circuits.

Grounded-Grid Amplifier

In the grounded-grid amplifier the input signal is applied between the cathode and grid, and the output is taken between the plate and grid. The grid is thus the common clement. The plate current (including the a.e. component) has to flow through the signal source to reach the eathode. This source always has appreciable impedance, and the alternating plate current causes a voltage drop that is out of phase with the signal and the circuit is therefore degenerative. Also, since the source of signal is in series with the load through the plate-to-cathode resistance of the tube, some of the power in the load is supplied by the signal source. The result is that the signal souree is called upon to furnish a considerable amount of power.

The grounded-grid amplifier finds its chief appliation at v.h.f. and u.h.f., where the more conventional amplifier circuit fails to work properly. With a triode tube designed for this type of
operation, an r.f. amplifier can be built that is free from the type of feed-back that causes oscillation. This requires that the grid act as a shield between the cathode and plate, redueing the plate-cathode capacitance to a very low value.

Cathode Follower

The cathode follower uses the plate of the tube as the common element. The input signal is applied between the grid and plato (assuming negligible impedanee in the batteries) and the output is taken from between rathonle and plate. This cireuit, like the grounded-grid amplifier, is degenerative; in fact, all of the output voltage is fed bark into the input circuit. The imput signal therefore has to be larger than the output voltage; that is, the rathode follower gives a loss in voltage, although it gives the same power gain as other circuits.

The rathode follower has very high input impedance (impedance between grid and ground) and its output impedance is very low. (The large amount of negative feed-back has the effect of greatly reducing the plate resistance of the tube.) These two characteristics are valuable in an amplifier that must work over a very wide range of frequencies. Also, the high input impedance and low output impedance can be used to obtain an impedance step-down over wide ranges of frequencies that could not possibly be covered by a transformer. The eathode follower is useful both at audio and radio frequencies.

CATHODE CIRCUITS AND GRID BIAS

Most of the equipment used by amateurs is, powered by the a.c. Iine. This includes the filaments or heaters of vacuum tubes. Although supplies for the plate (and sometimes the grid) are usually rectified and filtered to give pure d.c.

- that is, direct current that is constant and without a superimposed a.c. component - the relatively large currents required hy filaments and heaters usually make a rectifier-type d.c. supply impracticable.

Filament Hum

Alternating current is just as good as direct current from the heating standpoint, but some of the a.c. voltage is likely to get on the grid and cause a low-pitched "a.c. hum" to be superimposed on the output.

Ilum troubles are worst with directly-heated cathodes or filaments, because with such cathodes there has to be a direct connection between the source of heating power and the rest of the circuit. The hum can be minimized by either of the connections shown in lig. 3-20). In looth cases the grid- and platereturn cireuits are connected to the electrical midpoint (center-tap) of the filament supply. Thus, so far as the grid and plate are concerned, the voltage and current on one side of the filament are balanced by an equal and opposite voltage and current on the other side. The balance is never quite perfect, however, so filament-type tubes are never eompletely hum-

Fig. 3-20 - Filament center-tapping methods for use with directly. heated tubes.
free. For this reason directly-heated filaments are employed for the most part in power turbes, where the amount of hum introduced is extremely small in comparison to the power-output level.

With indirectly-heated cathodes the chief problem is the magnetic field set up by the heater. Oecasionally, also, there is leakage between the heater and cathode, allowing a small a.c. voltage to get to the grid. If hum appears, grounding one side of the heater supply usually will help to reduce it, although sometimes better results are obtained if the heater supply is renter-tapped and the center-tap grounded, as in Fig. 3-20.

Cathode Bias

In the simplified amplifier circuits discussed in this chapter, grid bias has been supplied by a battery. However, in equipment that operates from the power line cathode bias is the type commonly used.

The cathode-bias method uses a resistor (cathode resistor) connerted in series with the cathode, as shown at R in Fig. 3-21. The direction of platecurrent flow is such that the end of the resistor nearest the cathode is positive. The voltage drop across R therefore places a negative voltage on the grid. This negative bias is obtained from the steady d.c. plate current.

If the alternating component of plate current flows through R when the tube is amplifying, the voltage drop caused by the a.c. will be degenerative (note the similarity between this circuit and that of Fig, 3-14.1). To prevent this the resistor is by-passed by a condenser, C, that has very low reactance compared with the resistance of R. Depending on the type of tube and the particular kind of operation, R may be between about 100 and 3000 ohms. For good by-passing at the low audio frequencies, C should be 10 to 50 microfarads (electrolytic condensers are used for this

Fig. 3-21 - Cathode biasing. R is the cathode resis. tor and C is the eathode by-pass condenser.
purpose). At radio frequencies, capacitances of about $100 \mu \mu \mathrm{fd}$. to 0.1 $\mu \mathrm{fd}$. are used; the small values are sufficient at very high frequencies and the largest at low and medium frequencies. In the range 3 to 30 megacycles a capacitance of $0.01 \mu \mathrm{fd}$. is satisfactory.

The value of cathode resistor for an amplifier having negligible d.c. resistance in its plate circuit (transformer or impedance coupled) can easily be calculated from the known operating conditions of the tube. The proper grid bias and plate current always are sperified by the manufacturer. linowing these, the required resistance can be found by applying Ohm's Law.

Example: It is found from tube tables that the tube to be used should have a negative grid bias of 8 volts and that at this bias the plate current will be 12 millianperes (0.012 amp.). The required eathode resistance is then

$$
R=\frac{E}{I}=\frac{8}{0.012}=667 \mathrm{ohms}
$$

The nearest standard value, 680 ohnns, would be elose enough. The power used in the resistor is

$$
P=E I=8 \times 0.012=0.096 \text { watt. }
$$

A $1 / 4$-watt or $1 / 2$-watt resistor would have anple rating.

The current that flows through R is the total cathode current. In an ordinary triode amplifier this is the same as the plate current, but in a screen-grid tube the cathode current is the sum of the plate and screen currents. Hence these two currents must be added when ralculating the value of cathode resistor required for a screengrid tube.

$$
\begin{aligned}
& \text { Example: A receiving pentode requires } 3 \text { volts } \\
& \text { negative bias, At this bias and the recommended } \\
& \text { plate and screen voltages, its plate current is } 9 \\
& \text { ma. and its screen current is } 2 \text { ma. The cathode } \\
& \text { current is therefore } 11 \text { ma. (} 0.011 \text { amp.). The } \\
& \text { required resistance is } \\
& \qquad R=\frac{E}{I}=\frac{3}{0.011}=272 \text { ohms. } \\
& \text { A } 270 \text {-ohm resistor would be satisfactory. The } \\
& \text { power in the resistor is } \\
& \qquad P=E I=3 \times 0.011=0.033 \text { watt. }
\end{aligned}
$$

The cathode-resistor method of biasing is selfregulating, because if the tube characteristios vary slightly from the published values (as they do in practice) the bias will increase if the plate rurrent is slightly high, or decrease if it is slightly low. This tends to hold the plate current at the proper value.

Calculation of the cathode resistor for a re-sistance-coupled amplifier is ordinarily not practicable by the method described above, because the plate current in such an amplifier is usually much smaller than the rated value given in the tube tables. However, representative data for the tubes commonly used as resistance-coupled amplifiers are given in the chapter on audio amplifiers, including cathode-resistor values.

Screen Supply

In practical circuits using tetrodes and pentodes the voltage for the sareen frequently is taken from the plate supply through a resistor. . I typical circuit for an r.f. amplifier is shown in Fig. 3-22. Resistor R is the screen dropping resistor, and C^{\prime} is the screen by-pass condenser.

Fig, 3.22 - Screen-voltage supply for a pentode tube through a dropping resistor, R. The sereen by-pass condenser, C, must have low enough reaetance tol bring the sareen to groumd potential for the freguency or frequencies being amplified.
In flowing through R, the sereen current causes a voltage drop in R that reduces the plate-supply voltage to the proper value for the screen. When the plate-supply voltage and the screen current are known, the value of R can be calculated from Ohm's Law.

Example: An ref. rereiving pontode has a rated screen current of $\mathbf{2}$ milliamperes (0.002 amp .) at normal opratimg conditions. The rated sereen voltage is 100 volts, and the plate supply gives 2.50 volts, 'loo pat 100 wolts on the sermen. the drop ateross R must be eromal to the difference thetwern the plate-suphly voltage and the serern voltage; that is, $2.50-100=150$ volts. Then

$$
R=\frac{E}{I}=\frac{1.00}{0.00^{2}}=75.000 \text { ohms. }
$$

The power to be dissipated in the resistor is $P=E I=150 \times 0.002=0.3$ watt .
A $1 / 2$ - or 1 -watt resistor would be satisfactory.
The reactance of the sereen by-pass condenser, (", should be low compared with the sereen-toeathode impedance. For radio-frequencer applieations a calpacitance of $0.01 \mu \mathrm{fl}$, is amply large.

In some cireuits the sereen voltage is obtained from a voltage divider comected across the plate supply. The design of voltage dividers is disrussed in the chapter on Power supplies.

- SPECIAL TUBE TYPES

Multipurpose Tubes

"Combination" tubses are available to perform more than one function, particularly in receiver circuits. For the most part these are simply
multiunit tubes made up of individual tubeelement structures, combined in a single bulb for compartness and economy.

Among the simplest multipurpose trpes are full-wave rectifiers, combining two diodes in one envelope, and twin triodes, consisting of two triodes in one bulb. Nore complex types include duplex-diode triodes (two diodes and a triode in one structure), duplex-diode pentodes, converters and mixers (for superheterolyne receivers), combination power tubes and rectifiers, and so on.

Mercury-Vapor Rectifiers

For a given value of plate current, the power lost in a diode rectifier will be reduced if it is possible to deerease the voltage drop from plate to cathode. A small amount of mercury in the tube will vaporize when the cathode is heated and, further, will ionize when plate voltage at least equal to a certain minimum value (ionizing voltage) is applied. The positive ions neutralize the spare charge and reduce the plate-cathode voltage drop to a practically constant value of about 15 volts, regardless of the value of plate current.

Since this voltage drop is smaller than can be attaned with purely thermionic conduction, there is less power loss in a mercury-vapor rectifier that in it vacuum rectifier. Aso, the voltage drop in the tube is constant despite variations in load current. Mercury-vapor tubes are widely used in rectifiors built to deliver large power outputs.

Grid-Control Rectifiers

If a grid is inserted in a mercury-vapor rectifier it is found that, with sufficient negative grid hias, it is possible to prevent plate current from flowing. However, this is true only if the bias is present before plate voltage is applicd. If, after applying plate voltage, the bias is lowered to the point where pate current can flow, the moreury vapor will ionize and the grid will lose control of plate current, beraluse the space charge disappears when ionization oreurs. The grid can assume control again only after the plate voltage is reduced below the deionizing voltage, which is somewhat less thatn the plate-cathode voltage drop, during plate-current flow,

The same phenomenon also occurs in triodes filled with other gases that ionize at low pressure. Grid-control rectifiers or thyratrons find ronsiderable application in "electronic switching," and in timing deviees. Both triode and tetrode tropes are manufactured.

Oscillators

It was mentioned earlier in this chapter that if there is enough positive feed-hack in ath amplifier cireuit, self-sustaining ascillations will be set up. When an amplifier is amranged so that this condition exists it is called an oscillator.

Oscillations normally take plate at only one frequency, and a desired frequency of oscillation
(ath be obtained by using a resonant circuit tuned to that froguency. For example, in Fig, 3-2:3A the circuit $L(x$ is tuned to the desired frequency of ascillation. The cathode of the tube is connected to a tap on coil L and the grid and plate are connected to opposite ends of the tuned cireuit. When an r.f. current flows in the tuned
circuit there is a voltage drop across L that increases progressively along the turns. Thus if the topend of L is positive at some instant the bottom end will be negative, and the point at which the tap is connected will be at an intermediate potential. The amplified current in the plate cireuit, which flows through the bottom section of L, is in phase with the current already flowing in the circuit and thus in the proper relationship for positive ferd-back.

The amount of feed-hack depends on the position of the tap. If the tap is too near the grid end the voltage drop between grid and cathode is too small to give enough feed-back to sustain oscillation, and if it is too near the plate end the impedance between the rathode and plate is too small to permit good amplification. Maximum feed-back usually is ohtained when the tap is somewhere near the renter of the coil.

The circuit of Fig, :3-2:3. A is parallel-fed, C_{b} being the blocking condenser. The value of C is not critical so long as its reactance is low (a few hundred ohms) at the operating frequency.

Fig. 3-2.3 - Basic oscillator circuits. Feed-hack vollage is ohtained by tapping the grid and cathode across a portion of the toned circuit. In the Hartley circuit the tap is on the coil, but in the Colpitts circuit the voltage is obtained from the drop across a condenser.

Condenser (${ }_{k}$ is the grid condenser. It and h_{g} (the grid leak) are used for the purpose of obtaining grid bias for the tube. In practically all oscillator circuits the tube generates its own hias. During the part of the cevele when the grid is positive with respect to the cathode, it attracts electrons. These electrons cannot flow through L back to the cathode because ("g "blocks" direct current. They therefore have to flow or "leak" through R_{k} to cathode, and in doing so caluse a voltage drop in R_{g} that places a negative bias on the grid. The amount of bias so developed is equal to the grid current multiplied by the resistance of R_{k} (Ohm's Law), The value of gridleak resistance required depends upon the kind of tube used and the purpose for which the oscillator is intended. Values range all the way from a
few thousand to several hundred thousand ohms. The capacitance of C_{α} should be large enough to have low reactance (a few hundred ohms) at the operating frequency.

The circuit shown at 13 in Fig. 3-2:3 uses the voltage drops across two condensers in series in the tuned circuit to supply the feed-back. Other than this, the operation is the same as just described. The feed-back can be varied by varying the ratio of the reactances of C_{1} and C_{2} (that is, by varying the ratio of their capacitances).

Another type of oscillator, called the tunedplate tuned-grid circuit, is shown in Fig. 3-24. Resonant circuits tuned approximately to the same frequency are connected between grid and cathode and between plate and cathorle. The two roils, L_{1} and L_{2} are not magnetically coupled. The fecd-back is through the grid-plate caparitance of the tube, and will he in the right phase to be positive when the plate circuit, ('2 L_{2}, is tuned to a slightly higher frequency than the grid circuit, $L_{1} C_{1}$. The amount of feed-back can be adjusted by varying the tuning of either circuit. The frequency of oscillation is determined by the tuned circuit that has the higher ($)$. The grid leak and grid condenser have the same functions as in the other circuits. In this case it is convenient to use series feed for the plate circuit, so C_{b} is a by-pass condenser to guide the r.f. current around the plate supply.

There is a wide variety of oscillator circuits, some using two or more tubes, but the basic feature of all of them is that there is positive feed-back in the proper amplitude to sustain oscillation.

Oscillator Operating Characteristics

When an oscillator is delivering power to a load, the adjustment for proper feed-back will depend on how heavily the oscillator is loaded - that is, how much power is being taken from the circuit. If the feed-back is not large enough grid excitation too small - a small increase in load may tend to throw the circuit out of oscillation. On the other hand, too much feed-back will make the grid current excessively high, with the result that the power loss in the grid rircuit is larger than necessary. Since the oscillator itself supplies this grid power, excessive feed-back lowers the over-all efficiency hecause whatever power is used in the grid circuit is not available as useful output.

One of the most important considerations in oscillator design is frequency stability. The prinripal factors that cause a change in frequency are (1) temperature, (2) plate voltage, (3) loading, (4) mechanical variations of circuit elements. Temperature changes will cause vacuum-tube elements to expand or contract slightly, thus causing variations in the interelectrode capacitances. Since these are unavoidably part of the tuned circuit, the frequency will change correspondingly. Temperature changes in the coil or condenser will alter their inductance or capacitance slightly, again eausing a shift in the resonant frequency. These effects are rela-
tively slow in operation, and the frequency ehange caused by them is called drift.

A change in plate voltage usually will cause the frequency to change a small amount, an effect called dynamic instability. Dynamic instability can be reduced by using a tuned circuit of ligh effective (Q. Nince the tube and load represent a relatively low resistance in parallel with the circuit, this means that a low L / C^{\prime} ratio (high-C) must be used and that the cirruit should be lightly loaded. A high value of grid leak resistance also is helpful because it increases the grid bias and raises the effertive resistance of the tube as seen by the tank circuit. I'sing relatively high plate voltage and low plate current also is desirable.

Load variations act in mueh the same way as plate-voltage variations. A temperature change in the load may also result in drift.

Mechanical variations, usually caused by vibration, cause changes in inductance and/ or capacitance that in turn cause the frequency to "wobble" in step with the vibration.

Methods of minimising frequency variations in oscillators are taken up in detail in later chapters.

Ground Point

In the oscillator circuits shown in Figs. 3-23 and $3-24$ the cathode is comected to ground. It is not actually essential that the radio-

Fig. 3-24 - The tuned-plate tuned-grid oscillator.
frequency circuit should be grounded at the cathode; in fact, there are many times when an r.f. ground on some other point in the circuit is desirable. The r.f. ground can be placed at any point so Jong as proper provisions are made for feeding the supply voltages to the tube elements.

Fig. $3-25$ shows the IIartley circuit with the plate end of the circuit grounded. No r.f. choke is needed in the plate circuit berause the plate already is at ground potential and there is no r.f. to choke off. All that is necessary is a by-pass condenser, C_{b}, across the plate supply. Direct current flows to the cathode through the lower part of the tuned-circuit coil, L. An advantage of such a circuit is that the frame of the tuning condenser can be grounded.

Tubes having indirectly-heated cathodes are more easily adaptable to circuits grounded at other points than the cathode than are tubes having directly-heated filaments. With the latter tubes special precautions have to be taken to prevent the filament from being bypassed to ground by the capacitance of the filament-heating transformer.

Fig. 3-25 - Showing how the plate may be grounded for r.f. in a typical osicillator circuit (Ilartey).

- NEGATIVE-RESISTANCE OSCILLATORS

If a tuned circuit could be built without resistance, a small amount of energy introduced into the circuit would start an oscillation that would continue indefinitely. It would do so because, in a circuit having no power losses, the power never diminishes and therefore is always available to keep the oscillation going. Of course, such a circuit cannot be built.

However, it was explained in an earlier chapter that a resonant circuit has a definite value of parallel impedance at resonance, and that that impedance is a pure resistance. If we could comect across the circuit a value of "negative" resistance equal to the parallel resistance of the circuit, the negative resistance would cancel the "positive" (real) resistance of the cirruit and we would have a circuit that is, in effert, without resistance.

A negative resistance is one having the opposite characteristics to real or positive resistance. In a negative resistance the current increases when the voltage is decreased, and vice versa. Also, a negative resistance does not consume power; it generates it. Under certain conditions a vacuum tube can be made to operate like a negative resistance, and thus can be connected to a tuned circuit to set up oscillations. Two circuits for doing this are shown in Fig. 3-26.

Fig. 3-26 - Negative-resistance oscillator circuits. A, dynatron; B, transitron.

The circuit at A is called the dynatron oscillator. It functions because of the secondary emission from the plate that occurs in certain types of screen-grid tetrodes. It makes use of the fact that, at certain values of screen voltage, the plate current of a screen-grid tetrode decreases when the plate voltage is increased. This gives a negative plate-resistance characteristic.

In Fig. 3-26B, negative resistance is produced by virtue of the fact that, if the suppressor grid of a pentode is given negative bias, electrons that normally would pass through the suppressor to the plate are turned back to the
screen, thus increasing the screen current and reversing normal tube action. The negative resistance produced between the screen and suppressor grids is sufficiently low so that ordinary tuned circuits will oscillate readily up to 15 Mc. or so. This circuit is known as the transitron.

For most amateur applications, negativeresistance oscillators do not have enough advantages to bring them into wide use. Feed-back oscillators are generally more adaptable to wide frequency ranges, can generate more power, and are more readily adjusted to meet varying conditions. The transitron oscillator is used occasionally in measuring equipment.

CHAPTER 4

High-Frequency Communication

Abstract

Much of the appeal of amateur communication on the high frequencies lies in the fact that the results are not always predietable. Transmission conditions on the same frequency vary with the year and even with the time of day. Although these variations usually follow eertain established cyrles, many peeuliar effeets ean be observed from time to time. livery radio amateur should have some understanding of the known facts about radio wave propagation so that he will stand some chance of interpreting the unusual

eonditions when they occur. The observant amateur is in an excellent position to make worthwhile contributions to the seience, provided he has suffieient baekground to understand his results. Ile may diseover new facts about propagation at the very-high frequencies or in the microwave region, as amateurs have in the past. In fact, it is through amateur efforts that most of the extended-range possibilities of various radio frequencies have been diseovered, either through aecident or long and eareful investigation.

What To Expect on the Various Amateur Bands

The 1.8-Mr., or "160-meter," band offers reliable working over ranges up to 25 miles or so during daylight. On winter nights, ranges up to several thousand miles are not impossible. Only small seetions of the band are currently available to amateurs, beeause of the presence of the loran sorvice in that part of the speetrum. The pulsetype interference sometimes eaused by loran can be readily eliminated by using an audio limiter in the receiver.

The 3.5 -Mc., or " 80 -meter," band is a more useful band during the night than during the daylight hours. In the daytime, one ean seldom hear signals from a distance of greater than 200 miles or so, but during the darkness hours distances up to several thonsand miles are not unusual, and transoceanic contacts are regularly made during the winter months. During the summer, the statie level is high in some parts of the world. Low power and simple antennas can be used with good results.

The 7 -Mc., or " 40 -meter," band has many of the same characteristics as 3.5 , except that the distances that can be covered during the day and night hours are increased. During daylight, distances up to a thousand miles ean be covered under good conditions, and during the dawn and dusk periods in winter it is possible to work stations as far as the other side of the world, the signals following the darkness path. The winter monthe are somewhat better than the summer ones. For work over moderate distances a simple antemna will suffice, but long-distance results will
be improved in proportion to the effectiveness of the antenna system. In general, summer static is much less of a problem than on 80 meters, although it can be serious in the semitropical zones.

The 14-Mc., or " 20 -meter," band is probably the best one for long-distance work. During portions of the sunspot eycle (diseussed later in this chapter) it is open to some part of the world during practically all of the 24 hours, while at other times it is generally useful only during daylight hours and the dawn and dusk periods. Efficetive antenmas are more neeessary than on the lower frequencies, but many amateurs enjoy excellent results with simple antennas and low power. Automobile ignition and other types of man-made interference begin to be a problem on this band.

The 28-Mc. band is generally considered to be a DX band during the daylight hours and good for local work during the hours of darkness, although at the peak of the sunspot evele, the band is "open" into the late evening hours for DN communication. At the sunspot minimum the 28 -Me. band is usually "dead" for longdistance eommunication in the northern latitudes. Ilowever, it is often possible to maintain eommunieation over distances up to 1500 miles or so by "sporadic E " ionization (deseribed later), which may occur either day or night and at any time in the sunspot cycle. High-performance antennas are a necessity for best results on this band.

Characteristics of Radio Waves

Radio waves are basically of the same nature as light and heat, which also are forms of electromagnetic radiation. The principal difference is in the wavelength, which in the ease of radio
waves is much greater than the wavelengths of light or heat. However, all throc types of radiation travel at the same speed (300,000,000 meters per seeond) in free space, and have similar prop-
erties in that they all can be reflected, refracted, and diff racted.

As described in the chapter on fundamentals, an electromagnetic wave is composed of moving fields of electric and magnetic force. The lines of foree in the two fields are at right angles, and are mutually perpendicular to the direction of travel. A simple representation of a wave is shown in Fig. $4-1$. In this drawing the electric lines are perpendicular to the earth and the magnetic lines are horizontal. They could, however, have any position with respect to earth so long as they remain perpendicular to each other.

Fis. 4-1 - Representation of electrostatic and electromagnetic lines of force in a radio wave. Arrows indicate instantaneous directions of the ficlds for a wave traveling toward the reader. Reversing the direction of one set of lines would reverse the direction of travel.

The plane containing the continuous lines of electric and magnetic force shown by the grid- or mesh-like drawing in Fig. 4-1 is called the wave front.

Polarization

The polarization of a radio wave is taken as the direction of the lines of force in the clectric ficld. If the electric lines are perpendicular to the carth, the wave is said to be vertically polarized; if parallel with the earth, the wave is horizontally polarized. The longer waves, when traveling along the ground, usually maintain their polarization in the same plane as was generated at the antenna. The polarization of shorter waves may be altered during travel, however, and sometimes will vary quite rapidly.

Medium of Propagation

The medium in which electromagnetie waves travel hat a marked influence on the speed with which they move. When the medium is empty space the speed, as stated above, is $300,000,000$ meters per second. It is almost, but not quite, that great in air, and is much less in some other substances. In dielectries, for example, the speed is inversely proportional to the dielectrie constant of the material.

When a wave meets a good conductor it cannot penetrate it to any extent (although it will
travel through a dielectric with ease) because the electric lines of force are practically shortcircuited.

Reflection

A light ray traveling through air of uniform characteristics goes in a straight line, but when it meets some ohject having different properties its path is shifted. If the "discontinuity" is sufficiently great in extent, as compared with the wavelength of light, and if the change in properties is abrupt, the ray may be reflected. The discontinuity may be either a change in the dielectric constant or the conduetivity of the medium. Similarly, a radio wave will be reflected under comparable conditions. However, the discontinuity set up by the reflecting object must at least be comparable with the wavelength in size, to cause reflection of radio waves. Nevertheless, objects as small as an airplane, a tree, or even a man's body will reflect waves a few feet long and less.

Refraction

When a wave meets a discontinuity that it can penetrate, the change in speed causes its path to be deflected, if it enters at any angle other than the perpendicular to the surface of the new medium. That part of the wave front that enters the new medium first travels at the new speed before the trailing part of the wave front enters, and so the wave as a whole is swung around or refracted. The new direction depends on the difference in speed in the two media, and on the wavelength. Wave "bending" by refraction is the mechanism by which long-distance communication at high frequencies is possible. The medium in which the bending takes place is an ionized region, called the ionosphere, in the upper atmosphere. The composition and properties of the ionosphere are discussed later in this chapter.

Diffraction

When a wave grazes the edge of an object in passing, it tends to be bent around that edge. This effect, called diffraction, results in a diversion of part of the energy of those waves which normally follow a straight path, so they may be received at some distance below the summit of an obstruction or around its edges.

Spreading

The field intensity of a wave is inversely proportional to the distance from the source. Thus if one receiving point is twice as far from the transmitter as another, the field strength at the more distant point will be just half the field strength at the nearer point. This results from the fact that the energy in the wave front must be distributed over a greater area as the wave moves away from the source. This inverse-distance law is based on the assumption that there is nothing in the medium to absorb, energy from the wave as it travels, which is true in free space but not in practical communication along the ground and through the atmosphere.

Types of Propagation

According to the altitude of the paths along which they are propagated, radio waves may be classified as ionospheric waves, tropospheric waves or ground waves.

The ionospheric wave or sky wave is that part of the total radiation that is directed toward the ionosphere. Depending upon variable conditions in that region, as well as upon transmitting wavelength, the ionospheric wave may or may not be returned to earth by the effects of refraction and reflection.

The tropospheric wave is that part of the total radiation that undergoes refraction and reflection in regions of abrupt change of dielectrie constant in the troposphere, such as the boundaries between air masses of differing temperature and moisture content.

The ground wave is that part of the total radiation that is directly affected by the presence of the earth and its surface features. The ground

Fig. 4-2 - Showing how. both direet and reflected waves may be received simultancously.

Wave has two components. One is the surface wave, which is an earth-guided wave, and the other is the space wave (not to be confused with the ionospheric or sky wave). The spare wave is itself the resultant of two components - the direct wave and the ground-reflected wave, as shown in Fig. 4-2.

Ionospheric Propagation

PROPERTIES OF THE IONOSPHERE

Except for distances of a few miles, nearly all amateur communication on frequencies below 30 Mc . is by means of the sky wave. Upon leaving the transmitting antenna, this wave travels upward from the earth's surface at such an angle that it would continue out into space were its path not bent sufficiently to bring it back to earth. The medium that causes such bending is the ionosphere, a region in the upper atmosphere, above a height of about 60 miles, where free ions and electrons exist in sufficient quantity to have an appreciable effect on the speed at which the waves travel.

The ionization in the upper atmosphere is believed to be caused by ultraviolet radiation from the sun. The ionosphere is not a single region but is composed of a series of layers of varying densities of ionization occurring at different heights. Each layer consists of a central region of relatively dense ionization that tapers off in intensity both above and below.

Refraction and Reflection

The greater the intensity of ionization in a layer, the more the path of the wave is bent. The amount of bending also depends on the wavelength; the longer the wave, the more the path is bent for a given degree of ionization. Thus lowfrequency waves are more readily bent than those of high frequency. For this reason the lowrer frequencies - 3.5 and 7 Mc. - are more "reliable" than the higher frequencies - 14 to 28 Mc.; there are times when the ionization is of such low value that waves of the latter frequency range are not bent enough to return to earth.
In addition to refraction, reflection may take place at the lower boundary of an ionized layer if the boundary is sharply defined; i.e., if there is an appreciable change in ionization within a relatively short interval of travel. For waves approaching the layer at or near the perpendicular, the change in ionization must take place within a difference in height comparable with
the wavelength; hence, ionospheric reffection is more apt to occur at longer wavelengths (lower frequencies).

Absorption

In traveling through the ionosphere the wave gives up some of its energy by setting the ionized particles into motion. The energy absorption from this cause increases with the wavelength; that is, absorption is greater at lower frequencies. It also increases with the intensity of ionization, and with the density of the atmosphere in the ionized region.

Ionospheric absorption decreases the strength of the signal at the receiving point below the value that would be expected from the normal spreading of a wave traveling the same distance.

Virtual Height

Although an ionospheric layer is a region of considerable depth it is convenient to assign to it a definite height, called the virtual height. This is the height from which a simple reflection would give the same effect as the gradual refraction that artually takes place, as illustrated in Fig. 4-3. The wave traveling upward is bent back over a path having an appreciable radius of turning, and a measurable interval of time is consumed in the turning process. The virtual height is the height of a triangle having equal sides of a total length proportional to the time taken for the wave to travel from T to R.

Fig. 4.3- Bending in the ionosphere, and the echo or reflection method of determining virtual height.

Normal Structure of the Ionosphere

The lowest useful ionized layer is called the E layer. The average height of the region of maximum ionization is about 70 miles. The air at this height is sufficiently dense so that the ions and electrons set free by the sun's radiation do not travel far before they meet and recombine to form neutral particles, so the layer can maintain its normal intensity of ionization only in the presence of continuing radiation from the sum. IIence the ionization is greatest around local noon and practically disappears after sundown.

In the daytime there is a still lower ionized area, the D region. The D-region ionization is proportional to the height of the sun and is greatest at noon. low-frequency waves (80 meters) are almost completely absorbed by this layer while it exists, and only the highangle radiation is reflected by the E layer. (Lower-angle radiation travels farther through the I region and is absorbed.)

The second principal layer is the F layer, which has a height of about 17.5 miles at night. At this altitude the air is so thin that recombination of ions and electrons takes place very slowly, inasmuch as particles can travel rolatively great distances before merting. The ionization decreases after sundown, reaching a minimum just before sumrise. In the daytime the F layer splits into two parts, the F1 and F2 layers, with average virtual heights of, respectively, 140 miles and 200 miles. These layers are most highly ionized at about local noon, and merge again at sumset into the F layer.

SKY.WAVE PROPAGATION

Wave Angle

The smaller the angle at which a wave leaves the earth, the less will be the bending required in the ionosphere to bring it hand and, in general, the greater the distance between the point where it leaves the earth and that at which it returns. This is shown in Fig. 4-4. The vertical angle (such as the angle A in the figure) that the wave makes with a tangent to the earth is called the wave angle or angle of radiation.

Skip Distance

Since greater bending is required to return the wave to earth when the wave angle is high, at the higher frequencies the refraction frequently is not enough to give the required bending unless the wave angle is smaller than some eritical value. This is illustrated in Fig, 4-4, where A and smaller angles give useful signals while waves sent at higher angles penetrate the layer and are not returned. The distance between T^{\prime} and R_{1} is, therefore, the shortest possible distance, at that particular frequency, over which communication by normal ionospheric refraction can be accomplished.

The area between the end of the useful ground wave and the begiming of ionospheric-wave reception is called the skip zone, and the distance from the transmitter to the nearest point where the sky wave returns to earth is called the skip distance. The extent of skip zone depends upon the frequency and the state of the ionosphere, and also upon the height of the layer in which the refraction takes place. The highor layers give longer skip distances for the same wave angle. Wave angles at the transmitting and receiving points are usually, although not always, approximately the same for any given wave path.

Fig. 4-4-Refraction of sky waves, showing the critieal wave angle and the ship zone. Waves leaving the transmitter at angles ahove the critical (greater than A) are not bent enough to be returned to earth. As the angle is increased, the waves return to carth at increasingly greater distances.

Critical and Maximum Usable Frequencies

If the frequency is low enough, a wave sent vertically to the ionosphere will be reflected back down to the transmitting point. If the frequency is then gradually inereased, eventually a frequeney will be reached where this vertical reflection just fails to occur. This is the critical frequency for the layer under consideration. When the operating frequency is below the critical value there is no skip zone.

The eritical frequener is a useful index to the highest frequency that can be used to transmit over a speeified distance - the maximum usable frequency (MUF). If the wave leaving the transmitting point at angle A in Fig. $4-4$ is, for example, at a frequency of 14 Mc ., and if a higher frequency would skip over the receiving point R_{1}, then 14 Mc. is the MUF for the distance from T ' to R_{1}.

The greatest possible distance is covered when the wave leaves along the tangent to the earth; that is, at zero wave angle. Under average conditions this distance is about 4000 kilometers or 2500 miles for the $F 2$ layer, and 2000 km . for 1200 miles for the E layer. The distances vary with the layer height. Frequencies above these limiting MÚFs will not be returned to earth at any distance. The $4000-\mathrm{km}$. MUF for the $F^{\circ} 2$ layer is approximately 3 times the critical frequency for that layer, and for the E layer the $2000-\mathrm{km}$. MUF is about 5 times the critical frequency.

Absorption in the ionosphere is least at the
maximum usable frequency for the distance, and increases very rapidly as the frequency is lowered below the MLF. Consequently, best results with low power always are serured when the frequency is as close to the MUW as possible.

It is readily possible for the ionospheric wave to pass through the E layer and be refracted back to carth from the $F, F 1$ or $F 2$ layers. This is berause the eritioal frequencies are higher in the latter layers, so that a signal too high in frequency to be roturned by the E layer can still come back from one of the others, depending upon the time of day and the existing conditions. Depending upon the wave angle and the distance, it is sometimes possible to carry on communication via either the E or $F 1-F \cdot 2$ layers on the same frequency.

Multihop Transmission

On returning to the earth the wave can be refleced upward and travel again to the ionosphere. There it maty once more be refracted, and again bent back to earth. This process maty be repeated several times. Multihop propagation of this mature is neressary for transmission over great distances because of the limited heights of the layers and the curvature of the earth, which restrict the maximum one-hop distance to the vilues montioned in the preceding section. Howevor, ground losses absorb some of the energy from the wave on each reflection (the amount of the loss varying with the type of ground and being least for reflection from sea water), and there is also athorption in the ionosphere at each refleretion. Hence the smaller the number of hops the greater the signal strength at the receiver, other things being equall.

Fading

Two or more parts of the wave may follow slightly different paths in traveling to the reeciving point, in which case the difference in path lengths will cause a phase difference to exist botween the wave components at the receiving antemna. The total field strength will be the sum of the components and may be larger or smaller than one component alone, since the phases maty he such ats either to aid or oppose. Since the paths rhange from time to time, this causes a variation in signal strength called fading. Fading ean also result from the combination of single-hop and multihop waves, or the combination of a ground wave with atn ionospheric or tropospherie wave. The latter condition results in an area of severe fading in the region where the two waves have about the same intensity; better reception is obtained at either shorter or longer distances where one component is considerably stronger than the other.

Fading may be rapid or slow, the former type usually resulting from rapidly-changing conditions in the ionosphere, the latter orcurring when transmission conditions are relatively stable.

It frequently happens that transmission conditions are different for waves of slightly different frequencies, so that in the case of voice-modu-
lated transmission, involving sidehands differing slightly from the carrier in frequency, the carrier and various sidehand components may not be propagated in the same relative amplitudes and phases they had at the transmitter. This effect, known as selective fading, causes severe distortion of the signal.

Scatter

Even though the operating frequency is above the MLF for a given distance, it is usually possible to hear signals from within the skip zone. This phenomenon, called scatter, is the result of reflections, surh as might occur when the transmitted signal strikes the earth at some greater distance than the skip distance for that frequency, back toward the receiver. Other possible seatter sources are "patches" of ionization of different density that the average, or sporadic E clouds (see later section). Seatter signals are weaker than those normally propagated, and also have a rapid fade or "flutter" that makes them easily rerognizable, although the average strength may be fairly constant.

It is probable that seatter also plays a considerable part in long-distance transmission (bevond the maximum one-hop distance) - particularly in cases where, with multihop propagation, the MUF at some intermediate reflection point in the ionosphere is below the frequency atually leing used.

OTHER FEATURES OF IONOSPHERIC PROPAGATION

Cyclic Variations in the Ionosphere

Since ionization depends upon ultraviolet radiation, conditions in the ionosphere vary with rhanges in the sun's radiation. In addition to the daily variation, seatsonal changes result in higher critical frequencies in the E layer in summer, averaging about 4 Mc , as against a winter average of 3 Mc . The F layer shows little variation, the eritical frequency being of the order of 4 to ; Mc. in the evening. The F1 laver, which has a critical frequency near is Me, in summer, usually disappears entirely in winter. The daytime maximum critical frequencies for the $F=$ are highest in winter (10 to 12 Mc .) and lowest in summer (around 7 Mc .). The virtual height of the F^{2} layer, which is about 185 miles in winter, averages 250 miles in summer. These values are representative of latitude 40 deg . North in the Western hemisphere, and are suljeet to considerable variation in other parts of the world.

Very marked changes in ionization also occur in step with the 11-year sunspot cycle. Although there is no apparent direct correlation between sunspot activity and critical frequencies on a given day, there is a definite correlation between average sunspot activity and critical frequencies. The aritical frequencies are highest during sunspot maxima and lowest during sunspot minima. It is during the period of minimum sunspot activity when long-distance transmissions occur on
the lower frequencies. At such times the 28-Mc. band is seldom useful for long-distance work, while the $14-M c$, band performs well in the daytime but is not ordinarily useful at night. At the present time (19.52) a sunspot minimum is approaching, and is forecast for the winter of 1954-5.5. The most recent maximum occurred in the winter of 1947-48.

Ionosphere Storms and Other Disturbances

Certain types of sunspot artivity cause considerable disturbances in the ionosphere (ionosphere storms) and are accompanied by disturbances in the earth's magnetic field (magnetic storms). Ionosphere storms are characterized by a marked increase in absorption, so that radio conditions become poor. The critical frequencies also drop to relatively low values during a storm, so that only the lower frequencies are useful for communication. Ionosphere storms may last from a few hours to several days. Since the sun rotates on its axis once every 28 days, disturbances tend to recur at such intervals, if the sunspots responsible do not become inactive in the meantime. Absorption is usually low, and radio conditions therefore good, just preceding a storm.

Unusually high ionization in the region of the atmosphere below the normal ionosphere may increase ahsorption to such an extent that skywave transmission beromes difficult and sometimes even impossible. The length of such a disturbance may be several hours, with a gradual falling off of transmission conditions at the beginning and an equally gradual building up at the end of the period. Fade-outs, similar to the above in effect, are caused by sudden disturbances on the sun. They are characterized by very rapid ionization, with sky-wave transmission disappearing almost instantly, occur only in daylight, and do not last as long as the first type of absorption.

Aagnetic storms frequently are accompanied by unusual auroral displays, creating an ionized "curtain" in the polar regions which can act as a reflector of radio waves. Auroral reflection may be olserved on any frequeney, depending upon the conditions, and it is always characterized by a flutter on all signals that makes voiee work difficult.

Sporadic E Ionization

Seattered patches or clouds of relative dense ionization oceasionally appear at heights approximately the same as that of the E layer. This sporadic \mathbf{E} ionization is most prevalent in the equatorial regions, where it is substantially continuous. In northern latitudes it is most frequent in the spring and early summer, but is present in some degree a fair pereentage of the time the year 'round. It aroounts for a good deal of the night-time short distance work on the lower frequencies (3.5 and 7 Mc .) and, when more intense,
for similar work on 14 and 28 Mc . Exceptionally intense sporadic E ionization is responsible for work over distances exceeding 400 or 500 miles on the $50-\mathrm{Mc}$. band.

There seems to be no direct relationship between sporadic E ionization and sunspot activity, nor does it appear to be directly rolated to daylight and darkness since it may orcur at any time of the day. However, there is an apparent tendency for the ionization to peak at mid-moming and in the early evening.

Meteor Trails

A phenomenon that frequently occurs on signals from within the skip, zone is a sudden increase in intensity, called a burst. Bursts are caused by meteors which, entering the earth's atmosphere at high speed, are followed by an ionized trail of rather high intensity: The ionization is caused by heating from the friction between the meteor and the air molecules in the ionosphere region. The ionization usually disappears in less than a second, but during that time it is often capable of reflecting signals $u p$ to 100 Mc . or so. The lower frequency limit depends on the length of the ionized trail. Bursts are frequently observed on the 14 and 28 Mc. binds, especially during those times of the year when "meteor showers" occur. When the meteor is moving in a direction somewhat parallel to the wave path, it can induce a rising or falling "whistle" on the signal, for a second or so.

Tropospheric Propagation

Changes in temperature and humidity of air masses in the lower atmosphere often pormit work over greater than normal ground-wave distances on 28 Mc , and higher frequencies. The effect can be observed on 28 Me, but it is generally more marked on 50 and 144 Me. The subject is treated in detail in a later chapter.

- PREDICTION CHARTS

The Central Radio Propagation Laboratory of National Bureau of Standards offers prediction charts three months in advance, by means of which it is possible to predict with considerable accuracy the maximum usable froquency that will hold over any path on the earth during a monthly period. The charts are based on ionosphere observations made at a number of stations throughout the world, coupled with considerable statistical data. They are conservative enough to enable the amatcur to anticipate and plan his best operating times, particularly on the 14- and 28-Mc. bands. The charts can be olbtained from the Superintendent of Documents, U.S. Government l'rinting Office, Washington $25, \mathrm{D}$. C. for 10 cents a copy or $\$ 1.00$ per year on subscription. They are called "CRPL-D Basic IRadio P'ropagation Predictions."

High-Frequency Receivers

Abstract

A good receiver in the amateur station makes the difference between mediocre contarts and solid (2SOs, and its importance camot be over emphasized. In the uncrowded v.h.f. hands, sensitivity (the ability to bring in weak signals) is the most important factor in a receiver, In the more crowded amateur bands, good sensitivity must be combined with selectivity (the ability to distinguish between signals separated by only a small frequency difference), To receive weak signals, the receiver must furnish enough amplification to amplify the minute signal nower delivered by the antenna up to a usofulamount of power that will operate a loudspeaker or set of headphones. Before the amplified signal can operate the 'speaker or 'phones, it must be converted to audio-frequency power hy the process of detection. The sequence of amplification is not too important - some of the amplification can take place (and usually does) before detection, and some can be used after detection.

There are two najor differences between receivers for 'phone reception and for ew. reception. A phone signal has sidebands that make the signal take up, about 6 or 8 ke . in the band, and the audio quality of the received signal is impaired if the passband of the recoiver is less than half of this, On the other hand, a c.w. signal occupies only a few hundred ceroles at the most, and consequently the passband of a cew.
receiver can be small. In either case, if the passhand of the receiver is more than necessary, signals adjacent to the desired one can be heard, and the selectivity of the receiver is said to be poor. The detection process delivers directly the audio frequencies present as morlulation on a phone signal. There is no modulation on a c.w. signal, and it is necessary to introduce a sceond radio frequencr, differing from the signal frequency by a suitable audio frequency, into the detector circuit to produce an audible beat. The frequency difference, and hence the beat-note, is generally made on the order of 200 to 1000 cyrles, since these tones are within the range of optimum response of both the ear and the headset. If the source of the second rudio frequency is a separate oscillator, the system is known as heterodyne reception; if the detector is made to oscillate and produce the second frequency, it is known as an autodyne detector. Modern superheterodyne receivers (described later) generally use a separate oscillator to generate the beat-note. Summing up the two differences, 'phone receivers can't use as much selectivity as c.w. receivers, and c.w. receivers require some kind of beating oscillator to give an audible signal. broadeast receivers can receive only 'phone signals hecause no beat oscillator is included. Communications receivers include beat oseillators and often some means for varying the selectivity.

Receiver Characteristics

Sensitivity

In commer"ial eireles "sensitivity" is defined as the strength of the signal (in mirrovolts) at the input of the receiver is required to produce a specified audio power output at the speaker or headphones. This is a satisfactory definition for broadeast and communications receivers operating below about 20 Me., where general atmospheric and man-made electrical noises normally mask any noise generated by the receiver itself.

Another commercial measure of sensitivity defines it as the signal at the input of the receiver required to give an audio output some stated amount (generally 10 db .) alove the noise output of the receiver. This is a more useful sensitivity measure for the amateur, since it indicates how well a weak signal will be heard and is not merely a measure of the over-all amplification of the reciver. However, it is not an absolute method for comparing two receivers, because the passband width of the receiver plays a large part in the result.

The random motion of the molecules in the antenna and receiver circuits generates small voltages called thermal-agitation noise voltages. The frequency of this noise is random and the noise exists across the entire radio suectrum. Its amplitude increases with the temperature of the rircuits. Only the noise in the antenna and first stage of a receiver is nornally significant, since the noise developed in later stages is masked by the amplified noise from the first stage. The only noise that is amplified is that which falls within the passband of the recciver, so the noise appearing in the output of a receiver is less when the passband is reduced. Similar noise is generated by the current flow within the first tube itself; this effect can be combined with the thermal noise and called receiver noise.

The limit of a receiver's ability to detect weak signals is the thermal noise generated in the input circuit. Even if a perfect noise-free tube were developed and used throughout the
receiver, the limit to reception would be the thermal noise. (Atmospheric- and man-made noise is a practical limit below 20 Mc .) The degree to which a receiver approaches this ideal is called the noise figure of the receiver, and it is expressed as the ratio of noise power at the input of the receiver required to increase the noise output of the receiver 3 db . Since the noise power passed by the receiver is dependent on the passband, the figure shows how far the receiver departs from the ideal. The ratio is generally expressed in db ., and runs around 6 to 12 db . for a good receiver, although figures of 2 to 4 dt . have been obtained. Comparisons of noise figures can be made by the amateur with simple equipment. (See QST, August, 1949, page 20.)

Selectivity

Selectivity is the ability of a receiver to discriminate against signals of frequencies differing from that of the desired signal. The over-all selectivity will depend upon the selectivity of the individual tuned circuits and the number of such circuits.

The selectivity of a receiver is shown graphically by drawing a curve that gives the ratio of signal strength required at various frequencies off resonance to the signal strength at resonance, to give constant output, A resonance curve of this type is shown in Fig. 5-1. The bandwidth is the width of the resonance curve (in cycles or kilocycles) of a receiver at a specified ratio: in Fig. $5-1$, the bandwidths are indicated for ratios of response of 2 and 10 ("2 times down" and "10 times down").

A receiver is more solective if the bandwidth (or passband) is less, but the bandwidth must be sufficient to pass the signal and its sidehands if faithful reproduction of the signal is desired. In the crowded amateur bands, it is generally advisable to sacrifice fidelity for selectivity, since the added selectivity reduces adjacent-channel interference and also the noise passed by the receiver. If the selectivity curve has stecp sides, it is said to have good skirt selectivity, and this feature is very useful in listening to a weak signal that is idjacent to a strong one.

Fig. 5-1 - Typical selectivity curve of a modern superheterodyne receiver. Relative response is plotted against deviations above and below the resonance frequeney. The scale at the left is in terms of voltage ratios, the corresponding decibel steps are shown at the right.

Stability

The stability of a receiver is its ability to "stay put" on a signal under varying conditions of gain-contiol setting, temperature, supplyvoltage changes and mechanical shock and distortion. The term "unstable" is also applied to a receiver that breaks into oscillation or a regenerative condition with some settings of its controls that are not specifically intended to control such a condition.

Fidelity

Fidelity is the relative ability of the receiver to reproduce in its output the modulation carried by the incoming signal. For perfert fidelity, the relative amplitudes of the various components must not be changed by passing through the receiver. However, in amateur communication the important requirement is to transmit intelligence and not "high-fidelity" signals.

Detection and Detectors

Detection is the process of recovering the modulation from a signal (see "Modulation, Heterodyning and Beats"). Any device that is "nonlinear" (i.e., whose output is not exactly proportional to its input) will act as a detector. It can be used as a detector if an impedance for the desired modulation frequency is connected in the output circuit.

Detector sensitivity is the ratio of desired deteretor output to the input. Detector linearity is a measure of the ability of the detector to reproduce the exact form of the modulation on the incoming signal. The resistance or impedance of the detector is the resistance or impedance it presents to the circuits it is con-
nected to. The input resistance is important in receiver design, since if it is relatively low it means that the detector will consume power, and this power must be furnished by the preceding stage. The signal-handling capability means the ability to accept signals of a specified amplitude without overloading or distortion.

Diode Detectors

The simplest detector for a.m. is the diode. A galena, silicon or germanium crystal is an imperfect form of diode (a small current can pass in the reverse direction), and the principle of detection in a crystal is similar to that in a vacuum-tube diode.

Fip. 5-2 - Simplified and practical diode detector cirruits. A, the flementary half-wave diode detector; 13, a practical circuit, with r.f. filterinn and andio ontpot coupling; d. full-wave diode delector, with output eompling indicated. The circuit, $/ 2$ (i, is thmed to the signal frequency; typical values for C_{2} and R_{1} in A and C are $2.50 \mu \mu \mathrm{fl}$. and $2.50,000$ ohms, respectively; in $B_{\text {, }}(2$ and C. are $100 \mu \mu$ fil. cach; R_{1}. $\overline{0} 0.000$ ohms: and $R_{2}, 25(0,10 \%)$ ohms. C_{4} is $0.1 \mu \mathrm{fd}$. and R_{3} may be 0.5 to 1 megohm.

Circuits for both half-wave and full-wave diodes are given in Fig. is-2. The simplified half-wave cireuit at m -2. in includes the r.f. tuned circuit, $L_{2} C_{1}$, a coupling coil, L_{1}, from which the r.f. energy is fed to $L_{2} C_{1}$, and the diode, I, with its load resistance, R_{1}, and bypass condenser, C_{2}. The flow of rectified r.f. current catuses a d.e. voltage to develop across the terminals of K_{1}. The - and + signs show the polarity of the voltage. The variation in amplitude of the r.f. signal with modulation causes corresponding variations in the value of the d.e. voltage across R_{1}. In audio work the foud resistor, R_{1}, is usually 0.1 megohm or higher, so that a fairly large voltage will develop from a small reetified-current fow.

The progress of the signal through the detector or rectifier is shown in l'ig. in-3. I typical modulated signal as it exists in the tuned circuit is shown at A. When this signal is applied to the rectifier tube, cument will flow only during the part of the r.f. cyale when the plate is positive with respeet to the cath-
ode, so that the output of the rectifier consists of half-eveles of r.f. These current pulses flow in the load circuit comprised of R_{1} and C_{2}, the resistance of R_{1} and the eapacity of C_{2} being so proportioned that C_{2} charges to the peak value of the rectified voltage on each pulse and retains enough charge between pulses so that the voltage across R_{1} is smoothed out, as shown in C. Co ${ }_{2}$ thus acts as a filter for the radio-frequenry component of the output of the rectifier, leaving a d.e. eomponent that varies in the same way as the modulation on the original signal. When this varying d.e. voltage is applied to a following amplifier through a coupling condenser (C_{4} in Fig. $\overline{\text { in }}$-2l3), only the pariations in voltage are transferred, so that the final output signal is a.e., as shown in D.

In the rircuit at $5-2 B, R_{1}$ and C_{2} have been divided for the purpose of providing a more effertive filter for r.f. It is important to prevent the appearance of any r.f. voltage in the output of the detector, berause it maty canse overloading of a sucreeding amplifier tube. The audiofrequency variations can be transferred to another circuit through a coupling condenser, (4 , to a loid resistor, R_{3}, which usually is a "potentiometer" su that the volume ran be adjusted to a desired level.

Coupling to the potentiometer (gain romtrol) through a condenser also avoids any fow of d.c. through the gain control. The flow of d.c. through a high-resistance gain control often tends to make the control noisy (seratehy) after a short while.

The full-wave diode rireuit at $5-2 \mathrm{C}$ differs in operation from the half-wave cireuit only in that both halves of the r.f. cyele are utilized. The full-wave circuit has the advantage that very little r.f. voltage appears aroms the load resistor, R_{1}, because the midpoint of L_{2} is at the same potential as the cathode, or "ground" for r.f., and r.f. filtering is casier than in the half-wave circuit.

The reactance of C_{2} must be small compared

[^2]
(B)

Fig. 5-4-Circuits for plate detection. A, triode; B, pentode. The input eircuit, $L_{1} C_{1}$, is tuned to the signal frepuency. T'ypieal values for the other components are:

Component

Circuit A
Circuit 18

Cis 0.001 to
C ${ }_{5}$
$R_{1} 25,(00)$ to 150,000 olims. $10,(000)$ to 20,000 ohms.
$\mathrm{R}_{2} 50,000$ to 100,000 ohms. 100,000 to 250,000 ohms. R_{3} $1{ }_{4}$
RFC 2.5 mh .
$0.5 \mu \mathrm{fd}$. or larger.
$0.5 \mu \mathrm{fil}$, or larger.
2.50 to $500 \mu \mu \mathrm{fd}$.
$0.1 \mu \mathrm{fd}$.
$50,010(0)$ ohms.
20,000) ohms.
2.5 mh .

Plate voltages from 100 to 250 volts may be used. Effective screen voltage in \mathbf{B} should be about 30 volts.
to the resistance of R_{1} at the radio frequency being rectified, but at audio frequencies must be relatively large eompared to R_{1}. If the capacity of C_{2} is too large, response at the higher audio frequencies will be lowered.

Compared with other detectors, the sensitivity of the diode is low, normally running around 0.8 in audio work. Since the diode consumes power, the Q of the tuned circuit is reduced, bringing about a reduction in selectivity. The loading effect of the diode is close to one-half the load resistance. The detector linearity is good, and the signal-handling capability is high.

Plate Detectors

The plate detector is arranged so that rectification of the r.f. signal takes place in the plate circuit of the tube. Sufficient negative bias is applied to the grid to bring the plate current nearly to the cut-off point, so that application of a signal to the grid circuit causes an increase in average plate current. The average plate current follows the changes in signal amplitude in a fashion similar to the rectified current in a diode detectir.

Circuits for triodes and pentodes are given in Fig. 5-4. C_{3} is the plate by-pass condenser, and, with $R F C$, prevents r.f. from appear-
ing in the output. The cathode resistor, R_{1}, provides the operating grid bias, and C_{2} is a by-pass for both radio and audio frequencies. R_{2} is the phate load resistancerand C_{4} is the output coupling condenser. In the pentode eireuit at B, R_{3} and R_{4} form a voltage divider to supply the proper sereen potential (about 30 volts), and C_{5} is a by-pass rondenser. C_{2} and C_{5} must have how reactance for both radio and audio frequencies.

In general, transformer coupling from the plate circuit of a plate detector is not satisfactory, because the plate impedance of any tube is very high when the bias is near the platecurrent cut-off point. Impedance coupling may be used in place of the resistance coupling shown in Fig. i-4. Usually 100 henrys or more inductance is requived.

The plate detector is more sensitive than the diode because there is some amplifying action in the tube. It will handle large signals, but is not so tolerant in this respect as the diode. Linearity, with the self-biased circuits shown, is good. Ip to the overload point the detector takes no power from the tuned rircuit, and so does not affect its Q and selectivity.

Infinite-Impedance Detector

The circuit of Fig. 5 -i) combines the high signal-handling capabilities of the diode detector with low distortion and, like the plate detector, does not load the tuned circuit it connects to. The circuit resembles that of the plate detector, except that the load resistance, R_{1}, is connected between cathode and ground and thus is common to both grid and plate circuits, giving negative feed-back for the audio frequencies. The rathode resistor is by-passed for r.f. but not for audio, while the plate circuit is by-passed to ground for both audio and radio frequencies. R_{2} forms, with C_{3}, an $R C$ filter to isolate the plate from the " B " supply. An r.f. filter, consisting of a series r.f. choke and a shunt condenser, can be connected between the cathode and C_{4} to eliminate any r.f. that might otherwise appear in the output.

The plate current is very low at no signal, increasing with signal as in the case of the plate detector. The voltage drop across R_{1} consequently

Fig. 5.5 - The infinite-impedance detector, The input cirenit, $L_{2} C_{1}$, is tuncd to the signal frequeney. Typical values for the other components arc:
$\mathrm{C}_{2}-250 \mu \mu \mathrm{fd} . \quad \mathrm{R}_{1}-0.15$ megohm.
$\mathrm{C}_{3}-0,5 \mu \mathrm{fd} . \quad \mathrm{R}_{2}-25,000$ ohms.
$\mathrm{C}_{4}-0.1 \mu \mathrm{fd}$. $\quad \mathrm{R}_{3}-0.25$ megohm volume control.
A tube having a medium amplification factor (about 20) should be used. Plate voltage should be 250 volts.
increases with signal. Because of this and the large initial drop across R_{1}, the grid usually cannot be driven positive by the signal, and no grid current can be drawn.

- REGENERATIVE DETECTORS

By providing controllable r.f. feed-back (regeneration) in a triode or pentode detertor circuit, the incoming signal can be amplified many times, thereby greatly increasing the sensitivity of the detector. Regeneration also increases the effective Q of the circuit and thus the selectivity. The grid-leak type of detector is most suitable for the purpose.

The grid-leak detector is a combination diode rectifier and audio-frequency amplifier. In the circuits of Fig. 5-6, the grid corresponds to the diode plate and the rectifying action is exactly the same as in a diode. The d.c. voltage from rectified-eurrent flow through the grid leak, R_{1}, biases the grid negatively, and the audiofrequency variations in voltage across R_{1} are amplified through the tube as in a normal a.f. amplifier. In the plate circuit, T_{1}, L_{4} and L_{3} are the plate load resistances, C_{3} is a by-pass condenser and $R F C$ an r.f. choke to eliminate r.f. in the output circuit.

A grid-leak detector has considerably greater sensitivity than a diode. The sensitivity is further increased by using a screen-grid tube instead of a triode, as at 5-6 IS and C . The operation is equivalent to that of the triode circuit. The screen bypass condenser, C_{5}, should have low reactance for both radio and audio frequencies. R_{2} and R_{3} constitute a voltage divider on the plate supply to furnish the proper screen voltage. In both circuits, C_{2} must have low r.f. reaetance and high a.f. reactance compared to the resistance of R_{1}. Although the regenerative grid-leak detector is more sensitive than any other type, its many disadvantages commend it for use only in the simplest receivers. The linearity is rather poor, and the signal-handling capability is limited. The signal-handling capability can be improved by reducing R_{1} to 0.1 megohm, but the sensitivity will be decreased. The degree of antenna coupling is often critical.

The circuits in Fig. 5-6 are regenerative, the feed-back being obtained by feeding some signal to the grid back from the plate circuit. The amount of regeneration must be controllable, because maximum regenerative amplification is secured at the critical point where the circuit is just about to oscillate. The critical point in turn depends upon circuit conditions, which may vary with the frequency to which the detector is tuned. In the oscillating condition, a regenerative detector can be detuned slightly from an incoming c.w. signal to give autodyne reception.

The circuit of Fig. 5-6A uses a variable by-pass condenser, C_{3}, in the plate circuit to control regeneration. When the capacity is small the tube does not regenerate, but as it increases toward maximum its reactance becomes smaller until there is sufficient feed-back to cause
oscillation. If L_{2} and L_{3} are wound end-to-end in the same direction, the plate connection is to the outside of the plate or "tickler" coil, L_{2}, when the grid connection is to the outside of L_{2}.

The circuit of 5-613 is for a pentode tube, regeneration being controlled by adjustment of the screen-grid voltage. The tickler, L_{3}, is in the plate circuit. The portion of the control resistor between the rotating contact and ground is by-passed by a large condenser (0.5

Fig. 5-6 - Triode and pentode regenerative detector circuits. The input circuit, $L_{2} C_{1}$, is tund to the signal frequency. The grid condenser, C_{2}, should have a value of about $100 \mu \mu \mathrm{fd}$. in all circnits; the grid leak, R_{1}, may range in value from 1 to 5 negohms. The tickler coil, L_{3}, ordinarily will have from 10 to 25 per cent of the number of turns on L_{2}; in C, the cathode tap is about 10 per cent of the number of turns on L_{2} above ground. Regeneration-control condenser C_{3} in A should have a maximum capacity of $100 \mu \mu \mathrm{fd}$. or more; by-pass condensers C_{3} in B and C are likewise $100 \mu \mu \mathrm{fd}$. C_{5} is ordinarily $1 \mu \mathrm{fl}$. or more; R_{2}, a 50,000 -ohnm potentiometer; $R_{3}, 50,000$ to 100,000 ohms. L_{4} in $B\left(L_{3}\right.$ in C$)$ is a $500-$ henry inductance, C_{4} is $0.1 \mu \mathrm{fd}$. in both circuits. T_{1} in A is a conventional audio transformer for coupling from the plate of a tube to a following grid. $R F C$ is 2.5 mh . In A, the plate voltage should be about 50 volts for best sensitivity. Pentode circuits require about 30 volts on the screen; plate potential may be 100 to 250 volts.
$\mu \mathrm{fd}$. or more) to filter out scratching noise when the arm is rotated. The feed-back is adjusted by varying the number of turns on L_{3} or the coupling between L_{2} and L_{3}, until the tube just goes into oscillation at a sereen potential of approximately 30 volts.

Circuit C is identical with 13 in principle of operation. Since the sirren and plate are in parallel for r.f. in this circuit, only a small amount of "tickler" - that is, relatively few turns hetween the cathode tap and ground - is required for oscillation.

Smooth Regeneration Control

The ideal regeneration control would permit the detector to go into and out of oscillation smoothly, would have no effect on the frequency of oscillation, and would give the same value of regeneration regardless of frequency and the loading on the circuit. In practice, the effects of loading, particularly the loading that occurs when the detector circuit is coupled to an antenna, are difficult to overcome. Likewise, the regeneration is usually affected by the frequency to which the grid circuit is tuned.

In all circuits it is best to wind the tiekler at the ground or cathode end of the grid coil, and to use as few turns on the tickler as will allow the detector to oscillate easily over the whole tuning range at the plate (and screen, if a pentode) voltage that gives maximum sensitivity. Should the tube break into oscillation suddenly as the regencration control is advanced, making a click, it usually indicates that the coupling to the antenna (or r.f. amplifier) is too tight. The wrong grid leak plus too-high plate and sereen voltage are also frequent causes of lack of smoothness in going into oscillation.

Antenna Coupling

If the detector is coupled to an antenna, slight changes in the antema (as when the wire swings in a breeze) affer the frequency of the oscillations generated, and thereby the beat frequency when c.w. signals are being received. The tighter the antenna coupling is made, the greater will be the feedback required or the higher will be the voltage neecessary to make the detertor oseillate. The antema coupling should be the maximum that will allow the detertor to go into oscillation smoothly with the correct voltages on the tube. If capacity coupling to the grid end of the coil is used, generally only a very small amount of caparity will be needed to couple to the antenna. Inereasing the capacity increases the coupling.

At frequencies where the antenna system is resonant the absorption of energy from the oscillating detector circuit will be greater, with the consequence that more regencration is needed. In extreme cases it may not be possible to make the detector oscillate with normal voltages. The remedy for these "dead spots" is to loosen the antenna coupling to a point that permits normal oscillation and smooth regeneration control.

Body Capacity

A regenerative detector occasionally shows a tendency to change frequency slightly as the hand is moved near the dial. This condition (body capacity) can be corrected by better shielding, and sometimes by r.f. filtering of the 'phone leads. A good, short ground connection and loosening the coupling to the antenna will help.

Hum

Ilum at the power-supply frequency, even when using battery plate supply, may result from the use of a.e. on the tube heater. Wiffects of this type normally are troublesome only when the erreuit of Fig. $5-6 \mathrm{C}$ is used, and then only at 1.4 Me. and higher. Comereting one side of the heater supply to ground, or grounding the centertap of the heater-transformer winding, will reduce the hum. The heater wiring should be kept as far as possible from the r.f. circuits.

House wiring, if of the "open" type, may cause hum if the detector tube, grid lead, and grid condenser and leak are not shielded. This type of hum is easily recognizable because of its rather high pitch.

Tuning

For c.w. reception, the regeneration control is advanced until the detector breaks into a "hiss," which indicates that the detector is oscillating. Further advancing the regeneration control after the detector starts oscillating will result in a slight decrease in the strength of the hiss, indicating that the sensitivity of the detector is decreasing.
The proper adjustment of the regeneration control for best reception of c.w. signals is where the detector just starts to oscillate. Then c.w. signals can be tuned in and will give a tone with each signal depending on the setting of the turing control. As the receiver is tuned through a signal the tone first will be heard as a very high pitch, then will go down through "zero beat" and rise again on the other side, finally

Fig. 5-7 - As the tuning dial of a receiver is turned past a c.w. signal, the beat-note varies from a high tone down through "zero beat" (no audible frequency differcoce) and back up to a high tone, as shown at A, B and (.) The curve is a graphical representation of the action. The heat exists past 8000 or 10,000 cycles but usually is not heard because of the limitations of the audio system.
disappearing at a very high pitch. This behavior is shown in Fig. 5-7. A low-pitehed beat-note cannot be obtained from a strong signal because the dotector "pulls in" or "blocks"; that is, the signal forees the detector to oserllate at the signal frequeney, evern though the circuit may not be tuned exurtly to the signal. This phenomenon, is atso called "locking-in"; the more atable of the two frequencies assumes contwol over the other. It usually an be correeted by advancing the regeneration control until the beat-note is heard again, or by reducing the input signal.

The point just after the detector starts oscil-
lating is the most sensitive condition for c.w. reception. liurther atvancing the regeneration control makes the reeriver less susereptible to blocking by strong signals, but also less sensitive to woak signals.

If the detertor is in the oscillating condition and a 'phone signal is tuned in, a steady audible beat-note will result. While it is possible to listen to 'phone if the recoiver can be tuned to exact zerobeat, it is more satisfartory to reduce the regencration to the print just before the receiver goes into oscillation. This is also the most sensitive operating point.

Tuning and Band-Changing Methods

Band-Changing

The resonant circuits that are tuned to the frequency of the incoming signal constitute a special problem in the design of amateur receivers, since the amateur frequeney assignments consist of groups or bands of frequencies at widely-spaced intervals. The same roil and tuning condenser camot be used for, say, 14 Me. to 3.5 Ma., because of the imprarticable maxi-mum-to-minimum capacity ratio required, and also because the tuming would be excessively critical with such a large frequency range. It is necessary, therefore, to provide a means for changing the circuit constants for various frequency bands. Is a matter of convenience the same tuning condenser usually is retained, but new eoils are inserted in the cirruit for each bund.

One method of changing indurtances is to use a switrh having an appropriate number of contacts, which connects the desired eoil and diseonnects the others. The unused coils are sometimes short-circuited by the switch, to avoid the possibility of undesirable self resonances in the unused coils. It is not necessary if the coils are separated from each other by several coil diameters, or are mounted at right angles to each other.

Another method is to use roils wound on forms with contarts (usually pins) that can be plugged in and removed from a socket. These coils are advantageous when space in a multiband receiver is at a premium. They are also very useful when considerable experimental work is involved, because they are easier to work on than coils elustered around a switch.

Bandspreading

The tuning range of a given coil and variable condenser will depend upon the inductance of the coil and the change in tuning capacity. For case of tuning, it is desirable to adjust the tuming range so that practically the whole dial scale is occupied by the band in use. This is called bandspreading. Because of the varying widths of the bands, special tuning methods must he devised to give the correct maximumminimum capacity ratio on each band. Several of these methods are shown in Fig. i-8.

In Λ, a small bandspread condenser, $C_{1}(15-$ to $2.5-\mu \mu \mathrm{fd}$. maximum capacity), is used in parallel with a condenser, C_{2}, which is usually large
enough (100 to $140 \mu \mu \mathrm{fd}$.) to cover a 2 -to-1 frequency range. The setting of ('2 will determine the minimum capacity of the rircuit, and the maximum eapacity for bandspread tuning will be the maximum capacity of ('1 plus the setting of ("2. The inductance of the coil can be adjusted so that the maximumminimum ratio will give adequate bandspread. It is almost impossible, berause of the nonharmonic relation of the various band limits, to get full bandspread on all bands with the same pair of condensers. (2 is variously called the band-setting or main-tuning condenser. It must be reset earh time the band is changed.

The mothod shown at 13 makes use of condensers in series. The tuming condenser, ('i, may have a maximum capacity of 100 $\mu \mu \mathrm{fd}$. or more, The minimum capatcity is determined principally by the setting of C_{3}, which usually has low capacity, and the maximum eapacity by the setting of C_{2}, which is of the order of 25 to 50 $\mu \mu \mathrm{fd}$. This method is capable of close adjustment to practically any desired degree of handspread. Jithor C_{2} and C_{3} must be adjusted for each band or separate preadjusted condensers must be switched
(A)

(B)

(C)

Fig. 5-8-Essentials of the threchasichand. spread toning systems. in.

The circuit at C also gives complete spread on each band. (${ }_{1}$, the handspread condenser, may have any convenient value of rapacity; $50 \mu \mu \mathrm{fd}$. is satisfactory. ('2 may be used for continuous frequency coverage ("general coverage") and as a band-setting condenser. The effective maximum-minimum capacity ratio depends upon the capacity of ('2 and the point at which ('1 is tapped on the coil. The nearer the tap to the bottom of the coil, the greater the bandspread, and vice versa. lior a given coil and tap, the bandspread will be greater if C_{2} is set at higher capacity. ('2 may be mounted in the plug-in coil form and preset, if desired.

This requires a separate condenser for earh band, but climinates the neressity for resetting ('2 earh time the band is changed.

Ganged Tuning

The tuning condensers of the several r.f. circuits may be coupled together mechanically and operated by a single control. However, this operating convenience involves more eomplicated ronstruction, both electrically and mechamically. It becomes neressary to make the various circuits track - that is, tune to the same frequency at each setting of the tuning control.

Fig. 5-1) - Showing the use of a trimmer mondenser to set the minimum circuit caparits in order to ohtain true tracking for gank-tuning.

True tracking can be obtained only when the inductance, tuning condensers, and circuit inductances and minimum and maximum eapacities are identical in all "ganged" stages. A small trimmer or padding condenser may be comected across the coil, so that variations in minimum capacity can be compensated. The fundamental circuit is shown in Fig. $\overline{5}-9$, where C_{1} is the trimmer and ('2 the thang rondenser. The use of the trimmer necessarily increases the minimum circuit capacity, but it is a necessity for satisfactory tracking. . Midget condensers having naximum caparities of 15 to $30 \mu \mu \mathrm{fd}$. are commonly used.

The same methods are applied to bandspread circuits that must be tracked. The circuits are identical with those of Fig. i-8. If both general-overage and bandspread tuning are to be available, ath additional trimmer condenser must be comerted across the coil in each circuit shown. If only amateur-band tuning is desired, however, then (${ }_{3}$ in Fig . $\mathrm{j}-\mathrm{8l}$, and ('2 in Fig. 5 - 8 (', serve as trimmers.

The coil inductance can be adjusted by starting with a larger number of turns than
necessary and removing a turn or fraction of a turn at a time until the cirruits track satisfactorily' An alternative mothod, provided the inductance is reasonably close to the correct value initially, is to make the coil so that the last turn is variable with respect to the whole coil, or to use a single short-circuited turn the position of which can be varied with respect to the coil. The application of these methods is shown in Fig. ©-10.
still snother method for trimming the inductance is to use an adjustable brass (or copper) or powdered-iron eore. The brass core acts like a single shorted turn, and the inductance of the coil is decreased as the brass core, or "slug," is moved into the coil. The powdered-iron core has the opposite effert, ind increases the inductance as it is moved into the coil. The Q of the coil is not afferted materially by the use of the brass slug, provided the brass slug has a clean surface or is silverplated. The use of the powdered-iron core will raise the () of a coil, provided the iron is suitable for the frequency in use. Good pow-dered-iron cores cim be obtained for use up to about \%0 Mc.

(A)
(B)

Fig. 5-10-Methods of adjusting the inductance for ganging. The half-turn in A can be moved so that its magnee tic fied either aids or onnoses the field of the coil. The shorted loop in IB is not comnected to the coil, but operates loy induction. It will have no effect on the coil inductance when the axis of the loop is perpendienar to the avis of the eoil, and will give maximum rednetion of the eoil inductance when rotated 90°. The loop can be a solid disk of metal and give exactly the same effect.

The Superheterodyne

For many years (up to about 1932) practically the only trpe of receiver to be found in amateur stations consisted of a regonerative detertor and one or more stages of audio amplification. Receivers of this type can be made quite sensitive but strong signals block them easily and, in our present crowded bands, they are seldom used except in emergencies. They have been replaced by superheterodyne receivers, generally called "superhets."

The Superheterodyne Principle

In a superheterodyne receiver, the frequency of the incoming signal is heterodyned to a new radio frequency, the intermediate frequency (abbreviated "i.f."), then amplified, and finally detected. The frequency is changed by modulating the output of a tunable oscillator (the high-fre-
quency, or local, oscillator) by the incoming signal in a mixer or converter stage (first detector) to produce a side frequency equal to the intermediate frequency. The other side frequency is rejected by selective eireuits. The audiofrequency signal is obtained at the second detector. (Cw. signals are made audible by autodyne or heterodyne reception at the second detector.

As a numerical example, assume that an intermediate frecuency of tin kc. is chosen and that the incoming signal is at 7000 ke . Then the high-frequency oscillator frequency may be set to 7 tan ke., in order that one side frequency (7450 minus 7000) will be 45 j k. The high-frequency oscillator could also be set to 6.54 kc . and give the same difference frequency. To produce an audible c.w. signal at
the second detector of, say, 1000 cyeles, the autodyning or heterodyning oscillator would be set to either 454 or 456 ke .

The frequency-conversion process permits r.f. amplification at a relatively low frequency, the i.f. Iligh selectivity and gain (an be obtained at this frequency, and this selectivity and gain are constant. The separate oscillators can be designed for hest stability and, since the h.f. oscillator is working at a frequency considerably removed from the signal frequency, its frequency is not affected by the ineoming signal.

Images

Each h.f. oseillator frequency will cause i.f. response at two signal frequencies, one higher and one lower than the oscillator frequency. If the oseillator is set to $745 \% \mathrm{kc}$. to tune to a $7000-\mathrm{ke}$. signal, for example, the receiver can respond also to a sigmal on 7910 ke ,, which likewise gives a $45 \%-k r$, beat. The undesired signal is called the image. It can cause unnecessary interference if it isn't eliminated.

The radio-frequency circuits of the receiver (those used before the frequency is converted to the i.f.) normally are tuned to the desired signal, so that the selectivity of the circuits reduces or eliminates the response to the image signal. The ratio of the receiver voltage output from the desired signal to that from the image is called the signal-to-image ratio, or image ratio.

The image ratio depends upon the selectivity of the r.f. tuned circuits preceding the mixer tube. Aso, the higher the intermediate frequency, the higher the image ratio, since raising the i.f. increases the frequency separation botween the sigmal and the image and places the latter further away from the resomane peak of the signal-irequency input circuits. Most receiver designs represent a compromise between economy (few r.f. stages) and image rejection (large number of r.f. stages).

Other Spurious Responses

In addition to images, other signals to which the receiver is not ostensibly tuned may be heard. Harmonies of the high-frequency oscillator may beat with signals far removed from the desired frequency to produce output at the intermediate frequency; such spurious responses can be reduced by adequate selectivity before the mixer stage, and by using sufficient shielding to prevent signal pick-up by any means other than the antema. When a strong signal is received, the harmonics generated by rectification in the second detector may, by stray coupling, be introduced into the r.f. or miver cireuit and converted to the intermediate frequency, to go through the receiver in the same way as an ordinary signal, These "birdies" appoar as a heterodyne beat on the desired signal, and are principally bothersome when the frequency of the incoming signal is not greatly different from the
intermediate frequency. The cure is proper eircuit isolation and shielding.

Harmonics of the beat oscillator also may be converted in similar fashion and amplified through the receiver; these responses can be reduced by shielding the beat oscillator and operating it at low power level.

The Double Superheterodyne

At high and very-high frequencigs it is difficult to secure an adequate image ratio when the intermediate frequency is of the order of 45: ke . To reduce image response the signal frequently is converted first to a rather high ($1 \mathrm{i} 000,5000$, or even $10,000 \mathrm{ke}$.) intermediate frequency, and then-sometimes after further amplification - reconverted to a lower i,f. where higher adjucent-rhannel selectivity can be obtained. Such a receiver is called a double superheterodyne.

FREQUENCY CONVERTERS

A circuit tumed to the intermediate frequency is plared in the plate circuit of the mixer, to offer a high impedance to the i.f. voltage that is developed. The signal- and oscillator-freguency voltages appearing in the place circuit are rojected by the selectivity of this circuit. The i.f. tuned circuit should have low impedance for these frequencies, a condition easily met if they do not approach the intermediate frequency.

The conversion efficiency of the mixer is the ratio of i.f. output voltage from the plate cireuit to r.f. signal voltage applied to the grid. High conversion efficiency is desirable. The mixer tube noise also should be low if a good signal-to-noise ratio is wated, particularly if the mixer is the first tube in the recoiver.

The mixer should not require too much r.f. power from the h.f. oscillator, since it may be difficult to supply the power and yet maintain good oscillator stability. Also, the ronversion efficiency should not depend too eritically on the oscillator voltage (that is, a small change in oscillator output should not change the gain), since it is difficult to maintain constant output over a wide frequency range.

A change in oscillator frequency caused by tuning of the mixer grid circuit is called pulling. l'ulling should be minimized, because the stability of the whole receiver depends critically upon the stability of the h.f. oscillator. Pulling decreases with separation of the signal and h.f.oscillator frequencies, being less with high intermediate frequencies. Another type of pulling is caused by regulation in the power supply. Strong signals canse the supply voltage to change, and this in turn shifts the oseillator frequency.

Circuits

If the first detector and high-frequeney oseillator are separate tubes, the first detector is called a "mixer." If the two are combined in one envelope (as is often done for reasons of economy or
efficiency), the first detector is called a "converter." In either case the function is the same.

Typical mixer circuits are shown in Fig. 5-11, The variations are chiefly in the way in which the oscillator voltage is introduced. In 5-11A, a pentode functions as a plate detector; the oscillator voltage is capacity-coupled to the grid of the tube through (${ }_{2}$. Inductive coupling may be used instead. The conversion gain and input selectivity generally are good, so long as the sum of the two voltages (signal and oscillator) impressed on the mixer grid does not exceed the grid bias. It is desirable to make the oscillator voltage as high as possible without exceeding this limitation. The oscillator power required is negligible. If the signal frequency is only is or 10 times the if., it may be difficult to develop enough oscillator voltage at the grid (because of the selectivity of the tuned input circuit). However, the rircuit is a sensitive one and makes a good mixer, particularly with high- i_{m} tubes like the 6A(7 and 6AK5. A good triode also works well in the circuit, and tubes like the 758 (one sertion), the 6.16 (one sertion), the 12.1 T (one sertion), and the 6.J4 work well. When a triode is used, the signal frequency must be short-circuited in the plate circuit, and this is done by comecting the tuning capacitor of the i.f. transformer directly from plate to cathode.

It is difficult to avoid "pulling" in a triode or pentode mixer, and a pentagrid converter tube provides much better isolation. A typial circuit is shown in Fig. $5-1113$, and tubes like the $6 S A 7,7 Q 7$ or 613 E 6 are commonly used. The oscillator voltage is introduced through an "injection" grid. Neasurement of the rectified current flowing in K_{2} is used as a check for proper oscillator-voltage amplitude. Tuning of the signal-grid circuit ean have little effect on the oscillator frequency because the injertion grid is isolated from the signal grid by a screen grid that is at r.f. ground potential. The pentagrid mixer is not quite as sensitive as a triode or porntode mixer, but its isolating characteristics make it a very useful device.

Many receivers use pentarrid converters, and two typical circuits are shown in Fig. .)-12. The circuit shown in Fig, 5-12A, which is suitable for the 6 K 8 , is for a "triode-hexode" converter. A triode oscillator tube is mounted in the same envelope with a hexode, and the control grid of the oscillator portion is commected internally to an injection grid in the hexole. The isolation

Fig. 5-11 - Typical circuits for Reparately-exeited mixers. Cidid injeetion of a pentode mixer is shown at A , and separate earitation of a pentagrid converter is given in l3. Tryural values for 13 will he found in Trable 5-I the values below are for the pentome mixer of A.
$C_{1}-10$ to $50 \mu \mu \mathrm{fl}$, $\quad \mathrm{R}_{2}-1.0$ nuegohm. $\mathrm{C}_{2}-5$ to $10 \mu \mu \mathrm{fil} . \quad \mathrm{R}_{3}-0.17$ megohm. $\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}-0.001 \mu \mathrm{fd} . \quad \mathrm{R}_{4}-1500$ whms, $R_{1}-6800$ ohms.
lositive supply voltage can be 250 volts with a $6 . \mathrm{C} 7,150$ with a 6.1 K 5.
between oscillator and converter tube is reasonably good, and very little puiling results, except on signal frequencies that are quite large compared with the i.f.

The pentagrideronverter circuit shown in Fig. 5-1213 can be used with a tube like the 6517 , 6S137Y, 613, 17 or 613F6. Generally the only care necessary is to adjust the feed-back of the oscillator circuit to give the proper oscillator r.f. voltage. This condition is checked by measuring the d.c. current flowing in grid resistor R_{2}.

A more stable recoiver generally results, particularly at the higher frequencies, when separate tubes are used for the mixer and oscillator. Practically the same number of circuit com-

TABLE 5-I								
Circuit and Operating Values for Converter Tubes Plate voltage $=\mathbf{2 5 0} \quad$ Screen voltage $=100$, or through specified resistor from 250 volts								
	Seif-memten				Separate Exgitation			
Tube	Cathode Resistor	Screen Resistor	$\begin{aligned} & \text { Cirid } \\ & \text { Leak } \end{aligned}$	Grid Current	Cathode Resistor	Screen Resistor	Grid leak	Grid Current
6BA7 ${ }^{1}$	0	12,000	22,000	$0,35 \mathrm{ma}$.	68	15,(00)	22,000	0.35 ma .
$6 \mathrm{BE} 6^{1}$	0	22,000	22,000	0.5	150	22,000	22,1000	0.5
6K8 ${ }^{2}$	240	27,000	47,(10)	0.15-0.2				
6SA7 ${ }^{2}\left(7 \mathrm{Q} 7^{3}\right.$)	0	18,000	22,000	0.5	150	18,000	22,000	0.5
$6 \mathrm{SB} 7 \mathrm{Y}^{2}$	0	15,000	22,000	0.35	68	15,000	22,000	0.35
${ }^{3}$ Miniature tube ${ }^{2}$ Octal base, metal. ${ }^{3}$ Lock-in base.								

Fig. 5-12 - Typical circuits for triode-lesode (A) and pentagrid (13) converters. Values for R_{1}, R_{2} and R_{3} can be foumbl in 'Iable 5-I; others are given below.
$\mathrm{C}_{1}-1{ }^{-1} \mu \mu \mathrm{fd}$. $\mathrm{C}_{3}-0.01 \mu \mathrm{fd}$.
$\mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{5}-0.001 \mu \mathrm{fd} . \quad \mathrm{l}_{4}-1000$ ohms.
ponents is required whether or not a combination tube is used, so that there is very little difference to be realized from the cost standpoint.

Typical rircuit ronstants for converter tubes are given in Table 5 -I. The grid leak referred to is the oscillator grid lak or injection-grid return, R_{2} of Figs, $\overline{5}-11$ and i-12,

The effectiveness of converter tubes of the type just described beromes less as the signal frequency is increased. some oscillator voltage will be coupled to the signal grid through "spaceeharge" coupling, an effect that increases with frequency. If there is relatively little frequency difference between oscillator and signal, as for example a 14-or 28-Mc. signal and an i.f. of 455 kc ., this voltage can become considerable because the selectivity of the signal circuit will be unable to reject it. If the signal grid is not returned directly to ground, but instead is returned through a resistor or part of an a.v.c. system, considerable bias can be developed which will eut down the gain, For this reason, and to reduce image response, the i.f. following the first converter of a receiver should be not less than $\overline{5}$ or 10 percent of the signal frequency, for best results.

Audio Converters

Converter circuits of the type shown in Fig. $5-12$ can be used to advantage in the reccption of e.w. and single-sidehand suppressed-career signals, by introducing the local oscillator on the No. 1 grid, the signal on the No. 3 grid, and working the tube into an audio load. Its operation can
be visualized as heterodyning the incoming signal into the audio range. The use of such circuits for audio conversion has been limited to selective i.f. amplifiers operating below 500 kc . and usually below 100 kc . In ordinary a.m. signal cannot be received on such a detector unless the tuning is adjusted to make the local oscillator zero-beat with the incoming carrier.

Since the beat oseillator modulates the electron stream completely, a large beat-oscillator component exists in the plate circuit. To prevent overload of the following audio amplifier stages, an adequate i.f. filter must be used in the output of the converter.

THE HIGH-FREQUENCY OSCILLATOR

Stability of the receiver is dependent chiefly upon the stability of the h.f. oscillator, and particular carc should be given this part of the receiver. The frequency of oscillation should be insensitive to mechanical shock and changes

Fig. 5-13 - IIigh-frequency oscillator circuits. A, pentode grounded-plate oscillator; 13, triode groundedplate oscillator; C, triode oscillator with tickler circuit. Coupling to themixermay betakenfrom points X and I, In A and 13, coupling from Y will reduce palling effecta, but gives less voltage than from X; this type is best adapted to mixer circuits with small oseillator-voltage requirements. Typical values for components are as follows:

	Circuit A	Cirruit 3	Circuit C
$\overline{\mathrm{C}_{1}-}$	$100 \mu \mu \mathrm{fd}$.	$100 \mu \mu \mathrm{fl}$.	$100 \mu \mu \mathrm{fd}$.
$\mathrm{C}_{2}-$	$0.1 \mu \mathrm{fil}$.	$0.1 \mu \mathrm{dd}$.	$0.1 \mu \mathrm{fd}$.
C_{3} -	$0.1 \mu \mathrm{fd}$.		
K_{1} -	47,000 ohms.	47,000 ohms.	47,000 ohms,
l_{2} -	47,000 ohms.	10,000) to	10,000 to

The plate-supply voltage should be 250 volts. In circuits 13 and C, \dot{R}_{2} is used to drop the supply voltage to $100-150$ volts; it may be omitted if voltage is obtained from a voltage divider in the power supply.
in voltage and loading. Thermal effects (slow change in frequency because of tube or circuit heating) should be minimized. They can be reduced by using ceramic instead of bakelite insulation in the r.f. circuits, a large cabinet relative to the chassis (to provide for good radiation of developed heat), minimizing the number of high-wattage resistors in the receiver and putting them in the separate power supply, and not mounting the oscillator coils and tuning condenser too close to a tube. Iropping up the lid of a receiver will often reduce drift by lowering the terminal temperature of the unit.

Sensitivity to vibration and shock can he minimized by using good mechanical support for coils and tuning condensers, a heavy chassis, and by not hanging any of the oscillator-eircuit conponents on long leads. Tie-points should be used to avoid long leads. Stiff short leads are excellent because they can't be made to vibrate.

Smooth tuning is a great convenience to the operator, and can be obtained by taking pains with the mounting of the dial and tuning condensers. They should have good alignment and no back-lash. If the condensers are mounted off the chassis on posts instead of brackets, it is almost impossible to avoid some back-lash unless the posts have extra-wide bases. The condensers should be selected with good wiping contacts to the rotor, since with age the rotor contacts can be a source of erratic tuning. All joints in the oscillator tuning circuit should be carefully soldered, because a loose connection or "rosin joint" can develop trouble that is sometimes hard to locate. The chassis and panel materials should be heavy and rigid enough so that pressure on the tuning dial will not cause torsion and a shift in the frequency.

In addition, the oscillator must be capable of furnishing sufficient r.f. voltage and power for the particular mixer circuit chosen, at all frequencies within the range of the receiver,
and its harmonic output should be as low as possible to reduce the possibility of spurious responses.

The oscillator pate power should be as low as is consistent with adequate output. Low plate power will reduce tube heating and thereby lower the frequency drift. The oscillator and mixer circuits should be well isolated, preferably by shielding, since coupling other than by the intended means may result in pulling.

If the h.f-oscillator frequency is affected by changes in plate voltage, a voltage-rogulated plate supply (VIR tube) can be used.

Circuits

Several oscillator circuits are shown in Fig. $5-1: 3$. The point at which output voltage is taken for the mixer is indicated in each case by X or Y. ('ircuits A and 13 will give ahout the same results, and require only one coil. However, in these two circuits the cathode is above ground potential for r.f., which often is a cause of hum modulation of the oscillator output at 14 Me . and higher frequencies when a.c.-heated-cathode tubes are used. The circuit of Fig, 5-13(reduces hum because the cathode is grounded. It is simple to adjust, and it is also the best circuit to use with filament-type tubes. With filament-type tubes, the other two circuits would require r.f. chokes to keep the filament above r.f. ground.

Besides the use of a fairly high C / L ratio in the tuned circuit, it is necessary to adjust the feed-back to obtain optimum results. Too much feed-back may cause the oscillator to "squeg" and generate several frequencies simultaneously; too little feed-back will cause the output to be low, In the tapped-coil circuits (A, B), the feedback is increased by moving the tap toward the grid end of the coil. Lsing the oscillator shown at C, feed-back is obtained by increasing the number of turns on L_{2} or by moving L_{2} closer to L_{1}.

The Intermediate-Frequency Amplifier

One major advantage of the superhet is that high gain and selectivity can be obtained by using a good i.f. amplifier. This can be a onestage affair in simple receivers, or two or three stages in the more elaborate sets.

Choice of Frequency

The selection of an intermediate frequency is a compromise between conflicting factors. The lower the i.f. the higher the selectivity and gain, but a low i.f. brings the image nearer the desired signal and hence decreases the image ratio. A low i.f. arso increases pulling of the oscillator frequency. On the other hand, a high i.f. is beneficial to both image ratio and pulling, but the selectivity and gain are lowered. The difference in gain is least important.

An i.f. of the order of 455 kc . gives good selectivity and is satisfactory from the standpoint of image ratio and oscillator pulling at frequencies
up to 7 Mc . The image ratio is poor at 14 Mc . when the mixer is comnected to the antenna, but adequate when there is a tuned r.f. amplifier between antenna and mixer. It 28 Mc , and on the very-high frequencies, the image ratio is very poor unless several r.f. stages are used. Above 14 Mc., pulling is likely to be bad unless very loose coupling can be used between mixer and oscillator.

With an i.f. of about 1600 kc ., satisfactory image ratios can be secured on 14,28 and 50 Mc. but the i.f. selectivity is considerably lower. For frequencies of 28 Mc , and higher, the best solution is to use a double superheterodyne, choosing one high i.f. for image reduction (5 and 10 Mc , are frequently used) and a lower one for gain and selectivity.

In choosing an i.f. it is wise to avoid frequencies on which there is considerable activity by the various radio services, since such signals
may be picked up directly on the i.f. wiring. Shifting the i.f. or better shielding are the solutions to this interference problem.

Fidelity; Sideband Cutting

Modulation of a carrier causes the generation of sideband frequencies numerically equal to the carrier frequency plus and minus the highest modulation frequency present. If the receiver is to give a faithful reproduction of modulation that contains, for instance, audio frequencies up to 5000 cycles, it must at least be capable of amplifying equally all frequencies contained in a band extending from oono cycles above or below the carrier frequency, In a superhoterodyne, where all carrier frequencies are changed to the fixed intermediate frequency, this means that the i.f. amplifier should amplify equally well all frequencies within that band. In other words, the amplification must be uniform over a band 5 ke . wide, when the carrier is set at one edge. If the carrier is set in the center, a $10-\mathrm{kc}$. band is required. The signal-frequency rircuits usually do not have enough over-all solectivity to affect materially the "adjacentchannel" selectivity, so that only the i.f-amplifier selertivity need be considered.

If the selectivity is too great to permit uniform amplification over the band of frequenries occupied by the modulated signal, some of the sidebands are "rut." While sideband rutting reduces fidelity, it is frequently preferable to sacrifice naturahess of reproduction in favor of communications effectiveness.

The selectivity of an i.f. amplifier, and hence the tendency to cut sidebands, incroases with the number of amplifier stages and also is greater the lower the intermediate frequency. From the standpoint of commumication, sideband cutting is never serious with two-stage amplifiers at frequencies as low as 45 kc . A two-stage i.f. amplifier at 8.5 or 100 ke . will be sharp enough to cut some of the higher-frequency sidehands, if good transfomers are used. However, the cutting is not at all serious, and the gain in selectivity is worthwhile if the receiver is used in the lowerfrequency bands.

Circuits

I.f. amplifiers usually consist of one or two stages. At 45\% ke. two stages generally give all the gain usable, and also give suitable selectivity for phone reeception.

A typigal circuit arrangement is shown in Fig. 5-14. A second stage would simply duplicate the circuit of the first. The i.f, amplifier practically always uses a remoto cut-ofi pen-tode-type tube onerated as a Class A amplifier. For maximum selectivity, double-tuned transformors are used for interstage coupling, although single-tuned circuits or transformers with untuned primaries can be used for coupling, with a consequent loss in selectivity. All other things being equal, the selectivity of an i.f. amplifier is proportional to the number of tuned circuits in it.

In Fig. 5-14, the gain of the stage is reduced by introducing a negative voltage to the lead marked "to a.v.c." or a positive voltage to R_{1} at the point marked "to manual gain control." In either case, the voltage increases the bias on the tube and reduces the mutual conductance and hence the gain. When two or more stages are used, these voltages are generally obtained from common sources. The decoupling resistor, R_{3}, helps to prevent unwanted interstage coupling. f_{2} and R_{4} are part of the automatic volumecontrol circuit (described later); if no a.v.e. is used, the lower end of the i.f.-transformer secondary is comnected to ground.

In a two-stage amplifier the sereen grids of both stages may be fed from a common supply, either through a resistor $\left(R_{2}\right)$ as shown, the sereens being comected in parallel, or from a voltage divider across the plate supply. Separate screen voltage-dropping resistors are preferable for preventing undesired coupling between stages.

Typical values of cathode and screen resistors for common tubes are given in Table 5-11. The 6K7, 6iNK7, 613.J6 and 7H7 are recommended for i.f. work. The indicated screen resistors drop the plate voltage to the correct screen voltage, as R_{2} in Fig. 5 - 14 .

When two stages are used the high gain will tend to cause instability and oseillation, so that good shielding, by-passing, and careful rircuit arrangement to prevent stray coupling, with exposed r.f. leads well separated, are necessary.

I.F. Transformers

The tuned circuits of i.f. amplifiers are built up as transformer units consisting of a metal shield container in which the roils and tuning condensers are mounted. Both air-core and powdered iron-core universal-wound coils are used, the latter having somewhat higher Q_{s} and hence greater selectivity and gain. In universal windings the coil is wound in layers with each turn traversing the length of the coil, back and forth, rather than being wound perpendicular to the axis as in ordinary single-layer coils. In a straight multilayer winding, a fairly large

Fif, 5-14-Typical intermediate-frefuency amplifier circuit for a superheterodyne receiver. Representative values for components are as follows:
$\mathrm{C}_{1}-0.1 \mu \mathrm{fd}$. at 455 ke .; $0.01 \mu \mathrm{fd}$, at 1600 ke , and higher. $\mathrm{C}_{2}-0.01 \mu \mathrm{fd}$.
$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}-0.1 \mu \mathrm{fd}$. at $455 \mathrm{kc} . ; 0.01 \mu \mathrm{fd}$. above 1600 ke . $\mathrm{K}_{1}, \mathrm{H}_{2}$-See Trable 5.11. $\quad \mathrm{K}_{3}-1800$ ohms.
$\mathrm{R}_{4}-0.27$ megolm.

AIR TUNED
PERMEABILITV TUNED
Fig. 5.15 - Representative i.f.-transformer construction. Coils are supported on insulating tubing or (in the air-tuned type) on wax-impregnated wooden dowels. The shield in the air-tuned transformer prevents capacity coupling between the tuning condensers. In the permeability-tuned transformer the cores consist of fincly-divided iron particles supported in an insulating binder, formed into evlindrical "plugs." The toning eapacity is fixed, and the inductaness of the coils are varied by moving the iron phags in and out.
capacity can exist between layers. ['niversal winding, with its "criss-crossed" turns, tends to reduce distributed-capacity effects.

For tuning, air-dielestric tuning condensers are preferable to mica compression types beause their capacity is practically umaffected by changes in temperature and humidity. Iron-rore transformers may be tuned by varying the inductance (permeability tuning), in which case stability comparable to that of variable air-condenser tuming can be obtained by use of high-stability fixed mica condensers. Such stability is of great importance, since a circuit whose frequency "drifts" with time eventually will be tuned to a different frequency than the other circuits, thereby reducing the gain and selectivity of the amplifier. Typical i.f.-transformer construction is shown in Fig. 5-15.

Besides the type of i.f. transformer shown in Fig. $5-15$, special units to give desired selectivity characteristics are available. For higher-than-ordinary adjacent-chamel selectivity tripletuned transformers, with a third tuned circuit inserted between the input and output windings, are sometimes used. The energy is transferred from the input to the output windings via this tertiary winding, thus adding its selectivity to the over-all selectivity of the transformer. Varia-ble-selectivity transformers also can be obtained. These usually are provided with a third (untunce) winding which can be connected to a resistor, thereby loading the tuned circuits and decreasing the Q to broaden the selectivity curve. The resistor is switched in and out of the circuit to vary the selectivity. Another method is to vary the coupling between primary and secondary, overcoupling being used to broaden the selectivity curve. Special circuits using single tuned circuits, coupled in any of several different ways, are used in some applications.

Selectivity

The over-all selectivity of the r.f. amplifier will depend on the frequency and the number of stages. The following figures are indirative of the bandwidths to be expected with goodquality transformers in amplifiers so constructed as to keep regeneration at a minimum:

	Bandwidth in Kilocycles		
	2 times	10 times	100 time
Intermediate F'sequency	dourn	dount	dourn
Onestage, 50 ke , (iron corn)	0.8	1.4	2.8
One stage, 455 kc , (air corre)	8.7	17.8	32.3
One stage, 4.55 ke , (iron core)	4.3	10.3	20.4
T'wo stages, 45is ke. (iron core)	2.3	6.4	10.8
'T'wo stages, 160 ($) \mathrm{kc}$.	11.0	16.6	27.4
Twostages, \%onke.	25.8	46.0	100.0

Tubes for I.F. Amplifiers

Variable- μ (remote cut-off) pentodes are almost invariably used in i.f. amplifier stages, since grid-hias gain control is practically always applied to the i.f. amplifier. Tubes with high plate resistance will have least effect on the selectivity of the amplifier, and those with high mutual conductance will give greatest gain. The choice of i.f. tubes has practically no effect on the signal-to-noise ratio, since this is determined by the preceding mixer and r.f. amplifier (if the latter is used).

When single-ended tubes are used, the plate and grid leads should be well separated. With these tubes it is advisable to mount the screen by-pass condenser directly on the bottom of the socket, crosswise between the plate and grid pins, to provide additional shielding. The outside foil of the condenser should be connected to ground.

THE SECOND DETECTOR AND beAt oscillator

Detector Circuits

The second detector of a superheterodyne receiver performs the same function as the detector in the simple receiver, but usually operates at a higher input level because of the relatively

TABLE 5.II ${ }^{\text {Cathode and Screen-Dropping }}$ Resistors for R.F. or I.F. Amplifiers				
Tube	Plate Volts	Screen Vollz	Cathode Resistor	Screen Resis!or
6.187	30		200 ohms	33,000 ohms
6.4 C 7	300		160	62,000
6.4K5	180	120	200	27.000
6.AU6	250	150	68	33,000
6 B : 6	250	100	68	33,000
$6 \mathrm{6JJ} 6$	250	100	82	47.000
6.57	250	100	1200	270,400
6 K 7	250	125	240	47,000
6SG7	250	125	68	27,000
6 SG 7	250	150	200	47,000
6 SH 7	250	150	68	39,000
6 S 57	250	100	820	180,000
6 SK 7	250	100	270	56,000
797/1232	250	100	270	68,000
7 H 7	250	150	180	27,000

Fig. 5-16 - Antomatic volameaontrol circuit using a daal-tiodetriode as a combined a.v.e. rectifier, second detector and first a.f. amplifier.
$\mathrm{R}_{1}-0.27$ megolim.
$1 R_{2}-50,0100$ to 250,000 ohms.
$\mathrm{K}_{3}-1800$ ohms.
$\mathbf{R}_{4}-2$ to 5 memohms.
$K_{5}-0,5$ to 1 megohm.
$\mathrm{R}_{6}, \mathrm{I}_{7}, \mathrm{R}_{\mathrm{s}}, \mathrm{R}_{9}-0.25$ megohm.
Rio-0.5-megohm variable.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}-100 \mu \mu \mathrm{fd}$.
($4-0.1 \mu \mathrm{fd}$.
C. $5,\left(f, C_{-}-0,01 \mu \mathrm{fd}\right.$.
C. C, Cy - 0.01 to $0.1 \mu \mathrm{fd}$.

$\mathrm{C}_{11}-270 \mu \mu \mathrm{fd}$.

great amplification ahead of it. Therefore, the ability to handle large signals without distortion is preferable to high sensitivity. I'late detection is used to some extent, but the diode detertor is most popular. It is especially adapted to furnishing cutomatic gain or volume control. The basic circuits have been described, although in many cases the diode elements are incorporated in a multipurpose tube that contains an amplifier section in addition to the diode.

The Beat Oscillator

Any standard oscillator circuit may be used for the beat oscillator required for heterodyne reception. Special beat-oscillator transformers are available, usually consisting of a tapped coil with adjustable tuning; these are most conveniently used with the circuits shown in Fig. $5-13 \mathrm{~A}$ and B , with the output taken from Y. Λ variable condenser of about $25-\mu \mu \mathrm{fd}$. capacity may be connected between cathode and ground to provide fine adjustment of the frequency. The beat oscillator usually is coupled to the seconddetector tuned circuit through a fixed condenser of a few $\mu \mu \mathrm{fd}$. capacity.

The beat oscillator should be well shielded, to prevent coupling to any part of the receiver except the second detector and to prevent its harmonies from getting into the front end and being amplified along with desired signals. The b.f.o. power should be as low as is consistent with sufficient audio-frequency output on the strongest signals. However, if the beat-oscillator output is too low, strong signals will not give a proportionately strong audio signal. Contrary to some opinion, a weak b.f.o. is never an advantage.

AUTOMATIC VOLUME CONTROL

Automatio regulation of the gatin of the receiver in inverse proportion to the signal strength is an operating eonvenienere in 'phone reception, since it tends to keep the output level of the receiver constant regardless of imput-signal strongth. The average rectified d.e, voltage, developed by the received signal across a resistance in a detector circuit, is used to vary the bias on the r.f. and i,f. amplifier tubes. Since this
voltage is proportional to the average amplitude of the signal, the gain is reduced as the signal strength becomes greater. The control will be more complete as the number of stages to which the a.v.c. bias is applied is increased. Control of at least two stages is advisable.

Circuits

A typical circuit using a diode-triode type tube as a combined a.v.c. rectifier, detector and first audio amplifier as shown in Fig. j)-16. One plate of the diode sertion of the tube is used for signal detection and the other for a.v.e. rectification. The a.v.c. diode plate is fed from the detector diode through the small coupling condenser, (3. I negative bias voltage resulting from the flow of rectified carrier current is developed across R_{4}, the diode load resistor. This negative voltage is applied to the grids of the controlled stages through the filtering resistors, R_{5}, R_{f}, R_{7} and R_{8}. When s_{1} is closed the a.v.e. line is grounded, removing the a.v.e. bias from the amplifiers.

It dos's not matter which of the two diode plates is selected for audio and which for a.v.c. Frequently the two plates are comnected together and used as a combined detector and a.v.e. reatifier. This rould be done in Fig. is-16. The a.v.e. filter and line would connect to the junction of R_{2} and C_{2}, while C_{3} and R_{4} would be omitted from the circuit.

Delayed A.V.C.

In Fig. 5-16 the audio-diode return is made dirertly to the cathode and the a.v.e. diode is returned to ground. This places bias on the a.v.e. diode equal to the d.c. drop through the cathode resistor (a volt or two) and thus delays the application of a.v.e. voltage to the amplifier grids, since no rectification takes pare in the a.v.e. diode cirenit until the rarrier amplitude is large enough to overome the bias. Without this delay the a.v.e. would start working even with a very small sigmal. This is undesirable, beranse the full amplification of the receiver then could not be realized on weak signals. In the audio-diode circuit fixed bias would cause distortion, so the return there is directly to the cathode.

Time Constant

The time constant of the resistor-condenser combinations in the a.v.e. eircuit is an important part of the system. It must be high enough so that the modulation on the signal is completely filtered from the d.c. output, leaving only an average d.c. component which follows the relatively slow carrier variations with fading. Audiofrequeney variations in the a.v.c. voltage applied to the amplifier grids would reduce the percentage of modulation on the ineoming signal. But the time constant must not be too great or the a.v.c. will be unable to follow rapid fading. The caparitance and resistance values indicated in Fig. j-16 will give a time constant that is satisfactory for average reception.

C.W.

A.v.c. can be used for e.w. reception but the eircuit is more complicated. The a.v.e, voltage must be derived from a rectifier that is isolated from the beat-frequency oscillator (otherwise the rectified b.f.o. voltage will reduce the receiver gain even with no signal coming through). This is generally done by using a separate a.v.e. channel connected to an i.f. amplifier stage ahead of the seeond detector (and b.f.o.). If the selectivity ahead of the a.v.e. rectifier isn't good, strong adjacent signals will develop a.v.e. voltages that will reduee the reeeiver gain while listening to weak signals. When elear channels are available,
however, e.w. a.v.c. will hold the receiver output eonstant over a wide range of signal input. A.v.e. systems designed to work on e.w. signals must have fairly long time constants to work with slow-speed sending, and often a selection of time constants is made available.

Amplified A.V.C.

The a.v.e. system shown in Fig. 5-16 will not hold the audio output of the receiver exactly constant, although the variation becomes less as more stages are controlled by the a.v.c. voltage. The variation also becones less as the delay voltage is increased, although there will, of course, be variation in output if the signal intensity is below the delay-voltage level at the a.v.e. rectifier. In the circuit of Fig. 5-16, the delay voltage is set by the proper operating bias for the triode portion of the tube. However, a separate diode may be used, as shown in Fig. $5-17 \mathrm{~A}$. Since such a system requires a large voltage at the diode, a separate i.f. stage is sometimes used to feed the delayed a.v.c. diode, as in Fig. 5-1713. A system like this, often called an "amplified a.v.e." system, gives superlative control action, since it maintains full receiver sensitivity for weak signals and substantially uniform audio output over a very wide range of signal strengths.

Noise Reduction

Types of Noise

In addition to tube and circuit noise, much of the noise interferme experienced in reception of high-frequency signals is caused by domestic or industrial electrical equipment and by automobile ignition systems. The interference is of two types in its efferts. The first is the "hiss" type, consisting of overlapping pulses similar in nature to the recoiver noise. It is largely reduced by high selectivity in the receiver, especially for eode reception. The second is the "pistol-shot" or "machine-gun" type, consisting of separated impulses of high amplitude. The "hiss" type of interference usually is caused by commutator sparking in d.c. and series-wound a.e. motors, while the "shot" type results from separated spark discharges (a.c. power leaks, switch and key clicks, ignition sparks, and the like).

The only known approach to reducing tube and circuit noise is through better "front-end" design and through more over-all selectivity.

Impulse Noise

Impulse moise, berause of the short duration of the pulses compared with the time between them, must have high amplitude to contain much average chergy. Hence, noise of this type strong enough to cause much interference generally has an instantaneous amplitude much higher than that of the signal being rereived. The general principles of devices intended to reduce such noise is to allow the desired signal

Fig. 5.18-Serics-valve noisc-limiter circuits. A, as uscd with an infinite-impedance detector; B, with a diode detector. Typical valucs for components are as follows:
$\mathrm{R}_{1}-0.27$ megohm.
$\mathrm{I}_{4}-20,000$ to 50,000 ohms.
$\mathrm{R}_{2}-47,000$ ohms.
$\mathrm{C}_{1}-270 \mu \mu \mathrm{fd}$.
$\mathbf{R}_{3}-10,000$ ohms.
$\mathrm{C}_{2}, \mathrm{C}_{3}-0.1 \mu \mathrm{fd}$.

All other diode-circuit constants in B are conventional.
to pass through the receiver unaffected, but to make the receiver inoperative for amplitudes greater than that of the signal. The greater the amplitude of the pulse compared with its time of duration, the more successful the noise reduction.

Another approach is to "silence" (render inoperative) the receiver during the short duration time of any individual pulse. The listener will not hear the "hole" berause of its short duration, and very effective noise reduction is ob)tained. Such devices are called "silencers" rather than "limiters."

In passing through selective receiver circuits, the time duration of the impulses is increased, because of the (Z of the circuits. Thus the more selectivity ahead of the noise-reducing device, the more difficult it becomes to secure good pulse-type noise suppression.

Audio Limiting

A considerable degree of noise reduction in eode reception can be accomplished by am-plitude-limiting arrangements applied to the audio-output circuit of a receiver. Such limiters also maintain the signal output nearly constant during fading. These output-limiter systems are simple, and adaptable to most receivers. However, they camot prevent noise peaks from overloading previous stages.

SECOND-DETECTOR NOISE LIMITER CIRCUITS

The circuit of Fig, 5-18 "chops" noise peaks at the second detector of a superhet receiver by means of a biased diode, which becomes nonconducting above a predetermined signal level. The audio output of the detector must pass through the diode to the grid of the amplifier tube. The diode normally would be nonconducting with the connections shown were it not for the fact that it is given positive bias from a 30 -volt source through the adjustable potentiometer, R_{3}. Resistors R_{1} and R_{2} must be fairly large in value to prevent loss of audio signal.

The audio signal from the detector can be considered to modulate the steady diode current, and conduction will take place so long as the diode plate is positive with respect to the cathode. When the signal is sufficiently large to swing the cathode positive with respect to the plate, however, conduction reases, and that portion of the signal is cut off from the audio amplifier. The point at which cut-off occurs can be selected by adjustment of R_{3}. By setting R_{3} so that the signal just passes through the "valve," noise pulses higher in amplitude than the signal will be cut off. The circuit of Fig. 5-18A, using an infinite-impedance detector, gives a positive voltage on rectifi-

cation. When the rectified voltage is negative, as it is from the usual diode detector, the cirruit arrangement shown in lig. $\overline{\text { g }}$ - 1813 must be used.

An audio signal of about ten volts is required for good limiting artion. The limiter will work on either c.w. or 'phone sigmals, but in either case the potentiometer must be set at a point determined by the strength of the incoming signal.
second-detector noise-limiting circuits that automatically adjust themselves to the receiver carrier level are shown in Fig. 5-19. In either circuit, V_{1} is the usual diode second detector, $R_{1} R_{2}$ is the diode load resistor, and (${ }_{1}$ is an r.f. by-pass. A negative voltage proportional to the carrier level is developed arross (2 , and this voltage cannot change rapidly because R_{3} and ('2 are both large. In the circuit at A, diode V_{2} acts as a conductor for the audio signal up to the point where its anode is negative with respect to the cathode. Noise peaks that exceed the maximum carrier-modulation level will drive the anode negative instantaneously, and during this time the diode does not conduct. The large time constant of $C_{2} R_{3}$ prevents any rapid change of the reference voltage. In the circuit at B , the diode V_{2} is inactive until its cathode voltage exceeds its anode voltage. This condition will obtain under noise peaks and, when it does, the diode V_{2} short-circuits the signal and no voltage is passed on to the audio amplifier. Diode rectifiers such as the 6 H 6 and $6 \mathrm{ML} \cdot \mathrm{i}$, or the $1 \mathrm{~N}: 34$ germanium crystal diode, can be used for these types of noise limiters. Neither circuit is useful for c.w. reception, but they are both quite effective for 'phone work.

I.F. Noise Silencer

In the circuit shown in Fig. 5-20, noise pulses are made to decrease the gain of an i.f. stage momentarily and thus silence the receiver for the duration of the pulse. Any noise voltage in excess of the desired signal's maximum i.f. voltage is taken off at the grid of the i.f. amplifier, amplified by the noise-amplifier stage, and rectified by the full-wave diode noise rectifier. The noise circuits are tuned to the i.f. The rectified noise voltage is applied as a pulse of negative bias to the No, 3 grid of the 6 L 7 i.f, amplifier, wholly or partially disabling this stage for the duration of the individual noise pulse, depending on the amplitude of the noise voltage. The noise-amplifier/rectifier circuit is biased by means of the
"threshold control," R_{2}, so that rectification will not start until the noise voltage exreeds the desired signal amplitude. With automatic volume control the a.v.e, voltage can be applied to the grid of the noise amplifier, to augment this threshold bias. In a typical instance, this system improved the signal-to-noise ratio some 30 db . (power ratio of 1000) with heavy ignition interference, raising the signal-to-noise ratio from -10 db . without the silencer to +20 db . with the silencer.

SIGNAL-STRENGTH AND TUNING INDICATORS

An indicator that will show relative signal strength is a useful receiver arcessory. It is an aid in giving reports to transmitting stations, and it is helpful in aligning the receiver circuits, in conjunction with a test oscillator or other steady signal.

Three types of indirators are shown in Fig. i-2l. That at A uses an electron-ray tube, several types of which are available. The grid of the triode sertion usually is connerted to the a.v.c. line. The particular type of tube used depends upon the voltage available for its grid; where the

Fig. 5-20 - I.f. noise-silencing circuit. The plate supply should be 250 volts. T'ypical values for components are: $\mathrm{C}_{1}-50-250 \mu \mu \mathrm{fd}$. (use smallest value possible without r.f. feed-back).
$\mathrm{C}_{2}-47 \mu \mu \mathrm{fd} . \quad \mathrm{R}_{2}-5000$-ohm variable.
$\mathrm{C}_{3}-\mathbf{0 . 1} \mu \mathrm{fd} . \quad \mathrm{R}_{8}-22,000$ ohms.
$\mathrm{I}_{1}, \mathrm{R}_{4}, \mathrm{R}_{\mathrm{s}}-0.1 \mathrm{meg}$. $\mathrm{RFC}-20 \mathrm{mb}$.
T_{1}-Special i.f. transformer for noise rectifier.
a.v.c. voltage is large, a remote cut-off type (6 G 5), $6 \mathrm{~N}^{5}$) or $6.1 \mathrm{D}(\mathrm{G}(\mathrm{i})$ should be used in preference to the sharp cut-off type (6 L)

In 13 , a milliammoter is connerted in series with the da. plate lead to one or more r.f. and i.f. tubes, the grids of which are controlled by a.v.e. voltage. Since the plate current of such tubes varies with the strength of the incoming signal, the meter will indicate relative signal intensity and may be calibrated in db. above and below some input-voltage reforence level. The scale range of the meter should be chosen to fit the number of tubes in use; the maximum plate current of the average remote cut-olf r.f. pentode is from 7 to 10 milliamperes. The shunt resistor, R, enables setting the pate current to the fullscale value ("zero adjustment"). With this system the ordinary meter reads downward from full somle with increasing signal strength.

The system at (' uses a $0-1$ milliammeter in a bridge circuit, arranged so that the meter reading and the signal strength increase together. The current through the branch containing R_{1} should be approximately equal to the current through that containing R_{2}. In some manufactured receivers this is done by draining the screen voltage-divider current and the current to the sercens of three r.f. pentodes (r.f. and i.f. stages) through R_{2}, the sum of these currents being about equal to the maximum plate current of one a.v.e.controlled tube. The sensitivity can be increased by increasing the resistance of R_{1}, R_{2} and R_{3}. The initial setting is made with the manuad gain control set near maximum, when R_{3} should be adjusted to make the meter read zero with no signal.

Fig, 5-21 - 'luning-indicator or S-meter circuits for superhet receivers. A, electron-ray indicator; 13, platecurrent meter for tubes on a,v, c; ; C. bridpe cireuit for a.v.c.controlled tube. In B, resistor K should have a maximum resistance several times that of the milliammetor. In C, representative values for the components are: $R_{1}, 270$ ohms; $R_{2}, 330$ obms; $R_{3}, 1000$.ohm variable.

- INTERMEDIATE-FREQUENCY AMPLIFIERS

As mentioned earlier in this chapter, one of the big advantages of the superheterodyne receiver is the improved solectivity that is possible. This selectivity is obtaned in the i.f. amplifier, where the lower frequency allows more selectivity per stage than at the higher signal frequency. For 'phone reception, the limit to useful selectivity in the i.f. amplifier is the point where so many of the sidebands are rut that intelligibility is lost, although it is possible to remove complately one full set of side-bands without impairing the quality at all. Maximum receiver selectivity in 'phone reception requires good stability in both transmitter and receiver, so that they will both remain "in tune" during the transmission. The limit to useful selectivity in code work is around 100 or 200 cycles for hand-key speeds, hut this much solectivity requires good stability in both transmitter and receiver, and a slow receiver tuning rate for ease of operation.

Single-Signal Effect

In heterodyne c.w, reception with a superheterodyne receiver, the beat oscillator is set to give a suitable audio-freguency beat note when the incoming signal is converted to the intermediate frequency. For example, the beat oscillator may be set to 456 kc . (the i,f. heing 45.5 ke .) to give a 1000 -cycle beat note. Now, if an interfering signal appears at 457 ke ., or if the recoiver is tuned to hoterodyne the incoming signal to 457 ke , it will alsu be heterodyned by the beat oscillator to produre a 1000 cocle beat. Hence every signal can be tuned in at two places that will give a 1000 -evele beat (or any other low audio frequeney). This audiofrequency image effect can be redured if the i.f. sclectivity is such that the incoming signal, when heterodyned to $4.5 \mathrm{kc} \cdot$., is attenuated to a very low level.

When this is done, tuning through a given signal will show a strong response at the desired beat note on one side of zero beat only, instead of the two beat motes on either side of zero beat characteristic of less-selective reception, hence the name: single-signal reception.

The necessary selectivity is not ohtained with nonregenerative amplifiers using ordinary tuned circuits unless a low i.f. or a large number of circuits is used.

Regeneration

Regeneration can be used to give a singlesignal effert, particularly when the i.f. is $45 \overline{\mathrm{kc}}$. or lower. The resonance curve of an i.f. stage at critical regeneration (just below the oscillating point) is extremely sharp, a bandwidth of 1 kc . at 10 times down and is ke. at 100 times down being obtainable in one stage. The audio-frequency image of a given signal thus can be reduced by a factor of nearly 100 for a 1000 -rycle beat note (image 2000 cycles from resonance).

Regeneration is easily introduced into an i.f. amplifier by providing a small amount of capacity coupling between grid and plate. Bringing a short length of wire, comnected to the grid, into the vicinity of the plate lead usually will suffice. The feed-back may be controlled by the regular cathode-resistor gain control. When the i.f. is regenerative, it is preferable to operate the tube at reduced gain (high bias) and depend on regeneration to bring up the signal strength. This prevents overloading and increases selectivity.

The higher selectivity with regeneration reduces the over-all response to moise generated in the earlier stages of the receiver, just as does high selectivity produced by other moans, and therefore improves the signal-to-noise ratio. Ilowever, the regenerative gain varies with signal strength, being less on strong signals, and the selectivity varies.

Crystal Filters

Probably the simplest means for ohtaining high selectivity is by the use of a piezoelertric quartz crystal as a selective filter in the i.f. amplifier. Compared to a good tuned circuit, the Q of such a erystal is extremely high. The arystal is ground to be resonant at the desired intermediate frequency. It is then used as a selective coupler between i.f. stages.
lig. 5-22 gives a typical rrystal-filter resonance curve. For single-signal reception, the audio-frequency image can be reduced by a fartor of 1000 or more. Besides practically eliminating the a.f. image, the high selectivity of the crystal filter provides good discrimination against signals very close to the desired signal and, by reducing the band-width, reduces the response of the receiver to noise.

Crystal-Filter Circuits; Phasing

Several crystal-filter circuits are shown in Fig. $\overline{\text { anden}}$. Those at A and B are practically identical in performanor, although differing in details. The crystal is commeeted in a bridge eireuit, with the secondary side of T_{1}, the imput transformer, balanced to ground either through a pair of condensers, $C^{\prime}-C^{(}(A)$, or by a centertap, on the secondary, $L_{2}(B)$. The bridge is completed by the crystal and the phasing con-
denser, ('2, which has a maximum caparity somewhat higher that the eapacity of the erystal in its holder. When (2 is set to balance the crystal-holder caparity, the resonance curve of the erystal circuit is practically symmetrical; the crystal acts as a series-resonant circuit of very high Q and thus allows signals of the desired frequency to be fed through (${ }_{3}$ to $L_{3} L_{4}$, the output transformer. Without ('2, the holder eapacity (with the crystal acting as a dielectric) would pass undesired signals.

The phasing control has an additional function besides neutralization of the erystal-holder capacity. The holder capacity becomes a part of the crystal circuit and causes it to art as a parallel-tuned resonant circuit at a frequency slightly higher than its series-resonant frequency. signals at the parallel-resonant frequency thus are prevented from reaching the output circuit. The phatsing control, by varying the effect of the holder caparity, permits shifting the parallelresonant frequency over a considerable range, providing adjustable rejection of interfering signals. The effect of rejection is illustrated in Fig. 5-22.

Additional I.F. Selectivity

Many commercial communications receivers do not have sufficient selectivity for amateur use, and their performance can be improved by adding additional selectivity. One popular method is to couple a $13(-4 \overline{2}) 3$ aircraft receiver (war surplus, tuning range 190 to 5 an ke.) to the tail end of the 46 F - ke . i.f. amplifier in the communications receiver and use the resultant output of the $B(-45)$. The aircraft receiver uses an 8 8-ke. i.f. amplifier that is quite sharp-6.5 ke. wide at -60 dh. - and it helps tremendously in scparating 'phone signals and in backing up erystal filters for improved $\mathbf{c} w$, reception. (See QST, January, 1948, page 40.)

Fig. 5-22- Graphical representation of single-signal selectivity. The shaded area indicates the over-all bandwidth, or region in which response is obtainable.

If a 13C-45:3 is not available, it is still a simple matter to enjoy the benefits of improved selectivity. It is only necessary to heterolyne to a lower frequency the 46i-ke. signal existing in the receiver i.f. amplifier and then rectify it after passing it through the sharp low-frequency amplifior. The llammarlund ('ompany and the J. W. Diller Company both offer 50-ke. transformers for this application.
(Sら'T' references on high i.f. selectivity include: Mrlaughlin, "Selectable Ningle Sidehand," April, 19.18; (ithens, "'iuper-selective (.IW. Receiver," Aug., 1948.

RADIO-FREQUENCY AMPLIFIERS

While selectivity to reduce audio-frequency images can be built into the i.f. amplifier, discrimination against radio-frequency images can only be oltained in circuits ahead of the first detertor. These tuned circuits and their assoniated vacuum tubes are called radio-frequency amplifiers. For top performance of a communica-

Fig. 5-23- Crystal-filtor circuits of three types. All give variable handwilth, with (: having the greatest range of selectivity. Suitable cirouit valoes are as follows: (ircuit A, T_{1}, ppecial i.f. input transformer with high-inductanee primary, L_{1}, closely coupled to toned secomdary, $L_{2}:(i$, 50. $\mu \mu \mathrm{fd}$. variable; (, each 100$)_{-\mu \mu \mathrm{fd}}$. fixed (mica); (2, 10. to 15- $-\mu \mathrm{fd}$. (max.) variahle; (.3. $50-\mu \mu \mathrm{fd}$, trimmer; $L_{3} \mathrm{C} 4$, i.f. tuned eircuit, with L_{3} tapped to mateh erystal-rirenit impedance. In eircuit 13, T_{1} is the same as in circuit I except that the scomolary is eenter-tapped; C_{1} is $100-\mu \mu \mathrm{fd}$, variable; $\left(C_{2}, C_{3}\right.$ and C_{4}, same as for circnit $A_{;} L_{2} L_{4}$ is a transformer with primary, L_{4}, corresponding to tap on L_{3} in A. In eirenit ($S_{1} T_{1}$ is a special i.f. input transformer with tuned primary and low-impedance serombary; f, carl lon $-\mu \mu \mathrm{fa}$, fixed (mica): (i2, opposed stator phasing condenser, approximately 8 - $\mu \mu \mathrm{ff}$. maximum capacity each side; $L_{3} \mathrm{C}_{3}$, high- () i.f. tuned circuit; $R, 0$ to 3000 ohms (selectivity control).
tions receiver on frequencies above 7 Me ., it is mandatory that it have one or two stages of rif. amplification, for image rejection and improved sensitivity.

Receivers with an i.f. of tin) ke . can be experted to have some r.f. image response at a signal frequency of 14 Me. and higher if only one stage of r.f. amplifieation is used. (Regencration in the r.f. amplifier will reduce image response, but regeneration usually requires frequent readjustment when tuning across a band.) With two stages of r.f. amplifieation and an i.f. of 45% ke., no images should he apparent at 14 Me., but they will show up on 28 Me. and higher. Three stages or more of r.f. amplification, with an i.f. of 455 kc ., will redure the images at $28 . \mathrm{Mr}_{6}$., but it rally takes four or more stages to do a good job. The better solution at 28 Mc . is to use a "triple-detection" superheterodyne, with one stage of r.f. amplification and a first i.f. of 1600 ke. or higher. A normal receiver with an i.f. of 455 ke . can be converted to a triple superhet by eonnecting a "converter" (to be described later) ahead of the receiver.

For best selectivity, r.f. amplifiers should use high-Q cireuits and tubes with high input and output resistance. Variable- μ pentodes are pratetically always used, although triodes (neutralized or otherwise connected so that the won't oscillate) are often used on the higher frequeneics because they introduce less noise. Pentodes are better whore maximum image rejeetion is desired, Deanse they have less loading effect on the eireuits.

- FEED-BACK

Foed-back giving rise to regenoration and oseillation can occur in a single stage or it may appear as an over-all food-back through several stages that are on the same frequener. To a a ooid feed-back in a single stage, the output must be isolated from the input in every way possible, with the vacuum tube furnishing the only eoupling between the two cireuits. An oscillation can be obtained in an r.f. or i.f. stage if there is any undue eapacitive or inductive coupling betweren output and input circuits, if there is too high an impedance betwern eathode and ground or soreen and ground, or if there is any appreciable impedance through which the grid and plate eurrents ean flow in common. This means good shichling of roils and condensers in r.f. and i.f. eircuits, the use of good by-pass eondensers (mica or ceramie at r.f., paper or coramic at i.f.), and returning all by-pass condensers (grid, (athode, plate and screen) with short leads to one spot on the chassis. If single-ended tubes are used, the screen or cathode by-pass eondenser should be mounted across the soeket, to serve as a shield between grid and plate pins. Less eare is required as the frequency is lowered, but in high-impedance rireuits, it is sometimes neerssary to shield grid and plate lads and to be careful not to run them close together.

To avoid over-all feed-back in a multi-stage
amplifier, attention must be paid to avoid running any part of the output circuit bark near the input circuit without first filtering it carefully. Since the signal-carrying parts of the circuit (the "hot" grid and plate leads) can't be filtered, the best design for any multistage amplifier is a straight line, to keep the output as far away from the input as possible. For example, an r.f. amplifier might run along a chassis in a straight line, run into a mixer where the frequency is changed, and then the i.f. amplifier could be run hack parallel to the r.f. amplifier, provided there was a very large frequency difference between the r.f. and the i.f. amplifiers. However, to avoid any possible coupling, it would be better to run the i.f. amplifier off at right angles to the r.f.amplifier line, just to be on the safe side. (hood shielding is important in preventing over-all oscillation in high-gain-per-stage amplifiers, but it becomes less important when the stage gain drops to a low value. In a high-gain amplifier, the power leads (including the heater circuit) are common to all stages, and they can provide the over-all coupling if they aren't properly filtered. (inod by-passing and the use of series isolating resistors will generally eliminate any possibility of coupling through the power leads. R.f. chokes, instead of resistors, are used in the heater leads where necessary.

CROSSMODULATION

Since a one- or two-stage r.f, amplifier will have a passband measured in hundreds of ke. at 14 Me, or higher, strong signals will be amplified through the r.f. amplifier even though it is not tuned exartly to them. If these signals aro strong enough, their amplified magnitude may be measurable in volts after passing through several r.f. stages. If an undesired signal is strong enough after amplification in the r.f. stages to shift the operating point of a tulue (hy driving the grid into the positive region), the undesired signal will modulate the desired signal. This effect is called cross-modulation, and is often encoun-

Fig. 5-24 - Typical radio-freguenty amplifier circuit for a superheterodyne receiver. Representative values for components are as follows:
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}-0.01 \mu \mathrm{fd}$. below $15 \mathrm{Mc}, 0.001 \mu \mathrm{fl}$. at 30 Mc .
$\mathrm{k}_{1}, \mathrm{l}_{2}$ - Sce Table 5-11.
$11_{3}-1800$ ohms.
$\mathbf{R}_{4}-10.22$ megohm.

Fig. 5-25 - Converter-cireuit tracking methods. Following are approximate circuit values for 450. to $465-\mathrm{kc}$. i.f.s, with tuning ranges of aproximately 2.15-10.1 and Cohaving $1.10-\mu \mu \mathrm{fd}$, maximum, and the total minimum capacitance, ineluding C_{3} or C_{4}, being 30 to $35 \mu \mu \mathrm{fd}$.

Tuning Range	1.1	L_{2}	C5
1.i-1 Mc.	$50 \mu \mathrm{~h}$.	(10) μ h.	$0.0013 \mu \mathrm{fd}$.
$3.6-7.5 \mathrm{Mc}$.	$1.4 \mu \mathrm{~h}$.	$12.2 \mu \mathrm{hl}$.	$0.0122 \mu \mathrm{fd}$.
-1.5 Mc.	$3 . \overline{3} \mu \mathrm{~h}$.	$3 \mu \mathrm{~h}$.	$0.00 \cdot 15 \mu \mathrm{fd}$.
14-30 Mr.	$0.8 \mu \mathrm{~h}$.	0.18 .84 h .	None used

Approximate values for 450 . to 465^{-k} e. i.f.s with a 2,5 to 0 I tuning range. C_{1} and C_{2} loring $350 \cdot \mu \mu \mathrm{fd}$, maximum, minimum ineluding C_{3} and C_{4} being 40 to $50 \mu \mu \mathrm{fd}$.

Tuning Range	L_{1}	L_{2}	C_{6}
0.5-1.5 Mr.	$240 \mu \mathrm{~h}$.	$130 \mu \mathrm{~h}$.	$425 \mu \mu \mathrm{fll}$.
1.5-4.11c.	$32 \mu \mathrm{~h}$.	$25 \mu \mathrm{~h}$.	$0.00115 \mu \mathrm{fd}$.
4-10 Me.			
10-25 Mc.	$0.8 \mu \mathrm{l}$.	0.65 h .	None used

tered in receivers with several r.f. stages working at high gain. It shows up as a superimposed modulation on the signal being listened to, and often the effect is that a signal can be tuned in at several points. It can be reduced or eliminated by greater selectivity in the antenna and r.f. stages (difficult to obtain), the use of variable- μ tubes in the r.f. amplifier, reduced gain in the r.f. amplifier, or reduced antenna input to the receiver.

A receiver designed for minimum cross-modulation will use as little gain as possible ahead of the high-selectivity stages, to hold strong unwanted signals below the overload point.

Gain Control

To avoid cross-modulation and other overload effects in the first detector and r.f. stages, the gain of the r.f. stages is usually made adjustable. This is accomplished by using vari-able- μ tubes and varying the d.c. grid bias, either in the grid or cathode circuit. If the gain control is automatic, as in the case of a.v.c., the bias is controlled in the grid circuit Manual control of r.f. gain is generally done in the cathode circuit. A typieal r.f. amplifier stage with the two types of gain control is shown in Fig, is-2t.

Tracking

In a receiver with no r.f. stage, it is no inconvenience to adjust the high-frequency oscillator and the mixer circuit independently, berause the mixer tuning is broad and requires little attention over an amateur band. However, when r.f. stages are added ahead of the mixer, the r.f. stares and mixer will require retuning over an entire amateur band. Ilence most receivers with one or more r.f. stages gang all of the tuning eontrols to give a single-tuning-control receiver. Obviously there must exist a constant difference in frequency (the i.f.) between the weillator and the mixer/r.f. circuits, and when this condition is achicved the circuits are said to track.

Tracking methods for covering a wide frequency range, suitable for generalooverage re(eivers, are shown in Fig. 戶)-2.). The tracking capacity, (${ }_{5}$, commonly consists of two con-
densers in parallel, a fixed one of somewhat less capacity than the value needed and a smaller variable in parallel to allow for adjustment to the exact proper value. The trimmer, C_{4}^{\prime}, is first set for the high-frequency end of the tuning range, and then the tracking condenser is set for the low-frequency and. The tracking capacity becomos larger as the percentage difference between the oscillator and signal frequencies becomes smaller (that is, as the signal frequency becomes higher). Typical circuit values are given in the tables under Fig, is-25. The coils can be calculated with the ARRL. Lightning ('alculator and then trimmed in the circuit for best tracking.

In amateu-band receivers, traching is simplified by choosing a bandspread circuit that gives practically straight-line-frequency tuning (equal frequency change for each dial division), and then adjusting the oscillator and mixer tuned circuits so that both cover the same total number of kilocycles. For example, if the i.f. is $45 \overline{\mathrm{kr}}$. and the mixer circuit tunes from 7000 to 7300 ke . between two given points on the dial, then the oscillator must tune from 7 tisi to 7an ke , between the same two dial readings. With the bandspread arrangement of Fig. F-8.1, the tuning will be practically straight-line-frequency if $(2$ (bandset) is 4 times or more the maximum capacity of (1 (handspead), as is usially the case for strictly amateur-band coverage. \dot{C}_{1} should be of the straight-line-capacity type (semi-circular plates).

Improving Receiver Sensitivity

The sensitivity (signal-to-noise ratio) of a receiver on the higher frequencies above 20 Mc . is dependent upon the bandwidth of the receiver and the noise contributed by the "front end" of the receiver. Neglecting the fact that the image rejection is poor, a receiver with no r.f. stage is generally satisfactory, from a sensitivity point, in the 3,5 - and 7 -Me. bands. Ilowever, as the frequency is increased and the atmospheric noise becomes less, the advantage of a good "front end" becomes apparent. Ilence at 14 Mc. and higher it is worth while to use at least one stage of r.f. amplification ahead of the first detector for best sensitivity as well as image rejection. The multigrid converter tubes have very poor noise figures, and even the best pentodes and triodes are three or four times noisier when used as mixers than they are when used as amplitiers.

If the purpose of an r.f. amplifier is to improve the receiver noise figure at 14 Mc , and higher, a high- i_{m} pentode or triode should be used. Among the pentodes, the best tubes are the $6.1 C 7,6.1 K \bar{i}$ and the $6 S^{(97}$, in the order named. The BAK5 takes the lead around 30 Mc . The 6J4, 6.J6, 7 F8 and triode-connected 6.1 K 5 are the best of the triodes. For best noise figure, the antenna circuit should be coupled a little heavier than optimum. This cannot give best selectivity in the antenna circuit, so it is futile to try to maximize sensitivity and selectivity in this circuit.

When a receiver is satisfactory in every respert (stability and selectivity) except sensitivity on 14 and/or 28 Me, the best solution for the amateur is to add a preamplifier, a stage or two of r.f. amplification designed expressly to improve the sensitivity. If image rejection is lacking in the receiver, some selectivity should be built into the pre-amplifier (it is then called as preselector). If, however, the receiver operation is poor on the higher frequencies but is satisfactory on the lower ones, a "converter" is the bost solution.
some commercial recoivers that appear to lack sensitivity on the higher frequencies can be improved simply by tighter coupling to the antenna. Since the recoiver manufacturer has no way to predict the tipe of antenna that will be used, he generally designs the input for some compromise value, usually around 300 or 400 ohms in the high-frequency ranges. If your antenna matches to something far different from this, the receiver effertiveness can be improved by proper matching. This can be aceomplished by changing the antenna to the right value (as determined from the receiver instruction book) or by using a simple matching device as described later in this chapter. Overcoupling the input circuit will often improve sensitivity but it will, of course, always reduce the image-rejection contribution of the antenna circuit.

Commercial receivers can also be "hopped up" by substituting a high- i_{m} tube in the first r.f.
stage if one isn't already there. The amateur must be prepared to take the consequences, however, since the stage may oscillate, or mot track without some modification. A simpler solution is to add the "hot" r.f. stage ahead of the receiver.

Regeneration

Regeneration in the r.f. stage of a receiver (where only one stage exists) will often improve the sensitivity because the greater gain it provides serves to mask more completely the firstdetector noise, and it also provides a measure of automatic matching to the antenna through tighter coupling. However, accurate ganging becomes a problem, because of the increased selectivity of the regenerative r.f. stage, and the receiver almost invariably becomes a two-handedtuning device. Regeneration should not be overlooked as an expedient, however, and many amateurs have used it with considerable success.

Iligh- $\left(y_{m}\right.$ tubes are the best as regenerative amplifiers, and the feed-bark should not be controlled ber changing the operating voltages (which should be the same as for the tube used in a high-gain amplifier) but by changing the loading or the feed-back coupling. This is tricky and unother reason why regeneration is not too widely used.

Gain Control

In a receiver front end designed for best signal-to-noise ratio, it is advantageous in the reception of wak signals to eliminate the gain control from the first r.f. stage and allow it to run "wide open" all of the time. If the first stage is controlled along with the i.f. (and other r.f. stages, if any), the signal-to-noise ratio of the receiver will suffer. As the gain is reduced, the G_{m} of the first tube is reduced, and its noise figure becomes higher. A good receiver might well have two gain controls, one for the first r.f. stage and another for the i,f, and other r.f. stages.

Extending the Tuning Range

As mentioned carlier, when a receiver doesn't eover a particular frequency range, either in fact or in satisfactory performance, a simple solution is to use a converter. A converter is another "front end" for the receiver, and it is made to tune the proper range or to give the necessary performance. It works into the receiver at some frequency between 1.6 and 10 Mc . and thus forms with the receiver a "triple-detection" superhet.

There are several different types of converters in vogue at the present time. The commonest type, since it is the oldest, uses a regular tunable oscillator, mixer, and r.f, stages as desired, and works into the receiver at a fixed frequency. A second type uses broad-banded r.f. stages in the r.f. and mixer stages of the converter, and only the oscilator is tuned. Since the frequency the converter works into is high (7 Me . or more), little or no trouble with images is experienced, despite the broad-band r.f. stages. A third type of converter uses broad-handed r.f. and output stages and a fixed-frequency oscillator (self- or erystal-controlled), The tuning is done with the receiver the converter is connected to. This is an excellent system if the receiver itself is well shielded and has no external pick-up of its own. Many war-surplus receivers fall in this eategory. A fourth type of eonverter uses a fixed oscillator with ganged mixer and r.f. stages, and requires two-handed tuning, for the r.f. stages and for the receiver. The r.f. tuning is not criti-
cal, however, unless there are many stages.
The broad-banded r.f. stages have the advantage that they can be built with short leads, since no tuning capacitors are required and the unit can be tuned initially by trimming the inductances. They are more prone to cross-modulation than the gang-tuned r.f. stages, however, because of the lack of selectivity. The fourth type of converter is probably the most satisfactory, particularly if a crystal-controlled highfrequency oscillator is used. It not only has the advantage of the best selectivity and protection against images and cross-modulation, but the crystal gives it a stability unobtainable with selfcontrolled oscillators. Imateurs who specialize in operation on 28 and 50 Mc. generally use good converters ahead of conventional conmunications receivers, and it pays off in better performance for the station.

While converters can extend the operating range of an existing receiver, their greatest advantage probably lies in the opportunity they give for getting the best performance on any one band. By selecting the best tubes and techniques for any particular band, the amateur is assured of top receiver performance. With separate converters for each of several bands, changes can be made in any one without disabling or impairing the receiver performance on another band. The use of converters ahead of the low-frequency receiver is rapidly becoming standard practice on the bands above 14 Mc .

Tuning a Receiver

C. W. Reception

For making eode signals audible, the beat oscillator should be set to a frequency slightly different from the intermediate frequency. To adjust the beat-oscillator frequency, first tune in a moderately-weak but steady carrier with
the beat oscillator turned off. Adjust the receiver tuning for maximum signal strength, as indicated by maximum hiss. Then turn on the beat oseillator and adjust its frequency (leaving the receiver tuning unchanged) to give a suitable beat note. The beat oseillator need not subse-
quently be touched, except for occasional checking to make certain the frequency has not drifted from the initial setting. The b.f.o. may be set on either the high- or low-frequency side of zero beat.

The best receiver condition for the reception of $f \cdot w$. signals will have the first r.f. stage rumning at maximum gain, the following r.f., mixer and i.f. stages operating with just cnough gain to maintain the signal-to-noise ratio, and the audio gain sat to give comfortable headphone or speaker volume. The adio volume should tee eontrolled by the audio gain control, not the i.f. gatin control. Cuder the above eonditions, the sellectivity of the receiver is being used to best advantage, and eross-modulation is minimized. It preeludes the use of a receiver in which the gatin of the first r.f. stage and the i.f. stages are controlled simultaneously.

Tuning with the Crystal Filter

If the receiver is equipped with a crystal filter the tuning instructions in the preceding paragraph still apply, but more care must be used both in the initial adjustment of the beat ossillator and in tuning. The beat oscillator is set as described above, but with the ervstal filter set at its sharpest position, if variable selectivity is available. The initial adjustment should be made with the phasing eontrol in the intermediate position. Once adjusted, the heat oseilator should be left set and the receiver tuned to the other side of zero beat (audio-frequency image) on the same signal to give a beat note of the same tone. This beat will be considerably waker than the first, and may be "phased out" almost completely by careful adjustment of the phasing control. This is the adjustment for nomal operation; it will be found that one side of zero beat has practioally disappeared, leaving maximum response on the other.

An interfering signal having a beat note differing from that of the a.f. image can be similarly phased out, provided its frequency is not too near the desired signal.

Depending upon the filter design, maximum selectivity may caluse the dots and dashes to lengthen out so that they secm to "run together." It must be emphasized that, to realize the benefits of the crystal filter in reducing interference, it is nevessary to do all tuming with it in the circuit. Its high selectivity often makes it difirult to find the desired station quickly, when the filter is switched in only when interference is present.

'Phone Reception

In reception of 'phone signals, the normal procedure is to set the r.f. and i.f. gain at maximum, switch on the av.e., and use the adudio gain control for setting the volume. This insures maximum effectiveness of the a.v.e. system in compensating for fading and maintaiang eonstant audio output on either strong or weak signals. On occusion a strong sigatal elone to the frequency of a weaker desired station may take control of the a.v.c., in which case the weaker station may
disappear because of the reduced gain. In this case better reception may result if the a.v.c. is switched off, using the manual r.f. gain control to set the gain at a point that prevents "blocking" by the stronger signal.

When reeceiving an A.M signal on a frequeney withins to 20 ke . from a single-sidehand signal it may also be necossary to switeh off the a.v.e. and resort to the use of manual gain control, unless the receiver has expellent skirt selectivity. No ordinary a.v.e, cireuit can hatadle the syllabio; bursts of energy from the sish station.

A crestal filter will help redure interference in phone reception. Although the high selectivity cuts sidehands and reduces the audio output at the higher audio freguencies, it is possible to use quite high selectivity without destroying intelligibility. As in c.w. reception, it is advisable to do all tuning with the filter in the circuit. Variableselectivity filters permit a choice of selectivity to suit interference conditions.

An undesired carrier close in frequency to a desired carrier will heterodyne with it to produre a beat note equal to the frequency difference. such a heterodyne cin be reduced by adjustment of the phasing control in the erystal filter.

A tone control often will be of help in reducing the efferts of high-pitched heterodynes, sideband splatter and noise, by cutting off the higher audio frequencies. This, like sideband cutting with high selectivity, eauses some reduction in naturalness.

Spurious Responses

Spurious responses can be recognized without a great deal of difficulty. Often it is possible to identify an image by the nature of the transmitting station, if the frequency assigmments applying to the frequency to which the recoiver is tuned are known. Iowever, an image also (an be recognized by its behavior with tuning. If the signal causes a heterodyne beat note with the desired signal and is artually on the same frequency, the beat note will not change as the receiver is tuned through the signal; but if the interfering signal is an image, the beat will vary in pitch the thereiver is tuned. The beat oseillator in the receiver must be turned off for this test. I'sing a crystal filter with the beat oseillator on, an image will pata on the side of zero beat opposite that on which desired signals peak.

Harmonic response can be recognized by the "tuming rate," or movement of the tuning dial required to give a specified change in beat note. Signals getting into the i.f. via high-frequency oscillator harmonics tune more rapidly (less dial movement) through a given change in beat note than do signals received by normal means.

Itarmonias of the beat oseillator can be recognized by the tuning rate of the beat-oseillator piteh eontrol. I smaller movement of the control will suffice for a given change in beat note than that neressary with legitimate signals. In poorlyshielded receivers it is often possible to find b.f.o. harmonics thelow 2 Mc., but they should be very weak at higher frequencies.

Narrow-Band Frequency- and Phase-Modulation Reception

FM Reception

In the reception of NFM (narrow-band FM) by a normal 1.11 receiver, the a.v.c. is switched off and the incoming signal is not tumed "on the nose," as indicated by maximam reading of the Si-meter, but slightly off to one side or the other. This puts the carrier of the incoming signal on one side or the other of the i.f. selectivity chararteristic (see Jig, 5-1). As the frequency of the signal changes hack and forth over a small range with modalation, these variations in frequency are translated to variations in amplitude, and the consequent $A X I$ is deterted in the normal manner. The signal is tuned in (on one side or the other of maximum carrier strength) until the audio quality appears to be best. If the audio is too weak, the transmitting operator should be advised to increase his swing slightly, and if the audio quality is bad ("splashy" and with serious distortion oil volume peaks) he should be advised to reduce his swing. Coüperation between transmitting and receiving operators is a necessity for best audio quality. The transmitting station should always be advised immediately if at any time his bandwidth exceeds that of an AM signal, sinee this is a violation of $F(0$ regulations, except in those portions of the bunds where widrband FMI is permitted.

If the reeriver has a diseriminator or other detector designed expressly for liM reception, the signal is peaked on the receiver (as indicated by maximum S-meter reading or minimum hack-
ground noise). There is also a spot on either side of this tuning condition where audio is recovered through shope detection, but the signal will not be as loud and the background noise will be higher.

PM Reception

Phasc-modulated signals can be received in the same way that NFM signals are, exespt that in this case the audio output will appear to be lacking in "lows," because of the differences in the deviation-us, -a adio characteristies of the two systems. This can be remodied to a considerable degree by advancing the tone control of the recoiver to the point where more nearly normal speceh output is obtained.

N1'M signals can also be reecived on communications receivers by making use of the erystal filter, in which case there is no need for audio compensation. The revstal filter should be set to the sharpest position and the carrier should be tuned in on the crystal peak, not set off to one side. The phasing condenser should be set not for exact neutralization but to give a rejection notch at some convenient side frequency such as 1000 ceycles off resonance. There is considerable attenuation of the side bands with such tuning, but it can readily be overeome by using additional audio gain. NFM signals received through the erystal filter in this fashion will have a "boomy" charactoristic because the lower frequancios are ancentuated.

Reception of Single-Sideband Signals

Single-sideband signals are gencrally transmitted with little or mo carrier, and it is neerssary to furnish the carrier at the receiver before proper reception can be obtaned. Because little or no carrier is transmitted, the a.v.e. in the recover has nothing that indieates the average signal level, and manual variation of the r.f. gain control is required.

A single-sideband signal can be illentified by the absenere of a strong carrier and by the severe variation of the s-meter at a syllabier rate. When such a signal is cmeountered, it should first be peaked with the main tuning dial. (This conters the signal in the i.f. pasibund.) After this operattion, do not touch the main tuning dial. Then set the r, f. gain control at a very low level and switch off the a.v.e. Increase the audio volume control to maximum, and bring up the r.f. gain control until the signal can the heard weakly. Switeh on the beat osidlator, and carefully adjust the frequency of the beat oscillator until proper speech is heard. If there is a slight amount of carrier present, it is only necessary to zero-beat the beat oscillator with this weak carrier. It will be noticed
that with an incorrect setting of the beat oscilbator, the speech will sound high- or low-pitehed or even inverted (very garbled), but no trouble will be had in getting the correct setting, once a little experience has been obtained. The use of minimum r.f. gain and maximum audio gain will insure that no distortion (overload) occurs in the receiver. It may require a readjustment of your tuning habits to tune the b.f.o. slowly enough to clear up, the speech cluring the first few trials.

Another method of receiving single-sideband signals is to reinsert the carrier at the signal frequeney. If, for example, you wish io copy a singlo-sideband signal that is on 3900 ke., you can supply the carrier at that frequency (with a smatl auxiliary oseillator or frequency meter) and leave your receiver in the normal eondition for AM reception (a,v.c, on, b,f.o. off). This method of reception is advantageous in "roundtable" eontacts that include a single-sideband station, because it calls only for careful tuning of the auxiliary oscillator and not of the receiver. Further, only the auxiliary oscillator must be stable.

Servicing Superhet Receivers

I.F. Alignment

A calihrated signal generator or test oscillator is a useful device for aligmment of an i,f. amplifier. Some means for measuring the output of the rereiver is required. If the receiver has a tuning meter, its indications will serve. Lacking an S-meter, a high-resistanee voltmeter or a vacuumtube voltmeter can be comented across the sec-ond-detector load resistor, if the second detector is a diode. Alternatively, if the signal generator is a modulated typer, an ace, voltmeter can be commerted across the primary of the transformer feeding the 'speaker, or from the plate of the last audio amplifior through a $0.1-\mu \mathrm{fd}$. blocking condenser to the receiver chassis. Lacking an a.c. voltmeter, the audio output can be judged by ear, although this method is not as arcurate as the others. If the tuning meter is used as an indication, the a.v.e. of the receiver should be turned on, but any other indication requires that it be turned off. Lacking a test oscillator, a steady signal tuned through the input of the recoiver (if the job is one of just touching up the i.f. amplifier) will he suitable. However, with no oscillator and tuning an amplifier for the first time, one's only rerourse is to try to peak the i.f. transformers on "noise," a diflicult task if the transformers are badly off resonanee, as they are apt to be. It would be much better to spend a little time and haywire together a simple oscillator for test purposes.

Initial alignment of a new i.f. amplifier is as follows: The test oseillator is set to the correct frequency, and its output is coupled through a condenser to the grid of the last i,f, amplifier tube. The trimmer condensers of the transformer feeding the second detector are then adjusted for maximum output, as shown by the indicating device being used. The oscillator output load is then clipped on to the grid of the next-to-the-last i.f. amplifier tube, and the second-from-the-last transformer trimmer adjustments are peaked for maximum output. This process is continued, working back from the second detector, until all of the i.f. transformers have been aligned. It will be necessary to reduce the output of the test oscillator as more of the i.f. amplifier is brought into use. It is desirable in all cases to use the minimum signal that will give useful output readings. The i.f. transformer in the plate cireuit of the mixer is aligned with the signal introduced to the grid of the mixer. Since the tuned circuit feeding the mixer grid may have a very low impedance at the i.f., it may be necessary to boost the test gencrator output or to discomnect the tuned circuit temporarily from the mixer grid.

If the i.f. amplifier has a crystal filter, the filter should first be switched out and the alignment carried out as above, setting the test oscillator as closely as possible to the crustal frequency. When this is completed, the erystal should be switched in and the oseillator frequency varied back and forth over a small range either
side of the crystal frequency to find the exact frequencr, as indicated by a sharp rise in output. Leaving the test oscillator set on the crystal peak, the i.f. trimmers should be realigned for maximum output. The necessary readjustment should be small. The oscillator frequency should be checked frequently to make sure it has not drifted from the erystal peak.

A modulated signal is not of much value for aligning a crystal-filter i.f. amplifier, since the high selectivity cuts sidebands and the results may be inaccurate if the audio output is used as the tuning indication, Lacking the a.v.e. tuning meter, the transformers may be conveniently aligned hy ear, using a weak ummodulated signal adjusted to the erystal peak. Switch on the beat oscillator, adjust to a suitable tone, and align the i.f. transformers for maximum audio output.

An amplifier that is only slightly out of alignment, as a result of normal drift or aging, ean be ratigned by using any stady signal, such as a local broadeast station, instead of the test oseillator. One's 100 -ke. stamdard makes an excellent signal source for "touching u_{p} " an i.f. amplifier. Allow the receiver to warm up thoroughly, tune in the signal, and trim the i.f. for maximum output.
If you bought your receiver instead of making it, be sure to read the instruction book carefully before attempting to realign the receiver. Most instruction books include aligmment details, and any little special tricks that aro peculiar to the receiver will also be deseribed.

R.F. Alignment

The objective in aligning the r.f. circuits of a gang-tuned receiver is to secure adequate tracking over each tuning range. The adjustment may be carried out with a test oscillator of suitable frequency range, with harmonies from your $100-\mathrm{ke}$, standard or other known oseillator, or even on noise or such signals as may be heard. First set the tuning dial at the high-frequeney end of the range in use. Then set the test osciilator to the frequency indicated by the receiver dial. The test-oseillator output may be comected to the anterna terminals of the receiver for this test. Adjust the oscillator trimmer condenser in the receiver to give maximum response on the test-oscillator signal, then reset the receiver dial to the low-froquency end of the range. Set the test-oscillator frequency near the frequeney indicated by the receiver dial and tune the test oscillator until its signal is heard in the receiver, If the frequency of the signal as indicated by the test-oscillator calibration is higher than that indicated by the receiver dial, more inductance (or more capacity in the tracking condenser) is needed in the receiver oscillator circuit; if the frequency is lower, less inductance (less tracking capacity) is required in the receiver oscillator. Most commercial receivers provide some means
for varying the inductance of the coils or the capacity of the tracking condenser, to permit aligning the receiver tuning with the dial calibration. Set the test oscillator to the frequency indirated by the receiver dial, and then adjust the tratcking capacity or inductance of the receiver oscillator coil to obtain maximum response. After making this adjustment, recheek the high-frequency end of the scale as previously deseribed. It may be necessary to go back and forth between the ends of the range several times before the proper combination of inductance and capacity is secured. In many cases, better over-all tracking will result if frequencies near but not actually at the ends of the tuning range are selected, instead of taking the extreme dial settings.

After the oscillator range is properly adjusted, set the receiver and test oscillator to the highfrequency end of the range. Adjust the mixer trimmer condenser for maximum hiss or signal, then the r.f. trimmers. Reset the tuning dial and test oscillator to the low-frequency end of the range, and repeat; if the circuits are properly designed, no change in trimmer settings should be necessary. If it is necessary to increase the trimmer capacity in any circuit, it indicates that more inductance is needed; if less capacity resonates the circuit, less inductance is required.

Tracking seldom is perfect throughout a tuning range, so that a check of alignment at intermediate points in the range maty show it to be slightly off. Normally the gain variation from this catuse will be small, however, and it will suffice to bring the circuits into line at both ends of the range. If most reception is in a particular part of the range, such as an amateur band, the circuits may be aligned for maximum performance in that region, even though the ends of the frequency range as a whole may be slightly out of alignment.

Oscillation in R.F. or I.F. Amplifiers

Oscillation in high-frequency amplifier and mixer eircuits shows up as squeals or "birdies" as the tuning is varied, or by complete lack of audible output if the oscillation is strong enough to cause the a.v.e, system to reduce the receiver gain drastically. Oscillation can be caused by poor connections in the common ground circuits. Inadequate or defective by-pass condensers in cathode, plate and screon-grid circuits also can cause such oscillation. A metal tube with an ungrounded shell may cause trouble. Improper screen-grid voltage, resulting from a shorted or too-low screen-grid series resistor, also may be responsible for such instability.

Oscillation in the i.f. circuits is independent of high-frequency tuning, and is indicated by a continuous squeal that appears when the gain is advanced with the e.w. beat oseillator on. It can result from defects in i.f.-amplifier circuits similar to those above. Inadequate screen or plate by-pass capacitance is a common cause of such oscillation. An additional by-pass condenser of 0.1 to $0.25 \mu \mathrm{fd}$. often will remedy the trouble.

Instability

"Birdies" or a mushy hiss occurring with tuning of the high-frequency oscillator may indicate that the oscillator is "squegging" or oseillating simultaneously at high and low frequencies. This may be caused by a defective tube, too-high oscillator plate or screen-grid voltage, excessive feed-back, or too-high grid-leak resistance.

A varying beat note in c.w. reception indicates instability in either the h.f. oscillator or beat oseillator, usually the former. The stability of the beat oscillator can be checked by introdueing a signal of intermediate frequency (from a test oseillator) into the i.f. amplifier; if the beat note is unstable, the trouble is in the beat oseilator. Poor connections or defective parts are the likely cause. Instability in the high-frequency oscillator may be the result of poor circuit design, loose connections, defective tubes or cireuit components, or poor voltage regulation in the oscillator plate- and/or screen-supply circuits. Mixer pulling of the oscillator circuit also will cause the beat not to "ehirp" on strong e.w. signals because the oscillator load changes slightly.

In 'phone reception with a.v.c., a peculiar type of instability ('motorboating') may appear if the h.f.-oscillator frequency is sensitive to changes in plate voltage. As the a.v.c. voltage rises the currents of the controlled tubes decrease, decreasing the load on the power supply and causing its output voltage to rise. Nince this increases the voltage applied to the oscillator, its frequence changes eorrespondingly, throwing the signal off the peak of the i,f, resonance curve and reducing the a.v.c. voltage, thus tending to restore the original conditions. The process then repeats itself, at a rate determined by the signal strength and the time constant of the powersupply circuits. This effect is most pronounced with high i.f. selectivity, as when a crystal filter is used, and can be cured by making the oscillator insensitive to voltage changes or by regulating the plate-voltage supply. The better receivers use VR-type tubes to stabilize the oscillator voltage - a defective VIR tube will cause trouble with oscillator instability.

A One-Tube Regenerative Receiver

The receiver shown in Figs, 5-26, 5-27, 5-28 and $5-29$ represents close to the minimum requirements of a useful short-wave receiver. Under suitable conditions, it is capable of receiving signals from many foreign countries. It is an excellent receiver for the beginner, because it is easy to build and the components are not expensive.

Fig. 5.26 - The simple ane-tube regenerative receiver is buitt on a wood-and-I'resdwood chassis, with an aluminmm panel. The large left-hand knob drives the calitrated seale on the bandspread condenser. The large right-hand hoob is for the band-set condenser.
section serving as an audio amplifier to the headphones. A variable antenna-coupling condenser, C_{1}, minimizes "dead spots" in the tuning range that might be caused by antennaresonance effects. Two tuning condensers are usod. The band-set condenser, C_{4}, tunes to the desired frequeney band, and the bandspread condenser, ($: 2 / C_{3}$, allows the operator to tune slowly through the band. The bandspread enndenser is a dual condenser made from a single midget variable, and on all of the amateur bands except 3.5 Mc. only the (3 portion is connerted in the cireuit. 'The $3.5-\mathrm{Mc}$. coil includes a jumper that connects C_{2} on that band. Regencration is controlled by varying the plate voltage on the deterotor with h_{4}.

The mechanieal design is made as simple as possible. Work on the chassis and the front panel can be done with only a No. i drill, a $1 / 4$-inch drill, and a round file. There is no complieated metal work or bending. To reduce the pancl size, the knob on the band-set condenser overlaps the friction-driven tuning dial.

The front panel is a 7×7-inch sheret of $1 / 16$-inch aluminum. It carries the tuning controls, the regeneration adjustment and the antenna-eoupling condenser shaft. 'the sides of the chassis are soft wood strips, $7 \times 2 \times 5 / 8$ inches. The deck of the chassis is a 7×7-ineh sheret of $1 / 4$-inch Presdwood
From the cireuit in Fig. 5 -28, it can be seen that the only tube in the receiver is a $6 . N 7$ (or Masonite). The $6 \underset{N}{ } \mathbf{N} 7$ sorket is supported on 5 -inch-long mounting pillars, and the st win triode. One section is used as a regenerative detector, the other triode

Fig. 5-27 - Another view of the onetube regonerative receiver show how the tobe and coil sowhets are mounted. The hridphome tips plug into the two small tip janks on the rear painal - the set of fomer mathine surews and nuts in fur conneeting to the power supply.

Fig. 5.28-Wiring diagram of the one-tule regenerative receiver.
C_{1} - Homemade adjustable condenser. See text.
$\mathrm{C}_{2}, \mathrm{C}_{3}$ - Reworked midget variable (Millon 21935), see text.
C_{4} - $100-\mu \mu \mathrm{fd}$, midget variable (1 tillen 20100).
C s - 1000 . $\mu \mathrm{fd}$. mica.

(: $-12-\mu \mathrm{fal}$. Dol.wolt elertrolytic.
C9-I0- ff d. 25 -volt electrolytic.
k_{1} - $1 . \overline{\mathrm{i}}$ megrehm: ${ }^{16}$ walt.
$\mathrm{R}_{2}-0.1 .0$ megolim, $\frac{1}{2}$ watt.
K_{3} - 1.510 ohms, $1 / 2$ watt.
R_{4} - $50,(0)(1)-$ olm wire-wound potentiometer.
$\mathrm{H}_{5}-33,010$ ohms, 1 watt.
$\mathrm{RFC}_{1}-2.5$-mh. r.f. chohe (Na. tional loot).
'Th - Interstage audio transformer (Stancor A.4:23).
prong coil socket is on $7 / 8$-inch pillars. The grid leak, R_{1}, and grid condenser, C_{5}, are located above the deck. The back panel is made of 1/4-inch I'resdwood and carries the binding posts. The binding posts are $3 / 4$-inch $6-32 \mathrm{ma}$ chine serews with suitable nuts and washers. The chassis is assembled with $3 / 4$-inch No. 6 round-head wood serews. Upon completion, the assembly is given a coat of flat black paint. The front pancl is secured to the ehassis side members with No. 6 round-head wood serews,

The bandspread condenser, C_{2} / C_{3}, is made by modifying a Millen 21935 variable condenser. Lising a hack-saw blade, the stator bars are earefully cut between the eighth and ninth
plates (counting back from the front panel). The ninth plate is removed by twisting it loose with long-nosed pliers.

Coil sizes and data are given in the coil table. All coils are wound on 1 -inch diameter 5 pin coil forms. The coil for the so-meter range is close-wound and requires no treat ment, but the spaced-turns eoils should be secured by running a thin line of Dueo cement across the wire at several points. Before cementing the turns in place, each coil should be tried in the receiver. 'Fo obtain smooth regeneration, it may be necessary to make minor coupling adjustments (changes in spacing) between L_{1} and L_{2}.
The antenna condenser, C_{1}, is made from two 1 -ineh squares of sheet copper. One plate is secured to the underside of the deek on a tiepoint. The other plate is carried by a $1 / 4$-inch diameter polystyrene rod. Rotating the shaft swings the moving plate away from the fixed plate and provides a capacity of from 5 to less than $1 \mu \mu \mathrm{fd}$. The polystyrene rod passes through the front panel and out the back panel. It is secured at the back by a $1 / 4$-inch shaft collar. The panel end carries a tuning knob, and a rubber grommet under slight compression, placed between the knob and the panel, acts as a friction lock. 'The moving plate is secured to the polystyrene rod by a copperwire hairpin soldered to the plate and fixed into a pair of holes drilled in the rod. A flexible

Fig. 5.29 - 'This view un. derneath the onctube re. generative receiver hows the arrangement of parts and the construction of the variable antenna-coupling condenser.

All coils wound on Millen 4500 ; 1 -inch diameter coil forms. Both L_{1} and L_{2} should be wound in the same direction, with L_{2} closer to the pins of the form. The grid end of L_{1} and the plate end of L_{2} should be on the outside ends of the coils.			
Range	\boldsymbol{L}_{1}	L_{2}	Sep. $\boldsymbol{L}_{1}-L_{2}$
$\begin{aligned} & 2.8-6 \mathrm{Mc}, \\ & (80 \text { meters } \end{aligned}$	25 t. No. 26 enam; close-wouna	4t. No. 26 cnam., close-wound	3/8inch
$\begin{gathered} 5.9-13.5 \mathrm{Mc} . \\ (40 \text { meters }) \end{gathered}$	$13 \frac{1}{2}$ t. No. $2 \underline{2}$ enam., spaced to occupy $5 / 8$ inch	11/4 t. No. 26 enam., close-wound	${ }_{4}{ }^{\text {inech }}$
$\begin{aligned} & 13.6-30 \mathrm{Mc} . \\ & \text { (} 20 \text { and } 14 \\ & \text { meters) } \end{aligned}$	$51 / 4$ t. No, 22 enam., spaced to occupy 5/8 inch	$18 / 4$ t, No. 26 enam., close-wound	3/8 inch
$\begin{aligned} & 21.5-40 \mathrm{Mc} \text {. } \\ & (10 \text { and } 11 \\ & \text { melt rs }) \end{aligned}$	1/2t. No. 2\% enam.; close-woun.l	18/4. No. 26 rnam., close-wound	5 ¢0 inct.

separation between strips is just enough (11/4 inches) to clear the tube socket and electrolytie eondensers, and the leads from the transformer and choke also pass through this opening. Binding posts are made in the same manner as on the receiver, with No. 6 machine screws and suitable nuts and washers.

Although it is satisfactory to mount the power supply on the same table with the receiver, it should be at least one or two feet away, to avoid the possibility of a.c. hum pick-up. Fior the same reason, the antemna lead should not pass too close to any a.e. wiring from or to the power supply.

Using the parts listed in lig. $5-31$ should result in a power supply that gives about 180 volts when connected to the receiver. Ilowever, if the 65×7 in the receiver appears to run too hot (as tested by touching the tube after the recciver has been running for 5 or 10 minutes), the output voltage can be reduced by increasing the resistance at R_{1} (l־ig. 5-31). Aclangr
lead is soldered to the protruding wire, and the lead passes out through a hole in the side of the chassis to make connection to the antemna. Knots in this wire, on cither side of the chassis wall, secure the wire firmly in place. The fixed plate is covered with a single tayer of eellophane scoteh Tape, to prevent a short-circuit when the condenser is positioned at maximum capacity.

All wiring is No, 14 tinned eopper. Direct leads from the eondensers to the coil soeket add to the strength and rigidity of the receiver. The r.f. choke $R F^{\prime} C_{1}$, by-pass condensers, and the audio transformer all are fastened to the underside of the deek.

The power supply for the receiver, shown in ligs. 5-30 and 5-31, is simple to assemble because it is built on a wooden chassis. Two strips of $11 / 2 \times$ $3 / 4$-inch wood, 12 inches long, are nailed to two short end picces. The

Fiц. 5-30 - 'The power supply for the regenerative recciver is built on a simple wooden chassis.

Fig. 5-31 - Circuit diagram of the power supply for the regenerative receiver.
$C_{1}, \mathrm{C}_{2}-16-\mu \mathrm{fd} .450$-volt electrolytic (Mallory IRS-217).
$\mathrm{R}_{1}-20,000$-ohm 10 -watt wire-wound.
I_{1} - 15 -henry $50-\mathrm{ma}$, filter choke (Stancor C-1080).
$\mathrm{P}_{1}-115$-volt line plug.
$\mathrm{T}_{1}-275-0-275$ volts at $50 \mathrm{ma} ., 6.3 \mathrm{v}$, at 2.5 amp. 5 v . at 2 amp. (Thordarson T22R30).

5000 or 10,000 ohms in series with R_{1} should do the trick. Or it may be possible to borrow a voltmeter for measuring the output voltage.

The tuning procedure for a regenerative receiver is given earlier in this chapter. Even a short piece of wire hung inside the operating room will serve as an antenna, but for best results an antenna from 30 to 75 feet long, strung as high as possible, should be used.

In buying headphones for use with this receiver, one should avoid the "low-impedance" headphones offered in many of the surplus outlets. While these headsets are excellent when used in the proper circuits, this simple receiver requires the use of "high-impedance" headphones for maximum signal output. Good, inexpensive headphones of this type can be found in any radio store.

An Amateur-Band Eight-Tube Superheterodyne

An advanced type of amateur receiver incorporating one r.f. amplifier stage, variable i.f, selectivity and audio noise limiting is shown in Figs. 5-32, 5-34 and 5-35. As can be seen from the circuit in Fig. 5-33, a 6SG7 pentode is used for the tuned r.f. stage ahead of the 6 K 8 converter. An antenna compensator, C_{4}, controlled from the panel, allows one to trim up the r.f. stage when using different antemmas that might modify the tracking. The cathode bias resistor of the r.f. stage is made as low as possible consistent with the tube ratings, to keep the gain and hence the signal-to-noise ratio of the stage high. The oscillator portion of the 6 K 8 mixer is tumed to the highfrequency side of the signal except on the $28-$ Mc. band, the usuad custom nowadays in communications receivers. The oscillator tuming condenser, C_{17}, is of higher capacity than the r.f. and mixer tuning condensers, in the interest of hetter oseillator stability,

The i.f, amplifier is tuned to 450 kc ., and the first stage is made regenerative by soldering a short length of wire to the plate terminal of the socket and running it near the grid terminal, as indicated by $C_{\text {Ca }}$ in the diagram. Regeneration is controlled by reducing the gain of the tube, and R_{12}, a variable cathode-bias control, sorves this function. The second i.f. stage uses a 6K7, selected beeause high gain is not necessary at this point.

Manual gain-control voltage is applied to the r.f. and second i.f. stages. It is not applied to the mixer because it might pull the oscillator frequency, and it is not tiedin with the firsti.f. amplifier because it would interlock with the regeneration control used for controlling the selectivity. However, the a.v.c. voltage is applied to the r.f. and both i.f. stages, with the result that the selectivity of the regenerative
stage decreases with loud signals and gives a measure of automatic selectivity control. Using a negative-voltage power supply for the manual gain control is more expensive than the familiar cathode control, but it allows a wide range of control with less dissipation in the components. The a.v.e. is of the delayed type, the a.v.c. diode being biased about $11 / 2$ volts by the cathode resistor of the diode-triode de-tector-audio stage.

The second-detector-and-first-audio is the usual diode-triode combination and uses a 6S(27. A 1 N34 crystal diode is used as a noise limiter, and is left in the circuit all of the time. As is common with this type of circuit, it has little or no effect when the b.f.o. is on, but it is of considerable help to 'phone reception on the bands where automobile ignition is a factor. The constructor can satisfy himself on its operation when first building the receiver and working on it out of the case. By leaving one end of the 1×34 floating and touching it to the proper point in the circuit, a marked drop in ignition noise will le noted.

The b.f.o. is capacity-coupled to the detector by soldering one end of an insulated wire to the a.v.c. diode plate and wrapping several turns of the wire around the b.f.o. grid lead. This capacity is designated $C_{C_{2}}$ in the diagram. The wire was connected to the a.v.c. diode plate lead only for wiring convenience - the a.v.c. coupling condenser, C_{32}, passing the b.f.o. voltage without introducing appreciable attenuation.

Headphone output is obtained from the plate circuit of the 6SQ7 at J_{1}, and loudspeaker output is available from the 6F6 audio-amplifier stage. High-impedance or crystal headphones are recommended for maximum headphone output.

Fig. 5-32-- An amateurband eight-tuhe receiver. The knobs on the left control audios volume (upper) and b.f.o, pitch, and the two on the right handle r.f. and i.f. gain (mpper) and i.f. regeneration. The kuob to the left of the large tuning hioh is fas. tened to the M.AN.. A,,$(C, B, F, O$ switch, and the one on the right is for the antenna trimmer. The toggle switch under the dial throws high negative bias on the r.f. stage during transmission periods.

80T

Fig. 5.34-This view of the cight-tule recriver chaseis shows the mounting of the tuning condensers and the pharement of most of the large compo. nerots. The thare shimded plug.in ail assemblides can ber sern (1) the left of the tuning gang. The ok's converter is the tulse on the left nearest the panel.

The antoma terminalstrip, power suphily plug, headphone jack athl speaker terminals are momed on the rear (forceround in this view) of the chassis.

Construction

The receriver is built on an alumimm chassis mounted in a Par-Metal ($\mathrm{A}-202$ cabinet, and a Millen 10035 dial is used for tuning. The chassis is made of $1 / 16^{-i n c h}$-thick stork, bent into : "U"-channel, and measures 13 inches wide and $71 / 4$ inches deep on the top. $1 t$ is $33 / \mathrm{f}$ inchers deepl at the rear and $1 / 8$ inch less at the front. The rear edge is reinfored with a pierer of ${ }^{3}$-inch square dural rod that is tapped for sorews through the bottom of the cabinet. further to add to the strength of the structure when finally assembled. The various eomponents that are eommon to the front lip of the chatsis and the panel are used to tie the two torether.

The shied panel used to momet the antemacompernsator condenser is also made of $\frac{1}{1}$ ti-inch aluminum with a ${ }^{5}$ s-inch lip on the sitte for mounting. Part of the lip must be cout awse to elear wires and monnting plates on some sockets, so it is advisable to put in the pand after most of the assembly and wiring have been completed. F Fexible couplings and bakelite rod couple the condenser to the panel bushing.

The three tuning condensers are mounted on individual brackets of $\frac{1}{16}$-inch aluminum. The brackets measure $21 / 2$ inches wide and 1916 high. with $1 / 2$-inch lips. A cover of thin aluminumnot shown in the photographe - slides over the condenser assembly to dress up the top view a bit. The dust cover is not mecessary for satisfactory operation of the reereiver.

Ceramic sockets are used for the plug-in coils and for the r.f. amplifier, converter and b.fo. tubes. Miea condensers were used throughout the receiver for by-passing wherever fasible. because they lend themselves well to compart construction, Ceramic condensers are now available that could be used in the i.f. amplifier at considerable saving in eost and room.

In wiring the recoiver, small tie-points were used wherever neressaly to support the odd conds of resistors and condensers, and rubber grommets were used wherever wires run through the chassis, with the exception of the tuming-rombenser leads. The latter leads, heing of No. 1 t wire, are self-supporting through the $5 / 16$-inch clearance holes and do not require grommets. The same heavy wire was used for the grid and plate leads of the r.f. stage and the plate lead of the oscillator, to reduce the inductance in these leads. The tuning condensors are grounded back at the coil sockets and not above the chassis as might be the tendeney. Sereen, cathode and plate by-pass condensers are grounded at a single point for any tube wherever possible although (22 is grounded at the ref.eroil sorker, ('s is grounded at the converter-coil socket, and ('is is returned at the oscillator-mil :orket. The plate and $\mathrm{B}+$ leads from T_{1} are brought back to the converter socket through shield braid. and (2 a is returned (1) ground at the converter sooket.

The b,f.o. piteh eondenser, ('38, is insulated from the chassis and panel by fiber washers, and the rotor is connected back to the tube sorket by braid that shields the stator lead, This is done to reduce radiation from the b.f.o. which might get in at the front end of the i.f. amplifior.

The coils are wound on Dillen 74001 per-meability-tuned coil forms, aceording to the roil table, series condensers are mounted inside the forms on all bands exerpt the 80-meter range, where no condenser is required and the tuning condenser is jumped directly to the gride end of the coils. In building the coils, the washer: are first drilled for the leads and then cemented to the form with Duco or other cement. The bottom washer is cemented close to the terminal pins, leaving just enough room
to get the soldering iron in to fasten the coil ends and to leave room for the series condenser. The large coils, L_{2}, L_{4} and L_{6}, were wound first in every case, and then a layer of cellophane Scotch Tape wrapped over the coil, after which the smaller winding was put on and the ends of the windings soldered in place. Since for maximum range of adjustment it is desirable to allow the powdered-iron slug to be fully withdrawn from the coil, keoping the coils at the base end of the form allows the iron slug to travel out at the other end, under which condition the adjusting screw on the slug projects the least. To sccure the wires after winding, drops of cement should be placed on them where they feed through the polystyrene washers.

Alignment

If a signal generator is available, it can be used to align the i.f. amplifier on 455 kc . in the usual manner. If one is not available, the coupling at C_{Cl} can be increased to the point where the i.f. stage oscillates readily and the b.f.o. transformer is then tuned until a beat note is heard. The other transformers can then be aligned until the signal is loudest, after which $C_{C l}$ should be decreased until the i.f. oscillates with the regencration control, R_{12}, about 5 degrees from maximum, The trimmers on T_{1} then should be tuned to require maximum advancing of the regeneration control for oscillation, with a set value of C_{Cl}. When properly tuned, the oscillation frequency of the i.f. stage and the frequency for maximum gain in the regenerative condition will be the same.

With a set of coils in the front end, set the tuning dial near the high-frequency end and tune in a strong signal or marker with the adjustment screw on the oscillator coil. The converter and r.f. coils can then be peaked, with the antenna compensator set at about half
capacitance. Then tune to the other end of the band and see if you have enough bandspread. If the bandspread is inarlequate, it means that C_{14} is too large, and it should be reduced by using a smaller size of condenser or a combination that gives slightly less capacitance. The tracking of the converter and r.f. coils can be checked by repeaking the position of the slugs in the coils at the low-frequency end. If the converter- or r.f.-coil tuning slugs have to be advanced farther into the coil (to increase the inductance) it indicates that C_{9} or C_{1} should be larger. Tracking by the method described is at best a compromise, although to all intents and purposes the loss from some slight misalignment is completely unimportant. Another method would be to tap the tuning condensers on the coil in the familiar bandspreading manner, but this requires considerable time and patience. However, with the series condensers as used in this receiver, the tuning curve is more crowded at the high-frequency end of a range than at the low, and this would be reduced somewhat by the tapped-eoil bandspread.

COIL DATA FOR THE EIGHT-TUBE SUPERHETERODYNE

Coil	$3.5 . M c$.	$7 . M c$,	$14 . M c$.	$28 . M c$.
L_{1}	15 t.	9 t.	6 t.	4 t.
L_{2}, L_{4}	76 t.	33 t.	19 t.	8 t.
C_{1}, C_{9}	short	$27 \mu \mu \mathrm{fd}$.	$15 \mu \mu \mathrm{fd}$.	$20 \mu \mu \mathrm{fd}$.
L_{3}	25 t.	11 t.	7 t.	4 t.
L_{5}	10 t.	8 t.	4 t.	2 t.
L_{6}	47 t.	32 t.	14 t.	6 t.
C_{14}	short.	$42 \mu \mu \mathrm{fd}$.	$27 \mu \mu \mathrm{fd}$.	$51 \mu \mu \mathrm{fd}$.

All coils wound on Millen 74001 forms, closewound. 3.5-Mc. coils wound with No. 30 cnam,; 7 Mc, coils wound with No, 30 d.s.e.; 14-and 28-Mc. coils wound with No. 30 d.s.c. on primarics and ticklers and No, 24 enam, on secondaries. C_{14} for 7-Mc, range made by connecting 27 - and $15-\mu \mu \mathrm{fd}$, condensers in paratlel. C_{1}, C_{9} and C_{14}, Erie Ceramicons, mounted in coil form.

Fig. 5.35-The bypass condensers used throughout the r.f. and i.f. stages are grouped around the sockets of their respective tuhes. Tícpoints are used wherever necessary to support small resistors and condensers. The antenna trimmer condenser is mounted on a bracket which also serves as shiclding betwern the mixer- and r.f.coil sockets, and it is offset to allow access to the trimmer serews on the coil forms. The plate and B+ leads from the first i.f. transformer, Th, are run in shielded hraid, as are the leads from the b.f.o, pitch. control condenser and the volume control.

Fig, 5-36 - Wiring diagram of power supply for the cight-tube receiver. $\mathrm{C}_{1}, \mathrm{C}_{2}-16-\mu \mathrm{fd} .450$-volt electrolytic. $\mathrm{C}_{3}, \mathrm{C}_{4}-8$ - fd f . 450 -volt electrolytic.
$\mathrm{K}_{1}-500$ ohms, 10 watts, wire wound. $\mathrm{R}_{2}-50(\mathrm{O})$ ohms, 10 watts, wire-wound. $\mathrm{R}_{3}-0.1$ megohm. 1 watt, composition. 1.1 - 30 -henry 110 -ma. filter choke (Stancor C-1001).
$\mathrm{T}_{1}-3.00-0$ - 350 voles, 91 mat; 5 vohs at 3 amp., 6.3 volts at 3.5 amp .

The adjust ment of L_{5} can be made, if deemed necessary, by lifting the cathode end of R_{6} and inserting a $0-1$ milliammetor. If the tickler coil has the right number of turns. the current will be from 0.15 to 0.2 ma ., and it won't change appreciably over the band. Although such a grid-current check is a fine point and not really necessary, it is a simple way to determine that the oscillator portion is working. since the cold ends of L_{5} and L_{6} are at the same end of the form - the plug end - and this necessitates winding the two coils in opposite directions.

Some trouble may be experienced with oscillation in the r.f. stage at 28 Me. Llowever, a grounding strap of spring brass, mounted under one of the serews holding the mixer-coil socket to ground the shicld when the coil is plugged in, will normally clear up the trouble, Inadequate coupling to the antenna will also let the r.f. stage oscillate under some tuning conditions, and close coupling is highly recommended for stability in this stage and also for best signal response. A 10 -ohm resistor from L_{2} to the grid of the bsci7 will also do the trick.

Fig. 5-37 - Power supply for the cight-tube receiver. Two rectifiers are required because a separate supply is incorporated for gain-control purposes. The filter choke and the negative-supply filter condensers are mounted under the chassis. At the rear of the chassis is the socket for the power cable.

It will be found that the over-all gain of the receiver is quite high on the lower-frequency bands, requiring that the r.f. gain be cut down to prevent overloading on strong signals. For c.w. reception, the regeneration control is advanced to the point just below oscillation and the b.f.o. is detuned slightly to give the familiar single-signal effect. For 'phone reception, S_{2} is switched to "A.V.C." and volumecontrol adjustments made with the audio control. R_{26}. If desired, the regeneration control can be advanced until the i.f. is oscillating weakly, and then a heterodyne will be obtained on weak carriers, making them easy to spot. Strong carriers will pull the i.f. out of oscillation because the developed a.v.c. voltage reduces the gain, and hence a simple form of automatie selectivity control is ohtained. If it is considered desirable to reduce the i.f. gain when switched to the "A.V.C." position, the regeneration control can be used for this purpose. The "MAN." position permits manual gain-control operation with the b.f.o. off.

The switch S_{1} is used for receive-transmit and throws about 40 volts negative on the grid of the first r.f. stage, saving the first tube a little if the transmitter is pouring some power into the receiver.

Power Supply

A power supply suitable for the eight-tube receiver is shown in Figs. $5-36$ and 5 -37. An idea of the parts arrangement can be obtained from lig. $\overline{0}-37$, although there is nothing critical about this portion of the receiver. If one wants a neat-looking station with no loose power supplies in sight, the power supply can be built into one corner of the loudspeaker cabinet.

The filtering of the power supply is quite adequate and no trace of hum should be found in the completed receiver when used with this power supply. If any a.c. hum is noticed, it is being introduced in the audio section if it is still present with the r.f. gain control set at minimum. Probable sources of hum in the audio system are leads to C_{33}, R_{26}, C_{36} or J_{1} running too close to a "hot" (ungrounded) heater lead, and the correction is to remove these leads from the field of the heater wiring. If signals are modulated with a.c. hum, particularly at the higher frequencies, it is possible that the grid circuit of the 6 K 8 converter is picking up hum from a nearby heater lead,

A Clipper/Filter For C.W. or 'Phone

The clipper/filter shown in Fig. 5 -39 is plugged into the receiver headphone jack and the headphones are plugged into the limiter, with no work required on the receiver. The limiter will eut down serious noise on 'phone or c.w. signals, it

The circuit is shown in Fig. 5-38. The constants are not too critical, and have been adjusted for operation at the signal levels ordinarily available from the headphone jack on a receiver. The clipper output circuit is heavily by-passed by C_{6}

Fig. 5-38 - Cireuit diagram of the audio clipper unit, Power requirements are 16 mat at 2.50 v. d.e., 1.2 amp. at 6.3 v , a.c.
$\mathrm{C}_{1}, \mathrm{C}_{4}, \mathrm{C}_{7}-470-\mu \mu \mathrm{fd}$, micia.
C_{2} - 0.0 .4 f fd . paper.
(:3-0.1- -fd . paper.
$\mathrm{C}_{5}-8 . \mu \mathrm{fl}$. 4.5 O -volt eleetrolytic.
$\mathrm{C}_{6}-0,003_{-\mu \mathrm{fl}}$, paper.
C_{8} - 10 - ffd . 2 -involt electrolytie.
C9 - $0.2 .5-\mu \mathrm{fl}$. paper.
$\mathrm{K}_{1}, \mathrm{~K}_{3}-1$ megohiti, $1 / 2$ watt.
$\mathrm{I}_{2}, \mathrm{~K}_{9}-1.500$ ohms, $1 / 2$ watt.
will keep the strength of e.w. signals at a constant level, and it will add seloctivity to your reeceiver for c.w. reception. It will do much to relieve the operating fatigue caused by long hours of listening to static crashes, key clieks eneountered on the air and with break-in operation, and the like.

to reduee the amplitude of the harmonies gencrated in the clipping process, and additional bypassing by Co, across the headset, is used for the same pripose. (athode-follower input and output circuits allow the unit to be used with any receiver output and any hoadphones, and they also

Fig, 5.34 - The andio clipper unit includes input and nout. put amplifiers of the cathode. follower tyone, a dual-trionle relipper rirenit, and a selertive audio systum, It is built in a smadl utility fox, with a cable for mower-supply connertions and a cord and plag to pick up andio from the receivers headphome jatch.

Fig. 5-40 - Inside view of the clipper unit. The gain control, switch, headphone jack, and the larger fixed condensers are mounted on the walls of the box. The two tubere and the sellective andio circuir are monnted on the renwabla panel, "lore selective cirruit. consisting of the elooke coil and two tubular condensers, occupios the per hailf of the panel in this wiew. The sowhet at the left is for the ingut and outpat amplifiers; the rixht-land sorhet is for the double-trionle clipper.
contribute to the effectiveness of the audio filter, $L_{1} C_{2}{ }_{2} \mathrm{C}_{3}$. A threreposition switeh, S_{1}, is provided so that the unit can be cut out cntirely, used with straight limiting and no selectivity, or with both selectivity and limiting. 'The "off" position is useful principally to convince the skeptical, and the limiting without selectivity is useful for impulse moise, when encountered. High selectivity and good noise suppression do not go hand in hand.

The unit, shown in Figs. 5-39 and 5-40, is built on one panel and the sides of a 3 by 4 by 5 utility box. The parts on the pand and the box proper are connerted through cabled leads made long enough so the panel can be swong out as shown. Any type of construction cat be used, sine there is nothing eritieal in the lavont. One preeantion to observe is to use a shielded lead between the "hot" input terminal and the switeh, to prevent possible stray coupling between the input and later high-imperdane cireuits berause of the cabled leads.

The solective audio eireuit chosen gives a type of frequencervesponse corve that is quite usiful. The peak at 800 eycles is broat enough to avoid tuning diflieulties, even when used in comjunetion with the erystal filter in the receiver. Newertheless, the response drops off rapidly enough, particularly on the high-frequelle side, to make a marked difference in respeet to the "apturing" of the limiter by strong off-resoname signals, There is a "notrh" at 1700 cyeles.

There is a wide latitude in choice of inductances for L_{1}. The Millen coil listed under Fig. 5-38 was

the hest of avaiable low-pried units tried, in terms of sharpmess of the response curve and the depth of the rejeetion noteh. Some of the small filter chokes such as the Staneor (-1515 and Thordarson 'T20(53 also work reasonably well. 'The former will resomate at approximately the same frequencies as given above with :330 $\mu \mu \mathrm{d}$. at (${ }_{2}$ and $470 \mu \mu \mathrm{fa}$, at C_{3}; the latter whoke requires $0.001 \mu \mathrm{fd}$, at (2 and $0,002 \mu \mathrm{fll}$. at C C_{3}. With any coil the values of capacitance required to place the paak and noteh at frequencies that best fit one's taste in beat notes can easily and quiekly be determined he simple cut-and-try. Other types of solective audio circuits can, of coursa, also be substituted.

In use, the recoiver's gain controls should be set so that only the stronger signals are clipped; too-deepp clippuing will make the reocoiver sound as though practivally evore signal overloade it, Once the proper settings for elipping level are determined, the atetual audio volume is adjusted by the gain control on the unit. A little juggling back and forth between the reeoiver controls and the output control in the elipper unit will eventually result in the receiver's sounding very much like it doses without the clipper present. 'fice difference is that the signals and noise, including one's own transmitter signal, don't rise above the level set as a ceiling.

The "Selectoject"

The Selectoject is a roceiver adjumet that can be used as a sharp amplifier or as a single-froquency rejection filter. The frequency of operation may be set to any point in the audio range by turning a single knob. The degree of selectivity (or depth of the null) is continuously adjustable and is independent of tuning. In 'phone work, the rejection notch can be used to reduce or eliminate a heterodyne. In c.w. reception, interfering signals may be rejerted or, alternatively, the desired signal may be pieked out and amplified. The Selectoject may also be operated as a low-distortion variahle-frequency audio oscillator suitable for amplifior frequency-response measurements, modulation tests, and the like, by advancing the "selectivity" control far enough in the selectiveamplifier condition. The Selectoject is conneeted in a receiver between the detector and the first audio stage. Its power requirements are 4 ma . at 150 volts and 6.3 volts at 0.6 amperes. For proper operation, the 150 volts should be obtained from across a VIR-150 or from a supply with an output caparity of at least $20 \mu \mathrm{fd}$.

The wiring diagram of the Solectoject is shown in Fig. 5-41. Resistors R_{2} and R_{3}, and R_{4} and R_{5}, can be within 10 pereent of the nominal value but
they should be as close to each other as possible. An ohmmeter is quite satisfactory for doing the matching. One-watt resistors are used because the larger ratings are usually more stable over a long periond of time.

If the station receiver has an "accessory socket" on it, the cable of the Selectoject can be made up to match the connections to the socket, and the numbers will not neressarily match those shown in lig. $5-41$. The lead between the second detector and the reeciver gain control should be broken and run in shielded leads to the two pins of the sorket corresponding to those on the plug marked "A.F. Input" and "A.F. Output." If the receiver has a $\backslash R-150$ included in it for voltage stabilization there will be no problem in getting the plate voltage - otherwise a suitable voltage divider should be incorporated in the receiver, with a 20- to $40-\mu \mathrm{fd}$. electrolytio condenser connereded from the +150 -volt tap to ground.

In operation, overload of the receiver or the Seloctojeet should be avoided, or all of the possible selectivity may not be realized.

The solectojeret is usoful as a means for obtaining much of the performance of a erystal filter from a receiver lacking a filter.

Fig, 5-41 - Complete sehematic of Selectoject using 12AXT tubes.
$\mathrm{C}_{1}-0,01-\mu \mathrm{fil}$. mica, 400 volts.
$\mathrm{C}_{2}, \mathrm{C}_{3}-\mathbf{0 . 1 - \mu \mathrm { fl } \text { , paper, } 2 0 1 \text { volts. }}$
$\mathrm{C}_{4}, \mathrm{C} 8-0.0(1)-\mu \mathrm{fd}$. paper, 100) volts.
(\% $0.0 .05-\mu \mathrm{fd}$, paper, 100 volts.
C6- $16-\mu \mathrm{fd}$. 150 -volt electrolytic.
(.7-. $0002-\mu \mathrm{fd}$, mica.
$1 h_{1}$ - 1 megohm, $1 / 2$ watt.
R_{2}, $l_{3}-1000$ ohms, I watt, matehed as closely as possible (see text).
$\mathrm{K}_{4}, \mathrm{R}_{8}-2000$ ohms, 1 watt, matched as closely as possible (see text).
$\mathrm{R}_{6}-20,000$ ohtres, $1 / 2$ watt.
$\mathrm{k}_{\text {: }}-2000$ ohms, $1 / 2$ watt.
IRs - I0,000 ohms, I watt.
$R_{9}-6000$ ohms, $1 / 2$ watt.
$R_{10}-20,000$ ohmes, $1 / 2$ watt.
$\mathrm{R}_{11}-0.5$-megohm $1 / 2$ watt potentiometer (selectivity control).
$\mathrm{R}_{12}, \mathrm{R}_{13}$ - (ianged 5 -megohm potentiometers, standard audio taper (tuning control)
$S_{1}, S_{2}-$ D.p.d.t, toggle (can be ganged)

A Bandswitching Preselector for 14 to $\mathbf{3 0} \mathbf{~ M c}$.

The performance of many receivers begins to drop off at 14 and 30 Mc . The signal-tonoise ratio is reduced, and trouble with r.f.image signals becomes apparent. The preselector shown in Figs. 5-42 and 5-44 can be added ahead of any recoiver without making any ehanges within the receiver, and a selferontained power supply diminates the problem of furnishing heater and plate power.

As can be seen from the wiring diagram, lig. $5-43$, a 6 A ki5 r.f. pentode is used in the preselector. Both the grid and plate circuits are tuned, but the tuning condensers are ganged and only one control is required. The gain through the amplifier is controlled by changing the cathode voltage, through R_{3}. I selenium reetifier is used to supply plate power, and the heater power comes from a step-down transformer. The chatsis is at r.f. ground but the -d.c. circuit is isolated, to prevent shortcircuiting the a.c. line through external connections to the preselector.

A two-section ceramic switch selects cither the 14- to 21-Mc, or the 28-Mc. coil, or the antenna can be fed through directly to the rereriver input. When operating in an amateur band between 14 and 30 Mc ., switching to the band not in use will attenuate one's own signal sufficiontly to permit direct moilitoring, in most cases.

As shown in lig. 5-42, the ganged condensers are controlled from the front panel by a National MC'N dial, and a small knob to the right of this dial is connected to the antenna trimmer, ('4, for peaking the tuning with various antennas. The a.c. line is controlled by S_{2}, a toggle switeh mounted on the panel.

The proselector is built on a $3 \times 5 \times 10$ inch chassis, and a 6×6-inch plate of thin metal is used for a panel. A $13 / 4 \times 3$-inch aluminum bracket mounted about $31 / 2$ inches behind the front pand supports the tuning
condenser, C_{5}, and the antenna trimmer, C_{4}. Millen 39005 flexible couplings are required to handle the offset shaft of C_{4}, Both C_{5} and C 8 are mounted on the chassis with 6-32 sorews, but the chassis should be scraped free of paint before installation, to insure good contact.

The shield partition between the two switch sections (Fig. $\overline{\mathrm{j}}$-44) straddles the tube socket and shields the grid from the plate circuit. The switched ends of all coils are supported by their respective switch points, and the other ends are soldered to tie points mounted on the

COIL TABLE FOR THE PRESELECTOR
$L_{1} 5 \mathrm{t}$. No. 24, 3/4-inch diameter (B\&W3012)
$L_{2} 5 \mathrm{t}$. No. 24, 1-inch diameter (13\&W3016)
$L_{3} 6$ t. No. 24, 3/4-inch diameter (13 \& IV 3012)
$L_{4} \quad 7$ t. No, 20, 1 -inch diameter
(B\&W 3014)
$L_{5} 71 / 2$ t. No. 20, $3 / 4$-inch diameter ($\mathrm{B} \& \mathrm{E}$ W 3010)
$L_{6} 3$ t. No. 24, 1-inch diameter (B\&W3015)
$L_{7} \quad 11$ t. No, 24 d.e.e, close-wound, $1 /$-inch diameter
$L_{8} 4$ t. No. 28 d.c.c., close-wound, 1/2-inch diameter
L_{7} and L_{8} are wound adjarent on a $1 / 2$-inch diameter polystyrene form (National PRD-2)
chassis. The mica trimmers, C_{9} and C_{10}, are supported on short lengths of stiff wire, and a hole in the side of the chassis is required to reach ('10 with an aligning tool.

The power-supply components are mounted as near the rear of the chassis as possible. The selenium rectifier must be insulated from the chassis.

Fig. 5-42 - A handswitch. ing preselector for 14 and 28 Mc A single $6 \mathrm{AK}_{5} \mathrm{ampli}$ fier is used, and the power supply is included in the unit. The antenna-trimming condenser is mounted on the small aluminum partition.

Fig. 5-4.3 - Wiring diagram of the bandswitehing preselector.

Ch, (i2-10- $\mu \mu \mathrm{fl}$. micat.

(:4-1.7- μ_{μ} fll midmet variatile (Millon 2001.5).

($\mathrm{C}_{13},(1,5-0.01-\mu \mathrm{fl}$. paprer, 400 volts.
Ci4- Dual $10-\mu$ Cil. 150 -volt electrolytic.
K_{1} - $2 \overline{2}, 0100$, whme.
K_{2} - 330 ohms.
$K_{3}-$ - 0000 -nhtin wirr-wound putentiometer.
$1 \mathrm{R}_{4}-47001$ ohms.
$\mathrm{R}_{5}-18,01(0)$ ohms, 2 watts.
Ro, $\mathrm{R}_{7}-4.0$ whma.
1.1-Is-Ser coil tahle.

Lo - 20-henry 30-ma, filter choke.
J_{1}, J_{2} - (.oavial-cathe jack (Jones S-101).
S. - 2-gang 2-circuit 5 -position ceramic (Mallory 177C).
S_{2} - S.p.s.t. topgle.
Sl - SO ma, selenium rectifier.
' l_{1} - 6,3-volt transformer.

The coils are made from 13 , W " Miniductors," as shown in the coil table, with the exception of one plate and eoupling eoil which are wound on a polystyrene form. The ground returns for the eathote and phate be-pass comdensers are made to a common terminal, a soldering lug under one of the mounting serews for ${ }^{\prime} 8$.

When the wiring has been completed and checked, the antema is conneeted to J_{1} and a cable from J_{2} is run to the receiver input. Tune the receiver to the 11-Me. band and set sito the proper point. Then turn the main tuning dial unt il the noise or signal inereases to a maximum. This should ocrur with C_{5} and C_{8} set at close to maximum eaparity. Then peak the noise by adjusting (${ }_{10}$ and C_{4}.

The 28 -Ife range is adjusted in the same
way, with the exerption that (${ }^{2}$ is touched up. It may be found necessary to touch up C_{4} when different antemmas are used. The preselector may oseillate with no antenna connected, but with any type of wire or ferdline the operation of the amplifier should ordinarily be perfectly stable.

As shown, the proselector is intended for use with coaxial-line feed to the antenna and to the receiver. If a batanced twowire line is used from the antenna, it is recommended that a suitable two-wire connector be substituted for J_{1}. The grounded sides of L_{1} and L_{2} should be disconnceted from ground and returned to one side of the connect or. The out put connector can be left as shown, since at the lower frequencies the proper antenna connection isn't so important.

Fig, 5-14- A view under. neath the chasais of the band. switching preselector, showing the shin lal partition luetwern switely sertions and the selenium rectilier and associated filter.

An Antenna-Coupling Unit for Receiving

It will often be found advantagcous on the 14 - and 28-Mc. bands to tune (or match) the receiving-antenna feedline to the receiver, in order to get the most out of the antemna. One way to do this is to use, in reverse, any of the line-coupling devices advocated for use with a transmitter. Naturally the components can be small, beeanse the power involved is negligi-

Fig. 5-45 - (ircuit diagram of the eompling unit. C. $-140-\mu \mu \mathrm{fd}$. midget variahle (Millen 221.40) $\mathrm{C}_{2}-100-\mu \mathrm{fd}$. midget variable (Billen 22100).
 1 ineh on 1 -inch diameter form (Willen 4.5000), tapped at 2,5, 8, 12 and 18 turns.
$\mathrm{S}_{1}-2$-circuit 5 -position single-section ceramic wafir switch (Mallory 173C).
ble, and smatl recoiving condensers and coils are quite satisfactory. Some provision for adjustable coupling is recommended, as in the transmitting case, because the signal-to-noise ratio at 14 and 28 Mc. is depondent, to a large extent, on the degree of coupling to the anterna system. The tuning unit can be built on a small chassis located near the receiver, or it can be mounted on the wall and a piece of $\mathrm{R}(\mathrm{i}-\mathrm{i} 9 / \mathrm{U}$ run from the unit to the recoiver input, in the manner of a link line in transmitting pratice. For ease in changing bands, the eoils can be switched or plugged into a suitable soeket.

One convenient type of antenna-coupling unit for receivers uses the familiar pi-section filter circuit, and can be used to match a wide range of antenna imperlances. The diagram of a compact unit of this type is shown in lig. 5-4.). Through proper selection of condensers and inductances, a mateh ran be obtained over a wide range of values. The deviee ean be placed close to the receiver and loft connected all of the time, since it will have little or no effert on the lower frequencies. A short length of 300 -ohm Twin-Lead is convenient for connecting the antenna coupler to the receiver.

The antoma coupler is built in a $5 \times 7 \times 2$ inch metal chassis. All of the components except the two coils are mounted on the front and rear faces. The condensers are mounted off the panel by the spacers furnished with the condensers, and a clearance hole for the shatt prevents any short-circuit to the panel. 'The coils, wound on Millen 45000 phenolic forms, are fastened to the chassis with brass sorews, and the coils should be wound on the forms as far away as possible from the mounting end. The switch should be wired so that the switching sequence puts in, in each coil, 2 turns, 5 turns, 8 turns, 12 turns, 18 and 25 turns

The unit is adjusted for maximum signal by switehing to different coil positions and adjusting (${ }_{1}$ and C_{2}. It will not be necessary to retrim the condensers exeept when going from one end of a band to the other, and when the unit is not in use, as on 7 and 3.5 Mc., the eoils should be set at the minimum number of turns and the condensers sot at minimum. The small reactances remaining have a negligible effeet. The eoil in the grounded side should be shorted if coaxial-line feed is used. . Iljustable coupling not only offers an opportunity to adjust for best signal-to-noise ratio, but the coupling can be decrcased when a st rong locell signal is on the air, to diminate "blocking" and crossmodulation effects in the receiver.

Fig, 5.46- A compact coupling network for matching a loalanced line to the receiver on 14 and 28 Mc .

Receiver Matching to Tuned Lines

The pi-section coupler shown in Figs. 5-45 and $5-46$ can be used in many instamees for matehing a halaned open-wire line to the receiver, and it ean be used with an unbalanced line by short-circuiting the inductane in the grounded side of the umbalaneed line. However, there are many applieations where another type of coupler is slightly more advantageous, as when an all-band antemat system with tuned feeders is used, or whore a wide range of line impedanes may be en-

Fis. 5-4 - I small tuned eonpler for matehing the reveiver to a tuned line. 'The unit is made either seriesor parallel-tuned by the position of the antenna con. nection block.
countered. This other type of coupler, shown in Figs. 5-47, 5-48 and 5-49, is simply a seateddown transmitter coupler, with provision for either series or parallel tuning. The change from saries to parallel toming is made simply by the manner in which the antenna conneretion plate is plugged into the unit.

As can be seen in the wiring diagran, Fig. $5-48$, when the antenna connection plate is plugged in so that all four contacts are engaged, the two condensers are connerted across the coil in sories, to give parallel tuning. When the plate is dropped down, so that only the antenna plugs engage at A and B, the unit is connereted for sories tuning. Small low-powor transmitting coils with swinging links are used.

The unit is built in a $4 \times 4 \times 2$-inch box, with the coil socket mounted on one 2×4 inch side. One of the 4×4-inch side plates is replaed by a sheet of polystyrene or other insulating material, on which are mounted four banana jacks. A similar but smaller piece of insulating material is drilled at the same time

Fir. 5-18 - Coirruit of the tuned anterna compler. $\mathrm{C}_{1}, \mathrm{C}_{2}=100-\mu \mu \mathrm{fu}$. midget variable (Millen 22100). 1.1-Coil to tune to band in use, with swinging link (Xational MR-16).
to take four banana plugs. A pair of clearance holes must be added to the larger plate to clear two of the plugs when the series connection is used.

The two rondensers are mounted in the box and ganged with an insulated shaft coupling. The remaining 4×4-inch side plate is drilled and filed to form an oval hole that will pase the 300 -ohm line from the coupler to the reeciver. A rubber grommet should be fitted in the hole to proteet the line from the metal and to provide a little dearance.

In operation, the coupler is used in exactly the same way that one is used with a fransmitter. Some experimenting is necessary to determine whether series or parallel tuning should be used on the various bands, and it may be neressary to use the eoil from the next lower-freguency band if series tuming is indicated, or to remove a few turns from a coil if paralled tuning is recpuired. In iny event, the tuner should tume fairly sharply and give a definite" "poak" to the ineoming signals. When this condition has bern found on any one band, the coupling can then be adjusted for maximum response to the signals, by adjusting the position of the link winding within L_{1}.

Fig. 5-49 - Another view of the tuned antenna coupler.

Receiver Matching to Coxial Line

While some of the war-surplus receivers are designed to work from a low-impedince antenna, most of the popular communications receivers are designed for an impedance of from 300 to 500 ohms. When using coaxial-line feed from an antenna, as is not rare on 14 and 28 Me., maximum signal transfer from line to receiver is not obtained unless some type of matching net work is used. The pi-section coupler can be used, by short-circuiting the inductance in one leg and connecting this side of the coupler to the outer conductor of the cable and to the ground connection on the receiver. However, in matching between two unbalanced resistive loads of this type, another and slightly simpler circuit can be used. It is called an "L" section.

Fig, 5-50 - Wiring diagram of the "I,"section matehing network.
(in, Ci4-3- to 30- $\mu \mu \mathrm{fd}$. mica-compression trimmer.
$\mathrm{C}_{2}-1(0)-\mu \mu \mathrm{fd}$. nica.
($3-4--\mu \mu \mathrm{fd}$. mica.
1.1 - 12 turns, spaced to ocenpy $5 / 8$ inch.
I.2 - 7 turns, spaced to ocoupy $7 / 8$ inch. L_{1} and L_{2} wonnd with Xo. 18 d.s.c, on National XR-50 ($1 / 2$-inch diancter) iron slug-tuned forms.
$S_{1}-2$-pole 3 -position rotary wafer switch.
An "L"-section matching coupler for 14 and 28 Mc. is shown in Fig. 5-52. All of the components are mounted on a switch, and the unit is intended to be mounted on the antenna and ground post of the receiver. As can be seen from the wiring diagram in Fig. 5-50,

 tenna and ground binding posts of a communications receiver.
provision is included for straight-through operation between feed line and receiver on the other frequencies.

The values of the components are not critical, but provision is included for adjusting both the induetance and the capacity, to ancommodate minor variations in receiver impedances, If operation is limited to one band, or if different receivers or converters are used on the various hands, the coil and eondenser can be mounted right at the receiver terminals without the switeh. As shown, the unit is intended for use following an antenna change-over relay, and it is assumed that the difforent antennas are changed at the relay. However, if a relay is not used, the different feed lines can be brought directly to the unit and soldered to the antenna sides of L_{1} and L_{2}.

The units can be adjusted on a local signal that is not fading, by adjusting the inductance and capacity for maximum signal, as indicated by the s -meter. It is not be to expected that the adjustment will be critical, but the gain obtained by proper matching will be observed by switching to the straight-through condition, and comparing the differonce. The improvement will be only slight if the initial mismatch was small, but an improvement of several db. can be expected in any case.

Fig. 5-52-An"1,"section matching network for conpling the receiver to coaxial line. It is designed for use between 50 or 75 -ohm line and a receiver of 300 to 400 ohms input impedance.

A One-Tube Converter For 10 and 11 Meters

The 10- and 11-moter converter shown in Figs. $5-53$ and $\overline{0}-55$ is a simple unit that can be built in a few hours, for a cost of less than fourteren dollars, The eonverter uses a fixed-tume i.f, and tunable input and oscillator cireuits, in preference to a fixed-frequency oseillator and a tunable output eireuit. With a one-tube converter of the latter type, it is almost impossible to avoid picking up at least a few signals in the tuning range of the recoiver. I sing a tunable oscillator and a fixed-frequence output circuit permits one to select an i.f. free from interforence. The platecurrent demand is only $\overline{5}$ mat, and it is usually possible to operate the converter from the recoiver power supply.

As can be seom in Fig. 5-i)t, the Ilartley cireuit is used in the ascillator portion of the glBA7 pentagrid converter. A padding condenser, C_{2}^{\prime}, is switched in through x_{1} to change the range for 11-meter operation, (ondenser C_{4} is used for tuning, and the input cirruit is tumed to either range with C_{1}. The sereen grid of the gl3A7 is operated at about 65 volts, sime higher voltages will increase the total tube eurrent without any marked improvement in performaner. Ilowever, sine the available supply voltage will vary with different reecivers, the value of the sereen dropping resistar, R_{2}, camot be sperefifed, and it must be calculated, as described later.

There is a good reason for not using an antema switeh for straight-through operation of the converter. With practically any available switeh it is very difficult to prevent caparity compling between the input and rutput rirenits of the eomverter. Any such eapacity eompling ineratese the problem of eliminating interferemere at the i.f. By eguipping the comberter and the reecover with idontieal input terminals and using similar plags on both the antema feed line and the converter output cable, antennat changeover is no poblem, The metal partition separating L_{2} and L_{3}, shown in Fig. 5 - 54 , reduces the effect of oscillator har-

monics beating with high-frequency (f.m.) broadeast stations.

Construction

The ronverter is built on a 5 by 7 by 2 -ineh aluminum chassis, and a 6 by 7 -inch panel is held in place by the eomponents mounted on the front wall of the chassis. The main tuning dial is a National type MCN.

It can be seen in Fig. 5-53 that the oscillator tuming condenser, r_{4}, is mounted on $1 / 4$-inch motal pillats. A National Type GS-10 stand-off insulator is located at the front-right-hand side of C_{4}, and a soldering lug at the top end of this insulator is soldered to the statur terminal lug of the condenser. 'This added support for the tuming comdenser improves oscillator stability, by preventing rocking of C_{4} as the control shaft is turned. A feed-through bushing at the other front terminal of the condenser is used to support and insulate the lead passing through the chassis to the abil below. The padder eondensers for the oscillator cireuit, C_{3} and C_{5}, are mounted on the rear terminal lugs of the tuning condenser.
The grid coil, L_{2}, is mounted on the terminal lugs of the imput tuning condenser, C_{1}. The antrmat eoil, L_{1}, should be wound around L_{2} before the larger coil is soldered in plate. The tube sucket, to the rear of $C_{1} L_{2}$, is mount ed with pins No, 1 and 7 facing toward the rear of the chassis. The aluminum shield between the input and the oscillator coils has a $3 / 8$-inch lip bent over along one edge, for fastening to the chassis. The shied is sloted to clear the eathende-tap lead.

The sereen and deroupling resistors, P_{2} and R_{3} - respertively, are supported at the powersupply cuds ber a tio-point strip, which is hold in place by the same serew that anchors the soldering lug for L_{3}. If the receiver supply voltage is known at this time, it is possible to calculate the eorrect value for the sereen-dropping resistor, and the resistor can be mounted on the tiopeint strip, The resistor value is obtained from the equation
12 (olmas) $=\frac{\text { supply voltage }-65}{0.0046}$
Example: Supply voltage 260; the resistor value is $\frac{260-65}{0.0016}=\begin{aligned} & 42,391 \text { ohms. Anything within } 20 \% \\ & \text { of this figure would be satisfactors: }\end{aligned}$

The coaxial output cable is terminated at the chassis end at a tie-point strip located at the left cind of the chassis.

Fig. 5.5.3-A one-tube converter for extending the tuning range of a recoiver to 10 and 11 meters. The ersstal sorket on the back of the chassis receives the antenna plug (Millen 37412).

Fig. 5-5.t - (irrout diagram of the low-eost 10- and 11 -meter converter,
$C_{1}-$ I5- $\mu \mu \mathrm{fd}$, variable (Hillen 20015).
$\mathrm{C}_{2},(: 3-3-30-\mu \mu \mathrm{fl}$. mica trimmer.
 2 rotor phates removed).
$\mathrm{C}_{5}-68-\mu \mu \mathrm{ff}$, silver mica.
C. $-17-\mu \mu \mathrm{fl}$, ceramic.
$\mathrm{C}_{7}, \mathrm{C},-0.01-\mu \mathrm{fd}$. dise ceramie.
$\mathrm{C}_{8}-82-\mu \mu \mathrm{fd}$. mica.
$\mathrm{R}_{1}-22,000$ ohms, $1 / 2$ watt.
H_{2} - Screen resistor: ser text.
$183-10000$ ohms. $1 / 2$ watt.
L_{1} - 3 turns No. $\mathbf{i} \frac{1}{}$ d.sic., spare wound aroumd L_{2}.
It is important that the link from the converter to the receiver be well shiedded, to avoid picking up any signals direotly in the receiver. A length of R(i-58/U or IR(i-59/U can be used and, if necessary, a small shield should be mounted over the antemna binding post of the recoiver. However, it is usually possible to set the receiver somewhere near 3 Me , that will he free from even the weakest straight-through interference.

If no communications recoiver is available, a war-surplus 13C-454 aircraft receiver (tuning range of 3 to 6 Me .) makes an inexpensive reeriver for use with this converter.

Testing

Power for the converter can be obtained from a separate supply, but it is usually more convenient to "steal" the power from the receiver. The converter requires 6.3 volts at 0.3 amperes for the heater and 200 to 250 volts d.e. at 5 to 6 ma . for the plate and sereen.

After the power supply has been connected, it is advisable to cherk the screen and plate voltages with a voltmeter. It may be necessary to change the value of R_{2} if the sereen voltage isn't in the recommended range of 60 to 70 .

Fig, 5-55-A bottom view of the one-tube converter. 'The toggle switches are for band-changing and opening the heater circuit.
$\mathbf{L}_{2}-13$ turns No, 20 timed, $5 / 8$-inch diann, 13 亿五-inch long (13 \& 113000).
$\mathrm{L}_{3}-6$ turns No. 18 tinned, $1 / 2$-inch diam., $3 / 4$-incla long, cathode tap $13 / 4$ turns from ground end (B \& N $3012)$.
1.4-Slug-tuned phate coil (C.PC I. . 3 - 5 MC.).
$1.5-10$ turns No, 24 d.s.e. scramble wound at cold end of L_{4}.
J1- Pancl-mounting male sorket (Amphenol 86-(:P1) P_{1} - 300 -ohme twin-lead pluy (Millen 37.112).
$\mathrm{s}_{1}, \mathrm{~s}_{2}$ - $\mathrm{S}, \mathrm{p}, \mathrm{s}, \mathrm{t}$. toggere switch.
If your transmitter uses VFO, set the VFO to have a harmonic fall at 28 Ne, and tune the receiver to 3 Me. If you have reystal control, turn on the oseillator and set the receiver to the crystal's 28-Mc. harmonic minus 25 Mc . If, for example, your crystal has a harmonic at 28,650 kc , set the receiver to $36 \mathrm{~s}^{2} 0 \mathrm{kc}$. Sot the tuning condenser, C_{4}, to where you want the tost frequency (transmitter-oscillator harmonic) to appear on the dial, and tune it in by adjusting C_{3}. If the signal is too loud, remove any test antema from the ronverter. With a rasomable signal, cherek the tuning of the input circuit, $C_{1} L_{2}$, and adjust L_{4} for maximum signal in the recoiver.

Once the converter hats been set up on known frequencies within the 10 - and 11 -meter bands, C_{2} and C_{3} are left fixed and the tuning is done with C_{4}, The bandspread will the approximately 80 dial divisions on 10 and 20 or so on 11 meters. (1 need not be touched over a tuning range of about 200 ke ., and so should be used at intervals if the entire band is being combed.

Crystal-Controlled Converters for 14, 21 and 28 Mc.

The principle of using a fixed high-frequency oscillator in a converter and tuning the recoiver the converter works into can be elaborated upon by using a stage of r.f. amplification ahead of the mixer and by using a crystalcontrolled oscilator for maximum stability. Since such a converter is generally used on a high frequency where fundamental crystals are not available, it is necessary to use a harmonic of a lower-frequency crystal. A crystalcontrolled converter of this type is shown in Figs. 5-56 and $5-58$. A separate converter is required for the 14-, 21-and 27-/28-Mc. hands, since by using separate converters it is possible to simplify their construction and to maximize their performanee.

The converter uses the harmonic of a crystal oscillator to provide an exceedingly stable highfrequency oscillator signal. For example, in the 10-meter eonvertera 12.25- Mo. crystal doubles to 24.5 Me., and this signal is fed to the mixer. By tuning the amplifier (your present receiver) following the mixor over the range 3.5 to 5.2 Mc., you are, in effeet, tuning across the 28-Mc. band. The r.f. circuits in the converter are tunced to 28 Me., and only have to be touehed up when going from one end of the band to the other.

The wiring diagram is shown in Fig. 5-57. A neutralized triode-comineted 6AK5 is used for the r.f. amplifier. There is some question as to its necessity on 14 and 21 Mc., where the atmospherie noise is generally high enough to limit the maximum usable sensitivity. A poutode-connerted 6.4 k 5 could probably be used with no detertable differone in performance on 14 and 21 , but the triode is easy to handle and you don't lose anything by using it. Itsing high-impedance circuits with the pentode might give trouble from regeneration, unloss the stage were noutralized. Adjustable antenna coupling and a Faraday screen are in-
cluded to accommodate various antenna systems and to eliminate capacity coupling to the antenna line. The r.f. stage runs at 105 volts on the plate, since this gives the best noise figure. The separate plate lead also offers an opportunity to kill the converter by opening this circuit. The 6.1K5 pentode mixer is casy to handle and quint enough so that its noise doesn't impair the over-all performance. I triode mixer might be used, but the pentode runs with low current and is quiet.

The plate circuit of the mixer is tuned to the center of the recoiver tuning range by setting L_{4} to resonate with the various shunt circuit capacities. The eireuit has a low Q and there is little variation in gain over the range. A 6 C'4 cathode follower is used as a low-impedance coupling to the receiver input.

One section of a $6 . J 6$ twin triode is used for the erystal oscillator, and the other half serves as a frequency multiplier. To minimize the other harmonics existing in the plate circuit of the multiplier, the plate is tapped down on L_{6}.

To get the best possible r.f. circuits, within the space limitations, 13 \& W "Miniductors" are used for L_{1}, L_{2} and L_{3}. Their Q is well above that obtainable with smaller-diameter coils, and they are easy to handle. To insure good shielding and low-resistance ground paths, an aluminum chassis is used in preference to the more common steel units.

The converter is built on a $5 \times 91 / 2 \times 3$-ineh aluminum chassis, with several shield partitions to reduce unwanted interstage coupling. The most important shield is the one that straddles the r.f. amplifier socket and separates the grid and plate circuits of this stage. The grid tuning condenser, (r_{2}, is mounted on bakelite insulating washers, and its ground lead returns to the common ground at the tube socket, to eliminate stray coupling through chassis cur-

Fig. $5.56-\mathbf{A} 28-$ Mc. erystal-controlled converter. The adjustable antenna coupling can be seren at the left front. The tube shields. from left to right, eover the triode-connected 6AK5r.f.amplifier, the $6 \mathbf{1 K 5}$ mixer and the 60.4 cathode follower. The unshielded tube is the 6 J 6 uscillator-multiplier.

rents. If this isn't done, you may have trouble neutralizing the amplifier.

A $2 \frac{1}{4}$-inch diameter hole is punched in the chassis, so that the externally-mounted antemna coil, f_{1}, ean be coupled to the grid coil, L_{2}. The Faraday serven is then mounted across this hole on the underside of the chassis. To construct the laraday shield, first cut a piece of $1 / 8$-inch-thick polstyrene (Millen Quartz-Q) to measure $21 / 2$ by $31 / 4$ inches, and drill a pair of holes at one end to clear No. 6 screws, for mounting the finished shield. (These are the same screws that hold the mounting strip for the antenna condenser, C_{1}, visible in $\operatorname{Fig}, \bar{i}-\bar{j}(i)$) At the opposite end of the poly sheet, drill a small hole in each corner, for securing the wire used in making the shiedd. Then wind No. 20 timned wire tightly around the poly sheet in the long direction, spacing it with string or more No, 20 wire. When the winding is finished and secured at both ends, unwind the spacing string (or wire) and remove it. If you have done the job carefully, you will have neat paralled lines of wire ateross the polyst yrene, all equally spaced and all lying fairly flat. Then apply two or three heavy coats of Duco cement to one side only, allowing suflicient time between coats for the cement to harden thoroughly. When this has been done, it will be found an easy job to cut each wire on the uncemented side. Straight-
$\mathrm{R}_{3}-56,000$ ohms.
R_{4} - 6810 olims.
$\mathrm{R} 5-0.1$ megohm.
$\mathrm{R}_{6}, \mathrm{R}_{10}, \mathrm{R}_{12}, \mathrm{R}_{14}-470$ ohms.
$\mathrm{R}_{\mathrm{I}} \mathrm{R}_{11}-\mathbf{4} \mathbf{4 0 0}$ ohms.
lis - 0,18 megohm.
$1133-82,000$ ohms.
All resistors $\frac{1}{2}$-watt unters otherwise specified.
$\mathrm{L}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}, \mathrm{I}_{4}, \mathrm{I}_{5}, \mathrm{I}_{6}-\mathrm{sice}$ enil table.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Cable-eonnector suckets (Jones S-101).

NTAL - See coil table.
en out the wires so that you now have a flat sheet of parallel wires, and trim off the wires at the mounting holes end of the sheet along a line inside the mounting holes. Figs, $\overline{\text { on }}-\overline{\mathrm{c}} 8$ and 5-59 show what this looks like. When trimming these wires, be careful to see that no wire is left touching an adjacent one. Trim the wire ends at the other end to about $1 / 2$ inch from the polystyrene. Clamp the shield in a vise, between two pieces of wood, and wrap each wire end around a piece of No. 12 tinned copper, as shown in Fig. 5-59. With a good hot iron, run a bead of solder along the bus, and your shield is finished. Work fast, and no heat will reach the poly. The shield is mounted with the smooth side exposed through the hole, and one end of the No, 12 bus is grounded at the r.f. tube socket.

The grid coil, L_{2}, is supported by its leads and a couple of drops of Duco cement that hold its grounded end to the Faraday shield. The antenna coil, L_{1}, is mounted by its leads on a piece of $1 / 4$-inch diameter polystyrene rod. The rod is supported by a shaft bushing. A small wire pin through the rod at the back of the bushing and a rubber grommet between the bushing and the control knob give a soft friction lock that holds the coupling in any position. Flexible leads run from the coil to C_{1} and the shield of the $\mathrm{RG}-59 / \mathrm{U}$ coaxial line.

The r.f. plate coil, L_{3}, is cemented to a small piece of polystyrene sheet that is supported by two small brackets. The neutralizing condenser, C_{6}, is supported by one terminal of C and a stiff wire lead back to the grid pin on the tube socket. The coupling eondenser, C_{99}, is simply an insulated wire wrapped onee around the lead from ('s to the grid of the mixer. It is brought out of the ascillator compart ment through a polystyreno or rubber grommet.

After the usual last eheck of the wiring, connect a power supply and remove the 6AK5 r.f. amplifier from its socket. Listen in on your receiver at the erystal frequency, and if you don't find the crystal signal, adjust L_{5} until you do. Then set your receiver on the proper harmonic frequency and paak L_{6} for maximum signal, as indicated by yours-meter. Then back off on L_{5} a little, because there is no need to run the erystal at maximum.

Then tune your receiver - its antenna circuit must complete the cathode circuit of the 6C4 follower - to about 3.8 Nc. and peak L_{4} for maximum noise. The adjust ment is not sharp. If gour receiver has an antenna trimmer, peak it too. Then plug in the 6AK5 r.f. amplifier and, after the tube has warmed up, rock C_{2} and C_{7}. Phrough the hole in the bottom plate, use an alignment tool to adjust C_{6} a lit tle at a times, until

COIL TABLE FOR THE CRYSTAL-CONTROLLED CONVERTER
 21 Mc .
 28 Me.

14 Mc .
L. $\quad 23$ t. No. 24
$3 / 4$-inch diam. (13 N W 3012)

L2 21 t. No. 24
$3 / 4$-inch diam. (13 N W 3012)
I. $3 \quad 38 \mathrm{t}$. No. 24 3/4-inch diam. eenter-tapped (13 \& 1

9 t. No. 24
-inch diam.
($\mathrm{B} \& \mathrm{~W}$ W016)
10 t. No. 20
1 -ineh diam.
(${ }^{2}$ \& W 3015)
29 t. No. 24
3/4-inch diam., center-tapped (13 \& W 3012)

10 t. No. 20
1-ineh diam.
(B \& W 3015)
9 t. No, 20
l-inch diam.
(IS \& W 3015)
16 t. No. 24
$3 / 4$-inch diam.. eenter-tapped
(13 X W 3012)
L. 4 Slug-tuned eoil (Cambridge Thermionic Corp. I-SIr. L.SM with $2(0)$ turns removed) (Coils for L_{5} and $L_{\text {a }}$ are wound on $1 / 4$-inch diameter (ambridge Thermionic Corp. ISN forms)

L5	No, 32 enam., elose-wound, $1 / 2$ inch long	No, 32 enanı.. close-wound, $1 / 2$ inch long	30 t. No. 28 enam., close-wound
L_{6}	22 turns No. 28 enam., close-wound. center-tapped	20 t . No, 20 cham., close-wound, center-tapped	$\begin{aligned} & 20 \mathrm{t} \text {. No. } 24 \\ & \text { enam., elose-wound, } \\ & \text { center-t apped } \end{aligned}$
Cic	$75 \mu \mu \mathrm{~d}$.	$75 \mu \mu \mathrm{fl}$.	$33 \mu \mu \mathrm{fd}$.
$0 \cdot 19$	0	$22^{2} \mu \mathrm{fl}$.	$22 \mu \mu \mathrm{fd}$.
Xinl	6000 ke. (triples)	\$875 he. (triples)	12,250 kc, (doubles)

Fig. 5-58-This view of the underside of the converter with the bottom cover removed shows the laraday shield at the lower right, the shield straddling the r.f. amplifier socket (lower center) and the shietded oseil. lator section (top center). The neutralizing condenser for the r.f. stage is adjusted through a hole in the bottom cover.

50- or 75 -ohm line. If you use 300 -ohm TwinLead, it is better to leave the short length of coaxial line ungrounded and to use something other than a coaxial fitting for connerting the antenna. If your antemat uses 600 -ohm line or tuned feeders, it is best to use a small antenna tuning unit link-coupled through a length of R(i-i99/L to the converter input.

There is nothing saced about the crystal frequencies used, other than to be sure that they have no harmonies falling within the sig-nal-frequeney range. For the crystals sugrested in the coil table, the recoiver tumes from 4 to 3.6 to cover 14 to 14.4 Mr . (yes, it tumes backwards!), 3.375 to 3.825 for 21 to 21.45 Me., and 3.5 to 5.2 for 28 to 29.7 Mc . The $27-\mathrm{Mc}$. amateur band is also eovered by the 10 -metor convertor, simply by tuning your receriver below 3.5 Mc.

What first i.f. (tuning range of your recoiver) you will use depends on the available crystals and the range your present reeciver tumes. Using the serond or third harmonic of the erystal should be satisfactory in practically every case. Hy careful selection of crystal frequencies, you can arrange things so that the

Fig, $\quad 5.59$ - Constructional details of the Faraday shied, hefore soldering the ends of the No, 20 wires to the No. 12 wire hus.
band edges start at some even 100-ke. mark on your receiver, thus giving you frequencycalibrated reception (with the necessary mental correction factor). The accuracy of calibration of your receiver on the one tuning range, together with the aceuracy of the erystal used in the oseillator portion of the converter, will determine the accurary of calibration of the receiving system.

Power Supply

The circuit diagram of a suitable power supply for use with the converters is shown in Fig. $\overline{5}$ - 60 , although any souree of 6.3 volts a.c. and 10 and 180 volts d.e. will do. One set of commections runs to the converter in use, and the other goes to a small control box located on the operating table. If desired, the a.e. switeh can be incorporated in the power supply, but the plate switeh, in the $10 \overline{5}$-volt lead to the r.f. stage, should be handy to the operator. A switch ean be provided for shifting the power from one converter to another. Nince separate receiving antemas are generally used at these frequencies, the antennas do not require switching.
rig. 5.60-A power supply for the erystal-controlled comerter.
$\mathrm{C}_{1}, \mathrm{C}_{2}-8 . \mu \mathrm{fl}$, 1.50 -volt electrolytic.
Rt - In(K) ohms, (1) watts.
11_{2} - 10,1000 ohms, 10 watts.
L_{11} - 16-hy. 50-mal cluke (itancor C.1003).
$\mathrm{T}_{1}-2(10-0-2.40$ at 40 ma.. 5 and 6.3 v. (Stancor ['-6297).

A Sharp I.F. Amplifier For 'Phone Or C.W.

The amplifier shown in Figs. 5 - 62 and 5 - 63 is designed to follow any receiver i.f. amplifier in the range around 455 kc ., to give additional selectivity to the receiving system. For c.w. reception, ten circuits tuned to 50 kc . give a characteristic with excellent skirt selectivity, as indicated by a bandwidth of only 1900 eycles at -60 db . (Compare this with Figs. 5-1 and $5-22$.) Ilowever, the amplifier is about 4.50 (eydes wide at -6 db ., so signals do not "ring" or hecome difficult to tunc. For' 'hone reception, some of the erreuits are detuncel (by throwing a switch) to give a "stagger-tuned" amplifier that hats a bandwidth sufficient for reeption of one sideband. However, since a majority of the cireuits are still tuned to 50 kc ., the resultant characteristic has greater gain at 50 ke . than at any other, and by tuning so that the heterolyned carrier falls at 50 ke , "exalted-rarrier reception" is obtained. The useful bandwidth for 'phone reception is about 2300 (eyeles, so some high-audiofrequeney response is lost, but the gain in intelligibility in crowded bands more than makes up for it. The bandwidth at -60 db , is 4000 cycles in the 'phone condition.
The complete eircuit of the amplifier is shown in Fig. 5-61. Receiver output at 455 kc . is fed into the 6 BLF i.f. enverter, where the erystal-con-

[^3]trolled oscillator portion can be set cither 50 kc . higher or lower, to use the familiar selectablesideband principle. ${ }^{1}$ If ther receiver i.f. were something other than 450 ke ., the choice of crystals would be different, of course. Two 6B.j6 i.f. amplifier tubes are coupled by eight Millen 50-ke. high- Q tuned circuits, $T C_{1}-T C_{8}$, with provision through S_{2} for switching the tuning of four of these circuits by cutting in series condensers C_{5}, C_{8}, C_{12} and C_{16}. The second 6RJJ6 stage is coupled to a GBE6 a.f. converter used for c.as. and s.s.b. suppressed-carrier reception, and also to another 613.16 i.f. amplifier. This i.f. amplifier feeds a diode rertifier for a.m. reception and also has a.v.c. voltage applied to its grid, to obtain some a.v.e. aetion and to give a logarithmie S-meter action. The switch S_{3} selects output from one of the two detectors and also turns the b.f.o. on or off. The rest of the circuit includes a filter following X_{3} B to keep $50-\mathrm{kc}$. energy out of the audio amplifier, and a meter amplifier for the S-meter. The i.f. gain is controlled through R_{7}, and the audio volume through R_{25}. The i.f. gain control is important, because the gain of the amplifier is much higher in the narrow-band (c.w.) condition than in the stagger-tuned ('phone) atrangement, and the gain setting must be changed when switch S_{2} is thrown from one position to the other.

Fig. 5-61 - Wiring diagram of the selective 50-ke, i,f, amplifier.
$\mathrm{C}_{1}, \mathrm{C}_{3,} \mathrm{C}_{29} \mathrm{C}_{30}-0.01-\mu \mathrm{fd}$, ceramic dise.
$\mathrm{C}_{2}-4 \overline{-\mu \mu \mathrm{fd} \text {, mica. }}$
$\mathrm{C}_{4}, \mathrm{C}_{8}, \mathrm{C}_{7}, \mathrm{C}_{11}, \mathrm{C}_{13}, \mathrm{C}_{15}, \mathrm{C}_{23}-4.7-\mu \mu \mathrm{fl}$. mica.
$\mathrm{C}_{5}, \mathrm{C}_{12}-0.00 \div 8-\mu \mathrm{fd}$. mica $(0.0068$ and 0.001 in parallel).
$\mathrm{C}_{8}, \mathrm{C}_{16}-0.0068-\mu \mathrm{fd}$, mica.
$\mathrm{C}_{9}, \mathrm{C}_{17}, \mathrm{C}_{22}, \mathrm{C}_{27}-0.1-\mu \mathrm{fd}, 200$-volt paper.
$\mathrm{C}_{10}, \mathrm{C}_{14}-1.0-\mu \mathrm{fl}$. 400 -volt paper.
$\mathrm{C}_{18}-100-\mu \mu \mathrm{fd}$, midget variable.
$\mathrm{C}_{19}, \mathrm{C}_{20}, \mathrm{C}_{26}, \mathrm{C}_{33}, \mathrm{C}_{34}, \mathrm{C}_{36}-170-\mu \mu \mathrm{fd}$, mica,
C_{21}, $\mathrm{C}_{24}, \mathrm{C}_{31}-0,001-\mu \mathrm{fd}$, mica.
$\mathrm{C}_{25}-100-\mu \mu \mathrm{fd}$, mica.
$\mathrm{C}_{28}-20-\mu \mathrm{fd}$. 25 -volt electrolytic.
$\mathrm{C}_{32}-220-\mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{35}, \mathrm{C}_{38}, \mathrm{C}_{41}-0.01-\mu \mathrm{fl}, 400$ volt paper.
$\mathrm{C}_{37}-0.002-\mu \mathrm{fd} .400$-volt paper.
$\mathrm{C}_{39}, \mathrm{C}_{42}-10-\mu \mathrm{fd} .25$-volt electrolytie.
C40-8- $\mathrm{ffl}, 450$-volt electrolytic.
$\mathrm{K}_{1}, \mathrm{~K}_{21}, \mathrm{~K}_{33}-0.47$ megohm.
$\mathrm{K}_{2}, \mathrm{~K}_{31}-0.1$ megohm.
$\mathrm{R}_{3}-470$ ohms.
$1_{4}, k_{13}-22,000$ ohms.
$\mathrm{R}_{\mathrm{s}}, \mathrm{N}_{\mathrm{s}}, \mathrm{N}_{\mathrm{ro}}, \mathrm{R}_{18}-100$ ohme.
$1 R_{6}-33,000$ ohms, 2 watts.
$\mathrm{R}_{7}-5000 \mathrm{ohm}$ wire-wound potentiometer.
$11_{9}-2200$ ohms, I watt.
$R_{10}-2200$ ohms.
$R_{11}-33,000$ othms.
$R_{12}-56.000$ ohms.
$\mathrm{K}_{14}-330$ ohms.
$\mathrm{K}_{15}, \mathrm{~K}_{22}-1.0$ megohmı.
$\mathrm{K}_{17}, \mathrm{R}_{18}, \mathrm{~K}_{32}-4,500$ ohms.
$\mathrm{R}_{19}-68,000$ ohms.
$\mathbf{R}_{20}, 1_{23}-47,000$ ohmes.
H_{24} - 1000 ohms.
$\mathbf{l}_{25}-0.25$-megohm volume control.

Fig. 5.62 - The selective 'phone and c.w. 50 -ke. i.f. amplifier connects to the i.f. of a regular receiver, in the manner of the familiar S.5-er. It is lmilt on a $10 \times 15 \times 2$-inth chassis, with a $51 / 4$-inch high panel. Whe plate circuit filter, (:36, R2:3, R1'C.3, (:37 and C38 are monnted ahove the chassis in the shield can near the right fromt.

In an amplifier like this, over-all ferel-back must be eliminated, and this calls for proper bypass condensers in the common screen and plate leads. The choke, $\operatorname{RFC}{ }_{1}$, is included to sories resonate with (${ }^{14}$ at 50 ke . and bring the common sereen eireuit down to ground potential without using a bepass condenser larger than $1 \mu \mathrm{fd}$. Werything else in the circuit is conventional and familiar to anyone acquainted with i.f. amplifier practice. The switch, S_{4}, for shorting out the S-meter, is an elaboration exerept for someone who doesn't like to see the meter swing too far on ocrasion.

Constructional details will, of course, vary with the huileder and his particular station layout. The only point to watch in any modification is to be sure not to double the amplifier string
back on itself, which might encourage feedhack.

Adjustment

The first step in alignimg the amplifior, after the wiring has been cheeked, is to tune the circuits to 00 ke approximately. For a signal source, couple from the receiver at tins ke . and feed it into the input of the amplifier. Fune in a steady signal (fregmeter or h.e. corrier) and align the tuned circuits $T C_{10}$ hack through $T C_{1}$, with S_{2} set to short out the condensers. When the circuits have been aligned, as indicated by the s-meter, switeh \mathscr{S}_{1} to the other erestal and see if the signal is still peaked. It probably won't be, and you now have to "split the difference" and realign the circuits until a signal peaked at one setting of S_{1} will be paaked at the other. If the exact

l_{262} - $\mathbf{2 2 0}$ ohms.
$\mathrm{R}_{27}-47,000$ ohme, 2 watts.
$\mathrm{H}_{28}-390$ ohms.
$\mathrm{R}_{29}-\mathrm{F}^{2} \mathrm{ohms}$.
$\mathrm{H}_{30}-3900$ ohms.
$1_{34}-270$ ohms.
$\mathrm{L}_{1}-\mathbf{7 5 0}$ uh. (National IR-33),
$1.2-40 \mathrm{mh}$. (Millen 342.40),
$1,3-80 \mathrm{mh}$. (11 illen 34280).
MA - 0.1 milliammeter.
$\mathrm{HFC} \mathrm{C}_{1}-67 \mathrm{t}$. No, 30 enam, close-wound on $1 / 4$-inch diam. form (I-megohm resistor).
$\mathrm{KFC}_{2}-80 \mathrm{mh}$. (Nillen 31:80), mounted at right angles to L_{3}.
RFC - 125 mh , (Millen $34000-2$ removed from can).
$\mathrm{S}_{\mathrm{t}}, \mathrm{S}_{3}, \mathrm{~S}_{4}-\mathrm{I}$.p.d.t. rotary switch (Mallory 3222J); one pole only used on S_{1} and s_{4}.
S_{2} - 4-pole rotary switch (Mallory 3242 J).
'T' - Audio output transformer (Merit A-2902).
$\mathrm{TC}_{1}-\mathrm{T}^{\prime} \mathrm{C}_{10}-50-\mathrm{kc}$. tuned circuit (Millen 63650).
frequencies of the crystals are known, and you have an arrurate signal gencrator in the $50-\mathrm{kr}$. range, align the circuits the first time on half the frequency difference betwern the two revstals. It may sound complicated, but it isn't. The expromental method shouldn't reguire more than four or five tries.

Next check the b.f.o. tuning range by switching it on and watehing the S-meter as C_{13} is tuned through its range. The b.f.o. couples some energy into the s-moter circuit, and as C_{13} is tuned through you will find a peat. Add or subtract fixed raparity arross the circuit until the peak occurs with \boldsymbol{C}_{13} at about half capacity. Tuning the b,f.o. through its range should show an even rise and fall in the s-moter circuit - any sudden jump indirates some regencration in the amplifier. Switrh off the b.f.o., tume in a signal as indicated on the S-moter, and jump a $1-\mu \mathrm{fd}$. condenser arross the $13+$ and serern leads at various points throughout the amplifier. Any ehange in Simeter reading indicates regemeration in the amplifior, and it means that more by-passing, or a modifieation of $R F C_{1}$, is required. In alljusting $R F C_{1}{ }_{1}$, wind it large and remove turns two at a time, with a ronstant signal through the amplifier. When the signal comes down to a minimum and then starts back up, rewind the choke to the turns that gave the minimum. The amplifier maty be slightly regenerative at a high gatin sotting in the "sharp" comdition. Howevor, this gatin is well beyond anything you would ever use, and at normal settings the amplifior should the perfertly stable. Also wher the S-motor roading with the b,for, on (no signal moming through) to sere if there are any points along the +10 j -volt line where extra by-passing will rut down the b.f.o. leakage.

It about this point in the chereking it is wise fory a little more caparity across (${ }_{32}$, since this fixed condenser tunes the coupling rircuit betwern the GB.J6 amplifier and the diode. With a stoady signal coming through, hold a 10- or 20 $\mu \mu \mathrm{fd}$. condenser across C_{32}. If the S -meter reading goes up, C_{32} is too small, and if the reading goos down the rondenser is too large. The tuning isn't very critioal howorer, and there is plenty of signal to spare at this point.

Now switch S_{2} to the other position and tune across an unmodulated signal, with the b.f.o. off and R_{7} set for maximum gain. The meter reading will show two praks, one of the same frequency as in the "sharp" position and one new one. Exporiment with the tuning of $T C_{9}$ and $T C_{10}$ until the new prak is not so sharp and has somewhat less amplitude than the original. You will find that you can ehange it considerably, so make your changes in small steps. Set it up by cut and try, using a b.c. station as your signal and adjusting for good intelligibility. It probably won't be necessary to touch $C_{5}, C_{8,8}, C_{12}$ and C_{16}, unless these condensers are incorrectly marked and thus far off the nominal value. Their value, of course, afferts the position of the lower hump in the seloctivity characteristic.

When tuning in a 'phone signal, watch the S-moter and sot the carrior at the maximum meter roading, learning not to be fooled by the slight hump 2000 rycles off this point. If there is a heterodyne on the signall, flip S_{1} to the position giving the least interferenee.

In operation, set the i.f. gain rontrols in both recoiver and so-ke, i.f. where there is no chance for overload, with the audio adjusted for comfortable listoning. On r.w. the S-moter may kiek a little on a lond signal, and on 'phone it will get up to half scalde on a good signal, This ralls for some juggling of the gain controls as you tune arooss a band. When throwing s_{3} from one position to the other, it is advisablle to reduce the audio volume to zoro first, or rese the audio tube takes quite a licking beratuse of the difference in potential in the two mints on switeh $S_{3} B$.

Vou may have to realign your receiver slightly to use this amplifier, or clse get a pair of erystals that mateh your reeriver. If, for example, the crystal in your present rocoiver is on tion ke., and hene the i.f. is aligned there, the $405 / 505-\mathrm{kc}$. crystal combination won't be right. What you need is a 400 -and a 500 -ke. crystal. I But sinme the crystal filter won't be used much any more, it is easier to switch it out of the circuit and realign the recerver i.f. amplifier. Tune in a signal on the 50-ke. amplifior and retune the receiver i.f. transformers for maximum signal, and that's all there is to it.

Fig. :-6.3 - Undermeath the chassis of the 50 ke, amplifier. I.cads to the audio volume control, to the prids and plates of the amplifier tulnes, and to the selectivity switeh, are all run in shielded wire.

High-Frequency Transmitters

The principle requirements to be met in c.w. transmitters for the amateur bands between 1.8 and 30 Mc . are that the frequency must be as stable as good practice permits, the output signal must be free from modulation and that harmonias: and other spurious emissions must be eliminated or reduced to the point where they do not canse interference to other stations.

The over-all design depends primatrily upon the bands in which operation is desired, and the power output. A simple oscillator with satisfartory frequency stability may be used as a transmitter at the lower frequencies, as indicated in Fig. 6-1.1, but the power output obtainable is small. As a general rule, the output of the oscillator is fed into one or more amplifiers to bring the power fed to the antenna up to the desired level, as shown in 13 .

An amplifier whose output frequency is the same as the input frequency is called a straight amplifier. If such a straight amplifier is plared in an intermediate position between two other tramsmitter stages it is sometimes called a buffer amplifier.
leanuse it beromes increasingly diflicult to mantain oscillator frequency stability as the frequency is increased, it is most usual practice in working at the higher frequencins to oporate the oscillator at a low frequency and follow it with one or more frequency multipliers as required to arrive at the desired output frequency. A frequency multiplier is an amplifier that delivers output at a multiple of the exciting frequency. A doubler is a moltiplier that gives output at twice the exeiting frequency; a tripler multiplies the exciting frequency by threc, etc. From the viewpoint of any particular stage in a transmitter, the preceding stage is its driver.

As a general rule, frequency multipliers should not be used to feed the antenna system directly, but should feed a straight amplifier which, in turn, feeds the antenna system, as shown in Fig. 1-C, D and E. As the diagrams indicate, it is often possible to operate more than one stage from a single power supply.
(iood frequency stability is most easily ohtained through the use of a crystal-controlled oscillator, although a different crystal is needed for each frequency desired (or multiples of that frequency). A self-controlled oscillator or VFO (variable-frequency oscillator) may be tuned to any frequency with a dial in the manner of a
receiver, but requires great care in design and construction if its stability is to compare with that of a crystal oscillator.

In all types of transmitter stages, screen-grid tubes have the advantage over triodes that they require less driving power. With a lower-power exciter, the problem of harmonic reduction is made easier. The most satisfactory oscillator circuits require the use of a sereen-grid tube.

Fig. 6.1-Bloek diagrams showing typical combinations of oscillator and amplifiers and power-supply arrangements for tranzmitters. I wide selection is possible, depending upon the number of hands in which operation is desired and the power output.

Oscillators

Crystal Oscillators

The frequency of a crystal-controlled oscillator is held constant to a high degree of accuracy by the use of a cuartz crostal. The frequeney depends almost entirely on the dimensions of the crystal (essentially its thickness); other circuit values have comparatively negligible effect. However, the power obtainable is limited by the heat the cristal will stand without fracturing. The amount of heating is dependent upon the r.f. erystal current which, in turn, is a function of the amount of feed-back required to provide proper excitation. Crystal heating short of the danger point results in frequency drift to an extent depending upon the way the crystal is cut. Excitation should always be adjusted to the minimum necessary for proper operation.

Crystal-Oscillator Circuits

Fig. 6-2 shows three commonly-used crystaloscillator circuits. All are of the electron-coupled type in which the screen of the tube serves as the plate of a triode oscillator. A separate output tank circuit is used in the actual plate circuit. Because of the shielding effect of the soreen and suppressor grids, the coupling between the two circuits is comparatively small and exists principally through the common electron stream within the tube. Thus when the load is coupled to the output circuit, its effeet will be much less than if it were coupled directly to the frequencygenerating circuit.

In the Tri-tet circuit of A, the sercen is the grounded "plate" of a t.g.t.p. triode oscillator, the crystal taking the place of the coil-andcondenser grid tank. Excitation is controlled by adjustment of the tank $L_{1} C_{2}$ which should have a low L / C ratio and be funced considerably to the high-frequency side of the crystal frequency (approximately is Me. for a 3.i-Mc. crystal) to prevent over-excitation and high arystal current. Once the proper adjustment for average crystals has been found, C, may be replared with a fixed condenser of equal value.

In the grid-plate circuit of Fig. 6-213, the oscillating circuit is the equivalent of a groundedplate Colpitts. Exeitation is adjusted by changing the ratio of the two caparitances, C_{6} and C_{8}, The oscillating circuit of the modified Pierce oscillator in (C is also basically a Colpitts, this time with a grounded cathode. The grid-cathode and screen-cathode eaparitances serve the same purpose as the two condensers romected across the circuit in I3. To obtain proper adjustment of excitation, the soreen-rathode capacitance is augmented by C_{9} which may be adjusted for optimum excitation.

In these circuits, output at multiples of the crystal frequence may be obtained by tuning the plate tank circuit to the desired harmonic, the output obtainable dropping off, of course, at the higher harmonirs.

If the behaviour of these circuits is to be pre-
dicted with any degree of accuracy, the tube used must be one having good screening. From all considerations, the 6A(;7 is recommended. With a well-screened tube and proper excitation adjustment, the output plate tuning characteristic

Fig. 6-2 - ($o m m o n l y$-used eryatal-controlled owillator rirruits. Values are those recommended for a 6:16: tube. (See raference in test for otber tubes.)
Ci - l'eed-hack-montrol rondenser - 3.5- Me. erystals -approx. 220 - $\mu \mu \mathrm{fd}$, mica. - T-Me. rrystals approx. $150-\mu \mu \mathrm{fl}$. mica.
C. - Output tank condenser - 100- $\mu \mu \mathrm{ffl}$. variable for single-band tank: 250- $\mu \mathrm{ffl}$. variable for twoband tank (nee tevt).
(3-Srern hy-pass - O.(0)1-pfd. dish erramic.
Cis- Plate liy-pass - 0,00l- $\mu \mathrm{ff}$, disk ceramic.
C5—Ontput eompling condenser - $\mathbf{0} 0$ to $100-\mu \mu \mathrm{fal}$. mica.
(i6- Excitation-rontrol rondenser -approx. 10- $\mu \mathrm{ff}$. mica.

(is - I).e. Woching condenzer - 0.00l- ffi. mica.
Co - Excitation-control condenser - $220-\mu \mu \mathrm{fa}$. mica. Cio - Ileater by-pass - $0.001-\mu$ fil. dish reramio.
l_{1} - Cirid leak- 0.1 megohm, $1 / 2$ watt.
K_{2} - Screen resistor - $1 \mathrm{i}, 000$ ohms, I watt (see text if oscillator is to be keyed).
1.1- Vixcitation-control imluctance - 3.5 - Me. erystals -approx. $4 \mu \mathrm{~h} .:$ - Mc. rerytal - approx. $2 \mu \mathrm{~h}$.
I. 2 - Output-circuit coil-singlo-hand:-3.5 Mc. $17{ }_{\mu} \mathrm{h}_{3}: 7 \mathrm{~V} \mathrm{~V} .-8 \mu \mathrm{~h} . ; 14 \mathrm{Vc}-2.5 \mu \mathrm{~h}_{2} ; 28 \mathrm{Nc}$. -I μ h. I'wo-band operation: $3 . \overline{3}$ \& $\overline{6}$ Me. -

at the crystal fundamental, as well as at harmonies, will be similar to that shown in Fig. $6-3$ and will cause less than 25 cycles change in frequency. (rystal current, under these conditions, should not be excessive. If the oscillator is to be keyed, best rharacteristics will be obtained by omitting the screen resistor, R_{2}, and connecting the screen lead to a regulated source of 75 to $1: 0 \mathrm{volts}$.

If a tube with poorer screening is used, the effeet of tuming the output circuit will not be greatly different at harmonies of the crystal frequency, but the operation at the erystal fundamental may be altered drastically. When the output circuit is tuned near resonance, oscillation may stop entirely, neressitating a critical adjustment to one side of resonance for good keying characteristics and to prevent a marked rise in crystal current. Cinder these ronditions, the frequency may vary as much as 200 cycles.

Crystal current may be estimated by observing the relative brilliance of a $00-\mathrm{ma}$. dial lamp connected in series with the crystal. For stable operation, crystal current should be limited as much as possible and satisfactory output should be obtained with a current of 40 ma . or less. If the oscillator is to be keyed, the lamp should be removed to prevent chirps.

Fig. 6.3- Mate tuning है characteristic of electron. coupled circuits with a well-sercened tube. 'I'he plate-current dip at res. onance broadens and is less pronounced when the circuit is loaded.

For best harmonic output a tube with high mutual conductance should be used. This is especially important in the circuit of Fig. 6-2C. The 6.1 G 7 also meets this requirement. A low-C output tank circuit is desirable, especially for harmonic output. However, if a tank condenser large enough to cover two adjacent bands with the same coil is used, the output at the crystal fundamental and at the harmonic will be approximately the same, since the L / C ratio will be high when the circuit is tuned to the harmonic, where low C is of the greater importance.

For best performance with a $6 . t(i 7$ tube, the values given under Fig. 6-2 should be followed closely. (For a discussion of values for other tubes, see QST for March, 1950, page 28.)

Quartz-Crystal Characteristics

While crystals are produced for frequencies as high as 50 Mc ., by far the majority of those used in amateur high-frequency transmitters are cut for the $3.5-$ and 7 -Mc. bands. With suitable frequency-multiplying stages, this permits the use of a single crystal for operation in the har-monically-related parts of higher-frequency bands, as well as at the crystal fundamental frequency. As an example, a 3 301-kc. crystal with appropriate multipliers may be used for the frequencies of 7002 kc ., $14,004 \mathrm{kc}$., $28,008 \mathrm{kc}$. etc.

The characteristics of a crystal — particularly in the thickness-frequency and temperaturefrequency relationships - depend upon the plane in which the crystal plate is cut from the natural quartz block. While other cuts are useful in certain applications, those for amateur transmitters invariably are of either the "AT" or " 13 T " types. Their respective temperature characteristics are as follows:

$$
\begin{aligned}
& \text { AT-cut }-+10 \text { cycles per Mc. per degree at } 0 \\
& \text { degrees } \mathrm{C} \text {. } \\
& \text { - } 0 \text { cycles per Mc. per degree at } 45 \\
& \text { degrees (: } \\
& \text { — + } 20 \text { eycles per Mc. per degree at } 85 \\
& \text { degress (: } \\
& \text { BT-cut - - IO rycles per Mc, per degree at } 0 \\
& \text { degrees (. } \\
& \text { - } 0 \text { eyrles per Me. per degree at } 30 \\
& \text { degrees (}{ }^{\prime} \text {. } \\
& \text { - }-20 \text { cycles per Mc. per degree at } 70 \\
& \text { degrees } \mathrm{C} \text {. }
\end{aligned}
$$

The relationship between the thickness of a crystal and its frequency is given by:

$$
f \mathrm{M}_{\mathrm{c}_{1}}=\frac{k}{t_{\text {bin }}}
$$

where $f_{\text {ace }}$ is the frequency in megacycles, t the thickness in thousandths of an inch and k is a constant of the crystal cut approximately as follows:

$$
\begin{aligned}
& \text { AT-cut - } 66.2 \\
& \text { B'T'cut }-100.78
\end{aligned}
$$

An AT erystal usually is more active than one of the 13T-cut type, but since it is thinner for the same frequency, there is greater danger of fracture in operation. Therefore, AT-cut crystals usually are used for frequencies below 5 Mc., while the IST-cut is used for crystals whose frequeneies lie above 5 Mc., although this is not true in all cases.

While crystals are sometimes cut for fundamental frequencies as high as 14 Mc., most crystals used by amateurs for frequencies higher than the $7-\mathrm{Mc}$. band are "harmonictype" crystals; that is, the thickness corresponds to a frequency of one-third (sometimes one-fifth) of the normal operating frequency. The other dimensions of the crystal are proportioned so that the mechanical vibration is at three times (or five times) the fundamental frequency.

Regrinding Crystals

Because crystals near any desired frequency can be purchased reasonably these days, it is not profitable for the amateur to cut and grind his own blanks. However, frequently it may be desirable to make a limited increase in the frequency of a crystal at hand. Indispensable requirements are a piece of plate glass, a good micrometer, supplies of Size 800 aluminum oxide for light grinding, and Size 400 silicon carbide for coarse grinding, and a test oscillator. A test oscillator of the regenerative type, such as the one shown in Fig. $6-213$, is preferred. The oscillator should be equipped with a grid-current milliammeter,
preferably one with a $0.5-\mathrm{ma}$. scale. The grid current should be checked first with the crystal to be reground, and preferably with several others known to have satisfartory activity, to obtain an average of the grid current to be expected for nomal arystal activity.

The most important fartor in resperet to artivity is that of mantaining the proper surface contour. When properly ground, the erystal is thicker in the center than at the edges. The difference in thiekness should vary from aloout 0.001 inch for a $3 . \bar{i}-\mathrm{Me}$. crystal $\frac{1}{2}$ inch square to about 0.00015 inch for a $\overline{7}-\mathrm{Mc}$. erystal.
The grinding compound should be sprinkled on the glass plate and moistened with water to make a very thin paste. One side of the ervistal should be marked at a comer with a pencil and all of the grinding should be done on the opposite side. The crystal should be swirled around in figure-eight paths. The path should be changed freduently to another part of the glass plate so that the plate will be worn evenly. Light pressure with the finger on a comer of the erystal should be used. Make three or four " 8 's" to each of the comers in succession and then repeat. "se lighter pressure and make fewer " 8 's" as the desired frequency is approached.

If a calibrated receiver is available, it can be used to keep a rontinuous check on the frequence y as the crystal is being ground. Ilace a sheet of tinfoil or metal under the plate glass and comert it to the antema terminal of the receiver. Then as the crystal is being ground, it will produce a hiss in the receiver that peaks close to the erystal frequency. To be safe, however, it is advisable to limit the use of this method of cherking to within 20 kc , of the desired frequeney at $\overline{\mathrm{T}}$ Mr. Then if it is found that the activity is not up to nomal, the contour can be corrected without overshooting the desired frequeney.

The erystal should be thoroughly deaned of grinding compound and wher matter before using the micrometer or checking in the test oscillator, of course. I se somp, wam water and a tooth brush, and dry with a lintless doth or tissue. Ilandle the erystal by the edgesomly after cleaning.

Lowering Frequency

If a crystal has accidentally been ground down too far, or if it is desired to lower slightly the frequeney of any other erystal, this ean often be done by loading the arystal. Loading, howewer, may reduce the crystal andivity if it is carried too far. With a grond active arystal. it should be pessible to decrotse the frequency as much as one per rent - 35 ke . for a $: 3500-\mathrm{ke}$. crystal. (ond soft solder rubbed into the erystal surfine is suitable. 'The solder should be applied gradatly while the frequency and artivity are checked. Start off by marking a circle about $1 / 4$ inch in diameter at the center of the crystal and use this as a boundary for additional applications of the solder. The loading should be applieci to both surfaces as equally as possible.

- VARIABLE-FREQUENCY OSCILLATORS

The frequency of a VFO depends entirely on the values of inductance and raparitance in the circuit. Therefore, it is neressary to take careful steps to minimize changes in these values not under the control of the operator. As extmples, even the minute changes of dimensions with temperature, particularly those of the coil, may result in a slow but noticcable change in frequency called drift. The effective input capacitance of the oscillator tube, which must be eomnerted across the circuit, changes with variations in electrode voltages. This, in turn, causes a change in the frequency of the oseillator. To make use of the power from the oscillator, a lond, usually in the form of an amplifier, must be coupled to the osciliator and variations in the load may reflect on the frequency. Very slight mechanical movement of components may result in a shift in frequeney, and vibration can cause undesirable modulation.

VFO Circuits

Fig. 6-4 shows the most commonly used circuits. They are designed to minimize the effects mentioned above. All are of the electron-coupled type discussed in connection with arstal oscillators.

The oscillating circuits in Figs, 6-4. and 13 are the llartley type; those in (' and I) are ('olpitts circuits. There is little choice between the circuits of A and ($\%$ In both, all of the effects mentioned, except changes in inductance, are minimized by the use of a high-() tank circuit obtained through the use of large tank rapacitances. Iny uncontrolled ehanges in caparitance thus brome a very small percentage of the total circuit capacitance.

In the series-tuned Colpits cirruit of Fig. b-1I) (sometimes called the Clapp (ircuit), a high-() (ircuit is ohtained in a different mammer. The tube is tapped across; only a small portion of the uscillating tank circuit, resulting in very loose couphing between tube and rircuit. The taps are provided by a series of three condensers across the coil. In addition, the tube capacitances are shunted by lavge condensers, so the effects of the tube - changes in electrode voltages and loading - are still further reduced. In contrast to the precoding circuits, the resulting tank circuit hats a high L / C ratio and therefore the tank current is much lower than in the cireuits using high-r 'tanks. Is a result, it will usually be found that, other things being equal, drift will be less with the low-(, circuit.

For best stability, the ratio of $C_{11}+C_{12}$ to ('is or ('1t (which are usually equal) should be ats high as possible without stopping uscillation. The permissible ratio will be higher the higher the g of the eoil and the mutual conductance of the tube. If the circuit does not oscillate over the desired range, a coil of higher $(\mathbb{Q}$ must be used or the capacitance of C_{13} and C_{14} reduced.

Load Isolation

In spite of the precautions already discussed, the tuning of the output plate circuit will cause a noticeable change in, frequency, particularly in the region around resonance. This effert can be reduced considerably by designing the oscillator for half the desired frequency and doubling frequency in the output circuit, although there will be some sacrifice in output,

It is desirable, although not a strict necessity if detuning is recognized and taken into account, to approach as closely as possible the condition where the arljustment of tuning controls in the transmitter, beyond the VFO frequency control, will have negligible effect on the frequency. This is done by using a non-resonant circuit in the output of the oscillator, as shown in Fig. 6-413.

This type of output circuit may, of course, be substituted in the other oscillators shown. Power output is considerably reduced by this method and it is usually necessary to follow the oscillator with two or three amplifiers using the same type of output circuit, as shown in Fig, 6-i), both to bring the power level up and to provide the desired isolation. This arrangement gives funarmental output only. A voltage-regulated supply is recommented.

Chirp

In all of the circuits shown there will be some change of frequency with changes in screen and plate voltages, and the use of regulated voltages for both usually is necessary. One of the most serious results of voltage instability occurs if

(A) Hartley

(C) Colpitts

(B) Hortley-Non-resonont Output

(D) Series-Tuned Colpitts

Fig. 6-4 - VFO eireuits. Approximate values for 3.5 Me, are given below, for 1.75 Me,, all tank ecireuit values of capaeitance and induetance, all tuning eapaeitances and C_{13} and C_{14} should be doubled; for 7 Me., they should be cut in half.
C_{1} - Oscillator bandspread tuning eondenser - 150 . $\mu \mu \mathrm{fd}$. variable.
(C2-Output-eircuit tank condenser - $100-\mu \mu \mathrm{fd}$. variable.
(.3-Oscillator tank eondenser - $500-\mu \mu \mathrm{fd}$, zero-temp. mica.
C_{4} - Grid coupling eondenser - 100 - $\mu \mu \mathrm{fd}$, zero-temp. mica.
(c_{5} - Heater by-pass - $0.001-\mu \mathrm{fd}$, disk ceramic.
(: B Screen by-pass - 0,001- $\mu \mathrm{fd}$, disk ceramic.
Ci $_{7}$ - I'late by-pass - $0,001-\mu \mathrm{fl}$, disk ceramic.
C8 - Output eoupling condenser- 50 to $100-\mu \mu \mathrm{fd}$. mica.
C 9 - Oseillator tank condenser - $680-\mu \mu \mathrm{fd}$. zero-temp. mica.
$\mathrm{C}_{10}-\mathrm{O}_{\mathrm{sc}} \mathrm{cillator}$ tank condenser - $0,0022-\mu \mathrm{fd}$, zero-
$\mathrm{C}_{11}-$ (Omp, mica, temp. mica,
Ca_{12} - Oseillator handspread tuning eondenser-25. $\mu \mu \mathrm{fd}$, variable.
$\mathrm{C}_{13}, \mathrm{C}_{14}$ - Iube-coupling condenser - $0.001-\mu \mathrm{fd}$. zerotemp. mica,
$1 k_{1}-47,000$ ohms, $1 / 2$ watt.
I.1 - Oscillator tank coil - $4.3 \mu \mathrm{~h}$, , tapped about one. third-way from gronnded end.
I_{2} - Ontput-circuit tanh coil - $22 \mu \mathrm{~h}$.
IS - Oscillator tank coil - $1,3 \mu \mathrm{~h}$.
I 4 - Oscillator tank coil - $33 \mu \mathrm{~h}$. (13 \& W JEL. 80).

F_{1} - $6 \mathrm{~A}(\underset{6}{2}$ preferred; other well-screened types usable.
$\mathrm{V}_{2}-6 \mathrm{AG}$ required.
the oscillator is keyed, as it often is for break-in operation. Although voltage regulation will supply a steady voltage from the power supply and therefore is still (lesirable, it cannot alter the fact that the voltage on the tube must rise from zero when the key is open, to full voltage when the key is closed, and must fall back again to zero when the key is opened. The result is a chirp each time the key is opened or closed, unless the time constant in the keying rircuit is reduced to the point where the chirp takes place so rapidly that the recoiving operator's car cannot detect it. Unfortunately, as explained in the chapter on keying, a rertain minimum time constant is necessary if key clicks are to be minimized. Therefore it is evident that the measures necessary for the reduction of chirp and clicks are in opposition, and a compromise is necessary. For best keying characteristics, the oscillator should be allowed to run continuonsly while a subsequent amplifier is keyed. However, a keyed amplifier represents a widely variahle load and unless sufficient isolation is provided between the oscillator and the keyed amplifier, the keying characteristics may be little better than when the oscillator itself is keyed.

Frequency $D_{\text {rift }}$

Frequency drift is further reduced most easily by limiting the power input as much as possible and by mounting the components of the tuned

Fig. 6-5 - Diagram showing two isolating arnplificr stages following a VFO. W ell-screened tubes, such as the 6 Sk 7 or similar are recommended.
C_{1} - Coupling condenser - $100-$ $\mu \mu \mathrm{fd}$, mica.
$\mathrm{C} 2-$ By-pass condenser - 0.001 . μ fid, dish ceramic.
C_{3} - Heater lyy-pass - $0.001-\mu \mathrm{fd}$. disk ceramic.
R_{1} - Grid leak - 50,000 ohms, $1 / 2$ watt.
H_{2} - Cathode biasing resistor - 200 to $5(0)$ ohins, 1 watt.
RFC ${ }_{1}$ - $2.5-$ mh. 50 -ma, r.f. choke.

Variable condensers should have ceramic insulation, good bearing contacts and should preferably be of the donble-bearing type, and fixed condensers should have zero temperature coefficient. The tube sooket also should have ceramic insulation and special attention should be paid to the selection of a tank coil in the oscillating section.

Oscillator Coils

The Q of the tank coil used in the oscillating portion of any of the circuits under discussion should be as high as cirrumstances (usually spare) pernit, since the losses, and therefore the heating, will be less. With recommended care in regard to other factors mentioned previously, most of the drift will originate in the coil. The coil should be of a type that radiates heat well, such as a commercial air-wound type, or should be wound tightly on a threaded ceramic form so that the dimensions will not change readily with temperature. The wire with which the coil is wound should be as large as practicable, especially in the high-C circuits.

Mechanical Vibration

To eliminate mechanical vibration, components should be mounted securely. l'articularly in the circuit of Fig. ($\mathrm{j}-\mathrm{fl}$), the condenser should preferably have small, thick plates and the coil braced, if necossary, to prevent the slightest mechanical movement. Wire connections between tank-cireuit components should be as short as possible and flexible wire will have less tendency to vibrate than solid wire. It is advisable to cushion the entire oscillator unit by mounting on sponge rutber or other shork mounting.

Tuning Characteristic

If the circuit is oseillating. touching the grid of the tube or any part of the circuit connected to it will show a change in plate current. In tuning the plate output circuit without load, the plate current. will be relatively high untilit is tuned near resonance where the plate current will dip to a
circuit in a separate shielded compartment, so that they will be isolated from the direct heat from tubes and resistors. The shielding also will climinate changes in frequency caused by movement of nearby objects, such as the operator's hand when tuning the VFO. The circuit of Fig. $6-4 \mathrm{D}$ lends itself well to this arrangement, since relatively long leads between the tube and the tank circuit have negligible effect on frequency because of the large shunting caparitances. The grid, cathode and ground leads to the tube can be bunched in a cable.
low value, as illustrated in Fig. 6-3. When the output circuit is loaded, the dip should still be found, but broader and much less pronounced as indicated by the dashed line. The circuit should not be loaded beyond the point where the dip is still recognizable.

Checking VFO Stability

A VFO should be checked thoroughly before it is placed in regular operation on the air. Since succeeding amplifier stages may affect the signal characteristics, final tests should be made with
the complete transmitter in operation. Almost any VFO will show signals of goocl quality and stability when it is ruming free and not conneeted to a load. A well-isolated monitor is a necessity. Perhaps the most convenient, as well as one of the most satisfactory, well-shieded monitoring arrangements is a receiver combined with a crystal oscillator, as shown in Fig. 6-6.

Fig. 6-6-Set-up forchecking V FO stability. The receiver should be tuned preferably to a harmonic of the VFO frequeney. The erystal oscillator may operate somewhere in the band in which the VI'O is operating. The receiver b.f.o. should be turned off.
(See "Crystal Oscillators," this chapter.) The erystal frequeney should lie in the band of the bowest frequency to be ehecked and in the frequency range where its harmonics will fall in the higher-frequency bands. The receiver b.f.o. is turned off and the VFO signal is tuned to beat with the signal from the crystal oscillator instead. In this way any reeciver instability caused
by overloading of the input circuits, which may result in "pulling" of the h.f. oscillator in the receiver, or by a change in line voltage to the receiver when the transmitter is keved, will not affect the reliability of the check. Most presentday crystals have a sufficiently-low temperature coefficient to give a satisfactory cheek on drift as well as on chirp and signal quality if they are not overloaded.

Harmonics of the crystal may be used to beat with the transmitter signal when monitoring at the higher frequencies. Since any chirp at the lower frequencies will be magnified at the higher frequencies, accurate checking can best be done by monitoring at the latter.
The distance between the crystal oscillator and receiver should be adjusted to give a good beat between the erystal oscillator and the transmitter signal. When using harmonics of the crystal oscillator, it may be necessary to attach a piece of wire to the oscillator as an antema to give sufficient signal in the reveiver.
Checks may show that the stability is suffieiently good to permit oscillator keying at the lower freduencies, where break-in operation is of greater value, but that chirp becomes objectionable at the higher frefuencies. If further improvement does not seem pussible, it would be logiral in this case to use oscillator keying at the lower frequencies and amplifier keying at the higher frequencies.

R. F. Power Amplifiers

R.f. power amplifiers used in amateur transmitters usually are operated under Class C conditions (see chapter on vacuum-tube fundamentals). Fig. 6-7 shows a sereen-grid tube with the required tuned tank in its plate circuit. Equivalent eathode connections for a filamenttype tube are shown in Fig. 6-8. It is assumed that the tube is being properly driven and that the various electrode voltages are appropriate for Class C operation. The main objective, of course, is to deliver as much fundamental power as possible (or as desired) into a load, R, without exceeding the tube ratings. The load resistance R may be in the form of a transmission line to an antenna, or the grid circuit of another amplifier. A further objective is to minimize the harmonic energy (always generated by a Class C amplifier) fed into the load circuit. In attaining these objectives, the Q of the tank circuit is of importance.

PLATE TANK Q

The Q is determined (see chapter on electrical laws and circuits) by the L / C ratio and the load resistance of the tube (not the resistance of the load circuit). The tube load resistance is related, in approximation, to the ratio of the d.e. plate voltage to d.e. plate current at which the tube is operated. The amount of C that will give a Q of 12 for various ratios is shown in Fig. $6-9$. A Q of 12 is a value chosen as an average that will satisfy most of the requirements to be discussed. Certain
speefifie considerations may make a higher or lower value desirable. For a given plate-voltage/ plate-current ratio, the Q will vary directly as the tank eapacitanee, twice the capacitance doubles the Q ete.

Effect of \mathbf{Q} on Tube Plate Efficiency

For good tube plate efficiency, the voltage drop across the tank (which determines the instantaneous plate voltage) should approach a sine wave characteristic. However, the plate current flowing through the tank is in the highlydistorted form of short pulses containing considerable harmonic energy. As explained in the chapter on electrical laws, a resonant eireuit discriminates against harmonic voltages across the eircuit according to the Q of the circuit. I: the Q is sufficiently high, the wave shape of the voltage drop across the tank circuit will be essentially sinusoidal. So far as tube plate effieieney is concerned, requirements will be met satisfactorily if the tank Q is 5 or greater. However, as the Q is inereased, the current circulating in the tank circuit becomes greater, increasing the tankcireuit loss. If the Q is greater than about 20 , the losese in the tank circuit will offset any further improvement in plate efficiency.

Harmonic Output Reduction

Strietly speaking, a high- Q tank eireuit does not "attenuate" harmonics. The plate current pulses remain unehanged with Q. However, it has
been explained above that the harmonic voltage drop across the tank circuit (a pure sine wave has no harmonic content) decreases with an increase in Q and therefore when the load circuit is coupled across the tank circuit capacitively, as shown in Fig. 6-7B, the harmonic voltage across the load will be reduced as the Q of the tank circuit is increased.

When inductive coupling is used, as in Fig. 6-7A, harmonic reduction in the load comes about for a different reason. At resonance, as explained in the chapter on electrical laws and circuits, there is a buik-up of fundamental current in the tank circuit, and this current becomes greater as the Q is increased. As the current through the tank coil increases, the same power in the load will be obtained with looser inductive coupling (a smaller coupling coefficient). Since the harmonic current through the coil remains fixed irrespective of ($)$, the amount of harmonic energy coupled out becomes less as the coupling is decreased.

As stated above, tank-circuit loss increases with (), so that the choice of () must he a compromise depending upon whether efficiency or harmonic reduction is considered the more important.

Q vs. Coupling

Also, as explained above, it is seen that the (? has an influence on coupling to a load when the coupling is inductive. The higher the Q, the larger the tank eurrent and the smaller the coefficient of coupling to the load can be for a given value of current in the load. Conversely, the lower the Q, the greater the coefficient of coupling must be.

Fig. 6-7-Output coupling circnits, A - In. ductive link coupling. 13 - Capacitive coupling.
C. - Ilate tank condenser - see text and Fig. 6.9 for capacitance, Fig. 6.29 for voltage rating.
(:2 - Ileater hy-pass- $0,00 \mid-\mu \mathrm{ft}$. disk ceramic,
C3 - Screen by-pass - voltage rating depends on method of screen supply. See sevtion on sereen considerations. Voltage rating same as plate voltage will be safe under any condition.
C_{4} - Plate by-pass - $0.001-\mu \mathrm{fd}$, dish ceramic or mica. Voltage rating same as Ci, plus safety factor.
C_{5} - Coupling condenser - ace Fiz. 6-18,
L_{1} - 'To resonate' at operating fregueney with C_{1}. See $L C$ chart in miscel. laneous-data chapter and inductance formula in clectrical-laws chapter, or use Allil. Lightning Calculator.
L_{2} - Reactance equal to lime impedance. Sce reactance chart in miscellane-ous-data chapter and induetance formula in electrical-laws chapter, or use AlRIRL. Lightring Culculator.
R-Representing load.

Q and Broadbanding

Amateur frequencies are in bands - not spot frequencies - and it becomes desirable to design the circuits of the transmitter so that it may he

Fig. 6.8 - Filament center-tap connections to be substituted in place of cathode connections shown in diagrams when filament type tubes are substituted. T_{1} is the filament transformer. (i) should be $0.001-\mu \mathrm{fd}$. disk ceramic condensers.
operated within a band with a minimum of retuning. It is therefore desirable to use the minimum Q that will satisfy the previously discussed requirements.

OUTPUT COUPLING SYSTEMS

Coupling to Flat Coaxial Lines

When the load R in Fig. $6-7 \mathrm{~A}$ is located for convenience at some distance from the amplifier, or when maximum harmonic reduction is desired, it is advisable to feed the power to the load through a low-impedance coaxial cable. The shicked construction of the cable prevents radiation and makes it possible to install the line in any convenient manner without danger of unwanted coupling to other circuits.
If the line is more than a small fraction of a wavelength long, the load resistance at its output end should be adjusted, by a matching circuit if necessary, to match the characteristir impedance of the cable. This reduces losses in the cable to a minimum and makes the coupling adjustments at the transmitter independent of the cable length. Matching circuits for use between the cable and another transmission line are discussed in the chapter on transmission lines, while the matching adjustments when the load is the grid circuit of a following amplifier are described elsewhere in this chapter.

Assuming that the cable is properly terminated, proper loading of the amplifier will be assured, using the circuit of Fig. 6-10.A, if

1) The plate tank circuit has reasonably high value of Q. A value of 10 or more is usually sufficient.
2) The inductance of the pickup or link coil is close to the optimum value for the frequency

Fig. 6.9 - Chart showing plate tank caparitance required for a O of 12 . 'To use the chart, divide the tube plate voltage by the plate eorrent in milliamperes. select the vortical line corresponding to the answer whtained. Follow this vertical line to the diagonal line for the band in question, and thence horizontally to the left to read the caparitance. For a given ratio of platevoltage/plate corrent, doubling the capacitance shown doubles the 0 etc. When a split-stator condenser is used in a balanced rircuit, the capacitance of each section may he one half of the value given by the chart.
and type of line used. The optimum coil is one whose solf-indurtance is such that its reactance at the operating frequency is equal to the charamteristic impedance, Z_{0}, of the line.
3) It is possible to make the coupling betwern the tank and pick-up coils very tight.

The second in this list is often hard to moert. Few manufactured link roils have adequate inductance even for coupling to a 50 -ohm line at low frequencies.
If the line is operating with a low sw.w., the
Capacitance in $\mu \mu \mathrm{fd}$. Required for Coupling to
Flat Coaxial Lines with Tuned Coupling Circuit
Freguency
Brul
Charucteristic Impedance of I.ine
Mr.
1.8

Note: Induetance in circuit must be adjusted to resonate at operating frequency.
system shown in Fig. 6-10A will require tight coupling between the two coils. Since the secondary (pick-up coil) cireuit is not resonant, the lakage ractance of the pick-up coil will cause some detuning of the amplifier tank circuit. This detuning effect increases with increasing coupling, but is usually not serious. However, the amplifior tuning must he adjusted to resonance, as indiated by the plate-current dip, each time the coupling is changed.

Tuned Coupling

The design difficulties of using "untuned" pick-up coils, mentioned above, can be avoided by using a coupling circuit tuned to the operating froqueney, This contributes additional selectivity as well, and hence aids in the suppression of spurious madiations.

If the line is flat the input imperdance will be essentially resistive and equal to the Z_{0} of the line. With coaxial cable, which has a Z_{0} of 75 ohms or less, a circuit of reasonable ((ean be obtained with practicable values of indurtance and caparitaner connected in serics with the line's input terminals.

Suitable circuits are given in Fig. 6-10 at B and C. The values of inductance and capacitance in the coupling circuits are not highly critical, but the L / C ratio must not be too small. The Q of the coupling circuit often may be as low as 2 , without running into difficulty in getting adequate roupling to a tank circuit of proper dosign. larger values of Q can be used and will result in increased case of coupling, but as the Q is increased the frequency range over which the circuit will operate without realjustmont becomes smaller. It is usually good practice, therefore, to use a couplingcircuit Q just low enough to permit operation, over as much of a band as is normally used for a particular type of communication, without requiring retuning.

Fig. 6.10-With flat transmission lines power transfer is obtained with looser coupling if the line input is tuned to resonance. C_{1} and L_{1} should resonate at the oprrating frequency. See table for maximum usable value of C_{1}. If circuit does not resonate with maximum C_{1} or less, inductance of I_{1} must be increased, or added in series at L_{2}

Caparitance values for a Q of 2 and line impedances of 52 and 75 ohms are given in the accompanying table. These are the maximum values that should be used. The inductance in the circuit should be adjusted to give resonance at the onerating frequency. If the link eoil used for a particular band does not have enough inductance to resonate, the additional inductance may be connected in series as shown in Fig. 6-10C.

In practice, the amount of indurtance in the circuit should be chosen so that, with somewhat loose coupling between L_{1} and the amplifier tank coil, the amplifier plate current will increase when the variable condenser, C_{1}, is tuned through the value of capacitance given by the table. The coupling between the two coils should then be increased until the amplifier loads normally, without ehanging the setting of C_{1}. Slight retuning of the plate tank condenser may be required. If the transmission line is flat over the entire frequency band under consideration, it should not be necessary to realjust C_{1} when changing frequency, if the values given in the table are used. However, it is unlikely that the line actually will be flat over such a range, so some readjustment of C_{1} may be needed to compensate for changes in the input impedance of the line as the frequency is changed. If the input impedance variations are not large, C_{1} may be used as a loading control, no changes in the coupling between L_{1} and the tank coil being necessary.

The degree of coupling between L_{1} and the amplifier tank coil will depend on the couplingcircuit. Q. With a Q of 2, the coupling should be tight - comparable with the coupling that is typical of "fixed-link" manufactured coils. With a swinging link it may be necessary to increase the Q of the coupling circuit in order to get sufficient power transfer. This can be done by increasing the L / C ratio.

Pi-Section Output Tank

A pi-section tank circuit may also be used in coupling to a low-impedance transmission line, as shown in Fig. 6-11. The output condenser, C_{2},

Fig. 6-11 - Pi-section output tank cireuit.
C_{1} - Input condenser - see text and Fig. 6.9 for capaeitance. For voltage rating see Ci, Fig. 6-7.
C_{2} - Output condenser - adjustable to half reactance of line impedance - see text and reactance chart in chapter of miseellancous data. Voltage rating - receiving spacing good for $1 \mathrm{k}, \mathrm{w}$, at 50 or 75 ohms.
C_{3} - IIeater by-pass - 0.001 - fd . disk ecramie.
C_{4} - Screen by-pass - see Fig. 6.7.
C_{5} - Plate by-pass - sec lig. 6.7.
C_{6} - Plate blocking condenser - $0.001-\mu \mathrm{fd}$, disk ceramic or miea. Voltage rating same as C_{1}.
L_{1} - Inductance approx. same as L_{1}, Fig. 6-7.
should be adjustable to a reactance of about half of the characteristic impedance of the line. C_{1}, the input condenser, and L_{1} should have values approximately the same as used in a conventional tank circuit for a Q of 12 (see Fig. (0-9).

A decrease in the capacitance of C_{2}, or the inductance of L_{1}, will inerease the coupling and vice versa. Wach time L_{1} or C_{2} is changed, C_{1} must be readjusted for resonance.

R.F. AMPLIFIER.TUBE OPERATION

Driving Power, Efficiency, Dissipation and Power Input

One of the most significant tube ratings is the maximum plate-dissipation rating. This is the power that can be safely dissipated in the tube as heat without damage to the tube. It is the difference between r.f. power output and the d.c. power input to the plate. For a given dissipation rating, the theoretical power output from a tube depends on the efficiency with which it can be made to operate. The $I_{\mathrm{o}} / P_{\mathrm{d}}$ curve of $\mathrm{Fig}, 6-12$ shows the theoretical power output oftainable at various efficiencies in terms of the platedissipation rating. For instance, at an efficiency of 60 per cent, the curve shows that the output will be 1.5 times the dissipation rating, while at an efficiency of 90 per cont a power of 9 times the dissipation rating might be obtained. However, the $P_{\mathrm{i}} / P_{\mathrm{d}}$ curve shows that the power input at 90 per cent would have to be 10 times the dissipation rating. An input of this magnitude would exceed the power-input rating (plate voltage \times plate current) of the tube, which is hased on cathode emission and electrode insulation. Also, referring to Fig. 6-13, it is seen that the higher efficiencies are obtainable only by the use of an inordinate amount of driving power. In other words, as the curve shows, the power amplification decreases rapidly. The typical operating conditions given in the tube tables represent a compromise of these factors. The labels under the curves of Fig. 6-12 show the usual practical efficiencies attainable for various classes of tube operation. For instance, at an efficiency of 75 per cent, a Class C amplifier could normally be operated at a power input of 4 times its plate dissipation. A doubler, however, normally operating at about 35 per cent efficiency, could handle an input of only about 1.5 times its dissipation rating, The efficiencies shown for Class B amplifiers are for full excitation and full input.

The figures for driving power listed in the tube tables do not include coupling-circuit losses and to assure adequate excitation, the driver tube should be eapable of an output power three or four times the rated driving power of the amplifier. For normal operation, proper excitation is indicated when rated d.c. grid current is obtained at rated bias (see tube tables).

Depending on the material from which the plate is made, the plate will show no color, or varying degiees of redness, when operating at rated dissipation. This ean be checked by oper-

Fig. 6.12-Curves showing the relatinnship of power outpot $\left(I_{o}\right)$, power input $\left(I_{i}\right)$, plate dissipation $\left(I_{d}\right)$ and efficieney according to class of amplifier tube operation.
ating the tube without excitation, but with plate and sereen voltages applied, for a period approximating normal operation. Fixed bias should be applied to bring the plate current to some low value at the start. The bias should be gradually redueced until the input to the tube (plate voltage \times plate curront in decimal parts of an ampere) equats the rated dissipation. The color of the plate at this input should be noted so that it can be compared with the color showing in normal operation. A brighter color in operation would, of course, indicate that the dissipation rating is being exceeded.

Maximum Grid Current

Maximum grid dissipation usually is expressed in terms of the maximum grid current at which the tube should be operated to prevent damage to the tube, A common result of excessive grid heating is a condition where the grid current gradually falls off. If the bias is supplied largely by grid-leak action, the bias drops and the tube draws exeressive plate current. The total effert is one in which the temperature of the tube rapidly rises to the danger point. Sometimes, but not always, the tube will restore itself to normal if all power, exeept filament, is turned off for several minutes. If the overload has been serious or prolonged, with a thoriated-filament tube, it may be possible to reactivate the filament, as described below, hut sometimes the tube will be permanently damaged.

Filament Voltage

The filament voltage for the indireetly-heated cathode-type tubes found in low-power classifications may vary 10 per cent above or below rating without seriously reducing the life: of the tube. But the voltage of the higher-power fila-ment-type tubes should be held elosely between the rated voltage as a minimum and 5 per cent above rating as a maximum. Make sure that the plate power drawn from the power line does not cause a drop in filament voltage below the proper value when plate power is applied.

Thoriated-type filaments lose emission when the tube is overloaded appreciably. If the overload has not been too prolonged, emission sometimes may be restored hy operating the filament at rated voltage with all other voltages removed for a period of 10 minutes, or at 20 per eent above rated voltage for a few minutes.

Bias and Tube Protection

The portion of the excitation cycle over whieh the amplifier draws plate grid current (operating angle) is governed by applying a negative hiasing voltage between grid and cathode. Recommended values will be found in the tube tables. Several methods of obtaining bias are shown in Fig. 6-14. In A, bias is obtained by the voltage drop across a resistor in the grid d.e. return circuit when rectified grid current flows. The proper value of resistance may be determined by dividing the required biasing voltage by the d.e. grid current at which the tube will be operated. The tube is hiased only when excitation is applied, since the voltage drop across the resistor depends upon grid-current flow. When excitation is removed, the bias falls to zero. At zero bias most tubes draw power far in excess of the plate-dissipation rating. So it is advisable to make provision for protecting the tube when excitation fails by acrident, or by intent as it does when a preeeding stage in a c.w. transmitter is keyed. This protection can be supplied by ohtaining all bias from

Fig. 6-13-Curves showing relationship of driving power, power amplification and plate-circuit efficiency of an r.f. power-amplifier stage.
a source of fixed voltage, as shown in Fig. 6-14B. It is preferable, however, to use only sufficient fixed bias to protect the tube and ohtain the balance needed for operating bias from a grid leak, as indicated in C . The grid-leak resistance in this case is calculated as above, except that the fixed voltage used is subtracted first.

Fixed bias may be obtained from dry batteries or from a power pack (see power-supply chapter). If dry batteries are used, they should be checked periodically, since even though they may show normal or above-normal voltage, they eventually develop a high internal resistance. (irid-current flow through this battery resistance may increase the bias considerably above that anticipated. The life of batteries in bias service will be approximately the same as though they were subject to a drain equal to the grid current, despite the fact that the grid-current flow is in such a direstion as to charge the battery, rathor than to discharge it.

If the maximum c.w. ratings shown in the tube tables are to be used, the input should be cut to zero when the key is open. Aside from this, it is not necessary that plate current be cut off completely but only to the point where the rated dissipation is not exceeded. In this case platemodulated 'phone ratings should be used for c.w. operation.

In Fig. 6-14F, hias is obtained from the voltage drop across a resistor in the cathode (or filament center-tap) lead. Protective bias is ob-
tained by the voltage drop across R_{5} as a result of plate (and screen) current flow. Since plate current must flow to obtain a voltage drop across the resistor, it is obvious that cut-off protective bias cannot be obtained by this system. When excitation is applied, plate (and screen) current increases and the grid current also contributes to the drop across R_{5}, thereby increasing the bias to the operating value. Since the voltage between plate and cathode is reduced by the amount of the voltage drop across R_{5}, the over-all supply voltage must be the sum of the plate and operat-ing-bias voltages. For this reason, the use of cathode bias usually is limited to low-voltage tubes when the extra voltage is not difficult to obtain.

The resistance of the cathode biasing resistor R_{5} should be adjusted to the value which will give the correct operating bias voltage with rated grid, plate and sereen currents flowing with the amplifier loaded to rated imput. When exeitation is removed, the input to most types of tubes will fatl to a value that will prevent damage to the tube, at least for the period of time required to remove plate voltage.

A disadvantage of this biasing system is that the eathode r.f. connortion to ground depends upon a by-pass condenser. From the consideration of v.h.f. harmonics and stability with highperveance tubes, it is preforable to make the eathode-to-ground impedance as close to zero as possible.

Fig. 6-14 - Various systems for obtaining protective and operating bias for r.f. amplifiers. A - Grid-leak, B — Battery. C - Combination battery and grid leak. D - Grid leak and adjusted-voltage bias pack. E-Combination grid leak and voltage-regulated pack. F - Cathode bias.

Protecting Screen-Grid Tubes

Screen-grid tubes cannot be cut off with hias unless the sereen is operated from a fixed-voltage supply. In this case the cut-off bias is approximately the sereen voltage divided by the amplification factor of the sereon. This figure is not always shown in tubedata sheets, hut cut-off voltage may be determined from an inspection of tube curves, or by experiment.

Fig. 6-1.5-Screen clamper circuit for protereting screengrid power tubes. 'The VR tule is needed only for comphete cut -off.
(i. $-0.001-\mu \mathrm{fl}$. disk ceramid. $\mathrm{R}_{1}-100$ ohms,

When the sareen is supplied from a sories dropping resistor, the tube cath be proteeted by the use of a sereen-elamper tube, as shown in liig. (6-15. The grid-leak bias of the amplifier tube with excitation is applied also to the grid of the clamper tube. This is usually sufficient to cat off the clamper tube. However, when exeitation is removed, the clamper-tube bias falls to zoro and it draws enough current through the serven dropping resistor usually to limit the input to the amplifier to a safe value, If complete sereenvoltage cut-off is desired, a VR tube may be inserted in the soreen lead as shown. The VRtube voltage rating should be high enough so that it will extinguish when excitation to the amplifior is removed. One VIR tube should be used for each 40 ma . of sereen current, other tubes being added in parallel if needed.

Screen Considerations

Since the power taken by the serem does not contribute to the r.f. output, it is dissipated enfirely in heating the sereen, so the dissipation can be calculated simply by multiplying the soreen voltage by the sereen current.

It should be kept in mind that seroen current varies widely with both excitation and loading. If the sereen is operated from a fixed-voltage soure, the tube should never be operated without plate voltage and load, otherwise the soreen may he damaged within a short time. Supplying the screen through a series dropping resistor from a higher-voltage source, such as the plate supply, atfords a measure of protection, since the resistor causes the sereen voltage to drop as the current increases, therely limiting the power
drawn by the sereen. However, with a resistor, the sereen voltage may vary considerably with excitation, making it necessary to check the voltage at the sereen terminal under actual operating conditions to make sure that the serem voltage is normal. Reducing excitation will cause the sereen current to drop, increasing the voltage; increasing exeitation will have the opposite effert. These changes are in addition to those caused he changes in bias and plate loading, so if a sereen-grid tube is operated from a series resistor or a voltage divider, its voltage should be chereked as one of the final adjustments after excitation and loading have been set.

An approximate value of resistance for the sereen-voltage dropping resistor may be obtained by dividing the voltage drop reduired from the supply voltage (difforence betwern the supply voltage and rated sereen voltage) by the rated sorecon eurrent in derimal parts of an ampere. some further aljustment may be necessary as montioned abowe, so an adjustable resistor with a total resistane above that cahoulated should be provided.

- FEEDING EXCITATION TO THE GRID

In coupling the grid input eireuit of an amplifier to the output circuit of a driving stage the objertive is to load the driver plate circuit so that the devired amplifier grid exeitation is obtained without exereding the phate-input ratings of the driver tube.

As explained earlier, the grid of a Class C amplifier must be driven positive in resperet to cathode over a portion of the excitation cercle, and rectified grid current flows in the grid-cathode circuit. This represents an average resistance across which the exciting voltage must be developed be the driver stage. In other words, this is the load resistance into which the driver plate circuit must be coupled. The approximate grid input resistance is given by:

$$
\begin{aligned}
& \text { Input impedance } \text { (ohms) } \\
& =\frac{\text { drivin! power }(\text { watts) }}{\text { d.c. } \text { grid rurrent }(\text { ma. })^{2}} \times 622 \times 10^{3} \text {. }
\end{aligned}
$$

For normal operation, the values of driving power and grid current maty be taken from the tube tables.

Since the grid input resistance is a matter of a fow thousand ohons, an impedance step-down is neressary if the grid is to be fed from a lowimpedance transmission linc. This can be done by the use of a tank as an impedance-transforming device in the grid cireuit of the amplifier as shown in Fig. 6-16. This coupling system may be considered either as simply a means of obtaining mutual inductance betwoen the two tank eoils, or as a low-impedance tramsmission line, If the line is longer than a small fraction of a wavelength, and if a sw. r. bridge is available, the line is more easily handled by adjusting it as a matched transmission line.

Inductive Link Coupling with Flat Line

In adjusting this type of line, the object is to make the s.w.r. on the line as low as possible over as wide a band of frequencies as possible so that power can be transferred over this range without retuning. It is assumed that the output coupling considerations discussed carlier have been olserved in connection with the driver plate eircuit. So far as the amplifier grid circuit is concerned, the controlling factors are the Q of the tuned grid circuit, $L_{2}(\%$, (see Fig. 6-17) the indurtance of the coupling coil, L_{4}, and the degree of eoupling between L_{2} and L_{4}. Variable coupling between the coils is convenient, but not strietly necessary if one or both of the other factors can be varied. An s.w.r. indicator (shown as "SWR" in the drawing) is essential. An indieator such as the "Micromateh" (a commereially a vailable instrument) may be connected as shown and the adjustments made under actual operating conditions; that is, with full power applied to the amplifier grid.

Assuming that the coupling is adjustable, start with a trial position of L_{4} with respect to L_{2}, and adjust (C_{2} for the lowest s.w.r. Then change the coupling slightly and repeat. Continue until the s.w.r. is as low as possible; if the circuit constants are in the right region it should not be difficult to get the s.w.r. down to 1 to 1 . The Q of the tuned grid circuit should be designed to be at least 10 , and if it is not possible to get a very low s.w.r. with such a grid circuit the probable reason is that L_{4} is too small. Maximum coupling, for a given degree of physical coupling between the two eoils, will orrur when the inductaner of L_{4} is such that its reactance at the operating freguency is equal to the characteristic impedance of the link line. The reactance can be calculated as deseribed in the chapter on electrical fundamentals if the inductance is

Fig. 6-16 - Coupling excitation to the grid of an r.f. power amplifier by means of a low-impedanec coaxial line.

$\mathrm{C}_{2}-$ Amplifier grid tank condenser - see text and lig. 6.17 for eaparitance, Fig. 6-30 for voltage rating.
$\mathrm{C}_{4}-0.001-\mu \mathrm{fd}$, disk ceramic.
$L_{2}-$ T'o resonate at operating frequency with C2. See $L C$ chart in miscellane-ons-data chapter and induetance formula in electrical-laws chapter, or use ARRI، Lightning Calculator.
T. Reactance equal to line impedance - see reactance chart in miscellaneousedata chapter and inductance formula in clectrical-laws chapter, or use ARIRI. Lightning Calculator.
R is used to simulate grid impedance of the amplifier when a low-power s.w.r. indicator, such as a resistance bridge, is used. See formula in text for calculating value. Standing-wave indicator, SWR is inserted in line only while line is made flat.

Fig. 6-17-Chart showing required grid tank capacitance for a (O of 12, 'lo use, divide the driving power in watts by the square of the d.c. grid current in milliamperes and proceed as descrihed under fig, 6-9. Driving power and grid current may be taken from the tabe tables. When a split-stator eondenser is used in a balanced grid rireust, the caparitance of each section may be half that shown by the ehart.
known; the inductance can either be ealculated from the formula in the same chapter or measured as deseribed in the chapter on measurements.

Once the s.w.r. has been brought down to 1 to 1 , the frequency should be shifted over the band so that the variation in s.w.r. can be observed, without changing C_{1} or the coupling between L_{2} and L_{4}. If the s.w.r. rises rap)idly on either side of the original frequency the circuit can be made "flatter" by reducing the () of the tuned grid circuit. This may be done by decreasing C_{2} and correspondingly inereasing L_{2} to maintain resonance, and by tightening the coupling between L_{2} and L_{4}, going through the same adjustment process again. It is possible to set up the system so that the s.w.r. will not exered 1.5 to 1 over, for example, the entire 7-Mc. band and proportionately on other bands. Inder these cireumstances a single setting will serve for work anywhore in the band, with essontially constant power transfer from the line to the power-amplifier grids.

If the coupling between L_{2} and L_{4} is not adjustable the
same result may be socured by varying the L / C ratio of the tuned grid cireuit - that is, by varying its Q. If any difficulty is meountored it can be overcome by changing the number of turns in L_{4} until a mateh is seroured. The two coils should be tightly coupled.

When a resistance-bridge type s.w.r. indicator (see measuring-equipmont chaptor) is used it is not possible to put the full power through the line when making adjustments. In such ease the operating conditions in the amplifier grid cireuit can be simulated by using a carbon resistor ($1 / 2$ or 1 watt size) of the same value as the calculated amplifier grid impodance, connereted as indicated by the arrows in Fig. (6-1ti. In this case the amplifier tube must be operated "rold" - without filament or heater power. The adjustmont process is the same as described above, but with the driver power rectued to a value suitable for operating the s.w.r. bridge.

When the grid coupling system has been adjusted so that the s.w.r. is close to 1 to 1 over the desired frefurney range, it is cortain that the power put into the link line will be delivered to the grid circuit. ('oupling will be facilitated if the line is tumed as described under the earlier section on output coupling systems.

Link Feed with Unmatched Line

When the system is to be treated without regard to transmission-line ceffeets, the link line must not offer appreciable reartance at the operating frequency, Conless the constants happern to tume the link near resonance, any appreciable reartance, inductive or rapacitive, will in reffect rerluce the coupling, making it impossible to transfor sufliciont power from the driver to the amplifier grid circuit. Coaxial rables experially have considerable capacitance for cere short lengths and for this reason it may be more desirable to use a spaced line, such as twin lead, if the radiation can be tolerated.

The reactance of the line can be nullified only by making the link resonant. This may require changing the number of turns in the link coils, the length of the linc, or the insertion of a tuning caparitance. The disadvantages of such a resonant link are obvious. Since the s.w.r. on the link line may be quite high, the line losses increase because of the greater curment, the voltage increase may be sufficient to cause a break-down in the insulation of the cable and the added tuned cireuit makes adjustment more critical with relatively small changes in frerpuency.

These troubles may not be concountered if the link line is kept very short for the highest frequency. A length of 5 fret or more may be tolerable at 3.5 Mc ., but a length of a foot at 28 Mc. may be enough to caluse serious effects on the functioning of the system.

Adjusting the coupling in such a system depends so much on the dimensions of the link line used that it must necessarily be largely a matter of cut and try. If the line is short enough so as to have negligible reactance, the coupling between the two tank circuits will increase within
limits by adding turns to the link coils, maintaining as close as possible equal indurtances in each coil, or by coupling the link coils more tightly, if possible, to the tank coils. If it is impossible to change either of these, a variable eondenser of $300 \mu \mu \mathrm{fl}$. may be connected in series with or in parallel with the link coil at the driver end of the line, depending upon which conneetion is the most effective. If roasial line is used, the condonser should be eomnected in series with the inner conductor. If the line is long rnough to have appreciable roactance, the variable condonser is used to resonate the entire link circuit. As mentioned previously, the size of the link coils and the longth of the line, as well as the size of the condenser, will affect the resonant frequency and it may take an adjustment of all three before the condenser will show a pronounced effert on the coupling. When the system hats been made resonant, coupling may be adjusted by varying the link condenser.

Simple Capacitive Interstage Coupling

The capacitive system of Fig. 6-18A is the simplest of all coupling systems. (See Fig. G-8 for filament-type tubes.) In this cireuit, the plate tank cireuit of the driver, $C_{1} L_{1}$, serves also as the grid tank of the amplifior. Although, it is used more frequently than any other system, it is less floxible and has certain limitations that must be taken into consideration.

The two stages camot be separated physically any appreciable distance without involving loss in transferred power, radiation from the coupling lead and the danger of feed-back from this lead. Since both the output capacitance of the driver tube and the input capacitance of the amplifice are across the single circuit, it is sometimes difficult to obtain a tank cirruit with a sufficiontly low () to provide an efficient circuit at the higher frequencies. The coupling can be varied by altering the caparitance of the coupling condenser, C_{2}, but no impedance transforming is possible. The driver load impedance is the sum of the amplifier grid resistance and the reactance of the coupling eondenser in series, the coupling condenser sorving simply as a series reactor. Driver load resistance increases with a decrease in the capacitance of the coupling condenser.

When the amplifier grid impedance is lower than the optimum load resistance for the driver, a transforming action is possible by tapping the grid down on the tank coil, but this is not recommended because it invariably causes an increase in v.h.f. harmonics and sometimes sets up a parasitic circuit.

So far as roupling is concerned, the Q of the eircuit is of little significance. However, the other considerations diseussed earlier in eonnection with tank-circuit (Q should be observed.

Pi-Section Tank as Interstage Coupler

A pi-section tank circuit, as shown in Fig. 6-1813, may be used as a coupling device between screen-grid amplifier stages. The circuit is actually a capacitive coupling arrangement with the
grid of the amplifier tapped down on the circuit by means of a caparitive divider. In contrast to the tapped-roil method mentioned previously, this system will be very effertive in reduring v.h.f. harmonics, berause the output rondenser, C_{8}^{\prime}, provides a direct mapacitive shunt for harmonies aeroses the amplifier grid eirevit.

To be most effertive in reducing v.h.f. harmoniers, ('8 should be a mica condenser commerted direetly across the tube-socket terminals, happing down on the eireuit in this mamer also helps to statbilize the amplifier at the operating frequener berease of the grid-eireuit loading provided by fer. For the purposes both of stat bility and harmonio roduction, experience has shown that a value of $100 \mu \mu \mathrm{fd}$. for C'8 usually is

Fis, 6.19-Circuit of sensitive neutralizing indieator. Xial is a 1 N 34 erystal detector, MA a $0-1$ direct-eurrent milliammetor and Cal $0,001-\mu \mathrm{ff}$, mical by-pase condenser.
sufficiont. In genoral, C_{7} and L_{2} should have values approximating the raparitance and indurtance used in a ronventional tank rireuit. A reduction in the inductance of L_{2} results in an increase in coupling because C_{7} must be incroased to rotune the vircuit to rosonance. This changes the ratio of C_{7} to (88 and has the effect of moving the grid tap up on the circuit. Since the coupling to the grid is comparatively loose under any condition, it may be found that it is impossible to utilize the full power capability of the driver stage. If sufficient exritation cannot be ohtained, it may be neesessary to raise the plate voltage of the driver, if this is permissible. Otherwise a larger driver tube may be required. As shown in Fig. 6-1813, parallel driver plate feed and amplifier grid feed are necessary.

STABILIZING AMPLIFIERS

External Coupling

A straight amplifier operates with its input and output circuits tuned to the same frequency. Therefore, unlass the coupling between these two circuits is brought to the necessary minimum, the amplifier will oscillate as a tuned-plate tuned-grid circuit. Care should be used in arranging components and wiring of the two circuits so that there will be negligible opportunity for coupling external to the tube itself. Complete shiolding between input and output eircuits usually is required. All r.f. leads should be kipt as short as possible and particular attention should be paid to the r.f. return paths from plate and grid tank cireuits to eathode. In general, the best arrangement is one in which the cathode (or filament center tap) connection to ground, and the plate tank circuit are on the same side of the rhassis or other shielding. Then the "hot" lead from the grid tank (or driver plate tank) should be brought to the socket through a hole in the shielding. Then when the grid tank condenser, or by-pass is grounded, a return path through the hole to cathode will be encouraged, since transmission-line characteristics are simulated.

A check on external coupling between

HIGH-FREQUENCY TRANSMITTERS

input and output circuits ean be made with a sensitive indicating device, surh as the ome diagrammed in lig. 6-19. The amplifier tube is removed from its soeket and if the plate terminal is at the sorket, it should be disconnected. With the driver stage rumning and tuned to resonance, the indieator should be coupled to the output tank eoil and the output tank eondenser tuned for any indication of r.f. feed-through. Experiment with shielding and rearrangement of parts will show whether the isolation 'an be improved.

Neutralizing Circuits

The plate-grid eaparitame of sereren-grid tubes is reduced to a fraction of a micro-mierofatad by the interposed grounded screon. Nevertheless, the power sonsitivity of these tubes is so great that omly a very small amount of feed-barek is necessary to start oscillation. To assure a stable amplifio, it is usually necessary to load the grid rircuit, or to use a neutralizing eirenit. A neut ralizing eireuit is one external to the tube that balances the voltage fed back through the grid-plate capacitance, by anothor voltage of opposite phase.
lig. 6-20. plifier may be neutralized by the use of an inductive link line coupling the input and output tank eireuits in proper phase. The two coils must be properly polarized. If the initial conneretion proves to be incorrect, commertions to one of the link coils should be reversed. Neutmazing is adjusted by changing the distance bot weren the link coils and the tank coils, once correct polarization has been determined. A wrong connection will eatuse the amplifier to oscillate still more strongly, In the ease of capacitive coupling, one of the link coils will be coupled to the plate tank coil of the driver stage.

A (apacitive neutralizing system for screengrid tubes is shown in Fig. ($\mathrm{i}-20 \mathrm{~B}$. (\% is the neutralizing condenser. The caparitance should be chosen so that at some adjustment of C_{2}, the ratio) of (2 to (C_{2} equals the ratio of the tube grid-plate raparitanere to the grid-rathodo capateitance. If C_{1} is $0.001 \mu \mathrm{fd}$., then

$$
C_{2}=\frac{1000 C_{\mathrm{g} p}}{C_{\mathrm{gf}}}
$$

The grid-cathode caparitance must include all strays directly across the tube caparitance, including the eapacitane of the tuning-condenser stator to ground. This may amount to is to 20 $\mu \mu \mathrm{fd}$. In the case of caparitance coupling, as shown in Fig. 6-20C, the output capacitance of the driver tube must be added to the grideathode capacitance of the amplifier in arriving at the value of C_{2}. If r_{2} works out to an impractically large or small value, Ci can be changed to compensate by using combinations of fixed miea condensers in parallel.

Neutralizing Adjustment

The procedure in neutralizing is essentially the same for all types of tubes and circuits. The filament of the amplifier tube should be
lighted and exritation from the preceding stage fed to the grid cireuit. There should be no plate voltage applied to the amplifier.

The immediate objective of the neutralizing process is reducing to it minimum the r.f. driver voltage fed from the input of the amplifier to its output eircuit through the grid-plate capacitance of the tube. This is done by adjusting rarefully, bit by bit, the neutralizing condensor or link coils until an r.f. indicator in the output rireuit reads minimum.

The devier shown in lige, 6 - 19 makes a sensitive neutralizing indicator. The link should be coupled to the output tank coil at the low-potential or

Fis. 6-20-Screen-prid neutralizing circuits. A - In-ductive-link nentralizing. 13 - Capacitive neutralizing. C_{1} - (irid by-pass condenser - approx. 0.001- ffd . mica, Voltaze rating same as biasing voltage in I3, same as driver plate voltage in C.
C_{2} - Veutralizing condenser - approx. 2 to $10 \mu \mu \mathrm{fd}$. - see text. Voltage rating same as ampiifier plate voltage for c, w. . twice this value for plate modulation.
$1_{1}, 1_{2}$ - Nentralizing link - usually a turn or two will be sufficient.
"ground" point. Care should be taken to make sure that the coupling is loose enough at all times to prevent burning out the meter or the rectifier. The plate tank condenser should be readjusted for maximum reading after each change in neutralizing.

A neon bulb touched to the "hot" end of the tank coil will glow if enough feed-through voltage is developed across the tank, but it is a less-sensitive device. Another disadvantage is that its use introduces capacitance across one side of the circuit which may unbalance the circuit, thus giving an inarcurate indication.

A more satisfactory indicator than the neon bulb is a flashlight bulb (the lower the power the more sensitive) connerted at the center of a turn or two of wire coupled to the tank coil at the low-potential point. Its sensitivity is poor compared with the milliammeter-rectifier.

The grid-current millianmeter may also be used as a neutralizing indicator. If the amplifier is not neutralized, there will be a large dip in grid current as the plate-tank tuning passes through resonance. This dip in grid current reduces as neutralization is approached until at exart neutralization all change in grid current should disappear.

When neutralizing an amplifier of medium or high power, it may not be possible to bring the reading of the rectifier indicator down to zero, but a minimum point in the adjustment of the nout ralizing control should be found where higher readings are obtained on either side. The plate tank circuit should be kept tuned for maximum reading at all times.

Grid Loading

The use of a neutralizing circuit may often be avoided by loading the grid circuit if the driving stage has some power capability to spare. Loading loy tapping the grid down on the grid tank coil (or the plate tank roil of the driver in the case of capacitive coupling), or by a resistor from grid to cathode is effective in stabilizing an

Fig. 6-21 - A - Usual v.h.f. parasitic circuit in an amplifier. B - Parasitic suppressor chokes in grid and plate (see text).
amplifier, but either device will increase v.h.f. harmonics. The best loading system is the use of a pi-sertion filter, as shown in Fig. 6-1813. This circuit places a capacitance directly between grid and cathode. This not only provides the desirable loading, but also a very effective capacitive short for v.h.f. harmonies. A $100-\mu \mu \mathrm{fd}$, mica condenser for C_{8}, wired directly between tube terminals will provide sufficient loading for most screengrid tubes.

V.H.F. Parasitic Oscillation

Unless steps are taken to prevent it, parasitic oscillation in the v.h.f. range (usually 100 to 200 Mc .) will take place in an amplifier using tules of the dimensions of the $21: 26$ or larger. smaller tubes may not require suppression but sometimes do. The heavy lines of Fig. (i-21A show the usual parasitic cireuit and these leads should be kept as short as possible. In the case of a link-coupled amplifier, the path will be through the amplifier grid tank condenser. While there are other steps that may be taken, such as a small resistor at the sereen, the preferred method of suppression is indicated in Fig. 6-2113, because it doos not affect the stability of the amplifier at the operating frequency and results in less harmonic reinforcement when correctly adjusted.

The choke in the grid circuit may not always be required and should be omitted if possible. In general, the coil in the plate circuit should be the smallest that will suppress the parasitic. However, care should be taken that it does not resonate the parasitic plate circuit in the TV region. In such a case, the coil should be made larger, since once past the eritical minimum in size, it will continue to be effective as a suppressor. If a plate coil large enough to resonate the plate parasitic circuit near 50 Ne. does not suppress the parasitic, the choke in the grid circuit will he necessary. The same precautions should the observed in regard to resonance in the $T V$ range.

To test for v.h.f. parasitic oscillation, the 28-Mr. tank coil should be plugged into the grid tank circuit (or the plate tank circuit of the driver stage if capacitive coupling is used) and the $3.5-\mathrm{Mc}$. coil in the plate tank circuit, This is to prevent any possible t.g.t.p. oscillation at the operating frequency which might lead to confusion in identifying the parasitic. Any fixed bias should be replaced with a grid leak of 10,000 to 20,000 ohms. In a capacitive-coupled stage, the driver should be coupled in the nornal way, but all load on the output of the amplifier should be disconnected. If the stage is an intermediate amplifier, the tube in the following stage should remain in place, but with its filament turned off. plate and screen voltage should be reduced to the point where the rated dissipation is not exceeded. If a Variac is not available, voltage may be reduced by a 115 -volt electric lamp of suitable wattage rating in series with the primary of the plate transformer. A 150 -watt size is about right for a medium-power transmitter.

With power applied only to the amplifier under test (not the driver), a careful search should be made by adjusting the input tank condenser to several settings, especially including minimum and maximum, and turning the plate tank condenser through its range for each of the grid-condenser settings. Any gridcurrent reading, or any dip or slight flickerin plate current at any point, indicates oscillation. This can be confirmed by using an indicating absorption wavemeter (see measurements chapter) tuned to the frequency of the parasitic and held close to the plate lead of the tube, After the parasitic has been suppressed as described above, resonances should be checked with a grid-dip meter.

Low-Frequency Parasitic Oscillation

The screening of most transmitting screen-grid tubes is sufficient to prevent low-frequency parasitic oscillation caused by resonant circuits set up by r.f. chokes in grid and plate circuits. Should this type of oseillation (usually betweren 1200 and 200 kc .) occur, see section under triode amplifiers.

PARALLEL-TUBE AMPLIFIERS

The circuits for paralloltube amplifiers are the same as for a single tube, similar terminals of the tules being connerted together. The grid imperlance of two tubes in parallel is half that of a single tube. This means that twice the grid tank eaparitance shown in Fig. 6-17 should be used for the samo Q. Similarly, the plate load resistance is halved so that the plate tank condenser capacitance for a single tube (Fig. 6-9) also should be doubled. The total grid current will be doubled, so to maintain the same grid bias, the grid-leak resist-

Fig. 6-22 - Push-pull screen-grid amplifier cirenits.
A - Indurtive-link coupling. B - Capacitive couphing.
(.) - Split-stator qrid tank condenser - see text and Fig. 6 -17 for capacitance, Fig. 6.30 for voltage rating.
C_{2} - Split-stator plate tank condenser - see text and Fig. 6.9 for capacitance, Fig. 6-29 for voltage rating.
$\mathrm{C}_{3}-\mathrm{G}$ rid liy-pass condenser - $0.001 . \mu \mathrm{fd}$. disk ceramic.
($4, \mathrm{C}_{5}$ - P'ilament hy-mass - $0,001-\mu \mathrm{fd}$. disk eeramic.
C_{6}, C_{8} - Screen by pass - $\mathbf{0} .001-\mu \mathrm{fd}$. disk ceramic or mica. Voltage rating depends on maximum voltage to which sereen may soar, depending on how it is supplied. Voltage rating ermal to plate voltage will be safe in any case.
C - I'late by pass - $0.001-\mu \mathrm{fd}$. disk ceramic or mica. Voltage rating same as plate voltage for c.w.; iwice this value for plate modulation, plus safety factor.
C C_{9} - Driver plate tank condenser - see section on simple eapacitive coupling with single tuhe. For same (), each section should have half the capacitance shown in Fig. 6-9. Voltage rating of cach sertion should le twice d.e. plate voltage of driver.
$\mathrm{C}_{10}, \mathrm{C}_{11}$ - Coupling condenser - 50 . to 1.00$)-\mu \mu \mathrm{fl}$. mica, Soltage rating twice driver mate voltage.
C_{12} - $0,001 \cdot \mu \mathrm{fd}$. dish eeramie or mica. Voltage rating same as plate voltage plus safety factor.
Ci3-See tivt.
$\mathrm{I}_{1}, \mathrm{~L}_{2}$ - To resonate at operating frequeney, See $L C_{6}$ chart in miscellaneons-data chapter and inductance formula in electrical-laws chapter, or use ARKI. Lightning Calculator.
1.3, I. - Coupling links - reactance equal to feed-line impedance. See reactance chart in miscellaneons-data eliapter and inductance formula in eleetricallaws chapter.
I.4, I. 5 - Veutralizing links - usually a turn or two will be sufficient,

RF': $-2.5-\mathrm{mh}$. r.f. choke, to carry grid current.
$\mathrm{RFC}_{2}-2.5-\mathrm{mh}$. r.f. choke to carry plate current.
ance should be half that used for a single tube. The required driving power is doubled. The raparitance of a neutralizing condenser, if used, should be doubled and the value of the screen dropping resistor should be cut in half. In treating parasitic oscillation, it may be necessary to use individual chokes in each plate and grid lead. rather than one in the common leads. Input and output capacitances are doubled, which may be a factor in efficient operation at higher frequencies.

- push-pull amplifiers

Circuits for push-pull amplifiers are shown in Fig. 6-22. With this arrangement both gridlinput impedance and optimum plate load resistance are doubled. For the same Q, each section of the split-stator tank condensers should have half the capacitance for a single tube drawing the same total plate current and having the same grid impedance shown by Figs. 6-9 and 6-17. This means that the total tank-circuit capacitance is one-quarter that for a single tube and that the inductanees of the tank coils must be quadrupled to resonate at the same frequenes. Other values remain the same, except that the total grid, screen and plate currents will be twice the values for a single tube and the stage will require twice the driving power.
In Fig. (6-22A, inductive link coupling is shown. The neutralizing circuit is shown in heavy lines and may not be necossary. Fig. 6-2213 shows caparitive coupling to the grids. The driver in this case must be provided with a balanced output circuit. To maintain balanced excitation, it may be necessary to place C_{13}, shown in dashed

Fig. 6-2.3- Cinmertions for tulues in pushopull when fila-ment-tyme are hacid. The comdersisers Ca should the $0.001-\mu \mathrm{fd}$, dish eeratire, one planted clome to earlh tilament terminal. $\%_{1}$ is the filament transformer.

lines, across the lower portion of the circuit to balance the driver-tube output capacitance across the upper half. The remainder of circuit 13 is the same as A. If a neutralizing link is needed, it should be coupled at the center of the driver plate tank coil.

It is advisable to use separate screen and heater by-pass condensers, especially when TVI
is a factor. Fig. 6-23 shows equivalent "cathode" romnections to be substituted when filament-type tubes are used. Also, individual v.h.f. parasitic chokes will be necessary:

Balance in Push-Pull Amplifiers

Proper push-pull operation requires an accurate balance between the two sides of the circuit. Otherwise the dissipation will not be distributed evenly between the two tubes, one being overloaded if an attempt is made to operate the amplifier at full rating. Unbalance is indicated when the grid and/or plate currents are not equal and, if serious, is accompanied by a visible difference in the color of the tube plates. If interehanging the tubes does not change the unbalance, the circuit is not symmetrical electrically.

If the coil center-tap in split-stator tank circuits is sufficiontly well-isolated from ground, the balance will depend upon the accuracy of caparitance balance in the tank condensers, the lengt h of leads connecting the tubes to the condenser (including the return lead from rotor to filament) and the settings of the neutralizing condensers, Unbalance in the plate circuit will seldom influence the batance in the grid circuit, hut the opposite may not be true. Langthening one or the other of the leads betwern the tubes and the tank condenser will alter the balanee, particulatly in the plate cirenit. In extremes it may be neressary to place a trimmer arross one section of the split-stator condenser. Small differences often may be taken care of by a readjustment of the neutralizing condensers, possibly to slightly unequal settinge, (Otherwise, the meutralizing condensers: are adjusted together, keeping the caparitances as equal as possible at earh step.

- FREQUENCY MULTIPLIERS

Single-Tube Multiplier

Output at a multiple of the frequency at which it is being driven may be obtained from an amplifier stage if the output circuit is tuned to a harmonic of the exciting frequency instad of to the fundamental. Thus, when the frequency at the grid is 3.5 Me., output at 7 Mc ., 10.5 Mc., 14 Mc., etce, may be obtained by tuning the plate tank circuit to one of these frequencies. The cirenit otherwise remains the same as that for a straight amplifier, although some of the values and operating conditions may require change for maximum multiplier efficiency.

Efficiency in a single- or parallel-tube multiplicr comparable with the efficiency obtainable when operating the same tube as a straight amplifier involves dererasing the operating angle in proportion to the increase in the order of frequency multiplication. Obtaining output comparable with that possible from the same tube as a straight amplifier involves greatly increasing the plate voltage, A practical limit as to efficiency and output within normal tube
ratings is reached when the multiplier is operated at maximum permissible plate voltage and maximum permissible grid current. The plate current should be reduced as necessary to limit the dissipation to the rated value by increasing the bias. High efficiency in multipliers is not often required in practice, since the purpose is usually served if the frequency multiplication is obtained without an appreciable gain in power in the stage.

Multiplications of four or five sometimes are used to reach the bands above 28 Mc . from a lower-frequency crystal, but in the majority of lower-frequency transmitters, multiplication in a single stage is limited to a factor of two or three, because of the rapid decline in practicably obtainable efficiency as the multiplication factor is incrased. Sereen-grid tubes make the best frequency multipliers because their high power-sensitivity makes them easier to drive properly than triodes.

Since the input and output circuits are not tuned close to the same frequency, neutralization usually will not be required. Instanees may be encountered with tubes of high transconductance, however, when a doubler will oscillate in t.g.t.p. fashion, requiring the introduction of neutralization. The link neutralizing system of Fig, ($6-20 \mathrm{~A}$ is convenient in such a rontingency.

Push-Pull Multiplier

A single- or parallel-tube multiplier will deliver output at either even or odd multiples of the exciting frequency. A push-pull multiplier does not work satisfactorily at even multiples because even harmonics are largely canceled in the output. On the other hand, amplifiers of this type work well as triplers or at other odd harmonics. The operating requirements are similar to those for single-tube multipliers,

Push-Pull Multipliers

A two-tube circuit which works well at even harmonics, but not at the fundamental or odd harmonics, is shown in Fig. 6-24. It is known as the push-push circuit. The grids are connected in push-pull while the plates are connected in parallel. The efficiency of a doubler using this circuit may approach that of a straight amplifier under similar operating conditions, because there is a plate-current pulse for each cycle of the output frequency.

This arrangement has an advantage in some applications. If the heater of one of the tubes is turned off, making the tube inoperative, its grid-plate capacitance, being the same as that of the remaining tube, serves to neutralize the circuit. Thus provision is made for either straight amplification at the fundamental with a single tube, or doubling frequency with two tubes as desired.

The grid tank circuit is tuned to the frequency of the driving stage and should have the same constants as the grid tank circuit of a push-pull

Fig. 6-24 - Circuit of a push-pmsh frequency multiplier for even harmonics.
$C_{1} L_{1}$ and $C_{2} l_{2}$ - see text.
C_{3} - I'ate by-pass - $0.001-\mu \mathrm{fd}$. disk ceramic or mica. Voltage rating equal to plate voltage plus safety factor.
RFC - 2.5-mh. r.f. choke.
amplifier (see Fig. 6-22). The plate tank circuit is tuned to an even multiple of the exciting frequency, usually the second harmonie, and should have the same values as a straight amplifier for the harmonir frequeney (see lig. (6-9), bearing in mind that the total plate current of both tubes determines the C to be used.

TRIODE AMPLIFIERS

Circuits for triode amplifiers are shown in Fig. 6-25. Negleeting references to the sareon, all of the foregoing information applies equally well to triodes. All triode straight amplifiers must be neutralized, as Fig. 6-2i indicates. lrom the tube tables, it will be seen that triodes require considerably more driving power than sereengrid tubes. However, they also have less power sensitivity, so that greater feed-back ean be tolerated without the danger of instability.

Low-Frequency Parasitic Oscillation

When r.f. chokes are used in both grid and plate circuits of a triode amplifier, the splitstator tank condensers combine with the r.f. chokes to form a low-frequence parasitic circuit, unless the amplifier circuit is arranged to prevent it. In the circuit of Fig. 6-2:5], the amplifier grid is series fed and the driver plate is parallel-fed. For low frequencies, the r.f. choke in the driver plate circuit is shorted to ground through the tank coil. In ligi. 6-25C and D , a resistor is substituted for the grid r.f. choke. This resistance should be at least 100 ohms. If any grid-leak resistance is used for biasing, it should be substituted for the $100-\mathrm{ohm}$ resistor.

TUNING A TRANSMITTER

Fig. 6-26 shows where milliammeters and voltmeters may be connected to obtain desired readings. Metering of all stages is usually not necessary except for initial adjustments. After preceding stages have been adjusted for proper operating conditions, a transmitter can often be tuned up using only grid- and plate-current milliammeters in the final-amplifier circuit.

While cathode metering often is used for rea-
sons of safety to the operator and meter insulation, it is frequently difficult to interpret readings that are the resultant of three currents, one of which may be falling while the other two are increasing. Fig. 6-27 shows a commonly-used system for switching a single meter to read current in any of several different circuits. The resistors, R, are connected in the various circuits in place of the milliammeters shown in Fig. 6-26. Since the resistance of K is several times the internal resistance of the milliammeter, it will have no practical effert upon the reading of the meter itself.

When the meter must read currents of widely differing values, a meter with a range sufficiently low to accommodate the lowest values of current to be measured may be selected. In the circuits in which the current will be above the scale of the meter, the resistance of R can be adjusted to a lower value which will give the meter reading a multiplying factor. (See chapter on measuring equipment.) Care should be taken to observe proper polarity in making the comections between the resistors and the switeh.

The first step in adjusting each stage is to check for parasitie oscillation as diseussed earlior. The second step is to adjust neutralizing if neutralization is required.

While it is usually possible to make all initial
tuning adjustments of low-power stages with plate voltage applied, it is preferable to disconnert the plate voltage until adjustments of exritation have been made. Starting with the oseillator, its output tank rircuit should be resonated as indicated by a dip in the plate-current reading (see Fig, 6-3), or by a maximum roading of grid current to the following stage if it is coupled capacitively. Both readings should oreur simultancously. At this point, the frequency of the oscillator output should be cherked with an absorption wavemeter to make sure that it is tuned to the desired band. If transmission-line coupling is used, the coupling to the grid of the amplifier should first the adjusted for minimum standing-wave ratio as described carlier. After this adjustment, the coupling at the oscillator end of the line only should be altered. If the amplificer grid current is much above rated value, the coupling to the oscillator should be reduced. Conversely, if the amplifier grid current is low, coupling should be increased. As the coupling is increased, the oscillator should draw more plate current and the dip at resonane should berome less pronounced, as indicated in Fig. 6-3. If it is possible to increase the coupling to the point where the oseillator plate current is up to the rated value and yot the required grid current is not up to rated value, the biasing voltage should

Fig. 6.25 - Triode amplifier cirenits. A - link roupling, single tube. B - Capacitive coupling, single tube. C- Link coupling, push-pull. 1) - Capacitive roupling, push-pull. Aside from the neutralizing cirenits, which are mandatory with trioles, the circuits are the same as for sereen-grid tuber, and shonld have the same values throughont. 'The neutralizing condenser, C_{1}, should have a capacitance somewhat greater than the grid-plate capacitance of the tube. Voltage rating should be wiee the d.e. plate voltage for e.w., or four times for pate mombation, plus safety factor. The resistance R_{t} should he at least $l 00$ ohms and it may consist of part or preferably all of the grid Ieak. For other component values, see similar sereen-grid diagrams.

Fig. 6-26-Diagrams showing placement of voltmetor and nilliammeter to ohtain desired moasurements. A - Serios grid feed, parallel plate feed and series sereen voltagedropping resistor. is - Parallel grid feed, series plate feed and sereen voltage divider.
siderations. If the excitation is adjusted first without plate and sereen voltages it may be found that the grid current will change when these voltages are applied and the stage is loaded. It is normal for grid current to drop somewhat when these voltages are applied and still farther when the load is coupled, esperially with triodes. When this occurs, excitation should be increased, to bring the grideurrent back to rated value.

If it is found that grid current inereases when the plate tank circuit is tuned slightly to the high-frequency side of resonance, this indicates regeneration. This may be of little conserpuence in exciter stages so long as oscillation does not result under any normal tuning condition. But in the final amplifier, especially if it is to be modulated, it is a condition to be avoiled by better shielding or more accurate neutralization.

The main objective in the end, of course, is to obtain adequate excitation to the final amplifier and, in general, any adjustment of earlier stages that will produce this result without overloading anywhere along the line will be satisfactory. In conservative design, the full power capability of the exciter stages may not be needed. In the interests of v.h.f. harmonic reduction, it is desirable to provide an excitation control so that the excitation to the final amplifier can be limited to that necessary for satisfactory operation. This can be in the form of a potentiometer control of the screen voltage of the first
be measured with a high-resistance (20,000 ohms per volt) voltmeter. If the stage has a simple biasing resistor from grid to ground, connect a $2.5-\mathrm{mh}$, r. f. choke in series with the voltmeter prod going to the grid. The bias should be measured with the stage operating under excitation. If the biasing voltage measures too high, any fixed bias should be reduced and then, if necessary the grid-leak resistance. If the driver is operating up to rated plate current and rated grid current ramot be olstained with the required hias, the indication is that the screen and/or plate voltage of the oscillator must loe raised if this can be done with safety to the oscillator tube. However, it should be borne in mind that even if an intermediate stage is underdriven, it still may furnish the required driving power for the following stage. Therefore, it is, of course, advisable to cheek this before making any drastic changes in the oseillator.

The same process is followed in tuning up following amplifier stages, step, by step. If there is any difficulty in obtaining the desired excitation to any particular stage, be sure that the sereen voltage of the driver stage is up to normal as discussed earlier in the section on screen-grid con-

Fig, 6-27 - Method of switching a single milliammeter. The resistors, R, should he 10 to 20 times the internal resistance of the meter; 47 ohms will usually be satisfactory. S_{1} is a 2 -section rotary switch. Its insulation should be ceramic for high voltages, and an insulating coupling should always be used between shaft and control knob,
stage after the oseillator. Then reduction in screen voltage of this stage will redure excitation all along the line, which is desirable.

MEASURING POWER OUTPUT

The power output of any transmitter stage can be checked with reasonable accuracy by simply coupling an ordinary lamp to the output tank cirruit and comparing its brilliance with that of another lamp of the same size operating from a.c. Since it is difficult to judge power accurately when the lamp is over or under normal brilliance, the lamp selected should have a wattage rating as close as possible to that expeeted from the amplifier. l'lashlight bulbs can be used for low power. At frequencies above 7 Mc. sufficiont coupling usually is olbtained by connerting the lamp in series with a few turns of wire that ean be slipped over or inside the tank coil, as shown in Figg. 6-28.1. But at 3.5 and 7 Me ., it is usually necessary to tap) the bulb directly arross a portion of the tank eoil, as shown at B. WARN'IN(i! Don't forget the high voltage when tapping a seriex-fed tank circuit. The eoupling should be adjusted until the pate current at resonance is the rated loaded value for the tulse. A more aecurate dummy load is doseribed in QST' for Mareh, 1951, page 32.

COMPONENT RATINGS AND INSTALLATION

Plate Tank-Condenser Voltage

In soleeting a tank eondenser with a spacing between plates sufficient to prevent voltage

Fig. 6.28 - L'sing a lamp bulb for an approximate check on the output of an oscillator or amplifier. The compling should be adjusted to make the stage draw rated plate current when tuned to resonance. Sperial caution should be used in tapping the lamp directly on the coil when series plate feed is used. Alvays turn off the pouter before making a change in the tap.

Fig 6-29-Diaqrams slowing the peak voltage for which the plate tank comdenser should be rated for r.w. opration with varions cirouit arrangements. E is equal to the d.c. plate voltage. The valuen should be doubled for plate monlulation. 'The circuit is assumed to be fully loaded. (ircuits A, C and F, require that the tank comdenser the insulated from chamis or groumd, and from the control.
breakdown, the peak r.f. voltage aeross a tank circuit under load, but without modulation, may be taken conservatively as equal to the d.e. plate voltage. If the d, e, plate voltage also appears across the tank condenser, this must be added to the peak r.f. voltage, making the total peak voltage twice the d.c. plate voltage. If the amplifier is to be plate-modulated, this last value must be doubled to make it four times the d.c. plate voltage, because both d.e. and r.f. voltages double with 100 -per-ent plate modulation. At the higher plate voltages, it is desirable to choose a tank circuit in which the d.c. and modulation voltages do not appear across the tank condenser, to permit the use of a smaller condenser with less plate spacing. lig. 6-29 shows the peak voltage, in terms of d.e. plate voltage, to be experted across the tank eondenser in various circuit arrangements. These peak-voltage values are given assuming that the amplifier is loaded to rated plate current. Without load, the peak r.f. voltage will run much higher. Since a c.w. transmitter may be operated without load while adjustments are being made, although a modulated amplifier never should be operated without load, it is sometimes eonsidered logical to select a condenser for a e.w. transmitter with a peak-voltage rating equal to that required for a 'phone transmitter of the same power. However, if minimum cost and space are considerations, a condenser with half the spacing required for 'phone operation can be used in a c.w. transmitter for the same carrier
output, as indicated under Fig. 6-29, if power is reduced temporarily while tuning up without load.

In the circuits of Fig. 6-29C, D and E, the rotors are deliberately connected to the positive side of the high-voltage supply, eliminating any difference in d.c. potential between the rotors and stators.

The plate spacing to be used for a given peak voltage will depend upon the design of the variable condenser, influencing factors being the mechanical construction of the unit, the dielectric used and its placement in respect to intense fields, and the condenser-plate shape and degree of polish. Condenser manufacturers usually rate their products in terms of the peak voltage between plates.

Plate tank condensers should be mounted as close to the tube as temperature considerations will permit to make possible the shortest capacitive path from plate to cathode. Especially at the higher frequencies where minimum circuit capacitance becomes important, the condenser should he mounted with its stator plates well spaced from the chassis or other shielding. In circuits where the rotor must be insulated from ground, the condenser should be mounted on ceramic insulators of size commensurate with the plate voltage involved and - most important of all, from the viewpoint of safety to the operator - a well-insulated coupling should be used between the condenser shaft and the dial. The section of the shaft attached to the dial should be well grounded. This ean be done conveniently through the use of panel shaft-bearing units.

Grid Tank Condensers

In the circuit of Fig. 6-30, the grid tank condenser should have a voltage rating approximately equal to the biasing voltage plus 20 per cent of the plate voltage. In the balanced cireuit of B , the voltage rating of each section of the condenser should be this same value.
The grid tank condenser is preferably mounted with shielding between it and the tule socket for isolation purposes. It should, however, le: mounted (lose to the socket so that a short lead can be passed through a hole to the socket terminal. The rotor ground lead or by-pass lead should be run directly to the nearest point on the ehassis or other shielding. In the circuit of Fig. 6-30A, the same insulating precautions mentioned in connection with the plate tank condenser should be used.

Plate Tank Coils

The inductance of a manufactured coil usually is based upon the highest plate-voltage/ plate-current ratio likely to be used at the maximum power level for which the coil is designed. Therefore in the majority of eases, the capacitance shown by ligs. 6-9 and 6-17 will be greater than that for which the coil is designed and turns must be removed if a Q of 12 or more is needed. At 28 Mc ., and sometimes 14 Mc ., the value of capacitance shown by the chart for a
high plate-voltage/plate-current ratio may be lower than that attainable in practice with the components available. The design of manufactured coils usually takes this into consideration also and it may be found that values of caparitance greater than those shown (if stray capacitance is included) are reguired to tune these coils to the band.

Manufactured coils are rated according to the plate power input to the tube or tubes when the stage is loaded. Since the circulating tank current is much greater when the amplifier is unloaded, care should be taken to operate the amplifier conservatively when unloaded to prevent damage to the coil as a result of excessive heating.
Tank coils should be mounted at least their diameter away from shielding to prevent a marked loss in Q. Except perhaps at 28 Mc ., it is not important that the coil be mounted quite close to the tank condenser. Leads up to 6 or 8 inches are permissible. It is more important to kerp the tank condenser as well as other components out of the immediate field of the coil. For this reason, it is proferable to mount the coil so that its axis is parallel to the condenser shaft, either alongside the emdenser or alove it.

Plate-Blocking and By-Pass Condensers

Plate-blocking condensers should have low inductance; therefore condensers of the mica type are preferred. For frequencies hetween 3.5 and 30 Me ., a eapacitance of $0.001 \mu \mathrm{fd}$. is commonly used. The voltage rating should be 25 to 50 per cent above the plate-supply voltage.
Wherever their voltage rating will permit (500 volts), $0.001-\mu \mathrm{fl}$. disk ceramic condensers should be used as by-passes, since, when applied correctly (see TVI chapter), they are series resonant in the TV range and therefore are an important measure in filtering power-supply leads. For higher voltages, use $0.001-\mu \mathrm{fd}$. mica by-passes.

R.F. Chokes

The r.f. choke in parallel plate foed must have high impedance at the operating frequeney to avoid loss. In multiband tramsmitters, if it is found that the choke heats excessively on one or more bands, the only solution is to use a different choke for these bands.

Fig. $6.30-$ The voltage rating of the grid tank condenser in A should be equal to the biasing voltage plus about 20 per cent of the plate voltage. This same rating should be applied to each section of the split-stator condenser in \mathbf{B}.

A One-Tube Transmitter for the Beginner

Figs. 6-31 through 6-40 show the details of a simple and inexpensive low-power 80 -meter transmitter with power supply. It is designed particularly for the Novice or begimer. The entire construction of both units can be carried out with a minimum of skill and tools, since no holes need be drilled. It has an input rating of about 10 watts and can be operated using almost any random length of wire as an antenna.

Under the diagram of the transmitter in Fig. $6-35$ are the values of parts used in the circuit. In addition, an octal tube socket (Amphenol Type 77MIP8), a Type (6AG7 tube, a crystal socket (Millen Type 33102), a pair of small control knots, six $11 / 2$ inch metal angles or brackets. (shown in Fig. 6-32 and obtainable in most hardware or dime stores), a length of small-diameter cambric tubing known at radio stores as "spaghetti" and a few soldering lugs, machine screws and nuts will be needed. A small piece of wood is used for the base. Also reguired is a fiber lug strip measuring $1 / 1 / 2$ inches between mounting holes. some types have three terminals. If there are four, one can be ignored.
The assembly is started by making a pair of brackets for mounting the erystal, as shown in the foreground of Pig. 6 -32. They are made of picees of No. 14 antemna wire $23 / 8$ inches total length, with a loop bent at each end to pass the mounting screws. When complete, the centers of the loops: slould be about $13 / 8$ inches apart. The tube soeket is mounted at the end holes of one pair of the angle pieces with 3 3 inch No. 6-32 machine serews. The socket is turned so that its No. 1 prong is to the left. Slipped onto each mounting serew in order are the angle piece, the tube socket, a soldering lug pointing downward, the wire bracket for the erystal socket, a soldering lug pointing upward and finally the nut. The top ends of the wire brackets are bont over at right angles and twisted around as neerssary to mateh the mounting holes in the crystal socket. The erystal socket
is fastened to the loops with $1 / 2$-inch No. 4 machine screws and nuts.

The terminal lug strip, is mounted temporarily with screws through the holes in the angle pieces below the socket. A soldering lug is placed under

Pion 6-32- lirst steps in assembly, showing the manner in whirh the angle pieces are fastened to the haselmard. Wheh of the wiring can be done tefore fastening to the baseboard as described in the test. The pair of looped wires in the foreground show har the erystalwowet supports are mate.
the hatal of the screw to the right as viewed from the rear of the socket.

Before proceeding with the assembly, it will be easier to do as much of the wiring as possible. Comparing Figs, 6-35 and 6 -36 as rou go along will help you to understand schematic diagrams. All connections shown by a "grourd" symbol indicate connections to the metal framework. It should be possible to make most of the connectims to the tube and crystal socketo as well as

fig. 6-31-The completral Novice transmitter with tube and reystal in place. The strips of wood at fromt and hach are safety barriers. C, is to the left, Co to the right.

Fig. 6-3.f-Rear view showing the momenting of the terminal strip. From left to right, the terminals are for key, heater and positive high voltage. The lag to the extreme left is for eonnertions to the other side of heater, the other side of the key and negative high voltage.

to the torminal strip at this stage. Where necessury, a lead with more than sufficient length can be attached and left hanging froe until later assembly makes it possible to attach the other end. Wiring is most easily done with bare No. 22 wire, although insulated wire can be used if the ends are scraped for conneetions. Whenever there is danger of wires touehing each other or other metal parts, at piece of spatghetti should be slipped over the wire before the second and is soldered.

The dial lamp is mounted in the following manner. A piece of bare wire is wound around the shell of the bulb in two or three of the threaded grooves. The wire should be heaty enough to

Fig. 6-3,3 - The novice transmitter just before mounting the variable condensers and coil. All wiring is complete except for connecting one side of C_{7}.
support the bulb. One end 0^{f} the wire is cut off close to the shell, while a lead of about an inch is loft at the other end so that it ean be soldered 1.0 the outrr terminal of $R F^{\circ} C_{2}$ when the latter is mounted. One lead vire of R_{4} is cut to a length of abont an inch and sovered with spaghetti. This end is soldered to the solder tip at the center of the base of the bulb, taking care not to spread the sollier around so that the tip is shorted to the shell.

The two angle pieces shown toward the front in Fig. 6-32 are added and the assembly is fastened in the renter of the baseboard with short wood serews in such a position that the tips of the Jugs on the terminal strips are even with the rear edge of the base. One of the two remaining angle preces is attached to each of the vatiable condensers, C_{8} and Cow with a short 6 -32 sorew at the threaded front mounting hole in the bise of the condenser, so that the shaft of the conderner will be pointing toward the front when the angle piece is fastened to) the base. Be sure that the screws are not so long that they go through and short against the stator dates of the condensers, Attach a soldering lng to oach angle piece at the hole below the conderser. The rear mounting holes in the hases of the rondensers are matched up with the holes in the angle pieces already mounted on the base. Then the last two angle piecos are fastened to the baseboard. The eondenser t_{0} the loft is C_{8} and the one to the right C_{9}. The free end of C_{7} is connected to C_{8} at the nearest rear stator assembly nut, placing a soldering lug under the nut if necersary.

Now the serew holding one end of the terminal strip should be removed and one of the r.f. chokes attached at the same hole. Proceed with the wiring and then mount the other choke. The end of C_{4} marked "Positive" should go to the outer end of $R F C_{1}$.

The coil is mounted letween the two top ircont variable-condenser stator supports. First remove the speeified number of turns from each end of the coil, being careful not to break the plastic

Fig. 6-35-Cirruit diagram of the Novice onc-tuber. $\mathrm{C}_{1}-4 \vec{r}-\mu \mu \mathrm{f}$]. mica.
(.2-2 $20-\mu \mu \mathrm{fd}$, mica.

$\mathrm{C}_{4}-10-\mu \mathrm{ff}, 50$ - olt miniature elcetrolytic.
C $\mathrm{C}_{6}-0.01-\mu \mathrm{fl}$. dish ceramic.

$\mathrm{R}_{1}-15,000$ ohms, $1 / 2$ watt.
$\mathrm{K}_{2}-22,0(0)$ ohms, 1 watt.
$R_{3}-15,000$ ohnis, 10 watts.
$13_{4}-100$ olems, $1 / 2$ watt.
$\mathrm{L}_{1}-45 \mu \mathrm{~h}$, - 70 turns No. 21, 1 -inch diameter, $21 / 4$ inches long (13 N W 3016 with lis turns removed from each end).
$I_{1}-2,5$-volt 60 -ma, dial lamp, serew hase.
 Dillen 3+102).
Xtal - Crystal hetween 3700 and 3730 hc .
supporting strips, Now bend a piece of fairly heavy wire around the ends of one of the supporting strips. Solder the ends of the coil winding to these pieees of heavy wire, bring careful to keep the plastic strip in shape if it softens. Ilate a soldering lug under each of the fop front stator nuts of the variable condensers. By bending the lugs and the ends of the terminal wires in the right way, the ends of the plastice strip will rest on the ceramic stator insulators where they can be fixed with Duco eement. The ends of the three remaining supporting strips can be cut off close to the winding. The rear upper stator terminal of

Fig. 6-36 - I'icture diagram of the wiring of the Novice transmitter.
C_{9}, the condenser to the right, is the antenna terminal. A piece of flexible hook-up wire about two feet long should be soldered to eateh of the lugs on the terminal strip and two lengths of similar wire to the grounding lug at the end of the terminal strip.

A small strip of wood $11 / 4$ inches high and the length of the baseboard should be nailed along the rear edge of the hase. This and a similar strip $31 / 4$ inches long at the front between the two variable condensers sarve as barriors to prevent accidental contact with points where there might be danger of shoek where high voltage is exposed.

Power Supply

Figs. 6-37 through 6-40 show the construetion of a simple power supply for the transmitter. In addition to the parts listed under Fig. 6-38, you will need another tube socket and four terminal

Transmitter and Power Supply Measurements Power Supply Output voltage at minimum load, key open - 41.5 Output voltage at full transmitter load - 355 Transmitter Antenna disconnected, key open - lamp-drain only - 27 ma . Antenna disconnected, tuned to resonance, key closed - total current 40 ma. - plate and screen currents 13 ma . - plate current 6 ma, Antenna conneeted, loaded to maximum, tuned to resonance - total current 63 ma. - plate and screen currents 40 na. - plate current 32 ma. - screen current 8 ma. - screen voltage 180 - plate watts input 11.4	

strips similar to those used in the transmitter, a Type 5 IBGT rectifier tube, a piece of a.e. lamp cord with plug, four 1 -ineh hardware-store angle pieces and a few strips of 1-by-2 wood (actual dimensions about $3 / 4 \times 15 / 8$ inches).

Cut two pieces of the wood 12 inehes long. Lay the two pieces side by side with their wide faces down. Measure the total width of the two pieces and add $11 / 8$ inches. 'This measurement is neeessary because the exact width of the wood may vary slightly: ('ut two more pieees to the length calculated. This will be approximately $43 / 8$ inches. Separating the two 12 -ineh pieces by exaetly $11 / 8$ inches, nail one of the short crosspieces on edge under each end. 'Tse $11 / 2$-inch finishing nails. Then, turning the base upside down, fasten a 1 inch angle piece under each end of each long piece.

Undernoath, across the strips, near each end, fasten the input and output lug terminal strips. The switch is a regular wall switch, mounted with wood serews, and commonly seen in hardware and dime stores. Space the switch, the power transformer, the rectifier-tube soeket and the filter ehoke evenly along the top side of the base.

Fig. $0.3 \overline{7}$ - I simple powar supply for the Vosire transmitter. From left in right, the filter efowe, If. thes reetifier, the powir tramsformer and the switeh are spaced along the wood framework base.

C'enter the units across the wool strips and fasten them down with wood serews.

Trader the power transformer and between the two groups of wires coming from the bottom of the transformer, fasten two more lug terminal strips across the base. These should be phaed arout 2 inches apart, or about a hall ineh more than the length of the filter condensers. Fisten the two filter condensers betwen the two outside pairs of terminats on the strips, as shown in Fig. (-39 . The ends of the condensers marked "Negrative" should go toward the switch end of the unit.

The wiring maty be followed by referring to Figs $6-38$ and $6-39$. In connecting the wires from the transmitter to the power supply, correspondingly numbered terminals shouk be cabloded together. The frame side of the ker eomberets also to Terminal 4 , while Terminal 1 on the tramsmitter exmects to the other side of the ker. After the wires have bern eonmected, they e:m be bound together in a cable with pieces of seoteh tape.

Testing

Plug the power plug into a watl outlet. Turn the power switrh on. Make it a habit never to touch any part of the transmitter or poucer supply, except the insulated controls, until the power switch has been lurned off. Although both transmitter and power supply are designed so that the dangerous parts are not readily accessible, every cation should always be practiced in handling electrieal equipment of any kind. When the power switeh is turned on, the filament of the rectifier tube should light up immediately. After a minute or two, turn the two tuning condensers so that their
motor plates are fully meshed with the stators (maximumi mpacitanee), With the key pressed, the indicaton lamps should light up to approsimately nomal brillianer. Now start turning the input condenser ('x to the left slowly while yon Wateh the Lump. When the phatere are hatf out or more, the lamp should dim noticeably. It should become bright again as yoa continue to turn the output condenser in the same direction. 'The center of the point where the lamp is dimmest is cialled resonance.

Antenno

A full-size antemm for 80 meters is a wire that mensures shout 125 fect from the transmitter to the far emd. As much of this length as possible should be run horizontally as high above the ground as possible. Where space is restricted, shorter lengt his down to 50 or 60 feet should work well. The hronsmitter will feal poner into a wire as short as $\overline{5}$ feet but, maturally, the transmitting range will be restricted with an antenna as short as this.

Often there will be a tree or garage to the rear of the hoose that can be used as a support for the far end of the antemna. The wire can be run from such a support to an anohorage as high as possible on the house and thence through a window to the transmitter.

No. 14 ersmeled wire is suggested for the antema, although almost any wire that will support its own weight may be used. The wire muss. be insulatel from supports at all peints. lou can use ghass or porcelain antenma insulators at the fire end and at the point where it is attached to the house. Keep the leud-in part of the wire clear

Fig, 6-38-Circuit diagram of the power supply for the Novice transmitter.
$C_{1}, C_{2}-8 \cdot \mu \mathrm{fil}$, $500 . \mathrm{volt}$ midget electrolytic.
$R_{1}-0.1$ megohm, 2 watts.
1.: - 8.h. 411-ma. filter choke (Thordareon T20(:52).
$S_{1}-115$-volt a.c. wall switel.
' 1 - Power transformer: $350-0-350 \mathrm{r} . \mathrm{m}, \mathrm{s}$,, $70 \mathrm{ma} .: 5$ v., $2 \mathrm{amp} . ; 6,3 \mathrm{v} ., 2.5 \mathrm{amp}$. ('Lhordarson T'S-241402).

Fig. 6-f0-13ottom view of the power supply, showing the monnting of the filter condensers, terminal strips, bleeder resistor and the wiring.
of the building or other objects. In bringing the wire in through the window, it can be passed in over the top of the upper sash, or under the lower sash. When the window is closed, the leadin will be held in place. Slip a length of spaghetti over the wire where it contacts the window frame. Make the wire on the inside just long enough to reach to the transmitter output terminal. This terminal is the top rear stator nut of the output condenser, C9. Aside from this connection, keep the antenna wire away from the tramsmitter and power supply. It is advisable to run the wire vertically away from the transmitter for at least a foot or two.

If an outside wire is impossible, you cin run a wire through two or three rooms, near the ceiling, or even around three sides of the molding in the operating room.

Adjustment

With the antenna comnected, set the two condensers at maximum as before slowly rotate the input condenser (('y) to the point where the lamp is at its dimmest point. With the antema connected, the lamp probably will not dim as much as it does without the antenna. Now reduce the capacitance of the output eondenser (C_{9}) until the lamp begins to brighten. Then readjust the input eondenser to the dimmest point. Go back and reduce the output condenser a bit more until you can notice the light brighten a little. Then again readjust the input condenser to the dimmest point. As you repeat this process, you will notice that the lamp grows brighter at its dimmest point. This indicates that the antenna is taking power. The proper adjustment is one where the dimming of the lamp is just noticoable
as the input condenser is tuned. Set the input eondenser as exactly as possible at this point.

In general, the longer the antenna wire, the less critical the condenser adjustment becomes. This applics particularly to the output condenser. For any wire longer than 40 or 50 feet, the output condenser usually will be set near minimum. With short wires, the setting of the output condenser especially will be quite critical and very slight adjustments will make considerable difference in how bright the lamp gets at resonance.

Second-Harmonic Radiation

Uuder certain adjustments, second-harmonic output may be accentuated. It is advisable when putting the transmitter on the air to test with anotiner station 25 to 50 miles away, asking the operator to listen at twiee the operating frequeney to make sure that second-harmonie output is not exeressive. From this consideration, it is boter to avoid antema lengths botween about 35 and 55 feert. Socond-harmonic output can be reduced by connocting a wavetrap tuned to the second harmonic in series with the antemas. sucl. a wave trap may consist of a coil of 2,2) $\mu \mathrm{h}$. (12 turns of No. 18 wire, 1 inch in diameter, turns spaced to make the coil length 1 inch, for example), a $150-\mu \mu \mathrm{fd}$. mica condenser, and a $100-\mu \mu \mathrm{fd}$, variable condenser all connected in parallel. The antenna should be cut a foot or so from the transmitter and the two ends of the antenna wire eonnected to the two terminals of the variable condenser, one wire going to the stator plates and the other to the rotor plates. The variable condenser in the trap should be adjusted until the second-harmonie signal at a dists.nt point disappears or drops to minimum.

Fig. 6-39 -. Picture diagram of the wiring of the power supply.

A Single-Control Low-Power Transmitter

Figs. (6-41 through 6-47 show the circuit and constructional details of a 40 -watt two-stage transmitter that requires the adjustment of only one tuning control. The crystal oscillator uses a modified lieree cireuit. The use of bandpass couplers in the output circuit of this stage makes it unnecessary to retune when changing frecfueney and at the same time provides inductive eoupling as a mosaure to ward reducing v.h.f. harmonies. The coupling between the two cirenits is adjusted to give the desired broadband response and then fixed in that position. It is possible to arrive at an adjustment where the amplifier grid excitation is substantially constant over any given band and drops off quite sharply outside the band edges.

The output stage is a conventional 807 amplifier normally working straight through on the output frequency of the oweillator, exeept for 28 Mc., although it will double fregueney to any of the lower-frequeney hands. RFC'3 and R_{6} are parasitic suppressors. The amplifier grid leak, R_{5}, is connected in series with the grid tank circuit, sinere the coupler provides an opportunity to avoid parallel grid feed. RF' and C_{12}, $K P C_{5}$ and C'is are 2 v.h.f. hamonir filters.

The unit is designed to operate from a single power supply delivering 300 to 450 volts. To avoid the need for fixed bias on the output stage, both stages are keyed simultaneously in the common eathode lead. 'The ortal socket used as a rervstal mounting also provides a means of freding a VFO into the unit. Connertions are shown in Fig. 6-46.

Construction

"The transmitter is built in a standard $5 \times 9 \times 6$-inch stere utility box. Most of the parts are mounted on an aluminum plate eut to fit the inside of the box and supported from its sides by $1 / 2$-inch angle brackets as shown in the bottom view of the unit, Fig. 6-43. The plate is mounted $35 / 8$ inehes above the bottom of the box. Two ventilating holes are cut through the plate near the front of the box, and additional vents are punched through the top and bottom eovers of

Fig. 6-11 - Front view of the transmitter with rover removed. The tank cironit for the B0: amplifier oreupies the front compartment, with the $6 A\left(i^{-}\right.$oseillater and the phag-in handpass compler at the rear. Ventilation for the tuhes is ohtained through holes punched in the top, botom, and the interior mounting plate which supports the various components.
the box. These holes permit air to circulate through the entire box, yet do not reduce the effectiveness of the shiclding.

The soekets for the $6 . \mathrm{AG} 7$ and for the plug-in bandpass coupler are mounted in line, $1 \frac{1}{4}$ inches from the rear of the aluminum plate. The socket for the 807 is mounted in a Millen bracket assembly (80007) trimmed down to fit below in a horizontal position. It is placed so that the grid terminal is $33 / 4$ inchess from the rear of the box, allowing adequate space for mounting the small parts in the oscillator cireuit, yet retaining the desired short r.f. leads

An octal socket used to hold the erystal and to connect a VEO, an octal plug for power input connections, and a coaxial output conneedor are mounted at the rear, rentered $1 \frac{1}{4}$ inches above the bottom edge. The key jack and a panel light are mounted on the front, spared $15 / 8$ inches above the bottom edge.

The top) view of the transmitter, Fig. ($;-41$, shows the arrangement of the plate tank eirenit of the 807 stage. A six-prong coramic sowhet for the phug-in plate coils is supported above the derek by ${ }^{3}$-inch eeramio stand-off insulators (National (is-10) $47 / 8$ inches behind the front of the box. The tuning condenser is mounted on ceramir button-type insulators (National Xis-i) immediately in front of the eoil socket. The rotor shaft of this condenser

Fig. 6-12 - Cireuit diagram of a two-stage four-hand transmitter utilizing bandpass coupling and including 'IV-reducing filters.
$\mathrm{C}_{1}, \mathrm{C}_{8}, \mathrm{Co}-0.01-\mu \mathrm{fd}$. dise ceramic.
$\mathrm{C}_{2}-0.005-\mu \mathrm{fl}$. dise coramic.
$\mathrm{C}_{3}-2 \overline{-}-\mu \mu \mathrm{ft}$. míca.
$\mathrm{C}_{4}, \mathrm{C}_{12}, \mathrm{C}_{13}-\mathbf{0 . 0 0 1 - \mu \mathrm { fd } \text { . dise ceramic. }}$
C.5, (6 - 3-30 $\mu \mu \mathrm{fl}$. air-dielectrie trimmers (Phillips).
$\mathrm{C}_{7}-100-\mu \mu \mathrm{fl}$, mira.
$\mathrm{C}_{10}-300-\mu \mu \mathrm{Cd}$. transmitting , arialle (National TMS. 300).
$\mathrm{C}_{11}-0.001-\mu \mathrm{fd}$. miea, 1200 v. I.e. working.
$\mathrm{K}_{1}-47,000$ ohms, $1 / 2$ watt.
$\mathrm{K}_{2}-3 ; 30$ ohms, 1 watt.
$R_{3}-47,000$ ohms, 1 watt.
$R_{4}-10,000$ ohms, 5 watts, wire-wound.
$\mathrm{I}_{5}-22,000$ ohims, 1 watt.
$R_{8}-47$ ohms, $1 / 2$-watt carlon.
$11_{7}-20,000$ ohms, $\overline{\mathrm{J}}$ watts, wire-wound.
L_{1} - P'rimary, handjass coupler.
3.5 Mc. - 10 turns No. 30 d.s.c., elose-wound, $11 / 2$-inch diam. form.
7 Mc. - 16 turns No. 26, d.s.r., close-wound, 11/2-inch diam. form.
14 Mc. - 9 turns No. 20 d.s.c., close-wound, 11/2-inch diam. form.
L_{2} - Secondary, bandpass rompler. W ound on same form as $/ .1$, spaced as indicated.
must be insulated from the front pand because it carries the full plate-supply voltage. The shaft is $11 / 2$ inches above the aluminum plate when mounted as deseribed, and passes through the front of the box 2 inches below the top. The two leads that conneet the condenser to the tube and to the plate by-pass condenser pass through the mounting plate in polystyrene feed-through bushings such as the Nit tional type TPB.

An aluminum partition $33 / 8$ inches high divides the top portion of the boxinto two compartments. This provides shielding botween the bandpass coupler to the rear and the plate coil of the 807 in front. These two coils are mounted at right angles to each other as additional insurance against feed-back.

The coaxial ontput link runs from the prongs of the eoil socket through a $1 / 4$-inch hole in the plate to the output connector on the rear of the box. Both ends of the shiehd braid of this link circuit should be grounded to the chassis.

The components used to filter the d.c. leads
3.5 Mc. - 3.7 turns No. 30 d.s.c., close-wound, $1 / 4$-ineh separation from L_{1}.
7 Mc. - 15 turns No. 26 d.s.e., close-wound, 9/16-inch separation from L_{1}.
14 Mc. - 9 turns No. 20 ds.e., clase-wound, $1 / 2$-inch separation from L_{1}.
1.3-I'late eoil for 807 stake. (All are National AK-17 series).
3.5 Nc. - 1 R-17-40F:. (28 turns Vo. 18, $19 / 16$ inches long. I $1 / 4$-inch liam.)
7 Me. - AR-1 -20 O . (II turns No. $16,11 / 4$ inches long, $11 / 4$-inch diam.)
14 Mc - AR-17-10R. (8 turns No. 16, $15 / 8$ inches lonk, $11 / 4$-inch diam.)
28 Nc. - $\backslash R-1 \bar{T}-6 F \cdot(t$ turns No. 12,2 inches long, $7 / 8$-inch diam.)
It - 6.3-volt pilot lamp.
I_{1} - ()etal socket, ceranie.
I_{2} - Closed-rircuit jack.
I3-Coxial connertor, fimale.
\vec{l}_{1} - Octal plug, panel monoling.

($R F C_{4}, R F C_{5}, C_{12}$, and C_{13}) are mounted as close as possible to the points where the leads pass through the shidd enelosure, using very short leads from the condensers to ground. Parasitic-suppressing choke $R F C_{3}$ is mounted right at the gride terminal of the 807 socket, and h_{6}^{2}, which also has a part in eliminating parasitics, is mounted between the sereon-grid terminal and a small tie-point bolted to the mounting bracket. Sereen by-pass condenser C_{9} is connered from this tie-point to the eathode pin on the tube socket. Plate by-pass condenser C_{11} is phaed behind the $80 \overline{7}$, betworn it and the monnting plate which serves as ground. The lead from the "high" side of this condenser to the plate" tank circuit passes through a bushing immodiately below the plate cap of the 807.

All heater and d.e. wiring is made with shielded wire, with the brad grounded at each end. The screen dropping resistors R_{7}, and R_{4}, which reduce the supply voltage to the proper level for the oscillator, are mounted on tie-points near the octal power plug in the lower right-hand eorner in the bottom view of Fig. 6-43.

Fig. 6-4.3 - 13ottom view of the transmitter. The 807 sochet is momnted in a cut-lown rommereial bracket. with the sockets for the 6, 10:7 and the bandpasis compler spaced below athd to either side of it. Arranged along the rear of the brox are the crystal socket, the output iack, and the power plug.
and soldering their spike terminals, along with the coil ends, into the pins of the National Type NR-5 coil forms. It is highly important that the windings be made as close as possible to the dimensions given under Fig. 6-42. It is perhaps advisable to not make the turns too snug on the form so that the distance between the eoils can be given a final adjustment should this be found neeressary.
The adjustment of the bandpass couphers can be cherked by measuring the amplifier biasing voltage as the oscillator is tuned arross the band. This can be done by eomnecting a high-resistance voltmeter between the 807 grid and ground, with a $2 . i$-mh. r.f. choke in series with the meter lead that is conneeted to the grid.
The chereking should be done with the plate- and serecn-voltage line to the 807

The cireuit diagram of a power supply for this transmitter is shown in Fig, 6-47. It is conventional with combenser-input filter. A separate filament :ransformer is provided so that the plate supply may be turned off independently.

Bandpass Couplers

Three couples are rieded to use the transmitter in four amateur bands. One coupler is designed to provide excitation ateross the entire 3.5-4-Mc. bathe, another for the $7-7.3-$ Mr. hand, and the third from 14 to 14.9 Mc . This latter range is considerably in exeess of what would be reguired for covarage of the $1+-\mathrm{Me}$. band alone. The extension at the high-frogueney end of the range is neressary if the transmifter is to operate in the 28-Mr. band, because for output in this range, the 807 stage must be operated as a doubler from the $14-M$. excitation supplied to its grid cireuit.

In erystal-controlfad oberation, 3.5-Mc. fundamental crrestals may be used for output in the 3.5 and 7 -Me, hands, and 7 -Me. erystals for output in the $7-$, 14 -, and $28-M$ e. bands. In instances where a VFO is used to replate the ervetal, the $6.1\left(\begin{array}{c}-6 \\ \text { stage should be }\end{array}\right.$ used as a frequency soubler to eliminate the possibility of oscillation.

The photograph of Fig. 6-44 and the sketch of Fig. $6-45$ show how the bandpass couplers are constructed and wired. The Phillips trimmers arre especially well adapted for this use, since they are readily mounted by inserting
disconnected. (hoose a revstal as close to the center of the band as possibile and adjust C_{5} and C_{6} for maximum 80^{-}grid voltage. The two adjustments will not be entirely independent, because of the coupling, and some juggling back and forth may be required before the setting for maximum reading is attained. Now, without further adjustment of the

Fig. 6.14- One of the handpass couplers. 'The two trimmer condensers are suounted inside of the coil form, with connections made as shown in Fig. $\mathbf{6 . 4 5}$.

BANDPASS COUPLER DETAILS

Winding Placement
Fig. 6-45 - Details of the bandpass couplers. 'I'he trim. mer condensers are soldered inside of the coil form, as described in the text, making a simple, compact plug-in assembly that needs adjnstment only once.
coupler, plug in other crystals for the same band. If it is found that the grid voltage fatls off considerably with erystals whose frequencies lie near the edges of the band, the windings should be moved slightly closer together and the check across the band made again If it is found that the voltage is high near both ends of the band, but low in the middle, the coupling should he loosened. When the voltage is considerably higher at one end than the other, this can usually be corrected by trial readjustments of C_{5} and C_{6} in small amounts, For crystal control, it is necessary to carry the adjustment only to the point where adequate excitation (at least 45 volts bias with the amplifier running and loated) is obtained with each of the available crystals. If a VFO is used, its output frequeney should be one frequency band lower than the band of the coupler and the adjustments will have to be more exact if uniform excitation across the band is desired. Some means should be provided for adjusting the output of the VFO, since excessive driving of the 6AG7 may have an effect on the shape of the excitation curve.

Once the couplers are adjusted properly, the windings should be cemented in place with coil dope, and the rotors of the trimmers should be locked in position with a drop of Duco cement.

Fig. 6-46 - Method of sulstituting a VFO for the erystal. An octal plug, wired as shown, is inserted in the crystal socket. 'The jumper between l'ins 5 and 6 serves to ground one side of C 2 , thereby changing it from a coupling condenser to a sereen loy-pass condenser. lixcitation from the VFO is applied to the grid of the 6.9^{-2} throngh l'in 8 of the plag, which is connected to the center conductor of a short length of coanial cable. 'The condenser show at l'in 8 should be mounted inside the VPO, serving as a d.c. blocking eondenser. Its size may be anything from $100 \mu \mu \mathrm{fd}$, to $0.001 \mu \mathrm{fd}$., with the smaller value being prefirred.

Amplifier Adjustment

Reconnect the d.c. screen lead to the 807 stage, and plug a milliammeter capable of reading up to 200 ma. in the key jack where it will read the total current flowing in both stages. The 6AG7 plate current normally will run between 10 and 15 ma., so this should be subtracted from the meter reading to determine the current flowing in the 807 . Plug the desired coil in the 807 plate circuit, and the correct crystal-coupler combination in the oscillator stage. Connect a 25 -watt lamp bull, to the output terminal to serve as a dummy load while the 807 stage is tested.

Apply plate voltage and resonate the 807 tank eircuit by tuning C_{10}. The off-resonance plate current will be very high, in the neighborhood of 200 ma., dipping to 100 ma . or less at resonance. If it

Fip. 6.17 - IViagram of a power supply for the singlecontrol low-power transmitier,
C. $-2-\mu \mathrm{fl}, 1000$-volt oil-filled.
$\mathrm{C}_{2}-2-\mu \mathrm{fd}$, min, 1000 -volt nil-filled.
$R_{1}-15,000$ ohms, 25 watts.
I_{1} - 10 h. min., 130 ma. min.
I_{1} - Octal female plag.
$S_{1}, S_{2}-3$-amp, toggle switch.
'I' - Power transformer: 400 to 450 volts $r, m, s, ~ e a d h$ side of center, 130 ma min.; 5 volts, 3 amp. (6.3 -volts, I.5 amp. min. if used. See text.)
T_{2} - Filament transformer: 6.3 volts, 1.5 amp , min.
is not possible to load the 807 stage so that the total current indication is 100 ma . or slightly over, disconnect the lamp from the output terminall and tap it across a few turns of the tank coil. This should be done with the power off, of course! By changing the number of turns aeross which the lamp is tapped and re-resonating the plate circuit, it should be possible to obtain full loading.

Check the keying characteristic by listening to the signal, or a harmonic of it, in the receiver with the gain turned down as far as possible and the antenna disconnceted. With the circuit constants shown and active erystals, good keying should be ohtained with both 3.5 - and 7 -Mc. crystals. If, however, the keying is sluggish, and it sounds as though the crystal doesn't start oscillating readily, the size of feed-back condenser C_{3} should be changed in $25-\mu \mu$ fid. steps until good keying is obtained.

A 7-band Miniature-Tube Transmitter-Exciter

Figs. 6-48 through 6-52 show the details of a compact shielded bandswitching transmitter unit complete with power supply. The unit may be used as a transmitter delivering about 20 watts output on all bands from 80 to 10 meters and about 15 watts at 6 meters, or as an exciter for a higher-power final amplifier. It is built in a form convenient for use as a portable or emergency transmitter and provision is made for plugging in genemotor or vibrapack power supply for this type of service.

All four tubes are of the same type - 5763 miniatures. The crystal oscillator is of the modi-fied-Pieree type with provision for VFO input at J_{1} when the erystal switeh, s_{1}, is in the position shown in Fig. 6-49. The oscillat or out put circuit is always tuned to the fundamental freguency of the erystal. The second stage may be operated as a straight amplifier at the crystal fundamental or as a doubler, tripler or quadrupler as necessary to reach the higher frequencies. Doubling in the final amplifier is necessary only for output at 50 Me. (rystals near 8 Mc . are required for this frequency. The accompanying test chart shows the bands to which the three tank circuits should be tuned for output in any desired hand, depending upon the erystal frequency.

The final amplifier, using two 5703 s in parallel, is neutralized by C_{12} described in detail later. C_{15} is a tank padder for 80 meters. The single milliammeter, MA, may be switched to read grid or plate current of any stage by S_{5}. When switched across R_{11}, the meter is shunted to give it a full-scale reading of 150 ma . instead of the original $50-\mathrm{ma}$. scale. The value of R_{11} will have to be adjusted if a meter of different resistance is used.

The transmitter is keyed in the oscillator and the 45 -volt battery supplies sufficient bias to the multiplier and final stages to cut off plate current when the key is open.

The power supply is conventional with a chokeinput filter. The screen voltage for the oscillator is held constant by the 0D3 regulator tube. Use is made of the internal jumper between Pins 3 and 7 of the 0D3 so that all high voltage is re-
moved from the transmitter unless the 0D3 is in its socket. J_{4} is provided for making external connections to a plate modulator and independent power supply. The shorts shown at J_{4} in Fig. 6-49 are made by wiring together appropriate prongs of a female plug connected to J_{4} when the built-in a.c. supply is in use.

Construction

The shielding enclosure consists of two $10 \times$ 17×3-inch aluminum chassis joined, bottom to bottom, with hinges at both ends. At the pivot end a section of piano hinge is used. The two shorter hinges at the other end are of the loosepin type and serve merely as a means of clamping the two chassis securely together when the enclosure is shut. The front chassis contains the r.f. section, while the rear one houses the power supply.

A shelf holding the tubes, crystals and most of the r.f. chokes runs the length of the chassis housing the r.f. section. It is placed $63 / 8$ inches from the bottom and has half-inch lips turned down along its length for fastening to the panel and to add rigidity. The excitation controls and the band switches with their coils are spaced evenly along the lower part, while the crystal switch and the three tank condensers are in line above. Shielding partitions are placed rither side of the multiplier band switch, with lips at top and bottom for fastening in place. The milliammeter is placed centrally at the top of the panel, flanked by the meter switch and pilot lamp, I_{1}. The rear of the meter is enclosed in a shield can. Four ventilating holes are made along the top edges of both chassis with a socket punch and also one at each end of the rear chassis near the bottom. These holes are covered with screening.

Power connections between the two chassis are made through a short cable passing through a hole at the lower right in Fig. 6-50. A length of twin lead connects the crystal switch with the VFO coax connector set in the back of the enclosure. A crystal socket at the left-hand edge in Fig, 6-50 serves to make the connection between $S_{4 D}$ and $S_{4 E}$ and the output-link coax connector

Fig. 6-48-4 shielded 30watt transmitter using miniature tulies and covering 80 through 6 meters. The enclosure is a pair of aluminum chassis, fottom to bottom and hinged at the left-hand end.

Fig. 6.49 - Wiring diagram of the miniature-tube transmitter.
$\mathrm{C}_{1}, \mathrm{C}_{5}, \mathrm{C}_{7}, \mathrm{C}_{9}, \mathrm{C}_{11}, \mathrm{C}_{13}-0.01 \cdot \mu \mathrm{fd}$, dise-type ceramic, C.2, Cis, Cip, C.20-0.001-pfd. dise-type ceramic.

Ci3-220- $\mu \mu \mathrm{fd}$. mica.
C, $4, \mathrm{Cs}-100-\mu \mu \mathrm{fd}$. variable (Millen 20100).
$\mathrm{C}_{6,} \mathrm{C}_{10}$ - I(0)- $\mu \mu \mathrm{fl}$, mica.
C_{12} - Neutralizing capacitor (see text).
C14-I00-mpfd.-per-section variable (ilillen 24100),
$\mathrm{C}_{15}-22-\mu \mu \mathrm{fd}$, mica.
Ci6, Cit-8- Cfd . 600-volt eleetrolytie (Cornell-D) KR 608).
$R_{1}, R_{4}, R_{Z_{0}} R_{9} 1$ megohm, $1 / 2$ watt.
$k_{2}-100$ ohms, $1 / 2$ watt.
$\mathrm{R}_{3}-22,000$ ohms, $1 / 2$ watt.
R_{s} - 20,000-ohm t-watt potentiometer (Mallory A20M1').
$\mathrm{K}_{6}-2700$ ohms, 2 watts.
$\mathrm{K}_{8}-2700$ ohms, $1 / 2$ watt.
$\mathrm{K}_{10}-5(00)$ ohms, 1 watt.
$\mathrm{K}_{11}-1$ ohm, $1 / 2$ watt (nee text).
$\mathrm{R}_{12}-50,000$ ohms, 10 watts.
$\mathrm{R}_{13}-25,000$ ohms, 10 watts.
L. thromph I. 12 - See coil tahle.
la3, $\mathrm{l}_{14}-1.5-\mathrm{hy}, 200$-ma. filter chokes (Merit C-20)4). $1_{1}-6.3$-volt pilot lamp.
J_{1}, J_{3} - Coaxial-cable connertor ((inch-Jones S.101-1)). J_{2} - Closed-circuit ’phone jack.
J_{4} - G-prong male plog ((imphenol 86-12CI'6).
J_{5} - 115-volt a.e. conncetor (Amphenol 61-M1).
MA-0-50 d.c. milliammeter ("'riplett $227^{\circ} .^{\circ}$).
$S_{1}-2$ section ceramic selector witch, points per section optional (Centralab 2511 or 2513).
$S_{2 A}, S_{3} 4-11$-mosition coramic selector switch (Cen. tralab Y Section).
$S_{2} B, S_{3}$ - Il-position phemolic selector switch (Centralall I Sertion).
$S_{4}-1$ 'art of liarker \mathbb{N} Willianson turret No. 3809.
$S_{5}-2$-pole 5 -qosition phenolic selector switch (Centralab 1.405).
' \mathbf{H}_{1} - Receiver-replacement transformer, 400 volts each side e.t., 200 ma., 5 volts, 3 amp.; 6.3 voltes, 5 amp. (Nerit $\mathrm{H}^{\prime}-29 \mathbf{\sigma}_{5}$).
at the reatr. A Millen 'Type 37412 twin-lead plug fits the ervistal socket.

The output switeh and eoil assembly is a B \& W Type IS'M tureet, but the other two are assembled as indicated under Fig. (i-49. All power wiring is done with shielded wire. The amplifier grid choke, $K P C_{4}^{\prime}$, is mounted in front of the finalamplifier tubes and comertion between the choke and the grids of the 5763 s is made through a National 'l'ype 'lPB feed-through. A picce of spa-
ghetti-covered No. 14 wire, connecting the lower side of the feed-through to the grids, serves as one side of the neutralizing condenser, C_{12}. Another piece of wire, connected to one of the stators of C_{14}, is bent to run close to and parallel with the first for a distance of about $7 / 8$ inch. The spacing and length of overlap may be varied in adjustment to neutralization.

Most of the details of power-supply assembly can be seen in Figs. (6-5) and 6-52.

COIL CHART							
Coi	$F_{\text {mex }}$.	$L_{\text {uhb }}$.	Hire	Turns	Diam. In.	Length, In.	$\left\|\begin{array}{cc} B \text { \& } \\ T y p e & \text { No. } \end{array}\right\|$
L_{14}, L_{4}	3.5	17.7	24	48	$3 / 4$	11/2	3012
L_{2}, L_{4}	7	5.8	24	19	$3 / 1$	19/38	3012
Ls	14	2.1	20	13	$3 / 4$	366	3011
L*	21	1.02	20	9	5/8	96	3007
L_{7}	27-28	0.575	20	7	5/8	7/8	3006
Lis	3.5	32.5	26	60	$3 / 4$	1^{3} i6	-
L. 9	7	11.8	24	36	31	11/4	-
L_{10}	14	3.1	24	24	1/2	11/8	-
L_{41}	21-2i-28	1.32	20	14	1/2	7/8	-
L_{12}	50	0.8	20	10	1/2	$3 / 4$	-

Note: L_{s} through L_{12} are parts of $\mathrm{B} \& \mathrm{~W}$ turret \mathcal{N} o. 3809. Links for L_{8} through L_{12} are each 2 turns No. 20 wire wound around center of main coils.

Testing

The power supply should be tested with the 013 removed from the cireuit, with a d.c. voltmeter eonnected betwern pin To. 7 of the regu-lator-tube socket and ground with 115 volts a.c. connereted to. J_{5}. Vonder these conditions, the supply output should be approximately 500 volts.
The r.f. section is prepared for testing be plugging in the ervetals and the keying leads, rotating the exeitation control to the aro-voltuge position and by returning the 01)3 to its socket. With the

Fif, 6.50- "lhe r.if. sertion of the minia-ture-tube transmitior. "I'her reystal moket at the left lite the plag to the right in Fig. (0.3).

key open and the power turned on, the meter should indicate no current as the meter switeh is rotated through the five position. ("urrent will flow in the final amplifier if the circuit oscillates because of incomplete neutralization. Complete neutralization is aceomplished by varying the spacing between the two wires which form capacitor C_{12}.
The aceompanying test chart lists the pertinent operational data for the transmitter.

When tuning the transmitter, the expitation control shoukd be left at the zero-voltage setting mitil the key has been closed and the oscillator has been tuned to resonance. With excitation present, the excitation control should be advanced until the buffer-multiphier plate current roaches 5 or 6 man , and, after this adjustment, the plate circuit of the buffer-multiplier should be tuned to resonance.

The final amplifier will start drawing plate current as soon as grid current is indicated by the meter, and therefore the amplifier plate eireuit should be resonated immediately after the driver stage has been adjusted. The grid current should be adjusted to 7 ma ., by means of the excitation control, when the amplifier is fully loaded to 100 ma. A plate current of 100 ma. will be represented by a meter reading of approximately 33 ma . because of the 1 -ohm shunt, R_{11}.

TVI tests of the transmitter in a fringe area involved use of a television receiver, located along side of the transmitter and tuned to Channel 8 . The output of the transmitter was fed through coaxial cable to an unshielded antenna coupler which was in turn loaded by a 25 -watt lamp, bulb. With this set-up, the transmitter caused no TVV when operated at the low ends of

TEST CHART							
Stal.	Osc.	Driver			Amplifier		
Mc.	If, Mr.	$I_{\text {R }}, \mathrm{Ma}$.	Is. Ma.	Vc.	IR.Ma.	Ip. Ma.	Mc.
3.5	10	3.5	6	3.5	7	100	3.5
"	*	'	7.5	7	"	"	7
"	"	'	11	14	"	'	14
7	"	"	4	7	"	"	7
*	"	'*	8	14	"	"	14
"	"	"	10	21	"	"	21
*	*	"	18	27/28	"	"	27/28
Q. 33	"	"	.	50	9	"	50

the 3.5-, 7- and 14-Mc. bands. TVI which occurred with the transmitter tuned to 21 Mc . was eliminated by connecting a simple low-pass filter in the output line. In order to clean up interference caused when operating at the low end of the $28-\mathrm{Mc}$. band, it was necessary to use the filter and to separate the transmitter and the receiver by a distance of approximately 5 feet.

Fig. 6.52- Rear view of the miniature-tube transmit ter. It is necessary to ent out the rear chassis to fit the shell of the power transformer at the right. A ventilating hole is cut centrally near the bottom, with the connector for independent supply to the left and for the a.c. line to the right. 'The r.f. outpnt connector is to the left arrd the VFO input connector is above the trans. former. 'l'o open the enclosure, the loose pins in the hinges to the left are removed.

A 75-Watt Transmitter for 3 Bands

Figs, 6-53 through (6 -56 show the diagram and construetional details of a 3 -stage 75 -watt transmitter for the $3.5-7$ - and 14 Mc . bands. It is complete with built-in power supply. The shielding enciosure consists of an assembly of standard aluminum chassis.

Circuit

The circuit is shown in Fig. (6-55. The oscillator output condenser, C_{7}, has a sufficient range of capacitance to cover both 3.5 and 7 Mr. The output of the oseillator can be fed either direetly

Fig. 6-53-liront view of the 75-watt 3-band transmitter, showing the interior of the amplifier enelosure.
to the grid circuit of the final amplifier, or to the grid of an intermediate frequency doubler for 1t-Mr. operation. The two triode sections of the 6N7 doubler are connerted in parallel. The doubler is cut in and out of the cireuit by a sestom of crystal sockots and shorting plugs (Millo:n type $3-+12$ with the pins wired together). When a shorting plug is insorted in J_{1}, the output of the oscillator is fed to the grid circuit of the amplifier. When this plug is shifted to J_{2}, the oseillator is commeeted to the doubler grid. Then a serond phag inserted in J_{3} connerets the output of the doubler to the input cireuit of the amplifier. The 6 N 7 rathote hiasing resistor is chosen to give the same final-amplifior grid current as obtained on the lower-freguener bands. When not in use, this tube draws only 1 or 2 ma.

Since an inexpensive 450 -volt power supply is used, two 80-s are needed to attain the desired power input. $R F C_{6}, R F C_{7}, R_{9}$ and R_{10} are neressary to prevent v.h.f. parasitic oscillation. The amplifier is keyed in the eathode circuit. A single meter, $1 / A_{1}$, may be switched to read amplifier grid current when comected areross R_{7}, or cathode eurrent when switehed across R_{8}. The value of R_{8} is adjusted to give a moter-seale multiplication of 10. (Here measurements chapter.)

Power Supply

The basic power-supply cireuit is conventional. A choke-input filter is used to hold the voltage within the rating of the filter condensers. Reduced voltage for the oscillator and doubler and also for the amplifier screens is supplied across a pair of voltage-regulator tubes. High voltage is turned off during receiving periods by breaking the transformer center tap by the power-control switch, S_{1}, which also controls the a.c. primary. With the switch turned to the left in Fig. 6-55, the heaters are turned on, but high voltage is off. In the central position, both eircuits are open. With the switeh turned to the right, both eireuits are closed for transmitting.

Construction

A $13 \times 17 \times 3$-inch aluminum chassis is used as the base. All parts of the oseillator and doubler circuits are mounted underneath the base chassis. The amplifier components are mounted on top and shiclded by an enclosure made up of two $7 \times 12 \times 3$-inch aluminum chassis, one of which forms a rover hinged to the lower one. Good contact along the seam between the two chassis is assured hy the use of a pair of ordinary window latehes which easily provide considerable pulldown force. Any gap caused by inacpuratolyformed chassis can be taken care of by bending the chassis lips outward with pliers wherever necessary to make a tight fit.
The power-supply components are along the rear edge of the base chassis. Underneath, the two filter condensers are mounted on small lug strips which also provide terminals for making comertions to the eondensers. The crystal socket and the sockets for the oscillator and doubler tubes are all on a line (6 inches from the rear edge of the chassis. The tubes are central and their

Fig, 6.5.4- Rear view, showing the placement of the exciter tubes and the shorting-plug sockets.

Fig. 6.55 - Circuit diagram of the 75 -watt 3 -hand transmitter.
$\mathrm{C}_{1}-15 . \mu \mu \mathrm{fd}$. mica.
C. 2 - 47 - $\mu \mu \mathrm{fil}$. mica.
$\dot{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{\mathrm{A},}, \mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{13}, \mathrm{C}_{15}, \mathrm{C}_{17}, \mathrm{C}_{18}, \mathrm{C}_{18}, \mathrm{C}_{20}$,
 $0.001-\mu \mathrm{fd}$. dish ceramic.
C 7 - $333^{5}-\mu \mu \mathrm{fl}$. variable (National STII-335)
$\mathrm{C}_{8}-100-\mu \mathrm{fid}$. mica.
$\mathrm{C}_{12}-1 \mathrm{i}-\mu \mu \mathrm{fl}$. mica.
(14-35- $\mathbf{\mu}$ fil. variable (National SI-35).
$\mathrm{C}_{16}-0.01-\mu \mathrm{fi}$. dish ceramic.
C.21 - $0.0101-\mu \mathrm{fd}$. mica or $0.01-\mu \mathrm{fl}$. dish ecramic.
$\mathrm{C}_{26}, \mathrm{C}_{28}-8 \mathrm{~B}-\mathrm{ff}$. $\mathbf{7 0 0}$-volt-whg. elertrolytic (C.1) 13 月1は-:08).
$R_{1}-68,000$ ohmis, $1 / 2$ watt.
$\mathrm{R}_{2}-4.0$ ohma, 1 watt.
$\mathrm{R}_{3}-\mathrm{t}_{2}, 000$ ohms, I watt.
$\mathrm{R}_{4}-15,000$ ohms, I watt.
$\mathrm{R}_{5}, \mathrm{R}_{6}-4 \mathrm{t} 00$ ohms, 1 watt.
$\mathrm{R}_{8}-100$ ohms, $1 / 2$ watt.
R_{8} - Meter multiplying shunt (sere text).
$\mathrm{R}_{9}, \mathrm{~K}_{10}$ - 4^{7} ohm $\mathrm{r}, \frac{1 / 2}{2}$ watl, noninductive.
$R_{11}-2.500$ ohms, 2.5 watts.
$\mathrm{L}_{1}-7.5 \mu \mathrm{~h} .-32$ turns No. $29,5 / 8$-inch diam., 1 inch long (B \& W 3008 . Miniductor).
centers spaced 6 inches apart. The two exeitor tuning condensers, C_{7} and C_{14}, are similarly spaced 6 inches apart and sufliciently to the rear on the base chassis so that their forward mounting serows come about $1 / 4$ inch behind the amplifier enclosure. The three sockets for the shorting plugs should be placed as notarly as possible in the positions shown in the photographs.

The meter is mounted at the conter of the front edge of the base chassis. It is very important from the consideration of TVI that the meter be tightly shieded at the rear. The enclosure shown was bent up from sheet aluminum.

In the lower of the two smaller chassis, the sockets for the two 807 s are spaced with their centers 3 inches from the edge of the chassis and about $21 / 2$ inches apart. The sockets are ringed with $1 / 1$-inch holes, which show in the bottom-
$1.2-1.3 \mu \mathrm{~h} .-12$ turns No. 18, $8 / 4$-inch diam., $5 / 8$ inch long (138 U 3011 Miniductor).
$1.3-3 . \overline{3}$. 11 c . - 6.3 uh. - 15 turns $1 \frac{1}{2}$ inches diam., $11 / 4$ inches long (B \& JEL. 10 with - turns remosed).
-7 Mc. - $2 \mu \mathrm{~h} .-9$ turns $11 / 2$ inches diam., $11 / 2$ inchea long ($B \& W$ WEI. 20 with 3 turns re. moved).

- 14 Mr. - $0.8 \mu \mathrm{~h} .-6$ turns $11 / 2$ inches diam., \because inches long (13 N W JELSO 10).
1.4, l.5-2.3-hy. 130-ma. filter choske (itancor C.-230.4).
$\mathrm{J}_{1}, \mathrm{~J}_{2}, \mathrm{~J}_{3}$ - (Cramie erystal sochet (Millen 33102).
J_{4} - Open-eircuit phone jack.
J_{5} - (inaxial conncetor (Jones s-l01).
MII - I.c. milliammeter, 25-ma. scale.
 (National R-in0).

RKC(
S_{1} - I Oouble -pole threc-ponition rotary (Nallory $3 \geq 2 ; 3 \mathrm{~J}$).
$S_{2}-$ D.p.d.t. toggle.
'T' - Power transformer: 600-0-600 volta r.mes., 200 ma.; 6,3 volts, 3 amp.; 5 volts, 3 amp. (Stancor $1-61-0$ or $1 \times(8+14)$.
VR -VR-lin voltage-regulator tube.
view photograph, to provide ventilation for the tubes. The lower portions of the tubes are enclosed in Millen type 80007 shiclds and the ventilating holes must come within the diameter of the shields. The bottom plate, which must be provided to cover the bottom of the base chassis with a tight fit, should likewise be perforated in the area below the sorkets.

The shaft of the condenser and a shaft-extent sion bearing set in the front edge of the chassis are joined by a flexible shaft coupling. The coil socket alongside the tank condenser is mounted on pillars that raise the socket to clear its prongs underneath. C_{21} is attached to one of the rear stator nuts. The plate choke, RFC's, is mounted vertically immediately to the rear on a small coramic feed-through insulator. A short length of eoasial cable eonnerts the link terminals of the

Fig. 6.56-Bnttom view of the 75.watt r.w. tranmitter, Ilenty of space is prosided so that eomponents need not be arowided.
coil somket to the output roaxial fitting set in the and of the chatsis.

As soon as all holes have bern drilled in the small chassis, it should be placed on the base chassis and all holes in the bot-
tom of the smaller chassis should be traced on the top of the hase chassis so that the two sets of holes will mateh exartly.

The erover chassis is attached to the lower one by means of a section of piano hinge - a hinge running the entire length of the ehassis. The areat over the tubes is perforated with $1 / 4$-inch holes. The two window latehes should be fitted rarefully so that they will exert a good pual on the top chassis when it is closed down.

All power wiring is done with shiokled wire and all by-pass condensers ate applied to the shielded wire in the manner deseribed in the TV'I chapter. It is often simpler to run individual power wires from each sorket or cart choke, rather than to go from one point to the ather and thence to the power-supply or other terminal with a single piece of wire. Each filament, sereen and cathode of the two 807s should have: its individual be-pass. Where the shielded wites run parallel, they should be spot-soldered together every few inches, and hold-down luge should be placed wherever needed to anchor the wre firmly.

The two exeiter coils, L_{1} and L_{2}, are soldered directly across the tuning condensers. The 8) sockets are turned so that their grid terminals

(l'ins 3) are closest. Then $R F C_{6}$ and $R F^{\prime} C_{7}$, end to end, should just about bridges the gap bet ween the two terminals. The connections between the shorting-plug sockets and the junction of the t wo chokes are made with No. 14 wire weld spareal from the chassis, This wire is also used in connecting each of the amplifier tank-eondenser mounting serews to one of the two tube rathode terminals (l'ins 1).

Adjustment

The VIR tubes should glow soon after the power is turned on. If they do not, the resistance of R_{11} should be rechuced until the VR tubes just stay ignited with the key closed. The transmitter should first be set up for $3.5-\mathrm{Mc}$. operation, with C_{7} set at maximum capacitance and S_{2} turned to read grid current. After the key is closed, C 7 should be turned slowly until a readine of grid current is obtained. This is the $\mathbf{3 . 5 - M c}$. resonance point. Slowly reducing the capacitance of C'7 should show another reading of grid current at - Mr . Then the shorting plugs for $i t-\mathrm{Me}$. operation should be inserted, leaving C_{7} set jor 7 Mc . The key should be closed and C_{14} adjusted for maximum grid-current reading. The initial reading may be slight, but it should be possible to bring it up to normal by a slight readjustment of C_{7}.

Sotting up again for 3.5 -Me. operation, the 3.5-Mc. coil should be plugged in the amplifier. C_{7} should be adjusted for maximum grid eurrent at 3.5 Mc . Switehing the meter over to read cathode current and closing the key, $C_{: 3}$ should be turned to maximum capacitance and then slowly turned backward to the point where a dip in the meter reading is ohtained. The first dip encountered should be resonamee at 3.5 Me . This setting should be marked down and always used thereafter when tuning up on this band. The amplifier tuning for the other bands is done in a similar manner, always setting (${ }_{23}$ at maximum and tuning for the first dip in cathode current. The accompanying table shows the average values of currents and voltages to be expected.

A Completely-Shielded 90-Watt Transmitter or Exciter

The transmitter shown in Figs. 6-57 through $6-61$ is designed for the reduction of v.h.f. harmonic radiation without requiring special construction for shielding purposes. It uses a standard 3 by 4 by 17 inch chassis as the main enclosure. The plug-in coils are provided with individual shields using 3 -inch diameter removalde shield cans that also are standard items.

The final ampliiier is a 6146 , driven ber at $6.1(37$ frequeney multiplier that is driven in turn bey a 6A(i) crustal oscillator-multiplier. Provision is made for driving the latter tube from an external VFO. The power output is approximately fio watts on all bands from 3.5 through 28 Me , at the 90 -watt input c.w. rating of the $61+46$. With plate modulation the 67 -watt input rating gives a carrier output of close to 50 watts.

Oscillator Circuit

The erystal oscillator uses the grid-plate circuit and is intended for use with either 3.5- or 7Me, ervstals. Its plate circuit, $L_{1} \mathbf{C}_{4}$ in Fig. 6-ī8, eovers the range from 7 to 14.5 . Me. and L_{1} is wired permanently in the eirevit. When using 7-Me. erystals (${ }_{4}$ is is tuned toward its highcapacity end when 7-Ne, output is required for the following stage, and nuar the low-caparity end when the buffer is driven on 14 Me. With 3.j-Mc. crystals C_{4} is set near maximum eaparity for 7-Me. excitation of the buffer, and at or below midscale for 3.5-Mce excitation. The tuning in the latter calse cerresponds to the setting that gives minimum harmonic output from the ossillator; at 3.5 Mr , enough fundamental voltage gots through to the buffer grid to give it adecoute drive. Coil changing in the oscillator circuit is avoided by this method.

For SFO input the feed-hack condenser, C_{2}, is shorted to ground for r.f. by S_{1}. The crystal should be removed from its socket when using the VFO. A coaxial conne tor is used for the VFO cireuit, and the VFO should be of the type that includes the length of coas as part of its tuned output circuit. The VFO output can be on either 3.5 or 7 Mr ., depending on the final output frequency and the ehoiee of methor of operation, as described later.

Fig. 6-57 - A compact and completely shielded low-power transmitter using a 6146 as the final amplifier. It ean be used at an input of 90 watts on c.w. or 67 watts for plate-modulated 'phone. The unit is mounted on a $3 \frac{1}{2}$-inch rack panel.

Frequency Multiplier

The frequency multiplier or buffer stage is coupled to the final amplifier grid by a pi net work. This type of circuit permits using a relatively large fixed capacitance, Cg, directly from grid to ground in the amplifier cireuit and is highly advantageous in proventing v.h.f. harmonies generated in the grid arruit from developing an appreciable voltage between grid and ground. This not only prevents amplification of such harmonies in the plato circuit but also helps keep harmonic currents from flowing in the d.c. grid return lead.
(9 is also useful in stabilizing the final amplifier to prevent solf-oseillation at the operating freguener. The larger the eapacitance of C_{9} in comparison with the capacitance in use at C_{7}, the greater the impedance step-down between the buffer plate and the amplifier grid, thus the buffer plate resistame is reflected as a comparatively low resistance at the grid of the amplifier. 'This, together with the fact that any energy fed back from the amplifier plate cireuit through the tube's grid-plate capacitance camot develop much feed-back voltuge across the large fised catpacitance betwern grid and cathode, offertively prevents solf-oscillation and avoids the neeressity for neutralization of the amplifier. The optimum cireuit values for this purpose are given in Fig. 6-i8 and the buffer coil table.

On 3.5 Mr, additional capacitance, ('s, is conneeted in parallel with Ceg to provide proper cirruit operation. On all frequencies the buffer tuning condenser, C_{7}, is near minimum capacity at the proper operating setting. $150 \mu \mu \mathrm{fl}$. condenser ean be used instead of the one sperified in Fig. 6-58, if desired.
L_{2} and L_{3} are small coils in the buffer grid and plate circuits to prevent v.h.f. parasitic oscillations in the buffer stage.

Amplifier Output Circuit

The amplifier output cireuit also is a pi network, designed speceifically for working ints essentially resistive boads between 50 and 75 ohms. It is therefore suitable for working into properly terminated coaxial cable of the usual imperlance values. In cases where the antenat is fed by types of line other than coas, an antembia matching metwork or antemat tumer of the coaxcoupled trepe described in the ehapter on transmission lines should be used. This permits operating the coax link at a low standing-wave ratio and provides the proper loat for the 6146 amplifier circuit.

The amplifier tank condenser, C_{12}, is a split-stator type comnected to the coil socket in such a way that only one sertion is used on all bands exrept 3.5 Me, where the second section is connected in by means of a jumper in the coil form.

Fig. 6.58- Circuit diagram of the transmitter.

Ci, C3, C.5, (.п - $170-\mu \mu \mathrm{fd}$. mica.
$(2-150-\mu \mu \mathrm{fl}, \mathrm{mica}$.

C $\kappa, C_{0}-1(\mathrm{M})-\mu \mu \mathrm{fil}$, silver mica.
($10-0,001-\mu$ fd, mica, 1200)-volt working.

(is2- $100 \cdot \mu \mu \mathrm{fd}$, pre section variable, 1000 volt spacing (\ational 'T'Ms.l(0)l)).
(13 - $325-\mu \mu \mathrm{fd}$, variable (Nillen 10395).
(.14-4न) $-\mu \mu \mathrm{fd}$, silver mica.

Cis to $_{62}$, inc. - 0,00i- ffl , reramic, midget size.
$h_{1}, h_{3}-1,(000$ ohms, $1 / 2$-watt.
$K_{2}-47,000$ ohms, I watt.
$R_{4}-15,0(0)$ ohms, I watt.
$R_{5}-25,000$ ohms. I watt.
$R_{8}-150$ ohms, $1 / 2$ watt.
$K_{i}-2,2$ ohms (2 X shunt for 0) -2.5 milliammetcr).
$K_{s}-0.24$ ohms (10 X shunt for $0-25$ milliammeter).
$R_{9}, R_{10}-100$ ohms, $1 / 2$ watt.
$J_{1}, J_{2}-$ Coax eonmetors, chassis type.
J_{3} - Closedndirenit jack.
RFG to RFO, inc. - 2.5 mh . r.f. whoke (National R100S).
$R F^{\prime} \mathrm{S}_{5}-2.5$ - mh . r.f. choke (Millen $34300-2500$).
$L_{1}-13$ turns No, 22 , diameter I ineh, lenkth 1 inch.
$L_{2}-16$ turns Ko. 30 d.c.e. on $1 / 2$-watt resistor,
Las- 6 turns No, 14, diameter sise inch, length 1 inch,
1.4 - 8 turns No. 18 , diameter $1 / 4$ inch, length $5 / 8$ inch.
L.5. I. 6 - Sce coil taille.
$\mathrm{Mi}_{1}-0-25$ d.e. milliammeter (Simpson Model 125).
s_{1}-S.p,s,t. toggle.
$\mathrm{S}_{2}-2$-pole, 4 -position wafer swited, non-shorting (Centralab 2505).
L_{4} in the amplifier plate lead is for the purposer of preventing v.h.f. parasitic oscilation in the amplifier.

Other Circuit Details

Cathode eurrents of all there tubes can be measured be means of the meter switehing arrangement shown in lig. 6 -i) 8 . The amplifier grid current also can be measured. The 0-25) milliampere scale is used directly for measuring the osedilator cathode curront and amplifier grid current, the meter being shunted by 100 -ohm resistances in cach of these two positions to preserve cireuit continuity when the switch is in other positions. In the switch position for measuring buffer eathode current the moter is shunted by a low resistane that multiplies the scale by 2 , and when the final amplifier cathode current is measured the meter is similarly shunted by a resistance
that multiplies the range by 10 so that the fullseate reading is 200) milliamperes. The values of multiplier resistance required in these two ases will depend on the tepe of instrument used and should be adjusted to the proper value experimentally. The method is deseribed in the chapter on measuring equipment.

Loading is controlled by the output condenser, C_{13}. Although it has the highest rapacitance available in condensers of this construetion, it is not large enough for proper operation of the pi network on 3.5-4 Me, so an additional capacitance, C_{14}, is conmected in on this band by means of a jumper in the coil form. This large fixed caparitanee restricts the adjustment range possible with C_{13}. so two coils are needed for proper loarling in this band. The one eovering the 3500-$3750-\mathrm{ke}$, range is adjusted for proper loading to maximum permissible tube input at c.w. ratings,

Fig. 6-5\% - The shielded power wiring should be installed before the r.f. eomponento are permanmenty monted, inchoding the ceramie loy -passes acrons the ends of the shielded wires. The wires running along the eenter of the ehasis go to the heater and grid choke of the final amplifier. The two that follow the chasis cormer at the left are from the oscillator and buffer cathodes to the meter switeh.
and the $3750-400(0)-\mathrm{ke}$, coil is similarly adjusted for suffieient range to give maximum tube input at phome ratims.

Anplifier cathode keving is shown in Fig. 6-58, but any mothod may be used with appropriate changes in the diagram. A lead is brought out from the "hot" end of the amplifier grid leak, R_{5}, so that the d.e. voltage developed bex excitation may be used to control a sereen protertive tube if an curlier stage is keyed. The circuit constants in the oscillator and buffer stages in Fig. 6-58 are such that both these tubes can run withoul excitation, with a 300 -volt plate supply, without exereding the plate dissipation rating of either 6.1(i7. This permits keying the VFO when separate VFO input is used.

Shiolded wiring for preventing harmonies from flowing on supply leads is indieated in the circuit diagram. These leads should be by-passed by midget ceramic condensers at the points indicated, using the technique deseribed in the TVI chapter. The eorresponding techmique for highvoltage mica he-passes is used for the amplifier high-voltage plate load.

All three tubes have parallel plate ferd. This permits grounding the tank eondensers direetly to the chassis, which is advantageous both mechanically and electrically. In the buffer and amplifier stages parallel feed is a neeressity because the pi networks cannot be series-fed.

Construction

All of the rireuits with the exeeption of the buffer and amplifier eoils are inside the chassis. The motal 6id(i7s provide their own shielding. The (il46 mounts through the rear chassis wall and is rovered by the same type of shicld ran (ICA No. 1549) as is used to cover the tank eoils exeept that it is trimmed down a bit in length and is drilled with $1 / 8$-inch holes above and below the tule to give ventilation. The location of the prineipal romponents is shown in the bottom view.

Since the space underneath the rhassis is limited, some care must be used to tit the parts in. The best plan is first to lay out the eomplete transmiter and drill all holes in the chassis,
making sure that evervthing is provided for before anything is permanemtly mounted. Make the partitions and amplifior tube mounting bracket and fit them in plawe before drilling any mounting holes for them in the chassis. Mounting holes in these pieces may then be used to lorate the eorresponding rhassis holes. The tube sorket bracket and final tank condenser together form a separate subassembly on which most of its wiring may be done, including the shielded cathode lead to the moter switeh, after the mochanical fit has been chereked. The bracket is drilled to rlear the rear shaft externsion of the condenser and uses holes already present in the condenser back plate for mounting. The plate blocking rondenSer, (10), is mounted on the sorew which is part of the stator plate assembly; this condenser must be as close as possible to the condenser so that it will rlar the roil sorket mounted on the reat chassis wall. A short stand-off insulator is mounted just to the left of the tube socket, at the left in the bottom view, to mount the plate lead and one end of the parasitic choke, L_{4}.

The renter partition should have a $1 / 2$-inch hold at the point where the amplifier grid lead romes through from the buffer stage, and should be cut out about $1 / 8$ inch at the bottom where it must fit over the shielded wiring laid on the

Buffer and Amplifier Coil Table

Coils wound on $1 \frac{1}{2}$ inch diameter forms (National XR-4 and XR-5)

	$\begin{aligned} & \text { W'ire } \\ & \text { Size } \end{aligned}$	No. of Turns	Turns per Inch	L. uh.*
Buffer coil. L_{5}				
3.5-4. Mc .	26	42	28	48
\% Mr.	22	25	20	18.4
14 Mr .	19	10	10	3.5
21 Mr.	18	5	10	1.31
27-30 Mc.	18	$31 / 2$	10	0.86
Amplifier roil, L_{6}				
3.5-3.75 Mc.	18	231/3	16	14.5
3.75-4. Mc.	22	$251 / 3$	20	12.7
- Mr.	18	1:1/3	12	8. 3
14 Mc 。	18	101/3	8	3.25
21 Mr .	18	[i1/3	5	1.36
27-30 Мс.	16	43	5	0.84

chassis. These parts and the meter shield should be the last things mounted, after all other assemble and wiring has been completed.

The shielded wiring should be laid in first, as shown in Fig. (6-59. Soldering lugs may be used as hold-downs, the wire shiold being spot soldered to rach such lug. wart the leads, fittod with reramic bep-passes, at the output terminal strip or tulne socket, as the case may be, and run them to their final locations, temporarily mounting the part at which they terminate to got the exact lead length. Then trim the wire and install the cerami: bepass when called for in the diagram.

After the shielded wiring is in place, install the amplifier cooil sorket and wiring, leaving conough lead length to rearh the tank condenser to be mounted later. This roil sorket must be mounted with the ring outside the chassis in order to provide sufficient clearanore for the amplitiertule subassembly. Then complete the escillator and buffer assembly and wiring, exeept that the buffer coil socket should not be momented because it interferes with installing the amplifier subassembly. Also mount and wire the kere jark and moter switch, including mounting and finishing shielded leads for the metor.

When this has been done the amplifier tube subassembly may be permanently installod and the connertions to it completed. Dfter installattion the amplifier phate choke should be mounted, using the chassis hole for the 6146 for acess. The buffer coil socket and amplifier output condenser, C_{13}, may then be installed and the wiring completed. The last opration is to mount the meter shiold.

Since the size of some parts is critieal, in view of the limited space, the sperific components used in the unit shown are designated in the circuit caption.

Operation

The final amplifier is operated straight through on all bands and the buffer amplifier preferably, although not nocessarily, is operated as a frequency multiplior. On bands where the buffer is used as a straight amplifier care must be taken to choose tuning conditions that do not permit self-osoillation in the buffer stage. On 3.5 Mc. with either crystal or VFO) control there is no tendence for the buffer to self-oscillate because its grid circuit is not resomant at the operating frequener. On this frequeney the principal precaution to be observed is that C_{4} should be tuned so that the drive at harmonics of the input frequeney is not exeessive. The proper setting for C_{4} is the one that results in maximum amplifier grid current when the buffer plate circuit is proporly resonatiod.

When operating on 7 Me., C_{4} should be toward minimum caparitance, but not far enough to resonate at 14 Mc . Mdjust for maximum amplifier grid current, with the buffer plate circuit resonated, be varying (cy toward minimum capacity. When tho anmplifier grid eurrent is maximum, pull out the crestal or shut off the VFO and the grid current should drop to zero. If it does not, derrease C_{4} until it does. The grid current should be ample with C_{4} set so there is no danger of buffer oscillation.

For 14-\Ic. operation, set C_{4} near maximum capacitance so that the buffer is driven on 7 Mc . and operates as a doubler. Adjust for maximum amplifier griel current. On 21 Mc., operate the huffer as a tripler, driving it on 7 Mc . and adjusting C_{4} in the same way as for 14 Mc.

The preferable method of operation on 27-30 Mc. is to use a $7-\mathrm{Mc}$. crystal or VFO, adjust C_{4} to resonate at 14 Me., and then double in the buffer stage. In this case C_{4} will toe near minimum capacity. Alternatively, a $3.5-$ Mc. crystal or

Fig. 6-60 - Bottom view of the transmitter completely wired. The oscillator plate coil, L_{1}, is between the two variable condensers at the right. The amplifier circuit occupies the left hand portion of the chassis in this photokraph. The ehassis is 3 by 4 by 16 inch aluminum and is covered by a 4×17 aluminum bottom phate (not shown). Trap hrachet on whish the amplitier sochet is mounted is supported at one end by the plate tank condenser and at the
 menuted on the rhassis tetween the tube-sochet bracket and the chassis wall, just below the plate-lead terminal. The meter is enelosed by a right-angle shield to prevent stray harmonie pich mp that might eanser radiation through the meter hole in the panel.

$\mathrm{C}_{1}, \mathrm{C}_{2}-4-\mu \mathrm{fd}, 1000$-volt paper,
(is- $8-\mu \mathrm{fd}, 40$ - volt electrolytic.
$R_{1}, R_{2}-0.1$ megolim, I watt.
$R_{3}-1000$ ohms, 25 watts.
$R_{4}-25,000$ ohms, 10 watts.
$K_{5}-0.5$ megohm, $1 / 2$ watt.
$L_{1}-5 / 25$ henrys, 225 ma.
$L_{2}-1.5$ henrys, 200 ma .
T1-Filament transformer: 2.5 v., 4 amp., 1500-volt insulation.
T_{2} - Plate transformer: 800 v . each side c.t., 225 ma. \mathbf{T}_{3} - Filament transformer: 6.3 v., 6 amp. $\mathrm{s}_{\mathrm{t}}, \mathrm{s}_{2}$ - S.p,s.t. toggle.
$R F C-2, \overline{5} \mathrm{mh}$, r.f. choke.
and sereen voltage, until the proper operating conditions have been once established.

If the load is not the type that is represented by a properly-terminated coas line it may or may not tre possible to control the loading adequately by means of C_{13}. The pi network constants are fairly critical as to loading, and if proper loading eanot be secured it is an indication that the coax line is not flat.

Power Supply

The oseillator and buffer require a total current of approximately 50 ma . at 300 volts. In order to avoid the excessive plate dissipation that might occur with a supply that gives more than 300 volts, the plate voltage should be regulated by means of VR tubes. The plate currents taken by the oscillator and buffer do not vary greatly from band to band, the oscillator current being about 20 ma . on all bands and the buffer taking about 25 ma, on all except 7 Mc . where it is about 12 .
The amplifier requires a 600 -volt plate supply capable of an output current of 150 ma ., approximately. The screen current averages about 12 ma, through a dropping resistor of $35,000 \mathrm{ohms}$, the optimum value.

A suggested power supply eireuit is given in Fig. 6-61. This utilizes a single plate transformer designed to deliver 600 volts at 225 ma. through a choke-input filter.

Compared with other beam tetrodes, the 6146 operates with quite low screen voltage and the ordinary sereen protective tube circuit does not reduce the sereen voltage to a low-enough value to prevent excessive plate dissipation when there is no r.f. excitation. The cureuit shown here consequently includes a VR-75 to cut off the sereen voltage under such conditions. To compensate for the voltage drop through the VR tube the sereen resistor is reduced to 25,000 ohms.

A Shielded 150-Watt Transmitter for Four Bands

Figs, 6-62 through 6-70 show the eireuit and various constructional details of a 150 -watt transmitter with a shielding enclosure made of sereening. In the eircuit diagram of Fig. (i-63, the oseillator is a modified Pierce. It drives either a single 807 W as a straight amplifier, or two of them as push-push doublers. When a single tube is used, the heater of the other 807 W is turned off $\left(S_{1}\right)$ and the idle tube then serves as a neutralizing eondenser for the ot her. Type 807W tubes pernit at more compact arrangement with shorter leads, but standard 807s may be substituted with very minor modifications.

To minimize v.h.f. harmonic radiation, link coupling, instead of eapacitive coupling, is used between the two stages and simple harmonic filters are inserted in the power and keying leads which are shielded. R_{3}, R_{4} and $R F C_{5}$, $R F C_{6}$ are v.h.f. parasitie suppressors.

Both stages have parallel plate feed. Since the entire unit is designed to operate from a single power supply, VIR tubes are used to stabilize the plate and sereen voltages of the oscillator. The 807 W sereen voltage also is taken from the tap for c.w. operation. If screen and plate modulation is contemplated, individual series sereen resistors directly from the high-voltage terminal must be used. Fach should have a rating of 50,000 ohms, 5 watts for operation at a plate voltage of 600 . A small 45 -volt biasing battery (90 volts for 'phone) mounted under the chassis serves to hold the amplifier input to a safe level when the oscillator is keyed. Meters with r.f. by-passes are provided in the amplifier grid and plate circuits.

VFO input can be used by means of capacitive coupling through a coaxial line and a plug (Millen 37412) that fits the crystal socket.

Fig. 6062 - The 150 -watt transmitter installed in its shiplding enclosure. The illuminated meters can be read through the doublewall screening.

The outer conductor of the coaxial line is grounded as close as practicable to the $6 . \mathrm{A} .7$ socket. When the plug is inserted, C_{t} is grounded and serves as the screen by-pass condenser for the 6AG7, while the grid is connected to the "hot" side of the VFO output.

Shielding Enclosure

Sereening makes a desirable type of enclosure for an amateur transmitter, since it not only provides the necessary ventilation, but also visibility. The transmitter is built in quite conventional form on a standard chassis, and the enclosure is made simply of adequate dimensions to survound it completely. The box is provided with a metal panel in front and a terminal board of the same material at the rear. The control shafts are extended the necessary distance to the panel, while the power leads are extended to the terminal board. The shielding and filtering of meters is no problem because they also are completely within the enclosure, the screening permitting reading without cut-suts.

Double-wall shiclding is provided, since it is considerably more effective than single-layer screcning, even though the walls are not insulated at all points.

The sketch of Fig. (i-65) illustrates the manner in which the enclosure is contructed. Each side (also top and bottom) consists basically of a square or rectangular frame of 1 by 2 pine strip stock covered with bronze sereening. Copper is better if it is available. It the frame corners, the two pieces are simply butted and joined with metal angles from the dime store. To cover the edges of the frames as well as the openings, the first piece of screning is cut exartly to the width of the frame and about four inches longer than the length. Then one edge of the sereen is tacked along the front face of the top strip. The screen is bent backward around the adjacent edge, stretched across the back of the frame, pulted around the opposite edge and tacked along the front face of the bottom strip. The second layer of screening is cut to a width equal to the length of the frame, and is applied to the front side of the frame in the same manner as deseribed above, except that it is wound around the frame in the opposite direction, i.e., from side to side, instead of from top to bottom. The result is a frame that is completely covered with screening, including the edges.

Fig. 6-66 suggests a method of stretching the sereening tightly across the frame. After tacking one end of the screening to the frame, the loose end of the sereening is clamped between angle irons in a vise. The top strip of the frame rests against the face of the vise. When

Fig. 6.63 - Cirenit diagram of the shielded transmitter.
$\mathrm{C}_{1}, \mathrm{C}_{6}-0.002-\mu \mathrm{fd}$, mica.
$\mathrm{C}_{2}, \mathrm{C}_{5}, \mathrm{C}_{7}, \mathrm{C}_{9}, \mathrm{C}_{12} \mathrm{C}_{13}-0.0 \mathrm{t}-\mu \mathrm{fd}$, ceramic disk.
$\mathrm{C}_{3}-0.01-\mu \mathrm{ffl}$. feed-through (Sprague tillo6).
$\mathrm{C}_{4}-2.5-\mu \mu \mathrm{fd}$, mica.
$\mathrm{C}_{8}-100-\mu \mu \mathrm{fd}$, variable ($\mathrm{National} \mathrm{S}^{1}-100$)
$\mathrm{C}_{10}, \mathrm{C}_{17}-0.001-\mu \mathrm{fd}$, mica,
$\mathrm{C}_{31}-100-\mu \mathrm{ff}$ - p - r -scrion variable (National STIID. 100).
$\mathrm{C}_{14}, \mathrm{C}_{15}-\mathbf{0}, 002-\mu \mathrm{fd}, 2000-\mathrm{volt}$ silimene (Ilastion AS(13 Glasmike).
$\mathrm{C}_{16}-300-\mu \mu \mathrm{fd}$, variable (National TWS-300),
C_{18}, (C_{19}, (20 - 0.005- $\mathrm{\mu ft}$. fecel-through (Sprague 46P8).
$\mathrm{R}_{1}-0.1$ megohm, $1 / 2$ watt.
$\mathrm{R}_{2}-1000$ ohms, 1 watt.
$\mathrm{K}_{3}, \mathrm{R}_{4}-100$ ohms, $1 / 2$ watt, noninduetive.
$\mathrm{R}_{5}-15,000$ ohms, 25 watts.
$\mathrm{L}_{1}-3.5 \mathrm{Mc} .-20 \mu \mathrm{~h} .-30 \mathrm{turns}$ No. $22 \mathrm{~d} . \mathrm{s.c} ., 11 / 2$ inches diam., $1 \frac{1}{2}$ inches long, i-turn link (Natimal AR1 $6-80$-E with 26 turns removed).
 inches diam, $11 / 2$ inches long, 1 -turn link (National $\ 1817-10$-E with 10 turns removed).

- 14 Mc. $-5 \mu \mathrm{~h} .-12$ turns. No. 22 d.s.e., $11 / 2$ inches diam., I ineh long, 3 -turn link (Vational A1/7-20)-F.
$\mathrm{L}_{2}-3.5 \mathrm{Mc}$ - $10 \mu \mathrm{~h},-38$ turns Vo. 22 d ds.e. close. wound, $11 / 2$ in heles diam,, approx. 5 -turn link over center (National ARİ-80-S).
- 7 Mr. - $10 \mu \mathrm{l}$. - 20 turns No. 22 d.s.e., $11 / 2$ inches dian., $11 / 2$ inches long, appores, 4-turn tink over renter (Natinnal Alliन-10-N),
- 14 Mc. -- $4.7 \mu \mathrm{~h},-10$ turns No. 22 d.s.c., $1 / 2$
inches diam., 1 inch long, approx, 3-turn link over center (National MR17-20.S).
$\mathrm{L}_{3}-3.5 \mathrm{Mc} .-11 \mu \mathrm{~h}$. - 26 turns No. $18,1 \frac{1 / 8}{}$ inehes diam., $21 / 2$ inches long, 5 -turn link (13 \& 11 JELA0).
-7 Mc. -3 нh. -10 turns No, $18,17 / 8$ inehess diann., 2 inches long, 3 -turn link (B) \& W JEL. 20).
-1.4 Mr. - $1.5 \mu \mathrm{~h} .-8$ tarns No. 14, $1 / 2$ inches diam, $\boldsymbol{2}$ inehes long, 3 -turn link (18 \& W JEL. 10).
- 28 Mc. - 0.8 . $\mu \mathrm{h} .-4$ turns No. 11, $17 / 8$ inch diam, 1 ineh long, 2-turn link (B \& W J EL-6).
$\mathrm{J}_{1}, \mathrm{~J}_{7}, \mathrm{~J}_{8}-$ Jones s-101-1) connector.
J_{2} - Open-circuit jack.
$\mathrm{J}_{3}, \mathrm{~J}_{4}$ - Amphenol 810 - $\mathrm{P} \cdot \boldsymbol{2} \mathbf{2}$ connector.
$\mathrm{J}_{5}, \mathrm{~J}_{8}$ - Amphenol 8.3.1R connector.
MA1 - Milliammeter, 2, ma, seale.
V. \mathbf{I}_{2} - Milliammeter, 3(N)-ma. scale.

P1- IRibbon-line plug (Millen 3:12).
P_{2} - Amphenol 80)-M(:F| connector.
P'3-Amphenol 83-1SI' connector.
P_{4} - Jones $\mathrm{P} \cdot 101-1 / 4 \mathrm{in}$, connector.
RFC. , RFC: - T- μ h, r.f. chokr (Ohmite Z.-50).
$\mathrm{RFP}_{2}, \mathrm{RFC}_{3}, \mathrm{RFC}_{4}-2,3$-mht, choke (National R50).
RPC.5, KFC . -8 turns Vo. 18 , $1 / 4$-inch diam., closewound (National R60-1 $\mu \mathrm{h}$, with turns removed).
RIP_{7} - 1-mh, 300 -ma, r.f, choke (National R300S).
s_{1} - S.p.s.s.t. toggle.
r_{1} - Prilament transformer: 6.3 v., 2 a.
the hottom of the frame is pressed as indicated, the screnning is brought under tension while it is being tacked along the face of the uppor edge of the framo, The remainder of the screening is then folded over the edge of the frame and tarked along the batek.

The front and rear frames are constructed as shown in Fig. 6-67.A. The intermediate strip is placed to come level with the top edge of the aluminum control panel, or rear terminal board, as the case may be. Both panel and terminal board should be brought tightly against the screening by the generous use of wood screws. The construction of the top
frame is shown in Fig. 6-67B. The additional crosspieces make provision for an ancess opening for changing coils and minor adjustments. After this frame has been covered with screening as doscribod above, the screcning across the opening ean be slit and bent around the edges of the hole and tacked in place undernoath. Several long machine sorews are spared around the edges of the opening so that the aluminum-sheet cover can be fastened down tightly with wing nuts. The eover should overlap the opening out to the edges of the wood framework around the hole.

The sides of the enclosure are fastened to-

Fig, 6-64-Rear view of the enclome showing, from left to right, the shichided terminations for the r.f. output, a.c, lime, hes and V'O input. The opening in the top provides access to the plug-in coils.
.
gether tightly with sevoral $1 \frac{1}{2}$-inch wood screws. Wood trim strips are used to rover the seams of the sereening if desired. Latticing wood is suitable for this purpose.
The control shafts require holes in the two sereening walls. The holes should be no larger than is necessary to pass the shafts. Ragged edges can be avoiled hy first flowing a small patch of zolder orer the soreming where the hole is to be drilled, and then drilling the hole through the solder and sereening.

All power and key wiring between the chassis and the ferminal board at the rear should be shielded and the shield should be soldered to the screening as it passes through to the terminal hoard. Shielded fittings should be used as power terminals and it is advisable to use shielded wire betreen the terminal board and the power-supply unit.

The moters are mounted on a separate panel inside the enclosure. The panel is spaced away from the inmer wall of screening by an inch or so. If there is any difficulty in reading the meters through the sereening, 6.3-volt dial lamps operating from the filament transformer can be used to provide illumination for them. The lamps should be shaded toward the front to cut off glare. This can he done quite easily by coating the front of the bulbs with black paint.

Fig. 6-65-Two layers of sereening are applied to each frame of the enclosure - one on each side of the frame.

Transmitter Construction

The amplifier tubes and their assoriated input and output tank eircuits are eonstructed as a unit on a " U "-shaped bracket made from a single piere of aluminum sheet. This provides a low-inductance return, from plate circuit to cathode, independent of the chassis, as well as a measure of shiedding botween input and output circuits. The tank condensers are mounted direetly on the bracket with their shafts at the same height. The two coil sorkets are mounted above the tank condensers so that the axes of the coils are at right angles to

Fig. 6-66-A suggested method for pulling the sereen tight across the frame. See text.
minimize coupling. The resistors, chokes and hy-pass condensers associated with the amplifier grid and sereon circuits are grouped around the tube bases and connected with the shortest possible leads. Tubular-shaped C_{14} is supported (through a hole in the bracket) between the plate coil-socket terminal and

Fig. 6-67 - In the front and loack frames (A) a crosspiece is added as a support for the control panel and terminal board, respectively. The top frame (IB) has additional members to accommodate an access opening.
the top of $R F C_{7}$ which is mounted vertieally from the chassis, between the two tubes, near the plate caps. The parasitic chokes, $R F C_{5}$ and $R F C_{6}$, are suspended between the tube plate capss and the end of C_{14}. The oscillator components and the VIR tubes are to the right in Fig. 6-50. The erystal, 6AG7 and the oseillator tank coil, L_{1}, are placed in line, with L_{1} at right angles to L_{2}. Fig. 6-68 also shows the mounting of the two meters, and the shielded power connections.

Underneath the chassis in Fig. 6-69, the oscillator tank condenser is to the left and the filament transformer and biasing battery to

Fig. $0-68$ - "Iop view of the 150 -watt shielded transmitter. 'The output stage is assmbled on a "I"-shaped bracket bent up from shedt aluminum. Osrillator eomponents are to the right.

VFO output one band lower than the band to which the 6.1 (i7 output will be tuned. This avoids possible instability in the 6A(i7 stage.

For maximum rated c.w. out put, a 750 -volt $300-\mathrm{ma}$. power supply is required (600 volts for 'phone). But a lower-voltage supply may be used for less than full output. If the supply voltage falls much below 400, however, the VR tubes will not operate, unless lower-voltage VIRs are used, thus reducing the oscillator and sereen voltages. Fig. $6-70$ shows a suitable power supply for maximum rated operation.

The 'Type 807 W tubes seem to work best with less than the usually-recommended grid current of 3 to 4 mat per tube. If the grid current is run much above 2 mat, per tube, the sereen rurrent beromes exeessive. At lower plate voltages, even less grid current may berome desirable. At maximum plate voltage, the loaded plate current should be limited to 100 ma . per tube. At lower phate voltages, it may not be possible to load the amplifier to maximum rated plate eurrent. In this ease;
the right. R_{5} is at the eenter. On extension leads at the top are the kiey jack (mounted in a National mirrophonejack shield), the meter lamps, the filatment switeh, S_{1}, and the moter leads with their hy-pass eomdensers. All power wiring is done with sholded wire with the braid shields bonded together al frequent points and tiod to ground. Foed-through type by-pats condensers for harmonies are fastemed dieretly to the a.e-line and key terminals.

Adjustment

With the VIR tubes in place, but the other tubes out of their sockete, R_{5} should bo adjusted until a motor comneeted extemally in the high-voltage lead reads 40 ma. The remainder of the adjustment is quite conventional, romembering that it is possible to double. frequeney both in the output cireuit of the oscillator and again in the output stage. Thus, output can be obtained up to the 14-Mr. hand with 80 -metor erystals ant up to 28 Mc. with 7 -Mc, crystals, (${ }_{8} L_{1}$ and ('a1 L_{2} should always be adjusted to the same frequener.

When using VFO, it is preferable to have the

Fig. 6-69- Bottom view of the 1.00 -watt shiedded transmitter, The chansis is of aluminum measuring $1 \% \times 10 \times 3$ inches. 111 power wiring is done with loraid-covered wire. 'The biasing battery to the right is leeld in place with a metal bracket.

Fig. $6-$ - 0 - (ircuit of a power supply for the shielded lino-watt transmitter.
Ci, ($:_{2}-f-\mu \mathrm{fil}$, IOOO-volt ail-filled. $R_{1}-25,000$ ohms. 30 watts.
$1.1-5 / 25-\mathrm{h} . \quad 300-\mathrm{ma}$. swinging hoke,
$1.2-10 \cdot \mathrm{~h}, 3(\mathrm{~N})$-ma,
J_{1} - Amphenol 80-1'(:2F Connector.
J_{2} - Amphemal 83-1R consector.
S1, S_{2} - 3-amp. toggle switch.
T_{1}-Filament transformer: 2.5 volts, 4 amp.
'12 - Plate transformer: 600/750 volts d.c., 300 ma .

An All-Band Bandpass Exciter

Figs. 6-71 through 6-76 show diagrams and construetional details of a 120 -watt VFObandpass transmitter or exciter for a higherpower amplifier. An f.m. modulator and ervistal calibrator, to be included if desired, are also deseribed. Referring to the eircuit diagram of Fig. 6-72, a 6AG7 series-tuned VFO, operating in the $2-\mathrm{Mc}$, range, doubles frequency to the 3.5 - Me, range and drives a second $6 \mathrm{AG}^{7}$ as a straight amplifier at this frequence. This amplifier then drives a series of 6.57 frequeney doublers (one triode section in each stage). The appropriate stages for any dosired band are conneeted in by the handswitch, S_{1}. The bandswiteh also connects the grids of a parallel-eonneeted $829-13$ output amplifier to the corresponding doubler output circuit. Bandpass couplers that provide, without retuning, essentially constant output over the bands in whieh the operate are used between all stages, instead of capacity coupling. Aside from the fact that the use of these couplers reduces the number of tuning controls to only. 2 for a 7 -stage transmitter, it also provides inductive coupling that diseriminates against harmonies that may cause TVI. Since the bandpass circuits cannot be conveniently made to eover the wide frequency range including both the 28 - and $27-\mathrm{Mc}$. bands, a separate coupler is used for each. A trimmer is connected across the input of eaeh of the doubler stages to make the input capacitance equal to that of the $829-13$ so that the tuning of the couplers will not he disturbed when switehing bands.

The output tank cireuit of the $829-13$ amplifier is a combination "all-band" cireuit that covers all bands without ehanging eoils. At 3.5 and $7 \mathrm{Mc}, C_{54} L_{16} L_{17}$ act as a parallel-tuned eireuit with the two sections of Conneeted aeross L_{17}, L_{16} may be eonsidered as a jumper connetion between the stator sections of the eapacitor at frequencies below 7 Me . IIowever, the reactance of L_{16} beeomes appreciable at 14 Me. and above. At these frequencies the circuit becomes rather complex, consisting of the resultant of L_{16} and L_{17} partially in parallel, tuned by the resultant of the two sections of the tank ('apacitor in series. Two output-coupling links, both sories-tuned by C_{59}, are terminated at one of the wafers on the bandswiteh. L_{18} is the low-frequency link and L_{15} operates at 14 Me and above.

Fig. 6-71-Operating controls have been eut to a mininum in thim bandswitching transmitter. Only the VFO dial need be tumed for coverage of a large portion of any one hand. The grid and plate meters are to the left and right of the main tuning dial. 'The microphone jack, gain control, erystal-modulator switch, bandswitch and the amplifier control knob are in line aeross the bottom of the panel. The output-link tuning control is just below the plate meter.

Fig. 6-72 - Circuit diagram of the bandpass trans. mitter.
 $\mathrm{C}_{41}, \mathrm{C}_{4,}, \mathrm{C}_{46}, \mathrm{C}_{-18}-30-\mu \mu \mathrm{fd}$, ceramic trimmer (National M30).
$\mathrm{C}_{3}, \mathrm{C}_{11}, \mathrm{C}_{13}, \mathrm{C}_{21}, \mathrm{C}_{26}, \mathrm{C}_{29}, \mathrm{C}_{31}, \mathrm{C}_{39}, \mathrm{C}_{40}, \mathrm{C}_{42}$, $\mathrm{C}_{43}, \mathrm{C}_{485}$ C47, C50, (is6- 0.01- $\mu \mathrm{fl}$. disc-1) pe ceramic (Sprague 36(1).
$\mathrm{C}_{5}, \mathrm{C}_{15}, \mathrm{C}_{24}, \mathrm{C}_{25}-4 \overline{7}-\mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{8}-22 \cdot \mu \mu \mathrm{fd}$. mica.
(:7-50- $\mu \mathrm{fel}$. variable (Millen $2(0050)$.
(:8 - I. 0 ($-\mu \mu \mathrm{fl}$. mica.

Cis - $10 \cdot \mu$ fil. 2i-wolt electroletic.
(is-0.01- $\mu \mathrm{fl}$. 100 -volt paper.

(34-50- $\mathbf{\mu} \mathbf{\mu d}$. variable (Millen 19050).

Fig. 6-73- A rear view of the handpass I ransmitter. Rectangular holes, cot in the chassis, provide rlearance for the rompler roils, 'The rooupler rapacitors are really arcessible for adjustment.
mounted at the loft end of the chassis in between the homemade tubulat condenser (Fig. 6i-it) and the amplifier plate eools. A stand-off insulator supports the plate trap to the left of the 829-13. Ferd-through insulators to the right of the plate roils allow ronneed ions to the output links and the bandswiteh underneath. L_{15} is the 3 -turn winding loeated closest to the panel and L_{18} is the coil infront of the 829-13 (right).

To the right of the amplifier eomponents, in the line nearest the panel, are the VIR-150, C_{34}, the control for C_{35}, and the modulator tulms. The sec-

[^4]
ond line of parts starts at the left with the 7 - and 1 -Mc. doubler tube and continues to the right with the VFO tube, the 6Sll7, and the $100-\mathrm{ke}$. crystal. To the rear of the first wo tubesare the 14and 7 - Mr. eouplers and the roupler in the output of the Vlo . From left to right are C_{22}, C_{20}, C_{32}, C_{30}, C_{41} and C_{44}. The two tubes to the rear are the 10-and 11-meter doubler to the left and the 6AG7 buffer to the right. Behind these tubes are the 10- and 11 -meter couplers and the coupler in the output of the $6 . A\left(\frac{1}{6}\right.$. Left to right ane C_{14}, ${ }^{*}{ }_{12}, C_{4}, C_{4}^{2}, C_{48}$ and C_{46}.

The hottom view of the transmitter (Fig. 6-75) shows the amplifier tank condenser and the plate br-pass capacitor, C55, lined up to the right in front of the 829 - B tube socket. The tank eapacitor, (54 , is insulated from fround (for d.e.) by means of National N1'-6 polystyrene buttons and an insulated shaft eoupling protects the oprator from arridental contact with the "hot" control shaft. Sereengrid resistors, $R 2 \operatorname{la}_{6}$ and h_{27}, are mounted direetly on the tube socket and the $82:-13$ grid r.f. choke is located on the rear wall.

Alaminum brackets support the handswitch at the right center of the ehassis. The rear waler of this switch acrommodates the wining for the $2-$ and $28-$ Mc doubler tube, the eronter section rakes care of the $1+\mathrm{Me}, \mathrm{NNT}^{\mathrm{C}}$ output eircuit and

Fig. o-it - Sketeh of the tuhalar condenser med in the output circuit of the bandpass all-band exciter.
the 829 - 13 grid circuit, while the front wafer handles switching for the $7-\mathrm{Me}$. doubler and the output links, Compensating caparitors for the doubler grid circuits are mounted between the switch sections and ground.

Rectangular cut-outs are required for the bandpass couplers. The eouplers in the output of the 6 AG 7 and those for 28 and 27 Mc . are mounted from left to right at the rear of the chassis. The coupler for 14 Mc . is to the left of the switch, and bandpass circuits for the VFO tube and the $\mathbf{7}$-Mc. doubler are to the left and right of the aluminum partition. This aluminum shield prevents instability caused by coupling between the low-freguency circuits. L_{9}, the VFO coil, is mounted on a $1 / 4$-inch pillar at the front of the chassis.

The audio and the 100 -ke. oseillator cireuits are grouped at the upper lefthand corner and the filament transformer is bolted to the left wall. Shielded wire for all leads carrying other than r.f. will provide additional r.f. bypassing and help to reduce TVI.

Making the Band-Pass Couplers

The aecompanying coil tatble gives the details of the various coupler windings. The dimensions listed should be followed with the greatest possible care. Especially the spacing botwern the two windings of the couplers is eritical if the desired bandpass eharacteristic is to be obtained. All except the 28 -Me. coils; L_{1} and L_{2}, make use of Millen Trpe 45000 1-ineh-diameter coil forms. The low-frequeney coupler coils, L_{-7} through L_{13}, are close-wound

COIL TABLE FOR BANDPASS TRANSMITTER							
coil	$L_{\mu}{ }_{h}$,	IV ir.	Turns	Diam., In.		$\begin{aligned} & \text { Coil Spac- } \\ & \text { ing. In. } \end{aligned}$	$\begin{aligned} & B \& W \\ & \text { Type } N o . \end{aligned}$
I.1. $L_{\text {a }}$	1.18	20 tinned	8	$3 / 4$	1/2	$I_{\text {. } 1, ~}^{\text {, }} L_{2}-1 / 2$	3011
$L, 2$	0.99	20 tinned	$\overline{7}$	$3 / 4$	${ }^{1 / 6}$	-	3011
L_{4}	0.81	20 timued	6	$3 / 4$	$3 / 8$		3011
I.tis	41	2.4 tinned	1.5	3_{4}	${ }^{15} 3$		3012
L.6	220	2.4 tinned	10	${ }^{3} 4$	${ }^{16}$	--	3012
1.7	1.58	31) enam.	21	1	${ }^{7} \times 1$		--
I.	9.8	26 cram.	16	1	${ }^{8}$	- -	- -
1.9	92.0	30 s.s.e	188	1	${ }^{93}$	-	--
I.10.I.11	72.5	30 enam.	12	1	'"		--
$\underline{L-12}$	733.5	30 enam.	11	1	1_{2}		
L_{13}	12.0	30 ernam.	37	1	${ }^{13}{ }_{51}$	-	--
L_{14}	11	14 enam.	3	${ }^{3}$	1/2	--	- -
L.15	1.10 .5	14 enam.	3	$21 / 2$	3/8	-	3006
1.16	2.0	12 cram.	7	$21 / 2$	1^{*}	- -	$3 \% 05$
1.17	0.5	14 enam.	110	$21 / 2$	$11 / 4$		30010
L_{18}	3.4	14 enam.	9	$21 / 2$	118		39%

* End turn adjustable - see text.
on the outside of the form in the conventional manner, except that one of the two coils in each case is mate so that its position on the form can be changed slightly if necessary. This is done in the following manner. Dust the form with talcum powder. Wrap a band of Seoteh tape, athesive side out, around the form. Wind the required number of turns over the band of tape. The tape will hold the turns intact while the eoil is removed from the form and coated with eoil dope. Raplace the winding on the form when the dope is dry. After final adjustment, a drop of erment will hold the winding in place on the form.

IS \& W self-supporting Miniductor windings are used for the 1i- and $27-\mathrm{Me}$. couplers (L_{1} through L_{6}). These are of such diameter that when the polystyrene supporting strips are sandpapered down slightly, the coils will slide sulugly inside the Millen coil forms. The forms are slotted diamotrically by making a longitudinal hacksaw eut down through the center of the form to within a half inch or so of the bottom. The leads from the coils ride up and down in these slots and are cemented in place after the final adjust ment of the coupling,

No form is used for the 28-Mc. coupler, L_{1} and L.

The coupler tuning condensers are spaced out "venly on strips of $1 / 8$-inch bakelite or polvetyrene. $13 / 4$ inches wide. As shown in the top-viow photograph of Fig. 6-73, and discussed earlier, some of the couplers are grouped together on one strip. The one nearest the panel with 6 condensers is 6 inches long, the one with 4 condensers is 4 inches in length and the small pirere is 2 inches long. The condensers are fastened to the strips with small machine screws through holes in the condenser tabs. Enderneath, the Millen 1 -inch forms are fastened to the strips with a machine screw through the hole in the bottom of the form, midway between associated tuning condensers. In the eas of the 28-Mc, coupler, the roils are soldered elirectly to the condensermounting sorrws, in a horizontal position. Oner the correct sparing has bern found, the two erils are made rigid by joining them with a strip of polyst yrene bridging the tops of the eoils and held fast with cement.

Plarement of this coupler can be seen in the bottomview photograph of lig. 6-75. The eroils are mounted at right angles to those of the $11-$ meter coupler immediately to the rear of the bandswit eh.

Output Coils

The coils in the output cireuit of the 829-13 and their link coils are made from strip-coil material of larger size. The two coils are mounted be their leads to small stand-off insulators, with their axes at right angles. One end turn of L_{16} is broken away from the others $b y$ severing all but the bottom insulating strip. This permits the turn to be bent away from the rest of the eoil for aceurate adjustment of the inductance.

Tuning the Couplers

The driver stages should be adjusted in sequence, starting with the lowest-frequency band. The high-voltage supply to the $82!1-13$ should be turned off and the lead to the sereerns of this tube should be disconnected temporarily. With the bandswiteh in the $3.5-\mathrm{Me}$. position, set C_{34} at minimum capacitance and adjust (C $_{35}$ until the oseillator signal is heard at slightly above 4000 ke . Then the oscillator should tune over the range of about 3350 to slightly above 4000 kc .

To adjust the first coupler in the output of the oseillator, eonneret a high-resistance voltmoter atross Rea, move the two eoils as far apart as possible and adjust Catand ("41 for maximum metar reading. After both circuits have been peaked, do not disturb the settings of the two condensers. Slide the movable eoil to give the coil spacing shown in the coil table and then check the voltmeter reading as the VFO is tuned through its range. The reading should staty constant within 10 or 15 per cent arross the band. If the reading is high moar both ends and low in the middle of the band, this indicates that the coupling is too tight and the eoils should be moved slightly farther apart. On the other hand, if the readings show a peak in the center of the band and the excitation drops off too much
other, this can usually lee corrected by very slight adjustment of the tuning condensers. Do not change the condenser settings appreciably however, or it may upset the shape of the eurve ass a whole.

VOLTAGE AND CURRENT TABLE FOR THE LOWLEVEL TUBES OF THE BANDPASS TRANSMITTER						
Tubr	rrey, Me.	r_{μ}	E.	\boldsymbol{E}_{0}	Fik	l_{k}, Ma.
615:-	1.7	150	1.51	-- 12	-	8
6.167	3.5	300)	1.00	- 3.5	6	20
$6 \mathrm{~N}:$	7.	30)	--	- 10	13	22
6, :-	11.	3011	-	- 81	21	20
心:	2%	3010	-	-100	1.4	29
6.17	28.	300	-	- 0.5	14	30

The same procedure is followed in adjusting the coupler in the output of the 6AG7 amplifier, but this time grid current to the 82 ?Bean be used as the indicator. The grid current should average 16 to 18 mat.

Sext turn the bandswiteh to the $\overline{\text { F M Me. posi- }}$ tion and connect the voltmeter across Ris. A $2.5-\mathrm{mh}$, r,f. choke should be used in series with the volt meter lead conneeting to the grid. Now adjust ('2x until the meter readings follow the previous charactaristic pattern. Then loosen the coupling between L_{8} and $L_{a s}$ as much as possible, set the VFO to the middle of the designated fregueney range of this stage and tune the two cireuits to resonance ats deseribed previously, using the $829-13$ grid arrent as the indicator. IBear in mind that this stage and the sucreoding stages need rover with essentially flat output only that frequency range for which they are latoled in Fig. ti-72. The $14-, 27-$ and $28-$ Me couplers are adjusted following the same procedure. The voltmeter should be connceted across the grid leak only in these last three stages and no r.f. choke for the meter lead is necessary.
at the ends of the range, the coupling is too loose and the coils should be moverd slightly closer together. If the reading is much higher at one end of the band than at the

Fig. 6.75- Bottom view of the all-band bandpass exciter. The placement of parts is discussed in the text.

Fig. 6.76 - (iirenit diakram of plate and hias supply for the all-hand bandpass transmitter.
 450-volt-wkg, elertrolytic.
C_{4}, $\mathrm{C}_{5}-\mathrm{t}-\mu \mathrm{fd}$, 100). volt oil-filled.
$\mathrm{R}_{1}-2 \mathbf{2}, \mathbf{0 0 0}$ olms. 2.5 watts.
$\mathrm{R}_{2}-25,010$ ochms, 2.5 watt, with slider.
$\mathrm{R}_{3}-2.5 .000$ ohms, $\mathbf{8 0}$ watt
$\mathrm{La}_{1}-5 / 25 \mathrm{~h} . \quad 150-\mathrm{ma}$. swinging clowke.
$1.2-20-1,150-\mathrm{ma}$. smoothing rhoke.

1. 3 - 30.1 h .16 -ma, filerr choke.
$1.4-5 / 25-11.200-\mathrm{ma}$, swinging choke.
$1.5-10-\mathrm{h}, 200-\mathrm{ma}$. smoothing chohe.
It - 150-watt 11.3 -volt lamp.
$\mathrm{J}_{1}-5$-prong sopket.
$\mathrm{S}_{4}, \mathrm{~S}_{3}, \mathrm{~S}_{4}$ - 10 -amp.
toggle switch.
$\mathrm{T}_{1}, \mathrm{~T}_{3}$ - B -volt 3 -amp. filament tranaformer.
T2-300)-v, d.e. 1.50. ma. plate trans.
T4-2.j-volt, 4-amp. filament transformer.

Ts - $600 / 80$ v.lie. 200 -ma. plate transformer.
VR - VR- 75 voltage-regulator tube.

Adjusting the Output Amplifier

Since there are no coils to change in the output tank circuit, the tuning of this stage is quite simple. With the bandswiteh turned to the desired band, and redued plate voltage applied to the plate after reconnecting the screen lead, the dual tank condenser is simply tuned for the characteristic dip in plate current indicating resonanee. The eireuit tunes to 3.5 and It Me, with the condenser near maximum capacitanee. Resonance at 7,27 and 28 Me. will be found mor minimum capacitance. However, it is important that 3.5 Mc , and 14 Me, and also 7 Me, and 28 Me, do not fall at exaetly the same settings, since this condition may result in exeessive fourth-harmonie output when the transmitter is working at the lower of the two frequencies. The condition can be avoided hy adjusting the free turn on L_{16}.

A current and voltage table shows the approximate operating conditions for the lowlevel tubes. Under full load, the 829-13 grid current and grid voltage should average 12 ma . and 70 volts, respectively, and the sereen should draw about 30 ma , at 200 volts. The amplifier may be loaded to a plate current of 200 ma.

Testing the Audio Section

The power amplifier should be turned off (do not forget to remove sereen voltage) while the audio system is undergoing the first test. After a mierophone has heen connected to J_{1} and the low-voltage supply turned on, the output signal of the transmitter should be monitored by means of a receiver. Modulation should be
applied for this test and, with the receiver tuned to an n.f.m. band, the deviation control should be adjusted for a clean-sounding wollmodulated signal. It must be remembered that this adjustment holds for one band only and that the deviation control requires readjustment when the transmitter is switehed to another band. Less deviation is needed for the higher-frequency hands. More extensive information on aligning n.f.m. units is given in the chapter on frequeney and phase modulation.

Total eathode current for the two audio tubes is approximately 1.5 ma and about 0.5 volt is developed across the cathode resistor of each stage. Plate voltage for the speech-amplifier tube is roughly 30 volts and 25 volts should be measured at the sereen-grid pins of both 6AK5s.

Testing the 100-Kc. Oscillator

Power for the 100 -ke. crystal oseillator may be ohtained only by turning on the transmitter supply. However, the transmitter can be disabled during the test by opening the key. S_{2} must be switehed to the crystal position and a receiver should be tuned to a harmonic of the erystal. A short antenna conneeted to the os-eillator-output terminal at the rear of the chassis may be neecssary if the receiver is tuned to a high frequeney and if the transmitter is enelosed in the cabinet. When the circuit appears to be working normally, the oscillator may be brought to zero beat with one of the W'WV frequencies by means of C_{7}.

Plate and screen potentials for the 6SII7 should be 150 and 50 volts, respectively: One volt should appear across the cathode resistor, R_{5}, and the cathode current is 1 ma .

A Single-813 Transmitter

Figs. 6-77 through 6-83 show diagrams and photographs of a transmitter that ean be operated on all bands from 3.5 to 28 Mc. at a power input up to 350 watts with reasonable assurance that no TYI will result, even in fringe areas. Plur-in coils are used throughout and, except for the 3.5Mc. band, where $3 . \bar{\delta}-\mathrm{Mc}$, erystals are required, of course, cither 3.5- or 7 -Me. erystals may be used. An 813 is used in the final amplifier. This is driven by a 6 V ti buffer-doubler and a 6 Ala modified Dierce crystal oscillator. C_{3} has sufficient range of capacitance to cover two adjarent bands with the same coil, simplifying band changing. D'ossibe instability in the tiok stage, when working "straight through" at the erystal fundamental, is avoided by disconnecting C_{3} and plugging in an r.f. choke at L_{1}, so that the input eircuit of the 6 Vt is untuned. Otherwise, C_{3} is comnected in rircuit automatically by a jumper in the base of the coil form (see Fig. 6-81).

Provision is made for TFO input to the crystal stige if desired. The ker is in the oscillator circuit.
A 6 y'tic clamper tube holds the input to the 813 at a safe level whon exeitation is removed. An important provision in the circuit is the excitation control, R_{6}. It permits limiting excitation to the level neressary for eflicient operation without excessive harmonic output. The sereen of the 813 is operated from the low-voltage supply for the oscillator and buffer-doubler stages. The separate terminal is to permit the screen to be discomnected during preliminary adjustments of the exciter stages. Filament transformers are included in the transmitter and all power leads are filtered for v.h.f. harmonies.

Constructional Details

Most of the constructional details may be obtained from the photographs and their captions. If painted panel and chassis are used, it is of first importance that the paint be removed wherever good contact to the shielding or other parts is reguired. This includes the area where the 813 socket mounting is placed. This is done easily by using paint remover and later sandpapering.

Also of extreme importance are the by-pass eonnections at the 813 socket. The tubular condenser mounted horizontally across a portion of the sorket is C_{13}, the "Hypass" unit used as screen hy-pass. The mounting elamp is unsodered from the eondenser so that its case can be soldered directly to Terminals 1 and 2 of the tube socket. Terminal 1 is one side of the filament, and Terminal 2, which has no circuit connection, is used morely for mochanisal support. One of the axial leads of the condenser is then connected to Torminal 3, the screen grid, and the other goes to the sereen-supply lead. Note that this arrangement returns the screen-grid by-pass to one side of the filament instead of to chassis ground.

Filament by-pass condensers, C_{11} and C_{12}, are mounted as close as possible to Terminals 1 and 7 with short ground leads, thence going to the aluminum bracket. The center-tap lead from the filament transformer is connected directly to the beam-forming plate terminal on the socket, where the ground connection is made.
plate by-pass condenser C_{14} is mounted between the frame of the tuning condenser and a soldering lug bolted to the bracket that supports the 813 soeket. The ground connection is

Fig, 6-77-The panel of the 81:3 transmitter is $121 / 4$ inchem high. 'The meters are submounted on a piece of 1/4-inch P'resilwood, $91 / 2$ by $27 / 8$ inches and the openings are covcred with a piece of sormoning. The eontrols for Cis and the link-coupling adjustmont are to the right.

Fig, $6-78$ - Srhematic diagram of the tramsmitter. Sochet ronnertions for plugin coils I_{1} and L_{22} are shown. For conneetions to the coil pins, see f"ip. 6-81.

(3-20)- μ_{μ} fol, reveiving varialike (Millen [0: 00).

(is - $100(0 \mu \mathrm{fel}$, mica, 500 volts d.e. working.
(is - I(0)- $\mu \mu \mathrm{fl}$. receving variable (I illen [O|(0)).
($\mathrm{s}_{0}-\mathrm{IO} 0-\mu \mu \mathrm{fl}$, mica, JOON vole d.e. working.

 16.i.1).

Cis - 100 - $\mu \mu \mathrm{fd}$-per-section variable, 3000 volts preah

(ifi - Neutralizing condenser: sie text,

$11_{1}-15,000$ ohms, $1 / 2$ watt.
1r: 330 ohms, I watt.
$13_{3}-33,(000$ ohms, I watt.
$1 \mathrm{~K}_{4}-17,000$ ohms. I watt.
K_{5} - $\mathbf{. 3 0}$ olms, 2 watts.

18 ; $-\mathbf{2 5}, 000$ ohms, 10 watts, wire-womnd.
18 - $-10,000$ ohms, 10 watts, wire-wound.
K_{6} - $\quad 100$ ohms, $1 / 2$ watt.
$\mathrm{K}_{10}-2.300$ ohms, 10 watts, wire-wound.
1.s- (Smeillator plate coil:
 elose-wonnd on l-incla diam. form. $-7-14$ Me. $-2.3 \mu \mathrm{~h} . ; 10$ turns Vo. $2 \boldsymbol{2}$ d.s.c. spared to ocerpy $i / 8$ ineh on 1inch diam, form,

- Untuned -- -00 нh.: 33 -ma, r.f, ehoke (National R -33) mounted inside coil form as shown in Fig. 6-8!).
Forms for ahove coils are Millen 4500.0
$1.2-$ Doubler plate eoil:

made elose to the spot where the filament by-pass condensers are returned, and a heavy lead made from $3 / 8$-inch copper strap makes the comeetion from the "hot" side of C_{14} to the tuning-condenser frame. The high-voltage lead passes from this junction preint through the chassis in a
wound on $11 / 2$-inch diam. form.
- 7 Mc. - $5.2 \mu \mathrm{~h} .: 1 \underline{\mathrm{I}} \mathrm{turns}$ Vo. 18 d.s.e. spaced to occupy 1 ineh on $1 \frac{1}{2}$ inell diam. form.
 to ocrupy l inch on $1 \frac{1}{2}$-inch diam.
 to oreopy 1 inch on l-ineh diam.
forms for above coils are National Xili-5, except 28 - Me, which coil use's Millen 45005.
I. 3 - Amplifier plate coil:
(NII are $\mathbb{H} \mathbb{N} W$ 'IVI, series. Winding data, everep inductance, given below are for eadh half of coil.)
- 3.5 Me. - 80 'TVI., $43 \mu \mathrm{lt},: 20$ tırns No. 16, $21 / 2$-inch diam.. 2 inchers long.
 $21 / 2$-inch diam.. $:=$ inches long.
- 14 Ne. - 20 "lll: one turl removed from
 $21 / 2$-inch diam., $13 / 8$ inches long.
- 28 Nc. - IO I'VL: one turn removed from
 inch diatn., $13 / 4$ inches long.
I. 4 -Shielded link, 3 turns (IS \& W 3:883).
J_{1} - (Soavial input jack (Jones S-101-1)).
I_{2} - (Coaxial output jarh (Imphenol 83-]li).
J_{3} - Clowed-circuit jack.
UA1-0-100 ma, d.e.
$111_{2}-0.30$ ma, d.e.
$\| \mathrm{I}_{3}-0, \mathrm{~B} 00$ ma. d.e.
KFCC, RFCC, RFC.
$18 \mathrm{l}^{4}-1 . \ddagger$ mla, 500 ma . (Millen $3: 110$).

$\$_{1}$ - Retary wafer switeh, 2 poles, $\overline{-2}$ positions, reramic.

3/4-inch veramic bushing (Millen 32103) to $R F C_{4}$ inside. In addition, the high voltage is applied to the stator of C_{15} through the center tap of the plate roil, L_{3}. Connertion from this point to hre't is made through a serond $3 / 4$-inch ceramie bushing that is visible in the bottom view.

Fif. 6.79 - The chassis for the 813 transmitter is 10 by l2 by 3 imehes, with the l-ineh lengti along the panel. Cis is mounted on $11 / 4$-inch cone insulators, with the lower feet against the chassis and the upper ones against angles fastened to the top of the chassis. Angle pieces under the upper feet support the coil jack bar. 'The 813 is mounted horizontally with its socket set in a bracket $33 / 4$ inches square. Cis consists of two strips of metal $3 / 8$ by 2 inches monted on pillars behind the socket. One piere is bent to give a spacing of alout $1 / 2$ inch. $R F C_{3}$ is to the right. The crystals, owillator tube and enil are to the right, the buffer-doubler to the rear. 'The meters are enclosed in a shielding box. P'aint is removed from the chassis where ureded to provide good contact with the shiclding.

Adjustment and Operation

The cireuit diagram of a suitable power supply for this transmitter is shown in Fig. 6-83, aithough, of course, it is not necessary to operate the 813 at maximum rated plate voltage.

The only eritical adjustments needed are to be errtain that the small plug-in eoils cover the proper ranges, and to noutralize the 813 . If the coil specifications set forth in the parts list are followed closely, it will be possible to tune the plate circuit of the 6 A (i7 to either 3.5 of 7 Me , with the first coil, and to cither 7 or 14 Me. with the second. Resonance in both the 6AG7 and 6V6 stages is indicated by .$M A_{1}$, which is connerted in the eommon supply lead. With the desired coils in place, the excitation control set fully clockwise and the key closed, apply plate voltage (between 350 and 400 volts d.c.) to the exciter stages. Turn the oscillator tuning condenser until the meter kicks upward, indieating that the $6 V^{\prime} 6$ stage is being driven. Next, turn the 6V6 plate-tuning condenser until the meter reading dips, indicating that the stage is tuned to resonance. Now, touch up the tuning of the oscillator stage slightly. This readjustment will produee a slight additional reduction in the current indicated. At this point the 6 V 6 shoudd bre driving the 813 stage into grid eurrent, as
indicated by $M A_{2}$. Depending on the band selected and the plate voltage applied to the exciter stages, grid current will be at least 15 ma. It will probably run considerably more than this exerpt in the case of 28 -Me. operation.)

Now adjust neutralizing eomenser C_{16} to obtain minimum feed-through of r.f. from the exciter stages to the final-ampritier tank cireuit. To do this, couple an indicating wavemeter to the tank circuit, tune the circuit to resonance, and adjust C_{16} by bending or trimming the platers to whtain minimum indieation.

Once the amplifier is noutralized, connec: a dummy load to the output eircuit. This is best done by connecting an auffina coupler to the swinging link of the amplifier through a short length of RGi-8/U coaxial cable, and then tapping a 2.50 - or 300 -watt kamp bulb across a fow turns of the coil in the coupler. Apply plate and screen power to the 813_{1} and resonate the tank circuit as indieated by a sharp dip in the current shown by $M A_{3}$. This shoult be done quickly, beeause the off-resonance plate current will exceed 300 ma , dipping to a very low value at resonance. Isoad the amplifier by adjustment of the antemas tuner and the swinging link until plate current of 200 ma . or slightly more is indieated. Now open the key. If

Fig, $6-80$ - View of the 813 transmitter with bottom plate removed. The chassis is fastened one inch from the lefthand edge of the panel. From left to right, the crystal switch, C_{3} and C_{8} are mounted on brackets, these for the latter two being insulated. R_{8} is mounted on the panel. T_{2} is to the right, white the terminals of T may be seen through the edearance hole above. RFC4 is alove T_{2}. The 6Y64 socket is above C_{8}. All power wiring is done with shielded wire and by-passes are connected as recomnended in the chapter on TVI. All v.h.f. filter components are mounted directly at the power terminals. The hiv. line goes through the end of the chassis through feed-through insulators.

Bottom View of Coil Form

Fig. 6.81 - Comections for L_{1}, the oseillator plate coil. The arrangement used for operation in all except the 3.5-Ne. hand is shown at A. The jumper, whieh is soldered inside the eoil form. eonnerts the eoil to tuming condenerer Ca. In 13, used only for 3.5-Mr. operation, the jumper is omitted, which discommerte the tuning condenser from the circoit, and an r.f. ehoke is shbstituted as an untumed plate imperamer to herp the 6才6 stage stable when operating straight through.
transmitter and the antenna coupler in all areas where TV receivers are nearby.

With the 813 , there is no point in running the grid current beyond 15 ma . (iood efficieney can be obtained with this level of exeritation, or even less, and increased exeitation can areontuate the gencration of wh.f. hamonies. Conder tost in a fringe area, with a TV reeceiver in the same room, faint interterenere was notied when operating at $28,0-0 \mathrm{ke}$. until the grid current was reduced to 10 ma. At frequencies above 28,500 , grid current could be increased to 1.5 mat with no interference.

If a.m. 'phone oqreration of the transmitter' is desired, a smatl iron-wore choke should be insorted in the screen-grid supply lead as described in the chapter on radiotelephony.
the elamp tube is operating properly, plate current in the 813 stage will drop to about 10 max , and the current in the first two stages will l_{r} about tio mat. (irid current in the 813 stage under these conditions should tre zero. To cherek for stability of the 813 stage, rotate the plate eondenser slowly through its entire range, at the same time watehing for any change in plate current, and for any indication of grid current. If a change takes plate or if grid current flows, cheek with a wavemeter to find the frequency at which the stage is oreillating. If it is nesu the operating froquener, readjustment of the newtralizing coudonser is called for. If oseillation is in the v.h.f. range, the usual cures for such paraties should be applied.

A low-pase filter such as that deseribed in the chapter on TVI, or one of those avaiable com. mereially, should be installed in the coaxial line betwern the

Fig. 6-8.3 - Circuit of at suitable power supply for the 813 transmitter.
 $\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}-\mathrm{t}-\mu \mathrm{fd}$. $\mathbf{0}(\mathrm{OH}$-wolt elec. trolytic.
$\mathrm{R}_{1}-25,000$ ohms, 200 watts.
K_{2} - 15,000 ohme. 10 watts.
I.1- $5 / 25-\mathrm{h}, 300$-mat swinging filter choohe.
1.2-20-h. 300-man. smoothing rhoke
I.3, 1 a- $7 . h$. 150-ma, filter choke.
tune up)
$S_{1} S_{2}$ - 10 -amp *witch.
s_{3} - 3-anp, switch.
'TI - V'ilament transformer: 2.5 volts. 10 amp.
T_{2} - Plate transformer: 2000 volt (1, c, $3(0)$ ma.
T_{3} - Power transformer: 3-亏.-()3 3.5r.mes., 150 ma.; 5 volts, 3 amp .

Fig. 6-82 - The shimeding enclosure for the 813 tranmitter is made up of ahminum sherts fastened together with strips of angle stork, which are tapped for the sprews. A hinked dow covers the hales that proside acrese to the plug-in eovil. The large opening to the left is $11 / 4$ imehes sonare, the other two are 3 by 4 inelase. The ventilating holes ower the tubes are eoverall underneath with sereening, The back manel is also cut out to dear the terminales set in the rear of the chassis, ats shown in F ig. 6-99.

A 175-Watt Transmitter for the $\mathbf{1 6 0}$-Meter Band

A single transmitter that will cover the extremes of 1.8 and 28 Me. necessarily must involve considerable compromise as well as complication. From several considerations, it is not only preferable, but also economically feasible, to build a separate unit for 160 meters, since it can be simple and straightforward. In most instances, operating conditions may be chosen so that the 160 -meter unit will operate from the same power supply as the higherfrequency transmitter, if the station has one.

An example is shown in Figs. 6-84 through $6-88$. Because the 1.8 -Mc. band is divided into narrow slices, crystal control is proferable to reduce the danger of out-of-band operation. The oscillator circuit in this case is a modified Pierce with a scparate untuned plate output circuit. C_{3} is a feed-back-adjustment condenser.
The 6L6 stage provides the necessary buffering between the oseillator and the final amplifier for 'phone operation. There is no danger of oscillation at the fundamental in the buffer stage because its input circuit is untuned. Since the frequency range to be covered is small, the output circuit of this stage is easily broadbanded. Thus only a single tuning control is required for the entire transmitter.
The triode final amplifier is a conventional arrangement with a capacitive-divider plate neutralizing circuit. The d.c. connection to the rotor of the tank condenser through $R P C_{0}$ makes it possible to use a condenser with half the peak-voltage rating that otherwise would be required. $R F C_{5}$ is a v.h.f. parasitic suppressor.

For c.w. operation, the oscillator is keyed in the cathode eircuit. R_{5} provides protective bias for the buffer stage.

The layout is suitable for any of the usual triodes with plate-cap connection, operating at plate voltages up to 1500 with a plate-voltage/plate-eurrent ratio of 10 or greater. If a tube with a 6.3 -volt filament is chosen, only a single filament transformer is needed.

Construction

The unit is assembled on an $8 \times 17 \times 3$-inch chassis with an $83 / 4$-inch panel. Most of the constructional details are evident from the photographs. The output-stage tank condenser is mounted on ceramic pillars and its shaft is fitted with an insulating coupling. The condenser is placed on the chassis so that its dial and the milliammeter will be symmetrical in respect to the center of the panel. The tank coil is a homemade affair wound in two equal sections on separate Millen type 44000 polystyrene forms, each cut down to a length of $21 / 2$ inches. The outer end only of each section is fastened to a $1 \frac{1}{4}$-inch cone insulator, and the two sections are placed with their inner ends an inch apart. Additional bracing is provided by the No. 14 wire leads from the inner end of each section to the plate r.f. choke, $R F C_{6}$, mounted near the center. After winding the turns are cemented in place with coil dope.

The output link (8 turns of No. 18 d.c.e. should be satisfactory) is wound on a $3 / 4$-inch length of leftover form. A length of $1 / 4$-inch polyst yrene rod is cemented to the inside surface of the link form. This shaft then runs through a panel bearing fitted with a National type RSL shaft lock which provides an adjustable friction for the shaft. A knob on the shaft provides a means of adjusting the coupling from the panel.

The neutralizing condenser, C_{N}, is placed close to the tube, between the tube and the panel. C_{15} should not be less than the value specified, nor larger than $0.005 \mu \mathrm{fd}$, if the amplifier is to be plate-modulated.

All components for the exciter stages, except the two tubes and crystal, are placed underneath the chassis. These include the plate tank eircuit of the buffer stage. C_{7} is mounted so that it may be adjusted with a serewdriver from on top. L_{1} is wound on a Millen l-inch plastie form and is placed alongside the con-

Fïs, 6.84 - Front view of a 1.:-watt transmitter for the I(0)-meter band. Guly one tuning control is needed, plans: a snall hnob used to adjust the setting of the swinging link on the output coil.

Fis. 6-85-13ottom view of the 160. meter transmitter, The oscillator tube socket and its related parts are in the upper left corner. The 6 L6 and the finalamplifier tube are mounted in a line through the center of the chassis, with the plate coil for the 61.6 supported on a bracket between the two stages. The parasitic-suppressing choke is mounted between the grid terminal of the amplifier sochet and a ceramic stand-off insulator.
so far from the tube sockets that excessive voltage drop results through the wiring. In this ease it was convenient to place one on
denser on a bracket that spaces it from the chassis on all sides.

For convenionce in changing erystals, the crystal socket is mounted on the front edge of the chassis, at the left. Clearance holes for both the erystal socket and the key jack are cut in the panel.

The placement of the filament transformers is not critical, except that they should not be
top of the chassis and the other below. Terminals are provided across the back for high voltage, low voltage, bias and ground. An a.c, rord makes the line-voltage connection to the filament-transformer primaries.

Fig. 6-87 shows the diagram of a suitable power supply in case a separate supply is necessary or desirable. Control circuits are included.

Fig. 6-86 - Schematie diagram of a single-control 17.5 -watt transmitter for the 160 -meter band.
$\mathrm{C}_{1}-0.001-\mu \mathrm{fl}$, mica, $\mathbf{f 0 0}$ volts.
$\mathrm{C}_{2}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{12}, \mathrm{C}_{13}-\mathbf{0}, 01-\mu \mathrm{fd} .600$.volt paper.
($3-10-\mu \mu \mathrm{fil}$ mical ser text.
$\mathrm{C}_{4}, \mathrm{C}_{8}-1(10)-\mu \mu \mathrm{fd}$. mica.
($:-50-\mu \mu \mathrm{fl}$. variable (Yational I'SR-50).
(:9, C:I- 0.01688- $\mu \mathrm{fd}$, mica. $\mathbf{5 0 0}$ volts.
C:10-2910- $\mu \mathrm{ffa}$, mica, 600 volts.
C.14-100-mpfd.-perosection dual transmitting variahbe, 0.070 air gap (30 MN volte prak). (National TMC: (100-1).)
(C_{15} - $0.00135-\mu \mathrm{fil}$. mica, 8000 volta.
(:
$R_{1}-1.5,000$ ohms, $1 / 2$ watt.
$R_{2}-3: 30$ ohms, I watt.
$\mathrm{R}_{3}-30,(M)$ ohms, I watt.
R_{4} - $2 \boldsymbol{2},(1000$ ohms. $1 / 2$ watt.
R_{3} - $6(1)$ ohms, 2 watts (two 1200 -ohm 1-watt units in parallel).
R_{6} - It, ,(н) ohmm, 5 watts.
I_{12} - 16 turne No, 26 d.ser, close-wound on 1 -ineh diam, form.
1.2- Nach half consists of 46 turns No. 20 d.s.e. close. wound on a $17 / 8$-inch diam. form (Millen 44000). The two halves are mounted so that there is $11 / 8$ imehes between windings to permit passage of the link coil. link: 8 turns No. 18 d.e.e. elosewonnd on $17 / 8 \cdot \operatorname{ineh}$ diam. form made of same material as the main coil form.
$\mathrm{I}_{2}-6.3$-volt panel lamp.
J_{1} - Closed-cirenit jack.
MA - 0-300 ma, d.e. meter.
RFC, through $\mathrm{BFC}_{4}-2.5-\mathrm{mh}$. r.f. choke (National R-100.S).
$12 \mathrm{~F}_{5}-21$ turns No. $26 \mathrm{~d}, \mathrm{~s}, \mathrm{c}$, close-wound on $1 / 4$-inch diam, form (a l-watt resistor of any high value may be used as the form).
RFC C_{6} - Transmitting r,f, choke (Millen 34140).
T_{1}-6.3-volt 3 -amp. filament transformer (Stancor P'6014).
$\mathrm{I}_{\mathrm{z}}-\mathbf{7 . 5}$-volt 4-amp, filament transformer (UTC S.56)

$C_{1}, C_{2}, C_{3}-8-\mu \mathrm{fd}, 600$-volt-wkg, elec. Ci, $\mathrm{C}_{5}-4 \cdot \mu \mathrm{fl}$. 2000 -volt oil-filled.
$\mathrm{R}_{1}-25,000$ ohms, 2.5 watts.
$\mathrm{R}_{2}-30,0 \mathrm{M} 0 \mathrm{ohms}$, 10 watts, with slider. $\mathrm{R}_{3}, \mathrm{R}_{4}-47$ ohms, 1 watt.
R_{5} - See text.
$\mathrm{R}_{6}-2.5,000$ ohms, 150 watts.
(1)-5/2-hy, lioma, swinging ehoke. $1.2-20$-hy. 150-ma. smewthing choke. I.3-30-hy, 75 -ma, filter ehoke.
l.4-5/25hy, 200-ma, swinging rhoke.
$\mathrm{J}, 5-10 . \mathrm{hy}$. $200-\mathrm{ma}$, smoothing ehoke.
$I_{1}-1.0$ (lwatt 115 -volt lamp,
$\mathrm{S}_{1,} \mathrm{~S}_{3}, \mathrm{~s}_{4}$ - 10-amp, toggle switeh.
S_{2} - 5 -amp, toggle switch,
' ${ }^{\prime}$, ' \mathbf{I}^{3} - $\overline{5}$-volt 3 -amp, filanent transformer.
 former.
 former, 10,000 volt insulation.
'l's - $17.50 / 1500 / 12.50-v$, d.c. 2(M)ma.-or-more plate trans.
VR - VR- -0 voltage-regulator tulue.
currents of the oscillator and buffer (100 to 120 ma.). However, there should be a usable dip in current when C_{7} tunes the buffer tank circuit through resonance. If the circuit is tuned to 1850 kc., it will not need readjustment for any frequency between 1800 and 1900 ke . Similarly, if it is initially adjusted for 1950 kc., it will cover the 1900- to 2000-kc. range.

The proper bias adjustment for the final amplifier will depend upon the type of tube used. Any additional operating bias voltage above 7.5 volts is obtained by grid-leak action from R_{5} in the power supply. The resistance at which R_{5} should be set can be determined by subtrarting 75 from the rated operating bias for the tube used and dividing the remainder by the rated grid cur-

Adjustment

If the transmitter is to be used for c.w. operation, it may be desirable to experiment briefly with C_{3} to obtain best keying characteristies. It may be found that a different capacitance will work better with some crystals, while with others the condenser may not be noeded at all, or that the keying will be better with C_{3} connected from grid to ground, rather than from screen to ground.

With the oscillator running, the d.c. voltage across the buffer grid lak, R_{4}, should be 90 to 110 volts. A milliammeter placed in the $400-$ volt lead will read the combined

Fig. 6-88- Rear view of the 1.8.Me. transmitter. 'lhe construction of the amplifier plate coil and its swinging link is shown at the left. The plate r.f. choke and the plate by-pass condenser are mounted underneath the main tuning condenser, which is supported by 1 -inch stand-off insulators. An insulated coupling is used between the rotor shaft of the condenser and the panel control, 'The meotralizing condenser is visible lehind the amplifier tube.
rent in amperes. The amplifier should be neutralized before applying plate voltage. If necessary, the size of L_{2} should be adjusted so that resonance oreurs with the tank condenser set near maximum capacitance.

The choke, $R F^{\prime} C_{5}$, should be the only means necessary to suppress v.h.f. parasitic oseillation if a Type 5514 tube is used. Other tubes may require circuit alterations.

A Simple VFO

The details of a simple VFO with output at $1.75,3.5$ or 7 Mc . are shown in Figs, 6-8! through 6-91. In the circuit, shown in Fig. 6-93, a Tlype 5763 miniature pentode in a series-tuned Colpitts oscillator circuit drives a similar tule as an amplifier or doubler. The output circuit of the oscillator stage is broadbanded through the use

Fig. 6.89-A simple VFO delivering output at 1.ī, 3.5 or 7 Mc .
of self-resonant slug-tuned ails at L_{2}, and frequeney may be doubled in this circuit, as well as in the output circuit, to obtain 7 -Me. output. For 3.j-Mc. output, frequency may be doubled in either stage. The nominal output is approximately 2 watts - sufficient for driving the usual

Fig. 6-90 - The top of the simple VFO showing the vecillator tuning conderser, the tuthes and pluy-in eorils.
erystal-oseillator stage of the transmitter.
To simplify the bandepread problem, the oscilbator tuming range is restricted. At 3.5 Mc . a range of approximately 250 kc . is covered. For c.w. operation in this band, the band-set condenser, C_{2}, is set so that the tuning condenser, (1 , covers approximately 3500 to 3750 kc . For operation in the phone portion of the band, C_{2} is reset to shift the range to approximately 3750 104000 kr . (orresponding ranges are provided at the harmonies, and the oscillator can be tuned low (roough (by (2) to cover the 11 -meter band with appropriate doublers.

Construction

The unit is built in a $5 \times 6 \times 9$-inch steel box with cap-tupe covers. The components are assembled on all aluminum-shere base supported bexertions of aluminum angle stock that hold the base halfway between the two covers. On top, the tuning condenser, C_{1}, is fastened divertly to the base along the center line. 'The shaft is fitted with a National Type A M vernior dial. The two tubes and L_{2} are in line to the right in Fig. 6-90 with the output tank coil, L_{3}, to the left of the amplifier tube. "The L_{2} eoils are wound on Milken Type 74001 shidfed slug-tuned forms.

I'nderncath, in Fig. 6-91, the band-set condenser, C_{2}, is mounted against the front of the box. A short lead through a feed-through point or elearance hole comerts the stator of C_{2} to the stator of C_{1} above. L_{1} is wound on a Millen 1-ineh coil form and is plated immediately to the rear of C_{2}. The routput tank eondensor, ('is, is monnted on a bracket with its rear stator termi-

Fig. 6.91 - Bottom view of the simple VFO showing the arrangement of parts underneath.

Fig. 6.92 - Circuit diagram of the simple VFO.
C_{1} - Approx. $15-\mu \mu \mathrm{fd}$. variable (Millen 19025 with atl but 1 rotor and 2 stators removed).
$\mathrm{C}_{2}-100-\mu \mu \mathrm{fd}$. variable (Millen 22100).
$\mathrm{C}_{3}, \mathrm{C}_{4}-\mathbf{0} .001-\mu \mathrm{fl}$. silyered mica.
$\mathrm{C}_{5}, \mathrm{C}, \mathrm{C}_{15}-100-\mu \mathrm{ff}$. niica.
$\mathrm{C}_{6,}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{11}, \mathrm{C}_{12}-\mathbf{0} .01$ - $\mu \mathrm{fd}$. disk ceramic.
Ci0, $\mathrm{C}_{13}-0.001-\mu \mathrm{fd}$. disk ceranic.
$\mathrm{C}_{14}-1.10-\mu \mathrm{ffd}$ variable (Millen 22140).
$R_{1}, R_{2}-47,000$ ohms, $1 / 2$ watt.
1_{1} - 62 turns No. 30 d.s.e., 1 inch diam., close-wound. $1.2-1 . i 5 \mathrm{Mc}-210$ turns No. 36 d.s.c., $1 / 2$ inch diam., elose-wound (Millen 7.1001 form). ($300 \mu \mathrm{~h}$.)
-3.5 Me. -126 turns No. 30 d.s.c., $1 / 2$ inch diam.,
nal close to the coil socket. It is placed so that its insulated shaft-extension control will balance up with the control for C_{2} in front.

The various r.f. chokes and fixed condensems are grouped closely around the sockets with which they areassociated in the cireuit. All power wiring is done with shielded wire and coaxial output terminals are provided at the rear for either capacitive or link coupling. Key and power connections are made through the octal plug. Several ventilating holes are cut in the longer sides of the box and also in the top cover.

Adjustment

The unit requires a regulated 150 -volt supply. The supply diagrammed in lig. 6-93 is suitable. First adjust R_{1}, Fig, 6-93, to the maximum resistance that will permit the VIR150 to stay ignited when the key is closed. 'Ihen, listening on a calibrated receiver, close the key, sot C' at maximum eapacitance and ablust C_{2} until the oscillator signal is heard at 3500 ke . 'runing C_{1} shoukd then cover the band up to about 3750 ke . Mark the setting of C_{2}, set C_{1} at maximum again and adjust C_{2} until the signal is heard at 3750 kc .
 $11 / 2$ inches diam., elose-wound (Vational IR1780世,)
-3.5 Mc - $16 \mu \mathrm{~h} .-20$ turns No. 22 d.e.e., $11 / 2$ inelies diam., close-wound (National AR17. 40 F).
-7 Mc . $-5 \mu \mathrm{~h} .-12$ turns No. 22 d.e.c., $11 / 2$ inches diam., $3 / 4$ inch long (National Allif-2015).
J_{1} - Chassis-mounting oftal plug.
$\mathrm{J}_{2}, \mathrm{~J}_{3}-\mathbf{I}$ male coaxial connector (Jones Slol-I).
RPC
$\mathrm{RFC} 2, \mathrm{RFC}_{3}-2.5-\mathrm{mh}$. r.f. chohe (standard type).
Then C_{1} should cover the range from 3750 to approximately 4000 ke. Repeat the process, setting C_{2} for about 3350 kc . to ohtain the proper range for 11 meters.

To adjust the remainder of the circuit, turn the slug of L_{2} in full. Touch a small noon bulb to the capacitive output terminal and adjust C_{14} for maximum indication. Check the output frequency with a wavemeter, since indieations may be obtained at any multiple of 1.75 Me. When the VFO is comnerted to a following stage, C_{14} and L_{2} should be adjusted for maximum grid current. For caparitive output coupling, connection is made at J_{2}, while J_{3} is provided for link coupling. With capacitive coupling, the output tank circuit should resonate with coasial-rable lengths up to five or six feet. The frequency should be rechecked, since the setting of C_{14} will be influenced somewhat by the length of the coaxial cable with (apacitive coupling. C_{14} may require an occasional touch-up in tuning the VFO arross the band. A milliammoter comnerted in series with the key should read approximately 40 ma.; about half of this is taken by the oscillitor screen and plate circuits.

Fig. 6.93 - Circuit diagram of a power supply for the sin. ple VFO.
$\mathrm{C}_{1}, \mathrm{C}_{2}-16-\mu \mathrm{fd} .450$-volt electroIytic.
$\mathrm{R}_{1}-5000$ ohms, 25 watts, adjustable.
$\mathrm{L}_{1}, \mathrm{I}_{2}-10-\mathrm{h} .50$-ma. filter choke. J_{1} - Oetal socket.
S_{1}-3-amp. toggle switch.
T1-Power tranformer: 325-0. 325 volts r.m.s., 40 mas; 6.3 volts, 2 amp, 5 volts, 2 amp .

A Silenced VFO for Break-In C.W.

Unfortunately, there is no known practical way in which an oscillator, particularly of the VFO type can be keyed without a compromise in respect to clicks or chirps. Steps taken to eliminate one will aggravate the other. In the VFO unit shown in Figs. $6-94$ through (6-97, the oscillator is not keyed, hut allowed to rum eontinuously while a subsequent amplifier is keved. The signal from the oscillator is suppressed by proper shiolding and circuit design, so that it does not interfere with reception on any frequence, including the operating frequensy, even with the receiver r.f. gain control at maximum. Any desired shaping of the keyed signal can be applied to the amplifior without introducing chirps.

A diagram of the system is shown in Fig. (6-95). A very low-power high-e Martley oseillator (15 to 20 volts at the plate), using a fil3D)f and operating in the region of 875 ke . drives a second
 the same frecpuency. The Class A stage, in turn, drives a $6 \mathrm{~A}(95$ doubler to 1750 ke . This stage is keved by the blocked-grid method. Thus, until the key is closed, most of the signal is confined to $875^{\circ} \mathrm{ke}$. Further supression of harmonics from the oscillator is obtained by omitting the cathode bepats condenser in the Class A stage, therehy introdueing a slight amount of degeneration.

The output cireuits of both the oscillator and buffer are broadbanded, and require only initial adjustment. The output cireuit contains a bandpass eoupler, thus preserving single-control tuning throughout.

Construction

The photographs of Figs. (i-94 and 6-9(6) show one methol of construction. The unit is housed
in a standird $5 \times 6 \times 9$-inch sted utility box. Small rubber shork mounts are bolted to the bottom cover of the box so that the entire assembly can be mounted on a chassis close to the input cireuit of the transmitter it is used to drive. larts liyout within the box is not critical, and may be changed from the arrangement shown in the photographs to meet individual preferences, provided that cortain considerations are kept in mind. It is desirable to have as much isolation as possible between stages to eliminate stray coupling of the oseillator harmonic to the output circuit. For this reason all heater and d.e. supply leads are mate with shielded wire, with the shield braid grounded at several points.

Most of the parts are mounted on an aluminum shelf eut to fit snugly inside the box, and spaced $11 / 8$ inches from the bottom. The interior of the bottom is divided into two compartments bey a shield as shown in the photographs. The larger eompartment contains the oscillator cireuit, and the smaller the Class A and doubler stages. The coils in the smallor compartment should be. mounted at right angles to one another.

In the top viow, Fig. (6-94, the oscillator tube is at the right of the main tuning condenser, the Class A stage at the left, with the doubler eentered about $13 / 8$ inehos in from the left hand edge. The adjusting serews for L_{2} and L_{3} are visible betwern the tubse. Band-sotting condenser (C_{2} is mounted at right angles to the main tuning condonser, with its adjustment shaft projerting through the right hand side of the ease. The oseillator coil is mounted on a ceramic insulator adjarent to the tuning condensers. An externsion shaft is brought out from the rear of C_{1} so that additional stages may be ganged to the oseillator tuning condenser if insired.

Fig. o-9.d - Top view of the siloneed VF'O with cover remoned. The dial is a Dillen tym liols.3.

Fis. 6.95 - Circuit diagram of the silenced VFO.

(i_{2} - $2001-\mu \mu$ fil, variathe (Nillen [02000).
(ia - (881)- $\mu \mu \mathrm{fal}$. silvered mica.

 (i, $2-0.0)^{-}-\mu \mathrm{fl}$, paper.
Ci4, Cis - $30-\mu \mu \mathrm{fd}$. mioa trimmer.
(:10-25- $-2 \mu \mathrm{ff}$. mica.
(i19-33- $\mu \mu \mathrm{ft}$. mica.
$R_{1}-1 \overline{4}, 000$ ohms, $1 / 2$ watt.
$R_{2}, R_{4}-10,000$ ohms, $1 / 2$ watt .
$\mathrm{R}_{3}-17,000$ ohms, 1 watt.

Adjustment and Operation

Some adjustment of the amount of fixed capacitance used in the oscillator circuit may be required to permit tuning the range 87.5 kc . to 1000 ke . With the values shown, only the e.w. portion of the $3.5-$ to $4-$ Mc. band will be covered by C C This results in greater bandspead, but if full coverage is desired, the $200-\mu \mu \mathrm{fd}$ condenser should be used as C_{1}, with the $10-\mu \mu$ fol unit for Ce. A wide range of frectuencies, inclading the 11-moter band can be covered by readjustment of the band setting eondenser C,

The most important adjustment is to make sure that the Class A stage is oprorating true (latss A, beraluse if grid current flows in this
$\mathrm{R}_{5}-330$ ohmes, 1 watt.
$\mathrm{R}_{6}-0.1$ mequhm, $1 / \frac{1}{2}$ watt.
$\mathrm{R}_{\text {; }}-0.202$ megohm, $1 / 2$ watt.
Rs - $0.25-\mathrm{meq}$ ohm potentomet.r.
 inch diam, tapped 11 turns from ground ent.

IA - 11 uli. - 37 turns No, 31 enams, I inch diam., clome-wound.
I_{5} - 1.5 رh. - 11 turni Vo, 30 enam., 1 inch diam. close-wound on same form a- 1 , spaced approx. $3 / 16$ inch.
stage, the osedlator harmonic will be heard in the receiver even when the key is opened, defeating the purpose of the unit. To do this, resomate the plate cireuit of the oscillator in the ecnter of the desired tuning range. Then do the same for the plate circuit of the Class it stare. If no wavemeter capable of tuning the required range is available, a receiver tuned to the broadcast band can be used. Connect a low-range voltmeter, through a $2.5-\mathrm{mh}$. r.f. choke, ateross cathode resistor R_{5} of the Class A stage. About 3 volts bias should be indicated. Now pull the oscillator tube out of its socket. The voltage read across R_{5} will remain the same if Class A conditions are being met. If they are not, reducing

Fip. 6-97-Cireuit diagram of a suitable power supply for the silenced SFO.
$\mathrm{C}_{1},\left(\mathrm{C},\left(\mathrm{C}_{3}-\mathrm{f} 0-\mu \mathrm{ft}\right.\right.$. 450 -volt elertrolytic
$\mathrm{h}_{1}-10,001$ ohms, 25 watts, adjustable.
H_{2} - 5,000 ohms, 10 watts, adjustable.
$I_{1}, I_{2}, I_{3}-1.5 \mathrm{~h}_{3}, 50$ ma.
S_{1}-s.p.s.s.t. togate.
T_{1} - Power transformer: 600-0000 volts r.m.s., 50 ma,; 6.3 volts, 2. 5 ampu.; 5 volts, 2 amps.

oscillator output by inereasing the size of R_{3}, or decreasing the size of either R_{2} or R_{4} should correet the trouble.

To adjust the bampass coupher in the output cireuit, it is first necessary to comeret the unit to the stage it is to drive in the main portion of the transmitter. This should be done with as short a lead as possible. In the arrangement shown in the eireuit diagram, direet connertion of the output to the grid of the next stage is shown, so that the fixed bias applied to the keving circuit can also be applied to the following stage. This is a requirement if full advantage of
(A)

(b)

Fig. 6-98 - 'Two suggested methods of coupling the VFO unit to the transmitter. In looth cases the 6 .lo: is used as cither a doobler or guadrupler from the outpat of the IFO. In A, a former erystal-oseillator stage hats been revised to operate with fixed hias. In B, a switching system providing for either UFO or crystal control is shown.
$\mathrm{C}_{1}-0.001-\mu \mathrm{fd}$. (or larger) mica.
$\mathrm{R}_{1}-10,000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{2}, \mathrm{~K}_{3}-47,000$ ohms, $1 / 2$ watt.
S_{1} - Double-pole 3-or-more-position ceramic.
the "silenced" feature of the design is to be gained, as explained below. Once connection to the grid of the following stage is made, open one side of the secondary circuit of the bandpass coupler, separate the two coils as far as possible, and resonate the primary circuit with the oscillator set to the center of the band. Reconnect the secondary, open the primary circuit, and resonate the serondary circuit, adjusting it for resonance in the center of the desired pass-band. A grid (iip meter will be invaluable in making these adjustments, although they can be done, at a sacrifice of time, by other methods. Once both rireuits are resonated properly, move one coil floser to the other a fraction of an inch at a time until the response of the coupler is flat across the band. Output should be observed by noting grid current in the following stage as the main tuning condenser is tuned through its range. If the output varin's widely from one end of the band to the other, readjustment of the trimmer condensers, and the coupling between the windings, is required. Sufficient drive for the former orystal oscillator in almost any modern transmitter should be available aross the entire band. To climinate the last trace of signal from the oscillator, it is usually necessary to apply a certain amount of fixed bias to the grid of the stage into which the VFO works. When connected as indicated in Fig. 6-95, the 75 volts bias from the VFO power supply will be applied to the grid of the following stage. If the following stage has a grid blocking or coupling condenser, this should be removed. Any grid leak in this stage also should the eliminated.

Adjustment of the keving characteristics is made by changing the resistance and capacitance in the keying circuit, as described elsewhere in this book. A variable resistance, R_{8} is built into the unit, but some experimentation with the value of C_{12} may be needed to suit individual tastes.

The diagram of a suitable power supply for this unit is shown in Fig. 6-97. R_{1} should be adjusted until the two VIR tubes operating from this branch stay ignited under load. R_{2} should similarly be adjusted until the VR tube stays ignited under operating conditions.

A 450-Watt Push-Pull Triode Amplifier

The push-pull amplifier shown in Figs. 6-99 through 6-104 employs a pair of 812-As, or similar triodes, capable of handling op to tol watts input c.w., or 300 watts plate-modulated 'phone. 13y means of plug-in coils, it may be operated from

Fig. 6.99 - A 450 -watt push-pull triode amplifier.
3.5 to 28 Mc. A link-coupled antemata tuner is included, the variable link being adjustable from the pancl. Power-supply leads are filtered for v.h.f. harmonies and the unit is placed in a sereened enclosure to minimize TVI. 'Thre top of the enclosure is ninged to permit changing coils. For operation at maximum ratings, the unit requires a plate supply deliverng liog0 volts at 300 ma. for c.w., or 1250 volts at 250 mil . for 'phone. A fixed-bias source of 90 volts also is needed. Suitable circuits are shown in lig. ($\mathrm{i}-10$. 4 .

A condenser, C_{1}, Fig. ($\mathcal{i}-102$, is inserted at the center of the grid tank coil. and separate filament transformers are used so that individual grid and
cathode currents may be compared. Filtered leads with terminals for external meters are provided and meter switches are included. The grid meter, connerted at MA1, should have a scate of 50 ma , while the cathome meter, connected at MA2, should have a scale of at least 300 ma . The tubular air condensers, C_{7} and C^{\prime}, provide direct paths from plates to filamont for v.h.f. These reduce harmonies and eliminate parasitics.

Construction

The unit is eonstrueted on a $10 \times 17 \times 3$-ineh chassis with a standard panel $153 / 4$ inches high. The amplifier and antemat ther are separated by a metal partition. The partition is placed so that the shaft of the Millen right-angle gear box, by which the antemat link is adjusted, falls on the vertical conter line of the panel. The gear box is placed on the amplifier side of the partition.
In laying the components out on the chassis, the amplifier plate tank condenser, mounted on

Fig. 6.100 - Details of the tubular air condensers.
$5 / 8$-inch cone insulators with metal angles, is placed first. IRoom must be left for the two tubes close alongside, with the neutralizing condensers staggered between the tubes. The grid-coil socket is placed to the right (lיig. 6-101) so that the axis of the coil is at right angles to the axis of the plate tank coil. The jack bar for the latter is

Fig 6-101-Rear riew of the p.p. triode anphifier.

COIL TABLE - PUSH-PULL TRIODE AMPLIFIER								
Coil	Band	l. $\mu \mathrm{h}$.	Turns	Uire	Itiam.	L, $\mu \mathrm{h}$.	Liink	Manufactured Type
L_{1}	3.7	53	56	18	$11 / 4{ }^{\prime \prime}$	$13 / 4^{\prime \prime}$	4	Sational ARS-17-80C
	7	11	22	29	$1 \frac{11 / 4}{}{ }^{\prime \prime}$	11/411	5	Vational AR-17-10s
	14	7	14	22	$11 / 4^{\prime \prime}$	「o"	5	Xational IR-1i-40S t turns off carch side
	21	2.5	10	18	11/4"	$1^{\prime \prime}$	3	National AR-17-20s 1 turn off rach side
	28	0.7	4	18	11/4"	1/2"	2	National AR-IZ-IOS 1 turn off each side
L_{2}	3.5	40	10	11	218	$3^{\prime \prime}$	6	Johnson 500 HCF.80
	7	15	24	12	-19	$5^{\prime \prime}$	6	
	1.4	3.5	12	1	$\underline{121}$	$5^{\prime \prime}$	3	Johnsom 50, IIC Cl -20
	21	1	8	1	$\underbrace{\prime \prime}$	-"	3	Johnein 5(0) II (.F.10
	28	0.7	6	6	- "	$4^{\prime \prime}$	3	Johnson $\mathbf{5 0 0}$ IICR-10 I turn off each side
L_{3}	Same as li, with swinking link							Johnson 500 110

spanning the bottom of the chassis, leaving dearance room for the socket terminals. The neutralizing eondensers are removed from theil original mountings and fastened instead to Millen Type 32103 feed-through insulators: set in the strip. The staggering of these condensers can be seen in Fig. (6-103. It is important that the flanges of the tubular condensers be placed against the bottom side of the
mounted from the tank-condenser frame on small angle pieces. When the position of the plate tank condenser has been fixed, the antenna condenser, similarly mounted, should be placed to balance at the other end of the chassis,

The tubes, meutralizing condensers and the tubular condensers are mounted, through clearance holes in the chassis, on an aluminum strip
aluminum strip so that there will be a short path to the tube sockets where the filement by-pass condensers are grounded. The plate-return condenser, C_{11}, is fastened to the left-hand edge of the aluminum strip (Fig. 6-10:3), and connerted to the frame of the plate tank condenser through a clearance hole in the chassis. The grid tank condenser is mounted centrally on the under side of

Fig. 6.102 - Circuit diagram of the 150 -watt push-pull triode amplifier and antenna tuner.
$\mathrm{C}_{1}-0.0022-\mu \mathrm{fd}$. mica,
(.2-100- μ fdd.-per-section var. (Johnson 10011D-15).
$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{17}, \mathrm{C}_{18}, \mathrm{C}_{19}, \mathrm{C}_{20}, \mathrm{C}_{21}-170-\mu \mu \mathrm{fd}$, mica.
$\mathrm{C}_{7}, \mathrm{C}_{x}-12-\mu \mu \mathrm{fil}$. 8000 -volt tubular air condenser (sec Fig. 6-1(0)).
$\mathrm{C}_{9} \mathrm{C}_{10}-$ Veutralizing condenser $-4-14 \mu \mu \mathrm{fd}$. (Millen 15006).
$\mathrm{C}_{11}, \mathrm{C}_{13}-\mathrm{SOO}-\mu \mu \mathrm{fd} .2500$-volt whg, mica.
$\mathrm{C}_{12}, \mathrm{C}_{14}-100-\mu \mu \mathrm{fd}$. per section variable (Johnson 100FD-30).
$\mathrm{C}_{15}, \mathrm{C}_{18}-0.1$ - $\mu \mathrm{fd} .250$ volts (Sprague II ypass).
$R_{1}, R_{3}-1000$ ohms, 10 watts (for 812.As).
$R_{2}, R_{4}-100$ ohms, $1 / 2$ watt.
R_{5}, R_{8} - $\mathbf{5 0} 0 \mathrm{ohms}, 2$ watts.
J_{1} - Coaxial connector.
R $\mathrm{FC}_{1}-1$-mh. 600 -ma, r.f. choke (National RISI).
$\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}$ - Sce coil table.
 choke (Ohmite Z-50).
$\mathrm{s}_{1}, \mathrm{~s}_{2}$ - D.p.d.t. toggle switch.
$Y_{1}, \mathrm{~T}_{2}$-Filament transformer: 6.3 volts, 8 amp.

Fis. 6. 103- Buttom , ien of the p.p. Iriode amplifier.

the chassis. Brackets space it so that it will clear the grid-coil sosket which is mounted directly underneath the condenser.

An aluminum strip is bent to span the length of the antenna tank condenser and the jack bar for the antenat coil is fastened to this strip so that the coil is at right angles to the amplifier plate tank coil.

The two meter switches are placed on the panel on either side of the grid tuning control. Terminals along the rear edge of the chassis include a

Millen safety eonnector for positive high voltage, and a coaxial connector for exeitation input. All power wiring must be done with shielded wire. The coaxial eable connecting the plate and antenna links runs under the chassis and the sheath is grounded where it passes through holes in the chassis. The chokes and condensers forming the v.h.f. filters should be placed immediately at the power-supply terminals.

Any exciter unit furnishing 30 watts or more should be suitable for use with this amplifier.

Fig. 6.104- (iircuit diagram of a power supply and control system for the push-pull triode amplitier.
$\mathrm{C}_{1}, \mathrm{C}_{2}-4 \cdot \mu \mathrm{ff}$. 2000.volt ail-filled.
$\mathrm{C}_{3}-8 \cdot \mu \mathrm{fd}$. 450 . volt electrolytic.
$1 R_{1}-25,(000$ ohms, 150 watts.
$\mathrm{K}_{2}-50,000$ ohms, 25 watts, adjust. ahle.
$\mathrm{R}_{3}-1500$ ohms, 25 watts, adjustable.
$\mathbf{R}_{4}, \mathbf{R}_{5}-100$ ohms, I watt.
$\mathrm{L}_{1}-5 / 2$.hy. swinging phoke, 201. ma. for single tuler, f(x)-ma. for push-pull.
$\mathrm{L}_{2}-20$-hy. smoothing ehoke, 200 . ma. for single tube, f(0)-ntat. for push-pull.
$L_{3}-30$-hy. 50 -ma. filter chohe.
$J_{1}-1.50$-wati $11.5 \cdot$ olt lamp.
S_{1} - 15 -amp. switch.
S_{2}, S_{3}, S_{4} - 10 -amp. wwitch.
S_{1} is the main powerswiteh, turning on all filaments and the bias supply and setting up the circuit for $\stackrel{N}{2}^{2}$ which controls the exciter plate supply. si also sets up the circuit for S_{4} which turns on the highowhtage supply. S 3 cuts in or out h_{1} for reducing power during transmitter adjustment. R_{2} is adjusted so that at least one of the YR tubes just ignites without excitation.
T_{1} - Filament transformer: 2.5 volts, 10 amp, 10,000 volt insula, tion.
' \mathbf{T}_{2} - I'late transformer: $1200 / 1500$ volts d.c., 200 or 400 ma.

A Push-Pull 813 Amplifier

Figs 6-105 through (6-109 show the details of an amplifier capable of handling 800 watts input in ANI 'phone operation or 900 watts $\mathrm{c} w$. A pair of 813 beam tetrodes is used. The eircuit is shown in Fig. 6-106. A multiband tuner (National M13S-30) eliminates the need for aceoss to the grid circuit and thus permits complete shiclding of the grid circuit for better stability. With this tuncr, the grid tank cireuit may be resonated anywhere within the frequency range of the transmitter without changing coils.
small improvised condensers are used to neutralize the amplifier, and chokes inserted in the grid leads eliminate v.h.f. parasitic oscillation.
Three meters are used in the amplifier. One measures the total cathode current of the amplifier, while the others are switehed to read individual grid or screen currents of the two tubes, thus permitting a ready comparison of currents for balance in the stage. All supply leads and the leads running to the meters are shielded and filtered to reduce TV1. Plugin eoils are used in the output cireuit.

Construction

The final amplificr is assembled on a 17×13 $\times 3$-ineh ehassis with a $171 / 2$-inch metal panel. The tank condenser is mounted at the exact eenter of the chassis on 1 -inch cone insulators. A high-voltage insulating coupling is placed between the condenser shaft and the control on the panel. The fixed condenser, C_{2}, is placed under the eondenser frame and is conneted betwere the frame and a grounding serew in the chassis. This screw also is used for grounding the grid tuner below.

Charance holes are cut in the chassis and the soekets are submounted on $1 / 2$-ineh spaeers so that the plate caps of the two tubes will come close to the outside terminals of the eondenser stators. A large feed-through insulator is plaed $1 \frac{1}{2}$ inches from the inside edge of eaeh of the elaratace holes, A $1 / 2$-inch strip of aluminum, about $2 \frac{1}{2}$ incheslong, is bent into " L "
shape and mounted on top of each feedthrough. This serves as one side of the neutralizing condenser, the plate of the tube itself forming the other side of the condenser.

To the rear of the tank condenser, the coil jack bar is mounted on large stand-off insulators (National GS-4) to bring the coil terminals close to those of the tank condenser. The link is adjusted from the panel by means of a right-angle gear drive (National ACD-2) mounted from a bracket fastened at a rear corner of the chassis.

The three meters are enclosed in a standard $3 \times 4 \times 17$-inch chassis acting as a shielding box. The box is fastened to the pancl with selftapping screws. standard 10 -inch panel braekets are fastened to the ends of the meter box as well as to the pancl and ehassis. Power terminals and connectors for r.f. input and output are lined up along the rear edge of the chassis.

Underneath, the grid tuner is mounted at the center of the chassis on pillars to space the coils equally between the chassis and its bottom plate. The individual filament transformers are placed close to their associated sockets. The lower terminals of the two feedthrough insulators are connected to opposite (not adjaeent) grid terminals. One end of the parasitic-suppressor chokes is soldered direetly to the grid terminal of the socket. A 1-inch ceramic pillar at the forward inside eorner of each tube socket serves as an insulated tie point for the parasitic choke, the grid choke, the fixed grid condenser and the neutralizing lead on each side of the circuit.

A terminal board at the rear holds the v.h.f. filter components for the a.e. and bias lines. Filters in the other power leads are placed close to their respective terminals. All power wiring is done with shielded wire. The highvoltage lead is a piece of ignition cable covered with a sheathing of eopper braid. Shielded leads also connect the meter switehes underneath the ehassis to the meters on the panel

Fig. 6-105-A push-pull 813amplifier designed for rach mounting. The meter switches flank the grid taning dial at the hottom, witl the plate thang dial and the control for the swinging link helow the sueters.

Fig, 6-106 - Schmatio diagram of the mash-pull 813 amplifier,
 (Millen 0.4103).
C_{2} - $0.001-\mu \mathrm{fl}, 5000$-volt-whg, mica,
(.3. C4-125-mpfd-per-wertion variable, 0.026-inch sparing (National SSII-125 - part of M13-20 tuner).
$\mathrm{C}_{5}, \mathrm{C}_{8}-0.001-\mu \mathrm{fd}$, mica.
$\mathrm{C}_{-\mathrm{C}}, \mathrm{C}_{\mathrm{s}}-0.001-\mu \mathrm{fd}$, $1(0) 0$-volt-wkg, mica.

$\mathrm{C}_{25}, \mathrm{C}_{18}, \mathrm{C}_{19}, \mathrm{C}_{20}, \mathrm{C}_{21}, \mathrm{C}_{22}, \mathrm{C}_{23}, \mathrm{C}_{24}, \mathrm{C}_{25}-470-\mu \mu \mathrm{fl}$. mica.

Ci-Sectext.
$\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}, \mathrm{~K}_{4}-100$ ohms, $1 / 2$ watt.
L_{1} - B \& W HOWI series coils:
(All are split-winding evils, $3 / 4$ inch between sections for all exrept 21- and 28 -Ne. conls where the spacing is $11 / 4$ inehes, Dimensions given are for carli section of coil.)

- 3.5 Mc , 16 turns No. $10,31 / 2$ inches diam,, 3 inches long.
- 7 Mc . 10 turns No. $8,31 / 2$ inches diam., $27 / 8$ inches long.
above. C_{24} and C_{25} are conneeted directly aeross the terminals of the meters, but $R F C_{14}$ and $R F C_{15}$ are placed under the chassis at the switch terminals.

Any exeiter capable of delivering 20 to 25 watts should be suitable for use with this amplifier.
$-11 \mathrm{Ve},-6$ turns No. 8, $31 / 2$ inches diam., 3 inches long,
-2l Me.- 1 turns 3 is-inch copper thbing. 3 inehes diam., $27 / 8$ inches lnng.

- 281 Mc . - 2 turns 3 楊-inch copper tuling, 3 inches diam, $27 / 8$ inches long. (One turn removed from each section of IIINI,-11.)
1.2, 1.3 - 7 turns No. 29,1 -inch diam., 516 inch long, $3 / 8$ inch between windings (part of MB-20 tuner).
1.4 - 30 turns No. 22, 1 -inch diam., $11 / 4$ inches long (part of M13-20 tuner).
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Coasial connector.
$\mathrm{HI}_{1}, \mathrm{M} \mathrm{I}_{2}$ - $\mathbf{- 5 0} \mathrm{ma}$, d.e milliammeter.

RP(3 - 800-ma, r.f. choke (ational R-175).
$\mathrm{RFC}_{2}, \mathrm{RHC}_{3}-2.5-\mathrm{mh}$, r.f. choke.
 1833).
$\mathrm{RFC} C_{6}, \mathrm{RFC}_{-}, \mathrm{RFC}, \mathrm{RFC}, \mathrm{RHC}_{10}, \mathrm{RFC}_{11}, \mathrm{RFC}_{12}$,
 (Ohmite Z-50).
$\mathrm{S}_{1}, \mathrm{~S}_{2}-2$-section 3 -position ceramic rotary.
$\mathrm{T}_{1}, \mathrm{~T}_{2}$ - lilament transformer: 10 volts, 5 amp. (Thordarson '121F18).

Adjustment

Fig. 6-109 shows the cireuit diagram of a power-supply system for this amplifier. The seetion at the bottom supplies sereen and bias voltages. Starting at maximum resistance, R_{3} is adljusted until at least one of the VR tubes just

Fig. 6.10 - Near view of the ${ }^{-}$ push-pull 813 amplifier. The feed-through insulator holding one of the neutralizing cometensers is just to the left of the visille 813. The chaseis that eneloses the meters is held in proition with self-tapping serews passing through the up-ended panel brackets. "Jhe mear drive at the left is for link arljustment from the panel. lnput, outpitt and all puner eomections are arranged along the rear edge of the ehassis.
ignites. R_{4} need not be used, or mary be shorted out, for c.w. operation. For plate modulation at maximum ratings, R_{4} should be set at 830 ohms. When S_{5} is open, reduced screen voltiure is applied to the 813s. After the final amplifier has been adjusted for operation at full lotal, l_{6} should be adjusted finally to hring the sereen voltage to 400 for e.w. or 350 for phone under cperating conditions. S_{5} should always be open during preliminary adjustments of the final amplifire or regular adjustment of the exciter, since full sereen voltage in the absence of plate voltage and full load can cause dangerouk heating of the sereen.

The power switehes are arranged in series so that the lower voliages must be turned on before the higher voltages can be applied. Under normal operating conditions, all switehes will be closed except \mathbb{S}_{2} which then serves as the power eontrol for the entire transmitter.

In adjusting the multiband tumer in the amplifier grid circuit, the resonances should be checked carefully with an absorption wavemeter to make sure that the circuit is tuned to the desired frequency. The setting of each baud should then be logged.

Since the adjustment is more eritical at 28 Me. than on any of the other bands, the final stage should be neutralized with the transmitter tuned to this band. With an indicating absorption wavemeter or other r.f. indicator coupled to the output tank coil and with exeitation onty applied, the grid and plate tank circuits should be tuned to resonance. Resonamee in the output tank circuit will be indicated by a maximum response on the indicator. The neut ralizing condensers should then be arljusted similarly, bit by bit, either by bending the metal strips eloser to, or farther

Fig. 6.108 - Bottom , iew of the push-pull 813 amplifier. The multiband tuner used in the grid circuit is centrally located, Hanked liy the two tube soekets. All by. pass condensers are mombed on the soch. ets. The neutralizing leads are crosised be: neath the insulated shaft coupling, and terminate at standorff insulators placed rlose to the grid terminals of the tube sochets. The harmonic filters are placed along the edge of the chassis elose to the points at which the varims leads leave the chassis. 'The coavial cable to the right is the output link line.

Hig. 6.109 - Cirenit diagram of a power supply system for the push-pull 813 anplifier.
(1) -8- ff . 1.50 -volt eleetrolytic.
$\mathrm{C}_{2}, \mathrm{C}_{3}-4$ - $\mathrm{ff} \mathrm{d}, 600$-volt electrolytic.
$\mathrm{C}_{4}-2-\mu \mathrm{fd}, 25(5)$-volt oil-filled.

$\mathrm{R}_{1}, \mathrm{R}_{2}$ - 100 ohme, 1 wall.
$\mathbf{R}_{3}-25,000$ ohms, 25 watts, adjustable.
R_{4} - 1000 ohms, 10 watts, adjusiable.
R_{5} - $2 \overline{5}, 000$ ohms, 50 watts.
$\mathrm{R}_{6}-50,000$ ohms, 50 watts, adjustable.
R $\mathrm{F}, \mathrm{R}_{\mathrm{s}}-2 \overline{5}, \mathbf{0 0 0}$ ohms, $\overline{5}$ watts.
L. 30 -hy. 50 -ma, filter choke.
L_{2} - $5 / 25$-hy 1.50 -ma, swinging choke.
L_{3} - 20-hy. 150 -ma. smoothing ehoke.
$1.4-5 / 25-h y, 500$ ma, swinging choke.
1.5-20-hy. $500 \cdot \mathrm{ma}$, moothing clooke.
I_{1} - 115 -volt lamp of suitable size to reduce voltage for tunc-up.
S_{1} - 20 -amp. s.p.s.t. switch.
$\mathrm{s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{4}-15$-imp. s.p.s.1. swith.
St-Ceramic s.p,s.t. rotary switch.
$\mathrm{T}_{1}, \mathrm{~T}_{3}$ - Filament transformer: 5 volts, 3 amp .
l_{2}^{+}Ilate transformer: 100 vole d.c., 150 ma.
T' - F'ilament transformer: 2.5 volts, 10 amp., $10,1000-$ volt insulation.
T_{5} - Plate transformer: $2000 / 2250$ volts d, $\mathrm{c}, 500 \mathrm{ma}$, VR - VR-150-30.
away from, the tubes, or by clipping the length of the strips until a minimum response on the neutralizing indicator is obtained when the plate tank circuit is tuned to resonance. In this particular amplifier, minimum r.f. feedthrough was obtained with the strips clipped to about a half inch.

To check the balance of the amplifier, temporarily disconneet the two center-tap leads of the filament transformers from the cathode meter and insert individual meters between the center taps and ground. Apply power to the exciter with the transmitter tuned to the 28-Mc. band. Resonate the grid circuit and set the meter switch to read individual grid currents. The readings may not be equal before plate and screen voltages are applied to the final amplifier, but the readings should rise and fall together as the grid circuit is tuned through resonance. If such is not the case, a slight readjustment of the position of the grid link should improve this condition. In some cases it may be necessary to connect a small padding condenser across one of the two sections of C_{3} and adjust it until the griel currents rise and fall in unison and are reasonably well balanced.

With a dummy load connected to the output, apply reduced screen and plate voltages, resonate the tank circuits and observe grid, screen and cathode currents of the two tubes. An agreement within 10 per cent may be considered satisfactory. If the difference is greater, check the wiring in the plate circuit to be sure that it is symmetrical. A slight difference in lead length, between the tank circuit and the tubes, can cause considerable unbalance at 28 Mc . Some readjustment of the grid padding condenser, if one is used, may help under such conditions.

In c.w. service, plate voltages up to 2250 may be used and up to 2000 for AM 'phone. Naximum plate current under these conditions should be 220 and 200 ma , respectively per tube. The total of grid and sereen currents of both tubes must be subtracted from the reading of the cathode meter to obtain the actual plate current. Screen current should be less than 40 ma . per tube with the amplifier operating under full load.

In TV areas, the amplifier must be fitted with a bottom plate and mounted in a shielding enclosure with provision for adequate ventilation.

A 1-Kw. Beam-Tetrode Amplifier

Figs. 6-110 through 6-114 show the circuit diagram and construction of a single-tube screen-grid amplifier capable of handling up to $1-\mathrm{kw}$. input on c.w., or 675 watts on platemodulated 'phone. It is designed to be operated in any band from 80 through 1θ meters by the use of plug-in coils. Any exciter capable of delivering 15 to 20 watts should provide adequate excitation for the $4-250 \mathrm{~A}$ in this a mplifier.

The circuit diagram is shown in Fig. 6-112. It is a conventional link-coupled arrangement except for the inductive link noutralizing system (L_{2} and L_{4}). This neutralization is desirable to maintain reliahle stability on all bands. All power leads are filtered for v.h.f. harmonics.

Construction

The amplifier is designed for use in a standard rack cabinet or other shielding enelosure. To that end, it is arranged so that both grid and plate coils may be removed by pulling toward the rear. Thus the chassis is inverted to provide access to the grid coil.

On top, the plate tank condenser is inverted and mounted with metal angles on 2 -inch ceramic cone insulators. It is placed so that its shaft will come at the center. The jack bar tor the tank coil is fastened between an angle piece at the forward end of the tank-condenser frame and another angle piece bolted to one of the panel brackets. The mounting is made so that the coil is tilted at an angle of about 45 degrees. The antenna-coupling link shaft is driven from a control on the panel by means of a Millen right-angle gear box. The neutralizing link, L_{4}, is the B \& W type Bl'L. The assembly is fastened with a single serew to the top of a $11 / 4$-inch ceramic pillar mounted on the rear corner of the tank condenser. This mounting permits the link to be pivoted on the pillar as well as hinged in the usual fashion.

Since coils with a variable end link are not available, center-link coils have been adapted to the purpose by using only one section of the two-section coils. As a matter of convenience in changing bands, the unused section of one coil is removed and a section of coil for an adjacent band is

Fig. 6-110 - Front view of the 4-250A amplifier, showing the method of assembling the panel and the chassis. The controls on the panel, from top to bottom, are the ontput coupling knob, plate tuning dial, and grid tuning dial. The panel is $19 \mathrm{by} 171 / 2$ inches.
mounted instead. Thus each coil plug strip carries coils for two bands and the change from one to the other is made simply by turning the unit end for end. The two unused jacks in the jack bar are connected together with a copper strap so that the unused section of coil is short-cireuited.
The tube socket (National HX-100-S) is submounted alongside the rear corner of the tank condenser where the plate lead to the stator terminal can be made short. The filament transformer is mounted at the front of the chassis out of the direct field of the tank. A elearance hole is cut for the terminals which protrude underneath.
Underneath, the grid tank condenser is mounted at the center of the chassis on $1 / 2$-inch stand-off insulators. A $33 / 8$-inch strip of aluminum is bent as shown in the bottom-view photograph to form a mounting for the grid tank coil directly to the rear of the condenser, as well as a shiclding enclosure for the components in the power-lead filters. The leads bet ween the coil socket and the condenser pass through small bushings (Millen 32150) or clearance holes in the aluminum. The socket and ventilating fan are enclosed in a $6 \times 4 \times$ $31 / 4$-inch box made of aluminum sheet. When the bottom plate of the box is in place, the fan forces air up through the socket to the tube. The box should be perforated with $1 / 4$-inch holes back of the fan to provide an air intake.
The filament, screen and grid by-pass condensers are mounted directly at the tube socket. All are grounded at the same point -

one of the socket mounting screws. A ceramic terminal strip for the a.c, line, bias, sereen voltage and ground terminals, a Millen safoty terminal for the plate-voltage connection, and a coaxial jack for r.f. input are mounted on the rear surface of the shielding strip.

All power wiring is done with shielded wire. The high-voltage lead is a length of highvoltage ignition cable covered with $1 / 2$-inch shielding braid up to within an inch of each end.

The grid-eireuit neutralizing link consists of two turns of No. 14 wire, $11 / 2$ inches in diameter, fastened to a pair of $2 \frac{1}{2}$-inch pillar insulators (National GS-2) so that the coil is coupled to the low-potential end of L_{1} and yet does not interfere with the removal of the grid coil.

Plate-Coil Modification

The 80-meter IIDVL coil is dismounted from its coramic plug bar and a diagonal cut is sawed through the center of the plastic strip holding the t wo sections of the coil. The 40 meter coil is similarly cut. One section of the 80 -meter coil and one section of the 40 -meter coil are then reassembled as a unit by cementing together at the center, the diagonal cuts overlapping. The coils for 14- and 28-Mc. operation are altered in the same way. Other combinations may be made up as desired, depending upon the bands wanted. The 21Mc. coil may be a soparate unit or combined with the coil for another band.

Adjustment

The circuit diagram of a suitable powersupply unit for this amplifior is shown in Fig. 6-113. Caution should he exercised in operating a beam tetrode with fixed sereen supply - especially a high-power tube - since the screen current in the absence of plate voltage and full load can run to damaging limits.

Fig. 6. 112 - Schematic diagram of the 1-2.00 A amplifier. C_{1} - $100 \cdot \mu \mu \mathrm{fd}$, variable ($\mathrm{National} \mathrm{TMS}-100$).

 C: - 0.001 - μ fid. $\mathbf{5 0 6 0}$-volt-wkg, mica,
Cs - $1: 0 \cdot \mu \mu \mathrm{fd} . \mathrm{mica}$.
C9- $500-\mu \mu \mathrm{fd}$. 1000 -vole mica.
(10 - 500 - $\mu \mathrm{\mu d}$, 5000 -volt-whk, mica.
Cit, Ci2- $0,005 \mu \mathrm{fl}$, 600 volts (Sprague I ypass).
1.1 - Villen t30010 serins coils:
3.5 Me. - 32 turns No. $30,1 \frac{1}{2}-\mathrm{in}$, diam, $1 \frac{1}{2} \mathrm{in}$. long, 7 -turn link (13082 with 6 turns removed).
7 Ne. - $2 . t$ turns Mo, $16,1 \frac{1 / 2}{2} \mathrm{in}$, diam, 2 in . long, T-turn linh (13012).
11 Me. - 9 turns No. 6 , $11 / 2 \cdot \mathrm{in}$. diam., $11 / 2 \mathrm{in}$. Tonk, 2 -turn linh (43022).
$21-28$ Mr. - t turne No. 14, $1 \frac{1}{2}$-in. diam., $18 / 8 \mathrm{in}$. lonk, 2 -turn link (13.312).
I_{2} - 2 -turn link, Vo, $14,11 / 2$ inches diam.
$1.3-13 \mathbb{N} W H O L$ serips (momified, see text).
3.5 Me. - 16 turn No. $10,31 / 2$ - in. diam., 3 in . long.

11 Mr. - 6 turns No. $8,312-\mathrm{in}$, diam., 3 in . long.
21 Me. 1 turns ${ }^{3} 16$-in, copper tubing, 3 -in, diam., 2 is in. lomg.
28 Me. - 3 turns ${ }^{3}$ is in . copper tuling, $28 / 8-\mathrm{in}$. diam., $25 / \mathrm{m}$ in. long.
L_{4} - $3 \cdot \mathrm{turn}$ swinking linh, No. $18,25 / 8$-in. diam., $1 / 4 \mathrm{in}$. long (BV1. link assembly).
$\mathrm{J}_{1} \mathrm{~J}_{2}$ - Coavial connertor (Amphenol 83-11R),
RHC, $\mathrm{RFC} C_{2}, \mathrm{RHC}_{3}-7 \cdot \mu \mathrm{~h}$, r.f. eloohe (Ohmite \%-50).

Fig. 6.111 - Rear view of the $1+250 \mathrm{~A}$ amplifier. The construction of the reversible plugein plate coil is shown. The small variable link at the left of the plate coil is a part of the neutralizing circuit. The grid-mil compartment is seen below the chassis between the slaield box that honses the fan and the partition on which the input terminals are mounted.

It is advisable to eonduct all preliminary adjustments at reduced screen voltage to keep the sereen dissipation at a safe level. The lamps, I_{I} and I_{2} in Fig. 6-113, are for this purpose. A size of lamp should be solected that will give the desired roduction in sereen and plate voltage, remembering that the lamps with lower wattage rating have a higher resistanee and therefore will give a greater voltage reduction.

Neutralization is merely a matter of adjusting the position of the plate neutralizing link for complete stability. Since the system depends upon correct polarization of the links, it may be necessary to reverse the eonnections to one of the links.

For operating at a plate voltage of 3000, normal excitation is indicated when the grid eurrent is 10 ma . and the hias 180 volts with the amplifier loaded to draw a plate current of 325 ma . C'nder these conditions, the sercen eurrent with a screen-supply voltage of 500 should run approximately 60 ma . For platemodulated 'phone operation at 3000 volts, the grid eurrent should be ? ma. at 310 volts under full load and the sereen current 30 ma . at 400

Fig. 6.113 - Cirenit diagram of a power supply for the beam-tetrode amplifier, S_{1} is the main switch, turning on all filaments. S_{2} tirns on the plate voltage for the excitor unit and sets up the cirenit for $\$_{3}$ which turni on both sereen and plate supplies for the amplitier, /1 and $/ 2$ are 115 -volt lamps of proper size to reduce screen and plate voltages to a suitable value for tuning. S_{4} and $\$_{5}$ short-rirenit these lamps for full-power operation.
$\left(C_{1}, \mathrm{C}_{2}-1-\mu \mathrm{fd}\right.$, 600) volt oil-fitled.
C3- $1-\mu \mathrm{fd}$. 1.50 volt -whg . clectrolytic. C4, $\mathrm{C} 5-\mathrm{t}-\mu \mathrm{fl}$. 3900 -volt oil-filled.
$\mathrm{R}_{1}-20,000$ ohms. 2., watts.
K_{2} - $\mathbf{. 0},(0)$ ohens, ${ }^{-3}$ watts, adjust. $\mathrm{I}_{3}-20,0 \mathrm{M} 0$ ohms, 2,5 watts, adjustable. $R_{4}, R_{5}-80,000$ olms, $\overline{5}$ watts.
I., $1,2-20$-hy. 100 -ma, filter choke. 1,3-30-hy. 50 -ma. filter chohe. $1_{4}-\overline{5} / \mathbf{5}-\mathrm{hy}$. 14 H -ma. swinging ehoke. 1.5-20-hy. 400-ma. smoothing choke. 11, \mathbf{I}_{2}-P'ower-redueing lamp. $\mathrm{S}_{1}-15$ amp, switeh.
$\mathrm{s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{4}, \mathrm{~s}_{5}-10$-amp. switch.
T1-Pilament transformer: 5 volts, $\xrightarrow{2}$ amp.
T_{2} - Plate transformer: $\mathbf{5 0} 0$ volts d.c., 100 ma.
I_{3} - P'ower transformer: 250-3.50 volts d.c., 5 mar; $\overline{3}$ volts, 3 amp.
T_{4} - Pilament transformer: 2.5 volts, 10 amp, 10,000 volts insulation.
Ts - Plate transformer: 30(0) volts d.c., (40) ma.

VR - Voltage regulator - VR-150. volts. Under the above conditions, R_{3}, Fig. (6-113, should be set at 3000 ohms for e.l. operation and at I8,000 ohms for 'phone operation. R_{2} should be aljusted so that the VR tube just ignites without exeitation.

Fig. 6-114-Botton view of the 4.250 A amplifier. 'The harmonic filters are in the compartment to the left of the grid coil. 'The arrangement of the by-bass condensers inside the fan housing is also shown, with the grid terminal of the tabe sochet pointing toward the grid tank circuit. 'The chassis measures 17 by 13 by 2 inches.

Rack Construction

Many of the units described in the constructional ehapters of the Handbook are designed for a standard rack mounting. This standardization f_{at} cilitates the assembly and modification of station equipment. Sinere the advent of television, racks of the enclosed type have become a matter of practical necessity for transmitter; to be operated without interference in neighborhoods where television rereivers are in use. While enelosed rabinet-type racks of metal are avaitable on the market, many amateurs prefer to build their own less expensively from wood and copper swrening. With eare, an expellent substitute can be made.

Fig. $6-115 \mathrm{~A}$ shows a broken top view of an enclosed rack made of copper sereening stret thed over a framework of woodstrips 1 by 2 or ibe 3. The copper screen, represented by the dashed lines and the cross-hatching, is stretched over the outside of each frame, wrapped around the ends on all four sides and tacked fast on the inside. The top and bottom are made in similar fashion. When the frames are fastened together, the screening makes contact all along carls joint. Contact at the hinge of the door at the rear is assured by the use of a fulllength piano hinge. Trim strips of thin wood

Fig. 6.1/6-Detail sketeh showing proper drilling for standard rack and panelt. As shown for the $3!2$ and $51 / 4$-ineh panels, only sufficient holes are drilled in the panel to provide the neressary strength. When the panels are drilled as shown, they may be moved up and down in steps of $13 / 4$ inches and the holes will always match.
along the two vertical 1 by 3 s, which hold the pancls, and across the top and bottom headers cover up the ragged adges of sereening.

As shown in Fig. 6-115B, the pancl clearance should be $191 / 16$ inches and the hole centers $18 \frac{1}{4}$ inches apart. Standard panels are in unit heights of $13 / 4$ inches and the hole spacing alternates bet ween $1 / 5$ inch and $11 / 4$ inches as shown in Fig. 6-116. The table shows the standard drilling for panels of various sizes.

Fig. 6-11.i -A - Top detail view of 11 enclosed relay rack made of wood strips and cop. per sereening, B - Panel-mount. ing dimensions.

TABLE OF STANDARD RACK DRILLING											
I'anel Iht. In.	$\begin{gathered} \text { * Iloles } \\ \text { In. } \end{gathered}$	I'unel Itt. In.	$\begin{gathered} \text { * Holes } \\ \text { ln. } \\ \hline \end{gathered}$	$\begin{aligned} & \text { I'anel } \\ & \text { It. In. } \end{aligned}$	$\begin{gathered} \text { * Moles } \\ \text { In. } \end{gathered}$	$\begin{aligned} & \text { I'unel } \\ & \text { IIt. In. } \end{aligned}$	$\begin{gathered} \text { * Holes } \\ \text { In. } \end{gathered}$	Panel Iht. In.	$\begin{gathered} \text { * IIoles } \\ \text { In. } \end{gathered}$		$\begin{gathered} \text { * IIoles } \\ \text { In. } \end{gathered}$
$\begin{aligned} & 311 / 2 \\ & 293 \end{aligned}$	$\begin{aligned} & 311 / 4-30 \\ & 291 / 2-281 / 4 \end{aligned}$	$\begin{aligned} & 261 / 4 \\ & 2.11 / 2 \end{aligned}$	$\begin{aligned} & 96 \\ & 211 / 213 / 4 \end{aligned}$	21	$\frac{203 / 4-191 / 2}{19}$	1.53/4	151/2-1.11/4	$101 / 2$	$101 / 4-9$	51/4	$5-33 / 4$
28	273 ${ }^{2}$	2.11/2/4	20, $1 / 2-211 / 4$	191/4	19 $171 / 4-16$	14.	$133 / 4-121 / 2$ $12-103 / 4$	$83 / 4$ 7	$\begin{aligned} & 81 / 2-61 / 4 \\ & 63 / 451 / 2 \end{aligned}$	31/2	$\begin{aligned} & 31 / 4-2 \\ & 11 / 2-1 / 4 \end{aligned}$

[^5]
Power Supplies

Fssentially pure direct-current plate supply is required for recoivers to prevent hum in the output. Covirnment regulations require the use of d.e. plate supply for transmitters to prevent modulation of the carrier by the supply, which would rosult in undesired hum in the case of voice transmissions and an unnecessarily broat (c,w sirnal.
their use except where commercial a.c. lines are not uvailable. Wherever such lines are available, it is universal practice to obtain low ace. voltage for filaments and heaters from a stepdown transformer, and the required highvoltage d.c. by means of a transformer-recti-fier-filter system. Such a system is shown in the block diagram of Fig, 7-1. Power from the

Fig. 7-1-Block diagram showing the essentials of a transformer-rectifier-filter system for ohtain. ing filament and plate power from an a.c. line.

The filaments of tubes in a thansmitter may be operated from a.e. Those in a reeriver, exeppting the power audio tubes, maty be a.e. operated only if the cathodes are indirectly heated.

The comparatively high cost and inconvenience of bateries and d.e. generators prechude
a.c. line is fed to a transformer which steps the voltage up to that required. The steppedup voltage is changed to pulsating d.c. by passing through a rectifier - usually of the vacuum-tube type. The pulsations then are smoothed out to the required extent by a filtering system.

Rectifier Circuits

Half-Wave Rectifier

Fig. 7-2 shows three rectifier cireuits covering most of the common applications in amateur equipment. Fig. 7-2.1 is the circuit of at half-wave rectifier. During that half of the a.c. cycle when the roctifier plate is positive with respect to the cathone, curront will flow through the rectifier and load. But during the other half of the eyele, when the plate is negative with respece to the cathode, no current can flow. The shape of the output wave is shown at the right. It shows that the current always flows in the same direction but that the flow of current is not continuous and is pulsating in amplitude.

The average output voltage - the voltage read by the usual d.c. voltmeter - with this circuit is 0.45 times the r.m.s. value of the a.c. voltage delivered by the transformer secondary. Because the frequency of the pulses in the output wave is relatively low, considerable filtering is required to provide adequately
smooth d.c. output, and for this reason this circuit is usually limited to applications where the current involved is small, such as in supplies for eathode-ray tubes and for protective bias in a transmitter.

Another disadvantage of the half-wave rectifior circuit is that the transformer must have a considerably higher primary volt-ampere rating (approximately to per cent greater) than in other reetifier circuits.

Full-Wave Center-Tap Rectifier

The most universally-used rectifier circuit is shown in Fig. 7-2 B. Being essentially an arrangement in which the outputs of two halfwave rectifiers are eombined, it makes use of both halves of the a.c. cycle. A transformer with a center-tapped secondary, or two identical transformers with their secondaries connected in series (with proper polarization), is required with the circuit. When the plate of rectifier No. 1 is positive, current flows through

Fig. 7-2 - Fundamental vacuumtube ractifier eireuits. A - IIalfwave. 3 - Full wave. C - Bridge. Output voltages shown do not include rectifier drops.
the load to the center-tap. Current camnot flow through rectifier No. 2 because at this instant its cathode is positive in respect to its plate. When the polarity reverses, rectifier No. 2 conducts and eurrent again fows through the load to the penter-tap, this time through rectifier No. 2.
The average output voltage is 0.9 times the r.m.s. value of the voltage across half of the transformer secondary. For the same total secondary voltage, the average output voltage will be the same as that delivered with a hall-wave rectifier. IIowever, as ean be seen from the sketch of the output waveform, the frequency of the output pulses is twice that of the halfwave rectifier. Therefore much less filtering is required. Since the rectifiers work alternately, each handles half of the average load current. Therefore the load current which may be drawn from this circuit is twice the rated load current of a single rectifier.

When two separate transformers are used in the full-wave cireuit with their secondaries connerted in series, the same derating mentioned in regard to the half-wave rectifier circuit must be observed.

Full-Wave Bridge Rectifier

Another full-wave rectifier eircuit is shown in Fig. 7-2C. In this arrangement, two rectifiers operate in series on each half of the evele, one rectifier being in the lead to the load, the other boing in the return lead. Over that portion of the eycle when the upper end of the transformer seeondary is positive with respeet to the other end, eurrent flows through rectifier No. 1, through the load and thenee through reetifier No. 2. During this period current cannot flow through rectifier No. 4 because its plate is negative with respeet to its eathode. Over the ot her half of the eycle, eurrent flows through rectifier No. 3, through the load and thence

(B)

through rectifier No. 4. The crossover connection keeps the current flowing in the same direction through the load. The output waveshape is the same as that from the simple center-tap reetifier eircuit. The output voltage obtainable with this cireuit is 0.9 times the r.m.s. voltage delivered by the transformer secondary. For the same total transformersecondary voltage, the average out put voltage when using the bridge rectifier will be twice that obtainable with the eenter-tap reetifier eircuit. However, when comparing rectifier eircuits for use with the same transformer, it should be remembered that the power which a given transformer will handle remains the same regardless of the reetifier circuit used. If the output voltage is doubled by substituting the bridge eircuit for the center-tap rectifier cireuit, only half the rated load current can be taken from the transformer without exeeeding its normal rating. The value of load eurrent which may be drawn from the bridge reetifier cireuit is twiee the rated d.c. load current of a single reetifier.

Rectifiers

Cold-Cathode Rectifiers

Tube rectifiers fall into three general elassifirations as to type. The cold-rathode type is a diode which requires no eathode heating. Certain types will handle up to 350 ma. at 200 volts d.c. output. The internal drop in most types lies between 60 and 90 volts. Rectifiers of this kind are
produeed in both half-wave (single-diode) and full-wave (double-diode) types.

High-Vacuum Rectifiers

High-vaeuum reetifiers depend entirely upon the thermionic emission from a heated eathode and are characterized by a relatively high
internal resistance. For this reason, their application usually is limited to low power, although there are a few types designed for medium and high power in eases where the relatively high internal voltage drop, may be tolerated. This high internal resistanee makes them less susceptible to damage from temporary overload and they are free from the bothersome aledrical noise sometimes associated with other types of rectifiers.

Some rectifiers of the high-vacuum full-wave type in the so-called reeceiver-tube clase will handle up to 250 ma , at 400 to 500 volts d.c. output. Those in the higher-power chass can be used to hatndle up to 500 mai , at 2000 volts d.e, in fullwave eireuits. Most low-power high-vacuum reetifiers are produced in the full-wave type, while those for greater power are invariably of the halfwave type.

Mercury-Vapor Rectifiers

In mercury-vapor reetifiers the internal resistance is redueed by the introduction of a small amount of mereury which vaporizes under the heat of the filament, the vapor ionizing upon the application of voltage, The voltage drop through a rectifier of this type is practieally constant at approximately 15 volts regardless of the load current. Tubes of this type are produced in sizes that will handle any voltage or current likely to be encountered in amateur transmitters. For high power they have the alvantage of cheapness. Rectifiers of this tepe, however, have a temdency toward a type of oscillation which produers noise in near-by receivers. This call usually be diminated by suitable filtering,

As with high-vacuum rectifiers, full-wave typers are available in the lower-power ratings only. For higher power, two tubes :ure required in a fullwave circuit.

Selenium Rectifiers

Sclenium rectifiers are available which make it possible to design a power supply eapable of delivering up to 400 or 450 volts, 200 ma. These units have the advantage of compactness as well as low internal voltage drop) (about 5 volts). However, to limit the charging eurrent with condenser input, a resistance of 25 to 100 ohms should be used in series with the reetifier. They may be sub)stituted in any of the basic cireuits shown in Fig. $7-2$, the terminal marked " + " or "cathode" corresponding to the cathode in these circuits. Cireuits in which the selenium rectifier is partieularly arlaptable are shown later in Figs. 7-20 through $7-22$. Sinee they develop little heat if operated within their ratings, they are especially suitable for use in equipment requiring minimum temperature variation.

Typical ratings are listed in the tube tables.

Rectifier Ratings

Vacuum-tube reetifiers are subjeet to limitations as to breakdown voltage and current-handling capability. Some types are rated in terms of the maximum r.m.s. voltage whieh should be applied to the rectifier plate, while others, partic-
ularly mereury-vapor types, are rated according to maximum inverse peak voltage - the peak voltage botweon plate and cathode while the tube is not conducting. In the rireuits of Fig. 7-2, the inverse pazk voltage aeross each rectifier is 1.4 times the r.m.s. value of the voltage delivered be the entire transformer serondary.

All reetifier tubes are rated ats to maximum d.e. load current and many also carry peak-current ratings, both of which should be observed for normal tule life. With a eondenser-input filter, the peak current may run several times the value of the d.e. load eurrent, while with a ehoke-input filter the prak value may not run more thatn a fow per rent above the d.e. load eurrent.

Operation of Rectifiers

In operating rectifiers requiring filament or eatho lo heating, care should be taken to provide the correct filament voltage at the tube terminals. Low filament voltage can cause exeessive voltage drop in high-vacuum rectifiers and a considerable: reduetion in the inverse peak-voltage rating of a mereury-vapor tube, Filament eonnections to the rectifier socket should be firmly soldered, particularly in the ease of the largor moreury-vapor tubes whose filaments operate at low voltage and high current. The soeket should be selected with care, not only as to contact surface but also as to insulation, since the filament usually is at full output voltage to ground. Bakelite sockets will serve at voltages up to 500 or so, but ceramic sockets, well spaced from the chassis, always should be used at the higher voltages. Speeial filament transformers with high-voltage insulation between primary and secondary are reduired for rectifiers operating at potentials in excess of 1000 volts inverse peak.

The rectifier tubes should be plared in the equipment with adeguate spare surrounding them to provide for ventilation. When mercury-vapor tubes are first placed in serviee, and each time

Fig. 7-3-Connerting rertifiers in parallel for heavier eurrents. R_{1} and R_{2} should have the same value, between 50 and 100 ohms.
after the mereury has been disturbed, as by removal from the socket to a horizontal position, they should be run with filament voltage only for 30 minutes before applying high voltage. After that, a delay of 30 seconds is recommended each time the filament is turned on.

Rectifiers may be eonneeted in parallal for current higher than the rated current of a single unit. This includes the use of the sections of a double diode for this purpose. Equalizing resistors of 50 to 100 ohms should be connected in serics with each plate, as shown in Fig. 7-3, as a measure toward maintaining an equal division of current.

Filters

The pulsating d.c. waves from the rectifiers shown in lig. 7-2 are not sufficiently constant in amplitude to prevent hum corresponding to the pulsations. Filters consisting of capabitances and inductanees are required hetween the rectifier and the load to smooth out the pulsations to an bserentially constant d.e. voltage. Also, upon the design of the filter depends to a large extent the voltage regulation of the power supply and the maximum load current that can be drawn from the supply without exereding the para-voltage rating of the reetifier.
Power-supply filters fall into two classifications, depending upon whether the first filter edement following the reotifier is a condenser or a choke. (ondenser-input filters are chamerterized be whatively high output voltage in resper to the tratusformer voltage, but poor voltage regulation. Chokr-imput filters result in much better regulation, when properly designed, hut the output voltage is less that would be obtained with a condenser-input filter from the same transformer.

Voltage Regulation

The output voltage of a power supply always decreases as more rurrent is drawn, not only because of inereased voltage drops in the transformer, filter chokes and the rectifior (if highvaruum rertifiers are used) but also because the output voltage at light loads tends to soar to the patk value of the transformor voltage as a result of charging the first eondenser. By proper filter design the latter effeet can be eliminated. The change in output voltage with load is called voltage regulation and is expressed as a percentage.

$$
\text { I'er cent regulation }=\frac{100\left(E_{1}-E_{2}\right)}{E_{2}}
$$

Example: So-kad voltage $=B_{1}=1.500$ volts.
Full-lowid voltage $=E_{2}=1230$ volts.

$$
\begin{aligned}
\text { Pererntage regulation } & =\frac{100(1530-1230)}{1230} \\
& =\frac{32,000}{1230}=26 \mathrm{p} \cdot \mathrm{r} \text { cent. }
\end{aligned}
$$

Regulation may be as great as $100^{c} / c$ or more with a condenser-input filter, but be proper design can be held to $20^{\text {ce }}$ or less.

Good regulation is desiable if the load curvent varies during operation, as in a keyed stage or a Class B modulator becouse a large change in boltage may increase the temdency toward key clieks in the former case or distortion in the latter. On the other hand, ateady load, such as is represented hey a receiver, spereh amplifier or ankeyed sages in a transmitter, does mot require good regulation oo long as the proper voltage is obtained under load conditions. Another contsideration that makes good voltage regulation desirable is that the filter condensers must have a voltage rating satfo for the highest value to whieh the voltage will soar when the external load is removed.

When exsentially ronstant voltage, regardless of current variation is refuired (for stabilizing an
oscillator, for example), special voltage-regulating eircuits described elsewhere in this chapter are used.

Load Resistance

In diseussing the performance of power-supply filters, it is convenient to express the load connected to the output terminals of the supply in terms of resistance. The load resistance is equal to the out put voltage divided by the total current drawn, including the current drawn by the bleeder resistor.

Input Resistance

The sum of the transformer-winding resistance and the rectifier resistance is called the input resistance.

Bleeder

A bleoder resistor is a resistance connected across the output terminals of the power supply. Its functions are to diseharge the filter condensers as a safety measure when the power is turned off and to improve voltage regulation be providing a minimum load resistance. When voltage regulation is not of importance, the resistance may be as high as 100 ohms per volt. The resistance value to be used for voltage-regulating purposes is discussed in later sections. From the consideration of safety, the power rating of the resistor should be as conservative as possible, since a burned-out hoeder resistor is more dangerous than none at all!

Ripple Frequency and Voltage

The pulsations in the output of the rectifier can be considered to be the resultant of an alternating current superimposed upon a steady direct current. From this viewpint, the filter may be considered to consist of shunting condensers which short-rireuit the a.c. component while not interfroing with the flow of the d.e. component, and sories chokes which pass d.c. readily but which impede the flow of the a.c. component.

The alternating component is called the ripple. The effectiveness of the filter cam be expressed in torms of per cent ripple which is the ratio of the r.m.s. value of the ripple to the d.e. value in terms of peremtage. For cew. transmitters, a reduction of the ripple to $\overline{5}$ per erent is considered aderguate. The ripple in the oatput of power supplies for Foise transmitters and VFOs should be roduced to 0.2 ; per cent or less. Migh-gain spereh amplifiers and recoivers maty require a roduction to as low as 0.1 per cent to prevent objectionable ripple hum.

Ripplo frequency is the frequency of the pulsations in the rectifier output wave - the number of pulsations per second. The frequency of the ripple with half-wave rectifiers is the same as the frequency of the line supply - 60 cycles with 60 cacle supply. Since the output pulses are doubled with a full-wave rectifier, the ripple frequency is doubled - to 120 cycles with 60 -cycle supply.

Fig. 7-4-Condenser-input filter circuits. A - Simple condenser. B - Single-section. C - Double-section.

The amount of filtering (values of inductance and capacitance) required to give adeguate smoothing depends upon the ripple frequency, more filtering being required as the ripple frequency is lower.

CONDENSER-INPUT FILTERS

Condenser-input filter systems are shown in Fig. 7-4. Disregarding voltage drops in the chokes, all have the same characteristics except in respect to ripple. Better ripple reduction will be obtained when $L C$ sections are added, as shown in Figs. 7-4C and D.

Output Voltage

To determine the approximate d.c. voltage output when a condenser-input filter is used, reference should be made to the graph of Fig. 7-5.

Example:
Transformer r.m.s. voltage - 350
Injut resistance - 200 ohms
Maximum load current, including bleeder eurrent - 175 ma .
Load resistance $=\frac{350}{0.175}=2000$ ohms approx.
From Fig. 7-5, for a load resistance of 2000 ohms and an input resistance of 200 ohms, the d.c. output voltage is given as slightly over 1 times the transformer r.m.s. voltage, or about 350 volts.

Regulation

If a bleeder resistance of $50,000 \mathrm{ohms}$ is used, the d.c. output voltage, as shown in lig. $7-5$, will rise to about 1.35 times the transformer r.m.s. value, or about 470 volts, when the external load is removed, For greater accuracy, the voltage
drops through the resistance of the chokes should be subtracted from the values determined above. For best regulation with a eondenser-input filter, the bleeder resistance should be as low as possible without exceeding the transformer, rectifier or ehoke ratings when the external load is connected.

Maximum Rectifier Current

The maximum load current that can be drawn from a supply with a condenser-input without exeeeding the peak-current rating of the rectifier may be estimated from the graph of Fig. 7-(). Tsing values from the preceding example, the ratio of peak reetifier current to d.c. load eurrent for 2000 ohms, as shown in Fig. 7-6 is 3 . Therefore, the maximum load current that ean be drawn without exceeding the rectifier rating is $1 / 3$ the peak rating of the rectifier. For a load current of 175 ma., as above, the rectifier peak current rating should be at least $3 \times 175=525 \mathrm{ma}$.
With bleeder current only, Fig. 7-6 shows that the ratio will increase to over 8 . But since the bleeder draws less than 10 ma. d.c., the rectifier peak current will be only 90 ma. or less.

Ripple Filtering

The approximate ripple percentage after the simple condenser filter of Fig. $7-4 \mathrm{~A}$ may be determined from Fig, 7-7. With a load resistance of 2000 ohms, for instanee, the ripple will be approximately 10% with an $8-\mu \mathrm{fd}$. condenser or 20% with a $4-\mu f d$. condenser.

The ripple can be reduced further by the addition of LC sections as shown in Figs. 7-4B and C.

Fip. 7-5 - Chart showing approximate ratio of d.c. output voltage across filter input condenser to trans. former r.m.s. secondary voltage for different load and input resistances.

Fig. 7.6 - Graph showing the relationship between the d.c. load current and the rectifier peak plate current with condenser input for various values of load and input resistance.

Fig. 7-8 shows the factor by which the ripple from any preceding section is reduced depending on the product of the capacitance and inductance added. For instance, if a section composed of a choke of 5 hy. and a condenser of $4 \mu \mathrm{fd}$. were to be added to the simple condenser of Fig. 7-4A, the product is $4 \times 5=20$. Fig. $7-8$ shows that the original ripple (10% as above, for example) will be reduced by a factor of about 0.08 . Therefore the ripple percentage after the new seetion will be

Fig. 7.7 - Chart showing approximate 120 -cycle percentage ripple across filter input condenser for various loads.
approximately $0.08 \times 10=0.8 \%$. If another section is added to the filter, its reduction factor from Fig. 7-8 will be applied to the $0.8 \% \%$ from the preceding section, etc.

CHOKE-INPUT FILTERS

Much better voltage regulation results when a choke-input filter, as shown in Fig. 7-9, is used. ('hoke input also permits better utilization of the reetifier, since a higher load current usually can be drawn without exceeding the peak current rating of the rectifier.

If the first choke has a value equal to or greater than

$$
L_{(\mathrm{hy},)}=\frac{\text { Load resistance }(\mathrm{ohms})}{1000}
$$

the output voltage will not soar above the average value of the rectified wave at the input of the choke when the load current is small. This is in contrast to the performance of the condenser-

Fig. 7.8-Ripple-reduction factor for various values of I and C in filter section. Output ripple $=$ input ripple X ripple factor.
input filter where the output voltage tends to soar toward the peak value at light current loads. This value of inductance is known as the critical value.

If the first choke has a value equal to or greater than

$$
L_{(\mathrm{hy} .)}=\frac{\text { Load resistance (ohms) }}{500}
$$

the peak rectifier current will not execed the d.c. load current by more than 10 per cent when the load current is large. This is in contrast to the condenser-input filter where the peak rectifier eurrent may run 2 to 5 times the d.c. load current. This value of inductance is known as the optimum value.

Both of the above conditions will usually be satisfied for all values of load current drawn from the supply if the choke has at least the critical

Fig. $\mathbf{- 9}$ - Choke-input filter riruits. A - Single-sere. tion. B - Donble section.
value of inductance for the minimum eurrent Ioad (usually the bleceder resistanceonly) and does not fall brow the optimum value for the greatest current load to be drawn.
Sperially-designed input chokes, called swinging chokes, are available. These chokes are usually rated in terms of maximum d.o. current and the range of inductane over which they are designed to "swing" with different load currents. For instance, a choke maty have a rating of 5 to 25 hy., 250 mata 'This means that the indurtance is 5 h . with 250 ma . d.e. fowing through it.

From the formula for optimum inductance, is hys is optimum for a minimum load resistance of $5 \times 500=2500$ ohms. At 250 mat, this resistance means a minimum voltage of $2500 \times 0.250=625$ volts.

Bleeder Resistance

Also, 25 hy: is the eritical inductaner for $25 \times 1000=25,000$ ohms. Therefore the bleeder resistance should be not greater than 25,000 ohms.

In the case of supplies for higher voltages in particular, the maximum load resistance requirement may result in the wasting of an appreciable portion of the transformer power capacity in the bleeder resistance. A higher beeder resistance drawing less current can be used, of conese, bat at a sacrifiee in regulation. Two input chokes in series will permit the use of a bleeder of twiee the resistance, cutting the wasted current in half. Another alternative that ran be used to advantage in a c.w. transmitter is to use a wry highresistance bleder for protective purposes and then use only sufficient fixed bias on the tubes operating from the supply to bring the total current drawn from the supply, when the kes is open, to the value of eurrent that the required bleeder resistance should draw from the supply. Operating bias is brought back up to normal bey inereasing the grid-leak resistance. Thus the entire current capacity of the supply (with the exception of the small drain of the protertive bleeder) can be used in operating the transmitter stages.

Output Voltage

Provided the input-choke inductance is at least the critieal value, the output voltage maty
be ealculated quite elosely by the following equation:

$$
E_{\mathrm{o}}=0.9 E_{\mathrm{t}}-\frac{\left(I_{1}+I_{\mathrm{L}}\right)\left(R_{1}+R_{2}\right)}{1000}-E_{\mathrm{r}}
$$

where E_{0} is the output voltage; E_{1} is the r.m.s. voltage applied to the rectifier (r.m.s. voltage between eenter-tap and one end of the seeondary in the case of the eenter-tap rectifier) ; I_{b}, and J_{I} are the bleder and load currents, respectively, in milliamperas: R_{1} and R_{2} are the resistanees of the first and second filter chokes; and E_{r} is the drop between rectifier plate and cathore. These voltage drops are shown in lig. 7-11. At noload I_{L} is zero, hence the no-lond voltage may be aaleulated on the basis of bleeder current only. 'The voltage regulation may be determined from the no-load and full-load voltages using the formula previously given.

Ripple with Choke Input

The pererntage ripple output from a singleseretion filtor (Fig. 7-9A) may be dotermined to a elose approximation, for a ripple frequency of 120 eveles, from the following formula:

$$
\begin{aligned}
& \text { Single- } \\
& \left.\begin{array}{l}
\text { Single- } \\
\text { Section } \\
\text { rilter }
\end{array}\right\} \text { Percentage ripple }=\frac{100}{L C}
\end{aligned}
$$

where L is in h. and C in $\mu \mathrm{fd}$.

$$
\begin{aligned}
& \text { Example: } I .=5 \mathrm{~h} . . C^{\prime}=4 \mu \mathrm{fd} . \\
& \text { Percentage ripule }=\frac{100}{(.5)(4)}=\frac{100}{20}=5 \text { per cent. }
\end{aligned}
$$

Fig, 7-10 shows various other combinations of induetance and eapacitance which will reduce the ripple to \bar{b} per cent - the required minimum reduction for a supply for a c.w. transmitter.

Fig. 7.10-Craph showing combinations of inductance and eaparitance that may be used to reduce ripple to 5 per cent with a single-section choke-input filter.

In selecting values for the first filter section, the inductance of the choke should be determined by the eonsiderations diseussed previously. Then the condenser should be selected that when eombined with the choke indurtance (minimum inductance in the case of a swinging choke) will bring the ripple down to the desired value. If it is found impossible to bring the ripple
down to the desired figure with practical values in a single section, a second section can be added, as shown in Fig. $7-913$ and the reduction factor from Fig. 7-8 applied as discussed under condenser-input filters. The second choke should not be of the swinging tipe.

- OUTPUT CONDENSER

If the supply is intended for use with an audio-frequency amplifior, the reactance of the last filter condenser should be small (20 per eent or less) eompared with the other a.f. resistance or impedance in the eircuit, usually. the tube plate resistance and load resistance. On the basis of a lower a.f. limit of 100 eveles for spereh amplification, this condition usually is satisfied when the output cupacitance (last filter eapacitor) of the filter is 4 to $8 \mu \mathrm{fd}$., the higher value of capacitance being used in the gase of lower tube and load resistances.

- RESONANCE

Resonance pffects in the series circuit across the output of the rectificr which is formed by the first choke (L_{1}) and first filter condenser (C, C_{1} must be avoided, since the ripple voltage would build up to large values. This not only is the opposite action to that for which the filter is intended, but also may cause excessive rectifier peak currents and abormally-high inverse prak voltages. For full-wave rectification the ripple frequency will be 120 cycles for a 60 -cycle supply, and resonance will occur when the product of choke inductance in henrys times eondenser capacitance in microfarads is equal to 1.77. The corresponding figure for 50 -cycle supply (100 -cyele ripple frequency) is 2.53 , and for 25 -cycle supply (50-cycle ripple frequency) 13.5. At least twice these products of inductance and capacitance should be used to ensure against resontuce effects.

RATINGS OF FILTER COMPONENTS

Although filter condensers in a choke-input filter are subjected to smaller variations in d.c. voltage than in the condenser-input filter, it is
advisable to use condensers rated for the poak trinsformer voltage in ease the bleder resistor should burn out when there is no load on the power supply; since the voltage then will rise to the same maximum value as it would with a filter of the condenser-input trpe.

In a condenser-input filter, the condensers should have a working-voltage rating at least as high, and preferably somowhat higher, than the peak-voltage rating of the transformer. Thus, in the case of a center-tap rectifier having a transformer delivering 550 volts each side of the center-tap, the minimum safe condenser voltage rating will be 500×1.41 or 775 volts. An 800 -volt condensor should be used, or preferably a 1000 -volt unit to sullow a margin of satfety.

Filter condensers are made in several different types. Electrolytic condensers, which are available for voltages up to about 800 , combine high cupacitance with small size, since the dielectric is an extremely-thin film of oxide on aluminum foil. Condensers for higher voltages usually are made with a dielectric of thin paper impregnated with oit. The working voltage of a condenser is the voltage that it will withstand continuously.

The input choke may be of the swinging type, the required minimum no-load and full-load inductance values being calculated as described above. For the second choke (smoothing choke) values of 10 to 20 henrys ordinarily are used. Since chokes usually are placed in the positive leads, the negative being grounded, the windings should be insulated from the core to withstand the full d.c. output voltage of the supply and be capable of handling the required lowd current.

Filter chokes or inductances are wound on iron cores, with a small gatp in the core to prevent magnetic saturation of the iron at high carrents. When the iron becomes saturated its permeability decreases, consequently the inductance also decreases. Despite the air gap, the inductance of a choke usually varies to some extent with the direct current flowing in the winding; honce it is necessary to specify the inductance at the current which the choke is intended to carry. Its inductance with little or no direct current flowing in the winding may be considerably higher than the value when full load current is flowing.

Plate and Filament Transformers

Outpuf Voltage

The output voltage which the plate transformer must deliver depends upon the required d.c. load voltage and the type of filter circuit.

With a choke-input filter, the required r.m.s. secondary voltage (each side of center-tap) for a center-tap rectifier) can be calculated by the equation:

$$
E_{\mathrm{t}}=1.1\left[E_{\mathrm{o}}+\frac{I\left(R_{1}+R_{2}\right)}{1000}+E_{\mathrm{r}}\right]
$$

where E_{0} is the required d.e. output voltage, I is the load current (including bleeder current) in milliamperes, R_{1} and R_{2} are the d.c. resistances of the chokes, and E_{r} is the voltage drop) in the rectifier. E_{t} is the full-load r.m.s. secondary voltage; the open-circuit voltage usually will be 5 to 10 per cent higher than the full-load value.

The approximate transformer output voltage required to give a desired d.c. output voltage with a given load with a condenser-input filter

Fig. 7-11 - Diagram showing various voltage drops that must be taken into consideration in determining the required transformer voltage to deliver the desired output voltage.
sustem ean be eatculated with the help of Fíg. 7-11.

Example:

Required d.e. output volts - 500
Load current to be drawn - 100 ma .
Load resistance $=\frac{500}{0.1}=5000$ ohms.
If the rectifier resistance is 200 ohins, Fig. 7-5 shows that the ratio of d.c. volts to the required transformer r.m.s. voltage is approximately 1.15.

The required transformer terminal voltage under load with chokes of 200 and 300 ohms is

$$
\begin{aligned}
E_{\mathrm{t}} & =\frac{E_{\mathrm{o}}+I\left(\frac{R_{1}+R_{2}}{1000}\right)+E_{\mathrm{r}}}{1.15} \\
& =\frac{500+100\left(\frac{200+300}{1000}\right)+200}{1.15} \\
& =\frac{570}{1.15}=495 \text { volts. }
\end{aligned}
$$

Volt-Ampere Rating

The volt-ampere rating of the transformel depends upon the type of filter (condenser or choke input). With a condenser-input filter the heating effect in the seeondary is higher because of the high ratio of peak to average current, consequently the volt-amperes consumed by the transformer may be several times the watts delivered to the load. With a choke-input filter, provided the input ehoke has at least the critical inductance, the secondary volt-amperes can be calculated quite closely by the equation:

$$
\text { Sec. } V_{.} A,=0.00075 E I
$$

where E is the total r.m.s. voltage of the secondary (between the outside ends in the case of a eenter-tapped winding) and I is the d.c. output current in milliamperes (load current plus bleeder current). The primary volt-amperes will be 10 to 20 per cent higher because of transformer losses.

Filament Supply

Except for tubes designed for battery operation, the filaments or heaters of vacuum tubes used in both transmitters and receivers are universally operated on alternating current obtained from the power line through a stepdown transformer delivering a secondary voltage equal to the rated voltage of the tubes used The transformer should be designed to carry
the current taken by the number of tubes which may be connected in parallel across it. The filament or heater transformer generally is center-tapped, to provide a balanced circuit for eliminating hum.

For medium- and high-power r.f. stages of transmitters, and for high-power audio stages, it is desirable to use a separate filament transformer for each seetion of the transmitter, installed near the tube sockets. This avoids the necessity for abnormally large wires to carry the total filament current for all stages without appreciable voltage drop. Maintenance of rated filament voltage is highly important, especially with thoriated-filament tubes, since under- or over-voltage may reduce filament life.

Rewinding Filament Transformers

Although the home winding of high-voltage transformers is a task that few amateurs undertake these days, the rewinding of a smalltransformer secondary to give some desired filament voltage is not difficult. It involves a matter of only a small number of turns and the wire is large enough to be handled easily. Often a broadcast-receiver power transformer with a burned-out high-voltage winding, but with the primary winding intact, can be converted into an entirely satisfactory filament transformer without great effort.

The primary volt-ampere rating of a transformer to be rewound may be taken from the label on the transformer or from the manufacturer's catalogue. This will indicate whether or not the transformer will be capable of handling the necessary power. The secondary volt-ampere rating will be ten to twenty per cent less than the primary rating. The product of the voltage and the number of amperes required from the new filament winding, plus that for any other secondaries that may be kept in use, should not exceed the secondary volt-ampere rating, unless the builder is willing to aceept a lower safety factor.

Before disconnecting the winding leads from their terminals, each should be marked for identifieation. In removing the core laminations, care should be taken to note the manner in which the core is assembled, so that the reassembling will be done in the same manner. Some transformers have secondaries wound over the primary, while in others the order is reversed. In case the secondaries are on the inside, the turns can be pulled out from the center after slitting and removing the fiber core.

The turns removed from one of the original filament windings of known voltage should be carefully counted as the winding is removed. This will give the number of turns per volt and the same figure should be used in determining the number of turns for the new secondary. For instance, if the old filament winding was rated at 5 volts and has 20 turns, this is $20 / 5=$ 4 turns per volt. If the new secondary is to deliver 7.5 volts, the required number of turns
on the new winding will be $7.5 \times 4=30$ turns.
The Copper-Wire Table in the chapter of miscellaneous data shows the current-carrying capacity of various sizes of wire at a cross section of 1500 circular mils per ampere. This is a conservative rating. A cross section of 1000 circular mils per ampere is closer to the figure used for most amateur-service transformers. In cheaper broadcast-receiver transformers, the figure may run as low as 500 . The current-carrying capacity at 1000 circular mils per ampere may be determined by pointing off three decimal places from the right in the figures in the third column of the table showing circular-mil area. As an example, No. 18 wire has a capacity of 1.7 amperes at 1500 circular mils per ampere, 2.58 amperes at 1000 circular mils per ampere and 5.16 amperes at 500 circular mils per ampere. The choice of rating to be used in most cases will be deeided by the size of available wire and the available
winding space. If the transformer being rewound is a filament transformer, it may be necessary to choose the wire size carefully to fit the small available space. On the other hand, if the transformer is a power unit, with the high-voltage winding removed, there should be plenty of room for a size of wire that will conservatively handle the required current.

The insulation to be used between the primary and secondary windings (and also between the secondary winding and the core if the secondary is on the inside) will depend on whether the transformer is to be used to supply r.f. tubes or rectifier tubes in a high-voltage supply. A few layers of linen paper should be sufficient for the former service, but insulating cambric sheet should be used if the voltage between primary and secondary runs more than 1000 volts.

Voltage Dropping

Series Voltage-Dropping Resistor

Certain plates and screens of the various tubes in a transmitter or receiver often require a variety of operating voltages differing from the output voltage of available power supplies. In most cases, it is not economically feasible to provide a separate power supply for each of the required voltages. If the current drawn by an electrode, or combination of electrodes operating at the same voltage, is reasonably constant under normal operating conditions, the required voltage may be obtained from a supply of higher voltage by means of a voltagedropping resistor in series, as shown in IFig. 7-12A. The value of the series resistor, R_{1}, may be obtained from Ohm's Law, $R=\frac{E_{\mathrm{d}}}{I}$, where
E_{d} is the voltage drop required from the supply voltage to the desired voltage and I is the total rated current of the load.

Example: The plate of the tube in one stage and the sereens of the tubes in two other stages require an operating voltage of 250 . The nearest available supply voltage is 400 and the total of the rated plate and screen eurrents is 75 ma . The required resistance is

$$
R=\frac{400-250}{0.075}=\frac{150}{0.075}=2000 \mathrm{ohms}
$$

The power rating of the resistor is obtained from P (watts) $=I^{2} R=(0.075)^{2}(2000)=11.2$ watts. A 25 -watt resistor is the nearest safe rating to be used.

Voltage Dividers

The regulation of the voltage obtained in this manner obviously is poor, since any change in current through the resistor will cause a di-rectly-proportional change in the voltage drop across the resistor. The regulation can be improved somewhat by connecting a second resistor from the low-voltage end of the first to the negative power-supply terminal, as shown in Fig. $7-12$ B. Such an arrangement constitutes
a voltage divider. The second resistor, R_{2}, acts as a constant load for the first, R_{1}, so that any variation in current from the tap becomes a smaller percentage of the total current through R_{1}. The heavier the current drawn by the resistors when they alone are connected across the supply, the better will be the voltage regulation at the tap.

Such a voltage divider may have more than a single tap for the purpose of obtaining more than one value of voltage. A typical arrange-

Fig. $7-12$ - A Scries voltagedropping resistor. B Simple voltage divider. C-Multiple divider circuit

$$
R_{3}=\frac{E_{1}}{I_{\mathrm{b}}} ; R_{4}=\frac{E_{2}-E_{1}}{I_{\mathrm{b}}+I_{1}} ; R_{5}=\frac{E-E_{2}}{I_{\mathrm{b}}+I_{1}+I_{2}}
$$

ment is shown in Fig. 7-12C. The terminal voltage is E, and two taps are provided to give lower voltages, E_{1} and E_{2}, at currents I_{1} and I_{2} respectively. The smaller the resistance between taps in proportion to the total resistance, the smaller the voltage between the taps. For convenience, the voltage divider in the figure is considered to be made up of separate resistances R_{3}, R_{4}, R_{5}, between taps. R_{3} carries only the bleeder current, $I_{\mathrm{b}} ; R_{4}$ carries I_{1} in addition to $I_{\mathrm{b}} ; R_{5}$ carries I_{2}, I_{1} and I_{b}. To calculate the resistances required, a bleeder cur-
rent, I_{b}, must be assumed; generally it is low compared with the total load current (10 per cent or so). Then the required values can be calculated as shown in Fig. 7-12C, I being in decimal parts of an ampere.

The method may be extended to any desired number of taps, each resistance section being calculated by Ohm's Law using the voltage drop across it and the total current through it. The power dissipated by each section may be calculated either by multiplying I and E or I^{2} and R.

Voltage Stabilization

Gaseous Regulator Tubes

There is frequent need for maintaining the voltage applied to a low-voltage low-current circuit at a practically constant value, regardless of the voltage regulation of the power supply or variations in load current. In such applications, gaseous regulator tubes (VR10530, VR150-30, ete.) can be used to good advantage. The voltage drop across such tubes is constant over a moderately wide current range. Tubes are available for regulated voltage's of $150,105,90$ and 75 volts.

The fundamental circuit for a gaseous regulator is shown in Fig. 7-13.1. The tube is connected in series with a limiting resistor, R_{1}, across a source of voltage that must be higher than the starting voltage. The starting voltage is about 30 per cent higher than the operating voltage. The load is connected in parallel with the tube. For stable operation, a minimum tube current of 5 to 10 ma , is required. The maximum permissible current with most types is 40 ma .; consequently, the load current cannot exceed 30 to 35 ma. if the voltage is to be stabilized over a range from zero to maximum load current.

The value of the limiting resistor must lie between that which just permits minimum

Fig. 7-13 - Voltage-stabilizing circuits using V'R tubes.
tube current to flow and that which just passes the maximum permissible tube current when there is no load current. The latter value is generally used. It is given by the equation:

$$
R=\frac{1000\left(E_{\mathrm{s}}-E_{\mathrm{r}}\right)}{I}
$$

where R is the limiting resistance in ohms, E_{s} is the voltage of the source across which the tube and resistor are connected, E_{r} is the rated voltage drop across the regulator tube, and I is the maximum tube current in milliamperes (usuallv 40 ma .).

Fig, 7-I313 shows how two tubes may be used in series to give a higher regulated voltage than is obtainable with one, and also to give two values of regulated voltage. The limiting resistor may be calculated as above, using the sum of the voltage drops across the two tubes for $E_{\text {r }}$. Since the upper tube must carry more current than the lower, the load connected to the low-voltage tap must take small current. The total current taken by the loads on both the high and low taps should not exceed 30 to 35 milliamperes.

Voltage regulation of the order of 1 per cent can be obtained with regulator circuits of this type.

Electronic Voltage Regulation

A voltage-regulator circuit handling higher voltages and currents than the gaseous tubes, and also having the feature that the output voltage can be varied over a rather wide range, is shown in Fig. 7-14. A high-gain voltageamplifier tube, usually a sharp cut-off pentode, is connected in such a way that a small change in the output voltage of the power supply causes a change in grid bias, and thereby a corresponding change in plate current. Its plate current flows through a resistor $\left(R_{5}\right)$, the voltage drop across which is used to bias a second tube - the "regulator" tube - whose platecathode circuit is connected in series with the load circuit. The regulator tube therefore functions as an automatically-variable series resistor. Should the output voltage increase slightly, the bias on the control tube will become more positive, causing the plate current of the control tube to increase, and the drop across R_{5} to increas correspondingly. The bias on the regulator tube therefore becomes more negative and the effective resistance of the regulator tube increases, causing the terminal voltage to drop. A decrease in output voltage eauses the reverse action. The time lag in the action of the system is negligible, and with proper circuit constants the output voltage can be held within a fraction of a per cent throughout the useful range of load current and over a wide range of supply voltages.

An essential in this system is the use of a constant-voltage bias source for the control tube. The voltage change which appears at the

Fig. 7.14-Electronie voltage regulator, The regulator tube is ordinarily a 2A3 or a number of them in parallel, the control tube a 6 S 57 or similar type. The filament transformer for the regulator tube must be insulated for the plate voltage, and cannot supply eurrent to other tubes when a filament-type regulator tule is used. Typical values: $K_{1}, 10,000$ ohm $-R_{2}, 22,000$ olmms; $K_{3}, 10,0(0)-$ ohm potentiometer; $R_{4}, 4700$ ohmis; $R_{\mathrm{s}}, 0.47$ megohm. grid of the tube is the difference between a fixed negative bias and a positive voltage which is taken from the voltage divider across the output. To get the most effective control, the negative bias must not vary with plate current. The most satisfactory type of bias is a dry battery of 45 to 90 volts, but a gaseous regulator tube (VR75-30) or a neon bulb of the type without a resistor in the base may be used instrad. If the gas tube or neon bulb is used, a negative-resistance type of oscillation may
take place at audio frequencies or higher, in which case a condenser of $0.1 \mu \mathrm{fd}$. or more should be connected aeross the tube. A similar condenser between the control-tube grid and cathode also is frequently helpful in this respert.

The variable resistor, R_{3}, is used to adjust the bias on the control tube to the proper operating value. It also serves as an output voltage control, setting the value of regulated voltage within the existing operating limits.

The maximum output voltage obtainable is equal to the power-supply voltage minus the minimum drop through the regulator tube. This drop is of the order of 50 volts with the tubes ordinarily used. The maximum current also is limited by the regulator tube; 100 milliamperes is a safe value for the 2A3. Two or more regulator tubes may be connected in parallel to increase the current-carrying capacity, without need for changes in the eircuit arrangement.

The circuit of a regulated supply of this type is shown in Fig. 7-15. The OB2 regulators provide a constant reference for triode B. When the load current decreases, the plate voltage on B increases and the bias on A decreases. A draws more current.through K_{4}, increasing the bias on the 6Y6Gs. This increases the voltage drop across the 6 YGGs, which are in series with the output line, thereby decreasing the output voltage. At 300 volts output, voltage change will be negligible with variation in load current from 5 ma , to 150 ma .

Fig. 7-15 - Circuit diagram of an electronically-regu-
I ated power supply rated at 320 volts max., 150 ma. max.
$\mathrm{C}_{1}, \mathrm{C}_{2}-16-\mu \mathrm{fd}$. 600 -volt electrolytic.
(:3-0.015- $-\mu \mathrm{fd}$. paper.
C_{4} - 0.1 - $\mu \mathrm{fd}$. paper.
$\mathrm{R}_{1}-0.3$ megolim, $1 / 2$ watt.
$11_{2}, H_{3}-100$ ohms, $1 / 2$ watt .
$13_{4}-510$ ohms, $1 / 2$ watt.
$\mathrm{H}_{5}, \mathrm{H}_{8}-30,000$ ohms, 2 watts.
$\mathrm{H}_{6}-0.24$ megohm, $1 / 2$ watt.
$1 \mathrm{~K}_{7}-0.15$ megohm, $1 / 2$ watt.
$\mathrm{H}_{9}-9100$ ohms, 1 watt.
R_{10} - 0.1 -megohm potentiometer.
$\mathrm{R}_{11}-43,000$ ohms, $1 / 2$ watt.
I_{1} - 8-hy., 40-ma, filter choke.
S_{1}-S.p.s.s. toggle.
'11 - Power transformer: 375-375 volts r.m.s., 160 ma.; 6.3 volts, 3 amps.; 5 volts. 3 amps.

Bias Supplies

As discussed in the chapter on high-frequency transmitters, the chief function of a bias supply for the r.f. stages of a trammitter is that of providing protective bias, although under certain circumstances, a bias supply, or pack, as it is sometimes called, can provide the operating bias if desired.

Simple Bias Packs

Fig. 7-16A shows the diagram of a simple bias supply. R_{1} should be the recommended grid leak for the amplifier tube. No grid leak should be used in the transmitter with this type of supply. The output voltage of the supply, when amplifier grid current is not flowing, should be some value between the bias required for plate-current cut-off and the reeommended operating bias for the amplifior tube. The transformer peak voltage (1.4 times the r.m.s. value) should not exceed the recommended operating-hias value, otherwise the output voltage of the pack will soar above the operating-bias value with rated grid current.

This soaring can be reduced to a considerable extent by the use of a voltage divider across

(A)

(B)

(E)
 ing protective-bias supplies. R_{1} is a resistor whose value is adjuited to limit the corrent through each Vir tule to $\overline{3}$ ma. before amplifier excitation is applied. R and R_{2} are current-equalizing resistors of 50 to 300 ohms.
the transformer secondary, as shown at B. Such a system can be used when the transformer voltage is higher than the op-erating-bias value. The tap on K_{2} should be adjusted to give amplifier cut-off bias at the output terminals. The lower the total value of R_{2}, the lesss the soaring will be when grid current flows.

A full-wave circuit is shown in Fig. 7-16C. R_{3} and R_{4} should have the same total resistance and the taps should be adjusted symmetrically. In all cases, the transformer must be designed to furnish the current drawn by these resistors plus the current drawn hy R_{1}.

Fig. 7-18- Circuit diagram of an electronically-regulated bias supply. $\mathrm{C}_{1}-20-\mu \mathrm{fd}$, 150 -volt electrolytic. I_{3} - 0.1 -megohmpotentioneter. $\mathrm{C}_{2}-2\left(0-\mu \mathrm{fd}, 150\right.$-volt electrolytic. $\quad \mathrm{R}_{8}-2 \overline{2}, 000$ ohms, $1 / 2$ watt, R_{1} - $\mathbf{5 0 0 0 \% \text { ohms, } 2 \mathrm { E } \text { watts. }}$ $1 \mathrm{~K}_{2}$ - 2,20010 ohms, $1 / 2$ watt. R_{3} - 68.1110 ohms, $1 / 2$ watt. R_{4} - $11.2-$ megohm, ${ }^{2}$, watt. R_{5} - 301 m ohms, 5 watts. R -0.12 megohm, $1 / 2$ watt.
$\mathrm{L}_{1}-20$-hy. 50 .ma. filter choke.
' I_{1} - Power transformer: 350 volts r.mrs, each side of center, 50 ma.; $\overline{3}$ volts, 2 amp.; 6.3 volts, 3 amp .

Regulated Bias Supplies

The inconvenience of the circuits shown in Fig. 7-16 and the difficulty of predicting values in practical application can be avoided in most cases by the use of gaseous voltageregulator tubes across the output of the lias supply, as shown in Fig. 7-17A. A VR tube with a voltage rating anywhere between the biasing-voltage value which will reduce the input to the amplifier to a safe level when excitation is removed, and the operating value of bias, should be chosen. R_{1} is adjusted, without amplifier excitation, until the VR tube ignites and draws about 5 ma . Additional voltage to bring the bias up to the operating value when excitation is applied can be obtained from a grid leak (see transmitter chapter).

Each VR tube will handle 40 ma . of grid current. If the grid current exceeds this value under any condition, similar VR tubes should be added in parallel, as shown in Fig. 7-1713, for each 40 ma , or less, of additional grid current. The resistors R_{2} are for the purpose of helping to maintain equal currents through each VR tube.

If the voltage rating of a single VIR tube is not sufficiently high for the purpose, other VIR tubes may be used in series (or series-parallel if required to satisfy grid-current requirements) as shown in Fig. 7-17C and D.

If a single value of fixed bias will serve for more than one stage, the biasing terminal of each such stage may be connected to a single supply of this type, provided only that the total grid current of all stages so connected does not exceed the curreut rating of the V'la tube or tubes. Alternatively, other separate VIR-tube branches may be added in any desired combination to the same supply, as shown in Fig. 7-17E, to suit the needs of each stage.

Providing the VIR-tube eurrent rating is not exceeded, a series arrangement may be tapped for lower voltage, as shown at F.

The circuit diagram of an electronicallyregulated bias-supply is shown in Fig. 7-I8.

The output voltage may be adjusted to any value between 20 volts and 80 volts and the unit will handle grid currents up to 200 ma. over the range of 30 to 80 volts , and 100 ma . over the remainder of the range. This will take care of the bias requirements of most tubes used in Class 13 amplifier service. The regulation will hold to about 0.001 volt per milliampere of grid current.

Other Sources of Biasing Voltage

In some cases, it may le convenient to obtain the biasing voltage from a source other than a separate supply. A half-wave rectifier may be connected with reversed polarization to obtain biasing voltage from a low-voltage plate supply, as shown in Fig. 7-19A. In anot her arrangement, shown at B, a spare filament winding can be used to operate a filament

(A)

Fig. 7-19-Convenient means of oltaining liasing voltage. A - From a low-voltage plate supply, B I'rom spare filament winding, T_{1} is a filament transformer, of a voltage output similar to that of the spare filament winding, comected in reverse to give 115 volts r.m.s. output. If cold-eathode or selenium rectifiers are used, no additional filament supply is required.
transformer of similar voltage rating in reverse to obtain a voltage of about 130 from the winding that is customarily the primary. This will be sufficient to operate a V'R75 or VR30.

A bias supply of any of the typers discussed
requires relatively little filtering, if the outputterminal peak voltage does not approach the operating-bias value, because the effert of the supply is entirely or largely "washed out" when grid current flows.

Selenium-Rectifier Circuits

While the circuits shown in Figs. 7-20, 7-21 and 7-22 may be used with any type of rortifior, they find their greatest advantage when used with selenium roctifiers which require no filament transformer.

Fig, 7-20 - Simple half-wave circuit for sclenium rectifier.
$\mathrm{C}_{1}-0.05-\mu \mathrm{fil}$, (000)-volt paper.
($i_{2}-40-\mu \mathrm{fd}$. 200 -volt electrolytic.
$\mathrm{R}_{1}-25$ to 100 ohms.
Fig. $7-20$ is a straight forward half-wave rectifier circuit which may be used in applieations where 115 to 130 volts d.e is desired. It can be used for bias supply, for instance. In this, as well as other circuits, it will be obsorved that the negative side of the output is common with one side of the a.c. line and it is suggested that this side be fused with a $1 / 2-$ ampere fuse,

Fig, 7-21 shows several voltage-doubler circuits. Of the three, the one shown at A is the most desirable since there is no series condenser. It is a full-wave circuit and there will be vory little ripple voltage appoaring at the

Fig. 7.2I-Voltage-doulling circuits for use with selenium rectifiers.
$\mathrm{C}_{1}-0.05 \cdot \mu \mathrm{fd}$, 600 -volt paper.
$\mathrm{C}_{2}-40-\mu \mathrm{fd} 200$-valt electrolytic.
$\mathrm{C}_{3}-$ lilter condenser.
$R_{1}-25$ to 100 ohms.
L_{1} - Filter choke.
output. On the other hand, the cireuit of C has one very desirable feature in that point λ^{-}is common to both condensers in the rectifier and also to the first condenser in the filter. This means that a single-unit three-section condenser may be used, saving space. If less than 100 mat. is being used this is the best eircuit. The ripple content under these conditions, and the loakage between sections, will not be exersive. These three circuits will find ready application in communications receivers, converters, VFOs, test equipment, ete, and esperially in cases where heat has been a problem.

Fig. $7-22.1$ and 13 shows voltago-tripler and voltage-quadrupler circuits respertively, for use where higher voltages are desired. They can be used for powering the small transmitter.

(A)

Fis. 7.22 - Selenium-rectifier voltage-tripling and voltage-quadrupling eircoits.
(.1 - 0,0.5- $\mu \mathrm{fd}$, 6(0)-volt paper,
 $\mathrm{K}_{1}-25$ to 100 ohnus.

All components are standard. C_{l} in all circuits is for "hash" filtering and its value is not eritical. A $0.05-\mu \mathrm{fd}$. 600 -volt-working condenser should serve. All other condensers should be $40-\mu \mathrm{fd}$. 200 -volt units, except those in the tripler and quadrupler circuits. Those in the cireuit of Fig. $7-22$ should have a rating of 450 volts working. In the voltage multipliers and in other circuits where a condenser is passing the full current, good condensers should be used because the a.c. ripple mentioned above appears across the condenser and increases as the load increases. If the current is allowed to become too high, it will cause heating and deterioration of the condenser. This can bo kept to a minimum by using a capacitor of high value and making sure it is of good make. R_{1} should be 25 ohms, but if it is found that the rectifier units are running a little too warm,
this value may be increased to as high as 100 ohms, with a corresponding drop in output voltage, of eourse.

A single-section filter, as shown in Fig. 7-21C, will provide sufficient smoothing for most applications.

Power Line Considerations

POWER-LINE CONNECTIONS

If the transmitter is rated at much more than 100 watts, special consideration should be given to the a.c. line running into the station. In some residential systems, three wires are brought in from the outside to the distribution board, while in other systems there are only t wo wires. In the three-wire system, the third wire is the neutral which is grounded. The voltage between the other two wires normally is 230 , while half of this voltage (115) appears between each of these wires and neutral, as indicated in Fig. 7-23A. In systems of this trpe, usually it will be found that the 11 jvolt household load is divided as evenly as possible betwern the two sides of the cireuit, half of the load being connected between one wire and the neutral, while the other half of the load is comected between the other wire and neutral. Heavy appliances, such as electric stoves and heaters, normally are designed for 230 -volt operation and therefore are romeeted arross the two ungrounded wires. While both ungrounded wires should be fused, a fuse should never be used in the wire to the neutral, nor should a switch be used in this side of the line. The reason for this is that opening the neutral wire does not disconnect the equip-

Fig. 7-23 - 'Ihrce' - ire power-line direuits. A - Vormal 3-wire-line termination. Do fuse shomld be used in the groumed (nentral) line. 13 - Showing that a switeh in the nentral does not remove voltage from either side of the lime. (: - iomections for beoth 115 - and $2 ; 30$-volt tran-formers. I) - Operating a lis.volt plate trans. fermer from the 930 -volt line to avoid light blinking.

mont. It simply leaves the equipment on one side of the 230 -volt circuit in series with whatever load may be arross the other side of the circuit, as shown in Fig. 7-2:313. Furthermore, with the neutral open, the voltage will then be divided between the two sides in proportion to the load resistance, the voltage on one side dropping below normal, while it soars on the other side, unless the loads happen to be equal.

The usual line rumning to baseboard outlets is rated at 15 anpores. Considering the power consumed be filaments, lamps, modulator, receiver and other alluxiliary equipment, it is not unusual to find this 15 -ampere rating exceeded by the requirements of a station of only moderate power. It must also be kept in mind that the same branch may be in use for other household purposes through another outlet. For this reason, and to minimize light blinking when keving or modulating the transmitter, a separate heavier line should be run from the distribution board to the station whenever possible. (A three-volt drop in line voltage when the load is applied will cause noticeable light blinking.)

If the system is of the three-wire type, the three wires should be brought into the station so that the station load can be distributed to keep the line as bataned as possible. The voltage arross a fixed load on one side of the circuit will increase as the load current on the other side is inereased. The rate of increase will depend upon the resistance introduced by the neutral wire. If the resistance of the neutral is low, the increase will be eorrespondingly small. When the currents in the two eircuits are halanced, no current flows in the neutral wire and the system is operating at maximum efficianey.
light blinking an be minimized by using transformers with 230 -volt primaries in the power supplies for the keved or intermittent part of the load, connerting them arooss the two ungrounded wires with no connection to the neutral, as shown in Fig, 7-23C. The same can be accomplished tw the insertion of a stepdown transformer whose prinary oporates at 230 volts and whose secondary delivers 115 wolts. Conventional 11 j -volt transformers maty be operated from the secondary of the st (p)-down transformer (see lig. 7-23I)).

When a sperial heave-duty line is to be installed, the local power company should be consulted as to local requirements. In some localities it is necessary to have such a jol, done by a licensed electrician, and there may be sperial requirements to be met in regard to fittings and the manner of installation. Some amateurs terminate the special line to the
station at a switch box, while others may use electric-stove receptacles as the termination. The power is then distributed around the station by means of conventional outlets at convenient points. All circuits should be properly fused.

LINE-VOLTAGE ADJUSTMENT

In certain communities trouble is sometimes experienced from fluctuations in line voltage. Usually these fluctuations are caused by a variation in the load on the line and, since most of the variation comes at certain fixed times of the day or night, such as the times when lights are turned on at evening, they may be taken care of by the use of a manuallyoperated compensating deviec. A simple arrangement is shown in Fig, 7-24A. A toy transformer is used to boost or buck the line voltage as required. The transformer should have a tapped secondary varying between 6 and 20 volts in steps of 2 or 3 volts and its secondary should be capable of carrying the full load current of the entire transmitter, or that portion of it fed by the toy transformer.

The secondary is connected in series with the line voltage and, if the phasing of the windings is correct, the voltage applied to the primaries of the transmitter transformers can be brought up to the rated 115 volts by setting the wy-

Fig, 7.24 - 'I'wo methods of transformer grimary control. At A is a tapped toy transformer which nay be conneeted so as to boost or buek the line voltage as required. At B is indicated a variatble transformer or autotransformer (Variae) which feeds the transformer primaries.
transformer tap switch on the right tap. If the phasing of the two windings of the toy transformer happens to be reversed, the voltage will be reduced instead of increased. This connection may be used in cases where the line voltage may be above 115 volts. This method is preferable to using a resistor in the primary of a power transformer since it does not affect the

Fig. 7-25- With this circuit, a single adjustment of the tap switch S_{1} places the correct primary voltage on all transformers in the transmitter. Information on constructing a suitable autotransformer at negligible cost is contained in the text. The light winding represents the regular primary winding of a revamped transformer, the heavy winding the voltage-adjusting section.
voltage regulation as seriously. The circuit of 7-2413 illustrates the use of a variable transformer (Variac) for adjusting line voltage to the desired value.
Another scheme by which the primary voltage of each transformer in the transmitter may be adjusted to deliver the desired secondary voltage, with a master control for compensating for changes in line voltage, is described in Fig. 7-25.
This arrangement has the following features:

1) Adjust ment of the switch S_{1} to make the voltmeter read 105 volts automatically adjusts all transformer primaries to the predetermined correct voltage.
2) The necessity for having all primaries work at the same voltage is eliminated. Thus, 110 volts can be applied to the primary of one transformer, 115 to another, ete.
3) Independent control of the plate transformer is afforded by the tap switch S_{2}. This permits power-input control and does not require an extra autotransformer.

Constant-Voltage Transformers

Although comparatively expensive, special transformers called constant-voltage transformers are available for use in cases where it is necessary to hold line voltage and/or filament voltage constant with fluctuating supply-line voltage. They are rated over a range of 17 va . at 6.3 volts output, for small tube-heater demands, up to several thousand volt-amperes at 115 or 230 volts. In average figures, such transformers will hold their output voltages within one per eent under an input-voltage variation of 30 per cent.

Construction of Power Supplies

The longth of most leads in a power supply is unimportant, so that the arrangement of components from this eonsideration is not a factor in construction. More important are the points of goond high-voltage insulation, adequate conductor size for filament wiring, proper ventilation for rectifier tubes and -

Fig. 7.26- A typical simple receiver power supply. Filament and plate voltages are taken from the multi. sontart tule socket which servers an outlet.
most important of all - safety to the oprorator. lixposed high-voltage torminals or wiring which might be bumped into aceridentally should mot be permitted to axist. They should be covered with adequate insulation or plated inateressible to contact during normal operattion and adjust ment of the tramsmittor. Powersupply units should be fused individually

Rectafier filament leads should he kept short to assure proper voltage at the rectifier sorket, and the sockets should have good insulation
and adequate contact surfacs. Plate leads to mercury-vapor tuhes should be kept short to minimize the radiation of noize.

Where high-voltage wiring must pass through a motal chassis, grommet-lined clearance holes will serve for voltagem up to 500 or 750 , but eeramic feed-through insulators

Fig. 7-27- Bottom view of the receiver power supply showing the cut-out for the flush-monnting transformer.
should the used for higher voltages. Bleeder and voltagedropping resistors should be phaced where they are oben to air cimplation, Placing them in confined space reduces the rating.

It is highly preforable from the standpoint of operating convonicnee to have separate filament transformers for the rectifier tubes, rather that: to ase combination filament and plate transformers, such as those used in rerefivers. This permits the transmitter plate voltage to be switehed on without the necessity

Fig, $7 \cdot 28$ - 1 typiral high. voltare transmitter powser supply. The transformera. chohes and rondersater are imerted anthat motorminals arr expoad to arobidental contact. 'The capsof the 8on ramifiers are the insulated type.

for waiting for rectifier filaments to come up to temperature after each time the high voltage has been turned off.

A bleeder resistor with a power rating giving a considerable margin of safety should be used across the output of all transmitter power supplies so that the filter condensers will be discharged when the high-voltage transformer is turned off. To guard against the possibility of dangor to the operator should the bleeder resistor burn out without his knowledge, and also to protect him in case he neglects to turn off the power supply betore opening a cabinet transmitter enclosure, one of the deviers shown in Fig, 7-30 is recommended. In A, a grounded pivoted metal lever drops by gravity against a contact connected to the positive high-voltage terminal when the calsinet door is opered, shorting the power supply, When the door is closed, it pushes against the end of the lever protruding through the door opening and the short is removed automatically. In another scheme, shown at 13 , a motal ball, suspended on a cord, drops into a triangle of contarts, one of which is grounded, while the other twogo to

Fig. 7-29 - Bottom view of the transmitter power supply showing the cut -nuts for the terminalo. Spparate powir blugs arm used for the rectifier-filamest and plate tratsformers on that they mal be switeched indeprodently from the control position.
positive terminals of power supplies. The wedge mounted on the door pushes against the suspending cord, lifting the ball when the door is closed. The power supplies should be equipped with suitable fuses to save the equipment in case the device is ever called upon to perform its duty.

Fig. 7.30 - 'I'wo schemes for shorting the high-voltage supply automatically for safety purposes when the tranamitter door is opened.

Emergency and Independent Power Sources

Emergency power supply which operates independently of a.c. lines is available, or can be built in a number of different forms, depending upon the requirements of the service for which it is intended.

The most practical supply for the average individnal amateur is one that operates from a 6 -volt car storage battery. Such a supply may take the form of a small motor generator (often called a genemotor), a rotary converter, or a vibator-transformer-rectifier combination.

Dynamotors

A dynamotor differs from a motor generator in that it is a single unit having a double arma-
ture winding. One winding sorves for the driving motor, while the output voltage is taken from the other. Dynamotors usually are operated from ($6-12-$, 2 s - or 32 -volt storage batteries and deliver from 300 to 1000 volts or more at various current ratings.

Genemotor is a term popularly used when making roference to a dymamotor devigned especially for automobile-reereber, soumdtruck and similar appleations. It hats grood regulation and elfienere erombined with eronomy of operation. Ftamdard models of genemotors have ratings ranging from 135 volte at 30 mat. to 300 volts at 200 mat or bot volte at 300 mat. The nomal efficieney averages atoumal

50 per rent, incrasing to better than fo por cont in the higher-power units. The voltage regulation of a genemotor is comparable to that of wedl-designed a.e. supplies.

Successfal operation of dynamotors and genemotors recuires heavy direct leads, mechanical isolation to reduce vibration, and thorough ref and ripple filtration. The shafts and bearings should be thoroughly "run in" before regulan opration is attempted. and thereafter the tension of the bearings should be checked ocrasionally to make cortain that no looseness hats devoloped.
lo mounting the genemotor, the support should be in the form of rubber monnting bloeks, or equivalent, to prevent the transmissiun of vibration merhamically. The frame of the gencmotor should be grounded through a heavy flexible connector. The brushes on the high-voltage end of the shaft should be bypassed with 0.002- μ fid. mical condensers to a common point on the gencmotor frame, preferably to a point inside the emb rover close to the brush holders. Short loads are essential. It may prowe dexirable to shield the entire unit, or even to remove the mit to a distance of three or four fere from the reeciver and antouna lead.

When the genomotor is used for rewoiving, a filtor should be nsed similar to that deseribed for vibrator supplies. A $0.01-\mu \mathrm{fl}$. ($80(0)$-volt (d.c.) paper eomdenser should bo connerted in shunt arross the output of the genemotor, followed by a $2 . \bar{i}$-mh. r.f. choke in the positive high-voltage lead. From this point the output should be run to the receiver power torminals through a smoothing filtor using 4 - to $8-\mu \mathrm{fd}$. eondensers and a 15 - or 30 -henry choke having low d.c. resistance.

A.C.-D.C. Converters

In some instances it is desirable to utilize existing cquipment built for 11-j-volt a.c. operation. To operate such equipment with any of the power sources outlined above would require a considerable amount of rebuibling. This can be obviated by using a rotary converter capable of changing the d.c. from 6 -12-or 32-volt batteries to 115 -volt 60-cycle a.e. such converter units are buitt to deliveroutputs ranging from 40 to 300 watts, depending upon the battery pewer available.

The ronvorsion efficiency of these units avorages about 50 per cent. In appearance and operation they are similar to genemotors of equivalont rating. The over-all efficiency of the converter will be lowor, however, because of losses in the a.c. rectifior-filter circuits and the necessity for converting heater (which is supplied directly from the battery in the case of the genemotor) as well as plate power.

Vibrator Power Supplies

The vibrator type of power supply consists of a sperial step-up transformer combined with a vibrating interrupter (vibrator). When the
unit is connected to a storage battery, plate power is obtained by passing current from the battery through the primary of the transformor. The circuit is made and reversed rapidly by the vibrator contacts, interrupting the current at regular intervals to give a changing magnetic ficld which induces a voltage in the secondary. The resulting squarewave d.c. pulses in the primary of the transformer cause an alternating valtage to be developed in the secondary. This high-voltage a.e. in turn is rectified, either by a vacuum-tube reetifier or by an additional synchronized pair of vibrator contacts. The rectified output is pulsating d.c., which may be filtered ly ordimary means. The smoothing filter can be a single-section affair, but the filter output caparitance should be fairly large - 16 to $32 \mu \mathrm{~d}$.

Fig. 7-31 shows the two types of circuits. At A is shown the nonsynchronous type of vibrator. When the battery is diseonnected the reed is midway botween the two contacts, touching neither. On closing the battery circuit the magnet coil pulls the reed into contact with one contact point, cansing current to flow through the lower half of the transformer primary winding. Simultancously, the magnet

Fig. 7.31 - Basic types of vilbrator power-supply circuits. A- Konsynchronous. 13-Synehronous.
coil is short-circuited, deënergizing it, and the reed swings back. Inertia carries the reed into contact with the upper point, causing current to flow through the upper half of the transformer primary. The magnet coil again is energized, and the cycle repeats itself.

The synchronous circuit of Fig . $7-31 \mathrm{~B}$ is provided with an extra pair of contacts which rectify the secondary output of the transformer, thus eliminating the need for a separate rectifior tube. The secondary center-tap furnishes the positive output terminal when the relative polarities of primary and secondary windings are correct. The proper connections may be determined by experiment.

The buffor condenser, C_{2}, across the transformer secondary, absorbs the surges that occur on breaking the current, when the magnetic field collapses practically instantaneously
and hence causes very high voltages to be induced in the secondary. Without this condenser excessive sparking occurs at the vibrator contarts, shortening the vibrator life. Correct values usually lie betwern 0.005 and $0.03 \mu \mathrm{fd}$., and for $250-300$-volt supplies the condenser should be rated at 1500 to 2000 volts d.c. The exact rapacitance is critical, and should be determined experimentally. The optimum value is that which results in loast battery current for a given rectified d.c. output from the supply. In practice the value can be determined by observing the degree of vibrator sparking as the capacitance is changed. When the system is operating property there should be pratetically no sparking at the vibrator eontacts. A 5000 -ohm resistor in series with Cow will limit the secondary current to a safe value" should the eondenser fail.

Vibrator-t ransformer units are avaibable in a variety of power and voltage ratings. ReproSentative units vary from one delivering 125 to 200 volts at 100 ma . to others that have a 400 -volt output rating at 150 ma . Most units come supplied with "hash" filters, but not all of them have built-in ripple filters. The requirements for ripple filters are similar to those for a.e supplies. The usual efficieney of vibrator parks is in the virinity of 70 per cent, so a 300 -volt, 200 -ma. unit will draw atp-

proximately 15 amperes from a 6 -volt storage battery. Special vibrator transformers are also available from transformer manufacturers so that the amateur may build his own supply if he so desires. These have d.e output ratings varying from 1.50 volts at 40 ma . to 330 volts at 135 ma .

"Hash" Elimination

Sparking at the vibrator contacts causes r.f. interference ("hash." which can be distinguished from hum by its harsh, sharper piteh) when used with a recoiver. To minimize this, r.f. filters are incorporated, consisting of $R F^{2} C_{1}$ and C_{1} in the battery circuit. and $/ F^{\prime} C_{2}$ with ('3 in the d.e. output rireuit.

Equally as important as the hash filter is thorough shiedding of the power supply and its connecting leads, since even al small pioce of wire or metal will radiate enough r.f. 10 catuse interfarence in a sensitive recoiver.

Testing in connection with hash elimination should be carried out with the supply operating a receiver. Since the interference usually is picked up on the recoiving-antema leads bex radiation from the supply itsolf and from the battery leads, it is advisable to keep the supply and battery as far from the rereiver as the conneeting caibles will permit. Three or four feet should be ample. The mierophone cord likewise should be kept away from the power supply and

The power supply should be built on a metal Chassis, with all unsbielded parts underneath. A bottom plate to complete the shielding is advisable. The transformer case, vibrator cover and the metal shell of the tube all should be grounded to the chassis. If a glass tube is used it should be enclosed in a tube shield. The hattery leads should be evenly twisted, since these leads are more likely to radiate hash than any other part of a well-shielded supply. Experimenting with different values in the hash filters should come after radiation from the battery leads has been reduced to a minimum. Shiclding the leads is not often found to be particularly helpful.

PRACTICAL VIBRATOR-SUPPLY CIRCUIT

A vibrator-type power supply may be designed to operate from a six-volt storage battery only, or in a combination unit which may be operated interchangeably from either battery or 115 volts a.e.

In example of the latter-type rircuit is shown in lizg. 7-32. It consists essentially of two transformer-rectifier systems - one for 115 volts a.c. and the other a vibrator system to operate from a 6 -volt storage battery. . 1 common filter is used for the two systems. In interchanging between a.c. and d.c. operation, the rectifier tube (a 6×5 or 6 W) G) is shifted to

 for low-power energency work. The two tran=formers are mounted at either end of the ehassin, 'lhe filter condenser is at the left, the two rectificr sockets at the center and the vibrator to the rear.
the appropriate socket, while the filament rennections are made to the proper output torminals. If desired, two reetifier tubes may be used and the changeover made through suitable switches.
R.f. filters for reducing hash are ineorporated in both primary and secondary rircuits. The secondary filter eomsists of a $0.01-\mu \mathrm{fl}$. paper condenser directly across the rectifion output, with a $2.5-\mathrm{mh}$. r.f. choke in serios ahead of the smoothing filter. In the primary cireuit a low-inductane choke and high-capacitance condenser are needed because of the low impedance of the circuit. A choke of the

Fig. 7-3. - Girmit diagram of a compact vibrator-a.c. portable power supply using selwnium reetifiers.
(3) - $60-\mu \mathrm{fd}$. 20 n -volt clectroletir.
(\therefore - 60 - μ fid. $40(1$-volt clectrolytis.
$\theta_{3}-60-\mu$ fid. 600 -volt eleetrolytic.

C:5, C: $-0.5-\mu \mathrm{fal}, \underline{2}$-volt paper,
(: 8 - $0.00 \mathrm{i}-\mu \mathrm{fl}$. 1500 -velt paper.
$\mathrm{R}_{1}-25,000$ ohns, 10 watts.
$1, t-25-\mu h y .20$ anip. choke.
$s_{1}-115-\mathrm{volt}$ toggle switch.
s_{2} - 1).p.il.t. heavy-duty hnife switch.
$\mathrm{S}_{3}-25$-amp. s.p.s.t. switeh.
T_{1}-See text. V-Ileavy-duty vibrator.
specifications given should be adequate, but if there is trouble with hash it may be beneficial to experiment with other sizes. The wire should be large - No. 12. preferably, or No. 14 as a minimum. Manufactured chokes such as the Mallory IRF"8:3 are more compart and give higher indurtance for a given resistance because they are hank-wound, and may be substituted if ohtaimable. C_{5} should be at least $500 \mu \mathrm{fd}$; even more caparitance may help in bad rases of hash. The components are assembled on a $5 \times 10 \times 3$ inch steel ehassis. Three somet holes are required - one for the 4 -prong socket for the vibrator and two oretal sockets for the rectifier, The a.c. line cord and hattory and power-output leads are brought out at the rear.

The compartness of selenium rectifiers and the fact that they do not reduire filament voltage make them particularly suited to compart lightweight power supplies for portable emergeney work.

Fig. $7-34$ shows the circuit of a vibrator pack that will deliver an output voltage of 400 at 200 ma. It will work with either 11 j-volt ac. or 6 -volt battery input. The eireuit is that of the familiar voltage tripler whose d.e output voltage is, as a rough approximation, three times the peak voltage delivered by the transformer or lime. An interesting fature of the eireuit is the fact that the single transformer serves as the vibrator transformer when oparating from G-volt d.e. supply and as the filament transformer when operating from an a.c. line. This is accomplished without complicated switching.

The vibrator transformer, T_{t}, is a dualsecondary 6.3-volt filament transformer connected in reverse. In either event, the filament windings must have a rating of 10 amperes if the full load current of 200 mat. is to be used. some excellent surplus transformers that will hande the required current are now available on the surplus market. The vibrator also must be capable of handling the current. The hashfilter choke, L_{1}, must carry a current of 20 amperes.

The following table shows the output voltage to be expected at various load curreme, depronding upon the size of condensers used at r_{1}, C_{2} and C_{3}.

$\left(1, C_{2}, C_{3}\right.$	Outpul Voltage al			
$(\mu f d)$.	60 ma.	100 ma.	150 ma.	200 ma.
60	455	430	415	395
40	425	390	360	330
20	400	340	285	225

In operating the supply from an a.c. line, it is always wise to determine the plug polarity with respect to ground. Otherwise the rectifier part of the circuit and the transformer circuit cannot be ronnected to actual ground except through by-pass condensers. Rectangular cutouts are also nceded for the two flush-mounting transformers. The filter choke, L_{i}, and other small components can be fitted under the chassis. The clip leads to the battery should be no longer than neressary.

GASOLINE-ENGINE DRIVEN GENERATORS

For higher-power installations, such as for communications control centers during emergencies, the most practical form of independent power supply is the gasoline-ongine driven generator which provides standard 115 -volt 60-(cydr supply.

Such generators are ordinarily rated at a minimum of 250 or 300 watts. They are availatble up to two kilowiatts. or big enough to handle the highest-power amateur rig. Most are arranged to charge automatically an auxiliary 1 - or 12 -volt battery used in starting. Fitted with self-starters and adequate muthers and filters, they represent a high order of performance and efficiency. Many of the larger models are liquid-cooled, and they will operate continuously at full load.

A variant on the generator idea is the use of fan-belt drive. The disadvantage of requiring that the automobile must be running throughout the operating period has not led to general popolarity of this idea among amatours. Such generators are similar in construction and capacity to the small gas-driven maits.

The output frequency of an enginc-driven gernerator mast fall betwern the relatively narrow limits of 50 to 60 cycles if stamdard (6)-evele transformers are to operate coficiontly
 viders a means of chereking the output frequeney with a fair dogree of acouracy. The clock is conmected across the output of the generator and the seeond hand is checeked closely atgainst the seromed hathe of a watch. The spered of the engine is aljusted until the two second hands are in synchronism. If a 50 -cycle clock is used to check a foo-vele generater, it shoula be remembered that one revolution of the seeond hand will be made in so serents and the elock will gain 4.8 hours in cach 24 hours.

Output voltage should tre cheeked with a voltmeter since a standard 11 -jovolt lamp bulb, Which is sometimes used for this purpose, is very inaceurate. Tests have shown that what appears to be normal brilliance in the lamp may oferar at voltagus as high as 150 if the check is made in bright smbight.

Noise Elimination

Eilectrical noise which may intorfere with recoivers operating from angine-driven ace. gencrators may be reduced or climitated by taking proper precautions. The most important point is that of grounding the frame of the generator aul one side of the output. The ground lead should be short to be dffective, otherwise grounding may ane nally increase the noise. A water pipe may be used if a short connection can be made near the point where the
pipe cuters the ground, otherwise a good separate ground should be provided.

The next step is to loosion the brush-holder locks and slowly shift the position of the brushes while checking for noise with the reeever. ("sually a point will be found (almost always different from the factory setting) where there is a marked decrease in noise.

From this point on, if necessary, by-pass condensers from various brush holders to the frame, as shown in Fig. 7-35. will bring the hash down to within 10 to 15 per eent of its original intensity. if not entirely climinating it. Most of the remaining noise will be reduced still further if the high-power audio stages are eut out and a pair of headphones is connected into the seeond detector.

- POWER FOR PORTABLES

Dry-edl batteries are the only practical source of supply for equipment which must be transported on foot. From certain considerations they may also be the best source of voltage for a receiver whose filaments may be operated from a storage battery, since no problem of noise filtering is involved.

Fif. 7-35-Connections used for eliminating interferenece from gas-driven generator plants. Cishould be 1 $\mu \mathrm{fl} ., 300$ volts, paper. while f. 2 may be $\mathrm{I} \mu \mathrm{ff}$. with a voltage rating of twice the d.e. output voltage delivered by the generator. X indicates an added connection between the sfip ring on the grounded side of the line and the generator frame.

Their disadvantages are weight, high cost, and limited current capability. In addition, they will hose their power even when not in use, if allowed to stand idle for periods of a year or more. This makes them uneconomical if not used more or less continuously.

Dry " I3" batteries are made in a variety of sizes and shapes, from a 4 官-volt unit woighing about 1 lb . that has an intermittent service rating of 20 hours at a drain of 20 ma ., to a 12-1h, unit rated at 130 hours at 40 ma. " A " batteries for filament service range from a (i-volt unit weighing 1 多 lth s. delivering in intermittent serviee and average of 60 ma . for 150 hours, to at $(61 / 4-1 \mathrm{l}$. 1.5 -volt unit having a service life of 870 hours at 200 ma . Miniature batteries, suitable for hand-portable use, are also availatbe.

Keying and Break-In

Offhand it would appear that keying a transmitter is a simple matter, since on the face of it nothing more is involved than turning the transmitter output on and off to correspond to the code characters being sent. Trifortunately, it is not this simple, and perfert keying of a c.w. rig is as difficult to come by as perfect voice quality is with a phone transmitter. The problem cannot be dismissed lightly.

Although the operation is basically that of turning the transmitter output power on and off, it is complicated by the fact that it must not be turned on and off instantaneously. Instead, the output must be made to rise to (and fall from) maximum in some finite period of time, if key clicks are to be avoided. These clicks are the inescapable rosult of changing the power level rapidly, and they appear in the radio spectrum adjarent to the signal proper. The more rapidly the output is varied, the farther the clicks will extend in frequency and the greater will be their amplitude. They interfore unnecessarily with other signals and, if severe enough, can be cause for a diserepancy report by the FOC.

Another effect of improper keying of a transmitter is the introduction of chirp, a change in frequenry at the instant of making or breaking the signal. A chirp of 50 cyeles is enough to make a signal unpleasant to copy, and a chirp of several hundred cycles may render the signal difficult to copy or a target for an FCC discrepancy report. Much depends, of course, upon the selectivity and beat mote being used at the receiver, but the safest procedure is to aim for no detectable chirp.

I third keying fault is defined as backwave, and it consists of power leaking through and being radiated when the key is "up." If strong enough, hackwave makes the signal unpleasant or difficult to cops.

In code transmission, there are intervals between dots and dashes, and slightly longer intervals between letters and words, when no power is being radiated by the transmitter. If the receiver can be made to operate at normal sensitivity during these intervals, it is possible for the receiving operator to signal the transmitting operator, by holding his key down. This is useful during the handling of messages, since the receiving operator can immediately signal the transmitting operator if he misses part of the mescage. It is also useful in reducing the time necessary for calling in answer to a "CQ." The ability to hear signals during the
short "key-up" intervals is called break-in operation.

SELECTING THE STAGE TO KEY

It is often desirablo from an operating standpoint to design the cew. transmitter for breakin operation. In most cases this requires that the oscillator be keved, since a continuouslyrumning oscillator will ereate interference in the receiver and prevent bratk-in on or near one's own frequency, unless the oseillator stage is well shielded.' IIowever, chirpless and clickless keying of an oscillator is difficult to obtain, since the necessary slow turning on and off of the oscillator (for click elimination) shows up any oscillator frequency-vs.-voltage ehanges. It is easy to key in oscillator without chirps or without clicks but not without both. Since the effect of a chirp is multiplied with frequency, it is quite difficult to obtain chirpless oscillator keying at on output frequency of 1 t. or 28 Mc .

The best-sounding keying (and the most simple to adjust) is usually obtained by keying the output or driver stage, or both. With the oscillator running continuous! y and "buffered" by several intermediate stares, its frogueney remains constant throughout all parts of the keying eycle. The only poblem in keying then becomes that of properly "shaping" the keying to reduce or eliminate clicks. When keying several stages away from the output amplifier, it is necessary to bias the stages following the keyed stage so that they draw little or no plate current when the key is up, to avoid excessive plate dissipation. If the stages are biased too heavily, however, these subsequent amplifiers tend to shorten the rise and fall times and thus reintroduce clicks. This should alwas be borne in mind when a multistage tramsmitter is used with oscillator or other low-level keying.

The power broken by the key is an important eonsideration, both from the standpoint of safety to the operator and that of sparking and sticking at the key contants. Keying of the oscillator or a low-power stage is favorable on both counts. The use of a keying relay or keyer tube is recommended when a high-power circuit is keved.

Because transmitters vary widely in design,

[^6]there is no specific recommendation that ean be made about choosing the stage to key. If the oscillator alone keys satisfactorily (no chirps or clicks), even when listening to its harmonics on 14 or 28 Mc., the transmitter should be keyed there, but the effect of adding the additional multipliers and amplifiers should be carefully checked, to see that clicks are not reintroduced. Methods for checking will be
given later. If the oseillator camot be keycd satisfactorily by itself or with the following stage added, a stage near the output should be keved and any thought of break-in operation should be discarded. I close approach to break-in operation can be obtained by using a convenient and fast "on-off" switch for the oseillator, or the break-in system described later in the chapter can be used.

Keying Circuits

The plate circuit is a good one to key in an oscillator or low-voltage amplifier, because it is easy to shape the keying properly in this circuit. When plate-circuit keying is used, however, it is usually done in the negative lead, since this permits one side of the key to be grounded. The stage can be keyed in the positive lead, but both sides of the keyed eircuit will be "hot," and a keying relay is advisable. Fig. 8-1 shows the general circuit for negativelead keying in either an oscillator or an amplifier. Two examples are shown using triodes, but sereen-grid tubes can be used just as readily. Mate-circuit keying is recommended only for low-voltage circuits if no keving relay is used, since a large portion of the supply voltage can appear across the open key.
Shaping circuits applicable to this and later circuits will be discussed in this chapter under "Testing Your Keying."

Somewhat closely related to plate-circuit keying is screen-grid keying, shown in Fig. 8-2. The only basic difference is that the sereen grid is pulled down to a negative voltage when the key is up, to avoid the backwave that may

Fig. 8.1 - Negative plate-lead keying for cathode- or filamentetype tubes. These circuits are useful for oncil. lator or low-power stages, where the voltage across the open hey is not very dangerons. Tetrode or pentode stages can be keyed in this mammer. but the sereen circuit should be stabilized with VK tubes or a heavy voltage divider. R_{1} is the normal grid leak. C_{1}, C_{2}, C_{3} and C_{4} are r.f. by-pass condensers,
be present when the sereen goes only to zero volts. The negative supply can be small, since its current demand is only a few milliamperes. If the sereen voltage is taken from the plate supply, it should come from a voltage divider rather than a simple dropping resistor.

Fig. $8-2$ - Screen-mrid keying, suitable for oscillator or amplifier keying. R_{1} is the normal grid leak, R_{2} should be about 200 to 500 ohms per screen volt, and C_{1}, C_{2} and C_{3} are normal by-pass condensers.

Grid-circuit, or blocked-grid, keving is shown in lig. 8 -3, With the key up, a negative voltage is applied to the grid sufficient to cut off the tube and prevent current flow. With the key closed, the grid circuit develops normal grid bias through R_{2}. The drain on the negative-voltage supply is small, since it is limited by the size of R_{1}. (irid-circuit keying is most generally used with low-power stages or where the voltage necessary to cut of the amplifier is only a few hundred volts. The value of C_{1} determines the keying characteristic, together with the ratio of R_{2} and R_{1}, and will be discussed later.
By placing the key in the cathode (or center tap) circuit of an oscillator or amplifier, both the grid and plate (and sereen, if any) circuits are opened by the key. Cathode keying is good for use with amplifiers, because the proper

Pig, 8-3- Blocked-arid keying. R_{t}, the current-limiting resistor, should have a value of about 50,000 ohms. (it may have a capacity of 0.1 to 1 mave, depending upon the keying characteristie dresered. K_{2} is the nermal value of grid lrak for the tube.

Fig. 8. 4 - Cathode and center-tap heying. The comelens. ers Care r.f. by-pats condenser:. 'Their caparity is mot critical, values of 0.001 to $0.01 \mu \mathrm{fd}$. ordinarily bring nsed.
shaping can be aceomplished readily. It is also widely used with wicillators, but here the shaping is often complicated by the gridcircuit time constant. Cathode keying is shown

Fig. 8.5-'1 he basic. keyer-lube circuit for cathode or megativelead kevink.
in Fig. 8-4. It is popular for use in low- alud me-dium-power stages, although a keying relay or keyer tube should be used where the plate voltage is more than 300.

A popular methed of keying involves using one or more tubes as keyer tubes, in place of a rellay, a keyer tube (or tubes) can be used in the megative-lead or cathodekeving circuits of Figs. $8-1$ and 8-4. One advantage of tube keying is that the voltage across
the key is limited by large resistors, and se the operator has no chance for anything but the slightest electrical shock. A further advantage is that the shaping is done in the grid circuit of the keyer tule with inexpensive parts. The basic keyer tube circuit is shown in lige. 8-5 - it is similar to the grid-cireuit keving of Fig. 8-3.

A keying relay can be sulstituted for a key in any of the keying circuits shown in this chapter. Most keying relays operate from 6.3 or 115 volts a.c., and they should be selected for their speed of operation and adeguate insulation for the job to be dome. Adequate cur-

Fir. 8.6-A heying relay can always he substituted for the hey, to provide better isolation from the keyed cirenit. An r.f. filter is generally required at the key, and the kesing filter is connected in the keyed eircuit at the relay contacts.
rent-handling capability is also a factor. A typical circuit is shown in lig. 8-6.

The relay-coil current that is broken by the key will cause clicks in the receiver, and an r.f. filter (see later in this chapter) is often necessary across the key. The normal keying filter connects at the relay armature contacts in the usual manner. Vibration effects of the keying relay upon the ascillator circuit should be avoided.

Testing Your Keying

The choied of a kering circuit is not as important as its complete testing. Any of the rircuits shown can be made to give satisfartory keying, but they must be adjusted properly.

The easiest way to find out what your keyed signal sounds like on the air is to trade stations with a near-by ham friend some evening for a short (2SO). If he is a half mile or so away, that's fine, but any distance up to the point where the signals are still s9 will be satisfactory.

After you have found out how to work his rig, make contact and then have him send slow dashes, with dash sparing. (The letter " T " at about $\mathrm{S}^{\text {s w.p.m. . With the crystal filter out, cut }}$ the r.f. gain back just enough to avoid receiver overloading (the condition where you get erisp signals instead of mushy ones) and tune slowly from out of beat-note range on one side of the signal through to zero and out the other side. Knowing the tempo of the dashes, you can readily identify any clicks in the vicinity as yours or someone else's. A good signal will have a thump on "make" that is perceptible only where you can also hear the beat note, and the
dick on "break" should be practically negligible at any point. Fig. 8-7.A shows how it should sound. If your signal is like that, it will sound good, provided there are no chirps. Then have him run off a string of 35 - or $40-\mathrm{w}, \mathrm{p} . \mathrm{m}$. dots with the bug - if they are easy to copy, your signal has no "tails" worth worrying about and is a grood one for any speed up to the limit of manual keying. If the receiver has poor selectivity with the crystal filter out, make one last check with the filter in (Fig. 8-7 B), to see that the clicks off the signal are negligible even at high signal level.

If you don't have any convenient friends with whom to trade stations, you can still check your keying, although you have to be a little more careful The first step is to get rid of the r.f. click at the key, because if you don't you will never know where you stand. Locally (meaning in your own receiver) this click will coincide in time with clicks that may or may not be on your signal, so there is just no way to observe your signal without first eliminating the r.f. elick. And unless you have a keying system that breaks no current, you have a

Fig. $8 .{ }^{-}$- Reprosentations of a rlean c.w. signal as a receiver is tuned through it. (A) shows a receiver with no erystal filter and the b.f.o. set in the center of the passband, and (13) shows the erystal filter in and the receiver ad. justed for single-signal reeption. 'The variation in thickness of the lines represents the relative signal intensity. The andiofrequency where the signal disappears will depend upon the receiver splectivity characteristie and the strength of the signal.
elick at the key. Even the current broken by the key in a vacuum-tube kever circuit (which is sometimes only 0.1 ma. or so) will (ause r.f. clicks that can be heard in your receiver and often in the b.e. set. If you key with a relay, the key opens the relay-coil circuit and clicks are generated at the key as well as at the relay contacts. Don't make the very common mistake of thinking these elicks are the same as the on-the-air elicks discussed earlier - they are not! They are simply local clicks that you must eliminate before you can observe your signal in your receiver. These rlicks are the same as the ones you get when you turn an electric light on or off - when you suddenly start or stop current flow, no matter how little, you generate r.f. and that's the elieh.
(ietting rid of this little click is generally no trick at all, unless pou're breaking a lot of current. All it requires is a small r.f. filter, as shown in Fig. 8-8. Sometimes just a small ($0.001-\mu \mathrm{f}(\mathrm{l}$) condenser mounted right at the kev terminals will do it, and sometimes it will require the full treatment complete with r.f. chokes and serond condenser. Neasure the normal current through the key leads, remove the transmitter leads, and then conneet a d.c. power supply and resistor to give the same current through the key. When your key will brak this current with no click, as observed in your receiver and the b.e. set (tuned off any station), you have a suitable r.f. filter at the

Fig. 8.8-A filter for rliminating the r.f. elich at the hey, lifst try Ci. then add the two r.f. chokeri, and then (2, This filter does not eliminate on-the-air chicks, but it is necessary if you are trying to chech keying in your own recriver. It should be monnted right at the key.
(:1, $\mathrm{C}_{2}-0.01$ to $0.001 \mu \mathrm{fll}$, not eritical.
RFC. $\mathrm{RFCO}_{2}-1$ to $2.5 \cdot \mathrm{mh}$, r.f. choke.
key and you can reconnect the transmitter. If you use a vacuum-tube keyer, just don't tum on the transmitter but key the normal keyer grid current. If you use a keying relay, first eliminate the click at the key by just keying the relay and adding filter across the key, and then eliminate the click at the relay eontacts with another r.f. filter in the relay-keyed cirruit. The filter should be mounted right at the key or relay contacts. The objective is to be able to make or break normal key current without generating a local chick, and the filtering is usually so simple that the junk box will yield the parts and the process takes longer to describe than to apply.
so far you haven't done a thing for your signal on the air and you still don't know what it sounds like, hut you may have cleaned up some elicks in the b.c. set. Now disconnect the antenna from ?our receiver and short the antenna terminals with a short piece of wire. Tune in your own signal and reduce the r.f. gain to the point where your receiver doesn't overload. Detune any antenna trimmer the receiver may have. If you can't avoid overload within the r.f. gain-control range, pull out the r.f. amplifier tube and try again, If you still can't avoid overload, listen to the second harmonic as a last resort. Sinee an overlonded receiver can generate clicks, it is easy to realize the importance of eliminating overload during any tests or observations.

Describing the volume level at which you should set your receiver for these "shack" tests is a little difficult. The r.f. filter should be effective with the receiver running wide open and with an antenna connected. When you turn on the transmitter and take the other steps mentioned to reduce the signal in the receiver, run the audio up and the r.f. down to the point where you can just hear a little "rushing" sound with the b.f.o. off and the reeeiver tuned to the signal. This is with the erystal filter in. At this level, a properly-adjusted keying cireuit will show no clicks of the rushing-sound range. With the b.f.o. on and
the same gain setting, there should be no elicks outside the beat-note range. When observing clicks, make the slow-dash and fast-dot tests outlined previously,

Now you know how your signal sounds on the air, with one exception. If keying your transmitter makes the house lights blink or the dial light in your receiver flicker, you may not be able to tell too accurately about any chirp on your signal. However, if you are satisfied with the absence of chirp when tuning either side of zero beat, it is safe to assume that your receiver isn't chirping with the light flicker and the observed signal is a true representation. No chirp either side of zero beat is fine - some chirp can be either in your transmitter or your receiver, when the lights flicker. But don't try to make these tests without first getting rid of the r.f. click at the key - you will never be able to give yourself a clean bill of health, because clicks can mask a chirp.

In some instances, particularly if the transmitter power is several hundred watts or more,

Fig. 8.9 - A key-clich filter for cathode, negativelead or sereen keying. It ran be lowated anywhere in the keving line. The values of I and C will vary widely with different currents and voltages, and must lur foumd by cut-and-try. For merem keying, the resistor R_{2} (lig. 8-2) should conneat to the junction of L and C.
$\mathrm{C}-0.0 .5$ to $2.0 \mu \mathrm{fl}$.
I. - 0.5 to 30 henrys.
you may find that a small eliek still persists on all frequencies. If such a click is observed, pull out the last i.f. amplifier tube in your recoiver and listen again. If the eliek is still there, it indicates rectification in the audio system of your receiver, the same type of BCI we cuss out cheap midget receivers for. You call cure it with the usual resistor-condenser filter used for curing such BCI cases, or you can leave it in and make mental compensation for it. Any click you hear on your signal should reduce to this minimum elick immediately off the signal.

Another unavoidable click can be encountered by r.f. pirk-up on the lead from a receiver i.f. amplifier to a (Qiocr. Ilere agatin the click will he present at any setting of the receiver tuning control. The solution here is to make your checks with the (a)-er disconnerted and the lead removed from the receiver.

Key clicks are caused by the key turning your transmitter on and off too fast - and sometimes by parasitic oscillations in an amplifier - and all a key-rick filter does is to slow down the turning-on and turning-off processes. Parasitic clicks orcur at points 25 to 100 kc . either side of the signal, and are caused by
low-frequency parasitia osoillations that are triggered by the keving. The cure consists of eliminating the oscillation, not adding keyclick filters.

Plate, screen or cathode keying requires a key-rlick filter of the type shown in Fig. 8-9. Adjustment of such a filter is a simple matter. If the sigmal has too heavy a click or thump on "make," L should have more inductance. If the click is too heavy on "break," C" should have more caparity. The "brat" eharacteristic is also influenced by the value of L, so start with a value of (' that reduces the rlicks noticataly on "break," adjust the value of L for best "make" charrateristic, and then clean up the "break" by further modification of r ". Since you may have omly a few stray inductances around the shack, you may not find just the value you want for L. In this case, use a value that gives too soft a "make" and then shunt the inductance with resistance to reduce its effert. Transformer windings will often serve as well as standard chokes in this application, so try everything around the shack until you find what you neod. For a given voltage, high-current circuits will require more (: and less L, than will low-rurrent ones.

In the sereen-grid keving circuit, the value of $R 2$ will also affect the "break" characteristic. If R_{2} is too large the "break" will tail off too gradually, if it is too small it may introduce a cliek on "break." In general it is best to start with a value as suggested in Fig. 8-2 and adjust C for the proper "bratk" charateristic.

Adjustment of control-grid or keyer-tube keying charateristics is simple, since the important eomponents are (${ }^{\prime}, R_{1}$ and R_{2} (Figss. 8 -3 and 8-i) . For a given value of (1 , increasing the value of K_{2} will soften the "make" eharancteristie, and increasing the value of R_{1} will soften the "break." "lhe value of k_{1} will be many times the value of R_{2}. With grid-block keying, the value of R_{2} is determined already if the tube runs grid current, because this will be the normal grid leak, and so the value of r_{1} must be adjusted for proper "make" charateteristic and then the "break" made satisfartory by adjustment of R_{1}. Tubes rumning heavy grid current are not too suitable for grid-block keying berause the value of R_{1} generally ends up comparatively low and the negative supply must furnish too much eurrent when the key is down.

If you are keying in a low-level stage, don't overlook the clipping action of subsequent stages that are fixed-biased beyond cut-off. It can reintroduce clicks," . Ind if you key your oscillator, don't be too disappointed in the chirp that shows up when you have clickless keving. Implifier keving is the answer.

[^7]
A Vacuum-Tube Keyer

A tube-keyer unit is shown in Figs. 8-10 and 8-11. T_{1}, the 80 rectifier, and C_{1} and R_{1} form the power-supply section that furnishes the blucking voltage for the kever tubes. S_{1} and S_{2} and their associated resistors and condensers are included to allow the operator to select the keying characteristic he wants. A simplified version could omit the swithes and extra components, sinee once the values have been selected the components can be soldered permanently in place. The rule for adjusting the keying eharacteristic is the same as for blocked-grid keying. Inwever, large values of resistors and small values of condensers can be used, since there is no value of grid leak determined by the tube that dictates a starting point.

As many tis may be added in parallel as desired. The voltage drop through a single tube varies from about 90 volts at 50 mat, to 50 volts at 20 ma. Tubes added in parallel will reduce the drop in propertion to the number of tubes usid.
When connerting the output terminals of the keyer to the eirenit to be keyed, the grounded output terminal of the keyer must be comnereded to the transmitter ground. Thus the keyer can be used only in negative-lead or cathode keying.

When the key or keying lead has poor insulation, the resistane may become low mough (particularly in humid weather) to reduce the

Fig. 8.10-A vacuum-tube keyer, built op on a $7 \times$ 9×2-inch chasis with wace fur four or lesis keyor tubers and the power-supply rectilier. The nesiztors and combensers that prodine the lag are underneath, eomtrolled by the hoode at the right. 'I lue jach io lor the key, while terminala at the left are for the keyod circuit.
borking voltage and aliow the keyer tube to pass some current, This maty calkee a slight back-wave, but can be cured by bether insulation or reduced values of R_{2}, R_{3}, $R_{\text {a }}$ and R_{5}.

Fig, 8.11-Wiring diagram of a practical varnom-tuhe kever similar to the one in lig. 8-19.
$\mathrm{C}_{1}-2 . \mu \mathrm{fd} .600$-volt paper.
$\mathrm{C}_{2}-0.0033 . \mu \mathrm{fil}$, nica. $\mathrm{C}_{3}-0.00 \mathrm{~F}-\mu \mathrm{Fd}$. mica. $R_{1}-0.22$ megohm, 1 watt. $\mathrm{H}_{2}-50,000$ olims, 10 watts.
$R_{3,} R_{4}-4,7$ mequbmes, 1 watt.
R_{5} - 0,17 megohm. I watt.
$\mathrm{S}_{1}, \mathrm{~N}_{2}-3$-pmation !-rircuit rotary switll
$\mathrm{I}_{1}-3.50-(0-350$ volts, 5 woits and 2.5 volts (Stancor $\left.\mathbf{I}^{\prime}(0)(0) 3\right)$.

Monitoring of Keying

In general, there are two common methods for monitoring one's "fist" and signal. The first, and perhaps more common type, involves the use of an audio oscillator that is keyed simultaneously with the transmitter. If it works dienctly from the key it may not always duplicate exactly the keyed signal sont out on the air, and the more modern sistems use rectified r, f. from the trinsmitter to olerate the oscillator, thus duplicating the keying at any and all times.

The second method is one that permits receiv-
ing the signal through one's rereivere and this senerally requires that the receiver he tuned to the transmitter (not always convemient unlass working on the same frec,uency and that some mothod be provided for preventing overloading of the rereiver, su that a gend replica of the transmitted signal witl be reverved. lixerept where quite low power is used, this usually involves a relay for simultancously shorting the reveiver input terminala and reduring the receiver gain.

Examples of louth methoeds will be given.

The Monitone - for C.W. and 'Phone

The "Monitone" is a useful device for monitoring c.w. or 'phone transmissions. When used for c.w. work, it furnishes an audio tone every time the transmitter key is closed, and it also blanks the receiver output at the same time. When used with a phone transmitter, it blanks the receiver when the transmitter carrier is turned on, and also furnishes an audio, replira of the transmitted signal, at any desired volume level. The Monitone requires no direct comnection to the transmitter or key, and no changes are needed in the reweiver. The sidetone and blanking are keyed by the r.f. output of the transmitter, regardless of frepureney.

Reforring to Fig. 8-12, the क्NLiz(iT acts as a dual amplifier, for the receriver output and for the sidetone oscillator (eonsisting of the neon bulb

One method of construction of the Monitone is to use a 6 -inch cube aluminum utility box (ICA No. 29843) for a cabinet, mounting the components on one removable wall and a small 2 -ineh rhassis fastemed to this wall. R6, R11, S2, J2 and NE-2 can be mounted on the panel, with ND-2 projecting through a rubber grommet. The $1 . N 34$ arystal and most of the neon-oseillator parts can mount on the 6Jo socket, and the audio components ean be grouped around the GSL7 socket. A tip jack for the r.f. pick-up lead can be mounted on the rear wall of the chassis, near where the 11 j -volt line cord and the shielded lead to I'l are brought out. It is advisable to keep the powersupply wiring and components away from the audio.

Fig, 8.12 - Wiring diagram of the Monitone.
(: 1 - 0.003- μ fif. dise ereramic.

你r.

(:s - I (0)- $-\mu$ fil. ceramic.
(if - 0.001- ff f , dise veramic.
(i , ($\mathrm{N}-8-\mu \mathrm{fd}$. 4. O -volt elecirolytie.
$\mathrm{H}_{1}-6800$ ohmes, $1 / 2$ watt
$1 \mathrm{H}_{2}-1000$ olmms, $1 / 2$ watt.
$13_{3}-0 . \overline{0}(0$ merenhm, $1 / 2$ watt.
$\mathrm{K}_{4}, \mathrm{I}_{\mathrm{n}}-12(0)$ ohms, $1 / 2$ watt.
$1 R_{6}$ - I-megobm potentiometer
(Mallory (-53).
$\mathrm{K}_{7}-28,000$ ohms, I watt.
Rs - $68,(1) 0$ ohms, $1 / 2$ watt.
$\mathrm{K}_{9}, \mathrm{~K}_{10}-\mathrm{l}$ megohm, $1 / 2$ watt.
R_{11} - B-megohm potentione-
ter (Mallory (1.59).
$R_{12}-2,2$ megolmms, $1 / 2$ watt.
$\mathrm{K}_{13}-47,000$ ohms, 1 watt.
$1 k_{14}-10.1$ megohm, I watt.
J — "lip jach.
J_{2} - Open-rirruit jack.
$I_{1}-$ 'Ihome plag.

SiA, $_{1 B}$-S.p.d,t. switeh: see text. (Wallors IS-28.)
S_{2} - S.j.s.i. toggle switoh.
'I'I - Replacement transformer (Stancor P'60(0).
Xtal-iN3t. IN5I, ete. Comnect "cathode" to J_{1}.
$N 1,-2, C_{6}$ and $R_{10}+R_{11}$). When r.f. from the transmitter is fed in at J_{1} it is rectified by XTAI, and a negative voltage is developed across R_{9}. This negative voltage cuts off the 655 and one-half of the 6SL7CiT. The neon-bull oscillator goes into action and the resultant tone is amplified in the other half of the GSLA7CTT. For 'phone work, $s_{1 B}$ is opened and $S_{1 A}$ is closed. This turns off the sidetone oseillator and feods the rectified andio from the transmitter through volume control P_{fi}.

The tone of the neon-bull) oseillator is varied by the position of R_{11}. Since the power drain of the Monitone is only about io mat aso volts, a resistor is used instead of a filter choke in the frwer supply.

Changeover switeh $S_{1 ;} S_{113}$ is mounted on the tone potentiometer, R_{11}, and is wired so that $s_{1 \mathrm{~A}}$ is closed when the control arm for the potentiometer is rotated to the extreme counterelockwise position. Sib should opern at this setting of the tone control. $S_{1 A} S_{1 B}$, labeled by the manufacturer as a s.p.d.t. switeh, is actually a pair of s.p.s.t. switches built into a single assembly.

Installation \& Operation

The Monitone is used hy plugging the audio phug, I_{1}, into the headphone jack of the receiver, the headphenes into J_{2} of the Monitone, and applying 11.5 volts ace. A length of wire must he run from the r.f. input jack, J_{1}, to a point where it can piek up r.f. from the transmitter
antenna system. With $S_{\text {IB }}$ and the power switch, S_{2}, closed, the transmitter may be turned on and the position of the r.f. pick-up lead (Caution! ligh voltage!) adjusted for a sustained oscillattion of the neon tube circuit. Sufficient r.f. coupling between the transmitter and the monitor is indicated by a glow in the bulb and by the sidetone as heard in the headphones.

The r.f. field around the antenna system may vary in strength as the tranmitter is switched from one band to another. ['sually, however, a coupling adjustmont made at one frerguency will suffice for all other frequenemes as long as the pirk-up lime is coupled to one side of the antenna tumer and not the transmission line.

Break-In Operation

Break-in operation requires a separate receiving antenna, since none of the available antenna change-over relays is fast enough to follow keying. The receiving antenna should be installed as far as possible from the transmitting antenna. It should be mounted at right

the same time is often necessary. The system shown in ligg. 8-13 permit. quiet break-in operation for higher-powered stations. It requires a simple operation on the receiver but otherwise is perfectly straightforward. R_{1} is the regular receiver r.f. and i.f. gain control. The ground lead is lifted on this control and run to a rheostat, R_{2}, that goes to ground. A wire from the junction runs outside the reeniver to the keying relay, $R_{y,}$. When the key is up, the ground side of R_{1} is connected to ground through the relay arm, and the receiver is in its normal operating condition. When the key is closed, the rolay closes, which breaks the ground connection from R_{1} and applies additional bias to the tubes in the receiver, This bias is controlled by R_{2}. When the rolay closes, it also closes the cireuit to the transmitter oscillator. ${ }^{\prime}{ }_{2}, C_{3}, R F^{\prime} C^{\prime}{ }^{2}$ and $R F^{\prime} C_{3}^{\prime}$ romposes a filter to suppress the clicks caused by the relay current.

The keying relay should be mounted on the receiver as close to the antenna terminals as possible, and the leads shown heavy in the diagram should be kept short, since long leads will allow too much signal to get through into the receiver. A good high-speed keying relay should be used. If a two-wire line is used from the receiving antemna, amother r.f. choke, RFP C_{4}, will be required. The revised portion of the schematic is shown in lig, 8-14.

A DE LUXE BREAK-IN SYSTEM

In many instances it is quite diffieult to key an oscillator without rlicks and chirps. Most oscillators will key without apparent chirp, if the rise and decaly times are made very short, but this introduces key rlicks that cannot be

Fig. 8-14-Necessary eireuit resi-im of Fig. 8-13 if a twowire leal from the receiving antenna is used. $R F^{\circ} \mathrm{C}+\mathrm{i}$ a a $0 . \overline{5}-\mathrm{mh}$. r.f. choke - other values are the same as in Fig. 8-13,

Fig. 8-15 - I de luxe breah-in system that holids the oseillator circuit closed (and the receiver input shorted) during a string of fast dot- hat opens between lettera or norrols.
C. -10.001 - μ fld mica.
C_{2} - $11.01017-\mu \mathrm{fl}$, mica
$1 \mathrm{~B}_{1}-20(\mathrm{HW}$ ohms, 10 watts, wire-wounl.
R_{2} - 18060 ohms.
I_{3} - Nico whms.
$\mathrm{H}_{4}, \mathrm{~B}_{5}-1.0$ megolm.
$\mathrm{in}_{\mathrm{a}}-12 \mathrm{~m}$, dhms.
R: - $\mathbf{1 , 8} 8$ meselom.
R_{x} - 0.15 m. mohm.

All re-i*ur- I wath compmestion unless otherwise noted.

 Armold Tyue i:-2 Milliser relay).
a voided. The switem shown in Fig. 8-15 a voids this trouble hey turning on the oseillator quickly, koving am amplifier with a vacmumtube kever, and turning off the oscillator after the amplifier keving is finished. The oscillator is turned on and off withont lag, but the resultant relieks are not passed through the tramsmiter. Actually, with keying speeds faster than about $1.5 \mathrm{w} . \mathrm{p}$.m., the asillator will stay turmed on for a letter or even a word, but it thrns of botween words and allows the transmitting station to hear the "break" signal of the other station. It requires one tube more than the ordinary varumm-tube keyer and a sperial high-speed relay.

As ram be seen from Fig. 8-15, the rireuit is a rombination of the break-in system of Fig. 8-13 and the tube kever of Fig, 8-11, with a gs天ス tube amd a few resistors added. Normally the leit-hand prortion of the $6 \mathfrak{N} 7$ is biased to a low value of plate current by the drop through R_{2} (part of the beeder $R_{1} R_{2} R_{3}$) and the relay is open. When the key is closed and C_{2} starts to discharge, the right-hand portion of the fisN7 draws eurrent and this in turn puts a less-negative voltage on the grid of the left-hand
portion. The tube draws current and the relay closes. The rolay will stay closed until the negative voltage across C_{2} is dowe to the supply voltare, and consequently a string of dots or dashes (which doessn't give C_{2} a chance to charge to full nugative) will keep the relaty elonied. In adjusting the system, R_{2} controls the amount of idling current through the relay and R_{6} determines the voltage across the relay. R_{7}, R_{8} and C_{2} are the normal resistors and conthenser for the tube keyer. When adjusted properly, the relay will elose without delay on the first clot and open quickly during the spaces betwen words or slower letters. When idling, the voltage arrose the relay should be one or twe volt: - with the key down it should be 18 volts.
The oscillator shombl be designed to key as fast as possible, which means that series resistances and shunt capacitances should be held to a minimum. Nogative plato-lead keying is slighty faster than cathode koving and should be used in the osceillator. The keyer tubes are connected in the eathode eirenit of an amplifier stage far conough removed in the circuit to avoid ramelion on the asillator. By using blocked-grid kerving of the amplifier stage, the keyor tubes can be climinated.

ELECTRONIC KEYS

Wectronic keys, as contrasted with mechanieal atomatio kerss, use vacuum tubes or relays (or both) to form automatio dashes as woll as autor matio dots, As first devised by amateums in 1940, a dash could be" "clipped short" if the dash hever ware lifted tow soom. More recent designs have resulted in "self-omupleting dashes" that climinate this possibility and permit the operator, with a reasonable amount of praclice, to generate near-perfeet eode. Full descripions of edeetronic keys that produce selfeompheting dashes ean be found in the following (2STV articles:
Bartlett, "Further Advances in l:lectronic-Keyer
Design," October, 1948; comretion, page 10, January, 1949.
Turrin, "Debugging the Electronic Bug," Jan., 1950.

Montgomery, "'Corkey' - A Tube'iess Automatic Ker," November, 1950.
Barthett, "Comparet Automatic Key Design," Dec., 1951.
A simple unit that can be attached to a mechanieal automatio key to give automatic dashes (not of the self-eompleting type, however) can be found described in the following QST article: Gotisar, "The Dash Master," Aug., 1948.

Speech Amplifiers And Modulators

The audio amplifiers used in radiotelephone transmitters operate on the principles outlined parlier in this book in the chapter on varuum tubes. The design requirements are determined principally by the type of modulation system to be used and by the type of microphone to be employed. It is necessary to have a clear understanding of modulation principles before the problem of laying out a speech system can be approached suceessfully. Those principles are discussed under appropriate chapter headings.
The present chapter deals with the design of audio amplifier systems for communication purposes. In voice eommunication the primary objective is to obtain the most effective transmission; i.e., to make the message be understood at the receiving point in spite of adverse eonditions ereated by noise and interference. The mothods used to accomplish this do not necessarily coincide with the methods used for
other purposes, such as the reproduction of "musie or other program material. In other words, "naturalness" in reproduction is distinetly sectondary to intelligibility.

The fact that satisfactory intelligibility cam be maintaned in a rolatively narrow band of frequencies is particularly fortunate, becaluse the width of the channel occupied by a phone transmitter is directly proportional to the width of the audio-frequency band. If the channel width is reduced, more stations can occupy a given band of frequencies without mutual interference.

In speech transmission, amplitude distortion of the voice wave has very little effect on intelligibility. Its importance in communication lies almost wholly in the fact that the audio-frecpuency harmonies caused by such distortion may lie outside the channel needed for intelligible speech, and thus will create unnecessary interference to other stations.

Speech Equipment

In designing speech equipment it is necessary to know (1) the amount of audio power the modulation system must furnish and (2) the output voltage developed by the microphone when it is spoken into from normal distance (a few inches) with ordinary loudness. It then becomes possible to choose the number and type of amplifier stages needed to generate the required audio power without overloading or distortion anywhere in the system.

MICROPHONES

The level of a microphone is its electrical output for a given sound intensity. Level varies greatly with microphones of different types, and depends on the distance of the speaker's lijs from the mierophone. Only approximate values based on averages of "normal" speaking voices can be given. The values given later are based on close talking; that is, with the microphone about an inch from the speaker's lips.
The frequency response or fidelity of a microphone is its relative ability to convert sounds of different frequencies into alternating current. For understandable speech transmission only a limited frequency range is necessary, and intelligible speech can be obtained if the output of the
mierophone does mierophone does not vary more than a few deeibels at any frequency within a range of about 200 to 2500 eyeles. When the variation expressed in terms of deeibels is small between two fre-
quency limits, the microphone is said to be flat between those limits.

Carbon Microphones

The carbon microphone consists of a metal diaphragm placed against an insulating cup containing loosely-packed carbon granules (microphone button). Current from a battery flows through the granules, the diaphragm being one connertion and the metal backplate the other. Fig. 9-1.1 shows comertions for carbon microphones, A variabke resistor is included for adjusting the button current to the value as specifiod with the microphone. The primary of a transformer is commected in series with the battery and microphone.

As the diaphragm vibrates, its pressure on the granules alternately increases and decreases, causing a corresponding increase and deerease of curvent flow through the circuit, since the pressure ehanges the resistance of the mass of granules. The resulting change in the current flowing through the transformer primary causes an alternating voltage, of corresponding frequency and intensity, to be set up in the transformer seeondary.

Good-quality earbon mierophones give outputs ranging from 0.1 to 0.3 volt across 50 to 100 ohms ; that is, across the primary winding of the mierophone transformer. With the step-up of the transformer, a peak voltage of between 3 and 10 volts can be assumed to be available at the grid of the
amplifier tube. The ustal button current is 50 to 100 ma.

Crystal Microphones

The crystal microphone makes use of the pierocelectric properties of Rowhelle salts arystals. This type of microphone rectuires no battery or transformer and ean be connected directly to the grid of an amplifier tube. It is the most popular type of microphone among amateurs, for these remoms as well as the fact that it has good froqueney response and is available in inexpensive models. The input cireruit for the erystal microphome is shown in Fig. !-1 13 .

Although the level of erystal microphomes varions with different moxdels, an output of 0.0.3 volt or so is representative for communication types. The level is atficeted by the length of the rable connerting the mircophone to the first amplifier stage; the above figure is for lengths of of or a feet. The frequency chatacteristic is unatfeeted by the calbe, but the load resistamer (amplifier grid resistor) does affere it: the lower freguencies are attemated as the value of had resistiance is lowered. A grid-resistor value of at Geast I megohm should be used for reasonably flat response, at megobme being a customary figure.

Velocity and Dynamic Microphones

In a velocity or "ribbon" microphone, the element acted upon bey the somend waves is a thin corrugated motallic ribbon suspended betwern the poles of a magnet. When vibrating, the riblon cuts the lines of fore between the poles, first in one direction and the the other, thus grnerating an alternating voltage.
Velocity microphones are built in two types, high impedance and low impedance, the former bring used in most applieations. I high-impedance mierophone can be directly comberted to the grid of an amplifier tube, shunted by a resistance of 0.5 to $\overline{5}$ megothm: (Fig. ! $1-10^{\circ}$), Lowimpedance mierophones are wised whon a long comerting cable (7 in feret or more) must be employed. In such a case the output of the mirerophone is coupled to the first amplifier stage through a suitable step-up transformer, as shown in Fig, 9-11).

The level of the velocity mierophone is about 0.03 to 0.05 volt. This figure applies dirertly to the high-imperance tripe, and to the low-impedance type when the voltage is measured across the secondary of the conpling transformer.
The dynamic microphone somewhat resembles a dynamic loudspeaker. A light-weight voiee coil is rigidly attached to a diaphragm, the coil being suspended between the poles of a permanent magnet. Sound calseses the diaphragm to vibrate, thus moving the coil bark and forth between the magnet poles and gencrating an alternating voltage.

The dynamic microphone usually is built with high-impedance output, suitable for working directly into the grid of an amplifier tube. If the connerting cable must be unusually long, a low-
impedance type should be used, with a step-up transformer at the cond of the cable.

A small permanent-magnet 'speaker can be used as at dynamie microphone, although the fidelity is not as good as is oltainable with a properly-designed microphone.

THE SPEECH AMPLIFIER

The audio-frequency amplifier stage that (anses the r.f. carrior output to be varied is called the modulator, and all the amplifier stages proceding it comprise the speech amplifier. Tepending on the modulator used, the speech amplifier maty be called upon to deliver a power output ranging from practically zero (only voltage required) to 20 or 30 watts.

(A) s b carbon

Fig. 9-1 - sumeril innul circuits used wilh varimus types of microphones.

Before starting the design of a speech amplifier, therefore, it is necessary to have seleeted a suitable modulator for the transmitter. This selection must be based on the power reguired to modulate the transmitter, and this power in turn depends on the type of modulation system selected, as described in other chapters, With the modulator picked ont, its driving-power requirements (audio power required to excite the modulator to full output) can be determined from the tube tables in the last chapter. (iencrally speaking, it is advisable to choose a tule or tubes for the last stage of the speech amplifier that will be capable of

Fig. 9.2 - Resistanceroupled voltagr-amplifior cir. cuits, A, pentode; J3, triode, Desipnations are as follows: C_{1} - Cathode by-pass eombensar.
C_{2} - 'Patr berose comdenzer.
C_{3} - Outhut doupling condenter (borking condenser). C_{4} - serem bs-pass condenser.
K_{1} - Cathonde resister.
R_{2} - Cirid resistor.
K_{3} - Ilate resistor.
1_{4} - Vext-stage grid resistor.
Rs - Ilate decompline resistor.
R_{6} - Sereen resintor.
Values for suitable tubes arre piven in 'rable 9-I, Values
 Le about 10% of $R_{3}:$ an 8 - or $10 . \mu \mathrm{fet}$. cheretrolytie condenser is usually large enoumh at fiz.
developing at least 50 per cont more pown than the rated driving power of the modulator. This will provide a factor of safoty so that losses in coupling transformers, ete., will not unset the ealculations.

Voltage Amplifiers

If the last stage in the sperech amplifier is at Class AB_{2} or Class 13 amplifier, the stage ahoad of it must be capable of sufficient power output to drive it. However, if the last stage is a Class $\mathrm{A} B_{1}$ or Class a amplifior the preereding stage can be simply a voltage amplifier. From there on back to the microphone, all stages are voltage amplifiers.

The important characteristics of a voltage amplifier are its voltage gain, maximum undistorted output voltage, and its frequency response. The voltage gain is the voltage-amplification ratio of the stage. The output voltage is the maximum a.f. voltage that can be secured from the stage without distortion. The amplifier frequency response should be adequate for voide reprodurtion: this requirement is casily satisfied.

The voltage gain and maximum undistorted output voltage depend on the operating conditions of the amplifier. Jata on the popular tepers of tubes used in speech amplifiers are given in Table 9-I, for resistance-coupled amplification,

The output voltage is in terms of peak voltage rather than r.mes.; this makes the rating independent of the waveform. Fxereding the peak value ratuses the amplifier to distort, so it is more useful to consider only pak values in working with :mplifier:s.

Resistance Coupling

Resistanee coupling generally is used in volt-age-amplifier stages. It is relatively inexpensive, good frequency response ean be sereured, and there is little danger of hum piek-up) from stray magnetie fields associated with heater wiring. It is the only tupe of roupling suitable for the output circuits of pentodes and high- μ triotos, because with transformers a sufficiently high load impedance ramot be obtained without considerable frequence distortion. Typical cirouits are given in Fig. !-2 and design datat in Table !?-I.

Transformer Coupling

Transformor coupling betwern stages ordinarily is used only when power is to be tramsferred (in surh a case resistancer coupling is wery ineffiement), or when it is meressary to (emuj) le be tworen a single-ended and a push-pull stage. Triodes having an amplification factor of 20 or lose ate used in transformerecoupled voltage amplifiers. With transformen roupling, tulus should be operated under the Class A conditions given in the tube tables at the end of this book.

Representative rireuits for roupling singleanded to push-pull stages atre shown in Fig. !-3. The rircuit at i rombines resistance and tramsformer coupling, and may be wed for exeiting the

Fif. 9.3 - Transformer-compled amplifier circuits for driving a push-pull amplifier A is for resistance-transformer rompling: IS for transformer complimg. Designa* tions correppond to thoze in lija. 9.2. In A. value cean Loe taken from 'I'able 9.I, In IS, the eathontere restor is calculated from the rated plate current and grid hias as given in the tube tables for the partieular type of tube used.

TABLE 9－I－RESISTANCE－COUPLED VOLTAGE－AMPLIFIER DATA
Data are given for a plate supply of 300 volts．Departures of as much as 50 per cent from this supply voltage will not materfally change the operating conditions or the voltage gain，but the output voltage will be in proportion to the new vcltage．Voltage gain is measured at 400 cycles；condenser values given are based on $100-\mathrm{cycle}$ cut－off．For increased low－frequency response，all condeniers may be made larger than specified（cut－off frequency in inverse proportion to condenser values provided all are changed in the same proportion）．A variation of 10 per cent in the values given has negligible effect on the performance．

	Plate Resistor Megohms	Next－Stase Grid Resistor Meschms	Screen Resistor Megohms	Cathode Resistor Ohms	Sereen By－pass $\mu \mathrm{ld}$ ．	$\begin{aligned} & \text { Cathode } \\ & \text { By-pass } \\ & \mu \mathrm{fd} \text {. } \end{aligned}$	Blocking Condenser $\mu \mathrm{fd}$ ，	Output Volts （Peak）＇	Voltage Gain ${ }^{2}$
66，7，12SJ7	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.35 \\ & 0.37 \\ & 0.47 \end{aligned}$	$\begin{aligned} & 500 \\ & 530 \\ & 590 \end{aligned}$	$\begin{aligned} & 0.10 \\ & 0.09 \\ & 0.09 \\ & \hline \end{aligned}$	$\begin{array}{r} 11.6 \\ 10.9 \\ 9.9 \\ \hline \end{array}$	0.019 0.016 0.007	$\begin{array}{r} 78 \\ 96 \\ 101 \\ \hline \end{array}$	$\begin{array}{r} 67 \\ 98 \\ 104 \end{array}$
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$	0.89 1.10 1.18	$\begin{aligned} & 850 \\ & 860 \\ & 910 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.06 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 7.4 \\ & 6.9 \end{aligned}$	$\begin{aligned} & 0.011 \\ & 0.004 \\ & 0.003 \end{aligned}$	$\begin{aligned} & 79 \\ & 88 \\ & 98 \end{aligned}$	$\begin{aligned} & 189 \\ & 167 \\ & 185 \\ & \hline \end{aligned}$
	0.5	0.5 1.0 2.0	$\begin{aligned} & 9.0 \\ & 9.9 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 1300 \\ & 1410 \\ & 1530 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.05 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.8 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 0.004 \\ & 0.0002 \\ & 0.0015 \end{aligned}$	$\begin{aligned} & 64 \\ & 79 \\ & 89 \end{aligned}$	$\begin{array}{r} 200 \\ 238 \\ 263 \\ \hline \end{array}$
$\begin{aligned} & 617,7 \mathrm{C7}, \\ & 12.77-\mathrm{GT} \end{aligned}$	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.5 \\ & 0.53 \end{aligned}$	$\begin{array}{r} 500 \\ 450 \\ 600 \\ \hline \end{array}$	$\begin{aligned} & 0.07 \\ & 0.07 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.3 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 0.02 \\ & 0.01 \\ & 0.006 \end{aligned}$	$\begin{aligned} & 55 \\ & 81 \\ & 96 \\ & \hline \end{aligned}$	61 89 94
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.18 \\ & 1.18 \\ & 1.45 \end{aligned}$	$\begin{aligned} & 1100 \\ & 1200 \\ & 1300 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.04 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.4 \\ & 5.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.008 \\ & 0.005 \\ & 0.005 \end{aligned}$	$\begin{array}{r} 81 \\ 104 \\ 110 \end{array}$	$\begin{aligned} & 104 \\ & 140 \\ & 185 \end{aligned}$
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.9 \\ & 2.95 \end{aligned}$	$\begin{aligned} & 1700 \\ & 2200 \\ & 2300 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.04 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 4.1 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 0.005 \\ & 0.003 \\ & 0.0095 \end{aligned}$	$\begin{array}{r} 75 \\ 97 \\ 100 \\ \hline \end{array}$	$\begin{aligned} & 161 \\ & 200 \\ & 230 \end{aligned}$
$\begin{aligned} & \text { 6AU6, 6SH7, } \\ & 12 A U 6,12 S H 7 \end{aligned}$	0.1	$\begin{aligned} & 0.1 \\ & 0.22 \\ & 0.47 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.24 \\ & 0.26 \end{aligned}$	$\begin{aligned} & \hline 500 \\ & 600 \\ & 700 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.13 \\ & 0.11 \\ & 0.11 \end{aligned}$	$\begin{aligned} & 18.0 \\ & 16.4 \\ & 15.3 \end{aligned}$	$\begin{aligned} & 0.019 \\ & 0.011 \\ & 0.006 \end{aligned}$	$\begin{array}{r} 76 \\ 103 \\ 129 \end{array}$	$\begin{aligned} & 109 \\ & 145 \\ & 168 \end{aligned}$
	0.22	$\begin{aligned} & 0.29 \\ & 0.47 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.42 \\ & 0.5 \\ & 0.55 \\ & \hline \end{aligned}$	$\begin{aligned} & 1000 \\ & 1000 \\ & 1100 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.098 \\ & 0.09 \end{aligned}$	$\begin{aligned} & 12.4 \\ & 12.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 0.009 \\ & 0.007 \\ & 0.003 \end{aligned}$	$\begin{array}{r} 92 \\ 108 \\ 129 \\ \hline \end{array}$	$\begin{aligned} & 164 \\ & 230 \\ & 262 \\ & \hline \end{aligned}$
	0.47	0.47 1.0 2.2	$\begin{aligned} & 1.0 \\ & 1.1 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 1800 \\ & 1900 \\ & 8100 \end{aligned}$	$\begin{aligned} & 0.075 \\ & 0.065 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.6 \\ & 7.3 \end{aligned}$	0.0045 0.0028 0.0018	$\begin{array}{r} 94 \\ 105 \\ 122 \end{array}$	$\begin{aligned} & 248 \\ & 318 \\ & 371 \end{aligned}$
$\begin{gathered} \text { 6AO6, 6AO7, } \\ \text { 6AT6, 6Q1, } \\ \text { 6SL7GT, 6SZ7, } \\ \text { 6T8,12AT6, } \\ 12 Q 77-G T \\ 12 S L 7-G I \\ \text { (one triode) } \end{gathered}$	0.1	$\begin{aligned} & 01 \\ & 0.22 \\ & 0.47 \end{aligned}$	－	$\begin{aligned} & 1500 \\ & 1800 \\ & 2100 \end{aligned}$	－	4.4 3.6 3.0	0.027 0.014 0.0065	$\begin{aligned} & 40 \\ & 54 \\ & 63 \end{aligned}$	34 38 41
	0.22	$\begin{aligned} & 0.22 \\ & 0.47 \\ & 1.0 \end{aligned}$	－	$\begin{aligned} & 2600 \\ & 3200 \\ & 3700 \\ & \hline \end{aligned}$	－	9.5 1.9 1.6	$\begin{aligned} & 0.013 \\ & 0.0065 \\ & 0.0035 \end{aligned}$	$\begin{aligned} & 51 \\ & 65 \\ & 77 \end{aligned}$	$\begin{aligned} & 42 \\ & 46 \\ & 48 \\ & \hline \end{aligned}$
	0.47	$\begin{aligned} & 0.47 \\ & 1.0 \\ & 2.2 \end{aligned}$	－	$\begin{aligned} & 5200 \\ & 6300 \\ & 7900 \end{aligned}$	二	1.8 1.0 0.9	$\begin{aligned} & 0.006 \\ & 0.0035 \\ & 0.002 \end{aligned}$	$\begin{aligned} & 61 \\ & 74 \\ & 85 \end{aligned}$	$\begin{aligned} & 48 \\ & 50 \\ & 51 \end{aligned}$
$\begin{gathered} \text { 6AV6, } 12 A V 6, \\ 12 A \times 7 \\ \text { (one triode) } \end{gathered}$	0.1	$\begin{aligned} & 0.1 \\ & 0.22 \\ & 0.47 \end{aligned}$	二	$\begin{aligned} & 1300 \\ & 1500 \\ & 1700 \end{aligned}$	－	4.6 4.0 3.6	$\begin{aligned} & 0.027 \\ & 0.013 \\ & 0.006 \end{aligned}$	$\begin{aligned} & 43 \\ & 57 \\ & 66 \end{aligned}$	45 59 57
	0.22	$\begin{aligned} & 0.22 \\ & 0.47 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 2200 \\ & 9800 \\ & 3100 \end{aligned}$	－	3.0 2.3 9.1	$\begin{aligned} & 0.013 \\ & 0.006 \\ & 0.003 \end{aligned}$	$\begin{aligned} & 54 \\ & 69 \\ & 79 \\ & \hline \end{aligned}$	59 65 68
	0.47	$\begin{aligned} & 0.47 \\ & 1.0 \\ & 8.8 \\ & \hline \end{aligned}$	－	$\begin{array}{r} 4300 \\ 5200 \\ 5900 \end{array}$	－	1.6 1.3 1.1	$\begin{aligned} & 0.008 \\ & 0.003 \\ & 0.002 \end{aligned}$	$\begin{aligned} & 62 \\ & 77 \\ & 92 \end{aligned}$	69 73 75
$\begin{gathered} \text { 6SC7, } 12 S C 7{ }^{3} \\ \text { (one triode) } \end{gathered}$	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	－	$\begin{array}{r} 750 \\ 930 \\ 1040 \\ \hline \end{array}$	－	－	$\begin{aligned} & 0.033 \\ & 0.014 \\ & 0.007 \end{aligned}$	35 50 54	$\begin{array}{r} 29 \\ 34 \\ 36 \\ \hline \end{array}$
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 1400 \\ & 1680 \\ & 1840 \\ & \hline \end{aligned}$	－	－	$\begin{aligned} & 0.012 \\ & 0.006 \\ & 0.003 \end{aligned}$	$\begin{aligned} & 45 \\ & 55 \\ & 64 \end{aligned}$	39 42 45
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$	－	$\begin{aligned} & 2330 \\ & 2980 \\ & 3280 \end{aligned}$	－	－	$\begin{aligned} & 0.006 \\ & 0.003 \\ & 0.002 \end{aligned}$	50 68 78	$\begin{aligned} & 45 \\ & 48 \\ & 49 \\ & \hline \end{aligned}$
6J5，7A4 7N7，6SN7GT， 12J5－GT， 12SN7－G＇ （one triode）	0.05	$\begin{aligned} & 0.05 \\ & 0.1 \\ & 0.25 \end{aligned}$	－	$\begin{aligned} & 1020 \\ & 1270 \\ & 1500 \end{aligned}$	－	$\begin{aligned} & 3.56 \\ & 2.96 \\ & 2.15 \end{aligned}$	0.06 0.034 0.012	41 51 60	$\begin{aligned} & 13 \\ & 14 \\ & 14 \end{aligned}$
	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	——	$\begin{aligned} & 1900 \\ & 2440 \\ & 2700 \end{aligned}$	－	$\begin{aligned} & 2.31 \\ & 1.42 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 0.035 \\ & 0.0125 \\ & 0.0065 \end{aligned}$	43 56 64	$\begin{aligned} & 14 \\ & 14 \\ & 14 \end{aligned}$
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 4590 \\ & 5770 \\ & 6950 \end{aligned}$	－	$\begin{aligned} & 0.87 \\ & 0.64 \\ & 0.54 \end{aligned}$	$\begin{aligned} & 0.043 \\ & 0.0075 \\ & 0.004 \end{aligned}$	46 57 64	$\begin{aligned} & 14 \\ & 14 \\ & 14 \end{aligned}$
$\begin{gathered} \text { 6C4, } \\ 12 A U 17 \\ \text { (one triode) } \end{gathered}$	0.047	$\begin{aligned} & 0.047 \\ & 0.1 \\ & 0.22 \end{aligned}$	\square	$\begin{array}{r} 870 \\ 1200 \\ 1500 \end{array}$	－	4.1 3.0 2.4	$\begin{aligned} & 0.065 \\ & 0.034 \\ & 0.016 \end{aligned}$	38 59 68	19 12 12
	0.1	$\begin{aligned} & 0.1 \\ & 0.22 \\ & 0.47 \end{aligned}$		$\begin{aligned} & 1900 \\ & 3000 \\ & 4000 \\ & \hline \end{aligned}$	－	1.9 1.3 1.1	0.032 0.016 0.007	44 68 80	12 12 12
	0.22	$\begin{aligned} & 0.28 \\ & 0.47 \\ & 1.0 \end{aligned}$	二－	$\begin{array}{r} 5300 \\ 800 \\ 11000 \end{array}$	二	$\begin{aligned} & 0.9 \\ & 0.52 \\ & 0.46 \end{aligned}$	$\begin{aligned} & 0.015 \\ & 0.007 \\ & 0.0035 \end{aligned}$	57 89 98	12 12 12

[^8]grids of a Class A or AB following stage. The resistance coupling is used to keep the d.e. plate current from flowing through the transformer primary, therely preventing a reduction in primary inductance below its no-current value: this improves the low-frequency response. With low- μ triodes (6 (5 , 6.5 , ete.), the gain is equal to that with resistance coupling multiplied by the see-ondary-to-primary turns ratio of the transformer.

In 13 the transformer primary is in sories with the plate of the tube, and thus must carry the tube plate current. When the following amplifier operates without grid current, the voltage gain of the stage is practically copual to the μ of the tube multiplied be the iransformer ratio. This (irenit also is suitable for transferring power (within the capabilities of the tube) to a following Clans Al_{2} or ($\mathrm{Class}^{\mathrm{I}} 3$ stage.

Phase Inversion

Push-pull output maty be secured with resistather coupling bey using "phasc-inverter" eireuits as shown in Fig. !-t.

The cireuit shown in lige ! - fa is known as the "self-balaucing" type, The amplified voltage
(A)

Fig. 9-4- Self-halancing phate-inverter circuit. I and V_{2} may be a dubble triode such as the osviol or 6slad'l. I's may be any of the triondes listed in Table 9-I, or one section of a double triode.
11_{1} - Crid resistor (1 megolim or leses).
H_{2} - Cathode resistor; use onc-half value given in Table 9.1 for tulie and operating conditions chosen.
$\mathrm{l}_{3}, \mathrm{~K}_{4}$ - Plate resistor: selet from 'lable 9-I.
$\mathrm{R}_{5}, \mathrm{R}_{0}$ - Foblowing-stage grid resistor (0.2 .2 to 0.47 megohm).
11_{7} - $0: 22$ megohm.
R_{8} - Cathode resistor: select from Tahle 0.J.
R9, R10 - Each one-half of plate load resistor given in Table 9-I.
C_{t} - $10-\mu \mathrm{fd}$. electrolytic.
$\mathrm{C}_{2}, \mathrm{C}_{3}-0.01$ - to $0.1-\mu \mathrm{fd}$. paper.
from l_{1} appoars across R_{5} and R_{7} in series. The drop across $R_{\text {- }}$ is applied to the grid of V_{2}, and the amplified voltage from V_{2} appears across R_{6} and $R_{\text {- }}$ in series. This voltage is 180 degrees out of phase with the voltage from V_{1}, thus giving push-pull ontput. The part that appears across $R_{\text {; }}$ therefore opposes the voltage from I_{1} across R_{i}, thus reducing the signat applied to the grid of l'g. The negative feed-back so obtained tends to regulate the voltage applied to the phaseinverter tube so that the output voltages from both tubes are substantially requal. The gate is slightly hess thatn twioe the kain of a single-tule amplifier using the same operating eonditions.

In the single-tulxe cireuit shown in Fig. ! $-4 B$ the plate load resistor is divided into two ergat parts, R_{9} and l_{10}, whe being comnerted to the plate in the normal waty and the other between cathode and ground. Sinee the voltages at the plate and cathode are 180 degrees out of phase, the grids of the following tabes are fed equal a f. voltages in push-pull. The grid return of V_{3} is made to the junetion of R_{8} and R_{10} so nommal bias will be applied to the grid. This circuit is highly degencrative berause of the way R_{10} is conneered. The volage gain is less than 2 even when a high- μ triode is used at l_{3}.

Gain Control

A means for varving the over-all gain of the amplifior is necessary for kerping the tinal output at the proper level for modulating the transmitter. The common method of gatin control is to adjust the value of ate voltage applied to the grid of one of the amplifiors herems of a voltage divider or potentioneter:

The gain-cont mol potentiometer should be neat the input end of the amplifier, at a point where the ace. voltage level is so low that there is no danger of owerlomding in the stages ahead of the gain control. With carbon microphones the gain control may be pated direetly adrose the micro-phone-transformer socondary. With other types of microphones, howerer, the gatin rontrol usually will affert the frequeney response of the mirerophone when eonuerted directly arross it. Also, in a high-gain amplifior it is better to operate the first tube at maximum gain, sine this gives the best signal-to-hum ratio. The eontrol therefore is usually placed in the grid circuit of the serond stage.

D DESIGNING THE SPEECH AMPLIFIER

The steps in designing a spereh amplifier are as follows:

1) Determine the power needed to modulate the tramsmitter and seleet the modulator. In the rase of pate motulation, this will nearly always be a ('lass 13 amplifier. select a suitable tube trye and determine from the tube tables at the end of this book the grid driving power required.
2) As a safoty factor, multiply the required driver power bey atast 1.8 .
3) Select a tube, or pair of tubes, that will deliver the power determined in the second step. This is the last or output stage of the speechamplifier. Receiver-t pe power tubes can be used (beam tubes such as the 616 may be needed in some casess) as determined from the receiving-tube tables. If the speed amplifier is to drive a Class 13 modulator, use a Class A or AB_{1} amplifier, in preference to Class AB_{2}, if it will give enough power output.
4) If the speech-amplifier output stage nust operate (lass Al_{2}, use a medium- μ triode (such as the (6.J. or corresponding tepes) to drive it. In the extrome case of driving 6 L 6 s to maximum output, two triodes shoud be used in push-pull in the driver. In either case transformer coupling will have to be used, and transformer manufacturers' catalogs should be consulted for a suitable trpe.
5) If the speech-amplifier output stage operates Chass A or $A B_{1}$, it may be driven be a volage amplificr. If the output stage is push-pull, the driver may be a single tube coupled through a transformer with a balanced secondary, or may be a dual-triode phase invertor. Determine the signal voltage required for full output from the last stage. If the last stage is a single-tube ('lass I amplitier, the peak signal is equal to the grid-bias voltage; if push-pull Class A, the peak signal voltage is equal to twie the grid bias; if Class $A 3_{2}$, twice the bias voltage when fixed bias is usod; if cathode bias is used, twioe the hias figured from the cathode resistance and the no-signal plate current.
(i) From Table 9-I, select a tube capable of giving the recpuired output voltage and note its rated voltage gain, A double-triode phase inverter (Fig. 9-4A) will have approximately twice the output voltage and twice the gain of one triode operating as an ordinary amplifier. If the driver is to be transformer-coupled to the last stage, select a medium- μ triode and calculate the gain and output voltage as described earlior in this chapter.
6) Divide the voltage required to drive the output stage by the gain of the preceding stage. This gives the prak voltage required at the grid of the next-to-the-last stage.
7) Find the output voltage, under ordinary conditions, of the microphone to be used. This information should be obtained from the manufacturer's catalog. If not available, the figures given in the section on microphones in this chapter will serve.
a) Divide the voltage found in (7) by the output voltage of the mirrophone. The result is the over-all gain required from the microphone to the grid of the next-to-the-last stage. To be on the safe side, double or triple this figure.
8) From Table 9-I, select a combination of tubes whose gains, when multiplied together, give approximately the figure arrived at in (9). These amplifiers will be used in cascade. In gencral, if high gain is required it is advisable to use a pentode for the first speech-amplifier stage, but it is not advisable to use a second pentode because
of the possibility of feed-back and self-oseillation. In most cases a triode will give enough gain, as a second stage, to make up the total gain required. If not, a third stage, also a triode, may be used.

SPEECH-AMPLIFIER CONSTRUCTION

Once a suitable circuit has been selected for a speech amplifier, the construction problem resolves itself into avoiding two difficulties exerssive hum, and unwanted feed-back. For reasonably humless operation, the hum voltage should not exeeed about 1 per cent of the maximum audio output voltage - that is, the hum should be at loast 40 db , helow the output level. Unwanted feed-hack, if nogative, will reduce the gain bolow the calculated value; if positive, is likely to cause self-oscillation or "howls." Feredback can be minimized by isolating each stage with "decoupling" resistors and condensers, by avoiding layouts that bring the first and last stages near each other, and ber shielding of "hot" points in the circuit, such as grid leads in lowlevel stages.

Spech-amplifier equipment, especially voltage amplifiers, should be constructed on steel chassis, with all wiring kept below the chassis to take advantage of the shicdeng afforded. lixposed lats, particularly to the grids of low-level high-gain tubes, are likely to piek up hum from the electric field that usually exists in the vicinity of house wiring. Been with the chassis, additional shielding of the input cironit of the first tube in a highgain amplifier usually is necessary, In addition, such eircuits should be soparated as much as possible from power-supply transformers and chokes and also from any audio transformers that operate at fairly-high power levels; this will minimize magnetic coupling to the grid circuit and thus reduce hum or audio-frequency feed-back. It is always a safe plan, although not an absolutely necessary one, to separate the speech amplifier from its power supply, building them on separate chassis.

If a low-level microphone such as the crystal type is used, the microphone, its connecting cable, and the plug or connector by which it is attached to the speech amplifier, all shoukd be shielded. The microphone and cable usually are constructed with suitable shielding. The cable shiold should be connected to the specch-amplifier chassis, and it is advisable - as well as usually necessary to connect the chassis to a ground such as a water pipe.

IIcater wiring should be kept as far as possible from grid leads, and either the center-tap or one side of the heater-transformer secondary winding should be connected to the chassis. If the centertap is grounded, the heater leads to each tube should ho twisted together to reduce the magnetic field from the heater eurrent. With either teper of comection, it is advisable to lay heater leads in the corner formed by a fold in the chassis, bringing them out from the corner to the tube socket by the shortest possible path.

In a high-gain amplifier it is somotimes helpful if the first tube has its grid connection brought out to a top catp rather than to a base pins in the latter trpe the grid lead is exposed to the heator loads inside the tube and hence may piek up more hum. With the top-rap tubes. complete shielding of the grid lead and gride cap is a neressity.

When motal tubes are used, alwars ground the shell comnection to the chassis. Glass tulus used in the low-level stages of high-gain amplifiers must be shiedded; tube shideds are obtainable for that purpose. It is a good plan to anclose the entire amplifier in a metal box, or at last provide it with a cane-motal rover, to avoid foed-back difficulties caused bey the r.f. field of the transmitter. R.f. pirked up on exposed wiring leads or tube elements aases overloading, distortion, and frequently oseillation.

When using paper condensers as b-passes, be sure that the terminal marked "outside foil" is commerted to gromed. This utilizes the outside foil of the condenser as a shicld around the "hot" foil. When paper condonsers are used as coupling condensers betworn stages, always connert the outside-foil terminal to the side of the circuit having the lowest impedance to ground. I'sually, this will be the plate side rather than the follow-ing-grid side.

- increasing the effectiveness of the phone transmitter

The effectiveness of an amateur 'phone transmitter (ath be increased to a remarkable extent hy taking advantage of sper h characteristios. Measures that may be taken to make the modulation more effertive indude band compression (filtering), volume comprossion, and specth rlipping.

Compressing the Frequency Band

Most of the intelligibility in sperch is contained in the medium bath of frequenceses that is, bet ween about 500 and 2500 ercles. On the other hand, the major partion of specelh power is normally concentrated bedow :00 cercles. It is these low frequencies that modulate the transmitter most heavily. If they are eliminated, the freguencies that carry most of the artual communication can be increased in amplitude without excerding 100-prererint modulation, and the effertiveness of the tramsmitter is correspondingly increased.

One simple way to reduce low-frequence response is to use small valure of roupling caparitance between resistanceroupled stages as shown
 the coupling condenser and following-stage grid resistor will have little effert on the amplification at 500 cerces, but will practically halve it at 100 (rydes. In two mascaded stages the gain will be down about $\mathrm{a}^{\mathrm{d}} \mathrm{dt}$. at 200 rerlese and 10 db , at 100 cereles. When the grid ressistor is $1 / 2$ megohm a coupling condenser of 0.001 micl. will give the required time constant.

The high-freguency response can be reduced by using "tone control" methods, utilizing a con-

Fig. 9.0. - 1 , nse of a small compling condenser to reduce low-freduency resporme: B , tone pontrol circuits fur reduring high.freduency responaer, Values for C and K are diveusied in the text; $0.01 \mu \mathrm{fd}$, and $2 \overline{5}, 000$ ohms are typical.
denser in series with a variable resistor connected ateross an audio impedance at some point in the speceh amplifier. The best spot for the tone control is across the primary of the output transformer of the specth amplifier, as in Fig. :-5hb. The eondenser should have a reactance at 1000 coldes about equal to the load resistance required by the amplifier tube or tubes, whike the variable resistor in series may have a value equal to four or five times the lond resistance. The control can be adjusted while listening to the amplifier, the object being to cut the high-frequency response as much as possible without unduly sacrificing intelligibility:

Restricting the frequeney response not only puts more modulation power in the optimum frequeney band but also reduces hum, because the low-frequency response is reduced, and helps reduce the width of the chamnel occupied by the transmission, because of the reduction in the amplitude of the high audio frequencies.

Volume Compression

Although it is obviously desirable to modulate the transmitter as completely as possible, it is diflicult to maintain constant voice intensity when speaking into the mirrophone. To overcome this variable cutput level, it is possible to use automatic gain control that follows the average (not instantaneous) variations in speech amplitude. This can be done be rectifying and filtering some of the audio output and applying the rectified and filtered d.e. to a control electrode in an carly stage in the amplifior.
A practical rircuit for this purpose is shown in Fig. !-(6). The rectifier must the comnerted, through the transformer, to a tube capable of delivering some power output (a smath part of the output of the power stage may be used) or
dse a separate power amplifier for the rectifier circuit alone may have its grid connected in parallel with that of the last voltage amplifier.
Resistor R_{4}, in series with R_{5} across the plate supply, provides an adjustable positive bias on the rectifier rathodes. This prevents the limiting action from beginning until a desired microphone imput level is reached. R_{2}, R_{3}, (${ }_{2}$, ('3 and ('4 filter the audio frequencies from the rectified output. 'The output of the rectifier may be eonnerted to the suppressor grid of a pentode first stage of the speerla amplifier.

A transformer with a turns ratio such as to give about 50 volts when its primary is connerted to the output circuit of the power stage should be used. If a transformer having a center-tapped serondary is not available, a half-wave rectifier may be used instead of the full-wave circuit shown, but it will be harder to get satisfactory filtering.

The over-all gain of the system must be high mough so that full output can be secured at a moderately low voice level.

Speech Clipping and Filtering

In speech waveforms the average power content is considerably less than in a sine wave of the same peak amplitude. Since modulation percentage is based on peak values, the modulation or sideband power in a transmittor modulated 100 per rent by an ordinary voice waveform will be considerably less than the sideband power in the same transmitter modulated 100 per eent by at sine wave. In Fig, !- -7 the upper drawing, A, represents a sine wave having a maximum amplitude that just modulates a given transmitter 100 per eent. The speech wave at B also represents 100-per-cent modulation.

If the amplitude of the wave shown at I3 is increased so that its power is comparable with or higher than the power in a sine ware, but with everything above 100 -per-ent modulation cut off, it will appear as shown at C. This signal will not modulate the transmitter more than 100 per cent, but the voice power is several times greater than 13. The wave is not exactly like the one at 13, so the result will not sound exactly like the original. Ilowever, "clipping" of this type can be used to secure a worth-while increase in modulation power without sarrificing intelligibility. Once the system is properly adjusted it will be impos-

Fig. 9.6-Speech-amplifier output-limiting circuit, $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}-0,1-\mu \mathrm{fd}, ; \mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}-0.22$ megohm; $\mathrm{H}_{4}-25,000$ ahm pot: $\mathrm{h}_{5}-0.1$ megohm: l - see text.

(A)

Fig. 9-7-The normal speech wave (13) has high peahs but low averase energy content. Whon the praka are clipped the signal may be increased to a considerablyhigher power level without causing overmonalation ($(:)$.
sible to overmotulate the transmitter because the maximum output amplitude is held to the same value no mater what the amplitude of the signal applied.
13. itself, clipping generates the same highorder harmonies that overmodulation does, and a sigmal modulated be the dipped waveform shown in Fig. 9-7 would "splatter", To prevent this, the audio frecturncies above those needed for intelligible speerh must be filtered out, after clipping and before modulation. The filter required for this purpose should have relatively little attenuation at frequencies below about 2.500 cecke, but high attenuation for all frequencies above 3000 eycles.

It is possible to use as much as 25 dh, of elipping before intelligibility suffers; that is, if the original peak amplitude is 10 volts, the signal ean be clipped to such an extent that the resulting maximum amplitude is less than one volt. If the original 10-volt signal represented the amplitude that caused 100 -por-rent modulation on peaks, the clipped and filtered signal ean then be amplified up to the same 10 -volt peak level for modulating the transmitter, with a very considerable incrase in modulation power.

There is a loss in thaturahess with "deep" clipping, even though the voice is highly intelligible. With moderate clipping levels (6 to 12 db.) there is almost no pereroptible change in "quality" but the voice power is four to sixteen times as great as in ordinary modulation.

Before drastic clipping can be used, the speech signal must be amplified several times more than is neeressary for normal modulation. Also, the hum and noise must be much lower than the tolerable level in ordinary amplification, beatuse the noise in the output of the amplifier increases in proportion to the gain.

One type of elipper-filter system is shown in block form in Fig, 9-8. The clipper is a peaklimiting rectifier of the same gencral type that is used in receiver noise limiters. It must clip both positive and negative peaks. The gain or clipping

Fig. 9-8- Block diagram of speerh-clipping and filtering amplifier.
control sets the amplitude at which clipping starts. Following the low-pass filter for climinating the harmonie distortion fregurmeries is a second gain control, the "level" or modulation control. This control is set initially so that the amplitude-limited output of the clipper-filter eannot modulate the transmitter more than 100 per cent.

It should be noted that the pak amplitude of the audio waveform actually applied to the modulated stage in the transmitter is not necessarily held at the samo relative level as the peak amplitude of the signal coming out of the elipper stage. When the elipped signal gocs through the filter, the relative phases of the various frequency components that pass through the filter are shifted, particularly those components near the eut-off frequeney. This may cause the peak amplitude out of the filter to cexeed the peak amplitude of the clipped signal applied to the filter input terminals. Similar phase shifts can oceur in amplifiers following the filter, esperially if these amplifiers, including the moxdulator, do not have good low-frequeney response. With poor low-frequeney response the more-or-less "square" waves resulting from clipping tend to be changed into triangular waves having higher poak amplitude. Best practiee is to rut the lowfrequency responsc before elipping and to make all amplificrs following the clipper-filter as flat and distortion-free as possible.
The best way to set the modulation eontrol in such a sustem is to cherek the actual modulation pereentage with an oseilloseope connerted as duseribed in the ehapter on modulation. With the gain eontrol set to give a desired elipping level with normal voice intensity at the mierophone, the level control should be adjusted so that the maximum modulation does not exceed 100 per cent no matter how much sound is applied to the mierophone.

Practical eireuits for clipping and filtoring are illustrated in a specech amplifier described in this chapter.

High-Level Clipping and Filtering

Clipping and filtering also can be done at high level - that is, at the point where the modulation is applied to the r.f. amplifier - instead of in the low-level stages of the spech amplifier. In one rather simple but ceffective arrangement of this type the clipping takes place in the Class-B modulator itself. This is accomplished by earefully adjusting the plate-to-plate load resistance for the modulator tubes so that they saturate or clip peaks at the amplitude level that represents

100 per erent modulation. The load adjustment call be made by choice of output transformer ratio or by adjusting the plate-voltage'platecurrent ratio of the modulated r.i. amplifier. It is best done be examining the output waveform with an oscilloscope.
The filter for such a system consists of a choke and condensers as shown in Fig. 9-9. The values of L and C should be chosen to form a low-pass filter section having a cut-off frequeney of about 2500 eveles, using the modulating impedanee of the r.f. amplifier as the load resistanee. For this cut-off frequeney the formulats are

$$
\begin{aligned}
L_{1} & =\frac{h}{7850} \\
C_{1}=C_{2} & =\frac{(63.6}{R}
\end{aligned}
$$

Where R is in ohms, L_{1} in henrys, and C_{1} and C_{2} in microfarads. For example, with a plate modulated amplifier operating at 1.000 volts and 200 ma. (modulating impedance 7500 ohms) L would be $7500 / 7850=0.96$ henry and C_{1} or C_{2}

Fig. 9-9 - Splattor-suppression filter for use at himh level. slown luere eommected betwern a Classils modio. lator and plate-modutated r.f, amoplitipr. Values for I_{A}, Ci and (:2 are determined as dexcribed in the text.
would be $6: 3.6,67500=0.0085 \mathrm{Ffd}$. B y -pass comdensers in the plate circuit of the r.f. amplifier should be included in C2. Voltage ratings for ('1 and ('z must be the same as for the plate blocking condenser - i.ce, at least wice the d.e. voltage applied to the plate of the modulated amplifier. L and (' valuess can vary 10 per cent or so without seriously affecting the operation of the filter.

Besides simplicity, the high-level system has the advantage that high-frequence components of the audio signal fed to the modulator grids, whether present legitimately or as a result of amplitude distortion in lower-level stages, arre suppresed along with the distortion components that arise in clipping. Also, the undesirable efferts of poor low-frequency response following clipping and filtering, mentioned in the preceding section, are avoided. Phase shifts can still orcur in the high-level filter, however, so adjustments preferably should be made by using an oseilloscope to cherk the artual modulation percentage under all conditions of speech intensity. (For further discussion sere Bruene, "lligh-Level Clipping and Filtering", QST, November, 1951.)

A Clipper-Filter Speech Amplifier-Driver

The speech amplifier shown in Figs. 9-10, to $9-11$, inclusive, uses push-pull triodes to ohtain a power output of $1: 3$ watts with negligible distortion - sufficient to drive mest of the com-momly-used Class-13 modulator tubers. It includes a clipper-filter for increasing the offertivences of modulation and for confining the chamed width to frequencies needed for intelligible sperch. The oyer-all gain is ample for use with communica-tions-type erystal mierophones when using dipping of the order of $12-15 \mathrm{~d} \mathrm{~d}$. Miniature tubes are used in the voltage-amplifier stages. The output tubes are 6 blicis, operated Class ABI with fixed bias. Two power supplies are included, one for the woltage amplifier stages and the other for the output tube plates.

As shown in lig. 9-11, the first two stages are voltage amplifiers of ordinary dewign, using a GAL 6 pentode in the first stage and a fic' 1 trionde in the second. The output of the second stage ran be switched cither to the 12 AC 7 doubletriode eliperer or to the 6Ct voltage amplifier that drives the 6 B 4 G grids. In the latter case the amplifier operation is conventional. The clipper, when operative, provides additional valtage gain as well as clipping. Its output gees through at simple low-pass filter ($L_{1} C_{11} C_{12}$) so that harmoniss generated by clipping will be attentated before the signal reaches the grid of the serome bic ' 4 . The frequeney response of the amplifier with the filter in circuit, but with the signal below the elipping level, drops at the rate of roughly 6 db . per octave below ono cyeles: atuve 4000 ereles the response is down 2.) db. compared with the medium audio range.

A two-section filter is used in the plate supply for the voltage-amplifier stages. The hum level must be kept low because of the high gain required when using clipping. A single-section filter is sufficient for the output stage, Bias for the fil34(: grids is obtained from the low-voltage supply hy muans of R_{16}, be-passed by ($1+1$.
Two gain comtrols are included, one ($/ \mathrm{R}_{6}$) for setting the lew into the elipper circuit and thes determining the amount of elipping, and the
second $\left(R_{13}\right)$ for setting the output leved atter clipping. With the clipper in use, proper setting of R_{13} will keep the modulation level high but will present overmodulation.

Construction

As shown in Fig. 9-10, the voltage amplifiers occupe the loft front section of the chassis. The GAlff first amplifier is at the left, followed in order to the right by the first 6(' 4 , the $12.4^{\circ} 7$, and the second 6C'4. The 613.4Gs and their output transformer are at the right fromt. The rylindrical unit just behind the second $6 \mathrm{C}+\mathrm{is}$ the interstage audio transformer, T_{1},

Power supply components are grouped along the rear edge of the chassis, with the low-voltage supply at the left. The power transformers should be kept well separated from the voltage amplifiers, particularly the first two stages, in order to minimize hum difficultios.
On the front panel, the microphone input cenneetor is at the lower luft. Nest to it is the clipping control, then the clipper in-out switch, and then the modulation eontrol. The two toggle witches at the right are So and S_{3}. The a, e. input suechet is by-passed by C_{15} and C_{16}, to reduce the passibility that r.f. pirked up on the line cord will get into the fow-level speech stages.

The wiring underneath the chassis is relatively simple, as shown be Fig ?-12. The microphone input "irenit, induding $R F C_{1}$ and C_{1}, is enclosed in a National jack shield, and the lead from $R F C_{1}$ to the $6 . \mathrm{l}^{\prime} 6$ grid also is shielded.

Adjusting the Clipper-Filter Amplifier

The grod effect of the low-pass filter in elimimating splatter can be centirely nullified if the amplifier stages following the filter can introduce appreriable distortion. Amplifier stages following the unit must be oprerated well within their (apabilities; in particular, the Class 13 output transformer (if a class is modulator is to be driven) should be shunted by condensers to redure the high-frequency respenses as deseribed in the seetion on Class is modulators.

Fig. 9.10-This spocelomplifier and driver has ample gain for a crystal mierophone and is complete with power suphly. The masured undistorted output is 13 watts, It incorporates a clinper-filter system for inereasing modulation effectivenes and dererasing rhannel width.

Fig. 9.11 - Cirruit diagram of the rlipprr-filter speerh amplifier.

Fig. 9.12 - Below echassis vien of the clip. per-filter speecth amplitier. The relatively small monber of components below the chassis makes wiring simple.

The setting of R_{13} is most important. It is most easily done with the adid of an uscilloserpe (ohe having a linear swerp) and an audio oscillator, using the test set-up shown in the section on testing of spereh equipmont. Inse a resistance load on the coutput transformer to refleet
 the proper loat resistane (3000 ohms) at the plates of the 613f(is. Finst set R_{13} at about $1 / 4$ the resistance from the ground end, switch in the elipper-filter, and apply a $500-$ eycle sine-wave signal to the microphone input. Increase the signal amplitude until elipping starts, as shown by flattening of both the nogative and positive peaks of the wave. To chorek whether the elipping is taking place in the clipper or in the following amplifires, throw S_{1} to the "normal" or "out" position; the waveshape should return to normal. If it does not, return S_{1} to the "in" pesition and reduce the setting of R_{13} until it does. Then reduce the amplifier gain by means of R_{6} until the signal is just below the elipping level. At this point the signal should br^{e} a sine wave. In-

[^9]crease R_{13}, without touching R_{6}, until the wave starts to berome distortorl, athel then batek off R_{13} until distortion disappears.

Next, ehange the input-signal frequency to 2500 eyeles, without changing the signal livel. Slowly increase R_{6} while observing the pattern. At this frequency it should be almost impossibe to get anything exerept a sine wave through the filter, so if distortion appears it is the result of overloading in the amplifiers following the fitter. Reduce the setting of R_{13} until the distortion disappears, wen when R_{6} is set at maximum and the maximumavalable signal from the audio oscillator is applied to the amplifier. The position of R_{13} should be noted at this print and the ohserved semting should never be exemeded.

To find the operating setting of R_{13}, latave the audio-oscillator signal amplitude at the value just under the elipping level and set up the complete transmitter for a modulation cherek, using the oseilloscope to give the trapezoidal pattern. With the Class C amplifier and modulator ruming, find the sotting of R_{13} (kerping the audio signal just under the clipping level) that just gives 100-pereerent modulation. This setting should be below the maximum setting of R_{13} as previously detormined; if it is not, the driver and modulator are not rapable of modulating the transmitler 100 per cent and must be redesigned - or the ('lass C amplifier input must be fowered. Ascuming a satisfactory setting is found, eomene a miorophone to the amplifier and set the amplifior gatio control, R_{6}, so that the transmitter is modnated 100 per erent. Observe the pathern elosely at different sottings of R_{6} to see if it is possible to overmodulate. If overmodulation does not oceur at any setting of R_{6}, the transmiter is ready for operation and R_{13} may be looked in position; it need never be touched subsequently. If some overmodulation does occur, R_{13} should be backed off until it disappears and then locked.

In the absence of an oseilloscope the other methods of checking distortion described in the section on speech-amplifier testing may be used. The ohjoet is to prevent distortion in stares following the filter, so that when the clipping level is exceoded the following stages will be working within their capabilities.

6L6 Modulators for Low-Power Transmitters

Plate modulation for transmitters operating at final-stage plate power inputs up to 75 or 80 watts can be proviled at relatively small cost by using Class AB 6L.6s as modulators. The combined speech amplifier and modulator shown in Fig. 9-13 uses the 6L, 6 s as (lass AB_{2}, amplifiers and has an output (from the transformer secondary) of about 40 watts. The first stage is a 6 s .17 high-gain pentode amplifier,
must be obtained from a soparate suphly Fixed bias for the GLd grids is obtained from the built-in supply by taking the drop across Rag, This resistor should be adjusted so the voltage drop across it is 22.5 volts when the speech-amplifier stages are taking normal current.

In building the amplifier, the usual precautions as toplatement of eomponents and wiring to avoid hum and fred-back should be

Fig. 9.I.3-A 10-want modulator of inevpensiva construction. 'Tha seron! tule from the lift, in the foreground, in the bisd firat amplifiar, The microphone commeotor is immediately below it on the ehaseis wall, Along the left edere, from the fromt, are the liret
 output transformer is to the right of the 6l.6s. The power trans. former and reetifier are at the far right.
and is resistance coupled to one section of a 6 SN 7 (i'N triode amplifer. The other section of the 6 sivt (i'T is used as a single-tulue phase inverter to obtain push-pull output. The grids
 with the two sections in push-pull, through transformer T_{1}. The gain control, R_{6}, is in the grid circuit of the first 6sioncit section, and is shunted by condenser C's to reduce the highfrequency response. Condenser Cil, across the secondary of T_{1}, serves a similar purpose. The over-all circuit constants have beon chosen so that the maximum response is in the most effective speech-frequency band. The response is down about 10 dh. at 100 and 3000 ceveles, as compared with the range 3001500 eycles. The gain is more than sufficient for typieal erystal microphones.

A power supply for the speechamplifier stages and for the 6 L .6 heaters is included in the unit, but the power for the 6L6 plates and screens

Fig. 9-14- Cnderneath the chassis of the t0-watt modulator. The power-supply choke is mounted below chassis at the right. The hiassetting resistor, R_{19}, is on the rear chassis wall, at the lower right in this photograph. Other components are grouped near the tube sochet with which they are associated.

Fig. 9.15- (Cirrnit diagram of the to-watt modulator.

$\mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{-1}, \mathrm{C}, \mathrm{C}_{9}-0.1-\mu \mathrm{ft}$. lon-volt paper.

$\mathrm{C}_{13}-0.01-\mu \mathrm{fi}$. 1200-volt mina.

$R_{1}-4.7$ mokohms, 1 watt.
$\mathrm{R}_{2}, \mathrm{R}_{\mathrm{i}}-1500$ ohms, ${ }^{1} 2$ watt.
$R_{3}-1,5$ megohms, $\frac{1}{2}$ watl.
$R_{4}-0.2$, megohm, 1_{2} watt.
$\mathrm{R}_{5}-\mathrm{I},(\mathrm{ONO}$ olims, $1 / 2$ watt.

$\mathrm{K}_{8}, \mathrm{l}_{13}-\overline{\mathrm{B}}\left(0,000\right.$ olms, 1_{2} watt.
$\mathrm{R}_{9}, \mathrm{R}_{14}, \mathrm{R}_{15}-\mathbf{0 . 4 7}$ mekohm, ${ }_{2}$ walt.
R_{10} - 18,000 ohms, $1 / 2$ watt.
$1 k_{11}-39,000$ ohms, 15 watt.
$\mathrm{R}_{12}-10.0100$ ohms, 1 watt.
\mathbf{R}_{16} - 100 olims, 1 watt.
R_{15} - z 500 ohms, 10 watt:.

$\mathrm{R}_{20}-1200$ dhms. 10 watts.
1.1-Smoothing cluokr: I2 Lienrys, 80 mal. (Thordarson 120(23)
1, - 6,3 -volt pilot lamp.
J_{1} - Mierophone-calla connector (Amphenol).
T_{1} - Clase $1 B_{2}$ driver transformer, p.p. plates to p.p. grids (Staneor A-1/16).
${ }^{\circ} \mathrm{I}_{2}$ - Modalation tramisormer, 3800 ohms to desired load (unit shown iz Stancor A.389.3).
Ts - Power transformer: 3.50 volts each wide center-tap, it ma,: $\overline{3}$ volts, 3 amp.: 6.3 volts. 3 amp. (Stancor P'10こ8).
an imput of 40 wat ts to ther.f. amplifier. It is neressary, of course to choose the proper output-tratnsformor turns ratio to couple the modulator and modulated amplifier. The output stage is designed to work into a plate-to-plate load of !000) ohms.

For the maximum power output of 20 watts, the plate supply for the amplifier must deliver 145 mat, at 360 volts. A eondenser-imput supply of ordinary dowign may be used. The total plate current is approximately 120 ma. with no signal and tha ma, at full output. If no more than 12 or 13 watts is meoded, R_{9} and R_{10} may be omitted and all tubes fed direotly from a " B " supply giving approximately 175 mat. at 270 volts.

Fig. 9-16- Cireuit diagram of a low-cost modulator rapable of power ontputs uf to ? 0 watts.
$\mathrm{C}_{1}, \mathrm{C}_{2}-20-\mu \mathrm{fd}$, 30 volt electro. Iytic.
$\mathrm{C}_{3}-0.1$. f fi. 200 -valt paper. $\mathrm{C}_{4}-11 .(1-$ - fil. $1(0)$ - wolt paper.
 lytic.

$\mathrm{R}_{1}-4.7$ megohms, $1 / 2$ watt.
K_{2} - 15011 ohms, 1_{2} watt.
$11_{3}-1.5$ megohmes. $1 / 2$ watt.
R_{4} - 0.202 megohm. $1 / 2$ watt.
$\mathrm{R}_{5}-17,000$ ohms, $1 / 2$ watt.
R_{0} - I-ncgohm volume control.
187 - 1500 ohms, 1 watt.
R_{s} - 250 ohms, 10 watts.
$R_{9}-2000$ ohms, 10 watts.
$1 \mathrm{R}_{10}-20,000$ olms, 25 watts.
T_{1} - Interstage andio transformer, single plate to p.p. grids, ratio 3:1.
T_{2}-Output transformer, type depending on requirements.

Screen Modulator Circuit

1-ig. 9-17 is a momentative direnit for a modulator for the screcongrid of a heam tetrode. Most r.f. tulnes of this trem require vory litthe modulating power in the sereen eireuit, so a reerivingtype audio power amplifier usually is sufferiont. The wireuit shown has ample gain for a reystal midrophone and will fully modulate a screen grid that does not requite an average adodio power of more than three or four watts. It ran also be used for modulating a pair of r.f. tules where these requirements awe mot exeeded. The ehapter on amplitude modulation should be ronsulted for information on determining the voltage swing and modulating power for a particular tube tyone. The turns ratio required in T_{1}, primary to secondary, will range from 1 to 1 to 0.8 to 1 for various r.f. tubes, since the peak output voltage of the tube across the primary of the transformer is about 200 volts. An inexpensive driver transformer, of the tepe used for coupling a triode or pentode to Class 1 B2 tetrodes of the GLA dass, will be satisfartory. It should proferably have two or three primary taps so the turns ratio can b_{x} adjusted. Transiomer eoupling is used in preference to direet eoupling (i,e., "clamp-tulne" modulation of the sereen) beratuse of simpler adjustment, case of modulating 100 per cont, and Derause it permits using a low-voltage supply for the sereengrid of the modulated r.f. amplifier.

The spereh iuput stage uses a dos. 7 prontode and is followed bey a 6.5 voltage amplifier. The 6 (i'6 output stage uses negative feredtark, the foredback voltage being taken from the plate cireuit ber moins of the voltage divider $R_{10} R_{11}$ and ap-
plied in series with the phate resistor, R_{7}, of the preerding stage. Negative ferd-back in the modulator is very desirable when a sereen or control grid is to be modulated Inerause the loatd on the modulator varias over the atherfergumer evelo, and ferd-back reduers the distortion that arises from this cause. In this circuit the proment feedbatek is chosen to he as large as possible whike still retaining mough voltage gain for normal voier intensity into a erystal mierophone.

The lead betwern the microphone commeterer and the fis. 77 grid should be shieleled, as should also the first-stage grid-resistar, R_{1}. Wuch shiclding prevents hum piek-up on the grid lead. Aside from this, no sperital precatutions need he observed in constructing the amplifier, beyond kerping the heater leads well away from the plate and grid leads of the tubres.

The heater requirement for the unit is 1 ampere at 6.3 volts. Plato-supply requirements vary from about 70 to 85 mat at 250 to 300 volts, depending on the seremen eurrent taken by the tube being modulated. K_{13} should the adjustod, be means of the slider, to give the proper der voltage at the sareen of the modulated stame. This voltage will. in general, be approximately half the dece serem voltage recommended for cow. operation, as dosoribed in the chapter on amplitude modulation. The mothod of adjustment for linear modulation is also covered in that chapter.
The same cireuit may be used for control-grid modulation of wither triode or tetrode r.f. amplifiers. The mothod of adjustment is deseribed in the chapter on amplitude modulation

Fig. 9.17 - Modulator circuit for sereen or control grid modulation.
(i, $\mathrm{C}_{4}-10-\mu \mathrm{fI}$. 25-volt electrolytir.
$\mathrm{C}_{2}-0.1 \cdot \mu \mathrm{fel}$. 100 -volt paper.
(i3, C5 - 0.01- $\mathbf{\mu}$ fo. 406 -valt paper.
(is - $50-\mu \mathrm{fd}$. $\mathrm{B}(\mathrm{l}$-volt elaetrolytic.

\mathbf{R}_{1} - 2.2 megohmas, $1 / 2$ watt.
R_{2}, R_{6} - 1500 ohms, $1 / 2$ watt.
$\mathrm{R}_{3}-1$ megohm, $1 / 2$ watt.
R_{4} - 0.22 megolim, $1 / 2$ watt.
$\mathrm{R}_{5}-1$-megohm potentiometer. andin taper.
$\mathrm{K}_{7}, \mathrm{~K}_{\mathrm{x}}-10.1$ max whm. $1 / 2$ wall.
 parillel.)

\mathbf{R}_{11} - $2=.0$ (1) ohme. I watt.
$\mathrm{R}_{13}-2.001$-ohm aljustable, 9.5 wath-
J_{1} - Mierophome jark.
51 - -pole - -position rotars swith (see text).
T_{1} - Audio driver transformer (sed text).

Push-Pull 807 Modulator and Speech Amplifier

The speedh amplifier and modulator shown in F'ig. 9-18 is capable of modulating a power input to the modulated amplifier of approximately 200 watts when the maximum rated voltage of 750 is applied to the 807 plates. The maximum undistorted audio power output is 100 watts at that plate voltage, after allowing for losses in the output transformer. The 807s are operated as Class AB2 amplifiors.

As shown in Fig. 9-19, the first speech amplifier tube is a fos. 7 , with its input circuit arranged for use with a crustal microphone. The serond stage, also a resistancocoupled voltage amplifier, uses a (i.S.). The third stage, which must deliver power to the grids of the Class AB_{2} modulator tubes, uses
 is incorporated in this stage as a means for improving its output voltage regulation and reducing distortion. The 6 K K is coupled to the modulator grids through a transformer.

In the modulator stage small (hookes, $R P^{\prime} C_{1}$ and $R F^{\prime} C_{2}$, are connected in the grid leads and 100 whm resistors are conneeted in the sereen leads to prevent the parasitio uscillations that frecguently oreur with 807 s . Each screen resistor is
separately by-passed to ground with a mica condenser for the same reason.

A filament transformer capable of handling all tube heaters is included as part of the unit.

Circuit constants have been selected so that the overall frequency response is sufficiently flat in the normal range of voice frequenties, but drops off above 3000 cycles and below 150 cycles.

Fig, 9-18 - Modulator unit using push-pall 807s with epeech amplifier designed for erystal-mirrophone input. It is built on a 7 by 17 be 3 steel
 The andio power output otsainable varies from 50 to 140 watts depending on the plate voltage supplied to the 80^{7} s.

Fig. 9-19 - C :ircuit diagram of the push-pall 807 modulator

Co. ©
(: $50-\mu$ fil. 80 -volt electrolytir.

(111 - $6808-\mu \mathrm{fel}$, mica,
1_{1} - 0.2 mequhms, $1 / 2$ wate.
Ris. K_{g} - 1.0100 ohms, $1 / 2$ wat.
R_{3} - 1 mewohm, $1 / 2$ watt.
R_{4} - 0,20 megohm, $1 / 2$ watt.
$\mathrm{R}_{5}-\mathrm{I}$-megohm potentiemeter, andio taper.
K_{7}. R_{s} - 19.1 merohra, 1 /2 watt.
R9, - 680 ohms, I watt.
Ain- 0.1 mequhm, 1 watt.
$\mathrm{K}_{11}-2 \mathrm{Q}, \mathrm{tN10}$ ohms, I watt.

$\mathrm{R}_{13}, \mathrm{R}_{14}-100$ olms. $1 / 2$ watt.
RFC. RIRC.2-0,7 microhenry (Ohmite Z.50).
J - Wiernphome jach.
51 - Surat zwith (part of kain-comtrol assembly).
T_{1} - 6.3 rolta a.c., 3 amp.
T_{2} - (ilam Al_{2} driver transformer, single plate to p.p, tride, turns ratis, 2 to 1 , pri. to $1 / 2$ sec.
T_{3} - (hitgut transformer (see text).

Fis. 9-20- Buttom view of the pushpull 807 modulator. In this view the midrophone conneroor is at the lower right, with the gain control just to its left. The filament transformer is in the upper left eorner. (iramic feed-through insulators are uaed to carry the output trataformer commertiona throught the (hatsio. and safity terminals are used for the high-voltage d.e. lead and the output transformer serondary terminals.

The general layout of the unit is shown in Figs. 9-18 and 9-20. The metal tube nearest the front of the chassis is the fiNJ7 and the 6,55 is toward the rear. The layout is not ritical, execopt that it is advisable to keep the filament transformer well separated from the low-devel stages and the input transformer, T_{2}.

To prevent hum pick-up the leand from the microphone connector to the grid of the Gis. 7 should be shiedded, as should also the grid resistor, H_{1}. A satisfartory shidd for ihe grid resistor may be made be slipping a short pioce of spaghetti tubing over the resistor and then covering the tubing with shield braid. The hraid should be grounded to the ehassis. The leads to the gain control. R_{5}, should be made from sheded wire.

The type of output transformer to use will depend on the motulating impedanere of the Class (" r.f. stage. At maximum ratings the whis regate a plate-to-plate load of 6050 ohms, so the output transformor turns matio must be selected ane cordingly.

In case the input to the modulated stage is less than $2(6)$ watts, the 807 s may be oprotated at at reduced plate voltage to ohtain the neressary audiopewor output. Typieal oprating comditions at various plate voltages are given below:

Plate valtage	400	50)	(i)0	750	volts
sicrow voltage	300	300	300	300	volts
(irid bias	-25	-29	-30	-32	volts
laterurrent, max. sig.	240	210	200	240	nit
Plate current, nosig	90	72	${ }^{6} 0$	52	nla.
Load rewistance	3200	4210	(il0)	6950	hms
Power output	3.5	75	80	120	watts

The output figures given above are tube output only, and do not include transformer lusses. They should be redues be about lis per cent to obtain the atctual power availatbe for modulating the transmittor. For example, with a plate-suplly voltage of 500 the actual output can he expereded to be about bis watts, sufficiont for modulating 130 watis input

The fable atbere gives the power supply requirements for the 807s at various phate voltages. The fixed bias may be supplied by bateries or a biats supply such as is deseribed in the rhapter on power supplies. The sereon voltage naty be be-
tworn 250 and 300 in the prantical case ; at 250 volts somewhat hess hins is meded and the driving power reguired is slightle incerased but the power output is appoximately the semme.

The first there stages of the unit maty be oferated from a small power supply giving approximately 70 mat at 2.50 to 300 volts. A suitahle rircuit diagram is given in Fig. 9-21. This cireuit also, supplies the fixed bias for the 807 grids. ley utilizing the voltage drop lotwon the megative side of the high-boltege output and ground through the tap on resistor R_{2}. The slider on R_{2} should be adjusted so that the propur hise voltage, as given hy the talle on this page, is ohtained. It is advisable to where the 807 sereen current, with mo plate voltage on the 807 s . to be sure that the rated soreven dissipation of 3.5 watts per tubo is mot exereded. If it is, the bias should be inereased to kerp the dissipation within rating. This will prevent damage to the sereme during stand-be periods.

Such a power supply ran bo incorporated in the modulator unit, if desired. The prineipal presatution to be ohserved is that the power transformer should not be mounted noar the low-lovel stages. A slightly deeper chassis may be recuired.

fig. 9-21-Prower upply for speceh-amplifier stages of 80^{-}modulator. 'the unit also supplies fixed bias for the 80- grid.

14 - Vile cheme. 30 heurs a 85 ma,
\mathbf{R}_{1} - 1.5000 ohms. 111 watts.
K_{2} - 1000 -ohm adjustable, 10 watts.
St Bone tokyla.
T_{1} - Power tran former, 350 volts ead side c.1., 0 ma.; 5 v. 3 amp.; 0.3 v. 3 amp.

Class-B Modulators and Drivers

CLASS-B MODULATORS

Plate modulation of all but low-power transmitters requires so much audio power that the Class 13 amplifier is the only practical type to use. (Included in the Class 13 category are high-power modulators of the Class Al_{2} type; whether the operation is in one class or the other is principally a matter of degrer.)

Class 13 modulator circuits are practically identical no matter what the power output of the modulator. The diagrams of Fig. 9-22 therefore will serve for any modulator of this type that the amateur may elect to build. The triode circuit is given at A and the cirruit for tetrodes at 13 . When small tubes with indirectly-heated cathodes are used, the cathodes should be connected to ground.

Modulator Tubes

Class 13 audio ratings of various types of transmitting tubes are given in the chapter containing the tube tables. Choose a pair of tubes that is eapable of delivering sine-wate atudio power equal to somewhat more than half the d.e. input to the modulated (Class C amplifier. It is sometimes convenient to use tubs that will operate at the same plate voltage as that applied to the Class C

Fig. 9.22 - Class B modulator circuit diaqrams, "lubes and circuit considerations are discusaed in the text.
stage, because one power supply of adequate eurrent capacity may then suffice for both stages.

In estimating the output of the modulator, remember that the figures given in the tables are for the lube output only, and do not include out-put-transformer losses. To be adequate for modulating the transmitter, the modulator should have a theoretical power capability about 25 per cent greater than the actual power needed for modulation.

Matching to Load

In giving Class 13 ratings on power tubes, manufacturers specify the plate-to-plate load impedanee into which the tubes must operate to deliver the rated audio power output. This load impedanee seldom is the same as the modulating impedance of the Class C r.f. stage, so a match must be brought about by adjusting the turns ratio of the coupling transformer. The required turns ratio, primary to secondary, is

$$
N=\sqrt{\frac{Z_{\mathrm{p}}}{Z_{\mathrm{m}}}}
$$

where $N=$ Turns ratio, primary to secondary
$Z_{\mathrm{in}}=$ Mordulating impedance of Class C r.f. :mplifier
$Z_{1}=\underset{\text { Class } 13 \text { tubers late load impedance for }}{\text { Clat }}$
Example: The modelated r.f. amplifier is to operate at $12: 50$ volts and 250 ma. The power inplat is

$$
P=E I=1250 \times 0.25=312 \text { watts }
$$

so the modulating mower required is $312 / 2=$ 150 watts, Incroasing this by 2.5% to allow for losses and a rasomable oborating margin gives $15 t \times 1.25=145$ watts. "The modulating impedance of the Class C' stage is

$$
Z_{\mathrm{n}}=\frac{E}{I}=\frac{12.50}{0.25}=5000 \text { ohms. }
$$

From the tube tables a pair of Class 13 tubes is selected that will give 200 watts output when working into a $69(0)-$ ohm load, plate-to-plate, The primary-to-secondary turns ratio of the modulation transformer therefore sho: Id be

$$
N=\sqrt{\frac{Z_{\mathrm{p}}}{Z_{\mathrm{m}}}}=\sqrt{\frac{6400}{5000}}=\sqrt{1.38}=1.175: 1
$$

The required transformer ratios for the ordinary range of impedances are shown graphically in loig, 9-2:3.

Commerical Class B output transiormers usually are rated to work between sperified primary and secondary impedanees and frequently are designed for sperific Class 13 tubes. In suth at case, it will be unneressary to calculate the turns ratio when the rerommonded tube combination is used. Many transformers are provided with primaty and serondary tape, so that various turns ratios can be obtained to meet the requirements of various tube combinations.

Fig. 9-23 - Transformer ratios for matching a Class-C modulating impedance to the required plate-to-plate load for the Class- B modulator. The ratios given on the enrves are from total primary to secondary. Resistance values are in kilohms.

It may be that the exact turns ratio required by a partieular tube combination cannot be seeured, even with a tapped modulation transformer. Small departures from the proper turns ratio will have no serious effect if the modulator is operating well within its capabilities; if the aetual turns ratio is within 10 per cent of the ideal value the system will operate satisfactorily. Where the discrepancy is larger, it is always possible to choose a new set of operating conditions for the Class C stage to give a modulating impedance that can be matched by the turns ratio of the available transformer. This may require operating the Class C amplifier at higher voltage and less plate eurrent, if the modulating impedance must be increased, or at lower voltage and higher current if the modulating impedance must be decreased. However, this process eannot be carried too far without execeding the ratings of the Class C tubes for cither plate voltage or current, even though the power input is kept at the same figure. In such a case the only solution is to operateat reduced input and use less of the power available from the modulator.

Suppressing Audio Harmonics

Distortion in either the driver or Class I3 modulator will cause a.f. harmonies that may lie outside the frequency band needed for intelligible speeeh transmission. While it is almost impossible to avoid some distortion, it is possible to cut down the amplitude of the higher-frequeney harmonics.

The purpose of eondensers C_{1} and C_{2} across the primary and secondary, respeetively, of the Class B output transformer in Fig, 9-22 is to reduce the strength of harmonics and unnecessary highfrequency eomponents existing in the modulation. The condensers act with the leakage inductance of the transformer winding to form a rudimentary
low-pass filter. The values of capacitance required will depend on the load resistance (modulating impedanee of the Class C amplifier) and the leakage inductance of the particular transformer used. In general, capacitanees between about 0.001 and $0.01 \mu \mathrm{fd}$, will be required; the larger values are necessary with the lower values of load resistance. A test set-up for measuring frequeney response (described in a later section in this chaptor) will quiekly show the optimum values to use, if a small assortment of eondensers is on hand for experimenting. The objeet is to find the combination of C_{1} and C_{2} that will give the most rapid reduction in response as the signal frequeney is raised above about 2500 cycles.

The voltage rating of each condmaser should at least be equal to the d.e, voltage at the transformer winding with whirh it is assoriated. In the case of C_{2}, part of the total eapacitance required usually is supplied by the plate by-pass or blocking condenser of the modulated amplifier, so C,2 need only be large enough to make up the difference.

A still better arrangement is to use a low-pass filter as shown in Fig. 9-9, even though elipping is not deliberately employed. The method described above maty be used for checking the performanee of the filter.

Grid Bias

Many modern transmitting tubes designed for Class 13 audio work can be operated without grid bias. Besides climinating the need for a grid-bias supply, this reduees the variation in grid impedance over the audio-frequency cycle and thus gives the driver a more constant load into which to work. With these tubes, the grid return lead from the center-tap of the driver transformer secondary is simply connected to the filament center-tap or cathode.

When the tubes require bias, it should always be supplied from a fixed voltage source. Neithor cathode bias nor grid-leak bias ean be used with a Class 13 amplifier; with both types the bias changes with the amplitude of the signal voltage, whereas proper operation demands that the bias voltage be unvarying no matter what the strength of the signal. When only a small amount of bias is required it can be obtained conveniently from a few dry cells. When greater values of bias are required, a heavy-duty " 13 " battery may be used if the grid current does not exceed 40 or 50 milliamperes on voiec peaks. Biven though the batteries are charged by the grid eurrent rather than discharged, a battery will deteriorate with time and its internal resistanee will increase. When the inerease in internal resistance becomes appreeiable, the battery tends to act like a grid-leak resistor and the bias varies with the applied signal. Batteries should be ehecked with a volt meter oceasionally while the amplifier is operating. If the bias varies more than 10 per cent or so with voice excitation the battery should be replaced.

As an alternative to batteries, a regulated bias supply may be used. This type of supply is described in the power supply chapter.

Plate Supply

The plate supply for a Class B modulator should be suffiefently well filtered to prevent hum modulation of the r.f. stage. An additional requirement is that the output condenser of the supply should have low reactanee, at 100 creles or less, compared with the load into which each tube is working. A $4-\mu \mathrm{ffl}$. output condenser with a 1000 -vold supply, or a $2-\mu \mathrm{fd}$, condenser with a 2000-volt supply, usually will be satisfactory. With other plate voltages, condenser values should he in inverse proportion to the plate voltage.

To kerp distortion at a minimum, the voltage regulation of the plate supply should be as good as it can be made. If the des. output voltage of the supply varies with the amount of current taken, it should be kept in mind that the voltage at maximum current determines the amount of power that ran be taken from the modulator without distortion. A supply whose voltage drops from low at no had to 1250 at the full morlulator plate eurrent is a 1250 -volt supply, so far as the modulator is concernod, and any estimate of the power output available should be based on the lower figure.

It is particularly important, in the case of a tetrode Class B stage, that the screen-voltage power-supply source have excellent regulation, to prevent distortion. The sereen voltage should be set as exatety as possible to the recommended valur for the tube. The audio impedanee between erreen and cathode also must be low.

Overexcitation

When a Class B amplifier is overdriven in an attempt to serure more that the rated power, distortion inerases rapidly. The high-frequency hatrmonics which result from the distortion moduhate the transmitter, producing spurious sidebands which can cause serious interference over a
band of frequencies several times the channel width required for speech. This will happen, even though the transmitter is not being overmodulated, if the modulator is incopable of delivering the power required to modulate the transmitter fully, or if the Class C amplifier is not adjusted to give the proper modulating impedance.

As stated carlier, such a condition may be reached by deliberate design, in case the modulator is to be adjusted for peak clipping. But whether it happens beareident or intention, the splatter and spurious sidebands can be eliminated be inserting a low-pass filter (Fig. 9-9) between the modnlator and the modulated amplifier, and then taking care to see that the actual modulation of the r.f. amplifier does not exceed 100 per eent.

Operation Without Load

Excitation should never be applied to a Class B modulator until after the Class \mathbf{C} amplifier is turned on and is drawing the value of plate current required to present the rated load to the modulator. With no load to absorb the power, the primary impedance of the transformer rises to a high value and excessive audio voltages are developed across it - frequently high enough to break down the transformer insulation. If the modulator is to be tested soparately from the fransmitter, a resistance of the same value as the modulating impodance, and capable of dissipating the full power output of the modulator, should be connected across the transformer secondary.

D DRIVERS FOR CLASS-B MODULATORS

Class I3 amplifiers are driven into the gridcurrent region, so power is consumed in the grid circuit. The preceding stage or driver must be eapable of supplying this power at the required peak audio-frequency grid-to-grid voltage. Both

Fig. 9-24-A typical chassis layout for a Clasa 13 modulator. Beyond adefrate insulation for the voltages usell, and suflicient ventilation for the mondulator tubes, no particular eonstructional precautions are neressary. If the size of the components makes it neresary to wae more than one chatsis, the driver transformer may lie inchuced with the speech amplifier. In such ease it is atvisable to shiold thi" "hot" andio leads to the modulator grids if they have to run any considerable distance.

of these quantities are given in the manufacturer's tube ratings. The grids of the (Hass IS tubes represent a variable load resistane over the atudio-lrequency corle, berause the geted current does not increase directly with the grid voltage. To prevent distortion, therefore, it is neressary to have a driving source that will maintain the waveform of the signal without distortion even though the load varies. That is, the driver stage must h:tve good regulation. To this end, it should In capable of delivering somewhat more powar thath is consumed by the Class 13 grids, as promviously described in the disertsion on spereh amplifiors. It is also desimable to use an imput coupling transiomer having a turns ratio giving the largest step-down in the voltage betwere the driver plate or plates and the Class 13 grids that will permit ohtaining the sureified grid-to-grid a.f. voltage.

The driver transformor, T or T, in Fig. 9-25, maty wouple directle between the driver tube and the modulator grids or may be designed to work into a low-impedance (200 - or 000 -ohm) line. In the lattor case, a tube-to-line output transiommer mast be used at the output of the driver stage. This tepe of coupling is revonumended onty when the driver must be at a considorable distamea

Fig. 9.25 - 'Iriode driver cireuits for Clasa 13 umbulators. 1 , resistance conpling to mride: 13 , transformer eompling, R_{1} in A is the plate resistor for the preeding stage, value determined by the type of tube and operating condition as given in 'rable 9.I. C_{1} and R_{2} are the eompling andenser and grid resistor, respectively; values also may be taken from Table 9.I.

In both eircuits the ontput transformer, $T . T_{2}$, should have the proper turns ratio to couple between the driver tubes and the Clasa IS grids, T_{1} in B is nsually a $2: 1$ transformor, secomdary to primary, R, the cathote resistor, shondel be caleulated for the partiendar tulies usid. 'The value of C, the cathode by-pass, is determined as described in the text.
from the modulator; the second transformer not only introcluces additional losses but also impairs the voltage regulation of the driver stage.

Driver Tubes

The vartation in grid resistance of a Class 13 amplifier over the audio-frequency evele poses a spectial problem in the driver stage. To atvoid distortion, the driver output vollage (not power) must stay constant (for a fixed signal voltage on its grid) regardless of the variations in load resistance,
The fundamental requirement for good voltage regulation in any electrical generator is that the internal resistance must be low. In a vacuumtube amplifier, this means that the tubes must have a bow value of plate resistance. The hest tubes in this respert are low- μ triodes - the 613l(i is an example - and the worst are tetrodes and pentodes as representod h o the 6 V 6 and 6Lid. This does not mean that tetrodes or perntodes cannot be used, but it does mean that thery should not be used without taking measures to redure the effortive phate resistance (see next section).

In solerting a driver stage always choose Class A or $\mathrm{A} \mathrm{B}_{1}$ operation in preforence to Class $\mathrm{A} \mathrm{B}_{2}$. This not only simplifies the sperehamplifier design but also makes it easier to apply mogative fred-loark to tetrodes for reduction of plate resistance. It is pessible to ohtain a tube power output of approximately 25 watts from 61 dis without going beyond Class $.13_{1}$ operation: this is ample driving power for the pepular Class 13 modulator tubes, wen when a kilowatt transmiter is to be modulated.

The rated tube output as shown be the tube tables should be redured hex about 20 per cent to allow for losses in the Class I3 input transformor. If two transformers are used, tubroto-line and line-togrids, allow alout :3an per cent for transformer losses. Another 2ia promer rent should la atlowed, if possible, as a satioty factor and to improve the voltage regulation.

Fig. 9-25 shows representative rireuits for a push-pull triode driver using cathode bias. If the amplifier operates Clatss A, the cathode resistor need not be by-patssed, beratuse the at. currents from earh tube flowing in the cathorle resistor are out of phate and cancel bach other. Hownerer. in ('lass AB oneration this is not true; considerable distortion will be generated at high signal levels if the eathode resistor is not by-passed. The by-pass capacitance required ean be calculated by a simple rule: the cathode resistance in ohms multiplied by

Fig. 9-26 - Negative feed-back circuits for arivers for Class B modulators. A-Single-ended heam-tetrode driver. If it and I_{2} are a 6Jis and ov' 6 , respertively, the following values are suggested:

13 - P'ush-pull beam-tetronde driver. If I_{1} is a folis and I_{2} and I_{3} 01.6:, the following values are suggested: K_{1}, 0.1 megohm; R_{2},

comparable with or lower than that of low $-\mu$ triodes such as the 2 A 3 or 6134G.

Suitalble cirruits for single-rnded and push-pull tetrodes are shown in Fig. 9-26. Fig. 9-26A shows resistance coupling betweren the preceding stage and a single tetrocle, such as the 6 V 6 , that operates at the same plate voltage as the proceding stage, Pant of the a.f. voltage across the primary of the output transformor is fed back to the grid of the tetrole, l^{2}, through the plate resistor of the proweding tubre, I_{1}. The total resistanere of R_{4} and R_{5} in sories should be ton or more times the rated load resistance of F_{2}. Instead of the voltage divider, a tap on the transformer primary can be used to supply the feedback voltage, if such a tap is avaibable.

The amount of feed-back voltage that apperars at the grid of tube V_{2} is determinod by R_{1}, R_{2} and the plate resistanere of l^{\prime}, as well as be the relationship betwere R_{4} and R_{5}. Circuit values for a tapical tube combination are given in detail in Fig. 9-26.

The push-pull rimenit in Fig. 9-2613 repuires an atudio transformer with a split secondary. The ferel-bark voltage is oltained from the plate of each output tube by means of the voltage divider, R_{1}, R_{2}. The blocking condenser, G 1 , prevents the dere phate voltare from being applied to $R_{1} R_{2}$; the reactance of this condenser should be low, rompated with the sum of R_{1} and R_{2}, at the lowest atudio frequencey to $\mathrm{ln}^{\text {a }}$ amplified. Also, the sum of R_{1} and R_{2} should be high (ten times or more) (eompared with the rated load resistane for V_{2} and V_{3}.

In this circuit the foed-back voltage that is devoloped atross R_{2} appears at the grid of V_{2} (or I_{3}) through the transformer secondary and
the by-pass capacitance in microfarads should equal at least 25,000. The voltage rating of tho eondenser should be cqual to the maximum bias voltage. This can be found from the masimumsignal plate current and the cathoule resistance.

> Example: A pair of fiblt is is to be used in Class AB_{1} self-biased. From the tube tables, the cathode resistance should be 780 ohms and the maximum-signal plate current 120 ma , From Ohm's Law,

$$
E=R I=780 \times 0.12=93.6 \text { volts }
$$

From the rule mentioned previous! y, the by-pass eapacitance requirul is

$$
C=2 \pi, 000 / R=2.5,000 / 780=32 \mu \mathrm{fd}
$$

A 40- or $50-\mu \mathrm{fd}$. 100 -volt elertudytie condenser womld be satisfactory.

Negative Feed-Back

Whenever tetrodes or pentodes are used as drivers for Chass 13 modulators, megative feed-back should be used in the driver stage. This will reduce the distortion caused by the variable load resistance represented by the Class 13 grids. It also reduers the distortion inherent in the driver stage itself, when properly applied. The effert of feed-hawk is to reduee the apparent plate resistanere of the driver, and this in turn helps to maintain the a.f. output voltage at a more constant lavel (for a constant signal on the grid) when the load resistance varies. It is radily possible to reduce the plate resistance to a value

Fig. 9-2 - (Hutput voltage regulation of two types of beam-tetrode drivers with neqative ficd-lach, For comparison, the regulation with a pair of 2 A 3 (no feed-baek) also is shown.

Fig. 9.28 - Circuit diagram of speerh amplifier using 6 L .6 , with negative feed-back, suitable for driving Class 13 modulators up to 300 watts output.
$\mathrm{C}_{1}, \mathrm{C}_{5}, \mathrm{C}_{8}-\mathbf{2 0} \boldsymbol{\mu} \mathrm{fd}, 25$-volt electrolytie.
$\mathrm{C}_{2}, \mathrm{C}, \mathrm{C}_{10}-0.1-\mu \mathrm{fd} .400$-volt paper.
$\mathrm{C}_{3}, \mathrm{C}_{6}-0.01-\mu \mathrm{ft}$. 600 -volt paper.
$\mathrm{C}_{4}, \mathrm{C}_{7}, \mathrm{C}_{12}-10-\mu \mathrm{fd}$. 450 -volt eleetrolytic.
C_{11} - $100-\mu \mathrm{fd}$. 50 -volt electrolytic.
$\mathrm{R}_{1}-2.2$ megohms, $1 / 2$ watt.
$\mathbf{R}_{2}, 137-1500$ ohms, $1 / 2$ watt.
$\mathrm{K}_{3}-1.5$ megohms, $1 / 2$ watt.
$R_{4}-0.22$ megolm, $1 / 2$ watt.
$R_{s}, R_{s}-47,0(0) 0$ ohms. $1 / 2$ watt.
R_{B} - 1 -megolim volume eontrol.
grid-cathode circuit of the tube, provided the tubes are not driven to grid current. If the gridcathode impedance of the tubes is relatively low, as it is when grid current fows, the feed-back voltage decreases beause of the voltage drop through the transformer secondary. The rireuit shoukd not be used with tubes that are operated Class AB_{2}. The per cent feed-biack is

$$
n=\frac{R_{2}}{R_{1}+R_{2}} \times 100
$$

where n is the feed-back percentage, and R_{1} and R_{2} are connected as shown in the diagram. The higher the feed-bark percentage, the lower the effective plate resistance. llowever, if the percentage is made too high the preceding tube, V_{l}, may not be able to develop enough voltage, through T_{1}, to drive the push-pull stage to maximum output without itself generating harmonic distortion. Distortion in V_{1} is not compensated for by the feed-back circuit.

If V_{2} and V_{3} are 6 Lifs operated self-biased in Class $A B_{1}$ with a load resistance of 9000 ohms, V_{1} is a 6 J 5 , and T_{1} has a turns ratio of 2 -to-1, total secondary to primary, it is possible to use over 30 per cent feed-back without going beyond the output-voltage capabilities of the 6J5. Twenty per cent feed-back will reduce the effective plate resistance to the point where the output voltage regulation is better than that of 6134Gs or 2.13 s without feed-back.

Instead of the voltage-divider arrangement shown in Fig. 9-25B for obtaining feed-back voltage, a separate winding on the output transformer can be used, provided it has the proper
R_{9} - 0.17 inegohm, $1 / 2$ watt.
R_{10} - 1.500 olmm, 1 watt.
R_{11} - 10,000 ohms, $1 / 2$ watt.
$R_{12}, R_{13}-0.1$ megolim, 1 watt.
$\mathrm{R}_{14}, \mathrm{R}_{15}-22,000$ ohms, $1 / 2$ watt.
$1{ }_{16}$ - 250 ohms, 10 watts.
R_{17} - 2000 ohms, 10 watts.
T_{i} - Interstage audio, $2: 1$ secondary (total) to primary, with split secondary winding.
T_{2} - Class 13 inpmitransformer to suit modulator tubes.
number of turns to give the desired feed-back percentage. Special transformers are available for this purpose.
The improvement in eonstancy of output voltage resulting from the use of negative feed-back is shown graphically in Fig. 9-27. In order to compare the various types of tubes, the variation in output voltage is shown as a percentage of the output voltage when the tubes are working into the rated load. The load resistance also is expressed as a percentage of the rated load resistance for the particular tube, or pair of tubes, used.

SPEECH-AMPLIFIER CIRCUIT WITH NEGATIVE FEED.BACK

A circuit for a speech amplifier suitable for driving a Class B modulator is given in Fig. 9-28. In this amplifier the 6 L 6 s are operated Class $A B_{1}$ and will deliver up to 20 watts to the grids of the Class 13 amplifier. The feed-back circuit requires no adjustment, but does require an interstage transformer with two separate secondary windings (split secondary).

This amplifier may be constructed along the same lines as in Fig. 9-13, observing the same preeations with respect to shiedding the 6.5.J7 grid eircuit. The power output is the same as from the circuit of Fig, 9-16.

The output transformer, T_{2}, should be selected to work between a 9000 -ohm plate-to-plate load and the grids of whatever Class B tubes will be used. The power-supply requirements for this amplifier are essentially the same as for the amplifier of Fig. 9-16.

SPEECH EQUIPMENT

Every 'phone transmitter requires checking before it is initially put on the air. An adequate job can be done with equipment that is neither elaborate nor expensive, A simple set-up is shown in Fig. 0-29. The only equipment that is not likely to be already at hand is the audio osaillator, the construction of which is described in the chapter on measurements. The voltmeter one that operates at audio frequencies is neeessary - can be either a vacuum-tube voltmeter or a multirange volt-ohm-milliammeter that has a rectifier-type a.c. range. The headset is included for aural checking of the amplifier performance.

The audio oscillator usually will have an output control, but if the maximum output voltage is in excess of a volt or so the output setting may be rather critical when a high-gain speech amplifier is being tested. In such cases an attenuator such as is shown in Fig. !-29 is a convenience. Each of the two voltage dividers reduces the voltage by a factor of roughly 10 to I, so that the over-all attenuation is about 100 to 1 . The relatively low value of resistance, R_{4}, across the input terminals of the amplifier also will minimize stray hum pick-up on the connecting leads.

Fig. 9.29 - Simple test set-up for checking a speech amplifier. The andio-oscillator frequeney range should be from about 100) to $\mathbf{5 0 0 0}$ or more eycles. It is not necessary that it be continu. ously variable: a number of "spot" frequencies will be satisfactory. Suitable resistor values are: R_{1} and $R_{3}, \mathbf{1 0 , 0 0 0}$ olms; R_{2} and R_{4}, 10% ohms: K_{6}, rated load resistance for amplificr output stage: R s, determine by trial for comfortable headphone level ($2 ;$ to 100 ohms, ordinarily). 1 is a high-resistance a, . voltmeter, multirange rectifier type.

As a preliminary check, rover the microphone input terminals with a metal shield (with the audio oscillator and attenuator disconnected) and, while listening in the headset, note the hum level with the amplifier gain control in the off position. The hum should be very low under these conditions. Then increase the gain-control setting to maximum and ohserve the hum; it will no doubt increase, Next connert the audio oscillator and attenuator and, starting from minimum signal, increase the audio input voltage until the voltmeter indicates full power output. (The voltage should equal $\sqrt{P R}$, where P^{\prime} is the expected power out put in watts and R is the load resistance - R_{6} in the diagram.) While increasing the input, listen carefully to the tone to see if there is any rhange in its character. When it begins to sound like a musioal octave instead of a single tone, distortion is beginning. Assuming that the output is substantially without audible distortion at full
output, sulsstitute the microphone for the audio oscillator and speak into it in a normal tone while watching the voltmeter. IReduce the gain-control setting until the meter "kicks" nearly up to the full-power reading on voice peaks. Note the hum level, as read on the voltmeter, at this point; the hum level should not exceed one or two per cent of the voltage at full output.

If the hum level is too high, the amplifier stage that is causing the trouble can be located by temporarily short-eircuiting the grid of each tube, in turn, to ground. When shorting a particular grid makes a marked derrease in hum, the hum presumably is coming from a preceding stage, although it is possible that it is getting its start in that particular grid circuit. If shorting a grid does not decrease the hum, the hum is originating either in the plate circuit of that tube or the grid circuit of the next. Aside from wiring errors, a defective tube, or inadequate plate-supply filtering, objertionable hum usually originates in the first stage of the amplifier.

If distortion occurs below the point at which the expected power output is secured, the stage in which it is occurring can be located by working from the last stage toward the front end of the amplifier, applying a signal to each grid in turn from the audio oscillator and adjusting the signal voltage for maximum output. In the case of push-pull stages, the signal may be applied to the primary of the interstage transformer - after discomnecting it from the plate-voltage source. Assuming that normal design principles have been followed and that all stages are theoretioally working within their capabilities, the probable causes of distortion are wiring errors (such as accidental short-circuit of a cathode resistor), defertive components, or use of wrong values of resistance in cathode and plate circuits.

Using the Oscilloscope

Speech-amplifier checking is facilitated considerably if an oscilloscope of the type having amplifiers and a linear sweep circuit is available. A trpical set-up for using the oseilloscope is shown in Fig. 9-30. With the connertions shown, the sweep circuit is not required but horizontal and vertical amplifiers are necessary. Audio voltage from the oscillator is fed directly to one oscilloscope amplifier (horizontal in this case) and the output of the speech amplifier is connected to the other. The 'scope amplifier gains should be adjusted so that each signal gives the same line length with the other signal shut off.

Under these conditions, when the input and output signals are applied simultaneously they are compared directly. If the speech amplifier is distortion-free and introduces no phase shift, the resulting pattern is simply a straight line, as shown at the upper left in Fig. 9-31, making an angle of about 45 degrees with the horizontal and vertical axes. If there is no distortion but there
is some phase shift, the pattern will be a smooth ellipse, as shown at the upper right. The greater the phase shift the greater the tendency of the ellipse to grow into a circle. When there is evenharmonic distortion in the amplifier one end of the line or ellipse becomes curved, as shown in the second row in Fig. !-31. With odd-harmonic: distortion such as is chararteristic of overdriven push-pull stages, the line or cllipse is curved at both ends.

Patterns such as these will be obtained when the input signal is a fairly good sine wave. They will tend to beoome complicated if the input wavolorm is complex and the sperech amplifier introduces appreciable phase shifts, It is therrfore advisable to test for distortion with an input signal that is as nearly as possible a sine wave. . Nso, it is best to use a frequency in the $500-1000$ cyrle range, since improper phase shift in the amplifier is usually least in this region. Phase shift in itself is not of great importance in an audio amplifier of ordinary design because it doess not change the character of speech so far as the ear is concerned. llowever, if a complex signal is used for testing phase shift may make it difficult to detert distortion in the oscilloscope pattern.

In amplifiers having negative feed-back, excessive phase shift within the feed-hack loop may cause self-oscillation, since the signal fed batek may arrive at the grid in phase with the applied signal voltage instead of out of phase with it. Such a phase shift is most likely to be associated with the output transtormer, Oseillation usually occurs at some frequeney above 10,000 cercles, although occasionally it will oceur at a very low frequency. If the pass-band in the stage in which the phase shift ocrurs is deliborately restricted to the optimum voice range, as described earlier, the gain at both very high and very low frequencies will be so low that self-osrillation is very unlikely, even with large amounts of ford-bark.

Gencrally speaking, it is casier to detect small amounts of distortion with the type of pattern shown in lig. !-31 than it is with the waveform pattern obtained by foeding the output signal to the vertical plates and making use of the linear sweep in the 'scope. This is because it is quite easy to determine whether or not a line is straight, but not so casy to decide whother a pattern displayed hy the sweep circuits meets given specifications.

Ilowever, the waveform pattern can be used satisfactorily if the signal from the audio oscilla-

Fig. 9-30- Test set-up using the oscilloscope to cherk for distortion. These connections will result in the tylue of patern shown in liz. 9.31, the horizontal sweep being provided by the andio input signal, For waveform patterns, omit the comection between the audio onsillator and the horizontal amplifier in the 'srope, and use the horizontal linear sweep.

Fig. 9-31 - lypiral patterns ohtained with the conneetions shown in Fig, 9.30, Depending on the number of stages in the amplifier, the pattern may slope upward to the right, as shown, or opward to the left. Also, deponding on where the distortion originates, the curvature in the second row may appear either at the top or luttom of the line or ellijese.
tor is a reasonably good sine wave. One simple method is to examine the output of the oseillator alone and trace the pattern on a sheet of transparent paper. The pattern given by the output of the amplifier ean then be compared with the "standard" pattern by arljusting the oscilloscope" gain to make the two patterns coincide as closely as possible. The pattern diserepancies are a measure of the distortion.

In using the owcilloseope care must be taken to avoid introduring hum voltages that will upset the measurements. Ilum pick-ap on the 'seope leads or other exposed parts such as the amplifier load resistor or the voltmeter can be detected by shutting off the audio oseillator and speech amplifier and connecting first one and then the other to the vertical plates of the 'scope, setting the internal horizontal swep to an appropriate width. The trace should be a straight horizontal line when the vertioal gain control is set at the position used in the actual measurements. Waviness in the line indicates hum. If the hum is not in the 'soope itself (check by disconnecting the leads at the instrument) make sure that there is a good ground connertion on all the equipment and, if necessary, shield the hot leads.

The oscilloscope can be used to good advantage in stage-by-stage texting to cherk waveforms at the grid and plate of each stage and thus to determine rapidly where a soure of trouble naty be located. When the 'scope is comected to circuits that are not at ground potential for d.c., a con-
denser of about $0.1 \mu \mathrm{fd}$. should the connected in sories with the hot oscilloseope lead. The probe lead whould be shielded so that it will not piek up, hum.

CLASS-B MODULATORS

Once the speceh amplifier is in satisfactory working condition, the Cliss B modulator can be checked by similar means. A simple circuit is shown in Fig. $0-32$. The resistance of R_{1} should bo equal to the modulating impedance of the Class C amplifier to be modulated, and the resistor should have a power rating equal to the rated power output of the modulator. Calculate the voltage to be expeeted across R_{1} at full output; if it exceeds the range of the meter the meter may be conneeted across say half or one-fourth of R_{1} and the readings multiplied by 2 or 4 , respectively. Only a few ohms will be needed at R_{2}, in the average case, to give a good signal in the headphones. As a safety precaution, ground the output terminal to which the headphones are connected and use a resistor at R_{2} that has ample current-carrying capacity.

Ilum will seldom be a problem in the modulator. Distortion may be checked as deseribed previously; the oscilloscope is excellent for this purpose. If a variable-frequency audio oseillator
is used, a check on the frequeney response of the over-all system can be obtained by varying the oscillator frecfuency (check its output voltage at each frequency change) and observing the variation in the modulator output voltage. The highfrequency response of the system can be attenuated by trying eondensers of various values across the primary and secondary of the output transformer, as pointed out in the discussion on

Fig. 9-32 - Set-up for checking a Class B modulator.
Class 13 modulators. The objeet is to reduce the response above 3000 eyeles to a low value as compared with the response in the 200 - to 2500 -cyele region, so that the channel occupied by the transmitter will not be excessive. A simple method of adjustment is to apply an audio tone of ahout 1500 cyeles and increase its amplitude until distortion becomes noticeable; when this oceurs the tone is no longer pure but sounds like a musical octave. The condenser values should then be adjusted until the test tone sounds pure again at the same signal amplitude.

Amplitude Modulation

The type of modulation most commonly employed in amateur radiotelephony is called amplitude modulation (AM). The name arises from the fact that the methods of generating a modulated wave of a particular type all accomplish the desired result by varying the instantancous amplitude of the r.f. output of the transmitter. As described in the chapter on circuit fundamentals, the process of modulating a signal sets up groups of frequencies called sidebands, these sidebands appearing both above and below the frequency of the unmodulated signal or carrier. An amplitude-modulated signal actually consists of a carrier which does not vary in amplitude plus sets of side frequencics or sidebands which in turn may or may not vary in amplitude. Modulation by a single-frequency, constantamplitude tone, for example, sets up side frequencies that do not vary in amplitude. Nodulation hy voice sets up bands of side frequencies that do vary with the amplitude of the speech.

Amplitude modulation is frequently described as a process of "varying the amplitude of the carrier". A variation in amplitude does take place, when the composite signal as a whole is viewed in a circuit that acorpts equally well all frequencies, carricr and sidebands, contained in the signal. The total r.f. output amplitude varies at the modulation-frequency rate because it is the resultant of the instantaneous amplitudes of the carrier and all side frequencies, which continually vary (at radio frequency) in both amplitude and phase relationships. Misunderstanding often oceurs because commonly no distinetion is made between the carricr, which does not vary in amplitude at modulation frequency, and the signal as a whole, which does vary in amplitude with modulation. In this chapter the term "signal" is used for the eomposite effect of carrier plus sidebands.

It is illuminating to consider amplitude modulation as a process of frequency conversion or mixing, in which case the relationship between the carrier, modulating frequencies, and sidebands is straightforward (see chapter on fundamentals). The amplitude variations in the signal arise as a result of the mixing process. These amplitude variations are highly important from a design standpoint, since they set up certain power requirements that must be met, so they are considered in detail in this chapter.

AM Sidebands and Channel Width

As described in the chapter on fundamentals, combining or mixing two frequencies in an appropriate circuit gives rise to sum and difference frequencies. Speech can be electrically reproduced, with high intelligibility, in a band of fre-
quencies lying between approximately 100 and 3000 cycles. Whan these frequencies are combined with a radio-frequency carrier, the sidebands occupy the frequency spectrum from about 3000 cycles below the carrier frequency to 3000 eycles above - a total band or "chamel" of about 6 kilocycles. Aetual speech frequancies extend up to 10,000 eycles or so, so it is possible to oecupy a $20-\mathrm{kc}$. channel if no provision is made for reducing its width. For communication purposes such a channel width represents a waste of valuable spectrum space, since a $6-\mathrm{ke}$, channel is fully adequate for intelligibility. Oceupying more than the minimum channel creates unnecessary interference, so spech equipment and transmitter adjustment and operation should be pointed toward maintaining the channel width at the minimum.

THE MODULATED SIGNAL

In Fig. 10-1, the drawing at A shows the unmodulated r.f. signal, assumed to be a sine wave of the desired radio frequency. The graph can be taken to represent cither voltage or current.

In I3, the signal is assumed to be modulated by the audio-frequency shown in the small drawing above. This frequency is much lower than the carrier frequency, a necessary condition for good modulation, and always the case in radiotelephony because the audio frequencies used are very low compared with the radio frequeney of the carrier. When the modulating voltage is "positive" (alove its axis) the signal amplitude is inereased above its unmodulated amplitude; when the modulating voltage is "negative" the signal amplitude is decreased. Thus the signal grows larger and smalker with the polarity and amplitude of the modulating voltage.

The drawings at C shows what happens with stronger modulation. The amplitude is doubled at the instant the modulating voltage reaches its positive peak. On the negative peak of the modulating voltage the amplitude just reaches zero; in other words, the signal is completely modulated.

Percentage of Modulation

When a modulated signal is detected in a receiver, the detector eliminates the carrier and takes from it the modulation. The stronger the modulation, therefore, the greater is the useful receiver output. Obviously, it is desirable to make the modulation as strong or "heavy" as possible. A wave modulated as in Fig. $10-1 \mathrm{C}$ would produce considerably more useful audio output than the one shown at B.

The "depth" of the modulation is expressed
as a percentage of the unmodulated carrier amplitude. In cither I3 or (', Fig. 10-1, X represents the ummodulated carrier amplitude, Y is the maximum amplitude on the modulation up-peak, and Z is the minimum amplitude on the modulation downpeak,

The outline of the modulated wave is called the modulation envelope. It is shown by the thin line outlining the patterns in Fig. 10-1. In a properly-operating modulation system either side of this outline is an arcurate reproduction

$$
(A)
$$

Fig. 10-I - Graphical representation of (A) r.f. nutpot unmodulated, (B) modulated 50%, (C) modulated 100%.
of the modulating wave, as can be seen in Fig, $10-1$ at B and (by comparing the upper outline of the modulation envelope with the waveshaje of the modulating wave. The lower outline duplicates the upper, but simply appears upside down in the drawing.

The percentage of modulation is
$\%$ Mod. $=\frac{Y-X}{X} \times 100$ (upward modulation), or
$\%$ Mod. $=\frac{\mathrm{X}-Z}{\mathrm{X}} \times 100$ (downward modulation)
If the waveshape of the modulation is such that its peak positive and negative amplitudes are equal, then the modulation percentage will be the same both up and down. If the two peremtages differ, the larger of the two is customarily specified.

Power in Modulated Wave

The amplitude values shown in Fig. 10-1 correspond to current or voltage, so the drawings may be taken to represent instantancous values of either. Now power varies as the square of either the current or voltage, so at the peak of the modulation up-swing the instantaneous power in the signal of Fig. $10-1($ ' is four times the unmodulated carrier power (because the current and voltage both are doubled). At the peak of
the down-swing the power is zero, since the amplitude is zero. These statements are true of 100 per cont modulation no matter what the waveform of the modulation. The instantancous power in the modulated signal is proportional to the square of its amplitude at every instant. This fart is highly important in the operation of every method of amplitude modulation.

It is conveniont, and customary, to describe the operation of modulation systems in terms of sinc-wave modulation. Although this waveshape is seldom actually used in practice (voice waveshapes depart very considerably from the sine form) it lends itself to simple calculations and its use as a standard permits comparison between systems on a common basis. With sine-wave modulation the power in the modulated signal averaged over any number of full cyeles of the modulation frequency is found to be $1 \frac{1}{2}$ times the power in the unmodulated carrier. In other words, the power output increases 50 per cent with 100 -per-cent molulation be a sine wave. This rolationship is very useful in the design of modulation systems and modulators, since any such system that is capable of increasing the average power output by . 0 per cent with sinewave modulation automatically fulfills the requirement that the instartancous power at the modulation up-prak be four times the carrier power. No such simple relationship exists with complex waveforms, consequently systems in which the additional power is supplied from outside the modulated r.f. stage (e.g., plate modulation) usually are designed on a sine-wave basis as a matter of convenionere. Modulation systoms in which the additional power is secured from the modulated r.f. amplifior (e.g., grid modulation) usually are more conveniontly designed on the basis of prak power rather than average power.

The extra power that is contaimed in a modulated signal goes entirely into the sidebands, half in the upper sideband and half in the lower. As a numerical example, full modulation of a $100-$ watt carrier by a sine wave will add 50 watts of sideband power, 25 in the lower and 25 in the upper sidehand. supplying this additional power for the sidebands is the object of all of the various systems devised for amplitude modulation.

Complex waveforms such as speceh do not, as a rule, contain as much average power as a sine wave. Ordinary speech waveforms have about half as much average power as a sine wave, for the same peak amplitude in both waveforms. Sinee it is the paak amplitude, not the average power, that determines the percentage of modulation, the sideband power with ordinary speech averages only about half the power with sinewave morlulation, for the same modulation percentage in both cases.

Unsymmetrical Modulation

In an ordinary clectric circuit it is possible to increase the amplitude of current flow indefinitely, up to the limit of the power-handling capability of the emponents, but it cannot very well be decreased to less than zero. The same

Fig. 10-2 - Modulation by an unsymmetrical waveform. This drawing shows 100% downward modulation along with 300% upward modulation. There is no distortion, since the modulation envelope is an accurate reproduction of the waveform of the modulating voltage.
thing is true of the amplitude of an r.f. signat; it can be modulated upward to any desired extent, but it cannot be modulated downward more than 100 per cent.

When the modulating waveform is unsymmetrical it is possible for the upward and downward modulation percentages to be different. A simple case is shown in Fig. 10-2. The positive peak of the modulating signal is about 3 times the amplitude of the negative peak. If, as shown in the drawing, the modulating amplitude is adjusted so that the peak downward modulation is just 100 per cent $(Z=0)$ the paak upward modulation is 300 per cent $(Y=4 X)$. The carrier amplitude is represented by N, as in Fig. 10-1. The modulation envelope reproduces the waveform of the modulating signal accurately, hence there is no distortion. In such a modulated signal the increase in power output with modulation is considerably greater than when the modulation is symmetrical and has to be limited to 100 percent both up and down. However, tho peak amplitude, Y, is four times the carrier amplitude, X, so the peak power is 16 times the carrier power. When the upward modulation is more than 100 per cent the peak power capacity of the modulating system obviously nust be increased sufficiently to take care of the much larger peak amplitudes.

Overmodulation

If the amplitude of the modulation on the downward swing becomes too great, there will be a period of time during which the output is entirely cut off. This is shown in Fig. 10-3. The shape of the downward half of the modulating wave is no longer accurately reproduced by the modutation envelope, consequently the modulation is distorted. Operation of this type is called overmodulation. The distortion of the modulation envelope causes new frequencies to be generated (harmonies of the modulating frequency, which combine with the carrier to form new
sidebands correspondingly spaced from the carrier frequency) that widen the channel occupied by the modulated signal. These spurious frequencies are commonly called "splatter".

It is important to realize that the channel occupied by an amplitude-modulated signal is dependent on the waveshape of the modulation envelope. If this waveshape is complex and can be resolved into wide band of audio frequencies, then the channel occupied will be correspondingly large. The modulation-envelope waveshape shown in Fig. 10-3 will contain a large number of harmonies of the original sine-wave frequency of the modulating wave because of the sharp corners in the waveshape when it is "elipped" at the zero axis. However, if the original modulating wave had had exactly this same shape the channel occupied by the modulated signal would be exactly the same. Basieally, it is not the fact that the signal camot be modulated more than 100 per cent downward that causes splatter, but the fact that any distorted waveshape contains higher frequencies than were present in the original undistorted wave. A wave that is effi(iently clipped, as is the case with the waveshape shown in Fig. 10-3, will contain a wider range of spurious frequencies than one in which there are no highly abrupt changes in amplitude.

Fig. 10.3 - An overmodulated signal. The modulation envelope is not an accurate reproduction of the waveform of the modulating voltage, Jhis or any type of distortion occurring during the modulation process generates spurious sidehands or "splatter".

Because of this clipping action at zero amplitude, it is important that care be taken to prevent applying too large a modulating signal in the downward direction. Overmodulation results in more splatter than is caused by most other types of distortion in a phone transmitter.

GENERAL REQUIREMENTS

For proper operation of an amplitude-modulated transmitter there are a few general requirements that must be met no matter what particular method of modulation may be used. Failure to meet them is accompanied by undesirable effects, principally distortion of the modulation envelope that increases the channel width as compared with that required by the legitimate frequencies contained in the original modulating wave.

Frequency Stability

For satisfactory amplitude modulation, the earier frequency must be entirely unaffected by modulation. If the applieation of modulation causes at change in the carrier frequency, the frequence will woble back and forth with the monulation. This causes distortion and widens the chamel taken by the signal. "Thus unnecessary interferonce is caused to other tranmissions.

In practice, this undesirable frequency modulation is prevented by applying the modulation to an r.f. amplifier stage that is isolated from the frequency-controlling oscillator by a buffer amplifier. Amplitude modulation applied directly to an oseillator always is acompanied by frequency modulation. It nder existing PCO requlations amplitude modulation of an oscillator is permitted only on frequencies above itt Mr. Below that frequeney the regulations require that an amplitude-modulated transmitter be completely free from frequency modulation.

Linearity

At least up to the limit of 100 -per-cent upward modulation, the amplitude of the r.f. output should be directly proportional to the amplitude of the modulating wave. Fig. 10-1 is a graph of all ideal modulation characteristic, or conve showing the relationship, botween r.f. output amplitude and instantaneous modulation amplitude. The modulation swings the r.f. amplitude back and forth along the rurve A, as the modulating voltage alternately swings positive and negative. Assuming that the negative peak of the modulating wave is just sufficient to reduce the r.f. output to zero (modulating voltage equal to -1 in the drawing), the same modulating voltage peak in the pasitive direction $(+1)$ should eause the r.f. amplitude to reach twice

Fig. 10-4 - The modulation chararteristic shows the relationship between the instantaneous amplitude of the r. f. output and the instantaneons amplitude of the modulating voltage. The ideal tharacteristie is a straight line, as shown by curve A.
its ummodulated value. The ideal is a straight line, as shown by curve A, Such a modulation theracteristic is perfectly linear.

A nonlinear characteristic is shown by curve B. The r.f. amplitude does not reach twice the ummodulated carrier amplitude when the modulating voltage rearhes its positive peak. 1 modulation characteristic of this type gives a modulation envelope that is "flattened" on the uppoak; in other words, the modulation envelope is not an exact reprotuction of the modulationg wave. It is therefore distorted and harmoniss are generated, ausing the transmitted signal to orcupy a wider chamel than is neressary. A monlinear modulation characteristic can easily result when a tramsmitter is not properly designed or is misadjusted.

The modulation capability of the transmitter is the maximum percentage of modulation that is possible without objectionable distortion from nombinarity. The maximum capability can never exeed 100 per rent on the down-peak, but it is possible for it to be higher on the up-peak. The modulation capability should be as close to 100 per rent as possible, so that the most effective signal can be transmitted.

Plate Power Supply

The d.e power supply for the phate or phates of the modulated amplifier should be well filtered: if it is not, phatr-supply ripple will modulate the carvier abd cause amoving hum. The ripple voltage should not be more than about 1 per cent of the d.e. output voltage.

In amplitude modulation the plate current varices at an adio-frequency rate: in other words, an alternating current is superimposed on the d.e. plate current. The output filter condenser in the plate supply must have low reactance, at the lowest audio frequency in the modulation, if the tramsmittor is to modulate erpually well at all atudio frequencies. The condenser capacitance required depends on the ratio of d.e phate current to plate voltage in the modulated amplifier. The requirements will be met satisfactorily if the capacitance of the output combenser is at least crgual to

$$
C=25 \frac{l}{l^{*}}
$$

where $C^{\prime}=$ Capacitance of output condenser in $\mu \mathrm{ff}$.
$I=1$).c. plate current of modulated amplifier in milliamperes
$E=$ Platce voltage of modulated amplifier
Examble: A modulated amplifiar operates at 1250 volts and 27.5 ma. The eapacitance of the output condenser in the plate-supply filter should be at least

$$
C=25 \frac{I}{E}=2.5 \times \frac{275}{12.50}=25 \times 0.22=5.5 \mu \mathrm{fd}
$$

Modulation Systems

An amplitude-modulated signal can be generated by a variety of methods, the only pros-ently-used ones being those in which a modulat-
ing voltage is applied to one or more tube elements in an r.f. amplifier. The proper object of all methods is to generate an r.f. signal having a modulation envelope which reproduces the waveform of the modulating voltage with as little distortion as possible.

The methods deseribed in this chapter are the basic ones. There are many specialized variations, usually involving some form of grid modulation
with the object of increasing the rather low plate efficiency that is an inherent characteristie of grid modulation. Such systems, when they aetually achieve substantially distortionless modulation, are rather complicated circuitwise, are difficult to adjust and are not well adapted to rapid frequeney change. They have so far had little or no lasting application in amateur communication.

Amplitude Modulation Methods

PLATE MODULATION

The most popular sustem of amplitude morlulation is plate modulation. It is the simplest to apply, gives the highest efficieney in the modulated amplifier, and is the easiest to adjust for proper operation.
lig. 10-5 shows the most widely-used sustem of plate modulation, in this case with triode r.f. tubes. A balanced (push-pull Class A, Class AB or ('lass I3) modulator is transformer-eoupled to the plate cireuit of the modulated r.f. amplifier. The audio-frequency power gemerated by the modulator is combined with the d.c. power in the modulated-amplifier plate cireuit be transfer through the coupling transformer, T. For 100-per-ecent modulation the audio-frequency output of the modulator and the turns ratio of the coupling transformer must be such that the voltage at the plate of the modulated amplifier varios between zero and twien the d.e. operating plate voltage, thus causing corresponding variations in the amplitude of the r.f. output.

Fig. 10-5 - I'late modulation of a Class C r.f. amplifier. The r.f. plate by-pass condenser, (i, in the amplifier stame shonld have reasonatily high reartance at audio frequencies, A valuc of the order of $0.001 \mu \mathrm{fd}$, to $0.005 \mu \mathrm{fd}$, is satisfactory in practically all cases. (See chapter on modulators.)

Audio Power

As stated earlier, the average power output of the modulated stage must increase during modulation. The modulator must be capable of supplying to the modulated r.f. stage sine-wave audio power equal to 50 per cent of the d.e plate input. For example, if the d.e, plate power input to the r.f. stage is 100 watts, the sine-wave audio power output of the modulator must be 00 watts.

Modulating Impedance; Linearity

The modulating impedance, or load resistance presented to the modulator by the modulated r.f. amplifier, is equal to

$$
\frac{E_{\mathrm{b}}}{I_{\mathrm{p}}} \times 1000
$$

where $E_{\mathrm{b}}=$ D.e. plate voltage
$I_{\mathrm{p}}=$ I.c. plate current (ma.)
F_{1}, and I_{1}, are measured without modulation.
The power output of the r.f. amplifier must vary as the square of the instantanoous plate voltage (the r.f. voltage must be proportional to the plate voltage) in order for the modulation to be linear. This will be the case when the amplifior operates under ('lass (' conditions, The lincarity depends upon having suflicient grid excitation and proper bias, and upon the adjustment of cireuit eonstants to the proper values.

Adjustment of Plate-Modulated Amplifiers

The general operating conditions for Class \mathbf{C} operation are deseribed in the chapter on transmitters. The grid bias and grid current required for plate modulation usually are given in the oprating data supplied by the tube manufacturer; in general, the bias should be such as to give an operating angle of about 120 degrees at the d.c. plate voltage used, and the grid excitation should be great enongh so that the amplifier's plate efficiency will stay constant when the plate voltage is varied over the range from zero to twiee the unmodulated value. For best linearity, the grid bias should be ohtained partly from a fixed source of about the cut-off value, and then supplemented by grid-leak bias to supply the remainder of the required operating bias.

The maxinum permissible d.c. plate power input for 100 -per-cent modulation is twice the sine-wave adodio-frequeney power output available from the modulator. This input is obtained by varying the loading on the amplifier (keeping its tank circuit tuned to resonance) until the
product of d.c. plate voltage and plate current is the desired power. The modulating impedance under these conditions must be transformed to the proper value for the modulator by using the correct output-transformer turns ratio. This point is considered in detail in the chapter on modulator dexign.

Neutralization, when triodes are used, should be as nearly perfect as possible, since regeneration may cause monlinearity. 'The amplifier also must be completely free from parasitic oscillations.

Although the total power input (d.c. plus audio-frequener a.e.) increasos with modulation, the d.c. plate current of a plate-moluated amplifier should not change when the stage is modulated. This is because each inerease in plate voltage and plate eurrent is balaned by an equivalent decrease in voltage and current on the next half-cycle of the modulating wave. D.c. instruments cannot follow the a.f. variations, and since the average d.c, plate current and plate voltage of a properly-operated amplifier do not change, neither do the meter readings, A change in plate current with modulation indicates nonlincarity. On the other hand, a thermo-couple r.f. ammoter connected in the antema or transmission line will show an increase in r.f. current with modulation, because instruments of this type respond to power rather than to current or voltage.

Screen-Grid Amplifiers

Seren-grid tubes of the pentode or beamtedrode type can be used as ('lass C plate-modulated amplifiers be applying the modulation to both the plate and sereen grid. 'The usual method of ferding the soreen grid with the neeessary d.e. amd modulation voltage is shown in Fig. 10-6. The dropping resistor, R, should be of the proper value to apply normal d.e, voltage to the sereen under steady carrier conditions. Its value can be calculated by taking the difference between plate and sereen voltages and dividing it by the rated serern current.

Fig. 10.6- Plate and ssreen modulation of a Class C. r.f, amplifier using a screen-grid tube. The plate r.f. by-pass condenser, (i, should have reasonably high reartance at all audio frequencies; a value of 0.001 to 0.00 .5 fd . is generally satisfactory, The sereen by-pass, C_{2}, should be $0.002 \mu \mathrm{fil}$. or less in the usual rase.

When the modulated amplifier is a beam tetrode the suppressor connection shown in this diagram may be ignored. If a base terminal is provided on the tube for the beam-forming plates, it should be connected as recommended by the manufacturer,

The modulating impedance is found by dividing the d.e. plate voltage by the sum of the plate and sereen currents. The plate voltage multiplied by the sum of the two currents gives the power input to be used as the basis for determining the audio power required from the modulator.

Fig. 10-7 - Plate modulation of a beam tetrode, using an audio impedance in the screen circuit. The value of L_{1} is disenssed in the text. See Fig, 10-6 for data on by. pass capacitors C_{1} and C_{2}.

Modulation of the screen along with the plate is necessary because the screen voltage has a much greater effect on the plate current than the plate voltage does. Very little modulation takes place and the modulation characteristic is nonlinear if the plate alone is modulated. However, beam tetrodes can be modulated satisfactorily by applying the modulating power to the plate circuit alone, provided the screen is "floating" at audio frequencies - that is, is not grounded for a.f. but is connected to its d.c. supply through an audio impedance. The circuit is shown in Fig. 10-7. The choke coil L_{1} is the audio impedance in the screen circuit; its inductance should be large enough to have a reactance (at the lowest desired audio frequeney) that is not less than the impedanee of the sereen. The latter can be taken to be approximately equal to the d.e. sereen voltage divided by the d.e. sereen current.

Choke-Coupled Modulator

One of the oldest types of morlulation system is the choke-coupled Class A modulator shown in Fig. 10-8. Because of the relatively low power output and plate efficience of a Class A amplifier, the mothod is seldom used now except for a few special applications. The audio power output of the modulator is combined with the d.c. power in the plate circuit, just as in the case of the transformer-coupled modulator. However, there is considerably less freedom in adjustment, since no transformer is available for matching impedances.

The modulating impedance of the r.f. amplifier must be adjusted to the value of load impedance required by the particular modulator tube used, and the power input to the r.f. stage must not exceed twice the rated a.f. power output of the modulator. A complication is the fact that the plate voltage on the modulator must be higher than the plate voltage on the r.f, amplifier, for 100 -per-cent modulation. This is because the a.f.

Fige, 10.8- (:hosherompled Class-I modulator. 'The cathode resistor, R_{2}, should have the normal value for operation of the merlalator tube ate alass A power amplitior. 'The modnation choke, If, ahould be Shenrya or more, I valur of 0,001 to $0,00 . \bar{y} \mu \mathrm{fl}$, , in satisfartory at (2, the r.f, amplifier plate by-pass rombenser. See text for disenssion of C_{i} and R_{1}.
voltage developed by the modulator camot swing to zere) without a great deal of distortion. R_{1}, provides the meressary d.e. voltage drop between the modulator and ref. amplifier, but its value (amot be calculaterl without using the published pate family of curves for the modulator tube used. The voltage drop through R_{1} must equal the minimum instantaneous plate voltage on the modulator tube under nomat operating conditions. (' 1 , an atudio-frequency by-pass actos: R_{1}, should have a caparitanere surh that its reactance at 100 aveles is not more thath about ono-tenth the resistance of R_{1}. Without $R_{1} f_{1}$ the pereentage of modalation is limited to 70 to 80 per eont in the average case.

GRID MODULATION

The principal disadvantage of plate modulation is that a considerable amount of andio power is required. This requirement can be avoided by applying the modulation to a grid clement in the modulated amplifier. Itowever, the convenience and economy of the low-power modulator must be paid for, sinee no mohulation system gives something for nothing, The increased power output that aceompanies modulation is paid for, in the case of grid modulation, be a reduction in tho carrier power output obtainable from a given r.f. amplifier tube, and by nore rigorous operating requirements and more complicated adjustment.
The torm "grid modulation" as used hore applies to all types - control grid, serem, or suppressor - sinee the oprerating principles are exactly the same no matter which grid is actually
morlulaterl. With grid modulation the plate voltage is constant, and the increase in power output with modulation is obtaineol ber making both the plate current and pate effiesoner vare with the modulating signal as shown in Fig. 10-9. For 100-per-ernt modulation, both plate eurrent and efficiency must, at the peak of the modulation up-swing, be twiee their carrier values. Thus at the modulation peak the power input is doubled, and since the plate efficieney also is doubled at the same instant the pata output power will be four times the carriar power. The effieioney obtainable at the peak depends on how carefully the modulated amplifier is adjusted, and sometimes can be as high as 80 per cent. It is generally less when the amplifier is adjusted for good linearity, and under average conditions a round figure of $2 / 3$, or 66 per rent, is representative. Since the earrior efficiency is only half the peak efficiency, the refficioney for carrier conditions, without modulation, is only about 33 per cent. Thus the carrier output is about one-fourth the power obtainable from the same tube in cew, operation, and about one-third the carricr output ohtainable from the tule with plate modulation.

The modulator is required to furnish only the audio power dissipated in the modulated grid under the operating conditions chosen. \mathbf{A} sperech amplifior capable of delivering 3 to 10 watts is usually sufficiont.

Gencrally spoaking, grid modulation does not give as linear a modulation characteristie as plate modulation, even under optimum operating conditions. When misadjusted the nonlinearity may be severe, resulting in bad distortion and splatter. However, with caroful adjustment it is capable of quite satisfirtory results.

Fig, $10-9$ - In a perfect grid-modalated amplifier both plate current and blate efliciency would vary with the instantaneons modnlating voltage as shown. When this is so the modulation characterintic is as given by enrve A in F'ig. 10-4, and the prak output power is four times the ammodulated carrier power, 'The variations in plate current with modulation, indicated above, do not register on a dir. meter, so the plate meter shows no change when the signal is modulated.

Plate-Circuit Operating Conditions

'The d.e. plate power iuput to the mondulated amplifier, assuming a round figure of $1 / 3$ (33 per (ent) for the plate efficiones, should not exered 1等 times the plate dissipation rating of the tube or tubes used in the modulated stage. It is generally best to use the maximum plate voltage permitted by the manufacturer's ratings, because the optimum oprating conditions are more atsily achicead with high plate voltage and the linearity also is improved.

Example: Two tubes having plate dissipation ratings of 5.5 watts each are to be used with grid modulation.
The maximum permissible power inpte at 33% efficieney, is
$P=1.5 \times(2 \times 55)=1.5 \times 110=165$ watts The maximum recommended plate voltage for these tubes is 1500 volts. Using this figure, the average plate current for the two tubes will be

$$
I=\frac{P}{E}=\frac{165}{1500}=0.11 \mathrm{amp}=110 \mathrm{ma}
$$

At 33% efficiency, the carrier ontput to be expected is 5 s watts.

The plate-voltage/plate-current ratio at twice earrier plate eurrent is

$$
\frac{1500}{220}=0.8
$$

'The tank-circuit L / C^{\prime} ratio should be chosen on the basis of twice the average or carrier plate current. If the L / C ratio is hased on the plate voltage/plate current ratio under carrier conditions the Q may be too low for good coupling to the output cireuit.

Control-Grid Modulation

('ontrol-grid modulation may be used with any type of r f. amplifior tube. A typical trionde eireuit. is given in Fig. 10-10, The same circuit can be used with sereen-grid tubes merely by supplying the normal value of sereen voltage by any convenient means; however, the sereen should be by-passed for audio ($1 \mu \mathrm{fd}$. or more) as well as radio frequencies. The audio signal is inserted, he means of transformer T, in series with the grid-hias lead. In a push-pull amplifier the transformer is conneded in the common bias lead.

In control-grid modulation the d.e. grid hias is the same as in normal Class-(' amplifier serviere, but the r.f. grid excitation is somewhat smaller. The audio voltage superimposed on the d.ce bias changes the instantancous grid bias at an andio rate, thus varying the operating conditions in the grid cireuit and controlling the output and efficioney of the amplifier.

The change in instantaneous bias voltage with modulation causes the rectified grid current of the amplifier to vary, which places a variable load on the modulator. To reduce distortion, resistor R in Fig. 10-10 is conneeted in the output rireuit of the modulator as a constant load, so that the overall load variations will be minimized. 'This resistor should be equal to or somewhat higher than the load into which the modulator tube is rated to work at normal audio output. It is also recommended that the modulator circuit ineorporate as much negative feedback as

Fig. 10-10- Control-grid modulation of a Class C amplifier. The r.f. grid by-pass condenser, C, should have high reartance at audio frequencies ($0.005 \mu \mathrm{fd}$. or less).
possible, as a further aid in reducing the internal resistance of the modulator and thus improving the "regulation" - that is, reducing the effect of load variations on the audio output voltage. The turns ratio of transformer T should be about 1 to 1 in most cases.

The load on the r.f. driving stage also varies with modulation. This in turn will cause the excitation voltage to vary which may cause the modulation characteristic to be nonlinear. To overeome it, the driver should be capable of two or three times the r.f. power output actually required to drive the amplifier. The excess power may be dissipated in a dummy load (such as an incandescent lamp of appropriate power rating) that then performs the same function in the r.f. cireuit that resistor R does in the audio circuit.

The d.e bias souree in this system should have low internal resistance, Batteries or a voltageregulated supply are suitable. Grid-leak bias should not be used.

Adjustment

A control-grid modulated amplifier should be ardjusted with the aid of an oscilloseope connocted as shown in Fig. 10-11. A tone source for modulating the transmitter is a convenience, since a steady tone will give a steady pattern on the oscilloscope. A steady pattern is easier to study than one that flickers with voice modulation.
llaving determined the permissible carrier pate current as previously described, apply r.f. excitation and plate voltage and, without modulation, adjust the plate loading to give the reguired plate current (keeping the plate tank circuit tuned to resonance). Next, apply modulation and increase the modulating voltage until the modulation characteristic shows curvature (see later section in this chapter for use of the oscilloscope). If curvature occurs well below 100-per-cent modulation, the plate efficieney is too

Fig. 10.11-Using the oscilloscope for adjustment of a grid-modulated amplifier. The connections shown are for grid-bias modulation. With sereen or suppressor modulation the connection to the horizontal plates of the scope should be taken from the grid heing modulated; the r.f. piek-up arrangement renains unchanged.
L and C should tune to the operating frequency, and may be eoupled to the transmitter tank circuit through a twisted pair or coax, using single-turn links at cach end. The $0.01-\mu \mathrm{fd}$. blocking condenser that couples the audio voltage to the horizontal plates of the oscilloscopes should have a voltage rating equal to at least twice the d.c. voltage on the grid that is being modulated.
high. Increase the plate loading slightly and reduce the excitation to maintain the same plate current; then apply modulation and check the characteristic again. Continue this process until the characteristic is as linear as possible from the horizontal axis to twice the carrier amplitude.

Screen Modulation

Power tubes of the beam tetrode type have very good modulation characteristics when the modulating voltage is superimposed on the d.e. screen-grid voltage. The efficiency and plate current should vary with the modulating voltage as shown in Fig. 10-9.

In many ways screen modulation is more satisfactory than control-grid modulation, since the system does not require a fixed-bias supply for the control grid, and is not highly critical as to excitation voltage. llowever, the operating principles are identical, and the carrier output is limited to about one-third the plate dissipation rating of the tube or tubes used in the modulated amplifier.

The most satisfactory way to apply the modulating voltage to the screen is through a trans-

Fig. 10.12-Screen-grid modulation of beam tetrode. Condenser C is an r.f. by-pass conderser and should have high reactance at audio frequencies. A value of $0.002 \mu \mathrm{fl}$. is satisfactory. The grid leak can have the same value that is used for c, w. operation of the tube.

Fig. 10.1.3- A typical screen voltage-current curve of a beam tetrode adjusted for optimum conditions for screen modulation.
one-fourth the d.c. power input to the screen under c.w. operation, but varies somewhat with the operating conditions. A receiving-type audio power amplifier will suffice as the modulator for most transmitting tubes. Because the relationship between screen voltage and soreen current is not linear (a typical curve giving this relationship is shown in Fig. 10-13) the load on the modulator varies over the audio-frequency cycle, and it is therefore highly advisable to use negative feedtack in the modulator circuit. If excess audio power is available, it is also arlvisable to load the modulator with a resistance corresponding to R in Fig. 10-10, the value of R being adjusted to dissipate the excess power. Unfortunately, there is no simple way to determine the proper resistance except experimentally, by observing the effect of different values on the waveshape with the aid of an oscilloscope.

On the assumption that the modulator will be fully loaded by the screen plus the additional load resistor \dot{R}, the turns ratio required in the
coupling transformer may be calculated as follows:

$$
N=\frac{E_{\mathrm{q}}}{2.5 \sqrt{P R_{\mathrm{L}}}}
$$

Where N is the turns ratio, secondary to primary; E_{1} is the rated screen voltage for ew. operation; P is the rated audio power output of the modulator; and R_{1}, is the rated load resistance for the modulator.

The best method of adjustment is to use an oseliloseope (the comertions of Fig. 10-11 may be used, except that the audio sweep voltage is taken from the sereen instead of the eontrol grid) and adjust plate loading, grid excitation, and modulating voltage for the greatest output compatible with good linearity at 100 per cent modulation. The amplifier should be loaded heavily. and the grid current should be kept at the point where a further roduction decreases the r.f. output. Finder proper operating conditions the platecurrent dip as the amplifier plate circuit is tuned through resonance will be little more than just diserernible.

In an alternative adjustment method not requiring an oscilloscope the r.f. amplifier is first tuned up for maximum output without modulat tion and the rated d.c. sereen voltage (from a fixed-voltage supply) for (ew. operation applied. [se heavy loading and reduce the grid excitation until the output just starts to fall off, at which point the resonance dip in plate current should be small. Note the plate current and, if possible, the rif. antemat or feeder current, and then reduce the d.e. sereen voltage until the plate current is one-half its previous value. The r.f. output eurrent should also be one-half its previous value at this sereen voltage. The amplifier is then ready for modulation, and the modulating voltage may be increased until the plate current just starts to shift upward, which indieates that the amplifier is modulated 100 per cent. With voice modulation the plate current should remain steady, or show just an occasional small upward kick on intermittent peaks.

It is desimble to operate with the grid current as low as possible, sinco this reduces the sereen carrent and thus reduces the amount of power required from the modulator. With proper adjustment the lincarity is good up to about 90 per cent modulation. When the screen is driven negative for $\mathbf{1 0 0}$ per cent modulation there is a kink in the modulation characteristic at the zoros) voltage point that introduces a small amount of distortion. The kink ean be removed and the overall linearity improved by applying a small amount of modulating voltage to the control grid simultancously with sereen modulation, but this requires adjustment with the oscilloscope.

"Clamp-Tube" Modulation

A method of sereen-grid modulation that is conveniont in transmitters provided with a sereen protective tube ("clamp" tube) is shown in Fig. 10-14. Basically, the idea is that an audio-frequeney signal is applied to the grid of the elamp tube, which then becomes a modulator. The
simplicity of the circuit is somewhat deceptive, sinee it is eonsiderably more difficult from a design standpoint than the transformer-coupled arrangemont of lig. 10-12.

For proper modulation the clamp tube must he operated ats a triode (${ }^{\text {lassis-A }}$ A amplifier, and it will be recognized that the method is essentially identical with the choke-coupled ('lass-A plate modulator of Fig. 10-8 with a resistance, R_{2}, substituted for the choke. R_{2} in thr usual case is the sereen dropping resistor normally used for c.w. opera-

Fig. 10-1.4-Sicren morlulation by a "rlamp" tube. The grid leah is the normal value for e.w. operation and Cis should be (0,(6) 2 , μ fi, or less. Soe text for disenssion of C_{1}, R_{1}, R_{2} and R_{3}. R_{3} chould have the proper value for Class A operation of the modulator tube, but cannot be calculated unless triode curves for the tule are available.
tion. Its value should be at least two or three times the load resistance required by the Class A modulator tube for optimum audio-frequency output. Unfortumately, relatively little information is available on the triode operation of the tubes most frequently used for screen-protective purposes:

Like the choke-coupled modulator, the clamptube modulator is incapable of modulating the r.f. stage 100 per cent unless the droping resistor, R_{1}, and audio by-pass, C_{1}, are incorporated in the circuit. The same design considerations hold, with the addition of the fact that the sereen must be driven negative, not just to zero voltage, for 100 per cent modulation. The modulator tube must thus be operated at a voltage ranging from 20 to 40 per cont higher than the sereen that it modulates. Proper design requires knowledge of the sereen characteristies of the r.f. amplifier and a set of plate-voltage plate-current curves on the modulator tube as a triode.

Adjustment with this strstem, once the design voltages have been determined, is carried out in the same way as with transformer-coupled sereen modulation, proferably with the oscilloscope. Without the oseilloseope, the amplifier may first beadjusted for e.w. operation as described carlier, but with the modulator tube removed from its
socket. The modulator is then replaced, and the cathode resistance, R_{3}, adjusted to reduce the amplifier plate current to one-half its c.w. value. The amplifier plate current should remain constant with modulation, or show just a small upward flicker on occasional voice peaks.

Controlled Carrier

As explained carlier, a limit is placed on the output obtainable from a grid-modulation system by the low r.f. amplifier plate efficiency (approximately 33 per cent) under carrier conditions. The

Fig. 10-15-Cireuit for carrier control with screen modulation. A small triode such as the 655 can be used as the control amplifier and a 6160 is suitable as a carrier-control tube. T_{1} is an interstage audio transformer having a l-to-l or larger turns ratio. R_{4} is a 0.5 -megohm volume control and also serves as the grid resistor for the modulator. A germanium crystal may be used as the rectitier. Other values are diseussed in the text.
plate efficiency increases with modulation, since the output increases while the d.e. input remains constant, and reaches a maximum in the noighborhood of 50 per cent with 100 -per-ernt sinewave modulation. Consequently, if the power input to the amplifier can be reduced during those periods when there is little or no modulation, thes: reducing the plate loss, advantage can be takron of the higher efficiency at full modulation to ohtain higher effective output. This can be done by varying the power input to the modulated stage in accordance with average variations in voice intensity, so long as sufficient carrier power is generated to maintain the modulation at or below 100 per cent under all conditions. Such "controlled carrier" operation is particularly adaptable to sereen-grid modulation. When properly utilized, it permits increasing the effective carrier output at full modulation to half the rated plate dissipation of the r.f. amplifier, instead of onethird.

It is desirable to control the power input just enough so that the plate loss, without modulation, is safely below the tube rating. Excessive control is disadvantageous because the receiver's a.v.c. system must continually follow the varia-
tions in average signal level. The circuit of Fig. 10-15 permits adjustment of both the maximum and minimum power input, and although somewhat more complicated than some circuits that have been used is actually simpler to operate because it separates the functions of modulation and carrier control. A portion of the audio voltage at the modulator grid is applied to a Class A "control amplifier" which drives a rectifier eircuit to produce a d.c. voltage negative with respert to ground. C_{1} filters out the audio variations, leaving a d.c. voltage proportional to the avarage voice level. This voltage is applied to the grid of a "clamp" tube to control the d.c. sereen voltage" and thus the r.f. carrior level. Maximum output is obtained when the carrier-control tube grid is: driven to cut-off, the voiec level at which this: oceurs being determined $b y$ the setting of R_{4}. Minimum input is set to the desired level (usually. about equal to the plate dissipation rating of the modulated stage) by adjusting $R_{2} . R_{3}$ may he the normal sereen-dropping resistor for the modulated beam tetrode, but in case a separate sereen supply is used it need be just large enough to give sufficient voltage drops to reduce the no-modulation power input to the devired value.
$C_{1} R_{1}$ should have a time constant of about 0.1 second. The time constant of $C_{2} R_{3}$ should the no larger. Further details may le found in QST for April, 1951, page 64. An oscilloscope is reguired for proper adjustment.

Suppressor Modulation

Pentode-type tubes do not, in general, modulate well when the modulating voltage is applied to the sereen grid. However, a satisfactory modulation characteristic can be obtained by applying the modulation to the suppressor grid. The circuit arrangement for suppresor-grid modulation of a pentode tube is shown in Fig. 10-16.

The method of adjust ment closely resembles that used with sereen-grid modulation. If an oseilloseope is not available, the amplifier is first adjusted for optimum e.w. output with zero bias on the suppressor grid. Negative bias is then applied to the suppressor and increased in value until the plate current and r.f. output current drop to half their original values. When this condition has been obtained the amplifier is ready. for mochalation.

Fig. 10.16 - Suppressor-grid modulation of an r.f. amplifier using a pentode-type tube. The suppressorgrid r.f. by-pass condenser, C, should be the same as the grid by-pass condenser in control-grid modulation.

Since the suppressor is always negatively biased, the modulator is not required to furnish any power, so a voltage amplifier ean be used. The suppressor bias will vary with the type of pentode and the operating conditions, but usually will be of the order of -100 volts. The peak af. voltage required from the modulator is equal to the suppressor hias.

CATHODE MODULATION

Circuit

The fundamental eircuit for cathode modulation is shown in Fig. 10-17. It is a combination of the plate and grid mothods, and permits a carrier efficiency midway betwern the two. The audio power is introdued in the cathode eireuit, and both grid bias and plato voltage are modulated.

Fif, 10-17- Cireuit arrangement for cathode modulation of a Clans ($:$ r.f. amplifier. Vatues of ly-pass condensers in the r.f. circuits should be the same as for other mondulation mothods.

Because part of the morlulation is by the eontrol-grid method, the plate afficieney of the modulated amplifier must vary during modubation. The earrier adiciency therefore must be lower than the efficieney at the modulation pak. The required reduction in efficieney depends upon the proportion of grid modulation to plate modulation; the higher the percentage of plate modulation, the higher the permissible carrier efficiency, and vice versa. The audio power reguired from the modulator also varies with the pereentage of plate modulation, being greater as this percentage is increased.

The way in which the various quantities vary is illustrated by the eurves of Fig. 10-18. In these curves the performance of the cath-ode-modulated r.f. amplifier is ploted in terms of the tube ratings for plate-modulated telephons; with the pereentage of plate modulation as a base.

Fig, 10.18 - Cathode-molulation performance curves, in terms of percentage of plate modulation plotted against percentage of (lass C: telephony tube ratings. $\mathbf{W}_{\text {in }}$ - I.c. plate input watts in terms of percentage of plate-modulation rating.
W. - Carrier out put watts in pre cent of plate-modulation rating (based on plate efliciency of 77.5%). $W_{\text {a }}$ - Audio power in per cent of dic, watis input.
X_{1} - I'late efficiency of the amplitier in percentage.
As the porcentage of plate modulation is deereased, it is assumed that the grid modulation is inereased to make the over-all modulation reach 100 per cent. The limiting condition, 100 -per-cent plate modulation and no grid modulation, is at the right (A); pure grid modulation is represented by the left-hand ordinate (B and C).

[^10]
Modulating Impedance

The modulating impedance of a eathodemodulated amplifier is approximately equal to

$$
m \frac{E_{\mathrm{b}}}{I_{\mathrm{b}}}
$$

where $m=P^{2}$ creentage of plate modulation (expressed as a decimal)
$E_{b}=$ W.e. plate voltage on modulated amplifier

$$
\begin{aligned}
& I_{b}=\text { W.e. plate current of modulated } \\
& \text { amplifier }
\end{aligned}
$$

Example: Assume that the modulated amplifier in the example above is to operate at a plate potential of 1250 volts. Then the d.c. plate current is

$$
I=\frac{P}{E}=\frac{162.5}{1250}=0.13 \mathrm{smp} .(130 \mathrm{~ms} .)
$$

The modulating impedance is

$$
m \frac{E_{\mathrm{b}}}{I_{\mathrm{b}}}=04 \cdot \frac{1250}{0.13}=3846 \mathrm{ohms}
$$

The modulating impedance is the load into which the modulator must work, just as in the case of pure plate modulation. This load must be matched to the load required by the modulator tubes by proper choice of the turns ratio of the modulation transformer, as deseribed in the chapter on speerh equipment.

Conditions for Linearity

IR.f. excitation requirements for the cathodemodulated amplifier are midway betwen those for phate modulation and control-grid modulation. More exeitation is required as the percentage of plate modulation is increasod. Grid bias should be considerably berond cut-off: fixed bias from a ataply having good voltage regulation is preferred, especially when the percontage of plate modulation is small and the amplifier is operating more noarly like a grid-bias modulated stage. At the higher percentages of plate modulation a combination of fixed and grid-leak hias can be used, since the variation in rectified grid current is smatler. The grid leak should be by-passed for audio frequencies. The pereentage of grid motulation may be regulated by choice of a suitable tap on the modulation-transformer secondary.
The cathode circuit of the modulated stage
must be independent of other stages in the transmitter. When directly-heated tubes are modulated their filaments must be supplied from a separate transformer. The filament brepass condensers should not be larger than about 0.002 $\mu \mathrm{fd}$., to avoid by-passing the audio-frequency modulation.

Adjustment of Cathode-Modulated Amplifiers

In most respects, the adjustment procedure is similar to that for grid-bias mordulation. The critical adjustments are antenna loading, grid bias, and excitation. The proportion of grid-bias to plate modulation will determine the operating conditions.

Adjustments should be made with the aid of an oscilloscope connected in the same way as for grid-bias modulation, With proper antenna loading and excitation, the normal wedge-shaped pattern will be obtained at 100-per-cent modulation. As in the case of grid-bias modulation, too-light antenna loading will cause flattening of the upward-peaks of modulation as also will too-high excitation. The cathode current will be practically constant with or without modulation when the proper operating conditions have been established.

Checking AM 'Phone Operation

USING THE OSCILLOSCOPE

Proper adjustment of a phone transmitter is aided immeasurably by the oscilloscope. The 'scope will give more information, more acenrately, than almost any collection of other instruments that might be named. Furthermore, an oseilloseope that is entirely satisfuctory for the purpose is not necessarily an expensive instrument : the cathode-ray tube and its power supply are about all that are needed. Amplifiers and linear sweep circuits are by no means necessars.

In the simplest 'seope circuit, radio-frequeney voltage from the modulated amplifier is applied direetly to the vertical deffection plates of the tube, and audio-freguency voltage from the modulator is applied to the horizontal deflection plates. As the instantaneous amplitude of the audio signal varies, the r.f. output of the transmitter likewise varies, and this produces a wedgeshaped pattern or trapezoid on the sereen. If the oscilloscope has a built-in horizontal sweep, the r.f. voltage is applied to the vertical plates as before (never through an amplifior) and the sweep will produce a pattern that follows the modulation envelope of the transmitter output, provided the sweep frequency is lower than the modulation frequency. This produces a waveenvelope modulation pattern.

The Wave-Envelope Pattern

The conncetions for the wave-envelope pattern are shown in Fig, 10-19A. The vertical deflection plates are coupled to the amplifier tank eoil (or an antenna eoil) through a twisted-pair line and piek-up eoil. As shown in the alternative drawing,
a resonant circuit tuned to the operating frequemer may be commeted to the vertical plater, using link eoupling betweon it and the transmitter. This will eliminate r.f. harmonics, and the tuming control provides a convenient means for adjustment of the pattern hoight.

The position of the pick-up coil should be variod until an ummodulated carrier pattern, Fig. 10-2013, of suitable height is obtamed. The horizontal sweep voltage should be adjusted to make the width of the pattern somewhat more than half the diameter of the sereen. When voice modulation is applied, a rapidly-changing pattorn of varying height will be olitained. When the maximum height of this pattern is just twier that of the carricr alone, the wave is being modulated 100 per cent. This is illustrated by Fig. 10-201), where the point X represents the horizontal sweep line (reference line) alone, $Y Z$ is the carrier height, and $P(Q$ is the maximum height of the modulated wave.

If the height is greater than the distance $P Q$, as illustrated in E, the wave is overmodulated in the upward direction. Overmodulation in the downward direction is indicated by a gap in the pattern at the reference axis, where a single bright line appears on the sereen. Overmodulation in either direction may take place even when the modulation in the other direction is less than 100 per eent.

The Trapezoidal Pattern

Connections for the trapezoid or wedge pattern as used for checking plate modulation are shown in Fig, 10-1913. The vertical plates of the c.r. tube are coupled to the transmitter tank through

Fig. 10-19 - Methods of connecting the oscilloscope for modulation cheeking. A - connections for wave-envelope pattern with any modulation method: 3 -connections for trapezoidal pattern with plate modulation. See Fig. 10-11 for 'scope connections for trapezoidal pattern with grid modulation.
a pick-up loop, preferahly using a tuned circuit, as shown in the upper drawing, adjustable to the operating frequency. Audio voltage from the modulator is applied to the horizontal plates through a voltage divider, $R_{1} R_{2}$. This voltage should be adjustable so a suitable pattern width can be ohtained; a 0.25 -megohm volume control can be used at R_{2} for this purpose, with c.r. tubes up to the 3 -inch size.

The resistance required at R_{1} will depend on the d.c. plate voltage on the modulated amplifier. The total resistance of R_{1} and R_{2} in series should be about 0.25 megohm for each 100 volts of d.c. plate voltage. For example, if the modulated amplifier operates at 1500 volts, the total resistance should be 3.75 megohms, 0.25 megohm at R_{2} and the remainder, 3.5 megohms, in $R_{1} . R_{1}$ should be composed of individual resistors not larger than 0.5 megohm each, in which casc 1 -watt resistors will be satisfactory.

For good low-frequency coupling the capaeitance, in microfarads, of the blocking condenser, C, should at least equal $0.004 / R$, where R is the total resistance $\left(R_{1}+R_{2}\right)$ in megohms. In the example above, where R is 3.75 megohms, the capacitance should be at least $0.004 / 3.75=0.001$
$\mu \mathrm{fd}$., approximately. The voltage rating of the condenser should he at least twice the d.c. voltage applied to the modulated amplifier. The capacitance can be made up of two or more similar units in series, so long as the total capacitance is equal to that required, in case a single unit of sufficient voltage rating is not available. Two or more units may be used in parallel if condensers having adequate voltage rating but insufficient capacitance are available.

The corresponding 'seope connections for grid modulation were given in Fig. 10-11. This circuit will be satisfactory for checking screen-grid modulation (the audio connection of course being made to the sereen grid rather than to the control grid) for d.c. screen voltages up to 200 volts or so, which will include most heam tetrodes. If the d.c. screen voltage, adjusted for proper morlulation, exceeds 200 volts a voltage divider similar to that shown in Fig. 10-19 should be used, the values being caleulated as described above using the sereen voltage instead of the plate voltage.

Trapezoidal patterns for various conditions of modulation are shown in Fig. 10-20 at F to J, each alongside the corresponding wave-envelope pattern. With no signal, only the cathode-

(F)
(G)

100% MOOULATION
(D)

(I)
100% MODULATION
(E)

(J)

Fig. 10-20-W ave-envelope and trapezoidal patterns representing different conditions of modulation.
ray spot appears on the screm. When the unmodulated carrier is applied, a vertioal line appears; the length of the line should be adjusted, by means of the pick-up coil coupling, to a convenient value. When the carrier is modulated, the wedge-shaped pattern appears; the higher the modulation percentage, the wider and more pointed the wedge becomes. At 100 -per-cent modulation it just makes a point on the asis, X, at one end, and the height, $P^{\prime}()$, at the other end is equal to twice the carrier height, $Y Z$. Overmodulation in the upward direction is indicated b increased height over $P Q$, and in the downward direction by an extension along the axis X at the pointed end.

Checking Transmitter Performance

The trapezoidal pattern is far more useful than the wave-envelope pattern for checking the operation of a 'phone transmitter. The latter type of pattern is of use principally for checking modulation percentage, and even when the speech system is fed with a sine-wave tone for close examination

Fig. 10.21-Top - a typical trapezoidal pattern wh. tained with sereen modulation adjusted for optimum conditions. The sudden change in slope near the point of the wedge occurs when the screen voltage passes through zero. Center - If there is no audio distortion. the unmodulated carrier will have the height and posi. tion shown by the white line superimposed on the sine. wave modulation pattern, Bottom - Even-harmonic distortion in the andio system, when the andio signal applied to the speech amplifier is a sine wave, is indi. cated by the faet that the modulation pattern doess not extend equal distances either side of the unmodulated carrier.
of the pattern it is difficult to tell with suffieient aceuracy whether the transmitter is operating limearly. Asm, even when distortion is evident in the wave-envelope pattern there is no clue as 10 whether it is occurring in the modulated amplifier or is caused by some defect in the speech eguipment.

On the other hand, the trapezoidal pattern is actually a graph of the modulation chameteristic of the modulated amplifier. The sloping sides of the wedge show the r.f. amplitude for "every value of instantaneous modulating voltage, cxactly the type of curve plotted in lig. 10-4. If these sides are perfectly straight lincs, as drawn in Fig. $10-20$ at I and I, the modulation characteristic is linear. If the sides show curvature, the characteristic is nonlinear to an extent that is shown by the degree to which the sides depart from perfoct straightness. This is true regardless of the waveform of the modulating voltage.

If the speech system ean be driven be a good audio sine-wave signal instead of a microphone, the trapezoidal pattern also will show the presence of even-harmonie distortion (the most eommon type, especially when the modulator is oworlonded) in the suech amplifier or modulator. If there is no distortion in the audio system, the trapezoid will extend horizontally equal distances on each side of the vertical line representing the unmodulated carrior. If there is even-harmonie distortion the trapezoid will extend farther to one side of the unmodulated-carrier position than to the other. 'This is shown in Fig. 10-21. The prohable cause is inadequate power output from the modulator, or incorrect load on the modulator.

An audio oscillator having reasonably good sine-wave output is highly desirable for testing both speech equipment and the 'phone transmitter as a whole, A very simple single-tone oscillator such as is shown in the chapter on measurements. is quite adequate. Wit h such an oscillator and the 'soope, the pattern is steady and can be studied rlosely to determine the cffects of various operating adjustmonts.

The patterns shown in Figs. 10-21 and the top four groups of lig. 10-22 show both eorrect and incorrect transmitter adjustments. The object of modulated-amplifier adjustment is to obtain a mattern closely resembling that in Fig. 10-22A, which shows excellent linearity (sides of werdge pattern quite straight) over the whole characteristic at 100 -per-cent modulation. Since no modulated amplifier is perfect, the sides will never be perfectly straight, but a close approach is possible. Different methorls of modulation give different characteristic results. Fig. $10-22 A$ is typical of correctly-operated plate modulation. With control-grid modulation the sides usually. are somewhat concave, particularly near the point of the trapezoid, while sereen modulation gives the characteristic pattern shown in Fig. 10-21. As mentioned earlier, it is necessary to drive the soreen somewhat negative in order to reach complete plate-eurrent cut-off and thas modulate 100 per cent downward.

Aside from overmodulation downward, Fig.

Fig. 10-22 - PlIOTOGRAPIIS OF TYPICAI. OSCILLOSCOPE PATMERNS
These photographs show varions conditions of modulation as displayed by the wedge or trapezoidal patterns in tho left-hand column and the wave-envelope patterns in the right-hand columis
(P'hotographs reproduced through courtesy of the Allen B. DuMont Laboratories, Inc., Passaic, N. J.)
$10-22 \mathrm{~B}$, which is easily cured by keeping the speech amplifier gain or speech intensity below the point that causes it, the most common type of improper operation is shown by the pattern of Fig. 10-22C. The flattening at the large end of the trapezoid results from the inability of the modulated amplifier to deliver sufficient power output on the modulation up-peak. With plate modulation the most likely cause is insufficient grid excitation or incorrect grid bias or both. With grid modulation this flattening is the result of attempting to operate the amplifier at too-high carrier efficiency. The remedy is to increase the loading on the output circuit and reduce the grid excitation, or both in combination, until the pattern sides are straight.

In this connection, it should be noted that while the trapezoidal pattern of Fig. 10-22C shows nonlinearity in the modulated amplifier, the corresponding wave-envelope pattern of the same figure could result either from this cause or from modulator overloading. With the trapezoidal pattern, modulator overloading will be evident by the fact that the position of the vertical line representing the unmodulated carrior will not be at the center of the pattern (when the modulating voltage is cut off) but modulator overloading will not affect the shape of the pattern. This asssumes that the audio signal is a sine wave.

Curvature near the point of the trapezoid causing it to approach the horizontal axis more slowly than would occur with straight sides, indicates that the output, power does not decrease rap)idly enough in this region; it maty be caused by r.f. leakage from the exciter through the final stage. This can be checked by removing the voltage from the modulated stage, when the carrier should disappear, leaving only the beam spot remaining on the screen (Fig, $10-20 \mathrm{~F}$). If a small vertical line remains, the amplifier should be carefully neutralized; if this does not eliminate the line, it is an indication that the 'scope is getting r.f. from lower-power stages, either by coupling through the final tank or via the pick-up) loop,

Faulty Patterns

Figs. 10-20, 10-21, and 10-22A through D show what is normally to be expected in the way of pattern shapes when the oscilloscope is used to check modulation. If the artual patterns differ considerably from those shown, it may he that the pattern is faulty rather than the transmitter.

It is important that only r.f. from the modulated stage only be coupled to the oscilloseones, and then only to the vertical plates. The effect of stray r.f. from other stages in the transmitter has been mentioned in the preceding section. If r.f. is present also on the horizontal plates, the pattern will lean to one side instead of being upright. If the oscilloscope eannot be moved to a position where the unwanted pirk-up disappears, a small by-pass condenser ($10 \mu \mu \mathrm{fd}$) should be connected across the horizontal plates as close to the cathode-ray tube as possible. An r.f.
choke (2.5 mh. or smaller) may also be connected in series with the ungrounded horizontal plate.
"Folded" trapezoidal patterns, and patterns in which the sides of the trapezoid are elliptical instead of straight, Fig. 10-22 F (left), occur when the audio sweep voltage is taken from some point in the audio system other than that where the a.f. power is applied to the modulated stage. Such pattorns are caused by a phase difference between the sweep voltage and the modulating voltage. The connections should always be as shown in Fig. 10-11 and 10-19B.

- MODULATION CHECKING WITH THE PLATE METER

The plate milliammeter of the modulated amplifier provides a simple and fairly reliable means for checking the performance of a phone transmitter, although it does not give nearly as definite information as the oscilloscope does. If the modulated amplifier is perfectly linear, its plate current will not change when modulation is applied if

1) The upward modulation percentage does not exceed the modulation capability of the amplifier,
2) The downward modulation does not exceed 100 per cent, and
3) There is no change in the d.c. operating voltages on the transmitter when modulation is applied.

This is true of any of the methods of modulation discussed in this chapter, with the single exception of the controlled-carrier system. The plate meter cannot give a reliable check on the performance of the latter system because the plate current inereases with the intensity of modulation. With this system the plate-current variations should be correlated with the transmitter performance as observed on an oscilloscope before the plate meter is used for checking mordulation.

Plate Modulation

With plate modulation, a downward shift in plate current mity indicate one or more of the following:

1) Insufficient exeitation to the modulated r.f. amplifier,
2) Insufficient grid bias on the modulated stage.
3) The r.f. amplifier is not loaded properly to present the required value of modulating impedanee to the modulator.
4) Insufficient output capacitance in the filter of the modulated-amplifier plate supple.
5) D.e. input to the r.f. amplifier, under earrier conditions, is in excess of the manufacturer's ratings for plate modulation, Alternativel-, the filament emission of the amplifier tubes may be low.
6) In plate-and-screen modulation of tetrodes or pentodes, the screen is not being sufficiently molulated along with the plate. In systems in which the d.c. screen voltage is
obtained through a dropping resistor, a downward dip in plate current may occur if the sereen hy-pass condonser capacitance is large enough to by-pass audio frequencies.
7) Poor voltage regulation of the modulatedamplifier plate supply: This may be caused by voltage drop in the supply itsolf, when the modulated amplifier and a Class-13 amplifier are operated from the same supply, or may be caused by voltage drop in the primary supply from the power line when the modulator load is thrown on. It is readily checeked by measuring the voltage with and without modulation. Poor line regulation will be shown by a drop in filament voltage with modulation.
Any of the following may cause an upward shift in plate current:
8) Overmodulation (excessive audio power, audio gain too great).
9) Incomplete neutralization of the modulated amplifier.
10) Parasitic oscillation in the modulated amplifier.

Grid Modulation

With any type of grid modulation, any of the following may eatuse a downward shift in modu-lated-amplifier plate current:

1) Too much r.f. exvitation.
2) Insufficient grid bias, particularly with control-grid motulation, (rid bias is usually not critical with screen and suppressor modulation, the value of grid leak reeommended for e.w. operation being satisfactory.
3) With eontrol-grid modulation, execssive resistanee in the bias supply.
4) Insufficient output capacitance in platesupply filter.
5) Plate efficiency too high under earrier eonditions; amplifier is not loaded heavily enough.
Isecause grid modulation is not perfectly linear (always less so tham plate modulation) a properlyoperating amplifier will show a small upward plate-current shift with modulation, 10 per cent or less with sine-wave modulation and amounting to an oceasional upwar. flicker with voice. An upward plate current shift in exeess of this may be caused by
6) Overmodulation (excessivemodulating voltag($)$.
7) Regeneration (incomplete neutralization).
8) With control-grid or suppressor modulation, bias too great.
9) With sereen modulation, ile. sereen voltage too low:
In grid-modulation systems the morlulator is not necessarily operating linearly if the plate current stays eonstant with or without modulation. It is readily possible to arrive at a set of operating conditions in which flattening of the up-peaks is just balanced by overmodulation downward, resulting in practically the same plate eurrent as when the transmitter is ummodulated.

The oseilloseope provides the only eertain cheek on grid modulation. While the same type of improper operation is possible with plate modulation, it occurs only rarely.

- COMMON TROUBLES IN THE 'PHONE TRANSMITTER

Noise and Hum on Carrier

Noise and hum may be detected by listening to the signal on a recoiver, provided the reeciver is far enough away from the transmitter to avoid overloading. The hum level should be low eompared with the voice at 100 -per-eent modulation. Ilum may come either from the spech amplifier and modulator or from the r.f. section of the transmitter. Ilum from the r.f. section can be detected by eompletely shutting off the moduulator; if hum remains when this is done, the power-supply filters for one or more of the r.f. stages have insufficient smoothing. With a humfree earrier, hum introduced by the modulator can be checked by turning on the modulator but leaving the sperch amplifier off; power-supply filtering is the likely source of such hum. If carrier and modulator are both clean, conneet the speceh amplifier and observe the inerease in hum level. If the hum disappears with the gain control at minimum, the hum is being introduced in the stage or stages preeding the gain control. The microphone also may piek up hum, a condition that can be checked loy removing the microphone from the circuit but loiving the first specech-amplifier gride eireuit otherwise unchanged. A good ground (to a cold water pipe, for example) on the microphone and speech system usually is essential to hum-free operation.

Spurious Sidebands

A suporheterodyne receiver having a erystal filter is needed for ehecking spurious sidebands outside the normal communication channel. The r.f. input to the receiver must be kept low enough, by removing the antema or by adequate separation from the transmitter, to avoid overloading and consequent spurious receiver responses. An "s"-nuter reading of about half scale is satisfactory. With the erystal filter in its sharpest position tune through the region outside the normal channel limits (3 to 4 kilocyeles each side of the earrier) while amother person talks into the microphone, Spurious sidebands will be observed as intermittent "elicks" or crackles well away from the carrier frequency. Sidebands more than 3 to 4 kilocyeles from the carrier should be of negligible strength, compared with the carrier, in a properly-modulated 'phone transmitter. The causes are overmodulation or nonlinear operation.

With sine-wave modulation the relative intensity of sidebands can be observed if a tone of 1000 cyeles or so is used, since the erystal filter readily cim separate frequencies of this order. The "S" meter will show how the spurious side frequeneies (those spaced more than the modulating frequency from the carrier) compare with the carrier itself. Without an "S" meter, the a.v.c.
should be turned off and the b.f.o. turned on; then the r.f. gain should be set to give a moderately strong beat note with the carrier, The intensity of side frequencies can be estimated from the relative strength of the beats as the receiver is tuned through the spectrum adjacent to the earrier.

R.F. in Speech Amplifier

A small amount of r.f. current in the speech amplifier - particularly in the first stage, which is most susceptible to such r.f. pick-up - will cause overloading and distortion in the low-leved stages. Frequently also there is a regencrativo effect which causes an atudio-frequeney oscillation or "howl" to be set up in the audio system. In such eases the gain control eamot be advaned very far before the howl builds up, even though the amplifier may be perfectly stable when the r.f. section of the transmitter is not turned on.

Complete shiolding of the mierophone, mierophone cord, and speech amplifier is necessary 10 prevent r.i. piek-up, and a ground eomertion separate from that to which the transmitur is conmerted is advisable.

MODULATION MONITORING

It is always desirable to modulate as folly as possible, bit 100 -per-cent modulation should not he execeded - partieulaty in the downward direction - beeause harmonic distortion will be introduced and the chamel width increased. This eauses unnecessary interference to other stations. The oscilloseope is the best instrament for continuously ehoeking the modulation. However, simpler indicators may be used for tho purpose, once calibrated.

A convenient indicator, when a Class IB modulator is used, is the plate milliammeter in the ('lass 13 stage, since plate eurrent of the modulator fluctuates with the voice intensity. Using the oscilloseope, determine the gatin-control setting and voice intensity that give 100 -per-cent modulation on voice peaks, and simultaneously ohserve the maximum Class 13 plate-milliammeter reading on the peaks. When this maximum reading is obtained, it will suffice to atjust the gain so that it is not exceeded.

A high resistance (1000 -ohms-per-volt or more) rectifier-type voltmeter (copper-oxide or germanium type) also can be used for modulation monitoring. It should be connected aeross the output eireuit of an audio driver stage wherr the power lewe is a fow watte, and similarly calibrated against the oscilloscope to determina the reading that represents 100 -per-cent modulation.

The plate milliammeter of the modulated r.f. stage also is of value as an indicator of overmodulation. As explained earlier, the d.c. plate current stays constant if the amplifier is limear. When the amplifier is overmondulated, esperially. in the downward direction, the operation is no longer linear and the average plate current will
change. A flicker of the pointer may therefore be taken ats an indication of overmodulation or nonlinearity. Ilowever, sinee it is possible that under some operating conditions the plate current will remain constant cven though the amplifier is considerably overmodulated, an indicator of this type is not wholly reliable unless it has been checked against an oscilloscope.

Overmodulation Indicators

Overmodulation on megative paks is usually. the worst type, as explamed carlier in this chapter. The milliammeter in the negative-peak indicator of Fig. 10-23 will show a reading on each pak that earries the instantaneous voltage on a plate-modulated amplifier "below zero" - that is, negative. 'The rectifier, l', cannot conduct so long as the negative half-eyele of audio output voltage is less than the d.e voltage applied to the r.f. tube.

The inverse-peak-voltage rating of the rectifier tube must be at least twice the d.e. plate voltage of the modulated amplifior. The filament transformer likewise must have insulation rated to withstand twire the d.e. plate voltage. Bither wercurv-vapor or high-vacuum rectifiers can be used. The liovolt breakdown voltage of the former will introduce a slight error, since the pate voltage must go at least 15 volte negative before the rectifier will ionize, hut tho error is inconseguential at plate voltages above a faw hundred volts.

The effectiveness of the monitor is improved if it indieates at somowhat loss than 100 -per-cont modulation, as it will then warn of the danger of overmodulation before it actually oecurs. It can be adjusted to indicate at any desired modulation pereentage be making the meter return to a point on the power-supply bleoder as shown in the attemative diagram. The hy-pass condenser, C, insures that the full audio voltage appears across the indieator cireuit.

Fig. 10.2:3 - Mrpative-peak overmonhation indirator. 'The milliammeter MA may he any low-range instru. mont (up to 0-50 ma, or so). 'I'lu' invorse-peak-voltage' rating of the rectifier, V, must be at least twiee the 'A.e. voltage applied to the plate of the r.f. amplifier. The alternative meter-return circuit can be used to indicate modulation in excess of any desired value below I(0) per cent. The reartance of the by-pass condenser, C, at 100 eycles should the small compared with the re. sistance aeross which it is connected. An $8 \cdot \mu$ fid, electro. lytic condenser will be satisfactory if the resistance it shunts is 1000 ohms or more.

CHAPTER 11

Frequency and Phase Modulation

Although the most common type of modulation is that in which the amplitude of the carrier is varied, it is also possible to conver intelligence hy varying the frequency or phase of the carrier.

The primary advantage of frequency modulation (FM) or phate modulation (PM) over amplitude modulation (1.1 I) comes from the fact that moise or "static," whether natural or sot up be electrical machines, is fundamentally an amplitude coffect. An AM deteetor responds (o) noise just as readily as to the desired modulation on a signal. However, if the reereiving system responds primeipally to frequencey or phase changes and is insensitive to amplitude sariations, it will give nommal reception of an fill or l'M signal but moise will be greatly reduced.

The improvement that can be realized by using $\mathrm{F} M$ or $\mathrm{P}^{\prime} \mathrm{M}$ instead of AM depends on the strength of the received signal, the charanter of the noise, and the way the noise is distributed over the receiver passband. In general, the wider the channel oecupied by the signal the better the noise suppression.

On the lower frequencies FM and PM are often used berause they catuse less interference than AM in unshielded broadrast receivers in the vicinity.

Frequency Modulation

Fig. 11-1 is a representation of freguency modulation. When a modulating signal is applied, the carrior frequentey is increased during one half-cyele of the modulating signal and decreased during the half-cerele of opposite pobarity. This is indicated in the drawing by the fact that the r.f. eyeles ureupy less time (higher frequency) when the modulating signal is positive, and more time (lower frequency) when the modulating simnal is negative. The change in the carrier frequences (frequency deviation) is proportionall to the iustantaneous amplitude of the modulating signal, so the deviation is small when the instantaneous amplitude of the modulating signal is small, and is greatest when the modulating signal reaches its peak, aither positive or negative. That is, the frequency deviation follows the instantaneous changes in the amplitude of the modulating signal.

As shown by the drawing, the amplitude of the signal does not change during modulation.

Phase and Frequency

To understand the difference between FM and PM it is necessary to appreciate that the frequency of an alternating eurrent is determined by the rate at which its phase changes. A current in which the phase changes rapidly has a higher frequency than one in which the phase changes sowly. For example, if the phase moves through 360 degrees in one second the frequency is one cycle per second, but if the phase moves through 1080 degrees in one second $(3 \times 360$ degrees) there are three eomplete rycles in one second.

If the phase of the curment in a circuit is changed - this might be done by adjusting the tuning of an amplifier tank circuit, for example - there is an instantaneous frequence change during the time that the phase is being shifted. The amount of frequency change, or deviation, depends on how rapidly the phase shift is accomplished. It is also dependent upon the total amount of the phase shift. In a properly-operating PM system the amount of phase shift is proportional to the instantaneous amplitude of the modulating signal. The rapidity of the phase shift is directly proportional to the frofuency of the modulating signal. Conserquently, the frequener deviation in PM is proportional to both the amplitude and frequeney of the modulating signal. The later
(A)

(B)

(C)

Fig, 11-1-Graphical representation of frequency modulation. In the unmodulated carriar at A. each r.f. cycle ocrupies the same amount of time. When the modulating signal, B, is applied, the radio frecurency is increased and decreased acoording to the amplitude and polarity of the modulating signal.
represents the outstanding difference between FM and PM, simee in FM the frequency deviation is proportional only to the amplitude of the modulating signal.

Modulation Depth

In FM or PM there is no condition that corresponds exactly to overmodulation in AM. "Percentage of modulation" has to be defined a little differently for these systems. Dractically. "100-per-cent modulation" is reached when the transmitted signal occupies a channel just equal to the bandwidth for which the receiver is derigned. If the channel occupied is wider than the recoiver can accept, the receiver distorts the signal and the end effect is much the same as overmodulation in AM. However, on another receiver designed for a different bandwidth the same signal might be equivalent to only $2 \overline{5}$-per-cent modulation.

In amateur work mospecifications lave been set up for channel width except in the case of "narrow-band" FM or P'M (frequently abbreviatod NPM), where the ehannel width is defined as being the same as that of a properlymodulated AMI signal. That is, the channel width for $\mathrm{N} \mathrm{T} M$ does not exceed twice the highest audio frequency in the modulating signal. NFM transmissions based on an upper audio limit of 3000 cycles therefore should occupy a channel no wider than 6 kc .

$F M$ and PM Sidebands

It might he surmised that the channel oceupied hy an FM or PM signal is no greater than the frequency deviation on both sides of the rarrier. Similar reasoning applied to amplitude modulation would lead to the conclusion that an A.M signal takes up no more space than the earrier alone, since only the amplitude of the carrier varies. However, the fact is that both FM and PMI set up sidebands, just as AM does. In the rase of FM and PM, single-tone modulation sets up a whole scries of pairs of sidebands that are harmonieally related to the modulating frequency, whereas in A.M there is only one pair of sideb:uds.

The number of "extra" sidebands that oceur in FM and PM depends on the relationship between the modulating frequency and the carrice frequency deviation. The ratio between the frequency deviation, in eycles par second,

Fig. 11.2 - How the amplitude of the pairs of sidehande varies with the modalation index in an Fll or P il signal. If the curves were extented for greater values of modulation index it would be seell that the carrier amplitute goes through zero at several prints. The same statement also applies to the sidelands. and the modulating frequency, also in cycles per second, is called the modulation index. That is,
Modulation index $=\frac{\text { Carrier frequency deviation }}{\text { Modulating frequency }}$
Example: The maximum frequency deviation in an FM transmitter is 3000 cyeles either side of the carrier frequencs. The modulation index when the modulating frequency is 1000 cycles is

$$
\text { Modulation index }=\frac{3000}{1000}=3
$$

varies.) It a modulation index of approximately 2.4 the carrier disappears entirely and then becomes "negative" at a higher index. This simply means that its phase is reversed ats compared to the phase without modulation. In FM and I'M the cnergy that goes into the sidebands is taken from the carrier, the total power remaining the same regardless of the modulation index. In $A M$ the sideband power is supplied by the modulator in the case of
plate modulation, and by changing the power input and efficiency in the case of grid-bias modulation.
The curves of Fig. 11-2 can be carried out to considerably-higher modulation indexes, in which case it will be discovered that more and more additional sidebands are set up and that the carrier goes through several "zeros" and reversals in phase.

Frequency Multiplication

In frequency or phase modulation there is no change in the amplitude of the signal with modulation, consequently an FAI or PM signal can be amplified by an ordinary Class C amplifier without distortion. The modulation can take place in a very low-level stage and the signal can then be amplified by either frequency multipliers or straight amplifiers. The audio power required for modulating an FM or PM transmitter is negligible.
If the modulated signal is passed through one or more frequency multipliers, the modulation index is multiplied by the same factor that the earrier frequency is multiplied. For example, suppose that modulation is applied on 3.5 Me , and the final output is on 28 Mc . The total frequeney multiplication is 8 times, so if the frequency deviation is 500 cycles at $3 . \overline{5}$ Me., it will be 4000 cyrles at 28 Mc . Frequency multiplication offers a means for obtaining practically any desired amount of frequency deviation, whether or not the modulator itself is capable of giving that much deviation without distortion.
Where FM or PM is used in crowded 'phone bands (particularly below 29 Mc .) it is of utmost importance that the transmissions should occupy a channel no wider than would be occupied by an AM signal. It is evident from Fig, 11-2 that this requirement can be met only by using a relatively snall modulation index. It must be realized that the higherorder sidehands always are present, even at very smatl indexes. If the modulation index (with single-tone modulation) does not exceed about 0.6 the most important extrat sideband, the second, will be at least 20 db . below the unmodulated carrier level, and this should represent an effective channel width about equivalent to that of an AM signal. In the case of speech, a somewhat higher modulation index can be used. This is berause the energy distribution in a complex wave is such that the modulation index for any one frequency component is reduced, as compared to the index with a sine wave having the same peak amphitude as the voice wave.

The chief advantage of narrow-band FM or PM for frequencies below 30 Mc . is that it eliminates or reduces rertain types of interference to broadcast reception. Also, the modulating equipment is relatively simple and inexpensive. Ilowever, assuming the same unmodulated carrier power in all eases, narrow-band FM or PM is not as effective as AM. As shown
by Fig. 11-2, at an index of 0.6 the amplitude of the first sideband is about 25 per cent of the unmodulated-carrier amplitude; this compares with a sideband amplitude of 50 per cent in the case of a 100 -per-cent modulated AM transmitter. In other words, so far as effectiveness is concerned, a narrow-band FM or PM transmitter is about equivalent to a $100-p e r-c e n t$ modulated AM transmitter operating at one-fourth the carricr power.

Comparison of $F M$ and PM

The methods used by amateurs for the reception of FM or P'M signals (see receiving chapter) are for the most part better adapted to frequency modulation than to phase modulation. On a recciver properly adjusted for FM reception the outstanding difference between the two systems is that FMI sounds natural, while a PM signallacks "lows." This is because, for a given receiver bandwidth, the audio, output from a receiver set for FMI reception is proportional to the frequency deviation. In FM transmission the deviation is the same for all audio frequencies of the same amplitude, but in PMI the deviation is proportional to the audio frequency. Hence if a 3000 -cycle modulating signal of given amplitude results in a certain frequency deviation, a 100 -eycle modulating signal of the same amplitude will give only one-thirtieth as much deviation. The rrystal-filter receiving method described in the receiving chapter overcomes this, but is not used by many amateurs because the adjustnent is somewhat critical.

Frequeney modulation cannot be applied to an amplifier stage, but phase modulation can. 1 'M is therefore readily adaptable to transmitters employing oscillators of high stability such as the crystal-controlled type. The amount of phase shift that can be obtained with good linearity is limited to about onehalf radian; in other words, the maximum practicable modulation index is 0.5 at the radio frequeney at which the modulation takes place. Because the phase shift is proportional to the modulating frequency, this index can be used only at the highest frequency present in the modulating signal, assuming that all frequencies will at one time or another have equal amplitudes. Taking 3000 cycles as a suitable upper limit for voice work, and setting the modulation index at 0.5 for 3000 cycles, the frequency response of the speechamplifier system above 3000 cycles must be sharply attenuated, to prevent sideband splatter. Also, if the "tinny" quality of PM as received on an FM receiver is to be avoided, the PM must be changed to FM, in which the modulation index decreases in inverse proportion to the modulating frequency. This requires shaping the speech-amplifier fre-quency-response curve in such a way that the output voltage is inversely proportional to frequency, at least over the voice range. When this is done the maximum modulation index
can only be used at the lowest audio frequency, approximately 100 cycles in voice transmission, and must decrease in proportion to the increase in frequency. The result is that the maximum linear frequency deviation is only about 50 cycles, when $P M$ is changed to FM . To increase the deviation to 3000 cyrdes requires a frequency multiplication of $3000 / 50$, or 60 times.

In contrast, it is relatively easy to secure a failly-large frequency deviation when a selfeontrolled oscillator is frequency-modulated directly. (True frequency modulation of a crystal-controlled oseillator results in only
very small deviations and so requires a great deal of frequency multiplication.) The chief problem is to matintain a satisfactory degree of carrier stability, since the greater the inherent stability of the oscillator the more difficult it is to secure a wide frequency swing with linearit.: However, it is possible, with a compromise design, to secure a frequeney deviation of 3000 cycles at all amateur frequencies on which FMI is permitted. It is very casy to do so at 14 Mc. and higher, esperially when the oseillator frequence is such that a frequency multiplieation of 4 or more is possible.

Methods of Frequency and Phase Modulation

FREQUENCY MODULATION

The simplest and most satisfactory device for amateur FM is the reactance modutator. This is a vacuum tube connected to the r.f. tank circuit of an oscillator in such a way as to act as a variable inductance or caparitance. Fig. $11-3$ is a representative circuit. The con-trol-grid eircuit of the 6L.7 tube is connerted across the small capacitunce, C_{1}, which is in series with the resistor, R_{1}, across the oscillator tank cireuit. Any type of oscillator circuit may be used. The resistance of R_{1} is made large eompared to the reactance of $(1$, , so the r.f. current through $R_{1} C_{1}$ will be practically in phase with the r.f. voltage appearing at the terminals of the tank circuit. However, the voltage across C_{1} will lag the eurrent by 90 degrees. The r.f. current in the plate circuit of the 6 L 7 will be in phase with the grid voltage, and consequently is 90 degrees behind the current through C_{1}, or 90 degrees behind the r.f. tank voltage, This lagging current is drawn through the oscillator tank, giving the same effect as though an inductance were connected across the tank. The frequency incrases in proportion to the amplitude of the lagging plate eurrent of the modulator. The value of plate current is determined by the voltage on the No. 3 grid of the 6L.7; hence the oscillator frequeney will vary when an audio signal voltage is applied to the No. 3 grid.

If, on the other hand, C_{1} and R_{1} are interchanged and the reactance of C_{1} is made large compared to the resistance of R_{1}, the r.f. current in the 61.7 plate cir-(-uit will lead the oscillator-tank r.f. voltage, making the reactance rapacitive rather than inductive.

A cireuit using a reeciving-type r.f. pentode of the high-transconductance type, such as the (isci7, is shown in Fig. 11-4. In this case, both r.f. and audio are applied to the control grid. The amdio voltage, introduced through a radiofrequency choke, $R F C$, varies the transcondurtance of the tube and thereby varies the r.f. plate current. The capari-
tance C_{8} corresponds to C_{1} in Fig. 11-3; it represents the input rapacitanee of the tube. (It is possible, also, to omit C_{1} from lig. 11-3 and depend upon the input capacitance of the 6L. 7 instead; the only disadvantage is that there is then no control over the modulator sensitivity. Likewise, a 3-30- $\mathbf{\mu} \mu \mathrm{fd}$, trimmer condenser cain be connected at C_{8} in Fig. 11-4 to permit controlling the sensitivity.) In Fig. 11-4 the r.f. circuit is scrics-fed, which is advantageous if the r.f. tube and the modulator can be operated at the same plate voltage. The use of different plate voltages on the two tubes calls for the parallel-feed arrangement shown in lig. 11-3.

The modulated oscillator usually is operated on a relatively low frequency, so that a high order of carrier stability can be secured. Frequency multipliers are used to raise the frequeney to the final frequency desired. The frequeney deviation increases with the number of times the initial frequency is multiplied; for instance, if the osciflator is operated on 6.5 Me, and the output frequency is to be 52 Mc ., an oscillator frequeney deviation of 1000 eycles will be raised to 8000 cycles at the output frequency.

Fig. 11-3 - Reactance-modulator circuit using a 61.7 tube. C: - R.f. tank eaparitance. $\mathrm{C}_{1}-3.30{ }_{\mu \mu} \mathrm{fl}$, $\mathrm{C}_{2}-290{ }_{\mu} \mathrm{ffl}$. i_{3} - 8. μ fid. electrolytic (a.f. by-pa-i) in parallel with $0.01-\mu$ fil. paper (r.f. by-pazs).
C_{4} - 10 . $\mu \mathrm{fd}$ e elfertroly tio in parallel with $0.01 . \mu \mathrm{fd}$, paper. 1. - R.f. tank inductaner. Rs. R. 0.4: megolm.
$\mathrm{R}_{1}-15,000$ ohmes.
R_{3} - $33, \mathbf{1 0 1 0}$ ontm:.

1R. - 330 ohm .
R1゚(: 一 -

A reactance modulator can be connected to a crystal oscillator as well as to the selfcontrolled type. However, the resulting signal is more phase-modulated than it is frequencymodulated, for the reason that the frequency deviation that can be secured by varying the tuning of a crystal oscillator is quite small.

Fig. 11-4 - Reactance modulator using a higl-transconductance pentode ($6 \mathrm{SG} 7,6 \mathrm{AG} 7$, etc.).
$C_{1}-$ IR.f. tank capacitance (see text).
$\mathrm{C}_{2}, \mathrm{C}_{3}-0.001-\mu \mathrm{fd}$. mica.
$\mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}-0.00 \mathrm{i}-\mathrm{\mu fd}$. mica.
$\mathrm{C}_{7}-10-\mu \mathrm{fd}$, electrolytic.
C_{8} - Tube input capacitance (see text).
$\mathrm{K}_{1}, \mathrm{~K}_{2}-0.47$ megohm.
1_{3} - Screen dropping resistor; select to give proper screen voltage on type of modulator tube used. R_{4} - Cathode bias resistor; select as in case of R_{3}.
I_{1} - R.f. tank inductance.
liFC - 2.5-mh. r.f. choke.

Design Considerations

The sensitivity of the modulator (frequency change per unit change in grid voltage) depends on the transconductance of the modulator tube. It increases when C_{1} is made smaller, for a fixed value of R_{1}, and also increases with an increase in L / C ratio in the oscillator tank circuit. Since the carrier stability of the oscillator depends on the L / C ratio, it is desirable to use the highest tank capacitance that will permit the desired deviation to be secured white keeping within the limits of linear operation. When the eircuit of Fig. 11-3 is used in connection with a 7 -Mc. oscillator, a linear deviation of 1500 cycles above and below the carrier frequency can be secured when the oscillator tank capacitance is approximately $200 \mu \mu \mathrm{fd}$. A peak a.f. input of two volts is required for full deviation.

A change in any of the voltages on the modulator tube will cause a change in r.f. plate current, and consequently a frequency change. Therefore it is advisable to use a regulated plate power supply for both modulator and oscillator. At the low voltages used (250 volts) the required stabilization can be secured by means of gaseous regulator tubes.

Speech Amplification

The speech amplifier preceding the modulator follows ordinary design, except that no power is required from it and the a.f. voltage taken by the modulator grid usually is small -
not more than 10 or 15 volts, even with large modulator tubes. Hecause of these modest requirements, only a few speech-amplifier stages are needed; a two-stage amplifier consisting of a pentode followed by a triode, both resistancecoupled, will more than suffice for crystal microphones.

PHASE MODULATION

The same type of reactance-tube circuit that is used to vary the tuning of the oscillator tank in FM can be used to vary the tuning of an amplifier tank and thus vary the phase of the tank current for PM. Hence the modulator rircuits of Figs. 11-3 and 11-4 can be used for PM if the reactance tube works on an amplifier tank instead of directly on a self-controlled oscillator.

The phase shift that occurs when a circuit is detuned from resonance depends on the amount of detuning and the Q of the circuit. The higher the Q, the smaller the amount of detuning needed to secure a given number of degrees of phase shift. If the Q is at least 10 , the relationship between phase shift and detuning (in kilocycles either side of the resonant frequency) will be substantially linear over a range of about 25 degrees. From the standpoint of modulator sensitivity, the Q of the tuned circuit on which the modulator operates should be as high as possible. On the other hand, the effective Q of the circuit will not be very high if the amplifier is delivering power to a load since the load resistance reduces the Q. There must therefore be a compromise between modulator sensitivity and r.f. power output from the modulated amplifier. An optimum figure for Q appears to be about 20 ; this allows reasonable loading of the modulated amplifier and the necessary tuning variation can be secured from a reactance modulator without difficulty. It is advisable to modulate at a very low power level - preferably in a transmitter stage where receiving-type tubes are used.

Reaetance modulation of an amplifier stage usually also results in simultaneous amplitude modulation. This must be eliminated by feeding the modulated signal through an amplitude limiter or one or more "saturating" stages that is, amplifiers that are operated Class C and driven hard enough so that variations in the amplitude of the grid excitation produce no appreciable variations in the final output amplitude.

For the same type of reactance modulator, the speech-amplifier gain required is the same for PM as for FM. However, as pointed out earlier, the fact that the actual frequency deviation increases with the modulating audio frequency in PM makes it necessary to cut off the frequencies above about 3000 cycles before modulation takes place. If this is not done, unnecessary sidebands will be generated at frequencies considerably a way from the carrier.

Reactance-Modulator Unit for Narrow-Band FM

The FA speech-amplifier and modulator unit shown in Figs. 11-5 and 11-6 uses a pentode reactance modulator in a circuit which is basically that of Fig. 11-4. It differs only in the detail that the audio signal is applied to the control grid in parallel with the r.f. voltage from the oscillator, instead of the serics-feed arrangement shown in Fig. 11-4. Because of the parallel feed, resistor R_{4} is incorporated in the circuit to prevent r.f. from appearing in the plate cireuit of the speceh-amplifier tube.

The unit uses miniature tubes for the sake of making a compact assembly that can be mounted in any convenient spot near the VFO tuned rircuit. In lig. 11-5 it is shown mounted on the outside of the VFO casc. When this type of mounting is used the unit shoud be placed so that the lead between the VFO tuned circuit and the modulator is as short as possible. If there is space available, it is preferable to mount the unit inside the VFO calinet.

The chassis for the unit is 4 inches long by 2 inches wide, and has a mounting lip? inches deep. As shown in the photographs, it is formed from a piece of aluminum with the edges turned over to stiffen it. The various components are casily arcommodated underneath. The r.f. leads should be kept short and separated as much as possible from the audio and powersupply wiring.

Filament and plate power can usually be taken from the VFO supply, since the total plate current is only : few milliamperes. Filament current required is 0.6 amp . The microphone input is carried through a shiclded lead

Fig. $1 /-5$ - Niniature reactance molulator that can be used with any \backslash FO. 'I'he shielded lead is for microphone input; the other two wires bring in filament and plate supply.
to the unit, thus the microphone connector can be placed in any convenient location on the VFO unit itself. Once the proper setting of the

Fig. H-b-- limalerneath the monlolator mit. The r.f. commettion to tho V $\mathrm{F}^{(1)}$ goes throngh the leed-through bushing at the left.
gain control is found it need not be touched again, so screwdriver adjustment is quite adequate.

The adjustment of reactance modulators is discussed in a later section in this chapter.

Fig. 11.7 - Circuit diagram of the narrow-hand FM modulator unit.
C: $-680 . \mu \mu \mathrm{fd}$, mica.
$\mathrm{C}_{2}, \mathrm{C}_{4}-0,01-\mu \mathrm{fld}$ paper, 400 volts.
$\mathrm{C}_{3}-0,02.5 \mathrm{~F}$ fil. paper, 200 valts. $\mathrm{C}_{5}, \mathrm{C}_{6}-4 \overline{4}-\mu \mu \mathrm{fi}$. mica. $11_{1}-1.2$ megohms, $1 / 2$ watt.
$h_{2}, h_{4}-1.22$ meschm, $1 / 2$ wall.
$\mathrm{K}_{3}-0.5$-megohm potentimeter.
$1 R_{4}-0.1$ megohm, 1́s watt.
$R_{5}-10,000$ ohms, 1_{2} walt.
$R_{6}-11.1^{-}$megohm, $1 / 2$ watt.
R7- 390 ohms, $1 / 2$ watt.
RFC - 2,5-mh. r.f. choke.

Checking FM and PM Transmitters

Accurate checking of the operation of an IM or I'M transmitter requires different nuethods than the corresponding cheeks on an AM set. This is because the common forms of measuring devices either indicate amplitude variations only (a d.e. milliammeter, for example), or because their indications are most casily interpreted in terms of amplitude. 'There is no simple instrument that indicates frequency deviation in a modulated signal directly.

However, there is one favorable feature in F.X or l'M ehocking. The modulation takes phace at a very low level and the stages following the one that is modulated do not afferet the limarity of modulation so long as they are properly tuned. Therefore the modulation may be choceked without pulting the transmilter on the rir, or even on a dummy athtema. The power is simply cut off the amplifiers following the modulated stage. This not only avoids unneressary interference to other stations during testing periods, but also keeps the signal at such a

F̈ュ, $11-8-1$. tion of a reactanocotubermodnlated oseillator, A $\mathbf{i o n}$. or lOO 0 -ohm potentiometer may be used at R.
low level that it may be observed quite easily on the station receiver. A good receiver with a crystal filter is an essential part of the cherking equipment of an FM or l'M tramsmitter, particulaty for narrow-band FM or PM.

The quantities to be checked in an IVM or I'M transmitter are the lincarity and frequency deviation. Because of the essential difference between lPM and I'M the methods of checking differ in detail.

Reactance-Tube FM

It was explaned earlier that in FM the frequeney deviation is the same at any audiomodulation frequeney if the adudosignal amplitude docs not vary. since this is true at any audio frequency it is true at zero frequency. Consequently it is posible to calibrate a roactance modulator by applying an adjustable d.e. voltage to the modulator grid and noting the change in osillator frequency as the voltage is varied. I suitable circuit for applying the adjustable voltage is shown in Fig, 11-8. The battery, I, should have a voltage of 3 to 6 volts (two or more dry cells in series). The arrows indicate clip comections so that the battery polarity can be reversed.

The oscillator frequency deviation should be measured by using a recoiver in compunction with an arourately-rabibrated frequeney meter, or by any means that will permit aceurate
measurement of frequency differences of a few hundred cycles. One simple method is to tune in the oscillator on the receiver (disconnecting the receiving antenma, if necessary, to keep the signal strength well below the overload point) and then set the receiver b.f.o, to zero beat. Then increase the d.e. voltage applied to the modulator grid from zero in steps of about $1 / 2$ volt and note the beat frequency at each change. Then reverse the battery terminals and repeat. The frequency of the beat note may be motsured by eomparison with a calibrated audio-frequency oscillator, or by comparison with a piano or other musical instrument (sce misedlaneous data chapter for frequencies of musical tones). Note that with the battery polarity positive with respeet to ground the radio frequency will move in one direction when the voltage is increased, and in the other direction when the battery terminals are reversed. When a number of readings has been taken a curve may be plotted to show the relationship between grid voltage and frequency deviation.

A sample curve is shown in Fig. 11-9. The usable portion of the curve is the center part which is esscontially a st raight line. The bending at the ends indieates that the modulator is no Ionger linear ; this departure from linearity will cause harmonic distortion and will broaden the chamel oroupied by the signal. In the example, the characteristic is linear 1.5 kc , on either side of the center or carrier frequency. This is the maximum deviation permissible at the frequency at which the measurement is made. At the final output frequency the deviation will be multiplied hy the same number of times that the measurement frequency is multiplied. This must be kept in mind when the check is made at a frequency that differs from the output frequency.

A good modulation indicator is a "magieeye" tube such as the 6 FE . This should be connected across the grid resistor of the reactance modulator as shown in Fig, 11-10. Note its deflection (using the d.c. voltage method as in

Fig. $1 / .9-$ A typical curve of frepuency deviation ts. modulator grid voltage.

Fig. 11-8) at the maximum deviation to be used. This deflection represents " 100 -per-cent modulation" and with speech input the gain should be kept at the point where it is just reached on voice peaks. If the transmitter is used on more than one band, the gain control should be marked at the proper setting for each band, because the signal amplitude that gives the correct deviation on one band will be either too great or too small on another. For narrow-band FM the proper deviation is approximately 2000 cycles (based on an upper a.f. limit of 3000 cycles and a deviation ratio of 0.7) at the final output frequency. If the output frequency is in the $29-\mathrm{Mc}$, band and the oseillator is on 7 Mc , the deviation at the oscillutor frequency should not excced 2000,4 , or 500 cycles.

Checking with a Crystal-Filter Receiver

With PM the d.c. method of checking just described cannot be used, because the frequency deviation at zero frequency also is zero. For narrow-band IPM it is necessary to check the actual width of the channel occupied by the transmission. (The same method also can be used to check FM.) For this purpose it is necessary to have a crystal-filter receiver and an a.f. oscillator that generates a 3000-cyele sine wave.

Fig, 11-10-6F.5 modulation indicator for FM1 or I'M modulators, To insure sufficient grid voltage for a good deflection, it may be necessary to conneet the gain control in the modulator grid cireuit rather than in an earlier speech-amplifier stage.

Keeping the signal intensity in the receiver at a medium level, tune in the carrier at the output frequency. Do not use the a.v.c. switch on the beat oscillator, and set the crystal filter at its sharpest position. Peak the signal on the crystal and adjust the b.f.o. for any convenient beat note. Then apply the 3000 -cycle tone to the speech amplifier (through an attenuator, if necessary; to avoid overloading; see chapter on audio amplifiers) and increase the audio gain until there is a small amount of modulation. Tuning the receiver near the carrier frequency will show the presence of sidebands 3 kc. from the carrier on both sides. With low audio input, these two should be the only sidebands detectable.

Now increase the audio gain and tune the receiver over a range of about 10 kc . on both sides of the carrier. When the gain becomes high enough, a second set of sidebands spaced 6 kc . on either side of the carrier will be detected.

The signal amplitude at which these sidebands become detectable is the maximum speech amplitude that shoud be used. If the 6E5 modudation indicator is incorporated in the modulator, its deffection with the 3000 -cycle tone will be the " 100 -per-cent modulation" deflection for speedh.

When this method of checking is used with a reactance-tube modulated F M (not P'M) transmitter, the linearity of the system can be checked by observing the carrier as the a.f. gain is slowly increased. The beat-mote frequency will stay constant so long as the modulator is lincar, but nonlinearity will be accompanied by a shift in the average carricr frequency that will cause the beat note to change in frequency. If such a shift occurs at the same time that the 6 -ke, sidebands appear, the extra sidebands may be caused by modulator distortion rather than by an excessive modulation index. This means that the modulator is not able to shift the frequency over a wide-enough range. The 6 -ke, sidehands should appear before there is any shift in the carrier frequeney.

R.F. Amplifiers

The r.f. stages in the transmitter that follow the modulated stage may be designed and adjusted as in ordinary operation. In fact, there are no sperial requirements to be met except that all tank circuits should be carefully tuned to resonance (to prevent unwanted r.f. phase shifts that might interact with the modulation and thereby introduce hum, noise and distortion). In neutralized stages, the neutralization should be as exact as possible, also to minimize unwanted phase shifts. With FM and PM, all r.f. stages in the transmitter can be operated at the manufacturer's maximum c.w.-telegraphy ratings, since the average power input does not vary with modulation as it does in AM 'phone operation.

The output of the transmitter should be checked for amplitude modulation by observing the antenna current. It should not change from the unmodulated-carrier value when the transmitter is modulated. If there is no antenna ammeter in the transmitter, a flashlight lamp and loop can be coupled to the final tank coil to serve as a current indicator. If the carrier amplitude is constant, the lamp brilliance will not change with modulation.

Amplitude modulation accompanying FM or PM is just as much to be avoided as frequency or phase modulation that accompanies AM. A mixture of AM with either of the other two systems results in the generation of spurious sidebands and consequent widening of the channel. If the presence of $\mathbf{A M}$ is indicated by variation of antenna current with modulation, the cause is almost certain to be nonlinearity in the modulator. In very wide-band F MI the selectivity of the transmitter tank circuits may cause the amplitude to decrease at high deviations, but this is not likely to occur on amateur frequencies at which wide-band FM would be used.

Reduced-Carrier And Single-Sideband Transmitting Techniques

The most signifieant development in amateur radiotelophony in the past several vars has beon the increased use of single-sidehand suppressedcarrier transmissions. This system has tremendous potentialities for increasing the effectiveness of 'phone transmission and for reducing interforence. Because onte one of the two sidebatids normally produced in modulation is transmitted, the ehannel wielth is immediately cut in half. However, when only one sideband is tramsmitted the earricre - which is essential in doublesesideband transmission - no longer is norossary; it can be supplied without too much diffienter at the rereiver. With the carrier climinated there is a great saving in powre at the transmiter - or, from another viewpoint, at great incerase in effecetive power output. . Asuming that the same finalamplifier tube or tubes are used cither for normal AM or for single-sideband, carriser suppressed, it can be shown that the use of sald gives an affere tive gain of at least ! dh. over AM- erguivalent to increasing the transmittor power 8 times. diminating the carrior also climinates the heterodyme interferonee that wrecks so much eommunication in congested 'phone bands.

SUPPRESSING THE CARRIER

The carrier can be suppressed or nearly eliminated by an extremely sharp filter or by using a balanced modulator. The basie principle in any balaned modulator is to intreduce the catrier in sueh a way that it does mot appear in the output but so that the sidebands will. This repuimment is satisfied by introducing the audio in push-pull and the ref. drive in parallel, and commerting the output (plate circuit) of the tubers in push-pull, as shown in Fig. 12-1.1. Balanered modulators (an also be connected with the rof. drive and audio inputs in push-pull and the output in parallel (Fix. 12-1 B) with ergual effertiveness. The choiee of a balameed modulator cireuit is generally determined by constructional considerations and the method of modulation preferred by the builder. soreon-grid modulation is shown in the examples in Fig. 12-1, but control-grid or plate modulation can be used equally as well. Balaneredmodulator circuits using four reetifiers (germanium, copper oxide, or thermioni() in "bridge" or "ring" circuits are often used, particularly in commereial applications.

In any of the circuits, there will be no output with no audio signal because the circuits are balanced. The signal from one tube is balaneed or cameolled in the output circuit by the signal from the other tube. The circuits are thus balaned for any value of parallel audio signal. When push-pull audio is applied, the modulating voltages are of

Fig. 12-1 - 'T'wo examples of halanced-modalator eircuits using sereen-grid modulation. In A the r.f. excitation is in parallel in both tubes, and the audio and out. put are in pushpull. In is the excitation and audio are in pushpull, the output is in parallel. In either case, the carrier frequency, f, does not appear in the ontput circoit - only the two sidehand frequencies, $f+F$ and $f-F$, will appear. The bias fed to the screens is a practioal requirement with all screen-grid tubes for proper linear operation, and is not a special requirement of balanced modulator:.
opposite polarity, and one tube will eonduct more that the other. Since any modulation process is the same as "mixing" in reerivers, sum and difforenee frequencies (sidebands) will be generated. The modulator is not balaneed for the sidebands, and they will appear in the output.

The amount of earrier suppression is dependent upon the matching of the two tubses and their associated circuits. Xormally two tubes of the same type will balance elosely anough to give at least 15 or 20 db , carrior suppression without any adjustment. If further suppression is recuired, trimmer rondensers to batanere the grid-phate (atpacitics and separato hias adjustments for sotting the operating points can be used.

DOUBLE-SIDEBAND REDUCEDCARRIER TRANSMISSIONS

Double-sideband reduced-carrier signals, ohtained be unbalancing a balanced modulator sufficiently to allow some carrier to appear in the output, offor a number of advantages over conventional AM signals: considerably higher efficiency, where eflicieney is defined as the ratio of sideband (useful) power output to total power input; high output with comparatively little audio power; and a considerable reduction in heterodyne interference. The signal can be reeeived hy ordinary methods, and merely sounds as though it had "a lot of modulation for the carrier."

In ordinary amplitude-modulated systems, the sidoband amplitude ran novor exoed 0.5 the earrior amplitude without gencrating spurious side frequencies (when sime-wave modulation is used). Ender these conditions, $2 / 3$ of the total power is in the carrior and $1 / 3$ is in the sidebands. However, with DsiRC', generated by the unbalancing of a balaneed modulator, it is possible to have an! amplitude of sidehands without generating spurious side frecuencies. In practical. tests it has bern found that a modulation factor of t is profectly practival, and the distortion under normal demodulation is not rnough to impair the eommunication value of the signal. Duder these eonditions, the sideband power is $21 / 2$ times as great as rould be ohtained with straight dis transmission (grid-modulated) with the same tubes, or about $3 / 4$ of what eould be obtained with the same tubes plate-modulated 100 per rent. Sime the audio-power requirements can be kept low, and the no-modulation plate current may be only a little more than half of the full-signal plate current, the advantages of DSSR(: are ohvious for work where the total power available is limited, as in mobile or portable work.

A DSIRC signal can be generated at a low power level and amplified in a linear amplifier (discussed later in this chapter). Cinder these conditions, a relatively powerful signal can be obtained with a minimum of audio power and total power input.
(For further information on DSIRC', see Grammer, "ID.S.R.C. Radiotelephony," Qs'T, May, 1951, and (irammer, "Practical Ds.s.i. Transmitter Design," (2s'l', Jume, 1951.)

SINGLE-SIDEBAND GENERATORS

Two basie systems for generating SSIB signals are shown in Fig. 12-2. One involves the use of a handpass filter having sufficient selertivity to pass one sideband and reject the other. Filters having such characteristics can only be constructed for relatively low frequencies, and most filters used by amateurs are designed to work somewhere between 10 and 20 ke . Good sideband filtering ean be done at frequencies as high as 500 ke . be using multiple-ervestal filters. The low-frequencer oseillator output is combined with the audio output of a speech amplifier in a balaneed modulator, and only the upper and lower sidebands appear in the output. One of the sidebands is passed bey the filter and the other rejeeted, so that an ssis signal is fed to the mixer. The signal is there mixed with the output of a high-frequeney r.f. oscillator to produce the desired output frequener. For additional amplification a linear r.f. amplifier (Class A or Class B) must be used.

Fig. 12-2 - Two hasic systems for generating singlesidehand suppresed -rarrier signals.

When the sisl signal is generated at 10 or 20 kr ., it is generally first heterodyned to somewhere around 500 ke . and then to the operating frequenes. This simplifies the problem of rejecting the "image" frequancios resulting from the heterodyne proeess. The problem of image froquencies in the frecqueney conversions of SSB signals differs from the problem in receivers bocause the beating-oseillator frequeney becomes important. Either balaneed modulators or sufficient selectivity must be used to climinate the possibility of unwanted radiations.

The second sustem is based on the phase relationships betwern the carrior and sidehats in a modulated signal. As shown in the diagram, the atadio signat is split inta two components that aro identioal except for a phase difierenee of ! (1) de-
grees. The output of the r.f. oseillator (which may be at the operating frequency, if desired) is likewise split into two separate components having a 90-degre phase difference. One r.f. and one audio component are combined in each of two separate balanced modulators. The carrier is suppressed in the modulators, and the relative phases of the sidebands are such that one sideband is batanced out and the other is accentuated in the combined output. If the output from the balanced modulators is high enough, such an SSB exciter can work directly into the antenna, or the power level can be increased in a following amplifier.

Which is the better method of generating an sisils signal, the filter or the phasing method, is a eontroversial question. Properly adjusted, either system is capable of good results. Arguments in favor of the filter system are that it is somewhat casier to adjust without an oscilloscope, since it requires only a receiver and a v.t.v.m, for alignment, and it is more likely to remain in adjustment over a long period of time. The chief argument against it, from the amateur viewpoint, is that it requires quite a fow stages and at least one frequency conversion after modulation. The phasing system requires fewer stages and can be designed to require no frequency conversion, but its alignment and adjustment are often considered to be a little "trickier" than that of the filter system. This probably stems from lack of familiarity with the system rather than any actual difficulty. In most cases the phasing system will cost less to apply to an existing transmitter.

Regardless of the method used to generate a SSil3 sigmal of 5 or 10 watts, the minimum cost will be found to be higher than for an A.I trans-- mitter of the same low power. Ilowever, as the power level is increased, the SSB transmitter heeomes more economical than the A.I rig, both basically and from an operating standpoint.

AMPLIFICATION OF SSB SIGNALS

When an SSI3 signal is generated at some frequency other than the operating frequency, it is necessary to change frequency by heterodyne methods. These are exartly the same as those used in receivers, and any of the normal mixer or converter circuits can be used. One exception to this is the case where the original signal and the heterodyning oscillator are not too different in frequency (as when heterodyning a $20-\mathrm{ke}$, signal to 500 ke .) and, in this case, a balanced mixer should be used, to eliminate the heterodyning oscillator frequency in the output and thus reduce the chances for spurious signals appearing in the output.

To increase the power level of an SSB signal, a linear amplifier must be used. The simplest form of linear amplifier (r.f. or audio) is the Class A amplifier, which is used almost without exception throughout our receivers and our lowlevel speech equipment. While its linearity can be made phenomenally good, it is unfortunately quite inefficient. The theoretical limit of efficiency in this case is 50 per cent, while most practical
amplifiers run 25-35 per cent efficient at full output. At low levels this is not worth worrying about, but when the 2 - to 10 -watt level is excreded something else must be done to improve this efficiency and reduce tube, power-supply and operating costs.

Class B amplifiers are theoretically capable of 78.5 per cent officiency at full output, and practical amplifiers run at $60-70$ per cent efficiency at full output. Tubes normally designed for Class B audio work can be used in r.f. linear amplifiers and will operate at the same power rating and efficiency provided, of course, that the tube is capable of operation at the radio frequency. The oprating conditions for r.f. are substantially the same as for audio work - the only difference is that the input and output transformers are replaced by suitable r.f. tank circuits. Further, in r.f. circuits it is readily possible to operate only one tube if only half the power is wanted - pushpull is not a nceessity in Class I3 r.f. work. Ilowever, the r.f. harmonics will be higher in the case of the single-ended amplifier, and this should be taken into consideration if TVI is a problem.
In a few instances, Class B r.f. amplifier ratings of tubes are given in the tube books, and the efficiency shown will be about 33 per cent. These ratings are for use when carrier is present and do not apply to SSill suppressed-carrier operation. The Class 13 audio ratings are a better indication of what can be expected.

For proper operation of Class B amplifiers, and to reduce harmonies and facilitate coupling, the input and output circuits should not have a low C-to-L ratio. A good guide to the proper size of tuning condenser is Figs. (6-9 and 6-17 and, in case of any doubt, it is well to be on the highcapacity side. If zero-hias tuhes are used in the Class I3 stage, it may not be necessary to add much "swamping" resistance across the grid circuit, because the grids of the tubes load the circuit at all times. Ilowever, with other tubes that require bias, the swamping resistor should be such that it dissipates from five to ten times the power required by the grids of the tubes. This will insure an almost constant load on the driver stage and good regulation of the grid voltage of the Class 13 stage.

Before going into detail on the adjustment and loading of the Class 13 linear amplifier, a few general considerations should he kept in mind. If proper operation is expected, it is essential that the amplifier be so constructed, wired and neutralized that no trace of regeneration or parasitic instability remains. Needless to say, this also applies to the stages driving it.

The bias supply to the Class B linear amplifier should be quite stiff. A Class C stage thrives on grid-leak bias, but for really good operation the Class B should be supplied from a very stiff source, such as batteries or some form of voltage regulator. If nonlinearity is noticed when testing the unit, the bias supply may be checked by means of a large electrolytic capacitor. Simply shunt the supply with $100 \mu \mathrm{fd}$. or so of capacity
and see if the linearity improves. If so, rebuild the bias supply for better regulation. Do not rely on a large condenser alone.

Adjustment of Amplifiers

The two eritical adjustments for obtaining proper operation from the linear amplifier are the plate loading and the grid drive. Since these adjustments are preferably made with power on, it is a matter of practical convenionce to have both controls readily available, at least during initial tune-up.

The 'scope can show misadjustment at a glance and will greatly facilitate all aljustments. In addition, it is the most reliable instrumont for observing modulation amplitude and, once used, is likely to become the most nearly essential instrument in the shack. Nothing elaborate is needed.

With single sideband, 100 por cent modulation with a single tone is a pure r.f. output with no modulation envelope, and the point of amplifier overload is difficult to observe. Ilowever, if the input signal consists of two sime waves of different frequencies (for example, 1000 c.p.s. difference) but equal amplitudes, the output of the singlesideband transmitter should have the envelope

Fig. 12.3-Oscilloscone pattern ohtained with a twotone test signal through a correctly-adjusted linear amplifier.
shown in Fig. 12-3. This is called a "two-tone" test signal to distinguish it from other test signals. Its first advantage lies in the fact that any liattening of the positive peaks is readily discornible, which makes the adjustment of the linear-amplifier drive and output coupling as simple a procedure as that for AM systems. Flattoning of the peaks (to be avoided) is illustrated in lig. 12-t.

Those who use the filter method for obtaining single-sideband signals can ohtain such a test signal by mixing the output of two audio oxcillators of good waveform. The experimenters using the phasing method of single-side-band signal generation will recognize the pattern as that obtained when a single test tone is applied to one of their balanced modulators. For this latter group a two-tone test signal may be readily obtained by disabling one of the balanced modulators in the exciter and applying a single input tone. Other variations are possible in different exciters, and the final choice of any one operator will be dictated by convenience.

Suppose that the linear amplifier has been
coupled to a dummy load and the single-sideband exciter has been connected to its input. By observing the oscilloscope coupled to the amplifier output, it will be possible to adjust the drive and output coupling so that the peaks of the two-tone test signal waveform are on the verge of flaten-

Fig. 12.4-Flattening of the peaks of the twotone tent signal indicates distortion. It is caused by overdrive or insuffieviont plate loading.
ing. The prak input power may now be checked. This is readily possible, for with the two-tone test signal appliod, the peak input power will be 1.57 times the der. power input to the linear amplifier. Should this be different from the design value for the particular linear amplifier, the drive and loading adjustments an be quickly changed in the proper direction (always adjusting the loading so that the peaks of the envelope are on the verge of flattening) and the proper value reached.

As a final check, before coupling the linear amplifier to the antenna, the single-sideband oprator will do well to check the linearity of the system, since distortion in the linear amplifier. (for that matter, in any of the r.f. amplifiers) probably will result in the generation of sidebands on the side that was suppressed in the exciter. Ilere again the two-tone test signal will be of great help, since distortion of the signal will be readily recognized. A check of the bias supply has already been recommended. The next most likely form of distortion will be caused by curvature of the tube characteristie near cut-off, and will be recognizable from a two-tone test pattern that looks like Fig. 12-5. A slight readjustment of bias (or applying a few volts of positive or negative bias, in the case of zero-bias tubes) will usually straighten out the kink that exists where the pattern crosses the zero axis. Make this ad-

Fig. 12.5 - The distorted two-tone test-signal pattern obtained when the bias voltage is incorrect.
justment with special care, however, because the dissipation of the tubes with no input signal will be very sensitive to this adjustment. There are a few tubes that will not permit this adjust ment to be carried to the point where the kink is entirely eliminated without exceeding the rated plate dissipation.

The antenna may now be coupled to the linear amplifier until the plate input with the excitation as determined above is the same as that obtained with the dummy load. The opreator can mow fed that the system has been adjusted for optimum performance.
(For further reading on linear amplifiers, see Long, "Sugar-coated linear-Amplifier Theory," QST', October, 1951.)

VOICE-CONTROLLED BREAK-IN

Although it is possible for two SSB stations operating on widely different frequencies to work "duplex" if the carrior suppression is great onough (inatequate carrier suppression would be a violation of the FCC rules), most SSB operators prefer to use voice-controlled break-in and operate on the same frequency. This overcomes anv possibility of violating the FCC rules
and permits three or more stations to engage in a "round table." Voice-controlled break-in is not popular with straight AM because turning the carrier on and off at a syllabic rate results in a "keved" type of heterodyne interference that is particularly annoying.

Many various systems of voice-controlled break-in are in use, but they are all basically the same. Some of the audio from the speech amplifier is amplified and rectified, and the resultant d.c. signal is used to key an oscillator and one or more stages in the sibli transmitter and "blatk" the receiver at the time that the transmitter is on. Thus the transmitter is on at any and all times that the operator is speaking but is off during the intervals letween sentences. The voice-control circuit must have a small amount of "hold" built into it, so that it will hold in between words, but it should be made to turn on rapidly at the slightest voice signal coming through the speech amplifier. Both tube and relay keyers have been used with grood suceess. Most voicrecontrol systoms require the use of headphones by the operator, but a loudspeaker can be used with the proper circuit. (See Nowak, "Voice-Controlled Break-In. .. . And a Loudspeaker," QST, May, 1951.)

A Phasing-Type SSB Exciter

The exeiter shown in Figs. 12-6, 12-8 and 12-10 is an exeellent unit for the amateur who might like to try single-sideband with a minimum of cost and effort. It requires r,f. driving power from one's present exciter and a power supply. It will deliver SSB output in the $3.9-$ Me. 'phone band, either to an antenna for local work or to an r.f. amplifier adjusted for linear operation. The operating frequency can be varied over a wide range without seriously impairing the adjustment. Provision is made for transmitting either the upper or the lower sideband.

The schematic of the exciter is shown in Fig. 12-7. Four 6V6 tubes are used as balanced modulators. The plate circuit of the balaned modulators uses a push-pull-parallel arrangement. The grids of one pair of balanced modulators are fod through a phase-shift network consisting of a 300 -ohm resistor and an inductance that is adjustable to 300 ohms reactaner at the operating frequency. The grids of the serond pair of batanced modulators are fed through a phasomift network consisting of a 300 -ohm resistor and a condenser which is adjustable to 300 ohms reactance at the operating frequenes. The input impedance of the two phase-shift networks in parallel is 300 ohms.

Each balanced-modulator tube grid is fed through a blocking condenser and provided with grid-leak bias. The bias circuit of each balaneed modulator is made adjustable for control of the carrier suppression. Provision is also made for the addition of fixed bias, in case the exciter is used in a voice-controlled circuit where the r.f. excitation is removed during histening periods.

Screen modulation is used, and the screen of
each modulator tube is by-passed to ground for r.f. A transformer with a center-tapped secondary is used in the output of each audio amplifier to provide push-pull modulating voltages.

A reversing switch, S_{l}, allows switching to either the upper or lower sideband. If this switch has a center "off" position, it will facilitate using the "two-tone test" procedure mentioned earlier. A voltage divider is inserted between eack output of the audio phase-shift network and the corresponding amplifier grid. One of these voltage dividers is made variable to provide for balancing of the two audio channels. The network constants are compensated for the load of these dividers.

Fig, $12-6$ - A small single-silehand exciter that includes voice-controlled break-in. Receiving-type tubes are used throughout.

Microphone input and audio gain control are at the left-hand side of the front - the switch selects the upper or lower sideband. (Revised version, W2UNJ, Aug., 1949, QST.)

Fig. 12-7- Circoit diagram of the single-sideband ex-iter.
$\mathrm{C}_{1}-\mathrm{C}_{6}$ - See Table 12.I.
$\mathrm{C}_{7}-150-\mu \mu \mathrm{fd}$. air padder condenser.
C.8 - Ipprox. $400-\mu \mu \mathrm{fd}$. per seetion, b.c. receiver tuning condenser.
(9-. $001 \cdot \mu \mathrm{fd}$. 1000-volt mica.
(.10-(ix - .00)- $\mu \mathrm{ff}$. 500 -volt mi*a.

$R_{7}, R_{8}-300$ ohms, 5 watts ($\overline{3}$ I.30)-ohen I-watt in parallel).
Re- 0.is nemohm linear volume eontrol.
$\mathrm{K}_{10}-0.1 \%$ megohm.
$\mathrm{R}_{11}-0.5 .5$ megohm.
$\mathbf{R}_{12}-0.24$ megohm.

Speech Amplifier and Voice Control

The speech amplifier is designed to attenuate both low and high frequencies, amplifying only the audio range required for good intelligibility. The wiring diagram is shown in Fig. 12-9, The output of the sperech amplifier is coupled to the input of the andio phase-shift network through a transformer with a center-tapped serondary, to provide push-pull audio for the phase-shift network,

Part of the output of the spoereh amplitier is taken off through an adjustable voltage divider cireuit and blocking condenser to the voirecontrol cireuit. There it is rectified be the diodes of the tisQ ${ }^{-}$, and the resulting d.e voltage is used to charge Cit negative. An audio choke prevents
$\mathrm{R}_{13}-\mathrm{R}_{16}-10,000 \mathrm{O}$ ohnes.
$R_{1}=R_{18}-15,010$-rhm potentioneter, wirewound.
R_{19} - $\mathrm{B}(\mathrm{SO})$ ohms, 10 watts.
$\mathrm{K}_{20} . \mathrm{K}_{21}-680$ olms, 2 watts.
Ill resistors 1 -watt inless sperified otherwise.
1,1 - 25 turns No. 28 enam. closerwond at monnting rend of slot of National λ lf-50) slug-tuncd form.
1.2 - 40-meter 75 -watt tank coil with swinging link (Bud OI.s-19).

s_{1} - D.p.dit, togyle, preferally with eenter off, sem text.
$\mathrm{T}_{1}, \mathrm{~T}_{2}-5$-watt modulation transformer, $\mathbf{1 0 , 0 0 0}$ ohms. r.t. to l(O) ohme (Stancor A-3812).
audio components from appearing across (is. The triode section of the (iser is momatly conducting and holding the relay dosed, but when the negative voltage appears arross Cit the bise ${ }^{7}$ plate current is cut off and the rellay opens. When the audio signal is removed, Cut discharges through R_{15} and the trixde again conducts, clowing the relity.

The Audio Phase-Shift Network

Ther atulio phase-shift network reguires close matching of resistanere and capacity values and, to do this economically, advantage is taken of the fact that resistors and eondensers in junk howes and in stock at local dealers vary considerably from their nominal values.

TABLE 12-1 Phase-Shift Network Design Data			
Part	Vominal Value	Target Talue	Measured I alue
C_{1}	0.001	0.0010 .3	($\mathrm{Cm} \mathrm{m}_{\text {) }}$
C2	0.002	0.00210	$\left(\mathrm{Cin}_{2}\right)$
C_{3}	0.006	0.006 .310	(Cm 3)
C_{4}	0,005	0.0047 .5	(im_{4})
C5	0.01	0.00950	(Cims)
C_{6}	0.03	0.028 \%	$\left(\mathrm{Cm}_{8}\right)$
R_{1}	100,000	100	
		$\overline{\mathrm{Cm}}$	
\boldsymbol{R}_{2}	30,000	10.5	
R_{3}	15,000	$\underbrace{}_{(10)}$	
		$\overline{\mathrm{Cm}_{3}}$	
R_{4}	100,000	4.33	
		Cim_{4}	
$\mathrm{R}_{\text {n }}$	50,0\%)	176	
		Cmin	
R_{6}	15,6011	153	
		Cms	

All mondensers mica, and all resistors I watt,

Table 12-I is used in solecting the notwork components. The procedure is to collect as many resistors and condensers as possible with mominal values ats indicated in the second column of the chart. Measure all of the eondensers first, and select the six condensers whose measured values are closest to the "target values" in the third column. finter the mesasured values of these condensers in the fourth column of the chart. Then calculate the "target values" for the resistors: and select the six resistors whose measured values are closest to these target valurs.

A capacity bridge, of the type used by servicemen, and a good ohmmeter should give sufficient accuracy in selecting the network components. Absolute accuracy is not important, if the components are all in correct proportion to each other. A difference in percentage error between the resistance measurements and the capacitance measurements will merely shift the operating range of the notwork. The network components are mounted on a small sheret of insulating material to facilitate wiring.

Construction

The exciter and its associated audio equipment are assembled on a 13 by 17 by 2 -inch aluminum chassis. The four 61t balanced-modulator tubes are arranged in a square pattern toward the front center of the chassis, with the plate tuning condenser and coil off to one side and the blit audio amplifier tubes on the other. The two modulation transformers are under the chassis directly below the plate tuning condenser. The speech amplifier is arranged along the left-hand side of the ehassis, with the 65.57 at the rear and the output transformer on the top of the chassis at the front. The audio phase-shift network is below the output transformer.

The reactive components of the r.f, phasiug network, L_{1} and C_{7}, are mounted in a plug-in
shiold ean that mounts directly behind the balaneed-modulator tubes. The shield can is grounded to the chassis through the spare pins of its plug. The voltage regulator tube is mounted to the left of the shield can, and the $6 \mathrm{SO} \mathrm{S}^{7}$ voicecontrol tube is to the right. The components in the voice-eontrol eircuit are mounted under the chassis at the rear.

Associated Equipment

The r.f. input impedance of the exeiter is 300 ohms, but a link line of lower characteristic impedane will operate satislactorily for the short distance usually required. A means for adjusting the r.f. driving power is desirable, A
 T-1! / ARC-i), operating at low plate voltages, makes an ideal r.f. sourere, hut any VFO or ervatal oseillator with a few watts output will do.
The plate voltage for the sperech amplitier must not be taken from the same point in the power supply that furnishes voltage for the fike amplifiers, sinee interaction may oceur that will upset the phase relationship at the output of the two 6 K (is. If separate plate voltage sources are not available, an added filter seretion may be used to isolate the voltage to the spereh amplifier.

The built-in voier-controlled relay cath be used in a number of ways to provide the rapid voice break-in commonly used on 3.9-Me. Sish phome. If a good e.w. break-in system is already in use at the station, the voice-control relay contacts maty lo substituted for the key, and mo other changes are necessary.
If the local oscillator in the reeeiver will key in the plate voltage lead satisfactorily, then a simple voice break-iu system may be obtained by using the relay contacts to shift the plate voltage from the reeciver local oscillagor to the VPO, A drifting receiver oscillator must be avoided in this system, however.

Operating Conditions

If voice control is not used, and d.c. operating voltages are removed when exeitation is removed

Fig. 12-8- A rear view of the phasing-type exciter. "The two r.f, phasing adjustments project from the shicld can, 'The potentiometer shaft at the left sets the voice-control threshold level. 'The jack is for the keyed circuit, the r.f. connector takes the exeitation cable, and the octal socket is for the power cable.

Fig. $12-9$ - Wiring diagram of the speech amplifier and voicecontren circuit.
$\mathrm{C}_{1}-100-\mu \mathrm{fd}$. mica or ceramic.
$\mathrm{C}_{2}, \mathrm{C}_{-1}, \mathrm{C}_{11}-1-\mu \mathrm{fd}$. 1.0 -volt electrolytie.
(.3-.02- $\mathbf{f} \mathbf{f} \mathbf{d}$, 100 -volt paper.
$\mathrm{C}_{4}, \mathrm{C}_{8}-8-\mu \mathrm{fl}$. 4.0 -volt electrolvie.
(is - $2-0(0-\mu \mu \mathrm{fd}$, nica or ceramic.
(C_{6} - . $001 \cdot \mu \mathrm{fd}$. mica or reramic.
C_{9} - .0033- f fl, mica or ceramie.
(.10-. (0) $2-\mu \mathrm{fd}$. mica or reramic,
(, 12 - , 0005. $\mu \mathrm{fl}$, ceramio or miea.
(is3-.01- $\mu \mathrm{fd}$. 100-volt paper or ceramic.
$\mathrm{C}_{14}-\mathrm{B}-\mu \mathrm{fd}, \mathbf{2 0 0}$.volt paper.
$\mathrm{R}_{1}, \mathrm{R}_{9}-0.1$ megolim.
$\mathrm{H}_{2}-2.2$ megohm.
$\mathrm{K}_{3}, \mathrm{~K}_{12}-910$ ohms.
\mathbf{R}_{4} - 1,0 megohm.
Rs - 0.27 megohm.
$\mathrm{R}_{6}-2 \mathrm{E}_{2}(100$ ohms.
R_{7} - $\mathbf{0}_{\text {, }} \boldsymbol{i} \cdot \mathrm{megohm}$ volume control.
R_{g} — -200 ohms.
$\mathrm{K}_{10}, \mathrm{R}_{13}-10,000$ ohms, I watt.
$\mathbf{R}_{13}, \mathrm{R}_{1 s}-\mathbf{0}, 1^{-} \mathrm{megohm}$.
$\mathbf{R}_{14}-15,000-$ olm volume control.
tll resistors $1 / 2$ wat! unless sperified othorwise.
${ }^{\prime} \mathrm{T}_{1}$ - i-watt modulation transformer. $10,0(0)$ ohems c.t. to 40 (0) ohms (Stancor A -3812).
L. - Small tilter or andio chohe (Stancor (-1707),

RyI - Sensitive I 0,000 -ohm relay.
for stand-by, then no fixed bias is required on the balanced modulators and a jumper can be placed across the bias torminals. When excitation is removed with d.er, voltages applied, as in voicocontrolled operation, then $+1,2$ volts of fixed bias should be used to limit the plate and sereen eorrents on the balaneed modulators.

With 400 volts applied to the balaneed-modulator plates and 250 volts to all other plate supply. inputs, the operating eurrents will be approximately as follows:
Total balaned-modulator plate current 85 ma.

VR tube supply current

20 ma .
Total 6K6 amplifier current
Total speech amplifier current
62 ma.
12 ma .
The total balanced-modulator grid current, measured at the bias terminals, will vary with excitation, but it should be in the range 3 to 5 ma,

These currents will not (hange apprectably with varying audio input and, with the exception of the grid current, will not change appreciably when the excitation is removed, provided that $41 / 2$ volts of fixed bias is used on the balancedmodulator grids.
The exciter may be couphed directly to an antenna for use as a low-powor transmitter, but most amateurs will wish to use it to drive a buffer or final amplifier, All stages following the exciter must be operated under Class A, A13, or B conditions. In general, the correct operating conditions for stages following the exciter may be found by
referring to the adionoperating conditions for the tube under consideration. (irid-bias and sereen voltages should have very good regulation. For amateur voice operation, tubes may be operated considerably bevond the ratings given in the tube manuals, as diseussed later, When the r,f, amplifier is operated Class AB3, the grid tank circuit will require shunting by a resistor in order to provide bettor regulation of the exciting voltage. The value of this resistor is not critical and may be determined by experiment.

Adjustment

Adjustment of the exciter is best made under actual operating conditions. Connect the exciter to the transmitter, load the exciter with a dummy load, apply r.f. excitation, feod sine-wave audio into the spereh amplifier, and tune in the conventional way for maximum output.

Reduce the audio input to zero, and adjust potentiometers R_{17} and R_{18} for minimum carrier output. Minimum rarrier output may be determined by any sensitive r.f. indicator coupled to the final-amplifier plate circuit. A $0-1$ milliammeter, in series with a erystal detector and a two-turn coupling loop, will make a satisfactory indicator. The meter should bo by-passed with a $0.005-\mu \mathrm{fd}$. condenser. If a null indication camot be obtained within the range of the potentiometers, the 6 V 6 tubes are not evenly matched. Exchanging the positions of the 6V6s may aid in

Fig. 12.10 -Underneath the chassis of the exciter. The two potentiometers are the bias balancing controls, R_{1} and $R_{1 s}$
the screen, the same indication as is given by an unmodulated carrier. This is illustrated in Fig. 12-11. If carrier output, or unwanted sideband output, is present, it will be indicated by "ripple" on the top and bottom edges of the oscilloscope picture. A small amount of ripple can be tolerated, but if the exciter is badly out of adjustment, the output will appear to be heavily modulated. Adjustment with the 'scope is accomphished by adjusting all controls to obtain the smallest possible amount of ripple. The oscilloscope may also be used for continuous monitoring during transmissions to avoid overloading of any stage of the transmitter. Overloading is indicated by a flattening of the modulation-peak patterns at the top
obtaining the balance, or other tubes may have to be used.

After the carrion balance is obtained, tune in the ref. source on the station receiver, and with the antenna terminals shortest, and the crystal selectivity in sharp position, adjust the crystal phasing to the point where only one sharplypeaked response is obtained as the receiver is tuned through the signal. Now apply sine-wave audio of about 1500 -vole frequency to the speech amplifier, and find the two sidebands on the receiver. Three distinct path indications will be observed on the S-meter as the receiver is tuned. Sot the reedier on the weaker of the two sidebands and adjust $I_{\text {a }}, C_{7}^{\prime}$ and R_{9} for minimum sideband strength. If suppression of the other sideband is desired, throw S_{1} to its other position. A dip obtained with one set of adjustments is not necessarily the minimum. Sher combinations should be tried. The final adjust me nt should give S-meter readings for the two sidebands which differ by at least 30 db . The bias voltage on all four balanced modulator turns will be approximatey equal.

After the adjustments have bern completed, the ref. drive to the exciter should be adjusted to the point where a decrease in drive will cause a decrease in output, but an increase in drive will not cause an increase in ontput. The complete adjustment procedure should then be rechecked. The rig is then ready for a microphone, an antenia, and an on-the-air test.

If an oscilloscope is available, a simpler and more reliable adjustment procedure may be used. Wither linear or sine-wave horizontal sweep may be used on the oscilloscope. The vertical input should be coupled to the output of the transniter in the same manor as is used for observing amplitude modulation. The sine -wave audiofrequency input to the speech amplifier should be any convenient multiple of the oscilloscope sweep frequency. A fo-cycle sweep frequency and a 600 -evele audio frequency are commonly used.

When the exciter is modulated with a single sine-wave audio frequency, the output should be a single radio frequency: Therefore, the oscilloscope should show a straight-edged band across
and bottom. In observing these patterns, it is difficult to separate the effects of sideband and carrier suppression. However, considered sparattly, sideband or carrier suppression of 30 db . would give a 3 per cent ripple, 25 d . a ripple of 6 per cent, and 20 db . a 10 per cent ripple. Larmonies present in the audio modulating signal will modify the results and invalidate this test if they run more than 1 per cont.

The exciter is capable of driving any pair of beam tubes commonly used in amateur transmiters, or any pair of triodes in Class ABI. A buffer stage will ordinarily be required to drive Cilass-13 triodes.

Fig. 12-11 - Sketches of the oscilloscope face showing different conditions of adjustment of the exciter unit. (A) shows the substantially clean carrier obtained when all adjustments are at optimum and a sine-wave signal is fed to the audio input. (B) shows improper ref, phase and unbalance between the outputs of the two balanced modulators. (C) shows improper ref. phasing but outputs of the two balanced modulators equal. (D) shows proper rf. phasing but unbalance between outputs of two balanced modulators.

A Crystal-Filter SSB Exciter

The exciter uses a quartz crystal filter operating at 450 kc . (or vicinity). The filter allows a passband of 300 to 3000 cycles; the sideband rejection should run $35-40 \mathrm{db}$. over 300 to 3000 e.ecles. At no time within the reject range is the rejection less than 30 db .; at some places it approarhes 60 db . Suppression of the carrier is obtained without the use of balanced modulators, and the stability of suppression is excellent. Crystals suitable for use in the filter are available on the war surplus market for less than one dollar each. The most useful of these errestals are in the series that runs from 375 to 525 ke . in 1.388 -ke. steps; this series is marked at 72 times the ervstal frequence in at series of channels from 28.0 to 38.0 Mc . The crystals were mamufactured by Western Electric for the Signal Corps, and are of the plated variety, mounted in an FFT-241A holder. The holder pins have $1 / 2$-inch spacing. The crystals may be socketmounted or soldered direetly into the filter at the builder's diseretion.
The filter is of bridge design with complex entry and terminating sections. The complex sections are used to suppress the carrier and modify the response characteristics of the bridge. Fig. 12-12 shows the filter proper, set for rejection of the upper sidehand. The transformer, T, is a re-placement-type 4505 -ke. inter-stage i.f. transformer, mica-tuned, and air-cored. T_{2} is also a
replacement type, designed to feed into a diode detector.

The original filter was designed to operate at a carrier frequency of t50 ke., although the filter will work at frequencies between 425 and 490 ke. without alteration of the circuit or transformers. Under the condition of design for $450-\mathrm{ke}$.

Fig. 12-12 - The 4.50-ke. , wart\% crystal filter used for sidehand and carrier rejection.

(i3-3- to 30- $\mu_{\mu} \mathrm{fd}$, ceranic trimmer.
 16-(60.59).
T_{2} - 4,5-he. dionde i.f. transformer (Meisaner 16-(6,600). For a carrier frepueney of tiol kr., the erystals $\begin{array}{llll}\text { are: } \\ \text { Crvital } & B & \text { (} & \text { (}\end{array}$ High-freq, reject $452.8 \mathrm{kc} .188 .6 \mathrm{kc}, 450.0 \mathrm{kr}$. Low-freq. reject $41.2 \mathrm{kc}, 4.51 .1 \mathrm{kc}, 4.510 \mathrm{ke}$.
carricr, erystal "13" is 2.78 ke. hiegher than 450 ke., or 2 chameds higher in the erystal series. Crystal "C" is 1.39 ke . lorer than 450 ke , or 1 channel lower. Crystal "D" is 450 ke . Crystal ".. ," also at 450 ke., is used in a crystal oscillator

Fig. 12-13 - Complete diagram of the crystal-filter SSll exciter.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{6}, \mathrm{C}_{7}-0,1-\mu \mathrm{fd} .400$-wolt paper.
$\mathrm{R}_{9}-1.50$ ohms, 1 watt.
$\mathrm{C}_{4}, \mathrm{C}_{5}-39-\mu \mathrm{ff}$. ceramic.
$1210-1000$ ohms.
(: $-100-\mu \mu \mathrm{fl}$. variable air condenser.
($\mathrm{C}_{9}-0.02-\mu \mathrm{ff}$. 600 O - olt mica.
(do - $0.01-\mu \mathrm{fd}$. 100-wolt paper.
Cx_{x} - Trimmers in T_{3}.
$\mathrm{R}_{1}-0.47$ megohm.
$\mathrm{R}_{2}-220$ ohms.
$\mathrm{K}_{12}-47,000$ ohms.
All resistors $1 / 2$ watt unless specified otherwise.
I_{4} - $2,5 \mathrm{mh}$. r.f. chooke.
$\mathrm{K}_{3}, \mathrm{~K}_{\mathrm{n}}-20,000$ ohms, 1 watt.
$\mathrm{K}_{4}, \mathrm{~K}_{5}-0.1$ megohm.
$\mathrm{R}_{6}, \mathrm{R}_{7}, \mathrm{R}_{8}-10,000$ ohms.
$1.2-0.5-\mathrm{mh}$. r.f. rhoke.
T ${ }_{3}$ - \mathbf{S}-ille. slug-tuned i.f. transformer.
T_{4} - $\mathbf{-}$. Mc. slug-tuned i.f. transformer. Secondary removed and 8-turn link wound over cold end of primary. All fixed capacitors removed.

Fik. 12-14 - The ersstal-filter $\mathfrak{L S B}$ escitor, as designed for monhle work. romplete with rereiver consorter and VFO. 'Ihe top ilish is the witer (with cover removed).
 ba the umit, and the two hoohs hamdle earrier reinsertion

to gencrate the initial earrier. ('hammel markings on there erystals are as follows:

$$
\begin{aligned}
& \text { "A" - } 32.4 \text { Me., Chamel } 324 \\
& \text { "13"- } 32.6 \text { Mc., Chammel } 326 \\
& "(")-32.3 \text { Me., Chamnel } 323 \\
& " 1) "-32.4 \text { Me., Chamnel } 324
\end{aligned}
$$

Any other group within the range of the i.f. transtormers may be utilized; only the chamed relationship need be retained.

I diagram of the exeiter proper is shown in Fig. 12-13. The el'8 hexole-triode serves as 1:0-ke, oseillator and audiomixer. Approximately 3 volts of audio is required at the signal grid of the efke for optimum results. The bik delivers a carrier (450 ke .) and sidebamde to the input of the filter, The filter rejects one sideband (depending upon the selection of erystals) and dedivers single-sidehand energy to the 6sxi mixer, The filter also suppreses the carrier some 60 db. bedow the prak sideband energy. The (isN: mixer eombines the single-sidehand mergy (in the vieinity of 450 ke , with the output of the VFO (3100 to 3 Biñ ke .) and the sum products are recovered in the output (3850 to 4000 kr .). 'lhe
balanced mixer is used to remove the VFO component from the output tank. Balanee is not critical and mo adjustments are required or provided. A VFO signal of ahout 6 to 8 volts is required. The output of the miser is fed to the grid of a 6,167 which runs as a Class A tuncd r.f. amplifier. The output of the 6AG7 is sufficient to drive a pair of $80 \pi \mathrm{~s}$ Class AB_{2}. Operation on 10 and 20 meters ean be aceomplished by heterodyning again to the desired band, Most VPos in use cover or may be easily made to cover 3400 to 3500 ke. A single untumed tis. 7 or 6 AC 7 Class A amplifier following a B(-221 might be used as a driver for this exciter.

Construction

The original transmitter was built for mobile operation and much hole drilling and experimentation has oceurred on the ehassis. Mounting the erystals on opposite sides of the transformers will kepe stray capacity coupling at a minimum, No shied ding other that that provided by the i,f, cans and the output tank can is reguired. It is important that eapacity eoupling around the erystal filter be minimized - in other words, no modulated signal must reath the 6SN7 mixer by any ronte except through the filter. Before construction is started, at decision must be made as to whether or mot choiece of sithetands is desired. If choice of sidebands is desired, a dual filter using 5 crystals will be recquired. This filter is shown schematically in Fig. 12-15. A double-section wafer switch selects the upper or lower sideband. 'These wafer sections must be separated by approximately 3 inches to minimize stray coupling. It is reeommended that the erystals be wrapped with several layers of adhesive tape and then strapped to the chassis with metal brackets; commections may then be made by soldering to the holder pins.

Alignment

Alignment of the filter is straightforward, and oner aligned it will neod litte attention.

1) (rystal " A " is first removed from the eirmit. This erystal is best provided with a socket

Fig. 12-15-'1'he douhle-chanmel eryatal liltor. All components are the same as in Fig. 12-12, except for the addition
 on the input side of I_{2} is set at mimimm and the alignment procedure is followed with C_{6} or C_{8} wherever the instruethons call for adjusting the input condenser.

Fig. 12.16 - An alignment chart of the erystal filter. The numbers in the circles correspond to the steps outlined in the text.
to 1.2 ke . higher than the null and adjust C_{3} for minimum response.
10) Move the signal generator higher until another null is found; this will be the series-resonant frequency of crystal "B," approximately 452.8 kc . with the crystals shown.
11) Continue approximately $1 / 2 \mathrm{kc}$. higher than this null and adjust the output trimmer on T_{1} slightly for moderate null.
12) Repeat Steps 7 through 11 to compensate for interaction, and alignment is complete.

For alignment of the dual filter the procedure is identical but must be done once
mount so it can be removed during alignment.
2) A calibrated signal generator covering the crystal range is connected to the grid of the triode section of the 6 K 8 .
3) A vacuum tube voltmeter is connected from grid to ground of one of the $6 \mathrm{~N} \times 7$ grids.
4) Swing the signal generator through the erystal range until a maximum response is noted at the voltmeter. This will indicate the series-resonant frequency of crystal " C " and with the crustals described, based on a 450 -ke. carrier, will be approximately 448.6 kc .
5) Align all transformer trimmers for maximum response on this frequency.
6) Next, adjust the signal generator slowly in the higher-frequency direction until a null is obtained. This will be the series-resonant frequency of crystal " D, " 450 ke , with the crystals indicated.
7) Move the signal generator $1 / 2 \mathrm{kc}$. lower than this null and adjust the trimmer on the input side of T_{2} for maximum response.
8) Return signal generator to null.
9) Move the signal generator approximately 1
for each sideband. However, when adjusting the filter for rejecting the lower sideband and where Steps 1-12 mention "higher" you must insert "lower" and vice versa. 'The alignment chart, Fig. 12-16, will simplify the alignment procedure on either filter.

The slug-tuned i.f. transformer is peaked at 3930 ke, and then stagger-tuned slightly to provide coverage of the entire 'phone band. The 6AG7 plate tank capacitor is adjustable from the front panel and is touched up when shifting frequency, as in any transmitter amplifier stage.

Many variations of this basic exciter cireuit are possible. If a balanced modulator (using a pair of 6 K 8 s) is used, the (arrier suppression is readily obtained without close matching of crystals. Other filter circuits can be used, as those shown in Good, "Crystal Filter for 'Phone Reception," QS'T, October, 1951. For a more advanced design for a crystal-filter s.s.b. exciter, which includes voice-control operation, see Weaver \& Brown, "Crustal Lattice Filters for Transmitting and Receiving," QST, August, 1951.

A Two-Stage Linear Amplifier

The amplifier shown in Figs, 12-17, 12-19 and 12-20 is designed to follow a low-powered SSll exeiter. As can be seen from the wiring diagram, Fig. 12-18, an 807 Class-A driver is used to excite a pair of 811 -As operating Class B. Only a few watts is required to drive the 807 , since it is never operated with grid current and the driving power is necessary only to overcome circuit losses. The 811-As will deliver about 180 watts poak with 1000 volts on the plates and 250 watts peak at 1200 volts. Operation as a linear amplifier for SSB with 1500 volts on the plates is not recommended because the driver stage is likely to introduce too much distortion, although a small amount of fixed bias ($3-41 / 2$ volts) on the grids of the $811-$ As will permit c.w. operation at this higher plate voltage.

The circuit is not unlike ordinary Class-C practice, exerpt for the bias voltages involved. The 807 stage uses cathode bias, and the $811-$ As run with zero bias (bias terminals short-rireuited by a jumper wire). The most important factor in linear operation is the loading of the amplifiers, and thus provision has berom made for varving the eoupling on the 807 phate and the plates of the 811-As. The 807 loading is arljusted be varving the position of the link coil in L_{3}, and the link to L_{6} is controlled from the front panel.

A low-inductance bypass condenser, C_{2}, made from a piece of conxial line, helps to eliminate parasitics in the 807 stage, as does returning the screen bypass condenser, C_{3}, to the cathode instead of to ground. Grid chokes, L_{4} and L_{5}, were found necessary to avoid high-frequency para-

Fig. $12 \cdot 17$ - A twostage linear amplitier for hoosting the power level of a SSB ignal. I arge knol) control the antenna conpling and outphet plate tunimg. The meters indicate grid and plate carrents of the pueh-pull 811-As output stane.
sitic oscilations in the 811-A stage, as were resistors R_{3}, R_{4} and R_{5}. All wiring other than r.f. Was run in shied brad. Filament bypass condensers in the 811-A suge wore found to be unnecessary.

Construction

The amplifier is built on a 13 by ! 7 by 3 -inch ahminum chassis. The panel is an ahminum relay-rack pancl, $153 / 4$ inches high, that is held to

Fig. 12.19 - A rear view of the linear amplifier. showing the push-gull 811 - I output amplifier and the 307 driver. 'The cover of the rectangular shieh can slides off for access to the final mrid coil. 'The round shield cans are for the 807 grid and plate coils.
the chassis dy the shaft bearings and meters, and it is further braced by two strips of $1 / 16$ hy $1 / 2$-inch brass.

The grid eoil for the 807 plugs in to a socket mounted at the rear of the chassis and shielded by an ICA No. 15 t9 3-inch diameter alaminum shield can.

Fig. 12 -18 - Wiring diagram of the limear amplifier.
C_{1} - $140 \mathrm{I}-\mu \mathrm{ff}$. variable (Millen $191+10$)
Co - $13-\mu \mu \mathrm{fl}$. tubular, made of $\mathrm{RG}-58 / \mathrm{U}$. Active lankth, fin inches.
Cs, C4- $000-\mu \mathrm{fl}$) dise seramic.
(: - $140.4 \mu \mathrm{fd}$. rariable (Millen 22140).
(Ci_{i} - . 101 ($\mathrm{\mu fl}$. 1200 -volt mica.
Ci- Dual variable, $100-\mu \mu \mathrm{fd}$, per section (Millen $2410(1)$
C3, (i9-I)isetype neutralizing condensers with feedshrough base (Bud N(:-85.3).
C_{10} - Inal variable, 200- $\mu \mathrm{ff}$, per getion, 076 -inch spacing (National MC-200D).
$\mathrm{R}_{1}-100$ ohms, $1 / 2$ watt.
$\mathrm{H}_{2}-680$ ohms. 2 wat:s.
I_{3} - 2600 ohms, क watts ($^{2} 2700$-ohm in serics. parallel).
$\mathrm{I}_{4}, \mathrm{R}_{5}-20$ ohms, 2 watts.
$R_{6}-1000$ ohms, 1 watt.
All resistors are composition, not wireworad.
I.4, Ls - 9 turns No. 12 enam., $1 / 2$-inch diameter, $11 / 4$ inches lone.
J_{1} - Input comnetor (Jones S-101-1)).
J_{2} - Coaxial-line connector (Amphenol 83-1 H).
$\mathrm{MA}_{1}-0-50$ milliammeter.
$\mathrm{MA}_{2}-0.5(1)$ milliammeter.
$\mathrm{RFC}_{1}-2.5-\mathrm{mh}$. 125 -ma. r.f. choke.
$\mathrm{KFC}_{2}-250-\mu \mathrm{h} .75-\mathrm{ma}$. r.f. choke (Millen 34300).
$\mathrm{RFC}_{3}-5-\mathrm{mh} .360-\mathrm{ma}$. r.f. choke (National R300S).
$\mathrm{T}_{1}-6.3$-volt 10 amp . transformer (Stanfor P-6308),

COIL TABLE FOR TWO-STAGE LINEAR AMPLIFIER							
IBand	Turns	Hire Vo.	Diam.	Length	${ }_{\mu} h$.	link	Spacing
1_{11}^{*} (${ }^{\text {a }}$							
3.9	$201 / 2$	20 enam,	I	$3 / 4$	10	4	316
14	$101 / 2$	20 enam.	1	$3 / 4$	2.5	3	1/16
1.2**							
3.9	25	20 enam.	1	$7 / 8$	11.2	4	100
14	11	20 enam.	1	$3 / 4$	2.5	3	$1 / 8$
3.9	$\underline{3}$	$\underline{3}$ enam.	11/4	$11 / 4$	9.1	6	Adjustalile
3.9	22	16 cramm.	212	$21 / 4$	20	3	Adjustable
11	8	. 15 tubing	$21 / 2$	33/4	2.3	3	Adjustable
* Wound on Millen 4.0004 plus-in form. ** Wound on Millen 4500s plus-in form. *ok Vational AR-16-40S and AR-16-20S. Th-meter eoil shunted by $150 . \mu_{\mu} \mathrm{fd}$, mical condensier. B \& W 80'l' I, with 18 curns removed, and B \& II ISIVI.							

variable link mounts on the jack bat and is controlled from the panel.

Adjustment

With a signal from the ex(iter coupled through J_{1}, and plate and sereen voltages on the $80 \overline{4}$, it should be quite possible to drive the 811-. 1 grid eurrent off seale (with no plate voltage on the 811-As). Bark off the excitation to about 25 ma. grid current and neutralize the 81I-A stage be adjusting ('s and Co. The "flick" in grid current as C"10 is thmed through resomane can be used, but a more sensi-

The plate coil plugs in to a socket mounted it inches above the chassis. The platform for the sorket also shields the plater condensor, (\%5. Another 3 -inch diameter shichd cen protects the 807 plate coil. The plate bypass combenser, (bs, is mounted undor the chassis noar the 807 sorket, and the lad from C_{5} and L_{2} is brought down to it in shielded wire.

The grid eoil for the $81 \mathrm{I}-\mathrm{As}$ is shielded by an I('I No. $2!8+12+$ be 5 by 6 aluminum utility eabinet. To simplify coil changing, the cabinet is fastrined to the chassis and a friction-fit cover is made from a piere of sheret aluminum. The inside lipe on the top of the cabinet should be hent down to allow more room for the hand that changes coils.

The output tank eondenser, ('In, is mounted on the chassis with aluminum brackets that also support the jack bar for the output coil, L_{66}. The
tive indication, such as a crystal diondo and $0-1$ milliammeter connected to J_{2}, is to be prefermed,
(ouple a dummy load to J_{2} and apply plate voltage to the 811-. s . Couple an oscilloseope to the dummy load and apply a "two-tone" tost signal to the mit, as deseriberd carlier in this chapter. The 811-A no-signal plate courrent should rum around 40 or 50 mat. depending upon the plate voltage. . Ddjust the two-tone sigual amplitude for 10 or 15 mat. grid current and resonato all cireuits. Then inerease the excitation until the fwo-tone pattern just begins to flatten on the peaks. When using 1000 volts on the $811-$ As, this flattening should not oweur before $1 / 1_{2}$ indicates 160 mat. or so with 1200 volts the current should run up to Itoma, without moticeable flattening. If flattening oreors sooncr, it indicates that the 811-i stage should be coupled more tightly to its load. or that the 807 stage is not dolivering enough drive. It will prob)ably be found that the 81l-A output (oupling is at fatult.

Fis. 12-20-Inder. neath the ehasisis, shawing all hint r.f. leads in -hisld braid. The eroils in the leade. from the oplit-stator grid condenser arc parasitio chohers.

Transmission Lines

The place where r.f. power is generated is very frequently not the place where it is to be utilized. A tramsmitter and its amtematare a good example: The antema, to radiate well, should be high above the ground and should be kept eloar of trees, huidings and other objeets that might absorb energy, but the transmitter itself is most eonveniently installed indoors where it is radily aneressible. There are numerous other instances where power must be delivered from one point to another, even though the distance may be only a few feet.

The means be which power is transported from one spot to another is the r.f. transmission line. At radio frequencies a line exhibits an-
tirely different characteristics than it does at commercial power froquencies. This is because the speed at which eloctrical energy travels, while tremendously high as compared with merhanical motion, is not infinite. The peculatrities of r.f. tramsmission lines result from the fart that an interval comparable with the time of an ref. evelo mast elapse before emergy laving one point in the direuit rath reach another just a short distance away.

Tho diseussion to follow assumes that the line consists of two parallal wires, separated he a distance very small compared with the wavelength. The parallel-eonductor line is not the only tepe, but the same prineiples apply to all varioties of lines.

Operating Principles

Suppose we have a battery and a pair of parallel wires extending to a very great distance. At the moment the battery is connerted to the wires, electrons in the wire near the positive terminal will be attracted to the battery, and the same number of electrons in the wire near the negative battery terminal will be repelled outward along the wire.

Thus a current flows in each wire noar the battery at the instant the battery is connerted. However, a definite time interval will elapse before these currents are evident at a distance from the battery. The time interval may be very small. For example, one-millionth of a second (one microsecond) after the connertion is made the currents in the wires will have traveled 300 meters, or nearly 1000 feet, from the battery terminals.

The current is in the nature of a charging eurrent, flowing to charge the capacitance between the two wires. But unlike an ordinary condenser, the conductors of this "linear" condenser have appreciable inductance. In fact, we may think of the line as being composed of a whole series of small inductances and caparitances connected as shown in Fig. 13-1, where each eoil is the inductance of a very short section of one wire and each condenser is the capacitance between two such short sections.

Characteristic Impedance

An infinitely-long chain of coils and condensers connected as in Fig. 1:3-1, where earh L is the same as all others and all the f's have the same value, has an important property. To an electrical impulse applied at one end,
the combination appears to have an inpedance - ralled the characteristic impedance or surge impedance - that is approximately equal to $\sqrt{ } / \overline{/ C}$, where L and $('$ are the inductance and copabitance per unit length. This impedance is purely resistive.

In defining the eharacteristic impedance as $\sqrt{ } L / \bar{C}$, it is assumed that the conductors have no inherent resistance - that is, there is no $I^{2} R$ loss in them - and that there is no power loss in the dieleptric survounding the condurtors. In other words, it is assumed there is no power lass in or from the line bo matter how great its Iength. This does not seem consistent with ralling the characteristic impedance a pure resistance, which implies that power supplied is all dissipated in the line. But in an infinitely-long line the effect, so far the the souree of power is concerned, is exactly the same as though the power were dissipated in a resistance, beause the power leaves the source and travels outward forever along the line.

The characteristic impedance determines the amount of current that can flow when a given voltage is applied to an infinitely-long

Fig. 1.3-I - Equivalent of a transmission line in lumped circuit constants.
line, in exactly the same way that a definite value of actual resistance limits current flow when a given voltage is applied.

The inductance and capacitance per unit length of line depend upon the size of the conductors and the spacing between them. The closer the two conductors and the greater their diameter, the higher the caparitance and the lower the inductance. A line with large conductors elosely spaced will have low impedance, while one with small conductors widely spaced will have relatively high impedance.

"Matched" Lines

Actual transmission lines do not extend to infinity but have a definite length and are connected to, or terminate in, a load at the "output" end, or end to which the power is delivered. If the load is a pure resistance of a value equal to the characteristic impedance of the line, the current traveling along the line to the load does not find conditions changed in the least when it meets the load; in fact, the load just looks like still more transmission line of the same characteristic impedance. Consequently, connecting such a load to a short transmission line allows the current to travel in exactly the same fashion as it would on an infinitely-long line.

In other words, a short line terminated in a purely-resistive load equal to the characteristic impedance of the line acts just as though it were infinitely long, sueh a line is said to be matched. In a matched transmission line, power travels outward along the line from the source until it reaches the load, where it is completely absorbed.

R.F. on Lines

The discussion above, although based on direct-eurrent fow from a battery, also holds when an r.f. voltage is applied to the line. The difference is that the alternating voltage causes the amplitude of the current at the input terminals of the line to vary with the voltage, and the direction of current flow also periodically reverses when the polarity of the applied voltage reverses. In the time of one cycle the energy will travel a distance of one wavelength along the line wires. The current at a given instant at any point along the line is the result of a voltage that was applied at some earlier instant at the input terminals. Hence the instantaneous amplitude of the current is different at all points in a one-wavelength section of line; in fact, the current flows in opposite directions in the same wire in adjacent half-wavelength sections. However, at any given point along the line the current goes through similar variations with time that the current at the input terminals did.

The result of all this is that the current (and voltage) travels along the wire as a series of waves having a length equal to the velocity of travel divided by the frequency of the a.e. voltage. On an infinitely-long line, or one prop-
erly matched at the load, an ammeter inserted anywhere in the line will show the same current, since the ammeter averages out the variations in current during a cyele. It is only when the line is not properly matched that the wave motion becomes apparent. This is discussed in the next section.

STANDING WIAVES

In the infinitely-long line (or its matched counterpart) ${ }^{\circ}$ the impedance is the same at any point on the line becatuse the ratio of voltage to current is always the same. However, the impedance at the end of the line in Fig. 13-2 is zero - or at least extremely small
because the line is short-cirenited at the end. A given amount of power in a very low impedance will result in a very large current and a very small voltage, as compared with the current-voltage ratio that exists in a few hundred ohms (which is a typical impedance value for some types of transmission lines). Something has to happen, therefore, when the power traveling along the transmission line meets the short-circuit at the end.

What happens is that the outgoing power, on meeting the short-circuit, reverses its direetion of flow and goes back along the tramsmission line toward the input end. There is a large current in the short-cireuit, but substantially no voltage across the line at this point. We now have a voltage and current representing the power going outward toward the short-eireuit, and a second voltage and current representing the reflected power traveling hack toward the source.

The refleceted current travels at the same speed as the outgoing current, so its instantaneous value will be different at every point along the line, in the distanee represented by the time of one eycle. At some points along the line the phase of the outgoing and reflected currents will be such that the currents eancel each other while at others the amplitude will be doubled. At in-between points the amplitude is between these two extremes. The points
(A)

Fig. 13-2 - Standing waves of voltage and current along a short-circuited transmission line.
at which the currents are in and out of phase depend only on the time required for them to travel and so depend only on the distance along the line from the point of reflection.

In the short-circuit at the end of the line the two eurrent components are in phase and the total eurrent is large. At a distance of one-hali wavelength back along the line from the shortcircuit the outgoing and reflected eomponents will again be in phase and the resultant current will again have its maximum value. This is also true at any point that is a multiple of a half-wavelength from the short-cireuited and of the line.
The outgoing and reflected currents will cancel at a point onf-quarter wavelength, along the line, from the short-cireuit. At this point, then, the current will be zero. lt will also be zero at all points that are an odd multiple of one-quarter wavelength from the short-eircuit.

If the current along the line is measured at sucressive points with an ammeter, it will be found to vary about as shown in lig. 13-2B. The stme result would he obtatined by measuring the current in either wire, sinece the ammeter cannot measure phase. However, if the phase could be rhecked, it would be found that in each successive half-wavelength section of the line the currents at ally given instant are flowing in opposite directions, as indicated by the solid line in Fig. 13-20 $\%$ Furthermore, the current in the second wire is flowing in the opposite direction to the current in the adjacent seetion of the first wire. This is indicated by the broken curve in lig. I 3-2C. The variations in current intensity along the transmission line are referred to as standing waves. The point of maximum line curent is called a current loop or current antinode and the point of minimum line current a current node.

Voltage Relationships

Since the end of the line is short-circuited, the voltage at that point has to be zero. This can only be so if the voltage in the outgoing wave is met, at the end of the line, by a reflected voltage of equal amplitude and opposite polarity. In other words, the phase of the voltage wave is reversed when reflection takes place from the short-circuit. This reversal is equivalent to an extra half-cycle or halfwavelength of travel. As a result, the outgoing and returning voltages are in phase a quarter wavelength from the end of the line, and again out of phase a half-wavelength from the end. The standing waves of voltage, shown at D) in Fig. 13-2, are therefore displaced by onequarter wavelength from the standing waves of current. The drawing at li shows the voltages on both wires when phase is taken into account. The polarity of the voltage on each wire reverses in each half-wavelength section of transmission line. A voltage maximum is called a voltage loop or antinode and a voltage minimum is called a voltage node.

Open-Circuited Line

If the end of the line is open-circuited instead of short-circuited, there can be no current at the end of the line but a large voltage can exist. Again the outgoing power is reflected back toward the souree. lin this case, the out-
(A)

Fig. 13-3-Standing waves of current and voltage along an open-eircuited transmission line.
going and reflected components of current must be equal and opposite in phase in order for the total current at the end of the line to be zaro. The outgoing and reflected components of voltage are in phase and add together. The result is that we again have standing waves, but the conditions are reversed as compared with a shortecirenited line. Fig. 13-3 shows the open-cireuited line case.

Lines Terminated in Resistive Load

Fig. 13-4 shows a line terminated in a resistive load. In this case at least part ow the outgoing power is absorbed in the load, and so is not available to be reflected back toward the source. Because only part of the power is reflected, the reflected components of voltage and current do not have the same magnitude as the out going components. Therefore neither voltage nor current cancel completely at any point along the line. However, the speed at which the outgoing and reflected components travel is not affected by their amplitude, so the phase relationships are similar to those in open- or short-circuited lines.

It was pointed out carlier that if the load resistance, Z_{f}, is equal to the characteristic impedance, Z_{0}, of the line all the power is absorbed in the load. In such a case there is no reflected power and therefore no standing waves of current and voltage. This is a special case that represents the ehange-over point between "short-circuited" and "open-circuited" lines. If Z_{r} is less than Z_{0}, the current is largest at the load, while if $Z \mathrm{Z}$ is greater than Z_{0} the voltage is largest at the load. The two conditions are shown at B and C, respectively, in Fig. 13-4.

The resistive termination is an important practical case. The termination is seldom an

Fig. 1.3.4-sitamling waves on a tramsmission line terminated in a resistive load.
actual resistor, the most common terminations being resonant eircuits or resonatht antenma systems, both of which have assentially resistive impedaness. If the load is reactive as well as resistive, the operation of the line resembles that shown in lieg. 13-4, but the presence of reactance in the load causes two modifications: The loops and nulls are shifted toward or a way from the load; and the amount of power raflected back toward the souree is increased, as compared with the amount reHected by a purely resistive load of the same total impedance. Both effects become more pronounced as the ratio of reactame to resistance in the load is made larger.

Standing-Wave Ratio

The ratio of maximum current to minimum current aloug a line, Fig. $13-\overline{3}$, is called the standing-wave ratio. The same ratio holds for maximum voltage and minimum voltage. It is a moasure of the mismatoh botween the load and the line, and is equal to 1 when the line is perfectly matched. (In that rase the "maximum" and "minimum" are the same, since the current and voltage do not vary along the line.) When the line is terminated in a purely-resistive load, the standing-wave ratio is

$$
\begin{equation*}
S . H^{\prime} . R .=\frac{Z_{\mathrm{r}}}{Z_{0}} \text { or } \frac{Z_{0}}{Z_{\mathrm{r}}} \tag{13-A}
\end{equation*}
$$

Where S.W.R. = Standing-wave ratio
$Z_{\mathrm{r}}=$ Impedance of load (must be pure resistance)
$Z_{0}=$ Characteristic impedance of line

Example: A line having a characteristic impedance of 300 ohms is terminated in a resistive load of 25 ohms. The s.w.r. is

$$
\text { S.W.R. }=\frac{Z_{0}}{Z_{\mathrm{r}}}=\frac{300}{25}=12 \text { to } 1
$$

It is customary to put the larger of the two quantities, Z_{r} or Z_{0}, in the numerator of the fraction so that the s.w.r. will be expressed by a number larger than 1.

It is easier to measure the standing-wave ratio than some of the other quantities (surh as the impedance of an antenna) that enter into transmission-line computations. Consequently,
the s.w.r. is a convenient hasis for work with lines. The higher the s.w.r., the greater the mismatch between line and load. In practical lines, the power loss in the line itself increases with the s.w.r.

- INPUT IMPEDANCE

The input impedance of a transmission line is the impedance seen looking into the sending-end or input terminals; it is the impedance into which the source of power must work when the line is comected. If the load is perfertly matched to the line the line appears to be infinitely long, as stated earlior, and the input impedance is simply the characteristio impedance of the line itself. However, if there are standing waves this is no longer true; the input impedance may have a wide range of values.

This ran be understood by referring to Fige. 13-2, 13-3, or 13-1. If the line length is: such that stamding waves catuse the voltage at the input terminals to be high and the current low, then the input impedance is higher than the $\%$ of the line, since impedance is simply the ratio of voltage to current. Conversely, low voltage and high surrent at the input torminals mean that the input impedane is lower than the line Zo. Comparison of the three drawings also shows that the range of input impedane values that may be encountered is greater when the far end of the line is open- or short-cireuited than it is when the line has a resistive load. In other words, the higher the s.w.r. the greater the range of input impedance values when the line length is varied.

In addition to the variation in the absolute value of the input impedance with line length, the presence of standing waves also causes the input impedance to contain both reactance and resistance, aven though the load itself may be a pure resistance. The only exeeptions to this occur at the exact current loops or nodes, at which points the input impedaner is a pure resistanere. These are the only points at which the outgoing and refleeted voltages and currents are exactly in phase: At all other distances along the line the current either leads or lags behind the voltage and the affect is exactly the same as though a capacitance or

Fig. 13.5- Measurement of standing-wave ratio. In this drawing, $I_{\text {max }}$ is 1.5 and $I_{\text {min }}$ is 0.5 , so the s.w.r. $=I_{\mathrm{max}} / I_{\min }=1.5 / 0.5=3$ to 1 .
inductance were part of the input impedance of the line.

The input impedance can be represented by either a resistanee and a capacitance. or as a resistance and an inductance. as shown in Fig. 13-6. Whether the impedance is inductive or eapacitive depends on the characteristies of the load and the length of the line. It is possible to represent the equivalent circuit by resistance and reaetanee either in series or parathel. so long as the total impedance and phase angle are the same in either ease. Meeting this last condition requires different values of resistance and reactance in the scries ease than in the parallel ease.

Fig. J:30-Series and marallel equivalents of a line whose input impedance has booh reactive and resistive components. The series and parallel equivalents do not, have the same values: e.p.. in I, I. doeses not "xpalal I^{\prime} and R does net equal R^{\prime}.

The magnitude and chatacter of the input impedance is quite important, since it determines the method by which the power source must be coupled to the line. The calculation of input impedanee is rather complieated and its measurement is not feasible with ordinary equipment. Fortumately, in amateur work, it is unneressary either to calculate or measure it, The proper coupling ean be achieved bey relatively simple methods described later in this chapter.

Unterminated Lines

The input impedance of a shorterirenited or open-cirenited line not an exact multiple of one-quarter wavelength long is practically a pure reactaner. This is because there is very little power lost in the line. Such lines are frequently used as "linear" inductances and "apaeitances.

If a shorted line is less than a quarter wave long, as at X in Fig. 13-2, it will have inductive reatance. The reactance increases with the line length up to the quarter-wive point. Beyond that, as at Y, the reactanee is capacitive, high near the quarter-wave point and heroming lower as the half-wave point is approached. It then alternates between inductive and capacitive in successive quarter-wave
scetions. Just the reverse is true of the opencircuited line.

Atexact multiples of a quarter wavelengt h the imperdane is purely resistive. It is apparent, from examination of I and D) in Fig. 13-2, that at points that are a multiple of a half-wa velength -i.e., $1 / 2,1,11 / 2$ wavelengths, ete. - from the short-cireuited end of the line the current and voltage have the same values that they do at the short-circuit. In other words, if the line were an exact multiple of a half-wavelengt h long the generator or source of power would "look into" a short-circuit. On the other hand, at points that are an odd multiple of a quarter wavelength -i.e., $1 / 4,3 / 4,11 / 4$, ete. - from the short-circuit the voltage is maximum and the current is zero. Nince $Z=E / I$, the impedance at these points is theoretically infinite. (Actually it is very high, but not infinite. This is because the current does not actually go to zero when there are losses in the line. Losses are always present, but usually are small.)

Impedance Transformation

The faet that the input impedance of a line depends on the s.w.r. and line length can be used to advantage when it is neeressary to transform a given impedaner into another value.
study of Fig. 13-4 will show that, just ats in the open- and short-circuited cases, if the line is one-half wavelength long the voltage and eurrent are exactly the same at the input terminals as they are at the load. This is also true of lengths that are integral multiples of a half wavelength. It is also true for all values of s.w.r. Hence the imput impedance of any line, no matter what its Z.., that is a multiple of a half-wavelongh long is exartly the same as the load impedance. such a line can be used to transfor the impedance to a new location without changing its value.

When the line is a duarter wavelength long, or an odd multiple of a quarter wavelength, the load impedance is "inverted," That is, if the current is low and the voltage is high at the load. the imput impedance will be such as to reguire high curvent and low voltage. The relationship between the load impedance and input impedance is given by:

$$
\begin{equation*}
Z_{\mathrm{s}}=\frac{Z_{0}^{2}}{Z_{\mathrm{r}}} \tag{13-B}
\end{equation*}
$$

where $Z_{s}=$ Impedance looking into line (line length an odd multiple of onequarter wavelength)
$Z_{\mathrm{r}}=$ Impedance of load (must be pure resistance)
$Z_{0}=$ Chararteristie impedance of line
bixample: A quarter-wavelength line having: characterjstie iupedance of 500 ohms is terminated in a resistive load of 75 ohms. The impedance looking into the input or sending end of the line is

$$
Z_{\mathrm{s}}=\frac{Z_{0^{2}}}{Z_{\mathrm{r}}}=\frac{(500)^{2}}{75}=\frac{2200,0100}{75}=3333 \text { ohms }
$$

If the formula above is rearranged, we have

$$
\begin{equation*}
Z_{0}=\sqrt{Z_{\mathrm{s}} Z_{\mathrm{r}}} \tag{13-C}
\end{equation*}
$$

This means that if we have two values of impedance that we wish to "match," we can do so if we connect them together by a quarterwave transmission line having a characterist ic impedance equal to the square root of their product. A quarter-wave line, in other words, has the characteristics of a transformer.

Resonant and Nonresonant Lines

Because the input impedance of a line operating with a high s.w.r. is critically dependent on the line length, and furthermore is usually reactive as woll as resistive, special tuning means are required for effective power transfer from the source to the line. Lines operated in this way are commonly called "tuned" or "resonant" lines. On the other hand, if the s.w.r. is low the input impedance is close to the Z of the line and does not vary a great deal with the line length. Such lines are ealled "flat," or "untuned", or "nonresonant'.

There is no sharp line of demarkation between tuned and untuned lines. If the s.w.r. is below 1.5 to 1 the line is essentially flat, since the same coupling method will work with all line lengths. If the s.w.r, is above 3 or 4 to I the type of eoupling system, and its adjustment, will depend on the line length and such lines fall into the "tuned" eategory.

It is always advantageous to make the s,w.r. as low as possible, "Tuning the kine" becomes necessary only when a considerable mismatch between the load and the line has to be tolerated. The most important practical example of this is when a single antenna is operated on several harmonically-related frequencies, in which case the antenna impedance will have widely-different values on different harmonics.

RADIATION

Whenever a wire carries alternating current the electromagnetic fields travel away into space with the velocity of light. It power-line frequencies the field that "grows" when the current is increasing has plenty of time to return or "collapse" about the condurtor when the current is decreasing, because the alternations are so slow. But at radio frequencies fields that travel only a relatively short dis-
tance do not have time to get back to the conductor before the next cycle commences. The consequence is that some of the electromagnetic energy is prevented from being restored to the conductor; in other words, energy is radiated intospace in the form of electromagnetic waves.

The amount of energy radiated depends, among other things., on the length of the conductor in relation to the frequency or wavelength of the r.f. current. If the conductor is very short compared to the wavelength the energy radiated will be small. However, a transmission line used to feed power to an antenna is not short in this sense; in fact, it is almost always an appreciable fraction of a wavclength long and may have a length of several wavelengths.

The lines previously considered have consisted of two parallel conductors of the same diameter. Provided there is nothing in the system to destroy symmetry, at every point along the line the current in one conductor has the same intensity as the current in the other eonductor at that point, but the currents flow in opposite dircctions. This was shown in Figs. $13-2 \mathrm{C}$ and $13-3(\%$ It means that the fields set up about the two wires have the same intensity, but opposite directions. The ronsequence is that the total field set up about such a transmission line is zero; the two fields "cancel out," Hence no energy is radiated.

Actually, the fields do not completely cancel out because for them to do so the two conductors would have to occupy the same space, whercas they are slightly separated. However, the cancellation is substantially complete if the distance between the conductors is very small compared to the wavelength. Radiation will be negligible if the distance between the conductors is 0.01 wavelength or less, provided the currents in the two actually are balanced as described.

The amount of radiation also is proportional to the current flowing in the line. Hecause of the way in which the current varies along the line when there are standing waves, the effective current, for purposes of radiation, becomes greater ats the s, w, r, is increased. For this reason the radiation is least when the line is flat. However, if the conductor spacing is small and the currents are batanced, the radiation from a line with even a high s.w.r. is inconsequential. A small unbalance in the line currents is far more serious.

Practical Line Characteristics

In the coaxial line the fields are entirely
The foregoing discussion of transmission lines has been based on a line consisting of two parallel eonductors. Aetually, the parallelconductor line is but one of two general types. The other is the coaxial or concentric line. The coaxial line consists of a round conductor plared in the center of a circular tube. The inside surface of the tube and the outside surface of the smaller inner conductor form the two conducting surfaces of the line.
inside the tube, because the tube acts as a shield to prevent them from appearing outside. This reduces radiation to the vanishing point. So far as the electrical behavior of coaxial lines is concerned, all that has previously been said about the operation of parallel-conductor lines applies. There are, however, practical differences in the construction and use of parallel and coaxial lines.

PARALLEL-CONDUCTOR LINES

A common type of parallel-conductor line used in amateur installations is one in which two wires (ordinarily No. 12 or No. 14) are supported a fixed distance apart by means of insulating rods called "spacers." The spacings: used vary from two to six inches, the smaller spacings being necessary at frequencies of the order of 28 Mc . and higher so that radiation will be minimized. The construction is shown in Fig. 13-7. Such a line is satid to be airinsulated. Typical spacers are shown in Fig. 13-8. The characteristic impedance of such "open-wire" lines runs between about 400 and 600 ohms, depending on the wire size and spacing.

Parallel-conductor lines also are sometimes constructed of metal tubing of a diameter of $1 / 4$ to $1 / 2$ inch. This reduces the characteristic impedance of the line. Such lines are mostly used as quarter-wave transformers, when different values of impedance are to be matched.

Fig, 13-7-Typical construction of open-wire line. The line conductor fits in a groove in the end of the spacer, and is held in place by a tie-wire anchored in a hole near the groove.

Prefabrieated parallel-conductor line with air insulation has been developed ats a low-hoss line for telnvision reception and caln also be used in tramemitting applications. This line consists of two No. Is conductors held at : spateing of one inch by moldedon spacers. The characteristie impedane is 4.50 ohms.

A comvenient type of mandaftured line is one in which the paralled conductors are imbodded in low-loss insulating material (poly(thylene). It is commonly used as a TV lead-in and hats a characteristie impedaner of 300 ohms. It is sold under various names, the most eommon of which is "Twin-Lead". This type of line has the advantages of light wright, close and uniform conductor spacing, flexibility and neat appearance. lowerer, the losses in the solid dielectric are higher than in air, and dirt or moisture on the line tends to change the characteristic impedance. Moisture effects can be reduced bey wating the line with silicone grease. A special form of $300-\mathrm{ohm}$ Twin-lead for tranmitting uses a polyethylene tube with the conductors molded diametrically opposite; the longer dielectric path in such line reduces moisture troubles.

Fig. 13-8- Typical manufactured transmission lines and spacers.

In addition to 300 -ohm line, Twin-Lead is oltainable with a charapteristic impedance of 75 ohms for transmitting purposes. lightwright 75- and 150 -ohm Twin-lecad also is available.

Characteristic Impedance

The characteristic impedance of an airinsulated parallel-conductor line is given by:

$$
\begin{equation*}
Z_{0}=276 \log \frac{b}{a} \tag{13-D}
\end{equation*}
$$

where $Z_{0}=$ Characteristic impedance
$b=$ Center-torenter distance between conductors
$a=$ Radius of conductor (in same units as 1)

It does not matter what units are used for " and b solong the they are the same units. Both quantities may be measured in eentimeters, inches, ete. Since it is necessary to have a table of common logarithms to solve practical problems, the solution is given in graphical form

Fig. 13-9-Chart showing the characteristic intpedance of spaced-conductor parallel transmission lines with air dicleetric. 'lubing sizes given are for outside diameters.
in Fig. 13-9 for a number of common conductor sizes.

In solid-dielectric parallel-conductor lines such as Twin-lead the eharacteristic impedance cannot be calculated readily, because part of the clectric field is in air as well as in the solid dielectric.

Unbalance in Parallel-Conductor Lines

When installing parallel-eonductor lines care should be taken to avoid introducing electrical unbalance into the system. If for some reason the current in one eonductor is higher than in the other, or if the eurrents in the two wires are not exactly out of phase with each other, the electromagnetic fields will not cancel completely and a considerable amount of power may be radiated by the line.

Maintaining good line balance requires, first of all, a balanced load at its end. For this reason the antenna should be fed, whenever posisible, at a point where each conductor "sees" exactly the same thing. I"sually this means that the antenna systen should be fed at its electrical center. Even though the antemna appears to be symmetrical, physieally, it can be unbalanced electrieally if the part connected to one of the line conductors is inadvertently coupled to something (such as house wiring or a metal pole or roof) that is not duplicated on the other part of the antenna. Every effort should be made to keep the antenna as far as possible from other wiring or sizable metallic objects. The transmission line itself will cause some unbalance if it is not brought away from the antenna at right angles to it for a distance of at least a quarter wavelength.

In installing the line conductors take care to see that they are kept away from metal. The minimum separation between either conductor and all other wiring should be at least four or five times the conductor spacing. The

Fig. 13-10-Chart showing characteristie impedance of various air-insulated concentrie lines.
shunt capacifance introduced by close proximity to metallic objects can drain off enough current (to ground) to unbalance the line currents, resulting in increased radiation. A shunt capacitance of this sort also constitutes a reactive load on the line, causing an impedance "bumy", that will prevent making the line actually flat.

COAXIAL LINES

The most common form of coaxial line consists of either a solid or stranded-wire inner conductor surrounded by polyethylene dielectric. Copper braid is woven over the dielectric to form the outer conductor, and a waterproof vinyl covering is placed on top of the braid. This cable is made in a number of different diameters. It is moderately flexible, and so is convenient to install. some different types are shown in Fig, 13-8. This solid coaxial cable is commonly available in impedances approximating 50 and 70 ohms. -

Air-insulated coaxial lines have lower losses than the solid-dielectric type, but are less used in amateur work hecause they are expensive and difficult to install as compared with the flexible cable. The common type of air-insulated coaxial line uses a solid-wire conductor inside a copper tube, with the wire held in the center of the tube by means of insulating "beads" at regular intervals.

Characteristic Impedance

The characteristic impedance of an airinsulated coaxial line is given by the formula

$$
\begin{equation*}
Z_{0}=138 \log \frac{b}{a} \tag{13-E}
\end{equation*}
$$

where $Z_{0}=$ Characteristic impedance
$b=$ Inside diameter of outer conductor
$a=$ ()utside diameter of inner con-
duictor (in same units as b)

Curves for typical conductor sizes are given in Fig. 13-10.

The formula for coaxial lines is approximately correct for lines in which bead spacers are used, provided the beads are not too closely spaced. When the line is filled with a wolid dielectric, the characteristic impedance as given by the chart should be multiplied by. $1 / \sqrt{K}$, where K is the dielectric constant of the material.

- electrical length

In the discussion of line operation earlier in this chapter it was assumed that current: traveled along the conductors at the speed of light. Actually, the velocity is somewhat less, the reason being that electromagnetic fields travel more slowly in material dielectrics than they do in free space. In air the velocity is practically the same as in empty space, but a practical line always has to be supported in some fashion by solid insulating materials. The result is that the fields are slowed down;

Fig. 1.3-11- Itlennation data for common typre of transmission lines. Curve A is the nominal attennation of 60 on-shm open-wire limewith No. 12 conductors, not including dielectrie loss in spacers nor possible radiation tosses. Additional line data are given in l'able 13-1.

the currents travel a shorter distance in the time of one evele than they do in space, and so the wavelength along the line is less than the wavelength would be in free space at the same frequency.

Whenever reference is made to a line as boing so many wavelengths (such as a "half-wavelength" or "quarter wavelength") long, it is to he understood that the electrical length of the line is meant. Its actual physical length as measured by a tape always will be somewhat

TABLE 13-I Transmission-Line Data				
lype	Descriplion or lype Vinmber	(haractrristir Impedance	Velocity factor	$\begin{aligned} & \text { Calqaci- } \\ & \text { tanere } \\ & \text { per font; } \\ & \mu \mu \mathrm{fd} \text {. } \end{aligned}$
Coraxial		$\begin{gathered} 50-100 \\ 3.3 \\ \vdots 3 \\ 7.3 \\ 7.3 \end{gathered}$	$\begin{aligned} & 0.8 .)^{1} \\ & 0.060 \\ & 0.66 \\ & 0.66 \\ & 0.66 \end{aligned}$	29.5 28.5 20.5 21.0
Parallel-Cnudnetor	Air-insulated $11-080^{3}$ $14-\left(123^{3}\right.$ $1.1-\left(17^{73}\right.$ $1.1-056^{3}$ $1.1-076^{3}$ $11-022^{3}$	$\begin{gathered} 200-600 \\ 35 \\ 35 \\ 1.30 \\ 300 \\ 300 \\ 300 \end{gathered}$	$\begin{aligned} & 0.9 .72 \\ & 0.68 \\ & 0.71 \\ & 0.8 \\ & 0.82 \\ & 0.84 \\ & 0.8 .8 \end{aligned}$	$\begin{array}{r} 19.0 \\ 20.0 \\ 10.0 \\ 5.8 \\ 3.9 \\ 3.0 \end{array}$
1 Average figure for small-diameter lines with reranic beads. ${ }^{2}$ Average figure for tines insulated with ceramic spacers at intervals of a few feet. ${ }^{3}$ Amphenol type numbers and data. Line similar to $14-056$ is made by several manufacturers, but rated loss may differ from that given in Fig, 13.11. Types 14-023, 14-175), and if 022 are made for transuitting applirations.				

less. The physical length corresponding to an electrical wavelength is given by

$$
\begin{equation*}
\text { Length in feet }=\frac{984}{f} \cdot V \tag{13-F}
\end{equation*}
$$

where $f=$ Frequency in megacycles
$V=$ Velocity factor
The velocity factor is the ratio of the actual velocity along the line to the velocity in free space. Values of V for several common types of lines are given in Table 13-I.

Examble: A 75 -foot length of 300 -ohn TwinLead is used to carry power to an antematat a frequency of 7150 ke . From 'lable $13-1$, \mathfrak{F} is 0.82 . At this frequency (7.15 Mc.) a wavelength is

$$
\begin{gathered}
\text { Lenoth }(\text { feet })=\frac{984}{f} \cdot V=\frac{984}{7.15} \times 0.82 \\
=13 \overline{1} .0 \times 0.52=112.8 \mathrm{ft}
\end{gathered}
$$

The line length is therefore $\overline{5} / 112.8=0.665$ wavelength.
Beratuse a quarter-wavelength line is frequently used as a linear transformer, it is comvenient to calculate the length of a quarterwave line directly. The formula is

$$
\begin{equation*}
\text { Length }(\text { feet })=\frac{246}{f} \cdot V \tag{13-G}
\end{equation*}
$$

where the symbols have the same meaning as above.

LOSSES IN TRANSMISSION LINES

There are three ways by which power may be lost in a transmission line: by radiation, by heating of the conductors ($I^{2} R$ loss), and by heating of the dielectric, if any. There is no appreciable radiation loss from a coasial line, but radiation from a parallel-conductor line may exced the heat losses if the line is un-

Fig. 13-12 - E.ffect of tanding-wave ratio on line loss. The ordinates give the additional loss in decibels for the loss, under perfectly-matched conditions, shown on the horizontal scale.
balanced. Since radiation losses camot readily be estimated or meatsured, the following discussion is based only on eonductor and dicleetrie losses.

Heat losses in both the eonductor and the dielectrie increase with frequency. Condurtor losses also are greater the lower the characteristic impedane of the line, because a higher current flows in a low-impedance line for a given power input. The converse is true of dielectric losses because these increase with the voltage, which is greater on high-impedance lines. The diekectric loss in air-insulated lines is
negligible (the only loss is in the insulating spacers) and such lines operate at high effidency when radiation losses are low.

It is convenient to express the loss in a transmission line in decibels per unit length, since the loss in db . is directly proportional to the line length. Losses in various types of lines operated without standing waves (that is, terminated in a resistive load equal to the characteristic impedance of the line) are given in graphical form in Fig. 13-11. In these curves the radiation loss is assumed to be negligible.

When there are standing waves on the line the power loss increases as shown in Fig. 13-12. Whether or not the inerease in loss is serious depends on what the original loss would have beon if the line were perfectly matched. If the loss with perferet matching is very low, a large sw.r. will not greatly affect the effeciene!g of the line - i.e., the ratio of the power delivered to the load to the power put into the line.

> Example: A liso-foot length of R(i-11/[cable is operating at 7 Mc. with a joto-l s.w.r. If perfeetly matched, the loss from lig. 13-11 would be $1.5 \times 0.4=0.6 \mathrm{db}$. From Fig. 13-12 the additional loss becanse of the s.w.r. is 0.73 db . The total loss is therefore $0.6+0.73=1.33 \mathrm{db}$,

An appreciable s.w.r. on a selid-dielectric line maty result in excossive loss of power at the highor frecpueneios. sueh lines, whether of the parallel-conductor or coasial type, should be operated as nearly flat as possible, particularly when the line length is more than 50 feret or so. As shown ley Fig. 13-12, the increase in line loss is not too serious so long as the s.w.r. is below 2 to 1 , but inereases rapidly when the s.w.r. rises above 3 to 1 , Tuned transmission lines such as are used with multiband antemnas always should be arr-insulated, in the interests of highest efficioney.

Matching the Load to the Line

The load for a transmission line may be ans device capable of dissipating r.f. power. When lines are used for transmitting applations the most common type of load is an antenna, but there are also practical eases where the grid circuit of a power amplifier may represent the load. When a transmission line is connected between an antenna and a receiver, the receiver input circuit (not the antenna) is the load, because the power taken from a passing wave is delivered to the receiver.

Whatever the application, the conditions existing at the load, and only the load, determine the standing-wave ratio on the line. If the load is purely resistive and equal in value to the characteristic impedance of the line, there will be no standing waves. If the load is not purely resistive, and/or is not equal to the line Z_{0}, there will be standing waves. No adjustments that can be made at the input end of the line can change the s.w.r., nor is it affected by changing the line length,

Only in a few special cases is the load in-
herently of the proper value to mateh a prateticable transmission line. In all other cases it is neressaty either to operate with a mismateh and arepept the s.w.r. that results, or else to take steps to bring about a proper mateh between the line and load bey means of transformers or similar deviers. Impedance-matehing transformers may take a variety of phesiotal forms, depending on the cireumstances.

Note that it is essential, if the s.w.r. is to be made as low as possible, that the load at the point of connertion to the transmission line be purely resistive. In gencral, this requires that the load be tuned to resonance. If the load itself is not resonant at the operating frequency the tuning sometimes can be acromplished in the matehing system.

THE ANTENNA AS A LOAD

Every antenna system, no matter what its physical form, will have a definite value of impedance at the point where the line is to be connected. The problem is to transform this
antenna input impedance to the proper value to match the line. In this respect there is no one "best" type of line for a particular antenna system, because it is possible to transform impedances in any desired ratio. Consequently, any type of line may be used with any type of antenna. There are frequently reasons other than impedance matching that dietate the use of one trpe of line in preference to another, such as ease of installation, inhorent loss in the line, and so on, but these are not considered in this section.

Although the input impedance of an antenna sustem is seldom known very acrurately, it is often possible to make a rasonably close estimate of its value. The information in the chapter on antennas can be used as a guide.

Matching circuits may be constructed using ordinary coils and condensers, but are not used very extensively berause they must be supported at the antenna and must be weatherproofed. The systems to be described use linear transformers.

The Quarter. Wave Transformer or 'Q' Section

As described earlier in this chapter, a quarter-wave transmission line may be used as an impedance transformor. Knowing the antenna impedance and the characteristic impedance of the transmission line to be matched, the required characteristic impedance of a matrhing section such as is shown in Fig. 13-13 is

$$
Z_{\mathrm{m}}=\sqrt{Z_{1} Z_{0}}
$$

where Z_{1} is the antenna impedance and Z_{0} is the characteristic impedance of the line to which it is to be matched.

Example: To match a 600 -ohm line 10 an antenna presenting a 72 -ohm load, the quarterwave matching section would require a characteristic impedance of $\sqrt{72 \times 600}=\sqrt{43,200}$ $=208$ ohms.
The spacings between conductors of various sizes of tubing and wire for different surge impedances are given in graphical form in Fig. 13-9. (With 16 -inch tubing, the spacing in the example above should be 1.5 inches for an impedance of 208 ohms.)

The length of the quarter-wave matching sertion is given by Equation 13-G.

The antenna must be resonant at the operating frequency. Setting the antenna length by formula is amply accurate with single-wire antennas, but in other systems, particularly

Fig. 13.13- "Q" matehing section, a quarter-wave impedance transformer.

Fig. I.3.14 - Matching the antenna to the line by means of a stub, Y. (iurves for determining the lengths I and) are given in Figs. 13-15 and 13-16, for the case where the line, section I and seetion V all have the same characteristic impedance.
close-spaced arrays, the antenna should be adjusted to resonance before the matching section is ronnected.

When the antenna input impedance is not known accurately, it is advisable to construrt the matching section so that the spacing between conductors can be changed. The spacing then may be adjusted to give the lowest possible s.w.r. on the transmission line.

Stub Matching

When a transmission line is not matched by the load, the impedance looking into the line toward the load varies with the distaner from the load, as discussed carlier in this chapter. Considering the input impedance to be equivalent to a resistance in parallel with a reactance, at some distance along the line such as X in Fig. 13-14 the resistive part of the input impedance will be equal to the Z_{0} of the line. If at this point a reactance equal to the reactive part of the input impedance, but of the opposite type, is connected across the line, the reactances will cancel and lave only the resistive component. From this point back to the transmitter or other source of energy the line will be matrhed.

The reactances used for matching in this way are usually linear reactances - sections of transmission line - ralled stubs. Stubs may be open or closed, depending on whether the free end is left open or is short-circrited, allcording to the tepe of reactance required in a particular casc. The type and length of stub, as well as the point at whirh it should be attached to the line, can be found without any knowledge of the antenna input impedance, providing that the s.w.r. on the line can be measured before the stub is attached, and providing that the position of a current node (voltage loop) can be determined under the same conditions.

When the s.w.r. and the position of a current node are known Figs. 13-15 and 13-1t give the stub information necessary for impedance matrhing. Stub lengths are given in wavelengths, which may be converted to feet with the help of Equation 13-F. The data in Figs. $13-15$ and $13-16$ are based on the assumption

Fig. 13.15-Craph for determining position and length of a shorted stub. Wimensions may be eonverted to linear units after values have heen taken from the graph.
that the line and stub) both have the same Z_{0}.
With this system of matching it is not neressary that the anteman system be exactly resonant, since the match is hased on the position of a current node along the line. The node nearest the antenma should be used for determining the position of the stub) so that as much as possible of the transmission line will be operating with a low s.w.r.

Study of the curvers in Figs. 13-15 and 13-16 will show that when the initial s.w.r. is high (over + to 1) the sum of the stub) length and distance from a current node is very close 10 0.25 wavelength in the case of the colosed stub) and to 0.5 wavelength in the rase of the open stub. In such eases the sistem may be visualizod as shown in Figs. 13-17, as though a guater-wave sertion of line formed a transformor along which the main transmission line can he tapped for impedance matching, When using this concept the antemna system should first be resonated to the operating fregueney without the matrhing sertion attached. The positions of the line taps on the matching section are then adjusted to give the lowest possible s.w.r. on the fed line.

Folded Dipoles

A half-wave antenna colement itself may be used to mateh various line impedances if it is split into two or more parallel conductors with

Fig. 1:3-16 - Graph for determining mesition and lenzth of an open stah. Dimensions may the converted la linear units after values have bern tiken from the graph,
the transmission line attached at the center of only one of them. Various forms of such "folded dipoles" are shown in Fig. 13-18. Currents in all condurtors are in phase in a folded dipole, and since the conductor spacing is smatl the folded dipole is equivalent in radiating properties to an ordinary single-conductor dipole. However, the current flowing into the inpat terminals of the antenna from the line is the current in one condurtor only, and the entire power from the lime is delivered at this value of current. This is equivalent to saving that the input impedane of the antemat has heon raised by splitting it up into two or more conductors.

If the conductors of a folded dipole are all the same diameter and the spating between them is small, the impedanee at the input terminals is approximately equal to the input impedance of an ordinary dipole multiplied by the square of the number of eonductors. A simple half-wave antenna has an average im-

Fig. 13.17 - Matching ly means of quarter-wate linear transformers.
pedanee of 70 ohms, so a t wooconductor folded dipole will have an input impedane of 280 ohms, and a threreronduetor dipole am impedance of 630 ohms. These values are sulfiricntly rlose for good matehing to 300 -ohm or 600-ohm line, respectively.

Other values of impodance ratio may be obtained hy making one conductor larger in diameter than the other, as shown at $(\mathbb{C}$ Fig. 13-18. The recquired ratio of conductor radii (or diameters) for a desired impedaner ratio using two conductors may be obtained from Fig. 13-19. Similar information for at 3-conductor dipole is given in Fig. 13-20. This graph applies Where all three conductors are in the same plane and the two conductors not counereded to the gansmission line are equally wated from the fed conductor, and have equal diameters. This diameter maty or may not equal the diameter of the ferl eondurtor. The unerpat-eonductor methoed las heren lound particularly useful in matehing to low-impedame antemans surh as dirertive

Fig. 13.18 - The folded dipole a methend for waing the antenna ${ }^{\text {lemment }}$ its-lf 11 provide an impolance trans. formation.
arrays using elosespaced parasitio alemonts.
The length of the anternat eloment should be such as to be approximately self-resonant at the median operating frequenes. The length is usually not highly eritical, berause this method of matehing tends to compensate for

Fig. 13-19-Inperlanee transformation ratio, Iwoconductor folded dipole, "The dimension= d_{1}, do and s are shown on the inset drawing, (iurves show the ratio of the impedance (resistive) seen loy the transtnission line to the radiation resistance of the resonant antenna system.
changes in antomat reactance with frequency and thus broadens the frequency-response curve of the antenna.

'T"' and 'Gamma'" Matching Sections

The method of matrhing shown in Fig. 13-21. 1 is based on the fact that the impedance betwern athy two points along a resonant antennat is resistive, and hats a value which depends on the spacing betwern the two points. It is therefore possible to choose a pair of points between which the impedance will have the right value to mateh a transmission line. In

Fig. 13.20-Impedanee transformation ratio, threeconduetor folded dipole. "The dimensions d_{i}, d_{2} ands are shown on the inset drawing, liurves show the ration of the impedance (rosistive) seen by the transmission line to the radiation resistanee of the resonant antema system.
practice, the line rannot be connected direetly at these points because the distance between them is much greater than the condurtor spareing of a practicable transmission line. The "T" arrangement in Fig. 13-21A overcomes this difficulty by using a second ronductor paralleling the antemato form a matehing section to which the line may be connected.
The " T " is particularle suited to use with a parallel-ronductor line, in which ease the two points along the anterna should be equidistant from the center so that electrical balance is maintained.

The operation of this system is somewhat complex. bach "T" eonductor (!/ in the drawing) forms with the antenna conductor opposite it a short saction of transmission line, bach of these transmission-line sections can be considered to be torminated in the impedance that exists at the point of connertion to the antenna. Thus the part of the anterna between the two points carries a transmission-line current in addition tos the
normal antema current. The two transmissionline matching sections are in series, as seen by the main transmission line.

If the antenna by itself is resonant at the operating frequency its impedance will be purely resistive, and in such case the matehing-section lines are terminated in a resistive load. llowever, since these sections are shorter than a quarter wavelength their input impedance - i.e., the imperlance seen by the main transmission line looking into the matching-section terminals will be reactive as well as resistive. This prevents a perfect match to the main transmission line, since its load must be a pure resistance for perfect mateling. The reactive component of the input impedance must be tuned out before a proper mateh can be secured. The simplest way to do this is to detune the antemat in the proper direction to compensate for the reactance introduced by the matching seetion, although lumped reactances of the proper value can be used at the input terminals instead.

The method of adjustment commonly used is to cut the antenna for approximate resonance and then make the spacing x some value that is convenient constructionally. The distance y is then adjusted, while maintaining symmetry with respect to the center, until the s.w.r. on the transmission line is as low as possible. If the s.w.r. is not bolow 2 to 1 after this adjustment, the antenna length should be changed slightly and the matehing-section taps adjusted again. This process may be continued until the s.w.r. is as closs to 1 -to-1 as possible.

Fig. 13-21 - The "l" match and "gamma" match.
The unbalanced ("gamma") arrangement in Fig. $13-21 \mathrm{~B}$ is similar in principle to the " T," but is adapted for use with single coax line. The method of adjustment is the same.

Dimensions of matching seetions in practical cases are given in the chapter on antennas.

The "Delta" Match

The matching system in Fig. 13-22 is based on the variation in impedanee between two points symmetrically loeated with respect to the center of the antenna, as in the case of the "T" match, but uses a different matching
section. If the two conductors of a transmission line are fanned out, the Z_{0} of the line will increase with the increase in spacing. A fanned section of line can be used to match a given load impedance to the Z_{0} of a uniformlyspaced transmission line, provided the line Z_{0} is lower than the impedance of the load.

Fig. 13-22 - The "delta" matching section.
Strictly, such a match can be made only if the conductor spacing in the fanned section of line increases at an exponential rate, but the "delta" arrangement in Fig. 13-22 is a rough approximation to this type of spacing.

Dimensions a and b in Fig. 13-22 depend on the antenna impelance (whether it is a simple half-wave antenna or the driven element of a multielement beam), the size of the conductors in the delta, and the Z_{0} of the transmission line to be matehed. Methods for calculation are not available, but dimensions for practical cases are given in the chapters on antennas.

NONRADIATING LOADS

Important practical cases of nonradiating loads for a transmission line are the grid circuit of a power amplifier (considered in the chapter on transmitters), the input circuit of a receiver, and another transmission line. This last case includes the "antenna tuner"- a misnomer because it is actually a device for coupling a transmission line to the transmitter. Because of its importance in amateur installations, the antema coupler is considered separately in a later section of this chapter.

Coupling to a Receiver

A good match between an antenna and its transmission line does not guarantee a low standing-wave ratio on the line when the antenna system is used for receiving. The s.w.r. is determined wholly by what the line "sees" at the receiver's antennit-input terminals. For minimum s.w.r. the receiver input circuit must be matehed to the line. The rated input impedance of a receiver is a nominal value that varies over a considerable range with frequeney. Methods for bringing about a proper mateh are diseussed in the chapter on receivers.

It should be noted that if the receiver is matched to the line, then it is desirable that the antenna and line also be matched, since this results in maximum signal transfer from the antenna to the line. If the receiver is not
matched to the line, the input impedance of the line (at the terminals of the antenna itself) in turn cannot match the antenna impedance. In such a case the signal input to the receiver depends on the coupling system used between the line and the receiver. For greatest signal strength the coupling system has to be adjusted to the best compromise between recoiver input impedance and load appearing at the input (antenna) end of the line. The proper adjustments must be determined by experiment.

A similar situation exists when the receiver
input impedance inherently matehes the line Z_{0}, but the line and antenna are mismatched. Under these conditions perfeet matehing at the receiver does not result in greatest signal strength; a deliberate mismateh has to be introduced so that the maximum power will be taken from the antenna.

The most desirable condition is that in which the receiver is matched to the line Z_{0} and the line in turn is matched to the antenna. This transfers maximum power from the antenna to the receiver with the least loss in the transaission line.

Coupling the Transmitter to the Line

The type of coupling system that will be needed to transfer power adequately from the final r.f. amplifier to the transmission line deprods almost entirely on the input impodance of the line. As shown earlier in this chapter, the input impedanee is determined by the standingwave ratio and the line length. The simplest case is that where the line is terminated in its charactoristie impodance so that the s.w.r. is 1 to 1 and the input impedance is merely the Z_{0} of the line, regardless of line length.

Coupling systems that will deliver power into a flat line are readily designed. For all practical purposes the line ean be considered to be flat if the s.w.r. is no greater than about 1.5 to 1 . That is, a coupling system designed to work into a pure resistance equal to the line Z_{0} will have enongh leeway to take care of the small variations in input impedance that will oreur when the line length is changed, if the s.w.r. is higher than 1 to 1 but no greater than 1.5 to 1 .

Coupling cireuits suitable for coaxial lines are discussed in the chapter on transmitters. As stated in that chapter, an untuned "pick-up" or "link" coil eonnected directly to the transmission line should have an induetance such that the reartance at the operating frequency is approximately equal to the Z_{0} of the line, to assure adequate coupling to a line that is actually flat. While this condition is sometimes met well enough at the higher freguencies, at least for coaxial lines, by manufactured link coils, it is definitcly not met when a parallel-conductor line having a Z_{0} of 300 ohms or more is used. The optimum pick-up coil for coupling to such lines will have about the same inductance as the plate tank coil itself.

Amateurs are frequently successful in eoupling power into a line even though the pick-up coil is quite small and is loosely coupled to the amplifier tank coil. When such coupling is possible it is an indieation that the line is operating at a fairly high s.w.r. and that the line length is such as to bring a current loop near the input end. It is customary to "prune" the line length in such eases until adequate coupling is secured - a practice that has given rise to the wholly falla-
rious holief, on the part of many, that pruming the line reduces the standing-wave ratio and that a flat line will load an amplifier with a smatl link and very loose coupling. Pruning the line accomplishes nothing if the line is actually flat because, as explatined carlier in this chapter, the input impedance of a matched line is equal to its Z_{0} regardless of the line length. If the line is not flat, pruning changes the input impedance and eventually results in a value such that the ink or pick-up coil is artually tuned to the operating frequency by the line, a condition that will give maximum power transfer with minimun coupling. The higher the s.w.r. the more loose the coupling can be

There is nothing inherently wrong with this mothod of adjustment, but it works only when the s.w.r. is fairly high and will not work with a line that actually is flat. Wen in the former case it is usually preferable to nse a coupling system that is not so eritical as to line length.

Tuned Coupling

A tuned coupling rircuit has the same advantages, when used with properly-terminated paral-lel-conductor lines, that were outlined in the transmitting chapter in eonnection with coaxial lines. The principles are the same as well, but a resistance of 300 to 600 ohms is too high to be connerted in series with a tuned circuit. Consequently, parallel-tuned circuits must be used with these lines. Typical arrangements are shown in lig. 13-23. The rapacitance values giren in Table 13-II are for a (Q of 2 and are the minimum values that should be used. The Q may be increased, permitting full power transfer with

Fig, 13-23 - Thned circuits for coupling to a flat parallel-confuctor line. Ialues for C_{1} are given in Table I3-II; L_{1} is chosen to re onate with the value given at the operating frequency. In the alternative circont the total inductance of L_{1}, L_{2} and L_{3} should equal L_{1} in the cireuit at the left.

Note: Inductance in circuit must be adjusted to resonate at operating frequency.
looser coupling between the coils, by increasing the capacitance and decreasing the inductane correspondingly to maintain resonance.

The caparitance values given are the total caparitance required, so if a balaneed condenser is used as indicated at C_{1} in Fig. 13-23 each section of the condenser should have twice the capacitance given. A single-ended condenser may be used if care is taken to mount it far enough away from the chassis or any other grounded conductor so that the capacitance from stator and frame to ground is small. In such case the condenser should be tuned by an insulated externsion shaft.

The series-tuned circuit shown in the transmitter chapter for coax line can lee adapted to use with 75 -ohm parallel-conductor line hy using two variable condensers, one in each line conductor and each having twice the capacitance sperified, and removing the ground connection. This is the best arrangement for maintaining balance to ground, but if reasonable care is taken to mount the condenser as described in the preceding paragraph, a single condenser may be used. In that case the only circuit difference is that neither side of the line should be grounded.

Link Coupling

The coupling arrangements for parallel-conductor line shown in Fig. 13-23 are not entirely satisfactory from a constructional standpoint. It is usually more convenient to build the coupling
television and FM reception.
The circuit for coax-link coupling is given in Fig. 13-24. The constants of the tuned circuit $C_{1} L_{3}$ are not particularly critical; the principal requirement is that the circuit must be capable of being tuned to the operating frequency. Constants similar to those used in the plate tank circuit will be satisfactory. The construction of L_{3} must be such that it can be tapped at least every turn. L_{2} must be tightly coupled to L_{3}, and the inductance of L_{2} should be approximately the value that gives a reactance equal to the Z_{0} of the connecting line at the frequency in use. An average reactance of about 60 ohms will suffice for either 52 - or 75 -ohm coaxial line.

The coupling circuit at the amplifier end is merely designed and adjusted for working into a flat coaxial line, as described in the transmitter chapter. Hence the adjustment of coupling at the output end ($L_{2} L_{3} C_{1}$) is entirely independent of the adjustment at the input end (tank circuit and L_{1}).

When the system is properly designed and operated, the circuit formed by $L_{2} L_{3} C_{1}$ acts purely as a matching device to transform the input impedance of the main transmission line to a value equal to the Z_{0} of the convial link.

The most satisfactory way to set up the system initially is to connect a coaxial s.w.r. bridge in the link as shown in Fig. 13-24. A simple resistance bridge such as is described in the chapter on masurements is perfectly adequate, requiring only that the transmitter output be reduced to a very low value so that the bridge will not be overloaded. Take a trial position of the line taps on L_{3}, keeping them equidistant from the center of the coil, and adjust C_{1} for minimum s.w.r. as indicated by the bridge. If the s.w.r. is not close to 1 to 1 , try new tap positions and adjust C_{1} again, continuing this procedure until the s.w.r. is practically 1 to 1 . The setting of C_{1} and the tap positions may then be logged for future reference, since they will not change so long as the antenna system and frequency are not changed. At this point, check the link s.w.r. over the frequency range normally used in that band, without changing the setting of C_{1}. No readjustment apparatus separate from the final amplifier, and this leads to greater operating flexibility as well. For lines operating at a low standing-wave ratio this is easily accomplished by connecting the amplifier and coupling circuits through a short length of transmission line or "link." When properly designed and adjusted, the tuning of both circuits will be completely independent of the length of the line connerting them. This method has the further advantage that, if the connecting line is coaxial cable, it offers an ideal spot for the insertion of low-pass filters for preventing harmonic interference to

Fig. 13.24 - Matching circuits using a coaxial link, for use with parallelconductor transmission lines. Adjustment set-up using an s.w.r. bridge is shown in the lower drawing. Design considerations and method of adjustment are discussed in the text.
(A)

Equivalent
the coupling between the transmitter and the line must be changed accordingly to keep the amplifier loading constant. So far as the coupling apparatus is concerned, the principal difference between flat and tuned lines is that the system can be designed for relatively constant impedance for flat lines, but must be capable of coupling into a wide range of impedances if the line is "tuned."

As mentioned carlier, a simple coil can be used for coupling to a lite having a high standing-wave ratio providing the line length is adjusted so there is a current loop near the point where it connects to the pick-up coil. The coupling will be maximun, for a given degree of separation between the pick-up coil and the amplifier tank coil, if the line is prunced to a length such that the input impedance
Fig. 13-25 - Series and parallel tuning. This method is useful with resonant lines when the length is such as to liring either a current or voltage loop near the inpmt end. Design data and methods of adjustment are given in the text.
will be required if the s.w.r. does not exceed 1.5 to 1 over the range, but if it goes higher it is advisable to note as many settings of C_{1} as may be necessary to keep the s.w.r. below 1.5 to 1 at any part of the band. Changes in the link s.w.r. are caused chiefly by changes in the s.w.r. on the main transmission line with frequency, and relatively little by the coupling circuit itself. A single setting of C_{1} at mid-frequency will suffice if the antenna itself is broad-tuning.

If it is impossible to get a 1 to 1 s.w.r. at any settings of the taps or C_{1}, the s.w.r. on the main transmission line is high and the line length is unfavorable. Ordinarily there should be no difficulty if the transmission-line s.w.r. is not more than about 3 to 1 , but if the line s.w.r. is higher it may not be possible to bring the link s.w.r. down except by using the methods for reactance compensation described in a subsequent section.

Once the matching circuit is properly adjusted, the s.w.r. bridge may be removed and full power applied to the transmitter. The input should be controlled by the coupling between L_{1} and the amplifier tank coil, never by making any changes in the settings of the matching circuit. If the amplifier will not load properly, tuned coupling should be used into the coax link.

It is possible to use a circuit of this type without initially setting it up with the s.w.r. bridge. In such a case it is a matter of cut-and-try until adequate power transfer between the amplifier and main transmission line is secured. Ilowever, this method frequently results in a high s.w.r. in the link, with consequent power loss, "hot spots" in the coaxial cable, and tuning that is critical with frequency. The bridge method is simple and gives the optimum operating conditions quickly and with certainty.

"TUNED" LINES

If the s.w.r. on a transmission line is high enough to cause the input impedance to change appreciably as the applied frequency is varied,
is just sufficiently capacitive to cancel the inductive reactance of the pick-up coil. This can be done by cut-and-try. The higher the s.w.r. on the line the easier it becomes to load the amplifier with loose coupling between the twa coils. Whether or not good loading can be obtained over a band of frequencies depends on the characteristics of the antenna system. The sharper the antenna and the higher the line s.w.r. the more difficult it becomes to operate over a band without progressively changing the line length.

Series and Parallel Tuning

Rather than adjusting the line length to fit a given coupling coil, it is more practical to adjust the coupling circuit to fit the eonditions $s x i s t i n g$ at the input end of the transmission line.

A high standing-wave ratio occurs principally on parallel-conductor lines, either because no attempt has been made at matching the sntenna and the line or because the system is used for multiband operation, which precludes such matching. In the latter case, cutting the line length to a multiple of a quarter wavelength will bring either a current or voltage loop near the input terminals of the transmission line (assuming that the antenna itself is resonant) deperiding on the termination and the line length. If there is a current loop near the input end the impedance will be lower than the line Z_{0}; if a voltage loop, the input impedance will be higher than the line Z_{0}. In both cases the input impedances will be essentially resistive.

Under these conditions the circuit arrangements shown in Fig. 13-25 will work satisfactorily. Series tuning is used when a current loop occurs at the input end of the line; parallel tuning when there is a voltage loop at the input end. In the series case, the circuit formed by L_{1}, C_{1} and C_{2} with the line terminals short-circuited should tune to the operating frequency. C_{1} and C_{2} should be maintained at equal capacitance. In the parallel case, the circuit formed by L_{J} and C_{1} should tune to resonance with the line disconnected.

The L / C ratio in either eircuit depends on the transmission line Z_{0} and the standing-wave ratio. With series tuning, a high L / C ratio must be used if the s.w.r. is relatively low and the line Z_{0} is high. With parallel tuning, a low L / C ratio must be used if the s.w.r. is relatively low and the transmission-line Z_{0} also is low. With either series or parallel tuning the L / C ratio becomes less critical when the s.w.r. is high. As a first approximation, L and C values of the same order as those used in the plate tank cireuit may be tried.

To adjust the series-tuned circuit, first couple L_{1} loosely to the amplifier tank coil and then vary C_{1} and C_{2}, kepping their capacitances equal, until the setting is found that makes the amplifier plate current kick upward. Ferep adjusting the amplifier tank condenser, C ', for minimum plate current while this is being done. When the proper sottings are found, increase the coupling between the two coils until the amplifier draws normal plate current with C adjusted for minimum. It is unnecessary to readjust C_{1} and C_{2} when the coupling is increased. Kerep the coupling between the coils at the smallest value that will load the amplifier properly. If full loading cannot be obtained with the tigherit possible coupling, use a coil of more intuetanee at L_{1}.

The same adjustment procelure is used with paralled tuning, except that there is only one condenser, C. If full loading camot be secured, reduce the inductance of L_{1} and increase C_{1} correspondingly to maintain the same frequency.

The r.f. ammeters shown in Fig. 13-25 are not strictly necessary, but are useful for indicating maximum output. They may be omitted if desired; in most cases the amplifier plate curent is a good mough indication of output, providing the amplifio is operating at normal ratings and efficioncy.

In case full loading camot be obtained even

Fig. 13-26 - link -coupled series and parallel tuning.
when the L / C ratio is varied, the type of tuning in use probably is not suitable and should be changed; e.g., from series to parallel. If satisfartory loating still cannot be secured, the probabil-
ity is that the s.w.r. is quite low and the coupling methods designed for flat lines should be used.

Two condensers are used in the series-tuned circuit in order to keep the line balanced to ground. This is because two identical condensers, both connected with either their stators or rotors to the line, will have the same caparitance to ground. A single condenser would be perfectly usable so far as the operation of the coupling circuit is coneremed, but will slightly unbalance the circuit berause the frame has more capacitance to ground thatu the stator. The unbalanere is not serious unless the condenser is mounted near a large mass of metal, such as a chatsins.

A balaned condenser is used in the paralle] eircuit, in preference to a single unit, for the same reason. An alternative scheme to mantain balance is to use two single-ended condensers in parallel, hut with the frame of one connerted to one side of the line and the frame of the other eonnered to the other side of the line. The stme two condensers may be switched in saries when series tuning is to be used.

Link Coupling

The circuits shown in lig. 13-25 require a moans for varring the coupling betweon two sizable coils, a thing that is somewhat inconvenient constructionally. It is easier to use separate fixed mountings for the final tank and antenna coils and couple them by means of a link. As explained in the chapter on circuit fundamentals, a short link is equivalent to providing mutual inductane between two tuned circuits. Typical arrangements for series and parallel tuning are shown in Fig. 13-26. Although these drawings show variable roupling at both ends of the link, a fixed link coil can be used at either end so long as variable coupling is available at the other.

There is no essential difference between the tuning procedures with these circuits and those of Fig. 13-25. The only change is that the coupling is adjusted by means of a link instead of by varying the spacing between L_{1} and L_{1}.

In cases where the link will be more thatn a few inches long, or when coaxial cable is to be used for the link, it is much better to consider the link as a transmission line that should be properly matched. The circuit of Fig. 13-24 is recommended in that ease, except that either a scrics- or parallel-tuned cirruit is substituted for C $C_{1} L_{3}$ in that figure. The same considerations apply with respeet to the sizes of the link coils, and the best adjustment procedure is that using an s.w.r. bridge.

Lines of Random Length

Serirs or parallel tuning will always work satisfactorily with lines having a high stand-ing-wave ratio so long as the electrical length of the line is approximately a multiple of a quarter wavelength. Ilowever, it is not always possible to eouple satisfactorily when intermediate line lengths are used. This is because at some lengths
the input impedanee of the line has a considerable reactive component, and because the resistive component is too large to be connected in series with a tuned circuit and too low to be conneeted in parallel.
The coupling system shown in Fig. 13-2.4 is capable of handling the resistive component of the input imperdance of the transmission lines used in most amateur installations, regardless of the standing-wave ratio on the line. Conseguently, it can generally be used wherever cither series or parallel tuning would normally be called for, simply by setting the taps properly on the coil. (A possible exception is where the s.w.r. is considerably higher than 10 to 1 and the line length is such as to bring a current loop at the input end. In such a case the resistance may be only a few ohms, which is diffieult to mateh by means of taps on a coil.)

Within limits, the same circuit is capable of being adjusted to compensate for the reartive component of the input impedance; this merely means that a 1 to 1 s.w.r. in the link will be obtained at a different setting of C_{1} (Figg, 13-24) than would the the case if the line "looked like" a pure resistance. Sometimes, however, (${ }_{1}$ does not have enough range available to give complete compensation, particularly when (as is the case with some line lengths when the s.w.r. is high) the input impedance is principally reactive.

Under such conditions it is necessary, if the line length cannot be changed to a more satisfactory value, to provide additional means for compensating for or "cancelling out" the reactive component of the input impedance. As described carlier in this chapter (Fig, 13-6) the input impedance can be considered to be equivalent to a circuit eonsisting cither of resistance and indurtance or resistance and capacitance. It is generally more convenient to eonsider these clements ats a parallel combination, so if the line "looks like" $L^{\prime} R^{\prime}$ at A in Fig. 13-6, it is apparent that if we coment a capacitance of the right value arross L^{\prime} the circuit will become resonant and will appear to be a pure resistance of the value R^{\prime}. Similarly, connerting an inductance of the right value across $C^{\prime \prime}$ in Fig. $13-613$ will resonate the cirruit and the impedance will be equal to R^{\prime}. The resistive impedance that remains ean easily be matched to the coax link by means of the circuit of Fig. 13-24.

The practical application of this principle is shown in Fig. 13-27, where L and C are the reaetances required to cancel out the line reactance,
L for cases where the line is capacitive, C for lines having inductive reactance. The amount of either inductance or capacitance required is easily determined by trial. Using the s.w.r. bridge in the coax link, first diseomect the main transmission line and comeet a noninductive resistor to the line teminals. A $1 / 2$ or 1 -watt carbon resistor of about the same resistance as the line Z_{0} will do. Adjust the coil taps and C_{1} for a 1 to 1 standingwave ratio in the link, as deseribed earlier. This determines the proper setting of C_{1} for a purely resistive load. Then take off the resistor and connee't the line, again adjusting the taps and C_{1} for minimum s.w.r. If a 1 to 1 ratio can be obtained further compensation is not needed, but if not, make the s.w.r. as low as possible and compare the new setting of C_{1} with the original setting. If the capacitance has increased, the line reactance is inductive and a condenser most be connected at C in Fig. 13-27. The amount of cipacitanceneeded to bring the proper setting of C_{1} near the original setting can be determined by trial. On the other

Fig. 1.3-27- Reactance cancellation on random-length lines having a high standing-wave ratio.
hand, if the capacitance of C_{1} is less than the original, an inductance must be connected at L. Trial values will show when the proper tuning conditions have been reached. It is not necessary that C_{1} be at exactly the original setting after the compensating reactance has been adjusted; it is sufficient that it be somewhere in the same vicinity.

Using this procedure practically any length of line can be coupled properly to the trisnsmitter, even when the line s.w.r. is quite high. Unfortunately, no specific values can be suggested for L and C, since they vary widely with line length and s.w.r. Their values usually are comparable with the values used in the regular compling eircuits at the same frequency.

Coupler or Matching Circuit Construction

The design of matching or "antemat conpler" rircuits has bern eovered in the preceding seection, and the adjustment procedure also has heen outlined. Since cireuits of this type are most frequently used for transtioring power from the transmitter to a parallel-comductor transmission line, a principal point requiring attention is that of maintaining good balance to ground. If the coupler eircuit is appreciably umbalanced the
currents in the two wires of the transnission line will also be unbalanced, resulting in radiation from the line.
In most cases the matching eireuit will be built on a metal chassis, following common practice in the construction of transmitting units. The chassis, because of its relatively karge area, will tend to establish a "ground" - even though not actually grounded - particularle if it is
assembled with other units of the transmitter in a rack or cabinet. The components used in the poupler, therefore, should be placed so that they are electrically symmetrieal with respect to the rhatsis and to (ath othor.

In general, the eonstruction of a coupler eireuit shoudd physically resemble the tank layouts used with push-pull amplifiors. In parallel-tumed circuits a split-stator condenser should be used. The condenser frame should be insulated from the chassis: because, depending on line length and other factors, harmonice reduetion and line balance may be improved in some cases be grounding and in others bey not grounding. It is therefore advisable to adopt construetion that permits cither. Drovision also should be made for grounding the renter of the eoil, for the same reason. The roil in a parallel-tuned circuit should be mounted so that its hot conds are summetrieally placed with respeet to the chassis and other components. This equalizes stray mparitances and helps maintain grod balance.

When the coupler is of the tepe that can be shifted to series or parallel tuning as rectuired, two separate single-ended eondensers will be sativfartory. As described carlier, they should be conneded so that both frames go to the same side of the eireuit - i.e., bither to the enil or to the line - for series tuning, and should be conneeted frame-to-stator for parallel tuning.

A coupler designed and adjusted so that the connect ing link aets as a mat ched transmission line may be placed in any conveniont location. Some amateurs prefor to install the coupler at the point where the main transmission line enters the

Fig. 13-28-A matehing cireuit or "antenna coupler" for use between a coaxial link line and a paralleleonductor transmission line. Link coil design is optimum for sufficieut power transfer from a flat coaxial line.

Fig. 13-29-Circuit diagram of the antenna coupler. The antenna changeover relay and r.f. ammeters are convenient but not essential to the operation of the coupler.

The ground (X in the diagram) on the center of the tank coil may be used or not, as required for beat harmonic suppression.
$C_{1}-100-\mu \mu \mathrm{fd}$.-per-section, 1500 -volt plate spacing prer section (National TMK-100I)).

A-R.f. ammeter, scale range aecording to power and antenna feeder sywtem. For 300 -ohm line op. erating at less than 3-to-1 s.w.r., 0-1 amp. is satisfactory for 100 watts r, f. output; $0-2$ wilt suffice for ontputs up to 400 watts.
J_{1} - Coax receptacle.
J_{2} - 11 -volt receptacle, male (1 mphenol).
$\mathrm{J}_{3}, \mathrm{~J}_{4}$ - (iryital socket, for $\mathrm{F}^{\prime \prime}$-2.43-type pin spacing (Millen 33102).
Ryı - Antenna relay, d.p.d.t. (Ward I.eonard 507-53i).
Coil Data
Band $\quad L_{1,}$, turns $L_{2,}$, turns
3.5-1 Nc
$\stackrel{2}{18}$
18
${ }^{6} \mathrm{Mc}$
14 Mc .
10
8
6 3
L_{1} - No. 12 tinned wire, $2 \frac{1}{2}$ inches dia., 6 turns per inch (13 \& W $3905-1$).
L_{2} - No. $1+$ tinned wire, 2 inches dia, 8 turns per inch (13 N W 3900).
station. This helps maintain a neat station layout when an air-insulated parallel-conduetor transmission line is used. With solid-dieloctric lines, which lend themselves well to neat installation indoors, it is probably more desiritble to install the eoupler where it can be reached easily for adjustmont and band-ehanging. The use of coaxial line between the transmittor and coupler is strongly reoommended if the link lino is more than a fow inehes long, for the reasons outlined in the preceding seetion.

COAX-COUPLED MATCHING CIRCUIT

The matching unit shown in Figs. 13-28 to 13-31, inclusive, is constructed arrording to the design principles ontlined carlier in this chapter. It uses a parallel-tuned rireuit with taps for matehing a paralleleronductor line through a link coil to a coaxial line to the transmitter. It will handle about 500 watts of r.f. power and will work, without modification, into lines having an s.w.r. below 3 or $\&$ to 1 . If the sw.e. is high, it may be neressary to compensate for the reactive part of the input impedance of the line, at cortain line lengths, by using an additional coil or condenser as discussed earlior. The necessity for such compensation ean be avoided, on lines having a high s.w.r., by making the electrical length of the line a multiple of a quarter wavelength.

Fig. 1.3-30- Construction of coils used in the antenna conpler. Commetions to the link coil are made with short lengthe of wire soldered to the ends of the link winding. The tank-coil turns should be spread slightly where the connecting wires to the link pass through the coil, to prevent short circuits. The link connections shatuld tee mon at right angles to the tank coil turns, insofar as possible, to reduce capacitive coupling.

As shown by Fig. 13-29, the cireuit includes an antema changeover relay and r.f. ammeters for measuring feeder current. Neither is essential to the operation of the coupler. but they are frequently used and the photographs show how they may be incorporated in the coupler unit. The coupler is fitted with erystal sockets for plugs such as the Millen type 37412 for 300 -ohm line; the plug-and-socket arrangement facilitates shifting antennas, in case two or more are available for different bands. The same plug-andsocket combination may be used with lines of other characteristic impedances, but other types of plugs and sockets, or binding posts, may be substituted.

The coils are constructed from commercial cond material to meet the link inductance requirements outlined earlier in this chapter. The diamcter of the link coil is such that it fits snugly inside the tank coil, and once the coils are cut- to the proper size they may be comented tugether at their tie-strips, using Duco cement. A typiral coil assembly is shown in Fig. 13-31, the coils being mounted on Millen type 40305 plugs and recpuiring no other support than the stiffiess of the short lengths of wire at the ends where they go into the prongs on the plug. The taps on the tank coil for matching are made by means of Johnson type 235-860 clips.

The coupler is built on a 7 by 9 by 2 aluminum (chassis. The eoil socket (Millen 41305) is nounted on brackets made from $1 / 16$-inch aluminum sut in strips a half inch wide, just high enough so that the eoil socket clears the tuning condenser comfortably. A vernier-type friction-drive dial (National AM) is used on the tuning condensur. The r.f. meter's are mounted on a piece of bakelite set behind a rectangular cut-out in the 8 by 12 metal panel, the bakelite being used to reduce the capacitance between the meters and the panel.

Each coil is provided with its own pair of clips soldered to a short length of 300 -ohm line terminated iu a plug. The line plug is inserted in a
crystal socket mounted on top of the turing eondenser. This method avoids the necessity for changing clip connertions when changing coils.

The socket for the coas link is mounted centrally on the rear chassis edge. A length of coax runs from this coax reereptacle to the coil socket, and is grounded where it goes through the chassis (between the stator sections of the tuming condenser) to reach the coil socket. The a.c. plug on the rear edge connects to the relay coil.

A fixed condenser, C_{2}, can be connected in parallel with C_{1} by flexible leads and banana plugs. The sorkets (taken from jack-top binding posts) are soldered to the lugs on the variable condenser. Ces is used for padding the circuit on the $3.5-\mathrm{Mc}$. range only; a sufficiently large coil for tuning with the $50 \mu \mu \mathrm{fd}$. available in C_{1} eamot be mounted on the plug har.

The L / C ratio in the coupler tank circuit is not especially critical, so the dimensions given in Fig. 13-29 can be varied within reason. The chiof point is that each coil must resonate, on the band for which it is made, with the tuning e ndenser. Fairly low C is preferable to high C, but the limitation on L / C ratio at 3.5 Mc . is the size of the coil required. The plug bar will mrunt a 4 -inch-long coil comfortably. With the $3.5-\mathrm{Me}$, coil dimensions given in Fig. 13-29 the co:l is just slightly longer than the bar and is easily mounted. Additional support is given this coil by running a No. 4 screw through the end holes in the bar and fastoning a soldering lug under the nut the coil ends are soldered to this lug as woll as te the pins in the plug.

The link coils specified have adequaie induc-

Fig. 1.3-31 - Rear view of the antenna coupler. Connections to the coax link, to the receiver antenna posts, and to the 115 -volt supply for the relay are through sockets on the rear edge of the chassis.
tance for full coupling with either 52 - or 75 -ohm coaxial link lines.
The preferable method of adjusting the coupler is that using atn s.w.r. bridge, designed for the fhatrateristic impedanore of the roaxial line used for the link, as described in a preceding section in this chapter.

SERIES-PARALLEL COUPLER FOR WALL MOUNTING

Fig. 13-32 shows a link-coupled coupler designed for series or parallel tuning of a resonant line. It is suitable for transmitters having a power output in the neighborhood of 250 watts. A higher-power version easily could be made using a similar layout, but substituting heavier coils and condensers with greater plate spacing.

As shown in Fig. 13-3:3, the change from series to parallel tuning is made bey means of jumpers and extra pins on the coil plug bar. A separate coil is used for each band, and after determining which should be used, series or parallel tuning, on a particular band, jumpers may be installed permanently or left off as required. 'The tuning condensers specilied, together with a set of standard plug-in transmitting eoils, should provide adequate coupling if the transmission-line length is such as to bring a voltage or current loop near the input end.

Fig. 13-32-A wall-mounting antenna coupler for medium-power transmitters. This unit provides a chotice of either saries or parallel tuning for resonamt fecelders. Standard transmitting coids of the variable-link type are used.

Fig. 13.3.3 - (ircouit diagram of an antenna compler for use with a medium-power transmitter. A - Seriek thining. 13 - I'aratled turing.
(it, ($s-1011-\mu \mu \mathrm{fi} \mid$. single section variable, 0.0 otoinch sacing ((Gardwell M'I'100-GS).

1. - 3 N 1131 I series.

A-0-2.5 thermocouple r.f. ammeter.
The unit is mounted on an $8 \times 12 \times 7 / 8$-inch board for hanging on the wall in any convenient loration near the entrance point of the feeders. The 2.5 -ampere r.f. ammeter is mounted centrally by long wood serews through spacers at the top) of the unit. A short length of twisted pair commects it to the thermocouple, secured in a horizontal position at the bottom of the backboard. The tuning condensers are momented on the underside of a 4 -imeh shelf extending the width of the unit. Atop the shelf, the jack har for the coil is supported on pillars by wood screws. An extension shaft to vary the degree of coupling is supported bey a bushing fastemed to a short strip of brass at the right of the sholf. A short length of 300 -ohm ribbon (eoasial (able can be used instad) conneets the input terminats to the movable link, While the output terminals are looated at the middle right of the backboard. 'Iwo sorew eves at the top permit the unit to be hung from serews or nats in the wall.

The variablo-link windings of manufactured coils may not give arlerpuate compling unless the length of the link-line to the transmitter is adjusted, hy cut-and-try, for optimum results. As at allernative, the coil sets may be wound as described for the atembat coupher shown in Fig. 13-28. The cobl dimensions given will be satisfactory for use in the cirenit of lig. 13-333, and providing a coaxial link is used the compling will be independent of link-line length when adjusted by means of atn s.w.r. bridge.

RACK-MOUNTING SERIES-PARALLEL COUPLER

The rack-mounting coupling unit shown in Fig. 13-34 is suitable for power outputs of 25 to 50 watts, and provides either series or parallel tuning for resonant lines. Separate condensers are used for this purpose, and while three are required, this system has the advantage that no switching is necessary when
changing from series to parallel tuning. It is also possible to cover a somewhat wider range of lime input impedances with parallel tuning because the series eondensers can be used to help cancel out inductive reactance that camot be handed by the parallel eireuit alone.

The coupler is mounted on at $51 / 4$ $\times 19$-inch panel, 'The parallel eondenser, ('1, is in the conter, with C'2 and C_{3} on (ither side, The variable condensers ate mounted on National Cist stand-off insulators which aro fastened to the condenser tie-rods by means of machine serews with the heads cut off. Small ceramic shaft couplings are used to insulate the control knobs from the condenser shafts.

Clips with flexible leads attached are provided for the parallel eondenser, C_{1}, so that the sections may be used either in series or parallel to form either a high-C or low-C tank circuit. When the high-C tank is neeessary the two stators are commeted logether by means of the clips, as indicated by the dotted lines in the circuit diagram, Fig. 13-3i. When the two sertions are commeted in series for low-('operation the breakdown voltage is increased.

Two sets of variable condensers are suggested in the list of parts. 'The smaller receiv-ing-type eondensers with 0.03 -inch air gap are satisfactory for transmitter power outputs up) to 50 watts. 'lhe larger condensers, with $0.045-$ inch spacing, are required for transmitter outputs of the order of 100 watts.

Fig. lis-35-Circuit of the rack-mounting antenna tuner for use with transmitters having final amplifiers: that are operated at less than 1000 volts on the plate.

All coils are $17 / 8$ inches in diameter and $21 / 4$ inshos long, with the variable link loraterl at the cernter. Fior series tuning, use the coil specified for the noxt-higher frequency band, which will be approximately rorrect,
$\mathrm{C}_{1}-100 \mu_{\mu} \mathrm{fd}$, per section, 0.015-inch spacing (National ' ${ }^{\prime}$ 'MK-I(0)-I)) for high whages: receiving type for low voltages (IIammarlund MCD-ION).
 ' ${ }^{\prime}$ MS-250) for high voltages; receiving type for low voltages (1 ammardund $\$(\cdot-50)$.
L-13 \& W JVaseries coils, Approximate dimensions for parallel tuning for caeh hand are as follows:
3.5-Me. band - 40 turns No. 20.

7-Me. band - 24 turns No. 16 .
14 -Mc. band - 14 turns No. 16.
28-Mc. band - 8 turus No. 16.

Fip, 13-34 - Rack-monnted coupler for low-power transmitters. This unit uses three variable eondensers to provide either series or parallel unit uses three variable eondensers to
tuning withont condenser switehing.

A WIDE-RANGE ANTENNA COUPLER

The photograph of lig. 13-36 shows tie constructional detaits of a wide-range antemna coupler suitable for use with high-power transmitters. Various combinations of paratlel and series tuning, with high- and low-C tanks and high- and low-impedance outputs, are available. Diagrams of the various circuit combinations possible with this arrangement are given in lig. 13-37.

I separate coil is used for each band, end the desired connections for series or parallel tuning with high or low C, or for low-impedanee out put with high or low re are automatically made when the coil is plugged in. Coil connections to the pins for various cireuit arrangements are shown in Fïg. 13-37.

The tuning condenser specified, tagether with a set of standard plug-in transmitting coils, should eover noarly all coupling conditions likely to be encountered.

Because the switehing conncetions require the use of a contral pin, a slight alteration in the $B \& W$ coil-mounting unit is required. The central link-mounting unit should be removed from the jack-bar and an extra jack placed in the contral hole thus made available. The link assembly should then be mounted on a 2 -inch cone insulator to one side of the jaek bar.

Correspondingly, the central nut on each coil plug base must be removed and a Johnson tapped plug, similar to those furnishol with the coils, substituted. In extension shate may then be fitted on the link shaft and a control brought out to a knob on the panel.

The split-stator tank condenser is mounted by means of angle brackets on four 1-inch cone-type ecramic insulators, and an insulated flexible coupling is provided for the shaft.

If desired, the eoils may be wound with fixed links on ceramie transmitting coil forms. The links should be provided with flexible leads which can be plugged into a pair cf jacktop insulators mounted near the coil jacis strip,

Fig. 13-36 - Wide-range antenna coupler. The unit is assembled on a metal chassis measuring $10 \times 17 \times 2$ inches, with a panel $83_{4} \times 19$ inches in size. The variable condenser is a split-statorunit with a capacitance of $200 \mu \mu \mathrm{fl}$. per seetion and 0.0 -inch plate spacing (Johnson 200ED30). The plug-in coils are the $13 \& W$ TVL series. The r.f. am. meter has a 4 -ampere scale.
unless a special mounting is made providing for seven connections.

The unit as described should be satisfactory for transmitters having an output of 500 watts with plate modulation and somewhat more on c.w. For higher-power'phone, a tank condenser with larger plate spacing should be used.

In case there is difficulty in loading the transmitter with particular lengths of link line, adequate coupling usually can be secured by tuning the link circuit as described carlier in this chapter. On the lower frequencies it may be necessary to add inductance in series with the link coil in order to raise the Q of the link circuit to a sufficiently high value for good coupling.

Fig. 13-37-Cirenit diagram of the wide-range rach-type antenna coupler. A-Parallel tuning, low C. 13 - Parallel tuning, high C. C: - Series tuning, low (: D) - Series tuning, high C. E - Parallel tank, low-impedance output, low C., F- Parallel tank, low-impedance output, high C. After the induetance required for each of the various hands has been determined experimentally, the connections to the coils can be made permanent. Then it will be neeessary only to plug in the right coil for eaeh band, tune the condenser for resonance, and adjust the link loading.

Antennas

An antenna system can be considered to include the antenna proper (the portion that radiates the r.f. energy), the feedline, and any coupling devices used for transferring power from the transmitter to the line and from the line to the antenna. Some simple systems may omit the transmission line or one or both of the coupling devices. This chapter will describe the antenna proper, and in many cases will show popular types of lines, as well as line-toantenna couplings where they are required. However, it should be kept in mind that any antenna proper can be used with any type of feedline if a suitable coupling is used between the antenna and the line. Changing the line does not change the type of antenna.

Selecting an Antenna

In selecting the type of antenna to use, the majority of amateurs are somewhat limited through space and structural limitations to simple antenna systems, except for v.h.f. operation where the small space requirements make the use of multielement beams readily possible. This chapter will consider antennas for frequencies as high as 30 Mc. - a later chapter will describe the popular types of v.h.f. antennas. However, even though the available space may be limited, it is well to consider the propagation characteristics of the frequency band or bands to be used, to insure that best possible use is made of the available facilities. The propagation characteristics of the various bands, up to 30 Mc ., are described in Chapter Four. In general, antenna construction and location become more critical and important on the higher frequencies. On the lower frequencies (3.5 and 7 Mc .) the vertical angle of radiation and the plane of polarization may be of relatively little importance; at 28 Mc. they may be all-important. On a given frequency, the particular type of antenna best suited for long-distance communication may not be as good for shorter-range work as would a different type.

Definitions

The important properties of an antenna proper are its polarization, vertical and horizontal angles of maximum radiation, impedance, gain and bandwidth.

The polarization of a straight-wire antenna is determined by its position with respect to the earth. Thus a vertical antenna radiates vertically-polarized waves, while a horizontal
antenna radiates horizontally-polarized waves in a direction broadside to the wire and vertically-polarized waves at high vertical angles off the ends of the wire. The wave from an antenna in a slanting position, or from the horizontal antenna in directions other than mentioned above, contains both horizontal and vertical components.

The vertical angle of maximum radiation of an antenna is determined by the free-space pattern of the antenna, its height above ground, and the nature of the ground. The angle is measured in a vertical plane with respect to a tangent to the earth at that point, and it will usually vary with the horizontal angle, except in the case of a simple vertical antenna. The horizontal angle of maximum radiation of an antenna is determined by the free-space pattern of the antenna.

The impedance of the antenna at any point is the ratio of the voltage to the currert at that point. It is important in connection with feeding power to the antenna, since it constitutes the load to the line offered by the antenna. It can be either resistive or complex, depending upon whether or not the antenna is resonant.

The field strength produced by an aatenna is: proportional to the current flowing in it. When there are standing waves on an antenna, the parts of the wire carrying the higher current have the greater radiating effect. All resonant antennas have standing waves - only terminated types, like the terminated rhombic and terminated "V," have substantially uniform current along their lengths.

The ratio of power required to produce a given field strength, with a "comparison" antenna, to the power required to produce the same field strength with a specified type of antenna is called the power gain of the latter antenna. The field is measured in the optimum direction of the antenna under test. Ir amateur work, the comparison antenna is generally a half-wave antenna at the same height and having the same polarization as the antenna under consideration. Power gain usually is expressed in decibels.

In unidirectional beams (antenna systems with maximum radiation in only one direction) the front-to-back ratio is the ratio of power radiated in the maximum divection to power radiated in the opposite direction. It is also a measure of the reduction in received signal when the beam direction is charged from that for maximum response to the opposite
direction. Front-to-back ratio is usually expressed in decibels.

The bandwidth of an antenna generally refers to the frequency range over which the
gain and impedance are substantially constant. It is of importance primarily in connection with multielement beams fed by a "flat" transmission line.

Ground Effects

The radiation pattern of any antenna that is many wavelengths distant from the ground and all other objects is called the free-space pattern of that antenna. The free-space pattern of an antenna is almost impossible to obtain in practice, except in the $v . h . f$, and $u, h . f$. ranges. Below 30 Mc., the location of the antenna with respect to ground plays an important part in determining the actual radiation pattern of the antenna.

When any antenna is near the ground the frec-space pattern is modified by reflection of radiated waves from the ground, so that the actual pattem is the resultant of the free-spare pattern and ground reflections. This resultant is dependent upon the height of the antenna, its position or orientation with respect to the surface of the ground, and the electrical characteristics of the groumd. The effert of a perfectly-reflecting ground is such that the

Fig. 14-1 - Effeet of ground on radiation of horizontal antennas at vertical angles for four anterma lieights. This chart is based on perfectly conelucting gromed.
original free-space field strength may be multiplied by a factor which has a maximum value of 2 , for complete reinforcement, and having all intermediate values to zero, for complete cancellation. 'These reflections only affect the radiation pattern in the vertical plane - that is, in directions upward from the earth's surface - and not in the horizontal plane, or the usual geographical directions.

Fig, 14-1 shows how the multiplying factor varies with the vertical angle for several representative heights for horizontal antennas. As the height is increased the angle at which complete reinforcement takes place is lowered, until for a height equal to one wavelength it occurs at a vertical angle of 15 degrees. At still
greater heights, not shown on the chart, the finst maximum will occur at still smaller angles.

Radiation Angle

The vertical angle of maximum radiation, is of primary importance, especially at the higher frequencies. It is advantageous, therefore, to erect the antenna at a height that will take advantage of ground reflection in such a way as to reinforce the space radiation at the most desirable angle. Nince low angles usually are most effective, this generally means that the antenna should be high - at least one-half wavelength at 14 Mc ., and preferably three-quarters or one wavelength, and at least one wavelength, and preferably higher, at 28 Mc . The physical height required for a given height in wavelengths decreases as the frequency is increased, so that good heights are not impractienble; a half-wavelength at 14 Mc is only 35 feet, approximately, while the same height represents a full wavelength at 28 Mc . At 7 Mc , and lower frequencies the higher radiation angles are effective, so that agatin a useful antenna height is not difficult of attainment. Heights between $3 \overline{5}$ and 70 feet are suitable for all bands, the higher figures boing preferable.

Imperfect Ground

Fig. 14-1 is based on ground having perfect conductivity, whereas the actual earth is not a perfect conductor. "The principal effect of actual ground is to make the curves inaccurate at the lowest angles; appreciable high-frequency radiation at angles smaller than a few degrees is practically impossible to obtain over horizontal ground. Above 15 degrees, however, the curves are accurate enough for all practical purposes, and may be taken as indicative of the result to be expected at angles between 5 and 15 degrees.

The effective ground plane - that is, the plane from which ground reflections can be considered to take place - seldom is the actual surface of the ground but is a few feet below it, depending upon the character of the soil.

Impedance

Wiaves that are reflected directly upward from the ground induce a current in the antenna in passing, and, depending on the antema height, the phase relationship of this induced current to the original current may be such as either to increase or decrease the total current in the antenna. For the same power input to the anteman, an increase in current is equivalent to a decrease in impedance, and vice versa. Hence, the impedance of the an-
tenna varies with height. The theoretical curve of variation of radiation resistance for an antenna above perfeetly-reflecting ground is shown in Fig. 14-2. The impedance approaches the free-space value as the height beeomes large, but at low heights may differ eonsiderably from it.

Choice of Polarization

Polarization of the transmitting antenna is generally unimportant on frequencies between 3.5 and 30 Mc . However, the question of whether the antenna should be installed in a horizontal or vertical position deserves consideration for other reasons. A vertical halfwave or quarter-wave antenna will radiate equally well in all horizontal direetions, so that it is substantially nondirectional, in the usual sense of the word. If installed horizontally, however, the antenna will tend to show directional effects, and will radiate best in the direction at right angles, or broadside, to the wire. The radiation in sueh a rase will be least in the direction toward whieh the wire points.

The vertical angle of radiation also will be

Fig. H. - Theoretinal curve of variation of radiation resistance for a halfowas horizontal antenna, as a function of height in wavelength above periectly-reflecting groumd.
affected by the position of the antent a. If it were not for ground losses at high frequencies, the vertical half-wave antenna would be preferred because it would concentrate the radiation horizontally.

The Half-Wave Antenna

The fundamental form of antenna is a single wire whose length is approximately equal to half the transmitting wavelength. It is the unit from which many more-complex forms of antennas are constructed. It is variously known as a half-wave dipole, half-wave doublet, or Hertz antenna.
l'he length of a half-wavelength in space is:

$$
\begin{equation*}
\text { Length }(\text { feet })=\frac{492}{\text { Freq. }(\mathrm{Mc} .)} \tag{14-A}
\end{equation*}
$$

The aetual length of a half-wave antenna will not be exactly equal to the half-wave in space, hut depends upon the thickness of the eonductor in relation to the wavelength as shown in Fig. 14-3, where K is a factor that must be multiplied by the half-wavelength in free space to obtain the resonant antema length. An additional shortening effect oecurs

Fig. 1.4.3-Effect of antenna diameter on length for half-wave resonance, shown as a multiplying factor, K, to be applied to the free-space half-wavelength (Eryuation 14-1). The effect of conductor diameter on the impedance measured at the center also is shown.
with wire antennas supported by insulators at the ends because of the capacitance added to the system by the insulators (end effect). The following formula is sufficiently accurate for wire antennas at frequencies up to 30 Me .:

$$
\text { Length of half-wave antenna (feet) }=
$$

$$
\begin{equation*}
\frac{492 \times 0.95}{\text { Freq. }(\mathrm{Me} .)}=\frac{46 \mathrm{~S}}{\text { Freq. }(\mathrm{Me} .)} \tag{14-B}
\end{equation*}
$$

Example: A half-wave antenna for 715 kc . (7.15 Mc .) is $\frac{46 \mathrm{~K}}{7.15}=\mathbf{6 5 . 4 5}$ feet, or 65 fect 5 inches.
Above 30 Mc . the following formulas should be used, particularly for antennas cotstructed from rod or tubing. K is taken from Fig. 14-3.

$$
\begin{gather*}
\text { Length of half-uave antenna (feet) }= \\
\frac{492 \times K}{\text { Freq. }(\mathrm{Me} .)} \tag{14-C}\\
\text { or length (inches) }=\frac{5905 \times K}{\text { Freq. }(\mathrm{Mc} .)} \tag{14-D}
\end{gather*}
$$

Example: Find the length of a half-wavelength antenna at 29 Me, if the antenna is made of 2inch diameter tubing. At 29 Mc., a half-wavelength in space is $\frac{492}{29}=16.97$ feet, from Eq. 14-A. Ratio of half-wavelength to conductor diameter (changing wavelength to inches) is $\frac{16.97 \times 12}{2}=101.8$. From Fig. $14-3, K=0.963$ for this ratio. The length of the antenns, from Eq. $14-\mathrm{C}$, is $\frac{492 \times 0,963}{49}=16,34$ feet, or 16 feet 4 inches, The answer is obtained dirertly in Inches by substitution in Eq. 14-D: $: \frac{5905 \times 0.963}{2}$
$=196$ inches,

Fig. 14-4 - The above scales, based on Eq. 11-13, can be used to determine the length of a half-wave antenna of wire.

Current and Voltage Distribution

When power is fed to a half-wave antenna, the current and voltage vary along its length. The current is maximum at the center and nearly zero at the ends, while the opposite is true of the r.f. voltage. The current does not actually reach zero at the current nodes, because of the end effect; similarly, the voltage is not zero at its node because of the resistance of the antenna, which consists of both the r.f. resistance

Fig. 14.5 - 'The free-space radiation pattern of a halfwave antenna. The anterna is shown in the vertical position. This is a eross-section of the solid pattern described by the figure when rotated on its vertical axis. The "doughnut" form of the solid pattern can be more casily visualized by imagining the drawing glued to a piece of eardboard, with a short length of wire fastened on it to represent the antenna. Twirling the wire will give a visual representation of the solid radiation pattern.
of the wire (ahmic resistance) and the radiation resistance. The radiation resistance is an equivalent resistance, a convenient conception to indicate the radiation properties of an antenna. The radiation resistance is the equivalent resistance that would dissipate the power the antenna radiates, with a current flowing in it equal to the antenna current at a current loop (maximum). The ohmic resistance of a half-wavelength antenna is ordinarily small enough, in comparison with the radiation re-

Fig. 14.6- Illustrating the importance of vertical angle of radiation in determining antenna directional effects. Off the end, the radiation is greater at higher angles, Ground reflection is neglected in this drawing of the free-space pattern of a horizontal antenna.
sistance, to be neglected for all practical purposes.

Impedance

The radiation resistance of an infinitelythin half-wave antenna in free space - that is, sufficiently removed from surrounding objects so that they do not affect the antenna's characteristics - is 73 ohms , approximately. The value under practical conditions is commonly taken to be in the neighborhood of 70 ohms. It is pure resistance, and is measured at the center of the antenna. The impedance is minimum at the center, where it is equal to the radiation resistance, and increases toward the ends. The actual value at the ends will depend on a number of factors, such as the height, the physical construction, the insulators at the ends, and the position with respect to ground.

Conductor Size

The impedance of the antenna also depends upon the diameter of the conductor in relation to the wavelength, as shown in Fig. 14-3. If the diameter of the conductor is made large, the capacitance per unit length increases and the inductance per unit length decreases. Since the radiation resistance is affected relatively little, the decreased L / C ratio causes the Q of the antenna to decrease, so that the resonance curve becomes less sharp. Hence, the antenna is capable of working over a wide frequency range. This effect is greater as the diameter is increased, and is a property of some importance at the very-high frequencies where the wavelength is small.

Fig. 14-7 - Ilorizontal pattern of a horizontal halfwave antenna at three vertical radiation angles. The solid line is relative radiation at 15 degrees. Dotted lines show deviation from the 15 -degree pattern for angles of 9 and 30 degrees. The pat terns are useful for shape only, since the amplitude will depend upon the height of the antenna above ground and the vertical angle ennsidered. The patterns for all three angles have been proportioned to the same scale, but this does not mean that the maximum amplitudes necessarily will be the same. The arrow indicates the direction of the horizontal antenna wire.

Radiation Characteristics

The radiation from a half-wave antema is not uniform in all directions but varies with the angle with respect to the axis of the wire. It is most intense in directions perpendicular to the wire and zero along the direction of the wire, with intermediate values at intermediate angles. This is shown by the sketch of Fig. 14-5, which represents the radiation pattern in free space. The relative intensity of radiation is proportional to the length of a line drawn from the center of the figure to the perimeter. If the antenna is vertical, as shown in the figure, then the field strength will be uniform in all horizontal directions; if the antenna is horizontal, the relative field strength will depend upon the direction of the receiving point with respect to the direction of the antenna wire. The variation in radiation at various vertical angles from a half-wavelength horizontal antenna is indicated in Figs. 14-6 and 14-7.

- feeding the half-wave ANTENNA

Direct Feed

If possible, it is advisable to locate the antenna at least a half-wavelength from the transmitter and use a transmission line to carry the power from the transmitter to the

Fig, 14-8- Methods of directly exciting the half-waye antenna, Λ, current feed, series tuning; B, voltage feed, capacitive compling; (., voltage feed, with in-ductively-coupled antenna tank. In A, the coupling circuit is not included in the effertive electrical length of the antennasystem proper.
antenna. However, in many cases this is impossible, particularly on the lower frequencies, and direct feed must be used. Three examples of direct feed are shown in Fig. 14-8. In the method shown at A, C_{1} and C_{2} should be about $150 \mu \mu \mathrm{fd}$, each for the $3.5-\mathrm{Mc}$. band, $75 \mu \mu \mathrm{fd}$. each at 7 Mc., and proportionately smaller at the higher frequencies. The antenna coil connected between them should resonate to 3.5 Me, with about 60 or $70 \mu \mu \mathrm{fd}$., for the $80-$ meter band, for 40 meters it should resonate with 30 or $35 \mu \mu \mathrm{fd}$., and so on. The circuit is adjusted by using loose coupling between the antenna coil and the transmitter tank coil and adjusting C_{1} and C_{2} until resonance is indicated by an increase in plate current. The coupling between the coils should then be increased until proper plate current is drawn. It may be necessary to reresonate the transmitter tank circuit as the coupling is increased, but the change should be small.

The circuits in Fig. 14-8B and C are used when only one end of the antenna is accessible. In B, the coupling is adjusted by moving the tap toward the "hot" or plate end of the tank coil - the condenser C may be of any convenient value that will stand the voltage, and it doesn't have to be variable. In the circuit at C, the antenna tuned circuit (C_{1} and the antenna coil) should be similar to the transmitter tank circuit. The antenna tuned circuit is adjusted to resonance with the antenna connected but with loose coupling to the transmitter. Heavier loading of the tube is then obtained by tightening the coupling between the antenna coil and the transmitter tank coil.

Of the three systems, that at A is preferable because it is a symmetrical system and generally results in less r.f. power "floating" around the shack. The system of B is undesirable because it provides practically no protection against the radiation of harmonics, and it should only be used in emergencies.

Transmission-Line Feed for Half-Wave Antennas

Since the impedance at the center of a halfwavelength antenna is in the vicinit of 75 olms, it offers a good match for 75 -ol m twowire transmission lines. Several types are available on the market, with different powerhandling capabilities. They can be conmected in the center of the antenna, across a small strain insulator to provide a eonvenient connection point. Coaxial line of 75 ohms impedance can also be used, but it is heavier and thus not as convenient. In either case, the transmission line should be run away at right angles to the antenna for at least one-quarter wavelength, if possible, to avoid current unbalance in the line caused by pick-up from the antenna. The antenna length is calculated from Lquation 14-B, for a half-wavelength anteme. When No. 12 or No. 14 enameled wire is use. for the antenna, as is generally the case, the length of the wire is the over-all length measured from the loop through the insulator at each end. This is illustrated in Fig. 14-9.

The use of 75 -ohm line results in a "flas" line over most of any amateur band. However, by making the half-wave antenna in a special manner, called the two-wire or folded dipole, a good match is offered for a 300 -ohm line. such an antenna is shown in lig. 14-10. The open-wire line shown in Fig, 14-10 is made of

Fig. 14-9 - Construction of a half-wave Joublet fed with $75-\mathrm{ohm}$ line. The length of the antenga is calculated from Equation 14-B or Fig. 14-4.

Fig. 14-10 - The construction of an open-wire folded doublet fed with 300 -ohm line. The length of the antenna is calculated from Equation 11-13 or Fig. It-I.

No. 12 or No, 14 enameled wire, separated by lightweight spacers of Lucite or other material (it doesn't have to be a low-loss insulating materia!), and the sparing can be on the order of from 4 to 8 inches, depending upon what is convenient and what the operating frequency is, At 14 Mc., 4 -inch separation is satisfuctory, and 8 -inch or even greater spacing can be used at 3.5 Mc .

The half-wavelength antenna can also be made from the proper length of 300 -ohm line, opened on one side in the conter and connerted to the feedline. After the wires have been soldered together, the joint can be strengthened by molding some of the excess insulating material (polyethylene) around the joint with a hot iron, or a suitable lightweight clamp of two pieces of Lucite can be devised.

Fig. 14-11 - The construction of a 3-wire folded dipole is similar to that of the 2-wire folled dipole. 'I'tre and spucers may have to be slightly stronger than the others becanse of the greater compression force ont them. "The length of the antenna is ohtained from Fquation It-13 or F'ig. I.4-1, A suitable line can be made from No. It wire spaced $41 / 2$ to 5 inches, or from No. 12 wire spaced 6 inches.

Similar in some respects to the two-wire folded dipole, the threr-wire folded dipole of Fig. 14-11 offers a good match for a 600 -ohm line. It is favored by amateurs who prefer to use an open-wire transmission line instead of the 300 -ohm insulated line. The three wires of the antenna proper should all be of the same diamcter.

Another method for offering a match to a 600 -ohm open-wire line with a half-wavelength antenna is shown in Fig. 14-12. The system is called a delta match. The line is "fanned" as it approaches the antenna, to have a gradu-ally-increasing impedance that equals the antenna impedance at the point of connection. The dimensions are fairly critical, but careful measurement before installing the antenna and matching section is generally all that is neces-
sary. The length of the antenna. L, is calculated from Equation 14-B or Fig. 14-4. The length of section C is computed from:

$$
\begin{equation*}
C(\text { feet })=\frac{118}{\text { Freq. (Mc.) }} \tag{14-E}
\end{equation*}
$$

The feeder clearance, E, is found from

$$
\begin{equation*}
E(\text { feet })=\frac{148}{\text { Freq. (Mc.) }} \tag{14-F}
\end{equation*}
$$

Example: For a frequency of 7.1 Mc , the length
$L_{4}=\frac{468}{7.1}=6.5 .91$ feet, or 6.5 feet 11 inches.
$C=\frac{118}{3.1}=16,02$ feet, or 16 feet 7 inches.
$E=\frac{148}{i .1}=20.84$ feet, or 20 feet 10 inches.

Fig, 14-12 - Delta-matched antenna system. The dimensions $C, 1$, and E are foond by formilas given in the text. It is important that the matehing section, E, comestraight away from the antenna without any bends.

Since the equations hold only for 600 -ohm line, it is important that the line be close to this value. This requires $43 / 4$-inch spaced No. 14 wire, 6 -inch spaced No. 12 wire, or $33 / 4$-inch spaced No, 16 wire.

If a half-wavelength antenna is fed at the center with other than 75 -ohm line, or if a two-wire dipole is fed with other than 300 -ohm line, standing waves will appear on the line and coupling to the transmitter may become awkward for some line lengths, as described in the preceding chapter. However, in many cases it is not convenient to feed the half-wave antenna with the correct line (as is the case where multiband operation of the same antenna is desired), and sometimes it is not convenient to feed the antenna at the center. Where multiband operation is desired (to be discussed later) or when the antenna must be

Fig. 14-13 - The half-wave antenna can be fed at the center or at the end with an open-wire line. The antenna length is obtained from Equation 14-B or Fig. 14-4.
fed at one end by a transmission line, an openwire line of from 450 to 600 ohms impedance is generally used. The impedance at the end of a half-wavelength antenna is in the vicinity of several thousand ohms, and hence a standingwave ratio of 4 or 5 is not unusual when the line is connected to the end of the antenna. It is advisable, therefore, to keep the losses in the line as low as possible. This requires the use of
ceramic or Micalex feeder spacers, if any appreciable power is used. For low-power installations in dry climates, dry wood spacers that have been boiled in paraffin are satisfactory. Mechanical details of half-wavelength antennas fed with open-wire lines are given in Fig. 14-13, If the power level is low, below 100 watts or so, 300 -ohm Twin-Lead can be used in place of the open line.

Long-Wire Antennas

An antenna will be resonant so long as an integral number of standing waves of current and voltage can exist along its length; in other words, so long as its length is some integral multiple of a lalf-wavelength. When the antenna is more than a half-wave long it usually is called a long-wire antenna, or a harmonic antenna.

Current and Voltage Distribution

Fig. 14-14 shows the current and voltage distribution along a wire operating at its fundamental frequency (where its length is equal to a half-wavelength) and at its second, third and fourth harmonies. For example, if the fundamental frequener of the antenna is 7 Mc., the current and voltage distribution will be as shown at λ. The same antenna excited at 14 Mc . would have current and voltage distribution as shown at 13. At 21 Me., the third harmonic of 7 Mc., the current and voltage distribution would be as in C; and at 28 Mc., the fourth harmonic, as in D. The number of the harmonic is the number of half-waves con-

Fig. 14-14 - Standing-wave current and voltage distribution along an antenna when it is operated at vari. ous harmonics of its fundamental resonant frequency.

Fig. I4-15-Gurve A shows variation in radiation resistance with antenna length. Curve 13 shows power in loles of maximum radiation for long-wire antennas as a ratio to the maximum radiation for a half-wave antenna.
tained in the antenna at the particular operating frequency.

The polarity of current or voltage in each standing wave is opposite to that in the adjacent standing waves. This is shown in the figure by drawing the current and voltage curves successively above and belor the antenna (taken as a zero reference linc), to indicate that the polarity reverses when the current or voltage goes through zero. Currents flowing in the same direction are in phase; in opposite directions, out of phase.

It is evident that one antenna may be used for harmonically-related frequencies, such as the various amateur bands. The long-wire or harmonic antenna is the basis of multiband operation with one antenna.

Physical Lengths

The length of a long-wire antenna is not an exact multiple of that of a half-ware antenna because the end effects operate only on the end sections of the antenna; in other parts of the wire these effects are absent, and the wire length is approximately that of an equivalent

Fig. 14.16-IIorizontal patterns of radiation from a full-icate antenna, 'The solid line shows the pattern for a vertical angle of 15 degrees; dotted lines show deviation from the 15 -degree pattern at 9 and 30 degrees. All three patterns are drawn to the same relative scale: actual am. plitudes will depend upon the height of the antenna.
portion of the wave in space. The formula for the length of a long-wire antemm, therefore, is

$$
\text { Length }(\text { fect })=\frac{492(N-0.05)}{\text { Freq. }(\mathrm{Me})} \quad 14-\mathrm{G}
$$

where N is the number of half-waves on the antenna.

Example: In antenna 4 half-waves longat 14,2

$$
\text { Mc. would he } \frac{4!2(4-0.05)}{14.2}=\frac{492 \times 3.955}{14.2}
$$

$$
=136.7 \text { feet, or } 136 \text { feet } 8 \text { inches. }
$$

It is apparent that an antenna cut as a halfwave for a given frequency will be slightly off resonance at exactly twice that frequency (the

Fig. 14.17- Horizontal patterns of radiation from an antenna three half-rates long. The solid line shows the pattern for a vertical angle of 15 degrees; dotted lines show deviation from the 15 -degree pattern at 9 and 30 degrees. Minor lobes coincide for all three angles.
second harmonic), because of the decreased influence of the end effects when the antenna is more than one-half wavelength long. The effeet is not very important, exeept for a possible unbalance in the feeder system and consequent radiation from the feedline. If the antenna is fed in the cxart center, no unbalance will occur at any frequency, but end-fed systems will show an unbalance in all but one frequency, the frequency for which the antenna is cut.

Impedance and Power Gain

The radiation resistance as measured at a current loop becomes larger as the antenna length is increased. Also, a long-wire antenna radiates more power in its most favorable direction than does a half-wave antenna in its most favorable direction. This power gain is

Fig. 1.4-18- Iorizontal patterns of radiation from an antenna "wo ratelengits long. The solid line shows the pattern for a vertieal angle of 15 degrees; dotted lines show deviation from the 15 -degree pattern at 9 and 30 degrees, 'The minor lobes coincide for all three angles.
secured at the expense of radiation in other directions. Fig. $14-15$ shows how the radiation resistance and the power in the lobe of maximum radiation vary with the antenna length.

Directional Characteristics

Is the wire is made longer in terms of the number of half-wavelengths, the directional effects change. Instcad of the "doughnut" pattern of the half-wave antema, the direetional characteristic splits up into "lobes" which make various angles with the wire. In gencral, as the length of the wire is increased the direction in which maximum radiation occurs tends to approach the line of the antenna itself.
1)irectional characteristies for antennas one wavelength, three half-wavelengths, and two wavelengths long are given in Figs. 14-16, 14-17 and 14-18, for three vertical angles of radiation. Note that, as the wire length in-
creases, the radiation along the line of the antenna becomes more pronounced. Still longer antennas can be considered to have practically "end-on" directional characteristics, even at the lower radiation angles.

Methods of Feeding

In a long-wire antenna, the currents in adjacent half-wave sections must be out of phase, as shown in Fig. 14-14. The feeder system must not upset this phase relationship. This requirement is met by feeding the antenna at either end or at any current loop. A two-wire feeder cannot be inserted at a current node,
however, because this invariably brings the currents in two adjacent half-wave sections in phase; if the phase in one section could be reversed, then the currents in the feeders necessarily would have to be in phase and the feeder radiation would not be canceled out.

No point on a long-wire antenna offers a reasonable impedance for a direct match to any of the common types of transmission lines. The most common practice is to feed the antenna at one end or at a current loop with a low-loss open-wire line and accept the resulting standing-wave ratio of 4 or 5 . When a better match is required, "stubs" are generally used (described in the preceding chapter).

Multiband Antennas

As suggested in the preceding section, the same antenna may be used for several bands by operating it on harmonics. When this is done it is necessary to use resonant feeders, since the impedance matching for nonresonant feeder operation can be accomplished only at one frequency unless means are provided for changing the length of a matching section and shifting the point at which the feeder is attached to it.

Furthermore, the current loops shift to a new position on the antenna when it is operated on harmonics, further complicating the feed situation. It is for this reason that a half-wave antenna that is center-fed by a solid-dielectric line is practically useless for harmonic operation; on all even harmonics there is a voltage maximum occurring right at the feed point, and the resultant impedance mismatch is so bad that there is a large standing-wave ratio and consequently high losses arise in the solid dielectric. It is wise not to attempt to use on its harmonics a half-wave antenna center-fed with coaxial cable. Iligh-impedance solid-dielectric lines such as 300 -ohm Twin-Lead may be used, however, provided the power does not exceed a few hundred watts.

When the same antenna is used for work in several bands, it must be realized that the directional characteristic will vary with the band in use.

Simple Systems

The most practical simple multiband antenna is one that is a half-wavelength long at the lowest frequency and is fed either at the center or one end with an open-wire line. Although the standing-wave ratio on the feedline will not approach 1.0 on any band, if the losses in the line are low the system will be efficient. From the standpoint of reduced feedline radiation, a center-fed system is superior to one that is end-fed, but the end-fen arrangement is often more convenient and should not be ignored as a possibility. The center-fed antenna will not have the same radiation pattern as an end-fed one of the same length, except on frequencies where the over-all length of the antenna is a half-wavelength or less. The end-fed antenna acts like a long-wire antenna on all bands (for which it is longer than a half-wavelength), but the center-fed one acts like two antennas of half that length fed in phase. For example, if a full-vavelength antenna is fed at one end, it will have a radiation pattern as shown in Fig. 14-10, but if it is fed in the center the pattern will be somewhat similar to Fig. 14-7, with the maximum radiation broadside to the wire. Either antenna is a good radiator, but if the radiation pattern is a factor, the point of feed must be considered.

Since multiband operation of an antenna does not permit matching of the feedline,
some attention must be paid to the length of the feedline if convenient transmitter-coupling arrangements are to be obtained. Table 14-I gives some suggested antenna and feeder lengths for multiband operation. In general, the length of the feedline should be some integral multiple of a quarter wavelength at the lowest frequency.

Antennas for Restricted Space

If the space available for the antenna is not large enough to accommodate the length necessary for a half-wave at the lowent frequency to be used, quite satisfactory operation can be secured by using a shorter antenna and making

nor

TABLE 14-I Multiband Resonant-Line Fed Antennas				
Antenna Lenglh (ft.)	Feeder I.engh (.fr.)	Band	Tvpe af Tuning	
With end ferd: 120	60	1. Nc, "Mhume	series	
136	67		seriem parallel parallel parallel	
134	$6:$	$\begin{gathered} 3 . \overline{3}=1 / c, w, \\ \div \\| c, \end{gathered}$	series parallel	
67	33	110 1.1 Mr . 28 Mc.	serirs parallal paralle!	
With renter feed: 137	67		parallel parallel parallel parally	
67.5	34		parallel parallel parallel	
'l'he antenna lengthas given represent compromises for harmonic operation becatise of different end efferets on different bands. "Ihe 130 -font endefed antenna is sliphty long for 3.5 Mr.. but will worh well in the region ($3 \mathrm{~B}(0)-3600 \mathrm{ke}$.) that quadruple. into the 14-Nic. haml. Bamls mot listed are not recommended for the particular antrina. The ren-ter-fed systems are less critical as to length. On harmonics, the end-fed and center-fed antennas will not have the same dimectional eharacteris. ties, as explained in the text.				

up the missing length in the feeder system. The antenna itself may be as short as a quarter wavelength and still radiate fairly well, although of course it will not be as effective as one a half-wave long. Nevertheless, such a system is useful where operation on the desired band otherwise would be impossible.

Resonant feeders are a practical necessity with such an antenna system, and a center-fed antenaa will give best all-around performance. With end feed the feeder currents become badly unbalanced.

With center feed practically any convenient length of antenna can be used, if the feeder length is adjusted to accommodate at least one half-wave around the whole system.

A practical antenna of this type can be made as shown in Fig. 14-19. Table 14-II gives a few recommended lengths. However, the antenna can be made any convenient length, provided the total length of wire is a half-wavelength at the towest frequency, or an integral multiple of a half-wavelength.

Bent Antennas

Since the field strength at a distance is proportional to the current in the antenna, the
high-current part of a half-wave antenna (the center quarter wave, approximately) does most of the radiating. Idvantage can be taken of this fact when the spare available does not permit building an antenna a halfwave long. In this rase the ends may be bent, either horizontally or vertically, so that the

Fig. 14.20-Folded arrangement for shortened antennas. The total longth is a half-wave, not including the feeders. 'I'he horizontal part is made as long as convenient and the ends dropped down to make up the required length. 'l'he ends may be bent hack on themselves like freders to cancel radiation partially, "f'he horizontal section should be at least a guarter wave long.
total length equals a half-wave, even though the straightaway horizontal length may he as short as a quarter wave. The operation is illustrated in lig. 11-20. Such an antenna will be a somewhat better radiator than a quarterwavelength antenna on the lowest frequency, but is not so desirablo for multiband operation because the fads play an increasingly important part as the frequency is raised. The performane of the system in such a cuse is difficult to prediet, esperially if the ends are vertical (the most convenient arrangement) becanse of the complex combination of horizontal and vertical polarization which results as well as the dissimilar direetional characteristies. However, the fact that the radiation pattern is incapable of prediction does not detract from the general usefulness of the antemat.

TABLE 14-II Anterna and Feeder Lengths for Short Multiband Antennas, Center-Fed				
Antenna Length (ft.)	Feeder Lenkth (fir)	Band	Type of Tunink	
100	83	$\begin{aligned} 3.5 & \text { Mc. } \\ 6 & \text { Mc. } \\ 14 & \text { Mc. } \\ 28 & \\| c \end{aligned}$	paralled series serits serins er paralli.l	
67.5	34	$\begin{aligned} & 3.3 \text { Mc. } \\ & 7 \text { M1. } \\ & 1 t \text { Mc. } \\ & 28 \text { Mc. } \end{aligned}$	series paralle! parallel parallel	
50	13	$\begin{array}{r} 7 \text { Mr, } \\ 14 \text { Mc. } \\ 28 \text { Mc. } \end{array}$	parallel paralle! parallel	
33	51	$\begin{array}{r} 7 \text { Mc. } \\ 14 \text { Nc. } \\ 28 \text { Mc. } \end{array}$	parallel parallel parallel	
33	31	$\begin{array}{r} 7 \mathrm{Mc}, \\ 14 \mathrm{Mc} \\ 28 \mathrm{Mc} . \end{array}$	parallel series parallel	

Grounded Antennas

Space restrictions often limit the size of an antenna to less than a half wavelength, particularly on 160 meters and in mobile work. In these instances, an antenna an plectrical quarter wavelength is generally used, since it is resonant and will offer a convenient load to a

Fig. 14.21-A quarter-wavelength antenna can be fed directly with 50 -ohm coavial line (1) with a low stand-ing-wave ratio, or a coupling network can be used (B) that will permit a line of any impedance to be used. In (B), L_{1} and A_{1} should resonate to the operating freguency, and L_{1} should be larger than is mormally used in a plate tanh circuit at the same frequeney.

By using miltiwire antemas, the quater-wave vertical can be fed with (C) 150 - or (D) 300 -ohm line.
line or coupling device. Quarter-wavelength antennas must be grounded at one end, so they are usually used in a vertieal position, to obtain the maximum effective height.

The impedance at the current loop of a quarter-wavelength grounded antenna is in the vicinity of 35 ohms, and thus the antenna may be fed at this point with 50 -ohm coaxial cable without a serious mismateh. This and other methods of feeding quarter-wave antennas is shown in lig. 14-21.

antennas for 160 meters

Results on 1.8 Mc . will depend to a large extent on the antenna system and the time of day or night. Almost any random long wire that can be tuned to resonance will work during the night but it will generally be found very inefiective during the day. A vertical antenna - or rather an antenna from which the radiation is predominantly vertically polarized - is probably the best for $1.8-$.Inc. operation. A horizontal antenna (horizontally
polarized radiation) will give better results during the night than the day because daytime absorption in the ionosphere is so high at this frequeney that the reflected wave is too weak to be useful. It night the performanee improwes because nightime ionosphere conditions generally permit the reflected wave to return to earth without too much attenation. The vertically-polarized radiator gives a strong ground wave that is effective day or night, and it is to be preferred on 1.8 Mc .

There is another reason why a vertical antenna is better than a horizontal for 160 meter operation. The low-angle radiation from a horizontal antenna $1 / 8$ or $1 / 4$ wavelength above ground is almost insignificant. A ay reasonable height is small in terms of wavelength, so that a horizontal antenna on 160 meters is a poor radiator at angles useful for long distances ("long", that is, for this band). Its chief usefulness is over relatively short distances at night.

Bent Antennas

Since ideal vertical antennas are generally out of the question for practical amateur work, the best compromise is to bend the antenna in such a way that the high-e:urrent portions of the antenna run vertically. It is, of course, advisable to place the antemna so that the highest currents in the antenna occur at the highest points above actual ground. Two antenna systems designed along these lines are shown in Fig. 14-22. The antenna at A uses a loading roil, L_{2}, to increase the electrical length of the antenna to a half wave-

Fig. 14.22-Bent antenna for the 160 -meter band, In the system at A, the vertical portion (length X) should be made as long as possible. In either antenna system, $L_{1} C_{1}$ should resonate at 1900 ke., roughly, To adjust L_{2} in antenna A, resonate $L_{1} C_{1}$ alone to the operating frefuency, then connect it to the antenna system and adjust L_{2} for maximum loading. Further loading can be obtained by increasing the coupling between L_{1} and the link.

CHAPTER 14

length, so that the antenna can be fed at its high-voltage point through the coupling circuit $L_{1} C_{1}$. The antenna of Fig. $14-22 B$ uses a full half-wavelength of wire but is bent so that the high-current portion runs vertically. The horizontal portion running to $L_{1} C_{1}$ should run 8 or 10 feet above ground.

Grounds

A good ground connection is generally important on 160 meters. The ideal system is a number of wire radials buried a foot or two underground and extending 50 to 100 feet from the central connection point. As many radials as possible should be used.

If the soil is good (not rocky or sandy) and generally moist, a low-resistance connection to the cold-water pipe system in the house will often serve as an adequate ground system. The connection should be made close to where the pipe enters the ground, and the surface of the pipe should be scraped clean before tightening the ground clamp around the pipe.

A 6 - or 8 -foot length of 1 -inch water pipe, driven into the soil at a point where there is

Fig. 14.23 - An arrange. ment for keeping the main radiating portion of the antenna vertical.
considerable natural moisture, can be used for the ground connection. Three or four pipes, driven into the ground 8 or 10 feet apart and all joined together at the top with heavy wire, are more effeetive than the single pipe.

The use of a counterpoise is recommended where a buried system is not practicable or where a pipe ground cannot be made to have low resistance be- cause of poor soil conditions. A counterpoise consists of a number of wires supported from 6 to 10 feet above the surface of the ground. Generally the wires are spaeed 10 to 15 feet apart and located to form a square or polygonal configuration under the vertical portion of the antenna.

Long-Wire Directive Arrays

THE "V' ANTENNA

It has been emphasized that, as the antenna length is increased, the lobe of maximum radiation makes a more acute angle with the

give good performance in multiband operation. Angle \propto is approximately equal to twice the angle of maximum radiation for a single wire equal in length to one side of the " V."

The wave angle referred to in Fig. 14-25 is the vertical angle of maximum radiation. Tilting the whole horizontal plane of the "V" will tend to increase the low-angle radiation off the low end and decrease it off the high end.

The gain increases with the length of the

Fif. 14-24 - The basic "V" antenna, made by combining two long wires.
wire. Two such wires may be combined in the form of a horizontal "V" so that the main lobes from each wire will reinforce along a line bisecting the angle between the wires. This increases both gain and directivity, since the lobes in directions other than along the bisector cancel to a greater or lesser extent. The horizontal " V " antenna therefore transmits best in either direction (is bidirectional) along a line bisecting the " V " made by the two wires. The power gain depends upon the length of the wires. Provided the necessary space is available, the " V " is a simple antenna to build and operate. It can also be used on harmonics, so that it is suitable for multiband work. A top view of the " V " antenna is shown in Fig. 14-24.
Fig. 14-25 shows the dimensions that should be followed for an optimum design to obtain maximum power gain for differentsized "V" antennas. The longer systems

Fig. $14-25$ - Design chart for horizontal "V" antennas, giving the enclosed angle between sides us. the length of the wires. Values in parentheses represent approximate wave angle for height of one-half wavelength.
wires, but is not exactly twiee the gain for a single long wire as given in Fig. 14-15. In the longer lengths the gain will be somewhat increased, because of mutual coupling between the wires. A " V " eight wavelengths on a leg. for instance, will have a gain of about 12 db . over a half-wave antenna, whereas twice the gain of a single eight-wavelength wire would be only approximately 9 db .

The two wires of the " V " must be fed out of phase, for correct operation. A resonant line may simply be attached to the ends, as shown in Fig. 14-24. Alternatively, a quarter-wave matching section may be employed and the antenna fed through a nonresonant line. If the antenna wires are made multiples of a half-wave in length (use Equation 14-G for computing the length), the matehing section will be closed at the free end. A stub can be connected across the resonant line to provide a match, as described in the preceding chapter.

THE RHOMBIC ANTENNA

The horizontal rhombic or "diamond" antenna is shown in Fig. 14-26. Like the "V," it requires a great deal of space for erection, but it is capable of giving excellent gain and directivity. It also can be used for multiband operation. In the terminated form shown in I'ig. 14-26, it operates like a nonresonant transmission line, without standing waves, and is unidirectional. It may also be used without the terminating resistor, in which case there are standing waves on the wires and the antenna is bidirectional.

The important quantities influencing the design of the rhombic antenna are shown in Fig. 14-26. While several design methods may be used, the one most applicable to the conditions existing in amateur work is the so-ealled "compromise" method. The chart of Fig. 14-27 gives design information based on a given length and wave angle to determine the remaining optimum dimensions for best operation. Curves for values of length of two, three

Fig. 14.26 - The horizontal rhombic or diamond antenna, terminated. Important design dimensions are indicated; details in text.

Fï, 14.27 - Compromise-method design chart for rhombic antennas of various leg lengt ths and wave angles. The following examples illustrate the use of the chart:
(1) Given:

Length (L) $=2$ wavelengths
Desired wave angle (1) $=20^{\circ}$.
To Find: H, Φ.
Method:
Draw vertical line through point $a(L=2$ wavelengths) and point b on abscissa ($~\left(~=~ 20^{\circ}\right)$. Kead angle of tilt (Φ) for point a and height (I) from intersection of line ab at point c on carve H.
Result: $\Phi=60.5^{\circ}$. $I I=0.73$ wavelength,
(2) Given: Length (L) $=3$ wavelengths, Angle of tilt $(\Phi)=78^{\circ}$.
To Find: H, Δ.
Method:
Draw a vertieal line from point d on curve $L=3$ wavelengths at $\Phi=78^{\circ}$. Read intersection of this line on curve H (point e) for hright, and intersection at point f on the absei sa for Δ.

Result:

$$
\begin{aligned}
I I & =0.56 \text { wavelength }, \\
\Delta & =26.6^{\circ} .
\end{aligned}
$$

and four wavelengths are shown, and any intermediate values may be interpolated.

With all other dimensions correct, anincrease in length causes an increase in power wain and a slight reduction in wave angle. An increase in height also causes a reduction in wave angle and an increase in power gain, but not to the same extent as a proportionate increase in length. For multiband work, it is satisfactory so design the rhombic antenna on the basis of 14-Mc. operation, which will permit work from the 7 - to $28-\mathrm{Mc}$. bands as well.

A value of 800 ohms is cerrect for the terminating resistor for any properly-constructed rhombic, and the system behaves as a pure resistive load under this condition. The terminating resistor must be capable of safely dissipating one-half the power output (to eliminate the rear pattern), and should be noninductive. Such a resistor may be madt up from a carbon or graphite rod or from a long $800-\mathrm{ohm}$ transmission line using
resistance wire. If the carbon rod or a similar form of lumped resistance is used, the device should be suitably protected from weather effects, i.e., it should be covered with a good asphaltic compound and sealed in a small lightweight box or fiber tube. Suitable nonreactive terminating resistors are also available commercially.

For feeding the antenna, the antenna impedance will be matehed by an 800 -ohm line, which may be constructed from No. 16 wire spaced 20 inches or from No. 18 wire spaced 16 inches. The 800 -ohm line is somewhat ungainly to install, however, and may be replaced by an ordinary 600 -ohm line with only a negligible mismateh. Nternatively, a matching section may be installed between the antenna terminats and a low-impedance
line. However, when such an arrangement is used, it will be necessary to change the match-ing-section constants for each different band on which operation is contemplated.

The same design details apply to the unterminated rhombic as to the terminated type. When used without a terminating resistor, the system is bidirectional. Resonant feeders are generatly used with the unterminated rhombic. A nonresonant line may be used by incorporating a matehing section at the antenna, but is not readily adaptable to satisfactory multiband work.

Rhombic antennas will give a power gain of 8 to 12 d . or more for leg lengths of two to four wavelengt hs, when constructed according to the charts given. In general, the larger the antenna, the greater the power gain.

Directive Arrays with Driven Elements

By combining individual half-wave antennas into an array with suitable spacing between the antennas (called elements) and feeding power to themsimultaneously, it is possible to make the radiated fields from the individual elements ald in a favored direction, thas increasing the field strength in that direction as compared to that produced by one antema element alone. In other directions the fields will more or less oppose each other, giving a reduction in field strength. Thus a power gain in the desired direction is secured at the expense of a power reduction in other directions.

Besides the spacing between elements, the instantaneous direction of current flow (phase)

Fig. 14.28 - Collinear half-wave antenmas in phase. 'The sys. tem at A is gencrally known ase "two half-waves in phase," If is an extension of the system; in theory the mumber of elements may be carried on indefinitely, but practical considerations usually limit the clements to four.
in individual elements determines the directivity and power gain. There are several methods of arranging the elements. If they are strung end to end, so that all lie on the same straight line, the elements are said to be collinear. If they are parallel and all lying in the same plane, the elements are said to be broadside when the phase of the current is the same in all, and end-fire when the currents are not in phase. Elements that receive power from the transmitter through the transmission line are called driven elements.
"lhe power gain of a directive system in-
creases with the number of clements. The proportionality between gain and number of elements is not simple, however. The gain depends upon the effect that the spacing and phasing has upon the radiation resistance of the elements, as well as upon their number.

Collinear Arrays

Simple forms of collinear arrays, with the current distribution, are shown in Fig. 14-28. The two-element array at A is popalaty known as "two half-waves in phase." It will be recognized as simply a center-fed antenna operated at its second harmonic. The way in which the number of elements may le extended for increased directivity and rain is shown in Fig. 14-2813. Note that quarter-wave phasing sections are used between elements; these give the reversal in phase necossary to make the currents in individual antenna elements all flow in the same direction at the same instant. Any phase-reversing section may be used as a quarter-wave matching seetion for attaching a nonresonant feeder, or a resonant transmission line may be substituted for any of the quarter-wave seetions. Also, the antenna may be endfed by any of the systems previously described, or any element may be centerfed. It is best to feed at the center of the array, so that the energy will be distributed as uniformly as possible among the elements.

The gain and directivity depend upon the number of elements and their spacing, center-to-centor. This is shown by Table 14-III. Although three-quarter wave spacing gives greater gain, it is diffieult to eonstruet a suitable phase-reversing system when the ends of the antenna elements are widely separated. For this reason, the half-wave spacing is most generally used in actual practice.

Collinear arrays may be mounted either horizontally or vertically. Horizontal mount-

TABLE 14-III Theoretical Gain of Collinear Half-Wave Antennas					
Spacing betreen centers of adjacent hulf-rcares	Number of half-wares in array vs. gain in db.				
	2	3	4	5	6
31/2 wave	1.8 3.2	3 48 4	1.5 6.0	5.3 7.0	6.8

ing gives increased horizontal directivity, while the vertical directivity remains the same as for at single element at the same height. Vertical mounting gives the same horizontal pattern as a single element, but concentrates the radiation at low angles. It is seldom practicable to use more than two elements vertically at frequencies below 14 Mc , becaluse of the excessive height required.

Broadside Arrays

Irarallel antenna clements with currents in phase may be eombined as shown in Fig. 14-29 to form a broadside array, so named because

Fig. I. 2.29 - Ibroadside array using parallel half-wave alements. Arrows indicate the direction of current flow. Transposition of the feeders is necesadery to hring the antenna rurrents in phase. Any redsomahie number of filements may be used. The array is bidirertional, with maximum radiation "hroadside" or perpendicular to the anterna plane (perpendientarly through this gage).
the direction of maximum radiation is broadside to the plane containing the antennas. Again the gain and directivity depend upon the number of elements and the spacing, the gain for different spacings being shown in Fig. 14-30, Ilalf-wave sparing generally is used, since it simplifies the problem of feeding the system when the array has more than two elements. Table $14-I V$ gives theoretical gain as a function of the number of elements with half-wave spacing.

Broadside arrays may be suspended either with the elements all vertieal or with them horizontal and one above the other (stacked). In the former case the horizontal pattern becomes quite sharp, while the vertical pattern is the same as that of one element alone. If the array is suspended horizontally, the horizontal pattern is equivalent to that of one element while the vertical pattern is sharpened, giving low-angle radiation.

Broadside arrays may be fed either by resonant transmission lines or through quarterwave matching sections and nonresonant lines. In Fig. 14-29, note the "crossing over" of the
feeders, which is necessary to bring the elements into proper phase relationship.

Combined Broadside and Collinear Arrays

Ibroadside and collinear arrays may be combined to give both horizontal and vertical directivity, as well as additional gatin. The general plan of eonstructing such antennat is shown in Fig. 14-31. The lower angle of radiation resulting from stacking elements in the vertioal plane is desirable at the higher frequencies. In general, doubling the number of elements in an array by stacking will raise the gat from 2 to 4 db ., depending upon whether vertical or horizontal elements are used - that is, whether the stacked elements are of the broadside or collinear type.

The arrays in Fig. 14-31 are shown fed from one end, but this is not erpecially desirable in the case of large arrays. Better distribation of energy between elements, and hence better over-all performance, will result when the feeders are attached as mearly as possible to the center of the array. Thus, in the eight-clement army at A, the feeders could the introduced at the middle of the transmission line between the second and third set of elements, in which case the romerting line would not be transposed between the second and third set of elements. Alternatively, the antemat could be constructed with the transpositions as shown and the feeder connected between the adjacent ends of either the second or third pair of collinear elements.

A four-element array of the general type shown in Fig. 14-3113, known as the "gazy-II" antenna, has been quite frequently used. This arrangement is shown, with the feed peint indicated, in Fig. 14-32.

End-Fire Arrays

Fig. 14-33 shows a pair of parallel half-wave elements with currents out of phase. This is known as an end-fire array, because it radiates best along the plane of the antennas, sis shown.

The end-fire array may be used either ver-

Fig. 14-30 - Gain es. ppacing for two parallel half-wave elements combined as either broadside or end-fire arrays.

Fig. 14-31 - Combination broadside and eollinear ar. rays. A, with vertical elements; B, with horizontal elements. Both arrays give low angle radiation. 'liwo or more sections may be used. The gain in db, will be equal. approximately, to the sum of the gain for one set of broadside elements (Table 14-IV) plus the gain of one set of collinear clements ('lable 1-IIII). For example, in A each broatside set has four elements (gain 7 db .) and each collinear set two elements (gain 1.8 db .), giving a total gain of 8.8 dlb. In B, each broadside set has two elements (gain +1 If,) and each collincar set three elements (gain 3.3 db .), making the total gain 7.3 db . The result is not strictly accurate, because of mutual coupling between the elements, but is good enough for practical purposes.
tically or horizontally (elements at the same height), and is well adapted to amateur work because it gives maximum gain with relatively close element spacing. Fig. $14-30$ shows how the gain varies with spacing. End-fire elements may be combined with additional collinear and broadside elements to give a further increase in gain and directivity.

Fig. 14-32-A four-element combination broadside. collinear array, popularly known as the "lazy-11" antenna. A closed quartor-wave stub may be used at the ferel point to mateh into a 600 -ohm transmiscion line, or resonant feeders may be attached at the point indicated. The gain over a half-wave antenna is 5 to 6 db .

Either resonant or nonresonant lines may be used with this type of array. Nonresonant lines preferably are matched to the antenna through a quarter-wave matching section or phasing stub.

Phasing

Figs. 14-31 and 14-33 illustrate a point in comection with feeding a phased antenna system which sometimes is confusing. In Fig. 14-33, when the transmission line is connected as at A there is no crossover in the line connecting the two antennas, but when the transmission line is connected to the center of the
connecting line the crossover becomes necessary (B). This is because in B the two halves of the connecting line are simply branches of the same line. In other words, even though the connceting line in B is a half-wave in length, it is not actually a half-wave line but two quarter-wave lines in parallel. 'The same thing is true of the untransposed line of Fig. 14-31B. Note that, under these conditions, the antenna elements are in phase when the line is not transposed, and out of phase when the transposition is made. The opposite is the case when the half-wave line simply joins two antenna elements and does not have the feedline connected to its center, as in Fig. 14-29.

Adjustment of Arrays

With arrays of the types just described, using half-wave spacing between olements, it

Fig. 1.4.33 - End-fire arrays using parallel balf-wave elements. 'The elements are shown with half-wave spacing to illustrate feeder conncctions. In practice, closer spacings are desirahle, as shown by Fig. 14-30. Direction of maximum radiation is shown by the large arrows.
will usually suflice to make the length of each element that given by Equations 14-B or 14-C. The half-wave phasing lines between the parallel elements should be of open-wire construction, and their length can be calculated from:

$$
\begin{align*}
& \text { Length of half-wate line (feet) }= \tag{14-4}\\
& \frac{480}{\text { Freq. (Mc.) }} \\
& \text { Example: A half-wavolength phasing line for } \\
& 28.8 \text { Me. would be } \frac{480}{28.8}=16.66 \text { feet }=16 \text { feet } \\
& 8 \text { inches. }
\end{align*}
$$

The spacing between elements can be made equal to the length of the phasing line. No special adjustments of line or element length or spacing are needed, provided the formulas are followed closely.

TABLE 14-IV Theoretical Gain vs. Number of Broadside Elements (Half-Wave Spacing)	
No. of elements	Gain
2	4 dh.
3	5.5
4	7
5	8
6	9

With collinear arrays of the type shown in Fig. 14-28B, the same formula may be used for the element length, while the length of the quarter-wave phasing section can be found from the following formula:

$$
\begin{gather*}
\text { Length of quarter-ware line (feet) }= \tag{14-I}\\
\frac{240}{\text { Freq. (Me.) }}
\end{gather*}
$$

Example: A quarter-wavelength phasing line
for 14.25 Mc , would $\mathrm{be} \frac{240}{14.25}=16.84 \mathrm{feet}=16$
feet 10 inches.
If the array is fed in the center it should not he necessary to make any particular adjustments, although, if desired, the whole system ean be resonated by comecting an r.f. ammeter in the shorting link of each phasing section and moving the link back and forth to find the maxi-mum-current position. This refnement is hardly necessary in practice, however, so long as all elements are the same length and the system is symmetrical.

Fig. 14-3.4-Simple directiverantenna systems. A is a twoelement end-fire array: is is the same array with center feed, which permits use of the array on the second harmonic, where it becomes a fouremement array with quarter-wave spacing. ($:$ is a fontrelement end-fire array with $1 / 8$-wave spacing. I) is a simple two-element broad. side array nsing extended in-phase antennas ("extended double-Zepp*). The gain of A and 13 is slightly over 4 db . On the second harmonie, IS will give alout 5 .db, gain. With ($:$, the gain is approximately 6 dh., and with 1$)$, approximately 3 db. In A, B and C, the phasing line contributes about $1 / \operatorname{son}^{\text {wavelength to the transmision }}$ line: when 13 is used on the second harmonic, this contribution is $1 / 8$ wavelength. Alternatively, the antenna ends may be bent to meet the transmission line, in whieh case cach feeder is simply connected to one antenna. In I), points Y - I indirate a quarter-wave point (high current) and I-X a half-wave point (high volt. age). The line may be extended in multiples of quarter waves if resonant feeders are to be used. A, 13 and C may he suspended on wooden spreaders. The plane containing the wires should be parallel to the ground.

The phasing sections can be made of $300-$ ohm Twin-Lead, if low power is used. However, the lengths of the phasing sections must then be only 84 per cent of the length obtained in the two formulas athove,

Example: The half-wavelength line for 28.8 Mc. would beeome $0.84 \times 16.66=13.99$ feet $=$ 14 fect 0 inches
Using Twin-Lead for the phasing sections is most useful in atrays such as that of Fig. 14-28B, or any other system in which the element spacing is not controlled by the length of the phasing section.

Simple Arrays

Several simple directive-antenna systems using driven elements have achieved rather wide use among amateurs. Four of these systems are shown in Fig. 14-34. Tuned feeders are assumed in all cases; however, a matching section readily ean be substituted if nonresonant transmission line is preform. Dimensions given are in terms of wavelength; actual lengths can be calculated from the equations for the antenna and from the equation above for the resonant transmission line or matching section. In cases where the transmission line proper comnects to the midpoint of a phasing line, only half the length of the latter should be added to the line to find the quarter-wave point.

At A and 13 are two-element end-fire s rrangements using close spacing. They are ele trically equivalent; the only difference is in the method of connecting the feeders. B may also be used as a four-element array on the second harmonic, although the spacing is not quite optimum (Fig. 14-30) for such operation.

A close-spaced four-element array is shown at C. It will give about 2 db . more gain than the two-element array.
The antenna at I, commonly known as the "extended double-Zepp," is designed to take advantage of the greater gain possible with collinear antennas having greater than halfwave eenter-to-center spacing, but without introducing feed complications. The elements are made longer than a half-wave in order to bring this about. The gain is 3 db . over a single half-wave antema, and the broadside direetivity is fairly sharp.

The antennas of A and B may be mounted either horizontally or vertically; horizontal suspension (with the elements in a plane parallel to the ground) is recommended, since this tends to give low-angle radiation without an unduly sharp horizontal pattern. Thus these systems are useful for coverage over a wide horizontal angle. The system at C, when mounted horizontally, will have a sharper horizontal pattern than the two-elemeat arrays because of the effect of the collinear arrangement. The vertical pattern, however, will be the same as that of the antennas in \mathcal{A} and B.

Directive Arrays with Parasitic Elements

Parasitic Excitation

The antenna arrays previously described are bidirectional; that is, they will radiate in directions both to the "front" and to the "back" of the antemma system. If radiation is wanted in only one direction, it is nocessary to use different element arrangements. In most of these arrangements the additional clements receive power by induction or radiation from the driven clement, generally called the "antenna," and reradiate it in the proper phase relation-

Fig, 14.35-Gain vs. element spacing for 3-elenent beants using a driven element and a direvtor and a reflector. The 0.dh. reference level is the fideld strength from a halfewavelengh antenna alone, Theae rurves are for the system thned for maximum forward gain,

The element spacing shown is the fraction of a wave. length determined by $\frac{981}{f\left(\mathrm{Ml}_{0}\right)}$. Thus a wavelength at $11.2 \mathrm{Mc},=081 / 11.2=60,3$ fert. I spacing of . 5.5 waselengel at 11,2 Ve, would be $.15 \times 60.3=$ 10. 4 feet $=10$ feet $\overline{\mathrm{B}}$ indfors.
ship to achieve the desired effert. These elements are ralled parositic elements, as contrasted to the driven elements which receive power directly from the transmitter through the transmission line.

The parasitic element is called a director when it reinforees radiation on a line pointing to it from the antema, and a reflector when the reverse is the case. Whether the parasitic element is a director or reflector depends upon the parasitic-element tuning, which usually is autjusted hy ehanging its length.

Gain vs. Spacing

The gain of an antenna with parasitic elements varies with the spacing and tuning of the elements, and thus for any given spacing there is a tuning eondition that will give maximum gain at this spacing. The variation in gain for different sparings in a 3 -eloment beam is shown in Fig. 14-3i. The maximum front-to-batek ratio seldom, if ever, oreurs at the same condition that gives maximum forward gain. The impedance_of the driven element also varies with the
tuning and spacing, and thus the antenna system must be tuned to its final eondition before the mateh betweren the line and the antenata can be eompleted. In general, the impedance will increase with inereased spacing of the director and reflector, and may range from around 10 ohms for 1 -wavelength spacing of both director and reflector to perhaps 2π ohms with .2 -wavelength spacing. The reactance of the driven element increases with incroased spacing, and thus it will repuire a morlifieation of the drivenelement length obtained bex Equation 14-13.

A 2-eloment bram is useful where space or other considerations prowent the use of the barger structure required for a 3 -element beam. The general practice is to tune the parasitio element as a reflector and space it about . 15 wavelength from the driven element, although some sueressful antennas have been built with . 1wavelength spating and divector tuning. Gain vs, eloment spacing for a 2 -element antembat given in Fig. 14-36, for the sperial case where the parasitic cement is resonant, but it is indicative of the performane to be expected under maximumgain tuning conditions.

Element Lengths

The antenna length is given approximately by the formula for a half-wavelength antema atthough, as montioned above, it may require modifacation to tune out the reactanere, The director and reflecer lengths should be determined experimentally for maximam performance. The proferable method is to aim the antemna at a receiver a mile or more distant and have an

Fig. 14-36-Gain rs. element paring for an antenna and one parasitic element. Whe reference print, 0 dib., is the lield strength from a half-wave antenna alone. The greatest gais is in diruetion A at sparings of hese that O. 14 wavelength. and in direction B at greater spacings. The fromt-to-lack ratio is the difference in dh. betwern curves A and B. Variation in raliation resistane of the driven element also is shown. These curves are for a selfresonant parasitic element. It most sfoaeings the gain as a reflector ean be increased by slight lengltsening of the parasitic element; the gain as a director can be increased by shortening. 'Thisk also improves the front-to-back ratio.
observer cheek the signal strength (on the receiver S-meter) while the reflector or director is adjusted a few inches at a time, until the length which gives maximum signal is found. The attenuation may be similarly checked, the length being adjusted for minimum signal.

Fig. 14-37 shows the element lengths for a 3element beam with. 1-wavelength reflector spacing and .175 director spacing, For maximum gain, these lengths will be slightly different for other sparings, beoming shorter as the spacing is increased. There will also be some slight variattion with the length-to-diameter ratio of the elements, sinee increasing the diameter will tend to shorten the necessary length.

The impedane of the driven element will vary with the height above ground, and good practice dictates that all final matehing betwern intennat and line be done with the antenna in place at its normal height athove ground.

Simple Systems: the Rotary Beam

Two- and 3-element systems are popular for rotary-beam antenmas, where the entire antoma system is rotated, to permit its gain and direetivity to be utilized for any compass direction, They may be mounted either horizontally (with the plane containing the elements parallel to the earth) or vertieally.

A 4-ekment beam will give still more gain that a 3 -element one, provided the support is sufficient for at least 2 -wavelength spacing betweon elements. The tuning for maximum gatin involves many variables, and complete gain and tuning data is not available.

The elements in close-spaced (less than onequarter wavelength element spacing) arrays preferably should be made of tubing of onehalf to one-inch diameter. A eonductor of large diameter not only has less ohmic resistance but also has fower Q : both these factors are important in close-spared arrays because the impedance of the driven element usually is quite low compared to that of a single half-wave dipole. With 3- and 4-element arrays the radiation resistance of the driven element may be so low that ohmic lossess in the eonductor can consume an appreciable fraction of the power. Low radiation resistance means that the antenna will work over only a small freguency range without rotuning unless largediameter conductors are used.

Feeding Close-Spaced Arrays

Any of the usual methods of feed may be applied to the driven element of a parasitic array. The preferred methods are shown in Fig. 14-38. Rewonant feeders are not recommended for lengths greater than a half-wavelength unless open-wire lines of copper-tubing conductors are used.

Three versions of the popular "T"-mateh are shown, for two-wire lines of Twin-Lead at A, for single coaxial line at 13 , and for double coaxial line at C. The match is adjusted by moving the shorting bars, keeping them

lig. 14-37- Director, antenna and reflector lengths for three-element beams. for element sparing of . 1 R amd (1-5i), 'The lengths indieated are for maxinum gain some improsement in front-to-back ratio may be obtained by adjustment of the reflector lengt-.
equiclistant from the center, until the minimum s.w.r. is obtained on the line. If the s.w.r. minimum is not $1 . \overline{5}$ or less, the transmitter fregucney should be shifted to find the frequency where the minimum s.w.r. oceurs. If it is higher that the original test frequency, increase the antenna dement lengih slightly. The parasitic element lengths taken from Fig. 14-37 should not require much adjustment unless considerably different spacing is used, but it may le neerssary to change the position of the shorting bars and the length of the anternat element once or twice before the s.w.r. at the test frequency is areeptable. The matehing section may be made of the same trepe of conductor as the clement and spaced it few inches from it. The length of the matching section will be greater with higher-impedance lines and with wider clement spacing. A good starting point for a 28-Me, wide-spared (0.2 I)-0.15R) beam fod with $300-0$ hm 'rwin-Lead is 28 inches each side of renter. A similar antenna and line on 14 Me . might require about 56 inches earin side.

The gamma match, shown in lig. 14-381), can be considered as one-half a "T"-match,

Fig. 14-38- Recommended methods of feeding the driven antenna element in close-spaced parasitic arrays. The parasitic elements are not shown. A, B, C., "I". mateh; 1), "ganma" mateh; li, delta matehing transformer; F , coaxial-line (uarter-wave matching section; G, folded dipole. Adjustment details are disenssed in the text.
and the same principles hold. However, when the length of the element is changed, in an effort to minimize the s.w.r., only the side to which the movable bar is connected should be changed - the other side should remain at one-half the length obtained from lig. 14-37. With 52 -ohm coaxial line feed, the length of the matching element may run around 15 to 20 inches in a $28-\mathrm{Mc}$. beam, and twice this value in a 14 -Mf. array.

The delta matching transformer shown at E is probably easier to install, mechanically, than any of the others. The positions of the taps (dimension a) must be determined experimentally, along with the length, b, by checking the standing-wave ratio on the line as adjustments are made. Dimension b should be about 15 per cent longer than a.
The coaxial-line matching section at F will work with fair accuracy into a close-spaced parasitic array of 2, 3 or 4 elements without neeessity for adjustment. The line is used as a quarter-wavelength transformer, and, if its charaeteristic impedance is 70 ohms (RG$\left.11 / \mathrm{C}^{*}\right)$, it will give a good mateh to a $600-\mathrm{ohm}$ line when the resistance at the termination is about 8.5 ohms. Over a range of 5 to 15 ohms the mismatch, and therefore the standingwave ratio, will be less than 2-to-1. The length of the guarter-wave sertion may be calculated from
Length (feet) $=\frac{246 \mathrm{~V}}{f}$
where $V^{\prime}=$ Velocity factor
$f=$ Frequency in Mc.
Example: A quarter-wave transformer of RG-11/U is to be used at 28.7 Me. From the table in Chapter Thirteen, $V=0,66$,

$$
\begin{aligned}
\text { Length }=\frac{2.46 \times 0.66}{28.7} & =5.67 \text { feet } \\
& =5 \text { feet } 8 \text { inches }
\end{aligned}
$$

The folded-dipole antenna, Fig. 14-38G, presents a good mateh for the line when properly designed. Details are given in Chapter Thirteen. Different impedance step-up ratios ean be obtained by varying the number of conductors or their diameter-ratio.

Sharpness of Resonance

Peak performance of a multielement parasitic array depends upon proper phasing or tuning of the elements, which can be exact for one frequency only. In the case of close-spaced arrays, which because of the low radiation resistance usually are quite sharp-tuning, the frequency range over which optimum results can be secured is only of the order of 1 or 2 per cent of the resonant frequency, or up to about 500 kc . at 28 Mc . However, the antenna can be made to work satisfactorily over a wider frequency range by adjusting the director or directors to give maximum gain at the highest frequency to be covered, and by adjusting the reflector to give optimum gain at the lowest frequency. This sacrifices some gain at all frequencies, but maintains more uniform gain over a wider frequency range.

As mentioned in the preceding paragraphs, the use of large-diameter conductors will broaden the response curve of an array because the larger diameter lowers the Q. This causes the reactances of the elements to change rather slowly with frequency, with the result that the tuning stays near the optimum over a considerably-wider frequency range than is the case with wire conductors.

Fig. 14.39 - Antenna-switching arrangements for various types of antennas and conpling systems, A - For tuned lines with separate antenna tuners or low-impedance lines. is - For a voltage-fed antenna. C - For a tuned line with a single antenna tuner. I) - For a voltage-fed antenna with a single tuner. E-For two tuned-line antennas with a tuner for each antenna or for two low-impedance lines. F - For combinations of several two-wire lines.

Combination Arrays

It is possible to combine parasitic elements with driven elements to form arrays composed of collinear driven and parasitic elements and combination broadside-collinear-parasitic elements. Thus two or more collinear elements might be provided with a collinear reflector or director set, one parasitic element to each driven element. Or both directors and reflectors might be used. A broadside-collinear array could be treated in the same fashion.

When combination arrays are built up, a rough approximation of the gain to be expected may be obtained by adding the gains for each type of combination. Thus the gain of two broadside sets of four collinear arrays with a set of reflectors, one behind each element, at quarter-wave spacing for the parasitic elements, would be estimated as follows: From Table 14-II I, the gain of four collinear elements is 4.5 db . with half-wave spacing; from Fig. 14-30 or Table 14-IV, the gain of two broadside elements at half-wave spacing is 4.0 db .; from Fig. 14-36, the gain of a parasitic reflector at quarter-wave spacing is 4.5 db . The total gain is then the sum, or 13 db . for the sixteen elements. Note that it makes no difference in the final result if the array is considered as a grouping of several sets of antennas plus reflectors or as an array of antennas plus an array of reflectors. The actual gain of the combination array will depend, in practice, upon the way in which the power is distributed between the various elements and upon the effect which mutual coupling between elements has upon the radiation resistance of the array, and may be somewhat higher or lower than the estimate.

A great many directive-antenna combinations can be worked out by combining elements according to these principles.

RECEIVING ANTENNAS

Nearly all of the properties possessed by an antenna as a radiator also apply when it is used for reception. Current and voltage distribution, impedance, resistance ard directional characteristics are the same in a receiving antemna as if it were used as a transmitting antenna. This reciprocal behavior makes possible the design of a receiving antenna of optimum performance based on the same considerations that have been discassed for transmitting antennas.

The simplest receiving antenna is a wire of random length. The longer the wire, the more energy it abstracts from the wave. Because of the high sensitivity of modern reseivers, a large antenna is not necessary for ricking up signals at good strength. An indoor wire only 15 to 20 feet long will serve at frequencies below the v.h.f. range, although a longer wire outcloors is better.

The use of a tuned antenna improves the operation of the receiver, however, because the signal strength is raised more in proportion to the stray noises picked up than is the case with wires of random length. Since the transmitting antenna usually is given the best location, it can also be expected to serve best for receiving. This is especially true when a directive antenna is used, since the directional effects and power gain of directive transmitting antennas are the same for receiving as for transmitting.

In selecting a directional receiving antenna it is preferable to choose a type that gives very little response in all but the desire I direction (small minor lobes). This is even more important than high gain in the desired direction, because the cumulative response to noise and unwanted-signal interference in the smaller
lobes may offset the advantage of increased desired-signal gain. The feedline from the antenna should be balaneed so that it will not pick up signals and greatly reduce the directivity efferts.

Antenna Switching

Switching of the antenna from receiver to transmitter is commonly done with a changeover relay, connected in the antenna leads or the coupling link from the antenna tuner.

If the relay is one with a 115 -volt a.c. coil, the switch or relay that controls the transmitter plate power will also control the antenna relay. If the convenience of a relay is not desired, porcelain knife switehes can be used and thrown by hand.

Typical arrangements are shown in Fig. 14-39. If coaxial line is used, the use of a coaxial relay is recommended, although on the lower-frequency bands a regular switch or change-over relay will work almost as well.

Antenna Construction

The use of good materials in the antenna system is important, since the antenna is exposed to wind and weathor. To keep deetrical losses low, the wires in the antenna and feeder system must have good conductivity and the insulators must have low dieleetric loss and surface leakage, particularly when wet.

For short antennas, No. 14 gauge hard-drawn enameled eopper wire is a satisfactory conductor. For long antennas and directive arrays, No. 14 or No. 12 conameded copper-elad sterd wire should be used. It is best to make feeders and matehing st ubs of ordinary soft-drawn No. 14 or №. 12 entmeded eopper wire, since harddrawn or copper-edad sted wire is difficult to handle unless it is under considerable tension at all times. The wires should be all in one piece; where a joint cannot be avoided, it should be carefully soldered.

In building a two-wire open line, the spacer insulation should be of as good quality as in the antenna insulators proper. For this reason, good ceramie spacers are advisable. Wooden dowels boiled in paraffin may be used

Fig. 14-40 - Details of a simple 40 -foot "A"-frame mast suitable for crection in locations where space is limited.
with untuned lines, but their use is not recommonded for tuned lines. The wooden dowels can be attached to the feeder wires by drilling small holes and binding them to the feeders with wire.

At points of maximum voltage, insulation is most important, and Pyrex glass, Isolantite or steatite insulators with long leakage paths are recommended for the antenna. Glazed porcelain also is satisfactory. Insulators should be cleaned onee or twice a year, especially if they are subjected to much smoke and soot.

In most cases poles or masts are desirable to lift the antenna cloar of surrounding buildings, although in some locations the antenna will be sufficiently in the clear when strung from one chimney to another or from a housetop to a tree small trees usually are not satisfactory as points of suspension for the antenna because of their movement in windy weather. If the antema is strung from a point near the center of the trunk of a large tree, this difficulty is not so serions. Where the antenna wire must be strung from one of the smaller branches, it is best to tie a pulley firmly to the branch and run a rope through the pulley to the antenna, with the other end of the rope attached to a counterweight near the ground. The counterweight will keep the tension on the antenna wire reasonably constant even when the branches sway or the rope tightens and stretches with varying climatic conditions.

Telophone poles, if they ran be purchased and installed economically, make exreflent supports berause they do not ordinarily require guying in heights up to 40 feet or so. Many low-cost television-antenna supports are now available, and they should not be overlooked as possible antenna aids.

- "A"-FRAME MAST

The simple and inexpensive mast shown in Fig. 14-40 is satisfactory for heights up to 35 or 40 feet. C'lear, sound lumber should be selected. The completed mast may be protected by two or three coats of house paint.

If the mast is to be ereeted on the ground, a couple of stakes should be driven to keep the bottom from slipping and it may then be "walked up" by a pair of helpers. If it is to go on a roof, first stand it up against the side of
the building and then hoist it from the roof, keeping it vertical. The whole assembly is light enough for two men to perform the complete operation - lifting the mast, carrying it to its permanent berth, and fastening the guys with the mast vertical all the while. It is entirely practicable, therefore, to erect this type of mast on any small, flat area of roof.

By using $2 \times 3 \mathrm{~s}$ or $2 \times 4 \mathrm{~s}$, the height may be extended up to about 50 feet. The 2×2 is too flexible to be satisfactory at such heights.

SIMPLE 40-FOOT MAST

The mast shown in Fig. $14-41$ is relatively strong, easy to construct, readily dismantled, and costs very little. Like the "A"-frame, it is suitable for heights of the order of 40 feet.

The top section is a single 2×3, bolted at the bottom between a pair of $2 \times 3 \mathrm{~s}$ with an overlap of about two feet. The lower section thus has two legs spaced the width of the narrow side of a 2×3. At the bottom the two legs are bolted to a length of 2×4 which is set in the ground. A short length of 2×3 is placed between the two legs about halfway up the bottom section, to maintain the spacing.

The two back guys at the top pull against the antenna, while the three lower guys prevent buckling at the center of the pole.

The 2×4 section should be set in the ground so that it faces the proper direation, and then made vertical by lining it up with a plumb bob. The holes for the bolts should be drilled before-

Fig. 14-41-A simple and sturdy mast for heights in the vicinity of 40 feet, pivoted at the base for easy erection. The height can be extended to 50 fert or more by using $2 \times$ 48 instead of 2×38.
hand. With the lower section laid on the ground, bolt A should be slipped in place through the three pieces of wood and tightened just enough so that the section can turn freely on the bolt. Then the top section may be bolted in place and the mast pushed up, using a ladder or another 20 -foot 2×3 for the job. As the mast goes up, the slack in the guys can be taken upso that the whole structure is in some measure continually supported. When the anast is vertical, bolt β should be slipped in phare and both A and B tightened. The lower guys can then be given a final tightening, leaving those at the top a little slack until the antenna is pulled up, when they should be adjusted to pull the top section into line.

- GUYS AND GUY ANCHORS

For masts or poles up to about 50 feet, No. 12 iron wire is a satisfactory guy-wire naterial. Heavier wire or stranded cable may be ased for taller poles or poles installed in locations where the wind velocity is high.

Nore than three guy wires in any one set usually are unnecessary. If a horizontal antomna is to be supported, two guy wires in the top set will be sufficient in most eases. These should run to the rear of the mast about 100 degrees apart to offset the pull of the antenna. Intermediate guys should be used in sets of three, one running in a direction oprosite to that of the antenna, while the other two are spaeed 120 degrees either side. This leaves a clear space under the antenna. The gry wires should be adjusted to pull the pole slightly back from vertical before the antenna is hoisted so that when the antenna is pulled up ight the mast will be straight.

When raising a mast that is big enough to tax the facilities available, it is some advantage to know nearly exactly the length of the guys. Those on the side on which the pole is lying can then be fastened temporarily to the anchors beforehand, which assures that when the pole is raised, those holding opposite guys will be able to pull it into nearly-vertical posii ion with no danger of its getting out of control. The guy lengths can be figured by the right-angledtriangle rule that "the sum of the squares of the two sides is equal to the square of the hypotenuse." In other words, the distance from the base of the pole to the anchor should be measured and squared. To this should be added the square of the pole length to the point where the guy is fastened. The square root of this sum will be the length of the guy.

Guy wires should be broken up by strain insulators, to avoid the possibility of resonance at the transmitting frequency. Common practice is to insert an insulator near the top of each guy, within a few feet of the pole, and then eut each section of wire between the insulators to a length which will not be resonant either on the fundamental or harmonics. An insulator every 25 feet will be satisfactory for frequencies up to 30 Mc . The

Fig. 14-42 - Using a lever for twisting heavy gay wires.

For short antennas and temporary installations, heavy clothesline or window-sash cord may be used. However, for more permanent jobs, $3 / 8$-inch or $1 / 2$-inch waterproof hemp rope should be used. Even this should be replaced about once a year to insure against breakage.

Nylon rope, used during the war as glider tow rope, is, of course, one of the best materials for halyards, since it is weatherproof and has extremely long life.

It is advisable to carry the pulley rope back up to the topin "endless" fashion in the manner of a faig hoist so that if the antemna breaks close to the pole, there will be a moans for pulling the hoisting rope back down.
insulators should be of the "egg" type with the insulating material under compression, so that the guy will not part if the insulator breaks.

Twisting guy wires onto "egg" insulators may be a tedious job if the guy wires are long and of large gauge. The simple time- and finger-saving device shown in Fig. 14-42 can be made from a piece of heavy iron or steel by drilling a hole about twice the diameter of the guy wire about a half inch from one end of the piece. The wire is passed through the insulator, given a single turn by hand, and then held with a pair of pliers at the point shown in the sketeh. By passing the wire through the hole in the iron and rotating the iron as shown, the wire may be quickly and neatly twisted.

Guy wires may be anchored to a tree or building when they happen to be in convenient

Fig. 1444- A - Anchorins feeders takes the strain from feedthrough insulators or window glass. 13 - Going through a full-length screen, a cleat is fastened to the frame of the sereen on the inside. Clearance holes are cut in the cleat and also in the sereen.

Fig. 14-4.3 - Pipe guy anchors. One pipe is sufficient for small masts, but two installed as shown will provide the alditional strength required for the larger poles.
spots. For small poles, a 6 -foot length of 1 -inch pipe driven into the ground at an angle will suffice. Additional bracing will be provided by using two pipes, as shown in Fig, 14-43.

HALYARDS AND PULLEYS

Halyards or ropes and pulleys are important items in the antenna-supporting system. Particular attention should be directed toward the choice of a pulley and halyards for a high mast since replacement, once the mast is in position, may be a major undertaking if not entirely impossible.

Galvanized-iron pulleys will have a life of only a year or so. Especially for coastal-area installations, marine-type pulleys with hardwood blocks and bronze wheels and bearings should be used.

BRINGING THE ANTENNA OR FEEDLINE INTO THE STATION

The antenna or transmission line should be anchored to the outside wall of the building, as shown in Fig. 14-44, to remove strain from the lead-in insulators. Holes cut through the walls of the building and fitted with feed-through insulators are undoubtedly the best means of bringing the line into the station. The holes should have plenty of air clearance about the conducting rod, especially when using tuned lines that develop high voltages. Probably the best place to go through the walls is the trimming board at the top or bottom of a win-

Fig. 14-45- An antenna lead-in panel may be placed over the top sash or under the lower sash of a window. Substituting a smaller height sash in half the window will simplify the weatherproofing problem where the sash overlap.

Fig, 14-46 - Low-loss lightting arresters for transmit-ting-antenna installations.
dow frame which provides flat surfaces for lead-in insulators. Either cement or rubber gaskets may be used to waterproof the exposed joints.

Where such a procedure is not permissible, the window itself usually offers the best opportunity. One satisfactory method is to drill holes in the glass near the top of the upper sash. If the glass is replaced by plate glass, a stronger job will result. Plate glass may be obtained from automobile junk yards and drilled before placing in the frame. The glass itself provides
insulation and the transmission line may be fastened to bolts fitting the holes, Rubber gaskets will render the holes waterproof. The lower sash should be provided with stops to prevent damage when it is raised. If the window has a full-length sereen, the scheme shown in Fig. 14-44B may be used.

As a less permanent method, the window may be raised from the bottom or lowered from the top to permit insertion of a board which carries the feed-t hrough insulators. This lead-in arrangement can be made weatherproof by making an overlapping joint between the board and window sash, as shown in Fig. 14-45.

- LIGHTNING PROTECTION

An ungrounded radio antenna, particularly if large and well elevated, is a lightning hazard. When grounded, it provides a measure of protection. Therefore, grounding switehes or lightning arresters should be provided. Examples of construction of low-loss arresters are shown in Fig. 14-46. At A, the arrestel eleetrodes are mounted by means of stand-off insulators on a freproof asbestos board. At B, the clectrodes are enclosed in a standard steel outlet box. The gaps should be made as small as possible without danger of breakdown during operation. Lightning-arrester systems require the best ground connection obtainable.

The most positive protection is to ground the antenma system when it is no in use; grounded flexible wires provided with clips for connection to the feeder wires may be used. The ground lead should be short ard run, if possible, directly to a driven pipe or water pipe where it enters the ground outside the building.

Rotary-Beam Construction

It is a distinct advantage to be able to shift the direction of a beam antenna at will, thus seruring the benefits of powor gain and directivity in any desired compass direction. A favorite method of doing this is to construct the antenna so that it can be rotated in the horizontal plane. Obviously, the use of such rotatable antennas is limited to the higher frequencies - 14 Me and above - and to the simpler antenna-element combinations if the structure size is to be kept within practicable bounds. For the 14- and 28-Me, hands such antennas usually consist of two to four clements and are of the parasitic-array type deseribed earlier in this chapter. At 50 Mc , and higher it becomes possible to use more elaborate arrays because of the shorter wavelength and thus obtain still higher gain. Antennas for these bands are described in another chapter.

The problems in rotary-beam construction are those of providing a suitable merhanical support for the antennai elements, furnishing a means of rotation, and attaching the trans-
mission line so that it does not interfere with the rotation of the system.

Elements

The antenna elements usually are made of motal tubing so that they will be at least partially self-supporting, thus simplifying the supporting structure. The large diameter of the conductor is beneficial also in reducing resistance, which becomes an important consideration when close-spaced elements are used.

Dural tubes often are used for the elements, and thin-walled cormgated steel tubes with copper coating also are available for this purpose. The elements frequently are constructed of sections of telescoping tubing maling length adjustments for tuning quite easy. Electrician's thin-walled conduit also is suitable for rotary-beam elements.

If steel elements are used, special preeautions should be taken to prevent rusting. Even cop-per-coated steel does not stand up indefinitely, since the coating usually $\mathrm{i}_{\text {is }}$ too thin.

Fig. 1.f-17 - A ladder-supported 3achement 28. Wr. leam. It is mounted on a piphe mast that projerets through a bearing in the roof and is turned from the

The elements should be coated both inside and out with slow-drying aluminum paint. For roating the inside, a spray gun may be used. or the paint may be poured in one end while rotating the tubing. The excess paint may be caught as it comes out the bottom end and poured through again until it is certain that the entire inside wall has been eovered. The ends should then be plugged up with eorks soaled with glyptal varnish.

Supports

The supporting framework for a rotary beam usually is made of wood or metal, using as lightweight construction as is consistent with the required strength. Generally, the frame is not required to hold much weight, but it must be extensive enough so that the antenna elements can be supported near enough to their ends to prevent excessive sag, and it must have suflicient strength to stand up under the maximum wind in the locality. The design of the frame will depend ehiefly on the size of the antenna elements, whether they are mounted horizontally or vertically, and the method to be employed for rotating the antema.

The general preference is for horizontal polarization, primarily because less height is required to clear surrounding obstructions when all the antenna elements are in tha horizontal plane. This is important at 14 athd 28 Me. where the elements are fairly long.

The support may be coupled to the pole by any eonvenient means which permits rotation or, alternatively, it may be firmly fastened to the pole and the latter rotated in bearings affixed to the side of the house.

One type of construction is shown in Fig. $14-47$. It uses a section of ordinary ladder as the main support, with crosspieres to hold the tubing antenna elements.

Metal Booms

Metal can be used to support the elements of the rotary beam. For 28 Mc., a piece of 2 inch diameter duraluminum tubing makes a good "boom" for supporting the elements. The elements can be made to slide through suitable holes in the boom, or special clamps and brackets can be fashoned to support the elements. I3y making use of tubing or duratuminum angle, a lightweight support for a $20-$ meter antenna can be built. The four-element beam shown in Figss, 14-48, 14-4! and 14-30) is an example. It uses $13 / 4$-inch angle for the main pieces and $3 / 4$-inch angle for the other members, and the ontire framework plus clements weighs only forty pounds. This simplifies considerably the problem of support.

The following aluminum pieces are required: 4-1-inch diameter tubing, 12 feet long. By-inch wall
$8-7 / 8$-inch diameter tubing, 12 fert long, $1 / 32^{-}$ inch wall. Must fit smugly into 1 -inch tubing.
$2-13 / 4$-inch angle, 21 feet long
$2-3 / 4$-inch angle, 21 feet long
4 - $3 / 4$-inch angle, 1 foot long
$2-1 / 2$-inch diameter tubing, 6 feet long

Fig. 14-18-A four-element it Mc, leann of lightweight all-metal construction, Fed hy coaxial cable and hand-rotated, the anterna and hoom assembly weighs only 40 pounds. (K 1161 J, bec., 1947, (SST.)

Fig. 14-49 - Details of the 4 -element beam construction. The general dimensions and arrangement of the lieam are given in A, the detail of the ends of the boom is shown at IS, and Chows the construction of the central pivot. A discarded forge-blower gear train is used to drive the assembly.

Aluminum tubing and angle corresponding to the above sizes can possibly be bought from scrap dealers at reasonable prices, if not directly from the mamufacturer. If the sections of the elements do not fit snugly, insert shims or make some other provision for a tight fit, since the appearance of the beam will be spoiled by sagging elements. Some amateurs roinforce their beam elements with coppor-clad sted wire supported a foot above the elements at the boom and tied to the extreme ends of the elements.

As shown in Fig. 14-49.1, two 13/4-inch aluminum angles 21 feet long serve as the main members of the boom. They arespaced one foot apart. The elements are spaced 7 feet apart. Wooden spacers of 2×2 are placed at the end of the boom and screwed on with brass screws. These spacers are also placed under each element where it crosses the boom. These spacers may be unnecessary if the elements are bolted to the boom, but if the construction is as in Fig. 14-4913 the spacers are recommended.

The cross braces shown in Fig. 14-50 are put into position at the very last, after the beam is hung in position on the central pivot, since they offer a means for truing up minor sag in the elements.

The central pivot consists of a structure made from $3 / 4$-inch angle iron and $1 / 2$-inch pipe, as shown in Fig. 14-49C. It has to be brazed. The crossbar rest is made separate from the boom and central pivot, and affords a means for tilting the beam when unbolted from these structures. The $1 / 2$-inch pipe is drilled for the coaxial line that is fed through
this pipe. The pinion gear on the $1 / 2$-ineh pipe should be brazed on.

A washing-machine gear train is well suited for this type of beam. Another possibility (used in this instance) is a discarded forge blower. It was fitted with a $1 / 2$-inch pipe which serves as the central pivot. The gear train ends up in a "V"-pulley, and the beam is easily rotated by a system of ropes and pulleys that ends up in an automobile steering wheed at the operating position. A plumb bob attached to the shaft of the steering wheel serves as a direction indicator. A small cardboard scale mounted along the line of plumb-bol travel can be readily calibrated to show the direction of the beam.

The supporting structure for this beam consists of a 4×4 pole 30 feet long, with ten-foot extensions of 2×4 bolted to both sides of the bottom, making the total length about 36 feet. Two sets of guy wires should be used, approximately 2 feet and 15 feet from the top. As an alternative, the pole can be set against the side

Fig. 14-50-The boom for the 4-element beam is cross. braced at two points, abont $61 / 2$ feet in from the ends.
of the house, and only the top set of guys used to provide additional support.

Withall-metal construction, delta, "gamma" or "T"'-match are the only practical matching methods to nse to the line, since anything else requires opening the driven element at the center, and this complicates the support prob)lem for that element.

A Wooden Boom for 14 Mc .

Many amateurs prefor to build their beam booms from standard pieces of lumber, and the boam shown in Figs. $14-51$ and $14-5$ is an example of excellent design in wooden-boom construction. The boom members are two 20foot 2×4 fastened to the $4 \times 12 \times 24$-inch center blook with six lag sorews. The two conter serews serve as the axis for tilting the other four lock the boom in position after final assembly and adjusiment hate been completed. The bloeles midway from eathend are $2 \times$ ts spated about six inches apart, with a long bolt between them. When this bolt is drawn tight, a very sturdy box brace is formed. The erossarms are 3×3 s twelve feet long, bolted to the boom with earriage bolts.

The umbrella quyss should have turnbuckles in them, and the guss are fastened to the eenter support after the beam has been permanently locked in its horizontal pration. With the turn-

Fia, 14.5l-1 womden boom for a teelement It. Ne. hoom ran be made puite strong by juelie ions wat of eruy wires. This installation is matle on a windmill tower, and the drive motor is monnted halfway down on the tower. (W6.IJB, Nov, 191\%, ().心\%)
buckles properly adjusted, there will be no sag in the boom and the elements will be neat.

The elements are $13 / 8$ - and $11 / 2$-inch diameter duralumin tubing, supported by 1 le-inch stomd-off insulators. Hose elamps are used to hold the edements on the insulatoms. Final adjustment of element lengths is possible through "hairpin" loops. "The fowor for the beam shown in Fig. 1t-5l was a soats-lachouek windmill towar. 'The driving motor for the beam was located half way down the tower, the torque being tramsmitted through a length of 112-inch drive shaft. I pipe flange is welded to the drive shaft and bolted to the eenter bock, I conc bearing is obtained by tuming both the flange and a sleeve of 2 -inch pipe to mateh, as shown in Fig. 14-52.

One method of matching the line to the antenna is to use a quarter wavelength of 7io-ohm 'Twin-lead between the radiator and the slip-ring contacts, to mateh a 600 -ohm line from the slip rings to the transmitter.

A 600 -ohm open-wire line is run to a point about halfway up on the tower, then up the side of the tower to the slip rings. The slip rings are mounted on the top of the tower, directly under the center blook. it quarterwavelength matrhing section of transmittingtype $\overline{\text { ontohm }}$. Amphenol Twin-Lead hangs in a loop between the driven element and the slipring contacts.

"Plumber's-Delight" Construction

The lightest beam to build is the so-called "phumber's delight" - an array comstructed entirely of metal, with no insulating members botween the clements and the supporting structure, suggested construetional details are shown in Fïgs. 14-i.3, $14-54,14-5 \cdot 5,14-56$ and 11 -i\%.

The boom can be built of two lengths of 3 -inch diameter $24 \mathrm{~S}^{7}$ dural tubing of $0.072-$ inch wall thirkness, as shown in fig. 10-105. The two seefions are splied together with a three-foot length of 6×6 oak, turned down at each end to fit inside the tubing. The center of the block is left square to provide a flat surface to attach to the vertical rotating pipe. It each extremity of this boom is cut a hole the exact diameter of the parasitic elements. I two-foot length of $3 / 4$-inch pipe, complete with flange mounting plate, is bolted to the top surface of the oak blork, and a single guy wire is run to each end of the boom, An egg insulator and a turnburke are placed in each guy: The turnbuekles should be tightened until there is no sag in the boom when it is supported at the center, and then safety-wired. Finally the center block should be given a good coat of paint or varnish.

The elements ean be made of three 12 -foot lenge hs of dural tubing, the two out side lengt hs telescoping inside the center seetion. The ends of the center section should be sloted for a distance of about t inches with a hack saw, but it is advisable to do the slotting after the

Fig. 14-5! - Inctails of the wooden boom, its method of support and the construction of the slip rings.
the antenna by two clamps lashioned of 1 -inch-wide brass strip.

A convenient method for supporting the boom atop the pipe used to rotate the beam is shown in Fig. 14-56. A "I"'-chunnel into which the boom will fit is welded to the end of the pipe. Holes are drilled in the sile of the channel corresponding to holes in the boom. The boom is hoisted up and positioned between the two flanges and a bolt run through the flanges and the boom. The boom can then be swung into a horizontal pesition and the second bolt put in place.

Feeder Connections

For beams that rotate only 180 degrees, it is relatively simple to bring off feeders by making a short section of the feeder, just where it leaves the rotating member, of flexible wire. linough slack should be left so that there is no danger of breaking or twisting. Stops should be flated on the rotating shaft of the antenna so that it will be impossible for the feeders to "wind up." This method also can be used with antennas that rotate the full 360 degrees, but again a stop is necessary to avoid jamming the feeders.

For continuous rotation, the sliding contact is simple and, when properly built, quite practicable. The chief points to keep in mind are that the rontact surfaces should be wide enough to take care of wobble in the rotating shaft, and that the contact surfaces should le kept clean. Spring contacts are essential, and an "umbrella" or other scheme for keeping rain off the contacts is a desirable addition. Sliding contacts preferably should be used with nonresonant open lines where the characteristic impedance is of the order of 500 to 600 ohms, so that the line current is low.
center seetions have been assembled on the boom. The parasitic-element center sections are fastenced to the boom with $1 / 4$-inch bolts, as shown in lig. 14-it, while the driven dement is seceured in a cradle made of hatf seetions of iron pipe wedded together, as shown in Fig. 14-55. The cradle is bolted to the boom with three $1 / 4$-inch bolts, and the driven element is held fast with two bolts or with adjustable aircraft-tubing clamps.

The feedline for the antenna can be any balanced line, of from 200 to 600 ohms impedance, and it is most conveniently coupled through a "T"-match. This "T"match assembly can be made from two 4 -foot lengths of dural tubing joined together ly a picce of broomstick, as shown in Fig. $14-57$. The " T " is connected to
 element
$\mathcal{H}^{\circ} \cdot \mathrm{k}, 14-53$ - The boom is made of two 10 foot lengths of dural tuhing sliperd over a 3 -foot oak bloek and held in place with z-ineh wood serews. Guy wires from the center add strength to the boon structure.

Fif. 14-5. - The center element section is held in the hoom with a $1 / 4-28$ maehine serew, nut and loek washer. The gny wire attaches to the head of the bolt.

The possibility of poor connections in sliding contacts can be avoided by using inductive coupling at the antenna, with one coil rotating on the antenna and the other fixed in position, the two coils being arranged so that the coupling does not change when the antenna is rotated. A quarter-wave feeder system is connerted to a tuned pick-up circuit whose inductance is coupled to a link. The link coil connects to a twisted-pair transmission line, but any type of line such as flexible coaxial cable can be used. The circuit would be adjusted in the same way as any link-coupled circuit, and the number of turns in the link should be varied to give proper loading on the transmitter. The rotating coupling circuit of course tunes to the transmitting frequence. The whole thing is equivalent to a link-coupled antenna tuner mounted on the pole, using a parallel-tuned tank at the end of a quarter-wave line to center-feed the antenna. To maintain constant coupling, the two eoils should be quite rigid and the pole should rotate without wobble.

Fig. 1.4.55 - The clamb for the driven element is made by splitting l-foot lengthe of iron pipe and welding them as shown.

The two coils might be made a part of the upper bearing assembly holding the rotating pole in position.

Other variations of the inductive-roupled system can be worked out. The tuned circuit might, for instance, be placed at the end of a 600 -ohm line, and a one-turn link used to couple directly to the center of the antenna, if the construction of the rotary member permits. In this case the coupling can be varied by changing the $L / /^{\prime}$ ratios in the tuned circuit. For mechanical strengt the coupling coils preferably should be made of $1 / 4$-inch copper tubing, well braced with insulating strips to keep them rigid.

Rotation

It is convenient to use a motor to rotate the beam, but it is not always necessary, especially if a rope-and-pulley arrangement
can be brought into the operating room. If the pole can be mounted near a window in the operating room, hand rotation of the beam will work out quite well, as has been proven by many amateur installations.

If the use of a rope and pulleys is impracticable, motor drive is about the only alternative. There are several complete motor-driven rotators on the market, and they are easy to mount, convenient to use, and require little or no maintenance. However, to many the cost of such units puts them out of reach, and a homemade unit must he considered. Generally speaking, lightweight units are better because they reduce the load on the mast or tower.

Fig. 14-56- The mounting plate is made from a length of "U"-chamel iron ent and drilled as shown. The boom is ratised vertically until one set of bolt holes is in line and a bolt is slipued through. The boom is then swang into it- horizontal position and the other bolt is put in plate.

The speed of rotation should not be too great - one or two r.p.m. is about right. This requires a considerable gear redurtion from the usual $1750(0-r . p . m$, speed of small induction motors; a large redurtion is advantageous because the gear train will prevent the beam from turning in weather-vane fashion in a wind. The ordinary structure does not require a great deal of power for rotation at slow speed, and a $1 / 8$-hp. motor will be ample. Even small series motors of the sewing-machine type will develop enough power to turn a 28 - Mr. beam at slow speed. If possible, a reversible motor should be used so that it will not be necessary to go through nearly 360 degrees to bring the beam back to a direction only slightly different, but in the opposite direction of rotation, to the direction to which it may be pointed at the moment. In cases where the pole is stationary and only the supporting framework rotates, it will be necessary to mount the motor and gear train in a housing on or near the top, of the pole. If the pole rotates, the motor can

Fig. 14-53- I Details of the "I"-match assembly.
be installed in a more accessible location.
Parts from junked automobiles often provide gear trains and bearings for rotating the antenna. Rear axles, in particular, can readily be adapted to the purpose. Driving motors and gear housings will stand the weather better if given a coat of aluminum paint followed by two coats of enamel and a coat of glyptal varnish. Even commercial units will last longer if treated with glyptal varnish. Be sure, of course, that the surfaces are clean and free from grease before painting them. Grease can be removed by brushing it with kerosene and then squirting the surface with a solid stream of water. The work can then be wiped dry with a rag.

If hand rotation of the beam is used, or if the rotating motor drives the beam through a pulley system, bronze eable or ehain drive is preferable to rope. However, if you must use rope, be sure to soak it overnight in pure linseed oil and then let it dry for several days before permanent installation.

The power and control leads to the rotator should be run in electrical conduit or in lead covering, and the metal should be grourded. Often r.f. appearing in power leads ean be reduced by suitable filtering, but running wires in conduit is generally easier and more satisfactory: Any r.f. in the wiring can sometimes be responsible for feed-back in an 'phone transmitter. "Hash" from the motor is also recuced by shielding the wires, but it is often neeessary to install a small filter at the motor to reduce this souree of interference. Motor noise appearing in the receiver is a nuisance, since it is isual practiee to determine the proper direction for the beam by rotating it while listening to the station it is desired to work and setting the antenna at the point that gives maximum signal strength.

The outside electrical connections should be soldered, bound with rubber tape followrd by regular friction tape, and then given a coat of glyptal varnish.

CHAPTER 15

About V.H.F.

While it is possible to use the frequencies above 30 Mc. without knowing anything about wave propagation, the amatcur who understands something of the means by which his signals reach distant points will be able to do a better job of it. Because much of the pleasure
and satisfaction to be derived from v.h.f. work lie in making the best possible use of propagation vagaries assoriated with natural phenomena, a working knowledge of the basic principles of wave propagation is a most useful tool for the v.h.f. operator.

What To Expect of the V.H.F. Bands

The assignments from 50 Mc. up are superior to our lower bands in one outstanding respert: their ability to provide interferencefree communication consistently within a limited service area. Lower frequencies are more subject to varying conditions that impair their effectiveness for work over a radius of 100 miles or less at least part of the time, and the heavy occupaney they support reates a rontinuing interference problem. Our v.h.f. bands, on the other hand, are seldom rowded, and their characteristics for local work are more stable, Because of these atributes the 50 - and 144-Mc. bands, particularly, enjoy considerable popularity in areas where there are dense concentrations of population.

In addition, it has been foumd that there are several modia be which v.h.f. signals are propagated beyond the local range, and operation on the veh.f. bands has been taken up hey many operators who must depend almost antirely on "DN" for their contacts. The latter gronp, particularly, will bonefit from a familiarity with common propagation phenomena. The material to follow is intended to supplement the more detailed information in Chapter 4, cloaling with wave propagation as it affects the world above 50 Mc.

50 to 54 Mc.

This band is borderline tervitory between the frequencies regularly used for long-distanere communication and those normally employed for local work. Thus just about evory form of wave propagation to be found throughout the radio spectram will appear, on orcasion, in the 50-Mc. region. This diversity has contributed greatly to the growing popularity of the $\overline{5} 0$ - Me. band in the amateur pieture.

During the peak vears of the sumspot rycle it is ocrasionally possible to work 50 - Mc. DX of worldwide proportions, by reflection of signals from the F_{2} layer, Sporadic- F skip provides opportunities for work over distances from 400 to 2500 miles or so during the carly
summer months, regardless of the solar eycle. Reflection from the aurora regions aecounts for communication over 100 to 600 -mile paths during pronounced ionospherie disturbances. The ever-rhanging weather pattern offers frequent opportunities for extension of the normal coverage to as much as 300 miles, This tropospheric rondition develops most often during the warmer months, but may orcur at any sason. In the absence of any favorable propagation, the average wollequipped 50 - Me. station should be able to work regularly over a radius of 75 to 100 miles or more, depending on local terrain.

144 to 148 Mc .

Ionospheric effeets are greatly reduced at 144 Me. It is doubtful whether Fo-laver refloction ever occurs at this frequency, and
 reflection is fairly common, but the signals so refleeted are gencrally waker than on $\overline{0} 0 \mathrm{Mc}$. Tropospheric offects are much more pronounced than on 50 Mre, and distances rovered during favorable weather conditions are much greater than on lower bands. Air-mass boundary bending has beon responsible for communication on 144 Mr . over distamers in exeess of 1100 miles, and s00-mile work is fairly common in the warmer months. The reliable working range under normal conditions is slighty less than on 50 Mr., when comparable equipment and antenmas are used.

220 Mc. and Higher

Amateur experiene on the higher bands is insufficiont to provide a complete picture of what may be expereded in the way of umsual propagation. Thare is reason to believe that tropospherid bending and duct afferts berome more prevalent as we go highor in frequency and that much interesting work lies in store for us when we move to the frequencies above 200 Mr. in larger numbers and with improved equipment.

Propagation Phenomena

The various known means be which v.h.f. signals may be propagated over unusual distinces are discussed below.

F_{2}-Layer Reflection

The "normal" contacts made on 28 Mc . and lower frequencies are the result of reflection of the transmitted wave by the F_{2} layer, the ionization density of which varies with solar activity, the highest frequencies being refected at the peak of the 11-year solar cycle. The maximum usable frequency (m.u.f.) for F_{2} reflection also rises and falls with other welldefined eycles, including daily, monthly, and seasonal variations, all related to conditions on the sun and its position with respect to the earth.

At the low point of the 11-year cycle, such as the period we are entering in the early '00s, the m,u,f, may reach 28 Mc. only during a short period earh spring and fall, whereas it may go to (00 Mc . or higher at the peak of the cycle. The fall of 1946 saw the first authentie instances of long-distance work on 50 Mc. be Fo-layer reflection, and as late as 1950 contacts were still being made in the more favorable areas of the world by this medium. In the northern latitudes there are peaks of m.u.f. each spring and fall, with a low period during the summer and a slight dropping-off during the midwinter monthis. At or near the Equator conditions are more or less constant at all seasons.

Fortunately the F_{2} m.u.f. is quite readily
determined by observation, and mears are available whereby it may be estimated quite accurately for any path at any time. It is predictable for months in advance, ${ }^{1}$ enabling the v.h.f. worker to arrange test schedules with distant stations at propitious times. As there are numerous signals, both harmonics and fundamental transmissions, on the air ne range between 28 and 50 Mc ., it is possible for an observer to determine the approximate m.u.f. by careful listening in this range. A series of daily observations will serve to show if the m.u.f. is rising or falling from day to day, and once the prak for a given month is determined it can be assumed that the peak for the following month will oecur about 27 days later, this cycle coinciding with the turning of the sun on its axis. The working range, via F_{2} skip, will be roughly comparable to that on 28 Mc., though the minimum distance is somewhat longer. Two-way work on 50 Mc . by means of reflection from the l_{2} layer has been arcomplished over distances ranging from 2200 to 10,500 miles. The maximum frequency for F_{2} reflection is believed to be in the vicinity of 70 Mc .

Sporadic-E Skip

Patchy concentrations of ionization in the E-layer region are often responsible for re-

[^11]

Fig. 15.1-The prineipal means by which v.h.f. signals may be returned to earth. The F F_{2} layer, highost of the known reflecting regions of the ionosphere, is capable of reflecting 50. Ve, signals during the peak period of the 11year solar eyele, Such communication may be world-wide in scope. Sporadic ionization of the F, layer produces the familiar "sliort skip" contact. over medium distances at 28 and 50 Wc . On these bands it is a fairly frequent oecurrener regardless of the solar eyele. It is most common in May through August. Refraction of w.h.f, waves also takes place at air onass boundaries in the lower atnosphere, mahing possible communication over distances of several hundred miles, usually without a skip zone, on all r.f.h. bands.
flection of signals on 28 and 50 Mc. This is the popular "short skip" that provides fine contacts on both bands in the range between 400 and 1300 miles. It is most common in May, June and July, during the early evening hours, but it may occur at any time or season. Since it is largely unpredietable, at our present state of knowledge, sporadie- E ' skip is of high "surprise value." Multiple-hop offects may appear, when ionization develops simultaneously over large areas, making possible work over distances of more than $2 \overline{5} 00$ miles.

The upper limit of frequeney for sporadie- E : skip is not positively known, but scattered instances of $14 t-M$ e propagation ower distances in excess of 1000 miles indieate that E-layer reffection, possibly aided by tropospheric effects, may be responsible.

Aurora Effect

Low-frequency communication is occasionally wiped out by absorption of these frequencies in the ionosphere, when ionospheric storms, associated with variations in the earth's magnetic ficld, oceur. During such disturbances, however, v.h.f. signals may be reflected batek to earth, making communication possible over distances not normally workable in the v.h.f, range. Magnetic storms may be accompanied by an aturora-borealis display, if the disturbance oceurs at night and visibility is good. When the aurora is confined to the northern sky, aiming a directional array at the auroral curtain will bring in signals strongest, regardless of the true direction to the transmitting station. When the display is widespread there may be only a slight improvement noted when the array is amed north. The latter condition is often noticed during the period around the peak of the 11-year cycle, when solar activity is spread well over the sun's surface, instead of heing concentrated in the region near the solar equator.

Aurora-reflected signals are characterized by a rapid flutter, which lends a "dribbling" sound to $28-\mathrm{Mc}$, carriers and may render morlulation on $50-$ and $144-\mathrm{Mc}$. signals completely unreadable. The only satisfactory means of communication then becomes straight
c.w. The effect may be noticeable on signals from any distance other than purely local, and stations up to about 800 miles in any direction may he worked at the peak of the disturbance. Snlike the two methods of propagation previously deseribed, aurora effect exhibits no skip zone. It is observed frequently on 50 Mc ., and pronounced disturbances affere the $14+$-Mc. band similarly. The highest frequeney for aurora reflection is not yet known.

Scatter

When the maximum usable frequency for F_{2}-iaver reflection gress above $\overline{50}$ Mr. it is usually possible to observe a phenomenon known to operators on 50 and 28 Me . by a variety of terms. "scatter" "rebound" and "reflected skip" are some of the names given to the means of propagation by which signals are returned at sharp angles from the region near the point of highest m.u.f.

The first two terms are more descriptive of what actually happens. Usually there is no skip zone, and signals so reflected may be heard over all distances up to perhaps 1000 miles. The reflection process is somewhat similar to that of aurora propagation, except that the point of reflection may be in any direetion from the stations involved. Satter signals usually show considerable audio distortion, and are sulbject to rapid fading.

Reflections from Meteor Trails

lrobably the least-known means of v.h.f. wave propagation is that resulting from the passage of meteors across the signal path. Reflections from the ionized meteor trails may be noted as a boppler-effeet whistle on the carrier of a signal already being received, or they may cause bursts of reception from stations not normally receivable. Sudden large increases in strength of normally-weak signals are another manifestation of this effect. Ordinarily such reflections are of little value in extending communication ranges, since the increases in signal strength are of short duration, but neteor showers of considerable magnitude and duration may provide fluttery v.h.f.

Fig. $\mathbf{1 5 . 2}$ - Illustrating a typical weather sequence, with associated variations in v.h.f. propagation. At the right is a cold air mass (fair weather, high or rising larometer, moderate summer temperatures). Approaching this from the left is a warm moist air mass, which overruns the cold air at the point of contact, creating a temperature inversion and considerable bending of v.h.f. waves. At the left. in the storm area, the inversion is dissipated and signals are weak and subject to fading. Barometer is low or falling at this point.
signals from distances up to 1000 miles or more. Signals so reflected have a combination of the characteristics of aurora and sporadic- E skip.

Tropospheric Bending

Refraction of radio waves takes place whenever a change in refractive index is encountered. This may occur at one of the ionized layers of the ionosphere, as mentioned above, or it may exist at the hounclary area between two different types of air masses, in the region close to the earth's surface. A warm, moist air mass from over the Gulf of Mexico, for instance, may overrun a cold, dry air mass which may have had its origin in northern Canada. Each tends to retain its original characteristics for eonsiderable periods of time, and there may be a well-defined boundary between the two for as much as several days. When such airmass boundaries exist along the path between two v.h.f. stations separated by 50 to 300 miles or more, a considerable degree of refraction takes place, and signals run high above the average value. Under ideal conditions there may be almost no attenuation, and signals from far beyond the visual horizon will come through with strength comparable to that of local stations.

Many factors other than air-mass movement of a continental character may provide increased $v . h . f$, operating range. The convection that takes place along our coastal arean in warm weather is a good example. The rapid cooling of the earth after a hot day in summer, with the air aloft cooling more slowly, is another, producing a rise in signal strength in the period around sundown. The carly-morning hours, when the sun heats the air aloft, before the temperature of the carth's surface begins its daily rise, may frequently be the best hours of the day for extended v.h.f. range. particularly in clear, calm weather, when the harometer is high and the humidity low.

Any weather condition that produces a pronounced boundary between air masses of different temperature and humidity characteristics provides the medium by which v.h.f. signals cover abnormal distances. The ambitious v.h.f. enthusiast soon learns to correlate various weather manifestations with radiopropagation phenomena. By watching temperature, barometric pressure, changing cloud formations, wind direction. visibility, and other easily-observed weather signs, he is able to tell with a reasonable degree of accuracy what is in prospect on the v.h.f. bands.

The responsiveness of radio waves to varying weather conditions increases with frequency, Our $50-$ Mc. band is considerably more sensitive to weather variations than is the 28-Mc. band, and the 144 - Mc. hand may show strong signals from far beyond visual distances when the lower frequencies are relatively inactive. The maximum distance over which
tropospheric propagation is frequertly observed on 50 Me . is in the neighborhood of 300 miles. On 144 Mc. distances of 500 miles are not uncommon. It is probable that this tendency continues on up through the microwave range, and that our assignments in the u.h.f. and s.h.f. portions of the frequency speetrum may someday support communication over distances far in excess of the opticel range. Already $144-\mathrm{Mc}$, tropospheric communication by amateurs has passed the 1100 -mile mark, and even greater distances are believed possible on this and higher frequencies.

STATION LOCATIONS

In line with our carly notions of v.h.f. wave propagation, it was once thought that only highly-elevated v.h.f. stations had any chance of working beyond a few miles. .llmost all the work was done by portable stations mperating from mountain lops, and only hilltop home sites were considered suitable for fixed-station work. It is still true that the fortunate amateur who lives at the top of a hill enjoys a certain advantage over his follows on the v.h.f. bands, but high elevation is not the all-important factor it was once thought to be.

Improvements in equipment, the wide use of high-gain antenna systems, and an awareness of the opportunities afforded by weather phenomena have enabled countless v.h.f. workers to achieve excellent results from seemingly poor locations. In 50 -Mc. DX work particularly, elevation has ceased to be an important factor, though it may holp in extending the range of operation somewhat under normal conditions. A high elevation is somewhat more helpful on It4 Mc. and higher frequencies, particularly when no unusual propagation factorx are present, as during the winter months. Other factors, such as close proximity to large borlies of water, may nore than compensate for lack of clevation during the other seasons of the year, however.
stations situated in sea-level locations along our coasts have been consistent in their ability to work long distances on 141 Mc .; weather variations provide interesting propagation effects over our Widdle Western plain areas; and aven the worker situated in mountaimous country need not necessarily feel that he is prevented by the nature of his horizon trom doing interesting work. Contacts have been made on 50 and 144 Mc. over distances in excess of 100 miles in all kinds of terrain.

The consistently-reliable nature of 50 and 144 Me , for work over such a radius and more, regardless of weather, time or season, and the oceasional opportunities these frequencies afford for exciting D.X, have caused in increasing number of amateurs to migrate to the v.h.f. bands for extended-lucal comraunication, once thought possible only on the lower frequencies.

V.H.F. Receivers

Even more than in work on lower frequencies, receiver performance is all-important in the v.h.f. station. IIigh sensitivity and good signal-to-noise ratio, necessary attributes in a receiving system for 50 Mc , and higher bands, are best attained through the use of a converter, working in conjunction with a communications receiver designed for lower frequencies. Though receivers and converters for 50,144 , and even 220 Mc , are available on the amateur market, it is possible for the v.h.f. worker to build his own with fully as good results, and at a considerable saving in cost.

In its basic principles, modern receiving equipment for these hands differs little from that employed on lower frequencies, and the same order of selectivity may be used in amateur work up to at least 220 Mc . The greatest practical seleretivity should be used in v.h.f. work, as well as on the freguencies below 30 Me., as it not only promits more stations to oprerate in a given band, but is an important factor in improving the signal-to-noise ratio. The effertive sensitivity of a reeciver having "eommunication" selectivity can be made considerably better than is possible with broadband systems. First on 56 Mc ., more than a decade ago, then more recently on 144 Mc., and currently on 220 and 420 Me., the change to selective suproheterodyne recoivers marked the beginning of real extensions of the operating range.

The superregenerative receiver, oner very popular for v.h.f. work, is now used principally for portable operation, or for other applications where maximum sensitivity and selectivity are not of prime importance. It is still "apable of surprising performance, for a given number of tubes and components, but its lack of selectivity, its poor signal-to-noise ratio, and its tendeney to radiate a strong interfering signal rule out the superregenerator as a fixed-station receiver in areas where there is appreciable v.h.f. activity.

R.F. AMPLIFIER DESIGN

The amount of noise generated within the receiver itself is an important factor in the effectiveness ol v.h.f. receiving gear. At lower frequencies the external noise is a limiting factor, but at 50 Mc . and higher the receiver noise figure, gain and selectivity determine the
ability of the system to respond to weak signals. Proper selection of r.f. amplifier tubes and appropriate circuit design aimed at low noise figure are of more importance in the v.h.f. receiver "front end" than mere gain.

Certain triode or triode-conneeted pentode tubes have been found superior in this respect, their superiority becoming nore pronounced as we go higher in frequence. At $1+4$ Me., for instance, a triode r.f, stage may give substantially the same gain as a pentode, but with a much lower noise figure. With the exception of the simplest unit, the equipment described in the following pages incorporates low-noise r.f. amplifier technique.

When triodes are used as r.f. amplifiers some form of neutralization of the grid-plate capacitanere is required. This can be capacitive, as is commonly used in transmitting applications,

Fis. 16.1-Schematic diagram of a pushpull r.f. ampilifer for v.h.f. reveiver use. This circuit is well suited to use with antenna systemx fed by balanced lines. Coil and eondenser sizes will be governed by the band for which the amplifier is to be used.
$\mathrm{C}_{1}-0.00, \overline{\mathrm{O}}-\mu \mathrm{fd}$ dise ceramir.
Cs - Neutralizing capacitance, abont $2 \mu \mu \mathrm{fl}$. May be made
 long.
R_{1} - 1.00 ohms, $1 / 2$ nalt carbon.
$R_{2}-1000$ ohms, $1 / 2$ watt carhon.
or inductive. The alternative to neutralization is the use of grounded-grid technique. Circuits for v.h.t. triode r.f amplifier stages are given in Fig. 16-1 through 16-4.

A dual triode operated as a neutralized pushpull amplifier is shown at 16-1. This arrangement is well adapted to v.h.f. preamplifier applications, or as the first stage in a converter, particularly when a balanced transmission line such as the popular 300 -ohm Twin-Lead is used. It is relatively selective

Fiq. 16.2-Circuit of the eascode r.f. amplificr. I'referred antenna coupling methods for coaxial or balanced lines are shown. The first r, f, prid ceil, and the neutralizing eoil, In, should lie a high-() design, ()ther coils are not critical as to Q. C. $1,\left(\mathrm{C}_{2}, \mathrm{C} 4, \mathrm{C}, \mathrm{s}-0.00 .5 \cdot \mu \mathrm{fd}\right.$, dise ceramic.
$\mathrm{C}_{3}-50-\mu \mu \mathrm{fl}$. ceramic.
$\mathrm{K}_{1}, \mathrm{~K}_{2}$ - 100 ohms, $1 / 2$ watt carbon.
$R_{3}, R_{4}-1000$ ohms, $1 / 2$ watt carbon.
L_{21} - Should resonate at signal frequency with 6 AK 5 gridplate capacitance.
and maty require resistive loading of the plate cireuit, when used as a preamplifier. The loading effect of the following circuit may be sufficient to give the required band width, when the pushpull stage is inductively coupled to the mixer.

A two-stage triode amplifier having exeellent noise figure and broadhand characteristies is shown in Fig. 16-2. Commonly called the cascode, it uses a triode or triode-connected pentode followed by a triode grounded-grid stage. This circuit is extremely stable and uncritical in adjustment. At 50 Me , and higher itsover-all gain is at least equal to the best single-stage pentode amplifier and its noise figure is far lower.

Neutralization is acomplished by the coil L_{n}, whose value is sueh that it resonates at the signal frequence with the grid-plate capacitance of the tube. Its inductance is not critical; it may be omitted from the circuit without the stage going into oscillation, but neutralization results in a lower noise figure than is possible without it. Any of several v.h.f. tubes may be used in the cascode cireuit, the most popular arrangement being the 6AK5-6.J6 combination, Fig. 16-2.

A simplified version of the cascode, using a dual triode tube designed especially for this application, is shown in Fig. I6-3, By reducing stray capacitance, through direct coupling between the two triode sections, this circuit
makes for improved performance at the frequencies above 100 Mc . The two sections of the tube are in series, as far as plate voltage is concorned, so it requires higher voltage than the other cireuits shown.

The neutralization process for the cascode and neutralized-triode amplifiers is somowhat similar. With the circuit operating normally the neutralizing adjustments (eapacitance of C_{n} in Fig. 16-1 or 16-3; setting the slug in L_{n} in lïg. 16-2) can be changed until the stage stops oscillating. The middle of the range over which no oseillation oceurs is approximately the proper setting. Finer adjustment can be made by disconnecting one heater lead from the r.f. amplifier tube sorket and adjusting the neutratizing for minimum signal. A burned-out r.f. tube or one with one heater prong cut off may be inserted in the r.f. socket, instead of cutting the heater voltage, if desired. The best results are obtained using a noise generator, adjusting for lowest noise figure, but the two methods described above will prowide a satisfactory approximation.
Grounded-grid r.f, amplifier technique is illustrated in Fig, 16-4. Here the input circuit is connected in the cathode lead, with the grid of the tube grounded, to act as a shield between athode and plate. The grounded-gri. 1 cireuit is stable and easily adjusted, and is well adapted to broadband applications. The gain per stage is low, so that two or more stages are ordinarily reguired. Choice of tubes is fairly limited, the best for the job being the 6.J4, a triode especially designed for grounded-grid service. The 6AB4 and 6AF4 are suitable, and the 6.J6 is used oceasionally, as in Fig. 16-2. Dise-seal tubes such as the "lighthouse" and "pencil tube" types are often used as ref. amplifiers above 300 Mc ., where ordinary miniature tubes become ineffeetive because of excessive ladd inductance.

Fig. 16.3-Simplified version of the cascode circuit using the 6BO7 dual triede. This cireuit is particularly effective at $1 / 4$ Me. and higher.
$\left.\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}-\mathrm{O}, \mathrm{O}\right) 1-\mu \mathrm{fl}$. or larger disk ceramic.
R_{1} - 100 ohms. $1 / 2$ watt.
$\mathrm{K}_{2}-470,0100$ ohms, $1 / 2$ watt. $\mathrm{C}_{5}-2-\mu \mathrm{fil}$, ceramic.
$\mathrm{C}_{\mathrm{n}}-0.5$ to $3 \mu \mathrm{ffd}$.

IRFC: - Bifilar-wound r.f. chokes to be resonant with plate-to-pround capacitance of the first triode, at the highest frequency to be received.

Fig. 16-4-Crounded-prid r.f, amplifier. Position of cathode taps on mils should be adjusted for lowest noise figure.

(4 - $\overline{-0}$)- $\mu \mu$ fl. ceramie.
$\mathbf{R}_{1}, R_{3}-220$ ohms, $1 / 2$-watt carbon.
$\mathrm{K}_{2}, \mathrm{~K}_{4}-47^{7}(1$ ohms, $1 / 2$-watt carbon.

MIXER CIRCUITS

Triode tubes are favored for v.h.f. applications, as they are less critical as to operating conditions and the highest frequeney at which they will operate satisfactorily is well above that of most pentodes. When used in mixer circuits triodes are usually quieter in operation as well.

A simple triode miser circuit is shown in Fig. $16-5 \mathrm{~A}$. The grid circuit is tuned to the signal frequency, the plate cireuit to the intermediate frequenes. A dual-triode version is given at B. The latter is particularly suitable for use at the higher frequencies. Frequently a

(A)

(B)

Fig. 16-5 - Two types of triode mixers suitable for w.h.f. receivers. A single-ended triode circuit is shown at A. The tube may be half of a dual triode, with the other portion used as the oscillator, or separate tubes may be for 144 the dual-triode version, B, is particularly useful for 144 Mc . and higher bands.
$\mathrm{C}_{1}-50 \mu \mu \mathrm{fd}$. ceramic or mica.
$\mathrm{C}_{2}, \mathrm{C}_{6}-30$ to $50 \mu \mu \mathrm{fd}$. ceramic or mica.
$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}-0.005 \mu \mathrm{fd}$. dise ceramic.
$R_{1}-1$ megohm, $1 / 2$ watt.
$R_{2}, K_{4}-1000$ ohms, $1 / 2$ watt.
R_{3} - 150 ohms, $1 / 2$ watt.
dual triode is used as a combination mixer-oscillator, using the circuits of Figs, 16-5A and 166 A . The amount of oscillator injection is usually not critical, but in the interest of stability it should te kept as low as practical. In dual triodes having separate cathodes ($7 \mathrm{~F} 8,12 \mathrm{Al}^{\prime} 7$, $2($ 'कl, cote.) some external coupling may be required, but the common cathote of the 6.J6 will provide suflicient injection in most cases. If the injection is more than necessary it can be reduced be dropping the oseillattor plate voltage, either directly or hy increasing the value of the dropping resistor, R_{1}.
A pentode mixer may be less subject to oscillator pulling than it triode, and it will probably require less injection voltage. If a pentode mixer is used, its plate current should be hedd to the lowest usable value, to reduee tube noise. This may be controlled by varving the mixer sereen voltage, The prineipal use of pentode mixers in v.h.f. work is in the interest of simplicity of circuit layout, as in multiband converters employing bindswit ching.

Occasionally oscillation near the signal fregucher maty be eneountered in v,h.f. mixers, This usually results from stray lead inductanee in the mixer plate cireuit, and is most common with triode mixers. It may be correoted by conneeting a small capacitanee from plate to cathode, dirertly at the tube sorket. 10 to $2.5 \mu \mu \mathrm{fd}$, will be sufficient, depending on the signal frequency.

OSCILLATOR STABILITY

When a high-sclectivity i.f. system is employed in v.h.f. reception, the stability of the oseillator is extremely important. Slight variations in oscillator frequency that would not be noticed when a broadband i.f. amplifier is used become intolerable when the passband is reduced to erystal-filter proportions.

One satisfactory solution to this problem is the use of a crystal-controlled oscillator, with frequency multipliors if needed, to supply the injection voltage, such a converter usually employs one or more broadband r.f. amplifier stages, and tuning is done by varying the intermediate frequencey to cover the desired frequence range.

When a tumable oseillator and a fixed intermediate frequency are used, spercial attention must be paid to the oseillator design, to be sure that it is mochanically and electrically stable. The tuning condenser should be solidly built; preferably of the double-bearing type. Splitstator condensers specifically designed for v.h.f. service, usually having ball-bearing end plates and special construction to insure short leads, are well worth their extra cost. Leads should be made with stiff wire, to reduce vibra-
tion effects. Mechanical stability of air-wound coils can be improved by tying the turns together with narrow strips of household cement at several points.

Recommended oscillator circuits for v.h.f. work are shown in Fig. 16-6. The single-ended oscillator may be used for 50 or 144 Mc . with good results. The pushpull version is recommended for higher frequencies and maty also be used on the two lower bands, as well. ('ireuit A works well with almost any small triode, the $6 \mathrm{AlS4}$, or one half of a $6.16,7 \mathrm{~F}^{\circ} 8$, or $12 \mathrm{~A}^{\prime} \mathrm{l}^{7} 7$ being most commonly used. The 6.Jt is well suited to pushpull applications, as shown in circuit 16-613.

Fig. 16-6 - Recommended cirruits for v.h.f. oscillators. The pushpull arrangement at 13 is recommended for 220 and 120 Mr., particularly.
$\mathrm{C}:-\mathbf{5} \boldsymbol{\mu} \mu \mathrm{fd}$.
11_{1} - Any mall carbon resistor, 1000 ohms or less.
$\mathrm{H}_{2}-10,000$ ohms, $1 / 2$ watt.
$\mathrm{K}_{3}-3000$ to 5000 ohms, $1 / 2$ watt.

THE I.F. AMPLIFIER

Superheterodyne receivers for 50 Mc . and up should have fairly high intermediate frequencies, to reduce both oscillator pulling and image response. Approximately 10 percent of the signal frequency is commonly used, with 10.7 Mc. being set up as the standard i.f. for commercially-built f.m. receivers. This particular frequency has a disadvantage for 50 -Mc. work, in that it makes the receiver subject to image response from $28-\mathrm{Mc}$. signals, if the oscillator is on the low side of the signal frequency. A spot around 7 Mc . is favored for amateur converter service, as practically all communications receivers are capable of tuning this range.

For selectivity with a reasonable number of i.f. stages, double conversion is usually employed in complete receivers for the v.h.f. range. A $\overline{\mathbf{T}}$ - Mc, intermediate frequeney, for instance, is changed to 455 ke ., by the addition of a second mixer-oseillator. This procedure is, of course, inherent in the use of a v.h.f. converter ahead of a communications receiver.

If the receiver so used is lacking in sensitivit y, the over-all gain of the converter-receiver combination may be inadequate. This can be corrected by building an i,f, amplifier stage into the converter itself. Such a stage is useful even when the gain of the system is adequate without it, as the gain control can be used to
permit operation of the converter with eceivers of widely-different performance. If the receiver has an S-meter, its adjustment may be left in the position used for lower frequencies, and the converter gain set so as to make the meter read normally on v.h.f. signals.

Where reception of wide-band FM or unstable signals of modulated oscillators is desired a converter may be used ahead of an FM broadeast receiver. A superregencrative detector operating at the intermediate frequency, with or without additional i.f. amplifier stages, also may serve as an i.f. and detector system for reception of wideband signals, By using a high i.f. (10 to 30 Mc . or so) and by resistive loading of the i.f. transformers, almost any desired degree of bandwidth can be secured, providing good voice quality on all but the most unstable signals. Any of these methods may be used for reception in the microwave region, where stabilized transmission is extremely difficult at the current state of the art.

THE SUPERREGENERATIVE RECEIVER

The simplest type of v.h.f, receiver is the superregenerator. It affords fair sensitivity with fow tubes and clementary circuits, but its weaknesses, listed earlier, have relegated it tor applications where small size and low power consumption are important considerations.

Fig. 16.7 - Superregenerative detector circuiz using a self-puenched detec. tor. $L_{2} C_{1}$ tunes to the signal frequency. Typical values for other components are:
$\mathrm{C}_{2}-47 \mu \mu \mathrm{fd}$.
(.3-0.00) to $0.005 \mu \mu \mathrm{fd}$.
$R_{1}-2$ to 10 megohms.
$\mathrm{K}_{2}-50,000$-ohm potentiometer.
$\mathrm{R}_{3}-47,000$ ohms, I watt.
RFC - Single-layer r.f. cloke, for frequency involved. T_{1} - Interstage audio transforiner.

Its sensitivity results from the use of an alternating quenching voltage, usually in the range bet ween 20 and 200 kc ., to interrupt the normal oscillation of a regenerative detector. The regeneration can thus be increased far beyond the amount usable in a straight regenerative circuit. The detector itself can be made to furnish the quenching voltage, or a separate oscillator tube can be used. Regeneration is usually controlled by varying the plate voltage in triode detectors, or the screen voltage in the case of pentodes. A typical circuit is shown in Fig. 16-7.

Crystal-Controlled Converters for 2, 6 and 10 Meters

The family of eonverters shown in Fig. 16-8 through 1 di-15 was designed to provide optimum performance on 28, 50 and $14 t$ Me. Crys-tat-controlled oseillators are used, to insure stability, and the triode r.f. sections provide excellent sensitivity and low noise figure. A separate "front end" for each band is plugged into a base unit containing the power supply, i.f. amplifier stage, and other parts that are not changed in shifting from one band to another.

The R.F. Circuits

The easeode circuit is used in the r.f. amplifiers of the converters for 28 and 50 Mc. 1 triode-connected $6: \mathrm{M} 5$ with induetive neutralization works into a 6.56 grounded-grid amplifier. Circuits for the two units are similar, only the eomponents afferting frequencer being different. The functions of erystal-controlled oseillator and mixer are combined in at 6.d6. The mixer plate coil is induded in the plug-in unit. The schematio diagram is given in Fig. 16-9.
The $14 t-\mathrm{Me}$. converter. Figs. $16-11$ and 16-12, uses pushpull circuits, with a noutratized 6.J6 r,f, amplifier and another 6.J6 as a push-push mixer. Oscillator injertion is provided be another 6.Jt as crystal oscillator and multiplier. If a coaxial-line fed antemna system is used on $14 t$ Me, the buidder may wish to use the easeode cireuit on this hand as well. There is little to choose from hetween the two cirruits, exeppt that the push-pull arrangement is better adapted to ure with balaneed lime.
An improved version for 220 and 144 Me., using a 6 bent dual triode, a teper of tube not availatble when the first models were designed, is shown in Figs. 16-16, 16-17 and 16-18.

When a fixed osedlator and variable i.f. are used, the r.f. and i.f. cireuits in the converter must be made broadband, to avoid the need for readjusting them as the receiver with which
the converter is used is tuned across the band. This broadbating is aceomplished in the converters for 28 athd 50 Mc , he using slug-tuned plate coils in the first r.f. and mixar plate circuits. These are resonated be the eircuit capacitane only, and are relatively low Q design. ('oupling between the second r,f. and mixer stages employs over-coupled tuned cirruits. These serve the additional purpose of providing a hamb-pass response, preventing interference from signals in the i.f. range. The 14t-Mc. converter uses closely-coupled circuits betwen the r.f. and mixer stages for the same

purposes. The mixer plate coil is loaded by resistor, R_{4}, for further broadening of the overall response.

Crystal Oscillator Details

Crystal frequencies were selected so that the four bands would start at the same spot on the communications recoiver dial, and so that the ervestals would be readily oltainable. Relatively. low-enst revestals arre used in a regencrative triode oscillator rifeuit, working at an odd overtone of the erystal frequenes. In the 28 Me. unit a 7000 -ke. ervestal oxeillates on its third overtone. Fifth-overtone operation of an 8(6)0-ke, crystal furnishes the injection voltage in the $50-\mathrm{Ne}$. converter, A $6850-\mathrm{ke}$, crystal

Fig, 16.8- (irystalcontrolled conserters for 28. 80 and 1.1 t V1e. At the left the 50-Mr. unit is seen momoted on the hase. The latter includes an i.f. amplifier and power supply. The 28-Ne. converter (center) is similar mechanically and electrically to the $50-11 \mathrm{c}$, one. It the right is the $1 H$. Mc. plug.in unit.

Fig. 16.9 - Schematic diagram of the erystal-eontrolled converters for 28 and 50 Me. Inless otherwise indicated, parts are the same for both units.
$\mathrm{C}_{1}-15-\mu \mu \mathrm{fd}$. varialle (Millen 20015).
$\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{-7}, \mathrm{C}_{12}, \mathrm{C}_{33}-0.005 . \mu \mathrm{fd}$. dise ceramic.
$\mathrm{C}_{4}, \mathrm{C}_{8}, \mathrm{C}_{10}-50-\mu \mu \mathrm{fl}$. ceramic.
C 3 - $500-\mu \mu \mathrm{fd}$. ceramic.
$\mathrm{C}_{6}, \mathrm{C}_{9}-5-20-\mu \mu \mathrm{fd}$. ceranic trimmer.
$\mathrm{CH}_{1}-50 \mathrm{M}$ (r: : $50-\mu \mu \mathrm{fd}$. air trimmer (Millen 26050).
28 Mc.: $5-\mu \mu \mathrm{fd}$ air trimmer (Millen 200.5).
$\mathrm{H}_{1}, \mathrm{l}_{2}-100$ ohms, $1 / 2$ watt.
$\mathrm{K}_{3}, \mathrm{~K}_{4}, \mathrm{~K}_{\mathrm{f}}, \mathrm{R}_{8}-1000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{5}-0.68 \mathrm{megolmm}, 1 / 2$ watt.
$\mathrm{R}_{7}-3300$ ohms, 1 watt.
L. - 4 turns No. 28 e. het ween turns of L_{2} at cold end. $\mathrm{I}_{2}-50 \mathrm{Mc}$: 10 turns No. 20 timed, $1 / 2$-inch diam., $5 / 8$ inch long (13 \& 11 Hiniductor 3003). $28 \mathrm{Vc} \cdot \mathrm{a}$: 14 turns No. 20 timned, $5 / 3$-inch diam., $7 / 4$-ineh long (B \& W Miniductor 3007).
$\mathrm{L}_{3}-50 . \mathrm{Mc} .: 25$ turns No. 32 e., close wound on ("IC: 1 LSM form ($1 / 4$-inch diam., slug-tuncd). 28 Wr.: (TC1.S3 10-Me. coil, slug-tuned.

oscillates on its fifth overtone in the $144-\mathrm{Mc}$. converter, multiplying by four in the second 6.56 triode section. Table $16-1$ gives complete information for all models.

Operation of crystals in this way results in a frequeney that may not be an exact multiple of the frequener marked on the erystal holder; hence the term, "overtone." It is close enough for ordinary dial calibration purposes, however. Overtone-type erystals of the proper frequeney could be obtained on order, but the cost would be materially higher. Conventional operation of lower-frequency erystals, making up the multiplication with additional stages, is

28 Mc.: (:TC: ISM 10-Mc. eoil with 4 turns re. moved, slug-tuncd.
$\mathrm{L}_{5}, \mathrm{~L}_{6}-50$ Me.: 8 turns $\mathrm{N}_{\mathrm{o}} .18$ tinned, $5 / 8$-irch diam., 1 ineh long (13 \& W Minidurtor 3006t, $1 / 4$ inch space het ween cold ends. 28 V/c.: 9 turns Xo. 24 timed, $1 / 2$-inch diam., $9 / 32$ imfh long (B \& 4 Miniductor 300:), 3/16 inch space between cold ends.
$\mathrm{L}_{7}-50$ Mc.: 10 turns No. 20 tinned, tapped $31 / 3$ turns from crystal end ($13 \& W$ Miniductor 3003), b- 2 inch diam, $5 / 8$ inch long. 28 Mc.: 10 turns No, 20 tinned, $5 / 8$-ineh diam., $5 / 3$ imeh long, tapped $31 / 3$ turns from erystal end (B \& W Minidnctor 300°).
Ls-C'IC: Is 3 5-Me. woil with 7 turns removed.
I.T, CT-F.m. trap. -1 urns No. 20 tinned, $1 / 2$ inch diam., $8 / 8$ inch fong ($B \mathbb{S}$ W Minidut or 3003), tuned with $-20-\mu \mu \mathrm{fl}$. ceramic trimmer.
J_{1} - Cirystal socket for antenna terminals.
$\mathrm{P}_{1}-4$-prong mate plug.
not reeommended, because of the difieulty in avoiding birdies from crystal harmonies. In the overtone eireuit, no frequency lower than the overtone at which the crystal oscillates is heard.

Layout

The units are built on aluminum thassis of stock sizes. The base is 3 by 5 by 13 inches (ICA 29003), and the r.f. units are 1 ly by 5 by $91 / 2$ inches (ICA 29001). The only metal work required is the making of small aduminum guide plates for the front and rear of the converter chassis, and the mounting bracket for

Fig. 16-10-13ottom view of the 28-Mr. plogein unit. At the left is the tuned input circotit, followed by the 6. IK.5 r.f. stage, with its slug-tuned plate and neutralizing windings. It the middle of the rhassis is the 6.56 grounded-grid stage, with its handpass eompling to the miser grid, ()sedlator components are at the upper right. D'arts arrangement in the 50 - Me. converter is similar.

Fig. $/ 6.11$ - I3ottom view of the 144-Nr. converter. Across the top of the photo. left to right, are the input cirenit, the push-pull r.f. stage. the push-push mixer, and its slugtuned wate cireuit. (seillator and multiplier components are at the bottom of the pieture.
cal standpoint. Chief consideration here is to avoid mounting parts on the outside walls of the units, thereby preserving to the fullest degree the deep-but-narrow form factor. This shape takes up a minimum of high-priority
the inter-connecting socket at the rear of the base mit. Ventilation holes are eut in the sides of the base unit, and t wo $11 / 4$-inch holes are cut in the top surface of this chassis to provide greater clearance around the major coils of the r.f. assemblies, when they are in the operating position. The placing of the power supply and i.f. amplifier components on the base unit is not critical, though the arrangement shown in the photographe works out nieely from a mechani-
spare on the operating table.
('are should he used in mounting the socket and plug on the base unit and converters, respeetively, in order that they may line up exactly. When the job is properly done it is merely necessary to place the converter unit on the base, with the front edge tilted upward slightly, slide the plug into the socket, and then drop the converter in place. The converter assemblies should be kept free of parts in the portion

Fig. 16.12 - Wiring diagram of the 144-Ne. ery atal-eontrolled converter.
$\mathrm{Cl}_{1}, \mathrm{C}_{5}-5.3-\mu \mu \mathrm{fl}$. -pers-section hutterfly (Iohnson 5M1311).
$\mathrm{C}_{2}, \mathrm{C}_{6}, \mathrm{C}_{7},\left(: 8, \mathrm{C}_{10}, \mathrm{C}_{14}-\mathbf{0}, 005-\mu \mathrm{fd}\right.$, dise ceramir,
$\mathrm{C}_{3}, \mathrm{C}_{4}-75$-ohn 'rwin-lead neot, capacitors (sere tevt).
$\mathrm{C}_{9}-50-\mu \mu \mathrm{fd}$. ceranim.
$\mathrm{C}_{11}-50$ - $\mu \mathrm{ff}$ d, air trimmer (Millm m 20050).
$\mathrm{C}_{12}-10 \mathrm{H} \cdot \mu \mathrm{fd}$, ceramic.
$\mathrm{C}_{13}-5-20-\mu \mu \mathrm{fd}$. cerannic trimmer.
$\mathrm{H}_{\mathrm{h}}, \mathrm{H}_{3}-150$ ohms, $1 / 2$ watt.
$\mathrm{H}_{2}, \mathrm{~K}_{5}, \mathrm{~K}_{7}, \mathrm{~K}_{9}-1000 \mathrm{ohms}, 1 / 2$ watt.
$\mathrm{IR}_{4}-2200$ ohms. $1 / 2$ watt.
lis - 0.22 megohm, $1 / 2$ watt.
$\mathrm{li}_{8}-3300$ ohms, 1 watt.
$\mathrm{L}_{1}-4$ turns, No. 18 enam., $5 / 16$-inch diam., $1 / 4$ inch long.
$L_{2}, L_{3}-6$ turns No. 18 enam., 3 turns each side of cen-
ter tap. with $3 / 8$-inch spacing bet ween sections.
$3 / 8$-inch diam. Adjust turn spacing as needed.
$L_{4}-5$ turns Vo. 18 enam.. $3 / 8$-incla diam., elose-wound and cernter-tapped.
$I_{5}, L_{9}-1$ turn hook-up wire wound around L_{5} and L_{9} : Th.ohm Twin-lead used to connect between the two croils.
1.6 - Slux-tuned plate woil (CI'C LS3 S.Me. coil with 20 turn: removed).
L_{7} - 11 turns $\mathrm{Do}^{2} .20$ tinned, $1 / 2$-inch diam., $1 / / 16$ inch long. tapped 1 turns from crystal end of coil (B \& 113003).
$\mathrm{L}_{8}-3$ turre $\mathcal{V}_{0} .18$ tinned, $1 / 2$-inch diam., $3 / 8$ inch long (B \& W 3002).
J_{1} - Crystal sochet for antenna terminal.
$P_{1}-4$-prong male plug.

Fig, 16-13 - Base unit, with ennverter removed, showing the plup-in fitting for the mixer outpat and power connertions. The 613 A 6 i.f. amplifier stage is at the lower right.
that is over the rectifier tube socket, in order that mo components be damaged in the plugging-in operation.
looking at the converters for 28 and 50 Me. from the front we see the tuning condenser for the r.f. input circuit, followed by the 6AK5 and 6.06 r.f. stages and the 6.J6 mixer-oseillator, in that order. The 6AK: plate coil, the noutralizing coil, and the mixer plate coil are slug-tuned resonating with the circuit caparitances only. ('ondenser-taned circuits are used in the r.f. input, serond r.f. plate, and mixer grid cireuits. The difference in position of the r.f. tuning condenser, C_{1}, in the two converters is the result of an improved parts arrangement used in the 28 -Mle. job. Mounting of this condenser on the front wall of the converter chassis is recommendel for both units.

Note the altornative input circuit for the 50-Mc, converter, shown in Fig. 16-9. This includes a 100 -Mc. trap for elimination of f.m. interference. If the convarter is to be used in a location near to f.m. broadcast stations this trap is necessary to prevent the second harmonic of the injection frequency from beating with the f.m. signals and producing spurious responses in the $50-$ Mc. band.

In the 2 -meter converter the r.f. and mixer tubes are in line at the right side of the chassis, as viewed from the front, with the oscillatormultiplier at the left. This layout makes for symmetrical arrangement oi the puh-pull cireuits. All the r.f. coils are self-supporting, so that their length and compling can be adjusted readily, Link coupling of the injection voltage is accomplished with single-turn cails around the multiplier-plate and mixer-grid windings, connected by a short length of 75 -bhm TwinLead.

Adjustment and Operation

Work on the r.f. sections is mad easier if a patch cord is made up so that the r.f. units can be removed from the base and kept in operating condition. The only eritical portion of the adjustment procedure i : that involved in getting the revital oscillator to work properly, and on the right overtone The important factor here is the amount of regeneration,

Fig. 16.14 - Wiring diagram of the power supply and i.f. amplifier unit for use with the crystal-controlled converters.
$C_{1}, C_{2}-10-\mu \mathrm{fd} .450$ volt electrolytic.
$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}-0.005 \cdot \mu \mathrm{fd}$. dise ceramic.
$\mathbf{R}_{1}-2.500$ ohms, 10 watts.
$R_{2}-1$ megohm, $1 / 2$ watt.
$\mathrm{K}_{3}-10,000 \cdot 0 h_{m}$ wire-wound potentiometer.
$\mathrm{R}_{4}-68$ ohms, $1 / 2$ watt.
$\mathrm{K}_{5}-\mathbf{5}, 0000$ ohms, 2 watts.
$\mathrm{K}_{6}-39,000$ ohnms, 1 watt.
$R_{7}-200$ ohms, $1 / 3$ watt.
Rs - 1000 ohms, $1 / 2$ watt.
L_{1} - $10 \cdot \mathrm{hy}, 50 \cdot \mathrm{ma}$, filter choke.
L_{2} - Slug-tuned plate coil (CTC LS3 5 Mc . with 10 turns removed).
L_{3} - 15 turns No. 32 enam., srramble-wound at bottom end of 1.2 .
J_{1}-4-prong female plug.
J_{2} - Coaxial-rable jack.
S_{1} - S.p.e.t. toggle switch.
T_{1} - Power transformer, 275 v . earh si ec.t, at 50 ma ; 6.3 v . at $2.5 \mathrm{amp} . ; 5 \mathrm{v}$, at 2 mp. ('hhordarson T-22R30).
controlled by the position of the tap on the oscillator coil, L_{7}. The process is the same for all three converters, hut the tap position may be somewhat more reitical in the 50- and $1+4$ Me. units, as a higher-order overtone is used.

The proper position for the tap, is that at which osedilation takes place only at the third or fifth overtone, as the converter rectuires. If the tap is too high on the coil oscillation will be on random frequencies, determined by the setting of Cin, rather than controlled by the erystal. If the tap is too luw on the coil no oseillation at all will develop. The L / C ratio in the tuned eireuit is also fairly eritical, for best operation, but if the values given in the parts lists are followed no trouble should be encountered on this seore.

To cherek operation of the oscillator insort a moter in series with R s, apply plate voltage, and rotate Countil asharp dipinpate current occurs, indicating oseillation. There may be a tendener to self-oscillation at the minimamcaparity end of the tuning range, but this may be disregarded if it disappears quickly as the condenser is turned toward maximum catpacity. Crystal oscillation should oerur somewhere bot wern half and maximum rapacity. It is helpful if a recedver is avalabla for listening on the frequencer of oscillation (indicated over L_{-}in the diagrams) to ser whether or mot the (erystal is controlling the freguener. If the freguency chamges marked!y or if pronomoned hathdcapacity efferts are present, move the tap) towated the low end of L_{i} by one turn and tres. agatin. I fraction of at turn ehange may be neressary in some instanere, to adhieve erisstal control without random oscillation. it is also possible that the wrong overtone may develop. With ineorecet values of induetanere and capacity this type of circuit may produce oscillation on any odd overtone, so at wavemeter or recoiver check should be made to be rertain that the proper injection froquency is boing used.

Next a rough alignment of the r.f. and i.f. cireuits should be made. This ran be done on noise. with the receiver set at the approximate midpoint of the frecquence range to low tumed, or if one has a signal generator the prowess is made easier. This noed be nothing more than the
crestal oscillator in the transmitter, using the proper harmonic.

Neutralizing is next in order. This should be done following the procedure outlined in the seetion on r.f. amplifier design carlior in this chapter.

Final adjustment of the converters may now be made. Prak all circuits in the 10- and 6moter converters at one end of the hand, then move the reeriver to the other end of the band and repeak either the mixer or i.f. amplifier plate winding for maximum response. Reroivar noise is satisfactory for this test, If the response is mot suffidiantly broad, correction can be made with the bandpass circuits in the second r.f. plate and mixer grid circuits, stagger tuning these and the i.f. coils until reasonably flat response is attained. All this is best done with a 300 -ohm resistor connected across the antemat terminals, to eliminate antemat resomatner effects. If the response is flat with this set-up, variation in noise over the band with the antemna on may be disregatrded, since it is a function of the antenna it self. Absolutely flat response is not important, for the overatl gatin of the system ran be adjusted bey means of the i.f. gatin control. It should be set so that, with the antenna connereded, the normal noise level just starte wead on the metar. Tuming the gain berond the point at which monse becomes a limiting factor afferts no improvement in signald raddability.

The flat thess of response in all converters can be variod bey adjusting the r.f.-miser coupling. In the 2 -meter unit the roupling between L_{3} and L_{4} should be increased to the point where it is umeressary to change the setting of C_{5} to cover the entire band. There will be a slight amount of repeaking of ce necessary in all converters. though it should not make more than about one s-unit difference from one end of the batnd to the other, and it will have a negligible efferet on the noise figure.

The donverters are now ready for use, but some work on the receivor may be neded. A fow communieations receivers radiate harmonies of the high-frequency oseillator frequence, and these will show up as hirdies throughout the v.h.f. range. The cure is similar to that employed in treating transmitters for TV'I.

Fig. 16-15-Inder-ehassis view of the hase unit. howins the power suphly and i.f. amplitier componemts. The circular rotouts provide additional clearance around the tuned circuits in the plug-in unit.

A Crystal-Controlled Converter for 220 or 144 Mc.

The convertor of Figs. 16-16-16-18 uses an improved dual triode, the 6BO7, designed especially for v.li.f. r.f. amplifior service. The circuit is al simplified version of the easerode, giving

Fig. 16.16 - 'The 6 BU0 7 crystal -rontrolled cumerter for 2.20 or 114 W . is shown here munuted on the hase unit previondy deseribel. 'The fil30' is the large tube at the fromt. At the left. Wehend the crestal, is the $6 / 6$ oseillator-multiplier. "He other folfo, right, is a combined mixer and injection frepuemey doulter. Note the plag-in lead for taking off the high voltage for the 6 BG7.
improved performance on the higher frequencios. Parts values are given for operation on either 220 or 144 Me. Only the coils and the cristal frequency are different for the two bands. The mondanical layout is such that the ronverter may be used with the i.f. amplifior base unit of Figs. 16-13-16-15, by slight modification of the base power supply. In performance the converter
is similar to the 6.J6 model on 144 Me., but on 220 Me. it is eonsiderably better than is possible with the circuits and tubes of the earlier models.

A third-overtone oscillator is used for either band, the crystal frequency being 7100 ke . for 220 - Me. operation and 7611 kc . for 144 Mc. One half of a $6 . J$ fis the crystal oseillator, the second half tripling to 68.5 Mc . in the $\mathrm{I} 44-\mathrm{Mc}$. steup, or guintupling to 106.5 for 220 Mc. A second 6.56 is a eombined doubler and mixer, the injertion frequency being 137 or 213 Mc. (Ser 'Table 1.)

Adjustment of overtome oscillators is deseribed in detail in the chapter on v.h.f. transmitters. A soparate foedbark winding is used in the oseillator, instead of a tapped coil as in the other converters described. The amount of feedback being not particularly critical in this case, the two coils, L_{5} and L_{6}, were made from a single piece of $\mathrm{B} \& \mathrm{I}^{5}$ Miniductor. If a chatge in feedback is needed, the two portions can be separated for adjustment purposes. Provision for maintaining the coupling lotwern the two exactly shonld be mide if this is done.

No injection coupling, other than that through the fube itsolf and that inherent in the associated circuits, is shown. Additional coupling was not needed for 14t Me., but it was found desirable to add at small eapacitanco between pins 2 and 6 of the 6.50 doubler-mixer for 220 Mc . About one inch of 75 -rhm Twinlead was used for this purpose. A piece of insulated wire soldered to Pin 6 and wrapped around the lead to Pin 2 will serve equally woll. The eapacitance should be ancrased until adding more makes no improvement in sensitivity, but probably noz more than $2 \mu \mu \mathrm{~d}$. will be needed.

Note that the two portions of the 313Q7 are in series as far ats the plate voltage is concerned. This requires a higher plate supply voltare than is ob-

Fig. 16.17-Bottom view of the obso converter with2? 0 . M1. cuils instatlocl. At the upper Icft is the antema trime mer. The large coil near the center of the chasion contains the overtone oncillator indactancers. $L_{5} 5$ and L_{6}. The two multiplier thed rireuits are visilhe at the lower right, with the slugfined mixer plate coil at the upper right.

Fig. 16-18 - Schematic diagram and parts list for the 6 BO - converter for 220 or 144 Me.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}-5-20{ }_{\mu} \mathrm{ffd}$, ceramic trimmer (Centralat 8:3-13).
$\mathrm{C}_{4}-5-50$, μ fid. ceramic trimmer (Centralab, 822-AN).
C, C. $\mathrm{C}_{6} \mathrm{C}_{0}, \mathrm{C}_{3}, \mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{14}, \mathrm{C}_{16}-0.001-\mu \mathrm{fd}$. disk ceramic.
$\mathrm{C}_{\mathrm{i}}, \mathrm{C}_{\mathrm{s}}-2-\mu \mu \mathrm{fd}$. ceramic.
$\mathrm{C}_{10}-10-\mu \mu \mathrm{fd}$. ceramic.
$\mathrm{C}_{13}, \mathrm{C}_{15}, \mathrm{C}_{15}-\overline{5}()_{-\mu \mathrm{fd}}$, ceramic.
$\mathrm{R}_{1}-100$ ohms.
$\mathrm{K}_{2}-470,000$ ohms.
$\mathrm{K}_{3}, \mathrm{R}_{4}, \mathrm{~K}_{\mathrm{R}}, \mathrm{K}_{9} \mathrm{R}_{\mathbf{1 2}}-\mathbf{1 0 0 0}$ ohms.
$\mathrm{R}_{5}-0.68$ megohm.
$\mathrm{R}_{6}-0.22$ megohm.
$\mathrm{K}_{7}-2200$ ohms.
$\mathrm{R}_{10}-3300$ ohms.
$\mathrm{R}_{11}-47,000$ ohnis.
All resistors $1 / 2$-watt.
$\mathrm{L}_{1}-220 \mathrm{Mc}-1$ turn $3 / 8$-inch diam., clowely coupled to L 2.
-144 Mc. -2 turns as alowe.
$\mathrm{L}_{2}-220 \mathrm{Mc},-2$ turns $3 / 8$-ineh diam., spaced diam. of wire.
-144 Mc. -5 turns $3 / 8$-inch diam., $5 / 8$ inch long.
tained through the regulator system (Pin 2 of the power plug) so a change in the base unit must be made to permit tapping into the high-voltage line. An insulated pin jack is installed in the base unit, connceting it to the junction of R_{5} and R_{6} in Fig. 16-14. Conneetion to the converter is made by means of I_{2}, a test-lead type plug on the end of a flexible lead. Another pin jaek is mounted on the converter chassis to hold this plug when the converter is not in use.

Execpt for the setting of C_{1}, all adjustments of the r.f. stages are extremely broad. A variable trimmer may be tried in place of C_{8}, but in this unit it was not found neeessary to change the value for 220 or 144 Me . The bi-filar-wound ehokes in the heater leads are désigned to be self-resonant at approximately the highest frequency for which the converter will be used. There is no particular advantage in ehanging them for $144-$ Mc. work, though if the converter
I_{n} - 220 Mc . $-31 / 4$ turns $1 / 4$-inch diam., $3 / 8$ inch long, tapped at $11 / 2$ turns from Gis end.

- 144 Me. - 5 turns $3 / 8$-inch diam., $3 / 4$ inch long, tapped at $1 \frac{1}{2}$ turns from C_{k} end.
1.4 - 44 turns No. 30 enam., close-wound on $3 / 8$-inch diam. slux-tunced form.
L.5, L.6 - Wade from one piece of IS \& W Miniductor No. 3003. 15 turns total. Cut at 5 turts for l_{6}; halance for $L .5$.
$\mathrm{L}_{\mathrm{T}}-220$ Mr. -6 turns $1 / 4$-inch diam., $5 / 8$ inch long.
-14 \1r. -8 turss $3 / 8$-ind diam., $3 / 4$ inch long.
Ls - 220 Mc. - 2 turns $1 / 4$-inch diam., Epaced $1 / 8$ inch.
$-141 \mathrm{Mc} \cdot-3$ turns $8 / 8$-inch diam., $1 / 4$ inch long.
AIt coils No. 18 enameled wire moless otherwise noted.
RFC, $\mathrm{RPC}_{2}-5$ turns each No. 22 enam., close-wound side-hy-side (hi-filar) on $3 / 16$-inch diameter. (Cement turns together with coil dope.
P_{1} - t-prong plug (Amphenol 86.C1'4),
I_{2} - Pest-lead type plug. Matehing fitting must be added to power supply, or I_{1} and matching fitting changed to 5 -prong.
is to be used solely on 144 Me. they may be alout two turns larger than given in the parts list.

For leest results, the induetance of the antenna coil should be as low as possible and still resomate at the signal frequenes with adjustment of C_{1}. The setting of C_{1} should be done with the antenna attiched, as a standing wave on the feedline will require a change of tuning. For first tests a $300-$ ohm resistor aeross the antenna terminals may be used. C_{1} will tune sharply, but onee set properly for the middle of the band it need not be ehanged in tuning aeross the band.
Resonance at the middle of the band in L_{2} and L_{3} may be cheeked with a grid dip meter, if one is available, or the turns may be spaced for maximum response on a test signal. Only a slight ehange in signal will be observed with large ehanges in induetance, so the converter should be eapable of good reception before any adjustment is made, other than the setting of C_{1}.

A Tunable Low-Noise Converter for 144 Mc.

The 2-meter converter shown in Figs. 16-19 to $16-22$ was designed for superior weak-signal performance, yet it is relatively simple and inexpensive to build. Its r.f. section has a low noise figure, and special attention has been paid to oscillator design, for smooth tuning and improved stahility. Its built-in i.f. amplifier stage, the gain of which is adjustable, permits use of the converter with recoivers of widely-different performance characteristies.
Two r.f. stages are used, employing the casrode circuit treated earlier in this chapter. The mixer and oseillator are GABt triodes. These functions could be eombined in a single 12 AT if desired, but separate triodes were used to permit more flexible adjustment of the oscillator injection. The mixer is followed by a 6A (i5 i.f. amplifier, gain controlled by means of a potentiometer in its cathode circuit. The intermediate frequency is 7.4 Me., selected because of its avalability in most communieations receivers, but 10.7 Me., or any ot her desirable frequeney, may be used, if the i.f. cireuits are suitably altered.

The Oscillator

A high degree of receiver selectivity can be utilized effectively at 144 Mc. only if a stable and smooth-tuning oscillator is used in the converter. Mechanical vibration is reduced in this model through the use of a tank inductance made of $1 / 8$-inch copper tubing, soldered directly to the stators of the tuning condenser, as may be seon in the rear view, fig. 16-22.
The oscillator condenser is a type designed spereifically for v.h.f. service. It has ball hearings at both ends of its rotor and ceramic end platess of heavy stock. Brackets for mounting the oseillator tube soeket are an integral part of the condenser assembly, A smooth-operating dial assembly is made by substituting a large knob (National HRK or HRT) for the small one
normally supplied with the National type K dial.

The oscillator circuit is one which provides constant output over the necessary tuning range, and the stage is run at low input, with light loading. The quality of the c.w. uote thus obtained is adergate for reeption of 2 -moter rew. signals, and the absener of hum modulation makes for good weak-signal reopption of modulated signals. Oscillator injection is eontrolled by means of the link loops, L_{10} and L_{11}.

The R.F. and I.F. Stages

Though the converter has more tubes than the simplest units, it is not difficult to build or adjust. All circuits execpt the oscillator and the r .f. input cireuit are slug-tuned, and only the oscillator is varied in tuning arross the hand. All stages may be peaked readily without a signal generator, The r.f. input circuit, L_{2}, is eondenser-tuned, and it is important that a high-(? coll be used for best performance. The loading efferet of the antenna is suca that C_{1} may he set for maximum signal at 146 Me., and little difference in response will be noted at either end of the band.

The mixer and i.f. amplifier plate coils, L_{6} and L_{i-k}, must be shiclded, and coaxial line should be used for coupling the converter to the receiver, otherwise there may be anmoying pick-up of signals at the intermediate frequency.

Construction

The position of components is not critical, and other arrangements may be desirable if the parts used are not duplieates of the original. In this instanee an "L" "shaped layout is used, with the antenna torminals and r.t. stage at the right rear corner of the chassis and the serond r.f., mixer, and i.f, amplitier stages running along the back and left sides in that order. The oscillator assembly is at the right

Fig. 16.19 - The cascode converter for $1+1$ Me. The dial calibration was made by drawing on heavy white paper, which is then fastened to the dial surface with rubber cement.

Fig. 16-20 - Schematie diagram of the 2 -meter easeode converter.
$\mathrm{C}_{1}-8-\mu \mathrm{fd}$, variable (Iohnson 160-101)
$\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{Ci}_{2}-4.0-\mu \mathrm{fd}$. button-type liy-pass.
$\mathrm{C}_{4} \mathrm{C}_{6}$ (8 , $\mathrm{C}_{13}, \mathrm{C}_{18}-15-\mu \mathrm{fil}$. ceramic.
($: 5-1: 0)-\mu \mathrm{fd}$. mira.
C9- $100-\mu \mu \mathrm{fd}$. ceramic.
$\mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{14}-0.001-\mu \mathrm{fl}$. mica. (Cio and Ci4 are inside the i.f. shields.)

C. 16 - $6 . \overline{5} \cdot \mu$ fid. stator-tositator variable (Vational VIIF-1-1) .
C.1:-3-30- -ffd , air padder (Niber git),
$\mathrm{K}_{1}, \mathrm{~K}_{3}, \mathrm{~K}_{14}-100$ ohms. (N / I resistors ${ }^{1} 2$-watt unless otherwise specified.)
$\mathrm{R}_{2}, \mathrm{~K}_{4}, \mathrm{~K}_{6}, \mathrm{~K}_{12}-1000$ olmes.
$\mathrm{R}_{5}-0.08$ magohm.
Ni_{i} - I megohm.
$\mathrm{R}_{8}-220$ ohms.
K_{9} - 2000 -nhm wire-wound potentiometer.
$R_{10}-22,000$ ohms, 1 watt.
$\mathrm{R}_{11}-33,000$ ohms.
front corner. It should be plated so that the flexible coupling does not touch the front panel. The chassis is aluminum, $\overline{7}$ by $\overline{7}$ hy 2 inches, and the sheet aluminum panel measures $53 / 4$ by 8 inches. Note that aluminum braces are used to prevent panel vibration. These were found necessary for best oseillator stability.

The method of coupling the output of the oseillator to the mixer may be seen in the bottom and rear views, Figs, $16-21$ and $16-22$. A coupling loop is mounted on the two outside lugs of a 3-lug tie-point strip directly below the oscillator inductance. This loop is connected through 75 -ohm Twin-Lead to a loop around the r.f. plate coil, L_{5}. The center lug on the strip is used for mounting the oscillator decoupling resistor, R_{14}, which also serves as a third support point for the oscillator tank inductance. The size of the coupling loops, L_{10} and L_{11}, will depend on the amount of oscillator injection needed, but the degree of coupling will be small. L_{10} is a semicireular loop of No. 18 wire, $3 / 4$ inch across, ahout onehalf inch below L_{9}, L_{11} is a circular loop
R_{13} - 2.00 ohms, 10 watts.
$\beta_{15}-15,1000$ ohms.
1.1 - 2 turns №. 18 enamel, 3 -ineh diameter, bet ween turns of L_{2}.
 between turns.
1.3-10 turns No. 21 enamel on ${ }^{2}$ - - ineh dianneter slug. tuned form (CTC).
1.t, $1: 3$ turns No. 21 enamel on $1 / 4$-inch dianmeter

 -pare on Xational XR . $\mathbf{5} 0$ form.
$14-5$ turns No, 21 d.s.c. over eold end of L_{i}.
1 - Hairpin-shaped leop, $1 / 8$-inch copper tuhing, 3 , inch wide. Total length before soldering: ${ }^{1}$: 2 inches. Fixtends $11 / 8$ inches beyond tuning-eondernaer stators. (Ser Fig, 1-2.9.)
L_{10}, L_{11} - Hairpin loops for ronpling oscillator to mixer. Sere test and photographs.
J_{1} - Coaxial connector.
concentric with L_{5}. It is visible in the lefthand corner of the bottom-view photograph, Fig. 16-21.

In mounting the oscillator tube socket the phatelug, pin No. 1 , is soldered directly to the tuning-condenser stator. Pin No, 6 is connected to the other stator through the short length of the grid condenser, C_{14}. All other socket pins rexcept the heater, No. 4, are conneeted together and grounded.

Adjustment

The first step in placing the converter in serviee is to set the oscillator for the proper frequency range, 136.6 to 140.6 Mc. for a 7.t-Mc. i.f. This may be done with a calibrated absorption-type frequency moter, or by listening to the oscillator on a calibrated receiver. Next the converter should be connected to the receiver with which it is to be used, and the i.f. adjustments (cores in L_{6} and L_{7}) peaked for maximum noise. Next the slugs in L_{4} and L_{5} should be peaked for maximum noise, eit her tube noise or that from some external source, such as an electric razor or

Fig. 10-21-Bottom view of the 2 -meter consarter.
a moise generator. This should be dome with the converter set for approximately I Iti Mc. The r.f. input eirenit may be peaked on noise or a signal by adjusting f_{1}, squevoing or sproading the turns of L_{2} until the opimum setting oceurs near minimum capacity. 'lhis adjust ment should be made with the atemat comineted.

Tuning of the slugs will be rather brated, so precise adjustement is not neeressary. The shag in the neutralizing coil, La, may be set at approximately the midpoint of its travel, untess a noise generator is available, in which case it should be sot for minimum noise figure. A noise generator will be holpful in determining the best position for L_{1} with respert to L:: also, but if mone is aralable the coupling should be sot somewhat lighier than that giving the maximum signal response.

The best position for the eonverter gain control will depend upon the sensitivity of the reeciver with which the converter is to be used. With bet-10r-grade receivers it will he possible to operate the gatn eontwol well below the maximum setting. The optimum will be the minimum at which the

Fig. 16-22-Rear vien of the 2-muter converter. At the left side, near the pancl, is the oscillator aseenhly. The r.f. stagea, mixer, and i.f. amplifier are arranged in "L"" furmation arross the back and right sides of the chassis, with the voltagereregulator talie in the middle.
over-all gain is adequate. The gain control also serves as a convenient means of setting up the S -meter reading, if the receiver is so eq ipped.

Coupling between the oscillator and mixer is not aritical. The tighter the coupling the more the mixer output, within certan limits, but when an i.f. amplifier is used the highest possible mixer output is not required. The best sotting of the coupling loop, $L_{\text {an }}$, is the minimmm eoupling required to give satisfactory response. Somowhat tighter coupling than the minimum required will have very little effect on the over-all prorformanoe, except to increase the pulling of the oseilator frequency as the second r,f. plate eirenit is tumed. Very tight coupling will have an adverse effeet on the signal-to-noise ratio and uniformity of response arross the band.

A Simpler Version

If the builder desires the converter may be built in easy stages. In its simplest form it would consist only of the two 6.134 stages, the mixer and oscillator. In this ease the coil and condenser riveuit, $C_{1} L_{2}$, would be sulsstituted for the slug-tuned miver coil, L_{5}, and the i.f. output would be taken of from the mixer plate eoil, L_{6}. The i.f. amplifier stage should be added next, as it is quite essential to satisfactory operation. The addition of the r.f. stages provides a further improvement, particularly in signal-to-moise ratio in reception of woak signals.

The complete converter, as it is shown here, is the minimum that will provide performanee sufficiontly grod to satisfy the diseriminating v.h.f. worker, but the man who wishes to build something simpler as a start will be able to obtain reception of all but the weabest signals with the two- or three-tube version.

A Simple Converter for 50 and 144 Mc.

Though the more complex equipment already described is typical of the gear that must be used in order to attain top performance on the v.h.f. bands, it is possible to start with simpler devices and still do a good job. The converter shown in Figs. 16-23 through 16-26 provides the best performane that ean be expected from simple equipment. It was not built to be the simplest possible receriving devier; rather, it was designed to provide good results with a minimum of complication and cost.

It uses a dual triode, 6.56 , as a combined mixer-oscillator, followed by a tiAk i.f. amplifier. The latter is neecssary: do not try to do without it. The output of it triode mixer is too low to give adequate gain for most receivers. The i.f. amplifier stage makes the converter usable with reven the simplest recerivers, and provides a convenient means of controlling the overatl gain of the system. Dlag-in coils with a miniature-tube type of hase provide the means of changing bands.

Mechanical Details

Though it could be built in a much smaller space, the converter uses a 3 by 5 by 10 -inch chassis, allowing plenty of room for the work that must be done underside. The main tuning condenser is a split-stator variable made from a double-bearing double-spaced $35-\mu \mu \mathrm{fd}$. typo. The stator bars are sawed at the middle and each section is redueed to four stator and three rotor plates. This unit is mounted under the chassis, as close to the top plate ass possible, to make room for the vernier dial on the front panel. To provide shielding without the neeassity for individual shicld cans, the mixer and i.f. plate coils, L_{4} and L_{5}, are mounted under the chassis. Normally this will provide all the shielding neeressary for the i.f. circuits. If trouble is experienced with signals on the intermediate frequency a bottom plate may be added to the chassis.
A smooth-running dial on the oscillator tuning
is a necessity in a v.h.f. converter. The frictiondrive dial used (National Type K) is relatively inexpensive, and if a large knob is substituted for the small one with whieh the dial is equipped, it provides a very satisfactory tuning rate.

The circuit is so simple that no trouble should be experienced if the general parts arrangement is followed. Look over the photographs closely before starting to lay out the chassis for drilling. In the rear view, lig. 16-2 1 , the oscillator coil, the 6J6 tube, and the mixer grid coil, $L_{1}-L_{2}$, appear in that order, from left to right, close to the panel. The 6.1 K 5 tube is nearer the back, with the slug adjustment screws of the mixer plate coil, L_{4}, and the i.f. plate coils, $L_{5}-L_{6}$, at the left and right, respertively. Looking at the bottom view, Fig. I6-26, the oscillator tuning condenser, C_{5}, is at the left, with its parallel trimmer, C, mounted directly on the stator bars, on the loft side. Note that the oseillator coil soeket is mounted directly under (${ }_{5}$, on the same center line, allowing comnections from C_{5}^{\prime} to the socket to be made with the shortest possible leads.

The only eritical job in the construction or adjustment procedure is involved in getting the inductance of the oseillator plug-in coils, L_{3}, to the correct value. Thare being only one parallel trimmer for the oscillator (C4) the coils must be made and adjusted carefully in order to have the desired bandspread on both ranges.

Considerable care must be used in the placement of the oscillator and mixer components, so that all leads will be very short; othorwise it will not be possible to resonate these circuits at 148 Me. The $6 . J 6$ socket is at the right of C_{6} in the bottom view, and the mixer grid eireuit components appear just to the right of the middle. The i.f. a mplifier gain control, R_{7}, is at the right. The 300 -ohm line from the crystalsocket antemat terminal, J_{1}, may be seen at the far right. The mixer phate eoil, the i.f.

Fig. 16.2.3-A 2-tube eonverter for 50 and 14 Mr. The vernier dialis a Vational l'ype K, with an HR'I knob replacing the small one with which the dial is normally equipped. The two other knols are the i.f. yain control, left, and the mixer tuning con. denser.

Fig. 16.2.1- Rear view of the simple converter. Near the pancl, left to rikht, are the oscillator coil, mixer-secillator tube, and the mixer grid coil. The $50-$ Me. roils are shown. The i, f, amplifier tube is nearer the back of the ehassis, with the sling-tuned mixer and $i . f$, plate coils at either side.

amplifier socket, and the output coil assembly are aeross the back of the view, from left to right. The power plug, i.f. output fixture, and antenna terminal are on the rear wall in the same order.

Test Procedure

When the assembly and wiring are completed, the oscillator operation should be checked. The power supply should deliver 6.3
volts a.e., at 1 ampere, and 150 volts d.c. at 30 ma , preferably regulated. Insert a milliammeter in series with R_{3} and eheck for oseillation by touehing any bare spot in the oscillator plate or grid circuit with a pencil. A change in current indicates oscillation.

The frequency of the oscillator may be checked with an absorption-type wavemeter or Lecher wires. For the 50 Mc . range, the oscillator should tune from $5 \overline{6} .4$ to 61.4 Mc . in

Fig. 16-25 - Sehematic diagram of the two-tube converter for 50 and 144 Mc.
(1 - $15-\mu \mu$ fld. midmet variahle (Millen 20015).
($2-100-\mu \mu \mathrm{fd}$, miea or ecramic.
$\mathrm{C}_{3} \mathrm{C}_{8}-50-\mu \mathrm{fd}$, mica or ceramic.
$\mathrm{C}_{4}-30-\mu_{\mu} \mathrm{fd}$. air-dielectric padder (Silver 619). Alter. native: Ceramic trimmer of similar caparitance, such as Centralal, 820.C.
C_{5} - Special split-stator variable, T plates per section, made from Millen 21933 - see text.
Ce, $\mathrm{C}_{11}-68-\mu \mu \mathrm{fd}$, mica or ceramic.
$\mathrm{C}_{7}, \mathrm{C9}, \mathrm{C}_{10}, \mathrm{Cil}_{2}-0.01-\mu \mathrm{fd}$, dise-type reramic.
$R_{\text {I. }} R_{5}-1$ megohm, $1 / 2$ watt.
$R_{2}-10,000$ ohms, $1 / 2$ watt.
$R_{3}, R_{4}, R_{9}, R_{10}-1000$ ohms, $1 / 2$ watt,
$\mathrm{R}_{8}-220$ ohmes, $1 / 2$ watt.
R_{7} - 2000 -ohm wire-wound potentiometer.
$\mathrm{R}_{8}-22,000$ ohms, 1 watt.
$\mathrm{l}_{1}-50$ Me: 3 turns No. 22 enamel, close-wound at rold end of L_{2}.
144 Mc.: 2 turns No. 22 enamel, dose-wound at
$\mathrm{J} .2-50$ Me: 7 cold end of L_{2} turns No. 2.2 mamel, $3 / 8$ inche long.
114 Mc.: 2 turns No. 22 enamel, 3 ench long.
13 - 50 Me.: 5 turns No. 22 tinned. $7 / 6$ incle long, eenter tapped.
144 Me.: $\frac{3}{4}$ tilrn No. 12 tinned, center tapped: a $18 / 8$-inch length of wire farmed into a partial circle with an inside diameter of 7/16 inch.
Note: Coils L_{1}, L_{2} and L_{2} wound on Millen 690 al $3 / 8$-inch diameter forms. lor $L 3$ the form is sawed off and the base only is used.
$\mathrm{I}_{4}, \mathrm{I}_{5}-23$ turns No. 22 enamel, close-wound on National XR- 50 sfug-tuned forms.
$\mathrm{J}_{\mathrm{A}}-3$ turns No. 22 enamel, close wound at cold end of L_{5}.
J_{t} - Antenna terminal (Millen 33102 erystal sochet).
J_{2} - I.f. output terminal (Jones S.101-I))
P1 - 4-prong plug (Amphenol 86.e? ${ }^{2}$ 4).
order to beat with an incoming signal to produce a $7.4-\mathrm{Mc}$. i.f. (The oscillator is on the high side of the signal.) A kiek in the oseillator plate current, or a flicker in the voltage-regulat tor tube in the power supply, ean be used to show when the frequency is found with the measuring devier.

Set the padder, ('4, so that 57. A Me, eomes at ahout 5 divisions in from the maximumcapacity end of the tuning remger, and ehook to sere where 61.4 Me , is found. It should eome just inside the minimum-rapacity rent of the range. If the circuit will not tune to til.t Me. the inductanee of L_{3} is too low. Nove the turns closer together, and reset ('s as before for 57.4 Me. If the bandspread is too small, spread the turns and increaso the eapacitance of C_{4} to compersate, for the desired amount of spread, about 90 divisions on the dial,

Next check the 2-meter range, Hore the eoil must be adjusted in induetanere until the oseillator will hit 13 ti.f Me. somewhere letween the midde and the maximum- ${ }^{\text {a }}$ apatity end of the tuning range of (${ }^{5}$. The high end, $1+10.6$ Me. will then appear about ato to tio divisions higher on the dial. The oseditator is on the lowe side of the signal on this range, Do not whange the setting of C_{4} in this process, or it will he neressary to alter the $50-\mathrm{Mc}$. coil again.

This arangement (one padder for both bands) does away with the need for padders in the coils themselves, and is worth the added care that must be taken in designing the coils. Somewhat reduerd handspread results on the 1.4.4- Me band. 'l'his can be inereased by making the coil smaller, and ineteasing the value of C_{4} accordingly. It will then not be possible to cover the contire 50-Mc, hand, but this is no handieap so long as use of the hand is coneentrated near the low end, as at present.

One the oseilator is made to tume the proper frequeney ranges the convorter maty be tested in artual reeretion. Comene the output through a coasial cable to a reerover tumed to approximately 7.4 Mc . With the comerner in
operation, there should be an increase in noise as the gain control is turned up. The mixer and i.f. amplifier plate windings can be tuned to the proper frequency merely bedjusting the core serews for maximum noise.

The mixer grid eireuit may also be peaked on noise, though eare should be taken to see that it is not peaked on the image, 14.8 Mc . away from the signal frequency. If the grid eirenit is tumed to the desired frequeney there will be a considerable increase in the strength of a signal as the gride condenser, (${ }_{1}$, is tuned through resonamere. If the cireuit is tomed to the image frectueney the noise will prak up, but an amateur-hand signal will drop in strength as the moise peak oceurs. Tuning the mixer grid cireuit shifts the oseillator frequeney slighty, so it may be peaked more arcurately on noise that when listoning to a signal.

A final cherk of the dial ralibration may be made be tuning in signals of known freduenery, or be means of an areurate signal generator. Few wavemeters are sulficiontly accurate for fimal ealibration by the method out lined carlier. When the desired ratibation is attaned, the converter is ready for use.

If, in actual operation, trouble is encountered with signals in the 7 -Me, region leaking through, the i.f. can be shifted slightly to tume out the interference. In some instanees it may be nereessary to put a bottom plate on the chassis. small changes in intermediate froquence ran be made without resetting either the oseillator padeler or the i.f. coils. With the i.f. amplifier hailt into the eonverter, the setup will have adeguate gain for use with almost any recerver, leception will be neaty as good as with more complex designs, the principal differener being a somewhat higher noise figure (slightly degraded signal-to-noise ratio) in the simpler joh, The use of a low-noise ref. amplifier ahead of the converter (an example is the (6.J6 preamplifier of lig. 16-27) will make possible reereption ergal to the best ohtainable in a comberter having a tunable oscillator.

Fig. 16.26-Bottom view of the two-band converter, The splitstatur condenser at the left is for oscillator thaing. 'The eveillator rouil socket is out of zight ahove this cont denser. At its right is the 6.50 socket. The miver tuning roll. atroser and grid emil archet are just to the ripht of the middle of Whe rhassis, with the i.f. roils and thle arekel at therear,

A 6 J6 Preamplifier for $\mathbf{2 8 , 5 0} 5$ and 144 Mc.

The triode preamplifier shown in Figs. 12-27 to 12-30 will improve the sensitivity and lower the roise figure of receivers and converters that are defieient in these characteristics. It uses a 6 J 6 as a push-pull neutralized amplifier, with plug-in coils in its grid and

Fig. 16-27-An r.f. preamplifier for 28, 50 and 144 Me. The 50-Me, woils are shown-
plate circuits. I self-rontained power supply is included, so the only conneetions needed are to the receiver antenna terminals and the a.c. line.

The r.f. components are mounted on the top plate of a staudard utility box, 3 by 4 by 5 inches in size. The power-supply parts are at tached to the walls of the box itself. The 6.J6 socket is in the midd ${ }^{\text {la }}$ of of the top plate, with the plug-in eoil sockets equally spaced in front and back of it. The butterfly tuning condensers: are on the underside of the same plate, as close as possible to the coil sockets. The neut ralizing trimmers mount direetly on the statoris of the tuning condensers.

The power supply uses two small 6.3 -volt filament transformers wired "back-to-back,"
a selenium rectifier, two small filter condensers, and a resistor in lieu of a choke. The filament transformers also supply the heater voltage for the 6.J6. Fig. 16-30 shows the utility bor with all power-supply components mounted in place and wired, ready for use.

Fis. 16-28 - Schematic diagram of the 3-trand r.f. preamplifier.
 lund $13 \mathrm{~F}=-12$). llexillin coupling is National tyme " 1 - 10 .

Cif $-1011-\mu \mu \mathrm{ft}$. mica.
R_{1} - $\mathrm{I}^{\mathbf{2}}$, whims.
$1 R_{2}$ - E2en ohma.
i_{3} - 1000 ohms.
$R_{1}-0.1$ mequhm.
s, S.p.s.t. tognle.

'Ti, T_{2} - 6.3-volt 1 -amp. filament transformer (Merit 1’-2944).

Adjustments

The amplifier must be neutralized before operation can be chacked. This may be done in two ways. The mentralizing trimmers should be set near minimum capacitane and the tuning-condenser gang turned through its entire travel, while listerning on the reeciver with which the amplifier is to be used. The output urminals of the amplifier should be comeeted to the antema terminals of the receiver by a short length

COIL DATA FOR THE 6J6 PREAMPLIFIER				
Buad	. 1 'tenna	Crial. 1.	I'lute. I.2	Output
$\begin{aligned} & 28 \mathrm{Me} \\ & 50 \mathrm{Mc} \\ & 1+4 \mathrm{Me} \end{aligned}$	3 1. Do, 18 e. $3 / b^{\circ}$ 4 t. No. 18 c. 5 的 inell dia, inside $L_{\text {t }}$. 2 t. No. 18 e. $1 / 4$. inch dia. lnsert between sections of L_{1}.	1tt. No. 21 r... rit.. $5 / 8$ inch long. 6 t. No, 24 r., r.t.. 5 is inch long. 2 t. No. 164. earh side of e.t., ${ }^{5} 16$-inch dia., $5 / 8$ inch long.	Same ans L_{1}. same ans L_{1}. Same as L_{1}, but $3 / 8$ inch long.	6 t. No. 18 e. ${ }^{8}$ 6 t. No. 18 e. 5/6inch dia. inside L_{2} 3 1. No. 18 e. $1 / 4$ inch diat Insert between sections of L_{2}.

(sill forms are $5 / 8$-inch diameter, 5 prong (Amphenol 21.51) with sowhets to matel (Anphenol $51-511$). 'lhe 144- Va' eobils are air-wound, using ciat-down forms for bases.

Fig. 16.29 - The r.f. portion of the 3-band preamplifier is mounted on t're cover patate of the utility box.
of 300 -ohm line, and an antemata of the type normally used for the band it guestion should be attached to the preamplifier. If no antemat is available a carbon resistor of the value of the line impedance ($\overline{6}, 300,500$ ohms, rete.) should be connected across the amplifier input torminals. Moving the neutralizing trimmers rithor way from the proper setting will cause the tide to oscillate, as indieated by exeresive moises in the receiver. Best operation will be had with the trimmers at the midpoint botrown the settings at which oweillation starts. If the normal minimum capateitance of the trimmers is too high to permit neutralization the movable plates should be eut down in size.

The most effective check for neutralization is had by inserting a burned-out 6J6 (or one with a heater prong eut off) in the sockot and adjusting the trimmers for winimum response while listening to a strong signal. With some care it is possible to find a setting that holds for all threm bands, but the adjust-

Fig. 16.30-Power-supply componenta of the preamplifier are monnted on the walls of the utility box.
ment should be made for the band on which best weak-signal reception is chesired.

No provision is made for padding the coils, so the inductance should be close to the correet value. This may be checked by inserting an iron core into the plate and grid coils, one at a time. If an increase in signal results the inductance of the coil in question is too low. As various antenmas and recoiver input cireuits may reflepe different loads back on L_{1} and L_{2} this cherek should be made with the reeriver and antenna with which the amplifier is to be used.

The coil and condenser values given represont a compromise for three-band operation. If such a preamplifier is to be used for $14 t$ Me. only improved resulus can be achieved by using variable eondensers of lower minimum capacitance and eliminating plug-in eoils. The redured circuit capacitane thus ohtained will permit the use of more efficient coils for the 144-Mc. band.

Receivers for 420 Mc .

For best sigmal-to-monse ratio, receivers for any frecuency should have the highest degree of selectivity that can be used suecersfully at the frequence in question. With erystal control or its equivalent in stability arerepted as standard prartiee for all frequencies up through 225 Mc, there is little point in using more handwidth in mo ceivers for these frequencios than is necessary for satisfactory voier pereption, a maximum of about 10 ke . We will want to kerp receiver bandwidth down on 120 Me. as well, but there are other limiting factors in the 420 -. Me. pieture.

Fig. 16.31 - A converter for $420-\mathrm{Mc}$. reception. The oscillator section is in back of the vernier dial, with the miver at the rear. Both ase folfos in pushpull circuits. 'The tubes at the right are the 30 . Nc. i.f. amplifier, a $6 \mathbf{A G S}$, and a voltage regulator.

Fig. 16-32 - Schematic diagram of a converter for 420 Mc .
C_{1} - Two-section ganged split-stator variable, 6.75. $\mu \mu \mathrm{fl}$-per-section stator to stator (National VIIF-2D). One plate may be removed from each section to increase bandspread, if desired.
$\mathrm{C}_{2}-3$ - $30{ }_{\mu \mu \mathrm{fd} \text {. mica trimmer. }}$
C_{3} - Padder capacitance made from two copper plates, $7 / 8$ by 1 inch in size, soldered across terminals of L_{2} and C_{1}. Adjust spacing for band-setting purposes.
$\mathrm{C}_{4}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{11}-0.005-\mu \mathrm{fd}$. dise ceramic.
$\mathrm{C}_{5}, \mathrm{C}_{10}-15-\mu \mu \mathrm{fd}$. ceramic.
$\mathrm{C}_{6}-50-\mu \mu \mathrm{fd}$, ceramic.
$\mathrm{C}_{12}-500-\mu$ ufd, ceramic.
$\mathrm{C}_{13}-100-\mu \mu \mathrm{fd}$, button by-pass.
$\mathrm{R}_{1}-470 \mathrm{ohms}, 1 / 2$ watt.
R_{2} - 1000 ohms, $1 / 2$ watt.
$\mathrm{R}_{3}-1$ megohm, $1 / 2$ watt.
$R_{4}, R_{8}-1000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{5}-10,000$-ohm potentiometer.
$R_{6}-68$ ohms, $1 / 2$ watt.
$\mathbf{R}_{7}-33,000$ ohms, 1 watt.

One is the matter of oscillator stability. Even the best tunable oscillators may suffer from vibration and hand-capacity effects at 420 Mc ., so it is generally desirable to use a bandwidth somewhat greater than the communications type of receiver provides, when a tunable oscillator is used in a $420-\mathrm{Mc}$. converter, even in reception of completely stable signals. Working the converter into a receiver designed for f.m. broadcast reception is a good solution, such receivers having a bandwidth of around 200 kc . The f.m. receiver also provides a means for receiving signals from modulated-oscillator transmitters, provided that the modulation is held to a moderate level. Radar type receivers having a bandwidth of a megacycle or more, while being tolerant of unstable transmissions, show extremely poor signal-to-noise ratio at low signal levels, and should be avoided for all but local work.

High selectivity is desirable in the $420-\mathrm{Mc}$. receiver if sufficient stability can be developed in the converter oscillator. One way to do this is
R_{9} - 100 ohms, $1 / 2$ watt.
$R_{10}-3300$ ohms, $1 / 2$ watt.
$\mathrm{R}_{11}-2500$ ohms, 10 watts.
$R_{12}-33,000$ ohms, $1 / 2$ watt.
$\mathrm{L}_{1}, \mathrm{~L}_{2}-\mathrm{U}-\mathrm{shaped}$ inductances cut from sheet ropper, $7 / 8$ by $17 / 8$ inches over all. Cut-out portion is $1 / 4$ inch wide. Solder directly to flat plates on the tuning-condenser stators, adjusting position of L_{2} for proper tracking.
$\mathrm{L}_{3}, \mathrm{~L}_{4}$ - Injection coupling loops of stiff wire, width of L_{1} and L_{2}, and mounted closely under them.
L_{5} - Antenna coupling loop of stiff wire $18 / 4$ inches long, coupled closely to L_{1}.
L6 - 10 turns No. 24 d.s.c. spaced to 61 National XR 50 form.
L 7 - Same as L_{6}, but tapped at second turn from cold end.
J_{1} - Antenna terminal - Millen 33102 crystal socket.
J_{2} - Coaxial fitting (Jones S-201).
$\mathrm{P}_{1}-4$-prong power fitting.
$\mathrm{RFC}_{1}, \mathrm{RFC}_{2}$ - 10 turns No. 22 enameled wire, closewound on l-watt resistor.
to use an oscillator-multiplier system, but this is usually practical for only a part of the band unless gang-tuned multiplier stages are employed. The best solution to the stability problem is a crystal-controlled injection source, but this imposes the band coverage problem to sn even greater degree. Several crystals and a tunable i.f. system are then required for full coverage of the band.

Searching a band thirty megacycles wide is a time-consuming process when high selectivity is used in the i.f. system. This points to the desirability of confining such operation to a narrow segment of the band, such as from 432 to 436 Mc . The 420-Mc. enthusiast who wishes to go in for weak-signal DX work could then concentrate effectively on that portion of the band, using a high selectivity i.f. system. If he wishes to cover the entire band, another i.f. of less critical characteristics could be used for searching purposes.

Assuming that we have taken care of the stability problem by any of the means suggested

Fig. 16.33 - Bottom view of the $420-\mathrm{Me}$. converter.
above, we may still be a long way from watisfactory receiver performance at 420 Mc . Conventional tubes work poorly, if at all, at this frequeney, with the result that sensitivity and sig-nal-to-noise ratio are much lower than would be possible with a comparable tube lineup ati i44 Mc.

Little success can be experted with r.f. amplifior stages using conventional tubes, the types most suitable for this purpose boing the lighthouse or pencil-tube designs requiring special tank cireuits of the flat-plate or coasial varioty. Most eonverters presently used on 420 Mc. thus have only a mixer and an oseillator, followed by one or more i.f, amplifier stages operating at 30 to 100 Me . or so. The i.f, amplifer is a neeessity; the output of a $420-\mathrm{Me}$, mixer is too low fo provide satisfactory performance with the average receiver that would be used as an i,f. srstem. Best results require that the i.f. amplifier follow low-noise techniques outlined carlier in this chapter, particularly if the intermediate frequency is 50 Mc . or higher.
The mixer maty be a vacuum tube, using more or less conventional circuitry, or a erustal diode. At 400 Me , and higher a properly-designed erystal miser, followed by a low-noise i.f. amplifier, may equal a vacuum tube mixer. The noise figure of the crystal mixer and i.f. amplifier is roughly the sum of the noise figures of the components, and may be as low as 10 db . at 420 Mc .

- 420-MC. CONVERTER

The converter shown in Figs. 16-31 through 16-3:3 was designed for use in conjunction with communications receivers having provision for wideband f.m. detection. Examples are the 8-27, S-36, SX-42, and SN-62. The intermediate frequency is 30 Me., so it may be used with any recoiver covering that range, but best results will be obtained with those having wideband f.m. facilities. It may be used with the SX-43 or with f.m. broadcast receivers, provided that the inter-
mediate frequency is changed to suit the tuning range of the receiver. This would be $42-50 \mathrm{Mc}$., in the case of receivers for the old f.m. band, or 88-108 Mc. for the present assignment.

Such a converter may be used for reception of amateur television signals in the 420 - Mc. band by adjusting the intermediate frequency to a television channel that is not used locally. A chamel in the low hand is recommended.

The mixer and oweillator stages use 6.56 . 6 , with gang-tuned pushpull cireuits. I 30-Mc. i.f. amplifier is included, as the gain of most recemers at 30 Me . is insufficient for best reception. The i.f. stage uses a 6 A (io, which works woll at this freguenery, but if the i.f. is to be shifted to the $90-$ Me. region it would be well to use the catseode circuit in the i.f. amplifier, for adequate gain and low-noise characteristics. Details of the cascode amplifier will be found earlier in this chapter. Plate voltage for the oscillator and mixer is maintained at 105 volts by means of an 0.12 regulator tube.

The tuning condenser is a ganged unit especially designed for v.h.f. service. The mixer and oscillator inductances, L_{1} and L_{2}, are cut from sheet eopper in U shape, and soldered directly to the stator assemblies in the tuning condensor. The 6.56 tube sockets are mounted on brackets supplied with the condenser assembly, permitting connections to be made without leads othor than the sorket lugs themselves. Padder capacitanoe for the oseilator is supplied by two eopper plates, also soldered directly to the stator terminals.

Fig, 16-3.4-Schematir diagram of the 120. Mr. amplifiers, Conncetions for the GAFt are ans follows: I'ins 1, 7 - plate; 2, 6 - grid; 3, 4 - heater; 5 - cathode.
Ci-Copper tab tuning capacitor; sce text and jhoto. graphs.
$\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}$ - Feed-through capacitors, $100 \mathrm{\mu} \mu \mathrm{fd}$. or larger.
(is - $1000_{-\mu \mu \mathrm{f}}$. ceramic.
(is - $\mathbf{2}-\mu \mu \mathrm{fd}$, coramic. Lse only if neutralization isi needed.
$R_{1}-2.20$ ohms,
I. - Inner conductor of plate line; 3 or or $1 / 8$-inch copper tubing or rod, $71 / 2$ inches long for $6 \mathrm{~J} f$ or 6Ft.
L_{2} - Coupling loop of insulated wire. Runs adjacent to lil for 1 inch.
I. 3 - Use mly if nentralization is needed. See text for details.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Coaxial fitting, female. J_{2} is shown as a crystal socket in the photographs.
$\mathrm{RFC}_{1}-\mathrm{RFC}_{4}-\overline{\text { - }}$ turns Vo. 22 enam., 3í-inch diant, $1 / 2$ inch long. A 1000 -ohm $1 / 2$-watt resistor can be substituted for RFCA.

V.H.F. RECEIVERS

lig. 16.35 - 'T'wo coaxial-line r.f, amplifiers for 420 Mc . The shorter one, in the foreground, uses a 6 J t triode; the other a 36.5 "pencil tube" triode. Both employ wate lines tuned with small eopper-tab capacitors at the open end of the line.

R. F. AMPLIFIERS FOR 420-MC. RECEPTION

Two eoaxial-line r.f. amplifiers for 420-Mc. use are shown in Figs. 1 fi-3t through lif-3i. lither is capable of about 12 db gain and they may offect a considerable improvement in the signal-to-noise ratio and stability of simple mixeroscillator converters. Hy isolating the mixer from the entenna, the use of such an r.f. stage reduces oscillator radiation, and may at least partially correct oscillator stability troubles that result from swinging freders and body caparity efferts.

Designs for two different types of tubes are shown. The longer line (rear of lig. 10-3in) uses a twpe 5675 "pencil" tube; the other a 6.54 miniature. Both have halfwave line tuned plate cirruits, the outer conductors of which are made from flashing copper. Dimensions of the tank rirruit parts, in flat form before bending, are given in Fig. 16-36.

A shichding partition is soldered inside the line two inches from one end when a 6.J4 is used. This partition crosses the renter of the tube socket, with a prong fitting inside the shielding ring that is part of most miniature tube sockets. For the pencil tube two plates are required, the grid plane of the tube being elamped between them. The heater and cathode circuit components are mounted in the small compartment, the heater voltage being brought in by feedthrough capacitors mounted on the end plate. If one side of the heater is to be grounded it can be done inside the compartment and only one feedthrough capacitor used.

The inner conductor is supported near its midpoint by a block of polystyrene drilled to pass the tubing or rod with a close fit. Plate voltage is brought through the side wall of the outer conductor on a feedthrough rapacitor and applied to the inner conductor near its midpoint through a small r.f. choke or isolating resistor. The ronmection should be made to the point of lowest r.f. voltage.

Tuning is done with small circular plates of copper, one of which is soldered to the end of the line. The other is mounted on an adjusting screw. A hole about $1 / 8$-ineh diameter is drilled in the outer conductor about one half inch from the open end. A $4 / 40$ brass screw is run through the

hole, with brass nuts on either side of the sheet ropper. These are then soldered to the coppor, taking care not to run the solder up over the nuts onto the screw thread. Another nut is then put on the end of the screw and the copper tuning dise is soldered to this. A brass sleeve or piece of $1 / 4$-inch copper tubing is soldered to the head of the screw to provide a shaft for mounting a knob.

Output coupling is by means of a loop of insulated wire alongside of the inner conductor. The position of the coupling loop is not particularly critical. Moving it away from the point of lowest r.f. voltage, toward either end of the line, derreases the gain and increases the bandwidth slightly. If the r.f. stage is used as a separate preamplifier unit the coupling link to the receiver proper should be coax.

Because the input impedance of a groundedgrid amplifier is quite low, there is litfle to be gained by the use of a tuned input circuit, so the

Fig, 16-36- Flashing ropper parts of the 420-Me. tank circuits, 'The outer conductor (top shetch) is 10 inches long for the line using miniature tubes, or 12 inches for the pencil tube model. "lhe middle drawing shows the bottom plate (loft) and an end view of the assembled line. At the bottom left is the shielding fin used with the miniature tubes, and at the middle is cone of the two plates needed for mounting the peneil tube. 'I'hese plates should be tailored to fit the line assembly after it is bent up. 'lhey are aoldered in plaee, two inehes from the end of the trough. The right hand plate is fastened in the end of the trough, the two boles being for the heater by-passes, C_{2} and C_{3}.

antenna is connected directly to the cathode through a small blocking condenser. This is necessary only to keep the cathode from having its bias resistor shorted out if a grounded antenna system is used. The cathode and heater are kept above ground for r.f. by the use of small airwound r.f. chokes. Though the photograph shows crystal sockets as antenna terminals, implying the use of 300 -ohm Twin-lead or other balanced line, the direret connection to the cathode is more suited to use of coaxial line. The input connections have since been changed to coaxial fittings. If 300 -ohm line is used on the antenna system, more effective coupling can be made with a bazooka, for balanced to unbalanced coupling, as shown in Fig. 16-38.

Adjustment and Operation

A grounded-grid amplifier that is operating correctly should not be particularly critical in adjustment. With heater and plate voltages applied and the r.f. stage connected to the receiver with which it is to be used, the line should be adjusted to resonance, as indicated by maximum signal and a slight noise peak. The point of connection for the plate voltage should be checked by touching a pencil lead along the inner conductor and finding the point at which there is the least effect on the strength of the received signal. A good starting point is just toward the tube end of the line from the midpoint. The output coupling loop should run close to the inner conductor for about one inch, beginning near the low r.f. voltage point. It can be moved toward the tube or the open end if more bandwidth is desired.

There may be a tendency toward regeneration with the 6 J 4 , when no antenna is connected, showing up as a sharp and pronounced noise

Fig. 16-37-Interior view of the r.f. amplifier units, A 2 -inch space at the left end takes care of the heater and cathode circuits. When a miniature tube is used, as in the upper model, a shielding fin is litted across the center of the tube socket. The pencil tube (lower unit) has its grid plane clamped between two copper plates. The inner conductor in each line is supported near its center with a polyst yrene blork.
peak at resonance. This effect was encountered when 300 -ohm line was attached directly to the cathode, but disappeared when coaxial input and output coupling fittings were installed. Neutrali-

Fig. 16.38 - A bazooka for coupling into the 420-Mc. r.f. amplifier with 300 -ohm transmission lines. I'wo pieces of any small coaxial line are needed, one of them a halfwave longer than the other. A $300-\mathrm{hm}$ balanced line may be connected to the left end. The inner conductors are tied together at the other end, fecding into the hot terminal of a coaxial fitting.
zation, if needed, can be accomplished by coupling a small amount of energy from the plate back to the cathode, as indicated by C6 and L.3 in Fig. 16-34. The length of the loop in the plate portion of the line should be adjusted until neutralization is achieved.

The 5675 and 6 J 4 tubes are most suitable for this application, but other types, including the $6 \mathrm{AF} 4,6 \mathrm{~F} 4,6 \mathrm{AB} 4$ and 6 J 6 might be usable. It is possible that these types would require neutralization, however, as they do not have built-in shielding between cathode and plate. The various lighthouse types work well in such circuits, but their different construction requires revisions in the design of the line.

CHAPTER 17

V.H.F. Transmitters

Beginning with the v.h.f. region, amateur frequency assignments are not in direct harmonic relationship with our lower-frequency bands. This fact, coupled with the necessity for extreme care in selection and placement of components for low circuit capacitance and minimum lead inductance, makes it highly desirable to construct separate gear for v.h.f. work, rather than attempt to adapt for v.h.f. use a transmitter designed for the lower amateur frequencies.

Transmitter stability regulations for the $50-$ Mc. band are the same as for lower bands, and proper design may make it possible to use the same rig for $50,28,21$, and even 14 Me., but incorporation of 50 Mc. and higher in the usual multiband transmitter is generally not feasible. Rather, it is usually more satisfactory to combine 50 and 144 Mc., since the two bands are close to a third-harmonic relationship. At least the exciter portion of the transmitter may be made to cover the requirements for bot these bands very readily.

Though no stability restrictions are imposed by law on operation at 144 Mc. and higher amateur bands (other than that the entire emission must be kept within the limits of the band in question), experience has demonstrated the value of using crystal control or its equivalent in v.h.f. work. Crystal-controlled transmitters and receivers having the minimum bandwidth necessary for voice communication make it possible for hundreds of stations to operate without undue interference in a band that formerly appeared crowded when occupied by a dozen or less stations using broadband receivers and unstable transmitters.

The use of narrow-band communications systems also pays off in the form of improved efficiency in both transmitter and receiver. It is this factor, perhaps more than the interference potentialities of the wide-band systems, which makes it desirable to employ advanced techniques at 220 and even 420 Mc . Stabilized
transmitters for 220 Mc , are not too difficult to build, and their use at this frequency is highly recommended.

Construction of multistage rigs for 120 Mc . is not easy, and the choice of tubes suitable for this type of work is quite limited, but the advanced amateur who is interested in making the most of the interesting possibilities afforded by this developing field will be satisfied with nothing less. The $420-\mathrm{Mc}$. band is much wider than our lower v.h.f. assignments, however, and interference is not likely to bacome a limiting factor in this band for a long time to come. Thus it may be more important, in many localities, to get activity rolling with any sort of gear, leaving perfection in design to conne along as the need develops.

At 420 Mc , and in the higher amateur assignments most standard tubes cannot be used with any degree of success, and special tubes designed for these frequencies must be employed. These types have extremely-close electrode spacing, to reduce transit-time effects, and are constructed with leads having virtually no inductance. Several more-or-less conventional tubes are now available which will operate with fair efficiency up to about 500 Mc., but best performance is obtained with the "lighthouse," "pencil tube," or coaxial-electrode types built especially for u.h.f. applications, and requiring specially-designed tank circuits.

Frequency modulation may be used throughout the v.h.f. and higher bands, wide-band emission being permitted above 52.5 Mc . and narrow-band FM anywhere. Where suitable receivers are available to make best use of such emissions, either wide-band or narrow-band FM can provide effective v.h.f. communication, their use being particularly advantageous in congested areas where the freedom from interference to broadcast reception they enjoy may permit operation when an amplitude-nodulated transmitter of any power would be a constant source of trouble.

Transmitter Technique

The low-power stages of a transmitter for the v.h.f. bands need not be greatly different in design from those used for lower bands, and many of the ideas in chapter 6 may be used to good advantage in the initial stages of the v.h.f. rig. The constructor has the choice of starting at some lower frequency, usually around 6,8 or 12 Mc ., multiplying to the operating frequency in one or more additional stages, or he can use a high
initial frequency and thus reduce the number of multiplier stages required or eliminate them entirely. The first approach has the virtue of employing low-cost crystals, and it usually results in better stability when methods other thean crystal control are used, but high-frequency crystals may effect a considerable economy in power consumption, an important factor in portable or emer-gency-powered gear.

A high starting frequency may be helpful in preventing TVI that can result from amplification of unwanted harmonias from a arystal oscillator on 6, 8 or 12 Mr. Most of the troublesome hatrmonics are eliminated if a crystal frequency of 24 Me. or higher is used.

CRYSTAL OSCILLATORS

Crystal oscillator stages for v.h.f. transmitars may make use of any of the cirruits shown in Chapter 6 , when erystals up to 12 Mr . are amployed, but certain variations are helpful for higher frequelucies, ('rystals for 12 Mc . or higher are usually of the overtone variety. Their frequency of ascillation is an approximate multiple of some lower frequency, for which the erystal is actually ground. Thus 24-Mc, crystals conmonly used in It4-Mc. work are 8-Me. euts, sperially treated for overtone charateristios. ['ntil recent years such arystals were tricky in operation and subject to excessive drift if operated at high crystal current. The overtone erystals now being supplied are approximately as stable as those designed for fundamental operation, and they are easy to hande in properly-designed cireuits.

Best results are usually obtained with overtome crystals if some regeneration is added. This makes for easy starting under load and greater output than would be obtainable in a simple triode or tetrode circuit. 'Two regemerative rircuits, with constants for 24 - or $25-\mathrm{Mc}$. erystals, are shown in Fig. 17-I. Triodes are shown, but the same arrangement may be used with tetrode or pentode tubes. The important point in either case is the amount of regencration, controlled by the position and number of turns in the feedback winding, L_{2}, in Fig. 17-1-A or the position of the tap on L_{1} in B. There should be only enough feedback to assure easy crystal starting and satisfactory operation under load; too much will result in random oscillation not under the control of the crystal.

Fig. 17-1 - Regenerative crystal meillator circuits for $v . h . f$, use, Feedback is rontrolled by the position of L_{2} with respect to L_{1} in A, or by the position of the tap on L_{1} in 13. Constants below are for $\mathbf{2} 4$ to 27 Mc .
$\mathrm{C}_{1}-50 . \mu \mu \mathrm{fd}$, variable
$\mathrm{C}_{2}-0,005-\mu \mathrm{fd}$, ceramic or mica.
$\mathrm{C}_{3}-25-\mu \mu \mathrm{fd}$. ceramic or mica.
R_{1} - Decoupling resistor, 1090 to 5000 ohms, carbon. \mathbf{R}_{2} - Grid leak, to suit tube used.
L_{1} (A) - 18 turns No. $18,1 / 2$-inch dia., $11 / 4$ inches long.
L_{2} (A) - 3 turns similar to A, mounted on same asin. about $1 / 8$ ineh apart.
L_{1} (B) - 14 turns No. $18,1 / 2$-inelı dia., 1 inch long. Tap at about $41 / 2$ turns (see text).

Fig. $17-2$ - The functions of crystal oscillator, cathode follower and frequency multiplier are combined in this dual-triode cirenit. The circuit $L_{1} C_{1}$ tunes to ther desired overtone frequency, and $L_{2} C_{2}$ its second or third harmonic. L.3 should resonate with tube and crystal capacitance just below the frequency of oseillation. The value of the r.f. chokes in the cathode circuit is mot critical. Values fur obtaining It+Mc. output with a 24 -Mc. erystal are given lolow.
$C_{1}-20-\mu \mu \mathrm{ff}$. variable.
$\mathrm{C}_{2}-10-\mu \mu \mathrm{fd}$. varialle.
$1.1-5$ turns $10.18,1 / 2$-inch diam., $1 / 2$ inch long,
$1,2-\frac{2}{4}$ turn. No. $18, \frac{1}{2}$-inch diam., $1 / 2$ inch long.
$1,3-4$ turns No, $18,3 / 8$-inch diam., $1 / 4$ inch long.
Overtone operation is possible with standard fundamental-type crystals, using the circuits of Fig. 17-1. Practically all will oscillate on their third overtones, and fifth and higher odd overtones may be possible. Adjustment of regeneration is more reritical, however, if the erystals are not ground for overtone characteristics. It should also be noted that the frequeney may not be an exact multiple of that marked on the erystal holder, so care should be used in working with crystals that are near to a band edge.

Crystals ground for overtone service can be made to oscillate on other overtones than the one marked on the holder. A $24-$ Me. crestal, actually an 8-Me. cut, may be made to oscillate on 40, 50 , 72 Me. or even higher odd multiples of its $8-M \mathrm{Me}$. fundamental frequency. The circuits of Fig. 17-1 may le used, but for high-order overtones the dual triode circuit of Fig. 17-2 is more reliable. Values for achieving 144-.Mc. output with a $24-$ Me. arystal (9th overtone instead of 3rd) are given.

The crystal is resonated, by means of L_{3} connected across it, at a frequency just below the desired overtone, or about 70 Me in this example. Circuit $L_{1} C_{1}$ tunes to the desired overtone, 72 Mc.; $L_{2} \mathrm{C}_{2}$ to a harmonic, in this case I44 Mc. Regeneration is controlled hy varying the coupling between L_{1} and L_{3}, so that only arystal oscillation is developerd. Polarity of these windings is important; bringing them closer should reduce the temdeney to self oscillation.

Crystals are now available for frequencies up to around 100 Mc . They are somewhat more expensive than those for 30 Mc . and lower, however, so they have not been used widely in amatteur work, exeept whore a saving in power is important. Use of $50-\mathrm{Mc}$. erystals is made occasionally as a means of preventing radiation of
the harmonics of lower frequency crystals that might cause interference to television reception.

- FREQUENCY MULTIPLIERS

Frequency multiplying stages in a v.h.f. transmitter follow standard practice, the principal preraution being arrangement of components for short lead length and minimum st ray capacitance. This is particularly important at 144 Me. and higher. To reduce the possibility of radiation of oscillator harmonies on frequencies that might iuterfere with television or other serviece, the lowest satisfartory power level should be used. Low powored stages are easior to shidd or filter, in case such steps beeome neeessary.

Common practice in v.h.f. exciter design is to make the tuned circuits capathle of operation over the whole range from 48 to 54 Mc ., so that the output stage can drive either a $50-\mathrm{Mc}$. amplifier or a tripler from 48 to 144 Me . Tripling is often done with pushpull stages, particularly when the output freguency is to be 144 Me , or higher. The output capacitances of the tubes in such a circuit are in series, permitting a better I./C ratio than is possible with single-ended circuits.

- AMPLIFIERS

Most transmitting tubes now used by amateurs will work on 50 Mc ., but for 144 Mc. and higher the tube types are limited to those having low input and output capacitances and compact physical structure. Leads must be as short as possible, and soldered connections should be avoided in high-powered circuits, where heating may be great enough to reach the melting point of the solder used.

Plug-in coils and their associated sockets or jack bars are generally unsatisfactory for use at 144 Mc , and higher because of the stray inductance and eapacitance they introduce. One way around this trouble is the dual tank circuit shown in Fig. 17-3. Here the tank circuit for 144 Mc. is a conventional tuned line, with its shorting bar made removable by plugs or clips. When the stage is to be used on another band the shorting bar is removed and a eoil is plugged into the jark bar, the line then serving as a pair of plate leads.

Fig. 17-3-An efficient two-band tank circuit for $\mathbf{5 0}$ and $1+1$ Mc. For operation on I H Mc. the shorting har is plugged into the cud of the line. For 50 Mc. a suitable tank coil is phugged into the jack bar. 'The line then serves merely as a pair of plate leads. $R F C_{1}$ is a 144 -. Mc. choke; $R F C_{2}$ a $50 \cdot \mathrm{Me}$. choke. I'he split-stator variahle, C_{1}, tunes either circuit.

Fig. 17-4- Halfwave line tanh cirenit, for Hse at 220 or 120 Mc ., where tube and rircuit caparitances prohibit the use of an ordinary tuned circonit. Plate voltage is fed into the line at the point of lowest r.f. voltage (see text).

Such an arrangement will operate as offisiently on 144 Me. as if it wore designed for that hand alone, yet it "an be made to work properly on any lower band.

At 220 Me . and higher it may be neecsaary to employ hal fwave lines as tumod circuits, as shown in Fig. 17-4. Here the tuning eapacitance, instead of being conneeted directly in parallel with the

Fig. 17-5- Groumdeel-grid r.f. amplifier. Driving voltake is fed into the cathonle circuit, with the control grids maintained at groumd potential.
output capacitance of the tube, is at the far end of a hatfwave line, Plate voltage is fed into the line near the middle, at the point where the r.f. voltage is lowest. The proper point can be located by first operating the stage with the voltage fed in near the middle of the liace, and then touching a poocil point along the line to loeate the spot where the least offecet on the grid or phate current is noted. "This chorek should be made with the pencil in an insulating mount, if dangerous values of phate voltage are used.
Neutralization of triok amplifiers for 50 and 144 Mc. can follow standard practice, but the stray inductanere and capacitance introduced by the neutralizing circuits may be exersuive for 220 Mr. and higher. In such instances groundedgrid amplifioss may be usod as shown in lig. 17-5. Driving power is appliod to the cathode cireuit, with the grid acting as a shieh. Groundedgrid amplifiers are stable, but they require high driving powor. Some of the drive appears in the output, so both the driver and amplifier must be modulated when amplitude modulation is used. For this reason the grounded-grid amplifier is used mainly for f.m, applications.

T'etrode and pentode amplifiers may operate without neutralization, but it is advisable to

Fig. 17-6 - Tuned sercen circuit for stabilizing a v.h.f. tetrode push-pull amplifier. Cit and C_{2} may be the two halven of a split-stator variable condenser, if the circuit is symmetrical electrically. The r.f. choke and condenser values vary with frequency, mahing this form of nentralization essentially a one-band device. Co should be about $0.001 \mu \mathrm{fd}$. for v.h.f. applications.
make plans for neutralization in the original layout, as it is often needed. With such tubes as the 829 or 832 enough neutralizing capacitance can be obtained by rumning short lengths of stiff wire up through the chassis alongside the tube plates, crossing them over to the opposite grid terminals below the ehassis. Neutralization is adjusted by trimming or bending the wires.

Instability may show up in tetrode amplifiers as the result of ineffective sereen by-passing, in which case conventional eross-over neutralization will areomplish little or nothing. The solution lies in series-resonating the sereen circuits to gromed, as shown in Fig. 17-6, A small split-stator variable can be used for C_{1} and C_{2} if the layout is completely symmetrical. The r.f. choke and condenser values vary with frequency, so sereen mentralization is essentially a one-band device.

FREQUENCY MODULATION

Though f.m. has not enjoyed great popularity in v.h.f. operation, probably because of lack of suitable receivers in most v.h.f. stations, its possibilities should not be overlooked, particularly for the higher bands. At 420 Me , for instance, the effieiency of most amplifiers is so low that it is often diflicult to develop sufficient grid drive for proper a.m. sorvice. With f.m, any amount of grid drive may be used without affecting the audio quality of the signal, and the modulation process adds nothing to the plate dissipation. Thus considerably higher power can be run with f.m. than with a.m. before damage to the tubes develops or the signal is of poor quality.

Frequenev modulation also hats the advantage of simplifying overall transmitter design. The principal obstaele to greater use of f.m. in v.h.f. work is the wide variation in selectivity of v.h.f. receivers, making it difficult for the transmitter operator to set up his deviation so that it will be satisfactory for all listeners.

TVI PREVENTION AND CURE

Interference to television reception is, in gencral, not so serious a problem with v.h.f. transmitters as with equipment designed for lower
amateur assignments, where more harmonics of the operating frequeney fall within the television range. With the exception of $50-\mathrm{M}$ e. interference in TV' Chamel 2 (an adjacent-chamnel problem resulting from the necessarily broad response of television receivers) most v.h.f. TV'I is relatively casy to correet, and with proper care in designing the equipment to be used it can often be avoided entirely.

There are three principal causes of TVI with v.h.f. equipment. It may result from fourthharmonic radiation be so-Me. rigs in Channels 11,12 or 13 , depending on the operating frequenes. More often, harmonies of the oseillator, or of one or more of the multiplier stages, maty fall in some of the chammels. Particularly when the transmitting and TY arrays are in close proximity, there may be fundamental blocking.

The first trouble can be corrected by following the usual TVI prevention methods detailed clsowhere in this Mandbook, and in QST, Radiation of unwanted harmonies of oscillator or multiplier frequencies ean be prevented by generally similar methods. Ise as high a starting frequeney as possible. Rajoct unused frequencies bey the use of inductive eoupling betwern stages. Rum as low power as practicable in the exciter stages. Shiclding and filtering of the stages may be necessary.

Crystal frequencies should be chosen to avoid hamonies that might fall in locally-used channols. As an example, 6- or 12-Mc. erystals are often usable in on-Me transmitters in areas where Channel 6 is received, whereas the same rig with 8 -Me, erystals may cause trouble. In this ease the 13 th and 7 th harmonics of 6 and 12 Me, respectively fall in the channel, whereas the 10 th harmonic of the 8 -Me. ervatal is the offender. (ligh-order prime-number harmonics are less likely to be passed along by sueceeding stages.)

Isse of the lowest power that is pratetical for the eommunieation being attempted will help in cases of fundamental blocking. Separation of the TV and transmitting arrays by as great a distance as possible is also recommended, but otherwise treatment of the TV installation by the addition of traps or stubs to attenuate the transmitter frequeney is the only cure.

Though it is not sot a problem, the imminence of commercial exploitation of the u.h.f. TV ehannels should be kept in mind when gear for v.h.f. use is being designed and built. When these chamnels are oecupied, it will be important to prevent harmonie radiation in any v.h.f. transmitter. This will be possible if the techniques now becoming familiar to users of our lower bands are applied to v.h.f. transmitter design.

Complete shielding of all stages and filtering of all power leads, the use of the lowest permissible grid drive to the final stage (usually involving the employment of beam-tetrode power amplifiers), and the conversion to coaxial-line-fed antemna systems are a few of the mothods that may soon become mandatory for v.h.f. enthusiasts who live in eongested areas.

A 400 -Watt Transmitter for 50 and 144 Mc.

A high-powered transmitter for use on our two most-popular v.h.f. bands presents some knotty design problems. It is not always casy to develop satisfactory drive for the higher band, and an efficient band-changing system for a 14-4-Mc, amplifier calls for something better than the ordinary plug-in coil arrangement. These two factors were prime considerations when the all-tetrode rig for 50 and 144 Mc. shown in Figs. 17-7 to 17-13 was laid out.

The exciter has separate output stages for the two hands, eliminating the necessity for driving the final stage with a frequency multiplier on the higher one. Efficient operation of the final stage is attained with a novel form of tank eireuit that avoids the use of a plug-in coil for 144 Mc. As a result, the transmitter has practically the same over-all effieience as would be obtainable if it were designed for either band alone.

- THE EXCITER

Though the two units were intended for use together as a complete 400 -wat transmitter, as shown in the composite photograph, the exciter portion may be used as a low-powered transmitter by itself. As an exciter it has the
virtue of providing uniform drive for the final on both bands. Other points of interest include quick band changing, erystal switching, VF()-input provision, low power consumption, and fredom from critical adjustments.

The circuit diagram of the exciter is given ist Fig. 17-9. The 6.AR5 Tri-tet oscillator employs a fixed-tumed cathode circuit, $C_{8} L_{3}$. The plate circuit, $C_{1} L_{4}$, tunes 24 to 27 Mc ., the oscillator tripling when 8-Mc. crystals are used and quadrupling with 6-Mc. erystals. Five erystals are provided for by the switchiag eircuit, and a sixth position of the switck conneets the 6AIR5 grid to a tuned circuit, $C_{5} L_{1}$, which is in turn link coupled to the VFOinput jack, J_{1}. Switch $\$_{2 a}$ grounds the cathode of the oseillator tube when VFO input is used. The second $6 A R 5$ is a frequerney drubler with its output link coupled to an 832 A am-plifier-tripler circuit.

As a straight-through amplifier at 50 Mc ., the 832.1 uses a low-value grid resistar, R_{5}, cut into the rircuit by switch $S_{3 a}$. A highresistance mrid-leak, R_{6}, is pieked up by $S_{3 a}$ when the tube is operated as a frequency tripher to 144 Mc. Tube and circuit capacitance resonate the grid eoil, $L / 8$, at approximately 49 Me. Jarks J_{2} and J_{3} permit metering of the grid and the cathode currents with J_{3} also serving ats the heying jarck for c.w. work at 50 Ne. The plate rircuit uses plug-in coils with the output link-coupled to the final by means of L_{10} in the $5(0-\mathrm{Mc}$. coil. At 144 Mc., output is capacity-roupled to the 2 -meter output stage hy eondensurs C_{15} and ('if. The 144-. Ite. stage, also an 832 A , has grid and eathode jacks as in the previous stage. It is made active by applying heater voltage through $S_{3 b}$.

Power wiring for the unit is shown in the lower section of Fig. 17-9. Power for the exciter is fed through a $\overline{5}$-prong male receptacle. A 4 -prong female receptacle permits taking out heater and plate voltages for an external VFO. Changing from VFO to

Fig. $17-\bar{i}$ - A complote 400-watt transmilter lor 50 and 144 Mc.

 Ne, exciter. Across the top of the chassis, from right to left, are the erystal mochets, the nseillator and donbler tubes, the 8321 ampli-fier-tripler and its, Hate mil, and the inverted 111-Mc. amplifier stage. Crystal socketa, used as r.f. output terminals, are mounted on the rear wall of the chassis along with the prwer plugs and the filament Iransformer.
crystal operation is done by means of the crystal switch and $S_{2 a}$, b,
lligher plate voltage is applied to the 144-Mc. amplifier than is used with the other three circuits, making the output on 144 Ic. comparable with that of the $50-\mathrm{Mc}$. amplifier.

Construction

The exciter is built on a metal chassis measuring 3 by 5 by 17 inches. The aluminum rack panel, $1 / 8$ by $83 / 4$ by 19 inches in size, is held in place by the mounting nuts of the various controls.

Ilate tuning condensers for the oscillator and the doubler are mounted on the front wall of the chassis. These two controls are hot with +300 volts and must be insulated from the chassis. Bakelite tuning knobs without metal dial plates protect the operator.
The amplifier-tripler circuit, located at the left-renter of the chassis as seen from the rear view, has its plate coil mounted on a National type XB-16 socket. Shield hraid is used for the connections between the coil socket and the 832 A plate caps, while Twin-Lead is wired between the output link and the output terminals. The tube is submounted on a Johnson shielded socket, Type 122-101, and the plate tuning condenser, C_{3}, is mounted to the left of the tube socket on an aluminum bracket.

The $144-\mathrm{Mc}_{\mathrm{c}}$ amplifier has the shiclded tube socket mounted in an inverted position. The grid chokes, $R P C_{5}$ and $R P C_{6}$, are mounted between the socket terminals and a tie point strip which is in turn mpunted on the metal part of the socket aleng with the button-type by-pass condensers. The coupling condensers, C_{15} and C_{16}, are between the tube socket and the amplifier-tripler plate coil socket. Millen No. 32150 throughbushings, set in the chassis to the left and rear of the tube socket, pass d.c. and heater leads for the 832A.
The bottom view of the exciter shows the plate tuning condenser, C_{4}, mounted on the end wall of the chassis just bulow the two-
terminal tio-point strip which supports the output link, L_{12}. A heavy copper strip is used as the ground lead for the rotor of the tuning condenser. The scrern-dropping resistor is mounted on a tio-point strip located on the rear wall of the chassis

Testing

lower-supply requirements for the exciter will depend on how the unit is operated. If it is to serve as a low-power transmitter, the supply need deliver only 300 volts at approximately 175 ma . For exciter service, two supplies are recommended - one delivering 300 volts at 125 ma , and one furnishing 400 volts at 100 ma ., the latter to be used on the second 832.A. The filament transformer must deliver 6.3 volts at 4 amp , in either case.

If operation with a VFO not having its own supply is contemplated, the power-supply capabilities should be increased to merot the extra requirements. When the V.II.F. Man's VFO, Figs, $17-14$ to $17-16$, is used it inerease's the heater load by 2 amp . and the plate-current drain by approximately 60 ma.

Performance of the oscillator and the doubler circuits should be cheeked first. This is done with the plate and sereen voltages removed from both 832 stages, and with a low range milliammeter plugged in J_{2}. The oscillator cathode switch should be opened. Table 17-I will assist in the selection of a crystal for

TABLE 17-I				
Crystal	Oscillator	noubler	Amplifier. Tripler	Amplifier
6250 6.50	25 27	50	$\frac{50}{54}$	
8333.4	25	50	54 50	
9000	27	54	5	
6000	24	48	1.4	
${ }_{8} 60606$	2.1.6	49.3	1.18	148
8000 8222.2	$\stackrel{21}{24}$	48.	11.1	1.1
8222.2	24.6	49.3	1.18	1.48

$\mathrm{C}_{1}, \mathrm{C}_{2}-\mathbf{2}_{2} 5 . \mu \mu \mathrm{fd}$, variable (Millen 20025)
$\mathrm{C}_{3}, \mathrm{C}_{4}-25 \cdot \mu \mu \mathrm{fd}$,-per-section split stator (Bud LC C. 1661 .
$\mathrm{C}_{5}-22-\mu \mu \mathrm{fd}$. midget mica
$\mathrm{C}_{6}, \mathrm{C}_{10}-100-\mu \mu \mathrm{fd}$. mideret mica.
$\mathrm{C}_{7}, \mathrm{C}_{9}, \mathrm{C}_{12}-0.004 \mathbf{7}^{-\mu \mathrm{fd} \text {, mica. }}$
$\mathrm{C8}-68 \cdot \mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{11}, \mathrm{C}_{13}, \mathrm{C}_{14}, \mathrm{C}_{20}-470-\mu \mu \mathrm{fd}$. midget mica.
$\mathrm{C}_{15}, \mathrm{C}_{16}-10-\mu \mu \mathrm{fd}$. midget mica,
$\mathrm{C}_{17}, \mathrm{Ci8}_{8}, \mathrm{C}_{19}-500-\mu \mu \mathrm{fd}$. button-type by-pass.
$\mathrm{H}_{1}-0.12$ megohm, $1 / 2$ watt.
$\mathbf{R}_{2}-15,000$ ohns, 1 watt.
$\mathrm{H}_{3}-47,000$ ohnis, $1 / 2$ watt
$\mathrm{R}_{4}-22,000$ ohms, 1 watt.
$\mathrm{R}_{5}, \mathrm{R}_{8}-22,000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{8}-0.1$ megohm, $1 / 2$ watt.
$k_{i}, l_{9}-25,000$ ohms, 10 watts.
L_{1} - 18 turns No. 24 enarn., $8 / 8$ inch long, 1 -inch diam.

Fig. 17.9 - Circuit diagram of the 50-14. Mc. exciter.
$\mathrm{L}_{2}-4$ turns $\mathrm{V}_{\mathrm{s}}, 24$ enam, close-wound at ground end of L_{1}.
$13-14$ turns No. 20 tinned, $7 / 8$ inch long, $5 / 8$-inch diam. L_{4} - 10 turns $\mathrm{N}_{0} 20$ tinned, $5 / 8$ inch long, $5 / 8$-inch diam. L4 - 5 turns No. 20 tinned, $5 / 8$ inch long, $\mathrm{s} / 8$-inch diam. Note: 13 \& ${\text { WI Minidactor No. } 3007 \text { used for } L_{3}, L_{4} .}^{2}$ and $/ \mathrm{s}$.
$L_{0,} L_{7}-$ Two-turn coupling links.
1.8 - 18 turns, No. 20 enam., $5 / 8$ inch long. $1 / 2$-inch diam.
$L_{9}-50$ Mc.: 1 turns No. 20 enani., $3 / 4$ inch long, $11 / 4$ inch diam. National type AR-16-10C with 2 turns removed from each end.

- 1.11 Me,: 4 turns No. 14 tinned, $7 / 8$ inch long, $1 / 4$-inch diam.
L_{10} - $50 . \mathrm{Mc}$. ontput link: 2 turns No, 20 enam,, wound around I_{9}.
$L_{11}-4$ turns No. 12 tinned, $5 / 8 \cdot$ inch diam., wound in
two sections with two turns each side of center tap and a $8 / 8 \cdot$ inch space at center, turns spaced wire diam.
L_{12} - 144- Mc, output link: 2 turns No. 14 tinned, $1 / 2$. inch diam., turns spaced wire diam.
J_{1} - Coaxial-cable connector.
$\mathrm{J}_{2}, \mathrm{~J}_{3}, \mathrm{~J}_{4}, \mathrm{~J}_{5}$ - Closed-circuit jacks.
$\mathrm{J}_{6}-5$-prong male receptacle.
J_{7} - 4-prong female receptacle.
R $\mathrm{FC}_{1}-2,5-\mathrm{mh}$. r.f. choke.
$\mathrm{RFC}_{2}, \mathrm{RFC}_{3}, \mathrm{RFF}_{4}-7$ - Rh_{1}. r.f. choke (Ohmite Z.50). RFC5, RFC ${ }_{6}, \mathrm{RFC}_{7}-1.8 \cdot \mu \mathrm{~h}$, r.f, choke (Ohmite Z $\mathrm{S}_{1}-8$-position selector switch (Amphenol 36-1) $S_{2 n}, S_{2 b}-1$.p.s.s.t. toggle switch.
$S_{3 \mathrm{~s},} \mathrm{~S}_{3 \mathrm{l}}$ - I),p,d,t, toggle switch.
T_{1} - Filament transformer: 6.3 volts, 6 amp.; see text.

Fig. 17:10- Bottom view of the v.h.f. ex. citer. The VFO input roil is at the left end of the chassis. Plate moils for the osecillator, the doulder and the 1 i. - Ule. annplifier eircuits are mounted or the tuning comderners. The grid eoril for the amplitire-tripher stage is mounted on the tube-soch et terminats.
fregucomes to which the various ditenits should be tunced. With plate voltage applied and with the doubler tuned to resonamere, the grid elarent of the 832 A should be approximately 7 mat. when an 8-. Ic. crystal is usod. (irid current will be 5 or 6 mat. with a 6 - Mle. ervstal. Total cathode current for the two GAlRas should be 50 ma . Normal sereent voltage for the oscillator and the donbler tubes is about 230 and 200 volts, respeetively.

The 832 A may now be tested at 50 Me. This requires a 100 -ma. meter in the cathode circuit and a 10 -watt lamp eoupled to the output terminals. When the plate eireuit is tuned to resonance, the grid current should stay up around 5 ma., the eathole eurrent should dip to about 65 ma ., and the lamp should indicate an output of 6 to 8 watts. A screan potential of 160 volts is eorreer with the amplifier loaded. The plate current should rise noticeably and the grid eurrent fall to zoro when exeitation is removed. This last test must be one of short duration.

To check the 144-Nc. stage, plug in the 2meter coil at L_{11} and apply the heater voltage through $S_{3 b}$. Grid current for the amplifier will be around 3.5 ma. A rechere of the triplore should show a grid current of 1 mat and a cathode current of 55 to 60 ma .

IVitha 400 -volt supply comected to the amplifier and with the dummy load across the 144-Ne. output terminals, 6 to 8 watts output should be obtained with an 832 A cathode current of approximately 65 ma. (irid current
should be 3 ma. and the sereen voltage should measure 170 volts. A short test for solf-oseillation should be made by removing the excitation.

The general method of tuning does not change when a VFO is used as the frequenercontrol unit. Ilowerer, it is important that the oseillator cathode switeh be elosed; ot herwise the oscillator cireuit will take off on its own.

It is recommended that a calibrated wavemeter be used to eheeck the tuning adjustments, particularly those associated with 1.4-Are operation. There are mumerous out-of-band harmonies from the low-freguency crystals and the high order of frequency multiplication. Bre careful to choose the proper harmonies in the first two stages.

THE POWER AMPLIFIER

Customary plug-in coil arrangements are not well adapted to use in high-power 14-Mc. stages. The lead inductance and parallel cat pacitance inherent in the bost jatok bars and coil bases leave almost nothing for the eoil itsolf, with the result that offiriont operation is all but impossible. The 14t-Me, tank rircuit used here is, however, practically as offective as if it were designed for one-band operation. When the amplifier is used on 1.t4 Me. the plate circuit operatos as a conventional tuned quarter-wave line. In changing to 50 Mc , it is merely necessary for remove the shorting bar, change the grid coil, and plug the $50-\mathrm{Me}$.

Fig. 17.11 - Rear view of the 4.651 ampilifier, showing the two-band tanh circhit set up for 50. We operation. R.f. inpme torminals are on the rear wall to the left and receptactes for the power leads are to the right. The 14.4.We. output terminala are on a lirarket to the left of the protective tube 'lhe 50-Ne. ontput terminal is mounted diremty on the Xls-1. soeket for the plate coil. A plug-in shorting bar, used acrosts the wate lines at IIt Mr., is shown in the ferceround.

C_{1} - $6 . \mu \mathrm{fd}$.-per-section variable (Millen 219061).
C_{2} - $50-\mu \mu \mathrm{fd}$, per-section (Bud LC 1662).
$\mathrm{C}_{3}-35-\mu \mu \mathrm{fl} .-\mathrm{per}$-section with high-voltage coupling; see text for information on removing plates. (National 'IMH-35D.)
$\mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{8}, \mathrm{C}_{9}-470-\mu \mu \mathrm{fd}$. midget mica.
$\mathrm{C}_{8} \mathrm{C}_{7}-0,0022 \cdot \mu \mathrm{fd}$ mica.
$\mathrm{C}_{10}-0.001-\mu \mathrm{fd}$. mica.
C_{11} - $500-\mu \mu \mathrm{fd}$. 5000 -volt mica.
$\mathrm{R}_{1}-5000$ ohmis, 10 watts.
$\mathrm{R}_{2}-30,000$-ohm 200 -watt adjustable: two 100 -watt resistors in scries.
$\mathrm{L}_{1}-50$ Mc.: 5 turns No. 24 tinned, $1 / 2$-inch diam., turns spaced wirc diam.

- 144 Mc.: 1 turn No, 14 wire, hairpin shape, $11 / 8$ inches long, $5 / 8$ inch diam. at open end.
$\mathrm{L}_{2}-50$ Me.: 6 turns each section, No. 20 tinned, $1 / 2$. inch diam. (B \& W Miniductor No. 3007). Space sections 340 inch apart.
coil assembly into the jack bar, Individual antenna coupling adjustments are used, the one for 144 Mc , being adjustable from the front panel.
The circuit diagram of the push-pull amplifier is given in Fig. 17-12. Excitation for the amplifier is link coupled to a conventional split-stator grid crrcuit. A 6 Y 6 G protective tube holds the plate dissipation to a safe level when the excitation is removed. The tubes require no neutralization at 50 Mc . At this frequency the screen grids are by-passed by condensers C_{6} and C_{7}. Shielding to prevent exturnal coupling bet ween the grid and the plate circuit is provided for by an aluminum partition.
On $14+\mathrm{Mc}$. it is necessary to series-tune the screens to ground by means of C_{2}, placing the screens effectively at ground potential. This is a frequency-sensitive adjustment, however, and the stability of the amplifier should be checked after making large changes in operating frequency,
- 144 Mc.: Same as $14-$ Mc. L_{1}.

Note: L_{1} and L_{2} mounted on National trpe PB-16
$\mathrm{L}_{3}-4$ turns of $1 / 8$-inch o.d. copper tubing. $15 / 8$-inch diam., wound in two sections with two turns each side of center tap and a $3 / 4$-incli space at center, turns spaced $1 / 8$ inch.
$L_{4}-3$ turns No. 12 enam,, $15 / 8$-inch diam., turns spaced wire diam.
$L_{5 A}, L_{51}-1 / 2$-inch o.d. copper tulning, $101 / 2$ inches long, spaced $11 / 8$ inches on centers.
L_{8} - 1 turn of $1 / 8$-inch copper tubing, hairpin shape, 3 inches long, $11 / 4$-inch diam. at open end.
$I_{1}-6,3$ volt pilot tamp assembly.
$\mathrm{J}_{1}-4$-prong male receptacle,
$\mathrm{RFC}_{1}-1$ - $\mu \mathrm{h}$. r.f. choke.

$\mathrm{RFC}_{5}-1.8$. $\mathrm{\mu h}$, r. f. choke (Ohmite Z . 1. H) .
T_{1}-Filament transformer: 6.3 volts, 8 and.

Construction

The $3 \times 7 \times 17$-inch ehassis and the $101 / 2$ $\times 19$-inch panel are held together by the pilot-lamp assembly and three shaft bearings. The latter are for the 144 -Nc. outpu link and the tuning condensers for the screen and grid circuits. The lamp jewel and the thrae control knobs may be seen from left to right in the front view of the complete transmitter.

The rear view of the amplifier, Fig. 17-11, shows the grid coil mounted on a National type $\times 13$ - 16 soeket to the left of the shield partition. An XB-15 socket is mounted on 3 -inch stand-off insulators between the $4-6.5 \mathrm{~A}$ tubes and the plate tuning condenser. The condenser is mounted on $21 / 2$-inch insulators in an inverted position. The minimum capacitance of the plate condenser was reduced by removing two stator and two rotor plates from each section. A feed-through insulator for the highvoltage d.c. lead is mounted directly below the plate-coil socket.
The $144-\mathrm{Mc}$. lines are supported by the tun-
ing condenser and a piece of $1 / 4$-inch polystyrene. Plate clips for $9 / 16$-inch caps are reduced in diameter and used for contact with the rods at the tube and condenser positions. The condenser should have the clips bolted to the lefthand stator terminals as seen from the rear view. This will allow the condenser shaft to be centered on the panel and the connection to the lines will be at a point four inches in from the plate ends. Shield braid, $1 / 2$ inch wide, is used between the clips at the open ends of the lines and the heat-radiating caps of the tubes.
Aluminum plates equipped with panel bearings for the control shaft of the 144-Mc. output link are mounted on the front and the rear frames of the plate tuning condenser. The swinging link is made by twisting the open ends of the loop around a 5 -inch length of $1 / 4$-inch polystyrene rod. The turns around the rod should be shorted out by soldering, and since this operation softens the rod, the link and rod will be firmly joined together. A piece of $1 / 8$-inch polystyrene cemented across the closed end of the loop prevents accidental contact with the plate lines. A Millen type 38602 Quartz Q washer at the rear of the shaft and a homemade pulley at the front prevent the control shaft from slipping out of the bearings.

The grid tuning condenser is mounted on an aluminum bracket and the screen condenser is supported by metal posts as shown in the bottom view. Copper strip is used for joining the two screen prongs of each tube socket and for connection to the two variable condensers, Each tube has the mica by-pass condensers and a section of the variable sereen condenser returned to a common point on the socket. The $0.001-\mu \mathrm{fd}$. by-pass for the screen-circuit r.f. chokes is returned to ground in between the two sockets. The pulley and the dial cord for the swinging link are at the front of the chassis.

Testing the Complete Rig

Although the a mplifier described may be operated at full ratings (540 watts) for c.w. work, it is recommended that the input be kept to 400 watts or less when plate modulation is used. This value includes the power taken by the screen grids. For all-round operation a power-supply output of 1000 to 1500 volts at
approximately 350 ma . is recommended. Higher voltages may be used but forced-air cooling of the tubes may be required. The amplifier may also be operated efficiently at supply voltages as low as 600 , provided that the screen is maintained at approximately 250 volts.

At 50 Nc. the amplifier can be tested in the same way as any low-frequency amplifier. The usual test for self-oscillation may be made with the filament and plate voltage applied, with the excitation removed and with the protective tube in place. Proper operation is indicated by the absence of grid-current as the grid and the plate tuning condensers are rotated. The protective tube should limit the d.c. input to no more than the maximum platedissipation rating. The limiting effect will be determined by the supply voltage, but total input should be well below 150 ma. at 1500 volts or less.

With the unit described earlier furnishing excitation, the grid current for the amplifier should be approximately 35 ma . before the high voltage is turned on. A 300 -watt lamp coupled to L_{4} may be used as a dummy load for the power-output test. A cathode current of 320 ma , is correct for operation with a 1000 -volt supply, and 310 ma . is correct with 1500 volts on the plates. The grid current should be at least 25 ma , and the screen potential should be about 250 volts when the amplifier is fully loaded.

The amplifier is tested for 144 - Me. operation with the 50-Mc. plate coil removed and with the shorting bar across the resonant lines. The one addition to the test procedure outlined above is adjust ment of the screen tuning condenser, C_{2}. After applying filament voltage and excitation, the condenser is adjusted for minimum feed-through as indicated by a sensitive rectifier-type wavemeter coupled to the plate lines. A second method is to remove the excitation, apply the plate voltage and then tune for zero grid current. The setting of the screen control is very critical, but with care a position can be found which will hold over most of the $144-\mathrm{Mc}$. band. The most accurate way of setting the adjustment is to try for a position where maximum grid current and minimum plate current occur at the same setting of the plate tuning condenser.

Fig. 18-13-A hottom view of the power amplifier, Tuning condensere for the grid and screen circuits are to the left and right of the shiched tube soch cts. The filament trantsformer is at the upper right-hand end of the chassis. The two large resistors drop the voltage to the $4-65 \mathrm{~A}$ sereens.

A V.H.F. Man's VFO

Though a VFO is considered to be an almost indispensable part of an amateur station for lower frequencies, v.h.f. operation is still carried on mainly with crystal control. This is hargely beccause of the relatively lower oecupancy of the v.h.f. bands and the freedom from interference prohlems which results. It is also, in part, the result of the fact that, as we go higher in frequency, it becomes more difficult to generate an entirely satisfactory signal by means other than with erystal control.

With proper attention to the well-known factors affecting oscillator stability a frequency control unit for 80-, 40-or 20-meter use can be built with a minimum of complications, but many a signal which sounds aeceptable on thesce frequencies becomes quite fuzzy by the time it is multiplied to the v.h.f. bands. Even on 10 meters it is not too easy to obtain a pure d.c. note, especially when the oscillator frequency is modulatel for narrow-band FM.

The frequeney-control unit described herewith has a degree of frequency stability that is adequate for the high-order frequency multiplication required in v.h.f. service, and the design of the audio portion is such that little or no hum is introduced in the reactance-modulation process. The unit has the reactance-modulator and speech amplifier built in, the gain of the latter being only just enough to provide sufficient deviation for 10 -meter NF.M. Much of the hum present on some FM signals comes from the use of exesssive speech gain, or haywire patching systems in order to utilize the sperech equipment in some other portion of the transmitter.

This unit, shown in Figs. 17-14-17-16, was designed with the needs of the $v . h . f$, man in mind. Since many v.h.f. operators also work on 10 and 11 meters the oscillator tuning range was extended to include these bands, as well as 2 and 6 meters. The actual output frequency of the VFO is 6.54 to 9 . Me. It is designed to
serve as a crystal substitute, and may be plugged into the crystal socket of any transmitter employing crystals falling within its tuning range. Thus, though the dial is calibrated only for the bands from 11 to 2 meters, the unit may be used on 40 or 20 , or on portions of the higher $v . h . f$. bands that are in harmonic relationship with the output frequency. The output is sufficient so that the unit may also be used as a driver for a lowpowered amplifier or frequency multiplier whose grid circuit is on that frequency. It also includes a reactance modulator and speech amplifier, providing narrow-band FMI on 27 Mc. and higher frequencies with orly the addition of a crystal microphone.

Two 6AG7s are used in the r.f. portion. The first is an oscillator-doubler employing the highly-stable Clapp oscillator, the operating frequency of whieh is 3370 to 4500 kc ., doubling in the plate circuit. The second is an amplifier operating on 6.74 to 9 Me. By means of separate padders switched in by a front-panel control, a reasonable amount of bandspread is provided for each of the four bands from 2 to 11 meters. The $50-\mathrm{Mc}$. band covers 55 divisions on the vernier dial, 144 Mc . is covered in 25 divisions, the 10 -meter band occupies 80 divisions, and 11 meters 20 divisions. By proper setting of the padders the 2 - and 11meter ranges can be made to come at the opposite ends of the National MCN dial, leaving the two other spaces on the dial card for the 10- and 6-meter calibrations.

Frequency modulation is accomplished by means of a reactance modulator and a speech amplifier, both using 6BA6 miniature tubes. Deviation of the oscillator frequency is approximately 500 cycles, providing adequate swing for 10 -meter NFM as a result of the eight times multiplication. A deviation of approximately 10 kc . is possible in the 6-meter band, and as muth as 30 kc . on 2 meters. This greater

Fig. 17.1. - l'anel view of the v.h.f, VFO with NFM modulator.

Fig, 17.15 - Cireuit diagram of the NFM control unit for v.h.f. use.
$\mathrm{C}_{\mathrm{t}}-35 . \mu \mathrm{fd}$. variahle, doulle spaced (Millen 21935)
$\mathrm{C}_{2}, \mathrm{C}_{3}-100-\mu \mu \mathrm{fd}$, variable (Millen 20100).
$\mathrm{C}_{4}, \mathrm{C}_{5}$, $\mathrm{C}_{7}, \mathrm{C}_{9}, \mathrm{C}_{10}-2-30-\mu \mathrm{fl}$, ceramic trimmer (Millen 27030).
$\mathrm{C}_{8}-33-\mu \mu \mathrm{fil}$. silver mica.
$\mathrm{C}_{8}-10-\mu \mu \mathrm{fil}$. silver mica.
$\left.\mathrm{C}_{11}, \mathrm{C}_{12}-680\right)-\mu \mu \mathrm{fd}$. silver mica.
$\mathrm{C}_{13}-68-\mu \mu \mathrm{fid}$, silver mica.
$\mathrm{C}_{14}, \mathrm{C}_{15}, \mathrm{C}_{17}, \mathrm{C}_{18}, \mathrm{C}_{19}, \mathrm{C}_{21}, \mathrm{C}_{22}, \mathrm{C}_{23}, \mathrm{C}_{24}, \mathrm{C}_{27}-\mathbf{0 . 0 1}$. fd . 400-volt paper.
$\mathrm{C}_{16}, \mathrm{C}_{20}-100-\mu \mu \mathrm{fd}$, mica.
$\mathrm{C}_{25}, \mathrm{C}_{26}-47$ - $\mu \mu \mathrm{fd}$, mica.
$R_{1}, R_{9}-0.1$ megolinn, $1 / 2$ watt.
$\mathrm{R}_{2}, \mathrm{R}_{10}-10,000 \mathrm{olmms}^{1 / 2}$ watt.
$\mathrm{H}_{3}-17$ ohms, $1 / 2$ watt.
$\mathrm{R}_{4}-330$ ohms, 1 watt.
$\mathrm{R}_{5}-15,000$ otmens, 2 watts.
R_{G} - 1 megohm, $1 / 2$ watt.
swing is useful on 144 Mc ., where a considerable number of relatively-broad receivers is in use. The deviation is controllable to any required value below this, by means of the potentiometer, R_{8}. A switch is provided in the heater circuit of the speech section $\left(S_{2}\right)$ so that this portion of the unit can be cut off when c.w. or amplitude modulation is being used. As operation of this switch affects the oscillator frequency appreciably it is usually preferable to leave the speech-section heaters on at all times, using the deviation control at its off position when emissions other than NFM are being used.

The arrangement of the parts should be clear from the photographs. The top view, Fig. 17-14, shows the microphone jack and
$R_{7} R_{13}-0.22$ megohm, $1 / 2$ watt.
$\mathrm{R}_{8}-0.5$-megolim potentiometer.
R_{11} - 0.17 megohm, $1 / 2$ watt.
$\mathrm{R}_{12}-470$ ohms, $1 / 2$ watt.
R_{14} - 8500 ohmis, 10 watts.
$\mathrm{L}_{1}-2.4$ turns No. 22 tinned wire, diameter $11 / 2$ inches. length $11 / 8$ inches ($13 \mathbb{\&} W 80$ JCL with 18 turns removed).
$\mathrm{L}_{2}, \mathrm{I}_{3}-1.4$ thrns No. 24 e. wire, diameter 1 incl, length $3 / 8$ inch; wound on Millen 45000 form.
$I_{4}-3$ turns No. 21 e., close-wound at bottom end of L_{3}.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Coaxial-cable jack (Jones S.101).
RFC $1,1 \mathrm{RFC}_{3}-2.5 \cdot \mathrm{mh}$. r.f. choke (Millen 34100).
$\mathrm{RFC}_{2}-300-\mu \mathrm{h}$. r.f. ehoke (Millen 3430n).
$\mathrm{S}_{1}-4$-position progressive-shorting switch (Centralab GG modified; see text).
S_{2} - S.p.s.t. toggle switch.
heater switch at the right end of the panel. The deviation control, bandswitch, oscillator-plate and amplifier-plate tuning controls are in line across the bottom of the panel. The oscillator frequency setting is controlled by the vernier dial. Looking at the top of the chassis the two 6 AG 7 s may be seen to the left of the tuning condenser, the first being the oscillator tube. The oscillator tank coil, L_{1}, is mounted on stand-offs, just in back of the figins. Two metal brackets are used to mount the tuning condenser, which should be the double-ended variety for greatest mechanical stability. The reaetance-modulator and speech-amplifier tubes are at the right of the tuning condenser, with the regulator at the rear. The chassis is a standard $3 \times 5 \times 10$-inch size and the panel is

6 by 11 inches. A 5×10-inch aluminum plate, with clearance holes for the trimmer adjustments, is attached to the bottom of the chassis.

The arrangement of components under the chassis is apparent from the bottom view, Fig. 17-16. The bandswitch and associated padders are at the middle, with the oscillator plate coil. The amplifier plate coil is at the left. The padder condensers are mounted with their grounded terminals soldered to metal pillars, in order to reduce sensitivity to vibration to a minimum.

The bandswitch requires some modification. In its original form it has a disk which shorts out all unused contacts. This disk must be cut through the center so that one half may be removed. As may be seen from the wiring diagram, Fig. 17-15, the connection between the oscillator coil and the switch is made to Number 1 terminal, rather than to the regular wiper contact.

The power supply for the VFO should be well filtered and capable of delivering 300 volts d.c. at 60 to 70 ma ., and 6.3 volts a.c. at 1.9 amp. Socket voltage measurements are approximately as follows: 20 volts on the audiotube sereens, 150 volts on the 6 AG 7 screens, 40 and 150 volts, respectively, on the speechamplifier and reactance-modulator plates, and 300 volts on the $6 \mathrm{AG7}$ plates. Cathode current for the oscillator should be about 10 ma ., and the output stage, at resonance, 30 ma .

Calibration and Use

Catibration of the V'FO dial can be accomplished with the aid of a receiver having an accurate dial calibration, as the readings on the VIVO dial should not be relied upon for band-edge operation. The $50-\mathrm{Mc}$. range, requiring the least padder capacitance, should be calibrated first. l'adders C_{9} and C_{10} set at nearly full capacitance will provide the correct tuning range, which should be approximately 55 divisions spread over the middle of the dial scale. The 144-, 28 - and $27-$ Me, ranges should be calibrated in that order, their spread on the dial being approximately 25,80 and 20 divisions respectively. If the NFM portion of the unit is to be used extensively it is recommended that the calibration proeedure be carried out with the react-ance-modulator heater on, as this tube affects the ealibration appreciably.

Fin. 1/-16—Bottom view of the VFO.

When adjusting the plate circuits of the oscillator and amplifier stages it is recommended that the approximate settings of these controls for the middle of the band in question be marked on the panel. It will then not normally be necessary to readjust these controls when shifting frequency within a band. This broad-band effect is accomplished by slightly overdriving the amplifier tuoe at the center frequency, causing the screen voltage to drop and reduce the output. Tuning away from the center frequency reduces the drive and allows the screen voltage and output to rise. More than enough output is thus obtainable over the entire band, without too great a variation for proper operation of the sacceeding stage. Two 250-ma pilot lamps in parallel make a satisfactory dummy load for the amplifier.

Next the operation of the reactance modulator should be checked. The procedure for this operation is described in detail in Chapter Nine. It should also be pointed out that there is no excuse for radiation of an improperly-modulated FM signal, since it can be monitored readily in one's own receiver. With the receiver in operation on the hand in which the transmitter is to be used, but with only the VFO turned on, it is a simple matter to tell exactly how the signal will sound on the air. Deviation requirements vary with different receivers, but a safe starting point is to set the deviation control so that the signal sounds well on a communications receiver with the crystal filter in the broadest "on" position.

Ordinarily a unit of this type may be used to replace the crystal stage of an existing transmitter by simply plugging it into the erystal socket. The out put coupling is a low-impedance line, however, and it may be connected to a link winding on the grid coil of any low-power stage whose tuning range is 7 to 3 Mc. Although it is shown calibrated only for the frequencies ahove 27 Mc., it may be used as a c.w. exciter for 7 - or 14 -Mc. work. The deviation may, however, be insufficient for 20^{-} meter NFM operation. Output, at 7 to 9 Me ., is about three watts.

Transmitter-Exciters for 50 and 144 Mc.

The units shown in Figs. 17-17 through 17-22 are designed to serve several purposes. They may be used individually or together, depending upon whethor the builder wishes to operate on both $\overline{0} 0$ and 144 Mc , or on either band alone. They may serve as complete transmitters for either mobile or home-station service, or they may be used as exciters for driving higher powered stages. The dual tetrode amplifier of Fig. 17-23 would be a suitable following stage for up to 100 wat ts input.

Overtone oseillator cireuits are emplowed in the interest of low power consumption, rircuit simplicity and easc of TVI prevention. Power wiring is done with shiclded wire, and the phosical arrangement of the parts is such that nearly completershielding is obtained. If further enelosure is needed to prevent TVI it is merely neeressary to cover the top of the unit. Power output is taken off by means of coaxial fittings, for convenience in mobild operation, and for complete shiolding.
The two units are as similar, both merehanically and electrically, as possible. Both are built entirely on their $\bar{i} \times 10$-inch shect aluminum top plates. These are screwed onto inverted $3 \times 5 \times$ lo-inch steel or aluminum chassis. Both use a 12.1 U 7 dual triode as oscillator and frequency multiplier, with a 2 l 26 final amplifier. The $14 \dot{4}-$ Me. unit has a 576 di3 doubher stage between the 12.1U7 and the 2E26, and the operating conditions of the stages vary somewhat.

The neressary driving power for the final is more readily obtained on $\overline{\text { of }}$. Me., se the oscillatormultiplier is set up to run at lower input. Indurtive noutralization (L_{4} and L_{5} in Fig. 17-19) was used to stabilize the 50 -Me. unit, whereas a small caparitance accomplishes the same end in the Hf-Ne. amplifier. An end-linked tank circuit works well on mo Mar., but a balaneed tank with renter link is more satisfactory for IH4 Ne.

Both transmitters are sot up to permit complete motering of all stages. Looking at the male chassis fittings in the sehematio diagrams, it may be seen that cach grid return, sereen and phate lead is brought out to a scparate pin. It is helpful during the adjustmont of the rigs to be able to moter cach stage without breaking into the main
wiring. This is done by connecting a meter temporarily between the proper power plug pins. After adjustment is completed the meter can be replared with a jumper in the plug. The exeiter stages require 250 to 300 volts. The amplifier may be operated at the same level, or if more power is wanted the final plate voltage may be raised to 400 volts.

Adjustment and Operation

With either rig the oscillator stage should be checked first. This should be done with 150 to 200 volts until correct operation is established, and with no voltage on the following stages. Proper operation of the oscillator depemels on the :mount of feedback, which cem be adjusted by varying the position of L_{2} with resperet to L_{1}, or by ehanging the number of turns in either winding. For best merhanical stability, the two coils are made from a single piece of B\& W Miniductor, breaking the wire to give the sperified number of turns in cach winding. Berause the characteristies of tulnes and crestals vary somewhat, it is wall to start with at least one extra turn on carh winding.

The fredback should be only erough to insure easy starting of the oscillator under load. Adjustments should be made with the grid circuit of the following stage completed, with a low-range milliammater connoreted to the proper terminals on the plug to read grid current. Oscillation will be evidenced by the sudden appearance of grid current as C_{1} is rotated. If the feedback is correct, this will ocrur at only a small portion of the tuning range of C_{1}. Listen to the oscillation at 24 or 25 . Me. It should vary only slightly in froquency, if at all, as C_{1} is tuned. If the frequency changes graduatly arross the tuning range the oscillator is not erystal eontrolled, and too much fredback is indieated. Remove a turn at a time from L_{2} until only erystal-controlled oscillation remains. If there is insufficient feedback there will be no oscillation. Feedlatck can be increased by removing turns from L_{1}, or adding turns to L_{2}. If several erystals are available, try to find a median sortting that will work with all of them.

Crystals mave be the overtone varicty, marked

Fig. 17-17-A 25-watt transmitur or exciter for 50 Mc. Osidlator and doulter are tuned ly sorewdriver adjustments at lower left and center of top plate. The amplifier control is the hnol) at the right. The $11-p i n$ power fitting is at the eronter, rear, and the antenna output fitting is in the upper right.

Fig. 17-18-13otom view of the 50 -Mc, transmitter-exciter. Oseillator, doubler and final circuits are from left to right. 'The power fitting at the left should be dineremarded see text and lig. 17-1\%. Vote the inductive nentralization link betwern L_{3} and L_{4}. Disregard the power fitting at the lower beft and follow lig. 17-19 for power connertions.

for frequencios between 24 and 27 Mc., or they may be fundamental-type cuts for 8 to 9 Me., working on their third overtone. Much less feedback is needed for overtone erystals ordinarily, and if they are to be used exelusively L_{2} may be reduced to as little as three turns. If difliculty with starting under load is encountered, the size of the coupling capacitor, C_{3}, can be reduced, and it may be advantageous to connect an r.f. choke between I'in 2 of the frequeney multiplior and the grid laak, R_{3}.

The second half of the 12.1 U 7 is operated as a doubler to 50 Me, in the unit for that hand, and as a tripler to 72 Ma. in the 144-Mc. model. It has no unusual features in either case. The arnplifier is so easy to drive on 50 Me . that input to both the oscillator and doubler stages can be kept at quite low level - not more than about 10 ma . plate current for earh section. In the 144-Me. unit the current drains will run about 12 to 15 ma . for each stage, Grid current should be 1 ma . or more in either case.

Fig. 17-19 - Schematic diagram and parts list for the 50. Me, transmitter exciter.
($i_{1}-50-\mu \mu \mathrm{fd}$, trimmer (Nillen 26050-LN).
$\mathrm{C}_{2},\left(: 5, \mathrm{C}_{7}, \mathrm{C}_{9}-0.001-\mu \mathrm{fl}\right.$. dise ceramic.

(4 - $25-\mu \mu \mathrm{ffl}$. trimmer (National MSIR-25)
(is - $20-\mu \mu \mathrm{fd}$. dooble-spaced shaft-1 ype trimner (Millen 20920).
$R_{1}-39,000$ ohms, $1 / 2$ watt.
$R_{2}, R_{4}-470$ ohmes, $1 / 2$ watt.
$\mathrm{R}_{3}-100,000$ ohms, $1 / 2$ watt.
$R_{5}-68,000$ ohms, $1 / 2$ watt.
$R_{6}-30,000$ ohms, 3 watts. (310,000 -olim 1 -watt resistors in series. Nay lie redueed in resistance and wattage for 300 -volt operation.)
$L_{1}-9$ turns No. 20, 1/2-inch diam., 916 inch long (\mathbf{B} \& W Miniductor No. 3003).
$L_{2}-4$ turns No. 20, $1 / 2$-inch diam., $1 / 4$ inch long. L_{1} and L_{2} are made from a sinule picce of $\mathcal{B} \& \mathbf{W}$ Miniductor No, 300:3, 13 turns total. See text and Fig. 17-18.
$1,3-5$ turns Vo, 20 , $1 / 2$ inch diam., $\overline{3} 15$ inch dong

1.4, 1.5 - 1-turn neutralizing lowps eonnected by link, No. 14 enam, sere liim, 17-18.
L6-5 turns No, 16 , 1 -inch diam., $11 \frac{1}{1}$ inch long (13 \& V No. 3013).
L.i- 3 turns No, 14 enam., $3 / 4$-inch diam, inside cold end of Lob.
J_{1} - Coaxial ontpnt fitting.
$J_{2}-11$-pin male chassis fitting (Amphenol 86RCP11).
RFC. 1 -mh. r.f. chohe ((ational R-50),
RN(. $2-2, \overline{5}-\mathrm{mh}$. r.f. choke (National R-100).

Fig. $17-20$ - ' O p view of the 25. watt 14\%.Me. transmitter. 1 awout is similar to the ${ }^{\text {and }}$ - Mr. model, cxcept for the additional doubler stage and the mounting of the final tank cirnit above the chassis.

The 5763 doubler stage in the 2 -meter unit is of conventional design. Care must be taken in layout to kerp down lead inductanee. Note that the lead from the plate to the tuning condenser is made of quarter-inch wide eopper strip.
beeause of the difference in layouts required for the two frequencies, the two amplifiers operate somewhat differently. The 50-Mc. unit has the final tank eoil and antenna coupling underneath the ehassis. There is thus more feedback, and neutralization was needed. This is furnished by the link that may be seen in the bottom view, Fig. 17-18. A loop of No. 14 enameled wire is
mounted on standoffs, with one turn coupled to L_{3} and the other end to L_{6}. The position of the coupling loop at either end is adjusted for neutralization in the same way as for capacitively neutralized amplifiers. The loop (L_{5}) is in between the second and third turns of L_{6}, with the antenna coupling eoil below. Slight variations in layout may climinate the need for neutralization, so the amplifier operation should be cheeked without it at first.

In order to shorten the plate lead, the plate eircuit of the 2 -meter unit was mounted above the chassis. This permits use of a balanced tank cir-

Fig. 17-21 - Sehematic diagram of the 111-Mc. transmitter. Bottom view: of both power plug and socket are shown.
$\mathrm{C}_{1}-50-\mu \mathrm{fd}$, trimmer (National PSR-50).
$\mathrm{C}_{2}, C_{5,}, \mathrm{C}_{7}, \mathrm{C}_{8,}, \mathrm{C}_{10}, \mathrm{C}_{13}, \mathrm{C}_{14}, \mathrm{C}_{16}-0.001 \ldots \mathrm{fd}$, disc ceramic.
$\mathrm{C}_{3}, \mathrm{C}_{6}-25-\mu \mu \mathrm{fd}$. ceramic.
$\mathrm{C}_{4}-25-\mu \mu \mathrm{fd}$. trimmer (National PSR-25).
$\mathrm{C}_{9}-10-\mu \mu \mathrm{fd}$. double-spaced trimmer (Millen 26920 cut down to 2 rotor and 3 statur plates).
$\mathrm{C}_{12}-10-\mu_{\mu} \mathrm{fd}$. ceramic.
$\mathrm{C}_{15}-10-\mu \mu \mathrm{fl}$. per section butarily (Johman:a 101.1315).
R_{1} - 10,000 ohms, 1 watt.
$\mathrm{R}_{2}, \mathrm{R}_{4}-120$ ohms, $1 / 2$ watt.
$R_{3}-100_{4}(M)(0)$ ohms, $1 / 2$ watt.
$R_{5}-68,0000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{6}-12,000$ ohm:, $1 / 2$ watt.
$\mathrm{R}_{7}-22,000$ olms, $1 / 2$ watt.
$\mathrm{R}_{\mathrm{s}}-29.000$ ohms, I watt. Mahe like Re in Fig. 1-199
if using more than 300 volt plate supply.
1.1, L_{2}-Similar to Fig. 1-.19.
$\mathrm{L}_{3}-4$ turns No. 18 , 12 -inch diam., $1 / 2$ inch long (B \& II Xo. 3002).
$1_{4}-4$ turns No. 1.t, $1 / 4$-inch diam., $5 / 8$ incle long.
$1.5-6$ turns No. 1.4, 3 turns each side of center spaced diancter of wire, $1 / 2$ - nch diam., $1 / 4$-incla space at center of Ls.
LD - 2 turns No. 14 enam., $1 / 2$-inch diam.
J_{1} - Coavial output fitting.
J_{2} - Il-prong male chassis fitting (Amphenol 86 RCP'II).

$\mathrm{Rl}^{\prime} \mathrm{C}_{2}, \mathrm{RHC}_{3}, \mathrm{RHC}_{4}-1,8-\mu \mathrm{f}$, r.f. chohe (Ohmite Z-144).

Fig. 17-22-Inder chassis view of the I H-Nr. transmittre Oacillator, tripler and doubler tumed circuits are from left to right.
ruit and practically eliminates the need for neutralization. To make up the difference in caparitance on the two sides of the circuit, a lead from the low side is run through a chassis bushing to just below the chassis level. If there is instathility, the length of the lead below the chassis can be varied ta effert neutralization. Contant is made to the 2 L 26 metal ring externally be means of a spring elip mounted under one of the socketmounting serews. This contributes to more stable operation of the amplifier, though connertion is made to the ring internally through Pin 8 . Nhiolding may or may not be neecessary on the 5763 . ()peration of the tube without a complete shield results in more affective cooling, and is recommended if perssible.
Oprating conditions for the various stages follow the tule manufacturer's recommendations cosely. If more or less input to the final stage is

dosired it can be controlled by variation of the screen voltage, with a smaller or larger dropping resistor value.

If both transmit ters are to be used, their operation maty be controlled by an external switeh that furnishes hoater voltage to the unit desired at the moment. Plate voltages may be left connerted to both units in this case, as only the one whose hoaters are emergized will deaw curront. Lating on the amplifior is variod by adjusting the position of the output roupling winding. In some cases the insertion of a series tuning condenser between the coupling loop and ground may be desirable. Power output will be about 15 watts maximum on \% O Mc, and aloout 10 watts for the $1+t-$ IIc. unit. If the plug comections given in the schematic diagrams are followed it will te possible to interchange the two power plugs without affecting the operation of the rigs.

A 100-Watt R.F. Amplifier for 50 and 144 Mc.

The r.f. amplifier shown in Figs. 17-23, 17-24 and 17-25 is designed for use with a dual beam tetrode surh as the 82913 or AN-9903. It is capabe of handling an input of up to 120 watts on (ew, or f.m, and about 100 watts on a.m. 'phone. 'The drive stage should have an output of a watts or more, to assure adequate driving power. The same general layout may be used with an 832 A or 815 , if a suitable value of grid resistor is used. The 81 a also requires a different socket.

The amplifier is built on an aluminum chassis 3 by 4 by 17 inches in size, with practically all components mounted topside. The two-bind
tank rircuit deseribed in Fig. 17-3 is used, to facilitate casy band changing amd assure efficient operation on 144 Mc. Only the phate cireuit is tuned. The grid coils are made to resonate with the input capacitance of the tubs. The plate tuming condenser is cut down to a capacitance suitable for $144-\mathrm{Mc}$, used by removing plates, leaving two stator and three rotor plates in each section. The two stator plates left are those on cither side of the stator connection lug. One rotor phate is removed from each end of the shaft and four from the middle.

The tube socket is mounted on a bracket $35 / 8$

Fig. 17-23 - A dual-tetrode amplifier for 50 and 1.41 Me., with 50. Mc. corik in plare, In the foreground are the I IP- Ve, grid coil and the antenna coupling leop used for 114- Il c. oneration.

inches high, with the tube centered $21 / 2$ inches above the chassis. The tuning condenser and coil socket are also mounted on brackets, the former $23 / 8$ inches high. Both brackets have ["shaped cutouts to pass the plate lines with at least $5 / 16$ inch clearance all around.

The plate lines are $51 / 2$ inches long, exclusive of the flexible portion at the plate cond. This is of tinned braid, making $11 / 4$ inches additional, from the end of the lines to the slip-on connertors. The flexible portion of the line is made fast by inserting the end of the braid in the tubing and crimping the tubing in a vise. The commertion is soldered for added firmness, but the tubing should be squerzed tight enough to hold the braid in place, as long periods of operation may heat the line sufficiently to loosen soldered connections. Connections from the lines to the tuning condenser are made by wrapping the tubing with four turns of tinned wire and soldering this wrap to the line and the condenser tabl). The far end of the line is mounted on 2 inch standoffs and small coppor brackets, bringing the over-all height to $2 \frac{1}{2}$ inches.

The spacing of the lines, $3 / 4$ inch center to conter, is determined by the spacing of the pins of the Millen 37212 plug used for a shorting bar. A short is placed across the terminals of the plug, and conncetion is made for the I3-plus with a flexible

Fig. 17-25 - Bottom view of the tetrode amplificr.
load. The Millen 37211 socket, mounted at the end of the chassis, serves as a convenient stor-
age device for the plug and as a terminal strip end of the chassis, serves as a convenient stor-
age device for the plug and as a terminal strip for $R F C_{2}$. The plug may be used to adjust the line length; sliding it into or out of the line perline length; sliding it into or out of the line per-
mits an adjustment of about $1 / 4$ inch in over-all longth. This may be useful in counteracting for slight variations in tube characteristics. The grid coil socket is mounted on a plate held in position by the screws on which the tube socket is mounted. It is positioned for minimum lead length - an important consideration. The

Fig. 17-24 - Schematic diagram of the two-hand tetrode amplifier.
(: C_{2} - Ventralizing capacitors, see text.
$\mathrm{C}_{3}, \mathrm{C}_{4}-0.001-\mu \mathrm{fd}$. disc ceramic.
$\mathrm{C}_{3}-\mathrm{Spl}_{\mathrm{p}} \mathrm{t}$-stator variable, approx. $15 \mu_{\mu} \mathrm{fal}$. per section (Millen 219.3 .5 with 2 stator and 3 rotor plates removed from each section).
$C_{6}-0.001-\mu \mathrm{fd}$. mica, I 200 -volt rating.
1.1-50 Mc.: 3 turns No. 18, $11 / 4$-inch dia., turns spaced wire dia.

144 Mc,: U-shaped loop $1 / 2$ inch wide and $11 / 8$ inch long, No. It tinned.
$L_{2}-50 \mathrm{Mc} \cdot: 2$ turns each side of L_{1}, same dia, and spacing, center tapped. Can be made by removing one turn from each end of a National AR-16 loss assembly.
144 Me.: C-shaped loop similar to L_{1}, but center tapped. See Fig. 17-23.
I. 3 - 3 turns each side of eenter, No. 12 tinned, 1 inch dia., spaced I dia, center tapped. Leave $1 / 2$-inch space for L_{4}.
I. -3 turns No. 14 enamel, 1 -inch dia., spaced I dia.

Isa, l.5t - $1 / 4$-inch o.d. copper tubing, $51 / 2$ inches long, spaced $3 / 4$ inch on eenters.
If - Itairpin compling loop $31 / 2$ inches long, $3 / 4$ inch wide, No. 12 enamil. JI, I_{2} - Clossed-eireuit jach.
I3-Male a.e. commetor.

RFC: - $1,8-\mu \mathrm{h}$. r.f. - loohe (Ohmite $7 .-1+1$).
'Ti - Jiament transformer, 6.3 volts, 3 amp.
$K_{1}-1200$ olmms. I watt.
$\mathrm{K}_{2}-10,000$ ohms, 10 watts.
input capacitance of the 82913 is high enough so that it may be impossible to resonate the grid circuit at 148 Mc ., if appreciable lead length or stray capacitance is introduced. If an 832 A or AX-9903 is used the grid coil will be somewhat larger than that specified, and neutralization may not be needed.

Neutralization is accomplished, when required, by means of leads brought through the bracket, adjacent to the tube plates. These are crossed over to the opposite grids at the socket. Feedthrough bushings are used and soldering lugs are attached to the bushings to provide the neutralizing capacitance. If more is needed these can be replaced with small tals of sheet copper.

There may be a slight change in neutralizing capacitance needed for the two bands. As neutralization is inclined to be more critical at the higher frequency, the adjustment should be made carefully on 114 Mc . This same setting may be satisfuctory for 50-Mc operation as well.

The plug-in coils are mounted on National P13-16 bases, fitting XI3-16 sockets. When the stage is used on 144 Mc. the coupling is by means of a hairpin loop which plugs into the coil socket. The r,f. output is thus fed down to a crystal socket on the back of the chassis, for either band. A similar crystal socket is used for the r.f. input, at the tube end of the chassis.

Crystal Control on 220 Mc .

Construction of a multistage transmitter for the $220-\mathrm{Mc}$. band is not as difficult as might be imagined, and the serious worker on this frequency will find the use of erystal control or its equivalent highly worth while. Fortunately the crystals used are also usable on 144 Mc., cutting down the total cost of building cquipment for both bands, if the erystal frequenedes are selected with this use in mind.

The tranmitter-exciter shown in figs. 17-26, 17-27 and 17-28 employs either 8- or 12-Mc, erystals, and if they are between $\$ 148$ and 8222 or $12,22: 3$ and $12,33: 3$ ke. they may also be used for operation in the upper portion of the $144-$ Me. hand. By using miniat ure tubes and components, and by arranging the parts for minimum lead length, efficient operation on 220 Mc . is obtained, with a simplicity of construction that puts the equipment well within the capabilities of the average experienced amateur.

Four 6.J6 dual triodes are used. The first works as a triode oscillator and frequency multiplier, the second section doubling or tripling, depending upon which type of erystal is employed. Tuning is less critical, and the various stages operate somewhat more efficiently with le-Mc. erystals, but 8 -.Mc. erystals may also be used. The next two stages are push-pull triplers, and the output stage is a neutralized amplifier. Capacitive eoupling is used between stages. The chassis is $21 / 2$ inehes wide, 2 inches high, and 12 inches long, with $1 / 2$-inch edges folded over. It may be made from a piece of sheet aluminum $71 / 2$ by 12 inches in size. The first tube socket is $1 \frac{1}{2}$ inches in from the left end and the other sockets are spaced along the chassis, $21 / 4$ inches center to conter. The tuning condensers are spaced equally between the sockets, the last two, C_{13} and C_{17}, being mounted on the top surface of the chassis for minimum lead length and symmetrical layout. Din jacks, labeled a and b on the schematic diagram, are
mounted on the front wall of the chassis and may be used for metering or keying of the output stage.

Initial Adjustments

Meter jacks for the individual stages were not considered necessary, as there will normally be few occasions for shifting frequency and retuning, once the initial adjustment of the exeiter is completed. For these first measurements the various circuits may be opened and tests made with a portable meter.

With a meter in series with R_{2}, set the core in L_{1} at an intermediate position and adjust (". for oscillation, as indicated by a dip in plate current to about 10 ma . The frequency and note should be checked in a eommunieations receiver, making sure that the oscillation is controlled by the crystal. Next, insert the meter in series with R_{4} and tune (${ }_{4}$ for a dip at the proper frequency, which shoald be between 24.5 and 25 Me. Adjustment of the multiplier tuning may be critical, if tundamen-tal-type crystals are used, the crystal tending to "pop out" when C_{4} is tuned on the nose. With "overtone" or harmonic-type crystals this trouble will not be in evidence, and the setting of (${ }_{4}$ (or the core in L_{2}) will not be fussy. Adjustment should be for maximum grid current in the second 6 JG .

Adjustment of the push-pull tripler stages is merely a matter of resomating the sircuits for maximum output as indicated by the grid current in the succeeding stage, being certain that the stages are tripling and not quint upling, which they will also do with fair efficieney. Each stage has cathode bias to prevent damaging the tubes during the odjustment period. Input to each will run about 25 ma. at 200 volts, when operating correety.

Neutralization of the output stage is accomplished in the customary manner, except that the neutralizing capacitors are made from short lengths of $7 \overline{5}$-ohm Twiu-Lead.

Fig. $\mathbf{1 7 - 2 6}$ - Front view of the 290-Mc. transmitter-exciter. Across the front of the chassis are the oscillator pate enoil adjustment, rrystal, multiplier-eoil adjnstment, firstetripler plate condenser, and tip jacks for final cathode metering. Serond-tripler and final plate condensers are mounted on the top portion of the chascis. Ootput terminals are at the far right.

Fig. $1:-27$ - Schematic diagram of the 6.J6 tramimitterexciter for 220 Mc .
($\mathrm{C}_{1}, \mathrm{C}_{7}-680-\mu \mathrm{ff}$, mica.
Cis. $\mathrm{C}_{4}-3-30-\mu \mu \mathrm{fl}$. nical trimmer.
($: 3-68-\mu \mu \mathrm{fd}$, mica.
(in, C $6=-17-\mu_{\mu} \mathrm{fl}$. mica.
Cis, C. 12 - $330-\mu \mu \mathrm{fl}$ mica.
C9, $\mathrm{C}_{13}-2.7-8 . \overline{3}-\mu \mu \mathrm{ff}$. midget buticrlly variable (Johnson 160-208).
($\mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{14}, \mathrm{C}_{15}-50_{-\mu \mu} \mathrm{fd}$. ceramic (National XI.A.C).
$\mathrm{C}_{18}-200-\mu \mu \mathrm{fd}$. caramic.
C_{17} - 1.7-3.3- $\mathrm{H}_{\mathrm{f}} \mathrm{fl}$ midget butterfly variathle (Johnson 160-20:3)
$\mathrm{CN}_{1}, \mathrm{CN}_{2}$ - Neutralizing capacitors mate of Ti-ohm 'IFwin-l ead: see text.
$R_{1}, R_{3}-6800$ ohms, $1 / 2$ watt.
$\mathrm{H}_{2}-470$ ohms, $1 / 2$ watt.
$\mathrm{H}_{4}-3900$ ohms, I watt.
$R_{5}, R_{6}, R_{9}, R_{10}-22,000$ ohms, $1 / 2$ watt.
$K_{7}, R_{11}, R_{13}-470$ ohms, 1 watt.
Starting with sections about two inches long, they should be trimmed a small amount at a time until tuning the final plate through resonance (with plate voltage remowed) colluses no downward kick in grid current.

Performance

With the voltages shown, the output on 220 Mc, will be about 2 watts, as indicated by a full-brilliance indieation in a Number 46 (blue bead) pilot lamp. More output can be obtained by increasing the voltage above 200 , but the increase is seldom worth the extra strain on the tubes. Operated ass shown, the rig will give ample output to drive an $8: 32$ amplifier which will deliver about l2 watts.
$\mathrm{R}_{8}, \mathrm{~K}_{12}, \mathrm{R}_{14}-1500$ ohms, I watt.
$\mathrm{L}_{1}-31$ turns No. 28 d.s.r., elose-wound on National XR-50 slug-tumed form, center-tapped.
L_{2} - 12 turns No, 2t d.s.c., cluse-wound on Vational XR-50 slug-tuned form, center-tapped.
1.3-7 turns No. 16 enamel, 5_{k} inch inside diameter, spaced wire diameter, center-tapped.
L_{4} - 2 turns No. 16 enamel, $3 / \mathrm{R}$-imeh inside diameter, spaced $1 / 4$ inch. eenter-tapped.
Ls - $11 / 2$ turns \mathcal{V} o. 12 enamel. 3_{4} - inch inside diameter, menter-tapped space turnabout 3 佔 inch apart. Coil $11 / 2$ inclies long over all. see lootom-view photograph.
Ls - Hairpin lown No. 16 enamel inserted between turns of 1.5 .

RFG, RFC; - Solenoid v.h.f. choke - No. 28 d.s.c. wire wound on $1 / 2$-watt carhon resistor, $1 / 8$-inch diameter, fíc inch long.
or the final 6.Jt may be modulated and the unit operated as a complete low-powered transmitter.

The same general arrangement described above may be used to get to 220 Mc. with three tubes instead of four, if the regencrative harmonic-oscillat or circuit shown in Fig. 17-1 is used to replace the more conventional erystal oscillator circuit of Fig. 17-27. An S.3-Mc. erystal is then made to oscillate on 25 Me, in the first $\mathbf{i J t}$ section. The second section triples to 75 Mc. The rest of the unit, from L_{3} on, is the same as in Fig. 17-27. It is suggested that the description of the 6- and 2 -meter transmitters of Figs. 17-17 through 17-22 be studied carcfully before this substitution is attempted.

Fig. 17-28 - Mottom view of the $6,5 \mathbf{2} 20$. Me. rif, showing the simplicity of the lay. out.

Transmitting Equipment for 420 Mc .

As on lower frequencies, best results will be obtained in $420-\mathrm{Me}$, work if the narrowest partieal passband is used in the receiver. This dictates the use of stabilized transmitters, if the full possibilities of the $420-$ Me band are to be realized. The band is 30 megaereles wide, however, so there is plenty of room for the use of simple rigs and broadband receivers, both of which may be entirely adequate for short-distaner experimental work.

Many descriptions of equipment in this category have appeared in $Q S T$ in recent poars, A bibliography at the end of this ehapter lists these and various articles dealing with the conversion of war-surplus equipment for $420-$ Me. use, as well as artieles on more advanced equipment. Segregation of narrow and wideband techniques within the band appears desirable, however, and it is suggested that use of the 420 -Me. bund be apportioned as follows:
420 to 432 Me. - Modulated oseillators and widehand f.m.
432 to 436 Mc . - (rystal control a.m., e.w. and narrowband f.m.
436 to 450 Me - Amateur television.

A SIMPLE LOW-POWERED TRANSMITTER

The transmitter shown in Figs, 17-29 through 17-32 is typical of the sort of thing that can be used to good advantage in developing local artivity on 420 Mc. It runs only a few watts input, and delivers only about one watt of output, but it is quite capable of working over a radius of several miles when used with a good antenna

Fig. $17-30$ - Bottom view of the oscillator assembly. The trough in which the components are mounted is made of flashims coprer. It is 6 inches long, $17 / 8$ inches high, and $21 / 4$ inches wide, with $1 / 4$-inch edges folded over for sliding into a clip attached to the main chassis.
system. A single 6.J6 is used as a purhpull oscillator, with a halfwave line in its phate circuit. The complete oscillator assembly is built in a trough made of flashing copper. The 5.10 .5 modulator and 6 C 4 speech amplifier are on the main chassis, at the back of which is a copper elip into which the oseillator unit is fitted. This arrangement permits experimenting with different types of r.f. sections without the neressity of making changes in the audio portion of the rig.

Only three adjustments are neressary in placing the unit into operation. The frequeney should be checked with Lecher wires or \& calibrated wavemeter, setting the frequency near the middle of the band. The mothod of determining the proper point for feeding the I-plus to the line is discussed earlier in this chapter. When this is

Fig. 17-29-1 420. Mr. transmitter built in two blits. The modulator portion, on a $\bar{\circ} \times 7 \times 2$-ineh chassis, uses a 6 C 4 driving a 6.10 .5 modulator. The oseillator uswo a $6 \mathbf{J} 6$ and is assembled on a removable trough. shaped chassis.

Fig. 17-31 - Sehematic diagram of the 120. Me, transmitter.
$\mathrm{C}_{1}, \mathrm{C}_{4}-10-\mu \mathrm{fd}$. 2 H -volt electrolytic.
C_{2} - 8 - $\mu \mathrm{fd}$. 150 - volt electrolytie.
$\mathrm{C}_{3}-0.01-\mu \mathrm{Cd}$, tubular.
C_{5} - Miniature split-stator variable, $4 \mu \mu \mathrm{fl}$. per sertiom. (Nillen 219121 , with one rotor plate removed from eadh section.)
K_{1} - 1 Rohms, 1 watt.
$11_{2}-19.33$ mexohm, $1 / 2$ watt.
$\mathrm{K}_{3}, \mathrm{R}_{4}-5000$ ohms, 5 watts.
$11_{5}-0.47$ megohm, $1 / 2$ watt.
$\mathrm{R}_{6}-\mathbf{6 8 0}$ ohms, I watt.
$\mathrm{K}_{7}, \mathrm{R}_{8}-100$ olms, $1 / 2$ watt, earbon.
done the coupling loop should be adjusted for maximum power in the antenna and the transmitter is ready for use. Frequenoy checks should be made again, after the antemna is connected to be sure that the signal radiated is well inside the hand limits.

- AMPLIFIERS AND FREQUENCY MULTIPLIERS

Not many prosently-available tubes work satisfactorily above 400 Mc . The 316A, 703A, $15 \mathrm{~L}, 8012$ and 8025 , all triodes, work fairly well as oseillators, but are relatively ineffective as
R_{9} - 200\% olma, $1 / 2$ watt.
1.1 - Widget filter choke.
I. 2 - Inate line made of two pieres of No. 12 wire, $1 \frac{1}{4}$ inches long, $3 / 8$ inch apart, center to center.
1,3 - Hairnin of Co. 18 wire. Portion which couples to L_{2} is ahout $5 / 8$ inch lomg. Position should to adjusted for maximum transfer of power to antemna.
J_{1}, J_{2}-Chosed-rircuit jark.
$\mathrm{RHC}_{1}, \mathrm{KPC}_{2}-12$ turns No. 20 enameled wire, 3 ít-inch diam., $3 / 4$ inch long.
T_{1} - Single-hation microphone transformer.
frequency multipliers. The $6, \mathrm{~J} 6$ will deliver a small amount of power as a tripler, and more can be obtained with a pair connected in pushpullparallel.

Of the tetrodes, the 832 A and A .29903 are most used in 420-Mc. frequeney multipliers and amplifiers. One of these tubes as a pushpull tripler from 144 to 432 Me , will drive another as a $432-\mathrm{Mc}$. amplifier. The 832A will give about 2 and 5 watts, while the AX9903 delivers 10 and 25 watts, respectively, in these applications. The a $675,2(43$, 2 (33 and $4 \times 150 \mathrm{~A}$ are typical of the speefial u.h.f. tubers that are (aipable of high-efficiency opera-

Fig. 17.32-1 Mottom view of the main chassin of the 120.019. transmitter, showing atulio components.

Fig. 17-33 - A tripleramplifier for 420 Mc. Lsing two dual tet. rodes, one as a tripler from Itt Me. and the second as a straight. through amplifier, this unit delivers 2.5 watts gutput on 432 Me. It can be driven by any I-H-Mc, exciter having an output of 8 watts or more.

tion, but their use involves the employment of special tank circuits and foreed-air cooling,

The tripler-amplifier of lig. 17-33 uses two A 59903 s to deliver 25 to 30 watts output, when driven by a $144-\mathrm{Mc}$. exciter of about 10 watts output or more. Halfwave lines are used in all the 432-Mc. tank circuits, with a self-resonamt eoil in the grid eirenit of the tripler. Coupling between the two stages is accomplished by placing the grid line close to the triplor plate cireuit.

The point of connection for the plate voltage should be checked to be sure that it is at the minimum r,f, voltage point. A pencil lead may he touched along the line until the smallest effect on the output is observed. Initially, the plate voltage may be fod into the line at a point just toward the tule end from the center.

The position of the grid lines, L_{4}, is quite
critical and must be adjusted carefully if maximum grid drive is to be obtained. Move the copper strips a small amount at a time, readjusting C_{1} meanwhile, until at least 5 ma. of grid current is olntained. More may be used if ohtainable. The grid circuit r.f. chokes are comerted directly to the tube socket terminals, the input capacitance of the tube being high enough so that the nodal point is within the tule itself. Great care should be taken to see that the plate and grid lines do not come in contact with each other in the course of adjusting the coupling. This may be prevented by inserting thin sheets of mica or teffon between the plate and grid lines. Polystyrene is not usable for this purpose, as the heat radiated from the plate lines will melt it.

Adjustment of antennat coupling is also very eritical, and can best be accomplished with a

Fig. 17.31-Schematic diagram of the tripler-amplitier for 432 We.
 section (Millen 219121).
C 3 - 250 - $-\mu \mathrm{fd}$. ceramic.
$1 h_{1}-50,000$ ohms, 2 watt.
$\mathrm{R}_{2}-100$ ohms, $1 / 2$ watt, at renter tap of L_{t}.
$1_{3}-25,000$ ohms, 10 watts.
$R_{4}-6800$ ohms, I watt.
$11_{5}-20,000$ ohens, 10 watts.
1.1-2 turns No. 14 enamel, 9 oinch diancter, spaced twice wire diameter.
$1.2-2$ turns Vo, 20 enamel, 8 位-inch diameter, between turns of L_{1}.
I_{3} - Flexible copper or silver riblon, $1 / 4$ inch wide and $33 / 8$ inches long. Average spacing about $1 / 4 / 2 \mathrm{in}$.
14 - Stiff copper strips $17 / 8$ incher long. Aljust spacing between L_{3} and L_{4} for maximum grid current, as read in J_{2}.
$31 / 4$ inches long, including $1 / 4$ inch bent over for fastening to heat-dissipating connectors, Averake spacing of line is alowt $5 / 8$ inch. The connectors must he filed down to provide a spacing of at least $1 / 4$ ineh lertween their inside edges.
L.6 - Couphing loop of \o. I4 enameded nire. U-shaperd portion is about i inch long. Adjust spaeing between lous, and L_{5} carefully for maximum outpit.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Clased-rirenit jack.
J_{3} - Crystal soeket (Millen 33102).
$\mathrm{J}_{4}-$ Antenna terminal ((ational FWG).
 Z-2.35), Attach to plate lines at point of lowest r.f. volage.
$\mathrm{RFC}_{3}, \mathrm{RFC}_{4}-11$ turns No. 22 enamel, 伯-ineh diameter, 1 ineh long. Attaeh directly to socket tabs.

Fig. 17-5 - Bottom view of the tripleramplifier. The socket at the left is the tripler with its self-resonant grid circuit mounted directly on the socket lugs.
field-strength meter, whick need be nothing more than a erystal diode inserted in a pickup antenna. A line of any length may be rum from the antenna to the meter, for remote indieation.

Because of the relatively low efficiency obtainable at this freguency, the tubes should not be run at more than about 60 pereent of their normal ratings unless provision is made for forced-air cooling. The power capabilities (:an be stepped up by shielding the tubes and tank rireuits and blowing air through the shieds for cooling purposes. Up to about 35 wats: output can be developed safely in this way.

Bibliography on 420.Mc. Equipment
"Getting Started on 420 Me." (IIoisington), June 1946 ()NT, page 43.
"Four-Twenty Is Fun" (Tilton), Nov. 1947 QST, page 13.
"Operating the BC-645 on 420 Me." (Ralph and Wood), Fobs. 1947 (QST', page 15.
"Fun on 420 with the BC-788" (Clapp), July 1948 QS' ${ }^{2}$, page 21.
"Operating the APS-13 on 420 Me." (Addison), May 1948 QST, page 57.
"Tripling to 420 Me." (Brannin), June 1948 QST, page 52.
"A Doorknob Oseillator for 420 Me." (Tilton), January 1949 QST, page 29.
"Simpler Gear for the $\mathbf{4} 20-\mathrm{Mc}$. Beginner" (Tiilton), May 1949 QST', page 11.
"Better Results on 420 Me." (Tilton), August 1950 (QS'T', page 11.
"Coaxial-T'ank Amplifier for 220 and 420 Mc." (Brayley), May 1951 QST, page 39.
"New Low-Noise Twin Triode" August 1951 QST, page 46.

CHAPTER 18

V.H.F. Antennas

While the basic principles of antenna operation are essentially the same for all frequencies, certain factors peculiar to v.h.f. work call for changes in antenna technique for the frequencies above 50 megacyoles. Ilere the physical size of multielement arrays is reduced to the point where an antema system having some gain over a simple dipole is possible in nearly every location, and experimentation with various types of arrays is an important part of the program of most progressive amateurs. The importance of high-gain antennas in v.h.f. work cannot be overemphasized. A good antenna system is often the sole difference between routine operation and outstanding success in this field. By no other means can so large a return be obtained from a small investment as results from the erection of a good directional array.

Design Factors

Beginning with the $50-\mathrm{Mc}$. band, the frequency range over which antenna arrays should operate effectively is often wider in percentage than that required of lower-frequency systems; thus greater attention must be paid to designing arrays for maximum frequency response, possibly to the extent of sacrificing other factors such as high front-to-back ratio.

As the frequency of operation is increased, losses in the transmission line rise sharply; hence it becomes more important that the line be matched to the antenna system correctly. Because any v.h.f. transmission line is long, in terms of wavelength, it may be more effective to use a high-gain array at relatively low height, rather than to employ a low-gain sysum at great height ahove ground, particularly if the antema location is not completely shielded by heavy foliage, buildings, or other obstructions in the immediate vicinity.

The effectiveness of a v.h.f. arrap is almost directly proportional to its size, rather than number of elements. For example, a 4 -clement array for 432 Mc, may have as much gain over a dipole as a similarly-designed array for 144 Mc ., but it will intercept only one-third as much energy when used as a receiving antenna. To be equal in communication, a beam for 432 Mc. must equal the $144-\mathrm{Mc}$. system in area, requiring three times the number of elements, if similar clement eonfigurations are used.

Polarization

In the early days of v.h.f. operation evervone used simple antennas, and since the vertical halfwave gave at least as good performance in all
directions as its horizontal counterpart offered in only two directions, the 5 -and $21 / 2$-meter activity of the early ' 30 s standardized on vertical polarization. Later on when high-gain antemas hegan to be used it was only hatural that these, too, were put up vertical in areas where v.h.f. activity was already well established.
The increase in operating range that became available with the discovery of the various forms of long-distance propagation stirred interest in v.h.f. operation in areas where there was no previous experience, and here many of the newcomers started in with horizontal arraps, these having been more or less standard pructice on the frequencies with which these operators were more familiar.

As best results are obtained only when the same polarization is used at both ends of a path, this use of both polarizations resulted in a conflict that, even now, has not been completely resolved. Numerous tests have demonstrated that there is little difference in results over long paths with either horizontal or vertical polarization, but each has features in its favor.

Horizontal sratems are generally easier to build and rotate, particularly on 50 and 144 Mc . Where iguition and some other forms of manmade ionse are troublesome, horizontal antennas usually provide better signal-to-noise ratio. simple 3- or t-clement arrays are more effective horizontal than vertical, as their radiation patterns are broad in the plane of the elenents and sharp in a plane perpendicular to them.

Vertical sustems, on the other hand can provide uniform coverage in all directions, a feature that is possible only with fairly comples horizontal arrays. Gain can be built up simply withont introducing directivity, by stacking halfwave elements one above the other and fee ling them in phase. This is a useful feature in net operation, or in locations where the installation of a rotatable system is not possible. Mobile operation is simpler and more effective when vertical antemas are used. The possibility of increased trouble with television interference, because of the use of horizontal polarization in TV broadcasting, has deterred v.h.f. men in densely populated areas from changing from vertical to horizontal.

The factors in favor of horizontal polarization have been predominant in $50-\mathrm{Mc}$. operation, and today we find practically complete standardization on horizontal systems for that band. The trend is toward horizontal for 144 Mc . and higher bands, particularly in long distance work, though vertical polarization is still widely used.

The neweomer to the v.h.f. bands should ascertain which is in use in the areas he experts to work, and go along with others in those areas. In setting up new activity in regions where no

Impedance Matching

Because line losses tend to be much higher in v.h.f. antenna systems, it beromes increasingly important that feedlines be made as nearly "flat" as possible. Transmission lines commonly used in v.h.f. work include the open-wire line of 400 to 600 ohms impedance, usually spaced about one to two inches; the polyethylenc-insulated ffexible lines, available in impedances of 300,150 , and 72 ohms; and coaxial lines of 50 to 90 ohms impedance. These may be matched to dipole or multielement antennas by any of several arrangements detailed below.

The 'f"'

Used prineipally as a means of feeding a stationary vertical radiator, around which parasitie elements are rotated, the "J" consists of a halfwave vertical radiator fed by a quarter-wave matching section, as shown at A, Fig. 18-1. The spacing between the two sides of the matohing

section should be two inches or less, and the point of attarhment of the feedline will depend on the impedance of the line used, The feeder should be slid along the matching section until the point is found that gives the best operation. The bottom of the matching section may be grounded for lightning protection. A variation of the "J" for use with coaxial-line feed is shown at I3 in Fig. 18-1. The "J" is also useful in mobile applications.

The Delta or "Y"-Match

I'robably the simplest arrangement for feeding a dipole or parasitie array is the familiar delta, or " Y "-mateh, in which the feeder system is fanned out and attached to the radiator at a point where the impedance along the element is the same as that of the line used. Information on figuring the dimensions of the delta may be found in the transmission-line chapter. Chief weakness of the delta is the likeli-
operation is presently going on, it is recommended that horizontal polarization be used, principally as a step toward eventual standardization.
hood of radiation from the matching section, which may interfere with the effectiveness of a multielement array. It is also somewhat unstable mechanically, and quite critical in aljustment.

The " Q '' Section

An effective arrangement for matching an open-wire line to a dipole, or to the driven element in a 2 - or 3 -element array having wide (0.25 wavelength or greater) spacing, is the " Q " section. This consists of a quarter-wave line, usually of $1 / 4$ to $1 / 2$-inch tulbing, the spacing of which is determined by the impedance at the center of the array. The parallol-pipe " Q " section is not practical for matehing multicloment arrays to lines of lower impedances than about 600 ohms, nor can it be used cffectively with close-spaced parasitie arrays. The impedance of the " Q " sertion required in these cases is lower than can be obtained with parallel sections of tubing of practieal dimensions. A quarter-wave section of coaxial or other low-impedance line is a com-monly-used means of matching a line of 300 to 600 ohms impedance to the low renter imperdance of a 3- or teolement array. The length of such a line will depend on the velocity of propagation (propagation factor) of the line used. The propagation factors of all the commonly-used lines are given in the transmission-line chapter.

In some installations it may be more convenient to use a line of greater length than a single quarter wave for matehing purposes, in which ease any odd multiple of a quarter wave length may be used. The exact length required may be determined experimentally by shorting one end of the line and coupling it to a source of r.f., and trimming the line length until maximum loading is ohtained at the center frequency of the operating range.

The " T "'. Match

The principal disadvantages of the delta system can be overcome through the use of an arrangement shown in the transmission-line chapter, commonly called the "T"'match. It has the advantage of providing a means of adjustment (hy sliding clips along the parallel conductors), yet the radiation from the mateling arrangement is lower than with the delta, and its rigid construction is more suitable for rotatiable arrays. Because the matching arrangement is adjustable, the dimensions of the " T " section are not critical. The position of the clips should be adjusted for lowest standing-wave ratio on the transmission line. The "T"-match may be used with any balanced line. This may be a double coaxial line or any two-wire system, either polyethylene insulated or open-wire construction. The "T" system is particularly well suited for use in all-metal "plumbing" arrays.

The Folded Dipole

Probably the most effective means of matching various lines to the wide range of antenna impedances encountered in v.h.f, antenna work is the folded dipole, shown in its simplest form in Fig. 18-2. When all portions of the dipole are of the same condurtor size, the impodance at the feed-point is equal to the square of the number of elements in the folded dipole times the normal conter impedance which would be present if only a conventional split half-wave radiator were used. Thus, the simple folded dipole of Fig. 18-2 has a feed-point impedaner of 4×72, or approximately 288 ohms. It may be fed with the popular $300-$ ohm line without appreciable mismatch. If a threcowire dipole were used, the step-up in inpedance would be nine times. Note that this stepup oceurs onl!/ if all portions of the folded dipole are the same conductor size.

The impedance at the feed-point of a folded

Fis. 18.2 —1). taik of the folded
dipole.
dipole may also be raised by making the fed portion of the dipole smatler than the parallel sertion. Thus, in the $50-\mathrm{Mc}$. array shown in Fig. 18-4 the relatively low ernter impedance of a 4 -eloment array is raised to a point where it may be fed directly with 300 -ohm line by making the fed portion of the dipole of $1 / 4-$ inch tubing, and the parallel secotion of I-inch. A 3-clenent array of simitar dimensions could be matehed by sulstituting $3 / 4$-inch tubing in the unbroken seetion, Conductor ratios and spacings may beoltained from the foldertantemat monogram in the Transmission Lines Chapter. Note that eenter-tocenter spacing of the conductors is important.

Antenna Systems for 50 and 144 Mc.

Since the same basic principles apply to all antennas regardless of frequency, little discussion is given here of the various simple dipoles that may be used when nondirectional systems are desired. Details of such antennas may be found in another chapter, and the only modification necessary for adaptation to use on 50 Me . or higher is the reduction in length necessary for increased conductor diameter at these frequencies.

A Simple 2-element Array

A simple but effective array which requires no matehing arrangement is shown in Fig. 18-3. Its design takes into account the drop in center

fif. 18.3- A simple 2erlement array for $\mathbf{5 0}$ (Ic. No matching devices are needed with this arrangement.
impedance of a half-wave radiator when a parasitic element is placed a quarter wavelength away. A director element is shown, as the drop in impedance using a slightly-shortened parasitie element is just about right to provide a good match to a 50 -ohm coaxial line. The element lengths are not extremely critical in such a simple system, and the figures presented may be used with satisfactory results.

A 4-Element Array

The importance of broad frequency response in any antenna designed for v.h.f. work eannot be overlooked. The disadvantage of all parasitic systems is that they tend to tune quite sharply,
and thus are often effective over only a small portion of a given band. One way in which the response of a system can be broadened out is to increase the spacing botweon the parasitic elemonts to sombwhat more than the 0.1 or 0.15 wavelength normally eonsidered to provide optimum front-to-back ratio. Some hroadening may also be obtained by making the directors slightly shorter and the reflector slighty longer than the optimum value. The foller dipole is useful as the radiator in such an array, as its over-all fregueney response is somewhat broader than other types of driven elements.

A tedemont array for 50 Mc , haviras an effertive operating range of about 2 Me is shown in Fig. 18-4. It employs a folded dipesle having nonuniform conductor size. Reflector and first director are spared 0.2 wavelength from the driven element, while the forward director is spared 0.25 wavelength. The spacing and element lengths given were derived experimentally, and are those that give optimum forward gain at the expense of some front-to-hark ratio. As the latter quality is not of great value in $50-\mathrm{Mc}$. work, it ean be neglected cutirely in the tuning procedure for such an array.

The dimensions given are for peak performance at 50.5 Mc . For other frequencies, the

Fig. 18-4- Dimensional drawing of a 4 -element 50 - Mc. array, Element length and spacing were derived experimentally for maximum forward gain at 50.5 Mc .
length of the folded dipole in inches should be figured according to the formula

$$
L=\frac{5540}{f_{\mathrm{Mc}}}
$$

The reflector will be 5 per cent longer, the first direetor 5 per cent shorter, and the second director 6 per cent shorter than the driven element. A broadening of the response may be obtained,

Fig. 18-4- Detail drawing of inserts which may be used in the ends of the elements of a parasitie array to permit aceurate adjustment of element lengtlr.
at a slight sacrifice in forward gain, by adding to the reflector length and subtracting from the director lengths. For those interested in experimenting with element lengths, sloted extensions may be inserted in the ends of the various elements, other than the dipole, as shown in Fig. 18-4. A 3 -element array may be built, using the same general dimensions, expept that the conductors of the folded dipole should have a 3-to-1 diameter ratio instead of 4-to-1.

A Stacked Array for 50 Mc .

The radiation angle of a v.h.f. antenna system may be lowered, with a resulting improvement in operating range, by stacking two parasitie arrays one above the other and feeding them in phase. At spacings of $1 / 2$ to $5 / 8$ wavelength a gain of 4 db , or more may be realized by stacking in this way. An example is the 4-over-4 array for 50 Mc .

TABLE 18-I
Dimensions for V.H.F. Arrays, in Inches

Fred. (Me.)	50	141	220	420
Driven Element	110	38	217/8	$123 / 4$
Heflcetor	116	10	$201 / 8$	$133 / 8$
1st I Sirector	103	36	2335	121/8
2nd Director	10.3	$353 / 4$	$233 / 8$	12
I'hasing Section*	114	$301 / 2$	257/8	$131 / 4$
0.25 W avelength	57	193/4	13	65/8
$\text { Q. } 2$ Wavelength	46	153/4	103/8	$53 / 8$
0.15 Wavelength	34	$113 / 4$	73/4	4

* Open-wire line only.
shown in Fig. 18-5. The 12-eJement array mounted between the two $50-\mathrm{Mc}$. sections is described later.

All-metal design is used in both arrays. Booms for the $50-M c$. portion are $11 / 2$-inch $24 \mathrm{~S}^{5} \mathrm{C}$ dural tubing 128 inches long. Elements are $3 / 4$-inch tubing of the same alloy, forced through holes in the booms and held in place with U-shaped clamps of sheet aluminum, made similar to those in Fig. 18-9. Director spacing is 0.2 wavelength, reflector spacing 0.15 wavelength, see Table 18-I. The booms are mounted on the vertical member (a $11 / 2$-inoh o.d. pipe) by means of blocks of wood, the only nonmetallie parts employed. These were made from pieces of two-by-four one

Fig. 18-5 - An 8-elemont stacked array for 50 Me , with a 12 -element symem for 144 Me, mounted in the space between the two $50-\mathrm{Mc}$. sections.
foot long. A hole the size of the mast is made in the block near one side, at the middle of the block lengthwise. The block is then sawed lengthwise in a vertical plane, through the middle of this hole. Bolting the two portions together provides a tight fit around the vertical pipe. The boom is bolted to the block at three points. This mothod of mounting provides a rigid assembly. The booms should be bonded to the main support to provide lightning protection.

The main transmission line is 300 -ohm TwinLead. The method of feed was checked out for minimum standing-wave ratio with one bay alone; then the phasing section for the two bays was proportioned so that it would serve as a " Q " section as well. No. 14 enameled wire spaced one inch is suggested. The feedline is brought at right angles from the phasing section to stand-off insulators on the main vertical support. It drops
vertically to a combination tie point and bearing, just below the lower hoom of the 6 -meter array. From this anchor, which rotates with the beams, it drops loosely to a fixed point, with enough slack left to permit slightly more than 360 degrees of rotation.

The fed sections of the $50-\mathrm{Mc}$. folded dipoles are made of $3 / 16$-inch copper tubing, mounted on $5 / 8$-inch cone standoffs. The outer ends are supported on metal pillars of the same length. Two stand-offs are used for each side of the dipole; otherwise the rather soft tubing tends to sag and disturb the spacing between it and the larger element. The copper tubing is flattened in a vise at the points where it is to be mounted. The 4 -to-1 conductor ratio, and the spacing of one inch, center to center, between the two conductors gives the necessary impedance step-up to mateh 300-ohm line, in a t-clement array of the spacinge montioned earlier.

Phased Arrays for 144 Mc.

Superior performance is obtainable on 144 Mc. and higher by using curtains of $4,6,8$ or more driven half-wave elements, arranged in pairs fed in phase, and backed up by reflectors. Figs. 18-5 to 18-7 show 12- and 16 -eloment arrays that are capable of more than 12 and 14 db, gain, respectively. The supporting structures required by surh arrays would make them out of the question for tower frequencies, but for 144 Mc. and higher they are relatively easy to build and erect. Their dimensions are not particularly critieal, and careful adjustment of the elements is not required for good results. The frequeney response of arrays having several driven elements is broader than that of systems in which the gain is built up through the use of additional parasitic clements.

The 12 -ilement array, Figs. 18-5 and 18-6, has a similar pattern in both horizontal and

Fig. 18-6 - Vlement arrangement and feed system of the 12 -element array. Keflectors are spaced 0.15 wave. length behind the driven elements.

Fis. 18. 7 - Schematic drawing of a 16 -element array. I variathle "?" section may be inserted at the feed point if aceurate matehing is desired. Reflector spacing is 0.2 wavelength.
vertical planes. The horizontal radiation pattern of the 16 -element array is somewhat sharper when it is used in a vertical position, but it is a highly effective antema either way.

The elements need not be larger than halfinch diameter, and smaller sizes can be used if desired, so the entire structure can be made light in weight and still have considerable strength. The phasing sections may be No. 14 or 16 wire, spaced 1 to $1 \frac{1}{2}$ inches. The y are transposed in both sides of the 12 -element array, and in the wo end sections of the 16 -element.

Bither array may be fed with 300 orhm TwinLead, comnected as shown in the drawings. The feed impedanee of the 12 -element array is brought down by spacing the refleetors 0.15 wavelength, making it possible to connect the transmission line to the conter pair of elements directly without a matching device. The feed impedance of the 16 -clement array may be somewhat lower than 300 ohms, but the mismatch is not serious and it may be disregarded if the transmission hine is relatively short. If a long line is necessary it may be desirable to install an adjustable " Q " section at the feed point. This can be made of two 20 -inch tubes of the same material as is used for the driven elements, mounted so that the sparing between them can be adjusted for lowest standing-wave ratio. The feed imperdance of an array having several driven elements is sulject to many variables, making some sort of adjustabo impordaner-matehing dovior highly desirable if long ferdlines are used. liloment lengths and spacings may be taken from Table 18-1.

All-Metal Design in Phased Arrays

A very light woight yot physioally rugged array can be built if the supporting structure is made entirely of metal. This involves few complications in the construction of small parasitic arrays, but with the 12- and 16 -element jobs deseribed above some special precautions must be observed. It is important that the supporting framework be designed so that it is entirely in back of the reflector plane, otherwise it will dis-
tort the radiation pattern and reduce the effectiveness of the system.

The supporting frame of the 12 -element array of Fig. $18-\overline{5}$ is shown in Fig, $18-8$, with a dotail of the method of joining members in lijg. IS-9. When $3 / 4$-inch tubing is used for the frame, 1 ! $2-$ inch for the vertical support, and $1 /$ ineh tubing for the elements, the sheret aluminum elamps may be made aceording to the dimensions given in Fig. 18-10. If other sizes of tubing are used the damp, dimensions can be determined readily by making experimental edmps of thin shoot metal or stiff cardboard. These ran be folded and bent into the proper shape and then flattened out and used for templates.

Fig. 18-8-Supporting framework for a 12eelement 144-Ne, array of all-metal design. Dimensions are as follows: elemont supports (1) $3 / 4$ by 16 inches; horizontal nembers (2) $3 / 4$ by 46 inches: vertical members (3) $3 / 4$ by 86 inches; vertieal support (1) | $1 / 2$-inch diameter, lengih as required; reflector-todriven-element sibacing 12 inches. Parts not shown in shetch: driven elements $1 / 4$ by 38 inches; reflectors $1 / 4$ hy 10 inches; phasing lines No. 18 spated 1 inch, 80 inches long, fanned out to $3 \frac{1}{2}$ inches at driven elements (transume each halfwave section).

Long-Wire Antennas

Where long-wire systems designell for usc on lower frequencies are available they may often be used on the v.h.f. bands with good results, particularly if the feedlines are not tow long. " V " and rhombic antema systems designed expressly for the v.h.f. bands are smatl enough in size to be used in many locations where similar arrays for lower frequencies would be out of the question. The polarization of longwire systems is normally horizontal, but in loeations where they have a downward slope they may also have a considerable vertical component. Their polarization discrimination is seldom as sharp as that of systems using half-wave elements.
Information on the various types of long-

Pig. 18.9-Model showing the methos of assembling for all-metal construction of phased arrays. Dimensions of clamps are given in lity, 18-10.
wire arrays will be found in an earlier chapter. At 144 Me . and higher it is relatively easy to stark two or more " V " or rhombic arrays a half-wave apart. This improves their performance considerably, but makes them essentially one-band devieres.

Matching deviors that parmit ieeding longwire antennat sustems with flat limes also introduce onc-band limitation, so their use is not advisable exerpt in the ease of 50 and $1+4 \mathrm{M}_{\mathrm{c}}$., two bands that are dose to thirefharmonic rolationship, A " Q " section that is approximately. three quarter-wive-lengths long at 144 Me . is one quarter-wavelength long at 50 Mc ., so if the feed impedance of the antenna system is the same for both frequencies a " $(Q$ " seetion about 58 inches long may be used for (x) th bands. In the case of a rhombic terminated in 800 ohms and fed with 300 -ohm line, the matching sertion should have an imperdance of about 500 ohms.

Fig. 18-10-1 Detail drawings of the watups used to as. semble the all-metal 2 -lacter array, 1,13 and (: arr before bending into "L" shape. 'The right -angle leembs should he made first, along the dotted lines as shown, then the plates may be bent around a piece of pipe of the proper diameter. Sheet strock should be 1/16-ineh or heavier aluminum.

Arrays for 220 and 420 Mc .

The use of a high-gain antenna system is almost a necessity if work is to be done over any great distance on 220 and 420 Mc. Fxperimentation with antemna arrays for these frequencies is fascinating indeed, as their size is so small as to permit trying various clement arrangements and feed systems with ease. Arrays for +20 Me ., partienlarly, are convenient for use in demonstrations of antemat principles, as even high-gain systems may he of table-top proportions.

Any of the arrays described freviously may be used on these hands, but those having a number of driven elements fed in phase will he most desimble. The 12 - and 16 -element arrays, Figs. $18-6$ and $18-7$, may be adapted to use on 220 or 420 Me, by using the dimensions given in Table 18-I.

The use of a plane reflector, in plare of the parasitic reflectors used in the 144 -Mc. models, is highly desirable when phased systems are used on higher bands. The spacing between the driven elements and the reflecting plane is not particularly reritical, except as it affects the feod impedance of the system. Maxinum gain orours in the region around 0.1 to 0.15 wavelength, with the foed impedanee being lowest with the Closest spareing. The foed impedanee is highest at appoximately 0.3 -wavelength spacing. The reflector has wo effert on the feed imperdane when a sparing of 0.22 wavelength is used. As the gain is nearly constant from 0.1 to 0.25 wavelength, it may be seen that the spacing may be varied to achieve an impedance match.

An advantage of the phane reflector is that it may be used for two arrays, incorporating horizontal and vertieal polarization on opposite sides of the plane, or providing two-band operation, as is clone in the array for 220 and t20 Me. shown in lig. 18-11. Six driven elements for 220 Me . are used on one side, arranged in a mamer similar to the driven elements in the 12 clement array for 144 Mc. described earlier in this chapter. The $420-\mathrm{Mc}$. side uses 16 driven dements arranged in two sets of 8 each.

These two sets of dements are mounted one

Fig. 18.11-A iwo-hamd serernreflector array. One side has 16 driven eloments for 120 Wle., and the reverse side has 6 halfewaves in phase for 220 Mc. Brith sets of clements are maced 0.15 wavelongth from the reflerting plane.
above the other with their ends approxmately one-half wavelength apart. This dimension is not eritical, though maximum gain is obtained with end-to-end spacings of about a hal! wavefength. The two pairs of phasing wires are eonnected by means of one-wavelength sections of 300 -ohm 'Twin-Lead at the middle of the array. This junction, which has an imperdance of about 1 jo ohms, is fed with 300 -ol m line through an adjustable " Q " seretion.

The one-wavelength sections of 3 no-ohm line are 213 inches long, this figure taking the propatgation factor of the line into account. The "(${ }^{\text {" }}$ section may be made of the same material as the elements, or any available tulsing, from $1 / 4-$ to $1 / 2$-inch diamoter, may be used. As proper matching is extremoly important at 420 Mr, the spacing of this " Q " section should be adjusted carefully for minimum standing-wave ratio.

The roflecting plane is 6 foret square. This is larger than neressary for the 420 -Mc. system, the size being determined by the 220 Me, side. ('hicken wire of 1 -inch mesh is used for the sereen. Wire netting, sheet metal, or elosely-spared wires may be substituted. The size of the reflector is not aritical, exeept that it should extend at least a duarter wavelength beyond the area covered by the driven elements. A phanereflector array has slightly more gain than is ohtained with the same number of driven elements backed up by parasitic refleetors. The frequeney response is wider and it has a considerably higher front-to-back ratio. The prineipal dimensions may be taken from Table 18-I.

Miscellaneous Antenna Systems

Coaxial Antennas

With the "J" antena radiation from the matching section and the transmission line tends to combine with the radiation from the antema in such a way as to raise the angle of radiation. At v.h.f. the lowest possible radiation angle is cesential, and the eoavial antema shown in Fig. 18-12 was fleveloped to eliminate feeder radiation. The eenter conductor of a $\overline{0} 0$-ohm concentric transmission line is extended onc-quarter wave beyond the end of the line, to act as the upper half of a half-wave antenna. The lower half is provided by the quarter-wave sleeve, the upper end of which is comereted to the outer eomductor of the concentric line. The sleeve ates as a shield about the transmission line and very little current is induced on the outside of the line by the antema fichl. The line is non-resonant, since its characteristic impedance is the same as the center impelance of the half-wave antema. The slecere may be made of copper or brass tubing of suitable diameter to elear the transmission line. The coaxial antema is somewhat difficult to construct, but is superior to simpler systems in its performance at low radiation angles.

Broadband Antennas

Certain types of antennas used in television work are of interest because they work arross at wide band of frequencies with relatively uniform response. At very-high frequencies ant antenna made of small wire is purely resistive only over a very smatl frequeney range. Its (Q, and therefore its selectivity, is sufficient to limit its optimum performance to a narrow frecpuchey range, and readjustment of the length or tuning is required for each narrow sliee of the spectrum. With tuned transmission lines, the effective length of the antema can be shifted by retuning the whole system. However, in the case of antemas fed by matched-impedance lines, any appreciable frequency change requires an actual mechanieal adjustment of the system. Otherwise, the resulting mismateh with the line will be sufficient to cause significant reduction in power input to the antenua.

A properly designed and constructed wideband antenna, on the other hand, will exhibit very nearly constant input impedance over scveral megacyeles.
The simplest method of obtaining a broadband characteristic is the hise of what is termed a "rylindrical" antema. This is no more than a conventional doublet in which large-diameter tubing is used for the elemonts. The use of a relatively large diameter-to-tength ratio lowers the Q of the antema, thus broadening the resonanere characteristie.

As the diancter-tolengeth ratio is increased, cond effects also increase, with the result that the antema must be made shorter than a thinWire antemar resonating at the same frequency. 'The reduction factor may be as mueh as 20 per cent with the tubing sizes commonly used for amateur antemnas at v.h.f.

Cone Antennas

From the exlindrical antema various specialized forms of broadly-resomant radiators have been evolved, ineluding the ellipsoid, spheroid, eone, diamond and double diamond. Of these, the conical antema is perhaps the mest interesting. With large angles of revolution, the vartiation in the characteristice impedance with changes in frequeney can be reduced (1) a very low value, making surh an antenna suitable for extremely wide-band operation. The cone may be made up either of sheet metal or of multiple wire spines.

Plane Sheet Reflectors

The small physical size of v.h.f. antennas makes practical many methods not feasible on tower frequencies. For example, a plane flat-sheet reffector may be used with a halfwate dipele, obtaining gains of at to 7 dll. Much higher gains are attainable with a number of stacked dipotes fed in phase, mounted in front of a reflecting plane. Such an arrangement is called a "billboard" array.

Plane reflectors need not be constructed of solid sheets. Wire mesh, or a grid of closelyspaced parallel-wire spimes, is mure casily erected and offers lower wind resistance.

Parabolic Reflectors

A plane shee may be formed into the shape of a parabolic curve and used with a driven radiator situated at its focus, to provide a highlydireretive antenna system. If the parabolic reflector is sufficiently large so that the distance to the focal point is a number of wavelengths, optical conditions are approached and the wave across the mouth of the reflector is a plane wave. Ilowever, if the reflector is of the same order of dimensions as the operating wavelength, or kess, the driven radiator is appreciably coupled to the reflecting sheet and minor lobes oceur in the pattern. With an aperture of the order of 10 or 20

Fig. 18-1.3 - Plane sheet reflectors for v.h.f. and n.h.f. A shows a parabolic sheet and B a square-corner reflector.

Wavclengths, sizes that may be practical for microwave work, a beam-width of approximately 5 degrees maty be achieved.

A reflecting paraboloid must be carefully designed and constructed to obtain ideal performance. The antenna must be located at the focal point. The most desirable focal length of the parabola is that which places the radiator along the plane of the mouth; this length is ('gual to one-half the mouth radius. At other focal distances interference fields may deform the pattern or rancel a sizable portion of the radiation.

Corner Reflectors

The "corner" reflector consists of two flat conducting sherets which intersect at a designated angle. The corner-reflector antenna is particularly usoful at v.h.f. where structures one or two wavelengths in maximum dimensions are more practical to build than larger systems.

The plane surfaces are set at an angle of 45 to 90 degrees, with the antenna set on a line bisecting this angle, For maximum performanee, the distance of the antema from the vertex should be 0.5 wavelength, but compromise designs can be built with closer spacings. The plane
surfaces need not be solid sheets; spines spaced about 0.1 wavelength apart will serve as well. The spines do not have to be eonnected tugether electrically.

If the driven radiator is situated on a line bisecting the corner angle, as shown in Fig. 18-13, maximum radiation is in the direction of this line. There is no focus point for the driven radiator, as with a parabolic reflector, and the radiator can be placed at a variety of pesitions along the bisereting line.

Corner angles largor than 90 degrees can be used, with some dererase in gain. A 180 -degree "eorner" is erfuivalent to a single flat-sheet reflector. With angles smaller than 90 degrees, the gain thooratically incroases as the corner angle is decreased. However, to realiz: this gain the size of the reflecting sherets must also be increased.

At a spacing of 0.5 wavelength from the driven dipole to the vertex, the radiation resistance of the driven dipole is approximately twise the radiation resistance of the same dipole in free space. Smaller spacings of driven dipole and vertex are practical, at a slight sacrifice in efficiencr: Fig. 18-14 shows the feed impedance of the driven element in a corner reffector array for various eorner angles and dipolf-to-vertex spacings.

Fig. 18-1. - Feed impedance of the driven element in a corner-reflector array for corner angles of 180 (flat sheet), 90,60 and 45 degrees. " I)' is the dipsole to vertex spacing.

U.H.F. and Microwave Communication

In moving into the microwave region the ansateur encounters marked differences in both the technical approach and the uses to which his frequency assignments may be put. Above 1000 Mc. we must discard most of our conventional circuitry and antenna ideas. Coils and condensers are replaced by resonant cavities. Paral-lel-wire transmission lines give way to coaxial lines or waveguide. Parasitic arrays are abandoned in favor of parabolic reflectors or horns. And in contrast to the random operating that has been so large a part of the amateur pieture on our communication frequencies, microwave work is principally a matter of point-to-point communication between two cooperating stations.

These basic differences have tended to raise a natural boundary in the region around 500 Mc ., beyond which relatively few communicating amateurs have ventured. The frequencies at the high end of the spectrum have a strong appeal to the
experimenter, however, and new classes of licenses, now under discussion, are experted to provide the means wherchy this type of worker may legally engage in two-way communic: tion.

At least some amateur work has been done in all the assignments now open to our use. The work of these pioneers in adapting the frequencies above 1000 Mc . to communication purposes has been in line with the best amateur tradition, and it is hoped that the bands beginning at 1215 Mc . will see much amateur exploration in the near future. The frequencies assigned to amateurs in the microwave region are as follows: 1215 to 1300 Mc., 2300 to $2450 \mathrm{Mc} ., 3300$ to $35(0) \mathrm{Mc}$., 5650 to 5925 Mc., 10,000 to $10,500 \mathrm{Me}$., and 21,000 to $22,000 \mathrm{Mc}$. Any frequency above 30,000 Mc. may be used. Any type of emission may be used in any of these bands, except in the case of the lowest, where pulse transmission is prohibited.

U.H.F. Tank Circuits

In resonant circuits as employed at the lower frequencies it is possible to consider each of the reactance components as a separate entity. A coil is used to provide the required inductance and a condenser is connected across it to provide the needed capacitance. The fact that the coil thelf has a certain amount of self-capacitance, as well as some resistance, while the condenser also possesses a small self-inductance, can usually be disregarded.

At the very-high and ultrahigh frequencies, however, it is no longer possible to separate these components. The connecting leads which, at lower frequencies, would serve merely to join the condenser to the coil now may have more inductance than the coil itself. The required inductance coil may be no more than a single turn of wire, yet even this single turn may have dimensions comparable to a wavelength at the operating frequency. Thus the energy in the field surrounding the "coil" may in part be radiated. At a sufficiently high frequency the loss by radiation may represent a major portion of the total energy in the circuit. Since energy which cannot be utilized as intended is wasted, regardless of whether it is consumed as heat by the resistance of the wire or simply radiated into space, the effect is as though the resistance of the tuned circuit were greatly increased and its Q greatly reduced.

For this reason, it is common practice to utilize resonant sections of transmission line as tuned circuits at frequencies above 100 Mc . A quarter-wavelength line, or any odd multiple thereof, shorted at one end and open at the other, exhibits large standing waves. When a voltage of the frequency at which such a line is resonant is applied to the open end, the response is very similar to that of a parallel resonant circuit; it will have very high input impedance at resonance and a large current flowing at the short-circuited end. The input impedance may be as high as 0.4 megohm for a well-constructed line.

The action of a resonant quarter-wavelength line can be compared with that of a coil-andcondenser combination whose constants have been adjusted to resonance at a corresponding frequency. Around the point of resonance, in fact, the line will display very nearly the same characteristics as those of the tuned circuit. The equivalent relationships are shown in Fig. 19-1. At frequencies off resonance the line displays qualities comparable to the inductive and capacitive reactances of the coil-andcondenser circuit, although the exact relationships involved are somewhat different. For all practical purposes, however, sections of resonant wire or transmission line can be used in much the same manner as coils or condensers.

U.H.F. AND MICROWAVE COMMUNICATION 423

In circuits operating above 300 Mc., the spacing between conductors becomes an appreciable fraction of a wavelength. To keep the radiation loss as small as possible the parallel conductors should not be spaced farther apart than 10 per cent of the wavelength, center to center. On the other hand, the spacing of large-diameter conductors should not be reduced to much less twice the diameter because of what is known as the proximity effect, whereby another form of loss is introduced through eddy currents set up by the adjacent fields. Because the cancellation is no longer complete, radiation from an open line becomes so great that the Q is greatly reduced. Consequently, at these frequencies coaxial lines must be used.

Construction

Practical information concerning the construction of transmission lines for such specific uses as feeding antennas and as resonant circuits in radio transmitters will be found in this

fig. 1% - Equivalent coupling circtits for paralliclline, coaxial-line and conventional resonant circuit.
and other chapters of this IIandbook. Certain basic considerations applicable in general to resonant lines used as circuit elements may be considered here, however.

While either parallel-line or coaxial sections may be used, the latter are preferred for higherfrequency operation. Representative methods for adjusting the length of such lines to resonance are shown in Fig. 19-2. At the left, a sliding shorting disk is used to reduce the effertive length of the line by altering the position of the short-circuit. In the center, the same effect is accomplished by using a telescoping tube in the end of the inner conductor to vary its length and thereby the effertive length of the line. At the right, two possible methods of mounting parallel-plate condensers, used to tune a "foreshortened" line to resonance, are illustrated. The arrangement with the loading capacitor at the open end of the line has the greatest tuning effect per unit of capacitance; the alternative method, which is equivalent to "tapping" the condenser down on the line, has less effect on the Q of the circuit. Lines with ctupacitive "loading" of the sort illustrated will
be shorter, physically, than an unloaded line resonant at the same frequency.

The short-circuiting disk at the end of the line must be designed to make perfect electrical contact. The voltage is a minimum at this end of the line; therefore, it will not break down some of the thinnest insulating films. Usually a

Fig. 19.2-Methods of tuning coaxial resonant lines.
soldered connection or a tight clamp is ised to secure good contact. When the length of line must be readily adjustable, the shorting plug is provided with spring collars which make contact on the inner and outer conductors s.t some distance away from the shorting plug at a point where the voltage is sufficient to break down the film between the collar and contuctor.

Two methods of tuning parallel-conductor lines are shown in Fig. 19-3. The sliding shortcircuiting strap can be tightened by means of screws and nuts to make good electrical contact. The parallel-plate condenser in the second drawing may be placed anywhere aleng the line, the tuning effect becoming less as the condenser is located nearer the shorted end of the line. Although a low-capacitance variable condenser of ordinary construction can be used, the circular-plate type shown is symmetrical and thus does not unbalance the line. It also has the further advantage that no insulating material is required.

Fig. 19-3-Methods of tuning parallel. type resonant lines.

Equivalent impedance points, for coupling or impedance-transformation purposes, are shown in Fig. 19-1 for parallel-line, coaxial-line, and conventional coil-and-condenser circuits.

Lumped-Constant Cfrcuits

At the very-high frequencies the low values of L and C required make ordinary coils and condensers impracticable, while linear circuits offer mechanical difficulties in making tuning adjustments over a wide frequency razge, and radiation from unshielded lines may reduce their effectiveness materially.

To overcome these difficulties, special high- Q
lumped-constant circuits have heen developed in which connections from the "condenser" to the "coil" are an inherent part of the structure. Integral design minimizes both resistance and inductance and increases the C / L ratio.

The simplest of these circuits is based on the use of disks combining half-turn inductance loops with semicircular condenser plates. liy connecting several of these half-turn coils in parallel, the effective inductance is reduced to a value appreciably below that for a single turn. Tuning is accomplished by interleaving grounded rotor plates between the turns. Both by shielding action and short-circuited-turn effect, these further reduce the inductance.

Another type of high- C circuit is a singleturn toroid, commonly termed the "hat" resonator. Two copper shells with wide, flat "brims" are mounted facing each other on an axially-aligned copper rod. The capacitance in the circuit is that bet ween the wide shells, while the central rod comprises the inductance.

"Butterfly" Circuits

The tank circuits described in the preceding section are primarily fixed-frequency devices. The "butterfly" circuits shown in Fig. 19-4 are capable of being tuned over an exceptionally wide range, while still having high Q and reasonable physical dimensions. The rireuit at A is derived from a conventional balanced-type variable condenser. The inductance is in the wide circular band comecting the stator phates. At its minimum setting the rotor plate fills the opening of the loop, reducing the inductance to a minimum. Connections are made to points 1 and 2. This basic structure eliminates all connecting leads and avoids all sliding or wiping electrical contacts to a rotating member. A disadvantage is that the colectrical midpoint shifts from point S to print $^{\prime} \Omega^{\prime}$ as the rotor is turned. Constant magnetic coupling may be obtained hy a coupline loop located at point 4 , however.
In the modifiation shown at D , t wo sertoral stators are spaced 180 degrees, thereby achiev-

Fig. 19-4-" *utterlly" tank circuits for v.h.f., showing front and cross-scction views and the equivalent cirruit.
ing the electrical symmetry required to permit tapping for balanced operation, Comnections to the circuit should be made at points 1 and 2 and it may be tapped at pointe 3 and 3^{\prime}, which are the clectrical midpoints. Where magnetic coupling is employed, points 4 and 4 are suitable locations for coupling links.
The capacitance of any butterfly circuit may be computed by the standard formula for parallel-plate eondensers given in the data chapter. The maximum inductance can be obtained approximately by finding the inductance of a full ring of the same diameter and multiplying the result by a factor of 0.17 . The rati: of minimum to maximum inductance varies between 1.5 and 4 with conventional construction.

Any number of butterfly seetions may be connected in parallel. In practice, units of four to cight plates prove most satisfactory. The ring and stator seetions may cither be made in a single piece or with separate sectoral stator plates and spacing rings assembled with machine serews.

Wave Guides and Cavity Resonators

A wave guide is a conducting tube through which energy is transmitted in the form of clectromagnetic waves. The tube is not considered as carrying a current in the same sense that the wires of a tweronductor lime do, but rather as a boundary which confines the waves to the rondosed space, skin effect prevents any etectromagnetic effects from being avident outside the guide. The energy is injected at one end, eit her through capacitive or inductive coupling or by radiation, and is recrived at the other end. The wave guide then merely confines the energy of the ficlds, which are propagated through it to the receiving end by means of reflections against its immer walls.

The difficulty of visualizing energy transfer without the usual closed circuit can be relieved somewhat by considering the guide as being evolved from an ordinary two-conductor line.

In lig. 19-i. I, several rlosed quarter-wave stubs are shown comected in parallel across a two-wire transmission line. Nince the open end of each stub) is equivalent to an open cireuit, the line impedance is not affected by their presence. Enough stubs may be added to form a " l "'shaped reetangular tule with solid walls, as at 13, and another identical " 1 "-shaped tube may be added edgroto-edge to form the rectangular pipe shown in Fig. 19-5C. As before, the line impedance still will not be affected. But now. instead of a two-wire transmission line, the energy is being condueted within a hollow rectangular tube.

This analogy to wave-guide operation is not exact, and therefore should not be taken too literally. In the evolution from the two-wire line to the closed tube the electric- and mag-netic-field configurations undergo considerable

U.H.F. AND MICROWAVE COMMUNICATION

(B)

Iİg. 19-5 - Evolution of a wave guide from a 1 wo-wire transmission line.
tributions of electric and magnetic fields in a rectangular guide are shown in Fig. 19-6. It will be observed that the intensity of the rlectric field is greatest at the center along the x dimension, diminshing to zero at the end walls. The latter is a necessary condition, sinee the existane of any clectric field parallel to the walls at the surface would cause an infinite current to flow in a perfect conductor. This represente an impossible situation.

Zero electric field at the end walls will result if the wave is considered to consist of two separate waves moving in gigzag fashion down the guide, reflected back and forth from the end walls as shown in Fig. 19-7. Just at the walls. the positive arest of one wave meets the negative crest of the other, giving complete cancellation of the electric fields. The angle of
 tion betwen the wires is air).

Operating Principles of Wave Guides

Analysis of wave-guide operation is based on the assumption that the guide material is a perfect conductor of electricity, Typical dis-

Fig. 19-6 - Field distribution in a rectangular wave guide. The $T E_{1,0}$ mode of propagation is depicted.

Fig. 19-7 - Reflection of two compon'mt waves in a rectangular cuide. $\lambda=$ wavalength in space, $\lambda g=$ wavetength in guide. Direction of wave motion is perpendicular to the wave front (eresta) as shown by the arrows.
reflection at which this cancellation occurs depends upon the width x of the guide and the length of the waves; Fig. 19-7A illustrates the case of a wave considerably shorter than the rut-off wavelength, while B shows a longer wave. When the wavelength equals the cut-off value, the two waves simply bounce back and forth between the walls and no energy is transmitted through the guide.

The two waves travel with the speed of light, but since they to not travel in a straight line the energy does not travel through the guide as rapidly as it does in space. A further consequence of the repeated reflections is that the points of maximum intensity or wave crests are separated more along the line of propagation in the guide than they are in the two separate waves. In other words, the wavelength in the guide is greater than the free-space wavelength. This is also shown in Fig. 19-7.

Modes of Propagation

Fig. 19-6 represents a relatively simple distribution of the electric and magnetic fields. There is in general an infinite number of ways in which the fields can arrange themselves in a guide so long as there is no upper limit to the
frequency to be transmitted. Each field configuration is called a mode. All modes may be separated into two general groups. One group, designated TM (transverse magnetic), has the magnetic field entirely transverse to the direction of propagation, but has a component of electric field in that direction. The other type, designated $T E$ (transverse electric) has the electric field entirely transverse, but has a component of magnetic field in the direction of propagation. $T M$ waves are sometimes called E waves, and $T E$ waves are sometimes called $I I$ waves, but the $T M$ and $T E$ designations are preferred.

The particular mode of transmission is identified by the group letters followed by two subscript numerals; for example, $T E_{1,0}^{*}$, $T M_{1,1}$, etc. The number of possible modes increases with frequency for a given size of guide. There is only one possible mode (called the dominant mode) for the lowest frequency that can be transmitted. The dominant mode is the one generally used in practical work.

Wave-Guide Dimensions

In the rectangular guide the critical dimension is x in Fig. 19-5; this dimension must be more than one-half wavelength at the lowest frequency to be transmitted. In practice, the y dimension usually is made about equal to $1 / 2 x$ to avoid the possibility of operation at other than the dominant mode.

Other cross-sectional shapes than the rectangle can be used, the most important being the circular pipe. Much the same considerations apply as in the rectangular case.

Wavelength formulas for rectangular and circular guides are given in the following table, where x is the width of a rectangular guide and r is the radius of a circular guide. All figures are in terms of the dominant mode.

	Rectangular	Circular
Cut-off wavelength.	$2 x$	$3.41 r$
Longest wavelength transmitted with little attenuation. \qquad	- $1.6 x$	$3.2 r$
Shortest wavelength before next mode becomes possible.	$1.1 x$	$2.8 r$

At low and medium radio frequencies resonant circuits usually are composed of "lumped" constants of L and C; that is, the inductance is concentrated in a coil and the capacitance concentrated in a condenser. However, as the frequency is increased, coils and condensers must be reduced to impracticably small physical dimensions. Up to a certain point this difficulty may be overcome by using linear circuits but even these fail at extremely high frequencies. Another kind of circuit particularly applicable at wavelengths of the order of centimeters is the cavity resonator, which may be looked upon as a section of a wave guide with the dimensions chosen so that waves of a given length can be maintained inside.

The derivation of one type of cavity resonator from an ordinary $L C$ circuit is shown in Fig. 19-8. As in the case of the wave-guide derivation, this picture must be accepted with some reservations, and for the same reasons.

Considering that even a straight piece of wire has appreciable inductance at very-high frequencies, it may be seen in Fig. 19-8A and I3 that a direct short across a two-plate condenser with air dielectric is the equivalent of a tuned circuit with a typical coiled inductance. With two wires between the plates, as shown in Fig. 19-80, the circuit may be thought of

Fig. 19-8-Steps in the derivation of a cavity resonator from a conventional coil-and-condenser tuned circuit.
as a resonant-line section. For d.c. or even low frequency r.f., this line would appear as a short across the two condenser plates. At the ultrahigh frequencies, however, such a section of line a quarter wavelength long would appear as an open circuit when viewed from one of the plates with respect to the other end of the section.

Increasing the number of parallel wires between the plates of the condenser would have no effect on the equivalent circuit, as shown at D. Eventually, the closed figure at E will be developed. Since each wire which is added in D is like connecting inductances in parallel, the total inductance across the condenser becomes increasingly smaller as the solid form is approached, and the resonant frequency of the figure therefore becomes higher.

If energy now is introduced into the cavity in a manner such as that shown at F, the circuit will respond like any equivalent coil-condenser tank circuit at its resonant frequency, A cavity resonator may therefore be used as a u.h.f. tuning element, along with a vacuum tube of suitable design, to form the main components of an oscillator circuit which will be capable of functioning at frequencies considerably beyond the maximum limits possible when conventional tubes, coils and condensers are employed.

Other shapes than the cylinder may be used as resonators, among them the rectangular box, the sphere, and the sphere with re-entrant cones, as shown in Fig. 19-9. The resonant fre-

U.H.F. AND MICROWAVE COMMUNICATION 427

quency depends upon the, dimensions of the cavity and the mode of oscillation of the waves (comparable to the transmission modes in a wave guide). For the lowest modes the resonant wayelengths are as follows:

The resonant wavelengths of the cylinder and square box are independent of the height when the height is less than a half-wavelength. In other modes of oscillation the height must be a multiple of a half-wavelength as measured inside the cavity. Fig. 1!9-8F shows how a cylindrical cavity can be tuned when operating in such a mole. Other tuning methods include placing adjustable tuning paddles or "shugs" inside the cavity so; that the standing-wave pattern of the electric and magnetic fields cinn be varied.

Fïg. 19.9 - Forms of cavity resonators.
A form of cavity resonator in wide practical use is the re-entrant cylindrical type shown in Fig. 19-10. It is useful in connection with vac-uum-tube oscillators of the types described for u.h.f. use elsewhere in this chapter. In construetion it resembles a concentric line closed at both ends with capacitance loading at the top, but the actual mode of oscillation may differ considerably from that occurring in coaxial lines. The resonant frequency of such a cavity depends upon the diameters of the two eylinders and the distance d between the ends of the inner and outer cylinders.

CROSS-SECTIONAL VIEW

Compared to ordinary resonant circuits, cavity resonators have extremely-high Q. A value of Q of the order of 1000 or more is readily obtainable, and Q values of several thousand can readily be secured with good design and construction.

Coupling to Wave Guides and Cavity Resonators

Energy may be introduced into or abstracted from a wave guide or resonator by means of either the electric or magnetic field. The energy transfer frequently is through a coaxial line, two methods for coupling to which are shown in Fig. 19-11. The probe shown at A is simply a short extension of the inner conductor of the coaxial line, so oriented that it is parallel to the electric lines of foree. The loop shown at B is arranged so that it encloses some of the magnetic lines of force. The point at which maximum coupling will be secured depends upon the particular mode of propagation in the guide or cavity; the coupling will be maximum when the coupling device is in the most intense field.

Coupling can be varied by turning either the probe or loop through a 90 -degree angle. When the probe is perpendicular to the electric lines the coupling will be minimum; similarly, when the plane of the loop is parallel to the magnetic lines the coupling wall have its least possible value.

(A)

(e)

Fig, 19-11 - Coupling to wave guides and resomators.

U.H.F. and Microwave Tubes

At very-high frequencies, interelectrode capacitance and the inductance of internal leads determine the highest possible frequency to which a vacuum tube can be tuned. The tube usually will not oscillate. up to this limit, however, because of dieleetric losses, grid emission, and "transit-time" effects. In low-frequeney operation, the actual time of flight of electrons between the cathode and the anode is negligible in relation to the duration of the cycle. At 1000 ke., for example, transit time of 0.001 microsecond, which is typical of conventional tubes, is only $1 / 1000$ eycle. But at 100 Mc., this same
transit time represents $1 / 10$ of a cycle, and a full cycle at 1000 Mc . These linuting factors establish about 3000 Mc. as the urper frequency limit for negative-grid tubes.

With tubes of ordinary construction, the upper limit of oscillation is about 150 Mc . For higher frequencies, v.h.f. tubes of special construction are used. The "acorn" and "doorknob" types and the special v.h.f. "miniat ure" tubes, in which the grid-cathode spacing is made as little as 0.005 inch, are capable of operation up to about $700-800 \mathrm{Mc}$. The normal frequency limit is around 600 Mc ., although
output may be obtained up to 800 Me.
Very low interelectrode capacitance and lead inductance have been achieved in the newer tubes of modified construction. In multiplelead types the electrodes are provided with up to three separate leads which, when comected in parallel, have considerably-reduced effective inductance, In doubie-lead types the plate and grid elements are supported by heavy single wires which run entirely through the envelope, providing terminals at cither end of the bulb. When a resonant rircuit is connected to each pair of leads, the shmonting capacitame divides between the two eircuits. With linear circuits the leads berome a part of the line and have distributed rather than lumped eonstants. Radiation loss is minimized and the effect of the transit time is reduced. In "lighthouse" tubes or megutrons the plate, grid and cathode are assembled in parallel phanes, as shown in Fig. 19-12, instead of coaxially. The uniform coplanar electrode design and disk-seal terminals permit low interelectrode apacitance.

Velocity Modulation

In negative-grid operation the potential on the grid tends to reduce the electron velogity during the more negative half of the oseillation cycle, while on the other half-rycle the positive potential on the grid serves to accelerate them, Thus the eleetrons tend to separate into groups, those leaving the cathode during the negative half-ceycle being collectively slowed down, while those leaving on the positive half are accelerated. After passing into the grid-plate space only a part of the clectron stream follows the original form of the oscillation cevele, the remainder traveling to the plate at differing velocities. Since these contribute nothing to the power output at the operating frequency, the efficiency is reduced in direct proportion to the variation in velocity, the output reaching a value of zero when the transit time approaches a half-cycle.

This effect, such a disadvantage in conventional tubes, is an advantage in velocit y-modulated tubes in that the input signal voltage on the grid is used to change the velocity of the electrons in a constant-current electron beam, rather than to

Fig. 19.12 - sertional view of the "lighthonse" tube's construction. Close electrode spacing reduces transit time while the disk electrode connections reduce lead inductance. vary the intersity of a con-stant-velocity. current flow as is the method in ordinary tubes.

A simple form of veloc-ity-modulation oscillator tube is shown in Fig. 19-13. Electrons emitted from the cathode are

Fia, 19.1.3-Simple form of rylindrical-grid velocity. modnated tube with retarding-fiedel colleetor and roaxial-line output circuit, used as a superheterorlyne high-fregueney nscillator or ats a superrogenerative eletector. Similar tubes can also be used as r.f, amplifiers and frequeney eonverters in the $5-50 . \mathrm{cm}$, region.
accelerated through a negativelo-biased ev-lindrical grid by a constant positive voltage applied to a sleeve clectrode, shown in heavy lines. This electrode, which is the velocity-modulation control grid, consists of two hollow tubes, with a small space at each end between the inner tube, through which the electron beam passes, and the disks at the ends of the larger tube portion. With r.f. voltage applied across these gaps, which are small compared to the distance traveled by the electrons in one half-cycle, clectrons entering the tube will be accelerated on positive half-rycles and derelerated on the negative half-cycles. The length of the tube is made equal to the distance covered by the electrons in one-half cyrle, so that the electrons will be further accelerated or decelerated as they leave the tube.

As the beam approaches the collector electrode, which is at nearly zero potential, the cloctrons are retarded, brought to rest, and ultimately turned back by the attraction of the positive sleeve electrode. The collector electrode is, therefore, also termed a reflector. The point at which electrons are returned depends on their velocity. Thus the velocity modulation is again translated into current modulation.

Velocity-modulated tubes operate satisfactorily up to 6000 Mc . (5 cm .) and higher, with outputs of 100 watts or more.

The Klystron

In the klystron velocity-modulated tube, the electrons emitted by the cathode are accelerated or retarded during their passage through an electric field established by two grids in a cavity resonator, or rhumbatron, called the "buncher." The high-frequency electric field between the grids is parallel to the electron stream. This field accelerates the electrons at one moment and retards them at another, in accordance with the variations of the r.f. voltage applied. The resulting velocity-modulated beam travels through a ficld-free "drift space," where the slowly-moving electrons are gradu-

U.H.F. AND MICROWAVE COMMUNICATION

ally overtaken by the faster ones. The electrons emerging from the pair of grids therefore are separated into groups or bunched along the direction of motion. The velocity-modulated electron stream is passed to a "catcher" thumbatron. Again the beam passes through two parallel grids; the r.f.current created by the bunching of the electron beam induces an r.f. voltage between the grids. The catcher cavity is made resonant at the frequency of the velority-modulated electron beam, so that an oscillating field is set up within it by the passage of the electron bunches through the grid aperture.

If a feed-back loop is provided between the two rhumbatrons, as shown in Fig. 19-14, oscillations will ocrur. The resonant frequency depends on the electrode voltages and on the shape of the cavities, and may be adjusted by varying the supply voltage and altering thi. dimensions of the rhumbatrons. The bumehed beam current is rich in harmonics, but the output waveform is remarkably pure berause the high Q of the catcher rhumbatron suppresses the unwanted harmonics.

Magnetrons

A magnetron is fundamentally a diode with cylindrical electrodes placed in a uniform magnetic field with the lines of electromagnetic force parallel to the elements. The simple eylindrical magnetron consists of a filamentary cathode surrounded by a coneentric eylindrical anode. In the more efficient split-anode magnetron the cylinder is divided longitudinally.

Magnetron oscillators are operated in two different ways. Ehectrically the circuits are similar, the difference being in the rolation between eleetron transit time and the frequency of oscillation.

In the negative-resistance or dynatron type

Fig. 19-14- Circuit diagram of the hlystron osvillator, showing the feed-back loop compling the frequeney eontrolling rhumbatrone and the output lopp in the catcher.
of magnetron oscillator, the element dimensions and anode voltage are such that the transit time is short compared with the period of the oscillation frequency. Electrons emitted from the cathode are driven toward both halves of the anode. If the potentials of the two hatves are unequal, the effert of the magnetic field is such that the majority of the clectrons

Fig. 19-15-Conventional magnetrons, with equivalent schematic symbols at the right. A, simple cylindrical magnetron. 13, split-anodenegative-resistance nagnetron.
travel to that half of the anode that is at the lower potential. In other words, a decrease in the potential of either half of the anode results in an increase in the electron current flowing to that half. The magnetron consequently exhibits negative-resistance characteristics. Nega-tive-resistance magnetron oscillators are useful between 100 and 1000 Mc . Under the best operating conditions efficiencies of 20 to $2 \bar{i}$ per cent may be obtained. Since the power loss in the tube appears as heat in the anode, where it is readily dissipated, relatively large power-handling caparity can be obtained.

In the transit-time magnetron the frequency is determined primarily by its dimensions and by the electric and magnetic field imtensities rather than by the tuning of the tank circuits. The efficiency is much better than that of a positive-grid oscillator and good power output can be obtained even on the superhighs.

In a nonoscillating magnetron with a weak magnetic field, electrons traveling from the cathode to the anode move almost radially, their trajectories being bent only slightly by the magnetic field. With increased magnetie field the electrons tend to spiral around the filament, their radial component of velocity being much smaller than the angular component. Under critical conditions of magnetic field strength, a cloud of clectrons rotates about the filament. It extends up to the anode but does not artually reach it.

The nature of these electron traje ctories is shown in ligg. 19-16. Cases A, B and C correspond to the nonoscillating condition. For a small magnetic fied (A) the trajectory is bent slightly near the anode. This bending increases for a higher magnetic field (B) and the eleetron moves through quite a large angle near the anode before reaching it, signifying a large increase of space charge near the anode. For a
strong magnetic field (C) electrons start radially from the cathode but are soon bent and curl about the filament in the form of a long spiral before reaching the anode. This means a very long transit time and a very large space charge in the whole region where the spiraling takes place. Under eritical conditions (D), no eurrent flows to the anode and no electron is able to move from cathode to anode, but a barge space charge still exists between the cathode and anode. The spiraling becomes a set of concentric circles, and the entire spare-charge distribution rotates about the filament.

Fig. 19.16 - Electron trajactories for increasing values of magnetic field strength, $I I$. Below is shown the corre. sponding curve of bate current, $f_{\text {a }}$. Oseillations commence when $/ /$ reaches a critical valur. H_{c}; mrogressively higher-order modes of oseillation occur leeyond this point.

Fig. 19-1612, F and G depicts higher-order (harmonic-type) modes of operation in which the space charge oscillates not only symmetrically but in transverse directions contrasting to the vibrations of the fundamental.

In a transit-time magnetron oscillator the intensity of the magnetic field is adjusted so that, under static conditions, electrons leaving the cathode move in curved paths which just fail to reach the anode. All electrons are therefore deflected back to the cathode, and the anode current is zero. When an alternating voltage is applied between the two halves of the anode, causing the potentials of these halves to vary about their average positive values, the conditions in the tube become analogous to those in a positive-grid oscillator. If the period of the alternating voltage is made equal to the time required for an electron to make one
complete rotation in the magnetic field, the a.c. component of the anode voltage reverses direction twice with each electron rotation. Some electrons will lose energy to the electric field, with the result that they are unable to reach the cathode and continue to rotate

Fís. $19-17-$ Split-anode magnetron with integral resonant anode cavity for use at u.h.f.
about it. Meanwhile other electrons gain energy from the field and are returned to the cathode. Since those electrons that lose encrgy remain in the interelectrode space longer than those that gain energy, the net effect is a transfer of energy from the electrons to the electric field. This energy can be applied to sustain oseillations in a resonant transmission line connected bet ween the two halves of the anode.

Split-anode magnetrons for u.h.f. are constructed with a cavity resonator built into the tube structure, as illustrated in Fig. 19-17. The assembly is a solid block of copper which assists in heat dissipation. At extremely high frequencies operation is improved by subdivid-

ing the anode structure into from 4 to 16 or more segments, the resonant cavities for each anode coupled by slots of critical dimensions to the common eathode region, as in Fig. 19-18.

The efficiency of multisegment magnetrons reaches 65 or 70 per cent. Slotted-anode magnetrons with four segments function up to $30,000 \mathrm{Me}$. (1 cm.), delivering up to 100 watts at efficiencies greater than 50 per cent. Using larger multiples of anodes and higher-order modes, performance can be attained at 0.2 cm .

Amateur Microwave Technique

All the bands that have been assigned to amateurs in the microwave region have been used for experimental two-way communication. Complete descriptions of suitable equipment for all these bands is beyond the seope of this text, but examples of the techniques employed are shown below. Reference is made to varions articles that have appeared in QST, describing miorowave gear used by amateurs, for those who wish more details.

1215 Mc .

In this band it is possible to use a few more-or-less conventional triodes with linear circuits, though great care must be used in designing such
layouts, and the efficiency will be very low. A transmitter for 1215 Me ., designed and built by W3MLN and W3IIFW, is shown in Figs. 19-19 - 19-21. It uses a 703 A doorknob triode, completely shiclded, with the antenna as an integral part of the assembly. The tube is mounted at the end of a halfwave line. Output is capacitively coupled to the folded quarter-wave antenna by means of a probe mounted alongside the plate line.

It should be emphasized that complete shielding of the oscillating circuit (including the tube elements) is absolutely necessary. The circuit will not oscillate at all if the shield is removed from the grid and plate rods, and only very weakly if

Fig. 19-19-An owillator and antenna system for 1215 Mc., built as one unit. (W3IIFW - W3MLN)
the tube shield is not in place. Output is only about one watt, with an input of 80 ma . at 350 volts, but two of these units have been used to communicate over distances up to 12 miles or so with $\$ 9$ signals. The equipment is deseribed in detail by the designers in QST' for April, 1948, Page 16.
Lighthouse tules in suitably designed circuits are more efficient at this frequency loo best results cavities should be used, though trough-line and flat-plate circuits have been used.
Parabolic reflectors are usually employed for this and higher frequencies. It is desirable to make the transmitter or receiver an integral part of the antema system if possible. If this cammot be done, coaxial line of the shortest usable length may be used. Air-insulated tine is preferred to the flexible polyethylene-insulated variety, because of the higher losses in the tatter.

Fig. 19.20 - Schematic diagram of the 1215-Mc. oscillator.

2300 Mc.

Most of the work on 2300 Mc . has been done with lighthouse tubes in cavity oscillators, though some of the klystron types such as the 707 B have been used. Cavities for this irequency may be a quarter wavelength, half wavelength or three-quarter wavelength long.

Details of a half-wave cavity oscillator using a 2 C 40 lighthouse tube are shown in Figs. 19-21 and 19-22. This oscillator was desizned and built by W21RMA. It may be duplicated by any worker who has access to a few metal-working tools.
The main body of the cavity is 1 -inch brass pipe, silver plated. The end that fits over the tube is cut out to an inside diameter of $11 / 32$ inch, the only lathe work required. This end is also sawed crosswise at several points so that it may bo clamped tightly to the tube with a brass strap, as seen in the photograph. Plate voltage is fed

Fig. 19-21-Detail drawing of the 703A oseillator for 1215 Mc .
into the cavity through a feed-through capacitor mounted on the side of the tubing, and power is coupled out by means of a capacity probe and coaxial fitting at the hot end. The cavity is tuned with a screw mounted in the end, providing a variable capacitance to the anode posit.
Output, with a 250 -volt supply, will be 50 to 250 milliwatts. This seemingly smal! amount of power may be made to do very well with the antenna gain that is possible at this frequency with a parabolic reffector of reasonable dimensions. Gear for 2300 Mc c, is described in QST for July, 1946, Page 32, August, 1947, Page 128, and February, 1948, Page 11.

3300 Mc.

Lighthouse oscillators may be ubed on this frequency, but it is close to the top limit of their capabilities, so better results are obtainable with the klystron types. An advantage of the latter is
that the frequency of oscillation may be varied over an appreciable range by changing the reflector voltage. 'This characteristic is also useful in providing a convenient means of obtaining frequency modulation. This sensitivity to voltage changes makes it desirable to use a regulated hum-free supply.

On this and higher frequencies a conveniont system for two-way work is the use of a klystron as both transmitting oscillator and as a local oscillator for receiving. A crystal mixer is used in this case, its output being fed into a receiver serving as the i.f. system, If the receiver so used is capable of f.m. detection it is only neressary to modulate the klystron reflector voltage to provide f.m. communication of good quality. 'The oscilators of the two stations in communication are then operated on frequencies differing by the value of the intermediate frequency selected. A single antenta system is used for both transmitting and receiving, and no change-over arrangement is needed.

5650 Mc .

Amateur work in this range has bern done largely with refles klystrons, two types of which (2 K 43 and 2 k 4 t) are capable of operation within our band. The one-tube system deseribed above may be used for each station, or of course sepatrate tubes may be ased for transmitter and local oscillator. In the latter case two antenna systems are required, but the transmitter efficiency is somewhat higher as some power is dissipated aross the crystal in the one-tube arrangement.

Frequency modulation of klystoons is more practical than amplitude modulation, Modulation of the repellor voltage requires no atudio power, as there is no current drawn by this tube clement. A carbon mierophene and a microphone transformer, with the repollor voltage fed through the secondary, will handle the audio bequirements nicely.

Fif, 19.22-A halfwave cavity oscillator for 2300 Mc . (W2 HMA)

Fig. $19-23$ - Mechanical details of the $2300-$ Mc. lighthouse onvillator,

The first two-way microwave eommunication in amateur history was carried out in this way by A. E. 1 Larrison, WGBMs/2, and IR. Fo. Merehant, W2LAF who operated in the temporary 5300 Me. band. 'Their aguipment, deseribed in Qs'T for January, I946, lage 19, will also work in the present band.

$10,000 \mathrm{Mc}$.

The 723A/3 reflex klystron, available at low cost for some time on the surplus market, provided amateurs with a convenient and inexpensive meaths of ofreration on $10,000 \mathrm{Mr}$. As manufactured, the tube will not ordinarily operate in the amateur hatud without modification.
like other tubes of the reflex klystron variety, the frequency of oseitlation is varied by warping the built-in cavity. It is used with a morlified ootal socket, with pin No. 4 removed and the hole entarged to pass the coaxial line that is part of the tube. "Ihis line is terminated in an "antenna" which is ordinarily used to transfer power to a waverguide.
'l'wo vertical struts are provided for tuning, one of which is already variable by means of a stud, which sproads or contracts the flesible st rut on the right side, compressing or stretching the bellows, lowering or raising the frequency respertively.

The upper limit of frequency range, reached by rotating the tuning stud, will seldom be within the amateur band, henee it is necessary to perform the following operation. It may be secn that the top of the cavity is held in a fixed position on the strut on the side of the tube by two small

U.H.F. AND MICROWAVE COMMUNICATION

nuts which, after having been tightened, have been spot-welded to each other. The spot weld should be filed away until each nut can be moved frocly on the threaded stad. Next, the position of these nuts should be adjusted ver!/ carefully, to raise the top of the cavity as was done on the other side. Extreme care should be used in this opreration, as excessive stretching of the bellows may break some of the seals and render the tube inoperative. It is advisable to move the lower nut only until a firm resistance is felt. The operating frequener should then be checked, and if it is still below the limit of the band another tube should be tried, as any further attempt to raise the frequency will almost certainly ruin the tube.

Equipment for use on $10,000 \mathrm{Mc}$. is described in detail in QST for Pebruary, 1947, Page 58.

21,000 Mc.

Operation in this frequency, and in the unassigned region above $30,000 \mathrm{Mc}$. is still highly experimental in nature. Only once has the $21,000-$ Mc. band been used for amateur two-way communication. This was accomplished under laboratory conditions by two engineers whase specialty is development work in this field. Their work is detailed in QST' for August, 1943, Page 19. Type Z-668 reflex klystrons were used, with horn and parabolic antenna systems, fo work two-way over a distance of 800 feet.

CHAPTER 20

Mobile Equipment

The amateur who goes in for mobile operation will find plenty of room for exerejsing his individuality and devoloping original ideas in equipment. liatch installation has its special problems to be solved.

Most mobile recriving systems are designed around the use of a h.f. converter working into a standard car broadeast receiver tumed to 1500 ke . which serves as the i.f. and audio amplifiers. The car receiver is modified to take a noise limiter and provide power for the eonverter.

While a few mobile transmitters may run an input to the final amplifier as high as 100 watts or more, an input of about 30 wat ts normally is considered the practical limit unless the car is equipped with a special battery-charging system. The majority of mohile operators use 'phone.
In contemplating a mobile installation, the car should be studied carefully to determine the most suitable spots for mounting the equipment. Then the various units should be built in a form that will make hest use of that space. The location of the converter should have first consideration. It should be placed where the controls ran be oporated conveniently without distracting attention from the whero. The following list suggests spots that may be found suitable, depending upon the individual car.

On top of the instrument panel
Attarhed to the steering post
G'mder the instrument panel
In a unit mate to fit het ween the lower lip of the instrument panel and the floor at the renter of the car
On the loft-hand door panel (detachable when not in use)
Under the left-hand front seat
In the motor compartnent (controls extended through the instrument panel)
The transmitter power control san be placed rlose to the receiver position, or included in the converter unit. This control normally operates relays, rather than to switeh
the power cireuit directly. This permits a minimum length of hearo-eurrent battery cireuit. Frequeney within any of the phone bands sometimes is changed remotely by moans of a stepping-switch system that switehes crystals. In most cases, however, it is neressary to stop the war to make the several changes required in changing bands,

Depending upon the size of the transmiter unit, one of the following places may he foumd convenient for mounting the transmiter:

In the glover compartment
Thder the instrument panel
In a unit in combination with or without the converter, built to fit between the lower edge of the instrument panel and the floor at the conter
Under the right-hand or left-hand front seat
On the lodge above the rear seat
Frastened to the back of the front seat
In the trunk
In the motor compartment
Most mobile antemas consist of a vortieal whip with some system of adjustable loading for the lower frequencies. Power supplies are of the vibrator-transformer-rectifier or motor-generator type operating from the car storage battery.

Units intended for use in mobile installations should be assembled with greatar than ordinary care, siner they will be subject to considerable vibration. Soldered joints should be well made and wire wrap-arounds should be used to avoid dependence upon the solder for morhanical strongth. Self-tapping sorews should be used wharevor faasible, otherwise lock-washers should be provided. Iny shafts that are normally operated at a permanent or semi-permanent setting should be provided with shaft locks so they camot jar out of adjustment. Where wires pass through metal, the holes should be fitted with rubber grommots to prevent chating. Any cabling or wiring betwern units should be securcly clamped in place where it cannot work loose to interfere with the operation of the car.

Noise Elimination

Electrical-noise interference to reeretion in a far may arise from several different soureses, As examples, trouble may be experienced with ignition moise, goncrator and voltage-regulator hash, or where and tire statie.

A noise limiter added to the car b.e. receiver will go far in reducing some types, experially ignition noise from passing cars as well as your own. But for the satisfactory reception of weaker signals, some investigation and treat-
ment of the car's electrical system will be necessary.

Ignition Interference

The metal raps terminating ignition wires at the distributor usually are simply elamped onto the ends of the cables and thus depend upon an uncertain pressure contart with the wire. These wires should be fitted with new raps soldered to the conductor. The cable in-
sulation should be inspected to make sure that there is no stray break-down between wires or to ground. Use fiber spacers to keep the rables away from ground and rerun them, if neressary, to keep them woll spared from lowvoltage wiring that may arry noise through the firewall into the inside of the car.

The spark plugs should be kept clean and adjusted to proper gap. Ther, and the common distributor lead, should be fitted with good carbon suppressors. Before purchasing these resistors, it is a good idea to check them with an ohmmeter, since individual units maty vary widely. A good resistor should measure within 20 per cent of 10,000 ohms. Sometimes r.f. chokes in series with the resistors will bring the noise down still further. Ohmite $\mathrm{Z}-28$ chokes are usually quite effective in reducing noise on 10 metrers. The motor timing should be readjusted after the insertion of suppressors. The distributor points should be in good condition, of course.

Generator Noise

Generator hash is caused by sparking at the commutator. It shows up as a high-pitched whine that varies with the speed of the motor. While the interforence may not be noticeathle in the b.c. band, it usually increases in intensity at the higher freguencies. At + Me., and possibly 14 Mc., a large 15 -volt electrolytic condenser ($500 \mu \mathrm{fd}$. or more) connected botweon the generator output terminal and ground, alone or in conjunction with an r.f. choke in series with the output lead, may be sufficient. A few turns of No. 10 wire, space-wound, often will be enough. To reduce the noise at 28 Me., it may be necessary to insert a parallal trap, tuned to the middle of the band, in series with the generator output lead. The coil should have about 8 turns of No. 10 wire, spacewound on a l-inch diameter and should be shunted with a $30-\mu \mu \mathrm{ft}$. mica trimmer. It can be pretuned by putting it in the antenna lead to the home-station reperiver tuned to the middle of the band, and adjusting the trap to the point of mininum noise. The tuning may need to be peaked up after installing in the car, since it is fairly critical.

Voltage-Regulator Interference

This type of interference may show up only at 10 and 11 moters. It is caused by sparking at the regulator points as they operate to

Fig. 20-1 - 'Ihe converter is clamped to the steering post, while the transmit. ter rides suspended from the instrument panel.
reduce the charging rate when the bat wery approaches full charge. A condenser camnot be used across the contacts because it will cause the points to burn out in a short time. A satisfactory remedy for this type of noise is a togglo switch on the instrument panel tha shortcircuits the points when the switch is closed. This removes the interference and acts to provide full gencrator output. This does no harm so long as there is sufficient load on the hattery to prevent overcharging. If a doudsle-pole switeh is used, it can be provided with a signal light to remind the operator to open the switch.

Wheel Static

Wheel static shows up as a steady popping in the receiver at speeds over about 1.5 m.p.h. on smooth strects. It is usually not noticeable on dirt, gravel or wet roads. It is causel by the grease in the front-wheel hearings irsulating the wheels from the car. Front-wheel static collectors are available on the market to eliminate this variety of interference. They fit inside the dust cap and hear on the end of the axle, effectively grounding the wheol at all times. Those designated particularly for your car are preforable, since the universal type does not always fit well. They are designed to operate without lubrication and the end of the axle and dust cap should be cleaned of grease before the installation is made. These sollecetors require rephacement about every 10,000 miles.

Ras-whed collectors have a brash that bears against the inside of the brake drum. It may be necessary to order these from the factory through your dealer.

Tire Static

This sometimes sounds like a leatsy power line and can be very troublesome even on the broadeast hand. It can be remedied by injecting an antistatic powder into the inver tubes

Fig. 20-2 - Diagrams showing addition of noise limiter to car receiver. 1 - \mathbf{I} sual circuit. $\mathbf{1 3}$ - Modification. (i_{1}, C $\left._{3}-100\right)_{-\mu \mu \mathrm{fl}}$ mica.

(:5-0.1- $\mu \mathrm{fd}$. papre.
$\mathrm{K}_{1}-47,000$ ohms.
$\mathbf{R}_{2}, \mathbf{R}_{10}-1$ mu"gohm.
R_{3} - $1 / 2$ megohm
$R_{7}, R_{8}, R_{9}-0.17$ megohm.
$\mathbf{R}_{\mathbf{4}}$ - 10 megolime.
R_{5} - $1 / 4$ mequhm.
R_{6} - 0.1 megohm.
'I'I - I.f. Iramsformer.
V_{1} - Second detector.
through the valve stem. The powder is marketed by Chevrolet and possibly others. ('hevrolet dealers can also supply a convenient injector for inserting the powder.

Tracing Noise

To determine if the reeriving antemna is picking up all of the noise, the shielded lead-in should be disconnerted at the point where it comerets to the antenna. The motor should be started with the receiver gatin control wide open. If no noise is heard, all noise is being picked up via the anteuna. If the noise is still heard with the antenna disconnerted, even though it may be reduced in strength, it indicates that some signal from the ignition system
is being picked up by the antenna transmission line. The lead-in may not be sufficiently-well shielded, or the shield not properly grounded. Noise may also be pieked up through the (6-volt cirruit, although this does not normally happen if the recoiver is provided with the usual r,forchoke-and-by-pass-condenser filter.

With the motor rumning at idling speed or slightly fastor, chocks should be made to try to determine what is bringing the noise into the field of the antromat. It should be assumed that any control rod, motal tube, sterring post, ete., passing from the motor compartment through an insulated bushing in the firewall will rarry noise to a point where it can be radiated to the antema. All of these should be bonded to the firewall with heave wire or braid. Insulated wires can be stripped of r.f. by bepassing them to ground with $0 . \bar{\sigma}-\mu \mathrm{fl}$. metal-case condensers. The following should not be overlooked: battery lead at the ammeter, gasoline gauge, ignition switeh, headlight and taillight leads and the wiring of any aecessories rumning from the motor compartment to the instrument panel or outside the car. For cars having lileretrolok ignition systems, there is a sperial condenser that fits in the spare in the top of the coil and by-passes the batterp-supply wire from the ignition switeh to the primary of the ignition coil. For other models, there is spare in the top of the roil housing where a $0.02-\mu \mathrm{fd}$. 1000-volt mica condenser can be mounted. This measure is usually vory affertive, sinere it prevents the main soure of noise from feeding into the interior of the car. The wire from the roil to the switeh should be shiedded, with the shield grounded to the firewall.

The firewall should be bonded to the frame of the car and also to the motor bloek with heavy braid. If the exhaust pipe and mufller are insulated from the frame by rubber mountings, they should likewise be grounded to the frame with flexible copper braid.

Noise Limiter

Fig. 20-2 shows the alterations that maty be made in the existing rar-receiver circuit to provide for a noise limiter. The usual diodetriode second detertor is replaced with a tepe having an extra independent diode. If the car receiver uses octal-base tubros, a Gescit may be substituted. The 7×7 is a suitable replacement in recoivors using loktal-type tubes, white the 6 T8 may be used with miniatures.

The switeh that cuts the limitor in and out of the circuit may bo loeated for convenience on or near the comerter panel. Regardless of its plarement, howeror, the leads to the switeh should be shielded to prevent hum piek-up.

A Bandswitching Mobile Converter

The ceircuit diagram of a bandswitching converter covering the 75 -moter 'phone band and all of the $20-$, 11- and 10 -meter bands is shown in Fig. 20-3. The output circuit of the r.f.
stage is broal-banded and thus requires only initial adjustmont. Isy means of indurtanee slugs, it is tuned to the approximate contor of each band. The high-frequenco oscillator uses a high-C

Colpitts circuit. Each of the bands is spread out over a good portion of the dial so there is no difficulty in tuning in and holding a signal. An air trimmer, C_{3}, is provided so that the tuning may be adjusted to calibration from the panel. The output coil, $L_{i 4}$, is tuned to $1 \overline{5} 00 \mathrm{kc}$. and is coupled to the input circuit of the b.e. receiver by $L_{\text {an }}$.

A 5 -circuit switch takes care of bandswitching in all circuits. One eril serves for both 27 and 29 Mr , at the input of the r.f. stage. A separate coil for 27 Mr . is required in the output cireuit. In the h.f. oseillator areuit, the stume coil is used for both of the latter bands, but the tuning range is altered by switehing in the serics capacitance made up of C_{14} and C_{15} for the 28 -Mc. tand. C_{10} is added at 14 Mc . primarily for bandspread purposes, hut it also improves the
frequeney stability on this hand as well.
One scetion of the bandswitch, $S_{\text {fe, }}$, together with the final tap of $S_{l a}$, serves to connert the antenna to the b.e. receiver when the eonverter is not in use. The last switch section, she, turns off the filaments of the eonverter as well as the two panel-illuminating lamps, I_{1} and zutomatically when the switeh is turned to the b.e, position. Power for the converter is takes from an outlet added to the bee. receriver. A dropping resistor in the ber. set should be inserted if the " 13 " voltage to the converter exceeds 180 under load.

Construction

The ronverter shown in Fig. 20-4 is built on a is $\times 7 \times 2$-inch aluminum chassis, A box, $51 / 8$ inches high, made of sheet alumin-

Fig. 20-3 - Cirruit diagram of the mobile converter.
$\mathrm{C}_{1}-50-\mu \mathrm{fd}$. variable air trimmer (National PSE-50). L. - Approx. 1 wh. 11 turns No. 22, $2 / 8$ inch diam.,
$C_{2}, C_{3}, C_{4}, C_{12}, C_{13}-0.01-\mu \mathrm{fd}$. dise ceranic.
$\mathrm{C}_{5}-100-\mu \mu \mathrm{fol}$, mica.
$\mathrm{C}_{6}, \mathrm{C}_{7}-220-\mu \mu \mathrm{fal}$. sitvered mica.
(:s-Appros. $30-\mu \mu \mathrm{fd}$, variable (S illen 190.0 with one rotor and one stator phate removed).
C 0 - Approx. $5-\mu \mu \mathrm{ff}$, variable ($\mathrm{Vational}^{2}$ PSE-2.5 with all but two plates removed).
C $10-100-\mu \mu \mathrm{fd}$, silvered mica.
$\mathrm{C}_{11}-47$ - $-\mu \mathrm{ft}$. silyered mica.
C_{14} - $5: 10-\mu \mathrm{ffa}$. silvered mica.
Cis - $330-\mu \mu \mathrm{fd}$, wilvered mica.
$\mathrm{C}_{16}-200$ - $\mu \mu \mathrm{fd}$, mica trimmer.
$\mathrm{C}_{17}-50$ - $\mu \mathrm{ffl}$. ceramic.
Qis - 0.1 - $\mu \mathrm{fl}$. paper.
$\mathrm{h}_{1}-100$ ohms, $1 / 2$ watt.
$\mathrm{K}_{2}-22000$ ohms, $1 / 2$ watl.
$\mathrm{R}_{3}-15,000$ ohms, $1 / 2$ watt.
$R_{4}-22,000$ ohms, $1 / 2$ watt.
1 R_{5} - 15,000 ohms, I watt.
$\mathrm{R}_{0}-10$ ohms, 1 watt.
1.1-15 turns No. 2 \& d.ese scramble-wound letow L_{2}.

Is - Approx. $10 \mu \mathrm{~h}$. (CTC: 5-Mc. type $1 \mathrm{~S}-3$ shag-tuned coil, 10 turas removed).
$1.3-4$ turns No. 2 d.s.e. below grounded end of I_{4}.
1.4-Approx. 3.5μ h. (CIC 10.M1e. type LS. 3 slugtuned coil).
Ls -3 turus No. 24 d.s.e. below grounded end of L_{6}.

- $5 / 8$ inch long (C, (ape 1, -3 form, less shag).
L_{7} - Approx. 110 m_{h}. (CTC I-Me, tyse IS. 3 slugtunced coil, 75 turns removed).
Ls - Approx, 8 нh. (C'TC: 10 - Me. type $1.8-3$ slug-tuned coil).
Lg - Approx. 2.2 hh. (CTC: $10-$ Mc. type LS-3 slugtuned coil, 4 turns removed).
L. 10 - Approx. 1.9 h hi, (same as L_{9}).
L_{11} - Approx. 30 нh. (CTC: 5-Ne, type Ls. 3 slug-tuned coil, 25 turns remowed).
$1,12-1$ ppros. $6 \mu \mathrm{~h} .6$ turns \o. $20,1 / 2$ anrh diam.. $3 / 8$ inch long (BNW 3(N)3 Miniductor) slipped over C"MC type 1.5-3 shag-tuned form:
$\mathrm{L}, 13$ - Approx $(0.2 \mu \mathrm{~h} .-3$ turns No . $16,1 / 2$ inch diam., $3 / 8$ inch Iony (BAV 3002 Minductor slipped over (CTC type 1s-3 slug-tuned form).
 tuned coil).
I.15-20 turns No. 24 d.s.c. scramble-wound below bypassed end of L_{14}.
$\mathrm{I}_{1}, \mathrm{I}_{2}-6.3$-volt $150-\mathrm{ma}$. dial lamp.
I1 - Shiclded jark (ICA 2378).
J_{2} - Pin pling (ICA 2375).
$\mathrm{J}_{3}-4$-contact chassis-mounting plug (Janes S-304-AB).
$R 1 F C_{1}-2.5-m h$, r.f. clocke (National $1 \mathrm{k}-50$).
S_{1} - Bandswitch - see text.
Note; CTC $1.5-3$ coils and forms obtainable from Allied Radio, 833 West Jackson Blvd., Chicago 7, 111.

lig. 20.1 - The completed hamewitohing mobile eonverter ready to install, At the hottom. the r.f. input tuning is an the left and the oscillator trimmer on the right-hand side of the bandswitel.
um , is fitted around the rhassis. Half-ineh lips arr bent over along the top and bottom edges of the sides, and along all four colges of the front and rear ends. The lips along the side edges of the front pand extend down only to the chassis. The box is assembled with mathine sorews and nuts. Four long machine sorews through cite side of the chassis provide means for attarthing a clamp mounting so that the embverter may be fastoned to the sterring post.

The National MCN dial is plateed on the front panel so that it will line up with the shaft of the oscillator tuning rondenser which is mounted atirectly on top of the chassis. It is necessary fo notch out the front edge of the chessis for the dial merhatism.

The bandswitch is placerl underneath at the center of the front elge of the chassis, with the controls fer input tuning and oscillator trimmor to rithwr side. The switeh is marle up from Copitralath kit parts. All switch wafers are of the two-pole five-position type. One ceramic wafer (T_{1} ?" IRII) is used for $S_{1 C}$ and S_{10} in
the amplifier-output and oscillator-circuits. This section is spared two inches from the index head (Type P123). The other two wafers are of bakelite (Type K). The innermost of these sorves for $S_{i E}$ and S_{i}, while the end sertion takes care of $S_{1 .}$ and $S_{1 b}$. Two and one half inches back of the ceramic seetion, the two (i-inch switch-assombly rods pass through an aluminum bracket which provides a rugged brace for the rear end of the switch gang. The first bakeliteswiteh wafer is spared $1 / 4$ inch bohind this bracket and the serond wafer is $1 / 2$ inch behind the first. The input tuming condenser, (1 , also is mounted on this ahminum bracket and is controlled by an extension shaft from the pancl in front. The oscillator trimmor condenser, C_{9}, is fastenod directly on the front edge of the chassis.

The placemont of the two tubes can be seron in the top-view photograph of Fig. 20-5. The converter tube is near the front of the oscillator tuning condenser and the amplifier tube is to the rear, covered with a shied.
('TC (Cambridge Thermionic Corp.) slugtuned coils and coil forms are used for the various inductances. Details are given under lig. 20-3. Sureial care should be exercised in removing turns from the coils, since the fine wire with which they are wound breaks very casily. The placement of the coils can be judged from the bottom-view photograph of Fig. 20-6. In that view, the oscillator coils are the three near the bottom. From left to right, they are for the 75-, 20- and 10-11 meter hands. The threo conis above are in the output circuit of the ref. amplifier. From left to right, they are for the $20-$, 10 - and 11 -meter bands. The 7 -meter coil is abowe, mounted horizontally from the side of the chassis. The r.f. input coils are to the rxtreme loft, grouped around the end of the switch. From top to bottom, they are for 10-11, 20 and 75 moters. The output coil, L_{14}, is hidden under the lip of the chassis in the extreme upperright cornor. Its tuming eondenser, C_{16}, is the micat trimmer in the lower-right corner of the (op-riow picture (Fig. 20-i5). A grommeted hole in the top rover permits adjusting this condenser after the top is in place. This may be found conveniont in case it is nocessary to shift the i.f. slightly to avoid interferchere from a strong local bece signal at 1500 ke . The inductance of L_{7} is trimmed from the side, while the slugs of all other coils are adjusted hefore the cover is fastened down.

Prig. 20-5 - Top view of the landswitehing converter with the rover romoved to adjust the varions indactanes huga, The ohject to the riglt is the dial-tamp shield.

Pig. 20-6 - Bottom view of the handswithing molile converter showing the placement of the miniature coils.

A short length of coaxial line connects the output winding L_{15} to the switeh. Another external length eonnects the output of the converter to the input of
 the b.c. receiver. A pin jack at the rear provides a connection for the antenna input. Power connections are made at the rear through a four-contact connertor.

Provision for illuminating the dial at night is made with a simple home-brewed arrangement. One end of a piece of shim brass or copper about 3 inches square is rolled a little more than halfway around a pair of standard 6.3volt dial lamps placed butt to butt. The ends of the partial cylinder thus formed are covered by soldering in small dises of the same material. The lamps are then spaced about an inch apart and their shells are soldered to the metal enclosure. The two lead tips of the Lamps are joined by a short piece of wire whick connects to the "hot" side of the filament circuit. The remainder of the sheet is insertel between the top lip of the panel and the cover. By loosening the cover screws, it is possible to adjust the position of the lights for best illumination of the dial scale. The lamps should not need replacement often because the dimmer resistor, R_{6}, cuts the current down well below normal rating.

Adjustment

The output circuit of the converter tube should be adjusted first. Before procceding, retrim the input circuit of the b.e. set to the antenna with the bandswiteh in the b.c. position. Then switch to any of the four converter positions and tune C_{16} for maximum noise with the h.c. receiver tuning set at 1000 kc . The next step is to tune the h.f. oscillator to the appropriate ranges, starting with the 75 meter band. On all but the 10-11-meter band, the oscillator is tuned to the low-frequency side of the signal frequency. Since the i.f. is $1500 \mathrm{kc} .$, the oscillator should be tumed 1500 ke. lower than the desired signal. For the range of 3800 to 4000 ke , the oscillator should cover the range of 2300 to 2500 kc . To accomplish this, turn the bandswiteh to the $\overline{\mathrm{j}}$-meter position, set the tuning rondronser, (es, at maximum and adjus the slug in L_{11} uatil the oscillator signal is heard on the station eom-
munications recriver at 2300 kc . (3870 mirrus 150D). To hear the signal. it maty be areessary to run s wire from a point near the oscillator coil to the antenna terminal of the station reeeiver. Now, with an anteuna conneefed to the mput of the convirter, swing the input tuning mondenser, C_{1}, through its range, listoning for a veak in noise. If nome is found. set the slug in L_{7} to a different position aind try again. As soon as a noise peak is found on C_{1}, adjust the slug in L a for masimum: response. The same procednare is followed for the 20 -meter band, setiing the tuning conderaser at maximum, adjusting the slug in $L: 2$ until the oscillator is heard at $12,500 \mathrm{ke}$. ($\mathrm{I} 4,400$ minus 1500), and then peaking up the r.í. stage inputend out put circuits. In this case, a secord response point may be found. This is the image response to signals at $11,000 \mathrm{kc}$. If two response proints are found, peak C_{1} and L_{48} at the response of higher frequencs.

On the 10-meter hand, which should be taken care of next, the oseillator is tuned to the highfrequency side of the desired signal. Wo, with the dial at the maximumb-capacitance end, and the switch in the 23-Me, position, auljust the slug in L_{13} until the oscillator signal is heard on the sfation receiver at $24,500 \mathrm{kc}$. 28,000 plus 1500), and then tring up the r.f. stage tuning is before The image resonse will come at $31,000 \mathrm{ke}$. so be sare to peak up the r.f. circuits at the restonse of lower frequency.

Adjusting the slug in L_{13} for 2.3 Mc . also should place the essillator in the carect range for the 11 -meter land when the switch is in the 11 -neter position. \vec{C}_{1} las sufficient range to cover both bands, but the soparate r.f. stage output coil, L_{3}, must be peaked up. If it is found that the 11 -moder range comes too far off on the dial, it may be necessary to slide the 10-meter range toward one end of the dial or the other by wradjusting the slug in L_{12} slightly. As an a!ternative, the correction may the mate by aliering the capacitance of cither suries capacitor C_{14} or C_{15}.

A Mobile Converter for $\mathbf{2 8}$ and $\mathbf{5 0} \mathbf{M c}$.

The converter shown in Figs, 20-7 to 20-10 was designed for mobile reception on 6, 10 , and 11 meters, but it may also be used in fixedstation work with good results. The intermediate frequency is 1500 ke , to permit its use with mobile broadeast receivers.

Circuit Details

The converter circuit diagram is shown in Fig. 20-8. A 6.1 K 5 broadband r.f. amplifier is followed by a biJ6 mixer-oseillator. The oscillator eircuit is the ultradudion typer, operating 1500 ke . below the signal freguency. The need for gang-tuned circuits is climinated by the broadband r.f. amplifier: thus only the oscillator tuning condenser, ('1, requires adjustment during normal tuning operation. Band

Fig. 20-7 -- A bandwitehing converter for (o, 10 and 11 meters, The pilot light at the lower right has an adjustable beam, for convenience in moblite work.
changing is aecomplished with a j-section sclector switch, shown on the diagram as $S_{1 A}$, B, C, 1 , e.

Seven commercially-available enils are used, six of them being identical exeept for the setting of the slugs. The wide inductance range of the slug-tuned units makes it possible to use similar coils for the r.f., mixer and oscillator coils for both ranges, Padder capacitance is added across the 10 -metor r.f. and mixer eoils, L_{4} and $L_{\text {fif }}$ and acress both oscillator eoils, L_{7} and L. Varying the slug position takes care of the necessary differences in coil inductance for all these positions.

A single whip antenna may be used for both broadcast and amateur reception. A jumpar connection between sections A and E of S_{1} completes the circuit between the antenna and the broadeast receiver, with the switch in the position marked B.C. in Fig. 20-8. A filament
switch, S_{2}, is provided to remove the load of the converter tubes from the car battery when the recciver is being used for broadeast reception.

13roadbanding of the r.f. and mixer circuits is accomplished through the use of low- Q coils and tight coupling in the antemna circuit. The plate coil of the mixer is self-resonant at the intermediate frequency, giving a degree of broathess sufficient to permit tuning the receiver over a limited range near the high end of the broadcast band, providing a veruier effect.

Construction

All of the metal components are formed from $1 / 16$-inch aluminum stock. The interior view, Fig. 20-9, shows the "L,"-shaped section which serves as the front panel and the bot tom plate of the unit. The panel and the bottom areas are each 5 inches square. Lips, ${ }^{1} 2$ inch wide, are folded over along the top and side edges of the pancl and also along the sides of the bottom section. The rolled-over edges are drilled and tapped to ateommondate 6-32 machine serews.

A threr-sided portion and a square top plate complete the converter eabinet. The sides are 5 inches square and the rear wall is $51 / 8$ inches wide. All three sides are $\overline{5}$ inches high with $\frac{1}{2}$-inch flanges folded over on the top edges and drilled and tapped for 6-32 serews. The sides and bottom edges of the case are drilled to clear marhine serews; the holes should line up with the tapped holes of the pancl-bottom assembly, A rectangular hole, 1 is inches high and 2 inche's wide, is cut at the bottom lefthand corner (as seen from the rear of the convertor) of the rear wall, to provide clearance for the cable connectors. The top plate for the converter measures 5 by 5 inches. Holes, drilled along the edges, aliow the cover to be fastened to the flanges at the top of the cabinet.

The physical shape of the converter chassis can best be visuatized by study of the interior views. The chassis is 5 by $47 / 8$ by $13 / 4$ inches in size, with Hanges $1 / 2$ inch wide folded over along the front and the bottom edges to provide a means of mounting. A $2 \frac{1}{4} \times 33 / 4$-inch cut-out at the center of the chassis allows clearance for the bandswiteh. A large round hole located in the rear wall of the chassis simplifies the joh of finding the oscillator padder condenser when this control requires adjust ment.

A vertical partition used as the mounting surface for the oscillator tuning condenser, C_{1}, also serves as the shield between the plate and the grid circuits of the r.f. amplifier. It is $31 / 2$ inches wide and $43 / 4$ inches high, and is notched to clear the main chassis and the spacer hars and rotor arm of the bandswitch. The partition is held in place by a spade lug which passes through the chassis and by a mounting

Fig. 20.8 - Cirenit diagram of the bandswitching v.h.f. converter.
$\mathrm{C}_{1}-15 \cdot \mu \mu \mathrm{fd}$. variable reduced to one stator and 2 rotor plates (Millen 20015).
($: 2,(: 3,14-3-30-\mu \mu \mathrm{fd}$, mica trimmer (Millen 27030).
C.6, ($-0.001 . \overline{0}-\mu \mathrm{ff}$. ceramic (Centralab) DA048002A).

Cs, C9 - $1001-\mu \mu \mathrm{fl}$. ceramic (Centralab (Ca 2 Z).
(S_{s} (10 - $10-\mu \mu \mathrm{fl}$, cerannic (Centralab (C20Z).
(.11-5(0) $\mu \mu \mathrm{ff}$ (. ceramir (Centralal) D6501).
(:12-0.01- $\mathrm{Hf1}$, ceramic (Centralab I) 1048003:)
$R_{1}-2 \geqslant 0$ ohms, $1 / 2$ watt.
$R_{2}, R_{6}-680$ ohnms, $1 / 2$ watt.
$R_{3}-1.5$ megohms, $1 / 2$ watt.
$R_{4}-12,000$ ohms, $1 / 2$ watt.
$R_{s}-17,000$ ohnss, $1 / 2$ watt.
$R_{i}-5(000$ ohms, 10 watts.
$\mathrm{I}_{1}, \mathrm{I}_{2}-1$ turns $\mathrm{V}_{\mathrm{o}} .28$ d.s.e. close-wound over ground ends of L_{3} and L_{4}.
lip which is serewed to the bottom side of the cabinet. It is located 3 inches in from the front edge of the chassis.

The heater switch and the pilot-light assembly are mounted at the lower left-and right-hand corners of the front panel with the bandswiteh at the center, $11 / 8$ inches up from the bottom edge. The selector-switch index plate should have a rotorshaft length of at least 3 inches, and the switch wafers should be mounted on the shaft with the first separated from the index plate by l-inch spaters and with the second wafer separated from the first by 15/8 inches.

The National MCN dial is centered above the bandswiteh with the eontrol shaft 3 inches above the bottom edge of the pancl. It is wise to cut the large momating hole sumgested in the dial-mounting instruetion sheet and then do the final fastening down of the dial after the tuning condenser and its mounting

Fig. 20-9-Interior view of the con. verter. Only the oscillator is tumed by the front-panel control, eliminating tracking problems.
$L_{3}, L_{4}, L_{55} L_{16}, I_{7}, L_{s}-6$ turns No. 20 enameled wire close-wound on $3 / 8$-inch diameter form: slugtuned: induetance range 0.3 .5 in 1.3) l . (Camhridge Thermionic Corp. 1.S3-30 Me.).
L_{9} - Scramble-type winding on $3 / 8$-inct sloy-tuned form; inductance range 325 to $750 \mu \mathrm{~h}$. (Cambridge Thermionic Corp. L.53-1 Me.).
It, 20 - 20 urns Xo. 28 d.s.e. seramble-wound next to $/ 9$. I_{1} - Adjustable-heam dial. light assembly.
JI, J2-Coaxial-cable jacks (Amphenol 7i-PCIM). $\mathrm{J}_{3}-3$-prong cable connector (Iones 1 ${ }^{2}-30$? 13). $\mathrm{RFC}_{1}-300$ - - h. r.f. choke (Millen 34300).
$S_{1 A}, \mathrm{~B}, \mathrm{C}, \mathrm{b}, \mathrm{E}-\mathrm{E}$-gang 6 -circuit bandswituld (two Centralat SS sections).
s_{2}-S.p.p.s.t. toggle switch.
plate have been permanently secured in place.
The interior view of the completel converter shows the 6.1 kis amplifier tube in ront of the shield partition, with the grid indactances to

the right of the tube. The padder condensers for 27 and 28 Mc. are mounted on the forward coil. From left to right across the rear of the chassis are the mixer-oscillator tube, five of the slug-tuned induetances, and the regulator tube. The i.f. output coil and the two oscillator coils are mounted below the chassis, as seen in the bottom view of the chassis subassembly. The r.f. plate coils are above the chassis to the left of the 0132 regulator, the 28 - Me. coil being the one with the trimmer comenser mounted across the terminals.

Construetion will be simpler if the builder uses coils as shown. The Type LS $330-\mathrm{Mc}$. inductors will resonate at 50 Mc. with the tube and rireuit capacitances, and only a small padder eapacitance is required to tune them to 27 and 28 Mc.

Coaxial jacks for the antenna and i.f. out put cables are at the rear of the ehassis to the left of the power-eable jack. They are closely grouped so that the input and output cables may be taped together to form a common cable.

Wiring can be done readily if the subassembly method is employed. The bottom-view photograph of the chassis, lig. 20-10, shows how the circuit components are closely groupel around the tube sockets, with wiring eompleted to the point of making connections to the band-switch. Twin-terad of the 75 -ohm type is used to make the connection between the antenna input jack and the bandswiteh. The two wires enclosed in spaghetti at the right of the chassis in the bottom view are the 6.3 -volt leads which go to the heater switeh.

Testing

The heater requirements of the converter are 6.3 volts at 0.625 amp , and the plate supply should deliver 200 to 250 volts at 25 to 30 ma. These may be drawn from the receiver with which the converter is to be used, or a separate supply may be employed. With power turned on, the plate voltage of the mixer and
r.f. amplifier should measure 105 volts and the $6.4 K 5$ cathode resistor should provide a drop of approximately 2 volts. The 6AK5 cathode current should be about 8.5 ma . The regulatortube drain will be about 8 ma .

Alignment of the converter is made most simple if a calibrated signal generator is available, otherwise amateur transmitter signals of known frequency may be used. The r.f. and i.f. circuits can be peaked on background noise. The oscillator stage should be on the low side of the signal frequency. It is possible to vary the bandspread of the converter over a wide range. With a fairly low order of padder capacitance, and with the inductance increased by the tuning slug, the $10-$ and $11-$ meter bands can be covered with one swing of the tuning dial. Anyone not interested in 11 meters can increase the bandspread on the 10 -meter range by adding more padder eapacitance and by decreasing the inductance of L_{8}. The converter as shown has 13 divisions of bandspread at 11 meters and 52 divisions as 10 meters, with the logging of frequenciet made on the B scale of the dial. Bandspread for the 50-Mc. band is 48 divisions on the 1 scale. This spread may be increased by the same method.

Some operators favor a selected group of frequencies within a band. A slight improvement in the performance of the converter can be made in this case by peaking the r.f. amplifier circuits at a favorite spot rather than at the center of a band. There may be a tendeney toward regeneration in the $50-\mathrm{Mc}$. r.f. amplifier, however, if the input and plate circuits are peaked at precisely the same frequency, making stagger tuning desirable.

Reducing Spurious Responses

In localities where there are stations operating in the high FM band a converter or reeoiver having broadband r.f. stages will experience considerable interference on the 50-Me. range. This ean be corrocted in several ways, the simplest being the insertion of a $100-$.Me. trap in the antemna lead.

Fix. 20.10 - Construction of the converter is made easier if as much wiring as possible is done loffore the assembling is completed, 'This brotom view of the chassis sub,assembly shows the wiring completed to the point of connection to the lamdswiteh.

A Mobile Converter for 144 Mc.

Working directly into the car broadeast receiver with a converter, as is done normally on lower-frequeney bands, is not satisfactory for 144-Mc. work. Beratuse the highest obtainable $\mathrm{i} . \mathrm{f}$. in such a system is 1600 kc , the image rejection is very low. Signals repeat within the band, making it very difficult to distinguish between the true signal and its image. A logical solution is to carry the conversion process one step further and design a 2-meter converter to work into a second converter designed for a lower freduenes. The latter then feeds the signal into the car b.c. receiver.

This approach is employed by WIDIBM in the $144-\mathrm{Mc}$, converter shown in the photographs of Figs. 20-11 through 20-14. The output frequency is 14 Mc., but it could just as well be 28 Mc. with suitable modification of the output coil, L_{6}. The output of this converter can be fed into the 28 - and $50-\mathrm{Mc}$. converter deseribed in the preeceding section, or into any of the various manufactured converters on the market covering the 28 - or $14-\mathrm{Me}$, ranges.

Electrical and Mechanical Details

The circuit diagram, Fig. 20-13, shows a GAK5 r.f. amplifier, 6Jd mixer-oscillator, and a 6 A 5 5 i,f amplifier. The pentode sereens and the triode plates are fed through an OB2 voltage regulator. Slug-tuned coils are used in the 144 -Mc. circuits for relatively broad response. The oscilliator is tuned by a small splitstator condenser, with a ceramic padder for band-setting purposes. The mixer and i.f. plate coils are slug-tuned and are shunted with fixed ceramic condensers.

To hold down the overall size, some care must be used in planning the lay-out and assembly procodure. By mounting the tube sockets in the position shown, it is possible to

Fig. 20.II - Mobile converter for 144 Mc . The heavy angle brackets are designed for mounting the converter under the dash.
use a single shield for both i.f. and r.f. stages. This shicld (shown in the bottom-view photograph of Fig. 20-14) is notched to clear the tube prongs. The surrounding eomponents must be mounted in such positions that the snield can be dropped into place and serewed down as a final opreation

Fig. 20-12 - Rear view of the 2-meter molite converter, with dust cover removed.

The panel is $4 b y t^{1} \frac{1}{2}$ inches in size, this being determined biy the dimensions of the Millen 10039 dial. The chassis is $51 / 2$ inches long, $41 / 2$ inches wide and $13 / 4$ inches deep. With this depth, the Ol32 regulator socket must be submounted, because i it is of greater height than the 6Ali5s and 6J6. The panel and bottom are folded from a single piece of 1/16-inch aluminum, with $5 / 8$-inch lips turned up, on the sides,

In addition to the holdes for the tuliee sockets, the chassis has a cut-out for the tuning condenser. The condenser is mounted ruggedly on a heavy angle bracket in position wo that its shaft lines up with the hole in the vernier dial. Coaxial connectors for the antenns and output, and a small shiclded 3 -wire recoptacle are mounted on the rear edge of the chassis.

The dust cover is also of $1 / 16$-inch aluminum sheret. It has a removable back plate, with clearanere holes for the coaxial fittings and power plug. 'T'wo mounting angles of $3 / 32$ inch aluminum are bolted to the top edges of the eover. These must be strong since they are used to fasten the converter under the instrument panel. The unit is completely wired and tested before mounting in the combination panel and bottom cover. A clearance hole in the side of the chassis provides for final adjustment of the oscillator padder.

Pretesting

The slug-tuned coils can be djusted to approximately the correct settings by the use of a grid-dip meter. If the coils are made closely

Fig. 20-1.3 - Wiring diagram of the 14t-Ve. moline eonverter.
$\mathrm{C}_{1}-3$ - $\mu \mathrm{fd}$. ceramic.
$\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}-30-\mu \mu \mathrm{fl}$. cramic.
($5, \mathrm{C}, \mathrm{B}-50-\mu \mu \mathrm{fd}$. ceramic.
(if - $1-30$ - μ fid, ceramic padeler.
Co - Miniature split statur, 2 rotor and 2 stator plates ber sertiom, dowldespared, double bearing.

$\mathrm{H}_{3}, \mathrm{H}_{4}, \mathrm{R}_{10}-1000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{5}-10,000$ ohmes, $1 / 2$ watt.
K_{9} - 10,0010 ohma. 10 watts.

$1_{12}-1.5$ megohms. $1 / 2$ walt.
$1_{1}-2$ turns to. 20 enameled wire at cold end of I_{2}.
1.2 - 5 turns No. 20 enameded wire 3 in inch long on Cow slug-tunced coil form ${ }^{3 x}$-inch diameter, irom slug (approximately $0.1 \% \mu \mathrm{~h}$.)
to the dimensions qiven, it should be possible to adjust them and the oscillator padder, close enough to the proper values so as to be able to receive signals without further adjustments than theses. The slugs should be adjusted before the herater and plate voltages are applied.

After this has boon done, the converter should be placed in operation, using it in conjunction with the home-station communiea-
 tumed coil from ${ }^{3}$ x-inch diameter, brass slug (approximately 10.08 mh.)
I.4-3 turns Xo. I2 timed wire. 3k inch long, arionch inside diameter, with $1 / 4$-inch leads to rendenser.
L_{5}, L6 - 15 turns No. 28 nnameled wire $1 / 4 \mathrm{inilh}$ long on CTC sluy-tumed 3 -inels diameter coil form, combination iron and brass slug (approximately $2.3 \mu \mathrm{~h}$.
I. -4 turns रo. 28 enameled wire wound at eold end of coil form.
Valhes of $L_{5,} L_{66}$ and I_{7} are for 1.t-11e. i, f.
$\mathrm{RFC}_{1}, \mathrm{RFC}_{2}, \mathrm{RFC}_{4}$ - 1 -watt 1 -megohm resistor wound full with No. 32 chameled wire.
RHC_{3} - I-watt I-megohm resistor womed full with No. 18 enameled wire.
CIC coil furms (nen coramie type with high-frequencs iron preferred) manufactured by the (ambridge Thermionic Corpo, 546 Concord Ive., Cambridge, Dass.
tions reeeiver. The slug and padder settings should be recheeked, peaking the r.f. grid coil at 145 Mc ., and the mixer qrid coil at 147 Mc . for uniform response aeross the band. The mixer and i.f. amplifier plate coils can be patked for maximum reepiver noise. A slight readjustment of the oscillator padder condenser may be needed when the converter is installed in its case.

Fig. 20-14-Inder-chansis vitew of the 2 -meter converter. The coils at the hottom of the photo are (left) rif. grid and (risht) miser grid. At the top, same order, are the i.f, amplifier and miver plate coils, the latter is partially obsenred by the small dise ceramics.

A complete compact bandswitching transmitter for mobile work, covering the 75-, 20-, 11-and 10 -mot er bands is shown in Fig. 20-15. The cireuit diagram of the r.f. and control sections apperars in Fig. 20-17. A 5763 miniature tube in the oseillator drives a 2 li26 output stage. An octal tube socker, $/ /_{1}$, set in the frent panel where it can be reached easily, serves as the crystal socket. With tho crystal plugged into prongs 8 and 8 , and prongs 4 and 7 shorted with a jumper, the eircuit is a Tri-tet with the cathode tank adjusted for maximum 2!)-Me.

Fif. 20-15-A handswitching mohile transmitter. From left to right are the control unit, the r.f. unit and the modulator.
output from a 7 -Mc. crystal. With this adjustment, adequate output is obtained also on the other bands. However, if desired, the cireuit can be easily ehanged to a straight pentode circuit for straight-through operation at the arvstal fundamental by plugging the erystal into prongs 4 and 6 and jumpering prongs I, 4 and 8 , thus cutting L_{1} and C_{1} out of the circuit. The octal socket also provides means for feeding a Vlo , through prongs 6 and 8 with prongs 1 and 8 strapped together, to the input of the arystal stage. If desired, the extra socket prongs can be used to bring out power for the VIFO, should one be used.

The oscillator stage is eapacitively coupled to the amplifier. The plate of the latter stage is parallel fed. $R P C_{1}$ is a v.h.f. parasitic suppressor. A three-gang threreposition, rotary switch takes care of the bandswitching, changing roils in both stages and also the output coupling coils. The 10- and H-moter bands are covered with a single set of coils.

Modulatior connections are made at J_{5}.
 to J_{1} of Fig. 20-20, the connertions inelude power supply to the modulator. Connections between the r.f. unit and the power supply are made through J_{6}. This is a 5 -prong plug to avoid any mistake in plugging in the cables. S_{5} is the tilament switeh and it can be used also to control simultanoously power and antenna relays. A cable from a small control box plugs into J_{3}. The control-box wiring alse) is shown in lig. 20-17. Connections to the micro-
phone are included in the r.f. unit to avoid split cabling from the control box. S_{3} is in the cathode circuit of the 2 li26. This perenits eutting off the amplifier while monitoring the oseillator which is still left rumming.

A milliammeter may be plugged in at J_{4} to read cither output-stage rathode current or grid current, depending upon the position of S_{4}. If desired, R_{7} can be a multiplier shunt so that both currents can be measured with a single low-range (5- or 10 -ma.) meter.

Modulator

The rircuit of the modulator is shown in Fig. 20-20. It consisis of a 12 AT 7 dual triode driving a $6 \mathrm{~N}^{7}$ Class-13 stage. The first section of the 12.1T7 is operated as a grounded-grid amplifier so that a carbon microphone may be conveniently fed to the input without a transformer. Microphone voltage is obtained from the drop across R_{1}. A 3 -circuit plug is noeded, as indicated in Fig. 20-17. B_{1} is a small 6 -volt hattery for hias.

Construction

In buikding the r.f. unit, an aluminum chassis, $5 \times 7 \times 2$ inches is fitted with sn aluminum hox of sheet stork that makes the total hoight 6 inches. A strip $41 / 2$ inches wide is bent to fit around the sides and hack of the chassis, overlapping the chassis by $1 / 2$ inch along the bottom edges. The panel, whirh is 6 inches high and 5 inches wide, has $1 / 2$-inch lips bent along the vertical sides down to the chassis lovel. These serve as a means for fastening the sides of the box to the panel. A partition 4 inches high and 5 inches wide, with $1 / 2$-inch lips along the vertical edges, placed approximately 4 inches behind the panel, divides the enclosure into two sections. Approximately half-way up on the panel, the amplifer tuning condenser, C_{14}, and the bandswite h_{1}, S_{1}, are spaced with their shafts $13 / 8$ inchem in from either edge. The antenna tuning condenser,

Fig. 20-16-Wop view of the bandswitrhing mobile transmitter. The oscillator is at the rear und the amplifier and antenna-coupling scetion in front.

Figs, 20.17-Cirenit diagram of the bandewitching mobile transmitter.
$\mathrm{C}_{1}, \mathrm{C}_{6}-100-\mu \mu \mathrm{fd}$, mica.
$\mathrm{C}_{2}, \mathrm{C}, \mathrm{C}, \mathrm{C}-\mathrm{O}, \mathbf{0 1} \mu \mathrm{fd}$, dish reramic.
(3) $1000-\mu \mu$ fal. variable (Nillen 19) 1010).
(:5, $\mathrm{C}_{12},\left(\mathrm{C}_{23}-0.0102-\mu \mathrm{fI}\right.$, mica,
(:7-1).00) $-\mu$ fil dink reramic.
$\mathrm{C}_{8,} \mathrm{C}, 0-0,0001-\mu \mathrm{fd}$, disk reramic.
$\mathrm{C}_{11}-0.0668-\mu \mathrm{fll}$, mical.
C_{14} - $1000-\mu \mu \mathrm{fd}$. variable (Millen 20ll(0))

$\mathrm{R}_{1}-0.1$ mekohm, $1 / 2$ watt.
R_{2} - 0.1 megohm, 1 watt.
R3 - 1000 olams, 10 watts.
K_{4} - 18,000 ohme, 1 watt.
$\mathrm{R}_{5}-50$ ohms, $1 / 2$ watt.
$\mathrm{R}_{6}-20,000$ ohms, 10 watts.
$11_{7}-50 \mathrm{ohms}, 1$ watt.
$\mathrm{L}_{1}-2 \mu \mathrm{~h}$. -16 turns No. $22,1 / 2$ inth diath., $3 / 2$ inch long (B \& W 3004 Miniductor).
$\mathrm{I}_{2}-0.4 \mu \mathrm{~h} .-7$ turns No. $18,{ }^{5}{ }_{\mathrm{a}}$ inch diam., 1 inch long (13 \& II 3006 Miniductor)
I.3- $1.2 \mu \mathrm{~h}$. - 18 turns Xo. $18, \frac{12}{2}$ inch diam., 1 inch long (13 \& 113.3003 Miniductor).
$1.4-18 \mu \mathrm{~h},-64$ turns No, $22,5 / \mathrm{in}$ inh diam., 2 inches long (B \& 113008 Miniductor).
I. $5-0.5$ н h . - 8 turns No. $18,5 / 8$ inch diam., 1 inch
C_{15}, is spated rentrally above. The indicator lamp, I_{r}, is mounted at the center. Along the bottom edge of the panel, from left to right in Fig. 20-15, are the filament switeh, S_{5}, the meter switeh, S_{4}, the control for the oscillator tuning rondenser, (${ }_{3}$, and the crostal sorket. Corresponding holes must be rut in the chassis. The output comnedor, J_{7}, is set in the right side of the box near the front eormer.

After the pancl has been drilled, the first part of the bandswitch should be assembled and mounted. The switch is made up of C'entralalb kit parts. It starts out at the front with the index assembly (Type P123). Section SiC (Type II) should be spaced $1 / 2$ inch back of the index. A second similar switeh sertion should be spaced $1 / 4$ inch back of the first. The contacts of this section are wired together; it
long (13 \& W Miniductor 3006): link 3 turns wound an ontside.
In - $2.4 \mu \mathrm{~h}$. - 19 turns No. 22, 5/ K imeh diam., $11 / 4$ inches lome (B \& 11 300: Miniductur): tink 4 turns of $1 / 2$-inch 1 lin iductor inserted.
I.;-Same as 1.4 ; link 10 turns ${ }^{1}$ geindh Viniduror in. sertes.
I_{1} - 6.3 -volt signal lamp.
J_{1} - Octal tinbe socket.
$\mathrm{A}_{2}-3$-cirenit mieronhone jack.
J_{3} - 1 -prong female connector (Joncs s- $404-118$).
J_ Closed-cirentit jack.
I_{5} - Coprong tulbe socket.
J_{6} - Thin chassis-momenting plug.
J_{7} - Coasial contector (Ampherol Type IR),
$\mathrm{P}_{1}-3$-cercuit mierophone plug.
$\mathrm{P}_{2}-\mathrm{A}$-prong plug connector (Jones P -101-C:CT).
RFC: $1-\mu$ h. r.f. chohe (National R-33).
$1 \mathrm{HF} \mathrm{C}_{2}-2.5-\mathrm{mh}$. r.f. chohe.

$\therefore 2$ - Mierophone-relay switch (included in mirrophone).
Sis - Amplifier rathode swith - - .p.s.t. toggle.
s_{4} - Meter switch - d.p.d.t. toggle.
s_{5} - Fifament switeh - s.p.s.t. togele.
serves only ats a means of terminating the common ends of the output link coils. Fpateod $1 / 4$ inch more toward the rear is a third swith section which also may be of bakelite (Type II). The contacts of this section alsa are wired together and the section serves as a termination and support for the rommon ends of the output tank eoils. Spaced 2 inchas farther to the rear is the fourth switeh section, SlB. This should be a coramic wafer (Type \mathcal{X}).

When the coils have been soldered in plate, the t wo variable condensers may be mounted. Then the panel can be hek temporarily in place while the socket for the 2 li2f is located in the remaining available space. This done, the partition is drilled to fit the switch-assembly rods, ineluding a clearance hole for the shaft. The partition is spaced $3 / 8$ inch from the

Fig. 20-I8-Botton view of the bandswitehing mobile tramsmitter.
last-assembled switeh wafer. On the other side of the partition, spaced $1 / 2$ inch, is another ceramic wafer, Sba. The final section, spaced 11^{\prime} inches bohind $s_{1 a}$ is of bakelite and this serves as a support and termination for the common ends of the oseillator plate coils.
in the left-hand side of the chassis, toward the rear, while the modulator and power connectors, J_{5} and J_{6}, are mounted in the bark edge.

The modulator components are enclosed in a $5 \times 10 \times 3$-inch aluminum chassis, is shown in Fig. 20-19. With the exception of the modulation transformer and the biasing battery, the parts are mounted on a shelf or partition that spans the chassis. An aluminum strap clamps the battory against one side. Half-inch holes near the tubse provide ventilation.

The control unit, included in Fig. 20-15 is enclosed in a National Troe RO sliodd can whose depth has been reduced to a listle over 2 inches. The open end is closed with a piece of aluminum eut to fit and fastened in with small angles. Tabs are provided for dastening to the lip along the lower edge of the instrument panel in the car. The interconnceting cables are shidded in copper braid.

The power-control relay winding connects across Pins 3 and 4 of J_{6}. The ungrounded side of the battery connerts to Pin 5 and plus h.v. to Pin 2.

Fig. 20.20-Cirenit diagram of the mombatar for the handswitahing molife transmitter.
(: $0.01-\mu$ fil. disk ceramic.
th $-8-\mu \mathrm{ffl}$. 450 -volt electrolytic.
(3 - $20-\mu$ fd. 25 -volt electrolytie.
(.4-0.00)- $-\mathbf{f d}$. disk ceranic.
$\mathrm{R}_{1}-470$ ohms, 1 watt.
$\mathrm{R}_{2}-22,000$ ohms, 1 watt.
$11_{3}-0.5$-megohm potentioneter.
$R_{4}-1500$ ohnss, $1 / 2$ watt.
Rs - 4700 ohms, 1 watt.
$\$_{1}-6$-volt dry battery.
'I'i-Interstage transformer, $1: 2$ ration ('Thordarson ' 1 '20 Al 6).
'I's - Modulation tramsormer. I'ri.: 10.1000 ohens plate to plate. Sere: $\mathbf{3} 000$ olms. (Stameor A 38.5).

The miniature oseillator tube is plated so that it will not interfere with mounting C_{3} underneath the chassis. $R F^{\prime} C_{2}$ is phaced alongside the $21: 26$ and $R P^{\prime} C_{1}$ is suspended betwen the plate cap and the top of RF' 2 . The control ronnector, J_{3}, and the meter jack, J_{4}, are sot

Pif. 20-I9 - Inside view of the modulator for the handswitching moljile transmitter.

Adjustment

The transmitter will operate satisfactorily with anysuply delivering 300 to 500 volts. Naturally, the power output will be eommensurete. With a 300 -volt supply, the total current, incllading that of the modulator, and with the output stage loaded to about 55 mat., will run approximately. 90 ma . and up to 125 ma . with modulation. it 450 volts, the total current will be near 130 ma . increasing to 170 mat. under modulation, the output-stage cathode current rumning about, 80 ma . fully loaded. The output stage should operate properly with a grid current of 0.5 to 2 ma . If it exereds this value the outpat cireuit of the oscillator should be detuned to limit the grid current. The audio control should be preset to give adecquate modulation.

In all cases, the output stage operates as a straight amplifier. For 27-29-Mc. output, a erystal in the $7-\mathrm{M}$ (e. region is required, and the output cireait of the oscillator is taned to the fourth harmonic.

Mobile Gear with Quick-Heating Filaments for 50 and 144 Mc .

A worth-while saving in battery drain can be made by using filament type tubes in the mobile station, arranging the control circuits so that the filament voltage is applied simultaneously with the starting of the generator or vibrator supply. The mobile transmitters shown in Figs. 20-21 to 20-29 combine operation on 50 and 14.4 Me. They use Hytron instant-heating filament tubes throughout, All the neerssary control and power-supply circuits are given in the schematie diagrams.

Fig. 20-21 shows the threr units. It the left is the $144-$ Me, transmitter, with the 50-Mc, rig at the right. The modulator, shown between them, may be used with either unit. By means of suitable interconnecting cables, connections for which are shown in the schematie diagrams, it is possible to seleet either band by operation of a single switch at the control position, Operation thereafter is controlled entirely by the push-to-talk switeh on the microphone.

I3oth units use Valpey trpe C.II-5 erystals in the 2t-27-Me. range, with a 2 L30 Tri-tet oscillator doubling to 48-54. Mc, The oscillatordoubler drives a Itytron 5516 amplifier directly in the 50 - Me, transmitter. A Type 5812 tripler drives the 551 (if final in the $144-\mathrm{Mc}$, rig. The modulator uses two 2 li30s driven directly by a carbon microphone. Coaxial output fittings are provided for antenna connection, and a series-tuned antenna coupling circuit is included in each unit. Note that the jacks for metering purposes are recessed in back of the panels, to prevent contact with the high voltage, a danger spot in many mobile installations.

The 50-Mc. R.F. Section

The $50-$ Mc. r.f, unit, F'igs 20-22, 20-23, and $20-24$, is built on an aluminum chassis 4 inches square and 2 inches high. The panel is 4 inches square, with a half-inch lip, folded over across the bottom for fastening to the
chassis. Arrangement of the parts is obvious from the photographs. It will be seen that the sereen dropping resistor, R_{2}, is a lower value in this unit than in the 14t-Me. one. More oscillator power was required, as the final stage is driven directly, and the value of the sereen resistor is a good means of controlling oseillator output.

No nentralization of the final was reguired, but a slight regenerative tendency at some condenser settings was correeted by the insertion of R_{5}, a 22 -ohm resistor, at the grid terminal of the 5516 .

The 144-Mc. Portion

The 2-meter r.f. section is built on a standard $2 \times 5 \times 7$-inch chassis, with a 6×7-inch

> Typical Operating Conditions in the 50 - and 144 -Mc. Mobile Transmitters of Fig. $20-21$ When Used with a 300 -Volt Supply.

Stage	Plate rurrent	Screen l'oltage	$\begin{gathered} \text { ririd } \\ \text { r'urrent } \end{gathered}$
50-Mc. Osc.	30 ma ,	200 v	-
14t-Mc. Osc.	30	175	-
14t-Mc. Tripler	40	150	-
50-Me, Amp.	80	220	3 ma .
14-Mc, Amp.	80	160	3
Modulato:	$50-40$	300	--

panel. The oscillator is similar to the (\mathbf{i}-meter one, exeept as noted above. It is followed by a tripler stage using a 5812 , a tube similar to the 2 E30 but designed specifically for frequency multiplication. The plate cirenit of this tube is inductively coupled to the final grid cireuit, L_{3} and L_{4} being hairpin-shaped loops visible in the bottom view, Fig. 20-27.

Note the method of neutralization used in the final stage. The copper fin (designated as C_{16} in Fig, 20-26) visible in the rear view of the $14 t-M c$. unit is a device occasionally found necessary in tetrode amplifiers. In this

Fig. 20-21-A comphete mobile station for 50 and I It Me, usbus guick-heating filamont tubew. The IHAIle, r.f. section is at the left, the 50-Mc. portion at the riyht, and the modulator in the middle.

Fig. 20.22 - Rear view of the 50-Mc, r.f. seetion, The knob above the chawis is the eathode control. 'The final tanh cirenit is at the upper left, with antema seri-s tuning at the upper right.
case the physinal layout was such that the gridplate capacitance was effectively negative; thus the addition of external capacitance direetly from grid to plate. The position of the fin is adjusted in the normal manner. It was made by hammering ont the cond of a piece of $3 / 16$-inch eopper tubing.

Details Common to Both Units

The Tri-tet circuit is modified for filamenttype tubes by using closely-coupled (interwound) eoils in the filament leads and tuning one of them. This cathode circuit is resonated slighty higher than the frequency marked on the erystal. It may be tuned for maximura grid current indication in the succeding stage. There are various types of crystals for the $2 t-2 \overline{-}-$ Me. range. Intil recently such crystals have been highly artive but very unstable, and great care has been neressary to prevent extreme drift when they were used. Most crustal rompanios now supply harmonict ype crystals that are loss active, but much more stable. The same rathode cireuit will work with either varicty, but more input will have to be run to the oseillator to arhieve the same grid drive when the new type of crystal is used. If the old-type crystals are used the sereen resistor, R_{2}, can be increased to as much as 120,000 ohms, dropping the total cathode current to about 20 ma . At this input the drift, with the unstable type of crystal, is not severe. It amounts to approximately 20 to 30 kc , at 14t Ne., but may be as much as ten times this value if the oscillator is not operated correctly. The newer types of crystals show a quick drift of a fow kilocycles at $1+4$. Me., as the plate voltage is applied, but remain fairly steady after the first few seconds.

The cathode-circuit values given are correct for either type of crystal. The cathode coils, $L_{\text {LA }}$ and $L_{\text {IB }}$, are made by winding with two wires simultaneously. A coating of household coment over the windings will hold them togother, giving the coil the appearance of a single winding.

Fig. 20.23 - Schematic diagram of the 50-Me, mobile unit.
$\mathrm{C}_{1}, \mathrm{C}_{4}-50-\mu \mu \mathrm{fl}$. variable (Millen $\left.\mathbf{3} 01: 31\right)$.

$\mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{5}, \mathrm{C}_{10}-470$ - $\mu \mathrm{ffl}$, mica.
C_{8} - $22-\mu \mathrm{ff}$, mita or ceramic.
$\mathrm{l}_{1}-0.1$ megohm $1 / 2$ watt.
$\mathrm{k}_{2}-39.01010$ olmm, 1 watt.
R_{3} - 100 ohms, 站 watt.
$\mathrm{R}_{4}-15,(010$ ohturs, $1 / 2$ watt.
$\mathrm{R}_{5}-22$ ohms, $1 / \mathrm{S}_{2}$ natt.
$\mathrm{R}_{6}-8000$ ohms, 2 watts.
1.A, Lab-Interwound coils, each 12 turns No. 18 enamel, $3 / \varepsilon$-inch diameter.
$1.2-7$ lurns Vo. 18 timned, $1 / 2$-inch diameter, $7 / 8 \mathrm{in} \cdot \mathrm{h}$ long (\mathbf{B} \& 14 Miniductor, Vo. 3(N)2).
L_{3} - 8 turns No, 20 tinned, $1 / 2$-inch diameter, 1 inch long (B \& 11 No, 30012).
$\mathrm{L}_{4}-7$ turns Vo. 20 tinned, $1 / 2$-ineh diameter, 36 imoh long (13 \& V Vo, 3(M)3).
I_{1} - l'ilot lamp assembly with $60-\mathrm{ma}$. bulh,
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Closed-erenit jack.
J_{3} - Coaxial ontput fitting.

$\mathrm{RFC}_{1}, \mathrm{RPC}_{2}-7-\mu \mathrm{h}$, r.f. chohe (Ohmite 7.5 SO$)$).

Fir. 20.24-13ottom view of the $\mathbf{5 0}$. Uc. rig. Note the inter. wound rathode coil at the left.

The Modulator and Control Circuits

The modulator, Figs. 20-28 and 20-2!, is also the power-distribution unit. (ountrol of the power system is by the push-to-talk mierophone button, or the toggle switch, s, bre which the transmitter may be turned on and

Provision is made for metering the grid and plate circuits of the final stages by means of jacks in each rig. An approximate eherk on the final plate currents, sufficient for normal tuning-up purposes, is provided by a 60-ma. pilot lampeonnected in the high-roltage lead to the final plate coil. After a few eomparisons between the bulb brilliance and observed platemeter readingsit will be possible to estimate the plate current fairly closely by this means. The red jewel in front of the lamp, also allows it to serve as a power-on indicator. Off-resonance or no-drive plate current in the 50-Mc. final stage may be safficient to burn out a 60-ma, pilot lamp, so a $1,50-\mathrm{ma}$. bulb may be used during the initialtest phases. Once the rig is adjusted there is little likelihood that the current will expeed 80 ma . or so, which the $60-\mathrm{ma}$. lamp will take in stride.

Fig. 20.25 - Rear view of the 141. Ic. mobile unit. The copper fin ate the side of the final tubse is a neit. tralizing adjustment.

Fig. 20-26 - Schematic diagram of the 141-Mc, r.f. section,
(1 - $50-\mu \mu \mathrm{fd}$. variable (Millen 200.50).
($\mathrm{C}_{2} \mathrm{C}_{3}, \mathrm{C}_{4}-15-\mu \mu \mathrm{fl}$, varialle (Millen 20015).
C.s-()- $\mu \mu \mathrm{fd}$, -per-section butterfly variable (Cardwell EIR-(1-1 F 'S).
(:0 - $3.5-\mu \mu \mathrm{fd}$. variable (Millen 20035).
$\mathrm{C}_{-1}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14}, \mathrm{C}_{15}, \mathrm{Ci}_{15}, \mathrm{C}_{18}, \mathrm{C}_{19}, \mathrm{C}_{20}, \mathrm{C}_{21}$ - $470-\mu \mu \mathrm{fd}$, mica.

C: $10-47-\mu \mu \mathrm{fd}$, miea,
C_{16} - Neutralizing-capacitor platr - ser tmi and Fig. 20-25.
$R_{1}, R_{4}-0.1$ megohm, $1 / 2$ watt.
$R_{2}-82,000$ ohms, $1 / 2$ watt.
$H_{3}-100$ ohnss, $1 / 2$ watt.
$\mathrm{H}_{5}-33,000$ ohms, $1 / 2$ watt.
$\mathrm{I}_{6}-1 . \overline{3}, 000$ ohms, $1 / 2$ watt.
shielded cable can be used between the power sources, B, and the power plug, P_{1}, on the modulator. The wires carrying the filament current and the generator starting current should, of course, be heavy conductors. The cable shield can be used for the common ground, Pin 2 on P_{1}.

If the filament selector switch is located at a distance from the modulator the leads from it to J_{2} should be of wire capable of carrying 2 amperes withont appreciable drop. As indi-
$\mathrm{R}_{7}-22,000$ ohms, 1 watt.
I:IA, LAB - Interwound coils, each 13 turns No. 18 enamel, $3 / 8$-inch diameter.
$\mathrm{L}_{2}-7$ turns No. 18 tinned, $1 / 2$-inch diameter, $7 / 8$ inch long (IS \& W Miniductor No. 3002).
I.3, La- Mairpin loops No. 14 wire, $11 / 4$ inches long, $7 / 8$ inch wide. (See bottom view, Fig. 20.27.)
If - 6 turns No. 14 , e.t., with $3 / 8$-inch space at center, 112 -inch diameter, 1 inch total length.
I. $-11 / 4$ turns Vo. 14 enamel, $3 / 8$-inch diameter.
1_{1} - Pilot-lamp assembly with oll-ma. Walb.
J_{1}, J_{2} - Closed-circuit jack.
Js - Coaxial output fitting.
$\mathrm{P}_{1}-4$-prong male plug (.lones I. 30.4 - Al).
RR $\mathrm{FC}_{1}, \mathrm{Rf} \mathrm{P}^{2}, \mathrm{RFC}_{3}-1,8-\mu \mathrm{h}$, r.f. choke (Ohmite Z -144).
cated in the diagram, there should be 4 -conductor cables from J_{3} to the $50-$ Mc. r.f. section, and from J_{4} to the $144-\mathrm{Mc}$, unit.

The modulator uses a single stage, without a sperech amplifier. Though this necersitates flose talking it makes for economy and simplifies bias problems. It also keeps down powersupply noise (electrical) and car noise (mechanical). With a 300 -volt supply there is adequate audio for modulating the final stage of either rig. Bias is supplied by a 30 -volt hear-

Fig. $20-27$ - Mottom view of the $11+$ - Mc. transmitter. Note the Isairpin lonpos in the tripler-phate and all. plifier-grid circuits. (Sseillator components are at the left, the tripler in the middle, and the amplifier at the right.

Fig. 20-28 - Thottom view of the modulator and power-distribu. tion unit.
ing-aid hatery, which should be good for two yrats or more of ordinary use.

Testing

Oparation of this equipment is similar to that of any transmitler using tet rode tubes,

Fig. 20 -29 - Sehematic diadram of the modulator unit. Chassis size. 2 by shy anches Connections to the power plug and jackson the unit are shown at A. External power circuits are given in 13.
131 - Bias battery, 30 volts (Everealy No. 430 hearing. aid typer.
J_{1} - Mierophone jack, double-button type.
$\mathrm{J}_{2}, \mathrm{~J}_{3}, \mathrm{~J}_{4}-4$-prong female plug (Jones S-. 301 1-AB).
$\mathrm{P}_{1}-1$-prong rate plag (Jones P-304-A13).
s_{1}-s.p.s.s.t. toggle switeh.
T1 - Microphane transformer (Thordarson T-20A02).
I_{2} - Modulation transformer (Stancor A-3845).
exeept for the removal of filament voltage durings stand-hy periods. A supply voltage of 300 is recommended, though lower or higher voltages maty be used with suitable modification of the cireuit values. No more than 300 volts should be applied to any of the smatler tubes, in any case, and the generator type of supply is recommended.

Bonch testing can be done with an a.c. supply, though there will be some hum in the modulation. Operation should be cherked, startiag with the oscillator, with plate voltage applied to this stage only until it is running properle. An insulated rod, or an empty 'phone plug, wan be inserted in the amplifier plate jack to permit tuning the exciter portion without damaging the final tube. The accompanying tahle shows the approximate voltages and currents that will result from use of a 300 -volt supple, when the rigs are properly tuned. All controls except the final plate and antemmat eoupling should be adjusted for maximum final grid current.

The sntenna coupling circuit shown will permit the use of almost any eonaial-line-fed antenna system. The proper method of adjust mont is to set the coupling at the boosest ralue that will permit the proper plate current to be drawn when the serios comdenser is tuned for plate current peak. If the system is properiy funed there will be little, if any, change in the position of the finat plate tuning for minimum plate current, with and without the antenna connected to the coasial output litting.

Conclusion

Because the form factor of the mobile installation will be different with almost evory car, no particular case or mounting is shown. The designs merely show practical parts arrangements and electrical values, leaving the shape and placement of the units to the individual constructor.

Mobile Power Supply

I3y far the majority of amateur mobile installations depend upon the car storage bat tery as the source of power. The tube types usedin equipment are chosen so that the filaments or heaters may be operated directly from the battery. lligh voltage may be obtained from a supply of the vibrator-transformer-rectifier type or from a small motor-generator operating from the hattery.

Filaments

Becouse tubes with directly-heated cathodes (filament-type tubos) have the advantage that they can he turned off during receiving periods and thoroby reduce the average load on the battery, they are preferred by some for transmitter applications, However, the choice of types with direct heating is limited, especially among those for 6 -volt operation, and the saving may not always be as great ats anticipated, beratose direetly-heated tubes may require greater filament power than those of equivalent rating with indirectly-heated cathodes. In most cases, the power required for transmitter filaments will be quite small compared to the total power consumed.

Plate Power

Under steady running conditions, the vi-brator-transformer-reatifier system and the motor-gencrator-type plate supply operate with approximately the same efficiency. llowever, for the same power, the motor-generator's overall efficience may be somewhat lower because it draws a heavier starting current. On the other hand, the output of the generator requires less filtering and sometimes trouble is experienced in eliminating interference from the vibrator.

Mobile Power Considerations

Since the car storage battery is a low-voltage souree, this means that the current drawn from the battery for even a moderate amount of power will be large. Therefore, it is imporbant that the resistance of the $(i$-volt cireuit be held to a minimum be the use of heaver conductors, no longer thatin neressary, and good solid connections. A heavedaty relay should be used in the line betwern the battery and the plato-powor unit. An ordinary toggle switch, located in any conveniont position, may then be used for the power control. A socond rolay may sometimes be advisable for switching the filaments. If the power unit must be located at some distance from the battery
(in the trunk, for instaner) the 6-vol cable should be of the heavy military type.

A complete mobile installation may draw 30 to 40 amperes or more from the 6 -volt battery. This requires a considerably inereased demand from the car's battery-charging generator. The voltage-regulator systems on cars of recont yoars will take care of a moderate increase in domand if the car is driventair distances regularly at a speed great enough to ensure maximum charging rate. However, if nuch of the driving is in urban areas at slow speed, or at night, it may be neeessary to modity the charging system. Special conmu-nications-type generators, such as those used in polico-car installations, are designed to charge at a high rate at slow engine speeds. The charging rate of the standard system can be increased within limits by tightening up on the voltage-regulator spring. This should be done with cation, however, checking for excessive generator temperature or aboormal sparking at the commutator. The average car gencrator hats a rating of 35 amperes, but it mat be possible to adjust the regulator so that the gencrator will at least hold even with the transmitter, receiver, lights, heater, etc., all operating at the same time.

Another scheme that has been used to increase generator output at slow driving speeds is to derrease slightly the diameter of the generator pulley. This means, of course, that the generator will be running above normal at high driving speeds. Some generators will not stand the higher speed without damase.

If higher transmitter power is used, it may be neressary to install an a.e. charging system. In this sytem, the generator delivers ase and works into a rectifier. A charging rate of 75 amperes is easily ohtained. Conmutator trouble often experienced with d.c. generntors at high current is avoided, but the cost of such a system is rather high.

Some mobile operators prefer to use a separate battory for the radio equipment. such a system can be arranged with a switch that cuts the auxiliary battory in parallel with the can battery for charging at times when the car battery is lighty loaded. The anxiliary battery cean also be charged at home when not in use.

A tip: many mobile operators mate a habit of earrying a pair of heavy eables five or six feet long, fitted with clips to make a connection to the battery of another car it: case the operator's battery has been allowed 10 run too far down for starting.

Mobile Antennas

Most mobile antemm systems are basically of the quarter-wave type, the car body serving as a ground plane. Exeeptions are the half-wave systems sometimes used for $50-$ and 114-Mc, operation. At 29 Mc , a simple quarter-wave
vertical whip (approximately 8 feet) is feasible for mounting on a car. If the distance between the transmitter and the base of the antemma is short, such ant antenna can be fed simply as shown in lig. 20-30A, the condenser tuning out

Fig. 20-30 - At 28 Mc. an 8-ft. whip can be coupled by a simple link if the antenna is close to the transmitter, or otherwise by a coaxial cable.
the reactance of the coupling link. If the line must be over a foot or so, it is best to ford the antenna with coaxial cable, as shown at 13. Fift y-t wo-ohm cable provides a reasonathle mateh, but a more aceurate match ean be ohtained by using two sections of $73-$ ohm cable in parallel.

4-MC. OPERATION

A quarter-wave system for lower frequencies usually is simulated by the addition of loading inductance and eaparitance to the 10 -moter whip to make the system resonant at the oprating frequeney, although mechanical eonsiderations sometimes may make it neeessary to use a radiator shorter than 8 feet.

The approximate theoretical equivalent of a very short antonna is shown in Fig. 20)-31A. R represents essentially the radiation resistance which is in the vicinity of 0.5 ohm for an 8 -ft. whip at 4 Mc , while C is the capacitance of the antenta which may be determined approximately from:

$$
C_{\mathrm{a}}=\frac{17 L}{\left[\left(\log _{\mathrm{e}} \frac{2+1}{D}\right)-1\right]\left[1-\left(\frac{F L}{2+6}\right)^{2}\right]}
$$

where
$C_{\mathrm{a}}=$ capacitane of antemna in $\mu \mu \mathrm{fol}$.
$L_{\text {. }}=$ antemma hoight in feet
I) $=$ diametor of radiator in inches
$F^{\prime}=$ operating frequency in Mc.

$$
\log _{\mathrm{e}} \frac{24 L}{D}=2.3 \log _{10} \frac{24 L}{D}
$$

(A)

(B)

Fig. 20-31 - A - Fquivalent circuit of short antenna without loading. B - Equivalent circuit with loading evil.

Fig. 20-32 shows approximate capacitances for various sizes of conductor and lengths.

From the circuit of Fig. 20-31A, it is seen that any current flowing through R must also flow through the reactance of (". The eapacitance of an 8 -ft. whip averages about $2 \mathbf{2}^{5}$ uffd., reprewenting a eapacitive reartanee of about 2000 ohms at 4 Me. This reartanere ran be climinated be adding a loading coil in series, as shown in Fig. 2()-31 B . The reactance of the coil must be equal to the reactane of the condenser: in other words, the sustem is tuned to resonaner, leawing only the resistance of the coil in series with the radiation resistance of the antemma.

Loading Coils

Sine the power output of the transmitter is now divided between the antenna and the loading coil in proportion to their resistaneres, maximum power will be delivered to the antemat when the resistance of the loading eooil is made as small as

Fig. 20-32- Graph showing the raparitance of short vertieal antemnas for varions diameterw and lengthe.
possible. Bectuse the resistance of even a good coil may be several times the antemma resistance, it is most important that the ((of the coil be as great as possible. (oils of high () require large diameter, and large combuctor wound in "airwound" fashion. The turns should be spaced approximately the diameter of the conductor and the insulation should be goot. Where "airwound" construction is not meehanically feasible, the form should be of the best low-loss material available, sueh as large-diameter polysturene rod.

Top Capacitive Loading

Sinee the eoil resistanee varies with the inductance of a roil, the resistance can be further redured by dereasing the size of the roil. This can be done if the capacitanere of the antemat above the coil is increased correspondingly to maintain resoname. In addition, such capacitive loading increases the eurrent in the upper part of the antenna from which most of the useful radiation takes place. Some capacitance can be added by inereasing the diameter and length of the antoma, as Fig. 20-32 indicates, but to obtain appreciable increase in capacitance, it is

Fig. 20-R3- Thu top-laaded 4-Mc. antenna used by
 'The roil can be toned by the variable link which ins connected in series with the two halses of the coil.
neressary to add a large capacitive surface at the top of the antennat, or as dose to the top as meehamoally feasible Capacitive "hats," as they are usually called, maty consist of a large metal ball, at cylindrical man or, as shown in Fig. 20-3:3 (Bib). '), where structure of aluminum wire, The caparitance of the latter can be increased by eovrring it with aluminum soreoning, Fig. 20-34 gives the approximate caparitane to be expereded with top-losading devies of various forms and dimensions.

Coil Location

Whofher a top eaparitance is usen or mot, placing the loading coil at the base is rasiest mechanically, hat apperiable increase in effertive radiation ran he ohtained be noving the coil up on the antenna, sine this increases the "urrent in the upper portion of the antemas. (If the coil is romereded at the hase, it should make lit the difference whether the coil is mounted inside or outside of the car. In either case, the coil and its lead to the antemna should be kept well spaced from the car body and the conneeting lead shoudd be short.) Is the roil is raised on the antenna, the capacitance tuning it is reduced, so that more turns must be added to the coil to maintain
resonance. Thus the gain is offiset somewhat by the increased resistance of the coil. If the coil alone were moved to the top of the antenna, only the self-caparitance of the coil would remain and the eoil would become imparactilly lares. lexperienere has shown that the best compromiso is obtained when the cool is placed at about the center of the antemat.

However, if sufliciont top loading caparitance is added, the hest pesition for the roil is at the top of the antenna, directly under the "hat," since the added eapacitance sots a reasenabla. value on coil size. sometimes the "hat" is nate. in the form of a ran enclosing the eoil. But a motal enelosure will lower the () of the eoil atppreciably, undess it is about three times the diameter of the coil. If the diameter of the enclosure is limited for mechanieal reasons, it is much better to use a plastic enclosure to proteret the coil against weather.

Tuning

Since the total resistane of the anterna system is low, it beeomes very aritical in adj:1stment to resonamo, and the power drawn from the transmitter will drop off rapielly as the frequencer is changed either side of the resonant frequencer of the antenna system, requiring rotuning for changes of more than : $\mathrm{ke}^{\text {. }}$. or so in operating freguency. Various schemes have been devised for tuning the loading coil. In addition to the use of closely-spared taps on the coil and a shorting (sip, a variable brass slug or disk tipper is sometimes used (sere Figg. 20-3i5A) (Bib, ${ }^{2}$). Thurns can also be shorted out with a slider arrangenent, as shown at 13 (Bib), ${ }^{3}$). A metal ring, surrounding the eoil, but not in contact with it, can be used to vary the tuning 100 kc or so be moving it up and down along the eoil. 'This arrangement is rketehed at (${ }^{(13 i h),}{ }^{4}$). The physical form of high- (C coils does not lond itself well to any of these deviers, however. In this case, a small variable inductane at the base of the antenna is sometimes used for tuning purposes, Because of the resistatee it introduces, it should be made only large eaough to

Fig. 20-34-Capacitances of spheres, disks and cylinders in free space. 'These values are approximately those to be expected when used with top-loaded whip antennas. The eylinder length is assumed to be equal to its diameter.

Fig. 20 -35- Three methods of varying loading-mil' inductance. In A, a brass slug is moved up or down inside the coil form. A slider contacting the turns of the eoil is shown at B. In C, a copper ring surrounding the coil is moved up or down on a sliding arm. The bakelite tubing prevents contact between the ring and the coil.
cover the desired band of frequencies, being entirely shorted out for the high-frequency end of the range.

Feeding the Loaded Whip

Since the total resistance of the londing emil and antenna is usuatly a matter of 10 ohms or so,

Fig. 20.30- Matching coaxial line to the loaded whip. L_{1} is a coil of about 5μ, for + Nre. The line is tapped on at about $1 \mu \mathrm{~h}$. I:2 is the remular loarling coil, reduced by the amount of indoet. ance in L_{1}.

it is obvious that there will be a very poor mateh of imperdanees if the antemma is feel direetly with roasial cable. In this case, the line must be vary short and of low reatetance and good insulation if appreciable loss is to be avoided. A mateh to coaxial cable can be obtained be the methed shown in lig. 20-36 (3ib. ${ }^{5}$). L_{1} is a coil of about ${ }^{5}$ $\mu \mathrm{h}$. and for a 73 -ohm line, the tap should eome at about $1 \mu \mathrm{~h}$. from the grounded end. The tap should be adjusted for minimum s.w.r. on the line, following the procedure diseussed in the transmission-line ehapter. During the adjustmunt, the system must be kept at resonance by tuning the louding coil, L_{2}.

7- and 14-Mc. Operation

The opration of the antema for 7 and 14 Me. is similar to that deseribed for 4 Me, exerpt that the loading coil will be smaller and the efficioney will be higher. At 14 Me., it may be possible to dispense with the loading coil entirely if the top loading capacitance is made sufficiontly large.

- ANTENNAS FOR 50 AND 144 MC.

A common type of antenna employed for mobile operation on 50 and 144 Mc , is the quarter-wave radiator which is fed with a

Fig. 20.38-Method of feeding quartar-wave mohile antunats with coasial lime. Ci should
 for 28 and 50 . 11 c , work. I_{1} is ant adjustable link.

coaxial line. The antennat, which maty be a flexible telescoping "fish pole," is mounted in any of several places on the car. Quite a good mateh may be obtained by this method with the 50 -ohm eosxial line now available; however, it is well to provide some means of tuning the system, so that all variathles can be taken care of. The simplest tuning arrangement ronsists of a variable condenser conneeted bet wern the low side of the transmitter coupling coil and ground, as shown in lig. 2()-3s. This condenser should have a maximum caparitance of 75 to $100 \mu \mu \mathrm{fd}$. for 50 Mc ., and should be adjusted for maximum loading with the least roupling to the transmitter. Some method of varying the coupling to the transmitter should be provided.

Fig. 20 -37-W:SIC: ${ }^{\circ}$ whitr-harded antenna with matching coil at hase.

The short antenna required for 14 Mc, (approximately 19 inches) promits mounting the antenna on the top of the car. 'This provides good coverage in all directions, the (ar borly adoting as a ground plane. When the antemma is mounter! elsewhere on the ear, it is apt to show quite marked directivity. Bocause of this it is desirable to use the same antenna for both transmitting and recoriving.

Bibliography

${ }^{1}$ Hoherge \& MrConntel, " Leet"s Go Migh Jatt!, $Q \therefore T$, Jan. 14-i2.
2 13+1f, "A Tunable $75-$ Meter Miobile Antunna,' QNT, Ang, 19\%O.
3 Simmors.'" An Easily-Adjusted LowFremurncy Mobile Anterna," QNT, Aug. 19.1.

4 I'ishback, "Erolution of a 75 -Meter I'unable Whip," $Q 心 T$, F'eb., 195:.
s Swatiord, "Improved C'oax Ferd for Low-Frequency Mobile Antennas," $Q S T_{i}$ Dec., 1951.

CHAPTER 21

Measuring Equipment

To eomply with FCC regulations it is neeessary that the amateur station be equipped to make a few relatively simple measurements. For example the regulations require that means be available for cheeking the transmitter frequency to make sure that it is inside the band. The regulations alow impose certain requirements with respect to plate-supply filtering, stability and purity of the transmitted signal, measurement of d.c. plate power input, and
depth of modulation in the case of 'phome transmission.

In many cases all these measurements can be made to a satisfactory degree of areuracy with no more auxiliary equipment than the regular station recoiver. However, a better job usually can be done be buideding and calibeating some relatively simple tost gear. Tow, the progressive amatrur is interestod in instruments as an aid to better performance.

Frequency Measurement

Types of Equipment

Frequency-measuring equipment can be divided into two broad elasses: oscillators of various types generating signals of known frequency that can be compared with the signal whose frequeney is unknown, and adjustable resonant cireuits.

Instruments in the first elassifieation are the more accurate. Two types are commonly used by amateurs, the secondary frequency standard and the heterodyne frequency meter. The secontary frequency standard usually generates a frequency of 100 ke . and employs a circuit that is rich in harmonic output. Is a result, it supplies a serios of frequencies, all multiples of 100 ke , which provide areurate calibration points throughest the communicattions spectrum. The more elaborate instruments of this type indude frequency dividers (multivibrators) to supply intermediate calibration points: a divisur commonly used is 10 , thus signals are generated at intervals of 10 ke . when the fundamental frequenery is 100 ke .

The conventional type of heterodyne frequener moter is simply a variable-frequeney oscillator, The oseillattor usually is designed to cover the lowest freduence bath in which measurements are to be made: measurements then can be made in higher frequence batads be using the harmenic output of the oscillator. Fior example, when the oscillator is set to 3360 ke. its seond harmonic is 7120 ke ., its fourth harmonic is 14,240 ke., and so on. The proper frequency reading is determined by observing the fundamental frequeney of the oseilator and then multiplying bey the number of the harmonir that falls in the desired frequeney range.

In both types of instruments - secondary standard and heterodyne meter - the inherent accuracy is a fixed percentage of the
frequeney at which the measurement is made. The secondary standard is usually the more aterurate, since it can be made crystabeontrolled with attendant high stability. Howeror, it lacks the flexibility of the heterodyne meter in that it ches not in itself provide a means for making measurements between adjaront harmonies of the ostillator or maltivilarator. A third type of instrument uses at socondary standard in eonjunction with a variable oseillator for interpolation. When these are combined in the "additiso" freguency metor ats described later, the result is a frequence moter that has essentially the acouracy of the socondary standard but has the direct measurement feature of the heterodyne meter.

Frequene y-measuring equipment ineorporating uscillators is used in conjunction with at regular receriver. The prowess of measuremont consists of eomparing the sighal from the frequener moter with the sigual whose frequenery is to be measured. Nomoscillating types of frequence moters querate by absorbing some energy from the signal source under measurement, and in conserquence are eatlod "athsorption" frequency meters. They are simply tuncd rireuts, adjustable over the desired frequency range, prosided with some means for indicating when the energy in the eirenit is maximum. Their adecurate is low eompared with the oserillating tepers, but where approximate measurement is sufficiont they have a number of desirable features.

Frequency Measurement with the Receiver

An ordinary remiver has the essential elements needed for frequeney measurement. Its dial readings must be calibrated in terms of frequency, of course, bofore measurements can be made, Manufactured receivers are generally so calibrated; the accuracy of the calibration
will vary with the receiver model, but if the receiver is well made and has good inherent stability, a bandspread dial calibration can be relied upon to within perhaps 0.2 per rent. For most accurate measurement, maximum response in the receiver should be determined by means of a carrior-operated tuning indicator (such as an s-meter), the recciver beat oscillator being turned off, If the recoiver has a crystal filter, it should be set in a fairly "sharp" position to increase the areuraces.

When checking the frequency of your own transmitter, the receiving antenna should be disconnerted so the signal will not overload or "block" the receiver. Alse, the r.f. gain should be reduced as a further precaution against overloading. If the receiver still blocks without an antenna the frequency may be checked by turning off the power amplifier and tuning in the oscillator alone. It is diflicult to avoid blocking under almost any eonditions with a regenerative recoiver, and so this trpe is not very suitable for checking the frequency of one's own transmitter.

- THE SECONDARY FREQUENCY STANDARD

The most practical type of secondary standard for amateur use is a $100-\mathrm{ke}$. crestal oscillator. It is very simple to build and it harmonies will mark the edges of the amateur bands to a high degree of accuracy. A series of such "marker" signals at the band edges is all that is required, from the standpoint of making sure that the transmitter frequency is inside the band on which it is supposed to be working,

Danufacturers of $100-\mathrm{ke}$. arystals usually supply circuit information for their particular erystals. The rircuit given in Fig. 21-1 is representative, and will generate usable harmonics up to 30 Me, or so. The variable condenser, ('y, provides a means for adjusting the frequency to exactly 100 kc . IIarmonic out put is taken from the circuit through a small con-

Fig. 21-1-Cirenit for eryatal-emotrolled frequency standard. Tuhes such as the 6Sh $7,65117,6 \mathrm{AL} 6$, etc., are suitalle.
$\mathrm{C}_{1}-50-\mu \mu \mathrm{fd}$, variable.
$\mathrm{C}_{2}-150-\mu \mu \mathrm{fd}$ mica.
C_{3} - $10.0022-\mu \mathrm{fl}$. mica.
$\mathrm{C}_{4}-0.01-\mu \mathrm{fd}$, paper.
$\mathrm{C}_{5}-22 . \mu \mu \mathrm{fl}$. nica.
R_{1} - $0.4 \approx$ megohm, $1 / 2$ watt .
R_{2} - 1000 ohms, $1 / 2$ watt.
$\mathrm{R}_{3}-0.1$ megohm, $1 / 2$ watt.
R_{4} - 0.15 meg him, $1 / 2$ watt .

WWV SCHEDULES

Standard radio and andio frequencies are broadeast continuously from W WV, the station of the (ientral Radio Propatation lamoratory, National Bureau of Standards, Washinpton, 1). (.., on the frollowing frequencies:

Mc.	Power (bic.)	Audio Fiept. (cwles
2.5	0.7	1, 410 or 6(9)
5.0	8.0	1, 44(1) or 6(1)
10.0	9.0	1, 414 or $6(x)$
15.0	9.0	1, 410) or 60 (0)
211.0	8.5	1, 4110 or 60\%
2.0	0.1	1,410 or 610
300	0.1	1
35.0	0.1	1

The 1 -e.p.s. modulation is a 0.005 -second pulse, the beginning of which marks the beginning of each second to an areurary of one part in $1,000,000$. The pulse is omittod on the 50th seeond of every minute.

The 110 - and 600-cycle standard andie fre. guencien are transmitted in alternative fiveminutc perionds, beginning with ooll e,p,s, in the first five-minute jeriod of each hour.
'The accuracy of the radis and audie frequencies is within one part in $\mathbf{0 0 , 0 0 0 , 0 0 0 \text { . 'The }}$ audin frequencies are interrupted at presisely one mimute before each home and earh tive minutes thereafter (59) minute. I minutes past hour, ete.); they are reinmed in preciselv one minute. Huring caeh silent interval the time (in CMI') is given in telegraphie code and ins ES'' by voice.

An annonneement of radio propagation conditions is broadcast in code at 19 and 19 m mutes past the hour. The letters transmitted have the following signifieance:
\mathbf{W} - lonospheric disturbance in progress or expected.
U - Cnstable eonditions expected,
N - Mo warning.
denser, C_{5}. There are no particular constructional points to be observed in buildinger such a unit. Power for the tube heater and pate may be taken from the supply in the receiver with which the unit is to be used. The plate voltage is not critical, but it is recommended that it be taken from a VIR-150 regulator if the receiver is equipped with one.

Sufficient signal strength usually will be secured if a wire is run between the output terminal connected to C_{5} and the antenna post on the receiver. At the lower frequencies a metallic connection may not be necessary,

Adjusting to Frequency

The frequency can be adjusted exactly to 100 ke , by making use of the WWV ransmissions tabulated in this chapter. Select the frequence that gives a good signal at your location at the time of day most conventent. Tune in the WWV signal with the receiver b.f.o. off and wait for the period during which the modulation is absent. Then switef on the $100-\mathrm{ke}$. oscillator and adjust its frequeney, by means of C_{1}, until its harmonic is in zero beat with WWV. The exact setting is earily found by observing the slow pulsation in background noise as the harmonic comes close to zero beat, and adjusting to where the pulsation disappears or oceurs at a very slow rate. The pulsa-
tions can be observed even more radily bes switching on the receiver's b.f.o., after approximate zero beat has been secured, and observing the rise and fall in intensity (not fre(quener) of the beat tone. For best results the WW' signal and the signal from the $100-\mathrm{ke}$. oseillator should be about the same strength. It is advisable not to try to set the $100-\mathrm{ke}$. oscillator when the WWY signal is modulated, sinee it is difirult to tell whether the harmonic is bring adjusted to zero beat with the earrier or with ome of the sidethands.

"Marker' Frequencies

Identification of the $100-\mathrm{ke}$. hatrmonies is usually mot difficalt in or near the amateur bands beeduse the normal activity in those hands will show which loo-ke. harmonics define the band limits. In other regions harmonies can be identified her rounting them off from one whose frequency is known. The frequeney of a given harmonic can often be identified be comparing it with a commereial or government station of known frequency oprating in the vicinity. Aternatively, a "marker" erystal can be used. A favorite frequeney for such a marker is 1000 ke. Harmonics of a 1000 -ke, oseillat or are easily identified on the averagererever because they are faime widely spared, and one the reerever sotting for a multiple of 1000 ke . is determinod it is an easy matter to count off the 100-ke. points betwern. Other marker frequencies can of course be used - for example, a frepuency near 2000 ke , which is in the range of crestals, available for amateur use. The cireuit given in IHg. 21-1 will work satisfactorily with such arystals, so the marker points ran be determined simply by inserting a suitable erystal.

THE HETERODYNE FREQUENCY METER

The basis of the heterodyne frequency meter is a completely-shielded oscillator with a procise frequeney calibration. The oscillator must be so designed and constructed that it can be accurately calibrated and will retain its calibration over long periods of time.

The oscillator used in the frequency metor must be very stable. Mechanical comsiderations are most important in its construetion. No matter how good the instrument may be electrically, its aceuracy canmot be depended upon if the mechanieal construction is flimsy. Inherent frequency stability can be improvid by avoiding the use of phenolic compounds and thermoplastias (bakelite, polstyrene, etc.) in the oscillator circuit, employing only high-grate coramics instead. Plug-in eoils ordinarily are not areeptable; instead, a solidlybuilt and firmly-mounted tuned eircuit should be permanently installed. The oseillator panel and chassis should be as rigid as possible.

To be usable over a wide frequeney range the heterodyne frequency meter must have strong harmonir output. A suitable cireuit, including a harmonic amplifier, is shown in Fig. 21-2. The meehanieal construetion should parallel that of the VFOs shown in the transmitting chapter. In the coscillator cireuit, an adjustable padding condenser. C_{2}, is provided so that the tuning range ran be set to cover whichever band is selected for the fundamental frequeney. In addition, it may be nemssary to adjust the coil inductance slightly in order to make the range cover as much as possible of the tuning dial.

Fig. 2I-2 - Heterodyne frequency meter with harmonic implifier.

C: $100-\mu \mu \mathrm{fl}$, variable (tuning),
C: 2 - ($10 \cdot \mu \mu \mathrm{fl}$. variable (land-set).
$\mathrm{C}_{3}-220-\mu \mu \mathrm{fl}$. vilver miea (padder).

IR2-II, (0)O ohms. I watt.
$1 R_{4}-330$ ohnts. I watt.
$R_{5}-2.3,000-o h_{i n}$ potrontionneter.
L_{1} - For 3500 (10) 0 he. fundamental: 18 turns No. 18 on 1 -inch form, length $11 / 2$ inches. Cathode tal

Bturns from ground end.
For 1:50-2000 he. fundamental: 36 turns No, 20 d.e.e. close-wound on I-inch form. Cathode tap ${ }^{10}$ turn- from around end.
I.2, I. ${ }_{3}$.n-mh. r.f. rhoke.
$\mathrm{I}_{64}=\geq 1$ lurns Xo. I\& enam. Flose-wound on $1 / 4$-inch form.
I.5-II turns No. 18 enam. close-wound on $1 / 4$-inch form.
L. 6 - 2 turns No. 16 spaced $1 / 2$ inch, diameter $1 / 4$ inch.
$\mathrm{S}_{1}-4$-position 1 -pole ceramic wafer switeh.

Although the oscillator alone will give satisfactory output in the lower-freguency amateur bands, better results at 28 Mr. and higher are obtained be using the 6.1 ' 7 harmonis amplifier. The GAC7 plate circuit is broadly tuncd by means of swithed eoil resonating, with the circuit capacitances, at 144,50 and 28 Mc. A ratio-frequency choke is comerted to the fourth switch position: this gives ample signal strength at 14 Ne. and lower frequencies. Potentiometer R_{5} in the output circuit makes it possible to reduce the strength of the signal from the frequency meter to the value desired for measurement purposes.

The various amateur bands are covered by the following harmonies: 3.5-4 Mc., fundamental; 7-7.3 Me., 2nd harmonic; 14-14.4 Me., th: 26.96-27.23 Mc., 7th; 28-29.7 Me., 8th: 50-54 Me., 14 th; 144-148 Me., 40th. At lower frequencies a short length of wire connected to the output terminal will give ample signal strength under average conditions, but in the v.h.f. range eloser coupling - such as running the wire in close proximity to the receiving antenna lead, or actually connecting it to the antenna post through a small fixed condenser - may be necessary to get a good signal.

Calibration

The heterodyne frequency meter maty be calibrated against the harmonies of a $100-\mathrm{ke}$. serondary standard of the type described in the preceding section, using a receiver as an auxiliary. For example, suppose the oscillator fundamental range is $3.5-4$ Mre. Then if the receiver is adjusted to piek up the fifth harmonic of the oscillator (17.5 to 20 ME .) and the harmonic is beat against $100-\mathrm{ke}$. points from the erystal oscillator in that range, $100-\mathrm{ke}$.

Fig. 21-3-Additive frequency meter with self-rontained power supply. The small knobs are for correction of drift so that both the $100-\mathrm{ke}$. crystal oscillator and VFO can be set to exact frequency. Dial calibration is in 1000 -cycle intervals. This unit can be used for highaccuracy frequency measurement at all frequencics from 100 kc . through 30 Mc .
intervals on the fifth harmonic will give 20-ke. intervals on the fundamental. With a straightline capacitance condenser at C_{1}, the relationship between dial divisions and frequency is almost linear, and marking off the dial at the proper intervals between actual calibration points will result in a calibration of suficient accuracy.

- interpolation-type frequency METER

13. using a variable-frequency oscillator of restricted tuning range to interpolate between the harmonics generated by a 100-ke. erystal standard, it becomes possible to measure frequency with an accuracy that is more than adequate for all practical purposes. In the frequency meter shown in Figs. 21-3 to 21-6, inclusive, this interpolation is accomplished by modulating the harmonic output of the $100-\mathrm{ke}$. oscillator with the output of a 100 -$150-\mathrm{kc}$. variable oscillator. As in ordinary telephony, the modulation process sets up side frequencies that add algebraically to each harmonic, hence the name "additive frequency meter." The sidebands appear as signals of adjustable frequency between the $100-\mathrm{ke}$. harmonics.

To cover a $100-\mathrm{kc}$, range, the interpolation oscillator need cover only an actual tuning range of 50 kc . This is because both sam and difference frequencies appear. For example, if the $\mathrm{VF}($ is set at 100 ke ., this frequency will add to and subtract from each harmonic of the crystal oscillator. Thus the crystal harmonic at 6900 ke ., when modulated by 100 :e., will produre side frefuencies at 7000 kc . and 6800 ke .; likewise, the crystal harmonic at 7200 ke . will have side frequencies at 7300 and 7100 kc . If the VFO) is set to 150 kc ., the same crystal harmonies will have side frequencies at $70 \overline{50}$ and $6750 \mathrm{kc} .$, and at 7350 and 7050 kc ., respectively. In the latter case the upper side frequency of the $6800-\mathrm{kc}$. harmonic coincides with the lower side frequency of the $7200-\mathrm{ke}$. harmonic, both being at 7050 kc. Hence the same VFO signa!, in tuning from 100 to 150 kc ., covers the range from 7000 to 7050 kc ., and from 7100 to 7050 kc ., simultancously. This occurs between cach pair of $100-\mathrm{kc}$. crystat harmonics throughout the spectrum. Since the side frequencies move in opposite directions when the tuning of the VFO is varied, the interpolation scale is calibrated to read from $0-50 \mathrm{ke}$. (corresponding to varying the actual VFO frequency from 110 to 150 ke .) in one direction, and from $50-100 \mathrm{kc}$. in the opposite direction.

The circuit diagram of the instrument is shown in Fig. 21-4. A double triode is used as a combination VFO-amplifier, the amplifier being of the cathode-follower type to provide good isolation. The output of the amplifier goes through a low-pass filter (C_{13}, C_{14}, C_{15}, L_{2}, L_{3} and R_{7}) to prevent oscillator harmonics

Fig. 21-4- Cirenit diagram of the additive frequency meter.
$\mathrm{C}_{1}-2.5-\mu_{\mu} \mathrm{fI}$, variable (Millen 2002.5) (drift corrector).
$\mathrm{C}_{2}-100-\mu \mu \mathrm{fd}$. variable (Millen 26100) (padder).
$\mathrm{C}_{3}-2.50-\mu \mu \mathrm{fd}$. variable (National SEll- 250) (tuning).
$\mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{23}-0.0022 \mu \mathrm{fd}$ mica.
$\mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}, 19-470-\mu \mu \mathrm{fd}$. mira.
$\mathrm{C}_{8}, \mathrm{C}_{16}, \mathrm{C}_{18}-0.001 \ldots \mathrm{fd}$ mica.
$\mathrm{C}_{9}, \mathrm{C}_{11}, \mathrm{C}_{20}-0.1-\mu \mathrm{fd}$. paper.
$\mathrm{C}_{10}, \mathrm{C}_{12}, \mathrm{C}_{17}, \mathrm{C}_{25}-\mathrm{D} .01$ - $\mu \mathrm{fd}$, paper,
$\mathrm{C}_{13}, \mathrm{C}_{\mathrm{ts}}$ - $\mathbf{6 8 0}-\mu \mu \mathrm{fd}$, mica.
C14-1360- $-\mu \mathrm{ffl}$. mica ($\mathrm{two} 680-\mu \mu \mathrm{fd}$. units in parallel).
$\mathrm{C}_{21}-150-\mu \mathrm{ff}$. mica.
$\mathrm{C}_{22}-50$ - $\mu \mu \mathrm{fd}$, variable (Millen 26050).
$\mathrm{C}_{24}-22-\mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{26}-100-\mu \mathrm{fl}$. mica.
C27-15- $\mu \mu \mathrm{fd}$. variable (Millen 20015).
$\mathrm{C}_{28}, \mathrm{C}_{29}-8 \cdot \mu \mathrm{fd}$. electrolytic, 150 volts.
$R_{1}-4 \overline{4}, 000$ ohms, $1 / 2$ watt.
$\mathrm{K}_{2}, \mathrm{R}_{10}-22,000$ ohms, 1 watt.
$\mathrm{R}_{3}-3300$ ohms, $1 / 2$ watt.
$\mathrm{K}_{4}-2200$ ohms, $1 / 2$ watt.
$\mathrm{R}_{5}, \mathrm{R}_{12}, \mathrm{R}_{14}, \mathrm{R}_{18}-0.17$ megohm, $1 / 2$ watt.
$\mathrm{R}_{6}, \mathrm{R}_{15}, \mathrm{R}_{19}-1000$ ohms $\mathrm{s}, 1 / 2$ watt.
$1 \mathrm{R}_{7}-1500$ ohms, $1 / 2$ watt.
$\mathrm{R}_{8}-2500$ ohms, 10 watts.
$R_{8}-220$ ohims, $1 / 2$ watt.
$\mathrm{R}_{11}-0.22$ megohm, $1 / 2$ watt.
$R_{13}-0.1$ megohm, 1 watt.
$\mathrm{R}_{10}-0.1 \mathrm{megohm}, 1 / 2$ watt.
$\mathrm{R}_{17}-0.15$ mexolim, $1 / 2$ watt.
1.1-Variable from app, 8 to 11 mh , (Millen 65000-35).
$L_{2}, \mathrm{~L}_{3}-2.5 \cdot \mathrm{mh}$. r.f. choke (National 1 l .50).
1.4 - $10 \mu \mathrm{~h}$. (National 1R-60).
$15-100 \mu \mathrm{~h}$. (National R-33).
$1.6-7 \mu \mathrm{~h}$. (Ohmite 2.50).
$1.7-40$ ma. filter chohe.
1 - Pilot-lamp asscmbly.
$\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathbf{S}_{3}, \mathrm{~s}_{4}-\mathbf{S}, \mathrm{p} . \mathrm{s.t}$. toggle.
T_{1} - Power tranaformer, 25.3 earh side c.t. at 50 ma.; 6.3 v , at 2.5 amp .; 5 v . at 2 amp . (Thordarson T221830).
from being applied to the 65.17 modulator or mixer tube. The output of the 6 SH 7100 kc . crystal oscillator is fed through a harmonic amplifier (one 6SL7 section) before also being applied to the mixer tube, the purpose being to level off the harmonic strength throughout the spectrum as much as possible. The plate circuit of the mixer is likewise adjusted so that the output signal is as uniform in strength as possible up to 30 Mc . The spare triode sertion of the 6SL7 is used as an auxiliary crystal

Fig. 21-5-Chassis view of the additive frequency meter. Immediately in front of the power transformer are the rectifier and voltage-regulator tubes. The 100 kc . crystal, mounted in a metal-tube shell (James Knights), is just to the right of the power transformer. The tubes along the rear edge, from left to right, are the $6: 51 /$. 6SL7, and 6SA . The marker crystal is immediately in front of the 6SL7. The VFO coil is at the lower right, with the $6 \mathrm{~S} \times 7$ just behind it. The shaft for the oscillator padder projects through the chassis to the right of the tuning condenser.
oscillator so that a marker crystal ran be used for identification of the $100-\mathrm{kc}$. crystal harmonics.

Calibration

To set up the instrument, it is necessary first to adjust the VFO range exartly to $100-$

Fig. 21-6- Bottom view of the frequency meter. Parts can be identified t: referener to the tubes with which they are associated (see top vir'w).
150 ke . For this purpose the 6SL 7 and 6S.A7 should be out of their sookets. On any receiver eapable of tuning to 600 kc ., tune in the 6 th harmonie of the $100-\mathrm{ke}$. crystal oscillator. Connect a wire from point X to the antenna post of the rereiver. Turn the VFO condenser over its whole range and note the number of harmonies heard at $600 \mathrm{ke} ., C_{2}$ being at about 75 per cent of full scale. Adjust L_{1}, and C_{2} if necessary, until there are just three such harmonics, one at earh end of the sable and one between. This adjusts the oscillator to the proper range, by making the th harmonic of the high end and the 6th harmonic of the low end fall af 600 ke .

After noting the strength of the oscillator harmonies, shut off the 100-ke, erystal oscillator and move the receiver antenna connertion from X to the No, 3 grid connertion (output of the harmonic filter) on the 6SA7 soeket. It should be impossible to hear any harmonic output from the oscillator when the tuning is varied. Ther insert the 6SA7 in its sorkot, allow it to warm up, and again tune the VFO over its range. If harmonics now become audible the osseillator signal is too strong, It may be reduced by increasing the capacitance at C_{8} as much as is necessary to make the harmonies disappear.

Calibration is best carried out in a series of steps. Kemove the $6 \mathbb{A} A 7$ and $6 s L 27$, connere the receiver antenna post to point X, and tune in the 2000 ke. harmonie from the $100-\mathrm{kc}$. erystal oscillator. Set the VFO at 100 kc , and bring its harmonic to zero beat with the erystal harmonic. Mark this point " 0 " on the dial. Then tune the recuiver to the 21 st crystal harmonie (2100 kr .) and slowly tune the VFO higher in frequency until its harmonic is at zero beat with the crystal harmonic. At this point the 20th harmonic of the VFO coincides with the 21 st harmonic of the crystal, and so the VFO
frequency is $2100 / 20=105 \mathrm{kc}$. Mark this point " 5 " on the scale, more the receiver to 2200 ke , and increase the VFO frequency until its 20 th harmonic roincides with 2200 ke , giving the $10-$ ke , point. Continue until the scale is calibrated at earh 5 -kc. point up to 50 kc .

The next step is to calibrate at 2-kc. intervals, and for this purpose it is necessary to increase the strensth of the harmonies. The marker oscillator can be used as an amplifier, by removing the crystal and making the connections shown in Fig. 21-7A. Clip loads are satisfactory. It is necessary to replace the $6 s \mathrm{~L} 7$, but do not put the $6 \mathrm{~S} \cdot \mathrm{~A} 7$ in its socket. Tune in the $5000-$ ke. harmonic of the 100 -ke, *rystal osillator, set the VFO to 100 ke , by beating its 50 th harmonic with the $5000-\mathrm{ke}$. harmonic of the crystal, and proceed up through the spectrum one 100 -ke. point at a time, using the same procedure as before. The VFO harmonics will tune quite rapidly, and the previously-determined 5 -ke, marks will ensure that the calibration points do not get out of proper order.

The impromptu harmonic amplifier alone will not usually give enough output to repeat this process with the 100 th harmonic, by means of which $1-\mathrm{ke}$. points are obtained. The necessary harmonies can be generated by using a crystal rectifier as shown in Fig. 21-7B. In this aise the lead from the receiver antenna should be brought near, but not connected co, the harmonic amplifier. The erystal acts as a mixer and introduces many secondary beats, but if the coupling to the receiver is loose enongh the desired harmonies will be the strongest and can rasily be identified, particularly since the $2-k e$. points already plotted will practically show where they should fall. There should alio be no trouble in hearing the $100-\mathrm{ke}$. crystal harmonics from 10 to 15 Mc , if the receiver antenna lead is near the crystal oscillator. The calibration points should be plotted on the scale as accurately as possible.

IBy use of the drift-corrector condensers the accuracy of the instrument is practically the

Fig. 21.7-Temporary connections for amplifying VFO harmonics when calibrating. The marker-oscillator tube is used with the cryetal removed.
accuracy with which the dial can le read, Interpolation to 100 eycles is readily posisible. The crystal-oscillator frequency can be checked against WWV and reset when acourate measurements are to be made. The Vfor is easily correcterl by setting the dial to the $50-\mathrm{ke}$, point and adjusting the drift-corrector condenser to bring the two side frequencies into exact zero beat. Without drift corrertion the instrument is reliable to the nearest kilosevele, with average construction and good compo-

Fig. 2I-8-Absorption frequency meter and a typical application. The meter consists simply of the resonant circuit LC, When coupled to an amplifier or oscillator the ube plate current will rise when the frequency meter is tuned to resonance. The frequency may then be read from a calibrated condenser dial. Suitable constants for 1 , and C may lee taken from Fig, 16-10, I flashlight lamp may be eonnected in series at 1 to give a visual indication, but it decreases the selectivity of the instrument and makes it nevessary to use rather close coupling to the circuit being measiared.
nents, at frequencies as high as 30 megacyeles.
(A complete description of this system is given in May, 1949, (SS'T.)

AbSORPTION FREQUENCY METERS

The simplest possible frequency-measuring device is a resonant circuit, tunable over the desired frequency range and having its tuning dial calibrated in terms of frequency. Such a frequency moter operates by extracting a small amount of energy from the osedilating rireuit to be measured, the frequency boing determined bey the taning setting at which the enorge absorption is maximum.

This method is not rapable of as high aceuracy as the beterodrace nothers for ifor reasons: First, the resonathe indieation is relatively "broad" as compared with the zaro beat of a heterodyne; second, the necessarily close coupling between the fredueney meter and the circuit being measured causes some detuning in both eireuits, with the result that the calibration of the frequenermeter circuit depends to some degree on the coupling to the circuit being measured. Nevertheless, an absorption wavemeter is a highly useful
instrmment in the amaterur station. It requires no power supply for its operation, which is a convenience. It also celiminates the confusion that sometimes arises beratuse of the large number of harmonic responses that oceur in making measurements by heterodye methods; a simple tuncd circuit will respond to only one frequencer. This is holpful, for example, in determining the artual output freguence of a frequency multiplier in the transmitter, and climinates the possibility that the multiphere (an be tuned to the wrong harmonic.

When an absorption meter is used for checking a transmitter, the plate current of the tube connected to the circuit being eherked can provide the neressary resonance indication. When the frequency meter is tuned through resonance the plate current will rise, and if the frequency moter is loosely roupled to the tank circuit the plate current will simply wive a slight upward flicker as the meter is tumed through resoname. The greatest aceuraty is serured when the loosest possible roupling is used.

A receiver oscillator may be checked by tuning in a steady signal and heterodyning it to give a beat note as in ordinary e.w. reception. When the frequeney meter is coupled to the oscillator coil and tumed through resonance the beat note will change. Again, the coupling should be made loose enough so that a justpereeptible change in heat note is observed when the moter is tuned through resonance.

An approximate calibration may be ohtained by comparison with a calibrated rereiver. The usual recoiver dial calibration is sufficiontly accurate, A simple osidilator cireuit covoring the same range as the frequeney meter will be useful in calibration. Set the receiver to a given frequency, tune the oscillator to zero beat at the same frequencry, and adjust the frequency meter to resonance with the os-

Fïp. 21.4-A sensitive absorption-type frequency meter with a erystal-detector rectifier and a deremillianmeter indicating circuit. The metar is housed in a separate compartment so that it may he used with othrer measuring deviees, The cabinet and fromt cover are drilled and tapped to aceommendate the monnting sorews for a largesize chart frame: frequeny calibrations are markell on cardboard held in place by the chart frame. A short strip of wood. Arilled to match the coil-form prongs. is used as a rach for the coils. Meterhox comections are shown in lig. 21-20.
cillator as deseribed above＇This gives one ratibration point．When a suffé口ont mumber of surh points has been obtained a graph may he drawn to show frequeney is．dial settings on the frequency meter．

A Sensitive Absorption Frequency Meter

Figm．21－9 to 21－11，inclusive，show ath ab－ sorption frequency moter or＂wavemotro with a erystal－deteotor／milliammetor resto mane indicator that provides a redatively high degree of semsitivity．As shown in Fige 2l－IO，a resonant cireuit is comberterl in sures with a crystal detector and a $0-1$ milliammoter（a mieroammetor wat be substituted fior still greater sensitivityo）．The tank（eril，L_{1} ，serves as the piek－up enil，and the erystal is tapped down on the inductance in order to improve the sensitivity and solectivity of the moter．Plug－in eoils are provided so that the unit covers a frequency range from about 1 magaterele to 165）megacreles．Any type of fixed restal deteretor may be used，but the w．h．t．types are recommonded．The meter box shown at the right in lig．21－9 is the samme unit that is used with the volt－ohm－milliammeter desoribed later in this chapter．

The frequency meter is housedinat $2 \times 4 \times 4-$ inch motal box，the milliammeter being mounted in a separate box of the same size． The eoil soeket is on the top near the front edge，with the tuning condenser just below it inside the ease．This arrangement keeps the tuned－cireuit letads short．A headphone jack is provided for monitoring＇phono transmissions． The unit may be ealibrated as desoribed in the preceding scetion．

A two－or three－foot antennat rod may be added to the unit to permit using the instru－

Fig，2l－10－－（irsuit diagram of the absorption－type fredueney meter．
（ 0_{1}－ $140 \cdot \mu \mu$ fid，variathe（Millen 22 140 ）．
Ci2－0．0101．－$\mu \mathrm{fl}$ ，midget miow．
 imeh diam．， $5 / 8$ ind long， 1 lab $121 / 2$ turns from grounded end．
－4，0－13．5 Whe： 20 turns No． 20 enameled wire， 1.
 grounded embl．
－13．2 11.0 \＄1\％：¿ purns Vo． 20 enameded wire， 1 －inch diam．， 5 佔 inch lang，＂Iap $11 / 2$ turns from grounded end．
－39．8－16．5 Ne．：Ilairpin loop of No．I 4 wire， $1 / 2$－inch spacing， 2 inches long（total length inchuding couds which fit down into the coil－form prongs）． Tap low ine hes from grounded end． All four coils wound on Millen d⿹\zh26灬Ol + coil forms．
J_{1}－A－prong tulye sochet．
J_{2}－Closed－circuit jaek．
I＇－ 1 －prong male plug．
XIAI－＇rype 1N34．

Fia．21－11－A rear view of the absorption－tyme fro－ queney meter．The arystal is wired hetween the ron－ mector phay at the left and the coil sorhet at the top． The meter bropasi condenser is monnted between the phag and the gromided side of the＂phone jach．The variable－rondenser terminals are connerted directly to the coil sonket．
ment for field－strength measurements，The anterna should be comnerted to the top end of the tank coil，L_{I} ．The rod antemna may be undesirabld when the frequencios of individual simultaneously－operating circuits are to be chereded－as in the case of a multistage trans－ mittor with frerfuency multipliers－because the antenna inereases the sensitivety to such an extent that it may be diflicult fo identify the output of a particular cireuit．It may be converient to interconmert the two units by means of a lougt of lamperd or eonsial cable of any reasonable length（up to several hun－ dred feet）when the moter is being used as a field－st rength moasuring deviee．

In addition to the uses mentioned in the preceding section，a meter of this type may be used for final adjustment of neutralization in r．f．amplifiers．Fior this purpose it may be loosely coupled to the plate tank eoil．Nterna－ tively，L_{1} may be remowed and the final－am－ plifier link output terminals eonnected to Prongs 2 and 4 in the coil socket．The latter method tends to rnsure that the piek－up is from the final tank coil only．

LECHER WIRES

At verv－high and ultrahigh frequencies it is possible to determine frequency by actually measuring the length of the waves generated． The measurement is made by observing standing waves on a two－wire parallel trans－ mission line or Lecher wires．Such a line shows pronounced resontance effects，and it is pos－ sible to determine quite arcurately the current loops（points of maximum current）．The phys－ ical distance betwen two conseroutive current loops is equal to one－half wavelength．Thus the wavelength can be read directly in meters （ 39.37 inches $=1$ meter； 0.39 .37 inch $=1 \mathrm{~cm}$ ．），
or in centimeters for the very-short wavelengths.

The Lecher-wire line should be at least a wavelength long - that is, 7 feet or more on 144 Me. - and should be entirely air-insulated except where it is supported at the ends. It may be made of copper tubing or of wires stretehed tightly. The spacing between wires should not exceed about 2 per cent of the shortest wavelength to be measured. The positions of the current loops are found by means of a "shorting bar," which is simply a metal strip or knife edge which can be slid along the line to vary its effective length. The system can be used more conveniently and with greater accuracy if it is built up in permanent fashion and provided with a shorting bar maintained at right angles to the wires (Fig. 21-12). The support mas consist of t wo pieces of "1-by-2" pine fastened together with wood screws to form a "T"-girder, this arrangement being used to minimize bending of the wood when the wires are tightened. I slider holds the shorting bar and arts as a guide to keep the wire spacing constant.

For measuring lengths in the metric system used for wavelength, the supporting beam may be marked off in decimeter (10-centimeter) units. A 10 -centimeter tramsparent srale (obtainable at 5 \& 10 cent stores) may be remented to the slider, extemeling out from the front, so that roadings can be taken to the nearest millimeter. The difference between any two readings gives the half-wavelength directly.

Making Measurements

Let us suppose the frequency of a transmitter is to be moasured. A convenient and fairly sensitive indicator can be made by soldering the ends of a one-turn loop of wire, of about the same diameter as the transmitter tank coil, to a low-current flashlight bulb, then coupling the loop to the tank coil to give a moderately bright glow. A coupling loop should be connerted to the ands of the leecher wires and brought near the tank coil, as shown in Fig. 21-13. Then the shorting bar should be slid along the wires outward from the transnitter until the lamp gives a sharp dip in brightness. This point should be marked and
the shorting bar moved out until aseond dip is obtained. The distanee between the two points will be equal to half the wavelength. If the meas: urement is made in inches, the frequener will be

$$
F_{\mathrm{M} .}=\frac{5905}{\text { length (inches) }}
$$

If the length is measured in meters,

$$
F_{\mathrm{Mc}_{0}}=\frac{150}{\text { length (meters) }}
$$

In checking a superregenerative receiver. the Lecher wires may be smalarly coupled to the recociver coil. In this case the resonance indication may be olbtained by setling the receiver just to the point where the hiss is ohtained, then as the bar is slid along the wires a spot will be found where the reeeiver goos out

Fis, 21-13-Coupling a leether wird aystem to a trans. mitter tanh coil. Typical standing-wane di-n ribution is shown loy the da-hed lime. The dintame I between the positions of the shorting liar at the current hoops equals one-half wavelength.
of oscillation. The distance between two such spots is equal to a half-wavelengeth.

The most arcurate readings result when the loosest possible coupling is used between the line and the tank coil, After taking a preliminary reading to find the regions along the line in which resonance occurs, loosen the coupling until the indications are just discernible and repat the measurement. As the coupling is loosened the resonance points will become sharper, which is a further aid to acecurate determination of the wavelength.

The shorting bar must be kept at right angles to the two wires. A sharp edge on the bar is desirable, since it mot only helps make good contact but also definitely locates the point of contart.

The accuracy with which frequency can be measured by such a system dopende primeipally upon the technique of measurement. Caroful measurement of the exact distanee between two eurrent loops is essential. An
 accurate standard of length is neressary - a good steel tape, for instanee - for all but rough measurements.

Fig. 21.12-One end of a typical Leelher wire system. The fiet at earh end krepp the assembly from tipping ower when in 10.e. The wire is lo, 16 hare solid-coppor antrona wire (harddrawn). The turntureklew are held in 川lare ly a 3 但 \times-imed lewle throngh the anthor bloch. The other ernd of the line, the one connected to the piek -of loop. should be insulated.

Signal Monitoring

Fvery amateur should make provision for cherking the quality of his transmitter's output. This requires that some means be available in the station for reducing the strength of the signal from the transmitter to the point where its characteristies can be examined without danger of false indications from overloading the recoiving equipment.

The simplest mothod of checking the quality of $\mathrm{c} w$. Transmissions is to use the regular station recoiver. If the receiver is a superheterodyne the process may simply be that of reducing the r.f. gain to minimum and tuning to the transmitter frequency, If distant signals are stable and have "pure-d.c." tone in normal reception, then the local transmitter should, too, when the receiver gain is reduced to the point where the reeriver does not overload. If the signal is too strong with the r.f. gain "off," shorting the receiver antenna input terminals may reduce it to suitable proportions, or the mixer circuit in the receiver may be temporarily detuned to arrive at the same desired result.

An alternative method is to set the receiver on the next lower-frequency band than the one in use, then tune the reeciver so that the second harmonic of its oseillator beats with the transmitter signal to produce the intermediate frequency. Higher-order harmonies also may be used for this purpose. With this harmonic method there is ordinarily no danger that the receiver will overload, because the r.f. and miser tuned circuits are so far from resonance with the transmitter frequency. The setting of the tuming dial bears no direct relation to the transmitter frequency under these conditions, sime the oscillator harmonic must maintain a constant difference with the transmitter to produce the i.f. beat.

A phone signal may be monitored in the same way, provided a headset is used for reception. Use of a loudspeaker is not usually practicable because the sound output feeds back to the microphone and causes howling. A crystal detector and headset may also be used for the same purpose, as described in preceding sections. In monitoring a 'phone signal the best plan is to have another person spara into the microphone rather than to
listen to one's own voice. It is difficult to judge quality when speaking and listening at the same time.

MODULATION MONITOR

Fig. 21-14 is the rircuit of a 'phone monitor that can be used both for aural checting and for measuring modulation percentage. When a small r.f. voltage is applied to the input circuit it is reetified by the crystel. With switch S_{1} in the "r.f." position the average value of the rectified current is measured by the 0-1 milliammeter, MA. With the switeh in the "a.f." position, the audio modulation on the signal is transferred through T_{1} to a second rectifier. The average value of the rectified audio is again read by the milliammetor. The circuit constants are chosen so that if the input is adjusted to make the meter read full scale on r.f., the a.f. meter readings will be directly proportional to pereentage of modulation (for voice modulation), 100 per cent modulation being represented by a current of 1 milliampere. Switch S_{2} prevides for reversing the "polarity" of the medulation, giving a qualitative indication of the up- and down-peaks. A headphone jack, J_{1}, is provided for listening to the quality of the modulation. (The percentage modulation cannot be read with 'phones plugged into J_{1}, so the 'phones must be removed when readings are to be taken.)

In constructing such an instrument, care should be used to prevent r.f. pick-up in the audio rectifier circuit. This can be checeked by testing the instrument on an umodulated carrier (which must be sulstantially jum-free); with a full-scale reading when S_{1} is in the "r.f." position, the meter should read zero when S_{1} is switched to "a.f." The values of resistors R_{1} and R_{2} are critical and should be within plus or minus 5 per cent of the recommended values.

A sample of the modulated carrier may be coupled into the instrument through a oneturn link and a length of Twin-Lead, the link being placed within a few inches of the final tank circuit of the transmitter. Tle coupling between the link and final tank coil must be adjusted to give a full-scale r.f. retding, after

Fig. 21.14-Ciranit of direct. reading modulation meter. $\mathrm{C}_{1}, \mathrm{C}_{4}-1000-\mu \mu \mathrm{fd}$, veramic. (\because - $1(10)-\mu$ ffi, variable midget. (.3-12- $-\mu \mu$ fil mica.

C $5-470 \cdot \mu \mu \mathrm{fd}$. nica.
K_{1} - 1 I (K) ohm: $\overline{5} \%$, I watt. H_{2} - 16,000 ohns, $\overline{3} \%$, 1 watt. J_{1} - Closed-circrit jark.
MA - $0-1$ ma., 100 ohms.
RFC- $20 \mu \mathrm{~h}$.
$\mathrm{S}_{1 \mathrm{~A}-\mathrm{B}, \mathrm{S}_{2}-\mathrm{D} . \text {. } \mathrm{d}, \mathrm{t} \text {. toggle. }}$
Ti-Push.pul interstage transformer, l:1 ratio.
C_{2} has been set for maximum reading. Altermatively, a coil that will resonate with C_{2} at the operating frequency may be connected to the input terminals and the instrument located so that a suitable full-seale reading will be obtained.

Besides indicating modulation percentage, the instrument will show carrior shift (as shown by a change in the reading, when modulating, with S_{1} in the "r.f," position) and thus detect nonlinearity in the modulated amplifier.

Measurement of Current, Voltage and Resistance

D. C. Instruments

D.e. ammeters and volt moters are basically identieal instruments, the difference being in the method of comection. An ammeter is connered in series with the rireuit and measures the current flow. A voltmeter indicates the current through a high resistance connerted aross the source to be measured: its catibration is in terms of the voltage drop in the resistance or multiplier.

If a single instrument must be used for moasuring widely-different values of current or volage, it is advisable to purchase one that will read, at about 75 per cent of full scale, the smallest value of current or voltage to be measured. Small currents camot be read with any degree of precision on a high-scale instrument, but the range of al low-seale instrumont ran be extended as desired to take care of larger values. The ranges can be extended by the use of external resistors, connected in series with the instrument in the case of a voltmeter, and in parallel or "shunt" in the ease of an ammeter. lig. 21-15 shows at the left the manner in which a shunt is comnerted to rextend the range of an ammeter and at the right the connertion of a voltmetor multiplier.

To calculate the value of a shunt or multidior it is moressary to know the intermal resistance of the metor itself. If it is desired to extend the range of a voltmeter, the value of resistance which must be added in series is given by the formula

$$
R=R_{\mathrm{n}}(n-1)
$$

where R is the multiplier resistance, R_{m} the resistance of the voltmeter, and n the scate multiplication factor. For example, if the range of a 10 -volt meter is to be extended to 1000 volts, n is equal to $1000 / 10$ or 100 .

If a milliammeter is to be used as a voltmeter, the value of scries resistance can be found by Ohm's Law:

$$
R=\frac{1000 E}{I}
$$

where E is the desired full-scale voltage and I the full-scale reading of the instrument in milliamperes.

To increase the current range of a milliammeter, the resistance of the shunt is

$$
R=\frac{R_{\mathrm{m}}}{n-1}
$$

where the symbols have the same meanings as above.

Homemade milliammeter shunts can be constructed from any of the various special kinds of resistance wire, or from ordinary ropper magnet wire if no resistance wire is available. The Copper Wire 'Table in the data chapter gives the resistance per 1000 feet for variuns sizes of copper wire. After computing the resistance recpuired, determine the smathest wire size that will carry the full-seale current (at 250 circular mils per ampere). Measure off enough wire (pulled tight but not stretched) to provide the required resistance. Accuracy can be checked by causing enough current to flow through the meter to make it read full scale without the shunt; connecting the shunt should then give the correct reading on the new full-scale range.
(A)

(B)

(C)

Fig. 21-16- Cirruits for measuring resistance, Values are discussed in the text.

Fig. 21.17-An inexpensive multirange volt-ohm-milliammerter. the $2 \times 4 \times 4$-inch eathinet at the left homes the multiplier-shunt-. -witch and zero-adju-tment resistor. The meter is mounted in the metal cabinet shown at the ripht. The units are prowided with phase and jachs so that the meter can le wed independently or at the indipator compment for other instruments. Comne tions to the wilt-ohm-milliammeter. or to the meter alone, are malle to the terminal- monnted at the tol of louth heres. Hablles are mountell on the sabinel-to facilitate hameling.

l'rerision wire-wound resistors used as voltmeter multipliers cannot readily be made by the amateur bereate of the much higher resistance roguived (ats high as soveral megohms). As an ecomomical substitute, standard fixed resistors may be usiod. such resistors are supplited in tolerances of 5,10 or 20 pror ent \pm the marked values. $13 y$ whtaining matcheol pairs from the deater's stork, one of which is, for example, t per cent low while the other is t per cont high, and using the pairs in paralled or surbes to ohtain the required value of rexistance, good accuracy can be obtained at small cost. Digh-voltage multipliers are proforably made up of several resistors in sories: this not only raises the breakelown voltage but tends: to arerage out crrors in the individual resistors attributable to manufacturing toleranoes.

When d.c. voltage and current are known, the powor in a d.e. circuit can be stated by simple application of Ohm's Law: $P^{\prime}=E I$. Thus the voltmeter and ammeter are also the instruments used in measuring d.c. power.

Multirange Voltmeters and Ohmmeters

A combination voltmeter-milliammeter having various rathges is extremely usoful for experimental purposes and for trouble shooting in receivers and transmittors. As a voltmeter such an instrument whould have high resistance so that very little curront will be drawn in making voltage measurements. A volt meter taking considerable coment will give inaceurate readings when connected in a high-resistance circuit for example, in various parts of a recolver. For such purposes the instrument should have a resistance of at least 1000 ohms per volt ; a 0-1 milliammeter or 0-500 microammetor (0) 0.5 mat.) is the hasis of many multirange moters of this trpe. Microammoters having a range of $0-50 \mu a$., giving a sensitivity of 20,000 ohms por wolt, also are used.

The various cument ranges on a multirange instrument can be obtained by using a number of shomss individuatly switched in paralkel with the meter. A switeh with low contact resistance must be used.

It is often necessary to check the value of a
resistor or to find the value of an unknown resistance, particularly in receiver bervieing. An ohmmeter is used for this purpose. The ohmmeter is a low-erurent d.e. voltmeter provided with a source of voltage (ustally dry colls). In the simplest form, shown in Fig. 21-16A, the moter and battery are connected in series with the unknown resistance. If a given doflecetion is obtained with terminals $A-B$ shorted, insertion of the resistane under modsurement will catuse the meter reating to decrease. When the resistance of the voltmeter is known, the following formula can be applied:

$$
R=\frac{e R_{\mathrm{m}}}{E}-R_{\mathrm{m}}
$$

where l is the resistance utuler measurement, e is the voltage applied ($\Lambda-1 s$ shorted),
E is the voltmeter reading with R connected, and
R_{m} is the resistance of the voltmeter.
The circuit of loig. 21-16.1 is not suited to measuring low values of resistance (below a

Fïg. 2I-IB - Diagram of the woll-ohm-milliammeter.
K_{1} - 2000 -dim wire-wound variable.
R_{2} - 3000 ohms. $1 / 2$ watt.
$k_{3}-10$ ma. shunt, 1.11 ohms (see text).
$1 \mathrm{~h}_{4}-100$-ma, shumt, 0.55 .5 ohen (see text).
O_{5} - 1001 -mat shma, $0,05,5$ ohm (see te 3).
R_{6} - 1000)-volt multipher, 0.9 megohm, $1 / 2$ watt.

13 - 4.5 -volt dry battery (Burgess 5300).
$P_{1}-4$-prong male plug (for milliammeter).
$\mathrm{S}_{1 \mathrm{~A}-\mathrm{B}}-9$-puint 2 -pole selector switch
(Mallory 3229]).

Fig. 21-19 - I rear view of the vonl-ohm-milliammeter. The range-selector switeh is mounted above the zero. aljustment potentiometer, and the shmots and multi. pliers are connereted across the swith terminats. A four-prong male plug. for connection to the metor hox. is shown at the loft of the cabinet. The ohmmeter liattery fits inside the case; the battery terminals should be insulated with tape or paper lefore the battery is installed in the box.
hundred olms or so) with a high-resistance voltmeter. For surh measurements the circuit of lig. 21-1613 can be used. The milliammeter should be at 0-1 ma. instrument, and R_{1} should be equal to the batery voltage, e, multiplied by 1000. The unknown resistance is

$$
R=\frac{I_{2} R_{\mathrm{m}}}{I_{1}-I_{2}}
$$

where R is the unknown,
R_{m} is the internal resistance of the milliammeter,
I_{1} is the current in mat. with R disconneeted from terminals $A-B$, and
I_{2} is the rurrent in ma. with R connerted.
The formula is approximate, but the error will be negligitle if c is at least 3 volts so that R_{1} is at least 3000 ohms.

A third circuit for measuring resistance is shown in Fig. 21-160\%. In this rase a highresistance voltmeter is used to measure the voltage drop arross a reference resistor, R_{2}, when the unknown resistor is connected so that current flows through it, R_{2} and the battery in serics. By suitable choice of R_{2} (low values for low resistance, high values for highresistance unknowns) this circuit will give equally good resulte on all resistance values in the range from one ohm to several megohms, provided that the voltmeter resistance, R_{m}, is always very high (50 times or more) compared with the resistance of R_{2}. A $20,000-$ ohms-per-volt instrument ($50-\mu \mathrm{amp}$. move-
ment) is kenerally used. Assuming that the current through the voltmeter is negligible compared with the current through R_{2}, the formula for the unknown is

$$
R=\frac{e R_{2}}{E^{\prime}}-R_{2}
$$

where R and R_{2} are as shown in Fig. 21-16C,
C is the voltmeter reading with $A-B$ shorted, and
E is the voltmeter reading with R comnected.
The "zero adjuster," R_{1}, is used to sot the volt met er reading exactly to full scald when the meter is calibrated in ohms. A 10,0000 -ohm

Fiд, 21.20-Wir. ing diagram of the 0-I milliammeter shown in fiys. 21.9 and 21.17. J_{1} is a 1 -prong tube soeket.
variable resistor is suitable with a 20,000 -ohms-per-volt meter. The battery voltage is usually 3 volts for ranges up to 100,000 ohms or so and 6 volts for higher ranges.

AN INEXPENSIVE V.O.M.

A combination multirange volt-ohm-milliammeter, reduced to simple and inexpensive terms, is shown in Figs. 21-17 to 21-20. Using a 0-1 milliammeter, the voltmetor has three

Fig. 21-21 - Calibration eurve for the high. and lowressistance ranges of the volt-obm-milliammeter,
ranges at 1000 ohms per volt: $0-10,100$ and 1000 volts. Current ranges of $0-1,10,100$ and 1000 ma , are provided. There are two resist-ance-mbasurment ranges, a series range that is usoful up to about $0 . \overline{5}$ megohm, and a shunt range of $0-1000$ ohms.

For economy, ordinary carbon resistors are used as voltmeter multipliers. These can be obtained with an aceuracy within $\overline{5}$ per cent. llowever, standard resistors of 10 per cent tolerance can be used without introducing undue arror. The 1000 -volt multiplier, R_{6}, is two $1.8-\mathrm{megohm}$ resistors connected in parallel, and the 100 -volt multiplier, R_{7}, is two
0.18 -megohm resistors arranged in parallel.

The 10-, 100 - and 1000 -ma. shunts are made of ordinary copper magnet wire wound on $1 / 2$-watt resistors of high resistance value -10,000 ohms or higher. The approximate lengths and sizes of the wire for the shunts are as follows: $R_{3}, 9$ feet No. 38 enameled; R_{4}, 5 feet No. 30 enameled; $R_{5}, 81 / 2$ feet No. 18.

A calibration curve for the ohmmeter ranges is given in Fig, 21-21. With instruments having different internal resistance than the one shown in the photograph (Triplett Model $0321-1$) the "low-ohms" curve will not apply exactly.

Grid-Dip Meters

A usoful and inexpensive general-purpose instrument is an r.f. oscillator eovering a wide frequences range. It generates signals that can be used for recever alignment, for calibrating absorption wavemeters as deseribed earlior in this chapter, and for furnishing small r.f. voltages for whatever purpose may be requived. When equipped with a low-range milliammeter commected to read the oscillator grid current, it beoomes a grid-dip moter and may fo used for choeking the resonant frequencies of tuned cirouits, and as a means for measuring inductance and capacitance as described in a later seretion.

The grid-dip meter is so called because when its oscillator is coupled to a tuned circuit, the oscillator grid current will show a decrease or "dip" when the osicillator is tuned through resonatore with the unknown eireuit. The reason for this is that the external circuit will abourb eneryy from the oseillator when both it and the oscillator are tuned to the same frequaney, and the loss of enorgy from the oseitlator cireuit rases the feed-back to decrease. The dererase in feod-back is aceompanied by a decreace ingrid current. The dip ingrid current is quite sharp when the circuit to which the osidhator is coupled has reasonably high $($ a.

Any type of aseillator circuit can be used for the grip-dip meter, the only requirement being that a milliammeter of suitable range ($0-1$ is satisfactory in most cases) be connerted in series with the grid leak. However, the grid-dip meter will be most useful when it covers a wide frequence range and is so constructed that it
can be coupled to circuits in hard-to-reach plares such as in a reoover chassis. The meter's deseribed in the following sertion have been designed with this in mind.

- INEXPENSIVE GRID-DIP METER

The grid-dip meter shown in lig. 21-22 is easy to buidd, handy to use, and covers a frequener range of 28.0 ke . to 48 Mc . with five plug-in coils. This range readily can be axtended in cither direction, but for v.h.f. use a somewhat different version, shown later, is recommended. The cireuit diagram of the oscillator is given in lig. 21-23.

The support for the oscillator is a piece of aluminum measuring $9!2$ by $1!2$ ibches, bent in the form of a "[" with sidess $3 \frac{3}{4}$ inchere long so that the width of the "l"" is cust great enough (approximately 2 inches) for fantening to the mounting studs on the tuning condenser. As shown in lig. 21-22, the sorket fo: the plugin coils is mounted across the open end of the " L " by means of small aluminum angle brackets. The socket for the 95% oseillator tube is similarly mounted near the closed end of the "[「" The blocking and hy-pass eonoensors are miniature coramic units that take up very little space and thus contribute to compactness. The oscillator is provided with a hatmale (which ran asily be made from a piece of broomstick) for ease of manipulation in checking circuits in reveivers and transmetters.

The tuning condenser is a double-hearing unit originally of the single-section type having a maximum capacitance of $100 \mu \mu \mathrm{fd}$. To change

Fig, 21-22-Inexpensive gridelip nscillator uring a 95. and plug-in coils, The five coils hown eover the range 28.00 kr . to 48 Mc . An external 1 - 1 d.o. milliammeter is used as an indicator, Power and meter conncetions are brought through the four-wire calle.
it to the balaned type the renter two stator pates are removed am! the support hars sawed through at the middle. The rotor need not be toucherl. The stator pates can be removed without difliculty by bending them

Fig. 21-2.3- Cirenit diagram of the gridl-dip meter.
C_{1} - Doublesection midget, app, te $\mu \mu \mathrm{ff}$. per sertion (Willen 21100 madified as deseriloed in text).

 \mathbf{R}_{1} - 29.0101 ohms, $\frac{2}{2}$ watt, carlum.
K_{2} - or.onn ohms, I_{2} watt, carlon.
 form, clese-wound.
-4.6-8.7 Mc.: 37 turns No. 30 s.e.c. on 1 -inch ferm, close-wound.

- $8.1-1.5 .3$ Nle: 19 turns No. 30 s.e.e.e. on 1 .ineh furio. clenerewomed.
- $11.1-2.2,5$: $1 \mathrm{c}: 11$ turns No. 24 cnam , on 1 -ineh furm, clowe-wound.
- 2.5.1-18 M1,: 8 turns No. 21 enam. on 1-inch form, spared to enerupy ${ }^{13} 16$ inches.
MA - 0 (1 - 1 lo milliammer.
batck and forth at the soldered joint with a pair of lome-nose pliers until the solder loreaks loose. Ther rotor should he erounded to the "L"" frame at buth ands: this helps for prevent dead spots (condenser settings at which the grid eurrent

shows rapid variations) in various portions of the mange. The frepurner eatibration ran ln marked on a small pioce of cadrdhoard as shown in Fig. $21-22$, using a pointer on the rear shaft extension of the condensers as an indieator.

The power requirements of the oscillator are 6.3 volts at 0,15 amp, for the ans heater amd a maximum of about 2 mat at lion wolts for the plate. This power usually ath be taken from a rerover or other existing supply. However, if a sperial supply is to be made for the instrument, the circuit of Fig. 21-27 will serve, the 1.5 -volt dry coll shown in that dingram boing omitted. In any event, it is a good idea to use a potentiomoter, ans shown in Fige 21-27, for idljustmont of pate voltage. In any grid-dip meter the grid current will be different in different parts of the frequency range, with fixed pate voltage, so that it is ordinarily necessary to choose a plate woltage that will koep the reading on seale in the part of the range where the grid current is highest. This usually results in rather low grid current at some other part of the ramge. With variable plate voltage this compromise is unnecessary.
The instrument may be calibrated by listening to its output with a calibrated reroiver. Iligh accuracy is mot rocuibed in the applieations for which a grid-dip meder is useful. The unit also may be used as an indieating wavemoter, in which ease mopate voltage is needed since the erid and eathode of the 9 ans ant as at simple diode. Howevor, this type of dircuit is not as sonsitive as the crystal-detector type shown eatier in this chapter, berause of the high-resistance grid leak in sories with the meter.

REGENERATIVE WAVEMETER AND GRID-DIP METER

The unit shown in Fig. 21-24 is similar in construction to the grid-dip meter of Fig, 21-22, but in addition is an absorption wavemeter of very high somsitivity. The latter feature is partioularly desirable in the v.h.f. range which this instrument eovers, beraluse of the neressity for detecting the presence of wata harmonios in the various tolevision chammels (54-88 Me, and 17-4-216 Me.). High sonsitivity is achioved fy oproatling the unit as a regen-

Fiq. $21-24-\mathrm{V}, \mathrm{ll}, \mathrm{I}^{\circ}$, regenerative wave-metor/grid-dip melor, covering the $50-2.50$ He, range. 'llhis is a high-sensitivity alsonptiontyo wavemeter partieularly useful for checking transmitur harmonias in television hands. "lhe ease in which the meter is mounted also romtains the power supply, Jogenoration is contrulled by the knobion top of the case.

Fig. $21-25-\mathrm{A}$ bottom view of the regenerative wavemeter/pridedip meter. "This view shows the lorttom of the g-i. sorket, with the miniature tulular reramies momented luetwern the = tator sorctions of the tuning condenser and the prill and plate terminale on the socket. '1\% grial choke', shonting resi=tor, and byopass condenatr are at the bottom; the plate resistor. monated through the someht. and the plate" borpase enudenser are at the toln. 'lhere is mo wiring on the other side.

arative detector and by eliminating the grid-leak resistance, a low-resistance r.f. choke being substituted. The frequency range that can be covored satisfactorily with a given ehoke is limited, but the choke specified in the cireuit diagram, Fig. 21-26, has been found to be adequate over the range $50-250 \mathrm{Me}$.

With this instrument variable plate voltage is exsential as a means of controlling regeneration. It is also essential to use the bias batery shown in the power-supply diagram of Fig. 21-27; without surh hias there is a grid current of about 0.5 ma., even with no plate voltage on the tube, berause of contact potential. Just as in the rase of the lower-frequency inst rument described earlier, the power for the oscillator ain be taken from any existing supply. The

fis. 21-2 - Circuit diagram of the rexenerative wabemilter/kridetip metur.
 (Millen 21116 modilied as deserihed in text). ($2, \mathrm{C}-\overline{\mathrm{E}}(1-\mu \mu \mathrm{fd}$, wramic (Contralah lli-Kap).
 R_{t} - 2.0100 ohms, $1 / 2$ watt. carbon.
$R_{2}-\mathbf{6}, 0000$ ohms, $1 / 2$ watl. parlon
 inch long. with $3 \frac{1}{2}$-inch leade.
 inch lomp, $2^{1}{ }_{2}^{2-i n c h}$ leads.
 inchen long, $1 / 2$ inch between sides.
RPC - OLmite Z.14t.

Fig. 21.27-Jow.resuphly cirouit for the krid-dip metars shown in lige, 21-2y and 21.24. Whem used with the meter of l-ig. $21-22$ the $1.5-v o l t$ lattery should be omitted.
$\mathrm{C}_{\mathrm{p}} \mathrm{C}_{2}-16-\mu \mathrm{fl}$. 150-volt eleetrolytic.
$\mathrm{R}:-0.1$-megohm pritentiometer.
$R=-1000$ ohms, 2 watts.
II - - $0-1$ ma. (or smaller range for greater mensitivity). S_{1}-S.p.s.t, toggle (mounted or R_{1}).
SR - Seleniom rectifier.
T_{1} - Power transformer, required to furni h 6.3 volts at 0.3 amp. and app, 5 ma, at 115 to 150 volts (Nerit P- 30.46 satisfactory).
plate-supply requirements are 150 volts and aipproximately 4 ma. About half of this current flows through the voltage divider, R_{1}, in Fig. 21-27.

The tuning condenser, C_{1}, is the same type used in the instrument shown in Fig. 21-22 and is similarly modified into a split-stator unit. Howerer, in this rase a somewhat smaller minimum caparitance is desirable, so enough pates are removed from both rotor and stator $=0$ that each section consists of 5 stator and 5 motor plates. Both ends of the rotor must be mrounted to avoid dead spots. This ean be done by soldering a short piece of wire bet ween the contact washer and a mounting stud at wach end. The ground conneretion is then made through the stud to the " U "-shapel support.

A crystal soeket (half-inch spacing) with its lugs soldered directly to the conderser stators is used as a coil socket. No. 12 wiee makes a good fit in such a socket, so the roils are selfsupporting. A little additional stretgth for the socket mounting is secured by cementing it to the condenser end plates with Ducu cement.

There are several methods by which the instrument can be given a frequency calibration. If a recciver is available covering at least a part of the range the unit can be used as an oseillator and calibrated against the receiver settings. Lecher wires also can be used; the method of using them is described earlier in this chapter.

To use the unit as a grid-dip meter the platevoltage control is advanced to the point where a convenient value of grid current is obtained, after which it functions in the same way as the conventional grid-dip meter. To use it as a simple absorption wavemetor the plate voltage is turned off: the sensitivity under these conditions is about the same as the semsitivity of a crestaldeteretor wavemeter. To use it as a regenerative wavemeter the plate-voltage control is first advanced to the point where oscilla-
tion begins, as evidenced by a small amount of grid current, and then backed off until the grid current just disappears. This is the most sensitive condition. The setting of the platevoltage control will depend to some extent on how tightly the instrument is coupled to the circuit being checked; tight coupling requires more plate voltage, loose coupling less. ('are must be used to avoid false indications caused by actual oscillation should the coupling inadvertently be decreased: this usually wath be checked by tuning over a small range about the desired frequency. When the unit is properly operated the grid current will show a sharp kick as the circuit is tumed through an artual signal and the current will drop to aro on either side. If the cireuit is oweilating the grid current will be appreciable over a considerable tuning range.

Measuring Inductance and Capacitance

The ability to measure the inductance of coils, the capacitance of condensers, or the resonant frequeney of a tuned circuit frequently saves time that might otherwise be spent in cut-and-try. A convenient instrument for this purpose is the grid-dip ossillator, described earlier in this chapter.

For measuring inductance, the roil is eonnected to a condenser of known capacitance as shown at . it Fig. 21-28. A mica condenser maty be used as a standard; a $100-\mu \mu \mathrm{fl}, 5$ per cont tolerance unit will serve for most purposes. With the unknown coil connerted to the standard condenser, the piek-up loop is coupled to the coil and the oscillator frequency adjusted for the grid-current dip, using the loosest coupling that gives a detectable indieation. The inductance is then given by the formula

$$
L_{\mu \mathrm{l} \cdot}=\frac{25,330}{{ }^{\prime}{ }_{\mu \mu \mathrm{fl} \cdot} \cdot f_{\mathrm{M} \cdot 0^{2}}}
$$

A calibrated variable condenser is generally. used for measuring caparitance. The cireuit is shown at 13 in Fig. 21-28. The frequency of the circuit, using any conveniont coil, is first measured with the unknown caparitance discomereted and the calibrated condenser set near maximum. The unknown is then connerted and the calibrated condenser readjusted to resonance. The unknown caparitance is then equal to the difference between the capacitances at the two settings of the calibrated condenser. Obviously only capacitanees smatler than the maximum capacitance of the ralibrated eondenser can be measured by this method.

Since high aceuracy in capacitance measurement is not ordinarily required, a satisfactory standard is any condenser of the straight-line capacitance type, for which a sufficiently good calibration curve can be constructed by noting the dial setting at which the plates just start to mesh and the setting at which they are com-
pletely meshed, and assuming that the capacitance change is linear within those limits. The minimum and maximum rapacitance (corresponding closely enough to thesce condenser settings) can be obtained from the manufacturer's data on the particular variable condenser used.

An alternative method of measuring capacitance utilizes the fixed standard capacitance described above in inductance measurements, together with a coil of the proper inductance to resonate at a convenient part of the frequency range of the grid-dip meter. First measure the inductance of the roil with the standard condenser connected to it. Then substitute the unknown capacitance for the stambard and determine the new resonant frequency. The unknown caparitance is then

$$
C_{\mu \mu \mathrm{flt}}=\frac{25,330}{L_{\mu \mathrm{t}} f_{M 1 \ldots{ }^{2}}{ }^{2}}
$$

where f is the new frequency. This method is most adaptable to rapacitances in the range $10-1000 \mu \mu \mathrm{fd}$. The standard condenser should be approximately $100 \mu \mu \mathrm{fd}$. for this range of measurement.

Fig. 21-28-Set-ups for measuring inductance and ca* pacitance with the grid-dip meter.

Audio-Frequency Oscillators

I useful areessory for testing audio-frequency amplifiers and modulators is an audio-frequemer signal generator or oseillator. Chereks for distortion, gain, and the ordinary troubles that werer in such amplifiers do not require clahorate equipment; in most rases, a single audio frequeney in the $500-1000$ evele region will suffere. The chidef requirement is that the audio oseillator be able to gernerate a reasonably genel sine watve.

Figs. 21-29 to 21-31, inclusive, show a simple nscillator of a type antirely adequate for 'phome transmittor testing using the methods described
output. It can also be used for testing spereh amplifiers and modulators where a single andio frequency is sufficient.

The cercuit diagram is given in Fig. 21-29. (me section of a double triode is used as a cobpitts oseillator, with $\mathrm{C}_{2}, \mathrm{C}_{\text {'s }}$ and the serondary winding of T_{1} forming the tuned rireuit. (With the transformer specified, the entire secondary winding is used.) The primary winding T_{1} is connected to the grid of the second triode seretion, which is used as a rathode follower. Variable out but from the unit is taken from the arm of a potemiometer,

in the chapter on amplitude modulation. It gencrates at fixed froguencer of approximately 400 evoles, and since it is provided with a step attenuator kiving maximum outputs of approximately 1, 0.1 , and 0.01 volts r.m.s., as well as continuously-variable output control, it can be used as a substitute for any type of mierophone by proper choier of the high, medium, ur low
R_{3}, connected as the rathode-follower ioad. The high output is taken directly from R_{3}, while the two lower outputs are taken from a hadder-tepe divider, $R_{4} R_{6}$ and $R_{5} R_{7}$. These points are brought out to tip jacks.

Molded paper condensers should be used at C_{2} and C_{3} : cardhoard-cased tubulars have been found to be unveliable in this cireuit.

Fig. 21 -3 31 - 1 simple and inevernsive andio meellator for use in wheeking phothe transmitter operation. It kelorates a kond sine ware of fixed frequency and is pronided with at attemator so that the ontput level pron he set at the proper value for subsitituting for any lyp of microphone.

The powner requirements are quite low - the
 mat and can be taken from any convenient souro
 0.0 : amq . at (6.3 volts.

VARIABLE-FREQUENCY AUDIO-I.F. OSCILLATOR

Fior measurement: requiring a variable-frequancy andio sourer the signal generator shown in lige: 21-32 to 21-35, inclusive, is relatively inexpersive and easy to build. It is also useftul as an intermediato-frequeney signal generator for aligaing recover i.f. circuits at any frequence up, to 500 ke . The complete frequaney range is 50

The ascillator consists of a 6AG7 amplifier coupled to a GA(i7 rathode follower. Two feedback loops are provided: (1) a cathode-to-cathode regencrative lenp eonsisting of C_{5} and lamp I_{1}; (2) a "athode-to-grid degenerative loop eonsist ing of a bridged-T rircuit. ()scillation orecurs at the null freguency of the bridge, where the degeneration is minimum, and is determined prineipally by the values of C_{6}, C_{7}, C_{8} and R_{6} through R_{13}. The oseillator output is fed to the grid of a bilg cathoue follower, which serves as an isolation stage between osidilator and load. Potentiometer R_{18} in the grid eireuit controls the output voltage.

Olatput from the unit is taken arross the fivg eatherde resistor, R_{19}, through the eoupling condenser, ("u. At 100 reyeles the value given for C_{11} is suitable for working into load impedanees as low as 20,00 ohms. For low audio frequencies and loads between 500 ohms and 20,000 ohms,

Fig. 2/.31-Bntom visw of the simple andin owillator. Placement of mart- in not at all eritieal. In this unit it was mocesary to parallel eme deniars 10 form C_{2} and C_{3} of the values sperifirel in Fig. 21.20, since single units of the proper rapacitunce werr mot available at the time. 'The chassis is is $\times 7 \times 2$ inches.
excessive loss of voltage fatn be avoided by substituting a $22^{2}-\mu$ did. edectrolytic at ('an.

A 4 -watt 110-wolt lamp, I_{1}, rogulates the feredback eurrent and thus temds to kerep the output voltage "omstant throughout the ranger. Potentiometer Re provides the moans for adjusting the operating conditions to give minimum waveform distortion.

The io-ryald to mot-kilorycle band is rovered in four ranges, as follows:

Range	Frequency
A	50 to ino kilocycles
B	5000 to 50,000 crales
V	500 to 5000 (y)
I)	50) to 500 (extes

Fiach step covers a $10-$ to-1 frequency range.
The ceramie trimmer, ('s, comnerted betweren the 6 Ali 7 cathodes, has lit lle offeet at the lower frequencies, but to maintain the 10 -to-l frequeney ratio on the high range this trimmer is essential.

The power supply uses a two-section choke input filter to insure good filtering. The com-

Fig. 21.32 - An $R C$ oscillator covaring the unusually wide range of 50 egeles $t 0500$ kilocycles, with good waveform and practically constant output.

Fiя, 21-33- (ironit diakram of the audios-i.l. trot nis.illatur.

(3 - I- μ fd. 100-volt pajer.
Cis, (iz, (is - lin. $\mu \mu \mathrm{fl}$, wramic: trimmers (idontralaly 'lyue 822(3N).

 able, broadeast recerivor typro.

 K_{3} - 1000 ohms, I watt.
K_{2} - 2000-8hm wire-wound potentiometer.
$\mathrm{R}_{3}, \mathrm{R}_{1 \mathrm{fi}}-68$ olmme, 1 watt.
$R_{4}, R_{1}-5010$ ohms, 10 watts.
$\mathrm{K}_{5}-2-0,00$ olmm, 2 watts.
$k_{6}-15,000$ ohms, $1 /$ watt $_{2} 10 \%$.
18-- 11.18 megolm, ${ }^{2}$ watt, 10%.
$\mathrm{R}_{8}-1.8$ mexohms, 1,2 watt, 10%.
$R_{0}-20,0$ mepohme, $1 / 2$ watt. 10%.
$\mathbf{R}_{10}-2700$ ohmes, $1 / 2$ watt, 10%
\mathbf{R}_{11} - 39,000 ohmis $1 / 2$ watt, 110%.
$\mathrm{K}_{12}-1.33 \mathrm{mekolim}, 1 / 2$ watt, 10%.
$\mathrm{R}_{13}-3.3$ merghans, $1 / 2$ watt, 10%.
$R_{14}, R_{13}-1.11$ megohm, I watt.
R_{s} - $11 . \overline{3}$-mbughm potantiometer.
R19-2000 ohms, I watt.

ponents are confined to the extreme rear of the chassis and shielded wire is used for the filament wiring.

Construction

The eomplete unit is housed in a standard $8 \times 10 \times 8$-inch sterel cabinet. The chassis is $7 \times 9 \times 2$ inches.

The power transformer, T_{1}, is submounted at the rear of the chassis. The can-type cheetrolytics, (${ }_{12}$ and (13 , are motuted above the chassis while the filter chokes are placed below.

The main tuning eondenser, C_{6}, must be insulated from the whassis. Small porectain stamed-offs or a slab of polystyrene or bakelite sheet will be satisfactory. An insulated coupling must be used between the rondenser and dial. The frequederydetermining resistors, R_{6} through R_{13}, are mounted on the ereramice range switch, S_{1}, which is located under the fuming control. These resistors must have the desiguated values or the frequeney ranges will differ from those given. Rosishors of 10 per cont wherabere are satisfartory.
(On the front panel thore are four comtods and
$1_{1}-$-watt llī-volt lamp.
J_{1} - Shortingetype miarophone jaek (Amphenol i3-CI. P(1才1).
s_{1} - Single apertion 2-pole 4 -ponition ceramic.
s_{2} - S.p.s.t. tomple switeh.

the output terminal. A National type se N dial is usod for tuning. In the lowrer corner of the panel is a togghe switch, siz, for the a.c. line. The bandwhanging switch is placed under the tuning knob. At the lower right is the attenuation control, R_{18}. Just above this control is the output eomnector, J_{1}. These controls fasten the panel to the chassis.

Preliminary Adjustment

An oscilloscope should be used for adjusting the waveform and for ealibrating the low-frequeney ranges. (ommet the output of the osedilator to the vertical plates of the seope and, with the range selector in position I and the tuning condenser, C_{6}, mearly at maximum, adjust the internal horizontal swep in the 'seope for synchronization.

Fig, 2/-34-In this roar view of the oscillator the metal tabre on the left is the first rathode follower. 'The thoning condenser and its trimmers are mounted on a pioce of bakilite to insalate them from kround and the condenser is driven throngh an insulated compling. The coontrol haft of the waveform motentionater, K_{2}. is visille on the chassis to the right of the tuming comdenser.

fig. 2/.35-Bottom view of the audio-i.f. test osiollator. The filter abokes are at the bottom right. The frequeney -determining rosintors are supported by the reramic rang witelt at the top center.
R_{2} should be adjusted to give a good sine wave. In (ase the 'seope has no internal sweep, an external source of 60 rycles from si filament transormer can be used as the horizontal sweep, and the tuning condenser of the test oscillator adjusfed until a single-loon lissajous pattern appars. The pattorn will resomble either a "irele, ellipse, or straight line. Adjustmont of R_{2} will affert the symmetry of the low ahout its own axes and the distortion will be least when the boop is perfectly symmetrical.
'To adjust the ranges, set the tuning condensar appoximately 10 -tial divisions from minimam capacity with S_{1} on range D. Thmmers C_{7} and C_{8} should be set to full capacity. Connert the output of the oscillator to the vertical plates of the 'seope. Weed the andio output of a recoiver tuncel to WWV te the horizontal plates. WWV sends cither a $44(1-$ or (i)0-eycle tone, so make sure that the adjustment is made during the 4 th)rycle proviod. Adjust trimmers C_{7} and C_{s} a litule at a time, kerping their capacitios about equal, until a single-loop lissajous figure is seen on the screen. This adjusiment sots the high emel of range I) and at the same time fixes rauges B and C.

Most 'seopes are useless for calibration in the r.f. range. A simple yat effective method for addjusting the high end of range A utilizes a reeediver calibrated over the broadeast band. For preliminary adjustments, the soote. intervals starting at 1 Mc. are needed. However, the $10-k e$. points from (boo ke. and up will be usetul later on for calibration. Broadeast stations ean be used wo spot frequencies on the dial. By interpolation, the lo-kc. points can tee marked with reasonable arrurary. A 10-ke. multivibrator would be excellent for calibration, but the station spottitg mothod will give very satisfactory results. After ralibrating the receiver, the output of the osedilator should be comected the antenna termimals through a shiplded cable. Set R_{18} at maximum and the main tuning dial five divisions from minimum rapacity. With the receiver set at exactly 1000 ke . and the l.f.o. in the "on" posi-
tion, adjust trimmer C_{4} for zero beat. The astillator will be on 500 ke . if Deats atre ohserved omby at 1000 ke . and 1500 ke . It may be neressary tu try a few settings of C_{4} before the right one is found.

Calibration

Up to 5000 cycles, covered by ranges C and D, the oscilloseope and the WWY stamdard andio signal are used for eablibating. Information on using hissajous figures is given later in this chapter. Assuming that 60 cerdes from the power lime and WWV's 440 - and $600-$-crele tones ate the standard signals arailable, it is feasible to calibrate up to (000) ayeles; above this frequency the patterns are too complex for rapid analysis.

Betwern 60000 and 10,000 eycles, the most feasible method is to obtain the points from a regular calibrated audio oseillatar. Altormatively, a fixed-frecuency oseillator (such as the simple type deseribed earlior in this sertion) (an be eonstructed in temporary fashion and adjusted to, say, 2000 cobles and used for obtaining points at 2-ke. intervals betweon 6 and 10 ke . by the Lissajous-figure method.

To spot points from 10 ke . to 500 ke , the full output of the oscillator on range (is fod into the calibrated receiver autemat terminals, and the tuning eontrol should be adjusted unt the signals fall at every lo-ke. point through the broadeast band. At this sotting the oscillator frequeney will be 10 ke . Considerable care, and several attemphes, will undoubtedly be necessary before the eorrect setting is reached. The harmonic mothod doseribed earlier in this chapter in the sertion on frequency measurement can be used for calibrating up to 500 kc .

In using the instrument, a warm-up period of about 20 minutes should be allowed for the frequency to stabilize. At the setting of R_{2} that gives good wavoform, the output with R_{18} at maximum is approximately 10 volts r.m.s. The attenuator gives smooth output eontrol and is readily auljustable to outputs in the mierovolt region even at 500 kc .

The Oscilloscope

The cathode-ray oscilloscope gives a visible representation of signals at both audio and radio frequencies and can therefore be used for many types of measurements that are not possible with instruments of the types described earlier in this chapter. For example, it can be made to show the waveform of an audio-frequency signal and thus detect distortion in an audio-frequency amplifier. With suitable calibration, it will measure a.c. voltages at radio as well as audio frequencies. The oscilloscope is such a versatile instrument that it is a highly valuable addition to the practical amateur station.

CATHODE-RAY TUBES

The heart of the oscilloscope is the cathoderay tube, a vacuum tube in which the electrons emitted from a hot cathode are first accelerated to give them eonsiderable velocity, then formed into a beam, and finally allowed to strike a special translucent screen which ifurresces, or gives off light at the point where the beam strikes. A narrow beam of moving electrons is analogous to a wire carrying current, and can be moved laterally, or deflected, by electric or magnetic fields.

Since the cathode-ray beam consists only of moving electrons, its weight and inertia are negligibly small. For this reason, it can be made to follow instantly the variations in periodicallychanging fields at both audio and radio frequencies.

The electrode arrangement that forms the electrons into a beam is called the electron gun. In the simple tube structure shown in Fig. 21-36, the gun consists of the cathode, grid, and anodes Nos. 1 and 2. The intensity of the electron beam is regulated by the grid in the same way as in an ordinary tube. Anode No. 1 is operated at a positive potential with respect to the cathode, thus accelerating the electrons that pass through the grid, and is provided with small apertures through which the electron stream passes. On emerging from the apertures the electrons are traveling in practically parallel straight-line paths. The electrostatic fields set up by the potentials on anode No. 1 and anode No. 2 form an electron lens
system which makes the electron paths converge to a point at the fluorescent screen. The potential on anode No. 2 is usually fixed, while that on anode No. 1 is varied to bring the beam into focus. Anode No. 1 is, therefore, called the focusing electrode.
Sharpest focus is obtained when the electrons of the beam have high velocity, so that relatively high d.c. potentials are common with cathode-ray tubes. However, the current required is small, so that the power consumption is negligible. A second grid may be placed between the control grid and anode No. 1, for additional acceleration of the electrons.

Methods of Deflection

When focused, the beam from the gun produces only a small spot on the screen, as deseribed above. However, if after leaving the gun the beam is deflected by either magnetic or electric fields, the spot will move aeross the screen in accordance with the force exerted on the beam. If the motion is rapid, the path of the spot (trace) appears as a continuous line.
Electrostatic deflection, the type generally used in the smaller ubes, is produced by deflecting plates. Two sets of plates are placed at right angles to each other, as indicated in Fig. 21-36. The fields are created by applying suitable voltages between the two plates of each pair. Lisually one plate of each pair is connected to anode No. 2, to establish the polarities of the vertical and horizontal fields with respect to the beam and to each other.

Formation of Patterns

When periodically-varying voltages are applied to the two sets of deflecting plates, the path traced by the fluorescent spot forms a pattern that is stationary so long as the amplitude and phase relationships of the voltages remain unchanged. Fig. 21-37 shows how such patterns are formed. The horizontal sweep, voltage is assumed to have the "sawtooth" waveshape indicated. With no voltage applied to the vertical plates the trace simply sweeps from left to right across the screen along the horizontal axis X - X^{\prime} until the instant I is reached, when it reverses direction and returns

Fig. 21-36 - Typical construction for a cathode-ray tube of the electrostatic-deflection type.
to the starting point. The sine-wave voltage applied to the vertical plates similarly would trace a line along the axis $Y-Y^{\prime \prime}$ in the absence of any dellecting voltage on the horizontal plates. However, when both voltages are present the prosition of the spot at any instant depends upon the voltages on both sets of plates at that instant. Thus at time B the horizontal voltage has moved the spot a short distance to the right and the vertical voltage has similarly moved it upward, so that it reaches the actual position B^{\prime} on the screen. The resulting trace is easily followed from the other indicated positions, which are taken at equal time intervals.

Types of Sweeps

A sawtooth sweep-voltage waveshape, such as is shown in ligig. 21-37, is called a linear sweep, because the deflection in the horizontal direction is directly proportional to time. If the sweep were perfert the fly-back time, or time taken for the spot to return from the end (I) to the begimning (I or A) of the horizontal trace, would be zero, so that the line /I / would be perpendieular to the axis $Y^{\prime}-r^{\prime \prime}$. Although the fly-back time canot be made zero in practicable sweep-voltage generators it can be made quite small in eomparison to the time of

the desired trace $A I$, at least at most frequencies within the audio range. The fly-back time is somewhat exargorated in Fig. 21-37, to show its effect on the pattern. The line $/ I$ 'I' is called the return trace; with a linear sweep it is less brilliant than the pattern, because the spot is moving much more rapidly during the fly-back time than cluring the time of the main trace. If the fly-back time is short enough, the return trace will be invisible.

The linear sweep has the atvantage that it shows the shape of the wave in the same way that it is usually represented graphically. If the
time of one cycle of the a.e. voltage applied to the vertical plates is a fraction of the time taken to sweep horizontally across the screen, several eyeles of the verical or "signal" voltage will appoar in the pattern. The shape of only the last cycle (or the last few cycles, depending upon the number in the pattern and the characteristics of the swe(p) to appear will be affected by the fly-back in such a case,

The shape of the pattern obtained, with a given signal waveshape on the vortical plates, obviously will depend upon the shape of the horizontal sweep voltage. If the horizontal sweep is sinusoidal, the main and return sweeps each occupy the same time and the spot moves faster horizontally in the conter of the pattern than it does at the ends. When two sinusoidal voltages of the same frequency are applied to both sets of plates, the pattorn may be a straight line, an ellipse, or a cirele, depending upon the amplitudes and phase relationships of the two voltages.

For many amateur purposes a satisfactory horizontal swop is simply a 60 -eycle voltage of adjustable amplitude. In modulation monitoring (deseribed in the chapter on amplitude modulation) andio-frequency voltage can bo taken from the modulator to supply the horizontal swerp. For examination of audio-frequeney waveforms, the linear swerp is ('ssential. Its froquency should be adjustable over the entiro range of audio frequencies to be inspected on the oscilloscope.

Lissajaus Figures

When sinusoidal a.e. voltages are applied to the two sets of deflecting plates in the oscilloscope the resultant pattern depends on the relative amplitudes, frequenries and phase of the two voltages. If the relationship between these quantities is random the pattern is in continuous motion, but if the ratio betwern the two frequencies is constant and can bo expressed in integers the pattern will be stationary. This makes it possible to use the oscilloscope for determining an unknown frequency, provided a variable frequency standard is available, or for determining calibration points for a variable-frequency oseillator if a few known frequencies are available for comparison.

The stationary patterns obtained in this way are called Lissajous figures. Examples of some of the simpler Lissajous figures are given in lig. 21-38. Patterns of the type shown in Fig. 21-38 are obtaned when the two voltages have equal amplitudes; in case one has greater amplitude than the other the patterns will be elongated in the direction having the larger amplitude but will retain the same essential features. The form of the pattern for a fixed frequency ratio depends on the phase relationship, between the two voltages; these figures are for a 90 -degree phase difference.

In every case the pattems shown will be produced when the higher of the two frequencies
is applied to the vertical deflecting plates. Should the lower frequency be applied to the vertical plates the pattern will be turned at right angles. The frequency ratio is found by counting the number of loops along two adjacent edges. Thus in the third figure from the top there are three loops along a horizontal

Fig. 21-38-Lissajous figures and corresponding frequency ratios for a 90 -degree phase relationship between the voltages applied to the two sets of deflecting plates.
edge and only one along the vertical, so the ratio of the vertical frequence to the horizontal frequency is 3 to 1 . Similarly, in the fifth figure from the top there are four loops along the horizontal edge and three along the vertical edge, giving a ratio of 4 to 3 . Assuming that the known frequeney is applied to the horizontal plates, the unknown frequency is
signal generators, such as the variable-frequency a.f. oscillator described earlier in this chapter. Standard audio frequencies for this purpose are readily available. For very low frequencios the $60-y^{2}$ de power-line frequency is held accurately enough to be used as a standard in most localities. The medium audiofrequency range can be covered by romparison with the 440- and 600-eycle modulation on the WWV transmissions, An oscilloseope having both horizontal and vertical amplifiers is desirable, since it is conveniont to have a means for adjusting the voltages applied to the deflertion plates to secoure a suitable pattern sizo. The signal to the horizontal plates is fed directly to the amplifier, the horizontal linear sweep (if any) in the 'srope being switched out. The 60 -evele voltage can be obtained from the seeondary of a filament transformer. The 440 and 600 cycle voltages from the WWV signad can be taken from the hoadphone jack on a receiver. It is possible to calibrate over a 10-to-1 range, both upwards and downwards, from each of the latter freguencies and thus rover the audio range useful for voice communication.

Figs. 21-39 through 21-41 show the circuit and eonstructional details of a simple 2 -inch oscillaseope suitable for the r.f. measurements deseribed in the chapter on amplitude modulation. The compart assembly, with everything supported by the $31 / 4$ by $51 / 4$ inch panel, makes it possible to mount it right in a transmitter unit, if desireel. In such case the heater power and high voltage for the 2BI'1 tube may be taken from the transmitter power supply. The heater of the tube requires 6.3 volts at 0.6 ampere. The high voltage may be anything betwern 500 and 1000 volts, the maximum current being about 600 microamperes.

Fig. 21-40 is the eircuit diagram of the unit. Four controls are provided, for adjusting the for us and brightness and for centering the pattern both horizontally and vertically: The horizontal and vertical signal input terminals are isolated from

$$
f_{2}=\frac{n_{2}}{n_{1}} f_{1}
$$

where $f_{1}=$ known frequency applied to horizontal plates,
$f_{2}=$ unknown frequency applied to vertical platers,
$n_{1}=$ number of loops along a vertical edge, and
$n_{2}=$ number of loops along a horizontal edge.
In calibrating an oscillator, one of the frequencies is usually variable The 90 -degree pattern can be obtained by careful adjust ment of the variable frequency until a stationary pattern resembling those shown is obtained. As the phase is varied the patterns will assume various forms, for a given frequency ratio, but the 90 -degree pattern is easily identified beeause it is the most symmetrical.

An important application of Lissalous figures is in the calibration of audio-frequency

Fig. 21-39 - A 2-inch oscilloscope of compact construction, suitathe for modulation measurements and monitoring. It is dowigned aronnd the 2BP'l eathode-ras tabe and ean be momed rither in the transmitter itself or in a separate cabinet. (Built by W 1BHD and WINUQ.)
the c.r.t. deflection plates for d.c. by blocking condensers C C_{1} and (${ }_{2}$. These condensers should be rated to stamd the maximum voltame applied to the tube plus the peak signal voltage. Thie signal voltage reguired for full deflection depends on the high voltage used, and for boo-volt operattion is (6is volts pre inch horizontally and 10 volts per inch vertically. At 1000 volte the corresponding figures arre i:30 volts per ineh horizontally and 80 volts per inch vertically.

Is shown in Figs. 21-39 and 21-41, the four control potentiometers are mounted in pairs wath side of the er.t. face on the panel. Quarter inch brass rods support a small bakelite pancl at the rear. lower conmertions are mate by moans of a terminal strip, and double binding-pest assembies are used for the signal inputs. The brass rod supports are drilled and tapped at the ends, and

Fig. 21-40 - Circuit diagram of the 2-inch oweilloscope. The high voltage may be between 500 and 1000 volts, acrording to the voltage available.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{5}-\mathrm{O}, \mathrm{Ol}-\mathrm{ffI}, \mathrm{I}$ (ON).volt rating.
$\mathrm{C}_{3}-0.5 \mu \mathrm{fid}, 5(0)$ volta.
R1, R2-3-megohme valume control.
$R_{3}, R_{4}-82,01010$ ohms. 1_{2} watt.
$\mathrm{R}_{5}, \mathrm{R}_{6}=2.2$ mequhms, $1 / 2$ watt.
18: 0.75 mekohm, I wati.

1 s - 0.1 megohm , 1 watt.
$\mathbf{R}_{11}-0.2$? megohn, 1 watt.
at the front are assembled to the same holes that mount the bezel (Millen 80072) and the tube shied (Millen 80042). The latter is used to protert the tube from both low-frequency a.e. and r.f. fields that art on the beam and distort the pattern.

Connections and use of an oscilloseope of this type for molulation dherking arr deseribed in the chapter on amplitude modulation. For the trapezoidal pattern some of the audio voltage from the modulator should be applied to the horizontal plates through a voltage divider as described in that chapter. For continuous monitoring of modulation a 60 -evele swep ean be used on the horizontal plates. The 60 -evele voltage can be obtained through a small atudio transformer from the power line, as indieated in Fig.

Fip. 21-41- Rear view of the 2 -inch oscillosenpe. The 2 BP' is supporter by the strap at the end of the stielli, which elampe around the tube base. The tulne sewhet floats, with short flexible leads running to the terminal lnard.

21-42, with a potentiometer for setting it to the proper value to give a pattern of the desired size.

The unit can of course be mounted in a standard utility box or cabinet, if desired, in which "vont it is convenient to include a power supply. I suitable diagram is given in Fig. 21-12. Any small replanement transformer (an be used for the purpose, since the power required is extremely smaill.

Fir. 21-42-Suggested power supply for the 9 -inch oweillosenpe if power is not supplied by the transmitter. A (0)-eyrle sweep eircuit is included.
$\mathrm{C}_{4}-0.25$ to $1 \mu \mathrm{ffl}, 1000$ volts.
$\mathbb{1}_{1}-0,5$ megohm volume control.
$\mathrm{S}_{1}, \mathrm{~S}_{2}-\mathrm{S}_{\mathrm{p}} \mathrm{p}, \mathrm{s}, \mathrm{t}$ toggle.
T_{1} - Smail replacenent transformer, 250 to 350 volts earh side c.t.. rurrent rating unimportant. The 2×2 rectifier filament is supplied by one-half of the 5 -volt rectifier winding. Filamemt second. ary 0.3 volts, current required 0.6 amp.
T_{2} - Audio transformer, 1 to 1 ratio suitable.

- LINEAR SWEEPS AND AMPLIFIERS

Probably the chief use of the oscilloscope in amateur work is in measuring the percentage modulation in 'phone transmitters and in serving as a continuous monitor of modulation percontage. An oscilloscope for this purpose may be quite simple and inexpensive, consisting only of a small cathode-ray tube and an appropriate power supply as described earlior. However, by providing amplifiers for the deflection plates and furnishing a linear sweep circuit, the possibilities of the instrument are greatly extended. It then becomes possible for example, to examine a.f, waveforms and to locate causes of distortion in a.f. amplifiers.

Gas-Tube Sweep Generator

A circuit for a linear swerp generator and amplifier is shown in ligg. 21-43. The tube is a gas triode or grid-control rectifier. The striking or breakdown voltage, which is the plate voltage at which the tube ionizes or "fires" and starts conducting, is determined by the grid bias. When pate voltage, L_{b}, in Fig. 21-44, is applied, the condenser botwern plate and ground acpuires a charge through $R_{6} R_{7}$, ' 1 'he charging voltage rises relatively slowly, as shown by the solid line, until the breakdown or flashing point, ${ }^{\circ} \mathrm{f}$, is reachod. Then the condenser discharges rapidly through the comparatively low plate-cathode resistance of the tube. When the voltage drops to a value, E_{a}, too low to maintain plate-current flow, the ionization is extinguished and the condenser onve more charges through $R_{6} R_{7}$. If the resistance is large enough, the voltage across the condenser will rise lincarly with time up to the breakdown point. This linear voltage
change is used for the sweep. The fly-bark time is the time required for condenser discharge through the sweep-generator tube; to keep this time small, the resistance during discharge must be low.

The "sawtooth" rate is controlled by varying the capacitance between plate and ground and the resistance of $R_{6} R_{7}$. To obtain a stationary pattern, the sweep is synchronized by introducing some of the voltage being observed on the vertical plates into the grid eircuit of the 884 gas triode. This voltage "triggers" the tube into operation in synchronism with the signal frequency. Synchronization will occur so long as the signal frequency is nearly the same as, or a multiple of, the self-generated swerp frequency.

Fig. 21.41 - Condenser charging curves showing how a sawtooth wave is produced ly a gaseons-tule litesar sweep oseillator.

The pentode amplifier in Fig, 21-43 can be used either to amplify the sweep-volage output of the 884 oscillator, or to amplify any external voltage that it may be desired to use as a horizontal sweep. The gain control, R_{11}, provides a means for adjusting the width of the pattern on the cathode-ray tube sereen, The output of the amplifier should be connected to the horizontal deflection plates of the tube. If this circuit is to be used with the

Fif. 21-13 - Iinear sweep generator and horizontal amplifier.

Ci $-0.1, \mu \mathrm{fd}$, paper.
(2) - $25-\mu \mathrm{fll}$. 25 -volt - lectrolytic.

C 3 - $0.2-2-\mu$ fil. paper, (1) 0 volts.

(\%-0.0 $1 \cdot \mu$ fil, paper, 000 volts.
($\mathrm{B}_{8}-0.01 \mathrm{~B}-\mu \mathrm{fa}$, paper, 600) volts.
($:-0.105-\mu \mathrm{fa}$, papur or mica, 600 volts. (8 - $0,0022-\mu \mathrm{fil}$, nica.
Ca, Cit - $0 . \overline{5} \cdot \mu \mathrm{fd}$. paper, 6100 volts.

\mathbf{R}_{1} - U.e.i-mequhm putentiometer.
$\mathbf{R}_{2}-2 \boldsymbol{2}, 000$ whthe, $1 / 2$ watt.
$\mathrm{R}_{3}-4 \%$ ohms, $1 / 2$ watt.
R_{4} - 2200 ohms, $1 / 2$ watt.
R_{5} - 2.0000 ohnis, 1 watt.
$R_{6}-0.33$ megohm, $1 / 2$ watt.
R_{7} - 1 -megohm potentiometer.
$\mathrm{R}_{8}, \mathrm{R}_{9}-\mathbf{6 2},(\mathrm{MO})$ ohms, 1 watt.
$R 10-1$ megohm, $1 / 2$ watt.
R_{11} - 0.5 -megohm potentioneter.
$\mathrm{R}_{12}-8.10$ ohms, $1 / 2$ watt.
$\mathrm{R}_{13}-0.1$ megohm, 1 watt.
$\mathrm{K}_{14}-2.2$ megohns, or bleed resistor for horizontal deflection plates.
oscilloseope previously deseribed, the output terminals mays the connerted direetly to the horizontal input terminals on the seope unit.

Vertical Amplifiers

When using an oseilloseope for checking audio-frequency waveforms a "vertical" amplifier is a practical neressity. For most purperses the amplitier will be satisfartory if its frefueney-response characteristie is flat over the a.f. range and if it has a gain of 100 or so. A typical circuit is shown in Fig. 21-45. It will be rerognized as being practically similar to the "horizontal" amplifier of Fig. 21-43. A high-resistance gain eontrol is desirable, to avoid loading the audio cireuits to which the amplifier is connerted.

When such an amplifier is used with the oscilluseope of Fig. 21-40, the output terminals should be conneet ed to the vertical input terminals on the 'seope.

Constructional Considerations

In building an oscilloscope, care should be taken to see that the tube is shielded from stray electric and magnetic fields that might deflect the beam, and means should be provided to protect the operator from aceidental shoek, since the voltages employed with the larger tubes are quite high. In general, the preferable form of eonstruction is to enclose the insurument eompletely in a metat cabinet. From the standpoint of safet y, it is good practice to provide an interlock switeh that atotomatically disconneets the high-voltage supply when the cabinet is opened for servicing or other reasons.

In laying out the unit, the cathode-ray tube must be placed so that thealternating magnetic

Fig. 21 -4.5- Circnit diagram of a vertical amplifier for an neseilloserope.

R_{1} - 1 -mesohm potentiometer.
$\mathrm{R}_{2}-1.50$ chan-. ${ }^{1} 2$ watt.
$R_{3}-2.2$ mergohmo. I wath.
R_{4} - 0.15 memohm. I watt.
$R_{5}-2.2$ mixahma, or hered resistor for vertical deHection plates.
fied from the power transormar has no effect on the electron beam. The transformer should fe mounted directly behind the base of the tube, with the axes of the transformer windings and of the tube on a common line.

It is important that provision he included either for switching off the eleceron beam or reducing the spot intensity when no signal voltage is being applied. A thin, bright line or a spot of high intensity will "hurn" the tube sereen.

If trouble is experienced in obtaining a clean pattern from a high-power transmitter because of ref. voltage introduced by the 115 -volt line, by-pass condensers (0.01 or $0.1 \mu \mathrm{fd}$.) should be connected in series across the primary of the power transformer, the common connection between the two being grounded to the oscilloscope rase.

Antenna and Transmission-Line Measurements

Two principal types of moasuremonts are made on antennat systems: 1) The standing-wave ratio on the transmission line, as a means for determining whether or not the antenna is propery matched to the line; 2) The eomparative radiation field strength in the vicinity of the antemma, as a means for chacking the directivity of a beam antomatand as an ail! in adjustmont of clement tuning and phasing. Both types of measurements ean be made with rather simple equipment.

FIELD STRENGTH MEASUREMENTS

The radiation field of an antenna is measured with a deviee that is essentially a very simple receriver equipped with an indicator to give a visual representation of the eomparative signal strength. Such il field-strength meter is used with a "pick-up antemna", which should always have the same polarization as the antemat being checked - e.g., the piek-up antemna should be horizontal if the transmitting antema is hori-

Fiд. 2/-46- A logarithmir field-strength meter ef hish semaitiv ity. It nsers two miniature bat toryooperated tubes and a 0,000 microammoter, and gives readings that are approximately proportional to the change in field strength in dereibels.

Fig. 21.47 - Wiring diagram of the sensitive firldsitrength meter.

($3_{3,}$ ($s-4$ - 0 - $\mu \mu$ fd, ceramic.
(:4-0,003- -4 fi, cramic.
$\mathrm{R}_{1}-1.5$ megohms.

28 Ha•: 6 tharns Vo. 20 d.e.e.
$1.2-11$ 11.: 31 turns No. 30 d.a.r.
28 Nc.: 21 turn: Vo. 22 d.4.e.
1.3 - II $11 \times .: 27$ turns No. 28 1.c.4.

28 V1r.: 16 thras No, 20 d.r.e.
I_{1} wound over pround end of L_{2}, L_{2} and L_{3} closewound on National \R-50 whetuned coil forms.
RFC: - Tinl μ h. (National R33).
SI - S.p.s.t. togkle.
11 A- 0.5 milliammeter.
zontal. Care should be taken to prevent stray pick-up by the field-strength mater itsolf or by any transmission line that may comert it to the pick-up antemna.

Fiold-strength measurements proferably should be made at a distance of several wabolengths from the transmitting antema being tested. Measurements made within a wavelength of the antemat may be misleading, because of the possibility that the metaring equipment maty be responding to the combined induction and radiation fields of the antemat, rather than to the radiation field alone. Also, if the piek-up antemat has dimensions comparathle with those of the antema under test it is likely that the coupling between the two antennas will be great anough to cause the piek-up antemna to tend to beeome part of the radiating system and thus result in misleading field-strength readings.

A desirable form of pick-up antemat is a dipole installed at the same height as the antemna being tested, with low-imperdane line such as $\overline{3}$-ohm Twin-Latad romected at the enenter to transfer the ref. signal to the field-strength meter. The length of the dipole need only be great enough to give adequate meter radings. A half-waye dipole will give maximum sensitivity, but such length will not be nereded unless the distanere is several

Warolengths and a relatively insensitive meter is used.

Field-Strength Meters

The arvaladetertor wavemoter deseribed earlior in this chapter may be used as a fieldstrongth moter. It maty be coupled to the tatmsmission line to the pick-up) :nternal bey means of a link of a few turns wound around the wavemoter coil. Also, the wavemeter proper may be commeded to the milliammeter through a seretion of lampeord or similar two-romductor cable of any conveniont length. This permits the milliammeter unit to be near the point where adjustments are being made, cren though the pick-up, antennat and wavemetor may be several wavelougthe alway.

The indications with a crystal wavemeter connereme as shown in Fig. 2l-10 will tend to be "sequare law" - that is, the meter reading will be propertional to the spuate of the r.f. voltage This exaghorates the effere of relatively smad adjustments to the antemat system and gives a fislse impression of the improvement secured. The meter reading can be made more linear by conmedeng a fairly large resistance in series with the milliammeter (or microammeter). Whout 10,000 ohms is required for good lincarity. This romsiderably reduces the sensitivity of the meter, but the lower sensitivity can be compensated for by making the piek-up antema sufficiently large.

A Sensitive Logarithmic F.S. Meter

For indicating the effect of antenna adjustmonts at a distant station, a logarithmic type of indicator is desirable in the field-strength meter since the meter readings with such an instrument are directly proportional to decibols. Figs, 21-46 to 21-48, indusive, show a moter of this type. It makes use of the fact that the rectified dee. output of a detector following a.v.e.controlled r.f. stages tends to be logarithmie with respect to the r.f. voltage applied to the receiver.

As shown in Fig. 21-17, the rircuit includes an r.f. amplifier, a detector, and a d.c. amplifior, using miniature battery tubes. The rectifiod r.f. voltage developed arross A_{1} in the dionde direuit of the $11^{\circ} 5$ is applied through the ground commeetion to the grid of the I'T't r.f. amplifier and thus controls its gain, The $11 / 2$-volt "A" battory is not connected to ground but is allowed to "float", permitting the a.v.e. voltage to be effective on the grids.

In the unit shown in the photographes, slugtumed eoils are used because of their small size

Fig. 21-18 - The logarithmio f.s. motor is construeted on a small alumimem whimmel. A small copper plate lietween the twa mils is used for reducing the interntagu coupling to the moint where the r.f. amplifier is normregenerative.

fige, 21.f! - 'lyprical calibration curve of the logarith. mic field-strength meter. The curve is sufficiently logarithmie, for practical purposers, between about 0.0 .5 and 0.15 ma, The way in which the readinge vary with applied signal, and not the absolute value of the signal. is the important point, and simee this will not rhange significantly so long as the same circuit is used, the furve above may be used with any similar instrument.
and because they eliminate the need for variable tuning condensers. However, ordinary condensertuned circuits ean be substituted; the only requirement is that the cireuits must be tumathle to the froquency at which the antemna is being adjusted. The only eritical point about the construction of such a meter is to lay out the tuned circuits so that the r.f. amplifier is stable; otherwise, any convenient layout may be used.

With the values shown in Pig. 21-17 the nosignal plate current should be very close to 0.5 millitmpere, A less-sensitive d.e. instrument will require more "I " voltage. Whatever the trpe of meter, the current may be brought to exatly full scale, with mo signal input, by shunting it with a variahle resistor of suitable rauge, depending on the interual resistance.

Fig. 21-49 is a trpical calibration rurve. The readings are approximately logarithmic over atrout 70 pereent of the seale, with a range of about 20 (th. Lised with a folded-dipole pick-up antema, the instrument is semsitive enough for use a fery thousind fert away from a beam antenna ferl with a fow hundred watts.

CHECKING STANDING WAVES

Standing waves on a transmission line can be measured if it is possibhe to measure the current at every point along the line, or the voltage betwern the two conductors at every point along the line. Rough checks on parallelconductor lines can be made by going along the line with an absorption wavemeter having a crystal rectifier, taking care to keep the pick-up coil (or pick-up antenna) at the same distance from the line at every measurement. With such a device the maximum milliammeter reading usually will indicate current loops if a small pick-up coil is used, and voltage loops if a short piek-up antemna is used.

An alternative indicator, also useful with parallel-conductor lines, is a neon lamp. With moderate amounts of transmitter power, a lowwattage lamp will glow when the glass bulb is brought into contact with one line wire. As the lamp is moved along the line, a change in bright ness indieates standing waves. If the glow is substantially the same all along the line the s.w.r. can be considered to be low enough for pratical purposes.

Standing-Wave Ratio Indicators

Simple indicators such ats those just mentioned are useful for checking the presence of standing waves along a transmission line but arre not adequate for actual moasurement of Whe standing-wave ratio. Also, it is frequently inconvenient, and sometimes impossible, to move a current or voltage indicator along a transmission line for the distance required in rherking standing waves.

Fis. 2/-50 - Resistance bridge as used for resistance me:asurement. 'Ihis fundamental cireuit is the hasis for one type of hridge for meataring stambing-wave ratia.

An alternative method uses a bridge rircuit to measure the standing-wave ratio. While there are many forms of bridge cireuite. the simple resistance bridge shown in Fig. 21-50 will serve to illustrate the basic principles. This tepe of bridge is oftern used for measurement of resistance. R_{1} and R_{2} are fixed resistors having known values, and R_{S} is a adibrated variable resistor. "lhe unknown resistanee to be measured, R_{1}, is connected in series with R.s to form a voltage divider across the source of voltage, E. The resistance of the voltmeter, l^{\prime}, should be very mueh larger that any of the four resistance "arms" of the bridge for maximum aceurars. From Ohm's Law it is apparent that whon R_{1} / R_{2} equals R_{s} / R_{1}, the voltage drops across R_{1} and R_{s} are equal (this is also true of the voltage dropss arross R_{2} and R_{1}) and there is no difference of potential between points (* and I). Hence the voltmeter reading is zoro ("mull") and the bridge is said to be "balanced." Conder any other conditions the potentials at C and I are not the same and the voltmeter reads the difference of potential. When the bridge is balaneed,

$$
R_{\mathrm{L}}=R_{\mathrm{s}} \frac{R_{2}}{R_{1}}
$$

R_{1} and R_{2} are called the "ratio arms" of the bridge.

The basis for s.w.r. measurements with a bridge is the fare that the imput imperdane of a properly-terminated ransmission line is a pure resiscance equal to the line's characteristic impedanere. If a matehed lime is comereted as the unknown arm of an appropriate bridge circuat the bridge can be balaneed in whe usual way and the indiating instrument will show a

Fig. 21.51-Standing-wave ratio in terms of meter reading (relative to full seale) after setting outkoing voltage to full scale. This graph is a plot of the formula

$$
S . H^{\circ} . K .=\frac{V_{0}+V_{r}}{V_{n}-V_{r}}
$$

where lo antil It are the ontgoing and reflected components, respectively, of the voltage on the transmission line.
null. However, if the line is not properly terminated the voltage refleeted batek from the far end of the line will appear at the terminals of the bridge and will registor on the voltmeter. "The relationship between voltmeter reading (in perentage of full scale) and standing-wave ratio is shown in ligg, 21-51. This curve applies only when the voltmeter impedance is extremely high - 20 times or more - compared with the impedance for which the bridge is designed.

While other bridge circuits can be used for s.w.r. measurement, the resistance bridge is about the simplest and easiest to build. It lends itself well to construction for coasiad lines and when so designed can be used for measurement of opern-wire lines as shown later in this chapter.

S.W.R. INDICATOR FOR COAXIAL LINES

Figs. 21-52 to 21-54, inclusive, illustrate the type of eonstruction that should be used in a coxial-line s.w.r. indicator. Coupling between various parts of the r.f. circuits should be as

Fig. 21-52-Rewist. ante-bridgemandinkwave ratio imlicator for roasial lines. 'this unit is built in a $2 \times+$ $\times 1$ low with all parts assembled on the removable sides, 'The side on which the bridge is motulted has toent removed tordiow the construrtion. In this view the outpot eonvial terminal is at the left and the ingut terminal at the right. 'The threre I-watt resistors grouped to. gether at the lower right form R_{1}, the loading resimor. The ration resistors, \boldsymbol{R}_{2} and R_{3}, are in the foregronnd, monnted vertically just to the right "f the near shield lracket. The standard resistor, \boldsymbol{R}_{4}, is similarly mounted just to the left of the shield lracket. 'Whis type of eonstruetion
 tends to equalize canpacitance betwern the resistors and ground and helps maintain aceurary at high frempencies,

The bridge rectitier is just behind the upper of the two ratio resintors, with one terminal protruding through a hole in the shield brachet and connecting to the output coax terminal, The line rectifier is at the right. The shield running horizontally is bet ween the bridge proper and the d.e. conncetions to the switch, S_{1}, and the line multiplier, R_{5}. R_{8} is just behind and below the line reetifier. ['olystyrene feed-through bushings (National TPl') are used for running conncetions through the shields.
With this construetion full accuraey is maintained through the 50 . Me, band. I'he bridge is usable for approximate measurements at 114 Me, Jnt is not as aceurate as on lower frequencies.
small as possible. Short leads in the r.ft, wiring are important, to minimize stray reartances that, although not visible in the cireuit diagram, may become apperefable at frequencies of the order of 14 Me . and higher. The loading resistor, R_{1}, places a comstant low-resistance load on the transmitter and thereby helps maintain constant voltage across the bridge regardless of the load that may be connected to the output terminals. A refinemont, although not an esomial part of the bridge, is the voltmetor connected arross the input side of the line and consisting of the crystal rectifier, C_{1}, and R_{5}, in conjunction with s_{1} and the meter. This line voltmeter is a convenionce in making motsurements, because it will show Whether or not the line voltage varies when shifting the output romnections from open or shortrireuit (the reference readings) to the actual line to be measured. Thus it shows whether or not an error has been introduced beratuse of line voltage regulation, and permits rabijustment to the proper value. The calibrations of the two voltmeters do not have to be identical.

The bridge performance can be chocked by using a moninductive resistor of the same value as R_{4} (matched as closely as possiblo) as a load. With the output terminals open and st set to read input voltage, adjust the transmitter coupling to obtain a reating between half and full scale. Because the bridge operates at a very low power level it may be neressary to couple it to a low-power driver stage rather than to the final amplifier. Alternatively, the plate voltage and excitation for the final amplifier may be reduced to the point where the power output is of the order of five watts. Then connect the test resistor to the output terminal, J_{2}, using leads as short as possible, and switeh S_{1} to the bridge ("SWI") position, when the rearling should drop to zero. A poor null under these conditions indicates stray coupling or excessive lead reactanee in the bridge circuit.

Fig. $21-53$ - Circuit diakram of the standing-wave ratio bridge.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}-0,0 \mathrm{O}_{\mathrm{B}}-\mathrm{\mu ft}$. reramic.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Coax rereptacle.
M - Mieroammeter or 0-1 milliammeter (see text).
$\mathrm{K}_{1}-16$ ohms. 3 watts (three $1 \overline{6}$-ohmm 1 -watt resistors in parallel).
$R_{2}, R_{3}-47$, ohms, $1 / \frac{1}{2}$ watt (math hed for resistance).

R_{5} - 0.12 megohm for $11-1(0)$ microsmmeter: I2.060 ohms for 10-1 milliammeter.

S_{1} - Single-pole donble-throw toggle.

Fig. 21-54- 'The coan connectors and voltmeter switch are opreratid from the rear of the sow.r, bridge. Care whuld ln tahen to remove paint from the panel undernesth the eommerters, 'The opponite mide of the instrument contains only the inflicating meter, which is connerted to the - witah with tlexible loads of sufficient length to permit eas removal of either sidr.

The bridgn may be calibrated by using noninductive resistors as loads. Adjust the transmitter eoupling so that the voltmeter reads full srale (s.w.r. position of S_{1}) with the output terminals open, amd then check the input voltage. Comnect various values of resistance across the output terminals, making sure that the input voltage is the same in each cose, and note the reading with the meter in the s.w.r. position. The s.w.r. is given by

$$
S . H^{\circ} . R .=\frac{R_{L_{4}}}{R_{0}^{2}} \text { ar } \cdot \frac{R_{0}}{R_{L_{1}}}
$$

where R_{0} is the line impedance for which the bridge has berol adjusted to null, and R_{L} is the resistance usay as a load. Cise the formula that places the larger of the twe resistances in the numerator. The readings may not comerspond exactly for the same s.w.r. when appropriate resistors above and below the line impedance for which the bridge is devigned are used. This is because of the current taken by the valmeter.

With the constants given in ligg. 21-5:3 for a 0-1 milliammeter, the difference between the "up" and "down" s.w.r. readings should not exeed about 5 per cent. Using a $0-100$ nincromcter and the constants given, the difference between "up" and "down"s.w.r. measurements is negligilde, and the catibration curve should ber essentally identical with the theoretional rurve given in fig. 21-51.

The use the bridge for s.w.r. measumments, connmet it to the trammilter and adjust the coupling to make the neter read full seale with the laridge output terminals either open or short-
circnited and S_{1} in the s.w.r. position. ('herk the line voltage. Conneet the transmission line to be moasmed, realjust the tramsmitter coupling for the same line voltage, if neecssary, and then switch S_{1} to the bridge position for the s.w.r. reading, as given by the previously-determined calibration curve.

Parallel-Conductor Lines

Bridge measurements made directly on paral-lel-conductor lines are frequently subjoet to considerable error because of "antenna" currents flowing on such lines. These currents, which are either indured on the line by the field around the antenna or coupled into the line from the transmitter by stray capacitance, are in the same phase in both line wires and henee do not balance out like the true transmission-line currents. They will nevertheless actuate the bridge voltmeter, rausing an indication that has no relationship to the standing-wave ratio.

Fig. 21.55-Cireuit for using coaxial s.w.r. bridge for measurements on parallel-ronductor lines. Dalues of circuit compoments are identical with those used for the similar "antenna-coupler" circuit discussed in the chap. ter on transmission lines.

The effect of "antenna" currents on s.w.r. measurements can be largely overcome by using a coaxial bridge and coupling it to the parathetconductor line through a properly-designed impedance-matehing cireuit. A suitable cireuit is given in lig. 21-in. It dosely resembles the common type of "antena coupler", and in fact such a coupler can be used for the purpose. In the balaneod tank areuit the "antemas" or" parallel eomponents on the line tend to balance out and so are not passed on to the s.w.r. bridger. It is essential that L_{1} be couphed to a "cold" point on L_{2} to minimize caparitive coupling, and also desirable that the center of L_{2} be grounded to the chassis on which the rireuit is mounted.

Values should be such that $L_{2} C_{1}$ can be tuned to the operating freguency and that L_{1} provides sufficient coupling, as described in the trans-mission-line chapter. The measurement procedure is as follows:

Connect a noninductive ($1 / 2$ or 1 watt carton) resistor, having the same value as the characteristic impedance of the paralleleronductor line, to the "line" terminals. Apply r.f. to the bridge, adjust the taps on L_{2} (kerping them equidistant from the eenter) and vary the caparitance of C_{1} until the bridge shows a mull. After the mull is obtained, do not tourh any of the cireuit adjustments. Next, short-eircuit the "line" terminals and adjust the r.f. input until the bridge voltmeter reads full seale. Remove the short-cireuit and test resistor, and connect the regular transmission line. The bridge will then indiate the
standing-wabe ratio on the line.
The circuit reguires rematching, with the test resistor, whenever the frequency is changed appleriathy. It rath, howrever, be used over a portion of an amateur band without readjustment, with negligible error.

The "Twin-Lamp"

A simple and inexpensive standing-wave indicator for 300 -ohm line is shown in Fig. 21-its. It ronsists only of two flashlight lamps and a short piece of 300 -ohm line. When laid flat against the line to be cherked, the combination of inductive and eapareitive coupling is such that outgoing power on the line canses the lamp nearest to the transmitter to light, while reflected power lights the lamp nearest the load. The pewer input to the line should the adjusted to make the lamp nearest the transmitter light to full brilliance. If the line is properly matehed and the reflected power is very low; the lamp toward the antema will be dark. If the s.w.r. is high, the two lamps will glow with practically cqual brilliance.

The length of the piece of 300 -ohm line needed in the twin-lamp will depend on the transmitter power and the operating frequency. A few inches will suffice with high power at high frequencies, while a foot or two may be needed with low power and at low frerguencies.

In constructing the twin-lamp, cut one wire in the exact center of the piece and peel the ends back on eithar side just far enough to provide leads to the flashlight lamps. Remove about $1 / 4$ inch of insulation from one wire of the main transmission line at some convenient point. L"se the lowest-current flashlight bulbs or dial lamps available. solder the tips of the bults together and conmert them to the hare proint in the tramsmission lime, then solder the ends of the rut portion of the short piere to the shells of the bults. lïgs. 21-56 and 21-97 should make the construction cloar.

Installing the twin-lamp on a line introduces a diseontinuity in the line impedance which

Fig. 21-56- The "twin-lamp" standing-wave indicator monnted on 300 orhm ' I'win-lad. Scotch tape is used for fastening.

Fig. 21-57-Wiring diagram of the "twin-lamp" standing-wave indicator.
causes the s.w.r. from the twin-lamp back to the transmitter to differ from the s.w.r. existing between the antema and twin-lamp. For this reason it is frequently desirable to remove it after s.w.r. checks have been made. It is convenient to mount the twin-lamp on a short longth
of line fitted to a 300 -ohm plug at one end and a mating socket at the other. If similar plugs and sockets are used on the transmitter and regular transmission line, the whole test unit can be inserted and taken out at will.

The twin-lamp will respond to "antenna" currents on the transmission line in much the same way as the bridge circuits diseussed earlier. There is therefore always a possibility of error in its indieations, unless it has been determined by othor means that "antema" currents are inconsequential compared with the true transmission-line curvent.

Assembling a
 Station

An amateur station is generally far better known by its signal and good operation than by its physibal appearance. (iood operating and a clean signal will build a reputation faster than thousands of dollars invested in sperial equipment and an elabomate" shatek." and it is this very fact that makes amateur radio the demoaratic holby that it is. Iowever, most amateuts take pride in the arrangemont of their stations, in the same way that they are carelul of the appearanoe and arrangement of anything else which is part of the household. An antenna installation is the only external indication of the amatear station, and the degree of neatuess required is gencrally determined by the distriet where the amateme lives and the attitude of the neighbors. However, with the advent of all differont kinds of television receiving antennats, noighbors are in a murh less favorable position to complain about the appearancere of an amateur antenna system in the vicinity. TVI is something else, however?

The atotal location inside the house of the "shack" - the room where the transmitter and reeriver are located - depends, of course. on the free space available for amateur activities. Fortunate indeed is the amateur with a

A good example of a station well prepared for actisty on several bands. 'The rack houses power supply and F- and II-Mc, nutput amplifiers, with the $3,5-$ Me, amplifier adjacent in its own rack. The receiver, Vl'0, tube keyer, typewriter, control switches, key and telephone are all within rasy reach of the operator. Sperial cubby. holes provided for message forms, log book, fall Book and other papers heep the operating position neat and ready for action at any time. (N + (il) A, I anville, Ky.)
separate room that he can devote to his amateur station, or the few who can have a special small building separate from the main house. IIowever, most amateurs must share a room with other domestic antivities, and amateur stations will be found tueked away in a corner of the living room, a bedroom, a large closet, or even under the kitchen stove! A spot in the cellar or the attic can almost be classed as a sparate room, although it may lack the "finish" of a normal room.

Regardless of the lomation of the station, however, it shond be designed for maximum operating convenience and salety. It is foolish to have the station arranged so that the throwing of several swit ches is required to go from "recerve" to "transmit," just as it is silly to have the equipment arranged so that the operator is in an uncomfortable and cramped position during his operating hours. The reasons for building the station as safe as possible are obvious, if you are interested in spending a number of yars with your hobby!

CONVENIENCE

The first consideration in any amateur station is the operating position. which indudes the operator's table and chair and the pieces of equipment that are in eonstant use the recerver, semd-rereive switeh, and key or miomphone). The table should be as large as pussible. to allow sulicient room for the refeiver or recovers freghener-measuring equipment. monitoring equipment, control switches, and keys and miorophones, with enough space Ioft owe for the logbook, a pad and pencil, and porhaps a large ash trat. Suitable space shoudd be incluted for radiogram blanks and a call book, if these aceressories are in frequent use. If the table is small. or the number of pieces of equipment is lange, it is often necessary to build a shelf or rack for the auxiliary equipment, or to monnt it in some less convenient location in or under the table. If one has the facilities, a semicireular "console" can be built of wood, or a simpler solution is to use two small wooden cabinets to support a table top of wood or Masonite. Home-built tables or consoles can be finished in any of the available oil stains, varnishes, paints or lacquers. Many operators
use a large piece of plate glass over part of their table, sine it furnishes a good writing surface and can eover misedlatneous charts and tables. prefix lists, operating aids, falendar, and similar areessories.

If the major interests never require frequent band ehanging, or frequencer changing within a band, the tramsmitter ean be loeated some distanere from the uperator, in a bacation where the meters can be observed from time to time (and the color of the tube plates noted!). If frequent band or frequeney changes are a part of the usial operating procedure, the transmitter shoulal be monated cluse to the uperator, either along one side or above the reeeiver. so that the eontrols are easily atecessib)

Fig. 22-1 - lin a atation asembled for manimum casac in frequency or band changing, the tranimiter should be located next to the oprating position, as shows alove. (On the operating talle, the receiver is in fromt of the operator and VFO or oryatal-witching oweillator on the left. (The VPO or erystal wencilator could be bart of the transmitter proper, but mont operatores stem to prefer a separate \f(o).)

The fromuency standard and other ansiliary rquipmont can be mounted on a shelf atove the rereiver. The oprating table can loc an whd desk, or a top supported by two smatl wooden cabinets. The "send-receive" switeh is to the right of the telograph hess - wher switches are on the transmitter or the individual units.
The above arrangenent can be mald to look cleamer by arranging all of the equipment on the table behind a simgle pand or a set of vands, In this case, prowi-ion must be made for geting behind the bianel for servicing the units.
without the need for leaving the operating position.

A compromise arrangement would plate the VFO or erystal-switched ascillator at the (op)erating position and the transmitter in some convenient location not adjacent to the operator. Since it is usually possible to operate over a portion of a band without retuming the transmitter stages. an operating position of this tgpe is an advantage over one in which the operator must leave his position to make a change in frequency.

Controls

The operator has an excellent chance to exererise his ingenuity in the location of the op)erating controls. The most important controls in the station are the receiver tuning dial and the send-receive switch. The receiver tuning dial should be located four to eight inches

One of the mant eonvenient station arrangements is to loaild a aemiecircular operating table as shown leere. All operating controls arre readily availalle, and considerably mome equipment cant be grouped around the operatur than when an ordinary desh is used. (WeSAI, Riverton. N. J.)
above the operating table, and if this requires mounting the receiver off the table, a small shelf or bracket will do the trick. With the single exception of the amateur whose work is almest entirely in trafla or mag-chew nets. which require little or tio attention to the recoiver, it will be found that the operators hand is on the reediver thang dial most of the time. If the tumine knob is too high or too low. the hand gets cramped after an extended period of operating. hence the importance of a proparly-lowated receiven. The majority of c.w. operators tune with the left hand, preferring to leave the right hand free for copring messages and handing the key, and so the reariver should be monated where the knots can be seached by the left hand. 'Phone operators aren't tied down this way. and tune the fommmaideations receiver with the hand that is more comavenient.

The hand key shomid be fastened serurely to the table, in a line just ant ide the right

 bames, he ia likely to rome up with a neat arrangement like thia, 'the tranamitter rums Hol watts, despite its small sizt, 'The small unit hetween transmitter and receiver is the IFO. (HSMY, San Antonio, Texas.)
shoulder and far enough back from the front edge of the table so that the ellow can rest on the table. A good location for the semiatutomatic or "bug" key is right next to the handkey, although some operators prefer to momit the automatic key in front of them on the left, so that the right forearm rests on the table parallel to the front edge.

The best location for the microphone is directly in front of the operator, so that he doesn't have to shout acmoss the table into it, or run up the speech-amplifier gain so high that all manner of external somuds are pirked up.

In any amateur station worthy of the mame, it shonld be neressary to throw no more than one switrh to go from the "receive" to the "transmit" eonalition. In 'phone stations, this swit \cdot h should be located where it can be easily reached by the hand that isn't on the receiver. In the rase of r.w. operation, this switch is most conveniently located to the right or left of the key, although some oprators prefer to have it mounted on the left-hatmel side of the operating position and work it with the left hand while the right hand is on the key, Fither location is satisfactory, of course, and the choice depends upon personal preference. Some operators use a foot-controlled switch, which is a convenience but doesn't allow too much freedom of position during long operating periods.

If the microphone is hand-hekl during 'phone operation, a "push-to-talk" switeh on the miorophone is ronvenient, but hand-held microphones tie up the use of one hand and

Fig. 22-2 - When little splace is available for the amateur station, the equipment has to be spotted where it will fit. In the above arrankement, the tranmitter, monfulator and poner supplies (separate units) are sandwiclred in along-ide the operating table and on a shelf ahove the table. The antenna tuning unit is mounted over the feed-through insulators that bring the antenna line into the "shaek," and loudspeaker and small power supplies are mounted under the table. The operating position is clean, however, with the VFO, reefiver and keys at tathe level. The tuning knob of this receiver womble be uneomfortably low if the reereiver wren't raised by the woules areh, and the "send. receive" stitch is mounted on the right-hand side of this areh, next to the hand key. Interconneeting leads shoula be cabled along the back of the table and table legs, th keep them inconspienous.

'This illnstrates low concealing all interconnecting wires and eliminating gear not necessary to commonioation results in an extremely neat station. (VEBAL J, Wime strek, Ont.)
are not too lesirable, although they are widely used in mobile and portable work.

The location of other switches, such as those used to control power supplies. friaments, 'phone/c.w. change-over and the like, is of no particular imprortance, and they can be located on the unit with whiek they are associated. This is noi strictly true in the case of the 'phone, c.w. DX man, who sometimes has need to change ie a hury from e,w, to 'phone. In this case, the change-over switch should be at the operating table although the actual change-over sbould be done by a relay controlled by the switeh.

If a rotary beam is used the control of the beam should be convenient to the operator. Thedirection indicator, ! , wever, can be located any where within sight of the operator, and does not have to be located on the operating table unless it is included with the control.

When several fixed beams are uscal, the selection of any one shorld be possible from the operating praition, to miniaize the time required to selert the proper che. This generally means using a series of antenna relays or a stepping switch.

Frequency Spotting

In a station where a V'FO is used, or where a number of crystals is available, the operator should be able to turn on only the oscillator of his transmitter. so that he can spot necurately his location in the band with respert to other stations. This allows him to see if be has anything like a clear channel (if such a thing exists in the amatear bands!), or to see what his frequency is with respect to another station. Such a provision can be part of the "sencl-receive" switch. Switches are available with a center "off" position, a "hold" presition on ene side, for turning on the nseillator only, amb a "lock" position on the ather side for turning on the transmither and antemat relays. If oscillator keying is used, the lsey serves the same pur-

Fig. 22-3 - Power circuits for a high-power station. A shows the outlets for the receiver, monitoring equipment, spereh amplifier and the like. The ontets should be mounted inconspicuously on the operating table B shows the transmitter filament circuits and control-relay circuito, if the latter are nsed. Cishows the plate-transformer primary circuits, controlled by the power relay. I hravy oduty switch can be used instead of the relay, in which ease the antenna relay wonld be connected in circuit C .

If 115 -woli pilot lampsare used, they ean he connected as shown. Iower-voltage lamps must be connerted acros; suitable windings on transformers.
"ith "puth-to-talk" operation, the "send-receive" switch can be a d.p.dit. affair, with the second pole controlling the "on-off" circuit of the receiver.
pose, provided a "send-receive" switch is available to turn off the high-voltage supplies and prevent a signal going out on the air during adjustment of the oscillator frequency.

For 'phone operation, the telegraph key or an auxiliary switulan control the transmitter oscillator, and the "send-receive" switch can then be wired into the eontrol system so ats to control the oseillatoras wellas the ot her circuits.

Comfort

Of prime importance is the comfort of the operator. If you find yourself getting tired after a short period of operating, examine your station to find what causes the fatigue. It may be that the chatir is too soft or hasn't a straight back or is the wrong height for yon. The key or receiver may be located so that yout assume an uncomfortable position while using them. If you get sleepy fast. the ventilation may be at fault. (Or you may need sleep!)

P POWER CONNECTIONS AND CONTROL

Following a few simple rules in wiring your power supplies and control cireuits will make it an easy job to change units in the station, If the station is planned in this way from the start, or if the rules are recalled when you are rebuilding, you will find it a simple matter to revise vour station from time to time without a major rewiring jol).

It is neater and safer to ron a single pair of wires from the outlot over to the operating table
or some central point, rather than to use a number of adapters at the wall outlet.

Interconnections

The wiring of any station will entail two or three commen circuits, as shown in ligg. 22-3. The circuit for the reroiver, monitoring equipment and the like, assuming it to be takenf from a wall outlet, should be run from the wall to an ineonspicuous point on the oprating table, where it terminates in a multiple outlet large enough to handle the required number of plugs. A single switch between the wall outlet and the receptacle will then turn on all of this equipment at one time.

The second rommon circuit in the station is that supplying voltage to rectifier- and trans-mitter-tube filaments, bias supplies, and anything else that is not switehed on and off during transmit and receive periods. The coil power for control relays should also be obtained from this circuit. The power for this circuit can come from a wall outlot or from the transmitter line, if a sperial one is used.

The third circuit is the one that furnishes power to the plate-supply transformers for the r.f. Stages and for the modulator. (See chapter on Power Supplies for high-power considerations. When it is opened, the transmitter is disabled except for the filaments, and the transmitter should be safe to work on. However, one always feeds safer when working on the transmitter if he has turned off every power supply pertaining to the transmitter.

With these three circuits established, it becomes a simple matter to arrange the station for different conditions and with new units. Anything on the operating table that runs all the time tios into the first circuit. Any new power supply or r.f. unit gets its filament power from the second circuit. Since the third circuit is controlled by the send-receive switeh (or relay), any power-supply primary that is to be witched on and off for send and receive connerts to circuit No. 3.

Break-In and Push-To-Talk

In c.w. operation, "break-in" is any system that allows the transmitting operator to hear the other fellow's signal during the "key-up" periods between characters and letters. This allows the sending station to be "broken" by the receiving station at any time, to shorten calls, ask for "fills" in messages, and speed up operation in general. With present terhniques, it requires the use of a separate receiving antenna and, with high power, some means for proterting the rocoiver from the transmitter when the liey is "down." Several methods, applicable to high-power stations. are deseribed in (hapter light. If the tramsmitter is low-powered (50 watts or sos), no special equipment is required except the separate roreiving antennat and a receiver that "recovers" fast. Where break-in operation is used, there should be a wivith on the operating table to turn off the plate supplies when adjusting the oscillator to a new frequency, alt hough during all break-in work this swit ch will be elosed.
"P'ush-to-talk" is all expression derived from the "push" switeh on some microphones, and it means a phone station with a single control for all ehange-over functions. Strictly wa atking. it should apply only to a station where this single send-receive switch must be held in phace during transmission perioels, but any fast-acting switch will give practically the same effert. A control switch with a center "off" pesition, and one "hold" and one "lock" position, will give more fiexibility than a straight "push" switeh. The one switch must control the antenna change-over relay, the transmitter power supplies, and the receiver "on-off" "ircuit. This latter is neorssary to disable the ereiver during transmit periods, to avoid acoustie feed-batck.

Switches and Relays

It is dangerous to use ath overnonded switch in the power rirults. After it has been used for sone time, it may fail, leaving the power on the circuit even after the switch is thrown to the "off" position Fon this reason, large switches, or relays with adequate ratings, should be used to control the plate power. Relays are rated by coil voltages (for their control circuits) and by their contare current ratings.

When relays are used, the send-receive switch closes the rircuit to their coils. thus closing the relay contacts. The relay contacts
are in the power circuit being controlled, and thus the switch handles only the relay-coil current.

SAFETY

Of prime importance in the layout of the station is the personal safety of the operator and of visitors, invited or othorwise, during normal operating pratice. If there are small children in the house, every step must be taken to prevent their acridental contact with power leads of any voltage. A looked room is a fine idea, if it is possible. otherwise housing the transmitter and power supplies in metal cabinets is an excellent, although expensive, solution. Lacking a metal cabinet, a wooden cabinet or a wooden framework covered with wire sereen is the next-best solution. Many stations have the power supplies housed in metal cabinets in the operating room or in a closet or basement, and this cabinet or entry is kept locked - with the key out of rearh of everyone but the operator. The power leads are run through comduit to the transmitter, using ignition cable for the high-voltage leads. If the power supplies and transmitter are in the same eabinet, a lock-type main switch for the ineoming line power is a good precaution.

A simple substitute for a lock-type main switch is an ordinary line plug with a short connecting wire between the two pins. By wiring a female receptacle in series with the main power line in the transmitter, the shorting plug will act as the main salety lock. When the phag is removed and hidden, it will be impossible to energize the transmitter, and a stranger or child isn't likely to spot or suspect the open receptacle.

An essential adjunct to any station is a shorting stick for discharging any high voltage to groumd before any work or coil changing is done in the transmitter. Jiven if interlocks and power-supply bleeders are used, the failure of

In this example of a conpact high-power station, the operating tahle folds up when not in use and cowers the eceiver and specth amplifier. Special furniture, like this homemade operating table, gues a long way toward solving the space problem for many amateurs. (W411AV, Fort Thomas, Ky.)
one or more of these components may leave the tramsmitter in a dangrous condition. The shorting stick is made loy mounting a smatl nuetal hook, of wire or rod, on one end of a dry stiok or bakelite rod. A piece of ignition cable or other well-insulated wire is then run from the hook on the stick to the chassis or common ground of the trimsmitter, and the stick is hung alongside the transmitter. Whenever the power is turned off in the trimsmitter to work on the rig, or to change coils, the shorting stick is tirst used to touch the several high-voltage leads (tank condenser, filter condenser, tube plate connection, ete.) to insure that there is no high voltage at any of these points. This simple device, has saved many a life. Use it!

Fusing

A minor hazard in the amateur station is the possibility of fire through the fature of a component. If the failure is complete and the component is large, the house fuses will generally hlow. However, it is umwise and inconvenient to depend upon the house fuses to protect the lines ruming to the radio ('quipment, and every power supply should have its own set of fuses, with the fuse ratings selected at about 150 or 200 per eent of the mavimum rating of the supply, If, for example, a power transformer is rated at 600 watts, it would draw about 5 amperes from the a.ce. line $(600 \div 115=5,2)$, and a 10 -ampere fuse should be used in the primary circuit of the transformer. (ireuit breakers can be used instead of fuses if clesired.

Wiring

C'ontrol-cireuit wires ruming between the operating position and a transmittor in another part of the room should be hidden, if possible, This can be done by ruming the wires under the floor or behind the base molding, bringing

This station goes all the way in eoncealment by housing the entire station in a special eabinet. When the eabinet is opended, the operating table is formed and all pieces of gear are accessible. (W6INX, Mountain View, Calif.)

There was enough room at this station to buidd the transmitter into the wall, and to protert it with glass doors. In an installation like this, it is eonvenient to have access to the rear of the transmitter units, for mahing connertion to them and for testing. If the rear canmot tere reached, all power leads should be cabled up along the side walls, at the rear. (WONI, Whittier, Calif.)
the wires out to terminal boxes or regular wall fixtures. Such construction, however, is generally omly possible in elaborate installations, and the average amateur must content himself with trying to make the wires as inconspieuous as posisible. If several pairs of leads mast bo run from the operating table to the transmitter, as is generally the case, a single piece of rubber- or vinyl-covered multiconductor cable will always look neater than several pieces of rubber-covered lamp cord.

The antenna wires always present a problem, unless coaxial-line feed is used. Open-wire line from the point of entry of the antenna line should always be arranged neatly, and it is generally best to support it at several points. Many operators prefer to mount their antennatuning assemblies right at the point of entry of the feedline, together with an antemat changeover relay (if one is used), and then the link from the tuning assembly to the transmitter can be mate of inconspicuous coaxisd line or Twin-Lead. If the transmitter is mounted near the point of entry of the line, it simplifies the problem of "What to do with the feeders?"

General

You can check your station arrangement by asking yoursalf the following questions. If all of your answers are an honest "les," your station will be one of which you can be proud.

1) Is your station safe, under normal operating conditions, both for the operator and the visitor?
2) Is the operating position comfortable, even after several hours of operating?
3) Do you throw not more than one switch to go from "receive" to "transmit"?
4) Does it take only a short time to explain to another amateur how to work your station".
5) Do you show your station to visiting amateurs or laymen without apologizing for its appearance?

BCI and TVI

It is the duty of every amateur to make sure that the operation of his station does not, hecause of any shorteomings in equipment, cause interference with other radio serviers.

However, there is a larger ohligation-to eliminate interference with regular broadeasting (If('I) and telovision (T'Y) to the greatest pessible extent deven when your own transmitter is not at fault. The institution of amaterur radio cannot eontinue to flourish in the face of ill ferling on the part of at large segment of the general publie - ill feoling that is only tow readily gent arated if the public's favorite programs aro broken up by amateur transmissions, The future of amateur radio deponds in large part on the efforts you exert now to make it possible for your neightors to continue to enjoy their radio reception while you pursue your transmitting activities. It is unfortunately true that much interferencer is directly the fault of receiver eonstruction. Nevertheless, the amateur can and should help to alleviate int erference even though the responsibilit y for it does not lie with him.

The regulation of the Federal Communications Commission eovering interference to broadeasting is quoted below:
\$12.152. Restricted operation. (a) If the operation of an amateur station canses general interference to the reception of transmissions from stations operating in the dontestie broadeast service when receivers of good engineerimg design including adequate selectivity characteristies are used to receive such transmisuions and this fact is mate known to the amateur station licensee, the amateur station shall not be operated during the hours from 8 orelock P.s. to 10:30 P.m., local time, and on sumbay for the additional period from 10:30 A.m. until 1 p.m., locial time, upon the fremenes or frequencies used when the interference is created. (b) In general, such steps ats may he necessary to minimize interference to stations operating in other serviees may be required after investigation by the Commision.
FCC reengnizes the fact that much interference oceurs beanuse rereivers are not capable of rejoerting signals far outside the frequency band to which the recedver is tumed. "(Quiet hours" are mot imposed unless it is shown that the interference is actually the fioult of the transmitter.

GETTING LISTENER COÖPERATION

To be successful in handling interference cases you have got to win the listener's cooperation. The first step is to earn the listener's confidence in your technical abibity and to convince him of your sincerity in wanting to clear up interference. Here are a few pointers on how to go about it.

Clean House First

We've said above that the first obligation of every amat cur is to clean up his transmit ter so it has no radiations out side the bands assigned for amaterur use. The best cheok on this is your
own AX or 'l' receiver. It is always convincing if you can say - and demonstrate - that you do not interfere with reception in your own home.

Don't Hide Your Identity

Whenever you change location, or mode of transmission, or increase power, or put up a new antema, check with your neighbors to make sure that they are not experioncing interference. Anmounce pour presonee and ronduct oceasional tests on the air, requesting anyone whose reereption is being spoiled to let you know about it so that you may take steps to eliminate the trouble.

Act Promptly

The avorage porson will tolerate a limited amount of interference, but wo one can be experted to put up with frequent and extended interruptions to programs. The sooner you take stops to climinate the interferenere, the more agreeable the listener will be; the longer he has to wait for you, the less willing he will be to cooperate.

Present Your Story Tactfully

When you interfere, it is natural for the comphainant to assume that your transmitter is at fiult. Pxplain that you do not operate on the brondeast frequencies, and the real trouble is that you and he happen to be lorated so close to cach ot her. Point out that the average receiver is made to sell as rheaply as possible, and that toatures that would prevent interference from near-hy stations are left out.

It should be explained to the listener that if it is simply the presence of your strong signal on his receiving antenna that causes the difficulty, the situation can be cleared ap by a filter or wavetrap. If the wiring of the recoiver itsolf is picking up your signal, such cases can be eured only by suppressing this umwanted pick-up in the receiver itself: in other words, some modifications will have to be made in the receiver if he is to expect interference-free reception.

Arrange for Tests

Most listeners are not very competent observers of the various aspects of interference. If at all possible, enlist the help of another amateur and have him operate your transmitter while you see what happens at the affected receiver. Fou can then determine for yourself where the trouble is most likely to be.

Avoid Working on the Receiver

If your tests show that the fault has to be remedied in the receiver itself, lo not offer to rork on the receiver. It is not your fault that the receiver design is defective. Recommend that the work be done by a reliable service-
man, and offer to advise the latter as to the cause and cure if necessary.

However, if the owner of the receiver obviously prefers to have you make the modifications, do so only with the understanding that it is purely because you are anxious to coöperate.

In General

In this "public relations" phase of the problem a great deal depends on your own attitude. Most people will be willing to meet you half way, particularly when the interference is not of long standing, if you as a person make a good impression. Your personal appearance is important. So is what you say about the receiver. A display of lofty technical superiority is more likely to generate resent ment than cooperation. Above all, don't make remarks on the air about "bum broadeast receivers" and "(hrap midgets." No one takes kindly to hearing his posisessions publicly derided. If you discuss your interference problems on the air, do it in a construetive way - one calculated to inerease listener coopperation. not destroy it.

RADIO-CLUB INTERFERENCE COMMITTEES

Organized amateur radio clubs can do a lot
to pave the way toward coöperation between individual amateurs and the broadcast listeners. Many clubs maintain interference committees charged with handling both the putlic relations and the technical aspects of amateur interference. Through such committere, technical assistance is made availatbe to all members of the club so that those less qualified ran have the benefit of the experience of others. The committee should also maintain contact with the local radio servicemen, supplying them with information and technical assistance whenever possible. The rommitter can matintain valuable contacts with the local newspapers, broadeast stations and other authorities lo provide the right kind of publicity for the efforts of individuals or groups who are trying to clear up interference problems.

League Aids

The Communications Department of ARIRI, as one of its services to affiliated clubs, has prepared material suggesting various ways in which local cluhs can form intorference committees, and methods by which such groups can function efficiently for the good of all concerned. This material is available to affiliated clubs on request, addressed to ARRL, headquarters.

Causes and Cure of BCI

There are no magic cures for all cases of interference to standard AM broadeasting. The great number of different types of broadeast receivers makes it necessary to tailor the remedy to the specific set. However, interference does usually fall into one or more rather welldefined eategories. A knowledge of the general types of interference and the met hods required to climinate it will lead to a rapid appraisal of the situation and will avoid much cut-andtry in finding a cure.

Transmitter Defects

Out-of-band radiation is something that must be cured at the transmitter. Parasitic oscillations are a frequently unsuspected source of such radiations, and no transmitter can be considered satisfactory until it has been thoroughly cheeked for bot h low- and highfrequency parasitics. Very often parasities show up only as transients, causing key clicks in c.w. transmitters and "splashes" or "burps" on modulation peaks in . LM transmitters. Methods for detecting and climinating parasities are discussed in Chapter six.

In c.w. transmitters the sharp make and break that occurs with unfiltered keying causes transients that, in theory, contain frequency components through the entire radio spect rum. Praetically, these transients do not have very much amplitude at frequencies very far away from the transmitting frequency. Nevertheless they are often strong enough in the immediate vicinity of the transmitter to cause serious
interference to broadeast reception. Kiey clicks can be eliminated by the methods detailed in Chapter Eight.

A distinction must be made between clieks generated in the transmitter itself and those set up by the mere opening and closing of the key contacts when current is flowing. The latter are of the same nature as the clieks heard in a receiver when a wall swit eh is thrown to turn a light on or off, and may be more troublesome noarby than the elicks that actually go out on the signal. A filter for eliminating them usually has to be installed as close as possible to the key contacts.
()vermodulation in AM 'phone transmitters generates transients similar to key elicks. It can be prevented cither by using automat ic systems for limiting the modulation to 100 per eont, or by eontinuously monitoring the modulation. Methods for both are described in ('hapter Nine. In this connection, the term "overmodulation" means any type of nonlinear modulation that results from overloading or inadequate design. This ean occur even though the actual modulation percentage is less than 100 .

BCI is frequently made worse by radiation from the transmitter, power wiring, or the r.f. transmission line. This is lecause the signal causing the interference, in such cases, is radiated from wiring that is nearer the broadeast receiver than the antenna it self. In such cases much depends on the method used to couple the transmitter to the antenna, a subject that
is discussed in the chapters on transmission lines and antennas. If it is at all possible the antema itself should be placed so that it is not in close proximity to house wiring, telephone and power lines, and similar conductors.

Image and Oscillator-Harmonic Responses

Relatively few superhet broadeast receivers have any r.f. amplification preceding the mixer, so that the selectivity at the signal frequency is not espectially high (the i.f. amplifier provides most of the working selectivity). The result is that strong signals from near-he transmitters, even though the transmitting frequency is far removed from the broad anst band, can force themselves to the mixer grid. Ther will normally be eliminated by the i.f. selectivity, except in cases where the transmitter frequener is the image of the broadeast signal to which the receiver is tuned, or when the transmitter frequency is so related to a harmonic of the broadeast receiver's local oscillator as to produce a beat at the intermediate frequence:

These image and oscillator-harmonic responses tune in and out on the broadeast receiver dial just like a broadeast signal, except that in the case of harmonic response the tuning rate is more rapid. Since most receivers use an intermediate freguency in the neighorhood of $4 \overline{50} \mathrm{kc}$., the interference is a true image only when the amateur transmitting frequency is in the 1750 -ke. band. Oscillator-harmonic responses orcur from $3.5-$ and $7-\mathrm{Me}$, transmissions, and sometimes even from higher frequencies.

Regardless of whether the interference is caused by either an image or by harmonic response, the problem is to reduce the ampli-- tude of the amateur signal in the front end of the b.c. receiver. If the receiver uses an external antenna a wavetrap at the receiver antenma terminals may help. It may also be helpful to reduce the length of the receiving antenna - and particularly to avoid a length that might be near resonance at the transmitter freguency - or to change its direction with respect to the transmitting antemna. If the signal is heing picked up by the antenna it will disappear when the antena is disconnected. If it is still present under these circumstances the piek-up is in the set wiring or the power circuits. A line filter may be tried for the latter. Pick-up on the set wiring can only be cured by installing some shielding around the r.f. circuits. Copper window screening cut and fitted to size will usually do the trick.

Since images and harmonic responses occur at definite frequencies on the receiver dial, it is always possible to choose an operating frequency that will not give such a response on top of the broadcast stations that are favored in the vicinity. While vour signal may still be heard when the receiver is tuned off the local stations, it will at least not interfere with program reception.

Cross-Talk

With some of the older receivers, particularly of the nonsuperheterodyne type, interference occurs only when the receiver is tuned to a strong broadcast signal and disappears bet ween stations. This is cross-modulation, a result of rectification in one of the early stages of the receiver. It is not so likely to oceur in sets manufactured during the last twenty years.
One remedy is to install remote-cut-off tubes in the r.f. stages and put in an a.v.c. circuit. Ifowever, this is a major operation and frequently is not practicable. The remaining thing is to reduce the strength of the amateur signal at the grid of the first tube in the receiver. Wavetraps, a smaller antenna, and a different antenna position should be tried. Additional shiclding about the r.f. circuits also will sometimes effect an improvement.

Blanketing

"Blanketing" is a form of interference that partially or completely masks reception, no matter where the broadeast receiver is tuned. Each time the carricr is thrown on, whet her by keving or for modulation, the program disappears or is greatly reduced in amplitude. Amplitude modulation in such a case is usually distorted rather severely.

When the transmitter is operated on the lower frequencies this type of interference occurs only when the receiver and transmitt er are very close together. It is the result of simple overloading of the receiver by the very strong field in the vicinity of the transmitting antenna. It occurs principally on receivers using external antennas (as contrasted with a built-in loop), and can be reduced by the steps recommended above: i.e., using a short receiving antenna, repositioning the antenna with respect to the transmitting antenna so the pick-up is reduced, or using wavetraps and line filters.

When the transmitter is operated on 28 Mc . or v.h.f., "blanketing" by overloading r.f. stages occurs rather rarely, and then only when the transmitting and receiving installations are located exceptionally close together.

Audio-Circuit Rectification

The most frequent cause of interference from operation at the higher frequencies is from rectification of a signal that by one means or another gets into the audio system of the receiver. In the milder cases an amplitudemodulated signal will be heard with reasonably good quality, but is not tunable - that is, it is present no matter what the frequency to which the receiver dial is set. An unmodu!ated carrier may have no observable effect in such cases beyond causing a little hum. However, if the signal is very strong there will be a reduction of the audio output level of the receiver whenever the carrier is thrown on. This causes an annoying "jumping" of the program when
the interfering signal is keyed. With 'phone transmission the change in audio level is not so objectionable because it oreurs at less frequent intervals. Also, ordinary rectification gives no audio out put from a frequence-modulated signal, so the interference can be made almost completely unnoticeable if FM or PM is used instead of AM.

Interference of this type is most prevalent in a.ce-d.c. recoivers. The pirk-up maty oceur in the atudo-cireut wiring or the interfering signal may get into the audio cireuits by way of the line cord. Power-line piek-up can be treated by means of line filters, but piek-up in the reveiver wiring requires individual attention. Remedies that have been found suecessful are described in the sertions following.

- CHECKING AND CURING BCI

When a case of broadeast int orformence comes to your attention, set a definite time to conduet tests and then prepare to do the job as experditiously as possible. Provide yourself with one or two wavet raps and line filters, since they an be tried immediately without getting into the reeceiver, As suggested before, got another amat eur to operate your transmitter while you do the actual ohserving and testing at the listenor's readiver, The procedure outlined below will save time in getting at the souree of the trouble and in satisfactorily eliminating it,

1) Determine whether the interference is tunable or not. This will usually indioate the methods required for elimination of the tronble, as it will show which of the general types of interference diseussed above is present. In severe cases it is possible that two or more types will be present at the same time, and steps will be necessary to climinat e eam type.
2) If the set has an ext crmal antemna, disconneed it and turn the volume cont rol up full. It the interforence is mo longer present, it is merdy neressary to prevent the r.f. appearing on the anteman from entering the set. If wavetraps reduce the amplitude of the interfering signal but do not diminate it entirels, try a short piece of wire as a recoiving antemata, Alternatively, the antema may be relocated. It should be plated as far as possible from the transmitting antoma, and should run at right angles to it to minimize roupling.

If the interference persists after the antenna is disconnerted, the seard is narrowed to an investigation of whether the signal is coming in on the power lines, or is being picked up directly on the receiver wiring.
3) Check for power-line interference by using a sensitive wavemeter such as that deseribed in the chapter on measurements to probe along the ase eood that commeds the sat to the power sourere. Chowks should be made at the transmitter frequence, and also at harmonie frequencios. If ref. is detere ed in the line, by-pass both sides of the a.e line to ground with $0.005-\mu$ id. mica condensers at the
point where the line cord enters the set. (A simple pluy-and-socket adapter can be made up for this purpose.) If this docs not completely eliminate the interference, try a lime filter designod for the oprorating freduener.
4) If it is evident that the interference is being picked up on the recoiver wiring, explain the situation to the owner and rell him that the exact catuse camot be determined without removing the chassis from the cabinet, and that, in any event, the receiver will have to be mondified if the interferenere is to be eliminated. Rowommend that the artual work be done by a radio serviceman. Offer to cherk into the cause yourself, if he will allow you to take the set to your shop (with the understanding that you will not make any changes in the reedeiver without his exprese promission) so the serviceman (an be told what needs to be done.
5) In the event that the owner allows you to take the reoniver, set it up near pour transmitter and check to see if the amplitude of the interfering signal is changed by varions settings of the receiver volume eontrol. If it is, the r.f. is entering the set ahead of the volume control. If it is unatfereded by the volume control, it is gotting into the andio stages at a peoint following the volume contmol.
6) Pin the source down, if it is ahead of the volume control, by removing one tube at a time until one is found that kills the interference when it is removed. In sets using seriesconmeeted filaments, this will be possible only if a tube of equal heater rating, and with all but the heater pins clipped off, is substituted for the tube.

Fig. 2,3-I - 'Iwo mothoda of aliminating r.f. from the grid of a combind deleretor/first-atudio stage. At A, the value of the grial leak is reduced to 2 or 3 mogohnms, and a mica by-pass condenser is added. At B, both grid and cathonle are ly-passed.
7) Intermine which element (or elements) of the tube is picking up the interference by touching each tube pin with a test lead about three feet long. The lead, acting as an antemna, will cause the interference to increase when it is placed on a tube pin that is contributing to the interference. Once the sensitive points have been determined, the trouble can be eliminated hy shimpling the leads connected to the tube chement that is affected, and by shiclding the tube itsilf. (irid loads are the primeipal offenders, especially the long leads that rum from a tube cap to a tuning condenser.
8) If the pick-up is found to be in the audio
system - as is the case in many sets, esperially when the tramsmitter is operating at 28 Me. or higher - it ran be eliminated by one or anot her of the mothods shown in figs. 23-1 and 23-2. Fig. 23-1A is a method that hats proved successinl with many a.c.-d.e recoivers. The value of the grid leak in the combined detector first-atudio tube (usually a 12507 or its equivalent) is redued to 2 or 3 megohms. The grid is then be-passed for r.f. with a 250 $\mu \mu \mathrm{fd}$. mica condenser. Pig. 23-113 is a similar method. A third method that has worked in

Fig. 23.2-1 sing a $\overline{3} .9$. thill-alum resisisor to form a low-pa-s filter with the tube capacitance. The resistor must the manted at the tabe pin, betwen the gritl and all wother arid monnections.
a.ce-d.c. rededvers requires only that the heater of the detector first-atudio stage be by-passed to ground with a $0.001-\mu \mathrm{fd}$, condenser. The method shown in Fig. 23-2 uses a $7 \mathrm{~m}, 000-\mathrm{ohm}$ $1 / 2$-wat $\begin{aligned} & \text { resistor } 0 \text { form, with the tube capaci- }\end{aligned}$ tance, a low-pass filter. The resistor is connected between the grid pin of the audio stage and all other wires eonnerted to the grid. In all cases, both sides of the a.c. line should the by-passed to chassis with 0.001- to $0.01-\mu \mathrm{fd}$. condensers.

Wavetraps and A.C. Line Filters

A wavetrap consists of a parallel-tuned cirruit that is commerted in series with the broadcast antenna and the antenna post of the receiver. It should be designed to resonate at the frequeney of the interfering signal. The circuit of a simple trap is shown in l户ig. 23-3. If interference results from operation in more than one amateur band several traps may be connected in series, each tuned to the center of one of the bands in which operation is contemphated. To

Fig. 23.3-A simple wavetrap cirenit, L and C must resonate at the frequeney of the interfering signal. Suitable constants are talulated below.

Band	C	1.		
3.5	$110 \mu \mu \mathrm{rd}$.		\#22, I'" diam",	$1^{\prime \prime \prime}$ long
7	$1001 \mu \mu \mathrm{fd}$.	$6 \quad 19$	22. $1^{\prime \prime}$	
11	$50 \mu \mu \mathrm{Cd}$.	3.514	418.1",	!",
21	$3.5 \mu \mu \mathrm{fil}$.	2.212	"18.1",	1'",
28	$25 \mu \mu \mathrm{fd}$.	1.50	\#18, 1"	1''

Fif. 23-I - A.c. line filter for receivers, 'lhe valoes of
 from 0.001 to 0.01μ fol, can be userl. L_{1} and L_{2} can loe a tandh winding of Xo. 18 enameled wire on a latf-ind dianter form,
adjust the wavetrap, have another licensed amateur operate the transmitter while vou tune the trap for maximum attenuation of the interference.

A common form of ate line filter is shown in Fig. 23-4. This type of filter will usually do some good if the signal is leeing pieked up on the house wiring and transferred to the set by way of the line cord. The values used for the coils and condensers are in general not critical.

Fig. 23.5- Resonamt filter for the a.c. line. A single condenser tunes both L_{1} and $L_{2,2}$, which are unitycoupled, one wound on top of the other. Constants for amateur bands are tabulated below.

Ihund	(1.1 - 1.2
3.7	$\begin{gathered} 110+150 \\ \text { (lived! } \end{gathered}$	2.5 t. No. 18. $114^{\prime \prime \prime}$ dia. $\times 2$ " $^{\prime \prime}$ long
7		181. No. I8. $11 / 4^{\prime \prime}$ dia. $\times 28 / 8^{\prime \prime}$ linng
11	100 a 6 Fa .	12 t. Nu. 18. $11 /$ " " $^{\prime \prime}$ dia. $\times 2$ 28", loug
21	. 110μ fil. $2.5 \mu \mu \mathrm{FI}$.	

The effectiveness of the filter will depend considerably on the ground conneetion used, and it may be neressary to try grounding to several different possible ground connections to secure the best results. A filt er of this tye will usually not be very helpful if the signal is being pieked up on the line cord itself, which may be the case when the transmitter is on v.h.f. In such a case it should be installed inside the receiver chassis and grounded to the chassis at the point where the line cord enters.

The tuned filter shown in Fig. 23-5 is often more effective than the untuned type when only one frequene y needs to be eliminated. Atter installation, the condenser is simply adjusted to reduce the interference to the greatest possible extent. It is advisable to mount either type of filter in a small shied box, to prevent pirk-up in the filter and to make it less conspicuous.

Interference with Television

Interferener with the reception of tellevision signats presents a much more difficult problem than interemence with AM broadeasting. In BC'I cases the interferener almost always can be attributed to defieiont selectivity or spurious responses in the BC receiver. While similar deficiencies exist in mang telovision receivers, it is ako true that amateur tramsmitters generate

Frequency Effects

The degree to which transmitter harmonics must be suppressed or attenuated depends prinripally on two factors, the strength of the TV signal on the chanmed or chamnels affected by hamonic radiation, and the relationship hotwern the frequemey of the harmonie and the frequeneres of the 'TY picture and sound carriors
 within the chamel. If the TV signal is very strong, harmonic interference can be eliminated by comparatively simple methods. However, if the 'TV signal is very weak, as in "fringe" areas where the recerived pieture is visibly degraded be the appearanee of set noise or "snow" on the sorern, it may be needsary to go to extreme measures.

In cither case the intensity of the interference depends very greatly on the exart frequeney of the harmonic. $1 \cdot \mathrm{ig}$. 23-7 shows the placement of the pieture and sound carriers in the standard TV chamel. In ('hamel 2, for example, the picture carrier froquency is $\overline{5} t+1.2 \overline{5}=5.5 .2 \overline{5} \mathrm{Mc}$. and the sound ramier frequeney is $60-0.25=59.75$ Me. Thi second harmonie of $28,010 \mathrm{ke}$. ($56,020 \mathrm{kc}$ or 56.02 Mc .) falls $56.02-54=2.02$ Mr. above the low edge of the chammel and is in the region marked "revere" in Fig. 2:3-7. On the other hand, the seeond harmonie of $29,500 \mathrm{kc}$. $(59,000 \mathrm{ke}$. or 59 Mc .) is 59 it $=5 \mathrm{Me}$. from the low edge of the channel and falls in the region marked "Mild." A harmonic on this frequeney has to brabout 100 times ats strong as the harmonice at $56,020 \mathrm{kr}$. to cause interferemere of equal intensity. In other words, an operating frequeney that puts a harmonic near the pieture carrier reguires ahout 40 db) more harmonic suppression in order to avoid interferenere as erompared with an operating freguence that puts tho harmonie near the upper edge of the chamel.

For a region of 100 ke . or so either sifle of the sound carrier there is athother "severe" region where a harmonic will interfere with reception of the soond program, and this region also should be avoided. In general, a harmonic of intensity.
harmonies that fall inside many or all television chammels. These spurious radiations catuse interformex that ordinatily cannot be climinated by anything that maty be done at the rereiver, so mast he prevented at the transmitter itself.

The relationship botweon tolevision chanmels and harmonies of amateur hands from 14 through 28 Me. is shown in Fig. 23-6, Harmonies of the 7- and 3.5-Me. hands are not shown because thes lall in every television chamel. Also, the harmonies abowe it Me. from these hands are of such high order that they are usually rather low in amplitude, "They are not, however, too woak to interfore if the television receriver is quite close to the amateur transmitter. Low-order harmonics - up to about the sixth - are usually the most diflicult to climinate.

Fis. $23 .-$ - I, wation of picture and sound carriers in a television ehannel. and relatiwe intensity of interference as the location of the interfering sigual within the channel is varied withont changing its strength. The three regions are not actually sharply defined ats shomn in this drawing, but morge into one another grallatly.
equal to that of the pieture carrier will not catase noticeable interforence if its frequency is in the "Mild" region shown in l'ig. 23-7, but the stme harmonic intensity in the "Severe" region will utterty destroy the picture.

Interference Patterns

The visible effects of interferemen vary with the type and intensity of interferemere. ('omplete "harkout," where the picture and sound disappear completely, leaving the sereen dark, oreurs only when the transmitter and rocemer are quite chose together. Strong interferene ordimarily eanses the picture to be broken up, leaving a jumble of light and dark lines, or turns the pioture "nogative" - the mormally white parts of the pieture turn black and the normally back parts turn white. "Cross-hatching" - diagonal bars or lines in the picture - atecompanies the later, usuatly, and also represents the most common type of less-serere interference. The bats are the result of the beat between the harmonic frequences and the pieture carrier frequencer They are hoad and relatively fow in number if the beat fregueney is comparatively low - harmonic near the pieture carrier - and are numerous ablul very fine if the beat fredueney is very high - toward the upper end of the ehanmol. Trpieal cross-hatehing is shown in lig. 2;-8.

Fig. 23-8 - "Crosshatehing," cansed by the beat be"twen the pieture carrier and an interfering harmonid inside the 'I'V ehannel.
If the harmonic falls in the "Mild" region in lig. 2:3-7 the cross-hatehing may be tow fine to be visible, in which rase the apparent brightness of the sereen may change when the transmitter carrier is thrown on and off.
Whether or not eross-hatehing is visible, an amplitude-mondulated transmitter may catuse "sound bars" in the pirture. These leok about as shown in Fig, 2:3-9. They result from detertion of the interforing signal in the video deteetor of the receiver, (atusing audio-freguener beats that become visible as horizontal bars varying in spacing and intensity with the moduation. Under most circumstamers modulation bars will not oneur if the amateur transmiter is fregueney- or phase-modulated. With these typers of momblattion there is no interference when the carrier abone does not catuse cross-hatehing, but if the (ross-hatthing is present it will "wiggle" from side to side with the modulation.

Fís. 2.3-9 - "Sonnd hars" or "modnlation hars" areompanying amplitude mondulation of an interferine simnal, In this case the interfering carrier is atrong enomgh to destroy the pieture hut in mild rase the pieture is vishle through the horizontal bare. Somod hars may acrompany modulation even though the momadulated atrrier gives no visible aros-hatching.

Exeept in the more severecases, there is seldom any effect on the sound reception wher interfrerence shows in the picture, unless the hammonic is quite chose to the sound carrior. In the latter event the sound mas be interfered with evern though the picture is eleath.

Reforence to lig. 2:3-f will show whether or not hammones of the frequener in use will fati in any television chamels that can be rereived in the lorality. It should be kopt in mind that not only harmonias of the final frequener may interfere, but also harmonies of any frequencios that may be present in buffer of frequency-multiplier stages.

Harmonic Suppression

Effertive harmonic suppression has threr separate phases:

1) Reduring the amplitute of harmonies generated in the tramsmitter. This is a matter of circuit dosign and operating conditions.
2) Preventing stray radiation from the transmitter and from assoriated wiring. This requires adequate shielding and filtering of all circuits and leads from which radiation can take place.
3) Preventing harmonies from hoing fed into the ant enna.

It is impossible to build a tramsmiter that will not gencrate some hamonics, but it is obvionsly advantageous to reduce theirstrength, hy cireuit design, by as harge a factor as possible toefore attempting to prevent them from being radiated. second, hamonic radiation from the transmitter itself or from its assoriated wiring obvionsly will cause interferenee just ats readily ats radiation from the antennat. so measures taken to prevent harmonics from reaching the antenna will not redue 'lVI if the transmitter itself is ratiating harmonies. But onee it has been found that the fransmitter itself is free from harmonic radiation, devices for preventing hammonics fron: reaching the antenna can be expected to produce results.

There is no matyie "gimmick" that will eliminate 'TVI caused by harmonies. The prothem has to be worked on one step at a time.

- REDUCING HARMONIC GENERATION

Rasomably-rflieient operation of r.f. pown amplifiers always is acrompanied by harmonic gemration, and in the case of frequency multipliers the harmonic output is deliberately acemtuated by over-driving. From the standpoint of TVI reduction, good judgment calls for operating all frequency-multiplier stages at a very low power level - rereiving tubes and phate voltages not exceeding 250 or 300 . When the final output frequeney is rearherl, it is highly desirable to use as fow stages as possible in reaching the rutput power level, and to use tubes that reguire at minimum of driving power. The smaller the number of stages operating at appreciable power fovels, the smaller the number of points where damatging harmonics cam be generated.

Circuit Design and Layout

IItrmonic currents of considerable :amplitude flow in both the grid and plate cireuits of r.f. powor amplifiers, They will do relatively hitto harm if they ean be afferetively by-passed to the mathode of the tube, but this is frequently diflicult to do. Fig. 2:3-10: shows the paths followed by harmonie currents in an amplifier eireut ; beranse of the high reactanee of the tank eoil there is little harmonie current in it, wo the hamonic currents simply flow through the tank condensen, the plate (or grid) bloeking eondenser, and the tube eapateitaness. The longthe of the leads forming these paths is of great importanere, sine the inductance in this cirenit will resonate with the tube caparitanere at some fregurney in the v.h.f. range (the tank and blocking eapacitances usuatly are so large compared with the tube eapacitanee that they have little efferet on the resonant frequener). If such a resomance happorns to oecerr at or near the same frequency as one of the tramsmitter harmonies, the coffere is just the same as though a harmonic tank sireuit had beren doliberately:
(A)

(B)

Fig. 23-10 - (A) A v.h.f. resonant eircuit is formed by the tube eapacitance and the leads throngh the tank and blocking condensers. Regular tank coils are not shown, sinew they have little efliet on such resonances. (B) Lsing low-inductance condensers shunting the tube elements to lower the resonance point below the TV channels. (is and Co usually are 1.5 to $\overline{5}) \mu \mu \mathrm{fd}$, and either of vacum or tubular construction.
introdued; the hamonie at that frequeney will be tremembusly increased in amplitude.
Such resonames are unavoidable, but by kerping the path from plate to cathode and from grid to cathorle as short as is physically possible, the resomant frequency usually can be raised above 100 Mr . in amplifiers of medium power. This puts it hetween the two groups of television chanmels. Disept in very low power miniature-tube transmitters, it is usually not fasible to raise the rewomace above 216 Me .
Where physically-short return paths from plate or grid to athode are difficult because of the shape and size of tubes and tank combensers, the arrangement shown in Fig. 23-1013 is frecpuently helpful, Condensers C_{5} and 8_{6} should be of the Vacuum or tubular tyee and should be mounted as close as possible to the tube comertions. They form resonant arreuits in themselves with the tuhe eapacitance, but gemeratly at a sufficiently high freeguemer an that no harm is done. At lower fropuencios that this solf-resonamee, they effectively add to the tube capacitaner and thins tune the indurtance of the leats through the regular tank and blocking condensers to at eonsiderably lower freguency than the tube alone. The reses nathere therefore can be shifted to a frequence below ot Mre and again is outside the TV range. This methoel is most useful at 3.5 and 7 Mc. It increases the tank caparitanere to the point where there may be very little tank eoil loft, when the tramsmitter is used on 28 Me., unless the leads are eliminated by using the shunting eondenser as the tank condenser and adjusting the tank eoil inductance to resonate, no regular tank condenser being used.

It is casier to place griderireuit v.h.f. resonaners where they will do no harm if the :mplifier is link-eoupled to the driver stage, sime this genratly permits shorter leads and more favorable conditions for bepassing the hamonies than is the cater with gipacitive coupling. Link coupling also reduces the coupling between the driver and amplifier at harmonie frequencois, thus preventing driver harmonics from being amplified.
The inductance of leads from the tube to the tank condenser can be redued not only hy shortoning but be using flat strip instead of wire conductors, It is also better to use the chassis as the return from the blocking eondenser to cathode, sinere a chassis path will have less inductance than almost any other form of eonnertion.

The v.h.f, resonamere points in amplifier tank circuits can be found by eoupling a grid-dip meter covering the $50-250 \mathrm{Me}$, range to the grid and plate leads. If a resonatnce is found in or near a TV channel, methods surh as those deseribed ahove should be used to move it well out of the TV range. The grid-dip meter also should be used to cherk for v.h.f, resonances in the tank coils, beraluse coils made for I4 Me. and below usually will show such resonances. If a resonance falls in a TV channel that is in use in the locality, changing the number of turns will move it to a frequency where it will not be troublesome.

In most r.f. amplifiers the cathode connection
of the tube is below chassis while the plate (and sometimes the grid) connection frequently is above. In such a case the bocking condenser should be mounted below chassis. If the ground return is made to the top, the r.f. current has to flow over the top and either through a good-sized hole or else entirely over the chassis surface before it reaches the cathode. This eondition is highly undesiratble not only because of v.h.f. resonances but beeause such chassis currents frequently cause instability in the amplifier. If the by-pass eondensor is mounted above, it should be connected to the eathode by means of im insubated lead running through the chassis by the shortest possible path.

Operating Conditions

Iligh values of grid bias and grid eurrent inerease the harmonic content of the r.f. currents in both the grid and plate cireuits. All tubes in the transmitter, and particularly those operating at appreciable power levels, should be driven no harder tham is necersary to give reasomably efficient operation and satisfartory linearity, if mondulated. Generally, it is unnecessary to go very far bevond cut-off hias, and the grid current should be kept to the minimum that gives satisfactory operation.

For equal oproating conditions, there is little or no difference between single-ended and pushpull amplifiers in respect to harmonic gencration. Push-pull amplifiore are frequently troublic-makers on even harmonics because with such amplifiers the even-harmonic voltages are in phase at the ends of the tank cireuit and hence appear with equal amplitude across the whole tank eoil, if the center of the coil is not grounded. Under sueh circumstanes the even harmoniss an be coupled to the out put eireuit through stray eapacitance between the tank and eoupling coils. This does not occur in a single-ended amplifier if the eoupling coil is placed at the cold end of the tank.

Harmonic Traps

If a hatmonic in only one TV ehamel is partieularly bothersome - frequently the case when the transmitter operates on 28 Me. - its amplitude can be reduced by a very considerable bactor if a trap tunced to the harmonie fregueney is installed in the plate lead as shown in Fig. 23-11. At the harmonic frequeney the trap represents a very high impedance and henee reduces the amplitude of the harmonic current flowing through the tank eircuit. In the push-pull cireuit both traps have the same constants. The $L^{\prime} C$ ratio is not eritical but a high-(cireuit usually will have least effeet on the performane of the plate eircuit at the nommal operating frequenes.

Sinee there is a eonsiderahle harmonie voltage built up arross the trap, there may be radiation from the trap unless the transmitter is well shielderl. The traps should be placed so that there is no coupling between them and the amplifier tank circuit.

A trap is a highly-solective deviee and so is useful only over a small range of frequencies. A

Fig. 23-11 - Ilarmonic traps in an amplifier plate cirenit I, and C shonld resonate at the freguency of the harmonic to be suppressed. C may be a $25-$ to 51 - $-\mu \mathrm{fl}$. midget, and I. usually comsists of 3 to 6 turns ahout $1 / 2$ ineh in diameter. The inductance should be adjusted so that the Irap resomater at about half capacity of C lefore being installed in the transmitter. It may be checked with a krid-dip meter. When in plate, it is adjusted for minimmo interferenec to the T'V pieture.
seond- or third-harmonic trap on a $28-\mathrm{Mc}$. tank circuit usually will mot be ceffective over more than 50 ke. or so at the fund mental frequence, depending on how sorious the interference is without the trap. Because they are critical of adjustment, it is better to prevent TVI by other means, if possible, and use traps only as a last resort.

PREVENTING RADIATION FROM THE TRANSMITTER

The extent to which harmonic interference will be caused by transmitter radiation depends on the oprobting frequency, the transmiter powor level, the strength of the television signal, and the distaner betwern the transmitter and TV reeriver, as well as on the strength of the harmonies generated in the tramsmitter. Transmitter radiation sall be a very serious problem if the TV signat is marginal or below, if the TV receiver and amateur transmitter are clowe together, and if the transmit ter is operated with high power on 28 Mc .

Transmitter radiation can be prevented by shielding the r.f. circuits and wiring. A metal enclosure is not necessarily a shied. A shield will not be good, repetrically, unless all its joints make good connections along their entire length. A slit or crack at a joint will lot out a surprising amount of r.f. enorgy. Ventilating lonvers and large holes such as those used for momenting meters will do the same. (On the wther hand, small holes do not impair the shielding very much, henee ventilating holes may be used if they are small - not owr $1 / 4$ inch in diameter - and wire sereening of the

Fig. 23-12 - Proper method of by-passing the end of a shielded lead, for either a.e. or dic. leads at volages, of 600 or feses. The dise ceramic rombenser, 0,001 μ fil., has its lade wrapred around the inner and outer conductors and soldered. so that the lead length is nepligible, 'The 5 th-inch size condenser athould the used. 'This photograph is alment four times actual size.
type ased for fly sorrons also is satisfactory It is mafortunate that comventional motal cabinets, with their doors, painted surfares where joined, and ventilating louvers are pramerally useless as shiolds. Ther can be made coffertive by covering louvers with sereroing, and hy soraping and bonding all joints to secure a good aloctrical connertion,

Lead Treatment

liven vory grood shioding can be made complotely useloss whon connections are run from external power supplies and other equipment to the cercuits inside the shied. bevery embluetorso introdued into the shiedding forms a path for the sacape of r.f., which is then radiated by the connereting wires. Henere a step that is cescential in every cane, and more important than the shiolding itsolf in most, is to provent harmonic currents from flowing on the koads leaving the shielded enclosure.

Harmonic eurrmes always flow on the d.c. or ate. leads comereting to the tube cireuits. A very dffective means of prowenting such currents from being coupled into other wiring, and one that provides desirable be-passing as woll, is to use shiclded wire for all such leads, matintaining the shiclding from the point where the lead connects: to the tube or r.f. cirenit right through to the point where it is about to leave the chassis, The shiekl hrad should the groumed to the chassis at both ends and at frequent intervals along the path.

Iig, 23-13-13-passing the end of a high-voltage lead. The end of the shiedd traid is soldered to a lug fastened to the ehassis directy wnderneath. The other terminal of the condenser is similarly bolted directly to the chassis. When the by-pasi is used at a terminal conmertion blesh the "hos" lead shombl be soldered direcely to the terminal, if possilile, but in any event connceted to it by a very short lead.

Good by-passing of shielded leads atso is assential. Bearing in mind that the shich brad about the conductor confines the harmonie currents to the inside of the shicded wire, the object of hepassing is to prevent their ascapre. Figs. 2:3-12 and 2:3-1:3 show the propre way to ly-pass. The smalltype 0.001-mfil. ceramic dise condenser, when mounted on the end of the shidded wire as shown in lige 2:3-12, artually forms a serios-resonant rircuit in the it-8x-Me. range and thus remer sents practioally a short-cirenit for TV harmonies. These condensers may be used on all leads opcrating at 600 volts or less. The exposed wire to the comeretion terminal should be kept as short as is physically possible, to prevent any possible hamonic pick-up exterior to the shielded wiring. For highor voltages the shielded lead should be be-passed as shown in Fig. 2:3-1:3, mounting the condenser flat against the chassis and grounding the and of the shicld braid direetly to chassis, kerping the exposed part as short as possible. Either $0,001-\mu \mathrm{fl}$. or $+70-\mu \mu \mathrm{fd}$. ($\overline{0} 0(0) \mu \mu \mathrm{fl}$.) colldensers should be used. The larger capacitance is series-resonant in Chamel 2 and the smaller in Chamel 6, so the capacitatere should be chosern aceording to which chammel nowds the most proteretion.

Thesce by-passes atre essential at the eonnectionblock terminals, and desirable at the tuln erods of the leads also. Installed as shown with shiedded wiring, they have bern found to be se effoctive that there is usually no need for further harmonic filtering. However, if a test shows that additional

Fig. 23-1.t - IIditional r.f. filtering of supply leats may be reguired in regions where the 'TV signal is very weah. The r,f, choke should be physically sinall, and may consist of a l-inch winding of Vo. 26 enameled wire on a $1 / 4$-inch form, close-wound. Manufac. tured single-layer chokes having an induet. ance of a few millihenrys also maty he used.

Fig, 23-1.5 - Thlu hest method of using the "llypase" type feod-thromgh comdenser. Caparitances of 0,01 to $0.1 \mu \mathrm{Cd}$. are satisfartory. Comberners "f this tyw are usefal for high-current eircuits, such as filament and 115-volt leads, as a substitute for the r.f. chohe slown in Fig. 23.11, in eases where additional lead filtering is needed.
filtoring is required, the arrangement shown in fig. 2:3-14 may be used. Such an r.f. filter should be installed at the tulbe end of the shiefled lead, and if more than one eireuit is filtered care should be taken to keep the r.f. chokes separated from (ach other and so orionted as tominimize coupling betwen them. This is neressary for preventing harmonies present in one cireuit from being coupled into anothor.

As an alternative to the series-resomant bypassing deseribed ahove, feed-through type condensers such as the Sprague "Ilypass" type may be used as terminals for external eomertions. The effectiveness of these condensers maty be largely mullified if the wiring to them is not completely shichled, "sperially on the side going to the connection terminal. The ideal mothod of installation is to mount them so the protrude Wrough the chassis, with thorough bonding to the ehassis all around the hole in which the eomdenser is mounted. The primeiple is illustrated in Fig. 2:3-15.

Meters that are mounted in an r.f. unit should

Fig. 23.16-Metor shithling and lyg-pasing. It is esemtial to shield the meter monnting bole since tha meter will carry r.f. through it to the radiated. Atatable shields can be made from $21 / 2$ or 3 anch diameter shield cans of the type made for enclosing coils.
be anclosed in shideling eovers, the connections being made with shielded wire with carch lead he-passed as described above. The shield braid shoukd be grounded to the panel or chassis immediately outside the meter shinde, as indicated in Fig. 2:3-16. A by-pass may also be connocted aross the moter terminals, primopally to prevent any fundamontal curront that may In persent $^{\text {and }}$ from flowing through the moter itself. As an alternative to individual moter shiolding the meters may Io mounted antirely behime the panel, and the pated holes neroded for ohservation may be covered with wire screen that is carefully toonded to the panel all around the bolde.

Care should be used in the seleretion of shielded wire for transmitter use. Not only should the insulation be conservatively rated for the d.e. voltage in use, but the insulation shoula be of material that will not masily deteriorate in suldering.

Fig. 23.17 - A metal cabinet can lo an adequate shichb. but there will still ber radiation if the leads inside can pich up r,f. from the transmitting circuits.

For high voltages, automobile ignition cable rovered with shindeling brad is recommended. Where the wiring crosses or rums patallel, the shiedds: should bre spot-soldered together and conncerted to the chassis.

Proper shiedding of the transmitter reguires that the 1 .f. cireuits be shicleded antirely from the external comoecting ladeds. A situation such as is shown in Fig. 23-17, where the leads in the r.f. (hatssis have leen shiodded athd properly filtored but the chassis is mounted in a large shiched, simply invites the hamonice curcents 10 travel over the chatsis and on wat over the leads outwide the chatsisis. The shiolding about the ref. circuits should make eomplete contact with the chassis on whirh the parts are mounted.

Checking Transmitter Radiation

A chork for transmitter ratiation alwaty should be made hefore attempting to use low-jatse filters or other devies for preventing harmonies from reaching the antennat system. The only really. satisfactory indicating instrument is a television receiver. In regions where the TV signal is strong
 tive semse. That is, if it is possible to grot any indieation at all on 'TV' harmonios oither on supply leads of around the tramsmitter itself, the hatmonics are probably strong anough to cause interferener, but the absener of any such indieation does not moan that hamonic interference will not be ratused. A regenerative wavemetar will extend this range beramse of its greater semsitivity, but is still not somsitive enough for deprontahle indications in wak-signal regions. If the technigues of shieding and lead filtering deseribed in the preceling sertion are followed, the harmonic intensity on :Hy external leads should be far below what emher of these instruments can measure, so they are useful chiefly to determine whether some really bad error has bern made.

Fía, 23-18-1 Mummy-antenna circuit for checking harmonie radiation from the tramsmitter and leads. The matching cirenit belps prevent harmonics in the ontput of the transmitar from llowing bark over the trans. mitter itsolf, which may meror if tha lampload is simply ronterted to the output coil of the final amplifier. See transmission-line chapter for details of the matehing circotit. 'luning must he adjusted by cut-and-try, as the hridge method described in the transmission-line chapter will not work with lamploads hecanse of the change in resistance when the lamps are hot.

Radiation checks should be made with the tramsmitter delivaring full power into a dommy antema, such as an incandeseent lamp of suitathe power mating, preforably instatled inside the shielded rnelosure. If the dummy must be extornal, it is desirable to comere it through a cosexmatching cireuit such as is shown in Fig. 23-18. Shiclding the dummy antemna circuit is also dosirable, although it is not always nocessary. Make the radiation test on all frequencies that are to be used in transmitting, and note whether or not interference pattorns show in the recoived picture. (lhese tests must be made while a TV signal is being received, sine the beat patterns will not be formed if the TV picture carricer is mot present.) If interference exists, its sourere can be detected hy grasping the various extornal leads (by the insulation, not the live wire!) or bringing the hand near moter faeres, louvers, and other possible points where harmonic energy might escape from the transmittor. If any of these tests citure a change - not nocersamily an increase - in the intensity of the interference, the presente of hatmonics at that point is indieated. The location of such "hot" spots usually will point the waty to the remedy.
As a final test, commet the antemat or transmission line terminals to the outside of the transmitter shiclding. Interference created when this test is applied indicates that weak currents
arre on the outside of the shided and can be condueted to the antema when the normal antema "ommertions are used. Corrents of this nature represent interfermene that ran be eonducted over low-pass filters, rete., and which therefore cannot be climinated by such filters.

- PREVENTING HARMONICS FROM REACHING THE ANTENNA

The third and last step in reducing harmonic TVI is to kerep the hamonies generated in the final stage from traveling over the transmission line te the antenma. It is seldom worthwhile even to at tempt this until the radiation from the transmittor and its combeding leads has beon reduced to the point where, with the transmitter delivering full power into a dummy antomat, it has been detomined by actual testing with a television reeriver that the ratiation is below the level that "ath catuse interference. If the dummy antemat test shows emough radiation to be seon in a 'TV picture, it is a pratetiond eertanty that hamonics will be compled to the antemma system no matter What preventive measures are taken.

In inductively-eoupled output systoms, some Aamonic conergy will be transferred from the final amplifer through the mutath inductane betweon the tank coil and the output coupling eoil. Harmonies transferred in this way are not too hard to hamdle, and ran be greatly reduced by providing sulficient selertivity botween the final tank and the transmission lines, A good deal of solectivit y , amounting to 20 to 30 db . reduction of tho second harmonic and much higher reduction of higher-order harmonies, is furnishod by a matehing rireuit of the trpe shown in rig, 23-18 and doseribed in the chapter on transmission lines. An "antemna coupler" is therefore a worthwhile addition to the transmitter.

Fig. 23-19 - The stray caparitive mopling between coils in the upper circuit leads to the equivalent circuit shown below, for v,l.f, harmomien.

Capacitive Coupling

IIarmonies transferred from the tank ly stray capacitane are not suppressed by an antemat coupler to the same extent as those transferred by pure inductive coupling. The upper drawing in lig. 23-12 shows the link-eoupled swatem as it might be usod to eouple into a paralled-conducfor linc. Inasmuch as a coil is a sizable motallie objeret, it will hate capacitance to any other metallic objects in its vicinity, including other coils. Consecquently there is eapateitance between the final tank coil and its assomiated link eoil, and betwern the antenna tank coil and its link. Fonargy coupled through these ceaparitances travels over the link eirenit and the transmission line as though these were merely single conductors. The tomed rircuits simply act as massos of motal and olfer no seleretivity al all for (atpatity-roupled encrig. Although the actual eapacitomeres are small, they ofler a very good coupling medium for fregurnries in the v.h.f. ratuge.
('apacitive coupling can be reduced be coupling to a "cold" point on the tank eoil - the end eonneeted to ground or cathode in a single-ended stage. In push-puall eireuits having a split-stator condenser with the rotor grounded for r.f., all parts of the tank coil are "hot" at even harmonics, but the center of the coil is "cold" at the fundamental and odd harmonics. If the center of the tank eoil, rather than the rotor of the tank condenser, is grounded through a by-pass condensor the center of the coil is "cold" at all frequencies, hat this arrangement is not very desimble because it causes the harmonic currents to flow through the eoil rather than the tank condensel and this increases the hamonic transfor by pure inductive eoupling.

With either single-ended or balanced tank eireuits the eompling coil should be grounded to the chassis by a short, direet connection as shown in Fig. 23-20. If the coil feeds a balaneed line or link, it is proferable to ground its center, luat if it freeds a coax line or link one side may be grounded. Coaxial output is much preferable to batanced output, because the harmonies have to stay inside a properly installed coax sustem and tend to be short circuited by the capacitance of the eable before reaching the antemna coupler.

At high frequencies - 28 and possibly 14 Me . - capacitive coupling can be greatly reduced by using a shiodded coupling eoil as shown in Fig. 23-21. The inner conductor of a length of coaxial eable is used to form a one-turn coupling coil. The
ontor comductor servers as an open-cidedited shicdd aloound the turn, the shiold being grounded to the chassis. The shiedding has mo eflect on the inductive coupling. Becatise this eonstruction is suitable only for one turn, the eoil is not well adiapted for use on the lower frequencies where many turns are repuired for good coupling. Shiclded coupling coils having a larger number

fig, 23-2I-Shiched coupling roil construted from coavial cable. The smallor sizes of calble such as $130.59 /$ are most convenient when the coil diamerer is 3 incheo or less. becamse of greater flexibility. For larger enils RG:-8/L or RC-II/L can be used.
of turns are available commercially. A shielded coil is particularly useful with push-pull amplifiers when the suppression of even harmonies is important.

A shidded eoupling coil or coaxial output will not prevent stray eaparitive eoupling to the antemna if harmonic currents can flow over the outside of the coax line. In lïg. 23-22, the arrangement at either A or C will allow r.f. to flow over the outside of the eable to the antenna system. The proper way to use coaxial cable is shield the transmitter completely, as shown at I3, and make sure that the outer eonductor of the cable is a continuation of the transmitter shiclding. This prevents r.f. inside the transmitter from getting out by any path except the inside of the eable. Harmonics flowing through a eoax line can be stopped from reaching the antenna system be an antenna eoupler or hy a low-pass filter installed in the line.

Low-Pass Filters

A low-pass filter properly installed in a coaxial line, feeding either a matching circuit (antenna coupler) or feeding the antenna directly, will provide very great attenuation of harmonies. The eoax-coupled matching-circuit arrangement is highly recommended when the main transmission line is of the paralleleconductor type.

A properly-alesigned low-pass filter will not introduce appereciable power loss at the fundamental frequence if the coaxial line in which it is inserted is terminated so that the s.w.r. is low.

Fig. 23.20-Methods of conuling and grounding link cirenits to reducr caparitive coupling between the tank and link coits. Where the link is wound over one end of the tanh eoil the side toward the hot end of the tank should be grounded, as shown at 13 .

(B)

(C)
(A)

(B)

(C)

Mig. 23.22 - light! (B) and wrong (A and C.) ways to connere a rodxial lime to the tramsinitler. In either A or C, harmonic energy eomplad by stray eapacitane to the outside of the ealile will flow without hindranee to the antemat syatem. In is the anergy cammot leave the shield and hence can flow out only through, not on er, the eable.

The sw.w. can easily be measured by means of a simple bridge as doseribed in the chapters on measurements and transmission lines. Such a filter has the property of passing without hos all frequencies bolow its "cutoof" frequency, but simultaneously has large attenuation for all frequencies above the cut-off fropuency. Spate does not permit a complete deseription hame, but detailed information, including simplified design methors, can be found in a sories of artieles in Qs'T' (Grammer, "Pliminating TV' With LowI'ass l'ilters", QS'T, in three parts, Fobruatry, March, and April, 1950).

A relatively simple low-pass filter is shown in Figs, 23-23 to 23-25, inclusive, This filter has two rejection frequencies and will give a minimum of Bo dh. attenuation over any two soleoted chanmels in the ist-88 Me, range. The attemuation in other chamels varies from 20 to 40 dh., depending on the frequener. In general, localities with a mumber of television stations fall into two gronts. In one, the assigmment pattern is Chamels 2, a and $\overline{5}$ in the low band, and in the other ('hameks 3 and 6, The filter designs given in frig. 23-2 \ddagger are hased on maximum attenuation in (hammets 2 and 4 in the one ease, and (hannels 3 and 6 in the other, In either ease the attemuation is ample for hamonies lalling in the 17. -216 Mc . range from transmitters operating below 30 Mc .

As shown in Fig. 23-25, the components are laid out in essentially the same form as in the circuit dingram. The combenser rotors are grounded to the aluminum plate on the side nearest the coax terminals, to keep the return pathe as short as posible. The coils are mounted at right angles to reduce the coupling leetween
them. A shield folded from a piece of aluminum is placed about the center condenser to redure capacitive coupling between the three units. The other batfle shichld similarly is used to reduce the coupling between L_{1} and L_{2}.

The filter can be adjusted be short-circuiting point A to the eommon ground plate (use the shortest possible commedion) and setting ('i so that a griddedip moter eoupled to L_{3} shows the circuit to be mesomat at $5 \overline{5}$ Me. for al (hammel 2 filter, or at ti3 Mr. for at ('hammel 3 filter. Aljust Co similarly with the mriderlip moter eoupled to L_{4} and print ℓ shorted to ground. Thern short point B to ground at the hole in the shiced, Fig. 23-25, couple the grid-dip) moter to L_{5}, and adjust ('3 to $\overline{1} 1$ Me. for a ('hannel 1 filter or th 85 Me. for a Chamed if filter. These adjust ments usually will provide good average attenuation in the two chamels. Should artual interference be catused a more exact adjustment, made while watehing the television pieture, should result in a considerable inerease in attemestion.

The euteof frequencios in both filters are well above 30 Me ., and so the filter should have mo effere on the performane of the anteme coupling system at frequencios bolow 30 Me . If inserting the filter in the line caluses the loading on the final stage to change, it is an indication that the coas line is operating at ans.w.r. greater thatn 1 to 1. Optimum results will be secured when the line is first matched as closely as possible so that it operates at a low s.w.r.
The harmonic attemation provided by filters of the type shown will, with careful adjustment, be adeguate for areas in which the television signat is of good strengeth, for operation on all bands from 30 Mc. down. In weak-signal regions, more attenuation may be needed when the transmit ter is operating on 28 Mr .
('onstructional data on more claborate filters may be found in Q心TV: Pichitino, "A HighAttemation Filtor for llarmonic suppression", January, 1980; Foshorg, "A Low-I'ass Filter for High Power", October, 1951.

Fig. 23.23-' 'elevision.frequeney harmonic filter, for use with coas cabler, All parts are mounted on a 5×7-ineh piece of alumimum. mounted with theretmetal serews in a 5 by 7 by 2 alominum chassis which serves an a shield.

Filter Installation

In order to give the harmonic attenuation of which it is capable, a low-pass filter must bo installed in such a way that all the output of the transmittor flows through it. If hamonice currents are permitted to flow on the outside of the connecting eoaxial cobles, they will simply llow ower the filter and on uj, to the antemat, and the filter does mot have an opportunity to stop them. That is why it is so important to reduce the radiation from the transmitter and its leads to negligible proportions.

Fig. 23-26 shows the proper way to install a

Fig. 23-24 - Cirenit diagram of the harmonie filter. It provides two high-attenuation points which may be placed in toler ision chanmels employed in the locality in which the filter is to be osed.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Panel-type maxial comeretors.
Ci, C2-35- or $\quad 11-\mu_{\mu} \mathrm{fd}$, variable: see data below. (Millen 22013.3 or 220 (0.31).
Ca $-100-\mu \mu$ fd. variable (Millen $2=100$).

Coil and Capacitance Data

F'or 50 -ohm cable, maximum rejeetion in Channels 2 and 4:
$\mathrm{C}_{1}, \mathrm{C}_{2}-12 \mu \mu \mathrm{fd}$.
$\mathrm{C}_{3}-106 \mu \mu \mathrm{fd}$. (Condenser specilied above has sufficient capacitanee.)
$1.1,1.2-5$ turns. No. 12, $1 / 2$-inch inside diameter, longth $5 / 8$ inch.
$1.3,14-4$ turns Vo. $12,1 / 2$-ineh inside diameter, length 9 an inch.
1.5 - 1 turn No. $12,1 / 2$-inch inside diameter, length $3 / 8$ inch
For 50 -ohm calle, maximum rejection in Channels 3 and 6:
$\mathrm{C}_{1}, \mathrm{C}_{2}-38{ }_{\mu \mu} \mathrm{fd}$.
($\mathrm{C} 3-\mathrm{F}, \mu \mu \mathrm{fl}$.
1.1, $1.2-5$ turns No. 12, $1 / 2$-ineh inside diameter, length 7/8 inch.
1.3, I4 4 turns No, 12, $1 / 2$-inch inside diameter, length 1316 inch.
$\mathrm{L}_{5}-1$ turn Ko. 12, $3 / 8$-inch inside diameter, length $1 / 2$ inch.
 and 4:
$\mathrm{C}_{1}, \mathrm{C}_{2}-28 \mathrm{C}_{\mu \mathrm{fd}}$.
$\mathrm{C}_{3}-71{ }_{\mu \mu \mathrm{dd}}$.
1.1, 1.2 - 7 turns No. 12, $1 / 2$ ineh inside diameter, lengeth $3 / 4$ incl).
$\mathrm{L}_{3}, \mathrm{I}_{4}$ - 0 turns No. 12, $1 / 2$-inch inside diameter, Iength 13/a inch.
L.5 - 3 turns Xo, $12,3 / 8$-ineh inside diameter, length 910 inch.
For 75 -ohm calle, maximum rejcetion in Channels 3 and 6:
$\mathrm{C}_{1}, \mathrm{C}_{2}-25{ }_{\mu} \mathrm{fd}$.
$\mathrm{C}_{3}-66 \mu_{\mu} \mathrm{fd}$.
Li, I. $2-7$ turns No. $12,1 / 2$-inch inside diameter, length 13 伿 ineh.
$\mathrm{L}_{3}, \mathrm{~L}_{4}-6$ turns No. 12, $1 / 2$-inch inside diameter, length $\frac{3}{4}$ ineh.
$\mathrm{L}_{5}-2$ turns No. $12,3 / 8$-ineh inside diameter, length
Coil lengths in all cases measured between centers of wire at cnds.

Fig. 23.25 - Constrmetion of the harmonic filter, Dimen * sions should be followed fairly closely for optimmon results. The center-to ecenter dintance between the roax connectors is $1 \frac{1}{2}$ inches. Mounting centers of the variable condensers are on a line $21 / 4$ inches below and parallel to a line through the centers of the coax fittings,
filter bet ween a shielded transmitter and a matehing circuit. Note that the coax, together with the shieks about the transmitter and filter, forms a continuous shield to keep all the r.f. inside. It is thus forced to flow through the filter and the harmonics are attenuated. If there is no harmonic energy left after passing through the filter, shielding from that point on is not necessary; consequently, the matehing circuit or antemna coupler does not need to be shiolded. However, thre antenna-coupler chassis arrangement shown in Fig. 23-2f is desirable because it will tend to prevent fundamental-frequence energy from flowing from the matching circuit back over the transmitter; this helps eliminate feed-back troubles in audio systems.

If the antenna is driven through coasial line the matching cireuit shown in Fig, 23-26 may be omitted. In that case the line goes directly from the filter to the antenna.

When a filter does not serm to give the harmonic attenuation of which it should be capable, the probable reason is that harmonies are bypassing it because of improper installation and inadequate transmitter shielding, including lead filtering. Ilowever, there are occasionally cases where the circuits formod by the connecting cables and the apparatus to which they connect become resonant at at harmonic frequency. This greatly increases the harmonic output at that fregueney and the overall attenuation suffers. Such troubles ean be completely overcome by substituting a slightly different cable length. The most eritical length is that connecting the transmitter to the filtor. Chorking with a grid-dip meter at the final amplifier output coil usually will show whether an unfavorable resonance of this type exists.

SUMMARY

The methods of harmonic elimination outlined in this chapter have been proved beyond doubt to be effective even under highly unfavorable conditions. It must be emphasized once more, however, that the problem must be solved one

Fig. 23-26 - The proper method of installing a low -pass filter between the transmitter and antenna compler or matehing circuit. If the antemna is fed through coas the matching circuit may be omitted hut the same construction should be used between the transmitter and filter. Whe filter shonld be thoroughly shielded.
step at a time, and the procedure must be in logical order. It camot be done properly without a few items of simple equipment. These are:

1) A grid-dip meter and wavemeter covering the TV bands.
2) A dummy antenna.

The procedure may be summarized as follows:

1) Take a critical look at the transmitter on the basis of the design considerations outlined under "Reducing Itarmonic Generation".
2) ('hrek all rircuits, particularly those conneeted with the final amplifier, with the grid-dip meter to dotermine whether there are any resonances in the TV' hands. If so, reamange the circuits so the resonances are moved out of the critieal frequency region.
3) Connect the transmitter to the dummy antemat and check with the wavemeter for the presener of harmonies on leads and around the transmitter enclosure. Seal off the weak spots in the shielding and filter the leads until the wavemeter shows no indication at any harmonic frequeney.
4) At this stage, check for interference with a TV recoiver. If there is interference, determine the cause by the methods described previously and apply the reommended remedies until the interforence disappears.
5) When the transmitter is completely elean on the dummy antenna, comect it to the regular antenna and check for interferenee on the TV receiver. If the interference is mot bad, an antemba coupler or matching cireuit installed as previously described should clear it up). Alternatively, a lowpass filter may be used. If moither the antemat coupler or filter make any differenee in the interforence, the evidenee is strong that the interference, at least in part, is being caused by receiver overloading because of the strong funda-mental-frequency ficld about the 'TV antemma and receiver. (See later section for identification of fundamental-frequency interference.) A coupler and/or filter, installed as deseribed above, will invariahly make a difference in the intensity of the interference if the interference is caused by transmitter harmonics alone.
6) If there is still interference after installing the coupler and/or filter, and the evidence shows that it is probably caused by a harmonic, more attemation is needed. A more elaborate filter may be neressary. However, it is well at this stage to assume that part of the interferenere may bo caused by receiver overloading, and take steps to alleviate such a condition before trying highlyelaborate filters, traps, etc., on the transmitter.
7) In fringe areas the possibility of harmonic interference caused by rectification of the fundamental signal flowing through poor eontatst in any conductors in the vicinity should not be overlooked. Any eonductor in the strong field of the transmitting antenna will have some current flowing on it, and if "contact rectifiation" takes place hammonies are generated. These camot be blamed on the transmitter, but neither are they the fault of the reeder. They are prineipally bothersome when operation is near the low-frequeney and of the 28-Mc. band and are seldom strong enough to cause serious interference within the good service area of a 'lV tranmitter. If the transmitter is Gean on a dumme antema, be the tests dexeribed previously, and neither low-pass filters on the transmitter nor high-pass filters on the recoiver have any offect, and particularly if the interference is intermittent, contact roctification is a likely cause. It can be curd only by finding the soot where it is taking platerend bonding the conductors together so the poor contane is eliminated.

TV RECEIVER DEFICIENCIES

Whon a telovision recoiver is quite close to the transmitter, the intense r.f. signal from the transmitter's fundamental maty overload one or more of the receiver circuits to produce spurious responses that cause interforence. "Fundamental" interforence usually can be identified by the fact that the interference is of about the same intensity on all TV chamels, inclurling those that have no harmonic relationship to the transmitting frequeners. It is a simple matter to determine, from the chart of Fig. 23-6 or by calculation, whether or not a transmitter harmonic will fall in a particular TV ehamel.

Asuming that the modsures deseribed carlier ta redued harmonie radiation have been taken, the presence of interference on chamels that are not hamonically related to the transmitting

Fig. 2.3-27- High-pass filters for inatallation at the TV rereiver antenna derminats, A - halanced filtor for 3 3no. ohm line, 13 - for $\overline{\text { ondm}}$ conavial line. Importam: I bo not use a direct ground on an a.c.-d.c. chassis. Cround through a 0.00 t- $\mu \mathrm{fd}$. miea condenser.
frequency, along with interference in those that are, is a good indication that at least part of the TVI is caused by some action taking place in the receiver. The most likely possibility is that the first stage, or first few stages, are simply being overloaded. In the case of $28-\mathrm{Mc}$. operation, it is also possible that the amateur signal is getting into the pieture i.f. amplifier because of insufficient i.f. rejection in the receiver.
In either case, the interference can be elimimated if the fundamental signal strength can be reduced to a level that the recriver ean handle. The most satisfactory device for this purpose is a high-pass filter having a cut-off frequeney between 30 and 50 Mc ., installed at the antenna torminals of the receiver. Cireuits that have proved effective are shown in Figs. 23-27 and 23-28. Fig. 23-28 has one more section that the filters of Fig. 23-27 and as a eonsequence has somewhat hetter cut-off characteristices, All the eircuits given are designed to have little or no effect on the TV signals buit will attenuate all

Fig. 23-28 - Another type of high-pass filter for 300ohm line. 'The coils may be wound on 1 -inch diameter plastic hnitting needles. Important: Do not use a direet ground on an a.c.-d.c. chassis. Ground through a 0.001 $\mu \mathrm{fd}$. mica condenser.
signals lower in frequency than about 40 Mc . These filters preferably should be constructed in some sort of shielding container, although shielding is not always necessary. The dashed lines in Pig. 23-28 show how individual filter coils can be shielded from each other. The condensers can be tubular coramic units centered in holes in the partitions that separate the coils.

Iligh-pass filters designed for this purpose are available conmercially at moderate prices. In this connection, it should be understood by all parties eoncerned that while an amateur is responsible for harmonic radiation from his transmitter, it is no part of his responsibility to pay. for or install filters, wavetraps, ate., that may he required at the receiver to prevent interference caused by his fundamental frequency. It is a good idea for the amateur to have a high-pass filter that can be tried on a receiver when interference exists. If trial shows it to be effective, the reason why it works should he carefully explained to the set owner, who should then be advised to got in touch with the organization from which he purchased the receiver or which services it, to make arrangements for proper installation. Proper installation usually requires that the filter be installed right at the input terminals of the r.f. tuner of the TV set and not merely at the antenna
terminals, which may be at a consideratole distance from the tuner. The question of cost is one to be settled hetween the set owner and the organization with which he deals. Some of the larger manufacturers of TV receivers have instituted arrangements for cooperating with the set dealer in installing high-pass filters at no cost to the receiver owner.

Wavetraps may be used instead of high-pass filters. If the receiver has a balanced ($300-\mathrm{ohm}$) transmission line a trap should be used in each line wire. They may be eonstructed from the data in Fig. 23-3. When properly tuned, wavetraps will greatly attenuate the fundamental signal but suffer the disadvantage, as compared with a highpass filter, that they must be retuned if the transmitter frequency is moved. They are of course of no value in rejecting a frequency to which they cannot be tuned, and therefore usually are good only for one amateur band.

If the fundamental signal is getting into the receiver by way of the line cord a line filter such as that shown in Fig. 23-4 will help, To he most effective it should be installed inside the reeriver chassis at the point where the cord enters, making the ground connertions directly to chassis at this point. It may not be so helpful if placed between the line plug and the wall socket unless the r.f. is actually picked up on the house wiring rather than on the line cord itself.

Antenna Installation

Many television receivers will respond strongly to parallel currents on the receiving transmission line. Isually, the transmission line picks up a great deal more energy from a near-hy transmitter than the television receiving antenna itself, causing parallel currents that should be, hut are not, rejected by the reeeiver's input circuit. A strong signal that overloads the first or second stages in the receiver will cause the rereiver itself to generate harmonies that fall in the television channels. This situation can be improved by using shielded transmission line - cond or, in the batanced form, "twinax" - on the receiving installation. For best results the line should terminate in a coax fitting on the receiver chassis, hut if this is not possible the shicld should be grounded to the chassis right at the antenna terminals.

The use of shiclded transmission line for the receiver also will be helpful in reducing response to harmonies actually being radiated from the transmitter or transmitting antenna. In most receiving installations the transmission line is very much longer than the antenna itself, and is consequently far more exposed to the harmonic fields from the tramsmitter. Much of the harmonie pick-up, therefore, is on the receiving transmission line when the transmitter and reeciver are quite close togethor. Shielded line, plus relocation of either the transmitting or receiving antenna to take advantage of directive effects, often will result in reducing overloading, as well as harmonic pick-up, to a level that does not interfere with reception.

Construction Practices

TOOLS AND MATERIALS

While an easier, and perhaps a better, job can be done with a greater variety of tools available, by taking a little thought and care it is possible to turn out a fine piece of equipment with only a few of the common hand tools. A list of tools which will be indispensable in the construction of radio equipment will be found on this page. With these tools it should be possible to perform any of the required operations in preparing

INDISPENSABLE TOOLS

Long-nose pliers, 6 -ineh.
Diagonal cutting pliers, 6 -inch.
Screwdriver, 6- to 7 -inch, $1 / 4$-inch blade.
Screwdriver, 4 - to 5 -inch, $1 / 8$-inch blade.
Scratch awl or scriber for marking lines.
Combination square, 12 -inch, for laying out work.
Hand drill, $1 / 4$-inch chuck or larger, 2-speed type preferable.
Electric soldering iron, 100 watts.
Hack saw, 12 -inch blades.
Center punch for marking hole centers.
Hammer, ball-peen, 1-1b, head,
Heavy knife.
Yardstick or other straightedge.
Carpenter's brace with adjustable hole cutter or socket-hole punches (see text).
Large, coarse, flat file.
Large round or rat-tail gile, $1 / 2$-inch diameter.
Three or four small and medium files-flat, round, half-round, triangular.
Drills, particularly $1 / 4$-inch and Nos. $18,28,33,42$ and 50.
Combination oil stonc for sharpening tools.
Solder and soldering paste (noncorroding).
Medium-weight machine oil.

ADDITIONAL TOOLS

Bench vise, 4-inch jaws.
Tin shears, 10 -inch, for cutting thin sheet metal. Taper reainer, $1 / 2$-inch, for enlarging anall holes.
Taper reamer, 1 -inch, for enlarging holes.
Countersink for brace.
Carpenter's plane, 8- to 12 -inch, for woodworking. Carpenter's saw, crosscut.
Motor-driven emery wheel for grinding.
Long-shank screwdriver with screw-holding clip, for tight places.
Set of "Spintite" socket wrenches for hex nuts.
Set of small. flat, open-end wrenches for hex nuts.
Wood chisel, 1/2-inch.
Cold chisel, $1 / 2$-inch.
Wing dividers, 8 -inch, for scribing circlea
Set of machine-screw taps and dies.
Folding rule, 6-foot.
Dusting brush.
Socket punches, esp, $11 / /^{\prime \prime}$ and $11 / /^{\prime \prime}$.
panels and metal chassis for assembly and wiring. It is an excellent idea for the amateur who does constructional work to add to his supply of tools from time to time as finances permit.

Several of the pieces of light woodworking machinery, often sold in hardware stores and mail-order retail stores, are ideal for amateur radio work, especially the drill press, grinding head, band and circular saws, and joiner. Although not essential, they are desirable should you be in a position to acquire them.

Twist Drills

Twist drills are made of either high-speed steel or carbon steel. The latter type is more common and will usually be supplied unless specific request is made for high-speed drills. The carbon drill will suffice for most ordinary equipment construction work and costs less than the high-speed type.

While twist drills are available in a number of sizes those listed in bold-faced type in Table IS-I will be most commonly used in construction of amateur equipment. It is usually desirable to purchase several of each of the commonly-used sizes rather than a quantity of odd sizes, most of which will be used infrequently, if at all.

Care of Tools

The proper care of tools is not alone a matter of pride to a good workman. He also realizes the energy which may be saved and the annovance which may be avoided by the possession of a full kit of well-kept sharp-edged tools.

Drills should be sharpened at frequent intervals so that grinding is kept at a minimum each time. This makes it easier to maintain the rather critical surface angles required for best cutting with least wear. Occasional oilstoning of the cutting edges of a drill or reamer will extend the time between grindings.

The soldering iron can be kept in good condition by keeping the tip well tinned with solder and not allowing it to run at full voltage for long periods when it is not being used. After each period of use, the tip should be removed and cleaned of any scale which may have accumulated. An oxidized tip may be
cleaned by dipping it in sal ammoniae while hot and then wiping it clean with a rag. If the tip becomes pitted, it should be filed until smooth and bright, and then tinned by dipping it in solder.

Useful Materials

Small stocks of various miscellaneous materials will he required in constructing radio apparatus, most of which are available from hardware or radio-supply stores. A representative list follows:
$1 / 2 \times 1 / 16$-inch brass strip for brackets, ete. (half-hard for bending).
$1 / 4$-inch-square brass rod or $1 / 2 \times 1 / 2 \times 1 / 16$ inch angle brass for corner joints.
1/4-inch diameter round brass rod for shaft extensions.
Machine screws: Round-head and flat-head, with nuts to fit. Most useful sizes: $4-36$, $6-32$ and $8-32$, in lengths from $1 / 4$ inch to $11 / 2$ inches. (Nickel-plated iron will be found satisfactory except in strong r.f. fields, where brass should be used.)
Bakelite and hard-rubber scraps.
Soldering lugs, panel bearings, rubber grommets, terminal-lug wiring strips, var-nished-cambric insulating tubing.
Copper braid for shielding wires.
Machine screws, nuts, washers, soldering lugs, etc., are most reasonably purehased in quantities of a gross.

CHASSIS WORKING

With a few essential tools and proper procedure, it will be found that building radio gear on a metal chassis is no more of a chore than building with wood, and a more satisfactory job results. Aluminum is to be preferred to steel, not only because it is a superior shielding material, but because it is much casier to work and to provide good chasis contacts.

The placing of eomponents on the chassis is shown quite clearly in the photographs in this Handbook. Aside from certain essential dimensions, which usually are given in the text, exact duplication is not necessary.

Much trouble and energy can be saved by spending sufficient time in planning the job. When all details are worked out beforehand

Fig. 24-1 - Method of measuring the heights of condenser shafts, etc. If the square is adjustable, the end of the scale should be set flush with the face of the head.

Number	TABLE 24-I Numbered Drill Sizes		
	Diameter (mils)	Will Clear Screw	Drilled for Tapping Iron, Steel or Brass*
1	228.0	-	-
2	221.0	12-24	-
3	213.0	-	14-24
4	209.0	12-20	-
5	205.0		-
6	204.0	-	-
7	201.0	-	-
8	199.0	-	-
9	196.0	-	-
10	193.5	10-32	-
11	191.0	10-24	-
12	189.0	-	-
13	185,0	-	-
14	182.0	-	-
15	180.0	-	-
16	177.0	-	12-24
17	173.0	-	-
18	169.5	8-89	-
19	166.0	-	12-20
20	161.0	-	-
21	159.0	-	10-32
22	157.0	-	-
23	154.0	-	-
24	152.0	-	-
25	149.5	-	10-24
26	147.0	-	-
27	144.0	-	-
28	140.0	6-82	-
29	136.0	-	8-82
30	128.5	-	-
31	120.0	-	-
32	116.0	-	-
33	113.0	4-36, 4-40	-
34	111.0	-	-
85	110.0	-	6-32
36	106.5	-	-
37	104.0	-	-
38	101.5	-	-
39	099.5	3-48	-
40	098.0	-	-
41	096.0	-	-
42	093.5	-	4-36, 4-40
43	089.0	2-56	-
44	086.0	-	-
45	082.0	-	3-48
46	081.0	-	-
47	078.5	-	-
48	076.0	-	-
49	073.0	-	2-56
50	070.0	-	-
51	067.0	-	-
52	063.5	-	-
53	059.5	-	-
54	055.0	-	-

the actual construction is greatly simplified.
Cover the top of the chassis with a piece of wrapping paper or, preferably, eross-section paper, folding the edges down over the sides of the chassis and fastening with adhesive tape. Then assemble the parts to be mounted on top of the chassis and move them about until a satisfactory arrangement has been found, keeping in mind any parts whieh are to be mounted underneath, so that interferences in mounting may be avoided. Place condensers and other parts with shafts extending through the panel first, and arrange them so that the controls will
form the desired pattern on the panel. Be sure to line up the shafts squarely with the chassis front. Locate any partition shields and panel brackets next, and then the tube sockets and any other parts, marking the mounting-hole centers of each accurately on the paper. Watch out for condensers whose shafts are off center and do not line up with the mounting holes. Do not forget to mark the centers of socket holes and holes for leads under i.f. transformers. etce, ats well as holes for wiring leads. The small holes for socket-mounting serews are best located and punched, using the socket itself as a template, after the main center hole has been cut.
l3y means of the square, lines indicating accurately the centers of shafts should be extended to the front of the chassis and marked on the panel at the chassis line, the panel being fastened on temporarily. The hole centers may then be punched in the chassis with the center punch. After drilling, the parts which require mounting underneath may be located and the mounting holes drilled, making sure by trial that no interferences exist with parts mounted on top. Mounting holes along the front edge

Fig. 24.2 - To cut rectangular holes in a chassis corner, holes may be filed out as shown in the shaded portion of B , making it possible to start the hack-saw blade along the cutting line. A showe how a singleended handle may be constructed for a hack-saw blade.
of the chassis should be transferred to the panel, by once again fastening the panel to the chassis and marking it from the rear.

Next, mount on the chassis the condensers and any other parts with shafts extending to the panel, and measure accurately the height of the center of each shaft above the chassis. as illustrated in Fig. 24-1. The horizontal displacement of shafts having already been marked on the chassis line on the panel, the vertical displacement can be measured from this line. The shaft centers may now be marked on the back of the panel, and the holes drilled. Joles for any other panel equipment coming above the chassis line may then be marked and drilled, and the remainder of the apparatus mounted. Joles for terminals etc., in the rear edge of the chassis should be marked and drilled at the same time that they are done for the top.

Drilling and Cutting Holes

When drilling holes in metal with a hand drill it is important that the centers first be located with a center punch, so that the drill point will not "walk" away from the center when starting the hole. When the drill starts to break through, special care must be used. Often it is an advantage to shift a two-speed drill to low gear at this point. Holes more than $1 / 4$ inch in diameter may bestarted with a smaller drill and reamed out with the larger drill.
The chuck on the usual type of hand drill is limited to $1 / 4$-inch drills. Although it is rather tedious, the $1 / 4$-inch hole may be filed out to larger diameters with round files. Another method possible with limited tools is to drill a series of small holes with the hand drill along the inside of the diameter of the large hole, placing the holes as close together as possible, The center may then be knocked out with a cold chisel and the edges smoothed up with a file. Taper reamers which fit into the carpenter's brace will make the job easier. A large rattail file clamped in the brace makes a very good reamer for holes up to the diameter of the file, if the file is revolved counterclockwise.

For socket holes and other large round holes, an arljustable cutter designed for the purpose may be used in the brace. Occasional application of machine oil in the cutting groove will help. The cutter first should be tried ont on a block of wood, to make sure that it is set for the correct diameter. The most convenient device for cutting socket holes is the socket-hole punch. The best type is that which works loy turning a take-up screw with a wrench.

Rectangular Holes

Square or rectangular holes may be cut out by making a row of small holes as previously described, but is more easily done by drilling a $1 / 2$-inch hole inside each comer, as illustrated in Fig. 24-2, and using these holes for starting and turning the hack saw. The sockethole punch and the square punches which are now available also may be of considerable assistance in cutting out large rectangnlar openings. The burrs or rough edges which usually result after drilling or cutting holes may be removed with a file, or sometimes more conveniently with a sharp knife or chisel. It is a good idea to keep an old wood chisel sharpened and available for this purpose. A burr reaner will also be useful.

- CONSTRUCTION NOTES

If a control shaft must be extended or insulated, a flexible shaft coupling with adequate insulation should be used. Satisfactory support for the shaft extension can be provided by means of a metal panel bearing made for the purpose. Never use panel bearings of the nonmetal type unless the condenser shaft is grounded. The metal bearing should be connected to the chassis with a wire or grounding strip.

This prevents any possible danger of shock.
The use of fiber washers between ceramic insulation and metal brackets, screws or nuts will prevent the ceramic parts from breaking.

Cutting and Bending Sheet Metal

If a sheet of metal is too large to be cut conveniently with a hack saw, it may be marked with scratches as deep as possible along the line of the rut on both sides of the sheet and then clamped in a vise and worked back and forth until the sheet breaks at the line. 1) not carry the bending too far until the break begins to weaken; otherwise the edge of the sheet may becoma bent. A pair of iron bars or pieces of heavy angle stock, as long or longer than the width of the sheet, to hold it in the vise will make the job easier. "C"-clamps may be used to keep the bars from spreading at the ends. The rough edges may be smoothed up with a file or by placing a large piece of emery cloth or sandpaper on a flat surface and running the edge of the metal back and forth over the sheet.

Bends may be made similarly. The sheet should be scratched on both sides, but not so deeply as to cause it to break.

Finishing Aluminum

Aluminum chassis, pancls and parts may be given a sheen finish by treating them in a caustic hath. An enamelled container, such as a dishpan or infant's bathtub, should be used for the solution. Dissolve ordinary household lye in cold water in a proportion of $1 / 4$ to $1 / 2$ can of lye per gallon of water. The stronger solution will do the joh more rapidly. Stir the solution with a stick of wood until the lye crystals are complete dissolved. Be very careful to avoid any skin contact with the solution. It is also harmful to clothing. Suffirient solution should be prepared to cover the picce completely. When the aluminum is immersed, a vary pronounced bubbling takes place and ventilation should be provided to disperse the escaping gas. A half hour to two hours in the solution should be sufficient, depending upon the strength of the solution and the desired surface.

Remove the aluminum from the solution with sticks and thereafter handle with eotton gloves until after the piece has been rinsed thoroughly

DECIMAL EQUIVALENTS OF FRACTIONS

1,32.	. 03125	17/32.	. 33125
116.	. 06025	$9 / 16$.	,5625
332.	. 098375	19/32.	. 59375
$1 / 8$. 125	5/8	.625
532	.1562.5	21/32.	.65\% ${ }^{\text {a }}$
316.	. 1875	11/16.	. 6875
732.	.2187.3	23/32.	. 71875
1/4	2.	$3 / 4$. 75
$9,32$.	$\therefore 8120$	$25 / 32$.	.7812.7
¢) 16.	.312-9	13/16.	.81\%.j
1132.	. 3837.5	$27 / 32$.	. 81375
38	.37.	78	.87.
13,32	. H (122.	2432.	.14\%j2.)
716.	.437.)	15 16	.1337.)
1532.	. 46875	3132	. 968875
$1 / 2$. 5	1....	1,0

in cold water while swabbing with a rag tor remove the black deposit. If any black stains result, reimmerse the piece for another minute or two and rinse again. (See May, 1950 QST' for a mothod of coloring and anodizing aluminum.)

Soldering

The secret of good soldering is in allowing time for the joint, as well as the solder, to attain sufficient temperature. Enough heat should be applied so that the solder will melt when it comes in contact with the wires being joined, without touching the solder to the iron.
soldering paste, if of the noneorroding type, is extremely helpful when used correctly. In general, it should not be used for radio work except when neressary. The joint should first be warmed slightly and the soldering paste applied with a piece of wire. Only the bit of paste which melts from the warmth of the joint should be used. If the soldering iron is clean it will be possible with one hand to pick up a drop of solder on the tip of the iron which can be applied to the joint. while the other hand is used to hold the eonnecting wires together. The use of excessive soldering paste causes the paste to spread over the surface of adjacent insulation, causing leakage or breakdown of the insulation. Except where absolutely neeessary, solder should never be depended upon for the mechanical strength of the joint; the wire should be wrapped around the terminals or clamped with soldering terminals.

When soldering carbon resistors in place, especially if the leads have been cut short and the resistor is of the small $1 / 2$-wat t size, the resistor lead should be gripped with a pair of pliers up close to the resistor so that the heat will be conducted away from the resistor. Overheating of the resistor while soldering can cause a permanent resistance change of as much as 20 per cent. Also, mechanical stress will have a similar effect, so that a small resistor should be mounted so that there is no appreciable mechanical strain on the leads.

Wiring

If the plate voltage exreds 500, sperial eare should be used in selecting wire that has adequate voltage rating for transmitter plate-power circuits. To be eonservative, the insulation should be good for twice the plate voltage and this figure should be doubled again if the lead carriess modulation as well as d.c.

The wire for filament circuits should be of sufficient size to assure rated voltage at the filament terminals (see wire table in the miscellaneousdata chapter).

Power wiring in transmitters should be shielded as a means of reducing TVI. If shielded wire with sufficient voltage rating is not available, unshielded wire ean be covered with eopper braid.

In making connertions with shielded wire, the braid should be stripped band about an inch at each end to provide adequate insulation betwern the conductor and the braid. After fraying the

Fig. 24-3-Cable-stripping dimensions for Jones Type P- 101 plugs. Smaller dimensions are for $1 / 4$-inch phitss, the larger dimensions for $1 / 2$-inch plugs. As indicated in C, the remaining copper braid is wound with bare or timed wire to make a snug fit in the sleeve of the plug.
braid lack and snipping it off, it should be bound with a few turns of small bare wire, leaving a lead of a few inches for ground to the chassis at the nearest point. Solder should be flowed into the winding, being careful not to apply too moch heat that might damage the insulation. The braid of shielded power wires running parallel should be bonded together by soots of solder at frequent intervals. Wires that cross should be similarly bonded. In cases where power-supply leads in the chassis have several branches, it is eonvenient to use fiber terminal or lug strips as anchorages or junction points. Strips of this type are also uscful as insulated anchorages for resistors, r.f. chokes and condensers. Iligh-voltage wiring should have exposed points held to a mimimum and those which eamot be avoided should be rendered as inaccessible as possible to aceridental contact or shortocireuit.

For r.f. wiring, soft-drawn bare solid tinned antemna wire, No. 14 or No. 12, is most suitable. Kinks can be removed by stretching a length of 10 or 15 fere and then cutting into short pieces

Fig. 24-4-1 Dimensions for stripping $1 / 2$-inch cable to fit Amphenol 'l'ype 83-1sP plug.

Fig. 24-5- Methoel of assembling $1 / 4$-inch cable, Imphenol 'l'ype 83-1Sl' plug and adapter.
that can le handed eonveniently. R.f. wiring should be run directly from point to point over the shortest path and should be kept well spaced from the chassis and components. Where the wiring must pass through the chassis, a halfinch hole should be cut at the appropriate point and the hole lined with a rubber grommet. The wire should not be allowed to touch the rubber.

Power and control wiring outside the transmitter chassis should be cabled to make a neatlooking job. Fig. 24-7 shows the correct methods of lacing cables.

Coaxial Plug Connections

Considerable time and trouble can be saved in making cable connections to coaxial plugs by

Fig. 24-6-Stripping dimensions for Amphenol $82-830$ and 82-832 plug-in connectors. The longer exposed braid is for the first type.

(B)

(C)

RIGHT
Fig. 24-7 - Methods of laeing eables. The method shown at C is more secure, but takes more time than the method of B . The latter is usually adequate for most anateur requirements.
starting out with the correct stripping dimensions. Fig. 24-3 shows how the end of the cable should be prepared for connecting to Jones Type P-101 plugs. After the exposed braid has been wound, it should be carefully tinned, applying no more heat than is necessary, to avoid melting the inner insulation. A small amount of solder also should be flowed into the sleeve of the plug. Then, when the cable is inserted in the sleeve, th. conncetion can be made secure by holding the iron against the sleeve until the solder inside melts. While joining the two, the plug may bo held by inserting it in a hole drilled in a board. ligs. 24-4, 24-5 and $24-6$ show details of connections to different types of Amphenol plugs and adapters.

COMPONENT VALUES

Values of composition resistors and small condensers (mica and ceramic) are specified throughout this Handbook in terms of "preferred values." In the preferred-number system, all values represent (approximately) a constant-percentage increase over the next lower value. The base of the system is the number 10 . Only two significant figures are used. Table $24-11$ shows the preferred values based on tolerance steps of 20,10 and 5 per cent. All other values are expressed by multiplying or dividing the base figures given in the table by the appropriate power of 10 . (For example, resistor values of 33,000 ohms, 6800 ohms, and 150 ohms are obtained by multiply-
ing the base figures by 1000,100 , and 10 , respectively.)
"Tolerance" means that a variation of plus or minus the percentage given is considered satisfactory. For example, the actual resistance of a " 4700 -ohm" 20 -per-cent resistor can lie anywhere between 3700 and 5600 ohms, approximately. The permissible variation in the same resistance value with 5 -per-cent tolerance would be in the range from 4500 to 4900 ohms , approximately.
Only those values shown in the first column of Table $24-$ II are available in 20 -per-cent tolerance. Additional values, as shown in the second column, are available in 10 -per-cent tolerance; still more values can be obtained in 5 -per-cent tolerance.

In the component specifications in this Handbook, it is to be understood that when no tolerance is specificd the largest tolerance available in that value will be satisfactory.

Values that do not fit into the preferrednumber system (such as $500,25,000$, etc.) easily can be substituted. It is obvious, for example, that a 5000 -ohm resistor falls well within the tolerance range of the 4700 -ohm 20 -per-cent resistor used in the example above. It would not, however, be usable if the tolerance were specified as 5 per cent.

COLOR CODES

Standardized color codes are used to mark values on small components such as composition resistors and mica condensers, and to identify leads from transformers, etc. The resistor-condenser number color code is given in Table 24-III.

Standard Component Values		
20% Tolerance	10% Tolerance	6% Tolerance
10	10	10 11
	12	12
1.5	15	1 i
	18	18
		20
22	20	22
		24
	27	27 30
33	33	33
		36
	334	39
		43
47	47	47
		51
	ij	50
		62
68	68	68
		75
	82	82
		91
100	100	100 :

Fixed Condensers

The methods of marking "postage-stamp" mica condensers, molded paper condensers, and tubular ceramic condensers are shown in liig. 24-5. Condensers made to American War Standards or Joint Army-Navy specifications are marked with the 6-dot code shown at the top. Practically all surplus condensers are in this category. The 3-dot RMA code is used for condensers having a rating of 500 volts and $\pm 20 \%$ tolerance only; other ratings and tolerances are covered by the 6-dot IIMA code.

> Examples: A condenser with a 6 -dot code has the following markings: Top row, left to right, black, yellow, violet; bottom row, right to left, brown, silver, red. Since the first color in the top row is black (significant figure zero) this is the AWS code and the condenser has mica dielectrie. The significant figures are 4 and 7 , the decimal multiplier 10 (brown, at right of second row), so the capacitance is $470 \mu_{\mu} \mathrm{fd}$. The tolcrance is $\pm 10 \%$. The final color, the characteristic. deals with temperature coefficients and methods of testing, and may be ignored.

> A condenser with a 3 -dot code has the following colors, left to right: brown, black, red. The significant figures are $1,0(10)$ and the multiplier is 100 . The capacitance is therefore $1000 \mu \mu \mathrm{fd}$.

> A condenser with a 6 -dot code has the following markings: Top row, left to right, brown. black. black; bottom row, right to left black, gold, blue. Since the first color in the top row is neither black nor silver, this is the RMA code. The significant figures are $1,0,0(100)$ and the decimal multiplitis 1 (black). The capacitance is therefore 100μ d. The gold hot shows that the tolerance is $\pm 5 \%$ and the blue dot indicates 600 -volt rating.

Ceramic Condensers

Conventional markings for ceramic condensers are shown in the lower drawing of Fig. 24-8. The colors have the meanings indicated in Table 24-IV. In practice, dots may be used instead of the narrow bands indicated in Fig. 24-8,

Exanple: A ceramic condenser has the following markings: Broad hand, violet; narrow bands or dots, green, brown, black, green. The significant figures are 5,1 (51) and the dccimal multiplier is 1 , so the capacitance is $\overline{\delta 1} \mu \mu \mathrm{fd}$, The temperature coefficient is $-\mathbf{7 5 0}$ parts per million per degree $C_{\text {., as piven by the broad }}$ band, and the capacitance tolerance is $\pm 5 \%$.

Fixed Composition Resistors

Composition resistors (including small wirewound units molded in cases identical with the composition type) are color-coded as shown in Fig. 24-9. Colored bands are used on resistors having axial leads; on radial-lead resistors the colors are placed as shown in the drawing. When bands are used for color coding the body color has no significance.

[^12]significant figures are 6,8(68) and the decimal multiplier is 10 , so the resistance is 6800 ohms. The tolerance is $\pm 5 \%$.

I.F. Transformers

Blue - plate lead.
Red - "B" + lead.
Green - grid (or diode) lead.
Black - grid (or diode) return.
Note: If the secondary of the i.f.t. is centertapped, the second diode plate lead is green-and-black striped, and black is used for the center-tap lead.

A.F. Transformers

Blue - plate (finish) lead of primary.
Red - "13" + lead (this applies whether the

RMA 3-dot 500-volt, $\pm 20 \%$ folerance only

Fig. 24-8 - Color coding of fixed mica, molded paper, and tubular ceramic condensers. The color code for mica and molded paper condensers is given in Table 24.11I, Table 24-IV gives the color code for tubular ceramic condensers.

Fixed composition resistors
Fip. 24.9 - Color conling of fixed composition resistors. The color code is given in Table 24-III. The colored areas have the following significance:
A - First significant figure of resistance in ohms.
B-Second significant figure.
C-Decimal multiplier.

1) - Resistance tolerance ín per cent. If no color is shown. the toderance is $\pm 20 \%$.
primary is plain or center-tapped).
Brown - plate (start) lead on center-tapped primaries. (Blue may be used for this lead if polarity is not important.)
Green - grid (finish) lead to secondary.
Black - grid return (this applies whether the secondary is plain or center-tapped).
Yellow - grid (start) lead on center-tapped

Color	TABLE 24-III Resistor-Condenser Color Code			
	Significant Figure	t Decimal Multiplier	Tolerance (\%)	Voltage Rating*
Blaek	0	1	-	-
Brown	1	10	1*	100
Red	2	100	2*	200
Orange	3	1000	3*	300
Yellow	4	10,000	4*	400
Green	5	100,000	5*	500
Blue	6	1,000,000	6*	600
Violet	\% 7	10,000,000	7*	700
Gray	8	100,000,000	8*	800
White	9	1,000,000,000	9 *	900
Gold	-	0.1	5	1000
Silver	-	0.01	10	2000
No color	r	-	20	300

TABLE 24-IV Color Code for Ceramic Condensers					
Color	Nignificant Figure	Decimal Multiplier	Capacitunce Tolerance		Temp. Coeff. p.p.m./dpq. C.
			$\begin{aligned} & \text { More than } \\ & 10 \mu \mu f d . \\ & (\text { in } c, c) \end{aligned}$	$\begin{gathered} \text { Less than } \\ 10 \mu \mu f d . \\ (\operatorname{in} \mu \mu f d .) \end{gathered}$	
Black	0	1	± 20	2.0	0
Brown	1	10	± 1		-30
Ked	2	100	± 2		- 80
Orange	3	1000			- 150
Yellow	4				-220
Green	5		± 5	0.5	-330
Blue	6				-480
Violet	7				- 8.80
Gray	8	001		0.25	30
White	9	0.1	± 10	1.0	300

secondaries, (Gireen may be used for this lead if polarity is not important.)

Nore: These markings apply also to line-togrid and tube-to-line transformers.

Loudspeaker Voice Coils

Green - finish.
Black - start.

Loudspeaker Field Coils

Black and Red - start.
Yellow and Red - finish.
Slate and Red - tap (if any).

Power Transformers

1) Primary Leads., Black

If tapped:
Common. Black
Tap. Black and Yellow Striped
Finish. Blach and Red Striped
2) High-Voltage l'late Winding. Red

Center-Tap . . Red and Yellow Slriped
3) Rectifier Filament Winding. Yellow

Center-Tap. Yellow and Blue siriped
4) Filament Winding No. 1.......... Green

Center-Tap. . Green and Yellow striped
5) Filament Winding No. 2.........Brown

Center-Tap. Brown and Yellow Striped
6) Filament Winding No. 3....... . Slate

Center-Tap.. .Slate anil Yellow Striped

Operating a Station

The enjoyment of our hobby usually comes from the operation of our station oner we have finished its construction. Lpon the station and its operation depend the communication records that are made.

An operator with a slow, steady, clean-cut method of sending has a big advantage over the poor operator. Good sending is partly a matter of practice but patience and judgment are just as important qualitios of an operator as a good "fist." The technique of speaking in eonneeted thoughts and phrases is equally important for the oprator who uses voice.

- OPERATING COURTESY AND TOLERANCE

Normal operating interests in amateur radio vary considerably. Some prefer to rag-chew, others handle traffic, others work IDX, others concentrate on working certain areas, countries or states, still others get on for an occasional contact only to check a new rig or antenna.

Interference is one of the things we amateurs have to live with. However, we can conduct our operating in a way designed to alleviate it as much as possible. Before putting the transmitter on the air, listen on your own frequenry. If you hear stations engaged in communication on that frequency, stand by until you are sure no interference will be eatused by your operations, or shift to another frequenc!. No amateur or any group of amateurs has any exclusive claim to any frequency in any band. We must work together, each respeeting the rights of others. Remember, those other chaps can cause you as much interferener as you ratuse them, sometimes more! Where a VFO is usod it is not neressary to stick to a single operating freopueney though it is well to have one or two prefered and alternate freyuencies. It has become general operating procedure these days to work stations on or near your own frequency. This pratetier will atomatically assist in reducing interference.

C.W. PROCEDURE

The hest operators, both those using voice and c. W., observe certain procedures developed from experience and regarded as "standard practice."

1) Calls. Calling stations may call efficiently by transmitting the call sigual of the station called three times, the letters DLE, followed by one's own station call sent three times. \&hort calls with frequent "breaks" to listen have
proved to be the hest method.) Reprating the call of the station called five times and signing not more than twice (repeating not more than three times:) has proved exeellent practiere, thus:
 WIAW [ote.] AR.

CQ. The general-inquiry eall (CQ) should be sent not more than five time without interspersing one's station identification. The length of repated calls is carefully limited in intelligent amateur operating. (CO is not to be used when testing or when the sender is not expereting or looking for an answer. Nover send a CQ "blind." Always listen on the frequency first.)

The directional CQ: To redure the number of useless answers and lessen (QRM, every CQ call should be made informative when possible.
Examples: A Cnited states station looking for
any Hawaiian amateur ealls: CQ Kll6 CQ
KIG CQ KH6 ISE WHA WHIA W4IA K. A
Western station with traffic for the East Coast
when looking for an intermediate relay station
calls: CQ EAST CQ EAST CQ EAST DE
W5IG W W:SIGW W5IGW K. A station with
usessages for points in Massachusetts calls: $C Q$
MASS CQ MASS CQ MASS JE W7CZY
W7CZY W7CZY K. In eaeh example indicated
it is understood that the combination used is
repeated three times.

Hams who do not raise stations readily may find that their sending is poor, their calls ill-timed or judgmont in error. When conditions are right to bring in signals from the desired locality, you can call them. IReasonahly short calls, with appropriate and brief breaks to listen, will raise stations with minimum time and trouble.
2) Answering a ('all: (Gall three times (or less): send I) C : sign three times (or less) : after contare is established decrease the use of the call signals of both stations to once or twire. When a station receives a call but does not reeeive the eall letters of the station calling, QRZ? may be used. It means "l3y whom am I being called?" QRZ should not be used in place of CQ.
3) Ending Signals and Sign-Off: The proper use of $\overline{\mathrm{AR}}, \mathrm{K}, \overline{\mathrm{K}}, \overline{\mathrm{SK}}$ and CL ending signals is as follows:

AR - lind of transmission. Recommended after call to a specific station before contact has been established.

Example: W6ABC W6ABC W6ABC DE WgLAN WGLAN WGLAIN AR, Also at the end of transuission of a radiogram, immediately following the signature, preceding identification.
Ii- (io ahead (any station). Irecommended after (${ }^{\circ}()$ and at the end of each transmission
during QSO when there is no objection to others broaking in.

Example: CQ CQ CQ DI: W1ABC W1ABC WIABC K or W9AY\% DE W1ABC K.
$\overline{K N}$ - Go ahead (specific station), all others keep out. Recommended at the end of each transmission during a (QSO, or after a call, when calls from other stations are not desired and will not be answored.

Example: W4FGH DE XU6GRL $\overline{\mathrm{KN}}$.
$\overline{\mathrm{SK}}$ - End of QSO. Recommended before signing last transmission at end of a QSO.

Example: ... $\overline{\mathrm{SK}}$ W8LMN DE W5BCD.
CL -I am closing station. Recommended when a station is going off the air, to indicate that it will not listen for any further ealls.

Example: . . . $\overline{\mathrm{SK}}$ W7HIJ DE W2JKL, CL.
4) Test signals to permit another station to adjust receiving equipment may consist of a series of Vis with the call sigmal of the transmitting station at frequent intervals. Remember that a test signal can be a totally unwarranted cause of QRM, and always listen first to find a clear spot if possible.
5) Receipling for conversation or traffic: Never send acknowledgment until the transmission has bern entirely received. "l?" means "All right, OK, I understand completel!!." Ise R onl!/ when all is reecived correetly.
(i) Repeats. When most of a transmission is lost, a call should be followed bey correct abbreviations to ask for repeats. When a few words on the end of a transmission are lost, the last word received correctl! is given after "A.A, meaning "all after." When a few words on the beginning of a transmission are lost, "Als for "all before" a stated word should be used. The quickest way to ask for a fill in the middle of a tramsmission is to send the last word received correctly, a question mark, then the next word received correctly. Another way is to send "?l3N [word] and [word]."

Do not send words twice (QsiZ) unless it is requested. Send single, Do not fall into the bad habit of sending double without a request from fellows you work, Don't say "QRM" or "QRN" when you mean "QRS." Don't CQ unless there is definite reason for so doing. When sending CQ, use julgment.

General Practices

When a station has receiving trouble, the operator asks the transmitting station to "QSV." The letter " R " is often used in place of a decimal point (e.g., " $3 R 5$ Mc.") or the colon in time designation (e.g., " 2 R 30 PM "). A long dash is sent for "zero."

The law concerning superfluous signals should be noted. If you must test, disconnect the antenna system and use an equivalent "dummy" antenna. Send your call frequently when operating. lick a time for adjusting the station apparatus when few stations will be bothered.

The up-to-date amateur station uses "break-
in." For best results send at a medium speed. Sond evenly with proper spacing. The standardtype telegraph key is best for all-round use. Regular daily practice periods, two or three priods a day, are hest to acquire real familiarity and proficiency with code.

No excuse can be made for "garbled" copy. Operators should copy what is sent and refuse to acknowledge a whole transmission until every word has been recrived eorrectly. Good operators do not guess. "Swing" in a fist is not the mark of a good operator. ['nusual words are sent twiee, the word repeated following the transmission of ""?". If not sure, a good operator systematically. asks for a fill or repeat. Sign your call frequently, interspersed with calls, and at the end of all transmissions.

On Good Sending

Assuming that an operator has learned sending properly, and comes up with a precision "fist" - not fast, but clean, stoady, making wollformed rhethmical characters and spacing beautiful to listen to - he then beromes subject to outside pressures to his own possible detriment in overyday operating. He will want to "sperd it up" because the operator at the other end is going faster, and so he begins, uneonsciously, to run his words together or develops a "swing."
lerhaps one of the easiost ways to get into bad habits is to do too much playing around with special kers. Too many operators spend only enough time with a straght key to acoquire "passable" sending, then subject their newlydeveloped "fists" to the ontirely different movements of hugs, sido-swipers, blectronic keys, or what-have-you. All too often, this results in the ruination of what may have become a very good "fist."

Think about vour sending a little. Are you satisfied with it". You should not be- ever. Nobody's sending is perfoct, and thorefore ever!! operator should continually strive for improvement. Do you ever run words together - like Q for MA, or l' for AN - especiatly when you are in a hurry". Practically evervbody does at one time or another. Do you have a "swing". Any recognizable "swing" is a deviation from perfertion. Strive to send like tape sending; cope a WIAW Bulletin and try to send it with the same spacing using a loral oscillator on a suhsequent transmission.

Check your spacing in characters, between characters and betwen words occasionally by making a recording of your fist on an inked tape recorder. This will show up your faults as nothing else will. Practice the correction of faults.

USING A BREAK-IN SYSTEM

Break-in avoids unnecossarily long calls, prevents QRM, gives more communication per hour of operating. Brief calls with frequent short pauses for reply can approach (but not equal) break-in efficiency.

A separate receiving antenna facilitates break-
in operation. It is only necessary with break-in to pause just a moment with the key up (or to cut the carrier momentarily and pause in a 'phone conversation) to listen for the other station. The elick when the carrier is cut off is as reffective as the word "break."
C.w. telegraph break-in is usually simple to arrange. With break-in, ideas and messages to be transmitted ean be pulled right through the holes in the QRM. Snappy, effertive, efficient, enjoyable amateur work really requires but a simple switehing arrangement in your station to rut off the power and switch phones from monitor to receiver.

In ralling, the transmitting operator sends the letters "BK" at frequent intervals during his call so that stations hearing the call may know that break-in is in use and take advantage of the fact. He pouses at intervals during his call, to histen for a moment for a reply. If the station being called does not answer, the call can be continued.

With a tap of the key, the man on the receiving end can intelrupt (if a word is missed). The other operator is constantly monitoring, awaiting just such directions. It is not necessary that you have perfect facilities to take advantage of break-in when the stations you work are break-inequipperd. After any invitation to break is given (and at each pause) press your key - and contact can start immediately.

- VOICE OPERATING

The use of proper procedure to get best results is just as important as in using code. In telegrat phy words must be spelled out letter by letter. It is therefore but natural that abbreviations and shortcuts should have come into widespread use. In voice work, however, abbreviations are not neressary, and should have less importance in our operating procedure.

The letter "K" has been agreed to in telegraphic practice so that the operator will not have to pound out the separate letters that spell the words "go ahead." The voice operator can say the words "go ahead" or "over," or "come in please."

One laughs on c.w. by spelling out HI, On 'phone use a laugh when one is ealled for. Be natural as you would with your family and friends.

The matter of reporting readability and strength is as important to 'phone operators as to those using code. With telegraph nomenclature, it is necessary to spell out words to describe signals or use the abbreviated signal reporting system (RST . . . see (haptor Twenty-Six). Using voice, we have the ability to "say it with words." "Readability four, Strength eight" is the best way to give a quantitative report. Reporting can be done so much more meaningfully with ordinatry words: "You are weak but you are in the clear and I can understand you, so go ahead," or " lour signal is strong but you are buried under local interference." Why not say it with words?

Voice-Operating Hints

1) Listen bofore calling.
2) Make short ralls with breaks to listen. Avoid long ('Qs; do not answer any.
3) I'se push-to-talk, (iive essential data concisely in first transmission.
4) Make reports honest. L'se definitions of strength and readability for reforence. Make your reports informative and useful. Honest reports and full word deseription of signals save amateur oporators from F('C' trouble.
5) Limit transmission length. Two minutes or less will eonvey much information. When three or more stations converse in round tables, brevity is essential.
6) Display sportsmanship and eourtesy. l3ands are congested ... make transmissions meaningful . . . give others a break.
7) Cherk transmitter adjustment . . . avoid AM overmodulation and splatter. Do not radiate when moving VFO frequeney or checking NrM swing. Use recriver b,fo, to cherk stability of signal. (complete testing before busy hours!

Voice Equivalents to Code Procedure

Voice
Go ahead: over
Wait: stand by Okay
$\frac{\mathrm{K}}{\mathrm{AS}}_{\text {Code }}^{\text {QRX }}$

Self-ex
Self-explanatory Receipt for a cor-reetly-transeribed message or for "solid" transmission with no missing portions

'Phone-Operating Practice

Efficient voice communication, like good c.w. communication, demands good operating. Adherence to certain points "on getting results" will go a long way toward improving our 'phoneband operating conditions.

Cise push-to-talk technique. Where possible arrange on-off switches or controls for fast back-and-forth exchanges that emulate the prarticality of the wire telephone. This will help reduce the length of transmissions and keep brother amateurs from calling you a "monologuist" - a guy who likes to hear himself talk!

Listen with care. Keep noise and "backgrounds" out of your operating room to facilitate good listening. It is natural to answer the strongest signal, but take time to listen and give some consideration to the best signals, regardless of strength. Every amateur cannot run a kilowatt, but there is no reason why every amateur cannot have a signal of good quality, and utilize uniform operating practices to aid in the understandability and ease of his own communications.

Interpose your call regularly and at frequent intervals. Three short calls are better than one
long one. In calling CQ, one's call should certainly appear at least once for every five or six CQs. Calls with frecquent breats to listen will save time and be most productive of results. In identifying, always transmit your oum call last. Don't say "This is W'ABC' standing by for W2INF"; say "W2I)1:F", this is WIABC, over." HC 'C regulations show the call of the transmitting station sent last.

Include country prefix before call. It is not eorrect to say "glelkX this is IBIDI," Correct and legal use is "W9R1RN this is WIBI)I." FCC regulations require proper use of calls; stations have been dited for failure to comply with this requirement.

Monitor your own frequency. This helps in timing calls and transmissions. Send when there is a chance of being copied sucecssfully - not when you are meroly "more QRM." Timing transmissions is an art to cultivate.

Keep modulation constant. By turning the gain "wide open" you are subjecting anyone listening to the diversion of whatever noises are present in or near your opcrating room, to say nothing of the possibility of ferd-back, echo due to poor acousties and modulation exereses due to sudden loud noises. Speak near the microphone, and don't let your gaze wander all over the station causing sharply-varying input to your speech amplifier; at the same time, keep far enough from the mierophone so your signal is not motulated by your breathing. ('hange distance or gain only as neressary to insure uniform transmitter performance without overmodulation, splatter or distortion.

Make connected thoughts and phrases. Don't mix disconnereded subjects. Ask questions consistently. Pause and get answers.

Have a pad of paper handy. It is convenient and desirable to jot down questions as they come in the course of discussion in order not to miss any. It will help you to make intelligent to-thepoint replis.

Steer clear of inanities and soap-opera stuff. Our amateur radio and also our personal reputation as a serious communications worker depend on us.

A void repetition. Don't repeat back what the other follow has just said. Too often we hear a conversation like this: "Okay on your new antenna there, okay on the trouble you're having with your receiver, okay on the company who just came in with some ice cream, okay fetc.]." Just say you received everything OK. Don't try to prove it.

Use phonetics only as required. When elarifying genuinely doubtful expressions and in getting your call identified positively we suggest use, of the ARIRL. Phonotic I ist. Limit such use to really-neerssary clarification.

The speed of radiotelephone transmission (with perfect arcuracy) depends almost entively upon the skill of the two operators involved. One must hearn to sperak at a rate allowing perfect understanding as well as permitting the receiving operator to copy down the message text, if that is necessary. Because of the similarity of many

Figlish speerch sounds, the use of alphateetiral word lists has been found neecessary. All woicooperated stations should use a stamberd list as needed to identify rall signals or unfamiliar expressions.

ARRL Word List for Radiotelephony

AI)AM	JOHN	sLSAN
BAKlit	KING	TlIOMAS
CliARLIE	IEWIS	ENION
DAVID	MARI	FICTOR
EIJWARD	NANCY	WHLILAM
FRANK	OTTO	X-1RA ${ }^{\text {c }}$
GWORGE	PETER	YoCNG
H1PNRY	QUENN	ZLEDIRA
IIDA	ROBEITT	

Example: WIAW . . W 1 ADAM WILLIAM.
Round Tables. The round table has miny advantages if run properly. It clears frequencies of interference, esperially if all stations involved are on the same frequency, while the enjoyment value remains the same, if not greater. By use of push-to-talk, the conversation cam be kept lively and interesting, giving each station operator ample opportunity to participate without waiting overlong for his turn.
liound tables can become very uripopular if they are not conducted properly. The monologuist, off po a long spiel about nothing in particular, cannot be interrupted; make !(our tronsmissions short and to the point. "Butting in" is discourteous and umsportsmanlike; don't enter a round table, or any contact between two other amateurs, unless you are invited. It is bad enough trying to understand voice through prevailing interference without the added difficulty of poor quality; check your transmitter adjustments frequently. In general, follow the precepts as hereinbefore outlined for the most enjoyment in round tables as well as any other form of radiotelephone communication.

working DX

Most amateurs at one time or another make "working IDX" a major aim. As in every other phase of amateur work, there are right and wrong ways to go about getting best results in working foreign stations, and it is the intention of this section to outline a few of them.

The ham who has trouble raising DX stations radily may find that poor transmitter efficiency is not the reason. He may find that his sending is poor, or his calls ill-timed, or his judgment in error, When conditions are right to bring in the DX, and the receiver sensitive enough to bring in several stations from the desired locality, the way to work IDX is to use the appopriate freguener and timing and call these stations, as against the common practice of calling " CQ DX."

The call CQ I)X means slightly different things to amateurs in different hands:
a) On v.h.f., CQ DX is a general call ordinarily used only when the band is open, under
favorable "skip" conditions. For v.h.f. work such a call is used for looking for new states and countries, also for distances beyond the customary "line-of-sight" range on most v.h.f. bands.
b) CQ DX on our 7-, 14 - and 28 -Mc. bands may be taken to mean "General call to any foreign station." The term "foreign station" usually refers to any station in a foreign continent. (Experienced amateurs in the U. S. A. and Canada do not use this call, but answer such calls made by foreign stations.)

DX OPERATING CODE (For W/VE Amateurs)

Some amateurs interested in DX work have caused considerable confusion and QRM in their efforts to work DN stations. The points below, if observed by all W/VE amateurs, will go a long way toward making DX more enjoyable for everybody.

1. Call DX only after he calls CQ, QRZ?, signs $\overline{S K}$, or 'phone equivalents thereof.
2. Do not call a DX station:
a. On the frequency of the station he is working until you are sure the QSO is over. This is indicated by the ending signal $\overline{\mathrm{SK}}$ on c.w. and any indication that the operator is listening, on 'phone.
b. Because you hear someonervelse: calling him.
it linmu vis
c. When he signs $\overline{\mathrm{KN}}, \overline{\mathrm{AR}}, \mathbf{C L}$, 'or 'phone equivalents.
d. Exactly on his frequency.
e. After he calls a directional CQ, unless of course you are in the right direction or area.
3. Keep within frequency-band limits. Some DX stations operate outside. Perhaps they can get away with it, but you cannot.
4. Observe calling instructions of DX stations. " 10 U " means call ten kc. up from his frequency, " 15 D " means 15 kc . down, etc.
5. Give honest reports. Many foreign stations depend on W and VE reports for adjustment of station and equipment.
6. Keep your signal clean. Key clicks, chirps, hum or splatter give you a bad reputation and may get you a citation from FCC.
7. Listen for and call the station you want. Calling CQ DX is not the best assurance that the rare DX will reply.
8. When there are several W or VE stations waiting to work a DX station, avoid asking him to "listen for a friend." Let your friend take his chances with the rest. Also avoid engaging DX stations in rag-chews against their wishes.
c) CQ DX used on 3.5 Mc . under winter-night conditions may be used in this same manner. At other times, under average $3.5-\mathrm{Mc}$. propagation conditions, the call may be used in domestic work when looking for new states or countries in one's own continent, usually applying to stations located over 1000 miles distant from your own,

The way to work DX is not to use a CQ call at all (in our continent). Instead, use your best tuning skill - and listen - and listen - and listen. You have to hear them before you can work them. Hear the desired stations first; time your calls well. Use your utmost skill. A sensitive receiver is often more important than the power input in working foreign stations. If you can hear stations in a particular country or area, chances are that you will be able to work someone there.

One of the most effective ways to work DX is to know the operating habits of the DX stations sought. Doing too much transmitting on the DX bands is not the way to do this. Again, listening is effective. Once you know the operating habits of the DX station you are after you will know when and where to call, and when to remain silent waiting your chance.

Many DX stations use the signals HM, MH, LM and MI, to indicate where they are tuning for replies. The meanings of these signals are as follows:

HM - Will start to listen at high-frequency end of band and tune toward middle of band.
MH - Will start to listen in the middle of the band and tune toward the hioh-frequency end.
LM - Will start to listen at low-freguency end of band and tune toward middle of band.
ML - Will start to listen in the middle of the band and tune toward the low-frequency end.

Example: If the procedure will be to tune from the middle of the band to the high end, a CQ call goes: CQ DE G5BY MH K.

ARRI has recommended some operating procedures to DX stations aimed at controlling some of the thoughtless operating practices sometimes used by W/VE amateurs. A copy of these recommendations (Operating Aid No. 5) can be obtained free of charge from ARRL Headquarters.

In any band, particularly at line-of-sight frequencies, when directional antennas are used, the directional CQ such as CQ W5, CQ north, etc., is the preferable type of call. Mature amateurs agree that CQ DX is a wishful rather than a practical type of call for most stations in the North Americas looking for contacts in foreign countries. Ordinarily, it is a cause of unnecessary QRM.

Conditions in the transmission medium make all field strengths from a given region more nearly equal at a distance, irrespective of power used. In general, the higher the frequency band, the less important power considerations become. This accounts in part for the relative popularity of the 14 - and $28-\mathrm{Mc}$. bands among amateurs who like to work DX.

	Sratileo	${ }^{\text {Cabjur }}$	…is	come	samat	"mic	cinc	cown	cime	other data
10.20-47										
6:15 PM	$\omega \Phi$ TQD	x	3.65	589x	569x	95	A-1	250	6:43	Lots of the! Recid 6 , sent 10 .
7:20	CQ	\times				7				
7:21	\times	WHTWI	7.24	369	$579 x$				7:32	Tor much ARM! Gave if up.
9:32	W3 UA	x				3.95	A. 3	100		gres \& was snowed under
10.21.42										
7:05AM	VK4.DV	x	14.03			14	A-1	250		ansured a w6
7:07	AC4YN	\times	14.02							ND
7:09	VK2ADW	\times	14.07	339	559x				1:20	Iydney, Qustralia Fixid rk!!
7:31	CQ	\times								No luck
$7: 42$ $8: 02$	WLRRBQ	${ }_{\text {ofl }}^{x}$	14.05	589	579				8:02	Had to RRT for brakfand Nice chat.
8:02		off								
										-

KEEP AN ACCURATE AND COMPLETE STATION LOG AT ALL TIMESI F.C.C. REQUIRES IT.
A page from the official ARRL log is shown above, answering every Government requirement in respect to station records. Bound logs made up in accord with the above form can be obtained from Ileadguarters for a nominal sum or you can prepare your owin, in which ease we offer this form as a suggestion. The ARRL log has a epecial wire binding and lies perfectly flat on the table.

- KEEPING AN AMATEUR STATION LOG

The FCC requires every amateur to keep a complete station operating record. It may also contain records of experimental tests and adjustment data. A stenographer's notebook can be ruled with vertical lines in any form to suit the user. The Federal Communications Commission requirements are that a log be maintained that shows (1) the date and time of each transmission, (2) all calls and transmissions made (whether two-way contacts resulted or not), (3) the input
power to the last stage of the transn:itter, (4) the frequency band used, (5) the time of ending each QSO and the operator's identifying signature for responsibility for each session of operating. Messages may be written in the log or separate records kept - but record must be made for one year as required by the FCC. For the convenience of amateur station operaters ARRL, stocks both logbooks and message blanks, and if one use's the official \log he is sure to comply fully with the Government requirements if the precautions and suggestions included in the log are followed.

Message Handling

Amateur operators in the United States and a few other countries enjoy a privilege not available to amateurs in most countries - that of handling third-party message traffic. In the carly history of amateur radio in this country, some amateurs who were among the first to take advantage of this privilege formed an extensive relay organization which became known as the American Radio Relay League.

Thus, amateur message-handling has had a long and honorable history and, like most services, has gone through many periods of development and change. Those amateurs who handled traffic in 1914 would hardly recognize it the way some of us do it today, just as equipment in those days was far different from that in use now. I'rogress has been made and new methods have been developed in step with advancement in communication teehniques of all kinds. Amateurs who handled a lot of traffic found that organized operating schedules were more effective than random relays, and as techniques advanced and messages inereased in number, trunk lines were organized, spot frequencies began to be used, and there sprang into existence a number of traffie nets in which many stations operated on the same frequency to effect wider cov-
erage in less time with fewer relays; but the old methods are still available to the ameteur who handles only an occasional message.

Although message handling is as old an art as is amateur radio itself, there are many amateurs who do not know how to handle a message and have never done so. As each amateur grows older and gains experience in the am.ateur service, there is bound to come a time when he will be called upon to handle a written message, during a communications emergency in casual contact with one of his many acquaintances on the air, or as a result of a request from a nonamateur friend. Regardless of the occasion, if it comes to you, you will want to rise to it! Considerable embarrassment is likely to be experienced by the amateur who finds he not only does not know the form in which the message should be prepared, but does not know what to do with the message once it has been filed or received in his station.
Traffic work need not be a complicated or time-consuming activity for the casual or occasional message-handler. Amateurs nay participate in traffic work to whatever extent they wish, from an occasional message now and then to becoming a part of organized traffic systems.

This chapter explains some principles so the reader may know where to find out more about the subject and may exereise the message-handing privilege to hest effect as the spirit and opportunity arise.

Responsibility

Amatcurs who originate messages for transmission or who recrive messages for relay or delivery should first consider that in doing so they are accepting the responsibility of charing the message from their station on its way to its destination in the shortest possible time. Fortycight hours after filing or receipt is the generallyaecepted rule among traffic-handling amateurs, but it is obvious that if every amateur who relayed the message allowed it to remain in his station this long it might be a long time reaching its destination. Traffic should be relayed or delivered as quickly as possible.

Message Form

Once this responsibility is realized and accepted, handling the message becomes a matter of following gencrally-aceepted standards of form and transmission. For this purpose, each mossage is divided into four parts: the preamble, the address, the text and the signature. Some of these parts themselves arr subdivided. It is neeessary in preparing the message for transmission and in actually transmitting it to know not only what each part is and what it is for, but to know in what order it should be transmitted. and to know the various proedure signals used with it when sent by e.w. If vou are going to sond a message, you may as well sond it right.

Standardization is important ! There is a great deal of room for expressing originality and individuality in amateur radio but there aro also times and places where such expression can only eause confusion and incfliefones. Reoognizing the need for standardization in message form and message transmitting procedures, . 1 RIR1. has long siner reeommended such standards, and most traffic-interested amatedrs have followed them. In general, these reommondations, athed the various ehanges ther have undergone from year to yoar, have been at the request of ama-

Here is an example of a plain-language message in correct ARRI, form,
teurs participating in this activity, and they are rompletely outlined and explained in Operating an Amaterer Radio Station, a eopy of which is available upon request or by use of the coupon at the end of this Chapter.

Clearing a Message

Amateurs not cxperienced in message handling should depend on the experienced messagehandler to get a message through, if it is important; but the average amateur can enjoy operating with a message to be handled cither through a local traffic net or by frec-lancing. The latter may be aecomplished by careful listening for an amateur station at desired points, directional (Os, use of the General Calling freguencies, of by making and kerping a schedule with another amateur for regular work between sperifiod points. He may well aim at learning amd enjowing through doing. The joy and aroomplishment in thus devedoping one's operating skill to top perfection has a reward all its own.

The best way to claur a message is to put it into one of the many organized traffic notworks, II to give it to a station who can do so. There are many amateurs who make the handling of traflie their primeipal oncrating atotivity, and many more still who paricipate in this activity to a greater or lesser cextent. The result is a system of traffie nets which sproads to all corners of the Inited states and covers most L'. S. possessions and Canada. Once a mossage gets into one of these nets, regardless of the net's size or covcrage, it is systematically routed toward its destination in the shortest possible tine.

If you deeide to "take the bull by the horns" and put the mossuge into a traffie net yourself (and more power to you if you do!), you will need to know somothing about how traffic mots operate, and the sperial () signals and procodure they use to dispateh all traffie with a maximum of efficiency. Raferenere to not lists in O.ST (usually in the November and January issues) will give you the frequence and operating time of the net in your section, or other net into which your message (an go. Listening for a few minutes at the time and frequeney indieated should abquaint wou with enough fundamontals to mathe you to report into the wot and indieato your traffic. From that time on you follow the instructions of the net control station, who will tell you when and to whom and on what frecpuenes, if different from the net frequenery) to semed your message. Nince most mots use the special "(2)" signals, it is usually vory helpful to havo a list of these before you (list available from AIRRL, Hq .) .

Network Operation

About this time, you may find that you are enjoying this type of operaling activity and want to know more about it, and to increase your proficiency. Many amateurs are happily "addicted" to traffic handling after only one or two brief exposures to it. Most traffie nots are at present being conducted by e.w., since this mode of
communication seems to be more popular for record purposes - but this does not mean that high code speed is a neecessary prerequisite to working in traffic networks. There are many mots organizod specifically for the slow-speed amateur, and most of the so-called "fast" nets are usually glad to slow down to aceommodate slower operators, especially those nets at state or section level.
The signifieant facet of net operation, however, is that code speed alone dors not make for effieieney - sometimes quite the contrary! A high-spered operator who does not know not procedure eatl" "foul up" a net much more comphetely and nowe quickly than can a slow operator. It is a proven fact that a bunch of high-sperd operators who are not "saver" in not operation camont arcomplish as much during a sperified period as an equal number of slow operators who know net procedure. I Don't let your eode spered detor you from geting into traffie work. Given a littio time, your speed will reach the point where sou can eompete with the best of them. Coneentrate first on learning net procodure, for most tratfie nowalays is hatndled on nets.

Team work is the theme of net operation, The net which functions most efliciently is the net in which all participants are thoroughly familiar with the procedure used, and in which operators refrain from transmitting execpt at the direction of the net control station, and do not ocrupy time with extraneons comments, even exchange of pleasantries. There is a time and phace for everything. When a not is in session it, should concentrate on hatndling traflic until all traffic is eleared. Before or after the net is the time for rag-chowing athd discussion. Some details of med opuration are included in ()perating an Amaterr Radio Station, mentioned earlier, but the whoh story cannot le told. There is no substitute for artual participation.

The National Traffic System

To facilitate and speed the movement of message traffic, there is in existence an integrated national system by means of which originated
traffic will normally reach its destination area the same day the message is originated. Thas system uses the local section net as a basis Fiach section net sends a representative to a "regional" not (normally covering a call wea) and cach "regional" net sends a representative to an "area" net (normatly covering a time zone). After the area net has cleared all its traffic, its members then go back to their respective regional nets, where they elear traffic to the warious section net representatives. When this is done, the section representatives return to their section nets to distribute the traffie to or near its ultimate destination. l3y means of conneeting sehedules between the four area nets, trafic can flow both ways so that traffic originated on the Wiest Coast reaches the bast Coast the same night it is originated, and vice versa. In general local saction nets function at 1000 , regional nets at 1945, area nets at 2030 and the same or different regional and section groups meot again at 2130 and 2200 respectively. Laxal time is reforred to in cach catse.

The N'T's plan somewhat spreads tratic opportunity so that casual traffic may be reported into nets for efficient handling one or two nights per werk, carly or late; or the ardent traffic man can operate in both early and late groups and in bebetween to roll up impressive totals and sped traffic reliably to its destination, Old-time traffic men who profor a high degree of organization and teamwork have returned to the tratfic game as a result of the new system. Beginners have shown more interest in becoming part of a sys fom nationwide in scope, in which anyone can partieipate. The National Traffie System has vast and intriguing possibilitios as an amateur sarvice. It is open to any amateur who wishes to participate.

The above is but the briefest résume of what is of necossity a rather eomplicated arrangemont of nets and sehedules. (omplete details of the System and its operation are available to anyone interested. Just drop a line to ARlkL lieadquarters.

Emergency Communication

One of the most important watys in which the amateur sorves the publie, thus making his existence a mational asset, is bey his preparation for and his particigation in commonications emergoncios. Every amateur, regaralless of the extent of his nomal operating activities, should give some thought to the possibility of his being the only means of communiation should his community be eut off from the outside world. It has happened many times, of for in the most unlikely. places; it has happened without warning, finding some amateurs totally monerpared; it can happen to you. Are you ready?

There are two principal ways in which any amateur can prepare himself for such an eventuality. One is to provide himself with equipment capable of operating on any type of emergemey power (i.e., either a.c. or d.e.), and equip-
ment which can radily be transported to the seeme of disaster. Mobile equipment is esperially desirabla in most emergeney situations.

Such equipmont, regardless of its olaboratenes: or monernmest, is of little use, however, if it is not used properly and at the right times; and so another way for an amatour to prepare himself for emergencios, by no means less important than the first, is to learn to operate efliciently. There are many amateurs whe feel that. they know how to operate efficiently who find themselves considerably handicapped at the crucial time by not knowing proper procedure, by being unable due to years of casual amateur operation to adapt themselves to snappy, abbreviated transmissions, and by being unfamiliar with message form and routing procedures. It is dangerons woverrate your ability in this reserect; it
is far bet ter to assume that you have much to learn.
In general it can be said that there is more emergency equipment available than there are operators who know properly how to operate during emergency conditions, for such conditions require clipped, terse procedure with complete break-in on c.w, and fast push-to-talk on 'phone. The casual rag-chewing aspeet of amateur radio, however enjoyable and worth while in its place, must be forgotten at such times in favor of the business at hand. There is only one way to gain experience in this type of operation, and that is by practicing it. During an encrgency is no time for practice; it should be done beforehand, as often as possible, on a regular basis.

This leads up to the necessity for emergeney organization and preparedness. ARRLL, has long recognized this necessity and has provided for it. The Section Communications Manager (whose address appears on page 6 of any recent issue of $Q S T$) is empowered to appoint certain qualified amateurs in his section for the purpose of coordinating emergency communication organization and preparedness in specified areas or communities. This appointed is known as an Emergency Coördinator for the eity or town. One is specified for each community. For coürdination and promotion at section level a Section Emergency Coördinator arranges for and recommends the appointments of various Emergency

Coördinators at activity points throughout the section. Emergency Coördinators organize amateurs in their communities according to local needs for emergency communication facilities.

The community amateurs taking part in the local organization are members of the Amateur IRadio Emergency Corps (AREC). All amateurs are invited to register in the AIREC, whether they are able to play an active part in their local organization or only a supporting rôle. Application blanks are available from your Emergency Coördinator, from your Section Emergency Coordinator, from your Section Communications Manager' or dirent from ARIRL Headquarters. In the event that inquiry reveals no Emergency Coördinator appointed for your community, your SCM would welcome a recommendation either from yourself or from a radio club of which yon are a member. By holding an amateur operator license, you have the responsibility both to your community and to amateur radio to uphold the traditions of the service.

Among the Jague's publications is a booklet entitled E'mergency Communications. This booklet, while small in size, contains a wealth of information on AlREC organization and functions and is invaluable to any amateur participating in emergency or civil defense work. It is free to ARLC members and should be in every amateur's shack. Drop a line to the ARRI, Communi-

Before Emergency

PREPARE yourself by providing a transmitter-receiver set-up together with an emergency power source upon which you can depend.

TEST both the dependahility of your emergency equipment and your own operating ability in the annual ARIRL Field Day and the several other on-the-air contests which take place annually.

IREGISTER vour facilities and your availability with your local ARRL Emergency Coördinator. If your community has no EC, contact your local civic and relief agencies and explain to them what the Amateur Service offers the community in time of disaster.

In Emergency

IISTEN before you transmit. Never violate this principle.
REP (ORT at once to your Emergency Coördinator so that he will have up-to-theminute data on the facilities available to him. Work with local civic and relief agencies as the LC suggests, offer these agencies your services directly in the absence of an EC .

RESTRICT all on-the-air work in accordance with FCC regulations, Sec. 12.156, as soon as FCC has "declared" a state of communications emergency.

QRIRR is the official ARIRL "land SOS," a distress call for emergency only. It is for use only by a station seeking assistance.

RESI'ECT the fact that the success of the amateur effort in emergency depends largely on circuit discipline. The key station in the emergency zone should be the supreme authority for priority and traffic routing.

CO-OPERATH with those we serve. Je ready to help, but stay off the air unless there is a specific joh to be done that you can handle more efficiently than any other station.

COPY all bulletins from W 1 AW . During time of emergency special bulletins will keep you posted on the latest developments.

After Emergency

REPORT to ARRI, Headquarters as soon as possible and as fully as possible so that the Amateur Service can receive full credit. Amateur Radio has won glowing public tribute in over 75 major disasters since 1919. Maintain this record.
cations Department if you want a copy, or use the coupon at the end of this chapter.

The Radio Amateur Civil Emergency Service

For many years amateurs have been serving the public in man-made and natural disasters of various kinds. Now, as once before in our history, we are being called upon to prepare for participation in civil defense communication. The eontribution our larger number of mobiles and emergency powered facilities can make is today a much greater one than ever before. Within the limits set by security and frequency availabilities, we now might have an opportunity to serve eivil defense needs much more effectively than before. The need is greater than ever. 'To counterbalance this, our Emergency Corps organization is much stronger, much larger and much more efficient than ever before in its history.

The extent to which we will figure in the completed plans for civil defense at all levels depends entirely on the extent to which we participate as an organization, as one strong facility, in the plans and preparations being made. And while we are doing this we must not forget that it by no means relieves us of the responsibility for
continuing to carry on our traditional preparation for and participation in peacetime communications emergencies. We simply have an extra job to do.

In recognition of the potential of the amateur service for civil defense communication, FCC on January 17, 1951, in coördination with the Department of Defense and the Federal Civil Dafense Administration issued Public Notice setting aside ecrtain segments of frequencies within the amateur bands for use by amateurs for civil defonse communications in the event of intersification of the national emergency. In December of the same year, following an FCDA-sponsored conference in Washington, FCC announced proposed rule-making for the Radio Amateur Civil Limergency Service (RACDS). This is the status as of the time of preparation of this material.

Copies of the proposed regulations have been distributed to all officials of the Amateur Radio Dimergency Corps, also to affiliated clubs. Salient details are covered in the booklet "Limergency. Communications." It is hoped that these proposals will soon be enacted (perhaps by the time this is printed) to become a temporary part of the amateur regulations and thus give the amateurs a responsible role in civil defense communication.

ARRL Operating Organization

Amateur operation must have point and constructive purpose to win public respect. Nach individual amateur is the ambassador of the entire fraternity in his public relations and attitude toward his hobby, ARLRL, field organization adds point and purpose to amateur operating.

The Communications Department of the League is concerned with the practical operation of stations in all branches of amateur activity. Appointments or awards are available for rag-chewer, traffic enthusiast, 'phone operator, IDX man and experimenter.

There are seventy-two ARIRL. Sections in the Ieague's field organization, which embraces the United States, Canada and certain other territory. Operating affairs in each Section are supervised by a Section Communications Manager elected by members in that section for a twoyear term of office. Organization appointments are made by the section managers. The election of officials is covered in detail in the League's Constitution and By-Laws. Section communications managers' addresses for all sections are given in full in each issue of QST. SCMs welcome monthly activity reports from all amateur stations in their jurisdiction.

Whether your activity embraces 'phone or telegraphy, or both, there is a place for you in I Aague organization,

LEADERSHIP POSTS

To advance each type of station work and group interest in amateur radio, and to develop practical communications plans with the greatest success, appointments of leaders and or-
ganizers in particular single-interest fiedds are made by SC'Ms. Bach leadership post is important. Each provides activities and assistance for appointer groups and individual nembers along the lines of natural interest. While some posts further the general ability of amateurs to communicate efficiently at all times, by pointing activity toward networks and round tables, others are aimed specifically at establishment of provisions for organizing the amateur service as a stand-by communications group to serve the public in disaster or emergency of any sort. The SCM appoints the following in accordance with section needs and individual qualifications:
PAM Phone Activities Manager. Organizes activities for OPSs and voice operators in his section.
RM Route Manager, Coördinates traffic activities.
SEC Section Emergeney Coürdinator. Pronotes and administers section emergency radio organization.
EC Emergency Coürdinator. Organizes amatoura of a community or other area for emergency radio service; liaison with oflicials and agencies served; also with other local communication facilitios.

STATION APPOINTMENTS

ARRL's field organization has a place for every active amateur who has a station. The ('ommunications Department organization exists to increase individual enjoyment in amateur radio work, and we extend a cordial invitation to every amateur to participate fully in the activities and to apply to the SCM for one of the following station appointments:

[^13]

ORS
OES

00
Official Bulletin Station. Transmits ARK1, and FCC' bulletin information to amateurs.
Official Experimental Station. Lixperimental operating, colleets reports v.h.f.-I.h.f.-s.h.f. propagation data, may engage in facsimile, 'TT. TV, ite., experiments.
Official Observer. Sends comperative notices to amateurs to assist in fredtency observance, insures high-quality signals, and prevents FCC trouble.

Emblem Colors

Members wear the emblem with back-enamel background. A red background for an emblom will indirate that the wearer is SC'M. Sleces, E('s, IRMs, PAMs may wear the emblem with green background. Observers and all station appointers are entitled to wear emblems with blue hackground.

SECTION NETS

Amateurs can add much experience and pleasure to their own amateur lives, and substance and accomplishment to the credit of all of amateur radio, when organized into effective interconnection of citios and towns.
"The suceresful operation of a net depends a lot on the Net Control Station. This station should be chosen carefully and be one that will not hesitate to enforce cach and every net rule and set the example in his own operation.

A progressive net grows, obtaining new members both directly and through other net members. Bulletins may be issued at intervals to keep in direct eontact with the members regarding general net artivity, to keep tab on net procedure and make suggestions for improvement, to keep t"ack of artive members and werd out inactive ones.

Official Relay Stations at key points are organized into numerous section and local networks and feeder systems for the purpose of efficient dispateh of traffic. Speedy and retiable work is carried on, the operation entirely on separate spot frequencies in the $3.5-\mathrm{Mc}$. amateur band.

Radio Club Affiliation

ARIRL is pleased to grant affiliation to any amateur socicty having (1) 51% of the voting club membership made up of Iicensed United States or C'anadian amateurs, and (2) 51% of its licensed amateurs also members of ARIRL.

Where a society has common aims and wishes to add strenget th that of ather club groups to strengthen amateur radio by affiliation with the national amateur organization, a request addressed to the Communications Manager will bring the neeessary forms and information to initiate the applieation for affiliation. Such elubs recerive fiederomanation bulletins and spectal information at intervals for posting on club bulletin beards or for relay to their momberships. A travel phan providing communieations, terhnical and serretarial contact from the Ileadquarters is worked out soasonally to give maximum botofits to as many as possible of the several hundred atetive affiliated radio clubs. Papers on club work, suggestions for organizing, for constitutions, for madio courses of study, ete., are available on request.

Club Training Aids

One section of the ARRLL Communications Department handes the Training Aids Program. This program is a sorvier to AlRIRL affiliated clubs. Material is supplied for club programs aimed at education, training and entertaimment of (dub members, to make your chab meetings more interesting and consequently better attended.

Training Aids include such items as motionpieture films, film strips, slides, and lecture outlines. Alsn, code-proficiency training equipment such as recorders, tape transmitters and tapes will be loaned when such items are available.

All 'Training Aids materials are loaned free (exerpt for shipping charges) to ARRIR atfiliated clubs. Numerous groups use this AlRIRL, service to good advantage. If your club is affiliated but has not yot taken advantage of this serviee, you are missing a good chance to add the available features to your meeting programs and general club activities. Watch club bulletins and QST' or write the ARIRI ('ommunications l) epartment for full details.

WIAW

The Maxim Mamorial Station, W1AW, is dedieated to fraternity and sorviere. Operated by the League headquarters, W1AW is located about four miles south of the IIeadquarters offierson a sev-
 err-acre site. The station is on the air daily, exerest holidays, and availabla time is divieled betwern different bands and modes. Telegraph and 'phone transmitters are provided for all hands from 1.8 to 144 Mc . The normal frequencies in each band for c.w. and voice transmissions are as follows: 1885,3555 , $3950,7130,14,100,14,280,28,060,29,000,52,000$

OPERATING A STATION

and $146,000 \mathrm{ke}$. Operating-visiting hours and the station schedule are listed every other month in QST:

All amateurs are invited to visit W1ALI, as well as to work the station from their own sharks. The station was established to be a living memorial to ITiram Percy Maxim and to carry on the work and traditions of the amateur fraternity.

operating activities

Within the ARRL, field organization there are several special activition. The first Saturday night each month is set aside for all AlRRI. officials, officers and directors to get together over the air from their own stations. This artivity is known to the gang as LO-NITE: For all appointees, quarterly tests called (b) parties are scheduled to develop operating ability and a spirit of fraternalism.

In addition to these special activities for appointees and members, ARRL sponsors various other activities open to all amateurs. The DNminded amateur may participate in the Ammual ARRL, International DN Competition during February and March. This popular contest may bring you the thrill of working new countries, Then there is the ever-popular Sweepstakes in November. Of domestie seope, the sS affords the opportunity to work new states for that WAS award. For the $28-M e$. gang there is the TenMeter WAS Contest held each year. The interests of v.h.f. enthusiasts are also provided for in spreial activitics planned by ARRL.

As in all our operating, the idea of having a good time is combined in the Annual Fiedd Day with the more serious thought of preparing ourselves to render public service in times of emergency. A premium is placed on the use of equipment without connection to commerecial power sources. Clubs and individual groups always have a good time in the "Fl)," learn much about the requirements for knockabout conditions afield.

ARRLL contest activities are diversified to appoal to all operating interests, and will be found announced in detail in issues of QST preceding the different events.

AWARDS

The League-sponsored operating activities heretofore mentioned have useful objectives and provide much enjoyment for menbers of the fraternity. Achievement in amateur radio is recognized by various certificates offered through the League and detailed below.

WAS Award

WAS means "Worked All States." This award is available regardless of affiliation or nonaffiliation with any organization. Ilere are the few simple rules to follow in applying for a WAS Certificate:

1) Two-way communications must be established on the anateur bands with all forty-eight United States; any and

all amateur hands may be used. A card from the Distriet of Columbia may be submitted in lieu of one from Maryland. D) Contacts with all forty-cight states must be made rom the same location. Within a given eommunity one locarion may be defined as from places no two of which are (110)e than 25 miles apari. a) Contacts may be made over any period on years anded only that all contaets are from the same location.
2) Forty-eight QSL cards, or other written communica-
a) Forty-eight (ions from stations worked ronfirming the necessary twoway contarts, must be submitted by the applicant to ARRL headruarters.
3) Sufficient postage must be sent with the ecnfirmations to finance their return. No eorrespondence will be roturned unless sufficient mostage is furnished.
4) The W.AS avard is availatle to all amateuts.
5) Address all applications and confirmations to the Cornmunieations I epartment, ARRL, 38 La Salle Road, West Hartford, Conn.

DX Century Club Award

Here are the rules under which the DX Century Club Award will be issued to amateurs who have worked and confirmed contact with 100 countrics in the postwar period. If you worked fewer than 100 countries before the war and have since worked and confirmed a sufficient number to make the 100 mark, the DXCC is still available to you under the rules detailed on page 74 of June, 1946, QST.

1) The Century Club Award Certificate for confirmed contacts with 100 or more countries is available to all anateurs everywhere in the world.
2) Confirmations must be submitted direct to ARRL headpuarters for all countries elained. Claims for a total of 100 countries must be ineluded with first applieation. Confirmation from forcign contest logs may be requested in the case of the ARRL International DX Competition only, subject to the following conditions: a) Suffieient confirmations of DX Contest confirmations, will total 100. In every ease, Contest confimations must not be requested for any eountries from which the applicant has regular confirmations. That is, contest eonfirmations will be granted only in the case of countries from which applicants have no regular confirmations,
b) Look up the contest in the forcign scores. If he isn't, he did not send in a \log and no confirmation is jossible.
c) Give year of contest, date and time of GSO.
d) In future DX Contests do not request confirmations until after the final results have been publighed, usually in one of the early fall issues. Requests before this time must be ignored.
3) The ARRL Countries List, printed periodieally in QST, will be used in determining what constitutes a "country." The Miscellaneous Data chapter of this Handbook contains the Postwar Countries List.
4) Confirmations must be aceompanied by a list of claimed countries and stations to aid in ckecking and for future reference.
5) Confirmations from additional countries may be submitted for credit each time ten additional confirmations are available. Endorsements for affixing to ecrtificates and showing the new confirmed total ($110,120,130$, ete.) will be awarded as additional credits are granted. ARRL IDX Competition logs from foreign stations may be utilized for these endorsements, subject to conditions stated under (2).
6) All contacts must be made with amateur stations working in the authorized amateur bands or with other stations licensed to work amateurs.
7) In cases of eountrins where amateurs are liecnsed in the normal manner, credit may be elamed only for stations using regular government-assigned call lefters. No credit may be claimed for contacts with stations in any rountrios in which amateurs have been temporarily closed down hy special government ediet where amateur licenses were formerly issued in the normal manner.
8) All stations contarted must be "land stations" confacts with shijs, anchored or otherwise, and aireraft, cannot ixe counted.
9) All stations must the contacted from the same call aren, where such areas exist, or fretn the same country in cases where there are no call areas. One exception is allowed to this rule: where a station is moved from one call area to another, or from onve eountry to another, all contacts must be mado from within a radius of 150 miles of the initial location.
10) ('ontacts may be made over any ineriod of years from Novemier 15. 1945, provided only that all contacts be made under the prowisions of Ruln 4 , and hy the same station liconser; contants may have bern made under different call leters in the same area (or conntrs), if the licensee for all was the sante.
11) All confirmations must be stabmitted rexactly as received from the stations worked. Any altared or forgod confirmations submitted for C' crecio will result in disentalification of the applicant. The eligibility of any INX ' (' apolicant who was ever barred from D.NCO to reamply, and the conditions for such application, shall be determined by the Awards committee. Any holder of the Century ("hab Award subuitting forsed or altered confirmations must forfoit his right to 1 e considered for further emborsoments.
12) OPERATIN(; ETHICN: Fair play and good sportsmanship in operating are required of all anateurs working toward the DN Century Club Award. In the event of specifie objortions relative to continued poor oprrating athics an individual may be disqualified from the "XC'(" by aetion of the ARRL Awards Commitue.

1:3) Sufficient postage for the return of confirmations must be forwarded with the application. In order to insure the safe return of large batehes of confirmations, it is suggested that enough postage be sent to make mosible their return by first-class mail, registered.
14) Decisions of the ARRL Awards ('ommittee regarding interpretation of the rules as hore printed or Jater amended shall be final.
15) Address all applications and confirmations to the Communications Departnent, ARRL, 38 la Sitle Road, West Hartford 7, Conn.

WAC Award

The International Amateur IRadio Union issues WAC' (Worked All Continents) certifieates to all members of member-societies who submit proof of two-way communication with at least one station on each continent. Foreign amateurs submit their proof direct to member-societies of the IAIRU. Others may make application to ARRI, headquarters socicty of the Union. A e.w. and a telephony certificate are available. Also, special endorsement will be placed on certificates upon receipt of request accompanied by proof of having worked all continents on 50 Mc.

Code Proficiency Award

Many hams can follow the gencral idea of a contact "by ear" but when pressed to "write it down" they "muff" the copy. The Code

Proficiency Award invites every amateur to prove himself as a proficient operator, and sets up a system of awards for step-by-step gains in copying proficiency. It cnables every amatcur to check his code proficiency, to better that proficiency, and to receive a certification of his reexiving speed.
This program is a whale of a lot of fun. The Lague will give a certificate to any licensed radio amateur who demonstrates that he can copy perfectly, for at least one minute, plainlanguage Continental code at $10,15,20,25,30$ or 35 worls per minute, as transmitted during special monthly transmissions from WHAW, or from W60WP and WgTQ1).

As part of the ARIRL. Code Proficioncy program W1AW transmits plain-language practice material evenings, Monday through Friday, at speeds from 5 to 35 w.p.m. All amateurs are invited to use these transmissions to increase

their code-copying ability. Non-amateurs are invited to utilize the lower speeds, $5,71 / 2$ and 10 w.p.m., which are transmitted for the benefit of persons studying the code in preparation for the amatrur license examination. Refer to any issue of QST for details of the practice schedule.

Rag Chewers Club

The Rag Chewers Club is designed to encourage friendly contacts and discourage the "hello-good-by" type of QSO. Its purpose is to bond together operators interested in honest-togoodness rag-chewing over the air. Menbership certificates are available.

How To Get in: (1) Chew the rag with a member of the club for at least a solid half hour. This does not mean a half hour spent in trying to get a message over through had QRMI or QRN, but a solid half hour of conversation or messsage handling. (2) Report the conversation by card to The liag (hewers Club, AlRRL, Communications I Pepartment, West Hartford, Conn., and ask the member station yout talk, with to do the same. When both reports are received you will be sent a membershi, certificate entitling you to all the privileges of a Rag Chewer.

How To Stay in: (1) Be a conversationalist on the air instead of one of those tongue-tied infants who don't know any words except "cuagn" or "cul," or "QRU" or "nil." Talk to the fellows you work with and get to know them. (2) Operate your station in accordance with the radio laws and ARRL practice. (3) Observe rules of eourtesy on the air (4) Sign "RCC" after each call so that others may know you can talk as well as call.

A-1 Operator Club

The A-1 Operator Club should include in its ranks every good operator. To become a member, one must be nominated by at least two operators who already belong. General keying or voice technique, procedure, copying ability, judgnent and courtesy all count in rating candidates under the club rules detailed at length in Operating an Amateur Radio Station. Aim to make yourself a fine operator, and one of these days you may be pleasantly surprised by an invitation to belong to the A-1 Operator Club, which carries a worth-while certificate in its own right.

Brass Pounders League

Every individual reporting more than a specified minimum in official monthly traffic totals is given an honor place in the QS' listing known as the Brass Pounders League and a certificate to recognize his performance.

The value to amateurs in operator training, and the utility of amateur message handling to the members of the fraternity itself as well as to the general public, make message-handling work of prime importance to the fraternity. Fun, enjoyment, and the feeling of having done something really worth while for one's fellows is accentuated by pride in message files, records, and letters from those served.

Old Timers Club

The Old Timers Club is open to anyone who holds an amateur call at the present time, and who held an amateur license (operator or station) 20 -or-more years ago. Lapses in activity during the intervening years are permitted;
If you can qualify as an "Old Timer," send us a brief chronology of your ham career, being sure to indicate the date of your first amateur license, and your present call. If the evidence submitted proves you eligible for the OTC, you will be added to the roster and will receive a membership certificate.

INVITATION

Amateur radio is capable of giving enjoyment, self-training, social and organization benefits in proportion to what the individual amateur puts into his hobby. All amateurs are invited to become ARRL_ members, to work toward awards, and to accept the challenge and invitation offered in field-organization appointments. Drop a line to ARLLL. IIeadquarters for the booklet Operating an Amateur Radio Station, which has detailed information on the field-organization appointments and awards. Accept today the invitation to take full part in all League activities and organization work.

536

- Operating an Amateur Radio Station coversthe details of practical amateur operating. In it you will find information on Operating Practices, Emergency Communication, ARRL Operating Activities and Awards, :he ARRL Field Organization, Handling Messages, Network Organization, "Q" Signals and Abbreviations used in amateur operating, imporitant extracts from the FCC Regulations, and other helpful material. It's a handy reference that will serve to answer many of the questions concerning operating that arise during your activities on the air.

If you as a licensed amateur should ever fina yourself in a position to serve during an emergency, there are a lot of things you will wish you had known beforehand. You will do the best you can, and those you serve will sing your praises - but you yourself will realize that had you been better prepared you could have done more and done it more effectively. The booklet Emergency Communications would have told you all you needed to know. You should have had it, studied it, and followed up its advices. Don't wait until the emergency is upon you to wonder what you should do and how you should do it. Get a copy of Emergency Communications and make your preparations now!

The two publications described above may be obtained without charge by any Handbook reader. Either or both will be sent upon request.

AMERICAN RADIO RELAY LEAGUE

38 La Salle Road

West Hartford 7, Connecticui, U. S. A.
Please send me, without charge, the following:
OPERATING AN AMATEUR RADIO STATION EMEREENCY COMMUNICATIONS

Name.
iHleare Print)
Address

Miscellaneous Data

THE DECIBEL

In most radio eommunication the received signal is converted into sound. This being the case, it is useful to appraise signal strengths in terms of relative loudness as registered by the ear. A peculiarity of the car is that an increase

or decrease in loudness is responsive to the ratio of the amounts of power involved, and is practically independent of absolute value of the power. For example, if a person estimates that the signal is "twice as loud" when the transmitter power is increased from 10 watts to 40 watts, he will also estimate that a 400 -watt signal is twire as loud as a 100-watt signal. In other words, the car has a logarithmic response.

This fact is the basis for the use of the relative-power unit called the decibel. A change of one decibel (abbreviated db .) in the power level is just detectable as a change in loudness under ideal conditions. The power ratio and decibels are related by the following formula:

$$
D b .=10 \log \frac{P_{2}}{P_{1}}
$$

Common logarithme (base 10) are used.
Note that the decibel is based on power ratios. Voltage or current ratios can be used, but onl!! when the imperlance is the same for both values of voltage, or current. The gain of an amplifier cannot be expressed correctly in db . if it is based on the ratio of the output voltage to the input voltage unless both voltages are measured across the same value of impedance. When the impedance at both points of measurement is the same, the following formula may be used for voltage or current ratios:

$$
D b .=20 \log \frac{V_{2}}{\Gamma_{1}} \text { or } 20 \log \frac{I_{2}}{I_{1}}
$$

The two formulas are shown graphically in the accompanying chart for ratios from 1 to 10 .

Gains (increases) expressed in decibels may be alded arithmetically; losses (decreases) may be subtracted. A power decrease is indicated by prefixing the decibel figure with a minus sign. Thus +6 db . means that the power has been multiplied by 4 , white -6 db, means that the power has been divided by 4 . The chart may be used for other ratios by adding (or subtracting, if a loss) 10 db . each time the ratio scale is multiplied by 10 , for power ratios; or by adding (or subtracting) 20 db . each time the scale is multiplied by 10 for voltage or current ratios.

INDUCTANCE OF SMALL COILS

Most inductance formulas lose accuracy when applied to the small coils used in v.h.f. work and in low-pass filters built for reducing harmonic interference to television, because the conductor thickness is no longer negligible in comparison with the size of the eoil. The aceompanying chart shows the measured inductaner of typical coils used for these purposes, and may be used as a basis for circuit design. Two curves are given: curve A is for coils wound to an inside diameter of $1 / 2$ inch; curve B is for coils of $3 / 4$ inch inside diameter. In both curves the wire sizo is No. 12, winding pitch 8 turns to the inch ($1 / 8$ inch center-to-center turn spacing). The inductance values given include leads $1 / 2$ inch long.

Measured inductance of eoils wound with No. 12 bare wire, 8 turns to the inch. The values include half-inch wire, Where smaller inductance values are required, they should be obtained experimentally ly adjusting to the proper resonance frefueney with the specified capacitance. Coils of larger induetance ean be wound from the common fornulas.

INDUCTANCE, CAPACITANCE AND FREQUENCY CHART - 1.5-40 MC.

This chart may be used to find the values of inductance and capacitance required to reaonate at any given frequency in the medinm- or high-frequeney ranges; or, conversely, to find the frequency to which any given coilof $15 \mu \mu \mathrm{fd}$, and a maximum tone. In the example shown by the dashed lines, a condenser has a mininmm eapacitance of $15 \mu \mu \mathrm{fd}$, and a maximum capacitance of $50 \mu \mu \mathrm{fd}$. If it is to be used with a coil of $10 . \mu \mathrm{h}$. inductance, what fregiving 13 Me. as the high-freque straightedge is connected between 10 on the left ohand seale and lis on the right, swung to 50 on the right-hand scale, giving a low.frequency limit of 7 at on the left-hand scale, the other end is from 7.1 Me . to 13 Mc , or 7100 ke to 13,000 . Treqnency limit of 7.1 Mc. The tuning range woulil, therefore, be
The range of the chart can be extended by multiplying each of tho serves to convert frequency to wavelength, the capacitances are 150 and $500 \mu \mu \mathrm{fl}$. and the inplying each of the seales hy 0.1 or 10 . In the example above, if meters or 0.7 to 1.3 . Mc. Alternatively. 1.5 to $5 \mu \mu \mathrm{fd}$. and I $\mu \mathrm{h}$, will give a range becomes approximately 231 to 422

INDUCTIVE AND CAPACITIVE REACTANCE VS. FREQUENCY CHART

FREQUENCY
$13 y$ use of the chart above, the approximate reactance of any capacitance from $1.0 \mu \mu \mathrm{fl}$. to $10 \mu \mathrm{ff}$. at any frequency from 100 cycles to 100 megacycles, or the reactance of any inductance from $0.1 \mu h$. to 1.0 henry, can be read directly. Intermediate values can be estimated by interpolation. In making interpolations, remember that the rate of change between lines is logarithmic. Use the frequeney or reactance seales as a guide in estimating intermediate values on the caparitance or inductance scales.
'I'his ehart also can be used to find the approximate resonance frequencies of LC combinations, or the frequency to which a given coil-and-condenser combination will tune. First locate the respective slanting lines for the capacitance and inductance. The point where they intersect, i.e., where the reactances are equal, is the resonant frequency (projected downward and read on the frequency scale).

VOLTAGE DECAY IN RC CIRCUITS

The accompanying chart enables calculation of the instantaneous voltage across the termi-

nals of a condenser discharging through a resistance. The voltage is given in terms of percentage of the voltage to which the condenser is initially charged. To obtain the voltage-decay time in seconds, multiply the factor ($t / C R$) by the time constant of the re-sistor-condenser circuit.

Example: A 0.01- $\mu \mathrm{fd}$. condenser is charged to 150 volts and then allowed to discharge through a 0.1 -megohm resistor. How long will it take the voltage to fall to 10 volts? In percentage, $10 / 150=$ 6.7%. From the chart, the factor corresponding to 6.7% is 2.7 . The time constant of the circuit is equal to $C R=0.01 \times 0.1=0.001$. The time is therefore $2.7 \times 0.001=0.0027$ second, or 2.7 milliseconds.
Example: An $R C$ circuit is desired in which the voltage will fall to 50% of the initial value in 0.1 second. From the chart, $t / C R=0.7$ at the 50% voltage point. Therefore $C R=t / 0.7=0.1 / 0.7=$ 1.43. Any combination of resistance and capacitance whose product (R in megohms and C in nicrofarads) is equal to 1.43 can be used; for example, C could be $1 \mu \mathrm{fd}$. and $R 1.43$ megohms.

FILTERS

The filter sections shown on the facing page can be used alone or，if greater attenuation and sharper cut－off are required，several sections can be connerted in series．In the low－and high－pass filters，f_{c} represents the cut－off fre－ queney，the highest（for the low－pass）or the lowest（for the high－pass）frequency trans－ mitted without attenuation．In the bandpass－ filter designs，f_{1} is the low－frequency cut－off and f_{2} the high－frequency rut－off．The units for L, C, K and f are henrys，faruds，ohms and cycles，respectively．

All of the types shown are for use in an un－ balanced line（one side grounded），and thus they are suitable for use in coaxial line or any other unbalanced circuit．To transform them for use in balanced lines（e．g．， 300 －ohm trans－ mission line，or push－pull audio circuits），the series reactances should be equally divided between the two legs．Thus the balanced con－ stant－$k \pi$－section low－pass filter would use two inductances of a value equal to $L_{k} / 2$ ，while the balanced constant $-k$－section high－pass filter would use two condensers of a value equal to $2 C_{\mathrm{k}}$ ．

If several low－（or high－）pass sections are to be used，it is advisable to use m－derived end sections on either side of a constant－k section， although an m－dorived center section can be used．The factor m relates the ratio of the cut－ off frequency and loc，a frequency of high at－ tenuation．Where only one m－derived section is used，a value of 0,6 is gencrally used for m ， although a deviation of 10 or 15 per cent from this value is not too serious in amateur work． For a value of $m=0,6, f$ will be $I .25 f_{c}$ for the low－pass filter and $0.8 f_{\mathrm{c}}$ for the high－pass filter． Other values can be found from
$m=\sqrt{1-\left(\frac{f_{\mathrm{c}}}{f_{\infty}}\right)^{2}}$ for the low－pass filter and $m=\sqrt{1-\left(\frac{f_{\infty}}{f_{c}}\right)^{2}}$ for the high－pass filter．

The filters shown should be terminated in a resistance $=R$ ，and there should be little or no reactive component in the termination．

Simple audio filters can be made with pow－ dered－iron－core chokes and paper condensers． sharper cut－off characteristics will be obtained with more sections．The values of the com－ ponents can vary by $\pm 5 \%$ with little or no reduction in performance．The more sections there are to a filter the greater is the need for accuracy in the values of the components． Iligh－performance audio filters can be built with only two sections by winding the induc－ tances on toroidial powdered－iron forms－it generally takes three sections to obtain the same results when using other inductances．
sideband filters are usually designed to operate in the range 10 to 20 kc ．Their attenua－ tion requirements are such that usually at
least a five－section filter is required．The coils should be as high－（）as possible，and mica con－ densers are the most suitable capacitors．

Low－pass and high－pass filters for harmonic suppression and receiver－overload prevention in the television frequencies range are usually made with self－supporting coils and mical or ceramic condensers，depending upon the power requirements．

In any filter，there should be no magnetic or capacity coupling between sections of the filter unless the design specifically calls for it．This requirement makes it necessary to shiold the coils from cach other in some applications，or to mount them at right angles to eath other．

Further information on filter design can be found in the following articles：
Bennett，＂Audio Filters for Eliminating QRM，＂（QST，July，1949．
Berry，＂Filter Design for the Single－Sideband Transmitter，＂（2s＇T，June， 1949.
Buchheim，＂Low－Pass Audio Filters，＂Qs＇T， July， 1948.
Grammer，＂Pointers on Itarmonic Reduc－ tion，＂（LS＇T，April，1949；＂IIigh－Pass Filters for TV＇I Reduction，＂QST，May，I949．
Mann，＂An Inexpensive Sideband Filter，＂ QST，March， 1949.
Rand，＂The Little Slugger，＂Qs゙T，Fobruary， 1949.

Smith，＂Premodulation Spereh clipping and Filtering，＂Qs＇T，lobbruary，I9．46：＂More on Speech Clipping，＂（Qぶた，March， 1947.

－TUNED－CIRCUIT RESPONSE

The graph below gives the response and phase angle of a high－Q parallel－t uned cireuit．

Circuit Q is equal to

$$
2 \pi s R C \text { or } \frac{R}{2 \pi f L}
$$

where L and C are the inductance and capac－ itance at the resonant frequency，f ，and R is the parallel resistance across the circuit．The curves above become more accurate as the cir－ cuit Q is higher，but the error is not especially great for values as low as $Q=10$ ．

In the above formulas K is in ohns, C in farads, L in henrys, and f in eycles per second.

GERMANIUM CRYSTAL DIODES

Type	Use	Max. Inverse Volif	$\begin{aligned} & \text { Peak } \\ & \text { Rectif d } \\ & \text { Ma. } \end{aligned}$	Max. 5 urge Ma.	Max. Reverse μ-Amp.	Max. Average Mo.	Typo	Use	Mex. Inverse Volts	$\begin{aligned} & \text { Peak } \\ & \text { Rectif'd } \\ & \text { Ma. } \end{aligned}$		Max. Reverse н-Amp.	Max. A varage Ma.
$\begin{aligned} & \text { IN34 } \\ & \text { IN34A } \end{aligned}$	General	60	150	500	50 (3) 10 V 800 (a) 50 V	40	$\begin{aligned} & \text { IN5s } \\ & \text { IN58A } \end{aligned}$	100-Volt Dlode	100	150	500	800 (13) 100 V	40
1N35	1	50	60	100	10 (a) 10 V	22.5							
$\begin{aligned} & \text { IN38 } \\ & \text { IN38A } \end{aligned}$	100.Volt Diode	100	150	500	6 (a) 3 V . 625 @ 100 V .	40	IN60	Vid. Det.	25	150	500	30 (a) 1.5	50
							IN6 1	Diode	130	150	500	300 (6) 100 V .	40
1N39	200.Volt Diode	200	150	500	$\begin{aligned} & 200 \text { @ } 100 \mathrm{~V} . \\ & 300 \text { a. } 200 \mathrm{~V} . \end{aligned}$	40	$\begin{aligned} & \text { 1N63 } \\ & \text { GSE } \end{aligned}$	General	125	150	400	50 @ 50 V	50
1N40:	Voristor	25	60	100	50 (a) 10 V	22.5	$\begin{aligned} & \text { IN641 } \\ & \text { G5F? } \end{aligned}$	Vid. Det.	20	-	-	-	-
1N4 ${ }^{12}$	Varisior	25	60	100	50 (3) 10 V	22.5	$\begin{aligned} & \text { 1N65 } \\ & \text { G5G } \end{aligned}$	Hi Back Resisfonce	85	150	400	200 @ 50 V.	50
1N422	Varistor	50	60	100	$\begin{aligned} & 6 @ 3 \mathrm{v} \\ & 625 \text { @ } 100 \mathrm{v} . \end{aligned}$	22.5							
							1N662	General	60	150	500	300 @ 50 V	50
1N43	Varistor	604	125	500	150 @ 50 V .	40	IN67	Hi Back Resistance	80	100	500	50 (a) 50 V	35
1N44	Varistor	1154	100	400	1000 (a) 50 V .	40							
IN45	Varistor	754	100	400	410 @ 50 V .	40	IN68	Restorer	100	100	500	625 (a) 100 V	35
1NH6	Varistor	604	125	500	1500 @ 50 V	40	IN69	General	75	125	400	850 (a) 50 V .	40
IN47	Varistor	1154	90	350	410 (a) 50 V.	30	1N70	General	125	90	350	410 @ 50 V	30
$\begin{aligned} & 1 N 48 \\ & G 53 \end{aligned}$	General	85	150	400	833 @ 50 V.	50	1N7 12	Varistor	504	200	1000	300 @ 30 V .	60
							$\operatorname{lin7}_{G 7^{2}} 2^{2}$	U.H.F.	2	75	-	-	25
G5C	General	50	100	300	1667 (a) 50 V	25	1N73	Quad	75	60	100	50 (a) 10 V	22.5
$\begin{aligned} & \text { IN52 } \\ & \text { G5D } \end{aligned}$	General	85	150	400	150 (3) 50 V	50	IN74	Quad	75	60	100	-	22.5
$\begin{aligned} & \text { INS4 } \\ & \text { INS4A } \end{aligned}$	Hi Back Resistance	35	150	500	10 (i) 10 V .	40	IN7 5	General	125	150	400	$50 @ 50 \mathrm{~V}$.800 @ 50 V.	50
							CK705	General	60	150	500		50
1N55 INS5A	150.Volt Diode	150	150	500	$\begin{aligned} & 300 \text { (a) } 100 \mathrm{~V} . \\ & 800 \text { (a) } 150 \mathrm{v} . \end{aligned}$	40	CK706	Vid. Det. ${ }^{1}$	40	125	300	-	35
$\begin{aligned} & \text { IN56 } \\ & \text { IN56A } \end{aligned}$	Hi-Conduction	40	200	1000	300 (c) 30 V .	50	CK707	Restorer	80	100	500	100 @ 50 V .	35
							CK708	Resforer	100	100	500	625 @ 100 V .	35
1N57	Diode	80	150	500	500 (a) 75 V .	40	CK7 10	U.H.F. Mix.	5	75	-	500 (a) 2 V .	25

Ratings given are for individual diodes. Average life is over 10,000 hours. Ambient temperature range for all types $-50^{\circ} \mathrm{C}$,
to $+75^{\circ} \mathrm{C}$. Average shunt capacitance -0.8 mufd. Units with A suffix are glass types.
${ }_{4}^{1}$ Matched dual diode. ${ }_{2}$ Unit has four uatched diodes.
${ }^{3}$ G.E. designation.
${ }^{4}$ Min, reverse volts for zero dynamic resistance.
miniature selenium rectifiers

Manufacturer	Type Number	Max. A.C. Volis	Peak Inverse Volts	Pack Current Ma.	Max. R.M.5. Ma.	Max. D.C. Outpul Ma.	Rectifier Service
Federal Telephone and Radio Corporalion	402D3200	117	380	-	-	50	Half-Wave
*	$\begin{aligned} & \text { 402D2788 } \\ & 40203150 A \end{aligned}$	117	380	900	220	75	Half-Wave
"	$\begin{aligned} & \text { 403D2625 } \\ & \text { 403D2625A } \end{aligned}$	117	380	1200	325	100	Half-Wave
"	402D3151	18	-	-	-	100	Holf-Wave
"	402D3239A	160	-	-	-	75	Doubler
"	403D3240A	160	-	-	-	100	Doubler
General Electric Co.	6R55GH2	117	380	650	163	65	Half-Wave
-•	6R55GHI	117	380	750	187	75	Half-Wave
Radio Receptar Company, Inc.	511	117	380	-	-	75	Half-Wave
"	5 MI	117	380	-	-	100	Half-Wave

Symbols for electrical quantities	
Admittance	Y, y
Angular velocity ($2 \pi \mathrm{f}$)	ω
Capacitance	C
Conductance	G, g
Conductivity	
Current	$1, i$
Difference of potential	E, e
Dielectric constant	K
Dielectric flux	\pm
Energy	${ }^{W}$
Frequency	f
Impedance	Z, z
Inductance	L
Magnetic intensity	H
Magnetic flux	\$
Magnetic flux density	B
Magnetomotive force	$\stackrel{ }{ }$
Mutual inductance	${ }^{M}$
Number of conductors or turns	N
Period	T
Permeability	μ
Phase displacement	
Power	P, p
Quantity of electricity	Q, q
Reactance	$\boldsymbol{X}, \boldsymbol{x}$
Reactance, Capacitive	$X_{\text {c }}$
Reactance, Inductive	$X_{\text {L }}$
Reluctivity	$\stackrel{ }{ }$
Resistance	r, r
Resistivity	ρ
Susceptance	b
Speed of rotation	n
Voltage	$E^{\prime},{ }^{\prime}$
Work	W

PILOT-LAMP DATA					
Lamp No.	Bead Color	Base (Miniature)	$\begin{aligned} & \text { Bulb } \\ & \text { Type } \end{aligned}$	RATING	
				Volts	Amp.
40	Brown	Screw	T-31/4	6-8	0.15
$40 \mathrm{~A}^{1}$	Brown	Bayonet	T-31/4	6-8	0.15
41	White	Screw	T-31/4	2.5	0.5
42	Green	Screw	T-31/4	3.2	**
43	White	Bayonet	T-31/4	2.5	0.5
44	Blue	Bayonet	T-31/6	6-8	0.25
45	*	Bayonet	T-31/4	3.2	**
46^{2}	Blue	Screw	T-31/4	6-8	0.25
47^{1}	Brown	Bayonet	T-31/4	6-9	0.15
48	l'ink	Screw	T-31/6	2.0	006
49^{3}	l'ink	Bayonet	T-31/6	2.0	0.06
4	White	Screw	T-31/6	2.1	0.12
$49 A^{3}$	White	Bayonet	T-31/4	2.1	0.12
50	White	Screw	G-31/2	6-8	0.2
51^{2}	White	Bayonet	G-3 1/2	6-8	02
-	White	Sicrew	G-4 11/2	6-8	04
55	White	Bayonet	G-4 $1 / 2$	6-8	0.4
$292{ }^{5}$	White	Screw	T-31/4	2.9	0.17
$202 \mathrm{~A}^{5}$	White	Bayonet	T-31/4	2.9	0.17
1455	İrowl	Screw	G-5	18.0	0.25
1455A	Brown	Bryonet	G-5	18.0	0.25
* White in G.E, and Sylvania; green in National Union Raytheon and Tung-Sol. ** 0.35 in G.E. and Sylvania; 0.5 in National Union Raytheon and Tung-Sol. 140 A and 47 are interchangeable. ${ }^{2}$ Have frosted bulb. 849 and 49A are interchangeable. - Replace with No. 48. ${ }^{5}$ L'se in 2.5 -volt sets where regular bulb burns out too frequently.					

ABBREVIATIONS FOR ELECTRICAL AND RADIO TERMS

Alternating current	a.c.
Ampere (amperes)	a.
Amplitude modulation	AM
Antenna	ant.
Audio frequency	a.f.
Centimeter	cm.
Continuous waves	c.w.
Cycles per second	c.p.s.
Decibel	db.
Direct current	d.c.
Electromotive force	e.m.f.
Frequency	f.
Frequency modulation	FM
Ground	gnd.
Henry	h.
High frequency	h.f.
Intermediate frequency	i.f.
Interrupted continuous waves	i.c.w.
Kilocycles (per second)	kc.
Kilovolt	kv.
Kilowatt	kw.
Magnetomotive force	m.m.f.

ELECTRICAL CONDUCTIVITY OF METALS

Relative Temp．Coef．${ }^{2}$ Condurtinity ${ }^{1}$ of Resistance
Aluminum（2S；pur
Aluminum（alloys）：
Soft－annealed．．．

Brass．．．．．．．．．．．．．．．．．．．．．．． 28
Cadınium．．．．．．．．．．．．．．．．．．．．．．．． $1!$
Chromium．．．．．．．．．．．．．．．．．．．in
（＇limax．．．．．．．．．．．．．．．．．．．．．．． 1.83
Cobalt．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 16.3
Constantin．．．．．．．．．．．．．．．．．．． 3.24 0．0000．
Copper（hard drawn）．．．．．．．．．． $80 . \overline{3}$
Copper（annealed）．．．．．．．．．．．． 100
Everdur ．．．．．．．．．．．．．．．．．．．．．
（ierman silver（ $18^{\circ} \mathrm{C}$ ）．．．．．．．．．．．．．．$\quad 5.3 \quad 0.00019$
（iold．．．．．．．．．．．．．．．．．．．．．．．． 0.5
Iron（pure）．．．．．．．．．．．．．．．．．． 17.7
Iron（cast）．．．．．．．．．．．．．．．．．． 2 －1．
Iron（wrought）．．．．．．．．．．．．．．．．． 11.4
0.0049
${ }^{1}$ At $20^{\circ} \mathrm{C}$ ．，based on copprer as $1000^{2} \mathrm{D}^{3} \mathrm{er}{ }^{\circ} \mathrm{C}$ ．at $20^{\circ} \mathrm{C}$ ．

	lielatire Comuluctivity	Temp．Cuef．${ }^{2}$ of Resistanre
Lrad．	7	0.0041
Mancanin．	3.7	0,00002
Mereury．	1.66	0.00089
Molybdenuts	33.2	0.0033
Monel．	4	0.0019
Nichrome．	1．4．）	0.00017
Nickel．	12－16	0.005
Phosphor Bronzo	34）	0,004
Platinum．	15	
Silver	109	0.004
Strel．	8－15	
＇lin．	13	0.0042
Tungaten	$2 \times .!$	0.6045
Zinne	2x．2	0.0035
． 1 pproximate relations		
An increase of 1 in A．W，（i．or B．\＆N．wire size increaseg resistanee $25^{\circ}{ }^{\circ}$ ．		
An increase of 2 increases resistance $\mathbf{6 0} \%$ ．		
An increase of 3 increases resistance $100{ }^{\circ} \mathrm{c}$ ．		
An increase of	istance 10	

INTERNATIONAL PREFIXES

AAA－AL\％	1＊S．A．
AMA－AOZ	Spain
APA－AS\％	［akistan
ATA－AW\％	India
AXA－AN\％	Anstratia
AYA－AZ\％	Argentime Repmblie
CAA－CE\％	（＇hile
CFA－CK\％	（ ${ }^{\text {anada }}$
CLA－CM\％	Cuba
CNA－C．\％	Morocco
COA－COZ	（ ${ }^{\text {aba }}$
CPA－CP\％	Bolivia
（＇QA－C＇R\％	Portuguese Colonies
C＇SA－（＇L\％	Portugal
（＇VA－C＇S\％	［ruguay
（＇YA－$\%$ \％	（anada
DAA－1）M\％	Germany
INAA－DQ\％	L ${ }^{\text {elgian（ }}$（ongo
IIRA－DT\％	Bielorussia
D＇A－DZ\％	Philipuines
E．AA－EII\％	Spain
CIA－EJ\％	Ircland
［̇KA－EK゙\％	C．s．s．R．
LUA－LIM\％	Republic of Liberia
［MA－EOZ	U．s．s．lk．
EPA－EQ\％	Iran
FYLA－E12\％	U．s．s．R．
HASA－FNZ	Fstonia
ETA－ETZ	Ethiopia
EぐA－E：KZ	C＇s．s．s．lR．
ドAA－FZZ	France and Colonics
（iAA－G：ZZ	Great I3ritain
HAA－HA\％	Hungary
HBA－1113Z	Switzerland
ICA－11DZ	Ecuador
HEA－HE\％	Switzerland
H1FA－IF\％	Poland
HCA－1IC：\％	Ilungary
HHA－HH\％	Republic of Itaiti
111A－H17	Dominican Republic
HJA－IIKZ	Republic of Colombia
HLA－HM\％	Korea
HNA－HNZ	Iract
IOA－HP\％	Republic of Panama
11Q－1－11R\％	Republic of Honduras
11SA－HSZ	Siam
HTA－HTZ	Nicaragua
IIUA－HUZ	Republic of El Salvador
IIVA－IIVZ	Vatican City State
11WA－1IYZ	France and Colonies
11ZA－HZZ	Saudi Arabia
IAA－IZZ	Italy and Colonies
JAA－JSZ	Japan
JTA－JVZ	Mongolian Republic

JWA－J®\％	Norway	ヘ入．1－ざざZ	Portuguese Colonies
JYA－JY\％	Jordan	入УA－X゙\％	Burna
． $\mathrm{T} / \mathrm{A}-\mathrm{I} / \mathrm{T} / \mathrm{L}$	Netherlands New Girinea	YAA－YAZ	Afghanistan
KAA－K\％\％	L．S．A．	YBA－Y＇IT\％	Netherlands Indies
1，AA－LNZ	Norway	YIA－Y1Z	Irac1
10A－LW\％	Argentinc lRemblic	Y．J．A－Y\％	New Hebrides
1，${ }^{\text {N－L．N\％}}$	Luxembours	1KA－Vに\％	Syria
IVA－LYZ	Lithuania	Y1．A－Y＇\％	latvia
1．ZA－I．ZZ	Bulgaria	YMA－1MZ	Turkey
MAA－MZ\％	Great lritain	YNA－YN\％	Nicaragua
NAA－NZZ	Const．	10A－I＇\％	Roumania
OAA－OCZ	Perı	Ysidrs\％	Republic of El salvador
ODA－ODZ	Republic of Lebanon	1TA－1＇\％	Tugoslavia
OEA－OEZ	Anstria	MVA－YY\％	Venczuela
OFA－OJ\％	Finland	Y\％A－Y\％\％	Yugoslavia
OKA－OM\％	Czerhoslorakia	V．AA－Z．I\％	Albania
ONA－OTZ	liclgium and Colonies	Z13i－Z．．J\％	British C＇olonies
Ol＇A－OZ\％	Denmark	\％に，	New Zealand
PAA－PI\％	Netherlands	\％．NA－ZO\％	British C＇olonies
PJA－PJ\％	Curamao	Z1＇A－ZP\％	Paraguay
PKA－POZ	Netherlands Indies	ZQA－ZQZ	13ritish Colonies
PPA－P1\％	Mrazil	ZRA－ZI＇\％	Cnion of South Africa
1＇VA－P＇Z／，	Surinam	OVA－Z7\％	Mrazil
（QAA－（2Z\％	（Service abhreviations）	2AA－2\％／	Great Britain
RAA－RZZ	C．ss．R．	3AA－3A\％	Principality of Monaco
SAA－SMZ	Sweden	313A－3F\％	Canula
SNA－sl\％	Poland	3（i．A－3（：\％	Chile
SSA－SL\％	Egypt	3HA－3L\％	China
SVA－SZZ	Cirerce	3VA－3V\％	France and Colonies
TAA－TM 2	Turkey	3WA－3W\％	Viet－Nam
TIDA－TIOZ	（iuatemala	3W．－3W\％	Viet－．Vam
TEA－TE\％	C＇osta Rica	31A－31\％	Norway
TFA－TF\％	lecland	37，1－3\％\％	Poland
TGA－TC\％	Guatemala	4AA－4C\％	Mexico
THA－THZ	France and Colonies	41）A－4I\％	Philippines
TIA－TI\％	Costa Rica	4JA－4L\％	U．S．s．R．
TJA－T\％\％，	France and Colonies	4MA－4MZ	Venezuela
UAA－UQZ	U．ふ心．R．	4NA－40\％	Yugoslavia
URA－UTZ	Ckranian Republic	4PA－4S\％	British Colonies
UUA－CZZ	U．S．S．R．	4TA－4T\％	Perı
VAA－VGZ	Canada	＋CA－4C゙\％	Conited Nations
VHA－VNZ	Australia	$4 \mathrm{VA}-4 \mathrm{~V}$	Republic of Haiti
VOA－VOZ	Newfoundland	4WA－4W\％	Yemen
VPA－VsZ	British Colonies	4XA－4 2	Israel
VTA－VWZ	India	4YA－4YZ	
VXA－VYZ	Canada	4YA－4YZ	International Civil
VZA－VZZ	Australia		Aviation organization
WAA－WZZ	U．S．A．	5CA－5CZ	French Moroceo
XAA－XIZ	Mexico	6AA－6ZZ	（Not allocated）
XJA－XOZ	Canada	7AA－7ZZ	（Not allocated）
XPA－XPZ	Denmark	8AA－8Z7	（Not allocated）
XQA－XRZ	Chile	9AA－9AZ	San Marino
XSA－XSZ	China	9NA－9NZ	Nepal
X＇TA－XWZ	France and Colonies	9SA－9SZ	Saar

COPPER－WIRE TABLE

Gauge No． B．\＆S．	Diam． in Mils ${ }^{1}$	Circular Mil Area	Turns per Linear Inch ${ }^{2}$				Turus per Square Inch ${ }^{2}$			Feet per Lb．		$\begin{gathered} \text { Ohms } \\ \text { per } \\ 1000 \mathrm{fl} . \\ 25^{\circ} \mathrm{C} . \end{gathered}$	Current Carryino Capacity at $1500 \mathrm{C.M}$ ． per Amp．${ }^{3}$	Diam． in mm ，	Nearest British S．W．G No．
			Enamel	S．S．C．	$\begin{aligned} & \text { D.S.C. } \\ & \text { s.C.C. } \end{aligned}$	D．C．C．	S．C．C．	Enamel S, C, C	D．C．C．	Bare	D．C．C．				
				－	－		－	－	－	3.947	－	.1264	5．）． 7	7.348	1
1	289.3	83690						－	－	4.977	－	． 1593	＋4．1	6.544	3
2 3	257.6 23914	86370 512640		二	－	－	－	－	＿	6.276	－	． 2009	35.0	5．827	4
4	201.3	＋1740	－	－	－	－	－	－	－	7.914	－	． 2533	27.7	5． 189	5
5	181.9	33160	－	－	－	－	－	－	－	9.980	－	． 3195	22.0	4.621	7
6	162.0	26250	－	－	－					12.58	－	－ 4028	17．5	＋． 3.66	8 9
7	14.3	20820	－	－	－	－			－	12.87 20.01	19.6	． 6.4085	11.0	3.264	10
8	128.5	16：510	7.6	－	7.4	7.1	－		－	20.03	19.6 24.6	．8077	8.7	2.900	11
9	114．4	13090	8.6	－	8.2	7.8	87.5	84.8	80.0	23.23 31.82	30.9	1.018	¢． 9	2.588	12
10	101.9	10380	9.6	－	9.3	8.9 9.8	87． 110	10．8	（17．5）	40.12	38.8	1.284	5.5	$2.30{ }^{3}$	13
11	90.74	8234	10.7	－	10.3	9.8 10.9	11315	131	121	50.59	48.9	1.619	4.4	2.053	14
12	80.81	6530	12.0	－	11.5	10.8 12.0	170	16.2	150	（i3． 80	61.5	2.042	3.5	1.828	15
13	71.96	5178	13.5	－	12.8 14.2	12.0 13.8	170 211	198	183	80.44	77.3	2.575	2.7	1.608	16
14	64.08	4107	15.0 16.8	－	14.2 15.8	13.8 14.7	211 208	1080	$\underline{183}$	101.4	97.3	3.247	2.2	1.450	17
15	57.07	3257 2583	16.8 18.9	18.9	17.8 17.9	14.4 16.4	321	306	271	127.9	119	4.094	1.7	1.291	18
16	50.82 45.26	2583 2048	18.9 21.2	18.9 21.2	17.9 19.9	18.1	$3!8$	37	329	161.3	150	5.1133	1.3	1．150	18
17	45.26 40.30	2048 1624	21.2 23.6	$\underline{21.2}$	22.0	19.8	493	454	399	203.4	188	6.510	1.1	1.024	19
19	35． 89	1288	26.4	23.4	24.4	21.8	5112	553	479	256.5	237	8.210	． 86	． 9116	20
20	31.96	1022	29.4	29.4	27.0	23.8	775	725	625	323.4	298	10.35	． 68	8118	21
21	28.46	810.1	33.1	32.7	99.8	26.0	940	895	754	407.8	370	13.05	． 54	． 7230	$\stackrel{22}{ }$
22	25.35	612.4	37.0	36.5	34.1	30.0	11.50	1070	910	514.2	461 584 84	16.46 20.76	.43 .34	$.6 \pm 38$.5733	24
23	22.57	509.5	41.3	40.6	37.6	31.6	1400	1300	1080	618.4	584	20.76	． 34	5733	25
24	20.10	404．0	46.3	45.3	41.5	35.6	1700	1570	1260	817.7	745	26.17	． 27	． 5106	$\stackrel{25}{26}$
25	17.40	320.4	51.7	50.4	45.6	38.6	2060	1910	1510	1031	903 1118	33.00 41.62	． 21	． 4048	27
26	15.94	254． 1	58.0	55.0	50.2	41.8	2.300	2300	1750	16.39	1422	5	.13	． 3606	29
27	14.20	201.5	64.9	61.5	55.0	15.0 48.5	3030 3670	2780 $33: 0$	2020 2310	2067	1759	66．17	． 11	． 3211	30
28	12.64	159.8	72.7	68.6	60.2 65.4	48.5 51.8	3670 4300	39600	2700	2607	2207	83.44	． 084	． 28.59	31
29	11.26	126.7	81.6 90.5	74.8 83.3	65.4 71.5	51.8	4300 8040	4660	$30 \geq 0$	3287	2534	105.2	． 0687	． 2516	33
30	10.03	100.5	90.5 101	$8: 3.3$ 92.0	71.5	58.5 09.2	5040 8920	4660 5280	－	4145	2768	132.7	． 053	． 2208	34
31 32	8.428 7.450	79.70 63.21	101 113	92.0 101	88.6	62.6	7060	62：0	－	5227	3137	167.3	． 042	． 2019	36
32 33	7.080 7.080	63.21 80.13	113 127	110	90.3	66.3	8120	7360	－	6591	4697	211.0	． 033	． 1798	37
34	6．30：5	39.75	143	120	97.0	70.0	9600	8310	－	8310	6168	266.0	． 026	.1601	38
35	i． 615	31.52	$1: 8$	132	104	73.5	10360	8700	－	10480	6737	335.0	． 021	.1426	38－39
36	5.000	25.00	17.5	143	111	77.0	12200	10700	－	13210	7877	423.0	． 017	． 1270	39－40
37	4.453	19.83	198	154	118	80.3	－	－	－	16460	9309	533.4	． 013	． 1131	41
38	3．96\％	15.72	2：4	166	126	83.6	－	－	－	$\because 1010$	10666	${ }^{6} 82.6$	． 010	． 1007	42
39	3.531	12.47	248	181	133	80.6	－	二	二	26500 33410	11907 14292	$\underset{1069}{848.1}$	． 008	． 0897	43
40	3.145	9.88	282	194	140	$8!.7$	－－	－	－	33410	14222		． 006	．0499	4

[^14]

LETTER SYMBOLS FOR VACUUM-TUBE NOTATION

Grid potential
Grid current
Grid conductance
Grid resistance
Grid bias voltage
Plate potential
Plate current
Plate conductance
Plate resistance
Plate supply voltage
Cathode current
Emission current
$E_{\mathrm{g}}, e_{\mathrm{g}}$
$I_{\mathrm{g}}, i_{\mathrm{g}}$
g_{g}

r_{g}

$E_{\text {c }}$
$E_{\mathrm{p}}^{\prime}, \boldsymbol{e}_{\mathrm{p}}$
$I_{\mathrm{b}}, I_{p}, i_{\mathrm{p}}$
g_{p}
Grid capacitance (input)
$E_{\mathrm{b}} \quad$ Plate capacitance (output)
$I_{\text {c }}$
I_{c}
$I_{\mathrm{s}}$$\quad$ Note. - Small letters refer to instan-

GREEK ALPHABET		
（ireek Letter	Greek Name	Einglish Equivalent
A a	Apha	a
13 β	Bota	b
1γ	Ciamma	g
$\Delta \delta$	Dolta	d
E \in	Epsilon	${ }^{\text {e }}$
\％ 5	\％eta	z
117	Eta	¢
（）θ	Theta	th
1.	lota	i
Кк	バappa	k
A λ	Lambia	1
11μ	Mu	111
$\cdots \nu$	Nu	11
$\Xi \xi$	Xi	X
00	Omicron	ŏ
11π	$1{ }^{1}$	1
1＇ρ	R16	r
$\because \sim$	Sigma	s
T τ	＇riul	1
γv	Ipsilon	11
¢ ϕ	Phi	pir
$\mathrm{X} \boldsymbol{\chi}$	Chi	ch
$\Psi \psi$ $!!\omega$	P＇si	ps
$\bigcirc \omega$	Omega	$\overline{0}$

THE R－S－T SYSTEM
READABILITY
1 －L＇nreadalsle．
2－Barcly readable，occasional words distinguish－ able．
3 －Readable with considerable difliculty．
1 －Readable with practically no difficulty．
j－l＇erfectly readatle．

SIGNAL STRENGTH

1 －Fraint signals，barely perceptible．
2 －Very weak signals．
3 －W゙eak signals．
4 －Frair signals．
5－Fiairly sood signals．
6 －（iood signals．
7 －Moderately stronk signals．
8 －Sitrong signals．
9 －Extremely strong sipnals．

TONE

1 －Extremely rough hissing note．
2 －Very rough a．c．note，no trace of musucality．
：3－Rough low－pitched a．e．note，slightly musicul．
－－Rather rough a．c．mote，moderately masionl．
\bar{z}－Musically－modulated note．
if－Morlulated note，slight truce of whistle．
7 －Ne：ar d．c．note，smooth ripple．
x－Goond d．c．note，just a trace of ripple．
：－Purest d．c．note．
If the signal has the characteristic steatiness of ＇rystal control，add the letter X to the R R＇I report． If there is a chirp，the letter（＇may be added to so indirate．Similarly for a click．add K．The above reporting system is used on both c．w．and vosice， leaving out the＂tone＂report on voice．

Q SIGNALS

Given below are a number of Q signals whose meanimgs most of ten need to be expressed with brevity and clearness in athatear work．（ （ $^{\text {abhreviations take the form of questions only when each is sent followed by a question mark．）}}$
QRC；Will you tell me my exact frequency（or that of．．．．．．．）？Your exact frecpency（or that of．．．．．．）is．．．．．．．kc．
QRII Does my frequeney vary？Your frequeney varies．
QR1 Llow is the tone of my transmission？The tone nf your transmission is ．．．．（1．Good；2．Variable； 3．luad）．
QRE What is the readability of my signals（or those of ．．．．．）．The readability of your sigmals（os these of ．．．．）is．．．．．（1．Lnreadable；2．Read－ able now and then；3．Readable but with dif－ ficulty；4．IReadable；5．Perfectly readable）．
QRI．Ire you busy？I am busy（or I am busy with ）．Please do not interfere．
QRA Are you being interfered with？I am interfered with
QRN Are you troubled by static？I am being troubled by static．
Qhe shall I send faster？Send faster（．．．．．words per min．）．
QRS：Shall I send more slowly？Nend more slowly（．．．． w．p．m．）．
Cet＇I＇Shall I stop sendiug？stop sending．
QRI llave you anything for me？I have nothing for you．
QRV Ire you ready？I an ready．
（QRW shall I tell．．．．that you are calling him on ．．．．．kc．？I＇lease inform．．．．．that I ant calling him on．．．．．ke．
QRX When will you call me again？I will call you tgain at．．．．．hours（on．．．．．．．．ke．）．
QRZ Who is calling me？You are being called by．．．．． （on．．．．．ke．）．
QSA What is the strength of my signals（or those of ．．．．．．）？The strength of your signals（or those of．．．．．）is．．．．．．．（1．Scarcely perceptible； 2. Weak：3．Fairiy good；4．Good；5．Very good）．
QSB Are my signals fading？Your signals are fading．
QSD Is my keying defective？Your keying is defeetive．
QSG Fhall 1 send．．．．．messages at a time？Send．．．． messuges at a time．

QSI．（an you acknowledge receipt？I am acknowledging receipt．
QsM Whall I repeat the last message which I sent you， or sonte previous mossage？Repeat the last tuessage which you sent me for messagen（s） nutuber（s）．．．．．．］．
QNO（＇an you communicate with．．．．direct or hy relay？ I can communicate with．．．．direct（or by relay through．．．．．）．
Qsil Will you relay to．．．．．．？I will relay to．．．．
QSV shatl I send a series of Vs on this frequency（or ．．．．ke．）？send a series of Vs on this freguency （or．．．．．ke．）．
（2sw Will you send on this frequency（or on．．．．ke．）？ 1 tha going to send on this frequency（or on ．．．．．．ke．）．
（2sX Will you listen to．．．．．on．．．．．kc．？I am listening to．．．．．．．on．．．．．．．．．．
QSY shall I change to transmission on another fre－ quency？（＇hange to transmission on another frequeney（or on．．．．ke．）．
（gsZ Shall I send each word or group more than once？ send ench word or group twice（or．．．．tmes）．
QTA Shall I cancel message number．．．as if it had not been sent？（＇ancel message number．．．．as if it had not been sent．
QTB Do you agree with my eounting of words？I do not agree with your counting of words；I will repeat the first letter or digit of each word or group．
QTC How many messages have you to send？I have．．．． messages for you（or for．．．．）．
QTII What is your location？My location is，．．．．
Q＇TR What is the exact time？The time is．．．．．．
Special abbreviations adopted by ARRL：
Qs＇T General call preceding a message addressed to all anmatrurs and ARIRI，members．This is in effect ＂CQ AItRL．＂
QHRK Official ARRI．＂land SOS．＂A distress call for emergency use only by a station in an emergency situation．

ABBREVIATIONS FOR C．W．WORK

Abbreviations help to mit down unecessary transmission．However．make it a rule not to abbreviate unnecessarily when working an operator of unknown experience．

AA	All after	－${ }^{\text {d }}$	Now；I restme transmission
AB	All before	013	Gld trox
ABT	About	0.1	Old man
ADR	Adelress	OP－（0P12	Operator
ACiN	Again	ORC＊	Uscilator
AN゙1	Antenna	${ }^{0} \mathrm{~T}$	Old timer ；ody tou
HC．I	13roadeast interference	P13L	Preamble
$1 \mathrm{Cl}{ }^{\text {d }}$	Broadeosst listener	PsE－1יs	Ilease
13 K	Break；break mue break in	IW以	Power
BN	All between：been	18	Press
13.4	Before	13	Rumened solid：all right；（ok；are
（＇	les	RAC	Rectified alternating corrent
（ $1 *$ M	（ onfirm； 1 confirm	$13(1)$	Rerecived
（ 1	（ heek	121\％	Refer to：referrinit to：reforence
（1）	1 an closing my station；call	RIP1	Repmat：I repeat
（1．1）－（i．）：	（ alleal calling	SED	Stad
CLD	Could	S1：\％	Suls
（＇1）	See you later	sili	Signture；signal
Clı	（ome	SIS1：	Wherator＇s personal initials or nickname
（W）	（ ontinuous wave	心にくり	schedule
（1， 1 －DL： 1 ）	belivered	SRI	Sorry
DX	Distance	sir	Service：prefix to serviee message
E（\％）	Filertron－coupded cserillator	1%	Tramic
FH	F－ine imsiness；exerlam	T\以	＇Tomorrow
（i．A	（io almad tor resumu sobting）	リペーリビ	Thants
Ciß	（iomel－by	$1 \times$	＇llat
G13A	（ive hetler address	T	Thank you
GI	（iood evening	1NT	Text
（ici	（ioing	し12－じ185	Your ；you＇re；sours
（iM	（iood morning	リド	Variable－frequency oscilator
（N：	（iood night	IV	Vers
GN0）	（iround	W． 1	Word after
GLI）	（iood	WH	Word hefore
111	The telegraphic laugh；high	い1）－Wいス	Word；words
1111	llere；hear	い゙んじいに゙！	Worked；working
110	llave	W1．	Well will
HW	How	W1D	Would
LID	A pror ojerator	W゙ぶ1	Weather
M11．S	Milliamueres	NMTR	Transmiter
M心（；	Messane；profix torathagata	NTU．	（＇rystal
N	No	1F（S）	Wife
ND	Nothing doing	1.	Foung lats
Nil．	Nothine；I have mothing for som	8	Best tegards
Nil	Number	88	Love and kisses

W PREFIXES BY STATES

Alabama．．Nebraska． W！
Arizoma W7 Nevada． 117
Arkans：a W5 New Ilampshive HI
California W6 New Jerser H_{2}
Colurado W0 New Mexieo 125
Connecticut W1 New York W2
Delaware II 3 North Carolina H_{4}
District of Columbia W3 North Dakota W）
Florida Wt Ohio W＇s
Georgia W4 Oklahomat 115
Idaho W7 W7
Illinois W9
Iowa Wg
ndian
ndian Rhode Island H1
Kansas Wg
Kentucky W4
Louisiana
Louisiana 115 115
Maine
Maine 11 11
Maryland ${ }^{1} 3$
Massachusetts W8
Michigan
Michigan
Wo
Wo
Mississipmi W̄
Missouri． Ho
Montana
MontanaW7 WyomingH3
South Carolina H_{4}
South Dakota W0
Tennesser 114
Texas 12
I＇tah H_{7}
Vermont W1
Virginia NH_{4}
Washingtom W7
West Virginia W8
Wisconsin 119
117

A．R．R．L．COUNTRIES LIST－Official List for ARRL DX Contest and the Postwar DXCC

Sikkim	にV4．．．．．．．．．．．．．．．．．．Virgin Isdamd．	Pa．．．．．．．．．．．．Bermuda Islands
．1（4．．．．．．．．．．．．．．．．．．．．．．．Tibet		1 Q1 ．．．．．．．．．．．．．Zinzihar
A（12．．．．．．．．．．．．．．．．．．（Ser I）	K．X6．．．．．．．．．．．Marshald INamus	122．．．．．．．．Northern R hodesia
AP ．．．．．．．．．．．．．I ${ }^{\text {akistan }}$	バスi）．．．．．．．．．．．．Camal \％onr	1（）؛．．．．Tanganyika Territory
A188 ．．．．．．．．．Leelaninn	L．1．．．．．．．．．．．Norway	＇（1）．．．．．．．．．．．．．．lienya
（ （unofiriad）．．．．．．．．．．．China		Me．．．．．．．．．．．．．．．．．Uganda
C3．．．．．．．．．．．．．．．．．．Formmsa	1．M（＇1．2，M1） $2, ~$ M＇11，2．．libya	V（\％．．．．．．．Iritish Somaliland
（9．．．．．．．．．．．．．．．．．Munchuria	L．C．．．．．．．．．．．．．．．．．Arpentina	Y（29．．．．．．．．．．．．（＇hagos Islands
Chilo	1－1．．．．．．．．．．．．．．．Invernboury	V28 ．．．．．．．．．．．．．．Mauritils
（．M．CO ．．．．．．．．．．．．．Cuba	1．\％．．．．．．．．．．．．．．．．．．Animaria	Ver．．．．．．．．．．．．．．．Norchelles
（N．．．．．．．．．．．．．．．French Morocer）	M1．．．．．．．．．．．．．．．．．．San Marino	1l1．．．．．iilbert \＆Eilice Istands di
（1）．．．．．．．．．．．．．．．．．Bolivia	M139．．．．．．．．．．．．．．．．．．．（S4en（）E	Ocean Island
（＇R4．．．．．．．．Cape Verdu Islands		V11．．．．．．．．．Sritish Ihoenix Islands
（125．．．．．．．．．．Portugutse（ininea	M1）1，2．．．．．．．．．．．．．．（sere I．I）	V182．．．．．．．．．．．．．．．Miji Islands
（＇R3）．．．．．．．．Principe，sus Thome	MIP3．．．．．．．．．．．．．．．．．（siee I6）	VRS3．．．．．．．．．．．．．．Fanninz Island
（1R6．．．．．．．．．．．．．．．．．Angola	M1） 4 ．．．．．．．．．．．．．．（sine I5）	（ hristmas Island）
（127．．．．．．．．．．．Mozambieque	M1s5．．．．．．．．．．．．．．．．．．（ser SL）	VIR 4．．．．．．．．．．Solomon Islands
（1RS ．．．．．Goa（Portuguese India）	M｜sh．．．．．．．．．．．．．．．．（sore li］）	V18：．．．．．Tonga（F＇ricndly）Islands
（1R4．．．．．．．．．．．．．．．．．．Macau	M102．．．．．．．．．．．．．．．．．．（nere I）	V1ai．．．．．．．．．．．．．．Plitcaira Island
Clio ．．．．．．．．．．Portuguese Timor	113．．．．．．．．．．．．．．．（sice 16）	
©11．．．．．．．．．．．．．．．．．．．．．．．Portugal	1114．．．．．．．．．．．．．．．．（Seer V17）	Vsi ．．．．．．British North Borneos
	M以1．．．．．．．．．．．．．．．．．．．．．．．．Kıwait	Vis．．．．．．．．．．．．．．．．．．． brunei
（13 ．．．．．．．．．．Madeirat Ishands	MP4．．．．．．．．．．．．．．．．．．．．．．．．	Vsi．．．．．．．．．．．．．Barawak
（ \times ．．．．．．．．．．．．．．．．．．． Vrımuay $^{\text {r }}$	Ms4 ．．．．．．．．．．．．．．．．（nee 15）	Vib．．．．．．．．．．．．．．．lloag Kong
1）L．．．．．．．．．．．．．．（iermany	MT1，2．．．．．．．．．．．．．．（svel．I）	Vi7．．．．．．．．．．．．．．．（eyon
IBU．．．．．．．．．．．．Philippune Islands		Vs！．．．．．．．．．dden do sorotra
18t ．．．．．．．．．．．．．．．．．Spain	OF，M134．．．．．．．．．．．．Austria	Vsig．．．．．．．．．．．Maldive Islands
Li．tf．．．．．．．．．．．balearic Islands	Oli ．．．．．．．．．．．．．．．．．Finland	VL．．．．．．．．．．．．．．．．－．India
JiA8．．．．．．．．．．．Canary lsands	OK．．．．．．．．．．．．．．．．（\％echostorakia	
V．19．．．．．．．．．Smanish Moroce	（ N ．．．．．．．．．．．．．．．．．．Belginun	
LIL ．．．．．．．．Live（bish dirue State）	OQ ．．．．．．．．．．．．．．．Belmian Congo	IV，K．．．．．Vnited States of immerica
バス ．．．．．．．．．．．．．．Tangier \％one	OX．．．．．．．．．．．．．．．．Gresuland	SV．．．．．．．．．．．．．．．．．Mexico
bls．．．．．．．．．．．．．．．．． Liberia	OY．．．．．．．．．．．．．．．．．Finerovi	X\％．．．．．．．．．．．．．．．．．．Burma
LiP，EQ ．．．．．．．．．．Iran（Persia）	O\％．．．．．．．．．．．．．．．I Menmark	1．．．．．．．．．．dfrhanistat
Er＇．．．．．．．．．．．．．．．．．．．．Ethiopia	PA．．．．．Nethrermen	II．NDi．．．．．．．．．．．．．．．．．．．．． $1 \mathrm{ram}_{4}$
F．．．．．．．．．．．．．．．．．．．．．．．．．${ }^{\text {eranex }}$	［PJ ．．．．．Notherlands West Indies	1．1．．．．．．．．．．．．．．．．．．（see $\mathrm{F}^{+1+8)}$
FA．．．．．．．．．．．．．．．Alperia	1ド1，2，3．．．．．．．．．．．．．．．．．．．．dava	ソト．．．．．．．．．．．．．．．．．．．syria
FB8．．．Ansterdan of St．Danl lislands	1ト1．．．．．．．．．．．．．．．．．．．．．anatra	1－．．．．．．．．．．．．．Steramua
FB8．．．．．．．．．．．．．erguden lslands	1＇65．．．．．．．．．Setherlands Bornes	Y（）．V＇K．．．．．．．．．．．．．Roumania
1138．．．．．．．．．．．．．．Mandagascar		Is．．．．．．．．．．．．．．．．．${ }^{\text {calsador }}$
IPC ．．．．．．．．．．．．．．．．．．．Conrimat	1＇if．7．．．．Netherlands New（binma	IT． 1 I ．．．．．．．．．．．．． ）Mgoslavia
FD8 ．．．．．．．Freneh Tomgland	P－．．．．．．．．．．．．．．．．．．．．．．．Andorra	リヒ．．．．．．．．．．．．．．Venezuela
	p	\％1．．．．．．．．．．．．．．．Albania
F188．．．．．．．．．French West Africat	1\％．．．．．．．．．．Netherlands（inianat	\％i31．．．．．．．．．．．．．．．．．．－Malta
1 1：88．．．．．．．．．．．．．．．．．dinadelonism	N．1 ．．．．．．．．．．．．．．．．．Swedent	\％ise．．．．．．．．．．．．．．．．（ibloraltar
FI8．．．．．．．．．．Fromeh Indo－（ ${ }^{\text {china }}$	EP．．．．．．．．．．．．．．Pdand	\＃1＇1．．．．．．．．．．．．．．．Transjordan
1¢188．．．．．．．．．．．．．Nuw（abeclonia		Y－．．．．．．．．．．．．${ }^{\text {comens Islands }}$
F1，8．．．．．．．．．．Firench somatiand		7！3 ．．．．．．．．．． （lıristmas Istamd
F－M8．．．．．．．．．．．．．．Martinithie	SV．．．．．．．．．．．．．．．．．．．． irerer	
｜×．．．．．．．．．．．．．French India	Ni．．．．．．．．．．．．．．．${ }^{\text {rete }}$	
FO8．．．French Oceania（1．x．，Tahiti）		
JP8．．St．Jierre de Miomelon Islathls	TA．．．．．．．．．．．．．．．${ }^{\text {Inurke }}$	หIJセ．．．．．．．．．．．．．．．．．．．．．．Nigeria
FQ8．．．．．．French Eidnatorial Ifriora	PF．．．．．．．．．．．．．．．．．．．Iterland	\％13）．．．．．．．．．．．．－．（iambia
Fli8 ．．．．．．．．．．．Rematon Island	T（i．．．．．．．．．．．．．．．．．．．．．．（buaternala	\％1）1．．．．．．．．（iold Coast Togoland
FI＇8，Y＇J．．．．．．．．．New llehridass	TI ．．．．．．．．．．．．．．．${ }^{\text {Costar Rica }}$	ZID（ ．．．．．．．．．．．．．．．Nyamaland
F゚Y＇8 ．．．．．．Freneh（iniana \＆Lnini	T1．${ }^{\text {Pr }}$	\％177．．．．．．．．．．．．．．．sit．Helena
（9．．．．．．．．．．．．．．．．．．．．．lingland		ZIXX．．．．．．．．．．Ascension Island
	－Suchalist Ferlorated Sowiot Remublic	7I39．．．．．．．．．Tristan da Cunha \＆
（il）．．．．．．．．．．．．．．．．Isle of Man	［19，\％．．．．Asiatic Russian s．t．s．R．	（iongh Island
（i1．．．．．．．．．．．．．．．．Northern Ireland	［135．．．．．．．．	\％K ．．．．．．．．．．．．Southera IRhorlesia
（iM ．．．．．．．．．．．．．．．．．．seotland	1002．．．．．．．．White Russian Soviet	Ziil．．．．．．．．．．．．Cook Islands
（iw．．．．．．．．．．．．．．．．．Wates	Socialist IRpmblic	\％パン．．．．．．．．．．．．．．．．．．．．Niぃe
11．．．．．．．．．．．．．．．．Jungary	［1ヵ¢ ．．．．．．．．．．．．．．．dzarbaijan	\％I．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．Zealand
111．．．．．．．．．．．．．．．．－－witzerland	1r6．．．．．．．．．．．．．．．．．．．．．． （ ienrmia	
118．．．．．．．．．．．．．．．Wruarlor	U（16．．．．．．．．．．．．．．．．．．．．．．Armenia	
115．．．．．．．．．．．．． dirchtenstain	C118．．．．．．．．．．．．．．．．．．．Turkoman	
1111．．．．．．．．．．．．．．．．．．llaiti	118．．．．．．．．．．．．．．．．．．．lzalek	2ai，2，1，5，6．．Union of Kouth Africa
111. ．Dominican Requblie	1．J8．．．．．．．．．．．．．．．．Tradzhik	2n．3．．．．．．．．．．．．．．．．．．．．Southrvest Africa
11．．．．．．．．．．．．．．．．．．．．Colondia	11，7 ．．．．．．．．．．．．．．．．．．azakh	\％． 7 ．．．．．．．．．．．．．．．．．．swaziland
	UMX ．．．．．．．．．	\％，8x．．．．．．．．．．．．．．．．Basutoland
IIP ．．．．．．．．．．．．．．．．．Phanama	（TN1 ．．．．．Karelo－Finnish Republie	7x！．．．．．．．．．．．．Bechuanaland
IIR ．．．．．．．．．．．．．．．Hondhras	［05．．．．．．．．．．．．．．．．．Moldavia	3．11．2．．．．．．．．．．．．．．．．．．．．Monaco
	U12．．．．．．．．．．．．．．．．．．．．．Lithuania	BV8．．．．．．．．．．．．．．．．．．Tunisia
	¢92．．．．．．．．．．．．．．．．．．Aatsiat	1X1 ．．．．．．．．．．．．．．．．． Israrl
II\％．．Sauti Arabia（llerljaz \＆Niojd）	112 ．．．．．．．．．．．．Estoniat	＠ー4 ．．．．．．．．．．．．．．．．．．．．．
I．．．．．．．．．．．．．．．．．． Italy $^{\text {a }}$		Adisbra Islands
	V15．．．Anstralia（inchoding Tusmatia）	Andaman and Nicobar Islands
1i．MD4．ME4．．．．Italian Somabiatul	V16．．．．．．．．．．．．．．．．．．．．Heard Isand	Andaman and Nicobar Islands
If，M1）3，M13．．．．．．．．．．．Eritre：4	Vki．．．．．．．．．．．．．Maçuarie Ishand	ntaretiea
Is．．．．．．．．．．．．．．．．．．Sardinia	Vk9．．．．．．．．．Papua＇larritory	1
J．．．．．．．．．．．．．．Japan	YK！．．．．Perritory of Naw（inima	perton Island
Jib．．．．．Bonin \＆Volcano Ishamds	Fk！．．．．．．．．．．Norfolk lsland	o．noror Istands
K．．．．．．．．．．．．．．．．．．．（See W）		Fastur Island
	VP1．．．．．．．．．．．．British Ilonaduras	Fridtjof Siansen Land
Phoenix Islatuds	VP．．．．．．．．．．．．Lenward Islands	（Franz Josef Land）
L19 \％．．．．．．．．．．．．Cituline Islands	vie．．．．．．．．．．Windward Islands	．（ialapagos Islames
KC0．．．．．．．．．．．．．Palau Ishands	YP3．．．．．．．．．．．．．．British Guiana	．．．．．．．．Ifni
KG4．．．．．．．．．Cuantamano Bay	VP4．．．．．．．．．．．Trimidad \＆Tobago	M Mayen Island
k（i6．．．．．．．．．．Mariana lshands	VPb．．．．．．．．．．．．．Cayman Islands	Marion tslund
bilf6．．．．．．．．．．．Hawaiian lstands	V＇P5．．．．．．．．．．．．．Janaica	．．．Mongoliz
KJ6．．．．．．．．．．．Johmston Islamd	V1ro．．．．．．．．＇Turks de（＇aicog lslands	Nepal
K1．7．．．．．．．．．	VPr．．．．．．．．．．．．．．．．．．．．．．．．Isarbados	
バ\6．．．．．．．．．．．Midway Lstands	I＇P．．．．．．．．．．．．Ihahama Ishands	
K14．．．．．．．．．．．．．．．Puerto Ria）	Pre．．．．．．．．．．．Fralkland Islands	danish Guinea
	V＇r．．．．．．．．．．．．．．iouth（ieorgia	Tanmu Tuca
KR6．Kyykyi lshands（e．c．．Okinawa）	VPr．．．．．．．．Nonth（rkney Islames	（Thon）Islands
KS4．．．．．．．．．．．．．．Swan Island	V18．．．．．．south randwich Islamds	Wrangel lslands
KS6．．．．．．．．．．．American Samoa	V＇X．．．．．．．．south shetland Islands	Yemen

Vacuum-Tube Data

For the convenience of the designer, the re-coiving-type tubes listed in this chapter are grouped by filament voltages and const ruction types (glass, metal, miniature, etor). For example, all 6.3-volt metal tubes are listed in Table I, all lock-in base tubes are in Table III, all miniatures are in Table XI, and so 011.
'Transmitting tubes are divided into triodes and tetrodes-pentodes, then listed areording to rated plate dissipation. This permits direct comparison of ratings of tubes in the same power classification.

For quick reforence, all tubes are listed in numerical-abphabetioal order in the index begiming on the following page.

Tube Ratings

Vacuum tubes are designed to be operated within definite maximum (and minimum) ratings. These ratings are the maximum safe operating woltages and currents for the electrodes, based on inherent limiting factors such as permissible cathode lemperature, emission, and power dissipation in clectrodes.

In the transmitting-tube tables, maximum ratings for chectrode voltage, current and dissipation are given separately from the typical oporating conditions for the recommended classes of operation. In the receiving-tube tables, because of space limitations, ratings and operating data are combined. Where only onc set of operating conditions appears, the positive electrode voltages shown (plate, sereen,
ete, are, in general, also the maximum rated voltages for those electrodes.

For cortain air-cooled transmitting tubes, there are two sots of maximum values, one designated as CCs (Cominuous Commoraial Service) ratings, the other ICAS (Intermittent Commereial and Amateur Service) ratings. Continuous Commercial service is defined as that type of service in which tong tube life and reliability of performance under continuous operating conditions are the prime considerat tion. Intermittent Commercial and Amateur serviee is defined to inchude the many applications where the transmither design fartors of minimum size. light woight, and maximum power output are more important than long tube life. ICAN ratings are considerably higher than CC s ratings. They permit the handling of greater power, and although such use involves some saterifice in tube life, the period over which tubes will continue to give satisfactory performance in intermittent service can be extremely long.

Typical Operating Conditions

The typical operating eonditions given for transmitting tubes represent, in general, maximam ICAs ratings where such ratings have been given by the manutacturer. They do not represent the only possible method of operation of a particular tube type. Other values of plate voltage, plate current, grid bias, ete., may be used so long as the maximum ratings for a particular voltage or current are not exeneded.

INDEX TO TUBE TABLES

1-6.3-Volt Metal Roceiving Tubes... V13 II - 6.3-Volt (ilass Tubers with Octal Bases Vit III - $\mathbf{7}$-Volt Loek-In Base Tubes. V V 16 IV - 6.3-Volt Gilass Receriving Tubes... VI7

VI - 2.0-Volt Recuiving Tubes........ V19
VII - 2.0-Volt Tubes with(ortallases. V20
VIII - I. $\overline{0}$-Volt Battery Tubes........ V21
IX - High-Voltage Inater Tubes..... V22
X - Special Recoiving Tubes......... V24
XI - Miniature Receiving Tuhes..... V26

XII - Subminiature Tubes........... V29
XIII - Control and Regulator Tubes.. V31
XIV - Cathode-Ray Tubes and Kinescopes. V:32
XV - Reetifiers. 136
XVI - Triode Transmitting Tubes 「39
XVII - Tetrode and P'entode Transmit- ting Tubes $V 0$
XVIII - Klystrons V 5
XIX - Crystal Triodes. $V 5$
XI - Cavity Magnetrons $V 57$

BASE TYPE DESIGNATIONS

The type of base used on each tube listed in the tables is indicated in the base column by a letter whose meaning is as follows:
$\mathrm{A}=$ Acorn
13 = (ilass-button miniature
$\mathrm{B}_{\mathrm{s}}=$ Glass-button subminiature
J = Jumbo
$\mathrm{I}_{4}=$ Lock-in
$\mathbf{M}=$ Medium
$\mathrm{N}=$ None or special type
$\mathrm{O}=$ Octal
$\mathrm{S}=$ Small
$\mathbf{W}=\mathbf{W a f e r}$

INDEX TO VACUUM－TUBE TYPES

For convemence in locating data on sperific tube types the index below lists all tubes in numerical－alphabetical order，showing the page number where individual tubes may be found in the classified－data section（pages Vli3－V59）and the identifying base－diagram number in the base－diagram section（pages V5－V12），

Type	Pave	Base	Type	Pape	Rase	Type	Page	Hase	Type	Page	Iase	Type	Page	Base
（1）－A	1	41）	2136	V19	7 J	3K27	V5	Fig． 59	6AF6G	V17	7.19	6H8G		NE
11	\cdots	＋1）	2137	$\checkmark 19$	711	3 k 30	$\checkmark 58$	FiF． $5 \times$	6AF7 ${ }^{\text {a }}$	－15	8A（	6 W 4.	$\stackrel{27}{ }$	7102
リА2	53	5130	21322	V14	F14． 37	3 KP	$\checkmark 34$	1121	6．Ac	－26	$711)$		113	60
013	$\bigcirc 33$	4AJ	21325	$\checkmark 38$	$3 \mathrm{r}$	$31,$	$\because 24$	6BA	6 A （ibl	V15	7s．	6J6	$\because 27$	7135
1145	132	＋6） 33	$213 P 1$	V33	121＊	31.54	$\because 24$	$6{ }^{6313}$	6Aci	－13	8 Y		41	7 Fl
1145 014	Y32	${ }_{5130}{ }^{\text {Fly }}$	20.2	$\checkmark 33$	5A	$3 \mathrm{MP1}$	231	Fig． 2	$6 .$	${ }^{5} 5$	8 8	6J7	V13	7R
1113	$\checkmark 33$	4 AJ	2×21	$\stackrel{1}{4}$	713 H		2		6a！	15	6A		115	8H
$0<3$	$\checkmark 33$	4AJ	$2(22$	－14	4AM	$3 \mathrm{RP1}$	$\checkmark 34$	12\％	6A1177 ${ }^{\text {6A }}$	V15	718	6K¢ 6 ¢ ${ }^{\text {¢ }}$	131 1.5	51゙
11133	133	4AJ	2 （＇22	$\stackrel{4}{1}$	4AMI	3 H 4	$\checkmark 26$	713A	6 ¢J5	\cdots	7 PM	6K60＇	115	50
014	138	4HU	$2(25$	V42	$41)$	3 V 4	$\checkmark 26$	613 x	6AJ7	113	8N	6K7．．．	$\checkmark 13$	，
10\％4	138	412	2（ 26.4	V41	4B13	3－25A3	$1{ }^{12}$	$3<1$	$6 \mathrm{AK5}$	$\checkmark 26$	713）	${ }_{6} \mathrm{~K} \times$	113	8R
（124	Y39	412	2 34	$\checkmark 42$	T－71）（	3－251）3	$\checkmark 4$	213	6AK6	126	713 K	6 L 4	12	7131
	138	$4{ }^{4}$	2 C 35	V25	Ely． 38	3－50A4	$1+4$	3 F	6 AK 8	$V 52$	78K	61．5C	115	60
143	$y 26$	5AP	$2{ }^{2} 36$	941	Flk． 36	3－501）4	54	21	6AK7	$\checkmark 13$	$8{ }^{\text {8 }}$	$6 \mathrm{L6}$	$\checkmark 13$	7A10
1ATP	$\stackrel{19}{ }$	4 1	2） 37	141	Fik． 36	3－506 ${ }^{3}$	V4	2 l	6 AL5	$V 26$	613 T	61．43	$\checkmark 53$	7 Ac
14AT	V19	4 K	${ }_{2}^{2(39)}$	$V 48$		3－75A2	$\checkmark 46$	$2{ }^{2}$	6A L69	V15	6AM	$6 \mathrm{L6G}$	553	7 Ac
1As	$\bigcirc 1$	6 C	2（39A	$\checkmark 48$		3－75．4	V48	211	6A1．7；	15	8 ClH	$6 \mathrm{~L} 7$	13	71°
$\begin{aligned} & 1 A 6 \\ & 1 \end{aligned}$	$\stackrel{1}{19}$	6L	$\xrightarrow[20]{20} 4$	Vt1	Flg． 19	3－100A2	V47	$21)$	6AM5	$\stackrel{26}{ }$	6C1I	6M5	$V 27$	\％
14135	－21	513 F	2 C 4	V25	Flg． 17	3－100A	$\checkmark 48$	21）	6AM6	＋26	71313	6M6G	－1．5	7 R
1.11	130	Fig， 14	$2 \cdot 51$	$\checkmark 26$	$8{ }^{8} \cdot 5$	3－150A2．	$\stackrel{4}{4}$	4BC	6 ANB	V27	713J	6．18G	115	8AU
1.105	V30	Fig． 16	2121	$\checkmark 33$	7BN	3－150A3	V 49	413 C	6 AN 7	$\cdot 27$	$9{ }^{9}$	6 N 4.	$\because 7$	$7{ }^{\circ} \mathrm{A}$
1AE4	\％6	6AR	2 E 5	$\checkmark 19$	6R	$3 \mathrm{X}-150 \mathrm{~A} 3$	V49		6 AQ 5	V27	7B\％	6 N 4	4	7 CA
1AF4	126	6AR	$\bigcirc \mathrm{E}^{2}$	Vis	5 J	3－200A3	50	Fig． 52	6AQ5	$\bigcirc 5$	7138	6×5	$\checkmark 17$	6 R
1AF5	126	6．4	$2{ }^{2} 4$	$\underline{52}$	7CL	3－250A2	－ 50	2N	6AC6	V27	715	6×60	15	7AU
11336	138 $V 19$	3）	2 L 25	553	${ }^{513} \mathrm{~J}$	$3-250 \mathrm{~A} 4$	V50	2N	6 AR 27	$V 15$	${ }_{6}{ }^{\circ} \mathrm{K}$	6×7.	${ }^{1} 13$	813
1134 P	$\stackrel{19}{ }$	4M	2 C 26	V52	7＇K	3－300A2	$\checkmark 51$	4 BC	6AR5．	$V 27$	6CC	6． 77	$1+1$	S13
135	Y19	6MI	2 230	V26	7 CQ	3－300A3	$V 51$	$4 B C$	6AR6	V15	$613 \times$	6 N 8	$\checkmark 27$	$9{ }^{1}$
1376	121	7\％	2 230	5	$7{ }^{7} \cdot \mathrm{C}$	＋A69；	$\checkmark 20$	81.	6 AS5	$\checkmark 27$	CV^{7}	$6{ }^{65}$	${ }^{1} 15$	6
138 CH	121	8AW	2 F 31	130		＋A6	Y：4	81.	6AS6	$\checkmark 27$	7 CM	$6{ }^{\text {P }} 7 \mathrm{Ca}$	115	7 H
11347	$\bigcirc 32$		21332	\checkmark	－	4C32	$\stackrel{5}{50}$	2 N	6AS74	515	81311	${ }_{6} \mathrm{PNG}$	115	8 K
18348	138		2153	$\checkmark 30$		4×34	V70	2N	6AT6．	127	715 T	$6{ }^{2} 4$	V2x	$9{ }^{\text {d }}$
125	V21	6X	2	＋30	－	$4 C 36$ 41921	V48	${ }_{513 \mathrm{~L}}^{\text {F1g．}} 56$	6Al：5C	15	6CK	6256	33	00
$1{ }^{1} 6$	120	61.	2 C 42	$\checkmark 30$		4122	$\checkmark 55$	Fik． 50	6Avscir	$\cdots 5$	$\mathrm{6CK}^{\text {¢ }}$	$\begin{aligned} & 6<26 \\ & 6927 \end{aligned}$	$\stackrel{1}{+1}$	${ }_{7} \mathrm{~V}$
1 C 7	Y0	78	2 （35	$V 19$	6 R	41123	V 56	513 K	6AV6．	$\checkmark 27$	$7{ }^{\text {7 }}$	614		R
108	Vis		2 （121	130		41）32	V55	Flg， 51	6AXicir	$\checkmark 38$	4CG	6 Kf	$\checkmark 15$	6．4
1021	132	4 Y	$2(122$	V30		4 E 27	V55	7131	6AX59＇r	V38	6s	6 R 7	V13	7 V
$11) 54$	$\checkmark 20$	5 Y	2 J 42	559		4E；27A	Y 56	73M	6AX6：	V38	71	6R8	V28	91
11550	$\underline{20}$	5 L	2 J 42 A	$\checkmark 59$		4 J 50.	$\stackrel{5}{59}$		6134（	V15	$5{ }^{5}$	$6{ }_{64} 4$	Y28	9 AC
$11) 7 \mathrm{G}$	$\underline{4}$	7%	2 2 25	57	Wh． 60	4J52	V59	－	6135	－18	6As	6N6C	$\checkmark 15$	5 K
lusk	\21	8AJ	2 K 26	$V 57$	${ }^{\text {b／bly }} 60$	4 J	$V 59$		61360	$V 15$	7	687	13	7R
1E4	121 +20	${ }_{5}^{5 \mathrm{~S}}$	${ }_{2} \mathrm{~K} 283$	$V 57$ $V 57$	Flig． 61	4×150	V56	T－9J	6137	V18	71）	688 C	$V 15$	$8{ }_{8}^{813}$
15.5	$\begin{aligned} & 120 \\ & 120 \end{aligned}$	5Y	${ }_{2}^{2 K 33}$	$V 57$ $V 57$	Flig．${ }^{68}$	4×1506	$\stackrel{56}{ }$		6138	$\checkmark 13$	81：	68 6，	$\checkmark 13$	8 R
$1 \mathrm{~L} / 8$	＋30	1／ig． 27	2 K 35	V57	Fig． 58	－125A	$V 56$	${ }^{513 \mathrm{~K}}{ }^{48}$		$\checkmark 27$	7 C C	$\mathrm{6mP}^{68}$	$V 13$	88
1 F	120	5K	2 K 39	V 57	Fix． 59	4－250A	$\checkmark 57$	513K	$6{ }^{\text {6a }} 7$		8 CT	6s D7 \％	$\checkmark 15$	8 M
15	V20	6 X	2 K 41	$\checkmark 57$	FIg． 59	4－400A	V57	513 K	$6 \mathrm{BC5}$	V27	7131）	6SHP7 ${ }^{\text {are }}$	$V 15$	8 N
1156	520	6W	2 K 42	$V 57$	F18． 59	5 S6	$\checkmark 52$	91.	$613 C 7$	$\checkmark 27$	9AX	6 SF 5	V14	6AB
117	120	7A1）	2 C 43	$V 57$	Fig． 59	$5 A P 1$	$\checkmark 34$	11 A	613 m （919	V15	6 CK	6 SF	Y14	7AZ
1）4	V21	5 S	2 K 44	V57	F1g， 59	$5 \mathrm{~A} \times 4 \mathrm{C}$	$V 38$	5 T	61316．	$\cdot 27$	7 CC	6sci7	14	813K
16.59	V0	6 N	2 L 46	$V 57$	Fig． 58	$5 \mathrm{~S} / 4$	V38	$5{ }^{\text {5 }}$	613 D 7	$\checkmark 27$	97	68117	11	813
1）${ }^{\text {a }}$（19］	121	7AB	2 K 47	Y 57	Flg． 58	${ }_{53}{ }^{\text {P1P1 }}$	$V 34$	11A	613 F6	V27	7 CH	681171	V16	XBK
1114	V20	5	2 K 56	1.67	F1g． 60	5 CPI	$\checkmark 34$	1413	6 BF 7.	$\stackrel{27}{ }$	9AA	6＊J7．	$V 14$	$8 \times$
1115	121	5／	$2 \mathrm{c} / 4 \mathrm{~S}$	¢19	$51)$	5 C 24	$\stackrel{50}{ }$	Fle． 26	613 F 5	$\stackrel{\rightharpoonup}{27}$	713Z	6\＄J7	V1t	8
1116	120	7AA	2V3（	V38	4 Y	5122	$\checkmark 57$	513K	633 Fb	V27	713T	$6 \mathrm{KK7}$	V14	S．
15.56	$\because 20$	6x	2 W 3	Y38	4 N	51124	$\underline{57}$	513 K	6 BF 7	$\checkmark 30$	819	6s1，7ci	$\checkmark 16$	81313
$1 \mathrm{Jti}{ }^{\text {d }}$	120	7A13	2 N	$\checkmark 38$	4AB	$5 \mathrm{FP1}$	$\checkmark 34$	5 AN	613 G 6	Y15	513 T	6SN7MT	16	8131）
1L4	V28	6AR	${ }_{2} \times 2-4$	138	4AB	$511 P^{\prime}$	134	11 A	6BG7	V30	813 C	6SN7GTA．		SR1）
11.8	＋26	7D（	2 Y 2	V38	4 AB	$5 \mathrm{JP1}$	534	11E	613116	$\stackrel{1}{27}$	7 CM	6 S （27．．．．	114	8（2）
1 LA 4	121	5AI）	$\because 72$	V38	43	5 LPI	$\checkmark 34$	11 F	61355.		6CiI	6SR7	114	8（2）
11.46	V21	7AK゙	3 A 4	46	713 B	$5 \mathrm{MP1}$	$\checkmark 34$	7AN	6356	$\checkmark 27$	7（：M	6847.	Y 14	$8{ }^{2}$
11.134	V1	5A1）	3 A 4	52	783	5 F （i）	$V 38$	5 T	6 K K 6	$V 27$	713T	6 6T7	\cdots	8（2）
11136	$\stackrel{21}{ }$	8AX	3 35	$V 26$	7 BC	5 KP 1	$\checkmark 34$	$14{ }^{\text {＋}}$	613 L 6.	$\checkmark 58$		6 6U7civy	$+16$	8131
1 LC 5	21	7A\％	3A5	41	$7 \mathrm{BE}{ }^{\circ}$	$5 \Gamma 4$	438	5 T	61 L 7 CT	Y15	8130）	6SV7．．．．	$\cdot 14$	7AZ
11×6	$\because 1$	7AK	3A8G	V24	8 AS	5 T 4 P 4	$\checkmark 34$	12C	613 M6．	$\checkmark 58$		6877	V 14	$8{ }^{\text {8 }}$
$1 \mathrm{~L} 15^{5}$	$V 21$	6AX	3AP1	$V 34$	7AN	5 CHG	$\downarrow 38$	5 T	63N6	$\vee 27$	71）F	$6{ }^{6} 5$.	$\stackrel{18}{ }$	6 K
11.163	121	4AA	$3 \mathrm{B4}$	V52	7 CY	$5 \mathrm{SP1}$	± 35	12E	613×7		Fly， 41	6T6CiM	V16	62
11.15	＋21	${ }_{5} \mathbf{A O}$	${ }_{3 \mathrm{BH}}{ }^{\text {3 }}$	V24	7AP	$5 \mathrm{5V4}$	$V 38$	5 L	6 B （77	$V 27$	9AJ	6 T 7.	V14	7 V
11.14	V21	5AC；	3 B 7	4	7BW	5 W 4	$\checkmark 38$	5 T	6BT6	$\checkmark 27$	$713 T$	6 T 8	128	9 b
11.05	121	${ }_{5}{ }^{\text {O }}$	$3 \mathrm{B7}$	4	713 E	5WPI1	$\checkmark 35$	12 C	$6 \mathrm{BU6}$		713 T	6U4C：	$\checkmark 38$	4 ${ }^{\text {a }}$
$1 \times 5 \mathrm{l}$	$V 21$	5 F	3 B 24	$\checkmark 38$	T－4A	$5 W P 15$	$V 35$	12C	63 W 6	$\checkmark 27$	9AM			
1 N6G	121	7AM	3425	$V 38$	4 P	5×3	$\checkmark 38$	4 C	$6 \mathrm{BY5}$ ：	$\checkmark 38$	60N	6U6GT	V16	7AC
1P5GT		5 Y	31326		F1g． 31	$5 \times 4 \mathrm{C}$	$\checkmark 38$	59	613（26GT	$V 15$	6AMI	6U7G．	$V 16$	7 H
120irt	$\checkmark 21$	6AF	$3 \mathrm{3H27}$	$\checkmark 38$	${ }_{4 P}^{4 P}$	5 5 3 C	$\checkmark 38$	$5 \cdot$	$8 \mathrm{BC}_{4}$		613G	6158.	$\vee 28$	9 AE
114	$v 21$	4AII	$3 \mathrm{B28}$	V38	4 P	5 F 4	738	50	6C4	$V 27$	613 C	6 V 4	V3s	
185		7AT	3 BPP		14A	573	V38	4 C	6C5	V13	$6{ }^{6}$	6V6	Y14	7 AC
1s4		7AV	3C5GT	$\stackrel{+}{ }{ }^{24}$	7AQ	574	$V 38$	5 L	${ }^{6 C 6}$	V18	6 F	6V6く＇	V52	7AC
15.		6AU	$3{ }^{3} 6$	$V 24$	7313	57 P 16	V35	Flg． 46	8 C 7	V18	7c	6V76	$V 16$	7 V
		8DA	3 C 22		Fig． 30	5－12513	$V 56$	71 M	6C8G	V15	8 C	6 V 8	128	9 AH
1上A60	121	6CA	$3 \subset 23$	$\checkmark 33$	3 C	6 A 3	V17	4 D	6 Cl 36		7CM	8W4 ${ }^{\text {d }}$	$V 38$	4 CO
1S136：	$V 2$	${ }_{6}^{6 C 13}$	$3 \mathrm{3C24}$	$\checkmark 43$	21） 56	6 A 4	$V 17$	5B	$8 \mathrm{CDP8}$	$\checkmark 15$	513 T	6W5G	V38	
1T4．	${ }^{2} 1$	6AR	${ }^{3 C 28}$	Y 43 Y 4	Fig． 56	6 A 5	V14	${ }_{7}^{6 T}$	6 CG 6		713 K	6WBGT	V16	7AC
1 T iT	Y）	6AF	${ }_{3}{ }^{3} 134$	$V 43$	3 C	646.	$V 17$	${ }^{7 \mathrm{CH}}$	6 D 4	$\checkmark 33$	5 AY	6W76．	$V 16$	7 R
176	V30	${ }_{6 i g}^{\text {Fig }} 2 \mathrm{~L}$	$3 \mathrm{3C37}$	$\stackrel{7}{ }+1$		6A6M5	$\stackrel{26}{ }$	6CH	6176	$V 18$	6 F	6X4．	V：38	$7{ }^{\prime} \mathbf{F}$
11.4	V26	6AR	$3{ }^{3} \mathrm{D}$	$V 21$	$6 \mathrm{6BB}$	6.47	$V 17$	7 C	6177.	$\checkmark 18$	711	6×5	Y 38	6 S
115	V26	613W	3176	$V 52$	6 CH	6A8	$V 13$	8A	61）8（	$\checkmark 15$	8A	$6 \times 6{ }^{\circ}$ ．	$\checkmark 16$	7AL
116	V26	7190	3 D 23	V54	Fig． 54	6A134	V12	5CE	$6 \mathrm{EL5}$	F18	612	6×8.	$V 28$	9 AK
1－5	V38	${ }^{4} 9$	31224	$\checkmark 55$	T－9J	6A ${ }^{\text {6 }}$	$V 17$	6 R	6E6	$V 18$	73	6 Y 3 F	V38	4
1 V 2	138	9 U	$31) P 1$	V34	Flg． 49	6A 360	$V 14$	7AU	6107	$\stackrel{18}{ }$	71	615	538	6 J
165	$\checkmark 30$		3DE3		F1g． 40	6AB7	$V 13$	8N	6 F 8 C	$V 15$	80	$6 \mathrm{Y67}$ ；	$V 16$	7 AC
1W4	Y26	5H7	$3 E 5$	$\checkmark 26$	${ }_{78 \mathrm{C}} \mathbf{8}$	6AC5C＇T	$V 14$	${ }^{60}$	6 F 4.	$v 24$	713 R	6Y76	$V 16$	8B
1 W	$V 30$ $V 3$		3E6 3 E 22	$\checkmark 21$	7 CJ 88	6AC＇69	V13	7AU	$6 \mathrm{CH}^{6}$	Y11	713 R	673．．	V138	4 C
1×2	$\stackrel{188}{+18}$	${ }_{9}^{9 Y}$	$3 \mathrm{3E22}$	$\checkmark 54$	8BY	$6 A C$ $6 A \square$	V13	8N	$6 F$	V13	5M	6\％4	739	51）
1Z2．．		${ }_{7}{ }^{\text {Cl3 }}$	$3 \mathrm{FP1}$	V34	11 A	6 ADSC	V14	6Q	6 F6．	＋ 52	75	675	$\checkmark 38$	6K
2.43	V19	4 D	$3 \mathrm{FP7}$	V34	1413	6AD ${ }^{\text {d }}$ ；		7 AG	$6 \mathrm{~F}^{7}$ ．		7 E	6277	118	83
2 A 4	V32	5 S	$3 \mathrm{GP1}$	V34	11 A	64 D 7 （	V14	8AY	6F8C	$\checkmark 15$	8 B	$6 \mathrm{6Y5C}$	V：38	68
2 A 5	V19	${ }_{68}^{68}$	3 J 31	＇59		8A E5C	Y14	69	6 C 5.	V 18	6 R	7A4	V16	5AC
2.46	V19	6C	3JP1	V34	14B	6A E6GT	V15	7AH	6G8G．	$V 15$	7N	7 A 5	$V 16$	6AA
3.4	$V 19$	7 C	3 K 21	V57	Fig． 58	BAE7GT	$V 15$	7AX	6 H 4 GT	V15	5AF	7AB	V16	7AJ
2 API	V33	113	3 K 22	V57	Fig． 58	6AE8．	V26	9Q	6H5．．	－18	6 R	7 A7．	V16	
2154	V33	5A	3K23	V57	FIg． 59	AF5C	V15	89	6116		74	7 A 8	V16	8U

Type	rage Base	7ype	Pape Base	Type	Fage Brse	Tupe	Page Buse	Tupe	Page Binse
$7 \mathrm{AB7}$	Y25 8130	12076	1227	$2513 \mathrm{cts} \mathrm{CO}^{\circ} \mathrm{C}$ ．	V23 GAM	112－A	125411	434	
$7 \mathrm{AlP7}$	$V 16$	$124{ }^{\text {P／}}$	53.5 Fig． 35	25969	V3 7AC：	1171.76 C	$\because 23810$	$\times 35$	147
7A ${ }^{\text {\％}}$	Vlf sat	12RP4	\％35 121）		V3 8Al：	117177 （it	539 AlO	x：316	139＋5
$7 A(17$	$Y 1685$	12．8s；	1228013	$2{ }^{2} 56$	$\because 3 \mathrm{7AC}$	117M7C1T	Y23 8AO	437	
$7 \mathrm{Al17}$	Y16 8V	12 SA 7	12\％ 818		V23 7W	117ג76．	$\checkmark 398 \mathrm{AO}$	－38	Y48 bex
$7 \mathrm{AJ7}$	± 168	12 sc 7	12\％		Y19 6M	1787\％	$\because 238 \mathrm{AV}$	840	120 d
$7 \mathrm{AK7}$	${ }^{Y 16} 585$	12 N	Y2\％HAB	2 ar	14230	117N7\％	V39 8AY	＊11	143 11
$\begin{aligned} & 7 \mathrm{Al} \mathrm{\prime} \\ & 7 \mathrm{B4} \end{aligned}$		12SF7			138 ${ }^{10} 9$	117P79	Y23 8AV	＊ 414	145 31
7185	V16 6AF	12×17	－2\％x15	2－i4tij	V39 5AA	${ }_{11783} 18$.	$\because 39$ 41R12	S11id 813	－4，31
7146	＇16 8W	12 s 17	12y N	$25{ }^{2} 5$	（30 61\％	1178469	139 bat	$\times 1.3$	－23 5w
7137	Y16 8V	12Sk7	122	$25 \% 3$	V34 1f	1172mit	13980	819	－31 ？－1
7118	1168	12s17\％	122 81311	25\％4	V39 SAA	12xAs	132 54	¢ 510	－26 10.34
714 P 1	V35 5AN	128ヘ7\％1	V22 sist	2575	1339 812	1.510	1492 N	\＄52	V4x 21）
	Ves 4A11	12sir	V34 1213	26\％5W	V39 gins	15 T 1	V49 413 C	（fio）	V56 T－413
$7(5$	117644	12sid ${ }^{\text {d }}$	$\because 2$	2， 20.10	V39 70	152 ${ }^{1} 10$	Vi9 4 BC	$\times 161$	－57 T＇143
76	V17 8W	12S127	12．N	06.	（2） 41	183	V25 41）	864	V25 41
$7{ }^{\prime}$		12S以7		26A6t	－298 713 k	143	V25 110	86.5	$43 \mathrm{~T}+4$
7 7 ＇P1	V17 ${ }^{\text {V }}$ SAR	12587	123（131）	26Bk6	Ye9 783	20， $213-1$	V17	$\times 6.5$	Y39＋1
$\begin{aligned} & 7137 \\ & 7101 \end{aligned}$	V17 sAl？	1087	13t	2_{26}^{20176}	（203 ${ }^{2181}$	（1）3－11	Y47 30		134 $\forall 39$ 10
715	$\because 25810$	12191	133131）	256	159713 k	2150	（12＋1）	Stitijr	V39 18
T1ti	117	1283	134 1：	2.116	$\because 27$	211.	147 14：	4.71	V39 1P
7 F 7	V17 8AF	127.	3×11		119 5A	ごきー	151 1－2A	s7：	V39 1．17
${ }_{3} \mathrm{HPP}_{4}$	V35 11N	1A4	12980	240	124 N18	$\bigcirc 17 \mathrm{~A}$	V39 +A	$\times 2 \mathrm{~A}$	（39 4AT
${ }^{7}+7 \times$	117 $V 17$ sAG	1145 14.75	－2 ${ }^{4} 4$	238／5		2178 2274	$\begin{array}{ll} 139 & +1 \\ 147 & -413 \end{array}$	¢7\％	V33 53
$76: 7$	V17 8	$1+4 \mathrm{~F}$	V2 8．ac	31	－20 +15	2113	vil ${ }^{-2}$	87	V39＋P
7\％	$V 17$ x13V	14AF\％	124 xuc	32	ソ20 4K	2423	$1+1{ }^{1}+$	479	134 41
$7 \mathrm{7apt}$	V35 fig 47	14183	N0 SU	331.76	V3 8\％	2423	V17 46	Sxt	1：33 618
${ }_{7}^{7117}$	Y17 8V	$\stackrel{1}{1413 \times}$	Y 36	331.70 ：	Vs9 xZ	2 420	V44 10，	885	\33 51
$\begin{aligned} & 7 \mathrm{~J} 7 \\ & 7 \mathrm{~J} P 1 \end{aligned}$		$1418 \mathrm{P}^{2} 4$ 118	$\underbrace{136}$		－20 5ぐ	－${ }^{2} 9$	V39 1．je 53	¢54，	${ }^{133} 36$
7194	V35 146：	119	V3 81	33.751	V19 5\％	$250 \mathrm{Fl}^{2}$	（50） $2 \mathbb{}$	903	1376 Al ．
7 K゙7	$517813{ }^{\circ}$	11（＇］）	\＄36 121）	35 A	$\mathrm{l}^{23} 36.14$	2544	153 T－40	941	Y7 1715．
71.7	173515 1215	14151	136 3812	3585	Vo9 ${ }^{2} 13 \%$	25413	Y5 T－40	945	V37 fir．
${ }_{7} \times 11$	V17 121］	$1+1506$	V23 8W	35025	V29 76	2414	P44	914 mP	134 7AN
7 NP	$\checkmark 3514 \times$	1＋1\％1＇1	136	35%	vil 30	270．	Vid	097	137 13¢
$7{ }^{7}$	117×11	1110	$9388{ }^{\circ}$	35 rc	V＋4 211	2×2.1	\55 t－TM	（1）x A	1377
7ep	V35 1211	141＊	V23 81sw	35 W 4	139 5ts	2－413	148 $3 \times$	94\％	137 19\％．
${ }_{7} 127$	V17 8A以	$1419{ }^{\text {d }}$		$35 \% 1$	13950.	－4．11	Y16 45	910	$Y 37$ 7AN
712 P	Vi7 811，	11117	l23 sl	$35 \% 3$	53947	245：	ゾか ！	411	$\because 3774 \times$
717	177	14.17	V3 84：	35750	（39 6A1）		\5		${ }^{137}$ liver
がす	4178	14127	12381.1	$35 \% 60$	139170	314 A	Val I－1a	914	V37 rick
	17 x13J	$14 \mathrm{R7}$	123 SAE	36	vic 51	$30+13$	1＋1 21	9301	V15 36
7×7	V17 N13Z	1197	123 8131．	37	$\checkmark 1 \times 54$	3）${ }^{\text {W11 }}$	$\cdots 51$＋130	43 x	－1s
714	Y：3\％EAB	1417	123＊	35	－14	304， 10	Y51 136	450	120 5K
$7 \% 4$	Y3 5All	141 7	Y23 x13J	$39 /$	リ18 50	315 A	\isa T－40	951	V19 4M
SAl＇4	$\checkmark 351211$	14 Y	V3x 5，13	411	V24 413	3106 A	V53 M－5C13	95	V25 513
$\begin{aligned} & \text { X13yi } \\ & \text { GAjei } \end{aligned}$	V35 140	1473	Y3s 40	$40 \% 50$	1396811	31074	153＇51	955	V25 5bs，
atir	Vi5＋ 41	15×1	（36 121）	42	－1963	310	（22 410		－25 5bs
MJP1	V35 xBR	15 C ＇1	V33 1ris． 35	43	v23 613	311	$17+\mathbb{L}$	957	（25）513
10	V24 411	15114	－36 121）		V19 41	311611	V4s 1rig． 57	（15）	－¢\％${ }^{\text {¢ }}$
10	V 4 ［1］	151.	V12 T－tal	4.783	$\cdots 34$ SAM	312 A	165 ${ }^{1}-60^{\circ}$	0581	V25 5131）
l1013P4	V35 121）	16：14	V36 lik． 35	15\％成：	v39 6A1）	31210	V51＇1＇－2AA	5	－41 5131）
109P4	V35 121］	16 CP	V3，Pic． 3	1.3	＇1950	316.1	It3－	459	12581315
l0FP＇	V35 1213	161\％P4A	136120	12	V19 513	327 A	547 T－4 ${ }^{\text {d }}$	967	V33 34
lotped	Y35 14 ：	16ar ${ }^{\text {a }}$	V31 Fic 35	14	Ye3 6A	32713	Y46＇－4A1）	1275 A	V39 4 AT^{1}
1010	（35 1013		（36 36	4	－20） 5	34213	$\mathrm{V}^{47} 416$	091	133
$11 / 12$	ソ1 10	16isipt	V30 120	\＃1：	V2：3 fiA	356 A	（4is＋ib	（6）	－39
12.1	V2x 418	1614P4	$\checkmark 361195$	904N64：	13974		V4x 41	10 mbi	Y39 4，
$1 \because \mathrm{~A}$	12\％ 7 F	16．519	V36 1210		－29 7 \％\％	410 R	（保 Fig．5s	1261	－ 2 रls
12At	\％ 7 7a	16xp1	V34 1211	\％ 5	124765	＋゙213	（25＋1）	12013	$\cdots{ }^{2}+4 \mathrm{H}$
10.7	V2\％7K	161．P！	13，Filva 3	5cex	－2 7 A ${ }^{\text {c }}$	4×3	Y25 41	1214	V25 8130
12A7 ${ }^{\text {a }}$	138 7K	（6R1＇4	136 123		V23 7AC	485	U5	1206	Y17 813
12 A17799	V2 213 F	16 TP	V336 riLa， 35		－ 369	${ }_{5}^{52} 5$		1221	
$12+15$	Y2\％640	1601 P4	1313 121）	\％ 80	－39 78J	575 S	（39 ${ }^{(0) \mathrm{NJ}}$	1223	V20 ${ }^{71 \mathrm{l}}$
$12+1{ }^{2}$	Y35 6Al：	16WP1A	－36 1213	玉ndick	139 70	598.	（50）lıly 52	1230	V20 41
12 AT	リ2x 73＇	16\％19	$1348121)$	30y7er	v39 xax	7133 A	¢42	1231	V17 2 V
10AT7	10x 91.	17 －${ }^{\text {a }}$	V33 36	5ilfici	V39 74，	705 A	$\because 39$ ग－3AA	1232	1178
$12 \mathrm{Al}{ }^{6}$		$1718{ }^{1}$		5107	V39 BAN	707 B	Vis Fig． 6 t	1247	V301
12A1：	－ 11	17131913	（36）${ }^{36}$ 121）	5	$\cdots 19$	61513	${ }^{1}$	1263	133 4AJ
12 at 6	リン2 73°	17¢P＇，	（34 121）	5is	V19 713	723A ${ }^{\text {7 }}$		1266	133 $V 32$
12 C	V2\％9A	176i＇：	1×36 Pig 43	53：	143 T－48	7 yj	（14 41）	1273	Vif
12Alw	Y－701	$1 \times$.	103 814	58.	－1460	x（m）	－4321）	1274	（1）65
$\underline{1}$ AW 7	12×7011	19	520	56	$\because 19 \mathrm{OA}$	a 111	Yte +13	1275	V40 40°
\％AX 0^{2}	$\square^{36} 468$	l9apd	Y3i Fife 35	DiA	V1s 50	\＄11\％	$142+1)$	1276	20．5 +13
	－2x ${ }^{2}$	l9abid gras	V36 121	${ }_{57}^{57}$	Vils	$\times 10$	152 15813 15	1200	V24 ${ }^{2}$
12×27	12x 98	1936 itic	－ 2131	54	$\checkmark 19$ fir	411	$V_{5} \times$ T－	1291	V2］7131：
1218199 1237	－29	19\％	V2，	SNA	Yis 610	215	Y49 3N	1293	$\because 21$ AAA
${ }_{12}^{2137} 1811$.	r22	1910194．			V193 8AB	S14， 807	Vitu 5AW	1294	
$1 \cdot 13 \times 6$	529 ${ }^{10}$	19101	V3f F゙ig 35	\％0．175	$\checkmark 39$ sabs	8077	V5 5AW	1612	V22 413
121386	V8 70	latipa	$\checkmark 36120$	701.74	Ye3 8AA	S04．	［45 213	16183	Y1x 6il
12月A7	－2x ${ }^{51}$	lgJtis	Y2 313	$701.71{ }^{\text {7 }}$	V34 XAA	809	14334	1860	－ $42+13$
128186 123166.		！9\％s	V2：	71－1	V2a＋${ }^{\text {V }}$	810	V49 ${ }^{2}$	1809	Y25 5
$1213 \mathrm{rl}_{6}$	－28 715 T	2013 P_{4}	V3：121）	4	V39＋9	\＄11A	V45 30	1610 1611	V14 ${ }^{1}$
1213117	$\mathfrak{V} 2 \times 9$	$204 \cdot 1$	$\checkmark 36$ Fils． 41	75	V1x 69	$\times 12$	145 31；	1612	－14 71
121366	$\because 2 \mathrm{ClH}$	201 P 4	V34 F15．66	75 Tl	－46 215	$\times 12 \mathrm{~A}$	1453 c	1613	V52 75
12816	－2s 711	206 ： P^{4}	S6 lis 40	7011．	（4621）	$\times 124$	Y46 3 ${ }^{\text {c }}$	1614.	Vis 7ar
12376	Y2x 715T		V4 411	76．．．	vis 5 A	813.	Y6 5BA	1616	－ 40
121816	Yes ${ }^{2} 13^{\circ} 1$	${ }^{2015 x}$		77	Y1s	414	Y5 T－5］	1619	－ 5311
$12 \cdot{ }^{2}$	V3 4AF		Vid 4 K	79	Vix	815	Vis ${ }^{\text {ch }}$	1620 1621 162	V14 7 K
120P4．	13558.5	2，AP4	V34 Flg．35	81	134 11	$\times 22$	¢50 30	1622	vit 7AC
1205 ${ }^{10}$	V22 680	2418	\％ 19	4	V34 ${ }^{13}$	$\times 2$ 20	Y03	16823	\43 36
$12+56$	－2． 5181	24AP4		8	$V 391{ }^{16}$	22fi	Yta 780	1624	N54 T－51］
12 CaG ．	V2 75	\％Nu	137 Fix． 1	$\times 3-1$	－39 4A1）	829	－in 7 HP	1625	Vid 64%
12116	12274	2546	V23 75	S4／BZ	：39 511	＜29A	（5t 7 710	1627	14920
12J5GT	Ves ${ }^{\text {tid }}$	20．47CT	\％3x sf	85	Yix 80；	$\times 2913$	Wht 7131	1623	143 T－41313
12J7GT	122711	25.47 Cr	23 sf	Sifas	Y14 6i	\＄313	$14+41$	1629	Ye4 6RA
126769	－2， 812	－5AC56	－23 610	$\begin{aligned} & \mathbf{x} 9 \\ & 99 \end{aligned}$	Y1\％ 6 F	83013	14531	1631	V24 7AC．
12kria	V3，Fir 3	－5iss		106 T （1i	$\begin{aligned} & 40 \\ & 178 \\ & 201 \end{aligned}$	831．	－5：3 713P	1638	
$12 \mathrm{~L} 88 \mathrm{id}^{\prime}$	122 8131	251369	V23 75	160＇rs．	177215	832 A	${ }^{53} 37131$	1634	－24 3 s
121．1＇4．	V35 121）	2513801 T	V23 5T	11115．	（4621）	833		1635.	V16

CHAPTER 27

VACUUM-TUBE BASE DIAGRAMS

The diagrams on the following pages show standard socker col
given in the column headed "Socket Connections" in the classified tube corresponding to the base designations 1 Anode \quad are follows:

$$
\begin{aligned}
& \text { Alphabetical subseripts } \mathrm{D}, \mathrm{P}, \mathrm{~T} \text { and IIX indicate, resnenctival. } \\
& \text { nit in multion }
\end{aligned} \text { Electrode } \quad \text { Gas-Type Tube }
$$

Generally when the tos. Subscript M, T or CT indicates filament or heater, pentode unit, triode unit or hexode to the sheli, the Vo. I pin of a metal-type tube in T

R.T.M.A. TUBE BASE DIAGRAMS

Bottom views are shown. Terminal designations on sockets are given on page V5.

5AA

58u

5CF

51

50

c
NC(4)

$5 z$
$5 Y$

5M

50

(3) (3)

6 A

6AL
(2)

${ }^{5} \mathrm{CB}$
(3) (3) (5)

- SCE

6AA

R.T.M.A. TUBE BASE DIAGRAMS

Bottom views are shown. Terminal designations on sockets are given on page V5.

6 C					
7AM	tan	7 AO			

R.T.M.A. TUBE BASE DIAGRAMS

Botton views are shown. Terminal designations on sockets are given on page $\mathbf{V} 5$.

$7 A Z$	78	7BA	788	7 BC	780

R.T.M.A. TUBE BASE DIAGRAMS

Bottom views are shown. Terminal designations on sockets are given on page V5.

R.T.M.A. TUBE BASE DIAGRAMS

Bottom views are shown. Terminal designations on sockets are given on page $V 5$.

R.T.M.A. TUBE BASE DIAGRAMS

Bottom views are shown. Terminal designations on sockets are given on page V5.

 SUPPLEMENTARY BASE DIAGRAMS

FIG. 13

FIG. 19

FIG. 25

FIG. 31

FIG. 37

Fig. 43

FIG 49

FIG. 32

FIG. 15

FIG. 39

FIG. 51

FIG.II
2no RING

FIG. 17

FIG. 18

G2(4) $\stackrel{P}{\square}(5) G_{1}$

FIG. 24

FIG. 53

SUPPLEMENTARY TUBE BASE DIAGRAMS

Bottom views are shown. Terminal designations on sockets are given on page V5,

TABLE I-METAL RECEIVING TUBES
For "G" and "GT" tubes not listed (not having metal counterparts), see Tables II, VII, VIII and IX, and bantam tubes with "GT" suffix

TABLE I-METAL RECEIVING TUBES-Continued

Typo	Name	Sockel Connections	Fil, or Heater		Capacitance $\mu \mu \mathrm{fd}$,			Use	Plate Supply Volts	Grid Bias	Screen Volts	Screen Current Ma.	Plate Current Ma.	Plate Resistance Ohms	Transconductance Micromhos	Amp. Factor	$\begin{gathered} \text { Load } \\ \text { Resistance } \\ \text { Ohms } \end{gathered}$	Power Output Watts	Typ*
			Volts	Amp.	In	Out	Plate. Grid												
6SF5	High- μ Triode	6AB	6.3	0.3	4	3.6	2.4	Class-A Amp.	250	-2.0	-	-	0.9	66000	1500	100	-	-	65F5
$65 F 7$	Diode Variable- μ Pentode	7 AZ	6.3	0.3	5.5	6	0.004	Closs-A Amp.	250	- 1.0	100	3.3	12,4	700000	2050	-			65 F7
6SG7	Semivariable- μ Pentode	8BK	6.3	0.3	8.5	7	0.003	H.F. Amp.	250	-2.5	150	3.4	9.2	Over 1 meg	4000	-	-	-	6SG7
$65 \mathrm{H7}$	Sharp Cut-off Pentode	88K	6.3	0.3	8.5	7	0.003	Class-A Amp.	250	-1.0	150	4.1	10.8	900000	4900				65H7
65.174	Sharp Cut-off Pentode	8 N	6.3	0.3	6	7	0.005	Class-A Amp.	250	-3.0	100	0.8	3	1500000	1650	2500			65.17
65 K 7	Variable- μ Pentode	8 N	6.3	0.3	6	7	0.003	Class-A Amp.	250	-3.0	100	2.4	9.2	800000	2000	1600			$65 \mathrm{K7}$
6507	Duplex-Diode Triode	80	6.3	0.3	3.2	3.0	1.6	Class-A Amp.	250	-2.0	-		0.8	91000	1100	100	-		6507
6SR7	Duplex-Diode Triode	80	6.3	0.3	3.6	2.8	2,40	Class-A Amp.	250	-9.0	-	\cdots	9.5	8500	1900	16	-		6SR7
6557	Variable- μ Pentode	8 N	6.3	0.15	5.5	7.0	0.004	Class-A Amp.	250	-3.0	100	2.0	9.0	1000000	1850	-			6557
6557	Duplex-Diode Triode	80	6.3	0.15	2.8	3	1.50	Class-A Amp.	250	-9.0		-	9.5	8500	1900	16			6 ST7
65V7	Diode R.F. Pentode	7AZ	6.3	0.3	6.5	6	0.004	Class-A Amp.	250	- 1	150	2.8	7.5	800000	3400	-			6SV7
6527	Duplex-Diode Triode	8 O	6.3	0.15	2.6	2.8	1.10	Class-A Amp.	250	-3	$\underline{\square}$	\cdots	1.0	58000	1200	70			6527
677	Duplex-Diode Triode	7 V	6.3	0.15	1.8	3.1	1.70	Class-A Amp.	250	-3.0	-	-	1.2	62000	1050	65	-		677
6V6	Beam Power Amplifier	7 AC	6.3	0.45	2.0	7.5	0.7	Class-A, Amp. ${ }^{3}$	250	-12.5	250	4.5/7.0	45/47	52000	4100	218	5000	4.5	6V6
								Class-A B_{1} Amp. ${ }^{\text {b }}$	250	-15.0	250	5/13	70/79	60000	3750		$10000{ }^{8}$	10.0	
									285	-19.0	285	4/13.5	70/92	65000	3600		8000^{8}	14.0	
1611	Pentode Power Amplifier	75	6.3	0.7	-	-	-	Audio Amp.	Characteristics same as 6F6										1611
1612	Pentagrid Amplifier	71	6.3	0.3	7.5	11	0.001	Class-A Amp.	250	-3.0	100	6.5	5.3	600000	1100	880	-	-	1612
1620	Sharp Cut-off Pentode	7 R	6.3	0.3			-	Class-A Amp.	Characteristics same as 6										1620
		75	6.3	0.7			-	Class-AB2 Amp. ${ }^{\text {c }}$	300	-30.0	300	6.5/13	38/69	-	-	-	$4000{ }^{\text {8 }}$	5.0	1621
1621	Power Amplifer Pentode	75	6.3	0.7				Class-A1 Amp. ${ }^{1}$	330	500*		-	55/59	-			$5000{ }^{\text {8 }}$	2.0	
1622	Beam Power Amplifier	7 AC	6.3	0.9	-			Class-A1 Amp.	300	-20.0	250	4/10.5	86/125	-	-		4000	10.0	1622
1851	Television Amp. Pentode	7R	6.3	0.45	11.5	5.2	0.02	Class-A Amp.	300	-2.0	150	2.5	10	750000	9000	6750	-	-	1851
5693	Sharp Cut-off Pentode	8 N	6.3	0.3	5.3	6.2	0.005	Class-A Amp.	250	-3	100	0.85	3.0	1000000	1650	-		-	5693
* Cathode resistor=ohms.		1 Screen tied to plate. 2 For 65A7GT use base diagram 8AD.					${ }^{8}$ Grid bias-2 volts if separate ascillator excitation is used. "Also Type "6S J7Y."						${ }^{5}$ Values are far single tube. - Values are for twa tubes in push-pull.				7 Max.-signal value. Plate-to-plate value. - Osc. grid Jeak-Scrn res.		

TABLE II-6.3-VOLT GLASS TUBES WITH OCTAL BASES
(For "G" and "GT"-Type Tubes Not Listed Here, See Equivalent Type in Table 1; Characteristics and Connections Will Be Identical)

Type	Name	Socke I Connections	Fil, ar Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Voits	Grid Bias	Screen Volts	Screen Current Ma.	Plate Current Ma.	Plate Resistance Ohms	Transconductance Micromhas	Amp. Factar	$\begin{gathered} \text { Loed } \\ \text { Resistance } \\ \text { Ohms } \end{gathered}$	Power Outpul Watts	Type
			Volts	Amp.	In	Out	PlateGrid												
$2 \mathrm{B22}$	Diede	Fig. 37	6.3	0.75	2.2	-	\square	U.h.f. Detector		Average cothode $\mathrm{Ma},=5$; Output volis $=\mathbf{5 0} \mathrm{d}, \mathrm{c}$; Load resistance $=\mathbf{1 0 0 0 0} \mathrm{s}$.									$2 \mathrm{B22}$
2 C 22	Triode	4AM	6.3	0.3	2.2	0.7	3.60	Closs-A Amp.	300	-10.5			11	6600	3000	20	-	\cdots	$2 \mathrm{C22}$
6A5GT	Triode Power Amplifier	$6 T$	6.3	1.0				Class-A Amp. ${ }^{\text {d }}$	250	-45.0			60	800		4.2	2500	3.75	6A5GT
					-			P.P. Class AB ${ }^{\text {s }}$	325	-68.0	-	-	80	-	5250	-	$3000{ }^{\text {b }}$	15.0	
								P.P. Class AB ${ }^{\text {s }}$	325	850*			80				5000 \%	10.0	
6AB6G	Direct-Coupled Amplifier	7 AU	6.3	0.5	-	-	-	Closs-A Amp.	250	0	Input		5.0	40000	1800	72	8000	3.5	6AB6G
6AB6G	Direct-Couplod Amplinar				-	-			250	0	Output		34						
6AC5GT	High- μ Power-Amplifier	60	6.3	0.4			-	P.P. Class B ${ }^{5}$	250	0	-		5.0	36700	3400	125	$10000{ }^{\circ}$	8.0	6AC5GT
6AESGT								Dyn.-Coupled	250	-		-	32				7000	3.7	
6AC6G		7 AU	6.3	1.1	-		-	Class-A Amp.	180	0	Input		7.0	-	3000	54	4000	3.8	6AC6G
6AC6G	Direct-Coupled Ampliner	7 AU	6.3	1.1	-		-		180	0	Output		45						
6AD5G	High-u Triode	60	6.3	0.3	4.1	3.9	3.3	Class-A Amp.	250	-2.0	-	-	0.9	-	1500	100	-	\cdots	6AD5G
6AD6G4	Electron-Ray Tube	7AG	6.3	0.15	-		-	Indicator	100		0 for 90°; 23 for $135{ }^{\circ} ; 45$ for 0°. Target current 1.5 ma , for 0°.								6AD6G
6AD7 G	Triode-Pentode	8AY	6.3	0.85	-			Triode Amp.	250	-25.0	二-	\square	4.0	19000	325	6.0	-	3.2	6AD7 G
6AD7 6								Pentode Amp.	250	-16.5	250	6.5	34	80000	2500		7000		
6AESG ${ }^{10}$	Triode Amplisier	60	6.3	0.3	-	-	-	Class-A Amp.	95	-15.0	-	\square	7.0	3500	1200	4.2	-	\square	6AESG

table if-6.3-volt glass tubes with octal bases-Continued

Type	Name	Socket Connections	Fil. or Healer		Capacitance $\mu \mu \mathrm{ld}$.			Use	Plate Supply Volls	Grid Bias	Screen Volts	Screen Current Ma.	Plate Current Ma.	Plate Resistance Ohms	Transconductance Micromhos	Amp. Factor	LoadRosistanceOhms	Power Output Watts	Typ*
			Volis	Amp.	In	Out	PlaleGrid												
6AE7GT ${ }^{\text {di }}$	Twin-Input Triode	7AX	6.3	0.5				Driver Amplifer	250	-13.5	-	-	5.0	9300	1500	14		\square	6AE7GT
6AFSG	Triode	60	6.3	0.3				Class-A Amplifior	180	-18.0			7.0		1500	7.4			6AF5G
6AF7G	Twin Electron Ray	BAG	6.3	0.3				Indicalor Tube											6AF7G
6AG6G ${ }^{10}$	Power-A mplifier Pentode	75	6.3	1.25				Class-A Amplifier	250	- 6.0	250	6.0	32		10000		8500	3.75	6AG6G
6AH5G	Beam Power Amplifier	SAP	6.3	0.9				Class-A Amplifier	350	-18	250			33000	5200		4200	10.8	6AH5G
6AH7GT	Twin Triode	88E	6.3	0.3				Converler \& Amp.	250	-9.0			12^{1}	6800	2400	16			6AH7GT
6ALOG	Baam Power Amplifier	GAM	6.3	0.9				Class-A Amplifier	250	-14.0	250	5.0	72	22500	6000	-	2500	6.5	6AL6G
6AL7GT	Electron-Ray Tube	8CH	6.3	0.15	-	-	-	Indicator	Ouler	edge of to its ele	ony of th ctrode.	three milar in	minated ard disp.	as displace h - 5 volts	$11 / 16 \mathrm{in} . \mathrm{mi}$ No pathern		d with +5 volts grid.	volts	6AL7GT
6AG7GT	Duplex Diode Triode	8 CK	6.3	0.3	2.3	1.5	2.8	Class-A Amplifier	250	-2.0			2.3	44000	1600	70			6AO7GT
6AR6	Beam Power Amp.	689	0.3	1.2	11	7	0.55	Class-A Amplifier	250	-22.5	250	5	77	21000	5400	95	-		GARG
6A57G	Low-Mu Twin Triode	8BD	6.3	2.5				D.C. Amplifier	135	250*			125	280	7500	2.1			
GASTG	Low-Mu Iwin triode	88 D	6.3	2.5				Class-A Amp. P.P.	250	2500*		-	100/106	280	225		6000 ${ }^{\circ}$	13	6AS7G
6AU5GT	Beom Pentode	6CK	6.3	1.25	11.3	7	0.5	Horr. Def. Amp.	45011	-5011			10011	Peok	k pos. plate p	pulse $=5$	000 volis.		6AUSGT
GAVEGT	Baam Pentode	6CK	6.3	1.2		-		Horz, Def. Amp.	50011	-5011	17511	-	10011	Peat	k pos. plate p	pulse $=4$	4500 volts.		6AV5GT
6846	Triode Power Amplifier	55	6.3	1.0		-		Power Amplifier			aracterist	tics same	as Type 6A	3-Toble IV		Iso	,		684G
6866	Duplex-Diode High- μ Triode	7 V	6.3	0.3	1.7	3.8	1.7	Detector-Amplifior			haracteris	stics some	as Type 7	-Table IV					686G
68D5GT	Beom Pentode	6CK	6.3	0.9				Horr. Def. Amp.	32514	\cdots	32511		100^{11}	Peak	k pos. plate p	pulse $=4$	000 valts.		6BD5GT
68L7GT	Double Triode	8BD	6.3	1.5	4.4	1.1	4	Class-A Amp.	250	-9		\cdots	40^{1}	2000	7000	14	-		$6 \mathrm{BL7GT}$
6806GT	Beam Pentode	6AM	6.3	1.2				Deflection Amp.	55011	-	150		10011	Peak	kos. plate p	pulse $=4$	000 valts.		CBOCGT
68G6	Beam Power Amplifier	58T	6.3	0.9	11	6.5	0.5	Deflection Amp.	700^{11}	-5011	350		10011	Peak	k pos. plate p	pulse $=60$	000 volts.		6BG6
6C8G	Twin Triode	8 G	6.3	0.3		-		Amp. 1 Section	250	- 4.5			3.1	26000	1450	38	-		6C8G
6CD6G	Beam Pentode	581	6.3	2.5	26	10	1.0	Horz. Def. Amp.	700^{11}	-5011	17511	-	17011	Peak	pos. plote p	pulse $=60$	6000 volts.		6CD6G
6D8G	Pentogrid Convertar	8A	6.3	0.15	-			Converter	250	-3.0	100	Catho	de current	3.0 Ma .	Anode grid	grid (No.	2) Volts $=2$	2503	6D8G
$658 \mathrm{G}^{10}$	Triode-Hexode Converter	80	6.3	0.3				Converter	250	- 2.0				Triode Plate	150 valis				688 G
8F8G	Twin Triode	8 G	6.3	0.6				Amplifier	250	- 8.0			91	7700	2600	20		-	6F8G
6G6G	Pentode Power Amplifior	75	6.3	0.15	-		-	Class-A Amplifier	180	-9.0	180	2.5	15	175000	2300	400	10000	1.1	
6066	Pentede Power Amplinar							Class-A Amplifior ${ }^{\text {2 }}$	180	-12.0				4750	2000	9.5	12000	0.25	G6G
6H4GT	Diode Rectifier	5AF	6.3	0.15				Detector	100	-	-	-	4.0	-	-	-	-		6H4GT
6HBG	Duo-Diode High- μ Pentode	8 E	6.3	0.3			-	Closs-A Amplifiar	250	-2.0	100		8.5	650000	2400	-	-		6H8G
$6 \mathrm{J8G}{ }^{10}$	Triode Heplode	8 H	6.3	0.3	-		-	Converter	250	-3.0	100	2.8	1.2	Anode-s	grid (No. 2) 2	250 volis	$\mathrm{max}^{3} 5 \mathrm{~m}$		$6 J 8 \mathrm{G}$
6K5GT10	High- μ Triode	50	6.3	0.3	2.4	3.6	2.0	Class-A Amplifier	250	- 3.0			1.1	50000	1400	70	max.	-	6K5GT
6K6GT	Pentode Power Amplifier	75	6.3	0.4		-		Class-A Amplifier				Charac	leristics sam	e as Type 41	1-Table IV				6K6GT
6L5G	Triode Amplifior	60	6.3	0.15	2.8	5.0	2.8	Closs-A Amplifier	250	-9.0	-	-	8.0	as	1900	17	-		SLSG
6MOG ${ }^{10}$	Power Amplifier Penlode	75	6.3	1.2				Class-A Amplifier	250	- 6.0	250	4.0	36	-	9500		7000	4.4	6MOG
6PA7G	Pentode Amplifier	7 R	6.3	0.3	-		-	R.F. Amplifier	250	-2.5	125	2.8	10.5	900000	3400				6M7G
6MAGT	Dlode Triode Pentode	AAU	6.3	0.6	-	-	-	Triode Amplifer	100	-			0.5	91000	1100				
6mar	Dlode Trode Pentode							Pentode Amplifier	100	-3.0	100	-	8.5	200000	1900				6M8GT
6N6G ${ }^{10}$	Direct-Coupled Amplifier	7AU	6.3	0.8				Power Amplifier			aracterist	ics same	as Type 68	-rable IV					6N6G
SPSGT10	Triode Amplifier	60	6.3	0.3	3.4	5.5	2.6	Closs-A Amplifier	250	-13.5	-	-	5.0	9500	1450	13.8	-	-	6P5GT
6P7G10	Triode-Penlode	70	6.3	0.3				Class-A Amplifier				Char	acteristics	ame as 6F7 -	Table IV				6P7G
6P8G	Triode-Hexode Converter	8K	6.3	0.8	-		-	Converter	250	-2.0	75	1.4	1.5		riode Plate 100	100 v. 2.2	2 ma .		${ }^{\text {SPAG }}$
6069	Diode-Triode	6 r	6.3	0.15			-	Class-A Amplifier	250	-3.0	-	-	1.2	-	1050	65			6069
6R6G	Pentode Amplifier	GAW	6.3	0.3	4.5	11	0.007	Closs-A Amplifier	250	-3.0	100	1.7	7.0	-	1450	1160			6R6G
656 GT	Remote Cut-off Pentode	5AK	6.3	0.45			$-$	R.F. Amplifier	250	-2.0	100	3.0	13	350000	4000				GSSGT
658GT	Triple Dlode Triode	8CB	6.3	0.3	1.2	5	2	Class-A Amplifier	250	- 2.0			0.9	91000	1100	100			6S8GT
6SD7GT	Medium Cut-off Pentode	8 M	6.3	0.3	9	7.5	. 0035	R.F. Amplifer	250	- 2.0	100	1.9	6.0	1000000	3600		-	-	6SD7GT
65E7G1	Sharp Cut-olf Pentode	8 N	6.3	0.3	-	7.5	. 005	R.F. Amplifier Morld	250	-1.5	100	1.5	4.5	1100000	3400	3750		- 6	6SETGT

Type	Nomo	Socket Connections	Heater		Capacitance $\mu \mu \mathrm{fd}$,			Use	Plate Supply Volls	Grid Bias	$\begin{gathered} \text { Screen } \\ \text { Volts } \end{gathered}$	Screen Current Ma.	Plate Current Ma .	Plate Resistance Ohms	Transconductance Mieromhos	Amp. Factor	LoadResistanceOhms	Power Output Wolts	Type			
			Volis	Amp.	In	Out	PlateGrid															
744	Triode Amplifer	5AC	7.0	0.32	3.4	3	4	Class-A Amplifer	250	- 8.0			9.0	7700	2600	20		-	744			
7 A5	Beam Power Amplifler	6AA	7.0	0.75	13	7.2	0.44	Class-A1 Amplifier	125	-9.0	125	3.2/8	37.5/40	17000	6100		2700	1.9	7 7 5			
7 7A6	Twin Diode	7AJ	7.0	0.16				Recrifier		Max. A.C. volts per plate-150. Max. Output current-10 ma,									746			
747	Remote Cut-off Pentode	8 V	7.0	0.32	6	7	. 005	Class-A Amplifier	250	-3.0	100	2.0	8.6	800000	2000	1600	-		747			
748	Mulligrid Converter	8	7.0	0.16	7.5	9.0	0.15	Converter	250	-3.0	100	3.1	3.0	50000	Anode-grid 250 volis max. ${ }^{1}$				$\begin{aligned} & 7 \overline{A B} \\ & 7 \overline{A D 7} \end{aligned}$			
7407	Pentode	8 V	6.3	0.6	11.5	7.5	0.03	Closs-A, Amp.	300	68*	150	7.0	28.0	300000	9500							
TAFT	Twin Triode	8 AC	6.3	0.3	2.2	1.6	2.3	Class-A Amp.	250	-10			9.0	760	2100	16			7 AFT			
7 7G7	Sharp Cut-off Pentode	8 V	7.0	0.16	7.0	6.0	0.005	Class-A Amp.	250	250*	250	2.0	6.0	750000 1000000	4200				7AM7			
7 7AH7	Pentarde Amplifier	8 V	6.3	0.15	7.0	6.5	0.005	Class-A A Amplifier	250	250*	250	1.9	6.8	1000000	3300				7AM7			
7 AJ7	Sharp Cut-off Pentode	8 V	6.3	0.3	6.0	6.5	0.007	Clasb-A1 Amp.	250	- 3	100	0.7	2.2	1 Meg.	1575				7 AJ7			
	Sharp Culoof Pemode								100	-1	100	1.8	5.5	400000	2275				$74 \mathrm{K7}$			
TAK7	Sharp Cul-off Pentode	8 V	6.3	0.8	12	9.5	4	Class-A, Amp.	150	0	90	21	40.	66000	1500	100			784			
784	High μ Triade	SAC	7.0	0.32	3.6	3.4	1.6	Class-A Amplifier	250	-2.0 -18.0	250		0.9	68000	1500		7600	3.4	785			
785	Pentode Power Amplifler	GAE	7.0	0.43	3.2	3.2	1.6	Class-A, Amplifier	250	-18.0	250	5.5/10	32/33	98000	1100	100			786			
786	Duo-Diode Triode	8 w	7.0	0.32	3.0	2.4	1.6	Class-A Amplifior	250	- 2.0		2.0	8.5	91000	1700	1200			7B7			
787	Remote Cut-off Pemode	8 V	7.0	0.16	5	7	. 005	Class-A Amplifier	250	-3.0 -30	100	2.0	8.5	700000	Anode-grid 250 volts				788			
788	Pentagrid Conivertor	$8 \times$	7.0	0.32	10.0	9.0	0.2	Converier	250	-3.0	100	2.7	3.5	360000								

TABLE III-7-VOLT LOCK-IN-BASE TUBES—Continued

Type	Name	Socke ${ }^{\text {f }}$ Connections	Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Piato Supply Volts	Grid Bias	Screen Volts	Screen Current Ma.	Plate Current Ma.	Plate Resistance Ohms	Transcon. ductance Micromhos	Amp. Factor	$\begin{gathered} \text { Load } \\ \text { Resistance } \\ \text { Ohms } \end{gathered}$	Power Output Wotts	Type
			Volts	Amp.	In	Out	PlateGrid												
$7 \mathrm{C5}$	Tetrode Power Amplifier	6AA	7.0	0.48	9.5	9.0	0.4	Class-A1 Amplifier	250	-12.5	250	4.5/7	45/47	52000					
$7 \mathrm{C6}$	Duo-Diode Triode	8W	7.0	0.16	2.4	3	1.4	Class-A Amplifier	250	-1.0	250	4.5/7	45/47	100000	4100		5000	4.5	7C5
$7 \mathrm{C7}$	Pentode Amplifer	8 V	7.0	0.16	5.5	6.5	. 007	Class-A Amplifier	250	- $\mathbf{3 . 0}$	100	0.5	2.0	2 meg .	1300	100			$7 \mathrm{C6}$
707	Triode-Hexode Converter	8AR	7.0	0.48			-	Converter	250	- 3.0	Triode Plate (No. 3) $150 \mathrm{v}$.3.5 ma .								$7 \mathrm{7C7}$
7E6	Duo-Diade Triode	8W	7.0	0.32	-		-	Class-A Amplifier	250	-9.0									707
$7 E 7$	Duo-Diode Pentode	BAE	7.0	0.32	4.6	4.6	. 065	Class-A Amplifier	250	- 3.0	100	1.6	7.5	700000	1300	16			7 767
7F7	Twin Triode	8AC	7.0	0.32				Class-A Amplifier ${ }^{2}$	250	-2.0			2.3	44000	1800	70			7 F 7
$7 \mathrm{F8}$	Twin Triode	8BW	6.3	0.30	2.8	1.4	1.2	R.F. Amplifier	250	- 2.5	-	-	10.0	10400	5000				$7 \mathrm{F8}$
									180	- 1.0			12.0	8500	7000				
$\begin{aligned} & 7 \text { G7/ } \\ & 1232 \end{aligned}$	Sharp Cut-off Pentode	8 V	7.0	0.48	9	7	. 007	Class-A Amplifier	250	- 2.0	100	2.0	6.0	800000	4500				7671
$\begin{aligned} & \hline 768 / \\ & 1206 \end{aligned}$	Dual Tetrode	8BV	6.3	0.30	3.4	2,6	0.15	R.F. Amplifer ${ }^{2}$	250	- 2.5	100	0.8	4.5	225000	2100	-			1232 768
$7 \mathrm{H7}$	Semi-Variable- μ Pentode	8 V	7.0	0.32	8	7	. 607	R.F. Amplifier	250	-2.5	150	2.5	9.0	1000000	3500				7 7 7
7.7	Triode-Heptode Converter	BAR	7.0	0.32				Converter	250	- 3.0	100	2.9	1.3	Triode Plate 250 v. Max. ${ }^{\text {a }}$					$7 \mathrm{J7}$
7K7	Duo-Diode High- μ Triode	8BF	7.0	0.32			-	Class-A Amplifier	250	- 2.0			2.3	44000	1600	70			$7 \mathrm{K7}$
717	Sharp Cut-olf Pentode	8 V	7.0	0.32	8	6.5	. 01	Class-A Amplifier	250	-1.5	100	1.5	4.5	100000	3100	Cathode Resistor 250 ohm			717
7N7	Twin Triode	8AC	7.0	0.6	$\begin{aligned} & 3.4 \\ & 2.9 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 3.0^{3} \\ & 3.0^{4} \end{aligned}$	Class-A Amplifier ${ }^{2}$	250	-8.0	-	-	9.0	7700	2600	20		-	7N7
707	Pentagrid Converter	8AL	7.0	0.32			-	Converter	250	0	100	8.0	3.4	800000	Grid No. 1 resistor 20000 ohms				707
7R7	Duo-Diode Pentode	8AE	7.0	0.32	5.6	5.3	. 004	Class-A Amplifier	250	-1.0	100	1.7	5.7	1000000	3200	resistor			$7 \mathrm{7R7}$
757	Triode Hexode Converter	8 BL	7.0	0.32		-		Convertar	250	- 2.0	100	2.2	1.7	200060	Triode Plate 250 v. Max. ${ }^{1}$				7S7
717	Pentode Amplifier	8 V	7.0	0.32	8	7	. 005	Class-A Amplifier	250	-1.0	150	4.1	10.8	900000	4900	Pla	V. Max.		757
7V7	Sharp Cut-off Pentode	8 V	7.0	0.48	9.5	6.5	. 004	Class-A Amplifier	300	$160^{\prime \prime}$	150	3.9	10	300000	5800				7 V
7W7	Shorp Cut-off Pentade	8 BJ	7.0	0.48	9.5	7.0	. 0025	Class-A Amplifier	300	- 2.2	150	3.9	10	300000	5800	-			$7 \mathrm{F7}$
7X7	Duo-Diode Triode	8 BZ	6.3	0.3			-	Class-A Amplifier	250	- 1.0	二-	-	1.9	67000	1500	100			7×7
1231	Pentode Amplifier	8 V	6.3	0.45	8.5	6.5	. 015	Class-A Amplifier	300	200*	150	2.5	10	700000	5500	3850			1231
1273	Nonmicrophonic Pentode	8 V	7.0	0.32	6.0	6.5	. 007	Class-A1 Amplifier	250	-3.0 -10	100	0.7	2.2	1000000	1575				127
5679	Twin Diode	7CX	6.3	0.15				V.T.V.M. Reclifier	Same as 7A6										
XXL	Triode Oscillator	5AC	7.0	0.32				Oscillator											5679
* Cathode resistor-ohms.				1 Applied through 20000-ohm dropping resistor,					${ }^{2}$ Each section.				${ }^{3}$ Triode No. 1.			4 Triode No, 2.			XXL

table iv-6.3-volt glass receiving tubes

TABLE IV-6.3-VOLT GLASS RECEIVING TUBES—Continued

Type	Name	Base	Socket Connections	Fil. or Heater		Capacitance $\mu \mu \mathrm{id}$.			Use	Plate Supply Volts	Grid Bias	Screen Volts	Screen Current Ma.	Plate Current Ma.	PlateResistanceOhms	Transconductance Micromhos	Amp. Factor	Load Resistance Ohms	Power Outpu Watts	Type
				Volts	Amp.	In	Out	PlateGrid												
6B5	Direct-Coupled Power Amplifier	M.	6AS	6.3	0.8	-	-	-	Class-A Amp. Push-Pull Amp.	$\begin{array}{r} 300 \\ 400 \\ \hline \end{array}$	$\begin{gathered} 0 \\ -13.0 \end{gathered}$	二	$\begin{aligned} & 61 \\ & 4,51 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$	$\stackrel{241000}{ }$	2400	58	$\begin{array}{c\|} 7000 \\ 10000 \mathrm{II} \end{array}$	$20^{4.0}$	685
687	Duplex-Diode Pentode	s.	7 D	6.3	0.3	3.5	9.5	. 007	Pentode R.F. Amp.	250	-3.0	125	2.3	9.0	650000	1125	730	-	-	687
$6 \mathrm{C6}$	Sharp Cut-off Pentode	S.	6 F	6.3	0.3	5	6.5	. 007	R.F. Amplifier	250	-3.0	100	0.5	2.0	1500000	1225	1500	-		$6 \mathrm{C6}$
6C7 ${ }^{\text {\% }}$	Duplex Diode Triode	S.	7 G	6.3	0.3				Closs-A Amp.	250	-9.0			4.5		20	1250			$6 \mathrm{C7}$
6D6	Voriable- μ Pentode	S.	6 F	6.3	0.3	4.7	6.5	. 007	R.F. Amplifier	250	-3.0	100	2.0	8.2	800000	1600	1280	-	--	6D6
6D7 \#	Sharp Cut-off Pentode	5.	7H	6.3	0.3	5.2	6.8	. 01	Class-A Amp.	250	-3.0	100	0.5	2.0	-	1600	1280		-	607
6 65	Electron-Roy Tube	S.	6R	6.3	0.3				Indicator Tube	250	0			0.25	Target Current 4 ma .					$6 E 5$
6E6 \%	Twin Triode Amplifier	M.	7B	6.3	0.6	-			Class.A Amp.	250	-27.5	Per plate-18.0			3500	1700	6.0	14000	1.6	686
6E7\%	Variable- μ Pentode	5.	7H	6.3	0.3				R.F. Amplifer				Characteristics same as 6U7G-Table II							$6 E 7$
									Triode Unit Amp.	100	-3.0	-		3.5	16000	500	8	-	-	
6 67	Triode Pentode	s.	$7 E$	6.3	0.3		-	-	Pentode Unit Amolifier	250	- 3.0	100	1.5	6.5	850000	1100	900	-	-	$6 F 7$
6U5/6G5	Electron-Ray Tube	s.	6R	6.3	0.3	-	-	-	Indicator Tube	$\begin{array}{r} 250 \\ 100 \\ \hline \end{array}$	Cut-off Grid Bias $=-22 \mathrm{v}$. Cut-off Grid Bias $=-8 \vee$.			$\begin{aligned} & 0.24 \\ & 0.19 \end{aligned}$	Target Current 4 ma. Target Current 1 ma.				-	6U5/6G3
$6 \mathrm{H5}$	Electron-Ray Tube	5.	6R	6.3	0.3	-	-	\square	Indicator Tube			Same characteristics as Type 6G5-Circular Pattern								645
675	Electron-Ray Tube	S.	6R	6.3	0.3				Indicator Tube	250	Cut-off	Grid Bios $=-12 \mathrm{v}$.		0.24	Target Current 4 ma .					675
36	Tetrode R.F. Amplifier	5.	5 E	6.3	0.3	3.8	9	. 007	R.F. Amplifier	250	-3.0	90	1.7	3.2	550000	1080	595	-		36
37	Triode Detector Amplifer	5.	5A	6.3	0.3	3.5	2.9	2	Class-A Amp.	250	-18.0	-		7.5	8400	1100	9.2			37
38	Pentode Power Amplifier	S.	5F	6.3	0.3	3.5	7.5	0.3	Class-A Amp.	250	-25.0	250	3.8	22.0	100000	1200	120	10000	2.5	38
39/44	Remole Cut-off Pentode	s.	5F	6.3	0.3	3.8	10	. 007	R.F. Amplifer	250	-3.0	95	1.4	5.8	1000000	1050	1050			39/44
41	Pentode Power Amplifier	S.	6B	6.3	0.4				Class-A Amp.	250	-18.0	250	5.5	32.0	68000	2200	150	7600	3.4	41
42	Pentode Power Amplifier	M.	68	6.3	0.7				Class-A Amp.	250	-16.5	250	6.5	34.0	100000	2200	220	7000	3.0	42
52	Dual Grid Triode	M .	5 C	6.3	0.3				Class-A Amp. ${ }^{\text {a }}$	110	0			43.0	1750	3000	5.2	2000	1.5	2
52	Dual Gria Triode	m,		0.3	0.3				Class-8, 2 tubes ${ }^{\text {s }}$	180	0		-	$3.0{ }^{12}$				10000	5.0	2
56AS	Triode Amplifter	S.	5A	6.3	0.4		-	-	Class-A Amp.	Characteristics same as 56										56AS
57AS	Sharp Cut-off Pentode	s.	6F	6.3	0.4	-	-	-	R.F. Amplifier	Characteristics same a*57										57AS
58AS	Remote Cut-ofi Pentode	S.	$6 F$	6.3	0.4		-	-	R.F. Amplifier	Characteristics same as 58										58AS
75	Duplex-Diode Triode	s.	6 G	6.3	0.3	1.7	3.8	1.7	Triode Amplifier	250	- 1.35	-	-	0.4	91000	1100	100		-	75
76	Triode Detector Amplifier	s.	5A	6.3	0.3	3.5	2.5	2.8	Closs-A Amp.	250	-13.5			5.0	9500	1450	13.8	-	-- 7	76
77	Sharp Cut-olf Pentode	S.	6 F	6.3	0.3	4.7	11	. 007	R.F. Amplifier	250	- 3.0	100	0.5	2.3	1500000	1250	1500	-		77
78	Variable- μ Pentode	S.	6 F	6.3	0.3	4.5	11	. 007	R.F. Amplifer	250	- 3.0	100	1.7	7.0	805000	1450	1160	-		78
79	Twin Triode Amplifler	S.	6H	6.3	0.6	$\underline{-}$	-		Class-B Amp.	250	0	-		$10.6{ }^{12}$	Power output is for one tube			14000	8.0	79
85	Duplex-Diode Triode	S.	6 G	6.3	0.3	1.5	4.3	1.5	Class-A Amp,	250	-20,0		-	8.0	7500	1100	8.3	20000	0.35	85
85AS	Duplex-Diode Triode	S.	6 G	6.3	0.3				Class-A Amp.	250	-9.0			5.5	-	1250	20	-	-	85AS
89	Power Amplifier Pentode	s.	6F	6.3	0.4				Triode Amp. ${ }^{2}$	250	-31.0	$\bar{\square}$	5.5	32,0	2600	1800	4.7	5500	0.9	89
09	Power Amplifier Pentode	s.	$6 F$	6.3	0.4				Pentode Amp. ${ }^{\text {a }}$	250	-25.0	250	5.5	32.0	70000	1800	125	6750	3.4	
1221	Pentode R.F. Amplifer	s.	$6 F$	6.3	0.3	-	-	-	Class-A Amp.	Special non-microphonic. Characteristics same as 6C6										1221
$1603{ }^{\text {a }}$	Sharp Cut-off Pentod.	M.	6 F	6.3	0.3	-	-	-	Class-A Amp.	Characteristics same as 6C6										1603
7700^{3}	Sharp Cut-off Pentode	S.	6 F	6.3	0.3			-	Class-A Amp.	Characteristics same as 6C6										7700

* Cathode bios resistor-ohms. Discontinued.	1 Current to input plate (P_{1}). ${ }^{2}$ Grids Nos. 2 and 3 connected to plate. ${ }^{3}$ Low noise, nonmicrophonic tubes	${ }^{4} \mathbf{G}_{2}$ tied to plate. ${ }^{5} \mathbf{G}_{1}$ tied to \mathbf{G}_{2}. ${ }^{6}$ Osc. grid leak ohms.	${ }^{7}$ Screen dropping resistor ohms. ${ }^{3}$ Grid No, 2, screen; grid No, 3, suppressor. ${ }^{9}$ Values for single fube.	${ }^{10}$ Values for two tubas in push-pull. 11 Plate-to-plate value. ${ }^{12}$ No signal value.

TABLE V-2.5-VOLT RECEIVING TUBES

TABLE VI-2.0-VOLT BATTERY RECEIVING TUBES

Typo	Neme	Baso	Socket Connecfions	Filament		Capacitance $\mu \mu \mathrm{fd}$.			Uso	Plate Supply Volts	Grid Bias	Screen Volts	Screen Current Ma.	Plafe Current Ma.		Transconductance Micromhos	Amp. Fuctar		Pawer Outpu Watts	Type
				Volts	Amp.	In	Out	PlateGrid												
1A4P	Variable- μ Pontodo	5.	4M	2.0	0.06	5	11	. 007	R.F. Amplifier	180	- 3.0	67.5								
1A4T	Variable $\cdot \mu$ Tetrode	5.	4K	2.0	0.06	5	11	. 007	R.F. Amplifiar	180	-3.0 -3.0	67.5	0.8	2.3	1000000	750	750		-	1A4P
1 A6	Pentagrid Convertor	S.	61	2.0	0.06				Converter	180	- 3.0	67.5	2.4	2.3	960000	750	720		-	1A4T
1B4P/951	Pentode R.F. Amplifier	5.	4 M	2.0	0.06	5	11	. 007	R.F. Amplifier	180	-3.0	87.5	0.6	1.7	150000	Anode grid 650	1000	180 max.	volts	IA6
185/25S	Duplex-Diode Triode	5.	6 M	2.0	0.06	1.6	1.9	3.6	Triode Cless-A	90	-3.0	67.5	0.7	1.6	1000000	600	550		-	184P/951
											- 3.0		-	0.0	35000	575	20	-		185/25S

TABLE VI-2.0-VOLT BATTERY RECEIVING TUBES-Continued

Type	Name	Base	Socke 1 Connections	Filoment		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	Screen Valts	Screen Current Ma.	Plate Current Mo.	PlateResistanceOhms	Transconductonce Micromhos	Amp. Factor	Laad Resistance Ohms	Power Output Watts	Tүpe
				Volts	Amp.	In	Out	PloleGrid												
		5.	61	2.0	0.12	10	10		Converter	180	- 3.0	67.5	2.0	1.5	750000	Anode grid (No. 2) 135 max. volts				1 C 6
1 Cb	Pontogrid Converter	M.	6K	2.0	0.12		-		Class-A Amp,	135	-4.5	135	2.6	8.0	200000	1700	340	16000	0.34	1F4
154	Pentode Power Amplifier	M.	5K	2.0	0.12		-		R.F. Amplifier	180	- 1.5	67.5	0.6	2.0	1050000	650	650			IF6
176	Duplex-Diade Pentade	s.	6W	2.0	0.06	4	9	. 007	A.F. Amplifier	135	-1.0	135	Plate, 0.25 megohm; screen, 1.0 megohm					Amp. $=48$		
15	Shorp Cut-off Pentade	5.	5 F	2.0	0.22	2.3	7.8	0.01	R.F. Amplifier	135	- 1.5	67.5	0.3	1.85	800000	750	600	-	-	15
19	Twin-Triode Amplifier	5.	6 C	2.0	0.26		-	-	Class-B Amp.	135	0				Lood plate-to-plate			10000	2.1	19
30	Triode Detector Amplifier	5.	4D	2.0	0.06		-7		Class-A Amp.	180	-13.5			3.1	10300 3600	1050	9.3	5700	0.375	31
31	Triode Power Amplifier	5.	40	2.0	0.13	3.5	2.7	5.7	Class-A Amp.	180	-30.0		0.4	1.7	1200000	650	780			32
32	Sharp Cut-off Pentade	M.	4K	2.0	0.06	5.3	10.5	. 015	R.F. Amplifier	180	-3.0	67.5	5.4	22.0	55000	1700	90	6000	1.4	33
33	Pentade Power Amplifier	M.	5K	2.0	0.26	8	12	${ }^{1} .015$	Class-A Amp.	180	- -3.0	67.5	1.0	2.8	1000000	620	620		-	34
34	Varioble- μ Pentade	M.	4M	2.0	0.06	6	11	. 015	Class-A Amp. ${ }^{\text {d }}$	135	-20.0			6.0	4175	1125	4.7	11000	0.17	49
49	Dual-Grid Power Amp.	M.	5 C	2.0	0.12	-			Class-B Amp. ${ }^{2}$	180	0		-	Power oulput for 2 tubes				12000	3.5	
840	Penlodo	5.	5 J	2.0	0.13				Closs-A Amp.	180	- 3.0	67.5	0.7	1.0	1000000	400	400	-	0.575	840
950	Pentode Power Amplifier	M.	5K	2.0	0.12				Closs-A Amp.	135	-16.5	135	2.0	7.0	10000	1000	125	12000	0.25	RK24
RK24	Triade	M.	4D	2.0	0.12				Class-A Amp.	Special Type 32 for low grid-current applications										1229
1229	Tatrode	M .	4K	2.0	0.06															1230
1230	Triade	M.	4D	2.0	0.06	3.0	2.1	6.0		Special Type 30 for low grid.current applications										

TABLE VII-2.n-VOLT BATTERY TUBES WITH OCTAL BASES

Type	Name	Socket Connections	Filoment		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plote Supply Volis	Grid Bias	$\begin{gathered} \text { Screen } \\ \text { Volis } \end{gathered}$	Screen Current Ma.	Plate Current Mo.	Plate Resistance Ohms	Transconductance Micramhos	Amp, Factar	Laod Resisiance Ohms	Power Output Watts	Type
			Volts	Amp.	In	Out	PioleGrid												
1C7G	Heptode	72	2.0	0.06	10	14	0.26	Converter	Characteristics same os Type ICO-Table VI										$1 \mathrm{C7G}$
107G ${ }^{\text {10, }}$	Voriable- μ Pentode	5 Y	2.0	0.06	5	11	. 007	R.F. Amplifier	Choractaristics same as Type 1A4P-Table VI										105GP
1D5GT	Variable- μ Tetrade	5R	2.0	0.06				R.F. Amplifier	180	-3.0	67.5	0.7	2.2	600000	650				105GT
1D7G	Pentagrid Converter	72	2.0	0.06	10.5	9.0	0.25	Converter			Characteristics some as Type IA6-Table VI								ID7G
1E5GP	Pentode Amplifier	5 Y	2.0	0.08	5	11	. 007	R.F. Ampliner			Characieristics same as Type 184-faole VI								1E5GP
1E7G	Double Pentade Power Amp.	8 C	2.0	0.24	-		-	Class-A Amplifier	135	-7.5	135	2.04	6.51	220000	1600	350	24000	0.65	1£7G
1F5G	Pentode Power Amplifier	6 X	2.0	0.12				Closs-A Amplifier	Characteristics same as Type IF4-Tabie VI										IF5G
1F7G ${ }^{2}$	Duplex-Diode Pentade	7 AD	2.0	0.06	3.3	9.5	0.01	Detector-Amplifier	Characteristics same as Type IFb-Table VI										1 F76
IG5G	Pentade Power Amplifier	$6 \times$	2.0	0.12				Closs-A Amplitier	135	-13.5	135	2.5	8.7	160000	1550	250	9000	0.55	1G5G
IH46	Trisele Amplifior	55	2.0	0.06				Uetector-Amplifier	Characteristics same os Type 30-Table VI										IH6G
IH6G	Duplex-Diade Triade	4AA	2.0	0.08	1.6	1.9	3.6	Detector-Amplifier	Characteristics some os Type 185-Table VI									0.45	${ }_{1} 1556$
1 156	Pentode Power Amplifler	$6 \times$	2.0	0.12				Class-A Amplifier	135	-16.5	135	${ }_{\text {haracteris }}$	cs sama 0		able Vi ${ }^{\text {a }}$	100			1.169
1J6GT	Twin Triade	7 AB	2.0	0.24				Class-B Amplifier	90	-1.5		--	1.1	26600	750	20			
4A6G	Twin Triade	8 L	$\begin{aligned} & 2.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 0.12 \\ & 0.06 \end{aligned}$				Class-A,	90	-1.5		-	$10.8{ }^{3}$				8900	1.0	4A6G

TAELE VIII-1.5-VOLT FILAMENT BATtERY TUBES
See also Table X for Special 1.4 -volit Tubes

${ }^{2}$ Valtage gain.
Center-tap filament permits 1,4 -volt operation

TABLE IX-HIGH-VOLTAGE HEATER TUBES

Type	Name	Base	Socket Connestions	Hoater		Capacilance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	Screen Volts	Screen Current Ma.	Plate Current Mo.	PlateResistanceOhms	Transcanductance Micromhas	Amp. Factor	LaodResistanceOhms	Pawer Output Watts	Typ¢
				Volts	Amp.	In	Out	PlateGrid												
		M.	7F	$\begin{array}{r} 12.6 \\ 6.3 \end{array}$	$\begin{aligned} & 0.3 \\ & 0.6 \end{aligned}$	9.0	9.0	0.3	Class-A1 Amp. ${ }^{\text {b }}$	$\begin{array}{r} 100 \\ 180 \\ \hline \end{array}$	$\begin{aligned} & -15 \\ & -25 \end{aligned}$	$\begin{array}{r} 100 \\ 180 \\ \hline \end{array}$	$\begin{array}{r} 3 / 6.5 \\ 8 / 14 \\ \hline \end{array}$	$\begin{array}{r} 17 / 19 \\ 45 / 48 \\ \hline \end{array}$	50000. 35000	$\begin{aligned} & 1700 \\ & 2400 \end{aligned}$	二	$\begin{aligned} & 4500 \\ & 3300 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 3.4 \\ & \hline \end{aligned}$	12AS
12A5	Pentode Power Ampliner									250	-12.5	250	3.5	30	70000	3000		7500	3.4	12A6
12A6	Beam Power Amplifler	O.	7AC	12.6	0.15				Class-A Amp.	135	-13.5	135	2.5	9.0	102000	975	100	13500	0.55	12 A 7
12A7	Rectifier-Amplifer	M .	7K	12.6	0.3	9.5	12	0.26	Class-A Amp.	Characteristics same as 6A8-Table I										12ABGT
12A8GT	Heplade	O.	8 A	12.6	0.15	Each Triade Sect.			Class-A Amp.	180	- 6.5	-		7.6	8400	1900	16	-		12AH7GT
12AH7GT	Twin Triade	0.	8BE	$\frac{12.6}{12.6}$	0.15				Class-A Amp.	250	-6.5 -2.0			0.9	91000	1100	100	-		1286 M
12 Bm	Diode Triade	0.	6Y	12.6	0.15				Class-A Amp.	250	- 3.0	100	2.6	9.2	800000	2000				1287 ML
1287ML	Pentode Amplifer	0.	8 V	12.6	0.15	Triode Section Pentode Section				100	-1			0.6	73000	1500	110			12B8GT
12B8GT ${ }^{\text {a }}$	Triode-Pentode	O.	85	12.6	0.3				Class-A Amp.	Characteristics same as 688-Table I										12C8
$12 \mathrm{C8}$	Duplex-Diade Pentode	0.	8 E	12.6	0.15	6	9	. 005	Class-A Amp.											12E5GT
12E5GT	Triode Amplifier	0.	60	12.6	0.15	3.4	5.5	2.60	Class-A Amp.	250 Characteristics same as 65F5-Tablel										12F5GT
12F5GT	Triade Amplifer	0.	5M	12.6	0.15	1.9	3.4	2.40	Class-A Amp.	250	- 3.0		Charac		58000	1200	70			12G7G
12G7G	Duplex-Diade Triade	0.	7 V	12.6	0.15				Class-A Amp.	Characteristics same as 6H6-Table I										$12 \mathrm{H6}$
$12 \mathrm{H6}$	Twin Diode	0.	70	12.6	0.15				Rectifier	Characteristics same as 6/55-Table I										12J5GT
12J5GT	Triode Amplifier	0.	60	12.6	0.15	3.4	3.6	$\frac{3.40}{3.8}$	Class-A Amp.	Characteristics same as 6.17-Table 1										12J7 GT
12J7GT	Sharp Cut-off Pentode	0.	7R	12.6	0.15	4.2	5.0	${ }^{3.8}$	R.F. Amplifier	Characteristics same as 6K7-Table I										12K7GT
12K7GT	Remole Cut-off Pentode	0.	7 R	12.6	0.15	4.6	12	. 005	R.F. Amplifier											12 K 8
12K8	Triade Hexade Canverter	0.	8K	12.6	0.15		6	0.70	Class-A1 Amp.	100	- 9.0	180	2.8	13.0	160000	2150	-	10000	1.0	12L8GT
12L8GT	Twin Pentade	0.	8BU	12.6	0.15	5	6	0.70	Class-A Amp.	Characteristics same as 697-Table I										1207GT
1207GT	Duplex-Diode Triode	0.	7 V	12.6	0.15	2.2	5	1.60 1.2	Class-A Amp.	250	-2.0		-	0.9	91000	1100	100			1258GT
1258GT	Triple-Diode Triode	0.	8 CB	12.6	0.15	2.0	3.8	1.2	Class-A Amp.	Characleristics same 0865A7-Table I										12547
12547	Heptode	0.	8R	12.6	0.15	9.5	12.0	- 2.0	Convertor	Charactaristics same as 65C7-Table 1										12SC7
125 C 7	Twin Triode	0.	85	12.6	0.15	2.2	3.0	2.40	Class-A Amp.	Characteristics same as 6SF5-Table I										12SF5
12 SF 5	High- μ Triode	0.	6AB	12,6	0.15	4.5	3.6	2.40 .004	Class-A Amp.	Charactaristics same as 65F7-Table 1										12SF7
125 F7	Diade Variable- μ Pentode	0.	7AZ	12.6	0.15	5.5	6.0	. 0003	Class-A Amp.	Characteristics same as 65G7-Table										12SG7
125G7	Medium Cut-off Pentode	0.	8BK	12.6	0.15	8.5	7.0	. 0003	Class-A Amp.	Characteristics same as $65 \mathrm{H7}$-Table I										125H7
125H7	Sharp Cut-off Pentode	O.	8BK	12.6	0.15	8.5	7.0	. 003	Class-A Amp.	Characteristics same as 6537-Tablel										12557
125.17	Sharp Cut-off Pentode	0.	8 N	12.6	0.15			. 003	Class-A Amp.	Characteristics same a 6 SK7 -Table I										125 K 7
12567	Remote Cut-off Pentode	0.	8 N	12.6	0.15	6.0	7.0	. 003	C.F. Amplifer	Characteristics same as 65L7 ST-Tablell $^{\text {T }}$										12SLTGT
125L7GT	Twin Triode	0.	88D	12.6	0.15				Class-A Amp.	Charocteristics same as 6SN7GT-Table II										12SN7GT
125N7GT	Twin Triode	0.	8BD	12.6	0.3				Class-A Amp.	Characteristics same as 6597-Toble I										12507
12507	Duplex-Diode Triode	0.	80	12.6	0.15	3.2 3.6	3,0	1,60	Class-A Amp.	Characteristics same as 6R7-Table 1										12SR7
$125 R 7$	Duplex-Diode Triode	0.	80	12.6	0.15	3.6	2.8	2,40	Class-A Amp.	250	-9			9.5	8500	1900	16	-		125W7
125 W 7	Duplex-Diode Triode	O.	80	12.6	0.15	3.0	2,8	2.4	Class-A1 Amp. ${ }^{\text {Closs-A1 Amp. }}{ }^{\text {c }}$	250	-8			9	7700	2600	20	-		125×7
125×7	Twin Triode	0.	8BD	12.6	0.3	3.0	0.8	3.6	Closs-A1 Amp. ${ }^{\text {b }}$	250					1000000	450		-		12SY7
125Y7	Heptode Converter	0.	8R	12.6	0.15	Osc.-Grid leak 20000 ohms			Converter	250	Characteristics same os 7A4-Table lli									14A4
14A4	Triucie Amplinar	1.	SAC	14	0.16	3.4	2.0	4.00	Closs-A Amp.										2.8	14 A 5
$14 \mathrm{A5}$	Beam Power Amplifier	L.	6AA	14	6.16		-	\square	Cleat-A, Amp.	250	-12.5	250	3.5/5.5	30/32						14A7/
$\begin{aligned} & 14 A 7 / \\ & 12 B 7 / \end{aligned}$	Remote Cut-off Pentode	L.	8 V	14	0.16	6.0	7.0	. 005	Class-A Amp.	250	-3.0	100	2.6	9.2	800000	200	-			12B7
14 AF7	Twin Triode	L.	8 AC	14	0.16	2.2	1.6	2.30	Class-A Amp.	250 - Characterisfics same as 7B6-Tablelll										14B6
1486	Duplex-Diode Triode	L.	8W	14	0.16	$\underset{\mathrm{lc} 2=4 \mathrm{Ma} \text {. }}{ }$			Closs-A Amp.	Choracteristics same as 7B8-Table III										1488
1488	Pentagrid Converter	L.	8 X	14	0.16	$\mathrm{lc} 2=4 \mathrm{Ma}$.			Canvertar											$14 \mathrm{C5}$
$14 \mathrm{C5}$	Beam Power Amplifer	L.	6AA	14	0.24	-			Class-A Amp.											

table ix -high-voltage heater tubes-Continuad

TABLE IX—HIGH-VOLTAGE HEATER TUBES—Conlinued

Type	Nome	Base	Socket Connections	Heater		Capacitance $\mu \mu \mathrm{fd}$.			Uso	Plate Supply Volis	Grid Blas	Seraen Volts	Screan Current Ma.	Plate Current Ma .	Plate Resistance Ohms	Transconductance Mieromhos	Amp. Factor	Laad Resistance Ohms	Power Output Watts	Type
				Volts	Amp.	In	Out	Plate. Grid												
	Pentode	L.	8 V	12.6	0.15	6.0	6.5	0.007	Closs-A Amp.	Same as 14C7 (Special Non-microphonic)										1280
1280	Ueniode	\underline{L}	8 V	12.6	0.15	5.0	6.0	0.01	Class-A Amp.	250	-3.0	100	2.5	9.0	800000	2000	-	-		1284
1284	U.h.f. Pentode	0.	6RA	12.6	0.15				Indicalor Tube	Characteristics same as 6E5-Table IV										1627
1629	Electron-Ray Tube	0.	7AC	12.6	0.45				Class-A Amp.	Characteristics same as 6L6-Tablel										1631
1631	Beam Power Amplifier	0.	7AC	12.6 12.6	0.4				Class-A Amp.	Characteristics same as 2516										1632
1632	Beam Power Amplifior Twin Triode	0.	8BD	$\frac{12.6}{}$	0.6				Class-A Amp.	Characteristics same as 6SN7 GT-Table II										1633
1633	Twin Triode	0.	85	12.6	0.15				Class-A Amp.	Characteristics same as 65C7-Table I										1634
1644	Twin Penlode	0.	Fig. 7	12.6	0.15				Class-A Amp.	100	-9.0	180	2.8/4.6	13	160000	2150	-	10050	1.0	1644
$\begin{aligned} & \text { XXD/ } \\ & \text { 14AF7 } \end{aligned}$	Twin Triode	1.	8 AC	12.6	0.15		-	-	Class-A Amp.	250	-10	-	-	9.0	-	2100	16	-	-	$\begin{aligned} & \times \times D / \\ & 14 A F 7 \end{aligned}$
28D7	Dauble Beam Power Amplifier	L.	8BS	28.0	0.4		-	-	Class-A Amp.	28	$\begin{aligned} & 390^{*} \\ & 180^{*} \\ & \hline \end{aligned}$	$\begin{aligned} & 28^{2} \\ & 28^{3} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.7^{2} \\ & 1.2^{3} \\ & \hline \end{aligned}$	$\begin{array}{r} 9.0^{2} \\ 18.5^{3} \end{array}$				$\begin{aligned} & 4000^{2} \\ & 6000^{4} \end{aligned}$	$\begin{aligned} & 0.082 \\ & 0.1755^{2} \end{aligned}$	2807
5824	Pentode	0.	75	25	0.3				Class-A Amp.	135	-22	135	2.5/14.5	61/69	15000	5000		1700	4.3	582

* Cathode resistor-ohms.
6.3 -volf pilot lamp must be cannected between Pins 6 and 7.

4 Plate to plate.

- Values are for each unit.
a Values are for single tube.

Grids 2 and 3 connected to plate.
8 Discontinued
table X-special receiving tubes

Type	Name	Base	Socket Connec tions	Fil. or Heater		Capacitance $\mathrm{mu}^{\text {fd }}$.			Use	Plate Supply Volts	Grid Bias	Sereen Volis	Screen Current Ma.	Plate Current Ma.	$\begin{gathered} \text { Plate } \\ \text { Resistance } \\ \text { Ohms } \end{gathered}$	Transconductance Mieromhas	Amp. Factor	\qquad	Power Outpu Watts	Type
				Volts	Amp.	In	Our	PlateGrid												
00.A ${ }^{\text {? }}$	Triode Detector	M.	40	5.0	0.25	3.2	2.0	8.50	Grid-Leak Det.	45		-		1.5	32000	666	20	-		00.A
$01 . \mathrm{A}^{\text {? }}$	Triode Detector Amplifior	M.	4D	5.0	0.25				Class-A Amp.	135	-9.0	-		3.0	10000	800	8.0		-	01.4
				1.4	0.1	2.6	4.2	2.0	Class A Triode	90	0			0.15	243000	275	65	\cdots		3A8GT
3A8GT	Diade Triode Pentode	O.	8 AS	2.8	0.05	3.0	10.0	0.012	Cless-A Pentode	90	0	90	0.3	1.2	600500	750				
385GT	Beam Power Ampliflor	O.	7 AP	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.05 \end{aligned}$	-			Class-A Amp.	67.5	-7.0	67.5	$\begin{aligned} & 0.6 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.7 \\ & \hline \end{aligned}$	100050	$\begin{array}{r} 1650 \\ 1500 \\ \hline \end{array}$	-	5000	$\begin{aligned} & 0.2 \\ & 0.13 \end{aligned}$	3B5GT
3C5GT	Power Outpul Pentode	O.	740	$\begin{array}{\|l\|} \hline 1.4 \\ 2.8 \\ \hline \end{array}$	$\begin{aligned} & 0.1 \\ & 0.05 \end{aligned}$				Class-A Amp.	90	-9.0	90	1.4	6.0	-	$\begin{aligned} & 1550 \\ & 1450 \end{aligned}$	-	$\begin{array}{r} 8.000 \\ 10000 \\ \hline \end{array}$	$\begin{aligned} & 0.24 \\ & 0.26 \end{aligned}$	3C5GT
$3 \mathrm{C6}$	Twin Triode	L.	7BW	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.05 \end{aligned}$		-		Class-A Amp.	90	0	-	-	4.5	11200	1300	14.5	-	-	$3 \mathrm{C6}$
31 E4	Power Amplifier Pentode	t.	6BA	2.8	0.05				Class-A Amp.	90	-9.0	90	1.8	9.0	110500	1600		6500	0.30	$3 L E 4$
3164		1.	6BB	1.4	0.1				Class-A Amp.	90	- 4.5	90	$\begin{array}{r} 1,3 \\ 1.0 \end{array}$	$\begin{aligned} & 9.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 75050 \\ & 80700 \end{aligned}$	$\begin{aligned} & 2250 \\ & 2000 \end{aligned}$	-	$\begin{aligned} & 8700 \\ & 7000 \end{aligned}$	$\begin{aligned} & 0.27 \\ & 0.23 \\ & \hline \end{aligned}$	3LF4
3LF4	Beam Pentode	4.	683	2.8	0.05															
305GT	Beam Power Amplifier	O.	7AQ	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.05 \end{aligned}$	Parallel FilamentsSarias Filaments			Class-A Amp.	90	-4.5	90	$\begin{aligned} & 1.3 \\ & 1.0 \\ & \hline \end{aligned}$	9.5	-	$\begin{aligned} & 2100 \\ & 1800 \end{aligned}$	-	8000	$\begin{aligned} & 0.27 \\ & 0.25 \end{aligned}$	3Q5GT
						Triodes Parallel			Class-A Amp.	90	- 1.5			2.2	13320	1500	20			4A6G
4A6G	Twin Triode Amplifer	0.	81	2	0.12	Both Sections			Class-B Amp.	90	0			4.6	-	-	-	850	1.0	
6F4	Acorn Triode	A.	78R	6.3	0.225	2.0	0.6	1.90	Class-A Amp.	80	150*			13.0	2900	5800	17		-	654
614	U.B.F. Triode	A.	78 B	6.3	0.225	1.8	0.5	1.6	Class-A, Amp.	80	150*			9.5	4400	6400	88		1.6	10
10	Triode Power Amplifier	M.	4D	7.5	1.25	4.0	3.0	7.00	Class-A A.no.	425	-39.0			-18.0	15000	440	8.6	10250		11/12
11/12 ${ }^{7}$	Triode Defector Amplifier	M.	4F/40	1.1	0.25				Class-A Amp.	135	-10.5			6.5	6300	525	3.3	6500	0.11	20
20^{7}	Triode Power Amplifier	S.	4D	3.3	0.132	2.0	2.3	4.10	Class-A Amp.	135	-22.5 -1.5	67.5	1.3	6.5 3.7	325000	500	160	\cdots		22
$22{ }^{7}$	Tetrode R.F. Amplifier	M.	4 K	$\frac{3.3}{1.5}$	$\frac{0.132}{105}$	3.5	10	8.02	Class-A Amp.	185	-1.5	67.5		6.2	7300	1150	8.3	-	- -	26
26	Triode Amplifer	M.	4D	1.5	105	2.8	2.5	8.100	Class-A Amp.	180	-14.5			0.2	150000	200	30	-	-	40
$\frac{407}{50}$	Triode Voltage Amplifior	M .	40	5.0	0.25	2.8	2.2	$\underline{2.00}$	Class-A Amp.	450	-84.0			55.0	1800	2100	3.8	4350	4.6	50

TABLE XI-MINIATURE RECEIVING TUBES - Other minialure types in Tables XIII and XV

Type	Name	Base	Socket Connec. lions	Fil. or Meater		Copocitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volis	Grid Bias	Screen Volis	Screen Current Me.	Plate Current Me.	Plate Resisfance Ohms	Transconductonce Micremhos	Amp. Factor\square	LeadResistanceOhms	Power Oulpul Wotfs	Prototype
				Volts	Amp.	In	Out	PlateGrid												
143	H. F. Diode	B.	5AP	1.4	0.15	-	-	-	Detector F.M. Discrim.	Max. a.c. voltage per plate- 117 . Max. output current-0.5 ma.										—
1AE4	Sharp Cuf-off Pentode	8.	6AR	1.25	0.1	3.6	4.4	0.008	Class-A: Amp.	90	0	90	1.2	3.5	500000	1550	\cdots		-	\cdots
IAF4	Pentede	8.	6AR	1.4	0.025	3.8	7.6	. 003	Class-A1 Amp.	90	0	90	0.5	1.65	1800000	950				
1AF5	Dlede Pentode	8.	6AU	1.4	0.025		-		Class-A, Amp.	90	0	90	0.4	1.1	2000000	600				
$1 \mathrm{C3}$	Triode	8.	5CF	1.4	0.05	0.9	4.2	1.8	Class-A, Amp.	90	-3			1.4	19000	760	14.5	-		163
114	Sharp Cut-off Pentode	B.	6AR	1.4	0.05	3.6	7.5	. 008	Class-A Amp.	90	0	90	2.0	4.5	350000	1025				INSGT
116	Pentegrid Converter	B.	7DC	1.4	0.05	7.5	12	0.3	Converior	90	0	45	0.6	0.5	650000	306				ILA6
1R5	Pentagrid Converter	B.	7AT	1.4	0.05				Converter	90	0	67.5	3.0	1.7	500000	300	Grid No. 1100000		ohms	1A7GT
154	Pentagrid Power Amp,	B,	7AV	1.4	0.1			\cdots	Class-A Amp.	90	-7.0	67.5	1.4	7.4	100000	1575		8000	0.270	105GT
155	Diode Pentode	B.	6AU	1.4	0.05		-		Closs-A Amp.	67.5	0	67.5	0.4	1.6	600000	625		\cdots		
									R-Coupled Amp.	90	0	90	Screen resisfor 3 meg ., grid 10 mag .					1 meg.	0.050	
154	Variablo- μ Pentode	B.	6AR	1.4	0.05	3.6	7.5	0.01	Class-A Amp.	90	0	67.5	1.4	3.5	500000	900	-			IPSGT
104	Sherp Cup-off Pentode	B,	6AR	1.4	0.05	3.6	7.5	0.01	Class-A Amp.	90	0	90	0.5	1.6	1500000	900				INSGT
105	Diode Pentode	B.	6BW	1.4	0.05				Class-A Amp.	67.5	0	67.5	0.4	1.6	600000	625				
106	Pentagrid Converfer	B.	7DC	1.4	0.025	8	12	0.4	Converler	90	0	45	0.55	0.55	600000	275				-
1W4	Pewer Amplifier Pentode	B.	5BZ	1.4	0.05	3.6	7	0.1	Closs-A1 Amp.	90	-9	90	1	5	300000	925		12000	0.2	1184
2 CSI	Twin Triode	B.	8CJ	6.3	0.3	2.2	1.0	1.3	Class-A1 Amp.	150	- 2			8.21		5500	35	-		$7 \mathrm{F8}$
$2 E 30$	Beam Power Pentode	B.	7 Ca	6.0	0.7	10	4.5	0.5	Class- A_{1} Single	250	450*	250	7.43	44 ?	63000	3700	40^{5}	4500	4.5	
									Class-A1 Amp. ${ }^{3}$	250	225*	250	$14.8{ }^{3}$	88.			80^{5}	$9000{ }^{6}$	9	-
									Class-AB, Amp, ${ }^{\text {a }}$	250	-25	250	13.5:	80:	-	-	48 s	8000 :	12.5	
									Class-A8: Amp. ${ }^{\text {a }}$	250	-30	250	20^{3}	120 :		-	40^{3}	$3800{ }^{\text {- }}$	17	
344	Power Amplifier Pentode	8.	788	$\begin{array}{r} 1.4 \\ 2.8 \\ \hline \end{array}$	$\begin{aligned} & 0.2 \\ & 0.1 \\ & \hline \end{aligned}$	4.8	4.2	0.34	Class-A, Amp.	$\begin{array}{r} 135 \\ 150 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-7.5 \\ -8.4 \\ \hline \end{array}$	$\begin{aligned} & 90 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.6 \\ & 2.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 14.92 \\ & 14.1^{2} \\ & \hline \end{aligned}$	$\begin{array}{r} 90000 \\ 100000 \end{array}$	1900	\square	8000	$\begin{aligned} & 0.6 \\ & 0.7 \\ & \hline \end{aligned}$	\square
345	H.F. Twin Triode	B.	7BC	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.11 \end{aligned}$	0.9	1.0	3.20	Closs-A Amp.	90	- 2.5	-	-	3.7	8300	1800	15	—	-	\square
3E5	Power Amplifier Pentode	B.	6BX	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{gathered} 0.05 \\ .025 \end{gathered}$			-	Class-A Amp.	90	- 8	90	1.5	5.5	120000	1100	\square	8000	. 175	-
304	Power Amplifier Pentode	8.	7BA	1.4	0.1	Parallel Filaments			Class-A Amp.	90	-4.5	90	2.1	9.5	100000	2150		10000	0.27	305GT
				2.8	0.05	Series Filaments							1.7	7.7	120000	2000	-		0.24	
354	Power Amplifer Pentod*	B.	7BA	1.4	0.1	Parallel Filaments			Class-A Amp.	90	- 7.0	67.5	1.4	7.4	100000	1575		8000	0.27	305GT
				2.8	0.05	Serie	5 Filom	ments					1.1	6.1		1425			0.235	
3 V 4	Power Amplifier Pentode	8.	6Bx	1.4	0.1	Parallel Filaments			Class-A Amp.	90	-4.5	90	2.1	9.5	100000	2150		10000	0.27	305GT
				2.8	0.05	Series Filaments			Class-A Amp.	90	- 4.5	90	1.7	7.7	120000	2000		10000	0.24	
6AB4	U.h.f. Triode	B,	SCE	6.3	0.15	2.2	0.5	1.5	Closs-A Amp.	250	200*	-	-	10	10900	5500	60	-	-	$\begin{gathered} \text { Single unit } \\ 12 \text { AT7 } \end{gathered}$
6AE8	Trlode Hexode	8.	90	6.3	0.3	-			Freq. Converter	-	-	-		-	-	-	-	-	-	-
6AG5	Sharp Cut-olf Pentoda	8.	7BD	6.3	0.3	-	-	-	Class-A Amp.	$\begin{aligned} & 250 \\ & 100 \end{aligned}$	$\begin{aligned} & 200 \text { : } \\ & 100 \end{aligned}$	$\begin{aligned} & 150 \\ & 100 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 800000 \\ & 300000 \end{aligned}$	$\begin{aligned} & 5000 \\ & 4750 \end{aligned}$	\square	-	-	6SH7GT*
6AH6	Sharp Cut-olf Pentode	B.	7CC	6.3	0.45	10	2	0.03	Penlode Amp.	300	160*	150	2.5	10	500000	9000		-	-	6AC7
									Triode Amp. ${ }^{\text {P }}$	150	160*	-	-	12.5	3600	11000	40	-	-	
\$8ds		Q.	7PM	6.2	0.175	-	-		R.F. Amplifler	28	200*	28	1.2	3.0	90000	2750	250	$09000{ }^{6}$	10	
Smos		Q.		6.2	-175		-		Class-A8 Amp. ${ }^{\text {a }}$	180	- 7.5	53	-	-	-	--	--0	98800^{6}	1.2	
6AK5	Sharp Cut-olf Pentode	B.	78 D	6.3	0.175	4.3	2.1	0.03		180	200*	120	2.4	7.7	690000	5100	3500	-	-	
									R.F. Amplifier	150	330*	140	2.2	7.0	420000	4300	1800	-	——	
										120	200*	120	2.5	7.5	340000	5000	1700	-	-	
6AK6	Power Amplifier Pentode	B.	78K	6.3	0.15	3.6	4.2	0.12	Class-A Amp.	180	-9.0	180	2.5	15.0	200000	2300	-	10000	1.1	-
6AL5	U.h.f. Twin Diode	B.	6BT	6.3	0.3	-	-		Detecior			Mox. r.m.s, voliage-150. Max, d, c, output current- 10 ma. ${ }^{1}$								6H6GT
64 M5	Power Amplifier Pentode	B.	6CH	6.3	0.2		-		Closs-A Amp.	250	-13.5	250	2.4	16	130000	2600	-	16000	1.4	-
6 AM6	Penlode	B.	7D8	6.3	0.3	7.5	3.25	0.01	Class-A1 Amp.	250	- 2	250	2.5	10	1000000	7500	-	-		-

$\mathrm{r}_{\text {ype }}$	Nome	Bose	Socket Connec. Hons ${ }^{1}$	Fil. or Heater		Capocitance $\mu \mu \mathrm{fd}$.			Use	Plote Supply Volts	Grid Bias	Screen Volts	Screen Current Mo.	Plote Current Mo.	Plate Resistance Ohms	Transcenductance Micromhos	Amp. Focior	Load ResistanceOhms	Power Output Watts	Prototype
				Volls	Amp.	In	Ou	Plote. Grid												
GANS	Power Amp. Pentode	B.	7BD	6.3	0.5	9.0	4.8	0.05	Class-A, Amp.	120-6		120								
6AN6	Irwin Diode	B,	783	6.3	0.2				Defector	per pla			75 volts; d.c. outpul $=\mathbf{3 . 5} \mathrm{mo}$. with $\mathbf{2 5 0 0 0}$ ohms and $8 \mu \mu \mathrm{fd}$. lood; rent per plote $=10 \mathrm{mo}$.; peok inverse voltage $=\mathbf{2 1 0}$.							6AG7
6AN7	Triode Hexode	B.	90	6.3	0.23	3.8	9.2	0.1	Converter											-
6AQ5	Beam Power Yetrode	B.	2z	6.3	0.45	7.6	6.0	0.35	Class-A1 Amp.	250	-2.	85	$3{ }^{3} 0^{2}$	3		750				
				6.3	0.45	7.6				250	- 12.5	250	4.0 -	30^{2}	58000	3700	29	5500	2.0	6V6GT
6 606	Duodiode Hi-mu Triode	B.	781	6.3	0.15	1.7	. 5	1.80	Closs-A Triode	250	- 3,0	$\underline{-}$	7.0	1.0	52000 58000	4100	$45{ }^{5}$	5000	4.5	
										100	- 1.0			0.8	61000	1150	70	-	-	617G
6AR5	Pentode Power Amp,	8.	6CC	6.3	0.4	-	-	-	Closs-A, Amp.	250	-18	250	5.5 :	$33{ }^{2}$	68000	2300		7600	3.4	
6AS5	Beom Pentode	B.	7CV	6.3	0.8	12	6.2	0.6		250	-16.5	250	5.5 \%	$35{ }^{2}$	65000	2400	-	7000	3.2	6K6GT
6AS6	Shorp Cut-off Pentode	B.	7CM	6.3	0.175	4.0	3.0		Closs-A Amp.	150	- 8.5	110	2/6.5	35/36	-	5600		4500	2.2	
6AT6	Duplex Diode Triode	B.	78T	6.3	0.3	2.0	3.0	2.10	Closs-A Amp.	120	- 2	120	3.5	5.2	-	3200	-	4500	2.2	
6AU6	5harp Cut-off Pentode	B.	78K	6.3	0.3	5.5	5.0	. 0.0035	Closs-A Amp.	250	-3 -1	150		1.0	58000	1200	70		-	607 GT
GAV6	Duodiode Hi-mu Triode	B,	781	6.3	0.3				Class-A Amp.	250	- 2	150	4.3	10.8	2000000	5200	-		-	65H7GT
6BA6	Remate Cut-off Pentode	B.	7 CC	6.3	0.3	5.5	5.0	. 0035	Closs-A Amp.	250	68*			1.2	62500	1600	100		-	6507GT
6847	Pentagrid Converfer	B.	8 Cl	6.3	0.3	9.5	8.3		Converter	250	-68*	100	4.2	11	1500000	4400		-		65G7GT.
$68 C 5$	Pentode	B.	780	6.3	0.3	6.6	3.1	. 02	Class-A1 Amp.	250	180*	150	1.4	3.8	1000000	950				6587\%
$68 \mathrm{C7}$	Triple Diode	B.	9AX	6.3	0.45			-	FM/AM Del.	Max, diade current per plate =12 Ma, Mox. hrr.-coth volls $=200$										-
6806	Remote Cut-off Pentode	8.	7 CC	6.3	0.3	-	-	-	Class-A Amp.	100	-1	100	5	13	120000	2350	voirs=200			6SK7GT
6807	Duodiode Hi-mu Triode	B.	92	6.3	0.23	2.4	1.3	13		250	- 3	100	3.5	9	700000	2000				
6856	Pentagrid Converter	B.	7CH	6.3	0.3	Ose. Grid 50000Ω			Converter	250	3		-	1.0	58000	1200	70	-		$\underline{\text { 6SA7GT }}$
68.7	Heptode Limiter-Disc.	B.	9AA	6.3	0.2	Os.	-		FM Limiter-Discriminotor	250	$\underline{-1.5}$	100 20	$\begin{array}{r}7.8 \\ \hline 1.5\end{array}$	3.0	1000000	475	-	-	-	
6855	Beam Power Pentade	B.	782	6.3	1.2					110	-4.4 -7.5	20	1.5	0.28	5000000	-	-			-
68F6	Duplex-Diode Triode	B.	78T	6.3	0.3	1.8	1.1	2.0	Class-A, Amp. Closs. A_{1} Amp.	110	-7.5	110	4.0/8.5	49/50	10000	7500	-	2500	1.9	-
68H6	Sharp Cut-aff Pentode	B.	7CM	6.3	0.15	5.4	4.4	0.0035	Closs.At Amp.	250	-9 -1	150	2.9	9.5	8500	1900	16	10000		6SR7GT
6815	Pentade	B.	6CH	6.3	0.64				Power Amp.	250	- 5	250	2.9	7.4	1400000	4600				-
68.16	Remote Cuf-off Pentode	B.	7 CM	6.3	0.15	4.5	5.0	. 0035	Class. A_{1} Amp.	250	- 1	100	3.5	35	40000	10500	420	7000	4.0	
6BK6	Duodiode Triode	8.	78T	6.3	0.3	\square		-	Closs-A1 Amp.	250	-2		3.3	9.2	1300000	3800		-		$6 \overline{557 G T}$
68N6	Gated-beam Disc.	B.	7DF	6.3	0.3	4.2	3,3	. 004	FM Dise.	80	- 1.3	60	$\frac{-7}{5}$	1.2	80000	1250	100	-	-	-
6BN7	Dual Triode	8.	Fig. 41	6.3	0.75	5.58	1.67	3^{3}	Class-A Amp. ${ }^{\text {a }}$	250	-15			24	2200			68000	-	-
						1.48	$0.3{ }^{\text {b }}$	0.73	Class-A1 Amp. ${ }^{8}$	120	-1	-	-	5	14000	2000	12			-
6897	Double Triode	B.	9 AJ	6.3	0.4	2.55	1.3	1.15	Closs. A_{1} Amp. ${ }^{11}$	150	220*		-	9.0	5800	2000	28	-	-	
$6 \mathrm{BT6}$	Duodiode Triode	8.	787	6.3	0.03		-		Closs-A A Amp.	250	- 3				5800 58000	6000	35			-
$68 \mathrm{U6}$	Duodiode Triode	B.	78 T	6.3	0.3				Class-A, Amp.	250	- 9			9.5	58000	1200	70	10000	-	-
6BW6	Beam Pentode	8.	9AM	6.3	0.45	-	-		Closs-A: Amp.	315	-13	225	6	35	77000	1900	16	$\frac{10000}{8500}$	0.3	-
6C4	Triode Amplifier	8.	6BG	6.3	0.15	1.8	13		Close ${ }^{\text {a }}$	250	-12.5	250	7	47	52000	4100	-	5000	4.5	
6CB6	Shorp Cut-off Pentode	B.	7 CM	6.3	0.3	6.3	1.9	0.02	Closss.A1 Am	250	-8.5		2,	10.5	7700	2200	17			6.5 GT
6CG6	Remote Cut-off Pentode	8.	78K	6.3	0.3	5	5	0.008	Closs-A, Amp.	250	180	150	2.8	9.5	600000	6200		-	-	-
6 J 4	U.h.f. Grounded-Grid R.F. Amplifier	8.	780	6.3	0.4	5.5	0.24	4.0	Grounded.Grid	150	200*	150	2.3	9.0 15.0	720000 4500	2000	55	-	-	
	R.F. Amplifier					5.5	0.24	4,0	Class-A Amp.	100	100*			10.0	5000	11000	55		\square	-
6 J 6	Twin Triode	B.	7BF	6.3	0.45	2.2	0.4	1.6	Class-A Amp. Mixer, Oscillator	100	50*	-	-	8.5	7100	5300	38	-	\square	
6M5	Power Amplifier Pentode	8.	9 N	6.3	0.71	10	6.2	1	Closs-A Amp.	250	170*	250	5.2	36						
6N4	U.h.f. Triode Amplifier	B.	7CA	6.3	0.2	3.0	1.6	1.10	Class-A Amp.	180	- 3.5			$\frac{36}{12}$	40000	10000		7000	3.9	-
6N8	Duodiode Pentode	B.	97	6.3	0.3	4	4.6	. 002	Closs-A, Ampers	250	-2	85		12	160000	6000	32			-

Type	Name	Sase	Sockel Connec. fions	Fil. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bios	Screen Volts	5creen Current Ma.	Plate Current Mo.	PlateRessistanceOhms	Transconductance Micromhos	Amp. Factor 4	Load Resistance Ohms	Power Output Watts	Protolype
				Volts	Amp.	1 n	Out	Plate- Grid												
604	Grnd. -Grid Triode	8.	95	6.3	0.48	5.4	. 06	3.4	Class-A, Amp.	250	-1.5	\longrightarrow		15		12000	80			
6R4	U,h.l. Triode	B.	9 R	6.3	0.2	1.7	0.5	1.5	Class-A, Amp.	150	- 2	-		30		5500	16			
6R 8	Triple Diode Triode	8.	9 E	6.3	0.45	1.5	1.1	2.4	Class-A, Amp.	250	-9	\cdots	\square	9.5	8500	1900	16	10000	0.3	
654	Triode	B.	9AC	6.3	0.6		-		Class-A, Amp.	250	-8			26	3600	4500	16	-		
618	Triple-Diode Triode	B.	9E	6.3	0.45	1.5	1.1	2.4	Class-A Amp.	250	-3	\longrightarrow		1.0	5800	1200	70	-	\square	
618	Triple-Diode Triode	B.	9	6.3	0.45	1.5	1.1	2.4	Class-A1 Amp.	100	-1	-	-	0.8	5400	1300	70			
648	Triode	8.				2.5	1.0	1.8	Class-A, Amp.	150	56*			18	5000	8500	40			
608	Pentode	B.	9AE	6.3	0.45	5.0	2.6	0.01	Class-A1 Amp.	250	68*	110	3.5	10	400000	5200		\longrightarrow	\cdots	
									Class-A, Amp.	100	-1	\square		0.8	54000	1300	70			
6VB	Triple-Diode Triode	B.	9AH	6.3	0.45	-	-	-	Class-AI Amp.	250	-3	-		1.0	58000	1200	70			-
									Diode			Max. di	de /2 and	$\mathrm{Ma},=1$	each. Ma	x, diode /	$\mathrm{Ma}=1$			
6×8	Madium Mu Triode	B.	9AK	6.3	0.45	2.6	1.0	1.4	Triode Osc.	150	27008	-		13	-	-	-			
6×8	Sharp Cut-oft Pentode	B.	9AK	6.3	0.45	4.5	1.2	0.008	Pentode Mix.	150	- 3.5	150	1.1	4.6	-	1600	-		-	
		B.	9AG	6.3	0.6				Class-A1 Amp.	150	-17			30	1200	5200	6.5			
1244	Triade	B.	$9 A G$	12.6	0.3				Class-A! Amp.	150	-17	\longrightarrow	-	30	1200	5200	6.5	-		-
$12 \mathrm{Al5}$	Twin Diode	B.	685	12.6	0.15	2.5	-		Detector			vol	per plo per plate	117; d. 54; peak	$\begin{aligned} & \text { c. output }=9 \\ & \text { inverse volt } \end{aligned}$	$\begin{aligned} & 9 \text { ma. per pla } \\ & \text { lloge }=\mathbf{3 3 0} \text {. } \end{aligned}$	e; peak	ma.		12H6GT
12AT6	Duplex Diode Triode	B.	78T	12.6	0.15	2.3	1.1	2.10	Class-A Amp.	250	-3.0		\longrightarrow	1.0	58000	1200	70	-		1207 GT
12477		8.	9 A	6.3	0.3	$2.5{ }^{\text { }}$	$0.45{ }^{7}$	1.45'	Class-A Amp.	250	- 2	-		10	10000	5500	55			
12A17	Double Triode	B.	94	12.6	0.15	$2.5{ }^{8}$	$0.35{ }^{8}$	$1.45{ }^{\text {8 }}$	Each Unit	180	-1		\square	11	9400	6600	62			
12AU6	Sharp Cut-olf Pentode	B.	7CC	12.6	0.15	5.5	5.0	. 0035	Closs-A1 Amp.	250	-1.0	150	4.3	10.8	1 meg.	5200				125H7GT
$124 U 7$	Twin-Triode Amplifier	8.	9 A	6.3	0.3	$1.6{ }^{7}$	0.5]	$1.5{ }^{\text {\% }}$	Class-A: Amp.	250	- 8.5	-		10.5	7700	2200	17	-	-	12SN7GT
12407	Twin-Triode Amplifier	B.	9 A	12.6	0.15	1.68	$0.35{ }^{8}$	1.58	Cioss-A: Amp.	250	-8.5	--	-	10.5	7700	2200	17	-	-	12SN7GT
12AV6	Duodiode Hi-mu Triode	8.	78T	12.6	0.15				Class-A, Amp.	250	- 2			1.2	62500	1600	100	-		
12AV7	Dauble Triode	B.	9 A	12.6	0.225	3.1	0.57	1.9	Class. A_{1} Amp. ${ }^{11}$	100	120*	-		9.0	6100	6100	37			
l2av7	Dauble Triode			6.3	0.45		$0.4{ }^{8}$		Class.A1 Amp,	150	56*			18	4800	8500	41			
I2AW6	Sharp Cut-off Pentode	8.	7CM	12.6	0.15	6.5	1.5	0.025	Pentode Amp.	250	200*	150	2.0	7.0	800000	5000	-	\square	-	
12AW6	Sharp Cut-off Pentode	B.	7 cm	12.6	0.15	6.5	1.5	0.025	Triode Amp. ${ }^{9}$	250	825*	-		5.5	11000	3800	42			
12AW7	Sharp Cut-off Pentode	B.	7CM	12.6	0.15	6.5	1.5	0.025	Class-A ${ }_{1}$ Amp.	250	200*	150	2.0	7.0	0.8 meg.	5000	\square			
12AX7	Double Triode	B.	9A	12.6	0.15	$1.6{ }^{7}$	$0.46{ }^{7}$	1.77	Class-A Amp.	250	- 2			1.21	62500	1600	100			
12AX7	Double Triode	B.	9 A	6.3	0.3	$1.6{ }^{\text {B }}$	$0.34{ }^{8}$	1.78	Class-A Amp.	100	- 1			0.51	8000	1250	100	-		
12AY7	Dual Triode	B.	9 9	12.6	0.15	1.3	0.6	1.3	Class-A Amp.	250	- 4			3	- 1	1750	40			
12AY7	Dual Triode	-.	9 A	6.3	0.3	1.3	0.6	1.3	Lo-Level Amp.	150	2700*		Plate resi	1or $=2000$	00 12. Grid resis	resistor $=0.1$	Meg. V.	G. $=12.5$		
12427	Dauble Triode	B.	9 A	12.6	0.225	3.17	0.57	1.97	p.	100	270*	-	-	3.7	15000	4000	60	-	-	
12427	Dauble Triode	B.		6.3	0.45	3.18	$0.4{ }^{8}$	1.98	p.	250	200*	-	-	10.0	10900	5500	60	-		
12846	Remote Cut-off Pentode	B.	7CC	12.6	0.15	5.5	5.0	. 0035	Class-A Amp.	250	68*	100	4.2	11.0	1500000	4400		-		12SG7G
12847	Pentagrid Converter	B,	8 CT	12.6	0.15	9.5	8.3	-	Canverter	250	- 1	100	10	3.8	1000000	3.5	\cdots	\longrightarrow		
128D6	Remote Cuf-off Pentode	B.	7 CC	12.6	0.15	4.3	5.0	. 004	Class-A Amp.	250	-3	100	3.5	9.0	700000	2000				12SK7GT
12886	Pentagrid Converter	8.	7CH	12.6	0.15	Osc.	Grid 50	0000 L	Converter	250	-1.5	100	7.8	3.0	1000000	475	-	-		125A7GT
12BF6	Ouodiode Triode	B.	7BT	12.6	0.15	1.8	1.1	2.00	Class-A Amp.	250	-9			9.5	8500	1900	16			12SR7GT
12BH7	Dual Triode	B.	9A	6.3	0.6	3	2.6	2.4	Class-Aı Amp.	250	-9.5		-	11.5	-	3250	18	-		
120n7	Dual Triode	B.	9 A	12.6	0.3	3	2.6	2.4	Class-AI Amp.	250	-9.5	-	-	11,5	-	3250	18	\cdots		6SN7 GT
128K6	Duodiode Triode	B.	78T	12.6	0.15				Class-A1 Amp.	250	-2		-	1.2	63000	1600	100	-		\longrightarrow
123N6	Gated-beom Disc.	B.	70F	12.6	0.15	4.2	3.3	. 004	FM Oisc.					Same	as 6BN6					
128 TC	Duodiode Friode	B.	7BT	12.6	0.15			-	Class-A1 Amp.					Same	08 68T6					\longrightarrow
12846	Duodiode Triode	B.	78T	12.6	0.15		-	-	Class-A1 Amp.					Same	as 68U6					-
12827	Dual Trioda	8.	9 A	12.6	0.15	6.5	0.7	0.45	Class-A1 Amp. ${ }^{11}$	250	- 2	-	—	2.5	31800	3200	100	-	-	-
				6.3	0.3															
19AQ5	Beam Pentode	8.	782	18.9	0.15	-	-	-	Closs-A Amp.					50 m	as 6AQ5					

table XI-MINIATURE RECEIVING TUBES-Continued

TABLE XI-MINIATURE RECEIVING TUBES-Continued

Type	Name	Base	Sockel Connec lions	Fil. or Heater		Capacitance $\mu \mu \mathrm{ld}$ d.			Uso	Plate Supply Volts	Grid Bias	Screen Volts	Screen Current Ma.	Plate Current Ma.	PlateResistancsOhms	Transcon- ductance Micromhos	Amp. Foctor	LoadResistanceOhms	Power Oulput Wotts	Type
				Volts	Amp.	In	Oul	Plate- Grid												
9002	Triode Detector, Amplifier, Oscillator	8.	7TM	6.3	0.15	1.2	1.1	1.40	Closs-A Amp.	250	- 7.0	-	-	6.3	11400	2200	25	-	-	
										90	-2.5	-	-	2.5	14700	1700	25	-		
9003	Remote Cut-off Pentode	B.	7PM	6.3	0.15	3.6	3.0	0.01	Class-A Amp.	250	- 3.0	100	2.7	6.7	700000	1800				-
										250	-10.0	100	Osc. peak valtage 9 volts			600				
9006	U.h.f. Diode	B.	6BH	6.3	0.15		-		Delectar			Max.	o.c. volta	ge-270.	Max. d.c.	output current	t-5 mo			\square
Ω Oscillator gridleak ohms. * Cathode resistor-ohms. 1 Per Plate. 2 Maximum-signal current for full-power outpul.				${ }^{2}$ Volues are for two tubes In push-pult 4 Unless otherwise noted. - No signal plote mo.						- Effective plate-to-plote. ${ }^{7}$ Triode No. 1. - Triode No. 2.						${ }^{3}$ Grid No. 2 lied to plate ond No. 3 to cathode. ${ }^{10}$ Oscillator grid current Mo. it Volues for each section.				

Typo	Name	Bose	$\begin{gathered} \text { Sockel } \\ \text { Connec } \\ \text { fions } \end{gathered}$	Fil. or Heoter		Capacitance $\mu \mu \mathrm{Pd}$.			Use	Plate Supply Volts	Grid Bias	$\begin{gathered} \text { Screen } \\ \text { Volts } \end{gathered}$	Screen Current Ma.	Plate Current Ma.	PlateResistonceOhms	Transconductance Micromhos	Amp. Factor		Power Outpu: Watts	Type
				Valts	Amp.	In	Out	$\begin{aligned} & \text { Plate } \\ & \text { Grid } \end{aligned}$												
IAC5	Power Pentade	Bs.	Fig. 14	1.25	0.04	-	\cdots		Class-A1 Amp.	67.5	-4.5	67.5	0.4	2.0	150000	750		25000	0.03	IACS
1 ADS	Sharp Cut-off Pentode	Bs.	Fig. 16	1.25	0.04	1.8	2.8	0.01	Closs-A1 Amp.	67.5	0	67.5	0.75	1.85	700000	735				1 ADS
1C8	Heptode	-		1.25	0.04	6.5	4.0	0.25	Converter	30	0	30	0.75	0.32	300000	100				1C8
1 E8	Pentagrid Converter	Bs.	Fig. 27	1.25	0.04	6			Converter	67.5	0	67.5	1.5	1.0	-	150		-		1E8
156	Diode Pentode	Bs.	8DA	1.25	0.04	-			Delector Amp.	67.5	0	67.5	0.4	1.6	400000	600				156
176	Diode.Pentode	Bs.	FIg. 28	1.25	0.04	-	-		Closs-A1 Amp	67.5	0	67.5	0.4	1.6	400000	600		-		176
Ivs	Audio Pentode	1	2	1.25	0.04				Class-A1 Amp.	67.5	-4.5	67.5	0.4	2.0	150000	750		25000	0.05	IV5
IW5	Sharp Cut-off Pentodo	1	:	1.25	0.04	2.3	3.5	0.01	Closs-A ${ }_{1}$ Amp.	67.5	0	67.5	0.75	1.85	700000	735			-	IWS
2 E 31	R.F. Pentode	1	2	1.25	0.05				Closs-A A Amp.	22.5	0	22.5	0.3	0.4	-	500			-	2 E 31
2 E 32	R.F. Pentode	1	2	1.25	0.05				Class-A Amp.	22.5	0	22.5	0.3	0.4	350000	500		-	-	2 E 32
2 E 35	Audio Pentodo	1	2	1.25	0.03				Cioss.A1 Amp.	22.5	0	22.5	0.07	0.27	-	385			0.0012	2 E 35
		1	:	1.25	0.03				Class-A Amp.	22.5	0	22.5	0.07	0.27	220000	385		150000	0.0012	$2 E 36$
$2 E 36$	Audio Pentode	,	2	1.25	0.03				Class-A Amp.	45	-1.25	45	0.11	0.45	250000	500		100000	0.00	$2 E 36$
$2 E 41$	Diode Pentode	1	2	1.25	0.03	-	-		Detector Amp.	22.5	0	22.5	0.12	0.35				-		$2 \mathrm{E41}$
$2 E 42$	Diode Pentade	1	2	1.25	0.03				Detector Amp.	22.5	0	22.5	0.12	0.35	250000	375		1 meg.		$2 \mathrm{E42}$
2 G 21	Triode Heptode	1	2	1.25	0.05		-		Converter	22.5		22.5	0.2	0.3	-	75				2G21
$2 \mathrm{G22}$	Converter	1	2	1.25	0.05				Converter	22.5	0	22.5	0.3	0.2	500000	60	-	\square		$2 \mathrm{G22}$
6 AD4	Triode	Bs.	2	6.3	0.15	2.8	3.2	1.31	Class-A, Amp.	100	820**			1.4	26000	2700	70	-	-	-
6BAS	Penlode	1	${ }^{2}$	6.3	0.15	4.0	6.5	0.19	Closs-A, Amp.	100	270*	100	1.25	4.8	150000	3300		-		6BAS
6BF7	Dual Triode	Bs.	8DG	6.3	0.3	2.0	1.6	1.5	R.F. Amp.	100	100*			8.0	7000	4800	35	\square		6BF7
68G7	Dual Triode	B.	8DG	6.3	0.3	2.0	1.6	1.5	R.F. Amp.	100	100*	-		8.0	7000	4800	35	-	-	68G7
$6 \mathrm{K4}$	Triode	1	${ }^{2}$	6.3	0.15	2.4	0.8	2.4	Closs Al Amp.	200	$680{ }^{\circ}$		-	11.5	4650	3450	16			$6 \mathrm{K4}$
1247	Diode	1	2	0.7	0.065	-	-		R.F. Probe	Max. a.c. volts-300 r.m.s. D.C. plate current-0.4 Mo.										1247
			:	1.25	0.033		-		Class-A Amp.	30	0	30	0.06	0.3	1000000	325	-	-	-	CK 501
CKSO1	Penlode Voltoge Amplifier	-	.	1.25	0.033		-		Class-A Amp.	45	-1.25	45	0.055	0.28	1500000	300				CKsot
CK502	Pentode Output Amplifier	-	2	1.25	0.033	-			Class-A Amp.	30	0	30	0.13	0.55	500000	400	-	60000	0.003	CK 502
CK 503		-1	2	1,25	0.033		-		Class-A Amp.	30	0	30	0.33	1.5	150000	600		20000	0.006	CK 503
CK504	Pentode Oulpui Amplifier	-1	2	1.25	0.033			-	ClassȧA Amp.	30	-1.25	30	0.99	0.4	500000	350		60000	0.003	CK 504
CK 505	Pentode Voltoge Amplifier	-1	-	0.625	0.03	-			Class-A Amp.	30	0	30	0.07	0.17	1100000	140	-	-	-	CK 505
CKSOS	Penlode Volloge Ampliar								Clas, A Amp.	45	-1.25	45	0.08	0.2	2000000	150				
CK506	Pentode Output Amplifier	-	:	1.25	0.05				Closs-A, Amp.	45	-4.5	45	0.4	1.25	120000	500		30000	0.025	CK 506
Cx507	Pentode Output Amplifier	- ${ }^{1}$	*	1.25	0.05		-	-	Class-A1 Amp.	45	-2.5	45	0.21	0.6	360000	500	-	50000	0.010	CK 507
CK509	Triode Vollage Amplifier	-1	1	0.625	0.03	-	-		Class-A Amp.	45	0	-	-	0.15	150000	160	16	100:000	-	CK509
CK510	Dual Space-Chorge Tetrode	-1	1	0.625	0.05	-	-		Closs.A Amp.	45	0	0.2	$200 \mu \alpha$	$60 \mu a$	500000	65	32.5	-		CK 510

TABLE XII-SUB-MINIATURE TUBES - Continved

7.po	Name	Base	SocketConnec- tions	Fil. or Healer		Capacitonce $\mu \mu \mathrm{fd}$.			Use	Plate 5 upply Volls	Grid Bias	5 creen Volts	5 creen Current Mo.	\square	PlateResistanceOhms	$\left\|\begin{array}{c} \text { Transcon- } \\ \text { ductance } \\ \text { Mieromhos } \end{array}\right\|$	Amp. Factor	LoadResistanceOhms	PowerOutpulWotts	Type
				Valts	Amp.	In	Out	Plate- Grid												
C.0. 2	Low Microphanic Penlode	${ }^{1}$	"	0.625	0.02				Voltage Amp.	22.5	0	22.5	0.04	0.125		160				CK412
Cii: 5 SBX	Triode Voltage Amplifier	-1	${ }^{2}$	0.625	0.03				Class-A Amp.	45	0			0.15		160	24	1000000	-	CK515BX
CF: 20AX	Audio Pealode	1	2	0.625	0.05				Class-Al Amp.	45	-2.5	45	0.07	0.24		180			0.0045	CKS20AX
CK521AX	Audio Pentode	1	:	1.25	0.05				Class A_{1} Amp.	22.5	-3	22.5	0.22	0.8		400			0.006	CK521AX
CKs22AX	Audio Pentode	1	:	1.25	0.02				Class-A1 Amp.	22.5	0	22.5	0.08	0.3		450			0.0012	CK522AX
	Pentode Output Amp.	1		1.25	0.03				Class-A Amp.	22.5	-1.2	22.5	0.075	0.3		360			0.0025	CK523AX
CKS24AX	Penlode Output Amp.	1	-	1.25	0.03				Class-A Amp.	15	-1.75	15	0.125	0.45		300			0.0022	CK524AX
ciss 254 X	Pentode Output Amp.	1	-	1.25	0.2				Class-A Amp.	22.5	-1.2	22.5	0.06	0.25	\cdots	325			0.0022	CK525AX
C̄Ksssax	Pentode Oulput Amp.	1	\square	1.25	0.2				Class-A Amp.	22.5	-1.5	22.5	0.12	0.45		400			0.004	CK526AX
CK527AX	Penlode Outpul Amp.	1	-	1.25	0.015				Class-A Amp.	22.5	0	22.5	0.025	0.1		75			0.0007	CK527AX
CK529AX	5hielded Outpul Pentode	1		1.25	0.02				Class-A Amp.	15	-1.5	15	0.05	0.2		275			0.0012	CK529AX
CK551AXA	Diode Pentode	1	2	1.25	0.03				Detector-Amp.	22.5	0	22.5	0.04	0.17		235			-	CKS5IAXA
CK553AXA	R.F. Penlode	1	?	1.25	0.05				Class-A ${ }_{1}$ Amp.	22.5	0	22.5	0.13	0.42		550				CK 553AXA
CK556AX	U.h.I. Triode	1	2	1.25	0.125				R.F. Oscillator	135	-5			4.0		1600		-	-	CK556AX
CK568AX	U.h.f. Triode	1	2	1.25	0.07				R.F. Oscillator	135	-6			1.9		650			-	CK568AX
CK569AX	R.F. Pentode	1	2	1.25	0.05				Closs-A1 Amp.	67.5	0	67.5	0.48	1.8		1100		-		CK 569AX
CK605CX	Sharp Cut-off Pentode	1		6.3	0.2				Class-A Amp.	120	-2	120	2.5	7.5		5000			-	CK605CX
CK606BX	Single Diode	1	2	6.3	0.15		-	-	Defectar	150 0.c.				9.0 d.c.						CK606BX
CK608CX	U.h.f. Triode	1	2	6.3	0.2				500-Mc. Osc.	120	-2	-		9.0		5000			0.75	CK608CX
CK619CX	HL-MU Triode	1	2	6.3	0.2				Class-A1 Amp.	250	-2			4.0		4000			-	CK619CX
CK624CX	5harp Cut-off Pentade	1		6.3	0.2				Class-A Amp.	120	-2	120	3.5	5.2		3000				CK624CX
CK650AX	Sharp Cut-off Pentode	1	2	6.3	0.2				Class-A Amp.	120	-2	120	2.5	7.5		5000		-	-	CK650AX
CK5672	Pentode Output Amp.	1		1.25	0.05				Class-A Amp.	67.5	-6.25	67.5	1.0	2.75		625		\cdots	0.06	CK 5672
$\begin{aligned} & \mathrm{HY} 113 \\ & \text { HY123 } \end{aligned}$	Triade Amplifier	- ${ }^{1}$	5K	1.4	0.07	-	-	-	Class-A Amp.	45	-4.5	-	\cdots	0.4	25000	250	6.3	40000	0.0065	$\begin{aligned} & \text { HY113 } \\ & \text { HY123 } \end{aligned}$
HY 115 HY145	Pentode Voltage Amplifier	-	5K	1.4	0.07	-	-		Class-A Amp.	$\begin{aligned} & 45 \\ & 90 \end{aligned}$	$\begin{array}{r} -1.5 \\ -1.5 \\ \hline \end{array}$	$\begin{array}{r} 22.5 \\ \hline 45 \\ \hline \end{array}$	$\begin{aligned} & 0.008 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.03 \\ & 0.48 \end{aligned}$	$\begin{array}{\|} 5200000 \\ 1300000 \\ \hline \end{array}$	$\begin{array}{r} 58 \\ 270 \end{array}$	$\begin{array}{r} 300 \\ 370 \end{array}$	-	\square	HY115 HY145
$\begin{aligned} & \text { MY125 } \\ & \text { HY155 } \end{aligned}$	Pentode Power Amplifier	-	5K	1.4	0.07	-	-	\sim	Class-A Amp.	$\begin{aligned} & 45 \\ & 90 \end{aligned}$	$\begin{aligned} & -3.0 \\ & -7.5 \end{aligned}$	$\begin{aligned} & 45 \\ & 90 \end{aligned}$	$\begin{aligned} & \hline 0.2 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.9 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 825000 \\ & 420000 \end{aligned}$	$\begin{array}{r} 310 \\ 450 \end{array}$	$\begin{array}{\|l\|} \hline 255 \\ 190 \\ \hline \end{array}$	$\begin{array}{r} 50000 \\ 28000 \\ \hline \end{array}$	$\begin{aligned} & 0.0115 \\ & 0.09 \\ & \hline \end{aligned}$	HY125 HY155
M54	Tetrode Power Amplifier	1	2	0.625	0.04				Class-A Amp.	30	0	30	0.06	0.5	130000	200	26	35000	0.005	M54
M64	Tetrode Voltage Amplifier	1	${ }^{2}$	0.625	0.02				Closs-A Amp.	30	0			0.03	200000	110	25			M64
M74	Tetrode Volloge Amplifier	1	2	0.625	0.02				Class-A Amp.	30	0	7.0	0.01	0.02	500000	125	70	-		M74
RK61	Gas Triode	1	2	1.4	0.05				Radio Control	45		$\underline{\square}$		1.5	-	-		-		RK61
$\begin{aligned} & \text { SD917A } \\ & 5637 \end{aligned}$	Triode	1	2	6.3	0.15	2.6	0.7	1.4	Class-A! Amp.	100	820 *	-	-	1.4	26000	2700	70	-	-	$\begin{aligned} & \text { SD917A } \\ & 5637 \end{aligned}$
$\begin{aligned} & \text { SD828A } \\ & 5638 \\ & \hline \end{aligned}$	Audio Penlade	1	2	6.3	0.15	4.0	3.0	0.22	Class-A1 Amp.	100	270*	100	1.25	4.8	150000	3300		-	-	$\begin{array}{\|l\|} \hline 50828 A \\ 5638 \\ \hline \end{array}$
$\begin{aligned} & \text { SD828E } \\ & 5634 \end{aligned}$	Sharp Cul-off Pentade	4	-	6.3	0.15	4.4	2.8	0.01	Class. A_{1} Amp.	100	150*	100	2.5	6.5	240000	3500	-	-	-	$\begin{aligned} & \text { S0828E } \\ & 5634 \end{aligned}$
$\begin{aligned} & \text { SN944 } \\ & 5633 \end{aligned}$	Remole Cut-off Pentode	4	-	6.3	0.15	4.0	2.8	0.01	Class-A: Amp.	100	150*	100	2.8	7.0	200000	3400		-	-	$\begin{aligned} & \text { SN944 } \\ & 5633 \end{aligned}$
SN946	Diode	1	2	6.3	0.15	1.8		-	Rectifier	150	-		-	9.0				-		5N946
$\begin{aligned} & \text { SN947D } \\ & 5640 \end{aligned}$	Audio Beam Pentode	1	2	6.3	0.45	-	\square	-	Class-A Amp.	100	-9	100	2.2	31.0	15000	5000	-	3000	1.25	$\begin{aligned} & \text { SN947C } \\ & 5640 \end{aligned}$
SN948C	Vollage Regulator	1	-	-	-	-	-	-	Regulotor				perating	altage $=9$	5; Max. cur	rent $=25 \mathrm{Ma}$				SN948C
SN953D	Power Penlode	1		6.3	0.15	9.5	3.8	0.2	Class-A Amp.	150	100*	100	4/7.5	21/20	50000	9000	-	9000	1.0	SN953D
$\begin{aligned} & \text { SN954 } \\ & 5641 \\ & \hline \end{aligned}$	Half-Wave Rectifier	1	2	6.3	0.45	-	-	-	Rectifier	300	-	-	\square	45.0	-	$\underline{\square}$	-	-	.	$\begin{aligned} & \text { SN954 } \\ & 5641 \end{aligned}$
5N955B	Dual Triode	1	2	6.3	0.45	2.8	1.0	1.3	Class-A, Amp. b	100	100*		-	5.5	8000	4250	34	-	-	5N9558
$\begin{aligned} & \text { SN9563 } \\ & 5642 \\ & \hline \end{aligned}$	H.V. Half-Wave Rectifier		-	1.25	0.14	-	-	-	H.V. Rectifier		Paak	inverse	V. $=1000$	0 Max. A	Average lp $=$	2 Mo. Peak	$\mathrm{Ip}=23$	Ma.		$\begin{aligned} & \text { SN956B } \\ & 5642 \end{aligned}$

TABLE XII-SUB-MINIATURE TUBES-Continued

TABLE XIII-CONTROL AND REGULATOR TUBES-Continued

TABLE XIV-CATHODE-RAY TUBES AND KINESCOPES-Continued

Type	Nome	Sockel Connections	Heater		Use	Size	Anode No. 2 Voltage	Anode No. 1 Voltoge	Cut-Off Grid Voltage	Grid No, 2 Voltoge	Ion- Trap Ma,	Max. Inpui Valtoge ${ }^{1}$	Focus Coil Ma.	Deflection Sensifivity ${ }^{\text {B }}$		Anode No. 3 Valtoge	Pottern Color	Type
			Volts	Amp,										$\mathrm{D}_{1} \mathrm{D}_{2}$	$\mathrm{D}_{3} \mathrm{D}_{6}$			
$\begin{aligned} & 3 \text { AP 1/ } \\ & 906-P 1 ; \\ & 4.5 .117 \end{aligned}$	Electrastalic Cothade-Ray	7 AN	2.5	2.1	Oscillograph	3"	1500	430	- 50	-	-	550	-	0.22	0.23	\cdots	Green Blue White	3API/ 906-P1. 4-5-11
							1000	285	- 33	-	-			0.33	0.35			
							600	170	- 20					0.55	0.58			
$\begin{gathered} 38 P_{1}-1 \\ 4-11 \end{gathered}$	Electrostotic Cothade-Ray	14A	6.3	0.6	Oscillagraph	3"	2000	575	- 60	-		350	——	0.13	0.17	-	Green	$\begin{aligned} & \text { 38P1. } \\ & 4.11 \end{aligned}$
							1500	430	- 45	-				0.17	0.23			
3DP1	Electrostotic Cathade-Roy	Fig. 49	6.3	0.6	Oscillagraph	3'	2000	575	-60	-	-	550	—	200^{3}	1483	-	Green	3DP 1
							1500	430	- 40	-	-			1503	1113	-		
$\begin{aligned} & \text { 3EP 1/ } \\ & 1806 . \mathrm{P} 1 \end{aligned}$	Electrostatic Cathode-Ray	11A	6.3	0.6	Oscillograph Television	3"	2000	575	-60			550	-	0.115	0.154		Green	$\begin{aligned} & 3 E P 1 / \\ & 1806-\mathrm{P} 1 \end{aligned}$
							1500	430	- 45					0.153	0.205			
3FP7-A	Electrastatic Cathode-Ray	148	6.3	0.6	Oscillagraph		4000	400/690	- 90	2000				2123	$153{ }^{3}$	-	-	3FP7.A
$\begin{aligned} & \text { 3GP1. } \\ & 4-5-11 \end{aligned}$	Electrostatic Cothade-Ray	11A	6.3	0.6	Oselllagraph	3"	1500	350	- 50	-	-	550		0.21	0.24	-	White Green Blue	$\begin{aligned} & \text { 3GP1. } \\ & 4.5 .11 \end{aligned}$
							1000	234	- 33		-			0.32	0.36			
$\begin{aligned} & \text { 3.JP1. } \\ & \text { 2.4.7.11 } \end{aligned}$	Electrastatic Cathade-Ray	148	6.3	0.6	Oscillagraph	3"	2000	575	- 60	\cdots	-	550	-	0.13	0.17	4000	Green Blue White	$\begin{aligned} & \text { 3JP 1- } \\ & \text { 2.4.7-11 } \end{aligned}$
							1500	430	- 45		-		-	0.17	0.23	3000		
3KP1-11	Electrastatic Cathoda-Ray	11 M	6.3	0.6	Oseillagraph	3"	1000	300	- 45	1000	-	500	—	683	136	-	Green	3KP1.11
							2000	600	- 90	2000				52^{3}	1043	-		
3 MPI	Electrastotic Cothode-Ray	Fig. 2	6.3	0.6	Oscillagraph	3"1	1000	200/350	- 68	-		-	-	$190{ }^{\text {s }}$	180^{3}	-	Green	3 MPI
3RP 1	Eloctrostatic Cathado-Ray	12E	6.3	0.6	Oscillagraph	3"	1000	165/310	-67.5				-	73/993	52/70 ${ }^{3}$	-	-Green	3RP1
							2000	330/620	-135			-		146/198:	104/1403	-		
$\begin{aligned} & 5 A P 1 / \\ & 1805-P 1 \\ & 5 A P 4 / \\ & 1805-\mathrm{P4} \\ & \hline \end{aligned}$	Electrastatic Picture Tube	114	6.3	0.6	Oscillagraph Televisian	5"	2000	575	- 35			500		0.17	0.21	-	Graen White	$\begin{aligned} & \text { 5AP1/ } \\ & 1805 . \mathrm{P}_{1} \\ & 5 A P 4 / \\ & 1805 . \mathrm{P} 4 \end{aligned}$
							1500	430	- 27					0.23	0.28	-		
$\begin{aligned} & 58 P 1 / \\ & 1802 . \mathrm{P} 1 . \\ & 2.4 .5 .11 \end{aligned}$	Electrastatic Picture Tube	11A	6.3	0.6	Os cillograph	5"	2000	450	- 40	-		500		0.3	0.33		Grean While Blue	$\begin{aligned} & 58 P 1 / \\ & 1802 \cdot \mathrm{P} 1 . \\ & 2 \cdot 4 \cdot 5 \cdot 11 \end{aligned}$
							1500	337	- 30	\square				0.4	0.45			
$\begin{aligned} & \text { 5CP 1. } \\ & 2.4 .5-7 . \\ & 11= \end{aligned}$	Electrastatic Cathode-Ray	148	6.3	0.6	Oscillograph Television	5"	2000	575	-60	-	-	550	-	0.28	0.32	4000	White Green Blue	$\begin{aligned} & \text { SCP 1. } \\ & 2.4 .5 .7 .11 \end{aligned}$
							1500	430	- 45		\longrightarrow			0.37	0.43	3000		
							2000	575	- 60	-				0.36	0.41	2000		
$\begin{aligned} & \text { 5FP1. } \\ & 2.4 .11 .14 \end{aligned}$	Electramagnetic Cathade-Ray	SAN	6.3	0.6	Oscillograph Television	5"	7000	250	-45		-	-	\checkmark	-	\square	-	Green White	5FP1.
							4000	250	- 45	-				-	-		Blue	2-4-11.14
							2000	425	- 40			500	-	0.3	0.33	-	Green	5HP1
5HP47	Electrastotic Cathode-Ray	11A	6.3	0.6	Oscillagraph	5	1500	310	-30			500		0.4	0.44	-	White	5HP4
						5"	2000	520	-75	\rightarrow		500		0.25	0.28	4000	White Green	53P1.
2.4-5-11	Electrastatic Cathade-Ray	115	6,3	0.6	Oscillograph		1500	390	- 56	-			-	0.33	0.37	3000	Blue	2-4.5-11
$\begin{aligned} & 5(P) . \\ & 2.4 .5 .11 \end{aligned}$	Electrostatic Cathade-Ray	117	6.3	0.6	Oscillagraph Televisian	5"	2000	500	- 60	\cdots	-	500		0.25	0.28	4000	White Green Blue	$\begin{aligned} & \text { 5LP } 1 . \\ & 2-4-5.11 \end{aligned}$
							1500	375	- 45	-	\longrightarrow		-	0.33	0.37	3000		
							1000	250	-30	-	-			0.49	0.56	2000		
$\begin{aligned} & \text { 5MP1 } \\ & 4.5 .11 \end{aligned}$	Electrostatic Cathode-Ray	7 AN	2.5	2.1	Oscillograph	5"	1800	375	-50	-		660		0.39	0.42		White	5MP1.
							1000	250	-33	-	\square			0.58	0.64		Blue	4.5.11
$\begin{aligned} & \text { SRP 1- } \\ & \text { 2.4-7.11 } \end{aligned}$	Electrastatic Cathade-Ray	.14F	6.3	0.6	Oscillagraph	5"	3000	-	- 90	-		1200		0.12	0.12	15000	Green	5RP1.
					Oscillograph		2000	575	- 60	-	-		-	0.18	0.18	10000	Blue	2-4.7-11
5TP4	Prajection Kinescope	12C	6.3	0.6	Television	5"	27000	4900	-70	200	-	-		-	-	-	White	STP4

TABLE XIV-CATHODE-RAY TUBES AND KINESCOPES-COntinued

Type	Name	Socket Connections	Heater		Use	Size	Anode No. 2 Voltage	Anode No. 1 Volloge	Cul-Off Grid Volioge		IonTrap Ma.	$\begin{gathered} \text { Max. } \\ \text { Inpui } \\ \text { Voltage } 1 \end{gathered}$	Focus Coll Ma.	Deflection Sensitivity ${ }^{6}$		Anode No. 3 Vollage	Pattern Color	Type
			Volls	Amps.										$\mathrm{D}_{1} \mathrm{D}_{2}$	\| $D_{3} D_{4}$			
5UP1-	Electrostatic Cathode-Ray	12E	6.3	0.6	Oscillograph	5"	2500	640	- 90	-		500		38.53	77^{3}		Green Yel- low Blue	$\begin{aligned} & \text { 5UP1. } \\ & 7.11 \end{aligned}$
							2500	340	- 90	-		500	-	281	563	-		
							1000	320	- 45	-	-	500		$31{ }^{3}$	62^{3}			
							1000	170	-45			500	-	$23{ }^{3}$	46^{3}			
5WP11	Transeriber Kinescope	12C	6.3	0.6	Telavision	5"	27000	5400	-42/-98	200	-			$\underline{\square}$	-	-	Blue	5WPII
5WP15	Fiying-Spot Cathode-Roy	12C	6.3	0.6	Vid. Sig, Gen.	5"	20000	$\begin{aligned} & 3000 / \\ & 3800 \end{aligned}$	-42/-98	200	\longrightarrow	-	-	-	-	-	Blue Green	5WP15
5ZP16	Flying-Spot Cothode-Roy	Fig. 46	6.3	0.6	Vid. Sig.Gen.	$5{ }^{\prime \prime}$	20000	4700	- 70	200	-	-						
7 AP4	Electromagnetic Piclure Tube	5AJ	2.5	2.1	Television	7'1	3500	1000	-67.5	200	-	-		$\underline{\square}$			White	72P16
$\begin{array}{\|c\|} \hline 7 B P 1-11 \\ 2-4-7-11 \end{array}$	Electromagnetic Cothode-Ray	5AN	6.3	0.6	Oscillograph Television	7'	7000	250	-45	-	-	-		-	-	_	White Green Blue	$\begin{aligned} & \text { 78P1. } \\ & 2-4.7 .11 \end{aligned}$
							4000	250	- 45	-								
7 CP 1/5 1811-P1	Electromagnetic Cathode.Ray	6AZ	6.3	0.6	Oscillograph	7"	7000 4000	1470 840	-45	250	-	-	\longrightarrow	-	-	-	Green	$\begin{aligned} & \text { 7CP1/ } \\ & 1811 . \mathrm{P} 1 \end{aligned}$
7DP4	Kinescope	12C	6.3	0.6	Television	7'丷	6000	1430	-45	250				-				
7EP4	Electrostatic Cathode-Ray	IIN	6.3	0.6	Television	7"	2500	650	- 60					110^{3}	953		White	7DP4
7GP4 ${ }^{5}$	Electraslatic Kinescape	Fig. 47	6.3	0.6	Television	7"'	3000	1200	- 84	3000				$123{ }^{3}$	1023		White	7EP4
7JP1	Electrostatic Cathade.Ray	146	6.3	0.6	Oscillograph	$7{ }^{\prime \prime}$	2000	800	- 56	-	-			62/82 ${ }^{3}$	50/683		Green	7 JPI
7 JP4	Electrostalic Kinescape	14G					4000	1600	-112	-				124/164 ${ }^{3}$	100/136 ${ }^{3}$			
		12D	6.3	0.6	Television	7"	6000	2400	-168					2463	2043		White	7JP4
$7 \mathrm{MP7}$	Electramagnetic Cathode.Ray		6.3	0.6	Oscillograph Radar	$7{ }^{\prime \prime}$	-	7000	$-27 /-63$ $-27 /-63$	250	二		85	-	-		Gr'nish Yellow	$7 \mathrm{MP7}$
7NP4	Prajectian Kinescape	14N	6.6	0.62	Television	$7{ }^{\prime \prime}$	75000	$\begin{gathered} 16000 / \\ 18000 \end{gathered}$	-155	400/600	-						While	7NP4
7 Or4	Electromagnetic Kinescope	120	6.3	0.6	Monitor	$7{ }^{\prime \prime}$		$\begin{aligned} & 9121 \\ & 1360 \end{aligned}$	-67.5	250	-					6000	White	7QP4
7RP4	Electromagnelte Picture Tube	120	6.3	0.6	Television	7"		9000	-27/-63	250	-	-	120				White	7RP4
8AP4	Electromagnatic Picture Tube	12H	6,3	0.6	Telavision	$8{ }^{\prime \prime}$		7000	-27/-63		45^{8}	-	115				White	8AP4
$88 P 4$	Electrostatic Picture Tube	14G	6.3	0.6	Television	$8{ }^{\prime \prime}$	-	2400	-72/-168	6000	-	-		146/198 ${ }^{3}$	124/1683		White	8BP4
								1620	-72/-168	6000								
1804-P4	Electromognelic Kinescope	6AL	2.5	2.1	Telovision	$9{ }^{\prime \prime}$	7000	1425	-40 -38	250	-	-	-	-	-	-	White	$\begin{aligned} & \text { 9AP4/ } \\ & \text { 1804-P4 } \end{aligned}$
$9 \mathrm{PP4}$	Electromognetic Kinescope	4AF	2.5	2.1	Television	$9{ }^{\prime \prime}$	7000		-110			-	-				While	$9 \mathrm{9CP4}$
$\begin{aligned} & 9 \mathrm{JPI} /{ }^{1809 . P 1} \end{aligned}$	Electrostatic-Magnetic Cathode-Ray	8 BR	2.5	2.1	Oscillogroph	$9{ }^{\prime \prime}$	5000	1570	- 90	-	-	3000		0.136		\square	Green	9.JP1/$1809 \cdot \mathrm{P} 1$
108P4	Magnetic Kinescope						2500	785	-45 -45					0.272	-			
10EP4	Magnetic. Focus Cathade.Ray	120	6.3	0.6	Televisian	$10^{1 / 2^{\prime \prime}}$		8000	-45	250				-		-	Whito	108P4
10FP4	Electramagnetic Picture Tube	120	6.3	0.6	Televisian	$10^{\prime \prime}$		9000	-27/-63	250							While	10EP4
$10 \mathrm{HP4}$	Electrostatic Cathode-Ray	14G	6.3	0.6	Television	$10^{\prime \prime}$	-	5000	-60/-140	1800				1303			White	10FP4
$10 \mathrm{KP7}$	Magnelic Cathode.Ray	12D	6.3	0.6	Oselllagraph	$10^{\prime \prime}$		9000	-27/-63	250	-			130	100^{3}			10MP4
$\begin{aligned} & 12 A P 4 / 4 \\ & 1803-P 4 \end{aligned}$	Electromagnetic Picture Tube	6AL	2.5	2.1	Television	12"	7000	1460	- 75	250	25		10	\square	-	-	White	$\begin{aligned} & \text { 12AP4/ } \\ & 1803 . P 4 \end{aligned}$
12CP4 ${ }^{4}$	Electromagnotic Piclure Tube	4AF	2.5	2.1	Teloviston	12"	7000	1240										
12DP4.7	Electromagnetic Cathode-Ray	5 AN	6.3	0.6		12'	7000	250	- 45	-	25		10				Whito	12CP4
							4000	250	- 45									120P4
12KP4-A	Eleciromagnetic Picture Tube	Fig. 35	6.3	0.6	Telovision	$12^{\prime \prime}$	—	11000	-27/-63	250								
12LP4 ${ }^{\text {P }}$	Electromagnatic Kinescope	120	6.3	0.6	Television	$12^{\prime \prime}$		11000	$-27 /-63$	250							While	12KP4.A
120P4	Electromagnetic Pieture Tube	Fig. 35	6.3	0.6	Televisian Television	$\begin{aligned} & 12^{\prime \prime \prime} \\ & 12^{\prime \prime} \\ & \hline \end{aligned}$	-	10000	-27/-63	250	80	-	135				White	121P4
$12 \mathrm{RP4}$		120	6.3	0.6				10000	-27/-63	250	$52{ }^{8}$		135				White	12RP4

TABLE XIV-CATHODE-RAY TUBES AND KINESCOPES-Continued

Type	Nome	Socket Connecfions	Heater		Use	Size	Anode No, 2 Voliage	Anode No. 1 Voltage	Cut-Ofl Grid Valfage		Ion- Trap Ma.		Focus Coil Mo.	Deflection Sensitivity ${ }^{6}$		Anode No. 3 Voliage	Paftern Color	Type
			Volts	Amps.										$\mathrm{D}_{1} \mathrm{D}_{2}$	$\mathrm{D}_{3} \mathrm{D}_{4}$			
12SP7	Electromagnetic Cathode-Ray	12D	6.3	0.6	Oscillograph	12"		10000	-27/-63	250			107				Grinish Yellow	12SP7
12TP4	Electromagnetic Picture Tube	120	6.3	0.6	Television	12"		11000	-27/-63	250	120		110		-		White	12TP4
12UP4	Electromagnetic Picture Tube	120	6.3	0.6	Television	12"		11000	-27/-63	250			110				White	12UP4
$148 P 4$	Electromagnetic Piclure Tube	Fig. 35	6.3	0.6	Television	14"		11000	-27/-63	250	120		110	-			White	148P4
$14 \mathrm{CP4}$	Electromagnetic Piclure Tube	12D	6.3	0.6	Television	14"	-	12000	-33/-77	250	32^{5}		105				White	14CP4
14DP4	Electromagnetic Picfure Tube	120	6.3	0.6	Television	14"		11000	-27/-63	250	120		100				White	14DP4
14EP4	Eleciromagnetic Picture Tube	120	6.3	0.6	Television	$14^{\prime \prime \prime}$		12000	-33/-77		110		110				White	14EP4
$14 \mathrm{GP4}$	Electrostatic-Magnetic Kinescope	Fig. 42	6.3	0.6	Television	14"		12000	-33/-77	300						2940²	White	14GP4
15AP4	Electromagnetic Cathode-Roy	12D	6.3	0.6	Television	$15^{\prime \prime}$		8000	-45	250			I15				White	15AP4
15CP4	Electromagnetic Piclure Tube	Fig. 35	6.3	0.6	Television	15"	-	9000	-45	250	109		115				White	15CP4
15DP4 ${ }^{7}$	Electromognetic Picfure Tube	12D	6.3	0.6	Television	15"		13000	-27/-63	250	105		146				White	15DP4
16AP4	Electromagnetic Picfure Tube	Fig. 35	6.3	0.6	Television	16"		12000	-33/-77	300							White	16AP4
16CP4	Electromagnetic Piclure Tube	Fig. 35	6.3	0.6	Television	$16^{\prime \prime}$		12000	-27/-63	250	120		110				While	16CP4
16EP4A	Electromagnelic Piolure Tube	12D	6.3	0.6	Television	16"		12000	-33/-77	300			105				-	16EP4A
16FP4	Electromagnetic Picfure Tube	Fig. 35	6.3	0.6	Telewision	$16^{\prime \prime}$		13000	-27/-63	250	105		146				White	16FP4
16GP4	Electromagnetic Pliclure Tube	12D	6,3	0.6	Television	$16^{\prime \prime}$		12000	-33/-77	300	$23{ }^{4}$		100				White	16GP4 $16 \mathrm{GP4B}$
16GP4B	Electromagnetic Picfure Tube	12D	6.3	0.6	Television	$16^{\prime \prime}$		12000	-33/-77	300	35^{8}		100				White	16GP4B
16GP4C	Electromagnelic Picture Tube	12D	6.3	0.6	Television	$16^{\prime \prime}$		12000	-33/-77	300	458		100				White	16GP4C
$16 \mathrm{HP4}$	Electromagnetic Picture Tube	Fig. 35	6.3	0.6	Television	$16^{\prime \prime}$		12000	-33/-77	300	120		110				While	16HP4
16JP4	Electromagnetic Picture Tube	12D	6.3	0.6	Television	$16^{\prime \prime}$		11000	-27/-63	250	120		115				White	16JP4
$16 \mathrm{KP4}$	Electromagnetic Picture Tube	12D	6.3	0.6	Television	$16^{\prime \prime}$		14000	-33/-77	300	30^{8}		90				White	$16 \mathrm{KP4}$ 161 P4
TeLP4	Electromagnetic Picture Tube	Fig. 35	6.3	0.6	Television	$16^{\prime \prime}$		12000	-33/-77	300	120		110				White	16LP4
16RP4	Electromagnetic Picture Tube	12D	6.3	0.6	Television	$16^{\prime \prime}$		12000	-33/-77	300	120		100				White	16RP4
16SP4A	Electromagnetic Picture Tube	12D	6.3	0.6	Television	$16^{\prime \prime}$		12000	-33/-77	300	120		110				White	16SP4A
16 TP4	Electromagnetic Picture Tube	Fig. 35	6.3	0.6	Television	$16^{\prime \prime}$		12000	-33/-77	300	45^{8}		115				While	16TP4
16UP4	Electromagnetic Piclure Tube	120	6.3	0.6	Television	$16^{\prime \prime}$		12000	-27/-63	300	23^{8}		100				While	
16WP4A	Electromagnetic Picfure Tube	120	6.3	0.6	Television	$16^{\prime \prime}$		12000	-27/-63	250	120		110			-	White	16WP4A
162 P 4	Electromagnetic Piclure Tube	120	6.3	0.6	Television	16"		12000	-33/-77	300	120		110				White	162P4
17 AP4	Electromagnetic Picture Tube	12D	6.3	0.6	Television	17"		12000	-33/-77	300	75		100				White	17AP4
17BP4A	Electromagnetic Kinescope	Fig. 45	6.3	0.6	Television	$17^{\prime \prime}$		14000	-33/-77	300	50^{9}		99				White	$17 \mathrm{BP4A}$ $17 \mathrm{BP4B}$
$17 \mathrm{BP4B}$	Electromagnetic Piclure Tube	12 D	6.3	0.6	Television	17"		12000	-33/-77	300	35^{8}		Foo				While	
$17 \mathrm{CP4}$	Electromagnetic Piclure Tube	12D	6.3	0.6	Television	17"		14000	-33/-77	300	$50^{\text {\# }}$		104			3620:	While	17CP4
$17 \mathrm{GP4}$	Electrostatic-Mognetic Kinescope	Fig. 43	6.3	0.6	Television	17"		14000	-33/-77	300	40^{8}						White	17GP4
19AP4	Electromagnetic Piclure Tube	Fig. 35	6.3	0.6	Television	$16^{\prime \prime}$		13000	-27/-63	250	105		146				White	19AP4
19AP4A	Electromagnetic Picture Tube	120	6.3	0.6	Television	$16^{\prime \prime}$		12000	-33/-77	300	75	-	140				White	19AP4A
19DP4A	Electromagnetic Piclure Tube	120	6.3	0.6	Television	19' ${ }^{\prime \prime}$		13000	-26/-63	250	105		146				White	19DP4A 19EP4
19EP4	Electromagnatic Picture Tube	Fig. 35	6.3	0.6	Television	$19^{\prime \prime}$		13000	-26/-63	250	105		146				White	19EP4
19 FP 4	Electremagnetic Picture Tube	Fig. 35	6.3	0.6	Television	$16^{\prime \prime}$	-	13000	-27/-68	250	100		100/130				White	19FP4
$19 \mathrm{GP4}$	Electromagnetic Picfure Tube	12D	6.3	0.6	Television	19'1		13000	-27/-63	250	105		110/130		-	-	White	$19 \mathrm{GP4}$
208P4	Electromegnetic Cathode-Roy	12D	6.3	0.6	Television	20"	-	15000	-45	250		-					White	208P4
$20 \mathrm{CP4}$	Electromagnefic Plicture Tube	Fig. 44	6.3	0.6	Television	$20^{\prime \prime}$	-	12000	-33/-77	300	75		95			-	Whise	20CP4
20FP4	Electrostatic-Magnetic Kinescope	Fig. 66	6.3	0.6	Television	20"	12000	$\begin{aligned} & 2300 / \\ & 3100 \end{aligned}$	-33/-77	300	75		-				White	20FP4
20GP4	Electroslatic-Mognelic Kinescope	Fig. 42	6.3	0.6	Telovision	$20^{\prime \prime}$	-	16000	-33/-77	300	40^{8}					4270^{2}	White	20GP4
22AP4	Electromagnetic Picture Tube	Fig. 35	6.3	0.6	Telavision	22"		14000	-33/-77	300	35^{4}	-	117				While	22AP4
24AP4A	Electromagnelic Picture Tube	12D	6.3	0.6	Television	24"		12000	-33/-77	300	$32{ }^{8}$		97		-	-	White	24AP4A
902 ?	Electrostatic Cathode-Roy	Fig. 1	6.3	0.6	Oscillograph	2"	600	150	- 60		-	350	-	0.19	0.22		Green	902

TABLE XIV-CATHODE-RAY TUBES AND KINESCOPES-Continued

Type	Nom*		Heater		Us*	Size	Anoda No. 2 Voliage	Anode No. 1 Voltoge	Cui-Oft Grid Voltage	Grid No. 2 Voltoge	Ion. Trap Mo.	Mox. Input Voltage!	Focus Coil Ma.	Doflection Sensitivity ${ }^{\text {s }}$		Anode No. 3 Volfage	Paftern Calor	Typ*
			Volis	Amps.										$\mathrm{D}_{1} \mathrm{D}_{2}$	$\mathrm{D}_{3} \mathrm{D}_{4}$			
$903{ }^{\circ}$	Electromognetic Cathoda-Ray	6AL	2.5	2.1	Oscillogroph	$9{ }^{\prime \prime}$	7000	1360	-120	250		-		O	\longrightarrow		Green	903
904	Electrostalic-Magnetic Cathode-Ray	Fig. 3	2.5	2.1	Oscillograph	5"	4600	970	- 75	250		4000		0.09			Green	904
9057	Electrostatic Calhade-Ray	Fig. 6	2.5	2.1	Oscillograph	$5^{\prime \prime}$	2000	450	- 35			1000	\square	0.19	0.23		Green	905
907	Electrostolic Cathode-Roy	Fig. 6	2.5	2.1	Oscillograph	5"	Choracteristics same as Type 905								-		Blue	907
9087	Electrostotic Cathode-Ray	7 AN	2.5	2.1	Oscillogroph	$3^{\prime \prime}$	Characteristics same as Type 3AP1/906P1										Blue	908
908-A	Electhoslatic Cothode-Roy	7CE	2.5	2.1	Oscillograph	3"	1500	430	- 50	- -		500		0.223	0.233	-		
	Elormoslanic Comoda-koy			2.1	Oscilogroph	3	1000	287	- 33	-		500		0.334	0.348		Blue	908-A
909 s	Eloctrostotic Cathode-Roy	Fig. 6	2.5	2.1	Oscillogroph	5"	Characteristics some as Type 905									\square	Blue	909
910^{5}	Electrostotic Cothode.Roy	7AN	2.5	2.1	Oscillogroph	3"	Charocteristics same as Type 3AP1/906P1							-	-		Blue	910
9115	Electrostatic CothoderRay	7AN	2.5	2.1	Oselllogroph	$3^{\prime \prime}$	Charocteristics same os Type 3AP1/906P1							-	-		Green	911
912	Electrostalic Cathode-Ray	Fig. 8	2.5	2.1	Oscillograph	$5{ }^{\prime \prime}$	10000	2000	-66	250	-	7000		0.041	0.051		Graen	912
913	Electrostolic Cathode-Ray	Fig. 1	6.3	0.6	Oscillograph	$1{ }^{\prime \prime}$	500	100	- 65	-		250		0.07	0.10	\square	Green	913
9147	Electrostatic Cathode-Ray	Fig. 12	2.5	2.1	Oscillograph	$9 \prime 1$	7000	1450	- 50	250		3000	-	0.073	0.093	-	Green	914
18005	Electromagnetic Kinescope	6AL	2.5	2.1	Television	$9{ }^{\prime \prime}$	6000	1250	-75	250						-	Yellow	1800
18015	Electromagnetic Kinascope	Fig. 13	2.5	2.1	Television	5"	3000	450	- 35		-	\square			-	\square	Yellow	1801
1816P4-A	Electromagnetic Kinescope	Fig. 65	6.3	0.6	Manitor	10'1		9000	- 63	250					-	-	Whit	1816P4.A
2001	Electrostalic Cothode-Ray	4AA	6.3	0.6	Oseillograph	$1{ }^{\prime \prime}$	Characteristics essentially same as 913											2001
2002	Electrostotic Cothode-Ray	Fig. 1	6.3	0.6	Oscillogroph	$2^{\prime \prime}$	600	120	-	-	-	-	-	0.16	0.17	-	Groen	2002
2005	Electrastatic Cathode-Ray	Fig. 14	2.5	2.1	Television	$5{ }^{\prime \prime}$	2000	1000	- 35	200		-	\square	0.5	0.56		\longrightarrow	2005
24-XH	Electrestatic Cathode-Ray	Fig. 1	6.3	0.6	Oscilloscope	$\mathbf{2}^{\prime \prime}$	600	120	- 60	-	-	-	-	0.14	0.16	-	Blue	24.XH
1Between Anode No. 2 and any deflecting plafe. : Grid No, 4 voltage.					${ }^{3}$ D.c. Volts/in. ${ }^{-}$Cuthode connected to Pin 7.				${ }^{5}$ Dis continued. - In mm./volt d.c.			${ }^{7}$ Superseded by some type with suffix "A." ${ }^{1}$ lon-trop gouszes.						

TABLE XV-RECTIFIERS-RECEIVING AND TRANSMITTING
See also Toble XIII-Control and Regulator Tubes

Type No.	Nome	Base	Socket Connec. tions	Cathode	Fil. or Heater		Mox. A.C. Voltage Per Plate	D.C. Outpul Current Mo.	Max. Inverse Paak Voltage	Peok Plote Current Ma	Type
					Volts	Amp.					
BA	Full.Wove Rectifier	4-pin M.	4J	Cold			350	350	Tube dro	P 80 v.	G
BH	Full-Wave Rectifler	4-pin M.	4.1	Cold			350	125	Tube drop	P 90 v .	G
ER	Holf-Wove Rectifier	4-pin M.	4 H	Cold			300	50	Tube drop	p 60 v .	G
CE-220	Hall-Wave Rectifier	4-pin M,	4P	Fil.	2.5	3.0		20	20000	100	HV
OY4	Holf-Wove Rectifier	5-pin 0.	4BU	Coid	Connect Pins 7 and 8		95	75	300	500	G
O24	Full-Wave Rectifler	5 -pin 0.	4R	Cold			350	30-75	1250	200	G
1	Hall. Wave Rectifier	4-pin 5.	4G	Hir.	6.3	0.3	350	50	1000	400	MV
1-V	Half-Wave Rectifier	4-pin 5 ,	4G	Hir.	6.3	0.3	350	50			HV
1 V 2	Holf-Wove Rectifier	9-pin B .	9 U	Fil.	. 625	0.3	-	0.5	7500	10	HV
183GT/8016	Holf-Wove Rectifier	6-pin 0.	3 C	Fil.	1.25	0.2		2.0	4000	17	HV
1848	Holf-Wove Reclifier	7-pin B.		Cold	-		800	6	2700	50	G
1×2	Half-Wave Rectifier	9-pin $\mathrm{B}^{\text {. }}$	9 Y	Fil.	1.25	0.2	-	1	15000	10	HV
1X2A	Holf-Wove Reclifier	9-pin B,	9 Y	Fil.	1.25	0.2		1.1	20000	11	HV
122	Holf-Wave Rectifier	7-pin 8 .	7CB	Fil.	1.5	0.3	7800	2	20000	10	HV
2825	Holf-Wove Rectifier	7-pin B,	3T	Fil.	1.4	0.11	1000	1.5		9	HV
2V3G	Half-Wave Reclifier	6-pin 0.	4 Y	Fil.	2.5	5.0		2.0	16500	12	HV
2W3	Half-Wove Reclifier	5-pin 0.	4X	Fil.	2.5	1.5	350	55			HV
2×2/87910	Holf-Wave Rectifier	4-pin 5 .	4AB	Hir.	2.5	1.75	4500	7.5	-		HV
2X2-A	Half-Wave Rectifier	4-pin 5 .	4AB	Same as $2 \times 2 / 879$ but will withstand severe shock \& vibrolion							HV
2Y2	Half-Wave Rectifier	4-pin M.	4AB	Fil.	2.5	1.75	4400	5.0		-	HV
2Z2/G84	Half-Wave Rectifler	4-pin M.	48	Fil.	2.5	1.5	350	50	-	-	HV
3824	Half-Wave Rectifier	4-pin M.	T-4A	Fil.	$\begin{aligned} & 5.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 60 \\ & 30 \end{aligned}$	$\begin{aligned} & 20000 \\ & 20000 \\ & \hline \end{aligned}$	$\begin{array}{r} 300 \\ 150 \\ \hline \end{array}$	HV
3825	Half-Wave Rectifier	4-pin M.	4P	Fil.	2.5	5.0		500	4500	2000	G
3826	Half-Wave Rectifier	8 -pin 0.	Fig. 31	Hir.	2.5	4.75		20	15000	8000	HV
DR-3827	Holf-Wave Rectifier	4-pin M.	4P	Fil.	2.5	5.0	3000	250	B500	1000	HV
							1700	500	5000	2000	G
3828	Hoff-Wave Rectifier	4-pin-M	4 P	Fil.	2.5	5.0	3500	250	10000	1000	σ
5AX4GT	Full-Wove Reclifier	5-pin 0.	$5 T$	Fil.	5	2.5	$\begin{aligned} & 350^{4} \\ & 500^{7} \end{aligned}$	175	1400	525	HV
5 AZ4	Full-Wave Rectifier	5-pin 0.	51	Fil.	5.0	2.0	Same os Type Bo				HV
5R4GY	Full-Wove Rectifier	$5 \cdot \mathrm{pin} 0$.	57	Fil.	5.0	2.0	$\begin{aligned} & 9001 \\ & 950 ? \end{aligned}$	$\begin{aligned} & 1504 \\ & 1757 \end{aligned}$	2800	650	HV
574	Full-Wove Rectifier	5-pin 0.	51	Fil.	5.0	3.0	450	250	1250	800	HV
SU4G	Full-Wave Reclifier	8 -pin 0.	5 T	Fil.	5.0	3.0	Same as Type 523				HV
SV4G	Full-Wove Rectifier	8-pin 0.	51	Hir.	5.0	2.0	Same os Type 83V				HV
5W4	Full-Wave Rectifer	5-pin O.	5 T	Fil.	5.0	1.5	350	110	1000		HV
5×3	Full-Wave Reclifier	4-pin M.	4C	Fil.	5.0	2.0	1275	30			HV
5X46	Full-Wave Rectifier	B-pin 0.	50	Fil,	5.0	3.0	Same as 573				HV
SY3G	Full-Wave Rectifier	5 -pin O,	51	Fil.	5.0	2.0	Same as Type 80				HV
5Y4G	Full-Wave Rectifier	B-pin 0.	50	Fil.	5.0	2.0	Same as Type 80				HV
573	Full-Wave Rectifler	4-pin M.	4C	Fil.	5.0	3.0	500	250	1400	-	HV
574	Full-Wave Rectifier	5-pin 0 .	51	Mir.	5.0	2.0	400	125	1100		HV
6AX4GT	Damper Dlade	6-pin 0.	4CG	Hir.	6.3	1.2		125	4000	600	HV
$6 A \times 5 \mathrm{GT}$	Full-Wave Rectifier	6-pin O.	65	Hir.	6.3	1.2	450	125	1250	375	HV
6 6X6G	Full-Wave Rectifier	7 -pin 0.	70	Hir.	6.3	2.5	350	250	1250	600	HV
6BY5G	Full-Wave Rectifier	7-pin O.	6CN	Htr.	6.3	1.6	3754	175	1400	525	HV
GUAGT	Half-Wave Rectifier	5-pin 0.	4CG	Hir.	6.3	1.2	-	138	1375	660	HV
6 V 4	Full-Wave Rectifier	9-pin 8.	9M	Hir.	6.3	0.6	350	90	\square		HV
6W4GT	Domper Service	6-pin 0.	4CG	Htr,	6.3	1.2	-	125	2000	600	HV
	Half-Wave Rectifier						350	125	1250	600	
6W5G	Full-Wove Rectifier	6-pin 0.	65	Htr.	6.3	0.9	350	100	1250	350	HV
6×4	Full-Wave Rectifier	7-pin B.	7CF	Htr.	6.3	0.6	325	70	1250	210	HV
6×5	Full-Wave Rectifier	6-pin 0 .	65	Htr.	6.3	0.5	350	75			HV
6Y3G	Holf-Wave Reclifisr	5-pin 0.	4AC	Hir.	6.3	0.7	5000	7.5		-	HV
6 Y 510	Full-Wave Rectifler	6-pin 5 .	6 J	Hir.	6.3	0.8	350	50	-	\square	HV
623	Holf-Wove Rectifier	4-pin M.	4 G	Fil.	6.3	0.3	350	50	-	-	HV
62510	Full-Wave Rectifier	6-pin S.	6K	Hir.	6.3	0.6	230	60	-	-	HV
6ZY5G	Full-Wave Rectifier	6-pin 0 .	65	Htr.	6.3	0.3	350	35	1000	150	HV
7Y4	Full-Wove Rectifier	8 -pin L.	5 AB	Hir.	6.3	0.5	350	60	-	-	HV
724	Full-Wave Rectifler	8-pin L.	5 AB	Hir.	6.3	0.9	$\begin{aligned} & 4501 \\ & 3254 \end{aligned}$	100	1250	300	HV
12 AT	Rectifler-Peniode	7-pin S.	7 K	Hir,	12.6	0.3	125	30	-	-	HV
12AX4GT	Damper Diode	6-pin 0.	4CG	Hir.	12.6	0.6	-	125	4000	600	HV
1273	Half-Wave Reclifler	4-pin S.	4G	His.	12.6	0.3	250	60	$\underline{\square}$	-	HV
1225	Valtoge Doubler	7-pin M.	71	Htr.	12.6	0.3	225	60	-	-	HV
14 Y 4	Full-Wave Rectifler	3-pin t .	5AB	His.	12.6	0.3	$\begin{aligned} & 4501 \\ & 3254 \end{aligned}$	70	1250	210	HV
1423	Half-Wove Rectifler	4-pin 5.	4G	Hir.	12.6	0.3	250	60	\rightarrow		HV
25A7G ${ }^{10}$	Reclifler-Pentade	$8-\mathrm{pin} 0$.	8 F	His.	25	0.3	125	75	\cdots	-	HV
25W4GT	Holf-Wove Rectifier	6 -pin 0.	4CG	Hir.	25	0.3	350	125	1250	600	HV

TABLE XV-RECTIFIERS-RECEIVING AND TRANSMITTING-Continued
See also Table XIII-Contral and Regulator Tubes

Type No,	Name	Base	Sockel Connec Nons	Cathode	Fil. or Healer		Max. A.C. Voltage Per Plale	D.C. Output Current Ma.		PeokPlateCurrentMo.	Type
					Volts	Amp.					
$25 \times 6 \mathrm{GT}$	Voltage Doubler	7 -pin 0.	70	Htr.	25	0.15	125	60			HV
25Y4GT	Half-Wove Rectifer	6-pin 0.	SAA	Hir.	25	0.15	125	75			HV
$25 Y 5{ }^{\text {to }}$	Voltage Doubler	6-pin 5 .	6E	Hir.	25	0.3	250	85			HV
2573	Half-Wove Rectifier	4-pin 5 .	46	Hir.	25	0.3	250	50			HV
2574	Half-Wave Rectifier	6 -pin 0.	5AA	Hir.	25	0.3	125	125			HV
2575	Rectifier-Doubler	6 -pin 5.	6 E	Hitr.	25	0.3	125	100		500	HV
2625w	Full-Wove Rectifier	9 -pin 8.	985	Hir.	26.5	0.2	$\begin{aligned} & 3254 \\ & 450^{7} \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	1250	300	HV
2526	Reclifier-Doublar	7-pin 0.	70	Hir.	25	0.3	125	100		500	HV
2825	Full-Wave Rectifier	8 -pin L.	548	Htr.	28	0.24	$\begin{aligned} & 4507 \\ & 325 \end{aligned}$	100	-	300	HV
32L7GT	Rectifier-Tetrode	8 -pin 0.	82	Hir.	32.5	0.3	125	60			HV
35W4	Half-Wave Reclifier	7-pin B.	5BQ	Hir.	35%	0.15	125	100^{8}	330	600	HV
$35 Y 4$	Half-Wove Reclifier	8 -pin 0.	5AL	Hit.	35^{2}	0.15	235	$\begin{aligned} & 60 \\ & 100^{8} \end{aligned}$	700	600	HV
3573	Half-Wove Rectifier	8 -pin L.	42	Hir.	35	0.15	$250{ }^{3}$	100	700	600	HV
3524GT	Holf-Wove Reclifier	6-pin 0 .	SAA	Htr.	35	0.15	250	100	700	600	HV
3575G	Holf-Wove Rectifier	6 -pin 0.	6AD	Htr.	352	0.15	125	$\begin{gathered} 60 \\ 1008 \end{gathered}$	\square	-	HV
35766	Vollage Doubler	6 -pin 0.	70	Hir.	35	0.3	125	110		500	HV
4025GT	Half-Wave Rectifier	6-pin 0.	6AD	Htr.	40^{2}	0.15	125	$\begin{gathered} 60 \\ 1008 \end{gathered}$	\square	-	HV
$45 \mathrm{Z3}$	Half-Wave Rectifier	7-pin B.	SAM	Hir.	45	0.075	117	65	350	390	HV
4575 GT	Half-Wave Rectifier	6-pin 0 .	6AD	Hit.	45:	0.15	125	$\begin{gathered} 60 \\ 100 \% \end{gathered}$	\square	-	HV
50AX6G	Full-Wave Rectifier	7 -pin 0.	70	Hir.	50	0.3	350	250	1250	600	HV
50×6	Voltage Doubler	8 -pin L.	7AJ	Hir.	50	0.15	117	75	700	450	HV
50Y6GT	Full-Wave Rectifier	7-pin 0.	70	Htr.	50	0.15	125	85	7		HV
SOY/GT	Voltage Doubler	8 -pin L.	8 AN	Hir.	50^{2}	0.15	117	65	700		HV
$5027{ }^{\text {c }}$	Voltage Doubler	7 -pin 0.	70	Htr.	50	0.3	125	150	-	-	HV
7047GT	Rectifier-Tetrade	8 -pin 0.	8AB	Hirs.	70	0.15	1175	65			HV
70L7GT	Rectifier-Tetrode	8-pin 0.	8AA	Hir.	70	0.15	117	70		350	HV
72	Holf-Wave Rectifier	4-pin M.	4 P	Fil.	2.5	3.0		30	20000	150	HV
73	Hall-Wove Rectifer	8-pin 0.	4Y	Fil.	2.5	4.5		20	13000	3000	HV
80	Full-Wave Rectifier	4-pin M.	4 C	Fil.	5.0	2.0	$\begin{aligned} & 350^{4} \\ & 500^{7} \end{aligned}$	$\begin{aligned} & 125 \\ & 125 \end{aligned}$	1400	375	HV
81	Half-Wave Rectifier	4-pin M.	48	Fil.	7.5	1.25	700	85			HV
82	Full-Wove Rectifier	4-pin M.	4 C	Fil.	2.5	3.0	500	125	1400	400	MV
83	Full-Wove Rectifier	4-pin M.	4C	Fil.	5.0	3.0	500	250	1400	800	MV
$83 . \mathrm{V}$	Full-Wave Rectifier	4-pin M.	4AD	Htr.	5.0	2.0	400	200	1100		HV
84/624	Full-Wave Rectifier	5-pin S.	5D	Hir.	6.3	0.5	350	60	1000	-	HV
	Rectifier-Tetrade	$8 . p$ in 0.	840	Htr.	117	0.09	117	75	-	\square	HV
117N7GT	Rectifier-Tetrode	$8-\mathrm{pin} 0$.	8AV	Hir.	117	0.09	117	75	350	450	HV
$\frac{117 P 7 \mathrm{GT}}{11723}$	Rectifer-Tetrode	8-pin O.	8AV	Hir.	117	0.09	117	75	350	450	HV
11724 GT	Half-Wove Rectifier	6-pin 0.	SAA	Hitr.	117	0.04	117	90	330		HV
11726 GT	Vollage Doubler	7-pin 0.	70	Hir.	117	0.075	235	60	700	360	HV
217-A ${ }^{10}$	Holf-Wave Reclifier	4-pin J.	4AT	Fil.	10	3.25			3500	600	HV
$217 . C$	Half-Wave Rectifier	4-pin J.	4AT	Fil.	10	3.25	\square	-	7500	600	HV
2225	Half-Wove Rectifier	4-pin M.	4 P	Fil.	2.5	5.0	-	250	10000	1000	MV
249-B	Half-Wave Rectifer	4-pin M.	Fig. 53	Fil.	2.5	7.5	3180	375	10000	1500	MV
HK253	Holf-Wave Rectiner	4-pin J.	4AT	Fil.	5.0	10		350	10000	1500	HV
$\begin{aligned} & \text { 705A } \\ & \text { RK-705A } \end{aligned}$	Holf-Wove Rectifier	4-pin W.	T-3AA	Fil.	$\begin{aligned} & 2.5^{\circ} \\ & 5.0^{\prime} \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	-	$\begin{array}{r} 50 \\ 100 \\ \hline \end{array}$	$\begin{aligned} & 35000 \\ & 35000 \end{aligned}$	$\begin{array}{r} 375 \\ 750 \\ \hline \end{array}$	HV
816	Holf-Wave Reclifier	4-pin 5.	4P	Fil.	2.5	2.0	2200	125	7500	500	MV
836	Half-Wove Rectifier	4-pin M.	4P	Htr.	2.5	5.0	\square	$\underline{-}$	5000	1000	HV
866A/866	Half-Wave Reclifier	4-pin M.	4P	Fil.	2.5	5.0	3500	250	10000	1000	MV
866B	Holf-Wove Rectifier	4-pin M.	4P	Fil.	5.0	5.0		-	8500	1000	MV
866 Jr.	Half-Wove Reclifer	4-pin M.	48	Fil.	2.5	2.5	1250	$250{ }^{2}$	\square	-	MV
HY866 Jr.	Holf-Wove Rectifier	4-pin M.	4P	Fil.	2.5	2.5	1750	250 ${ }^{2}$	5000	$\underline{-}$	MV
RK866	Half-Wave Rectifar	4-pin M.	4P	Fil.	2.5	5.0	3500	250	10000	1000	MV
87110	Holf-Wave Rectifler	4-pin M.	4P	Fil.	2.5	2.0	1750	250	5000	500	MV
878	Half-Wave Rectifer	4-pin M.	4P	Fil.	2.5	5.0	7100	5	20000	-	HV
879	Holf-Wave Rectifer	4-pin 5.	4P	Fil.	2.5	1.75	2650	7.5	7500	100	HV
972A/872	Holl-Wave Rectifier	4-pin J.	4AT	Fil.	5.0	7.5	\square	1250	10000	5000	MV
$\begin{aligned} & 975 \mathrm{~A} \\ & \hline \end{aligned}$	Holf-Wave Rectifer	4-pin J.	4AT	Fit.	5.0	10.0	\square	1500	15000	6000	MV
$\begin{aligned} & 024 A / \\ & 1003 \end{aligned}$	Full-Wave Rectifier	5-pin 0.	4R	Cold	-	\cdots	-	110	880	-	G
$\begin{aligned} & 1005 / \\ & \text { CK 1005 } \end{aligned}$	Full-Wave Roctifler	$8-\mathrm{pin} 0$.	540	Fil.	6.3	0.1	-	70	450	210	G
1006 / CK 1006	Full-Wave Reclifier	4-pin M.	4C	Fil.	1.75	2.25	-	200	1600	-	G

TABLE XV—RECTIFIERS—RECEIVING AND TRANSMITTING-Continued
See also Table XIII-Control and Regulator Tubes

Type Na.	Name	Base	Sockel Cannerfians	Cathode	Fil. or Heafer		Max. A.C. Vollage Per Plate	D.C. Oufpul Current Ma.	Max. Inverse Peak Vallage	Peok Plate Cuprent Ma.	Type
					Volis	Amp.					
CK1007	Full-Wove Rectifler	8-pin 0.	T.96	Fil.	1.0	1.2		110	980		G
CK1009/8A	Full-Wave Reclifier	4-pin M.		Cold				350	1000		G
1274	Full-Wave Rectifier	6-pin 0.	65	Hip.	6.3	0.6	Same as 7Y4				HV
1275	Full-Wave Rectifier	4-pin M.	4 C	Fil.	5.0	1.75	Same as 5Z3				HV
1616	Half-Wave Rectifler	4-pin M.	4 P	Fil.	2.5	5.0		130	6000	800	HV
1641/								50	4500		HV
$\begin{aligned} & 1641 / \\ & \text { RK60 } \end{aligned}$	Full-Wave Rectifler	4-pin M.	T.4AG	Fil.	5.0	3.0		250	2500		
1654	Half-Wave Rectifier	7-pin B.	$2 Z$	Fll.	1.4	0.05	2500	1	7000	6	HV
5517	Half-Wave Rectifier	7-pin B.	58U	Cald			1200	6	\square	50	G
5825	Half-Wave Rectifier	4-pin M.	4P	Fil.	1.6	1.25		2	60000	40	HV
8008	Half-Wave Rectifier	4-pin ${ }^{\text {4 }}$	Fig. 11	Fil.	5.0	7.5		1250	10000	5000	MV
8013 A	Half-Wave Recilifer	4-pin M.	4P	Fil.	2.5	5.0		20	40000	150	HV
8016	Half-Wave Reclifler	6-pin 0.	4AC	Fil.	1.25	0.2	-	2.0	10000	7.5	HV
8020	Half-Wave Rectifier	4-pin M.	4P	Fil.	5.0	5.5	10000	100	40000	750	HV
					5.8	6.5	12500	100	40000	750	
RK19	Full-Wave Rectifler	4 -pin M.	4AT	Hro.	7.5	2.5	1250	200*	3500	600	HV
RK21	Half-Wave Rectifler	4-pin M.	4P	Her.	2.5	4.0	1250	2004	3500	600	HV
RK22	Full-Wave Rectifier	4-pin M.	T-4AG	Hir.	2.5	8.0	1250	2004	3500	600	HV

1 With input choke of at least 20 henrys.
${ }^{2}$ Tapped for pilot lamps.
3 Per pair with choke input.
4 Condenser inpul.
b With 100 ohms min. resistance in series with plate; withou series resistor, maximum r.m.s. plafe rating is 117 volfs.

6 Same as 872A/872 excepl for heavy-duty push-type base Filament connected to pins 2 and 3, plate to top cap.
3 Choke input.
3 Without panel lamp.
${ }^{3}$ Using onty one-half of flament.
${ }^{10}$ Discontinued.

TABLE XVI-TRIODE TRANSMITTING TUBES

Type	Max. Plate Dissi. palion Walte	Cathode		Max. Plafe Voltage	Max. Plate Curren Ma	Max. D.C. Grid Current Ma.	Amp. Faclor	Inferelectrode Capacitances ($\mu \mu \mathrm{fd}$.)			Max. Freq. Mc. Full Rotings	Base	Socket Connes. tions	Typical Oporation	Plate Voltage	Grid Volloge	Plate Current Ma.		Appiox. Grid Driving Power Watts	$\begin{gathered} \text { Class B } \\ \text { P-to-P } \\ \text { Laod Res. } \\ \text { Ohms } \end{gathered}$	Appeox. Outpul Power Walts
		Volts	Amp.					Grid to Fil.	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plate } \end{aligned}$	$\begin{aligned} & \text { Plole } \\ & \text { to } \\ & \text { Fil. } \end{aligned}$											
958.A	0.6	1.25	0.1	135	7	1.0	12	0.6	2.6	0.8	500	A.	58D	Class-C Amp.-Oscillator	135	-20	7	1.0	0.035		0.6
3872	-	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.11 \end{aligned}$	180	25	-	25	1.4	2.6	2.6	125	0.	78.5	Class-C Amp. (Telegrophy)	180	0	25	-	-	-	2.8
RK24	1.5	2.0	0.12	180	20	6.0	8.0	3.5	5.5	3.0	125	5.	4D	Class-C Amp.-Oscillatar	180	- 45	16.5	6.0	0.5		2.0
6368	1.5	6.3	0.45	300	30	16	32	2.2	1.6	0.4	250	8.	7 BF	Class-C Amp. (Telography) ${ }^{2}$	150	-10	30	16	0.35		3.5
9002	1.6	6.3	0.15	250	8	2.0	25	1.2	1.4	1.1	250	B.	7 TM	Class-C Amp.-Oscillatap	180	- 35	7	1.5			0.5
955	1.6	6.3	0.15	180	0	2.0	25	1.0	1.4	0.6	250	A.	58C	Class-C Amp. Oscillator	180	- 35	7	1.5			0.5
HY1148	1.8	1.4	0.155	180	12	3.0	13	1.0	1.3	1.0	300	O.	2T	Class-C Amp.-Oscillator	180	- 30	12	2.0	0.2		$1.4{ }^{3}$
												O.	21	Class-C Amp. (Telephony)	180	-35	12	2.5	0.3		1.43
3 A5:	2.0	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.11 \end{aligned}$	150	30	5.0	15	0.9	3.2	1.0	40	B.	78C	Closs.C Amp.eOscillalor ${ }^{2}$	150	- 35	30	5.0	0.2	\rightarrow	2.2
$6 F 4$	2.0	6.3	0.225	150	20	8.0	17	2.0	1.9	0.6	500	A.	7BR	Class-C Amp.Oscillator -	150	$\begin{gathered} \overline{15} \\ 500^{\circ} \\ 200{ }^{* *} \end{gathered}$	20	7.5	0.2	-	1.8
HY24	2.0	2.0	0.13	180	20	4.5	9.3	2.7	5.4	2.3	60	5.	4D	Closs-C Amp. (Talography)	180	- 45	20	4.5	0.2	-	2.7
														Class-C Amp. (Talephony)	180	- 45	20	4.5	0.3		2.5
RK33 1, 2	2.5	2.0	0.12	250	20	6.0	10.5	3-2	3-2	2.5	69	5.	T-7DA	Class-C Amp. Oscillator ${ }^{2}$	250	- 60	20	6.0	0.54	-	3.5
12AU7 ${ }^{\text {2 }}$	2.75	6.3	0.3	350	$12{ }^{6}$	$3.5{ }^{6}$	18	1.5	1.5	0.5	54	8.	9A	Class-C Amp. Oscillator ${ }^{2}$	350	-100	24	7	-		6.0
6 N 4	3.0	6.3	0.2	180	12		32	3.1	2.35	0.55	500	8.	7CA	Class-C Amp.-Oscillator	180				$\underline{-}$		
6026	3.0	6.3	0.2	150	30	10	24	2.2	1.3	0.38	400	N.		Class-C Oseillator-400 Mc.	135	1300**	20	9.5	-	-	1.25
HY6J5GTX	3.5	6.3	0.3	330	20	4.0	20	4.2	3.8	5.0	60	0.	60	Class-C Amp.-Oscillator	330	- 30	20	2.0	0.2		3.5
HYSJSCTX											60	O.	60	Closs-C Amp. (Telephony)	250	- 30	20	2.5	0.3		2.5
2C22/7193	3.5	6.3	0.3	500	-	-	20	2.2	3.6	0.7	-	0.	4AM	Closs-C Amp. (Telography)					-		
HY615	3.5	6.3	0.175	300	20	4.0	20	1.4	1.6	1.2	300	O.	t-8AG	Class-C Amp.-Oscillator	300	-35	20	2.0	0.4	-	4.0^{2}
HY-Ell48													J.oAG	Class-C Amp. (Telephony)	300	- 35	20	3.0	0.8		$3.5{ }^{1}$
$\begin{aligned} & \hline \text { GL-446A: } \\ & \text { GL-446B } \\ & \hline \end{aligned}$	3.75	6.3	0.75	400	20	-	45	2.2	1.6	0.02	500	0.	Fig. 19	Class-C Amp.-Oscillator	250	-	-	-	-	-	\square
$\begin{aligned} & \text { GL-2C441 } \\ & \text { GL-464A। } \\ & \hline \end{aligned}$	5.0	6.3	0.75	500	40	\longrightarrow	\square	2.7	2.0	0.1	500	O.	Fig. 17	Class-C Amp.-Oscillator	250	-	-	-	-	-	-
6C4	5.0	6.3	0.15	350	25	8.0	18	1.8	1.6	1.3	54	B.	6BG	Class-C Amp.-Oscillator	300	- 27	25	7.0	0.35		5.5
1626	5.0	12.6	0.25	250	25	8.0	5.0	3.2	4.4	3.4	30	0.	60	Class-C Amp.-Oscillator	250	- 70	25	5.0	0.5		4.0
$\begin{aligned} & \text { 2C21// } \\ & \text { RK33: } \end{aligned}$	5.0	6.3	0.6	250	40	12	-	1.6	1.6	2.0	-	5.	T.7DA	Class-C Amp.-Oscillator ${ }^{\text {? }}$	250	- 60	40	12	1.0	-	7
2 C 36	5	6.3	0.4	$1500{ }^{3}$	-	-	25	1.4	2.4	0.36	1200	N.	Fig. 36	Plato-Pulsed 1000.Mc. Osc.	10040	0	900 5		-		2003
$\begin{aligned} & \hline 2037 \\ & 5766 \\ & 5767 \end{aligned}$	5	6.3	0.4	350	-	-	23	1.4	1.85	0.02	3300	N.	Fig. 36	1000-Mc. C.W. Oseillator	150	3000 **	15	3.6	-	-	0.5
5764	5	6.3	0.4	1500'	11.5		25	1.4	1.85	0.02	3300	N.	Fig. 36	Plate-Pulsed 3300-Mc. Osc.	1000 :	0	$1300{ }^{3}$	-		-	2003
5765	5	6.3	0.4	350		-	25	1.3	2.1	0.03	2900	N.	Fig. 36	1900 -Mc. C.W. Oselllator	180	10000**	25			-	0.225
5794	-	6.0	0.16	-	-		-		-	-	-	N.	Fig. 36	Fixed Tuned Oscillator Approximately 1680 Mc.	85/108			$\underline{-}$	\longrightarrow	-	0.22
5675	5	6.3	0.135	165	30	8	20	2.3	1.3	0.09	3000	N.	Fig. 36	Grounded-Grid Osc.	120	-	25	4	-	-	0.05
6N7:	5.50	6.3	0.8	350	30°	5.06	35	-	-	-	10	0.	8 B	Class-C Amp. Oscillotor ${ }^{2,11}$	350	-100	60	10			14.5
5876	6.25	6.3	0.135	300	25	-	56	2.5	1.4	0.035	1700	N.	Fig. 36	Grounded-Grid Oscillator	250	- 2	23	3			0.75
													Fig. 36	Frequency Multiplier	300	-70	17.3	7	-	-	2.0
$2 \mathrm{C40}$	6.5	6.3	0.75	500	25	-	36	2.1	1.3	0.05	500	0.	Fig. 19	Class.C Amp.-Oscillator	250	- 5	20	0.3	-	-	0.075
5556	7.0	4.5	1.1	350	40	10	8.5	4.0	8.3	3.0	6	M.	40	Class-C Amp. (Telegraphy)	350	-80	35	2	0.25		6
														Class-C Amp. (Telephony)	300	-100	30	2	0.3	-	4
$2 \mathrm{C43}$	12	6.3	0.9	500	40	-	48	2.9	1.7	0.05	1250	0.	Fig. 19	Class-C Amp.-Oselllator	470	-	38 ;	\square	\square		97
2C26A	10	6.3	1.10	-	-	-	16.3	2.6	2.8	1.1	250	ㅇ.	4 AB		-	-	-	-	-	-	8

Type	Mox. Plate Dissipation Watts	Cothode		Mox. Plate Voltage		Max. D.C. Grid Current Ma.	Amp. Factor	$\begin{aligned} & \text { Interelectrode } \\ & \text { Copacitonces }\left(\mu \mu \mathrm{f} \mathrm{~d}_{0}\right) \end{aligned}$			Max. Freq. Me. Full Ratings	Base	Sockel Connections	Typical Operation	Plate Voltoge	Grid Voltage	$\begin{aligned} & \text { Plate } \\ & \text { Cugtif } \\ & \text { Ma. } \end{aligned}$	$\begin{gathered} \text { B.C. } \\ \text { Grid } \\ \text { Current } \\ \text { Ma. } \end{gathered}$	Approx. Grid Driving Power Wotts	$\begin{gathered} \text { Class B } \\ \text { P-to-P } \\ \text { Logd Res. } \\ \text { Ohms } \end{gathered}$	Approx. Outpul Power Wolts
		Volts	Amp.					$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Fil. } \end{gathered}$	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plote } \end{aligned}$	Plote to Fil.											
$\begin{aligned} & \overline{2 C 34 /} \\ & \text { RK342 } \end{aligned}$	10	6.3	0.8	300	80	20	13	3.4	2.4	0.5	250	M.	T-7DC	Class-C Amp.-Oscillator ${ }^{2}$	300	- 36	80	20	1.8	-	16
														Class-C Amp.-Oscillator	400	-112	45	10	1.5	-	10
205D	14	4.5	1.6	400	50	10	7.2	5.2	4.8	3.3	6	M.	4D	Class-C Amp. (Telephony)	350	-144	35	10	1.7	-	7.1
														Class-C Amp.-Oscillotor	450	- 100	65	15	3.2		19
2 C 25	15	7.0	1.18	450	60	15	0	6.0	8.9	3.0		M.	40	Class-C Amp. (Telephony)	350	-100	50	12	2.2	-	12
										3.0	8	M.	4D	Class-C Amp.-Oscillator	450	-100	65	15	3.2	-	19
10Y	15	7.5	1.25	450	65	15	8	4.1	7.0	3.0	8	M.	40	Class-C Amp. (Telephony)	350	-100	50	12	2.2		12
														Class-C Amp.-Oscillator	450	-140	30	5.0	1.0	-	7.5
843	15	2.5	2.5	450	40	7.5	7.7	4.0	4.5	4.0	6	M.	5 A	Closs-C Amp. (Telaphony)	350	-150	30	7.0	1.6	-	5.0
RK592	15	6.3	1.0	500	90	25	25	5.0	9.0	1.0	-	M.	T-4D	Closs-C Amp.-Oscillator	500	-60	90	14	1.3	-	32
														Class-C Amp. (Telegraphy)	450	-140	90	20	5.2	-	26
HY75A	15	6.3	2.6	450	90	25	9.6	1.8	2.6	1.0	175	0.	21	Class-C Amp. (Telephony)	400	-140	90	20	5.2	-	21
					80	20	10	1.8	3.8	1.0	60			Clase-C Amp.-Oscillator	450	- 50	80	12	-	-	213
HY75	15	6.3	2.5	450	80	20	10	1.8	3.8	1.0	60	O.	21	Clase-C Amp. (Telephony)	450	- 60	80	12	-	-	16^{3}
1602	13	7.5	1.25	450	60	15	8.0	4.0	7.0	3.0	6	M.	4D	Class-C Amp. (Telegraphy)	450	-115	55	15	3.3		13
														Class-C Amp. (Telephony)	350	-135	45	15	3.5	-	8.0
														Class-8 Amp. Audio ${ }^{7}$	425	- 50	110^{8}	260^{9}	$2.5{ }^{8}$	8000	25
														Closs-C Amp. (Telegrophy)	450	- 34	50	15	1.8	-	15
841	15	7.5	1.25	450	60	20	30	4.0	7.0	3.0	6	M.	40	Class-C Amp. (Telaphony)	350	- 47	50	15	2.0	-	11
$\begin{aligned} & 101 \\ & \text { RK10 } \end{aligned}$	15	7.5	1.25	450	65	15	8.0	3.0	8.0	4.0	$\overline{60}$	M.	4D	Class-C Amp. (Telegraphy)	450	-100	65	15	3.2	\square	19
														Class-C Amp. (Telephony)	350	-100	50	12	2.2	-	12
														Class-B Audio ${ }^{7}$	425	- 50	558	130:	$2.5{ }^{8}$	8000	25
														Class-C Oseillator	110	-	80	8.0	-	-	3.5
RK1001	15	6.3	0.9	150	250	100	40	23	19	3.0	-	M.	T-6B	Class-C Amplifier	110	-	185	40	2.1	-	12
TUF-20	20	6.3	2.75	750	75	20	10	1.8	3.6	0.095	250	0.	2T	Class-C Amp.-Oscillotor	750	-150	75	20	1.5/2.5	-	40
1608	20	2.5	2.5	425	95	25	20	8.5	9.0	3.0	45	M.	4D	Class-C Amp. (Telegraphy)	425	-90	95	20	3.0	-	27
														Class-C Amp. (Telephony)	350	-80	85	20	3.0	-	18
														Class-B Amp. Audio ${ }^{7}$	425	- 15	$190{ }^{8}$	1309	2.28	4800	50
											6		4D	Class-C Amp. (Telegraphy)	600	-150	65	15	4.0	-	25
310	20	7.5	1.25	600	70	15	8.0	4.0	7.0	2.2	6	M.	4 D	Class-C Amp. (Telephony)	500	-190	55	15	4.5	-	18
703-A	20	1.2	4/4.5	350	75	12	8	0.9	1.1	0.6	1400	N.	-	Class-C Amplifier	350	-120	75	12	-	-	2/2.5
801-A/801	20	7.5	1.25	600	70	15	8.0	4.5	6.0	1.5	60	M.	4D	Class-C Amp. (Telegraphy)	600	-150	65	15	4.0	-	25
														Class-C Amp. (Telephony)	500	-190	55	15	4.5	-	18
														Closs-8 Amp. Audio ${ }^{\text {7 }}$	600	- 75	130	$320{ }^{9}$	$3.0{ }^{8}$	10000	45
														Class-C Amp. (Telegraphy)	600	-200	70	15	4.0	-	30
HY801-A	20		1.25	600	70	15	8.0	4.5	6.0	1.5	60	M.	4D	Class-C Amp. (Telephony)	500	-200	60	15	4.5	\square	22
														Class-C Amp. (Telegraphy)	750	- 85	85	18	3.6	-	44
T20	20	7.5	1.75	750	85	25	20	4.9	5.1	0.7	60	M.	3 C	Class-C Amp. (Telephony)	750	-140	70	15	3.6	-	38
5220	20	7.5	1.75	750	85	30	62	5.3	5.0	0.6	60	M.	36	Class-C Amp. (Telegraphy)	750	- 40	85	28	3.75	-	44
														Class-C Amp. (Telephony)	750	- 100	70	23	4.8	-	38
														Class-B Amp. Audio 7	800	0	40/136	1609	1,88	12000	70
158	20	5.5	4.2	-	-	-	25	1.4	1.15	0.3	600	N.	T-4AF	Class -C Amp. (Telegraphy)	Charactaristics similar to 25T						
$\begin{aligned} & 3.25 A^{3} \\ & 25 T \end{aligned}$	23				75	25									2000	-130	63	18	4.0	-	100
		6.3	3.0	2000			24	2.7	1.5	0.3	60	M.	3 G	Closs-C Amp.-Oscillator	1500	- 95	67	13	2.2	-	75
															1000	-70	72	9	1.3	-	47
														Closs-B Amp. Audio ${ }^{7}$	2000	- 80	16/80	2709	$0.7{ }^{8}$	55500	110

TABLE XVI-TRIODE TRANSMITtING TUBES—Continuod

TABLE XVI-TRIODE TRANSMITTING TUBES-Continued

Typo	Max. Plate Dissi- pation Wolts	Cethodo		Max. Plate Voltage		Alex. D.C. Crid Currant Ma,	Amp. Factor	Interelectrode Copacitances ($\mu \mu \mathrm{fd}$.)			$\mathrm{A}=\mathrm{x}$. Freq. Mc. Full Ratings	Base	Socket Connections	Typical Operation	Plate Voltoge	Grid Voltage	Plate Current Mo.	D.C. Grid Current Ma.	Approx. Grid Driving Power Watts	$\begin{gathered} \text { Closs B } \\ \text { P-to-P } \\ \text { Load Res. } \\ \text { Ohms } \end{gathered}$	Approx. Oulput Power Watts
		Voits	Amp.					$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Fil. } \end{gathered}$	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plate } \end{aligned}$	$\begin{gathered} \text { Plate } \\ \text { 10 } \\ \text { Fil. } \end{gathered}$											
HY401	40	7.5	2.25	1000	125	25	25	6.1	5.6	1.0	80	M.	3G	Closs-C Amp. (Tolegraphy)	1000	-90	125	20	5.0	-	94
														Closs-C Amp. (Telephony)	850	- 90	125	25	5.0	-	82
														Grid-Modulated Amp.	1000	-	125	-			20
HY40Z ${ }^{\text {I }}$	40	7.5	2.6	1000	125	30	80	6.2	8.3	0.8	60	M.	3G	Class-C Amp. (Telegraphy)	1000	- 27	125	25	5.0		94
														Closs-C Amp. (Telephony)	850	- 30	100	30	7.0	-	82
														Grid-Modulated Amp.	1000	-	60			-	20
														Class-C Amp.-Oscillatar	1500	-140	150	28	9.0	-	158
140	40	7.5	2.5	1500	150	40	25	4.5	4.5	0.3	60	M.	3 G	Class-C Amp. (Telephony)	1250	-115	115	20	5.25	--	104
TZ40	40	7.5	2.5	1500	150	45	62	4.8	5.0	0.8	60	M.	3G	Class-C Amp.-Oscillotor	1500	- 90	150	38	10	-	165
														Class-C Amp. (Telephony)	1250	-100	125	33	7.5	--*	116
														Closs-B Amo. Audio?	1500	-9	$250{ }^{\circ}$	285 ${ }^{\text {\% }}$	$6.0{ }^{\text { }}$	12000	250
HY57	40	6.3	2.25	850	110	25	50	4.9	5.1	1.7	60	M.	3 G	Class-C Amp. (Telegraphy)	850	-48	110	15	2.5		70
														Closs-C Amp. (Telephony)	700	- 45	90	17	5.0	-	47
														Grid-Modulated Amp.	850	-	70		-	-	20
7561	40	7.5	2.0	850	110	35	8.0	3.0	7.0	2.7	-	M.	4D	Class-C Amplifer	850	$-$	110	25	-	-	55
	40	7.5	2.15											Class-C Amplifier	750	-180	110	18	7.0		55
8301	40	10	2.15	750	110	18	8.0	4.9	9.9	2.2	15	M.	40	Grid-Modulated Amp.	1000	-200	50	2.0	3.0	-	15
3-50A4														Class-C Amp. (Telegraphy)	2000	-135	125	45	13	-	200
357	50	5.0	4.0	2300	150	50	39	4.1	1.8	0.3	100	M.	3G	Class-C Amp. (Telephony)	1500	-150	90	40	11	-	105
$\begin{aligned} & \text { 3-50D4 } \\ & \text { 35TG } \end{aligned}$														Class-B Amp. Audio ${ }^{\text {? }}$	2000	- 40	34/167	255 .	$4.0{ }^{8}$	27500	235
8010-R	50	6.3	2.4	1350	150	20	30	2.3	1.5	0.07	350	N.	-	Class-C Amplifer	0	-	100	14	-	-	90
RK32 ${ }^{\text { }}$	50	7.5	3.25	1250	100	25	11	2.5	3.4	0.7	100	M.	20	Class-C Amp. (Telegraphy)	1250	-225	100	14	4.8	-	90
RK35	50	7.5	4.0	1500	125	20	9.0	3.5	2.7	0.4	60	M.	2D	Class-C Amp. (Telephony)	1500	-250	115	15	5.0		120
														Class-C Amp. (Telephony)	1250	-250	100	14	4.6		93
														Grid-Modulated Amp.	1500	-180	37	-	2.0	-	25
RK37	50	7.5	4.0	1500	125	35	23	3.5	3.2	0.2	60	M.	2D	Class-C Amp. (Telegraphy)	1500	-130	115	30	7.0		122
														Class-C Amp. (Telephony)	1250	-150	100	23	5.6		90
														Grid-Modulated Amp.	1500	- 50	50	-	2.4		26
$\begin{aligned} & 3-50 G 2 \\ & \text { UH5O } \end{aligned}$	50	7.5	3.25	1250	125	25	10.6	2.2	2.6	0.3	60	M.	2D	Class-C Amp. (Telegraphy)	1250	-225	125	20	7.5		115
														Class-C Amp. (Telephony)	1250	-325	125	20	10		$\underline{115}$
														Grid-Modulated Amp.	1250	-200	60	2.0	3.0	-	25
UH51 ${ }^{1}$	50	5.0	6.5	2000	175	25	10.6	2.2	2.3	0.3	60	M.	2D	Class-C Amp. (Telegraphy)	2000	-500	150	20	15		225
														Class-C Amp. (Telephony)	1500	-400	165	20	15	-	200
														Grid-Moduloted Amp.	1500	-400	85	2.0	8.0	-	65
HK54	50	5.0	5.0	3000	150	30	27	1.9	1.9	0.2	100	M.	2 D	Closs-C Amp. (Telegraphy)	3000	-290	100	25	10	-	250
														Class-C Amp. (Telephony)	2500	-250	100	20	8.0	-	210
														Class-B Amp. Audio:	2500	-85	20/150	$360{ }^{\text {a }}$	5.0	40000	275
HK1541	50	5.0	6,5	1500	175	30	6.7	4.3	5.9					Člass-C Amp. (Telegraphy)	1500	-590	167	20	15	-	200
										1.1	60	M.	2 D	Class-C Amp. (Tolephony)	1250	-460	170	20	12	-	162
														Grid-Modulated Amp.	1500	-450	52	-	5.0	-	28
														Class-C Amp.-Oscillator	2000	-150	125	25	6.0	-	200
HK158	50	12.6	2.5	2000	200	40	25	4.7	4.6	1.0	60	M.	20	Class-C Amp. Telephony)	2050	-140	105	25	5.0	-	170
$\begin{aligned} & \text { WE304A } \\ & 304 B \end{aligned}$	50	7.5	3.25	1250	100									Class-C Amp. (Telagraphy)	1250	-200	100	-	-	一一	85
						25	11	2.0	2,5	0.7	100	M.	20	Closs-C Amp. (Talephony)	1000	-180	100	-	-	-	65

TABLE XVI-TRIODE TRANSMITTING TUBES - Continued

Type	Max. Plate Dissipation Watts	Cothode		Max. Plafe Voltage	Max. Plate Current Ma.	Max. D.C. Grid Current Ma.	Amp. Factor	Interelectrode Copacitances ($\mu \mu \mathrm{fd}$.)			Max. Freq. Me. Full Rating:	Base	Socket Connec: lions	Typical Operation	Plate Voltage	Grid Volitage	Plate Current Mo.		Approx. Grid Driving Power Watts	Closs B P-to-P Load Res. Ohms	Approx. Outpul Power Watts
		Volts	Amp.					Grid to Fil.	Grid to Plafe	Plata to Fil.											
3364	50	5.0	5.0	1500	120	35	50	2.25	2.75	1.0	60	N.	T-4BD	Class-C Amp. (Telography)	1500	-60	100		-	-	100
808	50	7.5	4.0											Class-C Amp. (Telephony)	1250	-100	100	35	-	-	85
				1500	150	35	47	5.3	2.8	0.15	30	M.	2D	Class.-C Amp. (Telegraphy) Class-C Amp. (Telephony)	1500	-200	125	30	9.5		140
															1250	-225	100	32	10.5		105
														Class-B Amp. Audio ${ }^{\text {l }}$	1500	- 25	30/190	$220{ }^{\circ}$	4.8 8	18300	185
834	50	7.5	3.1	1250	100	20	10.5	2.2	2.6	0.6	100	M.	2D	Class-C Amp. (Telegraphy)	1250	-225	90	15	4.5		75
841A1	50	10	2.0	1250	150	30		3.5						Class-C Amp. (Telephony)	1000	-310	90	17.5	6.5	-	58
8413W	50	10	2.0	1000	150	30	14.6	3.5	9.0	2.5		M.	3G	Class-C Amplifier		-				-	85
T55	55	7.5	3.0	1500	150	40	20	5.0	3.9	1.2	60	M.	3G	Class-C Amp. (Telegraphy)	1500	-170	150	18	6.0	\square	170
811	55	6.3	4.0	1500	150									Class-C Amp. (Telephony)	1500	-195	125	15	5.0		145
						50	160	5.5	5.5	0.6	60	M.	3 G	Class-C Amp. (Telegraphy)	1500	-113	150	35	8.0	-	170
														Class-C Amp. (Telephony)	1250	-125	125	50	11		120
812														Class-B Amp. Audio ${ }^{7}$	1500	- 9	20/200	150°	$3.0{ }^{3}$	17600	220
	55	6.3	4.0	1500	150	35	29	5.3	5.3	0.8	60	M.	3G	Class-C Amp. (Telegraphy)	1500	-175	150	25	6.5		170
														Class-C Amp. (Telephony)	1250	-125	125	25	6.0		120
														Class-B Amp. Audio ${ }^{\text {P }}$	1500	- 45	50/200	232 ${ }^{\circ}$	4.7^{8}	18000	220
RK51	60	7.5	3.75	1500	150	40	20	6.0	6.0	2.5	60	M.	3G	Class-C Amp. (Telegraphy)	1500	-250	150	31	10	$\underline{-}$	170
														Class-C Amp. (Telephony)	1250	-200	105	17	4.5	-	96
														Grid-Modulated Amp.	1500	-130	60	0.4	2.3	\cdots	128
RK52	60	7.5	3.75	1500	130	50	170	6.6	12	2.2	60	M.	3G	Class-C Amp. (Telegrophy)	1500	-120	130	40	7.0		135
														Class-C Amp. (Talephony)	1250	-120	115	47	8.5		102
T-60	60	10	2.5											Class-B Amp. Audio ${ }^{7}$	1250	0 -150	40/300	$180{ }^{\circ}$	$7.5{ }^{\text {8 }}$	10000	250
826	55	7.5	4.0	1000	150	40	31	5.5	5.2	2.5	60	M.	2D	Class-C Amp.-Oscillator	1500	-150 -70	150 130	50	9.0		100
					140			3.0	2.9	1.1	250	N.	780	Class-C Amp.-Oscillator	1000	-70 -180	130 95	35	5.8 11.5	\square	90
														Grid-Modulated Amp.	1000	-125	65	9.5	8.2	-	25
$\begin{aligned} & 8308 \\ & 9308 \end{aligned}$	60	10	2.0	1000	150	30	25	5.0	11	1.8	15	M.	3G	Class-C Amp.-Oscillator	1000	-110	140	30	7.0	-	90
														Class-C Amp. (Telephony)	800	-150	95	20	5.0	-	50
														Class-B Amp. Audio ${ }^{\text {] }}$	1000	- 35	20/280	2709	6.0°	7600	175
$811 . \mathrm{A}$	65	6.3	4.0	1500	175	50	160	5.9	5.6	0.7	60	M.	3G	Class-C Amp. (Telegraphy)	1500	- 70	173	40	7.1	$\underline{ }$	200
														Class-C Amp. (Teleptiony)	1250	-120	140	45	10.0	-	135
														Closs-B Amp. Audio ${ }^{\text {? }}$	1500	- 4.5	32/313	170\%	$4.4{ }^{\text {8 }}$	12400	340
812.A	65	6.3	4.0	1500										Class-C Amp. (Telegraphy)	1500	-120	173	30	6.5	-	190
					175	35	29	5.4	5.5	0.77	60	M.	3G	Class-C Amo. (Telephony)	1250	-115	140	35	7.6	-	130
														Class-8 Audio ${ }^{\text {T }}$	1500	-48	28/310	2700	5.0	13200	340
HY51A ${ }^{\text {a }}$														Class-C Amp. (Telegraphy)	1000	-75	175	20	7.5	-	131
HY518 ${ }^{2}$	65	10	2.25	1000	175	25	25	6.5	7.0	1.1	60	M.	3G	Class-C Amp. (Telephony)	1000	-67.5	130	15	7.5	\longrightarrow	104
														Grid-Modulated Amp.	1000	-	100	\square	-	-	33
HY51z1	65	7.5	3.5	1000	175	35								Closs -C Amp, (Telegraphy)	1000	-22.5	175	35	10		131
				1000	175	35	85	7.9	7.2	0.9	60	M.	480	Class-C Amp. (Telephony)	1000	- 30	150	35	10	-	104
														Grid-Modulated Amp.	1000	\square	100	-	-	-	33
														Class-C Amp. (Telegraphy)	1500	-106	175	60	12	-	200
5514	65	7.5	3.0	1500	175	60	145	7.8	7.9	1.0	60	M.	480	Class-C Amp. (Telephony)	1250	- 84	142	60	10	\longrightarrow	135
														Closs-B Audio	1500	-4.5	350*	88^{3}	6.5 ;	10500	400

TABLE XVI-TRIODE TRANSMITTING TUBES—Continued

Type	Max. Plate Dissi- pation Wotts	Cathode		Max. Plate Valtage	Max. Plate Ma.	Max. D.C. Grid Current Ma.	Amp. factor	Interelecirude Capacitances ($\mu \mu \mathrm{fd}$,			Max. Freg. Mc. Full Rafings	Base	Socket Connecfions	Typical Operation	Plate Volfage	Grid Voltage	Plate Current Ma.	D.C. Grid Current Ma,	Approx. Grid Driving Power Watts	$\begin{gathered} \text { Class B } \\ \text { P-to-P } \\ \text { LoadRes- } \\ \text { Ohms } \end{gathered}$	Approx. Outpul Power Walts
		Volts	Amp.					$\begin{aligned} & \text { Grid } \\ & \text { 1o } \\ & \text { Fil. } \end{aligned}$	$\begin{aligned} & \text { Grid } \\ & \text { for } \end{aligned}$	$\begin{gathered} \text { Plate } \\ \text { to } \\ \text { Fil. } \end{gathered}$											
														Class-C Amp. (Telegraphy)	1500	-170	150	30	7.0	-	170
UH35 ${ }^{1}$	70	5.0	4.0	1500	150	35	30	1.4	16	0.2	60	M.	36	Class-C Amp. (Telephony)	1500	-120	100	30	5.0	-	120
														Class-C Ams. (Telagraphy)	1505	-215	130	6.0	3.0	-	140
V70B	70	10	2.5	1500	140	25	14	5.0	9.0	2.3	-	\dot{M}.	3 G	Class-C Amo. (Telaphany)	1250	-250	130	6.0	3.0	-	120
													3N	Class-C Amp. (Telegraphy)	1000	-110	140	30	7.0		90
$\begin{aligned} & \text { V70A } \\ & \text { V70C } \end{aligned}$	70	10	2.5	1500	140	20	25	5.0	9.5	2.0	-	\dot{M}.	3 G	Class-C Amp. (Talaphony)	800	-153	95	20	5.0	-	50
$50{ }^{1}$	75	5.0	6.0	3000	100	30	12	2.0	2.0	0.4	-	M.	20	Class-C Amplitior	3500	-650	100	25		-	250
														Class-C Amp. (Tolegraphy)	2000	-200	150	32	10		225
$\begin{aligned} & 3-75 A 3 \\ & 75 \mathrm{TH} \end{aligned}$						40	20	2.7	2.3	0.3			2D	Class-B Amp. Audio ${ }^{3}$	2000	- 90	50/225	$350{ }^{\circ}$	$3^{\text {8 }}$	19300	300
	75	5.0	6.25	3000	225						40	M.		Class-C Amp. (Tolegraphy)	2000	-300	150	21	8		225
75TL						35	12	2.6	2.4	0.4			2D	Class-B Amp. Audio ${ }^{\text {] }}$	2000	-160	50/250	$535{ }^{\circ}$	58	18000	350
														Class-C Amp. (Telography)	1600	-190	158	12	3.5	-	200
4F-60	75	10	2.5	1600	160	-	28	5.4	5.2	1.5	30	M.	2D	Closs-C Amp. (Telephony)	1250	-190	113	8	2.5	-	110
														Class-B Amp. Audio ${ }^{\text { }}$	1600	- 75	50/248	310°	3.0	13800	262
														Class-C Amp. (Telegraphy)	1500	- 95	158	31	6.0	\square	190
28-60	75	10	2.5	1600	160	40	80	6.1	5.8	1.85	30	M.	2D	Class-B Amp. Audio ${ }^{\text {? }}$	1500	- 9	30/305	2089	12.5	11200	320
														Class-C Amp. (Telegraphy)	1500	-200	150	18	6.0	-	170
111H	75	10	2.5	1500	160	30	23	5.0	4.6	2.9	30	M.	20	Class-C Amp. (Telephony)	1250	-250	110	21	8.0	-	105
														Class-B Amp. Audio?	1750	- 62	40/270	$324{ }^{\circ}$	9.0	16000	350
HF75	75	10	3.25	2000	120	-	12.5	-	2.0	-	75	M.	2D	Class-C Oscillatar-Amp.	2530	-	120		$\overline{72 .}$	-	150
														Closs-C Amp.-Oscillator	2000	-175	150	37	12.7	-	225
Tw75	75	7.5	4.15	2000	175	60	20	3.35	1.5	0.7	60	M.	2D	Class-C Amp. (Telephony)	2000	-250	125	32	13.2	-	198
														Class-C Amp. (Telography)	1500	-250	150	18	6.0	-	170
									4.5	2.6	30		2D	Class-C Amp. (Tolephany)	1250	-250	110	21	8.0	-	105
HF100	75	10	2.5	1500	150	30	23	4.0	4.5	2.6		M.	2 D	Grid-Modulated Amp.	1500	-280	72	1.5	6.0	-	42
														Class-B Amp. Audio ?	1750	-62	40/270	3249	9,0 ${ }^{\text {a }}$	16000	350
														Class-C Amp. (Telegraphy)	1500	-200	150	18	6.0	-	170
UE-100	75	10	2.5	1750	150	30	23	3.5	4.5	1.4	30	M.	2D	Class-C Amp. (Telephony)	1250	-250	120	21	0.0	16000	105
UE-100														Class-B Audio ?	1750	-62	$540{ }^{\text {B }}$		9.0	16000	350
														Class-C Amp. (Telegraphy)	1250	-135	160	23	5.5		145
+														Class-C Amp. (Telephany)	1000	-150	120	21	5.0	-	95
28120	75	10	2.0	1250	160	40	90	5.3	5.2	3.2	30	J.	4E	Grid-Modulated Amp.	1250	-	95	8.0	1.5	-	45
														Closs-B Amp. Audio?	1500	-9	60/296	196*	$5.0{ }^{8}$	11200	300
3278	75	10.5	10.6	-	-	-	30	3.4	2.45	0.3	-	N.	T-4AD	-	$\underline{\square}$		- 150	-			
									13	4.0	6		4E	Class-C Amp. (Telegraphy)	1250	-175	150	-	-	-	130
242A	85	10	3.25	1250	150	50	12.5	6.5	13	4.0	6	J.	4 E	Class-C Amp. (Telephony)	1000	-160	150	50	-	-	100
														Class-C Amp. (Telegraphy)	1250	-500	150		-		125
284D	85	10	3.25	1250	150	100	4.8	6.0	0.7	5.6	-	J.	4E	Class-C Amp. (Telephony)	1000	-450	150	50	-	-	100
														Class-B Amp. Audio ${ }^{\text {T }}$	$\overline{1250}$	-250	30/200		-	11200	140
														Class-C Amp. (Telegraphy)	1750	-175	170	26	6.5	-	225
													36		1250	-125	165	21	6.0	\square	180
812-H	85	6.3	4.0	1750	200	45		5.3	5.3	0.8	30	m.		Class-C Amp. (Telephony)	1250	-125	125	25	6.0		120
														Class-B Amp Audia?	1500	-46	42/200		-	18000	225

table XVI-TRIODE TRANSmitting tubes-Continued

Type	Max. Plate Dissi- pation Watts	Cathode		Max. Plate Valtage		Max. D.C. Grid Current Ma.	Amp. Faciar	Interelectrode Capacitances ($\mu \mu \mathrm{fl}$,)			Mox. Freq. Mc. Full Ratings	Base	Socket Cannactions	Typical Operation	Plate Volitage	Grid Valtage	Plate Current Ma .		Approx. Grid Driving Power Watt:	Class 8 P-to-P Land Res. Ohm:	Approx. Outpu 1 Pawer Watts
		Volts	Amp.					$\begin{aligned} & \text { Grid } \\ & \text { ta } \\ & \text { Fiil. } \end{aligned}$	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plate } \end{aligned}$	Plate to Fil.											
8005	85	10	3.25	1500	200	45	20	6.4	5.0	1.0	60	M.	3G	Class-C Amp.-Telegraphy	1500	-130	200	32	7.5	-	220
														Class-C Amp. (Telephany)	1250	-195	190	28	9.0	-	170
														Class-B Amp. Audia?	1500	-70	40/310	310^{9}	4.0	10000	300
V-70-D	85	7.5	3.25	1750	200	45		4.5	4.5	1.7	30	M.	3G	Class-C Amp. (Telegraphy)	1750	-100	170	19	3.9		225
							-								1500	- 90	165	19	3.9		195
														Closs-C Amp, (Telephony)	1500	-90	165	19	3.7		185
															1250	-72	127	16	2.6		122
RK36 ${ }^{1}$	100	5.0	8.0	3000	165	33	14	4.5	5.0	1.0	60	M.	2D	Class-C Amp. (Telegraphy)	2000	-360	150	30	15		200
														Class-C Amp. (Telephany)	2000	-360	150	30	15		200
														Grid-Madulated Amp.	2000	-270	72	1.0	3.5		42
RK38 ${ }^{1}$	100	5.0	0.0	3000	165	40		4.6	4.3	0.9	60	M.	2D	Class-C Amp. (Telegraphy)	2000	-200	160	30	10		225
							-							Class-C Amp. (Telophany)	2000	-200	165	30	10		225
														Grid-Madulated Amp.	2000	-150	80	2.0	5.5		60
$\begin{aligned} & 3-100 \mathrm{~A} 4 \\ & 100 \mathrm{HH} \end{aligned}$	100	5.0	6.3	3000	225	60	40	2.9	2.0	0.4	40	M.	2D	Class-C Amp. (Telagraphy) Class-C Amp. (Telaphany)	3000	-200	165	51	18	-	400
														Grid-Madulated Amp.	3000	-400	70	3.0	7.0		100
														Class-B Amp. (Audia) ${ }^{\text {] }}$	3000	- 65	40/215	3359	5.0^{8}	31000	650
$\begin{aligned} & 3.100 \mathrm{~A} 2 \\ & 100 \mathrm{rL} \end{aligned}$	100	5.0	6.3	3000	225	50	14	2.3	2.0	0.4	40	M.	20	Class-C Amp. (Telegraphy) Class-C Amp. (Telaphony)	3000	-400	165	30	20	-	400
														Grid-Madulated Amp.	3000	-560	60	2.0	7.0		90
														Class-8 Amp. (Audio) ${ }^{\text {a }}$	3000	-185	40/215	640°	6.0^{8}	30000	450
VT127A	100	5.0	10.4	3000	-	-	15.5	2.7	2.3	0,35	150	N.	T-48	Class-C Amp. (Telegraphy)	2000	-340	210	67	25		315
												N.	1-48	Class-B Amp. (Audio) ${ }^{\text {a }}$	1500	-125	242	44	7.3	3000	200
227A	100	10.5	10.7	-	-		31	3.0	2.2	0.30	-	N.	T-48	Oscillotor al 200 Mc .	-	-	-	-			-
327 A	100	10.5	10.7		\square		31	3.4	2.3	0.35	-	N.	T-4AD	Oscillator at 200 Me .	-	-	ーー	-	-	-	-
HK254	100	5.0	7.5	4000	200	40	25	3.3	3.4	1.1	50	J.	2N	Class-C Amp. (Telegrophy)	4000	-380	120	35	20	-	475
														Class-C Amp. (Telephony)	3000	-290	135	40	23	-	320
														Grid-Madulated Amp.	3000	-	51	3.0	4.0	-	58
														Class-B Amp. (Audio) ${ }^{\text {] }}$	3000	-100	40/240	$456{ }^{3}$	7.08	30000	520
RK58	100	io	3.25	1250	175	70	-	8.5	6.5	10.5	-	J.	3N	Class-C Amp. (Telegrophy)	1250	- 90	150	30	6.0		130
												J.	3 N	Class-C Amp. (Telephony)	1000	-135	150	50	16		100
HF120	100	10	3.25	1250	175	50	12	5.5	12.5	3.5	15	J.	4F	Class-C Amp.-Oscillator	1250	-300	166	8	3.5		148
HF125	100	10	3.25	1500	175	-	25		11.5	-	30	J.	\cdots	Class-C Amp.-Oscillator	1500	-	175		3,5	-	206
HF140	100	10	3.25	1250	175	-	12	5.5	13.0	4.5	15	J.	4F	Class-C Amp.-Oscillator	1250	-300	166	8	3.5		148
$\begin{aligned} & 203 A \\ & 303 A \end{aligned}$	100	10	3.25	1250	175	60	25	6.5	14.5	5.5	15	J.	$4 E$	Class-C Amp. (Telegraphy)	1230	-125	150	25	7.0	-	130
														Class-C Amp. (Telephony)	1000	-135	150	50	14	-	100
														Class-8 Amp. (Audio) ${ }^{7}$	1250	- 45	26/320	$330{ }^{\circ}$	11^{8}	9000	260
203H	100	10	3.25	1500	175	60	25	6.5	11.5	1.5	15	J.	3N	Class-C Amp. (Telography)	1500	-200	170	12	3.8	-	200
														Class-C Amp. (Talephony)	1250	-160	167	19	5.0	-	160
														Class-8 Amp. (Audio) ${ }^{\text {? }}$	1500	- 52	30/320	$304{ }^{\circ}$	5.58	11000	340
$\begin{aligned} & 211 \\ & 311 \\ & 8351 \end{aligned}$	100	10	3.25	1250	175	50	12	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} 14.5 \\ 9.25 \end{gathered}$	$\begin{aligned} & 5.5 \\ & 5.0 \end{aligned}$	15	J.	$4 E$	Class-C Amp. (Telegraphy)	1250	-225	150	18	7.0	-	130
														Class-C Amp. (Telephony)	1000	-260	150	35	14	-	100
														Class-B Amp. (Audio) ${ }^{7}$	1250	-100	20/320	410^{9}	8.08	9000	260
$\begin{aligned} & 242 \mathrm{~B} \\ & 3428 \end{aligned}$	100	10	3.25	1250	150	50	12.5	7.0	13.6	6.0	6	J.	45	Class-C Amp. (Telegraphy)	1250	-175	150	-	-	-	130
														Class-C Amp. (Telephony)	1000	-160	150	50	\square	-	100

TABLE XVI-TRIODE TRANSMITTING TUBES-Continued

Type	Max. Plote Dissipation Watts	Cothode		Max. Plate Voltage	Max,Plate Current Mo.	Max. D.C. Grid Current Ma.	Amp. Foctor	$\begin{aligned} & \text { Inferelectrode } \\ & \text { Capacitonces (} \mu \mu \mathrm{fd} . \text {) } \end{aligned}$			Max. Freq. Mc. Full Ratings	Base	Socke it Connec tions	Typical Operation	Plate Voltage	Grid Voltoge	PloleCurrent Ma.		Approx. Grid Driving Power Watts	Class B P-to-P Lood Res. Ohms	Approx Outpu Watts
		Volts	Amp.					$\begin{gathered} \text { Grid } \\ \text { ta } \\ \text { Fil. } \end{gathered}$	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plate } \end{aligned}$	$\begin{gathered} \text { Plate } \\ \text { to } \\ \text { Fill. } \end{gathered}$											
242C	100	10	3.25	1250	150	50	12.5	6.1	13.0	4.7	6	J.	$4 E$	Class-C Amp. (Telegraphy)	1250	-175	150			-	130
														Class-C Amp. (Telephony)	1000	-160	150	50	-	-	100
														Class-8 Amp. (Audio) ${ }^{\text {] }}$	1250	- 80	25/150		25:	7600	200
$\begin{aligned} & 261 A \\ & 361 A \end{aligned}$	100	10	3.25	1250	150	50	12	6.5	9.0	4.0	30	J.	4E	Closs-C Amp. (Telegraphy)	1250	-175	125		-	\square	100
														Class-C Amp. (Telephony)	1000	-160	150	50	-	-	100
														Class-B Amp. (Audio) ${ }^{7}$	1250	-90	20/150	--	25 *	7200	200
$\begin{aligned} & 276 A \\ & 376 A \end{aligned}$	100	10	3.0	1250	125	50	12	6.0	9.0	4.0	30	J.	$4 E$	Closs-C Amp. (Telegraphy)	1250	-175	125		-	-	100
														Class-C Amp. (Telephony)	1000	-160	125	50		-	85
														Class-B Amp. (Audio) ${ }^{7}$	1250	- 90	20/125	-	$25{ }^{8}$	9000	175
2848	100	10	3.25	1250	150	100	5.0	4.2	7.4	5.3	\cdots	J.	3N	Class-C Amp. (Telegraphy)	1250	-500	150				125
														Class-C Amp. (Telephony)	1000	-430	150	50		-	100
														Class-B Amp. (Audio) ${ }^{7}$	1250	-245	15/150	-	10.8	7200	200
295A	100	10	3.25	1250	175	50	25	6.5	14.5	5.5		J.	$4 E$	Class-C Amp. (Telegrophy)	1250	-125	150				125
											-			Class-C Amp. (Tolephony)	1000	-125	150	50	-	-	100
														Class-B Amp, (Audio) ${ }^{7}$	1250	- 40	12/160		20^{8}	9000	250
$\begin{aligned} & 838 \\ & 938 \end{aligned}$	100	10	3.25	1250	175	70		6.5	8.0	5.0	30	J.	$4 E$	Class-C Amp. (Telegraphy)	1250	- 90	150	30	6.0		130
							-							Class-C Amp. (Telephony)	1000	-135	150	60	16	\square	100
														Class-8 Amp. (Audia)	1250	0	148/320	2008	7.58	9000	260
852	100	10	3.25	3000	150	40	12	1.9	2.6	1.0	30	M.	2D	Class-C Amp. (Telegraphy)	3000	-600	85	15	12	\cdots	165
														Class-C Amp. (Telephony)	2000	-500	67	30	23	\cdots	75
														Closs-B Amp. (Audio) ${ }^{\text {] }}$	3000	-250	14/160	780^{9}	3.58	10250	320
						50	100		1.95	0.035	2500			Class-C Amp. (Telegraphy)	1000	- 50	50	18	4		30
$5648{ }^{12}$	100	6.3	1.1	1000	100	50	100	8.73	1.95	0.035	2500	N.		Class-C Amp. (Telephony)	600	-25	55	22	6	-	20
8003	100	10	3.25	1500	250	50	12	5.8	11.7	3.4	30	J.	3N	Class-C Amp.-Oscillator	1350	-180	245	35	11^{*}	-	250
														Class-C Amp. (Telephony)	1100	-260	200	40	15	-	167
														Class-8 Amp. (Audio) ${ }^{7}$	1350	-100	40/490	$480{ }^{9}$	$10.5{ }^{8}$	6000	460
$\begin{aligned} & 3 \times 100 A 11 \\ & 2 \mathrm{C} 39 \end{aligned}$	100	6.3	1.1	1000	60	40	100	6.5	1.95	0.03	500	N.	-	"Grid Isolation" Circuit	600	- 35	60	40	5.0	-	20
														Clost-C Amplifier	800	- 20	80	32	6	-	27
2C39A	100	6.3	1.0	1000	80	50	100	6.5	1.95	. 035	500	N.		Class-C Amp. (Telephony)	600	- 16	75	40	6	-	18
$311 . \mathrm{CH}$	125	10	3.25	1750	200	50	12	5.5	8.0	4.5	30	J.	Fig. 57	Class-C Amp. (Telegraphy)	1750	-200	200	20	4.5	-	260
														Class-C Amp. (Telephony)	1250	-200	166	8	3.5	-	148
														Class-B (Audio) ${ }^{7}$	1500	-110	400:	-	\cdots	8200	400
3 3C22	125	6.3	2.0	1000	150	70	40	4.9	2.4	0.05	500	0.	Fig. 30	Class-C Amp.-Oseillator	1000	-200	150	70		-	65
$4 \mathrm{AC36}$	125	5	7.5	4000	\cdots	-	29	3.2	3.0	0.4	60	J.	Fig. 56	Class-C Amp.-Oscillator	-	-	-	一	18	\cdots	480
$\begin{aligned} & \text { F-123-A } \\ & \text { OR-123C } \end{aligned}$	125	10	4.0	2000	300	75	14.5	6.5	8.5	3.3		J.	Fig. 26	Class-C Amp. (Telegraphy)	1500	-250	250	30	11	—	300
											-			Class-C Amp. (Telephony)	1500	-290	160	25	10	\square	200
														Closs-B Amp. (Audio) ${ }^{\text {] }}$	2000	-130	30/175	217^{9}	$3.4{ }^{8}$	13800	522
RK57/805	125	10	3.25	1500	210	70		6.5	8.0					Class-C Amp. (Telegraphy)	1500	-105	200	40	8.5	-	215
							-			5.0	30	J.	3N	Class-C Amp. (Telephony)	1230	-160	160	60	16	\square	140
														Class-8 Amp. (Audio) ${ }^{7}$	1500	- 16	84/400	$280{ }^{\circ}$	7.08	8200	370
					250	60	25	6.3	6.0	1.3	60	J.	2N	Class-C Amp. (Tolegraphy)	2500	-200	240	31	11		475
T125	125	10	4.5	2500	250	60	25	6.3	6.0	1.3	60	J.	2N	Class-C Amp. (Telephony)	2000	-215	200	28	10		320
HF130	125	10	3.25	1250	210	-	12.5	5.5	9.0	3.5	20	J.	-	Class-C Amp.-Oscillatar	1250	-250	200	10	3.5	-	170
HF150	125	10	3.25	1500	210	-	12.5	5.5	7.2	1.9	30	J.	-	Class-C Amp.-Oscillator	1300	-300	200	10	4	-	220
MF175	125	10	4.0	2000	250	-	18	4.8	6.3	2.7	25	J.	T-3AC	Class-C Amp.-Oscillotor	2000	-250	200	23	9	-	320

TABLE XVI-TRIODE TRANSMITting TUBES-Continued

Type	Max. Plate Dissipalion Wafts	Cathodo		Max. Plate Voltage	Max.Plate Curren Ma.	Max. D.C. Grid Current Ma.	Amp. Factor	Interelectrode Capacitances ($\mu \mu \mathrm{fd}$.)			Max. Freq. Mc. Full Rafings	Base	Socket Connecfions	Typical Operation	Plate Voltago	Grid Voltage	Plate Curront Ma.	D.C.GridCurrenMa.	Approx. Grid Driving Power Watis	$\begin{gathered} \text { Class B } \\ \text { P-to-P } \\ \text { Load Res. } \\ \text { Ohms } \end{gathered}$	Approx. Output Power Watts
		Volts	Amp.					$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Fil. } \end{gathered}$	Grid to Plate	$\begin{aligned} & \text { Plate } \\ & \text { to } \\ & \text { Fil. } \end{aligned}$											
GL146	125	10	3.25	1500	200	60	75	7.2	9.2	3.9	15	J.	T-4BG	Class-C Amp.-Oscillatop	1250	-150	180	30	-	-	150
														Class-C Amp. (Telephony)	1000	-200	160	40	-		100
														Class-B Amp. (Audio) ${ }^{7}$	1250	0	34/320			8400	250
Gl152	125	10	3.25	1500	200	60	25	7.0	8.8	4.0	15	J.	T-4BG	Class-C Amp.-Ostillator	1250	-150	180	30		-	150
														Class-C Amp. (Telephony)	1000	-200	160	30			100
														Class-8 Amp. (Audio) ${ }^{7}$	1250	-40	16/320		-	8400	250
803	125	10	3.25	1500	210	70	40/60	8.5	6.5	10.5	30	J.	3N	Class-C Amp. (Telegraphy)	1500	-105	200	40	8.5		215
														Class-C Amp. (Telephony)	1250	-160	160	60	16		140
														Class-B Amp. (Audio) ${ }^{7}$	1500	- 16	84/400	$280{ }^{\circ}$	$7.0{ }^{8}$	8200	370
$\begin{aligned} & \mathbf{A} \times 9900 / \\ & 5866^{12} \end{aligned}$	135	6.3	5.4	2500	200	40	25	5.8	5.5	0.1	150	N.	Fig. 5	Class-C Amp. (Telegraphy)	2500	-200	200	40	16	-	390
														Class-C Amp. (Telephony)	2000	-225	127	40	16	-	204
														Class-B (Audio) ${ }^{\text {? }}$	2500	-90	80/330	$350{ }^{\text {a }}$	14^{8}	15680	560
$\begin{aligned} & 3 \times 15043 \\ & 3 \mathrm{C} 37 \end{aligned}$	150	6.3	2.5	1000	-	-	23	4.2	3.5	0.6	500	N.		-	-			-	-	-	
$150{ }^{1}$	150	5.0	10	3000	200	50	13	3.0	3.5	0.5	-	J.	2N	Class-C Amp. (Telegraphy)	3000	-600	200	35		-	450
$3.150 \mathrm{A3}$ 152 TH	150	5/10	$\begin{array}{r} 12.51 \\ \hline 6.25 \end{array}$	3000	450	85	20	5.7	4.5	0.8	40	J.	48C	Class-C Amp. (Telegraphy)	3000	-300	250	70	27		600
$\begin{aligned} & \hline 3.150 A 2 \\ & 152 \mathrm{TL} \\ & \hline \end{aligned}$														Class-B Amp. (Audio) ${ }^{\text {? }}$	3000	-150	67/335	430 *	$3.0{ }^{8}$	20300	700
						75	12	4.5	4.4	0.7			4BC	Class-C Amp. (Telegraphy)	3000	-400	250	40	20		600
														Class-B Amp. (Audio) ${ }^{7}$	3000	-260	65/335	675 ${ }^{\text {\% }}$	$3.0{ }^{8}$	20400	700
TW150	150	10	4.1	3000	200	60	35	3.9	2.0	0.8	-	J.	2N	Class-C Amp.-Oscillator	3000	-170	200	45	17		470
										0.6	-	J.	2N	Class-C Amp, (Telephony)	3000	-260	165	40	17	-	400
HK252-L	150	5/10	13/6.5	3000	500	75	10	7.0	5,0	0.4	125	N.	48 C	Class-C Amp.-Oscillator	3000	-400	250	30	15		610
			13/6.5				10	7.0	5,0	0.4	125	N.	48.	Class-C Amp. (Telephony)	2500	-350	250	35	16	-	500
$\begin{aligned} & \text { DR200 } \\ & \text { HF200 } \\ & \text { HV18 } \end{aligned}$	150	10-11	3.4	2500	200	50	18	5.2	58	1.2	20	J.	2N	Class-C Amp. (Telography)	2500	-300	200	18	8.0		380
														Class-C Amp. (Telephony)	2000	-350	160	20	9.0	\square	250
														Class-8 Amp. (Audio)?	2500	-130	60/360	$460{ }^{9}$	$8.0{ }^{8}$	16000	600
HP203A	150	10	4.0	2000	250	60	25		12	-	15	J.	3N	Class-C Amplifier	-	-	-	-	-	-	375
HF250	150	10.5	4.0	2500	200	-	18	-	5.8		20	J.	2N	Class-C Amp.-Ostillator	2500	-	200				375
HK354HK35AC	150	5.0	10	4000	300	50	14	4.5	3.8	1.1	30	J.	2N	Closs-C Amp. (Telegraphy)	4000	-690	245	50	48	-	830
														Class-C Amp. (Telephony)	3000	-550	210	50	35	-	525
														Grid-Modulated Amp.	3000	-400	78	3.0	12	-	35
														Class-B Amp. (Audio)?	3000	-205	65/313	6309	20\%	22000	665
HK354D	150	5.0	10	4000	300	55	22	4.5	38	1.1	30	J.	2N	Class-C Amp. (Telography)	3500	-490	243	50	38	-	690
								4.5		1.1	30	J.	2 N	Class-C Amp. (Telephony)	3500	-425	210	55	36	-	525
HK354E	150	5.0	10	4000	300	60	35	4.5	3.8	1.1	30	J.	2N	Class C Amp. (Telegraphy)	3500	-448	240	60	45	-	690
								4.5	3.6	1.1	30	J.	2N	Class-C Amp. (Telephony)	3000	-437	210	60	45	-	525
HK354F	150	5.0	10	4000	300	75	50	4.5	3.0	1.1	30	J.	2N	Class-C Amp. (Telegraphy)	3500	-368	250	75	50	-	720
								4.5	3.0	1.1	30	J.	2N	Class-C Amp. (Telephony)	3000	-312	210	75	45	-	525
UE-468	150	10	4.05	2500	200	60	18	0.8	7.0	1.25	30	J.	Fig. 57	Class-C Amo. (Teleqraphy)	2500	-300	200	18	8.0	-	380
														Closs-C Amp. (Telaphony)	2000	-350	160	20	9.0	\square	250
														Class-B (Audio) ${ }^{7}$	2500	-130	$320{ }^{8}$	410°	2.5	16000	500
$\begin{aligned} & 810 \\ & 16271 \end{aligned}$	175	$\begin{gathered} 10 \\ 5.0 \end{gathered}$	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$	2500	300	75	36	8.7	4.0	12	30	J.	2N	Class-C Amp. (Telegraphy)	2500	-180	300	60	19		575
														Class-C Amp. (Telephony)	2000	-350	250	70	35	-	380
														Grid-Modulated Amp.	2250	-140	100	2.0	4.0	-	75
														Class-B Amp. (Audio) ${ }^{\text {] }}$	2.53	-60	70/450	$380{ }^{9}$	13^{8}	11600	725

TABLE XVI-TRIODE TRANSMITTING TUBES-Continued

TABLE XVI-TRIODE TRANSMITTING TUBES-Continued

* Cathode rosistor in ohms.
** Grid resistor ohms.

Twin triode.
are for boith sections in push-pull
Output af $112 \mathrm{Mr}_{5}$ in push-pull.
${ }_{5}^{4}$ Grid-leok resistor in ohms.
${ }^{5}$ P Peak valves.
${ }^{6}$ Per section.
7 Values are for two tubes in push-pull.
${ }_{9}{ }^{9}$ Max. signal value.
${ }^{9}$ Peak o.f. grid-to-grid volts.
10 For single tubs.
12 Forced-air coolingle 1.
table XVII-TETRODE AND PENTODE TRANSMITting tubes

Type	Max. Plate Dissipation Watts	Cathode		Max. Plate Voltage	Max. Screan Voliage	Max. Screen Dissipation Wotts	Interelectrode Capacitances ($\mu \mu \mathrm{fd}$.)			Max, Freq. Me. Full Ratings	Base	Socket Con-necHon	Typical Operation	Plate Voltoge	Screen Voltage	Suppressor Voltoge	Grid Voltage	Plate Current Mo.	Screen Current Ma .	Grid Curren Ma	Screen Resistor Ohms	Approx. Grid Driving Power Watts	Class B P-to-P Load Res. Ohms	Approx. Output Power Walts
		Volts	Amp.				$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Fil. } \end{gathered}$	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plate } \end{aligned}$	$\begin{gathered} \text { Plate } \\ \text { to } \\ \text { Fil. } \end{gathered}$															
344	2.0	$\begin{aligned} & 1.4 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.1 \end{aligned}$	150	135	0.9	4.8	0.2	4.2	10	B.	7BB	Class-C Amp. (Telegraphy)	150	135	0	- 26	18.3	6.5	0.13	2300	-	-	1.2
3D6	4.5	$\begin{aligned} & 2.8 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 0.11 \\ & 0.22 \end{aligned}$	180	135	0.9	75	0.3	5.5	50	L.	68B	Closs-C Amp. (Telegraphy)	150	135		- 20	23	6.0	1.0		0.25		1.4
384	3.0	$\begin{aligned} & 2.5 \\ & 1.25 \end{aligned}$	$\begin{aligned} & 0.165 \\ & 0.33 \end{aligned}$	150	135	-	4.6	0.16	7.6	100	B.	7 CY	Class-C Amp.	150	135	-	-75	25		-		-	-	1.25
		2.5	0.1125		100	0.6		0.1	8.0	60	0.	T-8DB	Class-C Amp. (Telegrophy)	200	100		-22.5	20	4.0	2.0		0.1	\square	3.0
HY63 ${ }^{\text {1 }}$	3.0	1.25	0.225	200	100	0.6	8.0	0.1	8.0	60	0.	1-808	C!ass-C Amp. (Telephony)	180	100		- 35	15	3.0	2.0		0.2		2.0
6AK6	3.5	6.3	0.15	375	250	1.0	3.6	0.12	4.2	54	B.	78K	Class-C Ainp. (Telegraphy)	375	250		-100	15	4.0	3.0		-		4.0
5A6	5.0	$\begin{aligned} & 2.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 0.48 \\ & 0.23 \end{aligned}$	150	150	2	8.5	0.15	9.5	100	B.	91	Class-C Amp.	150	150	0	- 24	40	11	1.2	-	-	-	3.1
5618	5.0	$\begin{aligned} & 6.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 0.23 \\ & 0.46 \end{aligned}$	300	125	2.0	7.0	0.24	5.0	85	B.	7 CU	Class-C Amp. (Telegraphy)	300	75	0	- 45	25	7.0	1.5	32000	0.3	-	5.4
				250	250	3.0	6.4	0.11	4.0	160	- B .	Fig. 29	Class-C Amp. (Telegraphy)	250	250		-50 -30	40	10.5	2.0		0.15 0.10		6.5
5686	7.5	6.3	0.35	250	250	3.0	6.4	0.11	4.0	165	B.	Fig. 29	Class-C Amp. (Telegraphy)	250	180		- 30	30	6.5	2.0		0.10		5.0
6AQ5	8.0	6.3	0.45	350	250	2.0	7.6	0.35	6.0	54	B.	7BZ	Class-C Amp. (Telegrophy)	350	250		-100	47	7.0	5.0		-		11
6V6GT	8.0	6.3	0.45	350	250	2.0	9.5	0.7	7.5	10	O.	7AC	Class-C Amp. (Telegraphy)	350	250	-	-100	47	7.0	5.0		-		11
6 6G7	9.0	6.3	0.65	375	250	1.5	13	0.06	7.5	10	0.	8 Y	Class-C Amp. (Telegrophy)	375	250		-75	30	9.0	5.0				7.5
													Class-C Amp. (Telegraphy)	400	100	30	- 30	35	10	3.0		0.18		10
RK64 :	6.0	6.3	0.5	400	100	3.0	10	0.4	9.0	60	M.	5AW	Class-C Amp. (Telephony)	300		30	- 30	25	8.0	4.0	30000	0.2		6.0
1610	6.0	2.5	1.75	400	200	2.0	8.6	1.2	13	20	M.	T-5CA	Class-C Amp. (Telegraphy)	400	150	-	- 50	22.5	7.0	1.5		0.1	-	5.0
													Class-C Amp. (Telegraphy)	400	300		- 40	62	12	1.6		0.1		12.5
RK56	8.0	6.3	0.55	300	300	4.5	10	0.2	9.0	60	M.	5AW	Class-C Amp. (Telephony)	250	200		- 40	50	10	1.6	2800	0.28		8.5
													Closs-C Amp. (Telegraphy)	500	200	45	-90	55	38	4.0		0.5	-	22
$\begin{aligned} & \text { RK23 } \\ & \text { RK25 } \end{aligned}$	10		2.0	500	250	8	10	0.2	10	-	M .	6BM	Class-C Amp. (Telephony)	400	150	0	-90	43	30	6.0	8300	0.8		13.5
$\text { RK25B } 1$		6.3	0.9										Suppres sor-Modulated Amp.	500	200	-45	-90	31	37	4.0		0.5		6.0
													Class-C Amp. (Telegraphy)	350	200	-	- 35	50	10	3.5	20000	0.22	-	9
1613	10	6.3	0.7	350	275	2.5	8.5	0.5	11.5	45	0.	75	Class-C Amp. (Telephony)	275	200	-	- 35	42	10	2.8	10000	0.16	-	6.0
													Class-C Amp. (Teiegraphy)	250	200	-	- 50	50	10	2.5	-	0.2		7.5
$2 E 30$	10	6.0	0.7	250	250	2.5	10	0.5	4.5	160	B.	7 CQ	Class- AB_{2} Amp. (Audio) ${ }^{\text {B }}$	250	250	-	- 30	40/120	4/20	2.37	878	0.2	3800	17
5812	10	6.0	0.65	300	250	2.5	9.0	0.2	7.4	165	B.	7 Ca	Class-C Amp. (Telegraphy)	300	200		- 45	55	3.0	0.75	-	1.5		7.0
5812													Class-C Amp. (Telegraphy)	500	200	40	-70	80	15	4.0	20000	0.4	\cdots	28
837						8	16	0.2	10	20	M.	6BM	Class-C Amp. (Telephony)	400	140	40	-40	45	20	5.0	13000	0.3	-	11
RK44 ${ }^{1}$	12	12.6	0.7	500	300	8	16	0.2	10	20			Suppressor-Modulated Amp.	500		-65	- 20	30	23	3.5	14000	0.1	-	5.0
													Class-C Amp. (Telography)	300	250	0	-60	50	5.0	3.0	-	0.35	-	8.0
5763	12	6.0	0.75	300	250	2	9.5	0,3	4.5	175	B.	9K	Doubler 10175 Mc .	300	253	0	-75	40	4.0	1.0	12500	0.6		3.6
							6.5	0.2	13				Class-C Amp. (Telegraphy)	400	275		-100	50	11	5.0	-	\square		14
$\begin{aligned} & 6 F 6 \\ & 6 F 6 G \end{aligned}$	12.5	6.3	0.7	400	275	3.0	8.0	0.5	6.5	10	0.	7AC	Class-C Amp. (Telephony)	275	200		- 35	42	10	2.8	-	0.16	-	6.0
													Class-C Amp. (Telephony)	400	180		-45	50	8.0	2.5	27500	0.15	-	13.5
				500	200	2.3		. 11	65	125			Class-C Amp. (Telephony)	500	189	- -	- 45	54	8.0	2.5	40050	0.16	-	18.0
2E24	13.5	$6.3{ }^{\text {s }}$	0.65				8.5		6.5		0.			430	200	-	- 45	75	10.0	3.0	20000	0.19	-	20
				600	200	2.5							Class-C Amp, (relegraphy)	600	195		- 50	66	10	3.0	43530	0.21		27
				600	200	2.5							Class-C Amp. (Telegraphy)	800	185		- 45	66	10	3.0	41500	0.17		27
$2 E 26$		6.3	0.8	600	200	2.5	13	0.2	7.0	125	0.	7CK	Class-C Amp. (Telephony)	500	180		- 50	54	9.0	2.5	35500	0.15	-	18
	9.0			500	200	2.3							Class-A3 ${ }_{2}$ Amp. (Audio) ${ }^{6}$	500	125		- 15	22/150	$32{ }^{7}$		60^{8}	$0.36{ }^{7}$	8000	54
													Class-C Amp. (Telegraphy)	605	250	40	-120	55	16	2.4	22000	0.30	-	23
802	13	6,3	0.9	600	250	6.0	12	0.15	8.5	30	M.	6BM	Class-C Amp. (Telephony)	500	245	40	-45	40	15	1.5	16300	0.10	-	12
													Suppressor-Modulated Amp.	600	250	-45	-100	30	24	5.0	14500	0.6	-	6.3

TABLE XVII-TETRODE AND PENTODE TRANSMITIING TUBES - Continued

Tуpe	Max. Plate Dissipation Wotss	Cathode		Max. Plate Voliage	Max. 5 creen Volfage	Max. Screen Dissipation Watls	Interelectrode Capacitonces ($\mu \mu \mathrm{fd}$.)			Max. Freq. Mc. Full Ratings	Base	Socket Con-nections	Typical Operetion	Plate Volt. age	Screen Volt. age	Sup-pressor Volt. age	Grid Volt. age	Plate Current Ma.	Screen Current Ma .	Grid Current Ma.	Screen Resistor Ohms	Approx. Grid Driving Power Watts	Class B P-10-P Load Res. Ohms	Approx Output Watts
		Volts	Amp.				Grid to Fil.	Grid to Plate	Plate 10 Fil.															
HY6V6.	13	6.3	0.5	350	225	2.5	9.5	0.7	9.5	60	0.	7AC	Class-C Amp. (Telegraphy)	300	200	-	-45	60	7.5	2.5	-	0.3	-	12
													Class-C Amp. (Telephony)	250	200		- 45	60	6.0	2.0	15000	0.4		10
HY60	15	6.3	0,5	425	225	2.5	10	0.2	8.5	60	M.	5AW	Class-C Amp. (Telegraphy)	425	200		-62.5	60	8.5	3.0		0,3		18
													Class-C Amp. (Telephony)	325	200		-45	60	7.0	2.5		0.2		14
HY65	15	6.3	0.85	450		4.0	9.1	0.18	7.2	60	O.	T-8DB	Class-C Amo,-Oscillator	450	250		-45	75	15	3.0		0.5		24
					250								Class-C Amp. (Telephony)	350	200		-45	63	12	3.0		0.5		16
2525	15	6.0	0.8	450	250	4.0	8.5	0.15	6.7	125	0.	5BJ	Class-C Amp.-Oscillator	450	250		-45	75	15	3.0	-	0.4		24
													Class-C Amp. (Telephony)	400	200		- 45	60	12	3.0		0.4		16
													Class-AB2 Amp. (Audio) ${ }^{\text {s }}$	450	250		- 30	44/150	10/40	3.0	$142{ }^{\text {8 }}$	$0.9{ }^{\text {i }}$	6300	40
306 A	15	2.75	2.0	300	300	6.0	13	0.35	13	-	M.	T-5CB	Class-C Amp. (Telephony)	300	180		- 50	36	15	3.0	8000		-	7.0
$\begin{aligned} & 307 \mathrm{~A} \\ & \text { RK. } 75 \end{aligned}$	15	5.5	1.0	500	250	6.0	15	0.55	12	-	M.	T-5C	Class-C Amp. (Telegraphy)	500	250	0	- 35	60	13	1.4	20000	-		20
													5uppressor-Modulated Amp.	500	200	-50	-35	40	20	1.5	14000			6.0
$832{ }^{2}$	15	$\begin{aligned} & 6.3 \\ & 12.6 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 0.8 \end{aligned}$	500	250	5.0	7.5	0.05	3.8	200	N.	78P	Class-C Amp. (Telegraphy)	500	200		-65	72	14	2.6	21000	0.18		26
													Class-C Amp. (Telephony)	425	200		- 60	52	16	2.4	14000	0.15		16
132A ${ }^{3}$	15	$\begin{array}{r} 6.3 \\ 12.6 \end{array}$	$\begin{aligned} & 1.6 \\ & 0.8 \end{aligned}$	750	250	5.0	7.5	0.05	3.8	200	N.	7BP	Class-C Amp. (Telegraphy)	750	200		-65	48	15	2.8	36500	0.19		26
													Class-C Amp. (Telephony)	600	200		-65	36	16	2.6	25000	0,16	-	17
8441	15	2.5	2.5	500	180	3.0	9.5	0.15	7.5	-	M.	5AW	Class-C Amp. (Telegraphy)	500	175		-125	25		5.0			\square	9.0
													Class-C Amp. (Telephony)	500	150		-100	20	-		-	-		4.0
865	15	7.5	2.0	750	175	3.0	8.5	0.1	8.0	15	M .	T-4C	Class-C Amp. (Telegraphy)	750	125		- 80	40		5.5		1.0		16
													Closs-C Amp. (Telephony)	500	125	-	-120	40	-	9.0	\square	2.5		10
1619	15	2.5	2.0	400	300	3.5	10.5	0.35	12.5	45	0.	19H	Class .C Amp. (Telegraphy)	400	300	\cdots	- 55	75	10.5	5.0	9505	0.36	-	19.5
													Class-C Amp. (Telephony)	325	285	-	- 50	62	7.5	2.8	5000	0.18		13
													Class-AB2 Amp. (Audio) ${ }^{\text {a }}$	400	300	0	-16.5	75/150	6.5/11.5		77^{8}	$0.4{ }^{7}$	6000	36
5516	15	6.0	0.7	600	250	5.0	8.5	0.12	6.5	80	O.	7CL	Class-C Amp. (Telegraphy)	600	250		-60	75	15	5.0		0.5		32
													Class-C Amp. (Telephony)	475	250	-	- 90	63	10	4.0	22500	0.5	-	22
													Class-AB ${ }^{\text {(Audio) }}$ '	600	250		- 25	36/140	1/24	4^{\prime}	80^{8}	0.16	10500	67
Ax. $9905:$	16	6.3	0.68	400	250	5	8.5	0.05	3.3	186	-	Fig. 34	Class-C Amplifier	400	250		- 80	80	6	3.5		0.39	-	20.8
														250	175		- 70	80	6.5	4.2	-	0.26	\cdots	16.9
254A	20	5.0	3.25	750	175	5.0	4.6	0.1	9.4	-	M.	T-4C	Class-C Amplifier	750	175	-	- 90	60					-	25
616	21	6.3	0.9	400	300	3.5	10	0.4	12	10	0.	7 AC	Class-C Amp.-Oseillator	400	300		-125	100	12	5.0		-		28
616 G							11.5	0.9	9.5		-		Class-C Amp. (Telephony)	325	250		- 70	65		9.0		0.8		11
6L6GX	21	6.3	0.9	500	300	3.5	11	1.5	7.0	-	0.	7 AC	Closs-C Amp. (Telegraphy)	500	250	-	- 50	90	9.0	2.0	-	0.25	-	30
									7.0	-	-.	7 AC	Class-C Amp. (Telephony)	325	225	-	- 45	90	9.0	3.0		0.25		20
HY6L6.	21	6.3	0.9	500	300	3.5	11	0.5	7.0	60	O.	7 AC	Class-C Amp.-Oseillator	500	250	-	- 50	90	9.0	2.0	\square	0.5		30
						3.5		0.5	7.0	60	-	IAC	Class-C Amp. (Telephońy)	405	225		- 45	90	9.0	3,0	16000	0.8	-	20
T21	21	6.3	0.9	400	300	3.5	13	0.7	12	30	M.	6A	Class-C Amp. (Telegraphy)	430	250	-	- 50	95	8.9	3.2	\cdots	0.2		25
													Class-C Amp. (Telephony)	350	205	-	-45	65	17	5.9	-	0.35		14
RK49	21	6,3	0.9	400	300	3.5	11.5	1.4	10.6	-	M.	6 A	Class-C Amp. (Telegraphy)	400	250		- 50	95	8.9	3.9	-	0.2	-	29
													Class-C Amp. (Telephony)	300	200		- 45	60	15	5.0	6700	0.34	-	12
5881	23	6.3	0.9	400	300	3	-				0.	7 AC	Class-C Amplifier						Same as	866				
													Class-C Amp. (Telegraphy)	450	250	-	- 45	100	8	2.0	12500	0.15	-	31
1614	25	6.3	0.9	450	300	3.5	10	0.4	12.5	80	0.	7 AC	Closs-C Amp. (Telephony)	375	250		- 50	93	7.0	2.0	10000	0.15	-	24.5
													Class-AB, Amo. (Audio) ${ }^{\text {c }}$	533	340	-	- 36	35/150	20°	-	72 ${ }^{\text {8 }}$	-	7200	50
RK411	25	2.5	$\begin{aligned} & 2.4 \\ & 0.9 \end{aligned}$	600	300	3.5	13	0.2	10	30	M.	5AW	Class-C Amp. (Telegraphy)	600	300	-	- 90	93	10	3.0	-	0.33		36
RK39			0.9	600	300	3.5			10		m.	SAW	Class-C Amp. (Telephony)	475	250	-	- 50	85	9.0	2.5	25330	ग, 2	-	26

Wन्वा dradiohisim
table XViI-tetrode and pentode transmitting tubes-Continued

Type \mid	Max. Piato Dissipation Wats	Cathode		Max. Plate Voltage	Max. Sereen Voll. age	Max. Screen Dissipation Watts	InterelectrodeCapacitances ($\mu \mu \mathrm{fd}$.			Max. Freq. Mc. Full Ratings	Base	Socket Connec. tions	Typical Operation	Plate Voltoge	Screen Volt. age	Suppressor Volfoge	Grid Voltage	Plate Curren Ma.	Screen Current Ma.	Grid Current Ma.	Screen Resistor Ohms	Approx. Grid Driving Power Watts	$\begin{gathered} \text { Closs B } \\ \text { P-10-P } \\ \text { Load } \\ \text { Res. } \\ \text { Ohms } \end{gathered}$	Approx. Oulpul Power Watf:
		Volts	Amp.				$\begin{gathered} \text { Grid } \\ \text { fo } \\ \text { Fil. } \end{gathered}$	$\begin{array}{c\|l} \hline \text { Grid } & P \\ \text { to } \\ \text { Plate } \end{array}$	$\begin{gathered} \hline \text { Plate } \\ \text { Io } \\ \text { Fil. } \end{gathered}$															
													Class-C Amp. (Telegraphy)	600	250		-50	85	9.0	4.0	39000	0.4		40
HY61	25	6.3	0.9	600	300	3.5	11	0.2	7.0	60	M.	SAW	Class-C Amp. (Telephony)	475	250		- 50	100	9.0	3.5	25000	0.2		27
													Class-AB2 Amp. (Audio) ${ }^{\text {a }}$	600	300		- 30	$200{ }^{7}$	10°			0.17	-	80
													Class-C Amp.-Oseillator	500	200		- 45	150	17	2.5	-	0.13	-	56
815	25	$\begin{array}{r} 12.6 \\ 6.3 \end{array}$	$\begin{aligned} & 0.8 \\ & 1.6 \end{aligned}$	500	200	4.0	13.3	0.2	8.5	125	0.	8 BY	Class-C Amp. (Telephony)	400	175	-	- 45	150	15	3.0	-	0.16		45
													Class. AB2 Amp. (Audio) ${ }^{3}$	500	125		- 152	22/150	$32{ }^{\circ}$	-	60^{3}	$0.36{ }^{\circ}$	8000	54
2548	25	7.5	3.25	750	150	5.0	11.2	0.085	5.4	-	M.	T-4C	Class-C Amplifier	750	150		-135	75				0.43		30
1624	25	7.5		600	300	3.5	11	0.25					Class-C Amp. (Telegraphy)	600	300		-60	90	10	5.0	30000	0.43	-	35
		2.5	2.0						7.5	60	M.	T.5DC	Class-C Amp. (Telephony)	500	275		- 50	75	9.0	3.3	25000	0.25		24
													Class-A82 Amp. (Audio)s	600	300		- 25	42/180	5/15	106^{8}	-	1.2	7500	72
3D×3	25	6.3	3.0	1500	200	-	-	-		250	5.	Fig. 40	Class-C Amp. (Telegraphy)	1000	200		-155	75		2.8	-	0.57		50
6146	25	6.3	1.25	750	250	3.0	13.5	0.22	9.0			7CK	Class-C Amp. (C. W. 15 Me .)	750	160		- 85	120	14.7	3.0		0.3		69
										60	M.		Class-C Amp. (C. W. 175 Mc.)	400	200		- 54	150	9	1.8		3.0		35
													Class-C Amp. (Telephany)	600	150		-85	112.5	12	3.0		0.3		52
													Class-AB? Amp. (Audio) ${ }^{6}$	750	165		- 45	35/240	0.6/21	1018		0.07	8000	130
													Class-C Amp. (Telegraphy) ${ }^{3}$	600	200		- 55	160	20	7.0	20000	0.45		72
3E22:	30	$\begin{array}{r} 12.6 \\ 6.3 \end{array}$	$\begin{aligned} & 0.8 \\ & 1.6 \end{aligned}$	560	225	6.0	14	0.22	8.5	200	0.	8 BY	Class-C Amp. (Telephony) ${ }^{3}$	560	200		- 50	160	20	6.5	18000	0.4		67
													Class-C Amp.-Oscillator	600	300		-60	90	11	5.0	-	0.5	-	40
RK66	30	6.3	1.5	600	300	3.5	12	0.25	10.5	60	M.	T-5C	Class-C Amp. (Telephony)	500			- 50	75	8.0	3.2	25000	0.23	-	25
	30			750	300	3.5	11	0.2	7.0			$\frac{5 A W}{5 A Z}$	Class-CAmp. (Talegraphy)	750	250		- 45	100	6	3.5	85000	0.22	-	50
$\begin{aligned} & 807 \\ & 807 \mathrm{w} \\ & 5933 \\ & 1625 \end{aligned}$			0.9							60	M.		Class-C Amp. (Talephony)	600	275		- 90	100	6.5	4.0	50000	0.4		42.5
		$\begin{array}{r}6.3 \\ \hline 12.6\end{array}$	0.45										Class-ABz Amp. (Audio)'	750	300		- 32	60/240	5/10	928	-	0.27	6950	120
													Class-B Amp. (Audio)"	750			0	15/240		5558	-	5.37	6650	120
$2 E 22$											M.		Class-C Amp.-Oseillator	500	250	22.5	- 60	100	16	6.0	15000	0.55	-	34
	30	6.3	1.5	750	250	10	13	0.2	8.0	-		5J	Class-C Amp.-Oseillator	750	250	22.5	-60	100	16	6.0	30000	0.55	-	53
													Suppressor-Modulated Amp.	750	250	-90	- 65	55	29	6.5	17000	0.6	\square	16.5
													Class-C Amp. (Telegraphy)	1500	375		-300	110	22	15	-	4.5	\cdots	130
$\begin{aligned} & 3023 \\ & \text { TB.35 } \end{aligned}$	35	6.3	3.0	-	-	-	6.5	0.2	1.8	250	M.	Fig. 54	Class-C Amp. (Telephony)	1000	300		-200	85	14	10		2.0		60
												Fig. 10	Class-C Amp. (Telography)	600	250		-80	200	16	2	-	0.2		80
${ }_{990}{ }_{9}^{2}$	40	12.6	0.9	600	250	7	6.7	0.08	2.1	150	N.	Fig. 10	Class-C Amp. (Telephony)	600	250		-100	200	24	8	-	1.2		85
$\begin{aligned} & \text { RK201 } \\ & \text { RK20A } \\ & \text { RK461 } \end{aligned}$	40	$\begin{array}{r} 7.5 \\ 7.5 \\ 12.6 \end{array}$	$\begin{aligned} & 3.0 \\ & 3.25 \\ & 2.5 \end{aligned}$	1250	300	15	14	0.01	12		M.	T-5C	Class-C Amp. (Tolegr aphy)	1250	300	45	- 100	92	36	11.5	ーー	1.6	-	84
													Class-C Amp. (Telephony)	1000	300	0	-100	75	30	10	23000	- 1.3		52
													Suppressor- Modulated Amp.	1250	300	-45	-100	48	44	11.5		1.5	-	21
													Grid-Modulated Amp.	1250	300	45	-142	240	7.0	1.8		1.5	\cdots	20
HY69	40	6.3	1.5	600			15.4	0.23		60	M.		Class-C Amp.-Oseillator	600	250		- 60	100	12.5	4.0	30000	- 0.25		42
					300	5.0			6.5			T-5D	Class-C Amp. (Telephony)	600	250		- 60	100	12.5	5.0	30000	0.35		42
													Modulated Doubler	600	200		-300	90	11.5	6.0	35000	- 2.8	-	27
													Class-AB2 Amp. (Audio) '	600	300		- 35	$200{ }^{7}$	18 7	$5.0{ }^{7}$	--	0.37	-	80
8291,1	40	$\begin{gathered} 6.3 \\ 12.6 \end{gathered}$	$\begin{aligned} & 2.25 \\ & 1.12 \end{aligned}$	500	225	6	14.5	0.1	7.0	200	N.	78P	Class-C Amp. (Telegraphy)	500	200		- 45	240	32	12	9300	- 0.7	-	83
													Class-C Amp. (Telephony)	425	200		-60	212	35	11	6400	O 0.8	\square	63
													Grid-Modulated Amp.	500	200		- 38	8120	10	2.0		0.5	-	23
829A1, ${ }^{\text {a }}$	340	$\begin{array}{r} 6.3 \\ 12.6 \end{array}$	$\begin{aligned} & 2.25 \\ & 1.12 \end{aligned}$	750	240	7.0	14.4	0.1	7.0	200	N.	7BP	Class.C Amp.-Oscillator	750	200		- 55	5160	30	12	18300	0.8	-	87
													Class-C Amp. (Telephony)	600	200	-	- 70	O 150	30	12	13300	0.9	-	70
													Grid-Moduloted Amp.	750	200	-	- 55	580	5.0	0	-	0.7	-	24
$\begin{aligned} & 8298^{3} \\ & 3 E 293 \end{aligned}$	40	$\begin{array}{r} 12.6 \\ 6.3 \end{array}$	$\begin{aligned} & 1.125 \\ & 2.25 \end{aligned}$	750	240		14.5	0.12	7.0	200	N.	7BP	Class-C Amp. (Grid Mod.)	500	200		- 38	120	10	2	-	0.5	-	23
						7							Class-C Amp. (Telephony)	425	200	-	-60	- 212	35	11.0	6400	0 - 0.8	-	63
						7							Closs-C Amp. (Telegraphy)	500	- 200		-45	5240	32	12.0	9300	00] 7	-	83

table XVII-TETRODE and pentode transmitting tubes-Continued

Type	Max. Plate Dissipation Wafts	Cathode		Max. Plate Volfage	Max. Screen Voliage	Max. Screen Dissipation Watts	Interelectrode Capacitancas ($\mu \mu$ (d.)			Max. Freq. Mc. Full Ratings	Base	Socke Connec. tions	Typicat Operation	Plate Volfoge	$\begin{aligned} & \text { Screen } \\ & \text { Volt- } \\ & \text { ago } \end{aligned}$		Grid Valfage	Plote Current Mo.	Screen Current Ma.	Grid Current Ma.	Screen Resisfor Ohms	Approx. Grid Driving Power WaHs	Class B P-10-P Load Res. Ohms	Approx. Output Power Watts
		Volis	Amp.					Grid 10 Plate	Plate to fil.															
HY1269	40	$\begin{array}{r} 6.3 \\ 12.6 \end{array}$	$\begin{aligned} & 3.5 \\ & 1.75 \end{aligned}$	750	300	5.0	16.0	0.25	7.5	6	M.	T-5DB	Class-C Amp.-Oscillator	750	390		-70	120	15	4	-	0.25		63
													Class-C Amp. (Teloptony)	605	250		- 70	100	12.5	5	35000	0.5		42
													Grid-Modulated Amp,	750	300		-	80		-	-			20
													Class-AB2 Amp. (Audio) ${ }^{\text {B }}$	600	300	-	- 35	$200{ }^{7}$				0.3		80
3D24	45	6.3	3.0	2000	400	10	6.5	0.2	2.4	125	1.	T-9J	Class-C Amp.-Oseillator	2000	375		-300	90	20	10	-	4.0		140
715.8	50	26/28	-	-	-									1500	375		-300	90	22	10		4.0		103
5562	45	6.3	3.0	2000	400	8	6.5	0.2	1.8	120			Class-C. Amp. (Talography)	1500	300	\cdots	-300	125	21	12	-	3.6	\square	135
HK-57	50						6.5	0.2	1.8	120	M.	Fig. 54	Class-C Amp. (Telephony)	1000	300		-200	85	14	10		3.0		135
		5	5	3000	500	25	7.29	0.05	3.13	200	N.	Fig. 64	Class-C Amp. (Telegraphy)	2000	450	+30	-145	110	2	1	-	0.15		166
													Closs-C Amp. (Telephony)	2000	450	+30	-145	88	2	1.5		0.2		135
			3.25										Suppressor-Modulated Amp.	2000	450	-190	-240	80	14	2.5	110000	0.6		90
RK47	50	10		1250	300	10	13	0.12	10	-	M.	T-5D	Closs-C Amp. (Telegraphy)	1250	300	-	- 70	138	14	7.0		1.0		120
													Class-C Amp, (Telephony)	900	300		-150 -30	120 60	17.5	6.0	-	1.4		87
312 A	50	10	2.8	1250	500	20	15.5	0.15	12.3		M.	T-6C	Class-C Amp. (Telegraphy)	1250	300	20	-30 -55	100	2.0	0.9		4.0		25
										-			Class-C Amp. (Telephony)	1000	-	40	-40	95	35	7.0	22000	1.0		95
804	50												Suppres sor-Modulated Amp.	1250		-85	- 50	50	42	5.0	22000	0.55		23
		7.5	3.0	1500	300	15	16	0.01	14.5	15	M.	1-5C	Class-C Amp. (Telegraphy)	1500	300	45	-100	100	35	7.0	34000	1.95		110
													Class-C Amp. (Telephony)	1250	250	50	- 90	75	25	6.0	50000	0.75		65
													Grid-Modulated Amp.	1500	300	45	-130	50	13.5	3.7	-	1.3		28
													Suppressor-Moduloted Amp.	1500	300	-50	-115	50	32	7.0		0.95		28
4D22	50	$\begin{aligned} & 25.2 \\ & 12.6 \end{aligned}$	0.8	750	350	14	28	0.27	13	60	N.	Fig. 50	Class-C Amp. (Telegraphy)	750	300		-100	240	26	12	-	1.5		133
														600	300	-	-100	215	30	10	-	1.25	-	100
4 D 32		6.3	3.75									Fig. 51	Class-C Amp. (Telephony)	600			-100	220	28	10	10000	1.25		100
														550	250	\square	-100	175	17	6	15000	0.6		70
305 A	60	10	3.1	1000	200	6	10.5	0.14	5.4	-	M.	T-4CE	Class-AB2 Amp, (Audio) ${ }^{\text {Col }}$	600 1000	250		-25 -200	$\frac{100 / 365}{125}$	26^{7}	70^{8}	-	$0.45{ }^{7}$	3000	125
HY67		$\begin{array}{r} 6.3 \\ 12.6 \end{array}$						0.14	5.4		M.	T-4CE	Class-C Amp. (Telophony)	800	200	\square	-270	125	-					85
	65		$\begin{aligned} & 4.5 \\ & 2.25 \end{aligned}$	1250	300	10		0.19	14.5		M.	T-SD8	Class-C Amp. (Teiegraphy)	1250	300	\cdots	- 80	175	22.5	10	-	1.5	-	152
							-			-			Class-C Amp. (Telophony)	1000	300	-	-150	145	17.5	14		2.0		101
814													Grid-Modulatad Amp.	1250	300			78				2.0		32.5
	65	10	3,25	1500	300	10	13.5	0.1	13.5	30	M.	T-5D	Class-C Amp, (Telegraphy)	1500	300	-	- 90	159	24	10	50000	1.5	-	160
													Class-C Amp. (Telephony)	$\underline{1250}$	300	-	-150	145	20	10	48000	3.2		130
4-65A		6.0	3.5	$\begin{aligned} & 3000 \\ & 2500 \\ & 3000 \\ & 3000 \end{aligned}$	$\begin{aligned} & 400 \\ & 400 \\ & 600 \\ & 600 \\ & \hline \end{aligned}$								Grid-Modulated Amp.	1500	250	-	-120	60	3.9	2.5		4.2	-	35
	65					10	8.0	0.08	2.1	160\%	N.	Fig. 48	Class-C Amp. (Telegraphy)	3000	250		- 90	115	29	10	-	1.7	-	280
													Class-C Amp. (Telephony) Class-B Linear Amo.	2500	250	-	-150	108	16	8	-	1.9	-	225
													Class-AB, Amp. (Audio) ${ }^{\text {a }}$	2500	509		-100 2	20/230	0/35	610	-	$1.8{ }^{10}$		325 '
282A	70	10	3.0	1000	250	5	12.2	0.2	6.8		M.	-4C	Class-C Amp. (Telegraphy)	1800	250		- 355	50/220	0/25	180^{8}	-	2.28	20000	270
													Class-C Amp. (Telephony)	750	150	-	-180	100		50		-	-	33
$\begin{aligned} & \text { 4E27/ } \\ & 8001 \end{aligned}$	75	5.0	7.5	4000	750	30	12	0.06	6.5	75	J.	7BM	Class-C Amp. Telegraphy)	2000	500	60	-200	150	11	6	136000	1.4		50
													Class-C Amp. (Telophony)	1800	400	60	-130	135	11	8	125000	1.7		173
													Suppressor-Modutated Amp.	2000	500	-300	-130	55	27	3.0		0.4		35

table xvil-tetrode and pentode transmitting tubes - Continued

Type	Max. Plate Dissipation Watts	Cothode		Max. Plote Voltage	Max. Screen Voli--ge	Max. Screen Dissipalion Watts	InterelectrodeCapacitances ($\mu \mu \mathrm{fd}$.)			Max. Freq. Mc. Full Ratings	8ase	Sacket Can. necfions	Typical Operation	Plate Volt--ge	Screen Volt $=$ age	Sup-pressor Voltage	Grid Voltage	Plate Current Ma.	Screen Current Ma.	Grid Current Mo.	Screen Resistor Chms	Approx. Grid Driving Power Watts	Class 8 P.to-P Load Res. Ohms	Approx. Output Power Walls
		Volts	Amp.				Grid to Fil.	Grid to Plole	$\begin{gathered} \text { Plate } \\ \text { to } \\ \text { Fil. } \end{gathered}$															
$\begin{aligned} & \text { HK257 } \\ & \text { HK2578: } \end{aligned}$	75	5.0	7.5	4000	750	25	13.8	0.04	6.7	$\begin{array}{r} 75 \\ 120 \end{array}$	J.	7BM	Class-C Amp. (Telegraphy)	2000	500	60	-200	150	11	6.0	-	1.4		230
													Class-C Amp. (Telephony)	1800	400	60	-130	135	11	8.0	\longrightarrow	1.7		178
													Suppressor-Madulated Amp.	2000	500	-300	-130	55	27	3.0	-	0.4	-	35
828	80	10	3.25	2000	750	23	13.5	0.05	14.5	30	M.	5J	Class-C Amp. (Telegraphy)	1500	400	75	-100	180	28	12	40000	2.2	-	200
													Class-C Amp. (Telephony)	1250	400	75	-140	160	28	12	30000	2.7	-	150
													Grid-Modulated Amp.	1500	400	75	-150	80	4.0	1.3	-	1.3		41
													Class-ABI Amp. (Audio) ${ }^{\text {c }}$	2000	750	60	-120	50/270	2/60	240		0	18500	385
RK28	100	10	5.0	2000	400	35	15	0.02	15		J.	$5 J$	Class-C Amp. (Telegraphy)	2000	400	45	-100	150	55	13	21000	2.0	-	210
													Class-C Amp. (Telephony)	1500	400	45	-100	135	52	13	21000	2.0	-	155
										-			Suppressor-Modulated Amp.	2000	400	-45	-100	85	65	13	-	1.8	-	60
													Grid-Modulated Amplifier	2000	400	45	-140	80	20	4.0	-	0.9	\square	75
RK48RK48A	100	10	5.0	2000	400	22	17	0.13	13		J.	T-5D	Class-C Amp. (Telegraphy)	2000	400		-100	180	40	6.5	-	1.0	-	250
										-			Class-C Amp. (Telephony)	1500	400	-	-100	148	50	6.5	22000	1.0	-	165
													Grid-Modulated Amplifier	1500	400		-145	77	10	1.5	-	1.6	-	40
50	100	10	3.25	1250	175	10	17	0.25	25	15	J.	T.38	Class-C Amp.' (Telegraphy)	1250	175	-	-150	160		35	-	10		130
													Class-C Amp. (Telephony)	1000	140		-100	125	-	40	-	10		65
													Grid-Modulated Amplifier	1250	175	-	-13	110			-		-	40
860813													Class-C Amp.-Oseillator	3000	300		-150	85	25	15		7.0		165
	100	10	3.25	3000	500	10	7.75	0.08	7.5	30	M.	T-4CB	Class-C Amp. (Tolephony)	2000	220	-	-200	85	25	38	100000	17		105
	125	10	5.0	2250	400	22	16.3	0.2	14	30	J.	58A	Class-C Amp. (Telegraphy)	2250	400	0	-155	220	40	15	46000	4.0	\square	375
													Class-C Amp. (Telephany)	2000	350	0	-175	200	40	16	41000	4.3		300
													Grid-Madulated Amplifier	2250	400	0	-110	85	2.5	-	\longrightarrow	0.35	-	75
													Class-B Amp. (Audio)'	2500	750	0	- 95	35/360	1.2/55		-	0.35	17000	650
$\begin{aligned} & 4.125 A \\ & 4021 \end{aligned}$	125	8.0	6.2	3000	400	20	10.3	0.03	3.0	120	N.	5BK	Class-C Amp. (Telegraphy)	3000	350		-150	167	30	9		2.5		375
													Class-C Amp. (Telephony)	2500	350		-210	152		9	-	3.3	-	300
													Class-AB? Amp. (Audia) ${ }^{\text {s }}$	2500	350	\square	- 43	93/260	0/6	178		1.0	22200	400
$\begin{aligned} & \text { 4E27A } \\ & 5.1258 \end{aligned}$	125	5.0	7.5	4000	750	20	10.5	0.08	4.7	75	J.	78M	Class-C Amp. (Telegraphy)	3000	500	60	-200	167	5	6		1.6	-	375
														1500	500	60	-130	200	11	8	-	1.6		215
														1000	750	0	-170	160	21	3		0.6	-	115
RK28A	125	10	5.0	2000	400	35	15	0.02	15		J.	51	Class-C Amp. (Telegraphy)	2000	400	45	-100	170	60	10		1.6		250
													Class-C Amp. (Telegraphy)	1500	400	45	-100	135	54	10	18500	1.6	-	150
													Grid-Modulated Amp.	2000	400	45	- 55	80	18	2.0	-	0.5	-	60
													Suppressar-Madulaled Amp.	2000	-	-45	-115	90	52	11.5	30000	1.5	\square	60
803	125	10	5.0	2000	600	30	17.5	0.15	29	20	J.	$5 J$	Closs-C Amp. (Telegraphy)	2000	500	40	-90	160	45	12	-	2.0	-	210
													Class-C Amp. (Telephony)	1600	400	100	-80	150	45	25	27000	5.0		155
													Suppressor-Modulated Amp.	2000	-	-110	-100	80	48	15	35000	2.5	-	53
													Grid-Modulated Amplifier	2000	600	40	- 80	80	20	4.0	-	2.0		53
$\begin{aligned} & 4 X . \\ & 150 A^{9} \end{aligned}$	150	6.0	2.0	1000	300	15	16.1	0.02	4.7	500	N.			1000	250	-	- 80	200	39	7	-	0.69		148
												T-9J	Class-C Amp. (Telegraphy)	750	250	$\underline{+}$	- 80	200	37	6.5	-	0.63	I-	110
														600	250	-	- 75	200	35	6	-	0.52		85
$\begin{aligned} & \overline{4 x-} \\ & 1506 \end{aligned}$	150	2.5	6.25	1250	300	15	16.1	0.02	4.7	165	N.	-	Closs-C Amp. (Telegraphy)	1250	250		- 90	200	20	11	-	1.2	-	195
													Closs-C Amp. (Telegraphy)	3000	400		-290	200	27	7	-	2.6	-	450
PE340/	150	5.0	7.5	4000	400	-	11.6	0.06	4.35	120	N.	5BK	Class-C Amp. (Telephony)	2500	400	-	-425	180	27	9	-	4		350
$4023{ }^{\circ}$													Class AB_{2} Audio ${ }^{\text {a }}$	2500	400	-	- 95	$284{ }^{7}$	73	-	-	4.83	19100	460

TABLE XV:I-TETRODE AND PENTODE TRANSMITTING TUBES - Continued

Type	Max. Plato Dissipotion Wafts	Cathode		Max. Plate Volt- -ge	Max. Screen Volt--ge	Max. Screen Dissipotion Watts	Interelectrade Capacitances ($\mu \mu \mathrm{fd}$.)			Max. Freq. Mc. Full Rating:	Base	Socket Con-nections	Typical Operation	Plate Valf. age	Screen Volfage	Sup-pressor Voltage	Grid Volfage	Plate Current Ma.	Screen Current Ma.	Grid Current Ma.	Screen Resistor Ohms	Approx. Grid Driving Pawer Watts	$\begin{gathered} \text { Class B } \\ \text { Pito-p } \\ \text { Lood } \\ \text { Ress. } \\ \text { Ohms } \end{gathered}$	Approx. Output Watls
		Volts	Amp.				Grid to Fil.	Grid to Plate	$\begin{gathered} \text { Plote } \\ \text { to } \\ \text { FiI. } \end{gathered}$															
AT. 340	150	5	7.0	4000	400	-	9.04	0.19	4.16	120	J.	5BK	Class-C Ama.-Oscillator	3000	400		-500	165	75			2		
RK65	215	5.0	14	3000	500	35	10,5	0.24	4.75	60	J.	T-3BC	Closs-C Amp. (Telegraphy)	3000	400		-100	240	70	24		6.0		510
													Class-C Amp. (Telephony)	2500			-150	200	70	22	30000	6.3		380
$\begin{aligned} & \text { 4.250A } \\ & 5 \mathrm{D} 22 \end{aligned}$	250	5.0	14.5	4000	600	35	12,7	0.06	4.5	75	N.	58K	Class-C Amp. (Telegraphy)	3000	500		-180	330	60	10	-	2.6		800
													Class-C Amp. (Telephony)	3000	400		-310	225	30	9		3.2		510
													Closs-AB2 (Audio) ${ }^{\text {b }}$	1500	300		- 48	100/485	0/34	192^{8}		4.71	5400	428
4-250A	250	5.0	14.5	4000	600	50	12.7	0,06	4.5	85	N.	58K	Class CC Amp. (Telegraphy)	4000	500		-250	250	22	13		4.1		750
GL.														2500	500		-100	325	70	22		3.7		562
5D24	250	5.0	14.1	4000	350	50	12.7	0.06	4.5	85	N.	5BK	Class-C Amp. (Telegraphy)	Same as 4-250A										$\begin{aligned} & \text { GL- } \\ & \text { 5E24 } \end{aligned}$
$400 \mathrm{~A} 9$	400	5,0	14.5	4000	600	35	12.5	0.12	4.7	110	N.	58k	Closs-C Teleg, or Telephony	4000	300		-170	270	22.5	10		10	-	720
861	400	11	10	3500	750	35	14.5	0.1	10.5	20	N.	T.1B	Class-C Amp. (Telegraphy)	3500	500	-	-250	300	40	40		30		700
												1.18	Closs-C Amp. (Telephony)	3000	375	-	-200	200		55	70000	35		400

1 Discontinued
3 Driode connection-screen grid tied to plate.
capacitances, however, sections, in push-pull. Interolectrode capacitances, however r_{r} are for each section.

- Torminals 3 and 6 must be connected together.
b Filamentlimited to infermittent operation.
- Values are for two tubes in push-pull.
7 Max.-signal value.

Pook grid-to-grid a.f. volts
${ }^{\text {PForced-air cooling required }}$
${ }^{10}$ Average value.
${ }^{11}$ Two tubes triade connected, G_{7} fo G_{1} through $20 \mathrm{~K} \Omega$, input to G_{1}

TABLE XVIII-KLYSTRONS

Type	Freq. Range-Mc.	Cathode		Base Connec. tions	Typical Operation	Beam Volts	$\begin{aligned} & \text { Beam } \\ & \text { Ma. } \\ & \text { (Max.) } \end{aligned}$	Beam Wafts (Max.)	Contral. Electrode Vaits	Reflector Valts	Cathode Ma.	R.F. Driving Power Watts ${ }^{6}$	Output Watts
		Volts	Amp.										
$\begin{aligned} & 2 K 25 / \\ & 723 A . B \end{aligned}$	8702-9548	6.3	0.44	Fig. 60	Reflex Oscillator	300	32	-	-	-130/-185	25	\longrightarrow	0.033
$\underline{2 K 26}$	6250.7060	6.3	0.50	Fig. 60	Reflex Oscillator	300	25			-65/-120			
2 K 28 b	1200-3750	6.3	0.65	Fig. 61	Reflex Oscillator	300]	45	-		$-65 /-120$ $-155 /-290$	30	-	0.120
2 K 33	23500-24500	6.3	0.65	Fig. 62	Reflex Oscillatar	$1800{ }^{7}$	45	-	$\frac{300}{-20 /-100}$	$-155 /-290$ $-80 /-220$	30	-	0.140
2 K34	2730-3330	6.3	1.6	Fig. 58	Oscillator-Buffer *	1900	150	450	$\frac{-20)-100}{-45}$	-80/-220	${ }^{6}$		0.04
2K35	2730-3330	6.3	1.6	Fig. 58	Cascode Amplifier *	1500	150	450	-45	-	75		10-14
2K41	2660-3310	6.3	1.3	Fig. 59	Reflex Oscillator*	1000	60	75	0 +24	--510	75	0,005	5
$2 \mathrm{K42}{ }^{3}$	3300-4200	6.3	1.3	Fig. 59	Reflex Oscillator*	1000	60	75	+24 0	-510	60	-	0.75
$2 \mathrm{~K} 43^{3}$	4200-5700	6.3	1.3	Fig. 59	Reflex Oscillater*	1000	60	75	0	-650	45	\square	0.75
$2 \mathrm{~K} 44^{3}$	5700-7500	6.3	1.3	Fig. 59	Reflex Oscillotor *	1000	60	75	0	-320	40	-	0.8
2K39 ${ }^{\text {2 }}$	7500-10300	6.3	1.3	Fig. 59	Reflex Oscillator*	1000	60	75	0	-700 -660	43	-	0.9
2K46	$\begin{aligned} & 2730-33301 \\ & 8190-10000^{2} \\ & \hline \end{aligned}$	6.3	1.3	Fig. 58	Frequency Multiplier *	1500	60	60	-90	-660	30	$0.01 / 0.07$	$\frac{0.46}{0.01-0.07}$
2K47	$\begin{gathered} 250-2801 \\ 2250-3360^{2} \end{gathered}$	6.3	1.3	Fig. 58	Frequency Multiplier *	1000	60	60	-35	-	50	3.5	0.15
2K56	3840-4460	6.3	5.0	Fig. 60	Reflex Oscillator	300	25		-	-85/-150			0.15
$3 \mathrm{~K} 21{ }^{3}$	2300-2725	6.3	1.6	Fig. 58	Oscillator-Amplifier*	2000	150	450	0	$\underline{-851-150}$	125	-3	0.090
$3 \mathrm{~K} 22{ }^{3}$	3320-4000	6.3	1.6	Fig. 58	Osciliator-Amplifier *	2000	150	450	0	-	125	1-3	10-20
$3 \mathrm{~K} 23{ }^{3}$	950-1150	6.3	1.6	Fig. 59	Reflex Oscillator*	1000	90	80	0	- -390	125 70	1-3	10-20

TABLE XVIII-KLYSTRONS-Continued

Jhe

Catalog Section

$\dot{\xi} \dot{\xi}$
In the following pages is a catalog
file of products of the principal manufacturers and the principal distributors who serve the radio field: industrial, commercial, amateur. All firms whose advertising has been accepted for this section have met The American Radio Relay League's rigid standards for established integrity; their products and engineering methods have received the League's approval.

INDEX OF ADVERTISERS CATALOG SECTION

The Radia Amateuri Handlook

Page
Allied Rodio Corporation. 95-99
American Lava Corporation 106
American Phenolic Corporation 81-83
American Radio Relay League, Inc 67-70
American Television \& Radio Co 127
Amperex Electronic Corporation 128
Ashe Radio Company, Walter 151
Astatic Corporation, The 42
Barker \& Williamson, Inc. 89-91
Belden Manufacturing Company 110
Bliley Electric Company 135
Bud Radio, Inc. 59-63
Burstein-Applebee Company 147
Cameradio Company 157
Condler System Company 119
Centralob 100,101
Chicago Transformer Company 51
Collins Radio Company 71-74
Cornell-Dubilier Electric Corp. 86, 87
Dole-Connecticut, Inc 160
Eitel-McCullough, Inc 58
Eldico of New York 92, 93
Electric Soldering Iron Co 144
Electronic Instrument Co. 130
Electrons, Inc. 143
Electro-Voice, Inc 64
Erco Radio Laboratories, Inc. 142
Federated Purchaser, Inc 154
Fort Oronge Radio Distributing Co 120, 121
Gates Rodio Company 118
General Electric Company (Commercial Equipment Div.) 65,66
General Electric Company (Tube Division) 94
Generol Radio Company 80
Hallicrafters Co., The 22-33
Hammarlund Manufacturing Co., Inc 155
Harrison Radio Corporation 141
Harvey Radio Company 112, 113
Heoth Compony, The 43-50
Henry Radio Stores. 107, 116
Hudson Radio \& Television Corporation 162
Illinois Condenser Company 137
Instructograph Company 123
Internotionol Resistonce Company 76-79
Poge
Johnson Company, E. F. 52-57
Kenyon Transformer Company 148
Knights Co., The James 111
LaPointe-Plascomold Corporation, The 163
Macmillan Company, The 150
Mallory \& Co., Inc., P. R. 129
McElroy Manufacturing Co. 104, 105
MeGraw-Hill Book Company, Inc. 156
McLaughlin, J. L. A 21
Measurements Corporation 75
Merit Transformer Corporation 114
Millen Manufacturing Co., Inc., The James, 4-4 1
National Co., Inc. 3-20
Nework Electric Company 139
Niagaro Radio Supply Corporation 149
Ohmite Manufacturing Company 133
Par-Metal Products Corporation 122
Premax Products Company 117
Precision Apparatus Co., Inc. 161
Radio Apparatus Corporation 124
Radio Corporation of America 84, B5
Radio Shock Corporation 125
Shure Brothers, Inc. 132
Shurite Meters 140
Sprague Products Company 103
Superior Instruments Company 152
Supreme, Incorporated 136
Terminol Radio Corporation. 131
Tronsvision, Ine 146
Triplett Electrical Instrument Co. 115
Turner Compony, The 126
United Transformer Company B8
Vibroplex Company, The 138
Watermon Products, Inc 108,109
Weston Loborotories 134
Wile, Eugene G. 158
Wiley \& Sons, Inc., John 153
Wincharger Corporation 159
Workshop Associates, The 102
World Radio Laboratories, Inc. 145

(Includes coils
A, B, C, D. 1.7 .30 mc)

KC OFI AESONANCE

'Without uoing cryutod fiter?

Here's National's answer to today's crowded bands! Employing 3 I.F. stages and 12 permeability-funed I.F. circuifs (4 per stage), in addition to a crystal filter, the HRO-50TI attains the highest degree of skirt selectivity ever achieved in a general communication receiver without narrowing nose selectivity! And, of course, it retains all the time-listed features of the world-famous HRO series.

COVERAGE: $50.430 \mathrm{kc} ., 480 \mathrm{kc} .35 \mathrm{mc}$. Voise, CW. NFM (with adaptor).
FEATURES: Edge-lighted, direct frequency-reading scale with one range in view at a time, 4 I,F. stages employing 12 permeability-funed circuits. Built-in, isolated heavy-duty power supply. Sensitivity of 1 mv . or better af 6 db . sig, noise. Selectivity variable from 8 kc . overall to app. 1200 cps . at

40 db . Negligale drift after warm-up. Micrometer dial for logging. Provision for crystal calibsator unit. Variable ant. trimmer. Lively S-meter. Min. tubes in frent end and high freq. osc. Osc. circuits not disabled when receiver in send position. High-fidelity push-pull audio ($\pm 2 \mathrm{db} 50-15,000 \mathrm{cps}$.) with phono jack. BFO swith separated from BFO freq. control. Illemination dimmer control. Acressory socket for Select-O-Ject.
CONTROLS: Bandswith, Oscillalor, Tane, Ant. Trimmer, Dimmer, AVC, Limiter, AF Gain, Calibratian, CWO, Phasing, Selectivity, On-Off, RF gain, AM-NFM-PHONO.
TUBE COMPMEMENT: 6BA6, 1st r.f.; GBAG, 2nd r.f.; GBEG, mixer; 6C4 h.f. oscillator; 6K7, 1st i.f.; 6SG7, 2nd i.f.; 6SG7, 3rd i.f.; 6 H'b det. \& a.v.c; 6 H6, o.n.l.; 6SD, Ist audio; 6SN7. phase splitter and S-meter amp.; 6V6GT (2) p.p. audio; 5V4G, rect.; 6D. b.f.o.; OB2, valt. reg.

SIZE: Table $193 / /^{\prime \prime}$ wide $\times 101 / /^{\prime \prime}$ high $\times 161 / 2^{\prime \prime}$ deep. Rack: $19^{\prime \prime}$ wide $\times 101 / 2^{\prime \prime}$ high $\times 17 \% / 16^{\prime \prime}$ from rear of front panel incl. $11 / 8^{n}$ handle.
ACCESSORIES: 50TS or RS (10 PM Speaker), $\$ 16.00$; 50 SC-2 (Speaker Coil Compartment), \$49.75; SOJ-3 (Select-O-Ject), $\$ 28.75$; 650 S (Vibratar Pack-6 V.), $\$ 75.00$; MRR-2 (Table Relay Rack 29" High), \$16.85; $50 \times \mathrm{CU}-2$ ($100 / 1000 \mathrm{Ke} x$ al Calibrator), $\$ 24.50$; NFM 83.50 (NBFM Adaptor), \$17.95; E and F coils (900-2050 Kc and 480.960 Kc), $\$ 16.35$ each. Other coils available cavering 50 Kc to $430 \mathrm{Kc}, 21.0$ to 21.5 mc Bandspread, $27-30 \mathrm{mc}$ Bandspread, and 25 to 35 mc .
*Slightly higher west of the Rochies.

MRO-50CI (HRO-50R1 reseiver with rack, speaker and 10 -cail compartment. Coils A, B, C, D includect.)
NOTE: AVAILABLE IN SMOOTH GRAY ONLY

every wanted feature from

2-stage RF to push-pull audio!

COVERAGE: Continuous from 540 kcs . to 31 mcs . plus 48 to 56 mcs. for 6-meter reception.
FEATURES: Two tuned R.F. stages. Voltage regulated osc. and BFO. Main tuning dial covers range in five bands. Bandspread dial calibrated for amateur $80,40,20,11-10$ and 6 -meter bands. Bandspread usable over entire range. Sixposition crystal filter. New-lype noise limiter. High fidelity push-pull audio. Accessory socket for NFM odaptor or other unit, such as crystal calibratar.
CONTROLS: CWO Switch, CWO pitch, Tone, AF Gain, Main Tuning, Bandspread, Ant. Trimmer, Bandswitch, Send-Receive, Phono-Rodio, Selectivity, Phosing, Limiter, RF Gain.

TUBE COMPLEMENT: Uses $2-65 \mathrm{G} 7$ R.F.; 165 S 7 Ist def.; 1-6J5 osc.; 2-6SG7 I.F.; 1-6H6 2nd det.; 1-6SJ7 B.f.O.; 1-6AC7 A.V.C.; 1-6H6 noise limiter; 1-6SJ7 A.F.; 1-6J5 phase inv.; 2-6V6GT aud. out.; 1-VR-ISO volt. reg.; l-SU4G rect.

The NC-183R and motching speaker with black wrinkle finish (shown in convenient, professional-looking rack). \$295.00 (with Speaker)

ACCESSORIES: NC-183TS (Table) or RS (Rack) $10^{\prime \prime} \mathrm{PM}$ Speaker, $\$ 16.00$; NFM 83-50 Narrow Band FM adaptor. \$17.95.
*Slightly bigher west af the Rockies.

COVERAGE: 560 kcs . to 35 mc . in 4 bands. Voice or CW. FEATURES: Edge-lighted direct-reading scale with amoteur, police, foreign, ship frequencies clearly marked. Sensational National Select-O-Ject built-in. Exceptional sensitivity on all bands. Lively S-meter reads $\$ 9$ to 50 mv . signal. $A V C, A N L$, jack for phono or NFM adapior, volt. reg., stabilized osc., audio essentially flat to 10,000 c.p.s.

CONTROLS: Main Tuning, Bandspread, Freq. (SOJ), Boast (SOJ), Send-Receive, Pitch, CWO-MVC-AVC-ANL, AF Gain, Tone, Trimmer, Bandswitch, RF Gain.

TUBE COMPLEMENT: 6SG7 RF amp., 6SB7-Y osc.-mixer, 6SG7 lst IF, 6SG7 2nd IF, 6H6 2nd det-AVC-ANL, 6SL7GT ptase shifter, 6SI7GT boostreject aud. amp., 6SI7GT Ist aud.-CWO, 6 V6GT aud. ontput, OD3/VR-150 volt. reg., 5Y3GT rect.

ACCESSORIES: NC-125TS Speaker, $\$$ il.00; NFM-73 (Narrow Eand FM adaptar), \$18.95.
*Slight'y higher west of the Rockies.

The Mighay midget outperforms recelvers twice the size and twice the price!

SW-54 849^{95}

COVERAGE: Entire frequency range from 540 kc . 1030 mc . in 4 bands. Voice, music or code.

FEATURES: Sensitive and selective superhet circuit, using new miniature tubes. Slide rule general coverage dial with police, foreign, amateur and ship bands clearly marked. Unıque plastic bandspread dial is adjustable to assure logging accuracy over entire range. Built-in speaker and power supply.

CONTROLS: Main funing and Bandspread, On-Off and

Volume, Receive-Standby, Bandswitch, AM-CW, Speaker, Phones.

TUBE COMPLEMENT: 12BE6, converter; 12BA6, CW osc. 1F amp,; 12AVO, 2nd det.-1st aud. - A. V. C.; 50C5, audio output; 35Z5, rectifier.

SIZE: $11^{\prime \prime}$ wide, $7^{\prime \prime}$ high, $7^{\prime \prime}$ deep.
*Slightly higher west of the Rockies,

HISS \$14200* (Including all coils) power supply, $\$ 22.43^{*}$

Here is the perfect answer to the need for compact, dependable and versatile VHF reception. Ideal for civil defense work as a fixed or mobile receiver. Can be used as a complete receiver in itself or as a VHF converter with any receiver tuning to 10.7 mcs . As converter, makes feafures of connected receiver usable on VHF. Covers entire high frequency spectrum from 27 mcs to 250 mcs in δ Bands - receives AM, FM and CW with amazing selectivity and sensitivity.

Two-gang Main Tuning Capacitor, panel-controlled Antenna Trimmer Capacitor and 6 sets of plug-in coils tune the receiver in six bands. Power furnished by separate unit. Also operates with combination of " B " and storage batteries or 6 volt vibrator-type supply. Wt. 25 lbs.

[^15]
select-i-ject $\mathbf{5 2 8 7 5}$

Set SELECT-O-JECT for REJECT, tune by eor and - presto! an annoying heterodyne or other unwanted signal practically disappears without materially affecting the wanted signal! Set SELECT-O-JECT for BOOST, tune - and presto! - a selected c.w. signal rises above background noise and interfering signals! Can also be used as audio oscillator having
over 100 to 1 frequency range with o single rotation of the tuning knob! Excellent as a code practice oscillator! Effective on any frequency from 80 c.p.s. to 9,000 c.p.s.! Easily connected to any receiver hoving 6.3 v . and filtered $\mathrm{B}+$ supply available.

exceptionally high gain

 and uniform bandwidth on all channels!Adds a stage of RF amplification to average TV set. If signal is low, but perceptible, this booster will aid materially in increasing brightness and definition.

Utilizes furret tuner for exceptionally high gain and uniform

commempial equipment

designed and built to

 your most exacting specificationsBoth the government and industry have repeatedly called on National engineers and craftsmen to design and build specialized rodionand other electronic equipment. This equipment, when produced, hos more than met the most exacting specifications and is, today, operating dependably all over the world.

If you use or need electronic equipment, why not consult National? Address inquiries to the Commercial Division.
bandwidth on all channels. Housed in smart metal cobinet finished in special wear-resistant mahogany enamel.
*Prices slightly higher west of the Rockies.

HRT (gray or black)
The HRT knob is $21 / 8^{\prime \prime}$ in dia and fits $1 / 4^{\prime \prime}$ shafts. This knob has a chrome appearance circle and combined with the HRS series shown below gives the new look to panel layouts.
HRS (gray or black)'
The HRS series knobs are a popular easy to grip knob. They are molded of high quality plastic and have $13 / 8^{\prime \prime}$ dia. chrome plated bevel skirts fit $1 / 4^{"}$ shafts availoble in the following scales:
HRS-I ON-OFF through 30°
HRS-2 5-0-5 through 180°
HRS-3 0-10 through 300°
HRS-4
Single etched line
HRS-5 0-10 through 180°
HRT and HRS knobs can be supplied in quantity in any color.
HR (gray or black)
An HRS type knob without the chrome plated skirt but with a white dot for spotting relative control settings.
HRB
Ideal for bandswitching or other applications where a switch is turned to several index positions, the new HRB lever knob has just the right feel - a bright zinc alloy die casting.

HRM

Small knurled brass knob, satin chrome finish, arrow head black filled. Two 4-40 Allen set screws used.

SB

A nickel plated brass bushing $1 / 2^{\prime \prime}$ dia. (Fits $1 / 4^{\prime \prime}$ shaft).

ODL

A locking device which clamps the rim of $O_{,}, K_{1} L$ and M Dials. Brass, nickel plated.

ODD

Vernier pinch drive for O, L, or other plain dials.
RSL (fits $1 / 4^{\prime \prime}$ shaft)
Rotor shaft lock for TMA, TMC

DP-I
Chrome-plated dial pointer
DP-2
Diamond head dial pointer

AN Vernier Mechanism

A vernier mechanism ratio 5-1
an insulated output shaft cour for $1 / 4^{\prime \prime}$ shafts. Drive Shaft
$3 / 16^{\prime \prime}$ knob.

AVD Vernier Mechanism
Similar to AN-Output shaft a ling is non insulated.
For commercial uses many v. tions available. Write for fur particulars.
R
This small dial has a $15 / 8^{\prime \prime}$ scale calibrated 0.10 in 180° increased reading with clock rotation. Black bakelite knob. $1 / 4^{\prime \prime}$ shaft.

VD-I6

National's popular dial knob. S as used on type N knob. Fits shaft.

VD-I6A

Same as above but fits 3/16" sh

HRP-P

Black bakelite knob $11 / 4^{\prime \prime}$ long $1 / 2^{\prime \prime}$ wide. Equipped with poin Especially suitable for use on w and other rotary switches on oratory equipment and the (Fits $1 / 4^{\prime \prime}$ shaft).

HRP

The type HRP knob has no poir but is otherwise the same as knob above. Recommended for calibrated or hard-tuning contr (Fits $1 / 4^{\prime \prime}$ shaft).

HRK

Black bakelite knot $23 / 8^{\prime \prime}$ dial extremely rugged. This is the k r used on National type O and t L dials.

HRT-M

This is a smaller version of the H Available in choice of gray or bl

POPULAR Natanal COMPONENTS

four-inch N and $A D$ Dials have ne divided and die stamped as respectively. The N Diol has acimal vernier; the AD Dial ems a pointer. The planetary drive a ratio of 5 to 1, and is conad within the body of the dial. 4,5 or blank scole. Fits $1 / 4^{\prime \prime}$ Specify scale.
al
vet Vernier" Dial, Type B, has a pact variable ratio 6 to \mid min... - I max. drive that is smooth trouble free. The case is black "ite. 1 or 5 scale. $4^{\prime \prime}$ dia. Fits shaft. Specify scale.
Dial
BM Dial is a smaller version of B for use where space is limiThe drive ratio is fixed. Algh small in size, the BM Dial the same smooth oction as the er units. 1 or 5 scale. $3^{\prime \prime}$ dia. $1 / 4^{\prime \prime}$ shaft. Specify scale.

Dial

original "Velvet Vernier" mechm in a metal skirted dial $3^{\prime \prime}$ in ratio 5 to 1. It is avalable $2,3,4,5$ or 6 scale and fits shaft.
ial
new P dial is the same as the except direct drive.
O. $31 / 2^{\prime \prime}$ dia., scale 2 , with knob, fits $1 / 4^{\prime \prime}$ shafts.
F-O, same as type O dial but g gray HRT knob.
Γ - N , same as above, but using :k HRT knob.

- $L_{\text {. same as }}$ O except $5^{\prime \prime}$ dia., - 2 only.
e K , same as O except less knob, plete with ODD vernier drive, - 2 only.

Type M, same as K except $5^{\prime \prime}$ dia., scale 2 only.
The dials at the right are for individual calibration: all four employ the noted 5:1 drive ratio Velvet Vernier mechanism and are of excellent quality.
MCN Dial
The MCN dial has been scaled down to lend itself ideally to mobile installations and small converters and tuners. It may also be mounted on the standard $31 / 2^{\prime \prime}$ rack panel where such mounting may be desirable. The dial provides three calibrating scales and a $0-100$ logging scale. On the rear side of the dial, the mechanism extends $1 / 4^{\prime \prime}$, below the dial frame. $23 / 4^{\prime \prime} \mathrm{H} . \times 37 / 8^{\prime \prime} \mathrm{W}$.

SCN Dial

The SCN dial provides the some dial scales as the ACN dial but in a reduced size. It is used where economy of panel-mounting space is desirable and where a smaller dial would be out of proportion with the size of the panel. 4-7/16" H x $61 / 4^{\prime \prime}$ W.

ICN Dial

The ICN dial meets those hundreds of requests from amateurs the world over for an illuminated ACN dial. Two dial lights mounted on the top corners of the dial provide efficient and even illumination on all bands. The dial window has been blonked out in semi-circular shape to prevent shadow casting. Dial scales are the same as those used on the ACN dial. $5 / 8^{\prime \prime} \mathrm{H} . \times 71 / 4^{\prime \prime}$ W.

ACN Dial

The ACN is the original of this type dial, a National design for the benefit of experimenters who "build their own" and desire direct calibration. $5^{\prime \prime} \mathrm{H} \times 71 / 4^{\prime W} \mathrm{~W}$.

0

ICN

DIAL SCALES

Seale	t
1	0
2	0
3	1
4	1
5	8
6	0

Rotation
180°
180°
180°
270°
360°
270°

Diraction of Condenser Rote ron for increase of didiresdin

Either
Counter Clockwise
Clockwise
Elockwist
Cockwise

HRT-0

Mationcal

COMPONENTS

XOR-7 (Radial)

XLA
A low-loss socket for the 6F4 and 950 series acorn tubes for frequencies as high as 600 Mc. Conventional by-pass condensers may be compactly mounted between the contact terminals and the chassis. Low contact resistance, short and direct leads and low and constant inductance are features.

TURRET SOCKET ASSEMBLIES

TSA-1, TSA-2 Designed for our 7-pin and 9-pin miniature tube sockets. Permits compact sub-assembly wiring at base of socket. Cadmium-plated brass center support has a standard length of two inches. Silver-plated brass terminal studs. Available either with holes through which leads can be drawn, or with solid studs. Center supports of varying lengths and other types of terminals can be supplied to manufacturers in quantity.
XOA-7 (mica-filled bakelite) XOR-7 (mica-filled bakelite) These high quality sockets for the 7 pin miniature tubes have silver plated beryllium copper contacts that correctly grip the tube pins close to the base of the tube to provide the short leads and low inductance so necessary in ultrahigh frequency design.
A novel feature of these new sockets is the interchangeability of the contacts, which are easily removed for replacement. This permits the use of a mixture of axial (XOA) and radial (XOR) type contacts in the same socket to obtain the shortest possible leads, or minimum size in tight places. The above sockets all mount with two 4-40 screws on $.875^{\circ}$ centers. Chassis cutout should be $3 / 4^{\prime \prime}$ dia. Shields for use with these sockets are available.
XOA-9 (mica-filled bakelite) XOR-9 (mica-filled bakelite)
These sockets are for the new 9 -pin miniature tubes. The XOR-9 (not illustrated) has radial contacts. Each has all of the features described above for the 7 -pin types and they also mount with 4-40 screws. Mounting center dimension is $1 / 8^{\prime \prime}$. the chassis cutout should be $13 / 16^{\prime \prime}$ dia.

TC SERIES MINIATURE TUBE CLAMPS
Easy to assemble - just two
pieces - a spring clip and a base of stainless steel. Base mounts in same holes, using same screws or rivets, as sockets. Easy to remove tube, simply snap off spring clip. Made to government specifications. Types available for all standard miniature tubes.

Type No.	Tube Body Length	Type Socket
TC-1	$11 / 8^{\prime \prime}$	7 -pin
TC-2	$11 / 2^{\prime \prime}$	7 -pin
TC-3	2^{11}	7 -pin
TC-4	$11 / 8^{\prime \prime}$	9 -pin
TC-5	$1-9^{\prime \prime} / 16^{\prime \prime}$	9 -pin
TC-6	$2^{\prime \prime}$	9 -pin

CIR SERIES SOCKETS

Any Type
Always a popular National component, type CIR Sockets feature low-loss steatite insulation, a contact that grips the tube prong for its entire length, and a metal ring for six position mounting.
XC.4,5, 6, 7S, 7 L and CIR-4, $5,6,7 \mathrm{~S}$ and 7 L all have $1-27 / 32^{\prime \prime}$ mounting centers. CIR-8E has slotted holes in plate but will mount on 1-27/32" center. CIR-8 and XC-8 have $11 / 2^{\prime \prime}$ mounting centers.

XC SERIES SOCKETS

XC-4, XC-5, XC-6, XC-7S, XC-7L, XC-8
National wafer sockets have exceptionally good contacts with high current capacity together with low loss steatite insulation. All types have a locating groove to make tube insertion easy. The XC-6 is ideal for use with AR-17 coils. HX-29 A low-loss wafer socket with steatite insulation for the popular 829 and 832 tubes.
JX-5I A low loss steatite wafer socket for the 813 and other tubes having the Giant 7 -pin base. (not illustrated) XM-10 A heavy duty metal shell socket for tubes having the XU 4-pin base.
XM-50 (see XM-10 for style) A heavy duty metal shell socket for tubes having the Jumbo 4-pin base ("fifty watters").
HX-100 A low loss wafer socket suitable for the type 4-125-A, 4-250-A and other tubes using the Giant 5 -pin base. Shield grounding clips are supplied which mount on the chassis with the socket mounting screws to ground the tube shield at three points. Air holes are provided in the socket to permit forced air cooling.

(0)

XC-5

XC-8

XM-10

SHAFT COUPLINGS

TX-19
A steatite insulated flexible coupling for $1 / 4^{\prime \prime}$ shafts. Conservatively rated at 5000 volts peak. Diameter 1 $3 / \mathrm{B}^{\prime \prime}$, length I'". Length and flashover voltage can be increased by turning collars outboard.

TX-II

The flexible shaft of this coupling connects shafts at angles up to 90 degrees, and eliminates misalignment problems. Fits $1 / 4^{\prime \prime}$ shafts. Length $41 / 4^{\prime \prime}$.

TX-12, Length $45 / 8^{\prime \prime}$
TX-13, Length $71 / 8^{\prime}$
These couplings use flexible shafting like the TX-II above, but are also provided with steatite insulators at each end.

TX-I, Leakage path I'
TX-2, Leakage path $21 / 2^{\prime \prime}$
Flexible couplings with glazed steatite insulation which fit $1 / 4^{\prime \prime}$ shafts.

TX-23

A deluxe insulated flexible coupling designed for coupling $1 / 4^{" \prime}$ shafts. Will handle a maximum radial misalignment of $1 / 16^{\prime \prime}$ also 2 degrees maximum angular misalignment.

TX-24

Same as TX-23, shaft size 5/32"

TX-25

Same as TX-23, non-insulated.

TX-8

A non-flexible rigid coupling with steatite insulation. I" diam. Fits $1 / 4^{\prime \prime}$ shaft.

TX- 10

A very compact insulated coupling free from backlash. Insulation is canvas bakelite. $1-1 / 16^{\prime \prime}$ diam. Fits $1 / 4^{\prime \prime}$ shaft.

TX-IOF (Not illustrated)
A new version of the TX- 10 which employs thin canvas bakelite strips for flexibility.

TX-22 (Not itlustrated)
A non-insulated coupling identical to TX-10 except of all metal construction. Makes good electrical connection between coupled shafts.

TX-9

This small insulated flexible coupling provides high electrical efficiency when used to isolate circuits. Insulation is steatite. $15 / 8^{\prime \prime}$ diam. Fits $1 / 4^{\prime \prime}$ shaft.

TX-21 (Not illustrated)
Similar to TX-10 except $13 / 16^{\prime \prime}$ long and couples $1 / 4^{\prime \prime}$ shaft to $5 / 32^{\prime \prime}$ shaft.

SAFETY GRID AND PLATE CAPS

SPP-9
Ceramic insulation. Fits 9/16" diameter.

SPP-3
Ceramic insulation. Fits $3 / 8^{\prime \prime}$ diameter. National Safety Grid and Plate Caps have a ceramic body which offers protection against accidental contact with high voltage caps on tưbes.

GRID AND PLATE GRIPS

Type 12, for 9/16' Caps
Type 24, for $3 / 8^{\prime \prime}$ Caps
Type 8, for $1 / 4^{\prime \prime}$ Caps
National Grid and Plate Grips provide a secure and positive contact with the tube cap and yet are released easily by a slight pressure on the ear.

RIGHT ANGLE DRIVES

ACD.I, ACD-2, ACD-3
These sturdy drives were developed for use with the new National AMT condensers. They are as compact as the torque requirements will allow and have nickel plated cast frames and bronze gears which operate smoothly without chatter or binding. The ACD-I has 32 pitch gears and a $1 / 4^{\prime \prime}$ dia. dial shaft and drives $1 / 4^{\prime \prime}$ shafts. ACD-2 has 24 pitch gears (for heavier servicel and $1 / 4^{\prime \prime}$ dia. shaft driving $1 / 4^{\prime \prime}$ shafts. ACD-3 is the same as ACD-2 except that it drives $3 / 8{ }^{\prime \prime}$ diameter shafts.

R-100, R-100U, R-1005, R-100ST
These RF chokes are iden. tical electrically, but differ in mounting provisions. The R-100 employs pigtail leads: the R-IOOU has piqtail leads and a removable stand-off insulator: the R-IOOS has cotter-pin luq terminals and a non-removable stand-off insulator: the R-IOOST has a 6-32 threaded stud at each end. These chokes are available in 2.5, 5 and 10 millihenry sizes and are rated at 125 milliamperes.

R. 33

The R-33 series chokes are 2-section RF chokes available in 10, 50, 100 and 750 microhenry sizes. Also available in this series is a single layer solenoid choke of I microhenry inductance. All are rated at 100 milliamperes. The chokes are wound on a $5 / 8^{\prime \prime}$ ' long form and range in diameter up to $5 / 16^{\prime \prime}$ maximum.

R-50

The R-50 series chokes are 3 and 4 -section RF chokes available in $0.5,1$, and 2.5 millihenry sizes. They are rated at 100 milliamperes. The chokes are wound on a I" long form and have a maximum diameter of $15 / 32^{\prime \prime}$.

R-50-1

A 10 millihenry choke wound on an iron core.

R-33G

The R-33G choke is a 2 section 750 microhenry RF choke hermetically sealed in glass with a current rating of 33 milliamperes. The choke body is $1^{\prime \prime}$ long by $5 / 8^{\prime \prime}$ diameter.

R-60

The R-60 choke is a high current RF choke (500 milliamperes) available in 2 and 4 microhenry sizes. The choke is $11 / 8^{\prime \prime}$ long by $5 / 10^{\prime \prime}$ diameter. specifications.

R-300, R-300U, R-300S, R-300ST

These RF chokes are similar in size to R-100 series but have higher current capacity. The R-300U is provided with a removable stand-off insulator at one end. The R-300S has a non-removable stand-off insulator and cot-ter-pin lug terminals. The R-300ST has a 6-32 threaded stud at each end. Inductance values of $0.5,1.0,2.5$ and 5.0 millihenries are available with a current rating of 300 milliamperes. R-300, R-300U, R-300S and R-300ST are identical electrically.

R-152

For use in the range between 2 and 4 Mc . Ideal for high power transmitter stages operated in the 80 meter amateur band. Inductance $4 \mathrm{~m} . \mathrm{h}$., DC resistance 10 ohms, DC current 600 ma. Coils honeycomb wound on steatite core.

R-154, R-154U

For the 20, 40 and 80 meter bands, Inductance I m.h. DC resistance 6 ohms, DC current 600 ma . Coils honeycomb wound on steatite core. The R-154U does not have the third mounting foot and the small insulator, but is otherwise the same as R-I54. See illustration.

R-175

The R-175 Choke is suitable for parallel-feed as well as series-feed in transmitters with plate supply up to 3000 volts modulated or 4000 volts unmodulated. Unlike conventional chokes, the reactance of the R-175 is high throughout the 10 and 20 meter bands as well as the 40 and 80 meter bands. Inductance $225 \mu \mathrm{~h}$, distributed capacity $0.6 \mathrm{mmf}_{\mathrm{n}}$, DC resistance 6 ohms, DC current 800 ma., voltage breakdown to base 12,500 volts.

Manufacturers: We have facilities for quantity production of RF chokes of practically any type. Send us your

R-300ST

R-152

R-154

R-154U

R-175

IFC, Transformer, IFCO, Oscillator,
Litz coils wound on a polystyrene form and ceramic insulated air-dielectric trimming condensers make these transformers inherently stable and exceptionally retentive of tuning. The $412^{\prime \prime} \times 23 /^{\prime \prime} \times 2^{\prime \prime}$ shield can has two $6-32$ spade bolts for mounting. Available for either 175 KC or $450-550$ KC. Specify frequency.
IFL FM Discriminator
IFM IF Transformer
IFN IF Transformer
IFO FM Ratio Discriminator
IFL, IFM, IFN and IFO transformers operate at 10.7 Mc . and are designed for use in FM Superheterodyne receivers. Coils are precision wound on grooved polystyrene forms and tuning is accomplished by movable iron cores. Bandwidth is not affected by tuning slug position. The transformer cans are $13 / 8^{\prime \prime}$ square and stand $31 / 8^{\prime \prime}$ above the chassis. Two 6-32 spade bolts are provided for mounting.
The IFL transformer is a 10.7 Mc. FM discriminator transformer suitable for use in conventional FM receiver discriminator circuit and is linear over a band of $\pm 100 \mathrm{Kc}$.
The IFM transformer is a 10.7 Mc. IF transformer with a 150 Kc. bandwidth at 1.5 db attenuation. Approximate stage gain of 30 is obtained with IFM Transformer and 6SG7 tube.

COILS AND COIL FORMS

AR-2 H.F. Coil
AR-5 H.F. Coil
The AR-2 and AR-5 coils are high Q permeability tuned RF coils on low loss mica-filled bakelite forms. The AR-2 coil tunes from 75 Mc . to 220 Mc . with capacities from 100 to 10 mmfd . The AR-5 coil tunes from 37 Mc . to 110 Mc . with capacities from 100 to 10 mmfd. The inductive windings supplied may be replaced by other windings as desired to modify the tuning range.

XR-50

These mica-filled bakelite coil forms may be wound as desired to provide a permeability tuned coil. The form winding length is $11 / 16^{\prime \prime}$ and the form winding diameter is $1 / 2$ inch. The iron slug is $3 / 8^{\prime \prime}$ dia. by $1 / 2^{\prime \prime}$ long. OSR regenerative receivers. FORMS ${ }^{i} \mathrm{iron}$ slug)
XR-71 (some, brass slug) 1 'i' with iron slug)
XR'.73 (some, brass slug) iron slug)
XR-61 (same, brass slug) $11 / 4 /$, with iron slug)
XR-63' (same, brass slug) May be wound as desired to proExtra lugs provided.

The IFN transformer is a 10.7 Mc. IF transformer with a 100 Kc . pass band at 1.5 db attenuation, Approximate stage gain of 30 is obtained with IFN transformer and 6SG7 tube.
The IFO transformer is a 10.7 Mc. FM discriminator transformer of the ratio type and is linear over a band of ± 100 Kc.
IFR. Low-priced quality IF transformer. $455 \mathrm{kc} .23 / \mathrm{g}^{\prime \prime}$ high x $11 / 8^{"}$ square.
IFS. Same as IFR but 1720 kc .
15 Mc. IF transformers suitable for ultra high frequency superheterodynes. They are made in two models with and without variable coupling. Approximate stage gain of 10 is obtained with IFJ or IFK Transformer and 6AB7 tube.
IFJ, with variable coupling IFK, with fixed coupling

SA:4842

A 456 kc . discriminator transformer for narrow band frequency modulation. Two slugtuned secondaries are employed and discrimination is accomplished by resonating one at approximately 10 kc . above, the other at approximately 10 kc . below the center frequency of the i.f. channel.
CD-1, 1/4 pint can
Liquid Polystyrene Cement is ideal for windings as it will not spoil the properties of the best coil form.

XR-5I same but with brass slug
A shielded oscillator coil which tunes to 100 kc . with .00041 mfd. Two separate inductances, closely coupled. Excellent for interruption-fre. quency oscillator in super-
ceramic slug-tuned coil
XR.70 (grooved for \#19 wire, with
XR-72 (not grooved, winding length
XR-60 (grooved for $\# 26$ wire, with
XR-62 (not grooved, winding length
High-grade ceramic coil forms conforming to JAN specifications. vide a permeability-tuned coil.

POPULAR

PLUG-IN BASE AND SHIELD

Coil Forms molded of R-39 mica-filled bakelite permitting them to be grooved and drilled. Coil Form diameter $\mathrm{I}^{\prime \prime}$, length $11 / 2^{\prime \prime}$.

XR-1. Four Prong

XR-2, Without Prongs

XR-3, molded of R-39 Diameter 9/16", length $3 / 4^{\prime \prime}$ without prongs.

XR-4, Four Prong

XR-5, Five Prong

XR-6, Six Prong
Molded of R-39 permitting them to be grooved and drilled. Coil Form Diameter $11 / 2^{\prime \prime}$, length $21 / 4^{\prime \prime}$. A special socket is required for the XR-6. National type XC-6C

SC, Crystal Sockets
The SC-I, SC-2, and SC-3 are crystal mounting sockets for crystal holders with mounting pins spaced $0.5000^{\prime \prime}$ $0.486^{\prime \prime}$, and $.750^{\prime \prime}$ respectively and pin diameters of $1 / 8^{\prime \prime}$ and $3 / 32^{\prime \prime}$ and $1 / 8^{\prime \prime}$ respectively. steatite insulation. Single 4.36 or 4-40 screw mounting for SC-1 and SC-2, single 6-32 screw mounting for SC-3.

SC-4 Ceramic crystal socket with clamp. Pin spacing .500'。 Pin dia. I/32".

CFA

The National chart frame is supplied with a celluloid sheet to cover the chart size $21 / 4^{\prime \prime} x$ $31 / 4^{\prime \prime}$ with sides $1 / 4^{\prime \prime}$ wide. Durable finish.

PB-10-5
5 Prong base and shield

PB-10.6
6 Prong base and shield

PB-10-A-5
5 Prong base only

PB-10-A-6
6 Prong base only

RZ Coil Shield
$13 / 8^{\prime \prime}$ square $\times 4^{\prime \prime}$ high.

RS Coil Shield $1-7 / 16^{\prime \prime} \times 17 / 8^{\prime \prime} \times 31 / 2^{10}$ high.

RO Coil Shield $2^{\prime \prime} \times 23 / 8^{\prime \prime} \times 41 / 8^{\prime \prime}$ high. National Coil Shields are formed from a single piece of pure aluminum. They are mechanically strong and have ample thickness to mount small parts on the walls, and include spade belts, for chassis mounting.

T. 78 Tube Shield

National Tube Shield type T-78 is a three-piece pure aluminum shield suitable for shielding glass tubes with ST-12 bulb, such as the $6 C 6$ and 6D6 tubes.

JS-I Jack Shield
For shielding small standard jacks mounted behind a panel, or on the ends of extension coils. Indispensable for reducing hum pickup.

XOS Tube Shields
The XOS tube shield is a twopiece shield for the miniature Button 7 and 9 pin base tubes.

The shield contains a spring which centers tube in shield and holds tube and shield firmly in place.

SHIELDS 7-pin SOCKETS
XOS-1 fit $1-5 / 16^{\prime \prime}$ tube body XOS-2 fit $11 / 2^{\prime \prime}$ tube body XOS-3 fit $2^{\prime \prime}$ tube body

SHIELDS 9-Pin SOCKETS

XOS-4 fit 1-5/16" body XOS-5 fit $11 / 2^{\prime \prime}$ tube body XOS-6 fit $2^{\prime \prime}$ tube body

FXT Fixed tuned exciter tank similar in general construction to National I.F. transformers, this unit has two 25 mmf ., 2000 volt air condensers and an unwound XR-2 Coil form.

FXT (Without plug-in base)
FXTB-5 (With 5 prong base)
FXTB-6 (With 6 prong base)
Paint (not illustrated)
CP-I, dark gray
CP-2, black
A high quality air-drying paint that may be applied with a brush.

CP-3, light gray, for spraying and baking.

POPULAR

TYPE TMS TRANSMITTING CONDENSERS

s is a condenser designed for transmitter use in low power stages. It is compact, rigid, and dependable. Provision has an made for mounting either on the panel, on the chassis, or on two stand-off insulators. Insulation is steatite. Voltage ratis listed are conservative.

Capaciły	Minimum Capacity	Length	Air Gap	Peak Voltage	No. of Plates	Catalog Symbol
SINGLE STATOR MODELS						
$\begin{aligned} & 100 \mathrm{Mmf} . \\ & 150 \\ & 250 \\ & 300 \\ & 35 \\ & 50 \end{aligned}$	$\begin{gathered} 9.5 \\ 11 \\ 13.5 \\ 15 \\ 8 \\ 11 \end{gathered}$	$\begin{aligned} & 3^{\prime \prime \prime} \\ & 3^{\prime \prime} \end{aligned}$	$\begin{aligned} & .026^{\prime \prime} \\ & .02 b^{\prime \prime} \\ & .026^{\prime \prime} \\ & .026^{\prime \prime} \\ & .065^{\prime \prime} \\ & .065^{\prime \prime} \end{aligned}$	1000 v . 1000 v . 1000 v . 1000 v . 2000 v . 2000v.	$\begin{array}{r} 9 \\ 14 \\ 22 \\ 27 \\ 7 \\ 11 \end{array}$	TMS-100 TMS-150 TMS-250 TMS-300 TMSA-35 TMSA-50
DOUBLE STATOR MODELS						
$\begin{aligned} & 50-50 \mathrm{Mmf} . \\ & 100-100 \\ & 125-125 \\ & 50-50 \end{aligned}$	$\begin{gathered} 6.6 \\ 7.7 \\ 8.8 \\ 10.5-10.5 \end{gathered}$	$\begin{aligned} & 3^{\prime \prime \prime} \\ & 3^{\prime \prime} \\ & 3^{\prime \prime} \\ & 3^{\prime \prime} \end{aligned}$	$\begin{aligned} & .026^{\prime \prime} \\ & .026^{\prime \prime} \\ & .026^{\prime \prime} \\ & .065^{\prime \prime} \end{aligned}$	$\begin{aligned} & 1000 \mathrm{v} \text {. } \\ & 1000 \mathrm{v} \\ & 1000 \mathrm{v} \\ & 2000 \mathrm{v} . \end{aligned}$	$\begin{gathered} 5-5 \\ 9.9 \\ 11-11 \\ 11-11 \end{gathered}$	TMS-50D TMS-100D TMS-125D TMSA-50D

TYPE TMK TRANSMITTING CONDENSERS

is is a new condenser for exciters and low power transmitters. Special provision has been made for mounting AR-I6 coils a swivel plug-in mount on either the top or rear of the condenser. For stand-off or panal mounting-steatite insulation.

Capacity	Minimum Capacily	Length	Air Gap	Peak Voltage	No, of Plates	Catalog Symbol
SINGLE STATOR MODELS						
35 Mmf. 50 75 100 150 200 250	$\begin{aligned} & 7.5 \\ & 8 \\ & 9 \\ & 10 \\ & 10.5 \\ & 11.5 \\ & 11.5 \end{aligned}$		$\begin{aligned} & .047^{\prime \prime} \\ & .047^{\prime \prime} \\ & .047^{\prime \prime} \\ & .047^{\prime \prime} \\ & .047^{\prime \prime} \\ & .047^{\prime \prime} \\ & .047^{\prime \prime} \end{aligned}$	1500 v . 1500 v . 1500 v . 1500 v . 1500 v . 1500 v .	$\begin{array}{r} 7 \\ 9 \\ 13 \\ 17 \\ 25 \\ 33 \\ 41 \end{array}$	TMK-35 TMK-50 TMK-75 TMK-100 TMK-150 TMK-200 TMK-250
DOUBLE STATOR MODELS						
$\begin{aligned} & 35-35 \mathrm{Mmf} \\ & 50-50 \\ & 100-100 \end{aligned}$	$\begin{gathered} 7.5-7.5 \\ 8-8 \\ 10-10 \end{gathered}$	$\begin{aligned} & 3^{\prime \prime} \\ & 35 / 8^{\prime \prime} \\ & 414^{\prime \prime} \end{aligned}$	$\begin{aligned} & .047^{\prime \prime} \\ & .047^{\prime \prime} \\ & .047^{\prime \prime} \end{aligned}$	$\begin{aligned} & 1500 \mathrm{v} . \\ & 1500 \mathrm{v} \\ & 1500 \mathrm{v} . \end{aligned}$	$\begin{gathered} 7-7 \\ 9-9 \\ 17-17 \end{gathered}$	TMK-35D TMK-50D TMK-100D
Swivel Mounting Hardware for AR 16 Coils						SMH

TYPE TMH TRANSMITTING CONDENSERS

, condenser that features very compact construction. Excellent power factor, and aluminum plates $.0400^{\prime \prime}$ thick with rolished edges. It mounts on the panel or on removable stand-off insulators. Steatite insulators have long leakage path.

Capacity	Minimum Capacity	Length	Air Gap	Peak Voltage	No. of Plates	Catalog Symbol
SINGLE STATOR MODELS						
$\begin{aligned} & 50 \mathrm{Mmf}, \\ & 75 \\ & 100 \\ & 150 \\ & 35 \end{aligned}$	$\begin{aligned} & 9 \\ & 11 \\ & 19.5 \\ & 18 \\ & 11 \end{aligned}$	$\begin{aligned} & 384^{\prime \prime \prime} \\ & 3 \%^{\prime \prime} \\ & 51 / 8^{\prime \prime} \\ & 61 \%^{\prime \prime} \\ & 51 / 8^{\prime \prime} \end{aligned}$	$.085^{\prime \prime}$ $.085^{\prime \prime}$ $.085^{\prime \prime}$ $.085^{\prime \prime}$ $.180^{\prime \prime}$	$\begin{aligned} & 3500 \mathrm{v} . \\ & 3500 \mathrm{v} . \\ & 3500 \mathrm{v} \text {. } \\ & 3500 \mathrm{v} \\ & 6500 \mathrm{v} . \end{aligned}$	15 19 25 37 17	TMH-50 TMH-75 TMH-100 TMH-1 50 TMH-35A
DOUBLE STATOR MODELS						
$\begin{aligned} & 35-35 \mathrm{Mmf} . \\ & 50-50 \\ & 75-75 \end{aligned}$	$\begin{gathered} 6-6 \\ 8-8 \\ 11-11 \end{gathered}$	$\begin{aligned} & 38 "^{\prime \prime} \\ & 518^{\prime \prime} \\ & 6 \frac{1}{2 \prime \prime} \end{aligned}$	$\begin{aligned} & .085^{\prime \prime} \\ & .085^{\prime \prime} \\ & .085^{\prime \prime} \end{aligned}$	3500 v. 3500 v. 3500 v .	$\begin{gathered} 9-9 \\ 13-13 \\ 19-19 \end{gathered}$	TMH-35D TMH-50D TMH-750

TYPE TMC TRANSMITTING CONDENSERS

4 condenser designed for use in the power stages of transmitters where peak voltages do not exceed 3000 volts. The frame is extremely rigid and arranged for mounting on panel, chassis or stand-off insulators. The plates are aluminum with buffed adges. Insulation is steatite. The stator in the split stator models is supported at both ends.

Capacity	Minimum Capacity	Length	Alr Gap	Peak Voltage	No, of Plates	Catalog Symbol
SINGLE STATOR MODELS						
$\begin{aligned} & 50 \mathrm{Mmf} \text {. } \\ & 100 \\ & 150 \\ & 250 \\ & 300 \end{aligned}$	$\begin{aligned} & 10 \\ & 13 \\ & 17 \\ & 23 \\ & 25 \end{aligned}$	$\begin{aligned} & 3^{\prime \prime} \\ & 312^{\prime \prime} \\ & 45 /{ }^{\prime \prime} \\ & 6^{\prime \prime} \\ & 6 \% 4^{\prime \prime} \end{aligned}$	$\begin{aligned} & .077^{\prime \prime \prime} \\ & .077^{\prime \prime} \\ & .077^{\prime \prime} \\ & .077^{\prime \prime} \\ & .077^{\prime \prime} \end{aligned}$	$\begin{aligned} & 3000 \mathrm{v} . \\ & 3000 \mathrm{v} . \\ & 3000 \mathrm{v} . \\ & 3000 \mathrm{v} . \\ & 3000 \mathrm{v} . \end{aligned}$	7 13 21 32 39	TMC-50 TMC-100 TMC-1 50 TMC-250 TMC-300
DOUBLE STATOR MODELS						
$\begin{aligned} & 50-50 \mathrm{Mmf}, \\ & 100-100 \\ & 200-200 \end{aligned}$	$\begin{gathered} 9-9 \\ 11-11 \\ 18.5-18.5 \end{gathered}$	$\begin{aligned} & 488^{\prime \prime} \\ & 68_{1}^{\prime \prime} \\ & 914^{\prime \prime} \end{aligned}$	$\begin{aligned} & .077^{\prime \prime} \\ & .077^{\prime \prime} \\ & .077^{\prime \prime} \end{aligned}$	3000 v. 3000 v 3000 v .	$\begin{gathered} 7-7 \\ 13-13 \\ 25-25 \end{gathered}$	TMC-50D TMC-100D TMC-200D

TYPE AMT

A larger and sturdier model of the TMK condenser. The frame is extremely rigid, with mounting feet a part of the end plates. Heavy steatite insulation.
The solid aluminum tie bar across the top of the condenser acts as a mounting for AR-18 series coils in the double stator models.
The double stator models are available in either standard end drive (D series) or center-drive (DG series) with $1 / 4^{\prime \prime}$ dia. shaft extension.

TYPE TMA
This is a larger model of the popular TMC. The frame is extremely rigid and arranged for mounting on panel, chassis or sta off insulators. The plates are of heavy aluminum with rounded and buffed edges. Insulation is steatite located outside of concentrated field.

Maximum Capacity	Minimum Capacity	Length	Air Gap	Peak Voltage	No. of Plates	Catalos Symbol
SINGLE STATOR MODELS						
$\begin{gathered} 50 \mathrm{Mmf} \\ 100 \end{gathered}$	$\begin{aligned} & 13 \\ & 20 \end{aligned}$	$\begin{aligned} & 4^{3} 3^{\prime \prime} \\ & 63_{4}^{\prime \prime} \end{aligned}$	$\begin{aligned} & 177^{\prime \prime} \\ & .177^{\prime \prime} \end{aligned}$	$\begin{aligned} & 6000 \mathrm{v} . \\ & 6000 \mathrm{v} . \end{aligned}$	$\begin{array}{r} 9 \\ 17 \end{array}$	AMT. 50 AMT-100
300 50 100 150 930 100 150 50 100	$\begin{array}{r} 19.5 \\ 15 \\ 19.5 \\ 22.5 \\ 33 \\ 30 \\ 40.5 \\ 91 \\ 37.5 \end{array}$		$\begin{aligned} & .077^{\prime \prime} \\ & .171^{\prime \prime} \\ & .171^{\prime \prime} \\ & .171^{\prime \prime} \\ & .1765^{\prime \prime} \\ & .265^{\prime \prime} \\ & .359^{\prime \prime} \\ & .359^{\prime \prime} \end{aligned}$	$\begin{gathered} 3000 \mathrm{v} . \\ 6000 \mathrm{v} . \\ 6000 \mathrm{v} \\ 6000 \mathrm{v} . \\ 6000 \mathrm{v} \\ 9000 \mathrm{v} \\ 9000 \mathrm{v} \\ 12,000 \\ 12,000 \mathrm{v} . \end{gathered}$	$\begin{array}{r} 23 \\ 7 \\ 15 \\ 21 \\ 33 \\ 23 \\ 33 \\ 13 \\ 25 \end{array}$	TMA-300 TMA. 50 A TMA-100A TMA-150A TMA-230A TMA-100B TMA-150B TMA.50C TMA-100C
$\begin{array}{r} 75 \\ 150 \\ 100 \\ 50 \\ 245 \\ 150 \\ 100 \\ 75 \\ 500 \\ 350 \\ 250 \end{array}$	$\begin{array}{r} 25 \\ 60 \\ 45 \\ 92 \\ 54 \\ 45 \\ 32 \\ 23.5 \\ 55 \\ 45 \\ 35 \end{array}$		$\begin{aligned} & \hline .719^{\prime \prime} \\ & .469^{\circ} \\ & .469^{\circ} \\ & .469^{\circ} \\ & .344^{\prime \prime} \\ & .344^{\prime \prime} \\ & .344^{\prime \prime} \\ & .344^{\circ} \\ & .819^{\prime \prime} \\ & .219^{\circ} \end{aligned}$	$\begin{aligned} & 20,000 \mathrm{v} . \\ & 15,000 \\ & 15,000 \mathrm{v} . \\ & 15,000 \mathrm{v} . \\ & 10,000 \\ & 10,000 \mathrm{v} . \\ & 10,000 \mathrm{v} . \\ & 10,000 \\ & 7,500 \\ & 7, \\ & 7,500 \mathrm{v} . \\ & 7.500 \mathrm{v} . \end{aligned}$	$\begin{array}{r} 17 \\ 27 \\ 19 \\ 9 \\ 35 \\ 21 \\ 15 \\ 11 \\ 49 \\ 33 \\ 25 \end{array}$	TML.75E TML-150D TML-100D TML-50D TML-245B TML-150B TML-100B TML-75B TML-500A TML-350A TML-950A
DOUBLE STATOR MODELS D-End drive DG-Center drive						
$\begin{gathered} 50-50 \\ 100-100 \\ 50-50 \\ 100-100 \\ \hline \end{gathered}$	$\begin{aligned} & 13-13 \\ & 20-20 \\ & 13-13 \\ & 20-20 \end{aligned}$	$\begin{array}{r} 93 / 8^{\circ} \\ 13 \mathrm{y}, \\ 93, \\ 13 \mathrm{3} / \mathrm{m}_{8}, \end{array}$	$\begin{aligned} & .177^{\prime \prime} \\ & .177^{\prime} \\ & .177^{\prime \prime} \\ & .177^{\prime} \end{aligned}$	$\begin{aligned} & 6000 \mathrm{v} . \\ & 6000 \mathrm{v} \\ & 6000 \mathrm{v} \\ & 6000 \mathrm{v} . \end{aligned}$	$\begin{aligned} & 18 \\ & 34 \\ & 18 \\ & 34 \end{aligned}$	AMT-50D AMT-100D AMT-50DG AMT-100DG
$\begin{gathered} 200-200 \\ 180-180 \\ 50-50 \\ 100-100 \\ 60-60 \\ 40-40 \end{gathered}$	$\begin{gathered} 15-15 \\ 10-10 \\ 12.5-12.5 \\ 17-17 \\ 19.5-19.5 \\ 18-18 \\ \hline \end{gathered}$		$\begin{aligned} & .077^{\prime \prime} \\ & .140^{\prime \prime} \\ & .155^{\prime \prime} \\ & .155^{\prime \prime} \\ & .949^{\prime \prime} \end{aligned}$	$\begin{aligned} & 3000 \mathrm{v} \\ & 4000 \mathrm{v} . \\ & 6000 \mathrm{v} \\ & 6000 \\ & 9000 \mathrm{v} . \\ & 12,000 \mathrm{v} . \end{aligned}$	$\begin{gathered} 16-16 \\ 24-94 \\ 8-8 \\ 14-14 \\ 15-15 \\ 11-11 \end{gathered}$	TMA-200D TMA-180D TMA-50DA TMA-100DA TMA-60DB TMA-40DC
$\begin{gathered} 30-30 \\ 60-60 \\ 100-100 \\ 60-60 \\ 200-200 \\ 100-100 \end{gathered}$	$\begin{aligned} & 12-12 \\ & 26-26 \\ & 27-27 \\ & 20-20 \\ & 30-30 \\ & 17-17 \end{aligned}$		$\begin{aligned} & .719^{\prime \prime} \\ & .469^{\prime \prime} \\ & .344^{\prime} \\ & .314^{\prime} \\ & .219^{\prime \prime} \end{aligned}$	$\begin{array}{r} 20,000 \mathrm{v} . \\ 15,000 \mathrm{v} . \\ 10,000 \mathrm{v} \\ 10,000 \mathrm{v} . \\ 7,500 \mathrm{v} \\ 7,500 \mathrm{v} . \end{array}$	$\begin{gathered} 7-7 \\ 11-11 \\ 15-15 \\ 9-9 \\ 21-21 \\ 11-11 \end{gathered}$	TML-30DE TML-60DD TML-100DB TML-60DB TML-200DA TML-100DA

TYPE LMT

A heavy duty transmitting condenser that completely eliminates troublesome closed loops, vastly simplifying the proble of unwanted harmonics. The rotor shaft is completely insulated from the end plates. Long leakage path (higher safety factor Plates and parts are extra heavy with highly polished rounded edges to prevent flash-over. Adjustable stator plate mountir and end bearings. Available in single-stator, double-stator, or double-stator right angle center drive models. Same capaciti and prices as National TML Condenser.

TYPE TML
is a heavy duty job throughout. The frame structure (rugged aluminum castings with dural tie bars) and precision bearings assure permanent rotor alignment. All plates are extra thick with rounded and polished edges. This, plus specially treated steatite insulators and a husky self-cleaning rotor contact, provides high flashover, current and voltage ratings.

POPULAR

MINIATURE

CONDENSERS:

Type PS variable condensers are compact silver plated units of soldered construction for use as semi-fixed bandsets or padders. Base is steatite - bearing is "snug" but smooth. PSR models are screw-driver adjust type; PSE have $1 / 4^{\prime \prime}$ diameter shafts both ends; PSL are similar to PSR but include rotor shaft lock.
Type M-30
The M-30 is a tiny ($13 / 16^{\prime \prime}$ $\left.\times 9 / 16^{\prime \prime} \times 1 / 2^{\prime \prime}\right)$ mica trimmer - 30 mmf . max. - steatite base.
Type W-75, 75 mmf .
Type W-100, 100 mmf .
Small air-dielectric padding condensers having a very low temperature coefficient. They are mounted in $11 / 4^{\prime \prime}$ diameter aluminum shields and have $1 / 4^{\prime \prime}$ hex heads for socket-wrench adjustment.

The UM condensers are lowloss, aluminum plate staked construction miniature variables designed for UHF converters, VFOs and the like minimum capacity is exceptionally low. The UMs can be mounted in PB-10 or RO shield cans and have $1 / 4^{\prime \prime}$ dia, shafts front and rear for ganging (see pages 21, 23 and 24 for shield cans and couplings). Plates: straight-line-cap., 180° rotation. Dimensions: Base $1^{\prime \prime} \times 2 \frac{1}{4} 4^{\prime \prime}$, mtg , holes on $5 / 8^{\prime \prime} \times 1-23 / 32^{\prime \prime}$ centers, 2-5/16" max. length.
The UMB-25 and UMB-50 are differential (balanced stator) models. UM-IOD and UMA- 25 are double-spaced and the latter is bolted construction for experimental capacity reduction. Hardware for panel or chassis mounting is supplied with all UM condensers.

Capacity	Catalog Symbol		
$\begin{aligned} & 25 \mathrm{mmf} \text {. } \\ & 50 \\ & 75 \\ & 100 \end{aligned}$	PSR-25 PSR-50 PSR-75 PSR-100	PSE-25 PSE-75 PSE. 100	$\begin{aligned} & \text { PSL-25 } \\ & \text { PSL-50 } \\ & \text { PSL-75 } \\ & \text { PSL- } 100 \end{aligned}$

Capacity	Minimum Capacity	No. of Plates	Air Gap	Catalog Symbol
$\begin{aligned} & 15 \mathrm{mmf} . \\ & 35 \\ & 50 \\ & 75 \\ & 100 \\ & 10 \\ & 25 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.5 \\ & 3 \\ & 3.5 \\ & 4.5 \\ & 1 \\ & 3.4 \end{aligned}$	$\begin{gathered} 6 \\ 12 \\ 16 \\ 22 \\ 28 \\ 8 \\ 14 \end{gathered}$	$\begin{aligned} & .017^{\prime \prime \prime} \\ & .017^{\prime \prime} \\ & .017^{\prime \prime} \\ & .017^{\prime \prime} \\ & .042^{\prime \prime} \\ & .042^{\prime \prime} \end{aligned}$	UM-15 UM. 35 UM 50 UM-100 UM-10D UMA- 25
BALANCED STATOR MODEL				
25 50	2	$\begin{aligned} & 4-4-4 \\ & 8-8-8 \end{aligned}$	$.017^{\circ \prime}$	$\begin{aligned} & \text { UMB-25 } \\ & \text { UMB-50 } \end{aligned}$

NEUTRALIZING CONDENSERS:

NC-600U
With standoff insulator NC. 600

Without insulator

For neutralizing low power beam tubes requiring from .5 to 4 mmf , and 1500 max. total volts such as the 6L6. The NC-600U is supplied with a GS-10 standoff insulator screwed on one end, which may be removed for pigtail mounting.

"TU BY'"
 CONDENSERS

Tubular condensers providing short r.f. path between plate and cathode for tubes having the plate connection at the top. Design reduces harmonics and helps eliminate
parasitics. 3,000 volts or 1,500 volts. 15 mmfd .

STN

The Type STN has a maximum capacity of 18 mmf . (3000 V), making it suitable for such tubes as the 809. It is supplied with two standoff insulators.

NC-800A

The NC-800A disk-type neutralizing condenser is suitable for the T40, 35TG, 808 and similar tubes. It is equipped with a clamp for locking. The chart below gives capacity and air gap for different settings.
NC. 75
For 812, 75TH and similar tubes.
NC- 150
For RK36, I00TH, HK354, 250TH, etc.

PRECISION CONDENSERS

Originally developed for the famous HRO and NC. 100 receivers, National PW and NPW condensers and drive units are well known to professional and amateur radio men throughout the world. Sturdily constructed of the finest materials and carefully adjusted by skilled hands, they have become "standard specifications" for applications requiring smooth, precise control and high re-set accuracy.
The Micrometer Dial reads direct to one part in 500. Division lines are approximately $1 / 4^{\prime \prime}$ apart. The drive, at the mid-point of the rotor, is through an enclosed preloaded worm gear with 20 to I ratio. Each rotor is individually insulated from the frame, and each has its own individual rotor contact. Stator insulation is steatite. Plate shape is straight-line frequency when the frequency range is $2: 1$.
PW Condensers are available in 1, 2, 3 or 4 sections, in either 160 or 225 mmf per section. Larger capacities cannot be supplied.
PW-IR Single section right
PW-IL Single section left
PW-2R Double section right
PW-2L Double section left
PW-2S Single section each side
PW-3R Double section right; single left
PW-3L Double section left; single right
PW-4 Double section each side
NPW-3 Three sections, each 225 mmf .
Similar to PW models, except that rotor shaft is perpendicular to panel.
NPW-O
Uses parts similar to the NPW condenser, Drive shaft perpendicular to panel. One TX-9 coupling supplied.
PW-O
Uses parts similar to the PW condenser. Drive shaft parallel to panel. Two TX-9 couplings supplied.

PW-D

The Micrometer Dial used on the condensers and drives above is available separately. It revolves ten times in covering t complete range and as there is no gear reduction unit furnished, the driven :haft will revolve ten times, also. The PW dial fits a shaft $5 / 16^{\prime \prime}$ in diameter.

MULTI-BAND TANK ASSEMBLIES

The unique MB-150 Multi-Band Tank tunes all amateur bands from 80 through 10 meters with 180° rotation of the shaft; \dagger coils are never changed. The unit is built around a circuit which tunes to two harmonically unrelated frequencies at the sar time. Thus, it becomes possible to cover a wide frequency range and yet maintain a reasonably constant L / C ratio. $3^{\prime \prime}$ wi $\times 81 / 4^{\prime \prime}$ high (including the GS-10 standoffs) $\times 9^{\prime \prime}$ long overall including the $1 / 4^{\prime \prime}$ dia. shaft and output terminals.

MB-40L

Features of the MB-150:
(1) For use as the all-band plate tank in push-pull or single-ended stages running up to 150 -watts input (1500 volts peak). It is ideal for a pair of 807 s or 809 s or a single 829B.
(2) Separate link coupling coil has special clips which adjust to match impedances up to 600 ohms directly. Output couples into a higher powered amplifier, an antenna or an antenna tuning network.
(3) Fast band changing is accomplished without handling coils, thus removing one of the danger points in the amateur station.

MB 40L LOW-POWER MULTI-BAND TANK

Same principle as the famous MB-I50. Logical application as grid circuit for tubes having MB-150 in plate circuit. Will handle 40 watts input if link kept loaded

MB-I50

POPULAR

TYPE ST (180° Rotation)

 STRAIGHT-LINE WAVELENGTHST Type condenser has Straight-Line Wovelength plates. All double. ing models have the front bearing insulated to prevent noise. On special r o shafe extension at each end is ovailable, for sanging. On doubleing single shaft models, the rotor contact is through a constont impedance iil Steatite insulation.
TE - Type SS Condensers, having straight-line capacity plates but rwise similar to the Type ST, are available. Capacities and Prices same pe ST.

Capacity	Minimum Capacity	No. of Plates	$\underset{\text { Gap }}{\text { Air }}$	Length	Catalog Symbol
SINGLE EEARING MODELS					
$\begin{aligned} & 15 \mathrm{Mmf} \text {. } \\ & 95 \\ & 50 \end{aligned}$	3 Mmf, 3.25 3.5	3 4 7	. $018^{\prime \prime}$		$\begin{aligned} & \text { STHS- } 15 \\ & \text { STHS- } 25 \\ & \text { STHS- } 50 \end{aligned}$
SPLIT STATOR DOU日LE BEARING MODELS					
$\begin{gathered} 50-50 \\ 100-100 \end{gathered}$	$\begin{gathered} 5-5 \\ 5.5-5.5 \end{gathered}$	$\begin{aligned} & 11-11 \\ & 14-14 \end{aligned}$	$\begin{aligned} & .020^{\prime \prime} \\ & .018^{\prime \prime} \end{aligned}$	$\begin{aligned} & 93 / 4 \prime \prime \prime \\ & 2 \frac{1}{4}=1 \end{aligned}$	$\begin{array}{r} \text { STD. } 50 \\ \text { STHD-100 } \end{array}$
DOUBLE BEARING MODELS					
$\begin{aligned} & 35 \mathrm{MmF} . \\ & 50 \\ & 75 \\ & 100 \\ & 140 \end{aligned}$	$\begin{aligned} & 6 \mathrm{Mmf} . \\ & 7 \\ & 8 \\ & 9 \\ & 10 \end{aligned}$	$\begin{array}{r} 8 \\ 11 \\ 15 \\ 90 \\ 97 \end{array}$	$\begin{aligned} & .096^{\prime \prime} \\ & .096^{\prime \prime} \\ & .096^{\prime \prime} \\ & .096^{\prime \prime} \\ & .096^{\prime \prime} \end{aligned}$		$\begin{aligned} & \text { ST. } 35 \\ & \text { ST. } 50 \\ & \text { ST. } 75 \\ & \text { ST. } 100 \\ & \text { ST- } 140 \end{aligned}$
$\begin{aligned} & 150 \\ & 200 \\ & 250 \\ & 300 \\ & 335 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 19.0 \\ & 13.5 \\ & 15.0 \\ & 17.0 \end{aligned}$	$\begin{aligned} & 99 \\ & 97 \\ & 39 \\ & 39 \\ & 43 \end{aligned}$	$\begin{aligned} & .098^{\prime \prime} \\ & .018^{\prime \prime} \\ & .018^{\prime \prime} \\ & .018^{\prime \prime} \\ & .018^{\prime \prime} \end{aligned}$	$\begin{aligned} & 98 i^{\prime \prime} \\ & 91 / 1^{\prime \prime} \\ & 98 "^{\prime \prime} \\ & 9 \% "^{\prime \prime} \\ & 9 \% "^{\prime \prime} \end{aligned}$	$\begin{array}{r} \text { ST-150 } \\ \text { STH-200 } \\ \text { STH-250 } \\ \text { STH-300 } \\ \text { STH-335 } \end{array}$

TYPE SE (270° Rotation) STRAIGHT-LINE FREQUENCY
DE SE - All models have two rotor bearings, the front bearing being ilated to prevent noise. A shaft extension at each end, for ganging, is ilable on special order. On models with single shaft extension, the rotor tact is through a constant impedance pigtail. The SEU models (illustrated) suitable for high vol tages as their plates are thick polished aluminum with nded edges. Other SE condensers do not have polished edges on the bes. Steatite insulation.

15 Mmf. 20 25	$\begin{aligned} & 7 \mathrm{MmF} . \\ & 7.5 \end{aligned}$ 8	6 7 9	$\begin{aligned} & .055^{\prime \prime} \\ & .055^{\prime \prime} \\ & .055^{\prime \prime} \end{aligned}$	$\begin{aligned} & 21 / 4^{\prime \prime} \\ & 214^{\prime \prime} \\ & 21 / 4 \prime \prime \end{aligned}$	$\begin{aligned} & \text { SEU. } 15 \\ & \text { SEU. } 20 \\ & \text { SEU. } 25 \end{aligned}$
50	9	11	.026"	21/4"	SE. 50
75	10	15	.026"	211"'"	SE- 75
100	11.5	20	.026"	91""'	SE-100
150	13	29	.026"	23"	SE-150
200	12	97	.018 ${ }^{\prime \prime}$	21/4'	SEH-900
950	14	32	.018 ${ }^{\prime \prime}$	23/"	SEH-250
300	16	39	. $018^{\prime \prime}$	28"'	SEF-300
335	17	43	.018 ${ }^{\prime \prime}$	23/4"	SEF-3-335

TYPE EMC (180° Rotation) STRAIGHT-LINE WAVELENGTH

TYPE EMC - A general purpose condenser aveilable in large sizes and having Straight-Line wavelength plates. They are similar in construction to the TMC Transmitting condenser, and 'ave high efficiency and rugged frame Insulation is Steatite, and Peak Voltege Rating is 1000 volts. Same sizes available with straight line capacity plates, type $D \times C$ condenser.

Capacily	Minimum Capacity	No. of Plates	Length	Catalog Symbol
$\begin{aligned} & 150 \mathrm{Mmf} . \\ & 250 \\ & 350 \\ & 500 \\ & 1000 \end{aligned}$	$\begin{aligned} & 9 \mathrm{Mmf} . \\ & 11 \\ & 19 \\ & 16 \\ & 29 \end{aligned}$	$\begin{array}{r} 9 \\ 15 \\ 90 \\ 99 \\ 56 \end{array}$		EMC. 150 EMC. 250 EMC. 350 EMC. 500 EMC-1000

VHF CONDENSERS

- Shaft extension at rear for gangirs purposes Dual condensers ideal for mixep-oscillator unit. Ball bearingrifront and back for smooth rotatior and freedom from back-lash. Brockets for mounting 7-pin miniature tube reedom National XOA for very short leids from tube to condenser sockets, i.e., National essential for VHF efficiency, and rigid compact unit-assembly that proffuces better stability. Wide low-inductance stotor strap connections raise frequency limit of condensers. Coil or strap tank can be connected directly to stator straps allowing maximum inductance in tank and a minimum of in ductance between tank and stator. "Stator:, rotors and stator strap connec. tions silver-plated for best efficieney. - Rigid square construction, heavy solantite end plates. Spade bolts allow solid connections to chassis for extreme rigidity. Flexible insulating coupling available to connect condenser shoft to $1 / 4^{\prime \prime}$ dial shaft. |lexible insulating coupling availatile to a High capacity annectwo or more condensers together as ganged unik. Higleapacity single spaced units for seneral coverage. Low capacity double spacess units for bandspread, suitable for ham use, earticularly in the VHF and UMF ham bands. - Stators solder construction can be removed and replaced by strap tanks for special VHF and UHF application.

DOUBLE SPACED MODELS
Two section VHF-2D,

Maximum capacity per section stator to stator	$6.75 \mathrm{mmf}^{\text {f }}$
Minimum capacity per section stator to stator.	3.0 mmf.
Net change.	3.75 mmf .
Single section VHF-1D,	
Maximum capacity stator to stator.	6.75 mmr .
Minimum capacity stator to stator	3.0 mmp.
Net change.	3.75 mmf .

SINGLE SPACED MODELS

Two section VHF-2S,
Maximum capacity per section stater to stator 29.5 mmf .
Minimum capacity per section stator to stator, ., ., ., ., 3.0 mmf .
Net change . 19.5 rmf .
Single section VHF-1S,
Maximum capacity stator to stator 22.5 nmm .
Minimum capacity stator to stator . 3.0 . $\quad 3 \mathrm{~mm}$.
Net change 19.5 nmf.

components

FWG

A Victron terminal strip for high frequency use. The binding posts take banana plugs at the top, and grip wires through hole at the bottom, simultaneously, if desired.

FWH

The insulators of this terminal assembly are moulded R-39 and have serrated bosses that allow the thinnest panel to be gripped firmly, and yet have ample shoulders. Binding posts same as FWG above.

FWJ

This assembly uses the same insulators as the FWH above, but has jacks. When used with the FWF plug (below), there is no exposed metal when the plug is in place.

FWF

This moulded R-39 plug has two banana plugs on $3 / 4^{1}$ centers and fits FWG. FWH or FWJ above. Leads may be brought out through the top or side.

FWA, Post
Brass Nickel Plated
FWE, Jack
Brass Nickel Plated
FWC, insulator
R-39 Insulation.
FWB, Insulator
Polystyrene insulation.

XS. 6

A low-loss steatite bushing for $1 / 2^{\prime \prime}$ holes. Passes 6-32 screw.

TPB

A threaded polystyrene bushing with removable .093 conductor moulded in, $1 / 4^{\prime \prime}$ diam., 28 thread.

XS.7. ($3 / 8^{\prime \prime}$ Hole)
XS-8. ($11 / 2^{\prime \prime}$ Hole)
XS-I, ($1^{\prime \prime}$ Hole)
XS-2, ($11 / 2^{\prime \prime}$ Hole)
XS-9
Feed-through insulator. Hole size $13 / 64^{\prime \prime}$. Insulators are adjustable on silver-plated terminal stud for different partition thicknesses. Ceramic insulators are of high grade materials designed for high frequency equipment.

AA-3
A low-loss steatite spreader for 6 inch line spacing. 600 ohms impedance with No. 12 wire.)

AA-5
A low-loss steatite aircraft type strain insulator.

AA- 6

A general purpose strain in sulator of low-loss steatite.
GS-I, $1 / 2^{\prime \prime} \times 13 / 8^{\prime \prime}$
GS-2, $1 / 2^{\prime \prime} \times 27 / 8^{\prime \prime}$
GS-3, $3 / 4^{\prime \prime} \times 27 / 8^{\circ}$
GS-4, $3 / 4^{\prime \prime} \times 47 / 8^{\prime \prime}$
GS-4A, $3 / 4^{\prime \prime} \times 67 / 8^{\prime \prime}$
Cylindrical low-loss steatite standoff insulators with nickel plated caps and bases.

GSJ, (not illustrated)

A special nickel plated jack top threaded to fit the $3 / 4^{\prime \prime}$ diameter insulators GS-3. GS-4 \& GS-4A.
GS-10, 3/4" high
GS-IOS (not illustrated) but same as GS.lO except includes threaded stud in top end.
GS-5, 11/4" high
GS-6, 2" high
GS-7, 3" high
These cone type standoff insulators are of low loss steatite. They are moulded with a tapped hole in each end for mounting as follows:
GS-5, 8-32 tap 7/16" deep: GS-6 \& GS-7. 10-24 tap 11/16" deep: GS-10, 6-32 tap $1 / 4^{\prime \prime}$ deep and GS-IOS as noted above.

GS-8, with terminal
GS-9, with jack
These low-loss steatite standoff insulators are also useful as lead-through bushings.
XS-3, ($23 / 4^{\prime \prime}$ hole)
XS-4, ($33 / 4{ }^{\prime \prime}$ hole)
Prices are per pair and include nickel plated spindles, lugs and hardware. These low-loss steatite bowls are ideal for lead-in purposes at high voltages.

XS-5, Without Fittings

XS-5F, With Fittings
These big low-loss bowls have an extremely long leakage path and a $51 / 4^{\prime \prime}$ flange for bolting in place. Insulation steatite. Fittings include nickel plated brass spindles, lugs, nuts and washers.

GS-6

GS-7

XS-3

XS-4

Essentially the SIGNAL SPLITTER is a selectoble-single-sideband converter rejecting the side-fre. quencies containing the unwanted carrier and demodulating the message information in the remaining transmitted sideband.

However, more than a single-sideband receiver is required to eliminate interference . . . R-F intermodulation distortion must be kept at a minimum . . . ather. wise, the distortion effects wili produce new frequencies in both sidebands and little reduction in heferadynes will result. The measured intermodulation R.F distortion in SIGNAL SPLITTERS is below. 01%.

Special miniature filters in hermetically-sealed metal cases . . . with maximum Q of the operating frequency ... assure permanenf selectivity.

SIGNAL SPLITTERS are available with bandwidths suitable for both CW and voice reception... from 100 to 5000 cycles plus and minus the signal carrier. We supply special SIGNAF SPLITTER SYSTEMS to services requiring great bandwidths than the spandard units. The maximyth four megacycles plus and minus the desired center frequency.

EXPORT: RCA Infernational Division RCA Building
New York 20, N. Y., U.S.A.

For Definitely Superior Ham Performance

From the Hams at Hallicrafters to Hams everywhere comes this top-performing receiver in the medium price class. Extra sensitivity, selectivity, and stability, definitely superior image rejection with double superheterodyne circuit, plus built-in Narrow Band FM reception. Extra wide dials for main and band-spread tuning. Surpasses in ham performance many receivers priced considerably higher.
PERFORMAMCE: Continuous AM reception from 538 kc to 35 Mc , and 46 to 56 Mc . Built-in limiter and balanced detector stages for hiss-free NBFM reception. Double conversion (2075 and 455 kc i-f channels) gives image rejection of better than 150 to 1 at 28 Mc . Temperature compensated, voltage regulated. One r-f, two conversion, and 3 i-f stages yield high gain for sensitivity of .7 microvolts with 50 milliwatts output. Audio peaked for communications frequencies, with 3 watt outpur.
comriolss Band Selector $538-1650 \mathrm{kc}, 1600-4800 \mathrm{kc}, 4.6-13.5 \mathrm{Mc}, 12.5-35 \mathrm{Mc}$, 46-56 Mc. Separate Main and Bandspread tuning controls; bandspread dial calibrated for 80, 40, 20, 10, and 6 Meter Bands. BFO Pitch 3-position Selectivity, Crystal Phasing, Tone, a-f Gain, and r-f Gain controls. ANL, BFO, and Receive/Send switches. " S " meter adjustment on rear.
phrsical data: Satin black steel cabinet with chrome trim. Piano hinge tof. Size $181 / 2 \mathrm{in}$. wide by $87 / 8 \mathrm{in}$. high by 12 in . deep. Ship. wt. 33 lbs .
EXTENAL COMWECTIONS: Use doublet or single wire antenna. 500 and 3.2 ohm outputs for separate speaker. Phone jack. Socket for external power supply. Connections for remote control. For $105-125$ volts $50 / 60$ cycle AC.
n TUBEE PLUS VOLTAGE REGULATOR AND RECTH:RE: 6BAG r-f Amp., 6C4 Osc., 6AUG Mixer, 6BE6 2nd Conv., three 6SK 7 i-f Amps., 6H6 ANL and delayed AVC, 6SC7 BFO and a-f Amp., 6AL5 Det., 6K6GT Output, VR-150 Reg., and 5Y3GT Rect.
UNIVERSAL MODEL SX7IU: Same as above only for $115 / 250$ volts, $25 / 60$ cycle AC.
R-A6 SPEAKRR: New 10^{*} PM in satin black steel cabinet to match SX-71 and S-76 (also suitable for SX-62). 500 -ohm transformer. 80 to 5000 cycle range. $15^{\prime \prime}$ wide, $107 / 8^{\circ}$ high, $107 / 8^{\prime \prime}$ deep.

New! A Double Superhet With 50kc 1-F

A new double conversion receiver just introduced as the lower-priced running mate to the already famous $\mathbf{S X}-71$. The only double superher with 50 kc second i-f and the only set now known with a giant sized 4 -inch " S " Meter. Another new Hallicrafters engineering triumph . . a special value leader in the moderate price range.
parformancts Continuous coverage $538-1580 \mathrm{kc}$. and $1.72-32 \mathrm{Mc}$. Double conversion almost completely eliminates images. 50 kc second i-f gives excellent "skirt" selectivity with "nose" selectivity variable from 5.6 kc down to 500 cycles. Temperature compensated, voltage regulated. One r-f, two conversion, and two i-f stages. $2^{1 / 2}$ watts output, with audio peaked for communications frequencies.
cominots: Band Selector $538-1580 \mathrm{kc}, 1.72-4.9 \mathrm{Mc}, 4.6-13 \mathrm{Mc}, 12-32 \mathrm{Mc}$; Separate Main and Bandspread tuning; bandspread calibrated for $80,40,20,11,10$ meters; five-position Selectivity with phono switch built-in; BFO Pitch; full-range Tone; AVC, BFO, ANL, Rec./Standby switches. "S" Meter adjustment on rear.
phrsical dataz Satin black steel cabinet with plastichrome. Piano hinge top. Size $181 / 2^{\prime \prime}$ wide, $87 / 8^{\prime \prime}$ high, $91 / 2^{\prime \prime}$ deep. Ship. wt. approx. 46 lbs .
EXTERNAL CONNECTIOMS: Use doublet or single wire antenna. 500 or 3.2 ohm ousputs. Phone jack. Phono input jack. Connections external power and for remote control. Mounting holes provided for coax connector. For $105-125$ volts $50 / 00$ cycle AC. - tuass plus miculator amp mectimiz 6CB6 r-f Amp., 6AU6 ist Conv., 6C4 Osc., GBA6 1 st i-f, GBEG 2nd Conv., 6BA6 2nd i-f, GAL5 Det., ANL, GSC7 BFO, GKGGT Output, VR-150 Reg., 5Y3GT Rect.

New Versions of an Old Favorite

Offees superior performance it chat medium price range, born of Hallifrafien loips experrence in highoqualit commanicasions equipuent. Complete in ivell, with frilniti PM specker.
 Oop Ef and two IF sigges, Audio respitise to to,pou cyeles,

 Standity controle Seniag: for Brodicase Bend marked in color for simplifical use hy uthers in surfe family.

 GH6 ANL and AVG GSL7 IFO and DEL. OFOG Ourpur, 5Y3Gr Hectifier Comp parable AC DDC gype tribe ued in S.77A.
UNIVERSAL MODEL S-4 OBU: Stmeas abote aaly for $119 / 250$ roles, $25 / 60 \mathrm{c} /$ eleAC

Superb Performance in Compact Size

Uoquestianahiy the fines suill comminications regive haili Severat seybs betor thin the S.3nC hut mot ar good as the 5.40日 Complete in itvelf. with baftion PM Apeaket.
 amplifictioti.
conraats Main buning in Mc; sepacate land-sproul disi with toxging os te nlus

 Livied, AF Gafr, twoupoxition Taren Speaker- Phomes switch on rean
Furuchl garai satio black mpee gahiner with chrome trim. Top operin on piano

 inpurlack 103 :125 V, 50 ' 60 cocle Ac line

The Radio That Amazes the Experts

 Binion PM speaket
phiformancei Comimpus AM recention 9 (0 keto 32 Mc . Maximim sensitiyity and selectisit from espertly empincerod chasis.

Pkysicas aarki sicel cabinet in gray tuxmmernone frish, Siae $127^{\prime \prime}$ wide by 7^{7} high to 7 Fe deep: Shigo wz. If lbs.
 DPEAR $50 / 60$ ancie AC
 AVE. 50L6GI Outpuf, 3525 GT Retifier:
220-VOLT LAE CORD: Avilahle sepraratels. Works for AC or DC

> The Radia Mand Radia"

Designed for Top Broadcast Reception

The world's finest receiver for the All-Wave listener. Unequalled in coverag 2 and performance on all three wave bands-Standard Broadcast, Short-Wave of FM. Continuous coverage from 540 kc to 109 Mc . Having basically the same chassis as a fine communications receiver, the SX- 62 provides communications-receiver performance in simplified form. A single tuning control covers the wide-vision dial. On y one band lights up at a time - you always know just where you are tuning. In addicion a 500 kc crystal calibration oscillator is built in, enabling you to adjust the dial pointer to show the exact frequency being tuned at any time.
PERFORmance: Continuous AM reception 540 kc to 109 Mc ; FM reception 27.109 Mc. Temperature compensated, voltage regulated. Two RF, three IF stages; dual IF channels (455 kc and 10.7 Mc .). Audio flat $50-15,000 \mathrm{cycles} ; 10$ watt push-pull cutput. conrrols: Band Selector $540-1620 \mathrm{kc}$. 1.62-4.9 Mc, 4.9-15 Mc, $15-32 \mathrm{Mc}, 27.56$ Mc, 54-109 Mc; Receive/Standby, Calibration Osc. On/Off, Noise Limiter, Taning, AF Gain, Phono/FM/AM/CW, six-position Selectivity, four-position Tone, RI Gain, Calibration Reset.
phrsical data: Gray steel cabinet with satin chrome trim. Top opens on piano hinge. Cabinet $20^{\prime \prime \prime}$ wide by $101 / 4^{\prime \prime}$ high by $16^{\prime \prime}$ deep. Ship. Wt. 70 lbs.
extermal commections: Doublet or single wire antenna. 500 and 5000 -ohm outputs. Phone jack. Phonograph input jack. Socket for external power and Remote control connections. $105-125$ V. 50/60 cycle AC line.
14 tubes plus voltage regulator and rectifer: Two GAG5 RFAmps., 7F8 Conv., GSK 7 IF Amp., 6SG 7 IF Amp., 6SG 7 IF Amp., GSG7 FM Limiter and AM De_, 6H6 FM Det., 6j5 BFO, GHG ANL, GSL7 AF Amp., two 6VG Push-Pull Ousput, 6C 4 Calibration Osc., VR-150 Regulator, 5U4G Rectifier.
UNIVERSAL MODEL SX-62U: Same as above only for $115 / 250$ volts, $25 / 60$ cycle AC.

Regular and Long-Wave 3-Way Portable

You'll always be in touch with the outside world wherever you go with th is new Hallicrafters extra-sensitive portable. Designed both for the person who wants better than average operation even in weak signal areas and for the Radio Amateur.
performance: Regular Model S-72 covers standard broadcast and three shert-wave bands 540 kc to 30 Mc continuously. Long-Wave Model S-72L covers airway: ranges and towers and marine beacons $175-420 \mathrm{kc}$, plus Broadcast and 2 short-wave bands 540 kc to 12.5 Mc . One stage tuned r-f amplification; separate electrical bandspread tuning. Two built-in antennas-loop for broadcast and 61 -inch telescoping whip for short-wave. Overall sensitivity 1.8 microvolts at 30 Mc , ranging to 6 microvolts at 1.7 Mc .
controls: Band Selector, r-f Gain, AVC, BFO, a-f Gain, Main tuning, Bandspread tuning.
physical data: Luggage-type cabinet in brown leatherette. Space inside for phones. Size $14^{\prime \prime}$ wide, $121 / 4^{\prime \prime}$ high, $71 / 4^{\prime \prime}$ deep. Ship. wt. 16 lbs., less battery pack.
EXTERNAL COMMECTIONs: Phone jack. Antenna terminals if needed. 105-125 V. DC or 50/60 cycle AC line. Battery power 100 ma . at 7.5 V . and 30 ma . at 90 V . Takes RCA VSo18, Burgess G6M60, General 60BGF65 and similar packs; life 50 to 100 hours.

- tuees plus rect: 1 T4 r-f Amp., 1 R 5 Osc., 1 U4 Mixer, two 1 U4 i-f Amps., 1 U5 Det. and a-f Amp., 1 U5 BFO, 3V4 Output, long-life selenium rectifier.

Long Wave Model S-72L is answer to airplane or boaf owner's dream. Recelves murine beacens, aiarwoys panges and sowers, as well os a rwoys and marine shor'-wave chennels and regular breadecst bard.

hallicrafters
 Precisian-built
 Model S-81, S-82 "Civic Patrol"

Communication Equipment

28

New Emergency-Frequency FM Receiver

A compact, easy-to-operate new FM receiver covering police, fire, taxicab, truck private telephone, railroad, and other industrial frequencies. Especially suited for civilian defense groups in metropolitan areas where a reliable, low cost receiver is required to hear industrial and emergency-service communications. Headphone tip jacks on rear. Builtin PM speaker.
PERFORMANCE: Newly designed FM chassis provides low frequency drift and high signal-to-noise ratio. Regular model S.81 covers VHF FM frequencies $15 z$ to 173 Mc ; low-band model S-82 covers H/F FM frequencies 30 to 50 Mc . Two if stages. for extra sensitivity to pull in weak stations.
PHYSICAL DATA: Steel cabinet in black wrinkle enamel finish. Size $12 \%^{\prime \prime}$ wide, $7^{\prime \prime}$ high, $71 / 4^{\prime \prime}$ deep. Ship. wt. approximately 14 lbs .
EXTERMAL COMMECHONS: Use single wire or twin-lead antenna. Tip jack for headphones on rear. 105-125 V. DC or 50/60 cycle AC.
6 tugs plus rictifini 12 AT 7 Oc. Mixer, 2-12BA6 IF Amps., 12Als FM Dit., 12 SQ 7 1 st Audio, 50 l 6 Power Output. Selenium Rectifier.

New Compact, Lightweight Two-Way Radio-Telephone

The littlefone series of equipment are FM two-way radio telephone units operating at $25-50 \mathrm{Mc}$. or $152-174 \mathrm{Mc}$. Both the receiver and transmitter are crystal controlled and a total of 22 sub-miniature tubes are used. The complete portable model with antenna and telephone hand-set weighs only fourteen pounds and will operate for more than eight hours on the self-contained rechargeable storage batteries. Models for AC power line and $6 / 12$ volts DC operation employ the same of chassis as the portable units but an audio power output stage is added to drive the loud speaker. Adjustable squelch controls are available on all models. Power outputs -2 watts on 25-50 Mc and 1 watt on 152-173 Mc. Lower powered dry battery models also available.

gallicrafters

Model HT-20

Precision-built

Communication Equipment

Model HT-20 AM-CW Transmitter

This new Hallicrafters 100 watt AM-CW Transmitter is the modern successor to the HT-9 known throughout the world for reliability, ruggedness, flexibility and lowest cost for maximum dependable watts per dollars.
performance: T.V.I. proofed-completely shielded and filtered rf compartment plus built-in low-pass 52 ohm coaxial line output filter provides 100 db or greater suppression of all frequencies higher than 30 Mc 100 watt phone outpur.
componinvss Heavy dury commercial type power and modulation transformers. All parts rated for commercial service conditions.
FREQUENCY COVIRACE Continuous coverage from 1.79 to 30 Mc .
cowrrolst Full band switching. No plug-in coils-choice of 10 crystals-all controls on front panel.
Teuass Seven rf and audio tubes plus 3 rectifiers.
physical data: Cabinet size-20 inches long, $121 / 2$ inches high, $171 / 4$ inches deep -panel size for rack mounting- $19 \times 101 / 2$ inches.
See your distributor in February for complete detailed specifications.

New Improved FM/AM Chassis

A new radiation-proof FM/AM chassis to meet the popular demand for a mediumpriced unit with top performance characteristics, offers automatic frequency control assuring clearest possible reception of FM stations by eliminating the human error in tuning; as the station is approached, this circuit "takes over" electronically, and holds the station in perfect tune. Radiation-proofing is especially important in that normal oscillator radiation from many ordinary FM receivers has been severely criticized by the F.C.C. for interfering with VHF aircraft navigational aids. The new S-78A reduces this radiation by extensive shielding and filtering.
MREORMAMEE AND commolss Covers standard broadcast band $540-1700 \mathrm{kc}$ and FM 88-108 Mc. One tuned r-f, two i-f stages. Audio response 50 to 14,000 cycles. 7 watt Push-Pull Output. Full Range Tone Control, Band Switch, Volume and Tuning.
Physical datas Size overall $121 / 2^{\prime \prime}$ wide, $73 / 8^{\prime \prime}$ high, $11^{\prime \prime}$ deep. Tuning knobs and escutcheon furnished. Ship. wt. approximately 25 lbs.
extiamal conmectiows Phonograph input Jack. Four antenna terminais-two for AM and two for FM. 500 and 3.2 ohm outputs for separate speaker. For $105-125$ volts 50/60 cycle AC only.
w TUIES PLUS RECUFIRE

hallicrafters precision-built television with the

Cynacmic \& turser

A tuning system more accurate

and more powerful than any
in Television History

The Dynamic Tuner-a rotary-type tuner-uses flat tuning coils that are precision-printed by a special photo-etch process. Because wire stretches as it is wound, and because coil forms vary, NO OTHER TUNING SYSTEM can even approach the absolute accuracy of precision photo-printed coils.

The heart of the Dynamic Tuner lies in the $\mathbf{1} 2$ channel strips. Each strip has been prepared by photographically printing the desired pattern on copper and then etching away the unwanted metal. The result of this process is complete uniformity in production. Every chassis coming off the line is "hot" in sensitivity; variations in tuning alignment are practically eliminated.

Only Hallicrafters has the Dynamic Tuner, to bring you the clearest picture in television. "City Clear", even in weak signal areas. Independent research laboratories report that Hallicrafters chassis delivered 2 to 4 times more sensitivity than the best of four other leading sets tested. See your Classified Telephone Directory for your nearest Hallicrafters TV dealer.

hallicrafters

MASLDENTMASSSACHUSEETYS

SECONDARY FREQUENCY STANDARD

A precision frequency stondard forboth laboratory and production uses, odiustable $\$ 1$, provided at intervals of $10,25,100$ and 000 kc , with magnitude useful to 50 me . Ho onic amplifier with tuned plate circuit and 3ghal range switch. 800 cycle modulator with control switch. In addition to oscillators mNit)vibrators, modulators and amplifiers, a buiph detector with phone jack and gain control isthytporated. Self-contained power supply.
Model 90505, with fubes.
ABSORPTION WAVEMETERS
The 90600 series of absorption wavemeters are available in several styles and many different ranges. Most popular is kit of four units, covering ronge of 3.0 ta 140 mc .
Model 90600.

GRID DIP METER

The No. 90651 MILLEN GRID DIP METER is compact and completely self contained. The AC power supply is of the "Ironsformer" type. The drum dial has seven calibrated uniform length scales from 1.5 MC to 300 MC with generous over laps plus on arbitrary scale for use with special application inductors. Internol terminal strip permits battery operation for antenna measurement.
No. 90851 , with tube. .

No. 46702-925 to 2000 KC
No. 46703-500 to 1050 KC
No. 46704-325 to 600 KC No. 46705-220 1o 350 KC

LABORATORY SYNCHROSCOPES

The $5^{\prime \prime}$ laboratory synchroscopes are available with and without detector-video strips.
Model P-4-2, with tubes.
Model P-4E-2, with fubes.

MINIATURE SYNCHROSCOPE

The compact design of the No. 90952, measuring only $71 / 2^{\prime \prime} \times 55^{\prime \prime} \times 13^{\prime \prime}$, and weighing only 17 lbs., makes available for the first time a truly DESIGNED FOR APPIICATION "field service" Synchroseope.
No. 90952 , with tubes

CATHODE RAY OSCILLOSCOPES

The No. 90902 , No. 90903 and No. 90905 Rack Panel Oscilloscopes, for iwo, three and five inch tubes, respectively, are inexpensive basic units comprising power supply, brilliancy and centering controls, safety features, magnetic shielding, switches, etc. As a transmitter monitor, no additional equipment or accessories are required. The well-known trapezoidal monitoring patterns are secured by feeding modulated carrier voltage from a pickup loop directly to vertical plates of the cathode ray tube and audio modulating voltage to horizontal plates. By the addition of such units as sweeps, pulse generators, amplifiers, servo sweeps, etc., all of which can be conveniently and neatly constructed on companion rack panels, the original basic 'scope unit may be expanded to serve any conceivable industrial or laboratory application.
No. 90902, less tubes
No. 90903, less tubes
No. 90905 , less tubes

SCOPE AMPLIFIER - SWEEP UNIT

Vertical and horizontal amplifiess along with hardtube, sow tooth sweep generator. Complete with power supply mounted on a standard $51 / 4^{\prime \prime}$ rack ponel.
No. 90921 , with iubes.

REGULATED POWEROPPLIES

A compact, uncased, rachiold pow supply, either for table use inpil thaboratory or for incorporation as an intit part of larger equipments. 50 watts, (iitirregulated voltage from 0 to 200 volts.

FACTS ABOUT

the company

It i943'a calesman in Chicago represetiting an eastern manufacturer had beser for improving the shers:wave radios he vas fellings. The salesman hed been a rullo

 ridio, and he koew what the ratio "taxm" wanoci,
So =hen fris factonz tack eas wouldn't huy his infess, fut amed a husious of his own to buitd the radion the way he wanted fleem, it els + luave venure - with almost no capital The new company a 24 foupded mainle on iwo things -on the idkas of the

The new compun-Halfitnfere-was makimy itadf 1 efl And at ins helm then as
 J ("Bin) Hallgan
 fal the mest theilfing in all radio. Thy ham is acyee fooled by expunsiex gobinets-

 furume develorments:-

the plant

 tampular binfing at quot Wess fith Axowes Chifago
 best equipped medum-sized satio plant in the collum. Prem the eery begituing grearer emplasis was placed un the cmportance of flezibzity. Time has groved that emphusis mare thatilutimed A complige production Ine of up to 1 fa jeoply can be
 with less than : mintite's delay betweca be lase unit of the production raz and the first unis of the Mext.
In addiriou to the main pland descrihord ahove. Hallicrafeet also use a *-sury buitding
 Chicago's noth side, and 150,000 square fort of production and storge space ia thres ether huildings within a cive-mile zadlus of the main plant.

the hallicrafters co.

JAMESEMILIEN MALDEN.MASSACHUSETIS

20810

2081

INSTRUMENT DIALS

The No. 10030 is on extremely sturdy instrument type indicolar. Control shatt has 1 ta 1 ratio. Veeder type counter is direct reading in 99 revolutions and vernier scale permits readings ta 1 part in 100 of a single revolution. Has built-in dial lock and $1 / 4^{\prime \prime}$ drive shaft coupling. May be used with multi-revolution transmitter controls, etc., or through gear reduction mechonism for control of fractional revolution capacitars, etc., in receivers or laboratory instruments.
The No. 10035 illuminated panel dial has 12 to 1 rotio; size, $81 / 2^{\prime \prime} \times 812^{\prime \prime}$. Small Na. 10039 has 8 to 1 ratio; size, $4^{\prime \prime} \times 31 / 4^{\prime \prime}$. Both are of compact mechanisal design, easy to maunt and hove tatally self-cantained mechanism, thus eliminating back of panel interference. Pravision far maunting and marking auxiliary controls, such as switches, patentiometers, etc., pravided an the Na. 10035 Standard finish, either size, flat black art metal.
Na. 10039
No. 10035
Na. 10030

DIALS AND KNOBS

Just a few of the mony stack types of small dials and knobs are illustrated herewith. 10007 is $13 / /^{\prime \prime}$ diameter, 10009 is $21 / 2^{\prime \prime}$ and 10008 is $31 / 2^{\prime \prime}$. Na. 10007
No. 10008
Na. 10009
No. 10021 No. 10065

PANEL MARKING TRANSFERS

 The ponel marking transfers have $1 / \mathbf{n}^{\prime \prime}$ block letfers. Special solution furnished. Must not be used with water. Equally safisfactary on smaoth or wrinkle finished panels ar chassis. Ample supply of every papular ward ar marking required for amoteur or cammercial equipment.Na. 59001, white letter

HIGH FREQUENCY TRANSMITTER

The No. 90810 crystal aftor tronsmitter provides 75 watt output thigyse thput may be obtained by the use of farced asNmbl on the $20,10-11,6$ and 2 meter amat ro bonds. Pravisians are made for quick band (h) by means of the new 48000 series hiat \%oquency plug-in cails.
Na. 908), less.tubes and crystals.

HIGH FREQUENCY RF AMPLIFIER

A physically small unit copable of a power output of 70 to 85 watts on 'phone or 87 ta 110 watts on $\mathrm{C}-\mathrm{W}$ an $20,15,11,10,6$ ar 2 meter amateur bands. Pravision is made for quick band shift by means of the new No. 48000 series VHF plug-in cails. The No. 90811 unit uses either an $829 . \mathrm{B}$ ar 3 E29.
No. 90811 with 10 meter band cails, less fube.

HIGH VOLTAGE POWER SUPPLY
The Na. 90281 high valtoge pawer supply has a d.c. autput of 700 valis, with maximum current af 250 mo . In additian, a.c. filament pawer of 8.3 valis at 4 amperes is also available so that this power supply is an ideal unit far use with transmitters, such as the Millen No. 90800 , as well as general labaratory purpases. The power supply uses two No. 816 rectifiers and has a two section pi filter with 10 heney General Electric chakes and a 2.2-10 mfd. bank of 1000 volt General Electric Pyranal mopacitors. The panel is standard $83 / 4^{\prime \prime} \times 19^{\prime \prime}$ rack mounting.
No. 90281 , less pubes

RF POWER AMPLIFIER

This 500 watt amplifier moy be used as the basis af a high pawer amateur transmitter or as a means for increasing the power output af an existing tronsmitter. As shipped from the factary, the Na. 90881 RF pawer amplifier is wired for use with the popular RCA ar G.E. "812" type tubes, but adequate instructions are furnished for seadjusting far aperation with such ather popular amateur style transmitting tubes as Taylor TZ40, Eimac 35T, etc. The amplifier is of unusually sturdy meshanica! constructian, an a $1012^{\prime \prime \prime}$ relay rack panel. Plug. in inductors are furnished far aperation an 10, 20, 40 ar 80 meter amateur bands. The standard Millen Na. 90800 exciter unit is an ideal driver for the new Na. 90881 RF pawer amplifier
Na. 90881 , with one set af cails, but less
fubes. W/oit Re:oiotisioiy

MALDEN. MASSACHUSETTS

R9'er MATCHING PREAMPLIFIER

The Millen 92101 is an electronic impedance matching device and a broad-band preamplifier combined into a single unit, designed primarily for operation on 6 and 10 meters. Coits for 20 meter band also available.
No. 92101 , less fubes

STANDING WAVE RATIO BRIDGE

The Millen S.W.R. bridge provides easy and inexpensive measurement of standing wave ratio on antennas using co-ax cable. As ossembled the bridge is set up for 52 ohm line. A calibrated 75 ohm resistor is mounted inside the case for sub. stitution in the circuit when 75 ohm line is used No. 90671

FREQUENCY SHIFTER

A fovorite frequency shiffer. plugs in, in place of crystal, for instant finger.tip contral of carrier frequency. law drift, chirpless keying, vibration immune, big band spread, accurale catibration Model 90700, with tubes

VARIABLE FREQUENCY OSCILLATOR

The No. 90711 is a complete transmitter control unit with 6SK7 temperature-compensated, electron coupled oscillator of exceptional stability and low drift, a 6 SK 7 brood.band buffer or frequency doubler, a 6 A 7 t funed amplifier which tracks with the oscillator tuning, and o regulated power supply. Oufput sufficient to drive on 807 is ovailoble on 160, 80 and 40 meters and reduced output i ovailable on 20 meters. Close frequency setting is abtained by means of the vernier control orm ot the right of the dial. Since the output is isoloted from the oscillator by two stages, zero frequency shift occurs when the output load is varied from open circuit to short circuit. The entire unit is unusually solidly built so that no frequency shift occurs due to vibration. The keying is dean and free from all annoying chirp, quick drift, jump, and similar difficulties offen encountered in keying variable frequency oscillotors.
No. 90711 , with tubes

50 WATT TRANSMITTER

Based on on original thandbook design, this flexible unit is ideol for either low power omoteur band transmitter use or as on exciter for hiah power PA stages.
Model 90800. less fubes

OCTAL BASE AND SHIELD

Low loss phenolic base with octal socket plug and oluminum shield can $1 / 16 \times 1 / 8 \times 3^{1 / 516}$. No. 74400

TRANSMISSION LINE PLUG

An inexpensive, compact, ond efficient polyethylene unit for use with the 300 ohm ribbon type polyethylene transmission lines. Fits into standard Millen No. 33102 (crystal) socket. Pin spacing $1 / 2^{\prime \prime}$ diameter .095
No. 37412

PERMEABILITY TUNED CERAMIC

 FORMSIn addition to the popular shielded plug-in per meability tuned forms, 74000 series, the 69040 series of ceramic permeability tuned unshielded forms are ovailable as stondard stock items Winding diometers and lengths of winding spoce are ${ }^{13} 32 \times 37$ for 6904 1-2; $1 / 4 \times 3 / 8$ for 69043-7-8 $1 / 2 \times 11 / 16$ for 69045-6; $3 / 16 \times 3 / 16$ for 69044
No. 69041 -(Copper Slug)
No. 69042 -(Iron Core)
No. 69043 - (Iron Core)
No. 69044 -(Capper Slug)
No. 69045-(Copper Slug)
No. 69046-(Iron Core)
No. 69047 -(Copper Stug) मisiony
No. 69048 - (Iron Core)

95711

JAMES $\mathbb{C} \mathbb{E} \mathbb{C} \mathbb{C} \mathbb{E}$ MALDEN. MASSACH UISETTS

FULL SIZE

SHAFT LOCKS

In addition to the original No. 10060 and No. 10061 "DESIGNED FOR APPLICATION" shaft locks, we can also furnish such variations as the No. 10062 and No. 10063 far easy thumb operation as illustrated above. The No. 10061 instantly converts any plain " $1 / 4$ shaft" volume control, condenser, etc. from "plain" to "shaft locked" type. Each to mount in place of regular mounting nut.
No. 10060
No. 10061
No. 10062
No. 10063

TRANSMITTING TANK COILS

A full line-oll populor wattages far all bands Send for special cotolog.

DIAL LOCK

Compoct, easy to mount, positive in oction, daes not olter diol setting in operotion! Rotation of knob " A " depresses finger " B " and " C " without imparting any rotory motion to Dial. Single hole maunted. No. 10050

RIGHT ANGLE DRIVE

Extremely campoct, with pravisions for many meth ods of mounting. Ideof for operating potentiome ters, switches, etc., that must be locoted, for short leads, in remote parts of chossis. No. 10012

THRU-BUSHING

Efficient, compoct, easy to use and neot oppeoring. Fits $1 / 4$ " hole in chassis. Held in place with o drop of solder or a "nick" from o crimping tool. No. 32150

FLEXIBLE COUPLINGS

The No. 39000 series of Millen "Designed for Applicotion" flexible coupling units include, in oddition to improved versions of the conventional types, also such exclusive originol designs os the No. 39001 insuloted universal joint ond the No. 39006 "slideaction" coupling (in both steotite and bokelite insulation).
The No. 39006 "slide-oction" coupling permits longitudinal shoft inotion, eccentric shoft motion ond out-of-line operation, os well os ongulor drive without backlash.
The No. 39005 is similar to the No. 39001 , but is not insuloted ond is designed for opplications where relotively high forque is required. The steotite insulated No. 39001 has a special onti-backlosh pivot and socket grip feoture. All of the above illustroted units are for $1 / 4^{\text {" }}$ shaft and are stondord production type units.
No. 39001
No. 39002
No. 39003
No. 39005
No. 39006

CATHODE RAY TUBE SHIELDS

For mony years we have specialized in the design and manufacture of mognetic metal shields of nicoloi and mumetal for cothode roy tubes in our own complete equipment, as well os for opplicotions of all other principal complete equipmen* manufocturers. Stock types os well os special designs to customers' specifications promptly ovailoble.
No. 80045-Nicoloi for 5" tube.
No. 80043-Nicoloi for $3^{\prime \prime}$ tube
No. 80042 -Nicoloi for $2^{\prime \prime}$ tube

BEZELS FOR

CATHODE RAY TUBES

Five inch bezel with black satin finish. Complete with tube cushion, green lucite filter scole ond four screws for quick defochment from panel when inserting tube.
No. 80075-5'
Nc. 80073-3
No. 80072- 2

43000

39005
39003

39501

59006

MALDEN M MASSACHUSETYS

04000 and 11000 SERIES TRANSMITTING CONDENSERS

A new member of the "Designed for Application" series of transmitting variable air capacitors is the 04000 series with peak voltage ratings of 3000,6000 , and 9000 volts. Right angle drive, 1-1 ratio. Adjustable drive shaft angle for either vertical or sloping panels. Sturdy construction, thick, roundedged, polished aluminum plates with $13 / 4^{\prime \prime}$ radius. Constant impedance, heavy current, multiple finger rotor contactor of new design. Availoble in all normal capocities.
The 11000 series has 16 ratio center drive and fixed angle drive shaft.

Code	Volts	Capacily	Price
11035	3000	35	$\$$
11050	3000	50	
11070	3000	70	
04050	6000	50	
04060	9000	60	
04100	6000	90	
04200	3000	205	

12000 and 16000 SERIES TRANSMITTING CONDENSERS

Rigid heavy channeled aluminum end plates. Isolantite insulation, polished or plain edges. One piece rotor contact spring and connec. tion lug. Compact, easy to mount with connector lugs in convenient locations. Same plate sizes as 11000 series above.
The 16000 series has same plate sizes as 04000 series. Also has constant impedance, heavy current, multiple finger rotor contactor of new design. Both 12000 and
 16000 series available in single and double sections and many capacities and plate spacing.

THE 28000-29000 SERIES

 VARIABLE AIR CAPACITORS"Designed for Application," double bearings, steatite end plotes, cadmium or silver plated brass plates. Single or double section $.022^{\prime \prime}$ or $.066^{\prime \prime}$ air gap. End plate size: $19,16^{\prime \prime} \times 1116^{\prime \prime}$. Rotor plate radius: $3 / 4^{\prime \prime}$. Shaft lock, rear shaft extension, special mounting brackets, etc., to meet your requirements. The 28000 series has semi-circular rotor plate shape. The 29000 series has approximately straight frequency line rotor plate shape. Prices quoted on request. Many stock sizes.

NEUTRALIZING CAPACITOR

Designed originally for use in our own No. 90881 Power Amplifier, the No. 15011 disc neutralizing capacitor has such unique feafures as rigid channel frame, horizontal or vertical mounting, fine thread over-size lead screw with stop to prevent shorting and rotor lock. Heavy rounded-edged polished aluminum plates are $2^{\prime \prime}$ diameter. Glazed Steatite insulation.
No. 15011.

I.F. TRANSFORMERS

The Millen "Designed for Application" line of I.F. transformers includes air condenser tuned, and permeability tuned types for all applications. Standard stock units are for 456,1600 and 5000 kc .B.F.O. also ovailable. Worldradolisiony

JAMES OMULEN MALDEN. MASSACHUSETTS

TUBE SOCKETS

DESIGNED FOR APPLICATION

MODERN SOCKETS for MODERN TUBES! Long Flashover path to chassis permits use with transmitting tubes, 866 rectifiers, etc. Long leakage path between contacts. Contacts are type proven by hundreds of millions already in government, commercial and broadcast service, to be extremely dependable. Sockets may be mounted either with or without metal flange. Mounts in standard size chassis hole. All types have barrier between contacts and chassis. All but octal and crystal sockets also have barriers between individual contacts in addition.

The No. 33888 shield is for use with the 33008 octal socket. By its use, the electro static isolation of the grid and plate circuits of single-ended metal tubes can be increased to secure greater stability and gain.
The 33087 tube clamp is easy to use, easy to install, effective in function. Available in special sizes for all types of tubes. Single hole mounting. Spring steel, cadmium ploted.
Cavity Socket Contact Discs, 33446 are for use with the "Lighthouse" ultra high frequency tube. This set consists of three different size unhardened beryllium copper multifinger contact discs. Heat treating instruc. tions forwarded with each kit for hardening after spinning or forning to frequency re. quirements.

Voltage regulator dual contact bayonet socket, 33991 black Bakelite insulation and 33992 with low loss high leakage mica filled Bakelite insulation.
No. 33004
No. 33005
No. 33006
No. 33007
No. 33008
No. 33888
No. 33087
No. 33002
No. 33102
No. 33202
No. 33302
No. 33446
No. 33991
No. 33992

* For set of 3 . Single discs $\$$ each.

RF CHOKES

Many have copied, few have equalled, and none have surpassed the genuine original design Millen Designed for Application series of midget RF Chokes. The more populor styles now in constant production are illus* trated herewith. Special styles and varia. tions to meet unusual requirements quickly furnished.
General Specifications: $2.5 \mathrm{mH}, 250 \mathrm{~mA}$ for types $34100,34101,34102,34103$, 34104 , and $1 \mathrm{mH}, 300 \mathrm{~mA}$ for types 34105 , 34106, 34107, $34108,34109$.

No. 34100
No. 34101
No. 34102
No. 34103
No. 34104

JAMES MMULEN

CERAMIC PLATE OR GRID CAPS

Soldering lug and contact one-piece. lug ears annealed and solder dipped to facilitate easy combination "mechanical plus soldered" connection of cable.
No. 36001-9/16"
\$
No. 36002- $3 / \mathrm{s}^{\prime \prime}$
No. 36004 - $1 / 4$

SNAP LOCK PLATE CAP

For Mobile, Industrial and other applications where tighter than normal grip with multiple finger 360° low resistance contact is required. Contact self-locking when cap is pressed into position. Insulated snap button at top releases contact grip for easy re. moval without damage to tube.
No. 36011-9 $16^{\prime \prime}$
No. 36012 - $3 / 8^{\prime \prime}$

SAFETY TERMINAL

Combination high voltage terminal and thrubushing Tapered contact pin fits firmly into conical socket providing large area, low resistance connection. Pin is swivel mounted in cap to prevent twisting of lead wire.
No. 37001, Black or Red
No. 37501, Low loss

TERMINAL STRIP

A sturdy four-terminal strip of molded black Textolite. Barriers between contacts. "Non turning" studs, threaded 832 each end.
No. 37104

POSTS, PLATES and PLUGS

Designed for Application! Compact, easy to use. Made in black and red regular bakelite as well as low loss brown mica filled bakelite or steatife for R.F. uses. Posts have captive head.
No. 37202 Plates (pr.)
No. 37212 Plugs.

No. 37222 Posts (pr.)

STEATITE TERMINAL STRIPS

Terminal and lug are one piece. lugs are Navy furret type and are free floating so as not to strain steatite during wide temperature variations. Easy to mount with series of round holes for integral chassis bushings.
No. 37302
No. 37303
No. 37304
No. 37305
No. 37306

MIDGET COIL FORMS

Made of low loss mica filled brown bakelite. Guide funnel makes for easy threading of leads through pins.
No. 45000
No. 45004
No. 45005

TUNABLE COIL FORM

Standard octa! base of low loss mica-filled bakelite, polystyrene $1 / 2^{\prime \prime}$ diameter coil form, heavy aluminum shield, iron funing slug of high frequency type, suitable for use up to 35 mc . Adjusting screw protrudes through senter hole of standard octal socket.
No. 74001, with iron core.
No. 7400 2.Jess irono cфпю.

Midget Absorption Frequency Meters

Many amateurs and experimenters do not realize that one of the most useful "tools" of the commercial transmitter designer is a series of very small absorption type frequency meters. These handy instruments can be poked into small shield compartments, coil cans, corners of chassis, etc., to check harmonics; parasitics; oscillator-doubler, etc., tank tuning; and a host of other such applications. Quickly enables the design engineer to find out what is really "going on" in a circuit.

Types 90605 thru 90609 are extremely small and designed primarily for engineering laboratory use where they
will be handled with reasonable care. The most useful combination being the group of four under code No. 90600 and covering the total range of from 3.0 to 140 megacycles. When purchased in sets of four under code No. 90600 a convenient carrying and storage case is included. Series 90601 are slightly larger and very muth more rugged. They are further protected by a contour fit'ing transparent polystyrene case to protect against damage and dirt. This latter series is designed primarily for field use and are not quite as convenient for laboratory use as the 90605 thru 90608 types. All types have dials directly calitaruted in frequency.

Code	Description	Ne! Price
90604	Range 160 to 210 mc .	\$
90605	Range 3.0 to 10 mc .	
90606	Range 9.0 to 23 mc .	
90807	Ronge 23 to 60 mc .	
90608	Ronge 50 to ' 40 mc .	
90609	Range 130 to 170 me .	
90610 90619	Ronge 105 to 150 me . Ronge 350 to 1000 kc . -Neon Indicotor	
90620	Ronge 150 tc 350 kc .-Neon Indicotor	
90625	Ronge 2 to 6 me. - Neon Indicator	
90626	Range 5.5 to 15 mc . - Neon Indicator	
90300	Camplete set of 90605 thru 90608, in case	
90601	Complete set Field type Frequency Meters in metol corrying cose 1.5 to 40 me .	

DISTRICT SALES OFFICES

SEATTLE
V. Jensen 2616 Second Avenue INDIANAPOLIS V. MacNabb V. MacNabb
909 E. Westfield Bivd. 549 W. Washingtan Blvd, G, Ryan

DALLAS

Jack Yaunt 1431 Pleasant Grave Dr.

LOS ANGELES
W. Bert Knight

10373 W. Pica Blvd.
KANSAS CITY
J. O. Schmitz

34th \& Broadway Aves.

Newest Develapments IN FAMOUS ASTATIC MICROPHONES

HE NEWEST addition to Astatic's microphone line is the Model l0M5, a single button carbon unit offering new, rugged resistance to jolts and abuse, and a new level of performance quality. Ideal response for maximum speech intelligibility, 100 to 4,500 c.p.s. range. Has double-pole, single-throw switch, with relay and microphone circuits normally open (press-to-talk), can be adapted easily to a wide variety of circuits.

The new Astatic Model DK-1 offers output of approximately -55 db and excellent frequency range (rising characteristics between 2,000 and 5,000 c.p.s.), in a mike of tiny size that belies the full professional performance characteristics. Crystal element has moisture-proof coating.

Export Department: 401 Broadway, New York 13, N. Y. Cabio Address: ASTATIC, New York.

Astatic Crystal Devices manufactured under Brush Development Co. patents

Madel D. 104

ASTATIC CORPORATION CONNEAUT, OHIO

Beaterces of THE NEW 1952

PROOF OF THE NEW 0-7 OSCILLOSCOPE'S OUTSTANDING PERFORMANCE Below are actual. unretouched pherographs showing the outrenal.
 KIT OSCILLOSCOIL square wave -to the appeat on the screen. scope (only the
hest of scopes will show tries and the $\mathrm{thesc})$ andly comes through.

NEW STYLE AND BEAUTY Syle that's modern, yet funcrional -
ilar's the trend of widas-and Hion hat sthe trend of wida)- and Henththe are right up to the mentre Nowe cabiner show panel new V-5 Hend Aly

A STATEMENT FROM SIMPSON ELECTRIC CO.

in choosing Simpson Meters for their Heath standard the Heath Co. has set a new high quality of kit meter quality. The same high quality of material, workmanship and de. for building given Simpson the reputation rate" is tound instruments That Stay Accu. rate is found in the Heathkit Meter Move.
ment. SIGNED
SImpson electric co.

HEATHKIT PRECISION RESISTORS ues are sequired fo resistance Heath Co. has spared instrument accuracy the finest resistors and by no effort in supplying ers as manufactured by ble. Precision resistors and w'ilcor Corp. ontinental Carbon inc. meet the rigorous JAN iom size extemely specifications and ate smate have a low tem-spon-inductive, highly sad can be held to preas non-indure coefticient, and can be fomponents in accuracy. Heathkits.

A STATEMENT FROM CHICAGO TRANSFORMER is is indeed gratil-ing to note the outstand. ing saths sect Heahis saies success is readily understigh the since we are cognizant of he for quality standards you have your companeno Transformer are proud that our woduct has contributed popularity of nized qua
CHIC AGO TRANSFORMER DIVISION
Essex Wire Corporation
L. S. hacine

- - tomís

Vire-Pre:ident and Sales Manager

COLLEGES USE HEATMKITS

 Collegec and I'niversitice throwe our the country are ucine the He th. radio and phecicics laboratereting. Heathkite are the fabturatorice tene equipment te lou dor to goodbeing rugged plus curnce. Trade sependable, and actheir studenes build Dearhkitso cotain a first hand w.orts to knowledge of tess equipnent and co get the practical experienco sained by conseraction. Hearh. kits fill school necds. Hearh.

YOU SAVE BY ORDERIMG DIRECT FROM MANUFACTURER-USE ORDER BLANK ON LAST PAGE

YOU SAVE DY ORDERING DIRECT FROM MANUFACTURER-USE ORDER BLANK ON LAST PAGE

real buaty - youll bave onty highes pasic for VACUUM TLUBE VOLTME7ER. Truly a beautiful little instrument - and it's more tompact than any of our previous models. Note the new rounded edges on the front panel and rear cover. The stze is greatly reduced to occupy a minimun of spmce on your workbench - yet the meter remains the same large size with plainly marked scales.
A set ir quectilly designed control mounting brackets permit calibration o be performed with grearest ease - also miakes for ease in wiring. New battery muuating clamp holds ohms battery tightly into place. and base spring clip ianunes a good connection to the anms string of resistors.
The citcutity employs two vacuum tubes - A duo liode operating when AC. voltage meaverements are taken, and a tw in triode in the circuit at all times. The sathode balancing circuit of the twin triode assures sensitive measurements and yet offers complete protection to the meter movement. Makes the meter burn-out proof in a properly constructed instrument. Quaich ompunents are used throughout -1 er, precision resistors in he mult plie: curuit-conservatively rated power transformer--Simpson meter mevement - excellent positive derent. smoothacting switches sturdy cazine:, eri.
And ywu can make a tremendous range or measurements - 1 'V to 1000 V AC, 2 V to $1000 \mathrm{~V} \mathrm{DC}, 1$ to over 1 billior ohms, and DB. Has mid-scale 2 zto level marking for quick Fis alignment. DB scale in red for exsy dentification - all ocher scales a sharp crisp black for for ensy rading

A fout pirsition selector switch allows operator to rapidly set the instrument for rype or reading desired-positions include $\mathrm{ACV}, \mathrm{DC}+\mathrm{V}$, $\mathrm{DC}-\mathbf{V}_{\text {, and }} \mathrm{O}$-ms. DC - position allows negative volage to be rapidy tnker. Zero adjust and ohms adjust controls are conveniendy located on tront panel.

Eniny tie numierous advantages of using a VTVM. Its high input impedanee denern't "load" citcuits under tex - therefore, assures more accurate and dependable readings in high impedance circuits such as uesistarese coupled amplifiers, AVC citcuits, etc. Note the 30,000 VDC probe kit and the RF probe hit - available at low extra cost aru specially designed for use with this instrument. W'ith these twir probe, you can make DC voltage measurenents up to $30,000 \mathrm{~V}$. Cr nake RF measurements -adjed usefulness to an al ready highly useful instrument.

The instructen manual is absolutely complete - contains a host of figuecs, ructorials, schematic, detailed step-by-step instructions, and circuis description. These cleap, detailed instructions make assemily a cinch.

And every past is included - meter, all controls, pilor light. switches, iest le.ds, cabinet, instruction manuzl, etc.

- Ner siyling, - Formed case for beauty. high.
- Qualify 2011 microamp meter.
- New ohme batfery halding clamp and spring clip - assurance of good electrical contast.
- Hichest quality precision resistors in multiplier circuit.

Calib-ates on both $A C$ and $D C$ for maximum accuracy

- Terific coverage - reads from $1 /: V$ to $1000 \mathrm{VAC}, 1 / 2 \mathrm{~V}$ to $1000 \mathrm{~V} D C$, and 1 to over 1 billion ohms resistance.
- Large, clearly marked meter scales indicate ohms, AC Volts, DC Volts, and DB - has zero set mark for FM alignment.
- New styling presents attractive and professional appearonce.

THE Tlew 1952

3natuz

MODEL 0-7
SHIPPING WEIGHT 24 LES.

54350

Features

- New "spot shape" cantrol for spot adjustment - to give really sharp focusing.
- A total of ten tubes including CR tube and five miniatures.
- Cascaded vertical amplifiers followed by phase splitter and balanced Gush-pull deflection amplifiers
- Greatly reduced refrace time.
- Step aftenuated - frequency compensated - cathode follower vertical Hpu:
- L.ow impedance vertical gain control for minimum distortion

New mounting of phose splitter and deflection amplifier tubes near $C R$
tube base.

- Greatly simplified wiring layout.
- Increased frequency response - useful to 5 Mc
- Tremendaus sensitivity .03 V RMS per inch Vertical - . 6 V RMS per inch Morizontal.
- Dual control in vernier sweep frequency circuit - smoother octing.
- Positive or negative peak internal synchronization.

New Inexpensive Heatheit New Inxpensive frath ELECTRONIC SWITCH KIT

Feed

 The companion piece to a scope swich, contwo different signals ino scope, and you can nect its output to al scor each as an indiobserve both signals-cach input is easily - bidual trace. Gain of and 13 controts), the vet (gain A and gain in simple to adjust switching frequencequency controls) fomswitching and ine frequence(coarse ased for comthe traces can se sersed for individual
prarison or separal). (position control). Use the switch shift clipping due tor trices of an amplithe inpur and square wave generator over fier-ast range.
The kit is complece; all tubes. switches, cabinet, power transformer and construction parts. plus

Model S-2 Ib strmama Ondiy $\$ 19^{50}$

The performance of the NEW, LMPROVED
HEATHKIT 5" OSCILLOSCOPE RIT is truls
amazing. The $\mathbf{O - 7}$ not only compares favorably
With equipment costing 4 and 5 times as much. but in many tases literal. ly surpasves the really expensive equipment. The new, and carefully engineered circuit incorporates the best in electronic design - and a multitude of excelbint teatures all contribute to the outsanding performance of the new scene.
The VI:RTICAL CHANNEL has a step attenuared. frequency compensated vertizal input which fesds a cathode follouer seage - this input, and parstoved freyutney revponse, presents a high impadance menimum dissursion yertical gain conerol in a low impedance circuit for -cascaded amplifiers to contribute to the scope s extrenely high sumei tivity. Next comes a phase splitter sage which properly driven the pushpull, hi-gann, deflection amplifters 1 whove plates are directly coupled to the verical defection plates). This line tube lineup and ciscuitry give a sensitivity of 05 V per inch RMS vertical and useful frequency
response 5 S Afc. esponse to s Mc.
The HORIZONTAL CHANNEL consists of a triode phase splister with a dual potenemometer (horizontal gain control) in it plate horizontal deflection tor smooth, proper driving of she push in the vertical channel tal detlection amplifier plates are direct coupled to the (R tabe tal deflection amplifier plates are direct coupled to the (R tribe
Torizonsa delection plates (for improved frequency respanse).
The WIDE.RANGE SWEEP GENERATOR circuif iocorporates a thin triode multivibrator stage for producing a good saw-touth sweep trequency (with faster retrace lime). His both coarse and And the scope has internal ty.
And the scope has internal synchronization which aperates on cither positive or negative peaks of the input signal -both hiph lation) - tage retihers - 2 axis modulation (inten*ity raocujusment - new spot shape (astigmatism) control for spor for external synch centering and horizontal external synchronization - vertical contiol - and an intensity control for give, wide range focus brillance and an intensity control for giving plenty ot trace
The Model O.7 EVEN HAS GREAT NEW' MECHIANICAL FIATIRES - A special extra-w ide (R cube mounting bracket is Provided so that the vertical cascade amplitier, vertical phase splater, vertical deflection amplificr, and horizontal deflection ampliter can mount near the base of the CR tube. This permits close conrection between the above stages and to the deflection plate; distribured wiring, capacity is greatly reduced, thereby affording increased high frequency response. is electrostatic and eleceromagnetic fields to a minimum - also has an internal shield with external ground lead. You'll like the complete instructions show ing ill deraits for easily building the kit - includes pictorialt. step haby. step construckion procedure, numerous shetches, shematic circuit description. All necessary components includedtransformer, cabinet, all tubes (including CR culve) tompletely punched and formed chassis-nothing elve to buy.
 IMPEDANCE BRIDCE KIT

This Impedance !ridge K it is really a favorite with schools, induserial thatoruteres. and serious experimentes. An invaluathle instrument for those doing electrical measuremenes work. Reads resistance from . 01 Ohms (o) 10 meg. . Cap.sitance from . 0 (0001 to 100 MFD . inductance from 10 microhenries to 100 henries. dissipation fictor trom . 0012 to 1 , and storage lactor trom I to 1000 . And gou dont have to worry about selecting the proper bridge circuit tor the "arious measurements- the measurement you want Bridue utilizes Whearstone Hup. Maxwell, and capacitanse comparison ciruises fur the wile rape and tope measurements posilble. And it's sclf powered - has internal b.utery andi 1000 cyde hummer. Nos external generater required -has provisions for external kinerator if measurements at other that 1000 cycles are desired. Kit utilizes onls hig'zest quatity parts, General Radio main calibrated conerol. Mallory ceramic switches, excellent 201% microamp zerob center galanometer. haboratory type binding posses with stundard anch centers. 1'‘ precision cerumic-bods wpe multiplier resistors, beautful birch cabinct and ready calibrited punel. (Headphones not included.)
Take the guesswork out of electrical measurements - order your Heathkit Invedance Bridge hir today-you'll like it.

Featheit LABoratory POWER SUPPLY KITS Simite:

 of laboratory equipment - the Heathkit Resistance Deade Kit gives you resistunce settings from 1 to 99.999 ohms IN ONE OHM STEPS. Foy grenest accuracy.
shipping Wr. 4 lbs. wafer swirches are used Designed to match the Impedince liridge above. net and atractive panel. ht's eary to build. and comes complete with all parts and construction nianual.

Heathkit

 ECONOMY. . . 6 WATTAMPLIFIER KIT

Madel A-4
Ship. Wt. B tbs. plifier was designed to give cuality reproduction and yee remain low in price. Has two preamp stages. phase inverter stage, ard push-pull beam power output. Comes complete with six tuhes, qualits: ourput transformer (to 3-4 ohnt voice coil). husky cased power transformer and all other parts. Has tone and volume controls. Instruction manual has pictorial for easy assembly. Six wates ourput with response flat $\pm 1 \frac{1}{2}$ dh from 50 to 15,000 cycles. A quality amplifier kit at a low price, Better build onc.

No lood
25 MA 50 MA .
Higherloods V Every experimenter needs proporfionolly ply for electronic sctups a good prower sup. unit has been exprestly desiened kinds. This source. fuply and a 6.3 V filament volrieg fiv' ourput decired col allow's seliction of within limits outlined) antinuously varable switch provides outhined) and a Volss Mha A large plainly marked of output metering. meterge scala indy marked and direct mercring. pur in Volts or DC eitiler DC voltage nut. © Range of meter 0.500 V (D) outpur in Ma.
D. 0.200 Model PS-1 ... Ship. Wt. 20 lbs Comes with power transformer, filament transformer pilot lighe. detailed construction manual, conely nunched and formed massis, 3 Y 3 rectificr,

Heathkit HIGH FIDELITY. . . 20 WATT

AMPLIFIER KIT

Our latest and tinest amplifier - the model A.G (or A-6A) is capable of a full 20 Watts of high fidelie: output - good faithful reproduction made possible through, carcful circuit design and the use of only highest quatity coms ponents. Frequency rerponse within $\underset{=}{1} \mathrm{db}$ below m.ximum power ourput (at 1000 cycles) below m.ximum power output at iooi çces is only, R: The power transformer is rukged and conservatisely rated and with eleliver out pue ransformer was selected because of its put ranstormer was eelected because of tide exceptionally good requency response and hide range of output mimes). Boeh are Chicago Transformers in drawn stecel case for shielding and maximum protection to windings. The unit has dual tone
 \$3350. protection to windings. The unte has dual Shipping Wis. 18 Ibs. 1015 db as 10,000 cycles - thass conerol gives bassired - treble conerol attentuates up Trube complement consizes of SL'G revifier 6Ss boose us to 10 dh at so cycles. and phase spleter and wo blits in push-puli outnut Comes complete with all parts and detailed construction tomual. (Speaker not included.) MODEL A.6: Yor tuncr and crystal phono inpurs. Has two pocition selector switch for consenient switching to type of input desired.
MODEL A.6A: leatures an added GSy rage (preamplaficr) for operating from variable reluctance catridge phono peckup, mike input, and either tunce or standard crystal phono
pickup. A threc position selector switch provides fexible switching.
Shipping Wit.

YOUSAVE BY ORDERING DIRECT FROM MANUFACTURER-USE ORDER BLANK ON LAST PAGE accre mithon mint
 gane atisent

YOU SAYE BY ORDERING DIRECT FROM MANUFACTURER-USE ORDER BLANK ON LAST PAGE

Heathkit
 CONDENSER CHECKER KIT

SIG NEN Freatikit
 AND UNIVERSAL
 TRACER

Checks all types of condemers paper aric all comdenser - electrontic. Aeding and require no charts or multiphers. Covers range of (0)NOH MFD
 to lom and polarizing woltate tor 20 tor and 50 , and reads fetest and poarize electrolytics berween (1) the makic eye indicator sistance from 1001 oloms of 5 mekohms. The and comes com. makes testing eass. The kir is pllet other purts. Has clear detailed inseructions

Heathkit

TUBE CHECKER KIT

The Tube Checker is a MI ST for radio repair men. Often customets want to SEE rubes checked, and a checker like this huided customer contidence. In your expairing. you will have a multitude of tubes to check - quickly. The Heathkir tube checker will serve all these functions - it's good leoking (with a polished hirch cothinet and an atractive cwo color panel) -
 and the Hyeron 5 prong espes. AND ITS FAST TO gPERATE - the gear driven. freerumning roll chare lists hundreds of tubes, and the snoroth nctinge simplified switching atrangement gives really rapid set-ups.
The testing arrangement is designed so that you will bahle to teer new tuhes of the furure

You can give tubes a thorough testing-checks for oprns. sherte. each element individually. emission, and for filament continuity. A large lad- -GOOD meter scale is in three colors for cass reading and also has a "live ses" mart!

You'll find this tube checker kit a phod investment - and i's only $\$ 29.50$.

YOU SAVE BY ORDERING DIRECT FROM MANUFACTURER-USE ORDRE BLANK ON LAST PAGE
Two excellent Heathkits. Ideal for schools. replacement of worn out receivers, amateur and custom installations. Both are transformer operated quality units. The best of materials used throughout - six inch calibrated slide rule dial - quality power output transformers -dual iron core shielded. I. F. coils - metal cased falter condenser. The chassis has phone input jacks. 110 Volt output for phon motor and there is at phone -radio switch on panel. A large metal panel simplifying installation in usual console cabinets is included. Comes complete with tubes and instruction manual incorporating pictorials and step-by-step instructions (less speaker and cabinet). The three band model has simple coil turret which is assembled separately for ease of construction.

TRUE FM FROM

FM TUNER KIT

The Heathkit FM Tuner Model FM-2 was designed for lest tonal reproduction. The circuit incorporates the most desirable FM features -true 1:M
Utilizes 8 tubes: 7 E 5 Oscillator, $6 \mathrm{SH}^{-}$mixer, two $6 \mathrm{SH}^{-1}$ If amplifiers, 6 SH 7 limiter, two 7C 1 diodes as discriminator, and 6×5 rectifier.
The instrument is transformer operated making it safe for connection to any type receiver or amplifier. Has ready wound and adjusted RF coils, and \geq stapes of 10 .- Mc IF (including limiter). A calibrated six inch slide rule dial has vernier drive for easy tuning. All parts and complete construction manual furnished.

Model FM-2 Ship. Wt. 9 lbs.

All prices subject to Change without notice

wevdd toughest transformers wear these exclusive ONE-PIECE DRAWN-STEEL CASES

 CHIRABDNew Equipment Transformers

tough Sealed-in-Steel construction

When tougher transformers are made, chicacio makes them-in rugged, streamlined drawn-steel cases that provide the fullest enclosure and protection, that look well with other modern electronic components and enhance the appearance of the equipment. The exclusive chicago one-piece drawn-steel case (no seams or spot welds) is the strongest, toughest type of mechanical construction. Further. the one-piece design provides a continuous electrical and magnetic path which means better electrostatic and magnetic shielding. Seamless construction assures maximum protection against adverse atmospheric conditions means longer, more dependable transformer life.

Whether your transformers must pass the most rigid MIL-T-27 specifications or are intended simply for average, normal applications, it's wise to choose chicaco "Sealed-in-Steel" Transformers (the world's toughest) for that extra margin of dependability under all operating conditions.

Write for CHICAGO'S
"New Equipment" Cotalag Tadoy

Free "New Equipment" Catalog

Get the full details on CHICAGO'S New Equipment line-covering "Sealed-in-Steel" transformers designed for every modern circuit application. Write for your copy of this important catalog today, or get it from your electronic parts distributor.
*COMPLETE. There's a CHICAGO"Sealed. in-Steel" unit for every application: Power, Bias, Filament, Filter Reactor, Audio, MIL-T-27, Stepdown, Isolation-all in onepiece, drawn-steel cases.

* V VERSATILE. Available in 3 constructions to meet most requirements-o type for every application.
H-Type. Steel base cover is deep-seal soldered into case. Terminals hermetically sealed. Ceramic bushings. Stud-mounted unit. Meets all MIL-T- 27 specs.
S-Type. Steel base cover fitted with phenolic terminal board. Convenient numbered solder lug terminals. Flange-mounted unit.

C-Type. With 10^{*} color-coded stripped and tinned leads brought out through fibre board base cover. Flange-mounted unit.

CHICAGO TRANSFORMER
 division of essex wire corporation

3501 ADDISON STREET - CHICAGO 18, ILLINOIS

The products included on these six pages represent only part of the extensive JOHNSON line. Ask your distributor or write JOHNSON for complete catalog.

THE VIKING 1 TRANSMITTER KIT

Conservatively rated at 100 watts AM phone output, 115 watts CW. Incorporate features such as band-switching, crystal control or optional VFO input, pi-network outp funing and complete coverage of all amateur bands from 160 to 10 meters. In additio to amateur use, the Viking 1 is also designed to operate at frequencies assigned to man commercial services.

VFO drive requirements are very slight. Only six volts of 7.5 mc . RF is required for fu output at 30 mcs ., less for the 14 and 7 mc . bands. Two volts of 1.75 mc . VFO output ample excitation for 1.75 and 3.5 mc . output.

Delivering full output on phone with 115 volts $50 / 60$ cycle line voltage, the tran: mitter's power consumption is 350 watts. With line voltage between 105 and 120 volt performance is satisfactory.

In addition to being a completely self-contained, compact, and efficient 100 wa transmitter, the Viking I can be used as a driver for a kilowatt amplifier. Full output a the modulator is available at a nominal 500 ohms impedance.

Clear, complete, easy-to-follow instructions make assembly easy-assure perfec performance. Everything needed is included. No holes to drill, every part is furnishe including cabinet, wiring harness, screws, nuts, washers, solder terminals, wire, gromme -everything! See it at your jobbers today-or write for literature.

Tube Line Up

6AU6 crystal oscillator 6AQ5 buffer/doubler 4D32 final amplifier

6AU6 voltage amplifier 6AU6 driver 807 pp modulators

240-101 Complete, less tubes, crystals, key, mike

THE VIKING VFO KIT

The JOHNSON VFO is designed for simple plug-in connection to the Viking 1 but readily adapted to many similar transmitters. It provides output in excess of the require ments of the Viking 1 listed above. Two separate, temperature compensated tank circui cover $1.75-2.0 \mathrm{mc} ., 7.0-7.425 \mathrm{mc}$. and 6.7 to 7.0 mc . Intended for use with frequenc multipliers, the oscillator is calibrated for the amateur bands from 160 thru 10-11 meter Screen valtage regulation, rigid construction, ceramic insulated air dielectric high and lo, frequency trimmers contribute to exceptional stability and lasting accurate calibratio Keying is clean and sharp.

Tube complement consists of a 6AU6 electron coupled oscillator and an OA2 regulato When used with the Viking 1, voltage requirements are supplied from VFO power socke on transmitter. If used with other transmitter, VFO requires 250 to 300 volts DC unregi lated at 15 ma . and 6.3 volts at .3 amps ., $A C$ or $D C$.

Assembly is simple and all necessary parts are supplied.
240-122 VIKING VFO KIT, Complete, less tubes, in dark maroon finished cabinet match Viking 1 size $7^{\prime \prime} \times 678^{\prime \prime \prime} \times 6^{9} / 6^{\prime \prime}$.

Amateur Net \$42.7

UNIVERSAL ROTOMATIC ANTENNA

Universal because its consfruction permits use of a variety of different combinations an types of beams. Main boom alloy steel tubing to which elements are attached with specic clamps allowing any spacing or combination of elements

Rotomatic - the deluxe Rotator. Simple to erect-built to last a lifetime. Heavy ove size gears, bearings, shafts. Precision throughout. Remote control box with selsyn directio indicator. Weatherproof RF relay for switching of dual beams.

Fully adjustable aluminum alloy parasitic elements, heavier walls and larger diamete to withstand high winds and ice loading. High gain and front to back ratio.

Many combinations of single or dual arrays are available up to 4 elements on 1 meters, 3 elements on 20 meters. Write for Catalog 704 for complete information. 138-111. Rotator complete with motor \& control box. 138-108. Weatherproof antenna relay for dual beams.

ANTENNA ACCESSORIES

Cat. No.	Dia.	Break. Sirng.	Lgth.	Cat. No.	Net Lgth.	Overa
136-104	$5 / 8^{\prime \prime}$ sq.	400 lbs .	4"	136.151*	$8^{\prime \prime}$	$151 / 2$
136-107	$1 \prime \prime$	800 lbs .	$7{ }^{\prime \prime}$	136.152	12''	191/2
136.112	$1 \prime$	800 tbs .	12"	136-153	20"	$251 / 2$

-104

E. F. JOHNSON COMPANY

 WASECA, mINNESOTA5R4 HV rectifiers 5Z4 LV rectifier 6AL5 bias rectifie
Amateur Net \$209.5

a fomane conme ic Tadio ≤ 1

VARIABLE CONDENSERS

Partial Listing

This is a partial listing of the large JOHNSON line of quality condensers. Several types e not shown, likewise many additional sizes are available in most types. All types iploy excellent steatite insulation. Approximate flashover voltage is 100 x final numals in catalog numbers, (except Type N). "L" dimension is overall length less shaft tension.

TYPES C and D

ardy rigid construction at law cos!! Aluminum plotes .051 thick, rounded edges. Ponel space pe C, $51 / 2^{\prime \prime}$ wide $\times 5 \% /^{\prime \prime}$ high, Type D, $41 / 4^{\prime \prime}$ wide and $4^{\prime \prime}$ high.

TYPEC-Single Section					TYPE C-Dual Section				
${ }_{1}{ }^{\text {No}}$	Max. Cap.	Air Gop	Number Plates	1		max. Cop.	Air	Number	
$50 C 70$. 252	. $175^{\prime \prime}$	24	$6^{13 / 16}$	Cat. No.	Per Sec.	Gop		1
joc70	496	$.175^{\prime \prime}$	47	$123 / 16$	$300 C D 70$	305	.175"	29	$1625 / 0$
50 C 90	337	. $2500^{\prime \prime}$	43	$1427 / 32$	$150 C D 90$	147	. $250^{\prime \prime}$	19	$1427 / 32$
jc110	51	$.350 \prime \prime$	8	425	$50 C D 110$. 50	$350 \prime \prime$	8	105/16
30C130	102	$500^{\prime \prime}$	21	13^{113}	$100 C D 110$	$.103$	$.350^{\prime \prime}$	17	$\begin{aligned} & 18^{25 / 32} \\ & 14^{275 / 20} \end{aligned}$
					$50 C D 130$	$.51$	$.500^{\prime \prime}$	10	$1427 / 32$
TYPE D-Single Section					TYPE D-Dual Section				
DOD3 5	. 496	.080 ${ }^{\prime \prime}$	39	$8^{25} 32$	5000035	496	.080'1	39	$1311 / 3$
50045	. 146	. $125^{\prime \prime}$	17	$4^{25 / 32}$	1500045	. 155	$.125^{\prime \prime}$	18	913/30
OD7 0	. 72	. $175^{\prime \prime}$	11	4^{25}	50DD70	. 52	$.175^{\prime \prime}$	8	$513 / 16$
00070	98	. $175^{\prime \prime}$	15	$4^{25} 32$	700070	. 72	.175'"	11	711/16
50070	244	. $175^{\prime \prime}$	37	105%	1000070	. 97	$.175^{\prime \prime}$	15	$913 / 38$
00090	. 99	. $250{ }^{\prime \prime}$	19	711/16	1500070	.151	.175"	23	$13^{11 / 32}$
50090	. 149	. $250{ }^{\prime \prime}$	29	105/16	500090	+ 52	.250'	10	913/3

TYPES E and F

Rugged campact units far low and medium pawer transmitters. Aluminum plates .032 thick, raunded 'ges. Stainless steel shofts. Panel space, Type E, $2^{5 / h^{\prime \prime}}$ square, Type F, ${ }^{1} / h^{\prime \prime}$ square.

TYPE E-Single Section
at. N

SOF No.

5OE2O
OOE2O
OOE 20
OOE 30
OOE3O
SOE3O OE45 SOE45

Max.	Air	Number
Cap.	Gap	Plates
.353	$.045^{\prime \prime}$	33
$\ldots 488$	$.045^{\prime \prime}$	45
$\cdots 100$	$.075^{\prime \prime}$	15
$\cdots .251$	$.075^{\prime \prime}$	37
$\cdots 53$	$.125^{\prime \prime}$	12
$\cdots .145$	$125^{\prime \prime}$	33

TYPE F-Single Section
OOF20
$50 F 20$
$00 F 30$
OOF30 50F30

TYPE E-Dual Section

1		Max. Cop.	Air	Number	
$3^{17 / 32}$	Cot. No.	Per Sec.	Gap	Plotes	1
41532	300ED 20	. 312	.045"	29	621/32
29/16	100ED30	99	.075"	15	51/2
$4^{13 / 16}$	150 ED 30	. 153	. $075^{\prime \prime}$	23	71/16
231520^{315}	200ED30	. 198	. $075^{\prime \prime}$	29	83/8
$8^{3} / 2$	50ED45	52	.125"	12	$63 / 12$
	100 E 45	$\cdots 100$	$.125^{\prime \prime}$	23	9\%12
TYPE F-Dual Section	TYPE F-Dual Section				
21/4	100FD20	. 104	. $045^{\prime \prime}$	17	$423 / 3$
27/	150FD20	. 153	.045"'	25	6
3^{19}	$70 F D 30$	66	. $075^{\prime \prime}$	17	$523 / 38$
47/3	100FD30	. 99	.075"	25	7/32

TYPE M MINIATURE

Smallest ever built, yet taps in accuracy. ideal for VHF, miniature test equipment, elc. Panel space

Single			Differential			Butierfly		
	Capacity			Copacily			Copacity	
Cor. No.	Max.	Min.	Cot. No.	Max.	Min.	Cot. No.	Max.	Min,
iM11.	5.1	1.5	6 MA 11	5.0	1.5	3 MBII	3.3	1.7
IM 11	8.7	1.7	$9 \mathrm{MAl1}$	8.6	1.8	5 MBII 1.	5.3	2.1
5M11	. 14.6	2.1	15 MA 11	. 14.2	2.3	9 MBII	8.5	2.7
!OM11.	. 19.7	2.6	$19 \mathrm{MAl1}$. 19.6	2.7	$11 \mathrm{mbl1}$	11.0	3.2

TYPE

Ceramic soldered-na evelets or rivets ta loasen. All brass, soldered canstructian. "Bright allay, ilated. Ideal for rough service. Panel space $13 / 3^{\prime \prime}$ square. Air gap $.030^{\prime \prime}$; also furnished in $.020^{\prime \prime}$ $260^{\prime \prime}$ and $.080^{\prime \prime}$. In addition to those listed, alsa ovailable in Differential types.

Single End Plate				Dual Section			
Cot. No.	Cop. P Mox.	Sect. Min.	Number Plates	Cot. No.	Cop. per Max.	Sect. Min	Number Plates
10L15		2.8	3	$25 L 015$	27	3.5	7
25L15	27	3.5	7	50LD 15	51	4.6	13
50L15	51	4.6	13	100LD15	99	6.8	25
F5L15		5.7	19	utterfly			
Double End Plote				10LB15	10.5	2.8	5
100115	99	6.8	25	254815	26	4.3	12
200L 15	202	11.6	51	50LBI5	51	6.5	23
YPE N				trpe G			
Smafl maunting space requirements, extremely iigh valtage roting and fine adjustment make hese neutralizing condensers ideal.				Extremely popular as neutralizing condensers for medium and law pawer slages. Also widely used for grid and plate funing at high frequencies.			
Copocity				Cot. No. Cop. per Sect. Max. Min. Spacing			
N: 25	11.0	1.1	. $125{ }^{\prime \prime}$	13G45	13	4.7	. $25^{\prime \prime}$
N250	10.6	1.4	. 250 "	$6 \mathrm{G7} 0$	5.7	3.5	.225"
N375	10.7	1.7	.375"	$12 \mathrm{G7O}$	12	6	225"

Dual Section

TYPE G
Extremely popular as neutralizing condensers for medium and law pawer slages. Also widely

E. F. JOHNSON GOMPANY

 waseca, minnesota
NEW JOHNSON KNOBS \& DIALS

Featuring fresh, odvanced styling, these new JOHNSON models will enhance the appearance of your equipment. Molded phenolic knobs have 12 well defined flutes, large gripping area. Knob faces slightly convex, sides slightly tapered to contribute to pleasing appearance. Beautiful satin chrome scales that will retain their new appearance indefinitely. Each knob and dial has brass set screw insert molded in place. Special models available on quantity orders.

Knob Diom	Shoft Diom	Knob Only Cat. No.	Spinner Knob Cot. No.	Knob with Phenolic Skirt		Knob with Chrome Diol			
$\begin{aligned} & 23 / 8^{\prime \prime} \\ & 23 / 8^{\prime \prime} \end{aligned}$	$\begin{aligned} & 1 / 1^{\prime \prime} \\ & 3 / 8^{1 \prime} \end{aligned}$	$\begin{aligned} & 116-280 \\ & 116-280-3 \end{aligned}$	116-286	116-281	$3^{\prime \prime}$	116-282	$4^{\prime \prime}$	0-100	180°
$15 / 20$	$1 / 4{ }^{\prime \prime}$	$116-260$	116-266	116-261	21/16"	116-262	$23 / 4{ }^{\prime \prime}$	0-100	180°
$11 /{ }^{\prime \prime}$	$1 / 4$ "	116-220	116-226	110-221	$11 / 2^{\prime \prime}$	116-222-1	$11 / 2^{\prime \prime}$	100-0	180°
11/6"	1/4"					116-222-2	$11 / 2^{\prime \prime}$	0-10	270°
11/'	$1 /{ }^{\prime \prime}$					116-222-3	$11 / 2^{\prime \prime}$	1-7	180°
11/"	1/4'					116-222-4	11/2"	On-aff	60°
11/8"	1/4"					116-222-5	$11 / 2^{\prime \prime}$	Indicat	

JOHNSON Counter-Dial

A positively calibrated drive for rotary variable inductors and other multi-turn devices. Records up to 99 turns. Vernier dial calibrated 0.100 over 360°, making possible an accurate return to any pre-determined setting. Complete with JOHNSON 116-286 "spinner" knob and attractive black phenolic escutcheon.
116-208-1 Counter-dial with built-in dial lock. List Price \$17.00
116-208-4 Same as above without dial lock. List Price $\$ 15.00$
ESCUTCHEON of black phenolic. For back-of-panel dial plate mounting. Opening $1 \frac{1}{4}$ w. $\times 7 / 8^{\prime \prime} h$. Overall size $21 / 4^{\prime \prime} \times 1^{11 / 1 o^{\prime \prime} \text {. }}$

Cat. No. 116-201, List Price \$1.00

AIR WOUND HAM INDUCTORS

JOHNSON Air Wound Ham Inductors provide a degree of efficiency never before available in commercially produced coils for the amateur. This "broadcast" efficiency is possible because there is a model designed to match the impedance of each tank circuiteither high voltage low current or low voltage high current tubes.

Efficiency is further increased because coil windings are a wire-size larger thon on most avoilable inductors-resulting in less heoting, lower loss with consequent higher efficiency.

JOHNSON Ham Inductors ore built to give mony yeors of efficient service. Coil windings ore Formex-coated for better insulation ond color preservotion ond JOHNSON quolity is opparent in the Steotite jock ond plug bors ond the crystol cleor polystyrene coil supports and spocers. All JOHNSON inductors ore conservotively rated.

The Swinging Link type inductors permit instant ond perfect matching of inductor to

150/500FL8. 150,500 Wall Brackes. 1000FL8. 1000 Wall Bracket.

"Plug-In" Swinging Links

Fixed Swinging Links				"Plug-In"'Swinging Links			
Cot. Ne.	No. Turns	Cot. No.	No. Turns	Cot. No.	No. Turns	Cot. Ne.	No. Turns
150/500FL 12	12	1000FL 10	10	150/500SL 12	12	1000SL 10	0
150/500FL 5	5	1000FL 5	5	150/500SL 5	5	1000SLS	5
150/500FL2	2	1000 FL 2	2	150/500SL2	2	1000SL2	2

FARADAY SHIELD

Designed for JOHNSON Plug-in links, eosily installed on others including non-plug-in types. Screen is metallic ploting on polystyrene.
transmission line thus preventing wosteful dissipation of power.

With these fine JOHNSON Ham Inductors ond "plug-in" Swinging Link Assem. blies, the omoteur con instantly match coil to tube and link to line.

Swinging Lirk Coils

Cat. No.	Cat. No.	Cat. No.	Jack Bar Assemblies			
1000 HCS 160	500 LCS 160	$150 \operatorname{CS} 160$				
10001 CS 160 1000 HCS 80	500 HCS 80 500 LCS 80	150 HCS 80	Wotts:	$\begin{aligned} & 150 \\ & 150185 \end{aligned}$	500 J 8 S	$1000 J 8$

Swinging Link Arm Assemblies
$150 / 5005 L \mathrm{~A}$. For 150500 Watl Induciors. $10005 L A$. Far 1000 Woll Inductars.

Brackets

For Semi-Fixed Link Inductors.
HCS-Inductors match high valtage, low current tubes-swinging link type.
LCS-Inductors match low valtage, high current tubes-swinging link type.
HCF-Inductors motch high voltoge, low current tubes-semi-fixed link.
LCF-Inductars match law valtage, high eurrent tubes-semi-fixed tink.

Jack Bar Assemblies

 Cat. No.: $150385 \quad 500 \mathrm{J8S} \quad 1000 \mathrm{J8S}$ OLCS80 50 HCS 4050 HCS 40
50 LCS 40 50 HCS 20 150 LCS 20 150H/LCS14 150H/LCSIO 150H/LCS6 $1000 \mathrm{H} / \mathrm{LCS} 10$ 500 HCS 160 150 HCS 160
-

Also ovailoble as semi-fixed link cails in power ratings of 150,500 and 1000 watts.

Fixed Swinging Links

TUBE SOCKETS

Highest Quality Sockets for Every Applicatian

123-206. Industrial Bayonet, Steatite, Silver plated beryllium copper contacts. Base is 4 pin super jumbo. Tension springs in shell.
123-209. Medium 4 pin bayonet, white glazed porcelain base, metal shell, heavy phosphor bronze side wiping contacts. $2^{13 / 16}{ }^{\prime \prime}$ Dia.
123-2095B. Same as -209 but with Steatite base and beryllium copper contacts. 123-210. Same as -209 except contact to shell spacing not as great. $21 / 2^{11}$ Dia.
123-211. Standard 50 watt type. Similar to -209 but with double filament contacts. $33 / 8^{\prime \prime}$ Dia.
123-2115B. Same as -211 but with Steatite base and beryllium copper contacts. 124-212. Steatite socket for RCA833 or 833A. $51 / 8^{\prime \prime}$ plate leads.
123-216. Giant 5 pin Bayonet. For tubes such as 803, RK28. 33/4 ${ }^{\prime \prime}$ Dia
123-2 16SB. Same as -216 but with Steatite base and beryllium copper contacts.
124-213. For Eimac 152 TL and 304 TL . Contacts arranged for either series or parallel
filaments.
124-214. For Eimac 1500 TH , with air cooling jet.
124-215. For 250 watt tubes such as 204A, 849, etc. The plate terminal has a "satety cup" which prevents accidental dislodgement.

Wafer Types

Steatite, top and sides glazed. Brass contacts with steel springs cadmium plated.
122-217. 7 pinsmall. $\quad 122-225.5$ pin. 122-227. 7 pin medium. 122-224. 4 pin. 122-226. 6 pin. 122-228. Octal socket. 122-237. Giant 7 pin Steatite wafer. For Xmitting tubes such as HK257 and RCA813.

With $34^{\prime \prime}$ diam. ventilating hole (not iliustrated) in base.
122-247. 7 pin Steatite for tubes such as 826. Etched aluminum shield.
122-244. 4 pin Steatite. Super jumbo base tubes such as 8008 .
122-101. 7 pin Steatite wafer with shield, retainer springs and provision for mounting button mica by-pass capacitors. Designed for VHF use with tubes such as 832.
122-275. Giant 5 pin Steatite wafer socket for 4-125A, RK48 tubes. Ventilation holes in base.

Miniature Sackets

120-267. all ceramic, 7 pin, 120-277B with shield base, 7 pin. 133-2775. shield base only.

Shields

133-278A. $13 / 8^{\prime \prime}$ High, N.P. Brass 133-278B. $13 / 4^{\prime \prime}$ High, 133-278C. $21 / 4^{\prime \prime}$ High,

Acarn Type

121-265. Steatite acorn socket. Silver plated beryllium copper contacts.

CRYSTAL SOCKET

Steatite, DC-200 treated, for $.050^{\prime \prime}$ pins spaced $.486^{\prime \prime}$, single $1 / 8^{\prime \prime}$ mounting hole phosphor bronze contacts.
126-105. Crystal Socket.

CRYSTAL SELECTOR

Ten frequencies with a twist of the knob with extra position for ECO. Accommodates crystals with $1 / 2^{\prime \prime}$ spacing. With adaptors also takes $3 / 4^{\prime \prime}$ spaced holders. Bracket permits vertical or horizontal mounting.

126-220-1. Instant Crystal Selector.
126-120-1. Crystal Mounting Board only.

COUPLINGS AND SHAFTS

JOHNSON insulated shaft couplings provide maximum voltage breakdown and superior strength. Glazed Steatite insulation except -264 which is phenolic.

| Cat. No. | Mod.
 Peok Volf. | Dio. |
| :---: | :---: | :---: | :---: | :---: | :---: |

Panel Bearings. For $1 / 4^{\prime \prime}$ shaft. Up to $3 / 3^{\prime \prime}$ panels.
115-255. Panel bearing only.
115-256. Bearing and $3^{\prime \prime}$ shaft.
115-2562. Bearing and $8^{\prime \prime}$ shaft.

Flexible Shofts

Non-rusting phosphor bronze, with $1 / 4^{\prime \prime}$ hubs, for connecting out of line control shafts.
115-254. $6^{\prime \prime}$ long.

E. F. JOHNSON GOMPANY

WASECA, MINNESOTA

INSULATORS AND BUSHINGS

JOHNSON insulators are especially designed for high frequency use. They are made of superior grade low absorption, well glazed electrical porcelain or Steatite. They are accurately molded and furnished with hardware of high grade nickel-plated brass. Use JOHNSON insulators with confidence. " H " dimension is height of ceramic above panel.

Stand-Off Insulators

SteAtite

Steatite Cone Insulators

PORCELAIN
135-53..............13/4" $135-54$
Mounting flanges not included. See $135-90$ and 135.91 below

BOWL INSULATORS

Electrical glass, $615 / 6^{\prime \prime}$ OD, $43 / 0^{\prime \prime}$ high. Fittings include $1 / 2^{\prime \prime \prime}$ stud, nuts and washers, corana shields mountina flonges and gaskets.

> Single 8awl $135-15-0$. Bowl only $135-15-1.101 / 4$ stud

Two 8owls
135-15-3. 16" stud
$135-15-7.24^{\prime \prime}$ sfud

MOUNTING FLANGES

Cat. No.
135-90 for bushina No. 135-53.
Cot. No.
135-91 for bushing No. 135-54.

PILOT LIGHTS

A partial listing of the basic JOHNSON pilot light types in greatest demand. Jewel colors available are red, green, blue, amber, opal and clear.

Cat. No.	Jewel	Socket	Cor. No.	Jewel	Socket
147-100	1"Faceted	Min. Scr.	147-800	1 " Faceted	Min. Scr.
147-101	1 's Smooth	Min. Ser.	147-801	1'Smooth	Min. Scr.
147-103	1"Faceted	Cond. Ser.	147-802	1'Faceted	Cand. Scr.
147-104	1''Smooth	Cond. Ser	147-803	1"Smooth	Cand. Ser.
147-106	1 " Faceted	Min. Bay.	147-804	1" Faceted	Min. Bay.
147-107	1' Smooth	Min. Bay.	147-805	1" Smooth	Min. Bay.
147-300	$1 / 2^{\prime \prime}$ Faceted	Min. Scr.	147-1000	1 " Faceted	Cand. Scr.
147-301	1/2"\% Smooth	Min. Ser.	147-1001	1"Smooth	Cond. Scr.
147-303	$1 / 2^{\prime \prime}$ Faceted	Cand. Ser.	147-1002	$1^{\prime \prime}$ Color Disc	Cond. Ser.
147-304	$1 / 2^{\prime \prime}$ Smooth	Cand. Scr.			
147-306	$1 / 2^{\prime \prime}$ Faceted	Min. Boy.	147-1217	1" Lucite	Cand. Scr.
147-307	$1 / 2^{\prime \prime}$ Smooth	Min. Boy.	$\begin{aligned} & 147-1218 \\ & 147-1219 \end{aligned}$	1" Lucite \|" Lucite	Min. Bay. D.C. Bay.
147-400	1/2" Faceted	Min. Ser.			
147-401	$1 / 2^{\prime \prime}$ Smooth	Min. Ser.	147-1600	1" Bullseye	Cand. Ser.
$147-403$	$1 / 2^{\prime \prime}$ Faceted	Min. Bay,	147-1604	1" buliseye	S.C. Bay.
147-404	$1 / 2^{\prime \prime}$ Smooth	Min. Bay	147-1605	1 '/ Bullseye	D.C.Bay.

SPEED-X KEYS, PRACTICE SETS, BUZZERS

Standard SemiAutomatic Keys

Improved model, heavy steel base, rubber feet. Chrome plated vibrator and hardware. Five adjustments, lowest and highest speeds. Circuit closing switch. Adjustable paddles.
114-500. $1 / 6^{\prime \prime}$ contacts, block wrinkle base. 114-501. $1 / 4^{\prime \prime}$ contacts, polished chrome base 114-501L. Same os $\mid 14-501$ except! left handed.

Amateur Special Model SemiAutomatic Key

Ham favorite, rubber feet, $1 / 8^{\prime \prime}$ coin silver contacts, chrome plated hardware and vibrator, black wrinkle base.
114-515. Amateur model, semiautomatic.

Amateur SemiAutomatic Key

With Switch

Similar to Amateur Special but has circuit closing switch. Smaller, less weight. 114-510. Semi-Automotic with switch.

Heavy Duty Keys

Chrome plated key arm. $1 / 4^{\prime \prime}$ coin silver contacts. Navy knob.
114-320. Black wrinkle enamel base. 114-321. Polished chrome plated base.

Standard Keys

High quality, low cost. Provision for plugging in semi-automatic key. $1 / 8^{\prime \prime}$ coin silver contacts.
114-310. Black wrinkle, less switch.
114-31OS. Black wrinkle, with s with.
114-391. Chrome plated, less switch.
114-3115. Chrome plated, with switch.

Molded Base Keys

Black phenolic base. $1 / 8^{\prime \prime}$ coin silver confacts. Metal parts nickel plated.
114-301. Less switch.

Practice Keys

For beginners. $1 / 8^{\prime \prime}$ coin silver contacts. 114-300. Molded brown phenolic bose.

Practice Set

Constant frequency buzzer \& key mounted on $4^{\prime \prime} \times 6^{\prime \prime}$ phenolic base.
114-450. Code practice set.

Constant Frequency Buzzer

Fully adjustable, holds frequency. Uses 2 dry cells or "C" battery.
114-400. Constant frequency buzzer.

PLUGS AND JACKS

Banana Spring Type

Accurately turned from brass, with milled nuts and tinned terminals. Nickel plated. Nickel-silver springs (other metals optional). Low contact resistance, high current capocity.
-75 series plugs fit -74 series jacks, -77 series plugs fit -76 jack. -7451 and -7452 hove molded phenolic heads.

JACKS

108-74. $1 / 4-28 \times{ }^{17 / 32}$ thread.
108-7451. $1 / 4-28 \times 1 / 2$ thread, red.
108-7452. $1 / 4-28 \times 1 / 2$ thread, black.
108-76. $1 / 6-24 \times 15 / 16$ thread.

PLUGS

108-75. 6-32 $\times 3 / 3$ thread.
108-75A. 6-32 x $3 / 4$ thread.
108-75B8. $3 / 8 \times 11 / 8$ handle, black.
108-7 5BR. $1 / 1 \times 13 / 8$ handle, red.
108-75C. 6-32x5/6 screw.
108-77. 10-32 x 5/b thread
108-77A. $10-32 \times 3 / 4$ screw
108-77BB. $5 / 1 \times 13 / 4$ handle, black. 108-77BR. $5 / 3 \times 1 \frac{1}{4}$ handle, red.

Tip Jacks and Plugs

plastic head flip Jacks

Attractively colored strong Plaskon heads, accurately threaded $1 / 4-32$ with milled hex nut and insulating washers for $3 / 8$ hole.

Heavy duty type. Nickel plated brass body molded into phenolic head. $5 / 16-40$ thread, and insulating washers for $3 / 8$ hole. No. 105-418. Red No. 105-419. Black All Metal Tip Jock
Nickel plated brass, 5/ho hex head, 1/4-32 thread, with insulating washers for $3 / 8$ hole. 105-1 similar but headless, no nut nor washers, for mounting in $1 / 4-32$ lapped panel hole.
No. 105-417
No. 105-1

Solderless Tip Plugs

No. 105-15. 13/16 prong
No. 105-415. $9 / 16$ prong
No. 105-14. Long, sharpened point

RF CHOKES

JOHNSON RF chokes have high reactance over the range for which they ore designed Coils are of enamelled silk covered wire impregnated with high grade RF lacquer and are wound on Steatite cores. Current ratings may be increased for intermittent use.

Cat. No.	Frequency	Current	Inductance	DC res.	Length
$\mathbf{1 0 2 - 7 5 0}$	$1.7-30 \mathrm{mc}$	150 mo	.83 mh	15	$11 / 2^{\prime \prime}$
$\mathbf{1 0 2 - 7 5 2}$	$1.7-30 \mathrm{mc}$.	500 mo	1.0 mh	5.2	$272^{\prime \prime}$
$\mathbf{1 0 2 - 7 5 4}$	$1.7-30 \mathrm{mc}$.	750 mo	1.9 mh	4	$43 / 6^{\prime \prime}$
$\mathbf{1 0 2 - 7 6 0}$	Uliro.high	250 mo	6.8 microhy	.33	$1 / 2^{\prime \prime}$
$\mathbf{1 0 2 - 7 6 2}$	Ultrahigh	1.50.	19.0 microhy	.30	$27 \mathrm{~s}^{\prime \prime}$

For almost two decades Eimac transmitting tubes have been the undeniable choice of performance-conscious amateurs as well as of commercial electronic engineering groups. These two decades are important because during this time the electron art has undergone great changes and advancement. Throughout this period Eimac tubes have proved them-selves-proved themselves not only under normal but also under adverse conditions where other tubes failed.

Eimac tubes are available for all amateur power categories. Invariably their use allows considerable economies in associated circuit and driver stages - this is especially true in the case of Eimac tetrodes.

Complete technical data, prices, and other valuable application information is available without cost or obligation. Write Amateur Service Department, Eimac, San Bruno, California.

JUST OFF THE PRESS. A handy book to have around the shack, "The Care and Feeding of Power Tetrodes", price 25 cents. It's all the name implies. Twenty-eight pages jampacked with helpful information.

EITEL-MCCULLOUGH, INC.
SanBruno, California
Export Agents: Frazar \& Hansen. 301 Clay St., San Francisco, California

DE LUXE RELAY RACKS

These relay racks are made of 16 gauge steel with $1 / 8^{\prime \prime}$ panel supports. The panel mounting supports are recessed so that no edges of the panel will be exposed. Supplied in 4 sizes. The overall width is $22^{\prime \prime}$ and the depth is $171 / /^{\prime \prime}$ on all sizes. Panel spaces range from $368^{\prime \prime} \times 19^{\prime \prime}$ to $77^{\prime \prime}$ $\times 19$ ". A special feature is the use of four sturdy supports on the bottom so that casters can be fastened directly to the base, thereby achieving ready mobility.

DE LUXE CABINET RACKS

Furnished in 9 sizes. Width is $22^{\prime \prime}$ and depth is $143 / 4^{\prime \prime}$, Will accommodate 19" panels. "No-scratch" extended metal feet are embossed on the bottom to minimize marring of a table top.

TELEPHONE TYPE RELAY RACKS

Made in 3 sizes. (1) $351 / 2^{\prime \prime}$ height $\times 22^{\prime \prime}$ depth $\times 311 / 2^{\prime \prime}$ panel space: (2) $701 / 2^{\prime \prime}$ height x 22" depth $\times 661 /{ }^{\prime \prime}$ " panel space; (3) $721 / 2^{\prime \prime}$ height $\times 15^{\prime \prime}$ depth $\times 661 / 2^{\prime \prime}$ panel space. The first two sizes are made of $1 / s^{\prime \prime}$ steel and the third size of heavy duty channel and $3_{*}{ }^{\prime \prime}$ angle iron.

STANDARD RELAY RACK PANELS

Steel panels available $1 / 8^{\prime \prime}$ thick. 19" wide in heights from $13 / /^{\prime \prime}$ to 21^{\prime}. Aluminum panels available in same sizes but made in $1 / 8^{\prime \prime}$ and $3 \mathrm{~m}_{0}{ }^{\prime \prime}$ thickness.

ADD-A-RACK SERIES
Made to fit any of the four sizes of our De Luxe Relay Racks.

It has always been necessary to buy special racks without louvers on one side to obtain a maximum of panel space with a minimum of floor space. Now, you no
 a whole new cabinet when you want additional panel space. Through our new and exclusive Add-a-Rack series, BUD not only offers additional racks at a lower cost, but provides you with a sturdier, better looking assembly.

The illustration at top shows two Add-a-Rack cabinets assembled together. The illustration below shows the unique and ingenious method of adding a unit to your present equipment. Instead of buying an entire new outfit, you purchase only four parts: (1) a door (2) a top (3) a bottom and (4) an Add-a-Rack coupling-unit. The right (or left) hand side of your present relay rack is removed and replaced by the Add-a-Rack coupling-unit; next, a top and bottom is fastened into place, and the side taken from the first rack is fastened onto the second rack which has been added. Place the additional door into position and you have two racks properly and efficiently coupled together. In the same simple way, more racks can be added at any time and every one will be in a CONTINOUS ONE-PIECE assembly.

This series is available in two ways. (1) a double unit consisting of two racks and the Add-a-Rack coupling unit, (2) Add-a-Rack unit, consisting of a door, a top, a bottom and an Add-a-Rack coupling-unit. These units are furnished with all necessary as sembling and panel mounting hardware.

HEAVY DUTY CHASSIS

(Furnished with Bottom Plates)
These chassis, made of heavy gauge steel, are intended for applications requiring unusual sturdiness and where large weights are involved. Available in either Black Wrinkle finish or Electro-Zinc Plate.

Black Wrinkle	Zinc Plated			
Cat. No.	Cat. No.	Depth	Width	Height
CB-1757	CB-1764	$8{ }^{\prime \prime}$	$17^{\prime \prime}$	$2^{\prime \prime}$
CB-1758	CB-1765	$8^{\prime \prime}$	17'	$3^{\prime \prime}$
CB-1759	CB-1766	$11^{\prime \prime}$	17' ${ }^{\prime \prime}$	$2^{\prime \prime}$
CB-1760	CB-1767	$11^{\prime \prime}$	17'"	$3^{\prime \prime}$
CB-1761	CB-1768	13"	17'"	2'"
CB-1762	CB-1769	13'	17'"	3"
CB-1763	CB-1770	$13^{\prime \prime}$	17'	$4^{\prime \prime}$

CHASSIS MOUNTING BRACKETS

Mounting brackets are essential to insure proper support of the chassis. Formed of heavy gauge steel. cut away at the bottom to provide chass is clearance so
Catalog No.
MB-458
MB-448
MB-459
MB-449
MB-460
MB-450
MB-451

| $\begin{aligned} & \text { Height } \\ & 61 /{ }^{\prime \prime \prime} \\ & 61 /{ }^{\prime \prime \prime} \\ & 612^{\prime \prime} \\ & 61 /{ }^{\prime \prime} \\ & 61 /{ }^{\prime \prime \prime} \\ & 812^{\prime \prime} \\ & 812^{\prime \prime \prime} \end{aligned}$ |
| :---: | Depth pth

$8^{\prime \prime}$
$10^{\prime \prime}$
$11^{\prime \prime}$
$12^{\prime \prime}$
$13^{\prime \prime}$
$10^{\prime \prime}$
$13^{\prime \prime}$ that chassis can be mounted flush against panel. Finished in Black. Numbers MB-450 and MB-451 designed for chassis height of $4^{\prime \prime}$. Sold in pairs only

STEEL CHASSIS BASES

These chassis are made from one piece of steel, all corners are reinforced and spot welded. The four sides are folded on bottom for add itional strength - this also peritional strength - this also per-
mits a bottom plate to be attached if desired. Furnished in either Black Wrinkle or Electro-Zinc plated. Black Winklt Zinc Plated

Cat. No.	Cat. No.	Depth	Width	Height	Gauge
CB-68	CB629	$5^{\prime \prime}$	$7^{\prime \prime \prime}$	$2^{\prime \prime \prime}$	22
CB-7t0	CB-1192	$7^{\prime \prime}$	$9^{\prime \prime}$	$2^{\prime \prime}$	22
CB-636*	CB-637	$10^{\prime \prime}$	$17^{\prime \prime}$	$3^{\prime \prime}$	20
CB-660*	CB-73	$13^{\prime \prime}$	$17^{\prime \prime}$	$3^{\prime \prime}$	18
CB-642*	CB-643	$13^{\prime \prime}$	$17^{\prime \prime}$	$4^{\prime \prime}$	18

Far additional sizes consult Bud Catalog

ALUMINUM CHAS5IS

The construction and design of these chassis is exactly the same as our steel chassis. The aluminum chassis are welded on government approved spot welders that are the same as used in the welding of aluminum airplane parts. As a result, you can depend on BUD Aluminum Chassis to do a perfect job. Etched Aluminum finish. The gauges in table below are aluminum gauges.
Catalog
Number
AC-430
AC-402
AC-423
AC- 420
AC-416

'th $^{\prime \prime}$
7' $^{\prime \prime}$
$7^{\prime \prime}$
$7^{\prime \prime}$
$7^{\prime \prime}$

 t G Gauge
18
18
16
14
16
For additional sizes consult Bud Catalog

INSTRUMENT

and receiver cabinets

Each cabinet has an evenly recessed hinged cover with convenient finger lift. The panel on front of cabinet is readily attached with self-tapping screws. Louvers provide ample ventilation. These Cabinets are finished in Black Wrinkle only.

Cat. No.	Height	Width	Depth
C-973	$y^{\prime \prime}$	$8^{\prime \prime}$	$8^{\prime \prime}$
C-993	$7^{\prime \prime}$	$10^{\prime \prime}$	$8^{\prime \prime}$
C-994	$7^{\prime \prime}$	$12^{\prime \prime}$	$8^{\prime \prime}$
C-995	$7^{\prime \prime}$	$14^{\prime \prime}$	$8^{\prime \prime}$
C-975	$8^{\prime \prime}$	$16^{\prime \prime}$	$8^{\prime \prime}$

STREAMLINED CABINETS

Distinctive features of these cabinets are the rounded front corners and recessed hinged top. All parts built into this cabinet are easily accessible. Overall height, $8^{\prime \prime}$. Depth, $8^{1 \prime \prime \prime}$. Finished in Black Wrinkle only.

Catalog	Panel	Cabinet	Cabinet
Number	Size	Width	Height
C-1789	$8^{\prime \prime} \times 8^{\prime \prime}$	101/2"	$8{ }^{\prime \prime}$
C-1746	$8^{\prime \prime} \times 10^{\prime \prime}$	121/3"	8"'
C-1747	$8^{\prime \prime} \times 12^{\prime \prime}$	$141 /{ }^{\prime \prime}$	$8^{\prime \prime}$
C-1748	$8^{\prime \prime} \times 14^{\prime \prime}$	161/2"	$8^{\prime \prime}$
C-1790	$8^{\prime \prime} \times 16^{\prime \prime}$	181/2"	$8^{\prime \prime}$

MINIATURE AMPLIFIER FOUNDATION

With the increased use of miniature tubes, smaller cabinets can be used when designing a compact amplifier. This amplifier foundation was designed expressly for this purpose. The chassis is a $5^{\prime \prime} \times 7^{\prime \prime} \times 2^{\prime \prime}$. The cover is made of perforated metal. A streamlined handle makes this cabinet portable. Finished in Black Wrinkle.

Width	Depth	Chassis Height
$73 / 16^{\prime \prime}$	$53 / 32^{\prime \prime}$	$2^{\prime \prime}$

METAL UTILITY CABINETS

The large number of sizes available makes this line useful for all sorts of electronic equipment, monitors, frequency meters, etc. These cabinets have two removable sides for easy accessibility and are finished in Black Wrinkle.
Catalog No.
Catalog
CU-728
CU-729
CU-1098
CU-1099
CU-879
CU-1124
CU-880
CU-881
CU-882
Depth
$2^{\prime \prime}$
$3^{\prime \prime}$
$4^{\prime \prime}$
$6^{\prime \prime}$
$5^{\prime \prime}$
$7^{\prime \prime}$
$6^{\prime \prime}$
$8^{\prime \prime}$
$8^{\prime \prime}$
$7^{\prime \prime}$

Width
$4, \prime$
$5^{\prime \prime}$
$5^{\prime \prime}$
$6^{\prime \prime}$
$6^{\prime \prime}$
$8^{\prime \prime}$
$7^{\prime \prime}$
$10^{\prime \prime}$
$11^{\prime \prime \prime}$
$9^{\prime \prime}$
Height
Depth

MINIBOXES

There are thousands of uses in the fields of radio and electronics for these new boxes. They are made from heavy gauge aluminum. The design of the box permits installation of more components than would be possible in the conventionally designed box of the same size. It is of two piece construction, each half forming three sides. The flange type construction assures adequate shieldingAvailable in etched aluminum finish and gray hammerloid finish.

Catalog Numbers				
Grey	Etched CTJ 3000	Length	Width	Height
CU-2100	CJJ-3000	$5^{23 / \prime \prime}$		$\begin{aligned} & 15 / 8^{\prime \prime} \\ & 3^{\prime \prime} \end{aligned}$
CU-2105	CU-3005	7"'	4',	$3^{\prime \prime}$
CU-2111	CU-3011	$12^{\prime \prime}$	$7^{\prime \prime}$	$4^{\prime \prime}$
CU-2115	CU-3015	$4^{\prime \prime}$	$2{ }^{\prime \prime}$	$23 / 4{ }^{\prime \prime}$
For additional sizes consult Bud Catalog				

STURDI-TOWER

This is a well designed, sturdily made tower. All parts are made the best grade tempered aluminum. Here are some of the importa features
Standard 8 foot sections available knocked down.
Unassembled unit can be easily assembled with no special tools. When properly installed, will easily support ham beams.
Top of one section telescopes into the bottom of another section a they are bolted together thereby assuring absolute rigidity.
Airplane-type aluminum bolts and self-locking nuts guarant an exceptionally rugged tower installation.

Width
\qquad
CU-1988
CU-1989
CU-1991
CU-1992 $91 / 2^{\prime \prime}$

Heis

STREAMLINED AMPLIFIER FOUNDATIONS

Use this unit to obtain beauty in amplifier and similar apparat Each foundation consists of a sta; ard chassis on which is mounter removable top cover. Chromi trim is used to add additional tractiveness to the equipment. chassis are $3^{\prime \prime}$ high and compl units are $9^{\prime \prime}$ high. Sturdy Easy G handles are attached to chassis. F shed in either Black or Grey Wrins
\qquad ε
ε
ε
ε
ε
ε
ε
ε
1
Cat No

Width
$\begin{array}{ll}\text { CA-1750 } & 101 / 16^{\prime \prime} \\ \text { CA-1751 } & 12116^{\prime \prime},\end{array}$
CA. 1751
CA-1752
CA- 1753
$171 / 16^{\prime \prime}$,
$171 / 16^{\prime \prime}$

Del
$1 i$

Six strand No. 20 galvanized guy wire is recommended to be used for guys.
Triangular construction affords strongest possible structure.
Weight only one (1) pound per foot when assembled. Will support rotator with large, stacked TV array.
40 foot tower can be easily installed by one man.
No maintenance problems. All screws and nuts are made of aluminum.
Additional height in multiples of 8 feet can be added at any time.
Mast supports are adjustable to fit masts from 1 inch to 3 inches in diameter.
Base is made from $1 / 2$ inch aluminum and is hinged to permit use as a foundation on either side, flat or angle installations.

cuy rie

Hased
No. IHY1S

STREAMLINED SCOPE AND UTILITY CABINETS
These are attractive cabinets that adaptable to a variety of uses. All cabin are supplied with chassis. Prices incle chassis. The chassis height on all excr CU-1991 and CU-1992 is $11 / \mathbf{2}^{\prime \prime}$. CU-199; designed for $3^{\prime \prime}$ cathode ray tube and 1 a hinged cover to provide casy access tube or other components. Chassis heif is $2 \prime$. CU-1992 is designed for a $5^{\prime \prime}$ cathe ray tube and also has a hinged cove Chassis height, $3^{\prime \prime}$.

WAVE TRAP

The new BUD Wave Traps are designed to eliminate interference caused by amateur radio transmission received through the A.C. line. Bud Wave Traps can be used in connection with any TELEVISION, AM or FM receiver. The three point installation method is simplicity in itself

1. Plisg the cord from the receiver into the receptarle in the wave-trap.
2. Plug the cord from the wave-trap into the A.C. recentacle.
3. Adjust the condensers, by means of hand tuning extensions until the interference has disappeared.
NOTE that it is not necessary to tamper with the receiver n any way
The entire unit is small. compact and completely encased
Model WT-500 to be used to eliminate interference caused by a ransmitter operating on the 10,15 or 20 meter bands. Model VT-501 will eliminatc interference caused by a transmitter operating in the 40 or 80 meter bands. Size of case $\left.4^{\prime} t^{\prime \prime} \times 2^{\prime}\right)^{\prime \prime} \times 13 / 4$

CODE PRACTICE OSCILLATOR AND MONITOR CPO-128

The BUD Codemaster is a real money saver. No longer do you have to consider your code practice oscillator useless after you have learned the code. A flip of the switch and you have a good CW monitor. This is a really versatile instrument-

It has ${ }^{4} 4^{\prime \prime}$ built-in permanent magnetic dynamic speaker and will operate up to twenty earphones.

A volume control and pitch control permit adjustments to suit individual requirements. Any number of keys can be connected in parallel to the oscillator for group practice.
This unit will operate on 110 volts A.C. or D.C. An external speaker may be plugged in without the use of an outout transformer. All controls are placed on the front of the unit and 111 jacks are in the rear. The unit is $6^{1 / 2^{\prime \prime}}$ high, $51 /^{\prime \prime}$ wide and $31 / 2^{\prime \prime}$ leep. It is finished in Grey Hammertone enamel with red lettering.

CODE PRACTICE OSCILLATOR AND MONITOR EARPHONE MODEL CPO-130

This unit is similar to the CPO-128. The difference is that the $4^{\prime \prime}$ speaker is not included. The monitor feature, however, is included. A phone jack is provided for the output and as many as 20 pairs of phones and keys can be operated at one time for class-room operation. This model will also operate a permanent magnetic dynamic speaker.
Plug the voice coil leads into the phone jack - no output trans ormer is needed. Size of case is $51 / 2^{\prime \prime}$ wide, $41 / 2^{\prime \prime}$ high and $31 / 2^{\prime \prime}$ deep.

GIMIX GX-79

The BUD Gimix is a multipurpose unit requiring no batteries or power supply. It is calibrated for use on the $10,15,20,40$ and 80 meter amateur bands. No additional coils are needed as the one coil does the work on all bands. It can be used as a Wave-Meter, a Monitor, a Field Strenßth Indicator, a Carrier Shift Indicator and a sensitive Neutralizins Instrument. Operating instructions supplied with each unit.

FREQUENCY CALIBRATOR FEC-90
To comply with federal regulations, some means of accurately checking transmitter frequency must be availahle at every "ham" station. The BUD FCC 90 consists of a 100 kc . crystal oscillator that is Completely Self-Powered. It will give 100 kc . check points on all bands up to 30 megacycles. This enables the operator to determine exact band edzes. No extra wiring is required to install this unit. Plug the FCC-90 into a 110 volt receptacle, connect the pick-up lead to the antenna binding post of the receiver and the unit is ready for operation An ON-OFF switch and a STANDBY switch are provided

HEAT RADIATING PLATE AND GRID TUBE CONNECTORS

BUD heat radiating connectors fit all sizes of industrial and trans mitting vacuum tuhes. These connectors serve a dual purpose, not only are they useful to make connections to plate or grid terminals, but they provide a large heat radiating surface that will dissipate heat from the glass seal and tube element.

Eight sizes fit all grid and plate leads and also provide sufficient heat radiation for any tube operating in the range of 50 to 2000 watts. All radiators are machined from special aluminum rod. Edges are rounded to minimize corona loss.

The construction of this jack allows its use in applications having limited space behind the panel. The spring brass contact assures a good connection. These jacks come with insulating washers and accommodate standard phone plugs

J-232 A
J-233 A

Type
Open Circui
Distance Behind Panel

Closed Circuit $13 / 16^{\prime \prime}$
$13 / 16^{\prime \prime}$

SMALL JACKS

These panel mounting iacks are desirable for control panels and similar applications where space is at a premium. Parts are accurately machined. with nickel plated finish and contacts are formed from spring brass. Each jack comes complete with insulated washers and will accommodate standard plugs. Overall length $15 / g^{\prime \prime}$

Contacts
Distance Behind Panel
3

ALL PURPOSE JACKS

Although small in size. this is one of the finest lines of jacks available. The careful design and high quality materials used in these components assure long, dependable service. Circuit opening contacts are made of pure silver and the laminated bakelite insulation prevents breakdown between springs at all ordinary prevents hreakclied with panel insulating washers. voltages. Supplied with panel insulating washers.
Height $1 / \mathrm{s}^{\prime \prime}$, distance behind panel $7 / \mathrm{s}^{\prime \prime}$.

Catalog
Number
Circuit
J-1324 O Open Circuit
J-1325

3-Contact open circuit
Break contact on tip and
ring spring
Separate make-contact springs
Break contact on tip springseparate make-contact spring

Break-make contact on tip spring
Contact
Arrangement

Closed circuit

Nos. PB-530 and PB-531 consist of a regular $1 / "$ shaft bearing with $6^{\prime \prime}$ and $3^{\prime \prime}$ length of '." brass rod inserted and held in place by washers to prevent shaft from shifting. These two assemblies will facilitate the panel control of condensers, potentiometers, etc., which must be mounted a distance from the panel. Bearing fits in $13 / 32^{\prime \prime}$ hole and on panels up to $3 / 16^{\prime \prime}$ thick. No. PB-5.32 is bearing only without shaft
Catalog
Overall
Length
Length
Bearing Only

Distance in
front of panels

-

NBmber
PB-531
PB-532

Illustrated are only a few of the many types and sizes of Bud Products. For comolete catalog write Dept. H.

RUD BUD Products for high quality and best results

75-WATT TRANSMITTER COILS
These coils are distinguished by their rigid construction, attractive appearance and conservative power rating. The ceramic mounting base keeps the coil a safe distance from the chassis. it also permits easy coil removal without ais turbing the winding. All coils are air-wound and mount in 5 prong tube sockets.
OEP and OCP Coils are designed for use in circuits using Pentode tubes with high output capacity such as 6L6, 807 , etc.
oils have fixed end link and are not tapped
OEL coils have fixeder link with main winding center tapped.
OCL have fixed center cink wink, main winding center tapped.
OLS have adjustable cend link and are not tapped.
OES have adjustable end link and are not tapped.
OCP have adjustable center link main winding center tapped.

Catalog No. Fixed End Link	Catalog No. Fixed Center Link	Cat. No. Adjustable Center Link	Cat. No Adjustable End Link		Band	Capacity*	
Link		OLS-160		160	Meter	100	MMFD
			OES-160	160	Meter	86	MMFD
OEL-80	OCL-80	OLS-80	OES-80		Meter	75	MMFD
OEL 40	OCL-40	OLS 40	OES-40	40	Meter	40	MMFD
OEL-20	OCL-20	OLS-20	OES-20		Meter	30	MMFD
OEL-15	OCL-15	OLS-15	OES-10	10	Meter	25	MMFD
OEL-10	OCL-10	OLS-10	OES-10		Meter		MMFD
OEL-6	OCL- 6	-10	OEP-10	10	Meter	45	MMFD
		OCP-20	OEP-20	20	Meter	50	MMFD

AM-1299 Coil Base only

ADJUSTABLE LINK TRANSMITTER COILS

Listed are two types of Coils. CL type of coil has an adjustable CENTER ND link type of coil has an adjustable END The CL and ES can Ne used whal cost is links are specified. No add coupling is assured because of this special adjustable link, an exclusive BUD feature.
50 WATT RATING

Capacity*

Also available in 500 W and KW sizes

VARIABLE LINK TRANSMITTER COILS

The most effective method of varying the loading of an R. F. Stage is by the use of a variable link to the plate tank, a feature incorporated in all Bud Vari able Link Coils. The link winding is connected to the jack bar into which the coils are plugged, and this link may be used with any of the coils regardless of the band being worked. The link winding is so arranged that it may be readily controlled from the panel by means of an extension shaft if required. 500 WATT COILS

			Length Mounting	Mounting Hole
Catalog		Capacity*	Strip Dim	Dim.
Number	160 Meter	85 MMFD	$51 /{ }^{\prime \prime \prime}$	${ }_{5}^{\prime \prime \prime}$
VLS-80	80 M	70 MMFD	$51 /{ }^{\text {2 }}$,",	$5{ }^{\prime \prime}$
VLS-40	40 M	36 MMFD	$51{ }^{2}$	$5^{\prime \prime}$
VLS-20	30 M	28 MMFD	$51{ }^{\text {2 }}$	$5{ }^{\prime \prime}$
VLS-15	15 M 10 M	25 MMFD	$512^{\prime \prime}$	5"
AM-1352-Base and Link Assembly for 500 Watt Coils				

50 WATT BAND

SWITCH ASSEMBLY

ONS-1 - 50 watt, 10-15-20-40-80 meter band switch assembly, ideal for all low-power oscillators, buffer or am plifier stages where the input power does not exceed 50 watts and where does not exceed dial plate with suitable marking is furnished

Catalog Number

Width
$51 / 2^{\prime \prime}$
Height
Also available in 100 W size

IRON CORE R. F. CHOKES

The efficiency of any circuit requiring an $\mathbf{R} . \mathbf{F}$ choke will be definitely improved by utilizing one of these chokes with a finely divided molded men conlic core. The improved " Q. possible with of these struction results from the 50 . . resistance given inchokes being from 40 colar air-core types. Thus, ductance than for regular air-core choke is conthe D. C. voltage drop through the choke is considerably less, yet the choking action is equally as good, convenare made with sik-covered enameled are mounted in small square ient soldering lugs, and
shield cans measuring $13 / 8^{\prime \prime} \times 13 / 8^{\prime \prime} \times 17 / 16^{\prime \prime}$

Catalog	Inductance	D. C. Resistance	Current
Number	mh .	Ohms	ma.
CH-1277	1.5	11.5	125
CH-1278	2.5 3.4	16.5 19.5	125
CH-1279	3.4	27.5	125
CH-1280	8.5	36.	125
CH-1281 CH-1282	10.	42.5	125
CH-1283	16.	53.	100
CH-1284	30.	131.	100
CH-1285	80.	163.	90
CH-1286	80.	221.	90
CH-1287	125.		

CH-1287
CH-294
Shield Can Only
Also available Pie wound and Lattice wound

TRANSMITTING CHOKES

Here are two heavy duty R.F. Chokes that can really Here it in high powered transmitter plate circuits Each choke is wound on $9 / 16^{\prime \prime}$ dia. Steatite rod, has connection lugs and a mounting foot.

All chokes have a heavy ceramic coating which Allchokes have a heavorption and enables them prevents moist momentary overloads without collapsing the individual pies.
Consists of five graduated pies wound in continuous winding. Care has been taken to prevent any of the pies from being resonant on an amateur band and to keep the distr

Catalog		Current	D. C.
Number	Inductance	Capacity	Resistance
CH-568	2.5 mh.	1 amp.	5 ohms
CH-569	4.3 mh.	6 amp.	12 ohms

INSULATED FLEXIBLE COUPLINGS

Tander of two or more units is readily acTandem operation of the use of these couplers. Direct complished through the usential and all couplers are made to fit $1 / 4^{\prime \prime}$ shafts.

Catalog	Diameter	Height	Insulation
FC-795	$11 / 16^{\prime \prime}$	$11 / 16^{\prime \prime}$	Ceramic
FC-845	$1116^{\prime \prime}$	$5 /{ }^{\prime \prime}$	Bakelite
FC-855	$11 / 2^{\prime \prime}$	$1 / 16^{\prime \prime}$	Bakelite

HIGH VOLTAGE FLEXIBLE COUPLINGS
A new type spring construction in these couplings permits a wide gap between shaft comnec tions, freedom from back-lash, and unusual flexibility. The springs are attached to glazed Steatite discs $11 / 2^{\prime \prime}$ in diameter and $3 / 16$ coupling and the overall diameter of the finished coupling is $1^{15} / 6^{\prime \prime}$. Coupling accommodates standard $1 / 4$
shaft. Springs are also attached to Bakelite discs $1 / 2$
Catalog No.
Insulation
Steatite

Catalog No.	Insulation
FC-614	Steatite
FC-619	Bakelite

Illustrated are only a few of the many types and sizes of Bud Products. For complete catalog write Dept. H.
BUD RADIO, INC., 2118 East 55th Street, Cleveland 3, Ohio

BUTTERFLY TRANSMITTER CONDENSERS

These Butterfly condensers are unequaled for mechanical and electrical balance in push-pull amplifier circuits. Where space behind the panel will not permit the use of our Giant or Master condensers, these dual condensers are ideal.

Rotor and Stator plates are made from $.062^{\prime \prime}$ thick, highly polished aluminum with all edges rounded and surfaces highly polished to minimize corona loss and danger of peak voltage flash-over. Steatite bars are used as insulators

These condensers are so designed that a pair of single plate neutralizing condensers can be fastened to the end plate. Brackets for mounting coil jack bars are furnished with the condensers. All condensers that have an air gap of $.5^{\prime \prime}$ are furnished with brackets for kilowatt coils and the condensers that have $.3^{\prime \prime}$ air gap are furnished with brackets for the mounting of 500 watt coils. The height of the condensers is $6 \frac{1}{4}{ }^{\prime \prime \prime}$ and the width is $7^{\prime \prime}$.

Catalog
Number
GC-1825
GC-1826
GC-1827
GC-1828
GC-1829
GC-1830
GC-1831
GC-1832
GC-1833
GC-1834
GC-1835

			Capacity Mounting
Overall	Hole	Air	MFD Per Section
Length	Diam,	Gap	Max. Min

Capacity
MMFDSec-
tions in Series
Max. \quad Min.
$13=7$
$18-8$
$28-13$
$38-17$
$43-19$
$12=3$
$21-4$
$31-6$
$43-9$
$51-11$

MIDGET CONDENSERS

Small size, sturdy construction and high mechanical and electrical efficiency are the outstanding features. Insulation used is Steatite. Rotor and Stator plates are brass and are electro-soldered to their respective rods. All metal parts are cadmium plated. rods. All metal parts are cadmium plated. bearings and are furnished in either mid-line type plates (straight line wave length), or semi-circular plates (straight line capacity.)

SEMI-CIRCULAR TYPE-DOUBLE BEARING

Cap. in MMFD.

Max.	Min.
15	3
50	5
100	7
50	7
100	12
50	10

Air	Number
Gap	Plates
$.024^{\prime \prime}$	3
$.024^{\prime \prime}$	7
$.024^{\prime \prime}$	14
$.060^{\prime \prime}$	15
$.060^{\prime \prime}$	31
$.095^{\prime \prime}$	23

For additional sizes consult Bud Catalog

NEUTRALIZING AND HIGH FREQUENCY TUNING CONDENSERS

This line of condensers will fill every neutralizing and high frequency tuning requirement that modern circuits pose. The two-pillar construction makes this unit unusually sturdy and eliminates any possibility of capacity variation due to vibration. The movable plate is adjusted by means of the threaded shaft to which it is attached, and it is permanently locked in any position by the lock-nut provided. Any loose thread is taken up by a special nut and locked to give smooth operation. All metal parts are of aluminum. Plates have rounded Catalog Catalog
Number NC-1000 $\mathrm{NC}-1001$
$\mathrm{NC}-1002$

FEED-THROUGH AND BASE MOUNTED NEUTRALIZING CONDENSERS

In circuits utilizing tubes with the grid lead terminated in the base, feed-through type of neutralizing condenser is particularly suited. One hole is required for mounting of feed-through condensers. Neutralizing condenser illustrated in feed-through type. Plates are made of aluminum rounded at edges to cut down losses. After proper tuning is attained, movable plate can be locked with the knurled nut.

No. 890 and No, 852 are ideal neutralizers for popular low power beam tubes. No. 890 condenser is base mounted only.
Cat.
Number
NC.852
NC -853
$\mathrm{NC}-890$
Plate
Diameter
$1^{\prime \prime}$
$1^{\prime 27} / 32^{\prime \prime}$
$1^{\prime \prime}$
Size Hole
for Mtg.
$5 / 16^{\prime \prime}$
$13 / 32^{\prime \prime}$
\cdots

MMFD.	Capacity
Max.	Min.
6	.5
11	1.5
6	.5

TYPE DUAL MIDGET CONDENSERS These Midget Condensers were designed to meet the rigid requirements in design of efficient ultra-high frequency electronic devices and precision laboratory equipment. The large front and rear bearings provide for smooth rotation. They feature a rctor wiping contact placed at center of the rotor assembly to assure maximum efficiency at ultia-high frequency. Opposed rotor construction assures perfect counterbalance and provides even torque at any position of rotation. Steatite insulation eliminates closed induction loop in frame. All metal parts cadmium plated. PER SECTION

Catalog	Max.	Min.	No. of	Air	Distance Behind Pain
Number	Cap.	Cap.	Plates	Gap	Panel
CE-2032	35	6	7	$.030^{\prime \prime}$	$31 / 32^{\prime \prime}$
CE-2033	50	7	9	$.030^{\prime \prime}$	$311^{\prime \prime}$
CE-2035	100	9	18	$.030^{\prime \prime}$	$43 / 32^{\prime \prime}$
CE-2036	150	10	27	$.030^{\prime \prime}$	$532^{\prime \prime}$
CE-2041	50	8	15	$.060^{\prime \prime}$	$423 / 32^{\prime \prime}$
	For additional sizes consult Bud Catalog				

TINY MITE TUNING CONDENSER

 SINGLE SECTIONThis series of condensers has been designed for applications where space or weight are limiting factors and for tuning of ultra-high frequency circuits. Rigid construction, close fitting bearing, positive rotor contact and Steatite insulation are the outstanding features. Cadmium plated, soldered, brass plates and rods insure high frequency efficiency.

	Max.	Min.		No.
Catalog	Cap.	Cap.	Air	of
Number	MMFD.	MMFD.	Gap,	Plates
LC-1640	8	2.5	$.017^{\prime \prime}$	3
LC-1644	50	6	$.017^{\prime \prime}$	19
LC-1646	100	9	$.017^{\prime \prime}$	37
LC-1652*	50	8	$.037^{\prime \prime}$	35
LC-1654	15	5.5	$.073^{\prime \prime}$	15
LC-1655*	25	9	$.073^{\prime \prime}$	27

Denote double bearing.

For additional sizes consult Bud Catalog

THREE-GANG TINY MITE

 CONDENSERSHams, Radio Constructors and Experimenters can find many uses for these compact, three-gang condensers. Designed particularly for high frequency use, they are adaptable for use in converters, preselectors and receivers covering the Amateur, Television and F.M. bands. Well constructed with soldered brass plates and ceramic brackets. Rotor shaft extended ' ${ }^{\prime \prime}$ at rear. Height $15 / 18^{\prime \prime}$. Width $13 / 16^{\prime \prime}$. Length behind panel $3^{3} s^{\prime \prime \prime}$. Mounting holes $2^{3 / 16^{\prime \prime}}$ apart.
Catalog
Number
LC-1845
LC-1846
LC-1847

Cap. Per Section	
Max.	Min.
111	5
17	5
25	6

No. of Plates
Per Section

3
4
5

Illustrated are only a few of the many types and sizes of Bud Products. For complete catalog write Dept. H.

Pat. Pend., Crystal Microphodes Licensed Under Brush Patento

FOR READY REFERENCE

A Complete List of

 O) Weeded GERMANIUM DIODES
PLANT CAPACITY UP 200% :

WXirn new plant facilities devoted entimely to the manufacture of germanium products, we can now deliver $12,000,000$ diodes a year-industry's total estimated needs. Whatever your diode requirements, let us
show you that we can fill them with precisiontested units at prices as low as any in the business. Complete specifications and prices on request. Write: General Electric Company, Section 562, Electronics Park, Syracuse, N. Y.

Fou can put your confidence in-
GENERAL ELECTRIC

(3) Radio communctation

- General Electric's complete line of communication equipment will cover your requirements for law enforcement, emergency, industrial, civil defense applications.

2. WAY RAOIO	MICROWAVE	CARRIER CURRENT	ACCESSORIES
$25-50 \mathrm{mc}$	960 mc	$50-200 \mathrm{kc}$	Supervisory Control
72.76 mc	$1700-1990 \mathrm{mc}$	$30-70 \mathrm{kc}$	Tone Signaling
148.174 mc		70.200 kc	Selective Calling

For full information, call the General Electric electronics office near you, or write: General Electric Company, Section 562, Electronics Park, Syracuse, New York.

\% TEST EOUPMENT

SWEEP GENERATOR, TYPE ST-4A This Variable Permeability Sweep is completely electronic. has no moving parts. Ideal for TV receiver maintenance, TV production and development laboratories, wide band amplifier study, transmission line impedance measurements. Mounts in $19^{\prime \prime}$ relay rack.

OSCILLOSCOPE, TYPE ST-2A Excellent for head-on position work. Unsurpassed for stability and fine trace no bounce when shifting bands. Delivers maximum sensitivity without sacrifice of frequency response. Use it to check hum, noise, distortion, modulation, phase relationships.

MARKER GENERATOR, TYPE ST-5A Functions as a crystal referenced calibrator from 10 mc to 300 mc . When used with the G-E sweep generator, it provides a multiple of markers spaced 1.5 or 4.5 mc apart. . . or can be used to supply a marker or markers at any frequency up to from 10 mc to 900 mc .

Have you received your copy of the new G-E Test Equipment
catalog? Write us today. General Ele ctric Company, catalog? Write us today. General Electric Company, Section 562, Electronics Park, Syracuse, New York.

Professional Gear for Amateurs

Collins 75A-2 Receiver

This double conversion superheterodyne is professionally designed for superior performance on the $160,80,40,20,15,11$ and 10 meter amateur bands. Its characteristics include sensational stability, accuracy of calibration, sensitivity, image rejection and, above all, selectivity.
The 75A-2's very high selectivity is obtained by use of nine tuned circuits at $455 \mathrm{kc} \mathrm{i-f}$, and an improved crystal filter which is variable by front panel control. Selectivity is adjusted at the factory to 4 kc at 6 db down and about 12 kc at 60 db down (sellectivity knob at zero - crystal filter out). With selectivity set at 4 (maximum) the bandwidth is 200 cycles at 6 db down and 6.5 kc at 60 db down. The instruction book describes simple adjustments by which the owner may obtain 2.5 kc at 6 db down and 10.5 kc at 60 down with the crystal filter out, and correspondingly greater selectivity as the filter control is advanced.
Extraordinary stability is accomplished by means of quartz crystals in the high frequency oscillator stage and a Collins $70 \mathrm{E}-12$ sealed VFO in the low

The 8R-1 100 ke crystal calibrator and the $148 \mathrm{C}-1$ NBFM adapter, shown on this page, are available as accessories, for plugging into completely wired sockets on the top of the chassis. The operation of both units may be controlled by switches located on the front panel.
frequency circuit. The $70 \mathrm{E}-12$ employs a new twotube circuit which assures improved stability unaffected by variations in tubes.

Only the band in use is visible on the slide-rule dial which is calibrated directly in one-tenth mc. The vernier dial is call̈brated at one kc intervals on the 160 through 15 meter bands, and at two kc on the 11 and 10 meter bands. A vernier zero set control is on the front panel. Other front panel controls than those mentioned above are: Tuning, bandswitch, CW pitch, antenna trimmer, off-standby-on, r-f gain, a-f gain, crystal phasing, CW-AM-FM, noise limiter, separate CW noise limiter.

Tubes employed: GCB6 r-f amplifier, 6BA7 first mixer, 6BA7 second mixer, 12AT7 crystal oscillator, three GBA 6455 kc i-f amplifiers, GAL5 detector and AVC rectifier, $12 A X 7$ AVC amplifier and a-f amplifier, GAL5 automatic noise limiter, 6AQ5 audio power amplifier, 6BA6 beat frequency oscillator, 6BA6 VFO, GBAG VFO buffer, and GAL5 CW limiter, with a 5 Y 3 power rectifier and an OA2 voltage regulator for plate supply of the 70E-12 VFO.

75A-2 dimensions:

$211 / 8^{\prime \prime}$ wide, $127 / 16^{\prime \prime}$ high, $135 / 16^{\prime \prime}$ deep.
Pawer source: 115 volts $50 / 60$ cycles a-c.
Shipping weight: 70 lbs.

Net domestic prices:

75A-2 receiver: $\$ 420.00$
10 -inch speaker in matching eabinet: $\$ 20.00$
8R-1 crystal calibrator: $\$ 25.00$
148C-1 NBrM adapter: $\$ 22.50$

For the best in radio communications, it's . . .

COLLINS RADIO COMPANY, Cedar Rapids, Iowa

Professional Gear for Amafeurs

 umplifier assembly

Dimensions:

28"' wide, $18^{\prime \prime}$ deep, $661 / 2^{\prime \prime}$ high.

Power source:

115 volts or $115 / 230$ volts $50 / 60$ cycle single phase grounded neutral.
Net domestic price \$3,850.00

Collins KW-I Transmitter

The KW-1 transmitter is engineered to equip the amateur for use of the maximum power permitted by his license. Its input is a full, cool 1000 watts on phone as well as CW. The entire transmitter and its power supply are integrated in an attractive wrinkle finish cabinet.

The KW-I's frequency range covers the 160,80 , $40,20,15,11$ and 10 meter bands. Complete bandswitching of the exciter, driver, and power amplifier is accomplished by a single control on the front panel. This reduces to four the number of tuning functions required in operation: bandswitch selection, frequency setting, PA tuning, and PA loading. Over any narrow frequency range, it is only necessary to adjust the frequency control, which is by means of a newly developed, extremely stable, hermetically sealed master oscillator.
TVI reduction is accomplished by the use of multiple-tuned circuits at the output frequency on every band. A minimum of three circuits at the output frequency greatly attenuates not only the second and third harmonics, but also sub-harmonics. Great care has been given to filtering all control and power leads entering the exciter-power amplifier compartment, which is itself a totally enclosed and shielded structure. A Collins 35C low pass filter is incorporated as standard equipment. The output network is a conventional pi followed by an L section for increased harmonic attenuation.

The speech amplifier has a peak clipper, and a low and high level filter, permitting high-percentage modulation without splatter.

Tube complement: Oscillator - two GBAG's. Exciter - one 6BA6, four GAQ5's, one 807W, two VR105's, one 6A10 ballast tube. Power amplifier two $4-250 A$'s. Speech amplifier - one 12AX7, one 6AL5, two 12AU7's, two 6B4G's, two 810's. Rectifiers - two 872A's, one 5R4GY, three 5V4's.

Meters: Modulator current, PA plate current, high voltage, line voltage, multipurpose meter, antenna ammeter. Line fuses, plus overload relay in Class C amplifier current lead, provide circuit protection.

Professional Gear for Amatevrs

 Collins 32V-3 Transmitter

The Collins $32 \mathrm{~V}-3$, like its predecessor the $32 \mathrm{~V}-2$, is a VFO controlied bandswitching gang-tuned amateur transmitter, conservatively rated at 150 watts input on CW and 120 watts input on phone. It covers the $80,40,20,15,11$ and 10 meter ham bands. It differs mainly in its added provisions for reduction of television interference.

The cabinet of the $32 \mathrm{~V}-3$ is solid metal, open only in froni to receive the chassis. Even the handhole at each end is lined. There is no lifrable lid, and quarter-inch perforations replace slots for ventilation. Thus two types of leakage paths have been eliminated. Two pull handles have been added for easy removal of the panel and chassis. When firmly screwed in place, bare panel metal makes proper electrical contact with bare cabinet metal, eliminating another leakage path.

The entire r-f section of the $32 \mathrm{~V}-3$ has been completely enclosed in an outer shield of perforated metal which permits adequate ventilation while blocking radiation of troublesome harmonics. This is in addition to the 1 -f shielding used in the $32 \mathrm{~V}-2$.

Low pass filters in the following outgoing leads
are visible at the back of the chassis view: both sides of the a-c power line and (above) the antenna relay line and both sides of the receiver disabling circuit. Additional low pass filters, not visible, are installed at the microphone connector and the key circuit, and one in each lead to each of the two meters.
The r-f tube line-up: A 6SJ7 VFO, GAK6 buffer, $6 \mathrm{AG}^{-}, 7 \mathrm{C}_{5}$ and 7C5 frequency multipliers, and 4D32 final amplifier. Speerh line-up: A 6SL7 in cascade to 6 SN 7 to a pair of 807 modulators, which furnish 60 watts audio power to modulate the final amplifier. The power supply contains a $5 Z 4$ (low voltage) and two 5 R4GY (high voltage) rectifiers, a VR75 bias regulator, one OA2 and one OB2 oscillator plate voltage regulators, and two OA2 screen voltage limiters.

Dimensions:

21. 1/8" wide, $127 / 16^{\prime \prime}$ high, $137 / 8^{\prime \prime}$ deep.

Power source: 115 volts $50 / 60$ cycles $\pi-4$;
5hipping weight: 133 pounds.
Net damestic price
$\$ 775.00$

35C-2 Low Pass Filter

A coaxial fitting is provided at the rear of the $32 \mathrm{~V}-3$ cabinet. This permits the use of a well shielded transmission line in which the Collins $35 \mathrm{C}-2$ Low Pass Filter may be inserted. The $35 \mathrm{C}-2$ is a 52 ohm three-section filter which, with approximately 0.2 db insertion loss below 29.7 mc , provides approximately 75 db attenuation of harmonic emissions at the television frequencies. This high attenuation is added to that provided in the transmitter. The unbalanced output permits grounding of the outer conductor of the line and the case of the filter.
Net domestic price $\$ 40.00$

Collins Gear for Professionals

The advanced engineering, reliability, and high performance typical of Collins ham gear are also characteristic of Collins airborne and ground-based radio communication and navigation equipment, and Collins AM and FM broadcast equipment. All Collins equipment is designed and made to the exacting standards set for military applications.

Collins 300 J 250 watt AM broodcast transmitfer, product of today's most advanced engineering concepts and fechniques.

Collins $231 \mathrm{D} 3 / 5 \mathrm{kw} 3$ to $26 \mathrm{mc} 10-\mathrm{ch} \mathrm{m}_{\mathrm{n}}$ nel Autotune* ground station transmifter for very long range voice, CW MCW and FSK communicafions.

Collins 30K-4 two-channel 2 to 30 mc crystal controlled ground station transmitter. 300 watts cW. 250 watts phone.
*Registered in U.S. Patent Office

Collins 5 IN-2 rack mounting communication rite ceiver for continuous unattended A1, A2 and A3

Open front view of Collins $51 \mathrm{~N}-5$, engineered for confinuous duty, in pairs, as a sensitive diversify receiver for use with Caflins $706 \mathrm{~A}-2$ frequency shift converter.
reception of any ome frequenv wishin 2 to 24 mac.

Quality INSTRUMENTS Insure PEAK PERFORMANCE!

STANDARD SIGNAL GENERATOR

Frequency Range : 75 Kc . to 30 Mc .

MEGACYCLE METER

Model 59

The only grid-dip meter covering the frequency range of -

2.2 Mc. to 400 Mc .

A multi-purpase instrument far defermining the resonant frequency of tuned circuits, antennos, transmission lines. For the measurement of capacitance, inductance, relative " Q "; as an auxiliary signal generatar; far signal tracing; as a marker for use with o sweep-frequency generator, and many ather applicatians.

FEATURES:

- Compast ascillator unil for coupling to cirevits in small spoces.
- Individually calibrated. direct reading frequency dial; occurate to $\pm \mathbf{2 \%}$.
- Internal modulation.
- May be battery aperoled.

Model 80

STANDARD SIGNAL GENERATOR

Frequency Range: 2 Mc . to 400 Mc .

Model 78-FM

FM

SIGNAL GENERATOR

Frequency Range: 86 Mc . to 108 Mc .

CRYSTAL CALIBRATOR

Model 111

For the calibrotion and frequency checking of receivers, transmifters, grid-dip meters, signal generatars and ather equipment where a high degree of frequency accuracy is required.

> 250 Kc . to 1000 Mc .
> (To within .25 Mc .)

Frequency Accuracy: 0.001\%
The Madel $1 ו$ is a dual-purpase calibratar. It pravides a test signal af crystal cantralled frequency and has a self-contained detector of 2 micrawatts sensitivity.

INTERMODULATION METER

Model 31

This instrument will enable yau to get the best performance fram all audia systems; for the carrect adjustment and maintenance of $A M$ and FM receivers and transmitters; for checking linearity of film and dise recardings and repraductians; checking phonograph pickups and recording styli; odjusting bias in tape recardings, etc.

The generator section of the Madel 31 produces the mixed high and low frequency signal required for intermadulation testing. A direct reading meter in the analyzer section indicates the percentage of intermadulation. Write for our Catalog of Laboratory Standards

WHEREVER THE CIRCUIT SAYS - W-

ADVANCED TYPE BT RESISTORS

New type BT Insulated Composition Resistorsmeel JAN-R-11 Specifications at $1 / 3,1 / 2,1$ and 2 watts. Small size 8 TB specially designed for miniature 2 watt requirements. Type BT's are suited to television and similar exacting circuits. Extremely low operating temperature. Encellent power dissipation. $\mathbf{3 3 0}$ ohms to 22 megohms in RMA ranges. (fully described in Catalog RDC8.)

POWER WIRE WOUND RESISTORS

Fixed and adjustable Power Wire Wounds-10 to 200 watts - handle full rated power in all standord ranges, require no derating at high ranges. Dark, rough coating dissipates heat more rapidly. Unique terminals assure easy installation. 10 and 20 watt fixed types have lead and lug terminal, and lug may be clipped off for space saving in crowded chassis. Permanent, fadeless marking shows type, size, resistance.
Where limited space is a factor, Type FRW Flat Wire Wounds give higher space-power ratio thon stondard tubulor types. Construction allows easy vertical or horizontal mounting, singly or in stocks.
(Fully described in Catalogs RDC. 5 and RC.1.)

FLAT INSULATED WIRE WOUND RESISTORS

Unsurpassed for adaptability to on extremely wide variety of design requirements Radical design features impervious phenalic compound casing, speciol metal mounting bracket that actually speeds transfer of heat from inside chassis. Space-soving MW's afford unusual flexibility in providing taps for voltage dividing opplications.
(Fully described in Catalog RB-2.)

WHEREVER THE CIRCUIT SAYS -W-

CLOSE TOLERANCE

DEPOSITED CARBON PRECISIORS
PRFCISTORS offer a unique cambination of clate lolerance, stability and econamy. Pure crystalline carbon bonded to selected ceramic cores overcomes limitations of carbon camposition rwistare and higher cost of precision vire wounds. PRECISTORS offer wide range of values, juaronteed occuracy, high stability, low voltage coefficient, excellent frequency characteristics, predictable temperafure coefficient.
(Fully described in Catalog RDC-3.)

HIGH FREQUENCY RESISTORS

Typ= MP Resisfors are designed for frequencies above those of conventional resisfors. 2 watt to 90 wath. Special construction, with resistance fitm bonded to steatite ceramic form, provides stable resistors of low inductance and capacity Typw MPM's ore miniature $1 / 4$ watt units for small-space, high frequency receiver applicaflons.
(Fully described in Catalog RF-1.)

HIGH VOLTAGE RESISTORS
Type MV's meet high resistance and power requirements in high valtage applications. Resistance coating in helical furns on ceramic tube provides a conducting path of lang effective length. 2 watts to 90 watts, Variaty of terminal types. Type MVX's meet requirements for small, high range unit with axial leads. $2^{\prime \prime}$ * $1 / 4$ " construction identical with Type MV's, except for terminal.
(Fully described in Catalogs RG-1 and RG-2.)

WATER COOLED RESISTORS

Unique high frequency-high power resistior for television, FM and dielectric heating applicalio\%. C=mtrifugal force whirls high velacity frean of mater in spiral path against resistance titrn- mives effcimit high poter distipation uo to $5 \mathrm{k} . \mathrm{W} .35$ obm to 1,500 ohms. Reliator slements interchangtable.
(Fully described in Cotolon RF-2.)

SEALED VOLTMETER MULTIPLIERS

Dependable multipliers far use under the most severe humidity canditions, Type MF Resistars cansist of a number of IRC Precisions interconnected and hermetically sealed in a glazed ceramic tube. Campact, rugged, stable, fully moisture-proof and easy to install. Maximum current: 1.0 M.A.; 0.5 megahms to 6 megahms.
(Fully described in Cotalog RD-2.)

MATCHED PAIR RESISTORS

Two resistors matched in series ar parallel to as clase as 1% initial accuracy. Dependable law-cost solution to close talerance requirements. Both Types BT and BW resistors ar? available in matched pairs. Tolerances from $\pm 5 \%$ ta $\pm 1 \%$ can be furnished. (Fully described in Catalog RB-3.)

New models . . . more detailed electrical and mechanical specifications . . . complete table of all standard single, ganged and polyphase Variacs are described in this profusely illustrated, complete Variac Bulletin, now ready for mailing. We know you'll want a copy. Fill in and mail the coupon below.

ROTATOR
PRACTICAL
ROTATO
"Auto-Dial" is the Rotator for VHF! Conservative in price and size yet rugged enough for amateur use.

Hams will appreciate the fast, automatic action. No buttons or switches to hold while array rotates. Just turn knob to desired direction and continue QSO. Antenna rotates in one direction to exact number of degrees and stops! No coasting, no backlash!

UNUSUAL FEATURES OF "AUTO-DIAL"

- Slip-ring contacts of coin-silver-no line unbalance, no twisted feed.lines!
- Antenno rotates rapidly-only 22 seconds for complete revolutionl
- Rotation in steps of 6 degrees permits exact orien. tation-accurate antenna field strength measure. ments!
- Lifetime lubricated! Sealed against dirt and moisture!
- Heavy Duty Motor!
- Inline masłmounting. Takes mast sizes $1^{\prime \prime}$ to $11 / 2^{\prime \prime}$ O.D.

Rotator housing is cold-rolled sfeel, copper flashed for duro. bility. Baked-on enamel finish. Weighs iust 6 ths.

AMPHENOL RF CONNECTORS
Unsurpassed for mechanical design and electrical efficiency. Provide lowest loss continuity in critical RF circuits with. little or no impedance change or increase in standing wave ratio.

Wide variety of AMPHENOL RF Connectors available includes Plugs, Jacks, Receptacles, Adapters, etc. High and low voltage types, various impedances, many weatherproof or pressuxized. All AMPHENOL connectors meet rigid government specifications.

AMPHENOL
COAX AND TWINAX
Produced to standards surpassing military specifications for electrical performance, mechanical excellence.

Use of AMPHENOL coaz is a great step toward elimination of TVI!

Most AMPHENOL RG cables have polyethylene diesectric for low loss, flexibility, mechenical stability. Certain AMB'HENOL cables utilize TEFLON and withstand temperatures as high as $500^{\circ} \mathrm{F}$.

AMPHENOL can supply coax and Twinax in a large number of types.

To make connection, unserew coupling ring from one cable end, slip it back over cable.

You now hove male and female cable ends. Screw the remaining ring on to the ringless end...

tighten coupling ring. Contart is made, the junction is completed without loss of time or effort.

AMPHENOL MICROPHONE CONNECTORS
AMPHENOL manufactures an extensive line of connectors to fit practical!y all makes of microphones.

The $75-\mathrm{MClF}$ Microphone Connectors, illustrated above, function as either male or female fitting so that in use a mating connection is always ready for instant application.

Distinctively styled, AMPHENOL'S 75-MCIF, single contact, shielded cable type microphone connectors are made of chrome plated, machined brass. Will accommodate cables up to $1 / 44^{\prime \prime}$ diameter.

The 75 Series connectors include Jacks, Plugs, Receptacles, "Mike" Switches, etc. See them at your dealer.

The 80 Series, single and double contact connectors are designed for shielded cables and have many uses in both audio and RF circuits. Obtainable as male or female cable connectors or chassis units.

The 91 Series includes both three and four contact connectors, polarized to prevent incorrect insertion. Procurable as plugs, cable jacks and chassis recep. tacles, either male or female types.

avidiline

INDUSTRIAL TUBE SOCKETS

Peak performance - utmost dependability! These sockets have rugged insulating barriers, removable contacts. RMA numbered reversible screw type terminals to simplify wiring and permit use of wiring harness and terminal lug connections. Illustrated is 146 103 of molded Melamine. Other models such as barrier type high voltage sockets, barrier type miniature 7-pin sockets, stair type sockets for jumbo tubes, high voltage mounting plate type sockets and stilt type tube sockets are also procurable in Melamine, Steatite and high grade phenolics.

PATENTED "CLOVER LEAF" CONTACTS ON ALL AMPHENOL INDUSTRIAL SOCKETS

The "Clover Leaf" contact provides four full lines of contact along each tube pin, assuring
 α high degree of rententivity with a contact resistance considerably less than .002 ohms. Contacts plated to resist corrosion.

miniature 7 \& 9 PIN SOCKETS

AMPHENOL "S" SOCKETS AND "CP" PLUGS

Combine the convenience of AMPHENOL Retainer Ring design with the inherent high quality of AMPHENOL Steatite.
Mount without screws or rivets, withstand extremely high temperatures. Silver-plated phosphor bronze contacts. Also available in black bakelite or mica-filled bakelite.

AMPHENOL STEATITE

Available for every application. Materials used are finest available, include black bakelite, mica-filled bakelite, AMPHENOL Steatite and AMPHENOL'S own Ethylon-A with its high "Q" factor and low-loss properties. Also Zip-In sockets for high speed production.

COMPLETE CABLE HARNESSES AND ASSEMBLIES AVAILABLE!
AMPHENOL produces complex wired assemblies and harnesses involving many components as one quality unit-reducing procurement, production planning, inventory control and component inspection costs.

AMPHENOL "AN" CONNECTORS

For Power, Signol and Control Circuits in Aircroft and Electranic Equipment

AMPHENOL leads the industry in the manufacture of "AN" connectors to meet government specifications under MIL-C-5015.

Available in many shell styles, AMPHENOL "AN" connectors feature many improvements worked out by AMPHENOL engineers in cooperation with government engineers.

Included among these superior features are:

- Lowest milivolt drop.
- Coupling rings machined from solid aluminum bar stock. Extra high tensile strength (53,000 pounds).
- AMPHENOL non-rotating contacts for easy, fast soldering.
- Coupling rings and assembly screws drilled for safety wiring.
- Simple assembly, no special tools required.

In AMPHENOL'S Catalog 74 will be found the most complete listing of "AN" connectors available from a single manufacturer under Specification MIL-C5015. All inserts and shell types available from regular AMPHENOL production.

HEAVY DUTY RADIO CONNECTORS

Compact, lightweight, used extensively for connecting various units of transmitters and testing apparatus and as power connectors for mobile transmitters and receivers. Completely encased in heavy drawn brass cadmium piated shell. Entire. ly free of shock hazard-will not radiate RF. Polarized shell permits 4 different element positions for added circuit protection. Plugs, jacks and receptacles available in $4,5,6,8$ and 12 contacts.

"See Catalog B-2 for complete description and listing of these and other AMPHENOL products."

बMPH:त्रO

Until the 157 Series was perfected, there were no rubber sealed connectors for sealed relays which could meet rigid MIL-C-5015 specifications. Tests show the 157 Series exceeds requirements, have NO measurable leakage rate during and after temperature cycling. Inserts employing the new AMPHENOL 1.501 thermosetting plastic dielectric for the front and rear with high quality resilient dielectric sundwiched between to provide required seal. Pressure seal maintained indefinitely. 157 Series available in standard "AN" insert arrangements, mate with conventional AN-3102 receptacles. Obtainable in Hex nut and solder types.

Phane, 27 watts-CW, 40 watts
Phone, 60 wafis-W, 75 wal

RCA-2E26 Beam Power
Tube: With an RCA.6AG7 driver and a pair of RCA-6L6's as madulators, the 2E26 will handle a full 40 -watts input on cw , and 27 watts on phone, up to 125 Me . . . or 150 Mc at reduced input.

RCA-807 Beam Powe

 Tube: You zan drive t 807 with an RCA-6AG7 modulate it with RCA. 616's in closs $A 8_{1}$, and obtain 75 -wratts input c ew and 60 watts on phone with a low-volta power supply. Full ratings to 60 Mc .

RCA 811-A and 812-1 High-Perveance
Triodes: A single RCA 812-A takes inputs of 2 watts on cw and 175 watts on phone, and is easily driven by a sing RCA-2E26. A pair of RC 811A's in class B will modulate an RCA 4-65 4-125A, 813, or 810.

RCA 4-125A/4D21
Tetrode: Takes inputs of 500 watts on $\mathrm{cw}, 375$ watts on phone up to 120 Mc. Easily driven by single RCA-2E26, and modulated by a pair of RCA-811A's operoted class B.

RCA-813 Beam Power
Tube: A high-power favarite. Oper ates efficiently over c wide range of plote voltages. 500 watts input on cw... 400 watts on phone. An RCA-2E26 will drive it of full ratings up to 60 Mc .

RCA-810 Power
Triode: An RCA-807 will drive this tube to a full 750 watts input on cw and 500 wotts on phone. Can be operated at full ratings up to 30 Mc . Can be modulated with a pair of RCA-81IA's operated class B.

1000 woits
Phone, 500 watts-CW, 1000 wa

RCA-833-A Power
Triode: "King of the finals"-this tube loafs along of a kilowatt input on cw and phone. Can be driven with an RCA. 812-A and modulated with a pair of RCA-810's operated class B.

RCA 4-250A/5D22 Tetrode: A single RCA 4-250A will handle a kilowatt input on cw . A pair will take a kilowatt input on phone. A single RCA 4-250A requires only 2 to 3 watts driving power. Full input up to 85 Mc .

and there's a dependable RCA tube for it

RCA has the most complete line of transmitting and receiving type tubes in the amateur field. No matter what type of equipment you are planning, you will find RCA tube types to meet your needs efficiently and economically.

RCA has a popular tube for every amateur service, every power, and every band. To ger maximum power, performance, and life from the tubes you use, buy RCA tubes from your local RCA Tube Distributor.
For technical data on specific tube types, see your local RCA Tube Distributor, or write RCA, Commercial Engineering, Section M35A, Harrison, N. J.

Don't miss RCA HAM TIPS. It's published bi-monthly, and distributed free through your local RCA Tube Distributor.

RCA Specialized Tubes
 for Commercial and
 Industrial Applications

- Cold-Cathode Types
- Cathode-Ray Tubes
- Gas \& Vacuum Phototubes
- High Power RF Types
- Ignitrons
- Klystrons
- Low-Microphonic Types
- Magnetrons
- Multiplier Phototubes
- "Special Red" Tubes
- Thyratrons
- Transducer Tube
- TV Camera Tubes
- UHF "Pencil" Triodes
- Vacuum \& Gas Rectifier Tubes
- Vacuum-Gauge Tubes
- Voltage Regulator Tubes

For information on specialized types, write RCA, Commercial Engineering, Section T35A, Harrison, New Jersey.

RADIO CORPORATION OF AMERICA
ELECTROM TUBES

Yes, say hams the world over it's CORNELL DUBILIER

CAPACITORS • VIBRATORS • ROTATORS • ANTENNAS • CONVERTERS for dependable service in all radio and TV applications
Whenever hams CQ, Cornell-Dubilier gets the recommendations on dependable capacitors; rotator, TV, IFM and AM antennas; power converters and vibrators. For the most for your money look for the C-D quality trade-mark on these components. Cornell-Dubilier Electric Corporation, Dept. AH61, South Plainfield, N. J. Other plants in New Bedford, Cambridge and Worcester, Mass. ; Providence, R. I. , Indianapolis, Ind., Fuquay Springs, N. C., and subsidiary, The Radiart Corp., Cleveland, O.

CORNELL-DUBILIER CAPACITORS

Cornell-Dubilier Paper, Mica, Dykanol and Electrolytic Capacitors for every conceivable application. For over forty years the capacitor line most in demand. Send for Catalog No. 200B for full description.

CORNELI-DUBILIER "SKYHAWK" ROTATORS

Rotators that will handle 10 meter and 20 meter beam antennas. Ruggedly constructed, these weatherproof rotators will fit masts up to 2 inches O.D. Furnished with most accurate compass indicator control device avaitable. Also FM, AM and TV antennas of all types, shapes and sizes.

CORNELL-DUBILIER VIBRATORS

Both heary duty and automobile radio vibrators have now been added to the famous C-D bannerhead. For the finest engineering in vibrators - for quiet, stable long-life insist on C-D vibrators. Catalog No. VA of standard stock vibrators on request.

CORNELL-DUBILIER

POWERCON CONVERTERS

C-I) Ponercons are honestly rated for dependable trouble-free long life. A complete line for conversion to 110 volts $A C$ from 6,32 or 110 volts $D C$; converters for operating phono-turntables from 110 VIC; hatery chargers for 6 and 12 volt IC output from $110 \mathrm{~V}^{T} A C$ and converters for conversion of $D C$ voltage at one level to DC at another. Powercon catalog on request

COMPONENTS FOR EVERY APPLLCATON

B\&M AIR INDUCTORS Pioneers of the Coil Industry

B\&W was the first to develop and manufacture the air wound type inductor, a modern type of coil that sets a standard of design and construction throughout the industry.

Pioneers in many new types of coils, B\&W was the first to manufacture a complete line of coils for amateur use. First in the development of variable links, B\&W now offers "plug-in" var. iable links for greater flexibility.

Among the many other B\&W firsts in the electronic field are: transmitting turret assemblies. coil-variable condenser combinations, miniature air wound coils and the latest development, the Faraday Shielded Link.

Sixteen years of unchallenged leadership provides an assurance that, regardless of the application, B\&W has a coil to fit the need... and you can depend on them.

237 Fairfield Ave.jp Upper Darby, Pa.

In addition to the B \& W products shown here, there are dozens of others in our general catalog. All are made under the direct supervision of men who know amateur radio requirements personally. And all are produced to the high quality and design standards that are characteristic of $\mathbf{B} \& W$ equipment.

B \& W BUTTERFLY VARIABLE CAPACITORS

Compactness and symmetry make these B \& W JCX Variable Capacitors an outstanding favorite. Heavy rounded edge plates permit ratings to 2500 volts D.C. unmodulated and 1500 volts D.C. in modulated final amplifier circuits. They may be used as a capacitorinductor assembly with any B \& W "B" or "BX" inductors including the fixed or variable link types. Voltage rating measured at 30 megacycles.

B \&W ALL-BAND FREQUENCY MULTIPLIER

Model 504-A fixed-tuned, 80- to 10 -meter broadband frequency multiplier designed for use with either a V.F.O. or Crystal input. Makes transmission on any band available at the flip of a switch. Ideal as a basic unit for your new rig.

B \& W "BABY" AIR IXDUCTORS

25 W'atts Rating-Ideal for crowded layouts, portables and any other application where space is at a premium and high efficiency a "must." Many other types and sizes available. All offer famous B \& W "air wound" construction.

B \& W TEST INSTRUMENTS

Accurate-Inexpensive-Reliable

AUDIO OSCILLATOR-Model 200-An extremely low distortion source of frequencies between 30 and 30,000 cycles.
Distortion meter-Model 400 - Measures total harmonic distortion for the range of 50 to 15,000 cycles.
SINe WAVE CLIPPER-Model 250-Provides test signal particularly useful in examining the phase angle, transient and frequency response of audio circuits.
FREQUENCY METER-Model 300-An accurate and convenient means of making direct measurements of unknown audio frequencies up to 30,000 cycles.
WRITE FOR COMPLETE B \& W INSTRUMENT CATALOG!
Butler 1 , Ho.
11240 W. Olympic Blvd.
Los Angeles 25, Calif.
OFFENBACH REIMUS
co.

1564 Marhel 15
San Francisco 2, Calif.
SCOTT RADIO SUPPIY Alamito Av.
Long Beach 2, Calif.
RADIO PRODUCTS SALES
1501 South Hill
Los Angeles 15, Colif.
VALLEY ELECTRONIC SUPPLY
1302 West Mognolia St.
Burbant, Calif.
KIERULFF \& COMPANY
820 W. Olympic Blvd.
Los Angeles 15, Calif.
WALTER ASHE RADIO CO.
1125 Pine St.
SI. Lovis 1, Missouri
WESTERN DISTRIBUTORS
227 No . Sania Fe
Salina, Kansas
RADIO PARTS CO., INC.
538 W . State St.
Milwaukee 3, Wis.
THE ELECTRONIC
EQUIPMENT CO.
917-19 Florence St.
Fort Worth 3, Texas
R. C. 2. P. HALL

Becumont, Texos
Galveston, Texas
Houston, Texas at your DEALER

THE COMPLETE LINE OF TRANSMITTERS, RECEIVERS, TVI FILTERS, ETC. . . . AND NOW
THE "PRIVATE TUTOR" COURSES FOR ALL AMATEUR LICENSES

4世-31 DOUGLASTON P'KWAY, DOUGLASTON, N. Y

TME CRANFORD RADIO
King Mw. S Moph,
Homes, onso, cento

ELDICO is reprtswifled by leading distributors in the $\mathbf{U} . \mathrm{S}_{\mathrm{n}}$ lis possessions and Canada, where you can sce what you get. You can see for yourself the omazing values offered in these days of high prices. Eldice is an orgonization of Hams, with the Hams' wievpo nt uppcrmost in all their designs. Eldico's enaleur products are designed by engineers who are Hams; they are actually fisted on the air betore they aro even considered for inclusion in the Eld co lint.

Eldice amaleur products are offered in hit form to enable the Ham ta have the best a the lowest possible price. Yot save the high cosi of labor by doing the wiring and assembly, yef yow are assured the finest in design and proper placememt of components in accerdance with best engineering practices. You build with conf dence when you buy Eldico. Write fer your free calalog, or beffer yti, drop into your fevorite distributor and get Cafelog '51. See OST each month for curtenl Eldico Producis.

HATRY Y YURG is2 lowell St. laprisirl, mat. 1246 Corzhil Iovon 8 , Mat. $285=5 t$ $1+8$ imins. Com 199 lerlas 5 tisuriall, mon labra ginck cokr. I? ? fetro हैं या
W. H. 2bwain D : CO.
ct bisidey,
EVANF RADIO
Co 1-3 7)
C=-w-1, HiM6
MAPRESON RADIO CORP.

$\mathrm{N}=\mathrm{m} \operatorname{lin} \mathrm{J}$ M B .
Jonsial lioech
t/2-21

MARV Y RADIO CO., INC

FORT ORANGE RADIO DISTA BUYING CO., INIC.
pith=7
ALLEN B MURLEY
2)Le Wortal.

MLHO RADIO CO.
fot ditht
Plaflitin Po.

CAME:ADIO

9 Al L eert Ave.

EADIE ELECTRICSERVICE
CO. CP PENNA., INC.
? Pingh en
Pav) arwien Si
1 ifitcom. Pas
Pli Nethetelonst

fation P6.

Fid 5 atnull 3ts
inhimizet $\mathrm{P}=1$.

PEDER ATED PURCHASER, INAC

101 N . Hamptor S
Eolion Pa
9:1 3. Gren Arr.
tot Anseri 15 , Colvt.
l| 15 . Homitton 5 S.
Al-Ne=1, Pa .
114 H diem th.
Newal. T.J.

GEORBE B. BARBEY CO.
 2niA io bin

ACM ADIO SUPPLY CO.
7TR1.74 A\%. No
iftin. taw S, Ala
ELUFF CITY DISTRIBUTIN:

co.

5-5 u
Matsp iv. Tern

RADIG EQUIPMENT CO.

PADIG AMATEUR CENTER

Batete, No. Car
HADIO EQUIPMENT CO.
21 1. $21+=$
${ }_{l k-l} 10, \mathrm{va}$.
RADIG PARTS, INC.
107 H วword Ave.
Hy*F, Driva, La.

AMPLIFY YOUR DOLLARS

by buying $G-E$ tubes!

1 TOP QUALITY WITH WIDE SELECTION

2
BRAND-NEW CIRCUIT IDEAS

your complete supply source for

 amateur station supplies

$=-\frac{11}{x}$ industrial electronic equipment

WORLD'S LARGEST STOCKS • ALL THE LATEST EQUIPMENT
Depend on Alines - your one source supply-to bring you the products of each and every one of the dependable manufacturers represented in the Handbook. We carry the world's largest stocks of Amateur station supplies-and, of course, we can supply all the components you'll need to build any circuit described in this or in any other publication. You can depend on alfied to give you plery buying advantage: money-saving values, complete lines of top-grade equipment. fast shipment, easiest-pay terms. unbeatable trade-ins. 15-day trial on communications receivers-and real help from our staff of oldtime Hams. You'll find it pays to he "equipped by allied."

FREE 212-PAGE BUYING GUIDE

You'll find everything you need in this latest 212-page ALLIED Catalog-not only all the station supplies you want, but the world's largest selection of industrial electronic equipment, special tubes, test instruments, recording and high.fidelity audio equipment, replacement parts - all at lowesi, money-saving prices. Get and use the ALLIED Catalog your dependable one-source Buying Guide.

ALLIED RADIO

833 W. JACKSON BLVD., CHICAGO 7,ILL.

- AILIED your complete supply source for

 amateur \& industrial tubes,
test instruments, parts

Amateur \& Industrial Tubes

Allieif maintains in constant stock for quick shipment, the world's largest distributor inventory of RCA special-purpose tubes for A mateur. industrial, broadcast, governmental and other uses. Phone, wire or write - we ship from stock to you within hours after we receive your order. Save time, effort and money - fill all your IRCA tube needs at ALLIED-your complete. dependable electronic supply source.

Precision Test Instruments

Order your RCA lab measurement instruments from our extensive stocks. We can supply promptly all IRCA test and measurement equipment, including the following:
WO-56A $7^{\prime \prime}$ Oscilloscope $\quad \$ 217.50$
WO-5713 3' Oscillosenpe $\quad 145.00$
WIR-39C TV Marker (ienerator 24?.50
WIR-i913 TV Sweep Generator . 274.50
16\%-C IRider Chanalyst 16.50
Prices subiect to change
We are also leading suppliers of IRCA parts components. speakers and batteries. Simplify and speed your purchases - send us your consolidated orders for all IRCA equipment - have the advantages of quick, expert shipment from the world's largest stocks of Electronic equipment for Amateur and Industrial use.

FREE 212-PAGE BUYING GUIDE Write for your fREE copy of the latest ALLIED Catalog - the only complete Buying Guide for all Amateur and Industrial Electronic Equipment. Lists the newest developments-includes all the RCA equipment you need. Get your 212-page ALLIED Catalog today...

ALLIED RADIO

833 W. JACKSON BLVD., CHICAGO 7, ILL.

ALIID

your complete supply source for

 famous quality precision receivers
97.751. HRO.50.71 Receiver, $\$ 383.50$ 97.721. Speaker for above. . . $\$ 16.00$

97-721. NC• 125 Receiver, 3149.50 97.728. Speaker for above. . \$11.00

Order your National Communications Receivers from allied. For complete descriptions, see the Na tional section in this Handbook. Get cuery buying ad vantage at Allied complete selections-quick delivery -easiest terms-15-day trial-expert, dependable service from allied's staff of experienced Amateurs. Choose National-the worldrenowned name for rugged, superior communications performance-and get your National receiver and accessories at allied.

WE STOCK ALL NATIONAL MODELS Look to Alliled for quick, expert service on all NATIONAL Receivers. Take advantage of our easiest-pay terms (all National equipment amounting to $\$ 45$ or more available on easy terms) and 15 -day trial. We can supply all of the following models:
97-662. NC-183 Receiver.... \$279.00 97-663. Speaker for NC-83. . 16.00 97-632. HFS Rec.-Conv... . 142.00 97-763. AC supply for HFS. . 22.43 97-711. SW-54 Receiver..... 49.95 97-724. Select-O-Ject 28.75
NATIONAL power supplies, coils and NBFM adapters also available.

Prices subject
to change
to change
FREE 212-PAGE BUYING GUIDE

Write for your FREE copy of the latest ALLIED Catalog-the only complete Amateur Buying Guide. Lists all the newest developments, including complete selections of all National equipment. Be sure to get and use your 212page ALLIED Catalog.

ALLIED RADIO

833 W. JACKSON BLVD., CHICAGO 7,ILL.

\%w wnewail
 versatile, high-quality transmitters

Bandmaster Deluxe Transmitter. A complete 50 -watt phone-CW transmitter with instant bandswitching 80 through 2 meters (8 bands). Includes new crystal-oscillator-vfo switching circuit. Tubes: 6AQ5 osc., 6AQ5 mult., 807 final. Speech amplifier for crystal mike uses 2-6AU6, 1-12AU7 phase inv., 2 -6L6 mod. Requires APS- 50 or DPS-50 power supply below. Size, $8 \times 12 \times 8^{\prime \prime}$. Complete with tubes, less crystal and mike. Shpg. wt., 20 lbs, 97-792. Bandmaster DeLuxe Transmitter \$137.50 Bandmoster Senior Tronsmitter. 50-watt phone-CW as above, but modulator does not have high-gain speech amplifier. For use with single-button carbon mike. Shpg. wt., 20 lbs.
97-791. Bandmaster Senior Transmitter . . .\$111.50 APS-50 AC Power Pack. For use with above transmitters. Delivers 425 v , at 275 ma., and 6.3 v , at 4 amps. With 2-5U4G rect. For 110 v. A.C. $50-60$ cycles, $11 \times 67 / 8 \times 83 /{ }^{\prime \prime}$. Shpg, wt., 27 lbs. 97-698. APS-50 AC Power Pack
$\$ 39.50$
DPS-50 Dynomotor. For portable operation of above x -mitters, from 6 v . storage battery. Output: 300 v. at $250 \mathrm{ma} .101 / 8 \times 51 / 4 \times 57 / 8^{\prime \prime}$. Shpg. wt., 16 lbs. 97-697. DPS-50 Dynamotor
$\$ 87.50$

Look to allied for quick, expert service on Harvey-Wells equipment. Take advantage of our easy payment terms and 15-day free trial. It pays to be "equipped by allied."

FREE 212-PAGE BUYING GUIDE
Write for your FREE copy of the latest ALLIED Catalog-the only complete Amoteur Buying Guide. Lists all the newest developments, including a complete selection of Harvey. Wells equipment. Be sure fo get and use your 212-page ALLIED Cafalog.

ALLIED RADIO

833 W. JACKSON BLVD., CHICAGO 7, ILL.

your complete supply source for

OHARABCamateur and industrial transformers

the transformer line designed for today's Amateur circuits

insulation throughou Operate with temperature rise of 40° to $50^{\circ} \mathrm{C}$ at full load, 60 cy. Pri. 115/230 volts, $50 / 60$ cycles. Famous Sealed-in-Steel construction assures long-life dependable performance.

Mins No.	Max. Pri. VA	Secondary A.C Load Volls	D.C Volts after filter	D.C Ma. CCS ICAS		Net Price
P-45	185	$\begin{aligned} & 675-0.675 \\ & 575-0.575 \end{aligned}$	$\begin{aligned} & 400 \\ & 500 \end{aligned}$	250	325	\$11.64
P. 67	250	$\begin{aligned} & 900-0.900 \\ & 735-0.735 \end{aligned}$	$\begin{aligned} & 750 \\ & 600 \end{aligned}$	250	325	13.9F
P-107	310	$\begin{gathered} 1150-0.1150 \\ 870.0 .870 \end{gathered}$	$\begin{array}{r} 1000 \\ 750 \end{array}$	250	350	32.34
P-1240	360	$\begin{gathered} 1425-0.1425^{*} \\ 600-0.600 \\ \hline \end{gathered}$	$\begin{array}{r} 1250 \\ 400 \\ \hline \end{array}$	$\begin{aligned} & 150 \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & 260 \\ & \hline \end{aligned}$	21.0%
P-1512	550	$\begin{aligned} & 1710.0 .1710 \\ & 1430.0 .1430 \end{aligned}$	$\begin{aligned} & 1500 \\ & 1250 \end{aligned}$	300	425	42.0%
P-2520	915	$\begin{aligned} & 2820-0-2820 \\ & 2260-0-2260 \\ & \hline \end{aligned}$	$\begin{aligned} & 2500 \\ & 2000 \\ & \hline \end{aligned}$	300	425	64.63
P.3025	1850	$\begin{aligned} & 3450-0.3450 \\ & 2850-0-2850 \\ & \hline \end{aligned}$	$\begin{aligned} & 3000 \\ & 2500 \\ & \hline \end{aligned}$	500	700	113.19

LOOK TO ALLIED FOR THE COMPLETE LINE

We can supply alt CHICAGO transformers for Amateur applications -Plate, Filter Reactor, Filament, Audio and Modulation units. We stock the entire famous "Sealed-in-Steel" New Equipment Line, including Power, Bias, Filament, Filter, Plate, Reactor, Audio (in 3 frequency ranges), M IL-T-27, Modulation and other transformer types. You can depend on allied for quick, expert delivery of CHICAGO preferred-quality transformers.

FREE 212-PAGE BUYING GUIDE

Write for your FREE copy of the lotest ALLIED Catolog-the only complete Buying Guide for oll Amoteur ond Industrial Electronic Equipment. Feotures the world's lorgest stocks-includes the CHICAGO tronsformers you need. Get your 212-poge ALLIED Catolog now.

KEEP IT HANDY

ALLIED RADIO

833 W. JACKSON BLVD., CHICAGO 7, ILL.

IT'S EASIER TO BUY CENTRALAB ELECTRONIC COMPONENTS

Because there's a Centralab Distributor Near You . . . Rcady to Deliver Essential Electronic Components. Over 700 Centralab Distributors Carry Centralab - America's Most Complete Line of Controls, Switches, Ceramic Capacitors and Printed Electronic Circuits.

CERAMIC CAPACITORS with a wide range of ratings and in miniature sizes moct the low power tator space raving and televison circuits. They offer high accuracy. chatacteristics. This means freedom from most deshable tomperature and humidity style condensers.

NEW BLUE SHAFT VOLUME CONTROLS availahle in all generally required sizes assembled and tested... eady to install.

EYELET-MOUNTED FEEDTHROUGH CERAMIC CAPACITORS are excertiunally small. Caracirics range from 25 tionally mmf. Voltage rating, som V.D.C.W.

TUBULAR TC HI-KAPS temperature comFEnsating ceramic capacitors. TrZ urit snow no capacity change uvar smate pacitance according to temperatue.

PRINTED ELECTRONTC CIRCUITS_ Now svalahle, everything fom single value, aracitors and resiotor plates f1, wmslece 3 -stage spech amrlifiers

POWER SWITCHES we specially desioned for transmitter power suapply converturs and other medium duty power applien tions, Ffficient up to 20 megacycles.

ROTARY BAND SWITCH is used primarily for hatud change and general tap switch applications. Made with Steatite or

LEVER, SPRING RETURN, TONE SWITCHES. See your Centralab distibutor for com plete details on thene witches - and fiete complete line of quality $C R L$ pants.

These products are lisfed in Cotalog 27. Just tell us you ore a radio amoteur - it will be mailed of ance.

Centralab
 Division of GLOBE-UNION INC.

Centralab offers the widest variety of ceramic copacitors on the market today for all ranges of voltage and frequency for any application in circuitry.

Centanalab
 Division of GLOBE-UNION INC.
 934 Enst Keefe Avenue
 Milwaukee 1, Wisconsin
 GERAMIG CAPACITORS
 GERAMIG CAPACITORS

rh and larger laboratory and production
Centralab introduced ceramic capacitors and has constantly devoted more research and larger laboratory and production facilities to this field, than can be said of any other firm. Ceramics are known as the most permanent type of capacitors,

For bypass, coupling and general use, Tolerance $\ddagger 20 \%$ through 2200 mmf : higher cap. ©ivaraneed Minimum Values calized. 1000 volits d.c. test : 600 volts d.c. working. Minimum urder quantity, S.

Cot. No.	Cap. MMF.	Size	Lis! Price
D6.090	5	A	. 25
15 Cl 100	10	A	\$. 25
1) 0.120	12	A	. 23
I) $n-150$	15	A	. 25
1) 6 -180	18	A	. 25
1)6,2こ0	22	A	. 29
1)6.250	25	A	. 29
1)n.270	27	A	. 25
1)6.330	33	A	,25
1)n-300	3)	A	. 29
1)6.4.0	$4{ }^{-1}$	A	. 29
1) 6 - 5100	${ }^{8} 1$	A	. 29
1) 6.960	96	A	. 29
1)6.680	68	A	. 25
1) 6.750	75	A	. 29
1)(6-101	100	A	. 29
D6-121	120	A	. 29
1) 6.151	1519	A	. 25
D6-181	180	A	. 25
D6-201	200	A	. 25
1) 6 -221	2211	A	.24
1)6-291	290	A	. 25
1)6.271	270	A	. 25
1)(1.301	300	A	. 29
1)(r.3.31	330	A	. 25
1)(6-391	301)	A	. 25
1)6.401	f(10)	A	. 29
D)6.471	40	A	. 29
D) 5 - 011	5101	A	. 29
1)6-961	S(0)	A	. 29
1)6.601	(6)0	A	. 25
1)6.681	(x)1	A	. 25
D)6.751	- 50	A	. 25
1) 6.102	$1.000)$	B	. 29
D) 6122	1.200	H	. 25
D) 6.192	1.964	H	.29
Dr.182	1.800	B	. 29
1) 6.202	2.010	1	. 25
I) 6.222	2.200	H	. 25
1)6.292	2. 5010	H	. 29
1) 6 -27?	2.700	13	. 25
1)6.302	3,000	13	. 25
1) 6.332	3.300	C	. 25
1)(6-402	4.0101	C	. 25
1) 6.472	- * ${ }^{\text {a }}$	C.	. 25
1)6.902	ร.000	C	. 25
1)6-562	5.600	1)	. 25
1)6-682	6.800	1)	. 25
D6.103	10.000	1)	. 25
Body Dimensions			
A	.230'"		. 475 "
B	. 230 "		. 750 "
C	.255"		.885"
D	.310"		1.180°

Fit narrow spatcs. Tolerances CMV except Cat. No. DD-2-502 is - $20 \%+$ 80%. 1000 d.c. test : 600 volts d.c. work. ing, Min, order quantity, 5 .

TYPE DD-SINGLE DISCS				
Cot. Na.	Cop. MFD.	Diom.	Thick.	List Price
DD-471	.00047	1/4	. 156	\$. 25
DD.801	. 00088	$1 / 4$. 156	. 25
DD-102	. 001	3/8	. 156	. 25
D) 152	.(0)15	3/8	. 156	25
ITD.202	.00?	\%	. 156	.29
IDD.902	. 009	\%	. 196	. 25
DD. 103	. 01	5/8	. 156	. 25
DD-203	. 02	\%	.225	. 45

Type 850 S high voltage ceramic e.tpacitors are $\pm 10 \%$ tolerance in cases with centered hex studs, one each end, projecting $1 / 8^{\prime \prime}$. tapped 6-32, $1 / 4^{\prime \prime}$ deep.

Cot.	Cap.	V.C.D.	Temp.	List
No.	MMF,	Wkg.	COEF.	Price

SMALL HIGH VOLTAGE UNITS
The three series which follow are exceedingly compact ceramic capacitors, similar in appearance to type ssos above. Monnting is with axial screw type terminals. tapfed 2.56 . Tolerance \pm 10\%. Sizes: 893 , $w^{\prime \prime \prime}$ diam. $\times 1 / 2^{\prime \prime}$. 854

Cot, Cop. V.C.D. Temp. List
No. MMF. Wkg. COEF. Price $\begin{array}{lllll}853 A-10 Z & 10 & 5000 & \text { NPO } & \$ 3.00 \\ 893 A .207 & 20 & 5000 & \text { NPO } & 3.00\end{array}$ $\begin{array}{lllll}893 \mathrm{~A} \cdot 20 \mathrm{Z} & 20 & 5000 & \text { NPO } & 3.00 \\ 853 \mathrm{~A}-40 \mathrm{~N} & 40 & 5000 & \text { N750 } & 3.00\end{array}$ 851 $\begin{array}{lllll}89+A-10 Z & 10 & 5000 & \text { NPO } & 3.00 \\ 89.4 A \cdot 20 \mathrm{~N} & 20 & 5000 & \text { N750 } & 3.00\end{array}$ $\begin{array}{lllll}895 A .3 Z & 3 & 5000 & \text { NPO } & 3.00\end{array}$ SWITCHES

HAM TYPE SWITCHES

Heavier than normal Steatite insulation, Use with tubes oferating up to 1000 volts and inputs up to 150 watts. Non-shorting. 90° positive index. Mtg, bushing $3 / x^{\prime \prime}$ $\times 32$ thread. $3 / 8^{\prime \prime}$ long. Shaft, $1 / 8^{\prime \prime}$ long.

Cot. Na .	Poles per Sec.	Tot. Sec.	Pasitions	$\begin{gathered} \text { List } \\ \text { Price } \end{gathered}$
25.42	1	1	2 to 4	\$2.2
25.13	1	2	2 to 4	3.5
2544	1	3	2 to 4	4.7
25.45	1	4	2 to 4	6.0
2546	1	5	2 to 4	7.2
SEPARATE STEATITE SECTIONS furnished with 4 fibre cushion washers. CAT. No: XX 1 pole 2 to 4 positions Non-shorting \$1.25.				

WORKSHOP ANTENNAS

A COMPLETE LINE FOR ALL HIGH-FREQUENCY BANDS

AMATEUR - TELEVISION - FM - EMERGENCY

 RADIO - MICROWAVE - STL - TV RELAY
Government

RADAR GUIDED MISSILE or ROCKET-BORNE COMMUNICATION and NAVIGATION

The WORKSHOP pioneered antennas for the high-frequency spectrum, and today our complete line covers all bands from 28 mc . up.

Workshop Amateur Antennas

2-Meter Beam Antenna - Model 146AB. High gain - broad band 6 -element array - 2 driven elements - rugged - withstands wind and ice.
6-Meter Beam Antenna - Model 52AB. 3-element directional array - low standing wave ratio - rugged - withstands high winds and ice.

10-Meter Dipole Antenna - Model 29AD. Covers 27.30 mc . band - fully adjustable element length ruggedly built to withstand high winds and ice.
10-Meter Dipole-to-Beam Conversion Kit Model 29B. Converts the Workshop Model 29AD to a 3 -element 10 -meter beam antenna.
10-Meter Complete 3-Element Beam Antenna Model \quad 29. Complete band coverage - adjustable element length and spacing - rugged construction.
6-Meter 6-Element Array - Model //52AB-2. High gain - broad band coverage - choice of polarization - ruggedly built to withstand wind and ise.
6-Element "Dual-Ten" Beam Antenna - Model 29X. Ultimate in high-gain 10 -meter beam, broad band characteristics - optimum directional pattern.
All WORKSHOP antennas (except government) are available through radio distributors.

Engineering and Contract Service. The WORKSHOP handles scores of special government and commercial antenna problems every year from design through production. With our new plant and facilities, we can handle more than ever before.
Left - High-Gain Beacan Antenno. Recammended by all $152-162 \mathrm{mc}$. equipment manufocturers. Hundreds ore in use throughout the country.

The WORKSHOP ASSOCIATES DIVISION OF THE GABRIEL COMPANY
Specialists in High-Frequency Antennas
139 Crescent Road, Needham Heights 94, Mass.

Amateur 10-Meter Beam Antenna.

Standard Parabolic Relay Antenno for Studia-ta-Transmitter Link on 920.960 mc . band.

WORKSHOP DUBL.VEE Television Antenna, double-stacked.

A representative group of highprecision rodor antennas.

Quet Right ror your nis!

SPRAGUE CAPACITORS

HYPASS ${ }^{\circledR}$-feed-through capacitors for bypassing harmonic currents in transmitters and for climinating v -h-f interference from a-c mains and control circuits. Ideal for eliminating TVI ... developed to meet transmitter needs outlined by ARRL Headquarters.

FILTEROL - line filters for suppressing "man-made" radio noises and television "scrambles" on practically any application. Small. self-contained, and easily installed, Filterols provide maximum noisesuppression.

CERA-MITE* - the first complete line of miniature disc ceramics. Tough, dependable, and inexpensive. A type for every use-GA (General Application), high-K, and temperaturecompensating.

METAL-ENCASED PAPER

 CAPACITORS - long a favorite with amateurs, these metal encased capacitors are impregnated and filled with KV'O, the efficient dielectric material. Long-life and reliability are out. standing.TELECAP ${ }^{\star}$ - phenolic molded paper tubulars assure maximumdependability under extreme heat, humidity, and shock. These Black Beauties are oil-impregnated in ratings from 600 to 12,500 volts.

ATOM - metal - encased, dry electrolytics are engineered especially for tough television replacement applications. Small enough to fit anywhere, Atoms withstand punishing $85^{\circ} \mathrm{C}$. ($185^{\circ} \mathrm{F}$.) temperatures.

TWIST-LOK*-dry electrolytics, sealed in aluminum cans with twist-prong tabs for washer or direct-tochassis mounting. Top dependability in small size at $85^{\circ} \mathrm{C}$. ($185^{\circ} \mathrm{F}$.). Sprague makes more ratings than any other manufacturer. Ideal for TV servicing.

MICAS - of maximum quality for $\mathrm{R}-\mathrm{F}$ applications where high " Q " and high insulation resistance are required. There is a Sprague mica capacitor for everyamateur requirement, from tiny half "postage stamp" typestogiant ceramic-jacketed types.

KOOLOMM ${ }^{*}$ RESISTORS

The only resistors wound with ceramic coated wire and doubly protected by a glazed ceramic housing and unique end seal to guard against moisture. Wires cannot short. Koolohms can be mounted anywhere, even flat against a chassis or grounded parts. They can be used safely at full wattage ratings.

WRITE FOR INTERESTING SPRAGUE LITERATURE COVERING

 THESE PRODUCTS OR SEE YOUR RADIO PARTS SUPPLIER.
McELROY

MANUFACTURING CORPORATION, LITTLETON, MASS.

Telephone, Boston Liberty 2-3411. Cable, Tedmac, Boston

MARS and Red Cross and other Emergency Communication Systems please note
Tens of Thousands of radio operators have been trained on McELROY equipment.
Hundreds of Radiotelegraph Stations - military, naval, commercial - use McELROY equipment.

Now even the Smallest Station

 can convert from manual to automatic operation.The McElroy Portable Morse Package Unit MP-() -sturdy, light, compact - gives you perforated tape keyed transmission and inked slip recording at speeds up to 100 words per minute.

Technical Information will be sent upon request

Morse Package MP-() Recciving

104

DEPENDABLE High Speed Communications

By SKILLED Communications Engineers

 of long EXPERIENCE and INTEGRITYAuto Head, Drive and Keyer Combination $A D K$

Recorder, Amplifier and Puller Combination RAPC

Auto Head and Drive $A H D$

Tape Puller CTP and Reel

106

For

 HF
insulation

 specify the best!
ALSIMAG

Custom Made Technical Ceramics
SOLD ONLYTO MANUFACTURERS

AMERICANLAVA CORPORATION
5OTH YEAR OF CERAMIC LEADERSHIP
Chafianooga 5, Tennessee

WATERMAN PIONEERING

WATERMAN INTRODUCES

 TWO NEW ${ }_{\text {Rar }}^{\text {CaHLORE }}$ OSCILLOSCOPESCompact, Portable Instruments For Precision Pulse Measurement Adaptable To All Electronic Work, Including TV . . .

The PULSESCDPE

TO PORTRAY THE ATTRIBUTES OF THE PULSE: SHAPE, AMPLITUDE, DURATION AND TIME DISPLACEMENT
Video Amplifier up to 11 MC • Video Delay 0.55 us Pulse Rise and Fall Time Better Than $0.07 \mu \mathrm{~s}$

S-4-A SAR

PULSESCOPE

Video Sensitivity $0.5 \vee p$ to p / in. © Sweep 80 cycles to 800 kc , either trigger or repetitive $\bullet A$ Sweep $1.2 \mu \mathrm{~s}$ to $12,000 \mu \mathrm{~s} \bullet$ R Delay $3 \mu \mathrm{~s}$ to $10,000 \mu \mathrm{~s}$, directly calibrated on precision dial • R Pedestal or Sweep 2.4μ s to $24 \mu \mathrm{~s}$ • Internal Crystal Markers 10μ s and $50 \mu \mathrm{~s}$ • Size: $91 / 8 \times 11 / 4 \times 101 / 4 \bullet$ Weight: Less than 32 pounds.

S-5-A LAB
PULSESCOPE

Video Sensitivity $0.1 \vee \mathrm{p}$ to p / in. - Sweep $1.2 \mu \mathrm{~s}$ to $120,000 \mu \mathrm{~s}$ with 10 to 1 expansion - Sweep either trigger or repetitive - Internal Markers synchronized with sweep from $0.2 \mu \mathrm{~s}$ to $500 \mu \mathrm{~s}$ Trigger Generator and built-in precision amplitude calibrator - Completely cased • Size: $161 / 2 \times$ $141 / 8 \times 171 / 2 \cdot$ Weight: Less than 60 pounds.

HI, WIDE and HANDSOME POCKETSCOPES are characterized by small size, light weight, and outstanding electrical performance. All units have frequency compensated attenuators as well as nonfrequency discriminating gain controls. All units have both periodic and trigger sweeps from $1 / 2$ cycle to 50 KC . The amplifiers are direct coupled thus frequency response starts from 0 cycles. No peaking coils are used, thus, the transient response is good. Full expansion of trace, both vertical and horizontal, is built in.

Combination filter and graph screens are used for better visibility, thus traces can be observed even under high ambient light condition. Binding posts for convenience of connections, with effective shield, are used. S-14-A has sensitivity of $10 \mathrm{mv} / \mathrm{inch}$ with pass band above 200 KC . S-14-B has sensitivity of 50 mv /inch with pass band above 1 megacycle. S-15-A is similar to S-14-A except that it has two independent CR Tubes for multi-trace oscilloscope work. Accessories such as carrying cases and probes are available.

POCKETSCOPES and RAKSCOPES have achieved a reputation for dependability and accuracy. The LINEAR TIME BASE can be used with the S-11-A POCKETSCOPE or with any other oscilloscope to convert the scope to trigger operation from $1 / 2$ cycle per second.

WATERMAN RAYONIC TUBE DEVELOPMENTS

Since the introduction of Waterman RAYONIC 3 MPI tube far miniaturized ascillascapes, Waterman has developed a rectangular tube for multi-trace oscillascapy. Identified as the Waterman RAYONIC 3SP, it is available in P1, P2, P7 and P11 screen phosphors. The face of the tube is $11 / 2^{\prime \prime} \times 3^{\prime \prime}$ and the over-all length is $91 / 4^{\prime \prime}$. Its unique design permits twa 3 SP tubes ta occupy the same space as a single $3^{\prime \prime}$ round tube, a feature which is utilized in the S-15-A TWIN-TUBE POCKETSCOPE. On a standard 19" relay rack, it is possible ta mount up to ten 3SP tubes with sufficient clearances for rack requirements. Photographic means of recording are under development and will be available shortly.

3MP

TYPICAL OPERATION									
TUBE	VOLTS ANODE $\# 2$	VOLTS ANODE \#1	$\begin{aligned} & \text { VOLTS } \\ & \text { GRID }=1 \\ & \hline \end{aligned}$	$\begin{gathered} V 1 \mathrm{~N} \\ \mathrm{D} 1 . \mathrm{D} 2 \\ \hline \end{gathered}$	$\begin{aligned} & \text { V/IN } \\ & \text { D3. } \mathrm{D4} \\ & \hline \end{aligned}$	MAX. VOLT ANODE \#2	MAX. VOLT ANODE \#1	VOLTS HEATER	CURRENT HEAIER
3SP	$\begin{aligned} & 1000 \\ & 2000 \\ & \hline \end{aligned}$	$\begin{aligned} & 165 \text { to } 310 \\ & 330 \text { to } 620 \end{aligned}$	$\begin{aligned} & -28 \text { to }-67 \\ & -58 \text { to }-135 \\ & \hline \end{aligned}$	$\begin{aligned} & 73 \text { to } 99 \\ & 146 \text { to } 198 \end{aligned}$	$\begin{aligned} & 52 \text { to } 70 \\ & 104 \text { to } 140 \end{aligned}$	2750	1100	6.3	. 6 Amp.
3MP	$\begin{aligned} & 1000 \\ & 2000 \end{aligned}$	$\begin{aligned} & 200 \text { to } 350 \\ & 400 \text { to } 700 \end{aligned}$	$\begin{aligned} & 0 \text { to }-68 \\ & 0 \text { to }-126 \end{aligned}$	$\begin{aligned} & 140 \text { to } 190 \\ & 280 \text { to } 380 \end{aligned}$	130 to 180 260 to 360	2500	1000	6.3	. 6 Amp .

Be Sure of Your Installations Get the Aptitude-Jested RG/U TRANSMISSION LINE CABLES

You know what you are doing when you use Belden RG/U Transmission Line Cables-they're aptitude rated. They are designed to provide desirable electrical characteristics, and rigid control assures constant quality.
Specify Belden Radio Wires.
Belden Manufacturing Co.
4617 W. Van Buren Street
Chicago 44, Illinois

110

Wherever there's a need for crystals - old type or wholly new in design-consult JAMES KNIGHTS first.

FOR YESTERDAY

This JK H-11-developed in the mid-' 30 s for aircralt communications - is one of many old-time crystals still made by JK.

TODAY

Typifying wide current usage of JK crystals is the JK T-9, so popular for frequency standards.

AND TOMORROW

Every day finds dramatic new uses for the hermetically sealed G-9. This stable erystal is used for "audio frequency" work.

CRYSTALS FOR "HAMS" - OR HELICOPTERS!

Wherever you look in industry and science, you will find James Knights crystals forging America's future. For the JK ability to pioneer into new fields of crystal design and adaptation - even as the company is producing the more common, "garden variety" crystals - has made James Knights the SURE source, whatever the usc.
Whether it be atomic research, a crystal for a commercial watch timer, or an amateur desiring a frequency control for his transmitter, you'll find the crystal answer at James Knights.

Crystals for the Critical

For a rapid scanning of the dozens of various type precision crystals a vailable for you at James Knights, write for this free JK catalog.

HARVEY'S first concern is for the customer... Ask your fellow amateur!

Authorized distributors of

receiving and non-receiving tubes batteries - test equipment television components e service parts
... and other products of famous names in radio and electronics

FREE RCA

 HAM TIPSAre you getling RCA HAM TIPS? There's o free copy waiting for you at Harvey Radio Co. If you can't call personally, write for it.

We've been headquarters for hams, professionals and commercial engineers for more than 25 years. And we retain six full-time active amateur operators and a large staff of technical experts, who are always available and ready to help you.

These staff salesmen talk from personal experience. They'll recommend the right parts and equipment from our huge stock.

Horvey offers you world-wide one-stop service for everything you need in radio and electronics. Phone, wire, or moil orders from anywhere are filled as soon os they're received. Lacated at the crossroads of the world, one block from Times Square. Come in today, or next time you're in New York.

Harvey's staff is always af YOUR service!

112

HARVEY features leading standard brands available for IMMEDIATE DELIVERY!

NEWI NATIONAL HF5

Versotile VHF receiver-converter covering all frequencies between 27 and 250 mcs . in six bonds including $11 / 4,2,6,10$ and 11 meter amoteur. Con be operoted mo. bile, portoble or fixed station; AM-FM. CW. Moderotely priced.
HFS (less power supply)
$\$ 142.00$

NEW! NAYIONAL HRO-5OTI
With 12 permeability-funed $1 . F$ eireuits and the highest degree of "skirt" seleclivity ever achieved in a general com. munication receiver. Speaker extra, HRO-50T1 \qquad $\$ 383.50$

NOTE: All prices are Net, F.O.B. N.Y.C. and are subject to change without notice.

Brilliant new superher covering 540 kc . - 30 me. with built-in speaker, bandspreard, best communications feotures. $A C / D C .12 B E 6,12 B A 6,12 A V 6,50 C 5$. 3525 tubes. Yops for voice, music, code. Ony $11 \times 7 \times 7^{\prime \prime}$. SW-54.............. $\$ 49.95$

NATIONAL NC-125

9.tube superhet for homs ond SWL's covers $550 \mathrm{kc}-36 \mathrm{mc}$ in 4 bonds. Coli. brateds electrical bandspreod on all ham bands Select-O. Ject filter sircuif. Less speaker, Phano input. NC.125.... $\$ 149.50$

NATIONAL NC-7 83

14 fubes plus VR-150, 5U4G. Covers 540 kc - 31 me , plas 48.56 mc . Phono inpup and rush-pull 8 watt audia. Two tuned RF stages. 5 bands; bandspread. Speaker extra. NC-183............................ $\$ 279.00$

113

SHORT WAVE COILS

HIGHPOWER FILAMENT TRANSFORMER P-2943

Designed for highpower use in both Amateur and industrial applications. Specifications: Sec. Volts, 5-Sec. Amp., 30-Insulation Volts, 3000-Center tapped with primary taps for $110.115-120$ volts, 60 cycles-Dimensions, $37 / 8 \mathrm{H} \times 33 / 16 \mathrm{~W} \times 43 / 8 \mathrm{D}$-DL Mounting. Will handle a pair of 250 TH's, 4-250 A's, 4-125 A's, 4-400 A's, etc. Net Price $\$ 6.60$.

SEND FOR CATALOG \#5211

Merit offers a complete line of TV, radio. industrial and amateur transformers and IF-RF coils for TV, FM, short wave and broadcast. Write today for your Merit Coil \& Transformer Catalog!

MERIT

COIL \& TRANSFORMER CORP.
4427 NORTH CLARK ST., CHICAGO 40, ILL.

GURTON BROWNE ADVERTISIMG

Volt-Ohm-Mil-Ammeters
 for your every need

* Note . . . These Sensational Improvements

TRIPLETT Model 630

* Large $51 / 2$ Inch Meter in special molded case under panel.
*Resistance Scale Markings from . 2 Ohms to 100 Megohms. Zero Ohms contro flush with panel.
* Only one switch. Hos extro large knob $21 / 2^{\prime \prime}$ long, easy to turn, flush with panel surface.
* New molded selector switch, cantacts ore fully enclosed.
* All resistars are precision film or wire wound types, all seuled in molded compartmen.
* Unit construction-Resistors, Shunts, Rectifier, Batteries all are housed in a molded base built right over the switch. Provides direct connections without cabling. No chance for shorts.
Batferies easily replaced-New Double Suspended Confocts.
* Ranges: DC Volts 0 to $6000,20,000$ Ohm/Volt; AC Volts 0 to 6000,5000 Ohm/Volf; DB: -30 to +70 ; Direct Current from $0-60$ Miaraamp. to 0-12 Amps; Resistance: 0-1000-10,000 Ohms, 0-1-100 Megs.

ABSORPTION FREQUENCY METER

Model 3256

A bandswitching, tuned absorption type frequency meter that covers five amateur bands. Has Germanium crystai and a DC Milliammeter indicator for greater sensitivity. Direct calitration on panel - no coils to change. Switching permits instanta neous bind change. Audio jack provides zor monitoring of phone signals - another new feature. Calibration is in Megacycles in following bands: 3.5-4 MC; 7-7.3 MC; 14-14.4 MC; $20-21.5 \mathrm{MC}$ 28-30 MC. Coil is re movable and other coils may be sub stitutell for special bands. Useful for checininq: Fundamental frequency of oscillativ:g circuits; Pres \uparrow nce, order and relative amplitude af harmonics: Parasitic oscillations, etc. Size: $71 / 2^{\prime \prime}$ x $21 / 2^{\prime \prime} \times 21 / 4^{\prime \prime}$. Metal case with gray enamel finish black trim

A COMPLETE LINE OF METERS

Tripiett panel and portable meters are available in more than 26 case styles - round, square and fan $2^{\prime \prime}$ to $7^{\prime \prime \prime}$ sizes. Included are voltmeters, ammeters, milliammeters, millivoltmeters, microammeters, thermo-ammeters, DB meters, VU meturs and elestrodynamometer type instruments

Address all inquiries to Depf. Q-5 2

666-R
For your AC and DC Voltage, Direct Current and Resistance analyses to 3 Megohrms. Enclosed selector switch of molded construcion keeps dirt out. Retains contact alignment permanently. Unit Construction All Resistors, shunts, rectiier and batteries housed in a molded base integral with heswitch Eliminates heswich. Eliminates chance for shorts. Direct con nections. No cabling. All pre cision film or wire-wound resistors, mounted in thei own compartment-assures greater accuracy.3 RED.DOT Lifetime Guaraneed instrument Red and black markings on a white background. Easy to read scale. Precalibrated recti
 ier unit. Self-contained batteries.
RANGES: AC-DC Volts: 0-10-50-250-100:)-5000, 1000 Ohms/Volt: Direct Current: 0-10-100 Ma. 0-1 Amp.; Resistance: 0-3000-300,000 Ohms, 3 Meg Black molded case, completely insulated, $31 / 16^{\prime \prime} \times$ $57 / 8^{\prime \prime} \times 21 / 16^{\prime \prime}$. White panel markings

Model $666-\mathrm{HH}$ VOLT-OHM-MILLIAMMETER

A complete miniature laboratory for DC-AC Voltage, Direct Current and Resistance analyses. The answer to V-O-Ma. requirements of radio servicemen amateurs, industrial engineers, etc. Greater cale readability on the $3^{\prime \prime}$ RED-DOT Lifetime uaranteed instrument with red and black scale markings. Simplified switching.
RANGES: AC-DC Volts: 0-10-50-250-1000-5000, 1000 Ohm Volt; DC Ma: 0-10-100-500; OHMS: $0-2000-400,000$. Self-contained plug-in betteries. Black molded case, completely insulated, $31 / 16^{\prime \prime}$ $\times 57 / 8^{\prime \prime} \times 24 / 16^{\prime \prime}$. Panel with white markings.

FOR THE MAN WHO TAKES PRIDE IN HIS WORK

BOB HENRY HAS hallicrafters

what do you have?

MODEL SX-71 ... double superheterodyne circuit plus built-in Narrow Band FM reception. Temperature compensated, voltage regulated. 5 position band selector for $538-1650 \mathrm{Kc}, 1600-4800 \mathrm{Kc}, 4.6-13.5 \mathrm{Mc}$, 12.5-35 Mc, 46-56 Mc. 11 tubes plus voltage regulator and rectifier. \$199.50

MODEL 5-76... dual conversion (1650 Kc and 50 Kc). Four bands $538-1580 \mathrm{Kc}, 1720 \mathrm{Kc}$ to 32 Mc .5 position selectivity. Sensitivity 2 microvalts or better with 5 watt output. 9 tubes plus regulator, rectifier. \$169.50

Why not the best! l'll give you terrific trade-in allowances on your used communication equipment-easy payment plan-90-day FREE service-prompt delivery. Complete stock of new Hallicrafters receivers and transmitters to choose from. Write, wire, phone or visit either store today. Export orders welcome too!

MODEL S-40B... 540 Kc to 43 Mc . Temperature compensated. One RF, 2 IF, 3 -watt output, 4 bands. 115 volts AC. 7 tubes plus rectifier. Internal speaker. \$99.95. Other popular Hallicrafters models: S38-B \$49.50; S-72 \$109.95; S-72L \$119.95; SX-62 \$289.50

116

IEMA VERTICAL AND MOBILE ANTENNAS， ELEMENTS－－MOUNTINGS－－ACCESSORIES

Promax Tinhular hertieal Antemas are fully collapsing and adjust． alde，yet give comptinally rfficiont．deprodabla performanae under
 be supported by gesa ar samdoff insulaturs against abmornal winds．

No．	13．seripriom	l．angth Wivarileal		（1．1）． hase	$1.11 .$ Rusi	$\begin{gathered} \text { Wrizhr } \\ \text { rurh. lbs. } \end{gathered}$
112.41	2－sere，trlemalio	$11 \times 8{ }^{\prime \prime}$	$6^{\prime \prime} 1^{\prime \prime}$	（6．0．6）${ }^{\prime}$	． $5.0{ }^{\prime \prime}$	1
318.81	3－arce telemerob	$13^{\prime \prime} 3^{\prime \prime}$	＂＇3＇	．825＇	－7i＂＇	7
221．3		$22^{\prime \prime} \mathbf{Y}^{\prime \prime}$	$0^{\prime \prime} 3^{\prime \prime}$	$1.1603^{\prime \prime}$	．963＇3	11
130． 11	．i－ater｜r｜racois	28.3 ＇	619＂	1．250＂	$1.150^{\prime \prime}$	1.5
1360.11		$33^{\prime \prime} 7^{\prime \prime}$	$6{ }^{\prime \prime}{ }^{\prime \prime}$	1． $5100^{\prime \prime}$	$1.119 \%^{\prime \prime}$	20

N\％．	Ifercribtions	In－ Fitrondied	Iarimih Collapserd	（9．1）． Base	（．I）． Herse	$\begin{aligned} & \text { W. } \mathrm{right} \\ & \text { mach. lbs. } \end{aligned}$
11．－312		$12{ }^{\prime \prime}{ }^{\prime \prime}$	＂1＇	．incr	．3311＇	$11 / 2$
A1．－518	3－mere trlotcoris	18＇0．＂	$6^{\prime} \square^{\prime \prime}$	．750＇	． 581 1＂	3
A1．－321	1－мес．（tlen－op：\％	$21^{\prime \prime}$	$6^{\prime \prime}$	$1.10 \mathrm{Mr}^{\prime \prime}$	． $8.34^{\prime \prime}$	5
AI．．－730		$31^{\prime} 0^{\prime \prime}$	6＇5＇	$1.2 .510^{\prime \prime}$	$1.084{ }^{\prime \prime}$	7
A1．－53．	（0．mere．telemopry	$33^{\prime} 8^{\prime \prime}$	6＇5＇	1．504）	$1.310^{\prime \prime}$	12

Ideal antennas fur Civil lor．

 fense Mlobile installations． ＂品ing single ${ }^{\prime \prime}$＂hold for

 11．top with lif）surtion rul requirins no holes．＇lype Gl？－3l2 is ielaal finr land station transmitter．

Conlera and liasp－Leaded Moloile Antemmas

 1spers．
 2351 hr ．operations．

IRS Donoling）

WIRIPTMPE ANTENNAS

 acting rectuiremonts．Availalale in Alamimatm．

 ＂I＇，100＇

 Ash for lyque 4 ．

MABIIE MADNTMNAS

 Tipe I．．Sumber Minantink： $10^{\prime \prime}$ adjustatale．

 Dive s．Siring Slomintion for romif．

Jype［RI．I niveras l Domonting for ans surfate．

（．It fit any $1 / 4^{\prime \prime}$ Whig Intemat）

IBATT．AEV ISEA．M KIT
Complete Kit R13－630゙品 for 6 ， 10 and 11 Met＂rs
 alluminnmon

 \qquad

SEND FOR ANTENNA CATALOG

PRMNAX PRODUCHS
 DIVISION CHISHOLM－RYDER CO．，INC．

5203 HIGHLAND AVE．
NIAGARA FALLS，N．Y．

Whats in a Name?

Way back in 1922, the late Henry C. Gates, well known industrialist, decided to make the name GATES synonymous with service in the electronics field.

Today, 30 years later, it would be a rare exception to find anyone who does not know sbout GATES products.

One of the oldest manufacturers of electronic equipment in the world, the GATES RADIO COMPANY specializes in radio transmitting equipment of all types - AM, FM, TV, Communications, elc.

By so specializing - and through production efficiency -GATES is able to offer higher quality at more modest prices.

No job is too large or small, too complex or simple for GATES to tackle.

Because GATES itself manufactures a large number of the components that so into finished GATES equipment, designs are not assemblies built to the convenience of someone else's particular size of material.

This means GATES offers "custom-built" quality and efficiency at prices that pleasantly surprise.

All of these points are of outstanding importance to you - are specific reasons for wanting your transmitting equipment to bear that familiar and trusted name - GATES.

GATES PRODUCTS

- Commercial broadcasting equipment Commercial communications transmitting equipment - Television transmitting equipment - Frequency modulated transmitting equipment - Mobile transmitting equipment - Audio equipment including: broadcast, recording, public address - Specially designed electronic instruments including: vibration fatigue apparatus, laboratory hearing aid equipment, recording equipment - And many other items.

GATES RADIO COMPANY • MANUFACTURING ENGINEERS • QUINCY, ILLINOIS, U.S. A.
2700 Polk Avenue, Houston, Texas • Warner Building, Washington, D. C. - International Division, 13 East 40th Street, New York City - Canadian Marconi Company, Montreal, Quebec, Canada

THIS VALUABLE BOOK all about code
 FREE

HERE＇S WHAT WORLDCHAMPIONTED McELROY SAYS ABOUT THE FAMOUS CANDLER SYSTEM

＂My skill and speed are the result of the exclusive，sci－ entific training Walter Cand－ ler gave me．Practice is necessary，but without proper training to develop Concentra－ tion，Co－ordination and a keen Perceptive Sense，practice is of little value．One is likely to practice the wrong way．＂
McElroy is the Official Champion Radio Operator， 75.2 w．p．m．won at Asheville Code Tournament，July 2， 1939.

LEARN CODE

BEGINNERS

THE EASY CANDLER WAY

 maximum sperd and proficiency in corle operation．．．risht in yoner own home．The forty－year record of the（AND）LER SY： T＇EW in traming beginners to develop and apply queir talente wo top sperel and efficimey is somad ormof of what har（CANI）IER Sソ＇sile 11 offors vou．

Abstract

Thinh of the thrills and excitement yom can have commanieat ing by conle with people all over the world ．．．when you berentre a mend Amateme Operator．Or，yon may have vomer sightemel inn hecoming a laplily－paill，expert Commereial（perator．In either case．yon can suep time and money learning the fundamentals of conde sending and receiving and the primeiplas of fast．efliderent

OPERATORS

INCREASE SPEED and SKILL THE CHAMPION CANDLER WAY

Are you hrping for a nice promotion ．．．a bigger walary ．．．an

 OF CHIDIONS shows you how to ithirove yotar cende teeh－ nigue increase your apred develop your shill lo the highesel print－rliminate mervons temsion and pave the way to a tepl－ brachel position as atl expert Operator．
 the extra shill and sperd you nered to be a suectossful Commercial
 an easy，thorough and intereming way．It in the outsandioge merheril that bas developed thoustands of firstorlass operators －ven Champions－from ordinary operaters．＂Fbere is a rourse to meel vout requirements．．．athl vour hudget．．．．in the（IVi）． luer wherequira

FIND OUT HOW THE CANDLER SYSTEM CAN HELP YOU．SEND NAME AND ADDRESS ON COUPON OR POSTCARD FOR FREE COPY OF CANDLER BOOK OF FACTS．

CANDLER SYSTEM CO．，P．O．Box 928，Dept．24，Denver 1，Colorado，U．s．A．

SPECIAL COURSES FOR BEGINNERS \＆OPERATORS

The SCIENTIFIC CODE COURSE，especially designed for the beginner．Teaches the basic principles of code operation scientifically．

The HIGH SPEED TELEGRAPHING COURSE，intended for the operalor who wishes code speed and skill to become a good operator or a bether one faster．

The HIGH SPEED TYPEWRITING COURSE，designed for those who desire typewriting proficiency and speed．Especially designed for copying messages and press with fypewriter．

————IT＇S FREE！－MAIL COUPON NOW！－ーーーー

 CANDLER SYSTEM CO．，Dept．24， P．O．Box 928，Denver 1，Colo．Or：52b，Abingdon Rd．，Kensington High St．，London W．8，England \square I am o beginner
\square I am an operafor．
Gentlemen：Yes．．．I＇m interested in the CANDLER Code Trainiag Sysfem．Pleasi rush my FREE copy of the CANDLER Book of Fasts today．
Name ．．
\qquad
City ．．．．．．．．．．．．．．．．．．．．．．．．．．．．Zone ．．．．rrate ．．．．．．．．．．．．

IF YOUR GEAR HAS TO FIT IN PEANUT SPACE

See what's NEW -from SONAR!

NEW Sonar
mobile
SR-9 Rcvr

Indispensable when you must hear what's coming through in mobile or fixed operation, CD, CAP or emergency ac. CD, CAP or emergency ac
tivily. More than a monitor more than a converter it's a 9-fube superhet receiver with over-all sensilivity better than .5 micra. volt. Tiny - only $49 / 16^{\prime \prime}$ high, 5 3/16" wide, and 5 11/16" deep. Yet sk-9 gives you built-in automotic noise limiter, voltage regulated oscillotor, precision slide rule dial.

Your choice of 2, 6, 10 mefers and commercial frequencies, AM and FM.
$\$ 72.45$

8 or 24 Mc. erystol, over. tone type. Screw-driver ad. justed tuning control.

NEW Sonar mobile MB-26 Xmir

Like SR-9 Revr, this crystal. conirolled 6-tube Xmir goes everywhere, fits anywhere, employs latest v.h.f. tech. niques! lefs you send clear signal, no matter how gruel. ing the going. Output: 6 watts. Power consumption: equivalent io car prigh quits Just $61 /{ }^{\prime \prime}$ high 7 ights. Just $61 / 2$ high, 7 wide, 5% " deep. Built-in antenna relay system, power filter nefwark. Low mainfenance - sfandard tubes. Power and antenna co-ax connectors on front panel.

PASS THE WORD TO YOUR LOCAL CIVIL DEFENSE AUTHORITIES. SEE SONAR'S SENSATIONAL SR-9 RCVR AND MB-26 Xmpr at your dealer's - or write for free literature.

AC power supply -

input 110 VAC . $\$ 30.00$
output 400 V ((225 ma . 39.45
XE10 NFM exciter. Complete NFM unit having its own power supply... phase modu. lated, using an exclusive SONAR circuit, which is completely independent of the oscillator. Oscillator is crystal controlled or may be used with any type of VFO. Unit is finished in a smooth, groy baked enamel with two-colored screening, red and white.

SONAR MODEL VFX-680 ALLBAND EXCITER $\$ 87.45$

 Incorporates newly developed SONAR NBFM Modulator and VFX Oscillator. Quartz crystal insertion operates oscillator from VFO to Xtal control. Vary VFX control to "rubberize" any type crystal. Smooth, gray baked enamel with two-colored screening, red and white.RPA tape recorder amplifier $\mathbf{\$ 4 9 . 5 0}$ RPA 1 tape record playback amplifier. $\$ 471.90$

MPA 3 channel mixer and 3 rd head preamp. $\$ 187.00$

PTM professional tape mechanism, less carrying case. . . . \$220.90

PTM carrying case \$33.00 $10 \frac{1}{2^{\prime \prime}}$ NAB reel adapters, per pair. $\$ 9.90$

PTA 12 tape power amplifier, less plug in preamp.
\$88.00
Equalizer for above. \$27.50

ALBANY
7, N. Y.
Cable Address: "UNCLE DAVE"

AMATEUR HEADQUARTERS

WE ARE PROUD of the fact that we supply nationally known and nationally advertised products!

BUD
BROWNING
BRUSH
BURGESS
BUSSMANN
CANNON
CARDWELL
CENTR ALAB
CINCH-JONES
CONANT
CORNELL-DUBILIER
DRAKE ELECTRIC
DRAKE MFG.
EBY
EITEL MCCULLOUGH
ELECTRO-VOICE
EL MENCO
ELECTRONS
EIRE
ESICO
ESPEY
federal tel.
GENERAL CEMENT
GONSET
GOTHARD
GREENLEE
GUARDIAN
HICKOK
ICA
IRC
JENSEN
JFD
KRAEUTER
KESTER
KING

LYSCO MOBILE TRANSMITTERS AND RECEIVERS

ll tielfuse MAlLORY
MASCO MEISSNER MILEEN MINN, MINING MUELLER OHMITE PARK METALWARE
PAR-METAL PENN BOILER PICKERING PRECISION PREMAX
PRESTO
PETERSEN
RADIART
RME
RAYTHEON
REK-O-KUT
RIDER
SANGAMO
SARKES.TARIIAN
WALTER L. SCHOTT
SHURE
SIGNAL
SIMPSON
HERMAN SMITH
sola
SPIRAGUE
STANCOR
SUPERIOR ELECTRIC
TACO
TAYLOR TUEES
TELEGRAPH APPARATUS
TELEX
TRJMM
TEEREX
THORDARSON
TRIPLETT
UNGAR
UTC
UNIVERSITY
UTAH
UTICA TOOLS
VACO
WARD
WEBSTER CHICAGO
WEBSTER ELECTRIC
WELLER
WESTON
WHEELER
WIRT
WORKSHOP
WORMER
8. MANY OTHERS

Prices on Request

Lysco Model 600 TVI Supressed trons. $\$ 143.95$ Lysco Model 400 Modulotor $\$ 119.95$ Lysco Model DIl Grid Dipper $\$ 39.95$
W. Trade and Swap • Literature Sent on Request - Phone orders solicited and answered expertly - foreign arders invited ants filled pramplly

Fort Orange Radio Distributing Company, Inc. $^{\text {In }}$

PAD-MTTAL RACHS CHASSIS CRBLNETS ARME AL per ELectionicapparatus

Thefollowing list of RACKS are only representative. There's a complete line of PARMETAL units to fill every need.

Adaptable for Every Commercial or Amateur Purpose

To complement the line of Racks shown here, $P . A K$ - MIET. $1 L$ also manufatures a STA VDARDIZI:D line of Cubinets and Chussis which can he used in conjunction with our Racks. or as a separate entily: For complete details send for our atailog.
*P-8518 SERIES RACKS (18 $1 / 2^{\prime \prime}$ and $24^{\prime \prime}$ Deep Racks)

(181/2" ond 24" Deep Racks)		
$\begin{gathered} \text { Cut } \\ \text { ino. } \end{gathered}$	Gicridl Dimensions	Panel Spose
P. 6918	$695 / 8^{\prime \prime} \times 235 / 8^{\prime \prime} \times 181 / 2^{\prime \prime}$	$6114^{\prime \prime} \times 19^{\prime \prime}$
P. 7818	$783 / \mathrm{s}^{\prime \prime} \times 235 \mathrm{~s}^{\prime \prime} \times 181 / 2^{\prime \prime}$	$70^{\prime \prime} \times 19^{\prime \prime}$
P-8518	$853 / 8^{\prime \prime} \times 235 / 8^{\prime \prime} \times 181 / 2^{\prime \prime}$	77 " $\times 190$
P-6924	$695 x^{\prime \prime} \times 235 / s^{\prime \prime} \times 24^{\prime \prime}$	$611 / 4^{\prime \prime} \times 19^{\prime \prime}$
P-7824	$783 / 8^{\prime \prime} \times 235 / 8^{\prime \prime} \times 24^{\prime \prime}$	70 " 19 "
P-8524	$853 / / 8^{\prime \prime} \times 235 / \mathrm{s}^{\prime \prime} \times 24^{\prime \prime}$	77 " 19 "

ER-225

F-8318 SERIES RACKS (Inside Depth 14")

$\begin{gathered} \text { Cut. } \\ \text { No. } \end{gathered}$	dicrinl Dimphsions	Panel Stuce
F. 6618	$673 / 8^{\prime \prime} \times 22^{\prime \prime} \times 18^{\prime \prime}$	$611 / 4^{\prime \prime} \times 19^{\prime \prime}$
F. 8318	$831 /^{\prime \prime} \times 22^{\prime \prime} \times 18^{\prime \prime}$	$77^{\prime \prime} \times 19^{\prime \prime}$

*P-8318 SERIES RACKS (18" and 24" Deep Racks)

(Sughe asterisk) denotes those raths in which Blach Ripphe Enamel Finish is standard. (irey Rignle Enamel Finish is optional at no extra dharge if rextlested with your order
-* (1)oubhe amerisk) denotes those racks in which (;rey Riphle FEnamel Finisth is standard. Black Kopple Enamel Finish is optional at no extra charge if regnested with your order.

$$
\text { (} 161 / 2^{\prime \prime} \text { Deep Rocks) }
$$

PAR-METAL PRODUCTS CORP.

32-62 49th Street, Long Island City 3, N. Y.

EXPORT DEPT. ROCKE INT. CORP. 13 E. 40 Street
New York 16, N. Y.

Learn Code the EASY Way

Beginners, Amateurs and Experts alike recommend the INSTRUCTOGRAPH, to learn code and increase speed.

Learning the INSTRUCTOGRAPH way will give you a decided advantage in qualifying for Amateur or Commercial examinations, and to increase your words per minute to the standard of an expert. The Government uses a machine in giving examinations.
Motor with adjustable speed and spacing of characters on tapes permit a speed range of from 3 to 40 words per minute. A large variety of tapes are available - elemen. tary, words, messages, ,plain language and coded groups. Also an "Airways" series for those interested in Aviation.

MAY BE PURCHASED OR RENTED

The INSTRUCTOGRAPH is made in several models to suit your purse and all may be purchased on convenient monthly payments if desired. These machines may also be rented on very reasonable terms and if when renting should you decide to buy the equipment the first three months rental may be applied in full on the purchase price.

ACQUIRING THE CODE

It is a well-known fact that practice and practice alone constitutes ninety, per cent of the entire effort necessary to "Acquire the Code," or, in other words. learn telegraphy either wire or wireless. The Instructograph supplies this ninety per cent. It takes the place of an expert operator in teaching the student. It will send slowly at first, and gradually faster and faster, until one is just naturally copying the fastest sending without conscious effort.

BOOK OF INSTRUCTIONS

Other than the practice afforded by the Instructograph, all that is required is well directed practice instruction, and that is just what the Instructograph's "Book of Instructions" does. It supplies the remaining ten per cent necessary to acquire the code. It directs one how to practice to the best advantage, and how to take advantage of the few "short cuts" known to experienced operators, that so materially assists in acquiring the code in the quickest possible time. Therefore, the Instructograph, the tapes, and the book of instructions is everything needed to acquire the code as well as it is possible to acquire it.

MACHINES FOR RENT OR SALE

ACCOMPLISHES THESE PURPOSES:

FIRST: It teaches you to receive telegraph symbols, words and messages.
SECOND: It teaches you to send perfectly.
THIRD: It increases your speed of sending and receiving after you have learned the code.
With the Instructograph it is not necessary to impose on your friends. It is always ready and waiting for you. You are also free from Q.R.M. experienced in listering through your receiver. This machine is just as valuable to the licensed amateur for increasing his speed as to the beginner who wishes to obtain his amatecr license.

Postal Card will bring full particulars

THE INSTRUCTOGRAPH CO.

POLICALARM

 MONITrôADID cror nomesavailable with or without squelch control

COVERS...
FM Emergency 30-50 and
152-174 MC-AM Aircraft 108-149 MC
Polic-alarm and Monitoradio-low priced receivers, quality built for use throughout the entire 2-way $F M$ radio communications band and $A M$ aircraft band. A model for every need-aircraft, city and state police, sheriffs, fire, pipeline, forestry, industry, taxi-Polic-alarm and Monitoradio are invaluable to vital communications systems expansiou and development-all units are available with or without squelch quieting.

for complete information:

See your Jobber-or write us today.
RADIO APPARATUS CORPORATION

NOVICE AMATEUR ENGINEER

> Write today for your FREE copy of this great new book that gives you complete details, pictures, and lowest prices on:

Amateur Radio
Antennas
Audio Amplifiers
Audio furniture
Batteries
Books
Capacitors
Chassis, Racks,
and Panels
Chokes
Clips
Connectors
Counter tubes
Crystals
Dials and Knobs
Electric Tools
Fuses
Hand Tools
Headphones
Hi-fi Speakers
Inductances
Insulation
Insulators
Intercoms
Loud Speakers
Microphones
Music Systems
Noise Filters
P. A. Equipment

Phono Needles Phono Pickups Pilot Lights Plugs and Jerck Power Supplies. Radio Hardwat Radio Sets Radio Tuners Receiving Tubes Record Changers Rectifiers Relays Resistors Sockets Soldering Equipment Special-purpose Tubes Switches Tape, Wire, Discs Tape Recorders Telegraph Keys Terminals
Test Equipment Transformers Turntables TV Replacements TV sets Vibrators Voltage Controls Wire

RADIO SHACK

CORPORATION

167 Washington St., Boston 8, Mass.

YOU NEED THIS

192 PAGE ALL NEW

MAIL ORDER

Please send me your new catalog No. 52-A.

Sollar

for DOLLAR TURNER'S the BUY

Model 22X-22D Crystal or Dynomic

Model 33X-33D
Crystal or Dynamic

Turner Microphones are designed to outperform and outlast under the most severe service conditions. Compare. Then buy Turner - the best value on the market for your money. Write for literature.

Model U9S Dynamic 4 impedances at your fingertips

The Model 60X High output, low priced crystal desk and hand microphone for economical recording, sound systems, amoteur broodcost, etc.

The "Aristacrat" Model 500
World's finest dynamic. Laborotory Calibrated. For AM, FM, and TV

Model 99
Dynamic

Madel 25X-25D
Crystal or Dynamic

IN CANADA:
Canadian Marconi Company, Toronto, Ontario EXPORT:
Ad. Auriema, Inc., 89 Broad Street, New York 4, N. Y.

the TURNER company

931 17th Street N.E., Cedar Rapids, Iowa

A Complete Line of Vibrators . . .
Designed for Use in Standard Vibrator -Operated Auto Radio Receivers. Built with Precisian Canstructian, featuring Ceramic Stack Spacers far Longer Lasting Life.
Backed by mare than 17 years of experience in Vibrator Design, Development, and Manufacturing--
AIR PIONEERED IN THE VIBRATOR FIELD.

New Models

(1)

Standard and heavy duty INVERTERS

For Inverting D, C. to A,C. . . .
Specially Designed for operating A, C. Radios, Television Sets, Amplifiers, Address Systems, and Radio Test Equip. ment from D. C. Voltages in Vehicles. Ships, Trains, Planes and in D.C. Districts.

American Television \& Radio Co.

Quality Products Since 1931 SAINT PAUL I, MINNESOTA-U.S.A.

"A" BATTERY ELIMINATORS

New Models

For demonstrating and testing AUTO RADIOS
New Models . . . Designed for Testing D. C. Electrical Apparatus on Regular A. C. Lines. Equipped with Full - Wove Dry Disc Type Rectifier, Assuring Noiseless, Interference-Free Operation and Extreme Long Life and Reliability.

Specialists in electronic tube design and canstruction, our over-all laboratory facilities for the design and production are recognized as outstanding.

AMPEREX Tubes are designed, not only for all phases of communications, but for application in all fields where electronic equipments are used - industrial, radiation, electro-medical...etc....to assure yourself of unvarying performance and more all-around-kalue for your money - be sure to specify AMPEREX.

AMPEREX ELECTRONIC CORP.
25 WASHINGTON STREET, BROOKLYN 1, N. Y.
In Canada and Newfoundland: Rogers Majestic Limited 11-19 Brentcliffe Road, Leaside, Toronto, Ontario, Canada

128

CAPACITORS

F'P (fabricatod plate) and odher dry dertrolyhies, Plascapre plavic tabulars, crramir trimmers, dise eramies

CONTROLS

Midgeitral: single und dual concentric carlon eontrols, wira wand controls

POWER RHEOSTATS

RECTIFIERS

Mashesium cepprer sulfide and selantimm rectifier stacks. rectitior power suppties

RESISTORS

Fised and adjustable vitrobus enamel typere

SWITCHES

Gircait arlector and
"Hatnlanil" switches, jarcks and plugs

VARIABLE INDUCTANCE TUNERS

VIBRATORS

Vibrators and Vibrapack fower supplies

Make Sure ...

 Make It MaLLory |You can count on Mallory Approved Precision | Products for long, trouble-free performance. I They are backed by years of skilled design and manufacturing experience.
$\|$ Mallory alsa offers yon a wealth of helpful, up-to-date literature and advice on your technical problems. ןCall on your Mallory distributor whenever you | need parts or information. He is ready to serve you.

MALLLORY

SERVING INDUSTRY WITH THESE PRODUCTS:
Electramechanical - Resistors, Suitches, Television Tuners, Vibrators Electrochemical - Capacitors, Rectifiers, Mercury Dry Batteries Metallurgical - Contacts, Speciat Metals, Welding Materials

NEW. ${ }^{\text {F/FD }}$

 Instruments and KITSgive you Laboratory Precision at Lowest Cost!

New s" push-pull oscluoscope

All-new laboratory-precision scope w th all the extro sensitivity and response for precise servicing of TV, FM \& AM sets. Push-pull undistorted vertical and horizontal amplifiers. Boosted sensitivity, 05 to 1 fms volts/inch. Useful to 2.5 MC . TV-type multivibrotor sweep circuits, 15 eps -75 KC. Z-axis intensity modulanon feature. Dual positioning controls move trace anywhetw on screen. Com. plete with 2-615, 3.6SN7, 2-5Y3, 5BP1 CRT, 3-color eiched rubproof panel; steel cose. 115 v., 60 cycle $A C$. $81 / 2=17 \times 13^{11}$.
Model 425-K, KIT, only $\$ 44.95$

Hew vacuum tube volimeter

Loboralary-precision VTVM for trigger fost operation and

 lifetime service, 15 different zanges. Lorge 4, 2" meter, can't-burn-out circuil. New zero center for TV \& FM dis. criminator alignment. Electronic $A C \& D C$ ronges: 0.5 , 10. $100,500,1000$. (30,000 vols \& 200 MC with HVP. 1 \& P- 75 probes). Ohmmeler ranges, 2 ohms to 1000 megs. DB scale. New stable double-triode balanced bridge circuit-exteme accuracy. 26 megs $D C$ input impedance. 3-color etched rubproof ponel; steel cose. 115 v., 60 cycle AC. $9.7 / 16 \times 6 \times 5^{\prime 1}$ Model $221-K, K 1 T$, only $\$ 25.95$

New tube tester

 Brand new professional rube tester and merchandiser EICO Service-Engineered for unbeatable value! Large $41 / 2^{*}$ full. vision meter. Tests conventional and TV tubes including 9 -pin miniatures. New levep-action switches-tests avery tube element. Illuminoted "Speed Roll-Chon," 2 grid caps. Short and apen-element tests Spare socket for new tubes. Protective overload bulb. Electronic recufier. 3-color etched panel; tive overload bulb. Electronic rectitier. 3 -color etched panel;rugged steel cose. $115 \mathrm{v} ., 60 \mathrm{cy}$ le $\mathrm{AC} .121 / 2 \times 91 / 2 \times 414^{\prime \prime}$. Módel $\mathbf{6 2 5 . K}, \mathrm{KIT}$, onlY $\$ 34.95$ Model o25, fioctocy wired. side.9s

New battery eliminator,

 Charger \& boosterFor all oulo rodio lesting. Letesi-type full-wove bridge circuit, tstock mangonese coppet-oxide rectifiers. Specially designed rronsformer, variable from 0 to is volss. Comtinuous: 5.8 v . 10 amps. Intermittent: 20 omps. $10,000 \mathrm{mld}$ filter condenter. Meter measures current and voltage autpup. Eused primary; autamatic resel overlood device for secondery. Hommertone

Model $1040-\mathrm{K}, \mathrm{KIT}$, only $\mathbf{\$ 2 5 . 9 5}$

New deluxe signal generator

A laboratory.precision generator EICO Service-Enginefed with 1% accurocy. Extiemely stable, frequency $75 \mathrm{KC}-150 \mathrm{MC}$ in 7 calibrated ronges. Illuminated haifline vernier tuning, VR stabilized líne supply. 400 -eycle pure sine wove with less than 5% distontion. Tube complement: $0 \times 5,7 F 7$, $6 C 4$, VR-150. 3. colof etched panel; rugged iteel case. 115 y., 60 syclo AC. $12 \times 13 \times 7^{\prime \prime}$.
Made1 $\$ 15 . \mathrm{K}, \mathrm{KIT}$, only $\$ 39.95$
Model J15, factooy wired, $\$ 59.95$

MULTI-SIGNAL TRACER

righest goin and Mexibility in low-cant field. Audibly traces all IF, RF, Video and Audio trom ANT to SPKR or CRT without switching. Response well over 200 MC . Integral pest speaker. Provishon for visuol trocing with VTVM. Complete with 6517 , $6 \mathrm{KK}, 6 \times 5$. Germonium crysal diode. with 6 SJretched ponel; rugged steel case. 115 v., 60 cycle AC. $10 \times 8 \times 4^{22^{\prime \prime}}$
Model 145-K, KIT, only $\$ 19.95$

Sensitive Germanium crystal probe for sig. nol tracing and measurements to over 200 MC. Extends range of VTVMs and scopes. P.75K KIT, for VIVM; P.76K for Scope; et. $\$ 3.75$
p. 75 or P.76, foctory wired, eo. $\$ 5.95$

New signal generator

for FM.AM precision olignment and TV morker trequencies. Yernier Tuning Condenser. Highly stoble RF oscillator, range: $150 \mathrm{KC}-102 \mathrm{MC}$ with fundomentals to 34 MC . Seporate audio oscillator supplies 400 sycle pure sine wave volhage. Pure RF, modulated RF or pure AF for externol testing. 115 v .. 60 eycle
$\mathrm{AC} .10 \times 8 \times \mathbf{4}^{2} \mathrm{a}$. AC. $10 \times 8=414{ }^{*}$
Model $320-\mathrm{K}, \mathrm{KIT}$, only $\$ 19.95$
Model 320, factory wined, $\$ 29.95$

VOLT-OHM-MILLAMMETER

Pocket-bize VOM cram.pocked with voluel 22 different fanges. $3^{\text {"1 }}$ D'Arsonval movement. Ring type shunts. Germonium erystal restifier. Ranges-DC: $0-3,50,250,500.1500$ v. AC \& Output: $0.10,100.500,1000$ V. DC Ma: 0.1, 10. 100. DC Amp: 0.1. 10. Ohm: $0-500,100,000 ; 0-1 \mathrm{Meg}$. $\mathrm{DB}:-8$ to +55 . 3 -color elched panel; rugged hardwoad case. $8 \times 4 / 2=3 "$. Model 511 K, KIT, only $\$ 14.95$
Model 511. lectory wired. $\$ 17.95$

Hew sweep generator

Covers alf TV.FM alignment frequencies, $500 \ll-228$ Vernier-driven dial: center of each of 13 TV chonnels mu on front panel. Sweepwidth variable 0.30 MC with me ical inductive sweep-permits gain comparsou of adi RF TV chonnels. Crystal morker oscillatora voriable a tude. Provides for injection of external marker. Phosing trol. Complete with HF tubes: $6 \times 5 \mathrm{GT}, 12 \mathrm{AU7}$ (dual-4ri $2-6 C 4$. Less crystol. $10 \times 8 \times 6 \times 4.5 \mathrm{MC}$ Crystal, ed. \$ Model $360-\mathrm{K}, \mathrm{KIT}$, only $\$ 34.95$
Madal 360 loetory $=$ Ird, si9

Due to unsettled conditions, prives and specifications are subiect to change without notice

FIFO SUPER-SIMPLIIED INSTRUCTIONS

Easy-to-follow step-by-step EICO pictorial and schematic instructions-most explicit and comprehensive in electronics!-supplied with each Kit. Anyone can build the EICO Kits!

ELECTRONIC INSTRUMENT CO., Inc. 276 NEWPORT STREET, BROOKLYN 12, N. Y.
the exclusive EICO Make-Good GUARANTEE
Each EICO Kit and instrument is doubly guaranfeed, by EICO and your iobber, to comtain only selected quality components. EICO guarantes to reploce any component which mighs become delective in normal une if refurned to the factory trans. portation charges prepaid within 90 doys of purchase. EICO portavion chorlis propais simplified gutantaes alf Kits ossembled actording to EICO's simplified instructions will operate as spetified therein. EICO guorantees service and calibration of every EICO Kir and Instrument at the nominal charge es stated in the instructions.

Be sure to lock at EICO line before y buy any higher-pria equipment! Each I product is jam.pat with unbelievable YOU be the juilgecompare EICO at) local jobber today SAVE! Write NOW free newest Catal

"WHEN YOU CALL CQ-YOU'LL GET THROUGH" WIIL THESE DEPENDABLE SHURE MICROPHONES...

The "REX" Crystal Microphone is a strik-ing-looking, low-cost hand-held microphone. Fits snugly in the hand, sits firmly on a desk, or can be placed on a stand. Recommended where good quality speech reproduction is required and low-cost is an important factor. With stand adapter.
Model 710A Model 710 S . (with switch) . List Price $\$ 12.95$

The "HERCULES" Controlled Reluctance Microphone provides clear reproduction, high speech intelligibility, high output and ruggedness at an amazingly low price! Can be used indoors or outdoorsfits in the hand, sits firmly on a desk, can be placed on a stand. (W^{\prime} ith stand adapter.)
 Model 510C................. List Price $\$ 15.00$ Model 510S. (with switch). List Price $\$ 17.00$

The "DISPATCHER" is a Controlled Reluctance Microphone dispatching unit that handles the most severe field requirements of amateur rigs, paging and dispatching systems. Supplied with 3 -conductor shielded cable, and is wired to operate hoth microphone and relay circuits.

Model 51...................... . List Price $\$ 45.00$
Model 520SL-7 (7' cable)..... List Price $\$ 35.00$

The multi-impedance "UNIDYNE" is a high quality Super-Cardioid Dynamic Microphone for hams whose rigs must provide dependable performance even under difficult conditions. Reduces random noise pickup by 73%.

Model 55
.List Price $\$ \mathbf{7 2 . 5 0}$
The "MONOPLEX", the only super-cardioid crystal microphone. Has high-output, wide-range frequency response. Perfect for Hams who want the extra "push" that insures a "strong" voice. Featureshighquality performance at low cost.

Model 737 A List Price $\$ 39.75$
(3)

132

Where Dependability countsUse OHMロTE!

RHEOSTATS

Insure permanently smooth, cose control. All-ceramic vitreous enomeled: $25,50,75,100,150,225,300$, 500,750 , and 1000 -walf sizes.

'"BROWN DEVIL' RESISTORS

Slurdy, wire-wound, vifreous-enameled resistors for voltage dropping, bios units, bleeders, efc. In 5, 10, and 20 -waft sizes; values from 0.4 to 100,000 ohms.

'"LITTLE DEVIL' RESISTORS

Tiny, molded, composition resistorseach marked with resistance and woltage $-1 / 2,1$, and 2 -watt sures, $\pm 10 \%$ or $\pm 5 \%$ tol. 10 Ohms to 22 megohns.

FIXED REFISTORS

Resistance wire is locked in place and protect $=d$ oy vireous istamel. Slack sizes $-25,50,10$, 160, ere 200 wa ts; values 1 to 250,000 ofms.

ADJUSTABLE RESISTORS

Vif eous enameied. Quickiy adiust able to the alus neeced. Adiusiable lugs can be of ochec for rilijtap resstors ona voltage divide. Sizes 10 to 200 watts, 10100,000 ohm:.

R F. CHOKES

Single-layer-wound an low power factor cores, with moistur $=-$ proof conting. Seven tock izes, 1 - 520 me Two un ts rated 500π a others 1000 mo .

TAP SWITCHES

Compoct, higף-Eurrent rotory selec tors far a.c use. All ceramic. Selfcleaning silver-io-s iver contocts. Rated of $10,15,25,50$, and 130 amperes.

PRECISION RESISTORS

Three types ovalable: vitreous-enameled, vacuum-impregnatad, or glasssealed. Tolerance $\pm 1 \%$, in $1 / 2$ and 1-waft sizes, from 0.1 to $2,000,000$ ohms.

DUMMY ANTENNA

These rugged, vireous-enomeled uni's are proctically nonreaciive within their recommenced frequency range. In 100 and 250 waft size, 52 to 600 ohms, $\pm 5 \%$.

Write for Stock
Catalog

OHMITE MANUFACTURING COMPANY
4822 Flournoy St., Chicago 44, Illinois

> Be Right with

MATTERS OF FACT

\star After Yalta our nation, following the traditional pattern, disarmed and disposed of vast quantities of military goods. These included special military pieces of electronic test equipment made to standard design by many different companies during the last war. The actual disposition was accomplished in many ways - primarily through War Assets, direct government sales at military locations and through termination of government contracts.

Once again our peace is threatened and we are looking to our defenses. Many of the pieces bearing the nomenclature TS, I, IE, BC, etc. are once again in demand. Government stocks of this material are very low and, in most instances, the Government is not able to provide present day contractors with the equipment necessary to comply with production contracts. The Government knows this and is placing new orders for larger quantities of more recently designed test equipment. There is that lag, however, existing between the date of issuance of the order and the time of actual delivery which we are trying to overcome.

To the countless hams and industries who purchased TS equipment and/or other desirable communications gear in the belief that at one time they would use it, and who have not had the opportunity to properly derive full value from their purchases, Weston Laboratories now appeals so that we can purchase this material.

We are processors of this equipment and not entrepreneurs. As equipment is received, it is carefully checked out, re-built when necessary, and standardized and calibrated with the most modern facilities possible. As a result we offer American industry a definite service not easily obtained elsewhere.

Please help yourself to help us to help American industry and forward your list for prompt attention. Given below is the type material in which we are interested:

LAE	TS33	TS117	TS239
LAF	TS33A	TS120	TS263
LAG	TS34/AP	TS125	TS268
I208	TS34A/AP	TS155A/AP	TS270A
I222	TS35	TS155B/AP	TS323
TS3/AP	TS36	TS173/UR	TSK-4SE
TS12	TS47APR	TS174	TSS-4SE
TS13	TS100	TS175	TSX-4SE
TS14	TS111CP	TS195	

ELECTRONIC ENGINEERS

WESTON 93, MASSACHUSETIS

HOP GHOIGE FOR 21TEARO

 ElderoNLy Bliley offers the famous CCO-2A crystal controlled oscillator for 2-6-10-11 meters. Direct output on 6-10-11 meters. Use Bliley type AX2 20 meter crystal for top performance on $10-11$ meters; Bliley type AX3 for 6 and 2 meter operation. The ideal nucleus for your new equipment.

BLILEY MILITARY AND COMMERCIAL TYPES

大TYPE BH6A RANGE
$1.4-75.0 \mathrm{mc}$
Supplied per Mil type CR-18; CR-19: CR-23: CR-27; CR. 28: CR-32; CR-33: CR-35; CR-36 whon specitied.
\star TYPE MC9 RANGE:
$1.0 \cdot 10.0 \mathrm{mc}$ Supplied per Mil type CR-5; CR-6; CR-8: CR-10 when spocitied.

大TYPE SR5A RANGE
$2.0-15.0 \mathrm{mc}$
Supplied per Mil typeCR-1A when specified.

FOR PRECISION REFERENCE AT 100 KC

BLILEY TYPE AX2

Bliley Type
Supplied Tolerance
Range
ke)
1803-1822
$A \times 2$

AX2
AX2
Ax2
AX2
AX2

BLILEY TYPE AX3
Bliley Type

AX3

AX3
Specially designed third overtone crystal produced for the Blitey CCO-2A. Calibrated to $\pm .003$. Drift iess than 0002 per ${ }^{\circ} \mathrm{C}$.

Range

kc)

24000 - 24333
25000-25500 1878 - 1897 1903-1922 1978 - 1997 3500-3999 7000-7425 12500 - 13500 $13480-13615$

Supplied Tolerance
.
bliley type CCO.2A

SUPREME

"Supreme By Comparison"

COMPOSITE VIDEO GENERATOR

The Supremes synchomizing and test pat tern generator for testing and servicing television sets when the station pattern is of the air. Delivers the Composife video signal with all syne, blanking, and equalizing palses in the froner sequence to lock the raster into a frame of two interlaced fields. (This instrument should not be confused with the "cross-hateh" or "linearity pattern" type anits.) In addition to its synchronizing function, it has a built in Vibeo (bicture signal) generator which produces a pattern of precision spaced dots. P'attern can be thrned on or off withont affecting the synchroniation For additional information remuest catalog sheet AR-3065

AUDIO GENERATOR

tyre. Convenient size and rugged con struction for portability. ()uality material atnd workimanship for dejomelability Ouantity production for a budget price Reguest catalog sheer AR-2680

MULTI-METERS

S'IREME makes Volt-()hm- Villiammetors to fit most every need fand budget. Large atnd small meter lypes with 1000 or 20.000 ohms / volt sensitivity Reguest catalog sheet AR-2640.

GENERAL PURPOSE
 \& WIDE RANGE OSCILLOSCOPES

Sifprime ascilloscopes are yoars abhead in oferation and design. Mordel ono (illustrated) Ias virtually flat frecturney response from 5 eycles to 5 megargoles making it the ideal instrame:th for checking video and high firlelity andio circuits. Shipped eomplete with professional type frobe, filter sereen, and frequeney combensated attenuatur. For additional data on all Supteme ascillo"opes request catallog sheet AR-2bot

V.T.V.M. SET TESTER

siopremit lifectronic set rester is the ore

 firred vaculan tube valt oh H merter :llusing technicians and angineers. Full はetails on Manel 5t (illastrated) available by requesting catalog shret 1R-2574.

AF, RF, AND TV SIGNAL GENERATORS

Supreme has a mosi complete group of signal sources for testing atul aligning radio and celevision sens including high lidelity sound ampliliers. IF and RF gemerators avalable as separate mits or ia combination. Supreme Television generators can be externally moblulated with composite video signal. For additional data request catalog sheel TR-2000.

INDICATING INSTRUMENTS
 (PANEL METERS)

Scpreme quality meters feature efficient Annes Bar Magnet Double Bridge con struction, Selected livots and Jewels. Wide selection of stock models. Request catalog sheet AR-2400 Special dials designed for end equipment use.

TUBE AND SET TESTERS

Dependable, field tested, time proven tube test circuit with design flexibility features to minimi\%e ohsolescence. Supreme Tube and Battery Testers are availatle as separate units or in combination with selected multi-meter functions. All moselels "quipped with roll chart. Deluxe motels with $7^{\prime \prime}$ meters, standard moxdels with smaller meters. Tuber setting data on new cube types supplied free for first vear to registered owners. Request catalog sheet IK-2016 for addlitional information.

Inquiries Invited WRITE FOR ADDITIONAL DATA

IN ADDITION to the standard models shown above, Supreme builds special purpose test equipment and panel meters for industrial orgonizotions ond government services. During the post quorter-century Supreme Instruments have been the chaice of Engineers, Technicions and Amoteurs in the ever exponding electronic industry. For a prompt reply, ADDRESS ycur inquiry to Supreme, Inc., 1752 Carollton Avenue, Greenwood, Mississippi, U. S. A.

THERE'S AN

ILINOIS ELECTRotrtic capacior of 7 ime 7ested 2uality FOR EVERY ELECTRONIC APPLICATION

Seventeen years of successful production experlence, making millions of quallty capacitors, has created this complete, outstanding line.

This engineering and manufacturing experience has enabled ILLINOIS CONDENSER COMPANY to meet every demand for new capacitor types, whether for peace or defense applications, with components of exceptional value and dependability.
Illustrated are but a few of the many capacitor types now manufactured by ILLINOIS CONDENSER. There is a guaranteed ILLINOIS Con: dense far everr electronic application. Whatever your reaillentent spesi HLINOIS CONDENSER. Benefit by the yean of engliceting and manuiseming experience behind these condensent of 'Time Tested Quiliur

IHT This populer pigterl type ta duminum can leatures internal riveled construction that assures immunity to shock tnd vibrition Avoiloble with or without outer caidboaid insulating sleeve with bross-linned wire leads or solder lugs in copacity ranges from 1 to 2.000 MFD and from 3 to 700 w V D C.
IHC ideal for reolacement or orig. indel equipmert, this type has Hexible wist liedi, is seoled wilth high tempeature campeund has eiectiotytic siode enjoverd tuber end has redel of ientritia? alemas athachec Sup alied os ceman neset va, tour sec-
 wereto catpodef Arenileble in coporivengmbet to to ?50 MFD and

LM thetiete nets ispe mountine. Thudere alyninum cont ond is ovait ithe $=\gamma^{+}$io $1 \frac{1}{1}$ dirmeters Chopity
 400 ह $800 W^{\prime} \vee D C$

MMP lifel he communicat on, Nits the TV, seneled toit pors moxtion useftweonle seve aped matad mpuiter atintician ed

 wVBC

BT (Bathiub) Developed to millHert liked and patable communicr: tion equipment Has hermelically sealed, down metal case with corro. sion resistont linish Will stand shock and vibration Fully meets government IAN specifications. Avaleble in any copocity ranse required and flom is to 600 W.DC.

P霓 For use in all communication equipment, ined and mobile Plus in ostal base, hermelically seoled Fettiers neis molded through pin desion A silable in Iypes to meet all gortrmAment JAN perectiont ols

UMT Sowe inilly deviont d for uit in hith aurbit equiplen: Comotre no =rat oil qevernment JAN seec hontem Herretis "'r spried, "howt cuilane Nratr deagned malörd ateren tivitn and timentl ace. delith

UARS liverted =evew mounting, hor=ticelly wesied Entire line Jully gant all boet inme nt JAN profictmet.

UMC problal la vie in kiteplow infurym pors lids rovition

 Inconosm inf z.v.0.c.
 canti "wnftonif"

Choose YOUR New Semi-Automatic Key From This FAMOUS VIBROPLEX Family

VibropleX

Twice as Easy as Hand Sending

AMAZING NEW
 Super Deluxe Model
 PRESENTATION

With all thene great new features Jewel Movement-Assures a smooth, casy action, easier operation and longer life
Super-Speed Control Mainspring - Speed range from dead slow to lightning fast. No extra weights needed for slow speed
Touch Control - Instant adjustment to suit any hand
Extra Larke Contacts - DIE CUT for perfect alignment and clearer signals
Sure-Grip Finger and Thumb Piece - Aids in developing a good sending style
Fingertip Circuit Closer - Open and close circuit without moving fingers from operating position
Hold-Fast Rubber Feet - Hold key stationary. Prevent sliding

The Oripinal - This famous key has won world-wide acclaim for signal perfection. operating ease and all around sending satisfaction, by thousands of the world's finest operators. Built for long life and hard usage, with a range of speed for every operating need. Standard - Black crystal base, polished chromium parts.................................... . $\$ 17.95$ DeLuxe - Polished chromium base and parts, red trim, jewel movement. $\$ 22.50$

The Biue Racer - Small. Compact. Built like the Original but only half the size, with the same sional quality and ease of operation for which that key is famous. Weight 2 lbs .8 oz. Occupies small space. Ideally suited to radio requirements. Thousands in use. Standard - Black crystal base, polished chromium parts. . $\$ 17.95$ Del, uxe - Polished chromium base and parts, red trim, jewel movement. $\$ 22.59$

> All Vibroplex keys are available for left-hand operation, $\$ 1,00$ more. Above: Vibroplex Super DeLuxe Presentation with
plated base top, solished chromium parts, colorful
red switch-knob, finger and thumb piece.........

Key to Easy Sending The Lightning Bup - IMPROVEI) IDESIGN! Modestly priced! Incorporates many exclusive features which add greatly to easier, better sending including a flat vibrating lever, adjustable dot contact spring, bridged damper frame and many others. Maintains clear, snappy signals, A popular choice. Standard - Black crystal base, polished chromium parts.................... $\$ 15.95$
Deluxe - Polished chromium base and parts, red trim, jewel movement.................S21.50

Vibroplex Carryins Case - Keeps key like new: Finished in handsome simulated black morocco. Cloth-lined, Reinforced corners add to its durability and attractiveness. Flexible leather handle. Keeps key free from dust, dirt and moisture, and insures safe-keeping when not in use. With lock and key . $\$ 5.75$

Announcing the NEW SPECiAL ENLARGED Edition

 of the PHILLIPS CODE $\$ 2.00$ Post PaidRadio Code Signals Radio Code Signals American Morse Americanl Morse
Russian, Greek. Arabic. Turkish, Greek Arabic, Morse Codes
World Time Chart
United States Time Chart Commercial " 2 "' Code Aeronautical ' Q "' Code
Miscellaneous Abbreviations Used on international wire, submarine cable and radio. telcgraph circuits

> Avoid Imitations: The "BUG" Trade Mark identifies the Genuine Vibroplex Don't senle for a substitule

Prices subject to change wilhout nolice

No matter which Vibroplex key you choose, you can be assured of the utmost in ease of operation and all around keying satisfaction. If your dealer cannot supply you, ORDER DIRECT.

Write for FREE catalog

THE VIBROPLEX CO., INC., 833 Broadway, New York 3, N. Y.
IF YOU TELEGRAPH YOU SHOULD USE A YIBROPLEX KEY

Newark!

Famous distributor of electronics equipment...

\author{

*
 FOR THE AMATEUR AND INDUSTRIAL USER
}

Famous For Service! Newark's fast "personalized" service has long been the talk of the industry. Our tremendous stock of radio, television, and electronics supplies has always enabled us to fill orders immediately . . . with no re-routing, no delay in handling, even though Newark has expanded so greatly in the past few years that outside warehouses have had to be used to contain our complete lines of equipment. To serve you even more efficiently in the future, we are moving, lock, stock and barrel . . to 223 West Madison Street early in '52. Our new quarters, with more than double the floor space of our present locations, will permit us to maintain even larger stocks . . and all under one roof!

Famous For the Newest! When the manufacturer announces it, Newark has it! By keeping constantly abreast of new electronics developments, Newark has always managed to be first in stocking the new releases.

Famous For the Finest! Only tested products of nationallyknown manufacturers are carried, and all are doubly guaranteed by the RTMA wartanty and Newark's own personal pledge of satisfaction.

Famous For Ordering Ease! It's easy to order from Newark's comprehensive catalogs . . . 160 pages of Amateur and industrial electronics equipment and supplies with all lines sectionalized and arranged in logical easy-to-find order. Be sure of receiving all Newark catalogs and bargain hulletins by writing to Dept. H-132.

AFTER MAY 15T, 1952, ADDRESS ALL ORDERS TO 223 WEST MADISON STREET

THE NEW ELECTRONICS REFERENCE BOOK

Send for your FREE copy of
Newark's 160-page Catalog No. 51

323 WEST MADISON STREET CHICAGO 6, ILLINOIS

why Shurite panel
 WHY Whurile meters Are Todays Best Value...

They're RUGGED Sturdy construction throughout. Molded inner unit with coil frames and insulators integral for maximum rigidity. Exceptionally high ratio, torque-to-weight.
They're NEAT Dials are metal so they stay good looking in spite of age and moisture Rich relephone black finish on metal cases. Concealed coils and good readable scales.
They're SENSITIVE Accuracy well within 5%. AC meters are dauble-vane repulsion type; most DC meters are polarized-vane solenoid type. High internal re- sistance voltmeters available in popular ranges.
They're GUARANTEED For one year from date of purchase against defective workmanshipand material, and will he repaired or replaced if sent to the factorypostpaid with 25 c handling charge.
They're INEXPENSIVE. For instance, Model 950, 0-100 DC Ma. sells for \$1.60; Model 550,0.10 DC Amps. for $\$ 1.45$. Other meters are correspondingly reason-able in price. You get the benefit of low costs made possible byquantity production.
The line is COMPLETE. Voltmeters, Ammeters, Milliammeters, Resistance Meters. For in- stance, DC Milliammeters are made in 65 trpes and ranges.
They're AVAILABLE. Stocked by leading electronic distributors in a wide variety of typesand ranges. Some meters may occasionally be out of stock becauseof defense production requirements. Authorizeddistributors will be the first to get replacements.
Latest Catalog Sheet F. 56 gives approximate internal resistances, some of ubich bave recently been modified because of Government restrictions. Ask for your copy. Shurite also makes packet meters and testers. See your distributor or write as direct.

Look for this display

Shurite

SHURITE METERS - 87 Hamilton Street, New Haven 8, Conn.

Materiel shortages and delivery delays are an overwhelming burden on today's busy buyer - Industrial, and Ham. To Industry, time means money. In the shack, faster delivery means more QSO time. Harrison serves both!

No matter what you need in electronic components or equipment - "HARRISON HAS IT!" or gets it for you PDQ! With 27 years experience in giving fast and efficient service we know all the ways to save you time and money.

Phone BArclay 7-7777 FIRST -
or wire - or write.
You'll like doing business with us!

TRANSMITTERS

- RECEIVERS
- RADIOBEACONS
- AIRPORT TRAFFIC CONTROL EQUIPMENT
- SIGNAL EQUIPMENT
- PACKAGED SYSTEMS

ERCO ENGINEERING

 meansERCO is principally engaged in the development and production of communications equipment for parricular applications.

Specialized knowledge and ability is reflected in the wide variety of custom built systems designed for government agencies and leading commercial organizations throughour the world.

Packaged systems developed and produced for YOUR specific needs.

Literature Available

Foreign Representatives:

International Standard Electric Corporation
New York 4, N. Y., U. S. A.

We present the 295-T transmitter for any communication application which requires dependable radiotelephone and telegraph service with provisions for future expansion. It will accommodate up to four pretuned crystal controlled frequencies in the 2 to 20 MC range, any one of which can be instantly selected from the front panel. Power Output: 300 watts telephone or telegraph.

32-DA SINGLE CHANNEL RECEIVER

The 32-DA is a high quality telephone and telegraph receiver designed to meet the exacting requirements of continuous operation, tropical humidity and unattended service conditions. Plug in coils, and quartz crystal stability together with selected components insure flexibility and years of uninterrupted performance. Ideal for acronautical ground stations, oil and mining companies, police monitoring, news agencies, etc. Frequency Range: any frequency between 200 to 400 KC and 2 to 22 MC .

Also available as a 32-DA2 Dual Channel Receiver.

"EL" XENON GAS-FILLED TUBES

RECTIFIERS

half wave recilfier

EL 6B \& EL 6 F

D.C. Output (Amps.) .. 6.4

Peak Anode Current .. 40.0
Peak Inverse Volts 920
Filament Volis 2.5 Filament Amperes 21 Overall Length (6B) .. $9^{\prime \prime}$ Overall Length (6F) .. $81 / 4^{\prime \prime}$ (Panel Mounting)

half waye rectifier

 EL 16 FD.C. Outpu: (Amps.) .. 16.0

Peak Anode Current .. 96.0 Peak Inverse Volis 620 Filament Volis 2.5 Filament Amperes 36 Overall Length 155/8: (Panel Mounting)

ELCIB/a
D.C. Output (Amps.) .. 1.0

Peak Anode Current .. 8.0
Peak Forward Volts 750
Peak Inverse Volts 1250
Filament Volts 2.5
Filament Amperes 6.3
Overall Length $41 / 2^{\prime \prime}$
\qquad

EL (3)

Output (Amps.) .. 2.5
Peak Anode Current .. 30.0
Peak Forward Volts 750
Peak Inverse Volts 1250
Fildment Volts 2.5
Filament Amperes 9.0
Overall Length $61 / \mathrm{s}^{\text {a }}$

EL (3)/A

D.C. Output (Amps.) .. 2.5 Peak Anode Current .. 30.0 Peak Forward Volts 1000 Peak Inverse Volts 1250 Filament Volts 2.5 Filament Amperes 9.0 Overall Length $61 / \mathrm{s}^{\prime \prime}$

ELCIK
D.C. Output (Amps.) ., 1.0 Peak Anode Current .. 8.0 Peak Forward Volis 1000 Peak Inverse Volts 1250 Filament Volts 2.5 Filament Amperes 6.3 Overall Length \qquad 41/4"

GRID CONTROL RECTIFIERS

(THYRATRONS)

EL(6)/A

D.C. Output (Amps.) .. 6.4

Peak Anode Current .. 71.0 Peak Forward Volts.... 1000 Peak Inverse Volts 1250 Filament Volts 2.5 filament Amperes 21.0 Overall Length 9" CATALOG WILL BE SENT AT YOUR REQUEST

El. C6C
D.C. Output (Amps.) .. 6.4 Peak Anode Current .. 17.0 Peak Forward Volts ..., 2000 Peak Inverse Volts.... 4000 Fildment Volts 2.5 Filament Amperes 24.0 Overall Lencth \qquad $11^{\prime \prime}$

EL(16)
D.C. Output (Amps.) ., 16.0 Peak Anode Current 160.0 Peak Forward Volis 1000 Peak Inverse Volts 1250 Filament Volis 2.5 Fildment Amperes...... 31.0 Overall Length..........)
(Pane! Mounting)

EL (6)
D.C. Output (Amps.) .. 6.4 Peak Anode Current .. 77.0 Peak Forward Volis 750 Peak Inverse Volts 1250 Filament Volts 2.5 Filament Amperes...... 21.0
Overall Length

ELECTRONS. INCORPORATED
127 SUSGEXAVENUR NEWARK4, N. J.

- Red Label Irons

These are the irons that are used so universally in factory production lines. They ore light weight, finely balonced, and have the coolest handles of any irons on the market. Elements are mounted and held in place with a knurled nut which engoges the back end of the element and seats against the shoulder of the cose shell, holding the element firmly in place regardless of the most rugged use. They are ideal from a maintenonce stondpoint for, due to their two piece combination terminal and handle, elements are replaceable in three minutes or less. The only iron on the market designed for use with or without a ground wire.

Irons ore normally supplied in four wattoges. They are obtainable, when required in quantity, in special wotrages ot no extra cost. Stondard voltages are 105-120 and 220-240. Speciol voltages may be hod, List prices of irons are as follows: No. 38-100 watt $\$ 7.65$, No. 58-200 watt $\$ 9.85$, No. $78-300$ watt $\$ 12.05$ and No. $98-550$ watt $\$ 14.25$. The iron illustroted is the No. 38 and is $1 / 3$ octuol size.

- No. 61 Pencil Iron

This pencil iron is only seven inches in length ond weighs just $21 / 2$ ounces exclusive of cord. The handle temperature at the point where it is held in the fingers, is actually no higher than body temperature. Diometer of hondle is $3 / 4^{\prime \prime}$ and moy be used as a pencil for the most delicote soldering operations. The element construction is of the same type as used in ESICO industrial irons and will give long service. The tip is the so-called plug type, held in place with a set screw. Three shopes of tips are available, Type B- $1 / 4^{\prime \prime}$ dia, pyromid point, Type $A-1 / 8^{\prime \prime}$ dia. straight pencil point and Type $C-1 / 8^{\prime \prime}$ dia. bent 90 degrees with a pencil point.

The No. 61 is regularly wound to 25 watts af 105-1 20 volts, but may be had in higher wattoges, when required in quantities at no extro cost. List price of iron is $\$ 5.45$. Tips A, B, or C 40 c eoch list. Irons ore avoilable thru any of the better tool or Rodio \& Electronic Supply houses. If your distributor can not supply you from stock, send your order direct to us, but please be sure and
 give name of your distributor.

-SOLDER POTS

Ruggedly constructed cast iron pots, with easily reploceable elements.
Model No. $12-3 / 4 \mathrm{lb}$. cap. 200 watt. Net. $\$ 4.95$
Model No. 36-21/4 lbs. cap. 250 watt. Net. $\$ 6.05$
Model No. 60—33/4 Ibs. cap. 325 watt. Net. $\$ 7.15$

- Temperature Control Stand

This cantrol stand is thermastatically actuated by the tip temperature of the iron. This is the only logicol woy to control the temperoture of a soldering iron, for there is 100 much log between element and tip temperoture for the opplication of o thermostat to the element, whether in on iron or a control stond. Cot. No. 5, irons up to $1^{\prime \prime}$ dio. tip; Cot. No. 6 , irons $1^{\prime \prime}$ to $15 / \mathrm{s}^{\prime \prime}$ dio. tips. List price.

ELECTRIC SOLDERING IRON CO., Inc.

We Have The Most Satisfied Customers Ask the fellows who deal with me. They'll tell you that WRL will

 allow you more for your present equipment - that WRL's large volfume of sales means faster turnover and greater savings. Our customers know that we finance our own paper, eliminating all red tape. WRL buys more equipment - WRL sells more equipment. We offer the most personalized service anywhere. Deal $\mathbf{W}^{\prime \prime}$ th One of the $\mathrm{J}^{\prime \prime}$ ord's Largest Distributors of Amateur Radio Transmitting Equipment.Special Attention Given to Foreign Orders Through our Special Export Department. CABLE ADIDRESS WRLI.

WRL "40'" TROTTER XMTR

NEW URL WATT
 GLOBE CHAMPION

 TRANSMITTERMore Walls Per Dollar R. F. Section o complete 165 wot XMTR. Provisions for ECO. Automotic fixed bios on Final and Buffer. Class B Speech Modulotor. 165 wat input - 10 thru 160 meter bonds. Complete with tubes, meters, and one set of coils. Low Down Payments. KIT FORM $\$ \mathbf{3 2 9 . 5 0}$ wIRED $\$ \mathbf{3 4 9 . 5 0}$

$\$ 99.50 \quad \$ 89.50$

WIRED
KIT FORM

Copoble of 25 wot input on phone and 40 wall input on CW on all bonds from 1500 KC through 28 megacycles. Bond switching for any 3 bonds. A proven rig. Thousands in operation through. but the world. Low Down Payments

NEW URL 400-B globe king Xmir

High Power - Mare Wats Per Dollar
Our newest model with increas. ed power - 420 wats Phone, 420 wats CW. Incorporates some of the latest TVI protective features. Efficient performance on all bonds - 10 to 160 on phone and CW. Provisions for ECO. Complete with tubes, meters, and one set of coils. Low Down Payments.

KIT FORM WIRE-TESTED
$\$ 475.00$ \$495.00

Just Off The PRESS!

URL 1952 Catalog ITS NEW! ITS FREE! Send For Your Copy - TODAY -

Contains everything new in
 radio and television. Jam pocked with bargains.

GIANT RADIO REFERENCE MAP

Just right for your control room walls. Approximately 28" $\times 36^{\prime \prime}$ Contains time zones, omoteur zones, monitoring stations. Moil con Ron today 25c

CU ON $10-20 \& 75$ METERS

GUARANTEED CRYSTALS IN HOLDERS TYpe FT-243 160 METER \$1.50 ea. 1.8 to $1.825 \quad 1.875101 .9$ 1.9 to $1.925 \quad 1.925$ to 2.0 80-40 METER \$1.25 ea. 3.5 to $4.0 \quad 7.0$ to 7.4 Please stole frequency. We will come os close os passible. No refunds or exchanges, please.

Write for detailed XMIR sperlfirallon sheets.
wRite - wine

World Radio Laboratories, Inc. 744 West Broodway Council Bluffs, low Please send me:

\square New Log Book	\square Globe King Info
\square New Cololog	\square Globe Champion Info
\square Radio Mop	\square Used Equipment Lis!

Name
Address
City

TRAMSMineate television BUY DIRECT FROM FACTORY -

 SAVE UP TO 50\% on TV Kits, Chassis, Sets, Parts

VAST SELECTION of Beautiful TV CONSOLES for CUSTOM-BUILDING or for CONVERSION, from $\$ 49$

Enjoy Giant Screen TV now. Convert your small screen set with Transvision cabinets, tubes, and parts. Instruc. tions with every cabinet. Low direct-from-factory prices.

WRITE FOR COMPLETE CATALOG!
2 Yr. GUARANTEE on PICTURE TUBES NEW LOW PRICES: Big savings on all sizes picture tubes, direct from Transwho vision factory. And Transvision is the only manufacturer who offers you a 2 Yr. Guarantee, prorated. Write for prices.
FEED up to 5 TV SETS trom I Antonno PRICES: Multi-Set Conn, for 2 sets, $\$ 4.95$ list*. For 3 or 4 sets, $\$ 7.95$ list*.

* Dealers, write for discounts

2 Service Instruments in 1

 CR TUBE TESTER-REACTIVATOR performs 2 vital functions:- Tests Picture Tubes - Renews Brightness of Many Dim Picture Tubes

It's a TESTER: $\begin{aligned} & \text { Without removing picture tube from set, you } \\ & \text { apply this precise instrument to:- }\end{aligned}$

- Measure cathode emission - Locate shorts between elements
- Locate high resistance sharts or leakege as high as 3 megohms

It's a REACTIVATOR for dim CR Tubes
Revives dim TV Picture Tubes, without removal of tubes from sets. Works on a great many tubes with low light output, if there's no mechanical defect in tube. $110 V-60$ cycles. Portoble, weighs only 3 lbs. One or two applications pays for instrument.

SATISFACTION GUARANTEED ar money refunded if you refurn the instrument in 10 days in good condition. All prices subjed to change without notice

ntee, pro-rated. Write for prices.

DO YOU HAVE

B-A's 1952 CATALOG $\underset{\substack{\text { Numir } \\ 521}}{\substack{\text { M }}}$?

THE BIG B-A 1952 ANNUAL CATALOG NUMBER 521 IS A...

. . . Complete guide to the very latest in Elec-tronics-everything in the Radio, TV, Sound and Recording fields . . . everything on down to the little things usually too troublesome for others to list and stock.

Saves you time-takes only minutes. at times most convenient to you. to order by mail the items and quantities you alone decide on ... no waiting for salesmen . . . no breaking into your busy hours ... no pressure to sell you more than your needs . . . A "One Stop" source for your every need.
Saves you money-B-A Volume sales permit big buying at savings passed on to you. Every page lists many special, big, money-saving values made possible only by huge B-A special purchases. Net
prices art shown so you can see at a glance what each item costs you.
Prompt, Speedy Service is assured because of always adequate stocks and the B-A "Know-How" acquired in 24 years' experience in the mail order Electronic distribution field. The location of Kansas City. a foremost transportation "hub" in the exact "Center of America" ... days closer to Everywhere ... is more reason why you will get faster delivery from B-A
The B-A reputation . . . 24 years of honest. dependable and friendly dealings protect your every purchase.

Write now for your Free copy

use KENYON TRANSFORMERS for

Radar - Broadcast - Special Machinery
Jan Applications - Atomic Energy Equipment Automatic Controls . Experimental Work

LLIIANCE - AMPEREX • ARRL • ASTATIC • ASTRON • B \& W

ONE OF THE FASTEST GROWING

 ELECTRONICS DISTRIBUTOR IN AMERICA
HALLDORSON • HYTRON • I.C.A. • J.F.D. • E.F. JOHNSON • KESTER

R. M. E. - SANGAMO - UTAH - WELLER

The New

Mandl's Television Servicing

gives you detailed, illustrated trouble-shooting procedures for every flaw or failure you're likely to encounter in any part of today's TV receivers.

A COMPLETE MASTER INDEX

and separate lists of trouble symptoms for each circuit defect make it easy to locate quickly any particular trouble and the exact procedures for correcting it. Unusual, hard-to-find troubles as well as all common troubles are dealt with in the servicing procedures.

the latest circuits

are explained and illustrated, including the special servicing techniques for UHF and VHF.

ORIGINAL PHOTOGRAPHS

show actual symptoms that appear on the TV screen when defects occur. Hundreds of circuit schematics, illustrations of station defects, typical scope patterns and other illustrations aid in the identification and location of circuit faults.

- - and these are only a few of the special features that make this a most useful guide for television servicing. Written by Matthew Mandl, well known to all servicemen for his many technical articles.

Ready early in February. Get your order in early

> Are these outstanding radio \& TV aids on your working reference shelf?

Television for Radiomen

by Noll. Complete, clear, step-by-step instruction in the principles, construction, and operation of every part of the modern TV receiver and in the basic transmission principles. Full, detailed instruction on installation alignment, adjustment and trouble shooting. Very thorough, very clear, non-mathematical.
$\$ 7.75$

Television and FM Antenna Guide

by Noll E Mandl. Combines a basic course on theory with a complete handbook on antennas and their installation: how to select the right type for the site, determine the best position, install the transmission line for maximum efficiency, etc. Full, tested data on the characteristics, dimensions, advantages and limitations of all commercial models and new types, including UHF. \$6.25

Radio and Television Mathematics

by Fischer. "An extremely useful book," says Radio \mathcal{E} TV Neu's, Arranged under radio headings, step-by-step solutions are given for 409 problems typical of all calculations commonly required in radio, television, and culations commony required in radio, television, and
electronic work, including all questions requiring math. ematics for FCC exams of all grades.

Movies for TV

by Bathison. Complete information on the equipment needed, its operation, and comparative costs-cameras lighting, sound, projection, etc. Much practical advice on the do's and don'ts of making newsreels, commercials, cartoons, titles, special effects on movies for TV transmission. $\$ 5.00$

Ueraturat Whe MAKES A

BIG NAME BIGGER

 Allowances on Used (factory-builf) Test and Communication Equipment for the New Harvey-Wells Bandmaster Transmitter (Sr. or Deluxe Model).FOR AMATEURS, GOVERNMENT AGENCIES, EMERGENCY SERVICES, C.A.P. AND CIVIL DEFENSE

As a distributor of quality Radio and Electronics equipment, Walter Ashe Radio Company offers "Surprise" Trade-In Allowances on used (factory-built) test or communication equipment for the outstanding new Harvey.Wells Bandmaster Transmitter. Yes, by trading used (factory-built) equipment you can save money and own the world's most versatile transmitter. Harvey-Wells Bandmaster for mobile, portable or fixed operation is designed for novice or expert. It is the model you will use for years - that never becomes obsolete or outmoded because of continuous technical bulletin service mailed regularly to all registered owners by Harvey-Wells. Get this outstanding new transmitter by trading used test or communication equipment at Walter Ashe, 'House of Surprise TradeIns". Simply tell us what you have to trade showing make and model number. Indicate your choice of the Bandmaster Sr. or Deluxe model. Back will come our money saving trade-in offer. Wire, write, phone or use the handy coupon today.

The new model 770-An Accurote Pocket-Size VOLT-OHM MILIAMMETER

(SENSITIVITY- 1000 OHMS Per Voll)
FEATURES: Compoct-measures $31 / 4^{\prime \prime} \times 570^{\prime \prime} \times 214^{\prime \prime}$. . Uses latest design 2% occurote 1 Mil. D'Arsonval type meter, Some zero odjustment holds for both resistonce ronges. It is not necessory to reodiust when switching from one resistance ronge to onother. This is an importont
 time-saving feoture never before included in a V.O.M. in this price ronge Housed in round-cornered, molded case. Beoutiful block etched panel, Depressed letters filled with permonent white, insure long-life even with constont use

SPECIFICATIONS: © 6 A.C. VOLTAGE RANGES: $0-15 / 30 / 150 / 300 /$ $1500 / 3000$ VOLTS. 6 D.C. VOLTAGE RANGES: $0-7.5 / 15 / 75 / 150 /$ 750/1500 VOITS. 4 D.C. CURRENT RANGES: 0-1.5/15/150 MA. 0-1.5 AMPS. 2 RESISTANCE RANGES: O- 500 OHMS. O-I MEGOHM.

The Model 770 comes complete with self-contained batteries, test leads and all operating instruc tions

SPE SPECIFICATIONS: Lock-in, Peonut, Bontom, Heoring Aid, Thyrotron, Miniatures, Subminiotures, Novals, Sub-minars, Proximity fuse types, etc. \diamond Uses the new self-cleaning lever Action Switches for individual element testing. Becouse oll elements ore numbered occording to pin-number in the RMA base numbering system, the user con instontly identify which element is under test. Tubes hoving tapped filaments and tubes with filoments terminoting in more thon one pin are truly tested with the Model TV-II os ony of the pins may be placed in the neutrol position when necessory. The Model IV-II does not use any combination type sockets, Instead individual sockets ore used for eoch type of tube. Thus it is impossible to damoge a tube by inserting it in the wrong socket, \& Free-moving built-in roll chart provides complete data for oll tubes. © Newly designed line Voltage Control compenstites for variation of ony line Voltage between 105 Volts and 130 Volts.
EXTRA SERVICE-The Model TV- 11 moy be used os on extremely sensitive Condenser Lealsage Checker. A reloxotion type oscillotor incorporoted in this model will detect leakoges even when the frequency
is one per minute.
The Model TV-il operates on 105.130 Voll 60 Cycles A.C. Comes housed in a beautiful hand-rubbed oak cabinet complete with portable cover.

A COMBINATION VOLT-OHM MILLIAMMETER PLUS

 CAPACITY REACTANCE INDUCTANCE AND DECIBEL MEASUREMENTSSPECIFICAYIONS: ○ D.C. VOLTS: 0 to $7.5 / 15 / 75 / 150 / 750 /$ 1,500/7,500 Volts, A.C. VOLTS: 0 to $15 / 30 / 150 / 300 / 1,500 /$ 3,000 Volts "~ OUTPUT VOLTS: O to $15 / 30 / 150 / 300 / 1,500 / 3,000$ Volts. O D.C. CURRENT: 0 to $1.5 / 15 / 150 \mathrm{Ma}$, 0 to 1.5 Amperes , RESISTANCE: 0 to 500/ 100,000 Ohms 0 to 10 Megohms. - CAPACITY: 001 to .2 Mfd . . 1 to 4 Mfd . Quality test for electrolytics). O REACTANCE: 700 to 27,000 Ohms 13,000 Ohms to 3 Megohms. \diamond INDUCTANCE: 1.75 to 70 Henries 35 to 8,000 Henries. DECIBELS: -10 to $+18+10$ to +38 +30 to +58 .
ADDED FEATURE © The Model 670 includes o special GOOD. BAD seole for checking the quolity, of electrolytic condensers at o test potentiol of 150 Volts.
The Model 670 comes housed in a rugged, crackle-finished steel cabinet complate
with test leads
and operating $\$ 740$ and operaling instructions.

The New Model 660-An AC Operated

 SIGNAL GENERATORProvides Complete Coveroge for A.M.-F.M. and IV Alignment SPECIFICATIONS: \diamond Generotes Rodio Fr equencies from 100 Kilocycles to 60 Megocycles on fundamentols ond from 60 Mega . cycles to 240 Megacycles on powerful harmonics. © Accuracy and stability assured by use of permeobility trimmed $\mathrm{Hi}-\mathrm{Q}$ coils.
R.F. ovoñable seporotely or modulated by the internal audio oscillator. Suilt in 400 Cycle sine wave oudio oscillator used to modulote the R,F, signol olso ovailoble seporotely for audio
 testing of receivers, amplifiers, etc. OOscillator Circuit: Uses o minioture high frequency type of acorn triode in o Hartley circuit to insure o high degree of stability. By using the some type of triode as a buffer omplifier, complete and positive isolotion between the R.F, oscillotor Ond the ottenuator is attained. Attenuotor: A 3 step ladder type of oftenuotor is used. Eoch step of the attenuotor is controlled by a seporate oftenuator control thus providing intermediote level steps. © Tubes used: 955, os R.F. Oscitlotor, 955 as Modulated Buffer Amplifier, 6SN7 os Audio Oscillator and Power Rectifier.
The Model 660 comes complate with coaxial cable
test laad and instructions...............................
$\$ / 995$

television bar generator

THROWS AN ACTUAL BAR PATTERN ON ANY TV RECEIVER SCREEN!! Two Simple Steps:

1. Connect Bor Generator to Antenno Post of any TV Receiver
2. Plug Line Cord into A.C. Outlet ond Throw Switch.

RESULT: A sfoble never-shifting vertical or horizontol pattern projected on the screen of the IV receiver under test.

- Provides verticol sweep signol for odjust- SPECIFICATIONS: © Power Supply: 105-125 Volt 60 ing ond synchronizing vertical oscillotor dis- Cycles. © Power Consumption: 20 Wotts. O Chonnels: chorge ond output tubes. Provides vertical 2-6 on ponel, 7-13 by hormonics. O Horizontal lines: 4 signol to reploce vertical oscillotor to check to 12 (Vorioble). \bigcirc Vertical lines: 12 (fixed). © Verticol verticol omplifier operotion. Provides hori- sweep outpul: 60 Cycles. O Horizontol zontal sweep signal for odjusting and synchronizing horizontal oscillotor A.F.C. and output tubes. Con be used when no stotions ore on the oir.

$$
\text { eep ourpu: } 0,10 \text { Cycle, }
$$ sweep output: 15,750 Cycles.

IV Bar Generator comes complete with shielded leods and detailed

[^16]
Now Save Time..Work..Money!

COVERS fundamentals, circuits, instruments, A-M, F-M, TV, radar, power supplies, tubes... THE WHOLE WORKS FROM THE GROUND UP!

NEW, EASY-TO-READ, FACT-PACKED BOOK TELLS YOU WHAT YOU NEED TO KNOW

 Principles of RADIOBy KEITH HENNEY, W1QGU and K2bli; Consulting Editor. "Electronics"; Editor, "Nucleonics" and GLEN A. RICHARDSON, Iowat State College

New Sixth Edition - Revised, Enlarged, Completely Modern

Building a Rig? Cramming for a Ticket? Going in for Radio Repair? This new, information-packed book tells you the basic facts you need to know . . explains exactly the kind of "live wire" information you need all the time in every branch of radio!

Said Science magazine of the Fifth Edition: "Clefar, Concise, Practical and Right to the Point." Now get the modern Sixth Edition of the famous, simple, book that has saved so much time, trouble and money for so many thousands of radiomen! It's a complete course in radio fundamentals for hams, hobbyists, repair men, students . . Ready to Go to Work At Your Desk, Shack or Shop!

```
ALSO - New Third Edition
    HOW TO PASS
    RADIO LICENSE
    EXAMINATIONS
```

By CHARLES E. DREW

The radioman's standard study guide for commercial telegraph and 'phone licenses - now completely modernized.

Questions are numbered to correspond with the latest FCC study guide. With complete explanations, useful tables, and extracts from laws.
1951376 pages $\$ 4.50$ Read it 10 davs without risk! Mail coupon today.
SEND NO MONEY

Pay nothing to postman

 READ either book or both 10 DAYS WITHOUT RISKAsk for our list of other useful books on radio

COVERS ALL THIS

Fundamentals
D-C circuits
Meters and Measurements
Magnetism
Electromagnetism
Inductance
Capacitance
A.C circuits

Resonance
Coils
Condensers
Vacuum tubes
The tube as an amplifier Rectifiers
Power supplies
Audio amplifiers

A-M detection
A-M receiver sysfems
Transmission Ines
Antennas
Electromagnetic radiation
F-M modulation
F-M defection
UHF phenomena
Electronic instruments
Transients
Wave shaping circuits
Television
Radar
Practical problems
-AND MORE!

Ready in January, 1952655 pages 371 illus. \& diagrams $\$ 5.90$
MAIL WITHOUT MONEY - READ BOOKS TEN DAYS
JOHN WILEY \& SONS, INC., Dept. RA-52
440 Fourth Ave., New York 16, N. Y.
On 10 days' approval,
send I'rimiples of Kulion
D How To l'ass Kadin Laicense Lixaminations
I will remit price plus postage or return book (s) postgaid. (Offer not valid outside U.S.)
Name
Addiress
City, Zone, state
Employed ly
SAVE POSTAGE: We pay postage if you enclose full pay-
ment. Money back on same return priwilege.
a Send list of other useful books on radio.

FASTER SERVICE from any of FEDERATED'S greaf sfockpiles

The Complete Transformer Line That Meets Military

If you require fully approved MIL-T-27 Transformers and Filter Reactors for prototype models, pilot runs or special applica-tions-wire, write or phone any FEDERATED office for immediate shipment on CHICAGO Hermetically-Sealed units. FEDERATED offers a complete range of CHICAGO MIL-T-27 Transformers: Power, Bias, Filament, Filter, Audio-shipped promptly anywhere!

FEDERATED PURCHASER, INC., STRATEGICALLY LOCATED COAST TO COAST, OFFERS THE nation's manufacturers a UNIQUE ONE-SOURCE SERVICE FOR ALL ELECTRONIC SUPPLIES

- Extensive Supply
- Vast Savings
- Industrial Research
- Incomparable Service

FEDERATED offers a vast supply of in-stock electronic materials for prompt shipment; thousands of manufactured items obtained from any part of the country, quickly, conveniently. Experienced staffs offer complete industrial research information.
JAN - Know-How, Stockpile, Service

f 4 \& Q MNCORPORATED

New York city
66 Dey St.
D.ghy 9.3050

THE ONLY COAST TO COAST ELECTRONICS DISTRIBUTOR

| Los Angeles | Newark, N. J. | Allentown, Pa. | Easton, Pa, |
| :--- | :---: | :---: | :---: | :---: |
| 911 S. 6rand Ave. | 114 Hudson St. | 1115 Hamilton St. | 925 Northampton St. |
| TRinity 7311 | Market $3-4005$ | Phone 3.7441 | Phone 4259 |

TELETYPE: NY1-2859 (New York, N. Y.) • LA-572 (Los Angeles, Cal.) • AN-22 (Allentown, Pa.) 154

IHOUSANDS IN USE

"MILITARY"-MODEL

; P-600-JX

Yes, thousands are now in use and being epended upon daily all over the world-in military, ommercial and amateur, from the tropics of hottest , frica to the extreme cold of Alaska-in damp, wet limates to high dry regions - no extreme is too tough for iis tried and proven "Military Model" SP-600-JX.

It is a completely new receiver in bath electrical and mechanical cancept and incorporates the experience of 40 years of manufacturing communiation equipment. Every component in the Hammarlund "Military Model" $\mathrm{P}-600$ - JX, is conservatively rated to do a specific job and top quality as the first and only consideration. So flexible is this receiver it would zquire a number of individual receivers, each specifically designed to do certain job, to equal its performance.

$4-3$

The photo at the leit is a view of the SP-600-JX with the cover of the condermer compart ment removed, showing the compact, practicel arrangenrent of this power-pathend commanications receiver. Note the hermetically sealed tranaforneza 2nd tuhny shuelded sections in thatic No expense azes spared to make this No exprnse way cher buile. makr this the finest receiver built.

COMPARE THESE FEATURES

- SIX BANDS-540 ky ta 54 ne. each bend clearly marted in the Band Indir afor Findaw ana by the ingenious pointer aisembly on the cial .
- Calibrated main dial-direct reading occurafe to plus or minus $.25 \%$. Vem - r dial readable in 'g divisions makes ava lable ecOO divisions far each band for accurote laga ng ana resetabilit.
- DRIFT-.001\% to .01 多 cepending on frequency to which receiver is un=d.
- DOUBLE CONVERSON-co frequenc es from 7.4 mc to 54.0 mc
- IMAGE REJECTION - 10,0 4E: 1 to $1,300, D 00,1$ or 80 db to 120 db .
- SPURIOUS RESPOPISES-ane less tran 0000:1d $11) 0 \mathrm{db}$.
- SENSITIVITY - 1 merovolt CW: 2 mi rovolts AM (RMA Standards).
- SELECTIVITY - Harmar una ${ }^{1}$. famous pasentad erystal design providing 3 celbrated c ystal and 3 nonarystal ronges from , 2 KE : a $13, \mathrm{KC}$.
- RADIATION-negl gibie-no cross toll is melti receiver invtoilations.
- CALIBRATED BFO CONTFOL-from $3 b=o t$ to -3 KC
- TUNING METER- ndicoses correct funing of ignol 0 of 1 microvolt readina $t=100$ indicates input level of received signal $n \mathrm{db}$ fron I microvalt. A spring refurn switch connects mete, to eae oufput sig nal evel in db from of realimatis.
- CRVSTAL CONTRCaLLED +F OSC. - x crysicl controlled charnels fof you choosingl for fixed frequancy operaton with Delto fiequency contal fo- voiyin the crysta fequency withirı norraw imit.
 3-6AL5; 1-12A'J7; 1-EV6GT; 1-5':4GY; 1-OA2.
- POWER SUPPLY - complet*ly self co-sained.
- HERMETICALLY SEALED-Iransformers th oughout.
- TROPICALIZED ogainst fur gus aftack and humidity.
 Standara $19^{\prime \prime}$ mack mounting, $101 / \%^{\prime \prime}$ panel space.
MANUFACTURING CO. INC.
460 WEST 34th STREET - NEW YORK CITY

T Checklist of McGraw-Hill RADIO and TV BOOKS

UNDERSTANDING RADIO

A pracelcal book that presergts the fumbamentals of radio theory amel servicing in a clear tep-by-stepthanmer, for readers with fithe or no twednical knowledge, belps you graphically Wataon, Herbert E. Weleh, and George S. Eby, Stockton College. Second Edition. $732 \mathrm{pp} ., 6 \pm 9,536 \mathrm{jl1us.} \$ 5.50.$.

PRACTICAL RADIO COMMUNICATION

Principles-Systems Equipment - Operation - Including Very High and Ultrahish Frequencies and Frequency Modulation. Frovites effective home-stuly material

RADIO OPERATING QUESTIONS and ANSWERS

Best preparation for passing operator license examinations. Covers alt questions of the FCC study Grithe with fill. correct antwers.

MATHEMATICS for ELECTRICIANS and RADIOMEN

Teaches mathematios from elementary al gebra through quadratic equations, loga rithnss, trigonometry, flane vectors and applications to aleetrical and radio problems. By- N. M. (iooke, Chief Radio Electriclan, U. S. Navy. 604 pp., $6 \pm 9, \$ 5.00$.

CIRCUIT FUNDAMENTALS

For Radio and Comminication Engineers, A guide for radio operators, browleast technifiams, and chief engineers, covering the and a-c circuits. isy Giarl E.Smith. United Broadcasting Co. 401 pp. $6 \times 9,209$ illiss. $\$ 5.50$.

ELECTRON-TUBE CIRCUITS

Timely book discusses different classes of circuits with widespread application in ratar, television bulse communication, and general electronic control. Shows how to combine circuits of various types to athice one or a number of operations. Treats power rectifiers, filters, regulators, amplitule morlulation, etc. Ity s. Seely, Syracuse it. 529 pp., $\$ 6,00$.

ESSENTIALS OF RADIO

Covers essentials of modert radio work - eircuit analysis, tulbes, loud speakers, vibrator units and multiplier circuits. handspread and autoniatic tuming, frequency modulation. etc. Shows how to Osterheld. $786 \mathrm{pp},. 6 \pm 9$, illus. $\$ 6.50$.

ELEMENTS of RADIO SERVICING

A highly tractical ratio repair manual that leats you in casy stops io a complete uncterstandhig of 050 of all radio siervicing iols Covers the modern superheterolyne A.M. receiver, phonographidetailet low-to-lo-ft" explatations. $\mathbf{B y}$, William Marcus and

BASIC TELEVISION

Principles and Servicing. An A-to- Z matual. siving claborate trouble shooting charts showing symbletins. cituses, anal cures for over 5 (0) common T. rectiver problems. Simplificel hiagrams, drawings, ant photogranhs ont
cvery tonic, By R, B, Grob, Temeher. every toric, By R, IB, Grob, Temcher.
R. C. A. Inst, 592 pp., $\$.6 .50$.

TELEVISION SERVICING

A practical glide on television installation, adjustmelt, and servicing procelures. Covers typical circuits used in receiver sections, the probletns antl solutions of anternat installation. external noise, interference, weak signals, enc. By S. Heller, Amer. Radio. Inst., and I. Shutman, Fed. Telev. Corp. 434 pp , $\$ 6.00$.

Feafuring HAM GEAR for 33 Years

During this time we have always extended a
helping hand by maintaining a stock of the best and latest in component parts and equipment for Amateur, Broadcast, Industrial, Educational and Research applications.

Let us fill your next order for electronic parts or equipment.

SINCE 1919

(2)
 963 LIBERTY AVE. PITTSBURGH22, PA.

COMPLETE OUTFITTERS for the HAM...

COMMUNICATIONS

AND
ELECTRONIC

ENGINEERS

EUGENE G. WILE

218-220 South 11th Street
Philadelphia 7, Pa.
Kingsley 5-8370

Distributors of
Nationally Advertised Lines of
RADIO, TELEVISION and ELECTRONIC Parts

For hefter transmission and reception use

WhichARGE
 Tawere
 Whatever you need－simple an－

 tenna support towers or heavier towers for complex transmitting arrays－Wincharger Towers can do the best job for you．

Triangular cross－section transmission towers for rotary beam support ．．．for insulated vertical radiators ．．．for special，complex arrays of rhombics or curtain antennas ．．．or any tower problem $\sqrt{\text { and }}$ have，you＇ll have the best results with Wincharger．

PCIWT，${ }^{\dagger}$
TQWLRR Recommended TOWER Gus laevels WFIGHT Watt R：ting TYPE
 300440 \％t． $28 \frac{1}{s}$ in． $50 \mathrm{ft} .30 \mathrm{lbs} . \quad 50,000$ $150 \quad 320 \mathrm{ft} .18^{3 / \mathrm{in}} \mathrm{in} \quad 40 \mathrm{ft} . \quad 15 \mathrm{lbs} . \quad 10,000$ $101220 \mathrm{ft} .143 / 2 \mathrm{in} . \quad 35 \mathrm{ft} .10 .1 \mathrm{lbs} . \quad 5,000$ $78 \quad 150 \mathrm{ft} . \quad 14^{3} / 8 \mathrm{in} \quad 35 \mathrm{ft} . \quad 7.8 \mathrm{lbs} . \quad 5.000$ 42－47 $125 \mathrm{ft} . \quad 13$ ！！in in． $30 \mathrm{ft} .4 .7 \mathrm{lbs} .3,000$

[^17] †Insulation for greater power awainable at slight estrat cost．

Support

$\frac{192}{3} 7$

A．Five and 10－ft． Roof Mourt Towersfor amateur and TV antennas． Using mast and simple guying can elevate anten－ na nearly 40 ．

B．Lightweight Towers has hinged base．In 10 ＇sections． With simple guying will support 4－bay stack at 40° ．
C．Self－Supporting．Slender， attractive design－no guys． Will support antenna with maximum wind thrust of 100 pounds．Cement base．

DALE-CONNECTICUT

Aero
Advance
Aerovox
Alpha
Amperex
Amphenol
Arrow-Hart-Heg.
Bud
Cannon
Cardwell
Ceniralab
Ceiron
Cinch-Jones

Clarostat
Collins
Cornell-Dubilier
Dial Light
Drake
Eby
Eimac
El-Menco
Erie
Federal
General Cement
Guardian
Greenlee
Hallicrafters
Hytron
ICA
1 R C
Jensen
E. F. Johnson

Kester
Kraeuter
Littlefuse
Millen
National
National Electronics ©
Ohmite
Par-metal
Plastoid
Poster \& Brumfield
Premax
Presio
Quam-Nichols
RCA
Raytheon
Sarkes-Tarzian
Seletron
Shure
Simpson
Sola
Stancor
Switcheraft
Sylvanio
Triad
University
Useco
UTC
Vector
Westinghouse
Weston

Tired of "shopping around" for the parts and tubes you need? There's a better way to buy. Select everything you need from one of America's largest stocks of radio and electronics equipment. Place ONE order for ALL your requirements at Dale-Connecticut.

DALE HAS IT!

A tremendous electronics supermarket, staffed with specialists who know what hams need and keep Dale's stock complete and up-to-the-minute in every detail, from the tiniest coil to the largest receiver. Chances are 20,000 -to-l, if you use it, Dale carries it.

BEST OF ALL!

Look over the list. Every one a front-rank name and all of the top-notch makes are included. That's why you can not only find the item you want at Dale, but you can get it in the quality brand you prefer. And what's more, you can't beat Dale's prices.

ONE-STOP SUPER-SERVICE!

There's nothing faster than Dale Service. Shipment is made the same day your order is received. In most cases, you'll have your parts within 48 hours (slightly more beyond 200 miles). Try Dale and see the difference in quality, value, and speed.

Write for Dale's all-in-one order blank

D A E Esnnecticut, inc.

140 FERRY STREET • NEW HAVEN, CONN.
Telephone 8-0807

"HAMS" in Industry and in the Shack...

depend on

IPRRECCIISTON

ELECTRONIC TEST INSTRUMENTS...because...

. . . they recognize that there is no compromise, no guesswork, behind the design and workmanship of a "PRECISION"'-built instrument . . .
. . . they have seen the "insides" of the equipment, which reveals the infinite and painstaking care given to '"Precision Individualized Production'"...
. . . they have learned, over the past nineteen years - in the shack, on the production line, at the service bench - that they can always look to "PRECISION" Test Equipment, as the standard of performance, accuracy and value.

SERIES EV-20
True Zero-Center VTVM and Multi-Range Test Set with Direct Peak Reading High-Frequency Scales Ranges to:
1200 V., 2000 Megs., 12 Amps., +63 DB
Net Price
........................ . $\$ 68.25$
RF-10A Hi-Frea. Prote (Accessory) Net Price $\$ 14.40$

SERIES E-200C A modern. multi-band SIGNAL and MARKER GENERATOR for AM, FM, and TV Receiver Alignment Direct Reading from 88 KC . to 120 MC . Net Price. $\$ 71.25$

PRECISION rist eauipmint Standard of Shownacy...

SERIES ES-SOOA
High Sensitivity, Wide-Range S" OSCALLOSCOPE

Push-Pull V. and H. Amplifiers Net Price $\$ 169.50$

RADIO \& TELEVISION GORP.
Fonmerly Newark Electric Co.; Inc., of New York
48 West 48th St., New York 19, N. Y. - 212 Fulton Street, New York 7, N. Y.
Phone: CIrcle 6-4060 © Teletype: N. Y. 1-1299
DEPENDABLE SERVICE IS THE FOUNDATION OF OUR BUSINESS
162

VEE-D-X SECTIONAL TOWER Designed and engineered as carefully YOU YOURSELF would build it!

VEE-D-X towers, antennas and accessories represent the finest in precision engineering and design and are built to meet the most exacting requirements of the communications field. Absolute premanency of your installation is assured when you use a VEE-D-X sectional tower.

Only VEE-D-X affers yau these exceptianal features:

- Rugged, all-welded construction diagonally laced with angle iron for maximum rigidity.
- Can be erected on ground or on flat or peaked roof.
- Patented plate spaced af two foot intervals prevents twisting and affords rigidity found in no other tower.
- Safe and easy to climb.
- Completely galvanized, lightweight tubular steel . . . 20 ft. section 72 lbs.

PRE-ASSEMBLED FOR FAST, INEXPENSIVE INSTALLATION
VEE-D-X towers are designed for use on any height from 10 to 140 feet. They are self-supporting up to 20 feet and, where space is limited, semi-guyed* type installations may be used at 30, 40, and 50 foot heights. Three types of top mount are availakle. VEE-D-X towers may be ordered in separate units or as a complete package for a specific height. (Either guyed or semi-guyed.) For detailed information on the tower just write for our free technical bulletin LP51-102. A "spec'" sheet LP51-117 covering the details on the 2 -meter Colinear Beam is also available.
*Semi-guyed towers employ one set of guy cables atrached at a height of 10 ft . up the tower and anchored at a 6 fr . radius from the base.

the lapointe.plascomold corporation - windsor locks, conn.
faMOUS VEE-D-X PRODUCTS THAT HAVE BECOME STANDARDS IN THE TV INDUSTRY
Lightning arresters for both 2-wire and 4-wire transmission lines.

The JC - pioneer single channel pre-assembled Yagi.

Outboard Booster - For powerful 18 db gain for ac reception.

Rocket Booster - Pre amplifies signal at antenna, prior ta line loss.

Charts and Tables
 PACif:

Abbreviations for Electricaland Radio Terms 545

Abbreviations, Radiotelegraph 548
Alphabet, Greek 547
Amateur Frequency Bands 14
Amateur's Code 8
Antenna and Feeder Lengths $334,33 \overline{7}, 34!$
Antenna Diameter vs. Length 333
Antenna Gain $345,3 \cdot 6,348$
Attenuation of Transmission lines 315
Bandpass Filters $5+1$
Bandwidth, Typical I.F. $7 \overline{7}, 95$
Beam Element Lengths $34!$
Breakdown Voltages 23
Call Areas 548
Cathode and Screen-Dropping Resistors for R.F. and I.F. Amplifiers. 8!
Cathode-Modulation-Performance ('urves 7
Characteristic Impedance. 313,314
Circuit and Operating Values for ConverterTubes.85
Coaxial Line IData 314, 315
Color Code for Radio D'irts 520, 521
Condenser Color Cote 521
Conductivity of Metals.
Conductivity of Metals. 18, 541
Continental Code 13
Conversion of Fractional and Multiple I'nits 20
Copper-Wire Table $5+5$
Corner-Reflector Antenna Feed Impedance. 121
Countries list, ARRI. 54!
Coupling Coefficient Curves 46
Coupling to Flat Limes 322
Crustal Diodes. 542
Crystal Frequeney Multiplying, V.II.F. 394
Decibel i37
Decimal Equivalents of Fractions 517
Dielectric ('onstants 23
Drill Sizes. 515
Driving-Power l'ate-Circuit-Efficiency Curve 139
Effect of Ground on IIorizontal Antennas 332
Electrical Quantities, Symbols for 543
Extended Double-Zepp 1 engths 347
Field Strength Meter Calibration Curve 486
Filters, Bandpass 541
Folded Dipole Nomogram 319
Frequeney-Spectrum Nomenclature 18
Gain of Directive Antemnas 345, 346, 348
Gauges, Standard Metal 546
Germanium Crystal I Diodes 542
Half-Wave Antenna lengths. 334
Impedance Step-U'p in Folded IDipoles 319
Indurtance and Capacitance for Ripple Reduction 213
Inductance, Caparitance and Frequency Charts.
538, $53!$
538, $53!$
Inductance of Smatl Coils 537
International Amateur Prefixes $54!$
International Call Allocations 544
International Morse Code 13
L-R Time Constant 30
Log, Station 527
Long-Wire Antenna langths 337
Message Form. 528
Metals, Relative Resistivit y of 18
Modulator Characteristic Chart 26!, 272
Musical Scale 546
Nomenclature of Frequencies 18
Open Stubs, Position and Length 318
Operating Values, Converter Tubes 85
Output Voltage Regulation of Beam-Tetrode Driver with Negative Feed-13ack
261
261
Peak-Rertifier-Current/1).C.-low-Current Ratio. 213
Pereentage Ripple Across Input Condenser 213
Phase-Shift Network Design Data GL
Phonetic Code 299
Pilot-Lamp Data$5+3$
Phate-Ctrcuit-lifficiency/Driving-Power Curve. 139
Puncture Voltages. Dielectric 23
() Signals 547
RC Time Constant 30
R-S-T System 547
Radiation Angles 334
Radiation Pattorus $33+338$
Radiation Resistance 333, 337
Reactance Chart 539
Relationship of Amateur-Band Harmonics 502
Resistance-Coupled Voltage-Amplifier Data. 243
Resistivity of Metals, Relative 18
Resistor Color Code 521
Response'. 'Tuned-C Cireuit 540
Rhombic Antenna Design 343
Schematic Symbols 2
Sereen-Dropping and Cathode Resistors for R.F. and I.F. Amplifirs 89
※xlenium Reetifiers 542
Signal-Strength. Readability and Tone scales 547
Shortend Stubs, P'osition and Langth 318
Standard Component Values 519
Standard Metal Gauges 546
Standing-Wave Ratio 316
Station Iag 527
SIVR (Calibration 487
stub Position and larngth 318
Symbols for Electrical Quantities 543
Tank-Circuit Caparitance 137, 142
Tap Sizes 515
Time, Condenser Charge and Disehargo 30
Time Constant. $L-R$ ('ircuit 30
Transmission-Line Data 315
Transmission-Line Iosses. 315
Transmission Lines, spacing 313, 314
Tuned-Circuit Response 540
V-Antenna Design Chart 342
Vacuum Tube Characteristics V1-V59
Vacuum-T'ube Index V2-V59
racuum-Tube Notation Symbols 546
Vacuum-'Tube Socket Diagrams V5-V12
Velocity Faetor and Attenuation of Trans- mission Lines 315
roltage Decay 534
Voltage-Output/Transformer-Voltage Ratio 212
Volt-Ohm-Milliammeter Range ('alibration. 470
W Prefixes by States. 548
WWV Nehodules 459
Wire Table 545
Word Lists for Accurate Transmission 525
Formulas
A. ('. Average, Effective and Prak Values 17
Antenna Ia-ngth. $333,338,348,415,416$
C-R Time Constant 29
Capaeitance of Condenser 24
(apacitance Measurement 474
Capacitive Reactance 33
Cathode Bias 65
('haracteristic Impedance. 314
(oaxial-Line Matching Section 350
('ritical Inductance.
1PAGE HAGE
Folded Dipole, Driven-lidement Length.... 415
AT-(ut Crvstals.
AT-(ut Crvstals. 13 13
Frequency, Resonant 41
Frequency-Wavelength Conversion 18
Grid Impedance
Grid Impedance 141 141
Half-IV ave Phasing section, Lengtl. 346
High-Pass Filter
High-Pass Filter 540 540
mperdance Mateling 3!. 10
Impedance Ratios 31), 311-312
Imprdance, Resistive at Resonance 43,44
Inductance Calculation 27
Inductance Measurement 474
Inductive Reaetance 33
$L C$ ('onstant 4.
Lecher Wires 468
Lissajous ligures, l'requency 481
Low-l'ass lifter 540
$L-R$ Time Constant 30
Modulation Imperlance 257,270
Modulation Index 288
Modulation lereentage 267
Modulation Transtormers, 'lourns Ratio 2.7
Multiplier, Meter 468
Ohm's Iaw (A.C. :3.4, :35
()hm's law (1).('.) 19-30, 2•1
Output Comdensor for Modulated-l'ato Power supply $26!$
Parasitic Vilement Spacing $: 348$
Power $3!$
Power-Supply (output Voltage 214
Power-Nupply Transormer Voltage 215
Q $42,44,5 \cdot 10$
Q-Section Transformer 317
Quarter-Wave Phasing sermion Iongih $: 347$
R - (' Time Constant 29
Reatetance 34
Regulation 211
Resistance Meisured by Volimeter 469,470
Resonamee $+1$
Resonant Frequenter $+1$
Rhombic Antenme 3.23
Ripple 214
Sereen Dropping Rosistor 66
Series, Parallel and Sories-Parallel (apaci- tances. 25,26
Series, l'arallel and Sorios-l'aralled Indue- tathces 28
Serios, larallel and Sorios-lamallel Rosist $20-92$
ances
ances
168
168
Shunts, Meter
$310,316,487$
Surge Impedance $311-312,31: 3-314$
Time ('onstant, ($-R, L-R$ 29,30
Transtormer (Aurent :38
Transformer Tifforemev 38
Transformer 'lurns, l'rimary 216
Transfommer Voltage 38
Transformer Volt-innorro katiag 216
Transmission-Jine Idength 315
Transmission-Iine Output Imped:nae :1"
Tums Ritto $38,25 \overline{7}$
Voltage Deray 'lime i:30
Voltage [Dividers 217
Voltage-I)ropping Series Resistor 217
Voltage Regulation 211
Voltage-Regulator Iimiting lResistor 218
Waveruide Jimensions $426,4 \because 7$
Wavelength 18
Wavelongt h-Frequeney Conversion 18 18
Text
"A" Battery 5
" A"-rrame Mast 35:2-353
A-1 Operators ('lub) 5ij
A. (.) $16,31-40$
A. (.,-1), (., Convert.ers 2
A. (i. Line l-ilters 301
AM (See " Implitude Modulation")
ARRI, limblem (olors53
ARRI, Operating Organization 5) $31-535$
Abbreviations for Radio Terms 54:3
dditive l'requency Meter 458
Absorption l'requency Meters 464-465
Absorption of Rartio $\begin{aligned} & \text { aves. }\end{aligned}$ 72
"Acorn" Tubes 427
Air-lnsulated Iines 312
Alignment, Receiver 102-103
Alternating Current. $16,3^{\text {ci }}-40$
Alternations 16
Aluminum l-inishing 517
Amateur Band Operating Characteristies 70
Amateur Bands 13-14
Amateur Radio Emergeney ('orps 530
Amateur Operator and Station licenses 17
Amateur Regulations. $13-14,493$
Amaterr's C'ode 8
American Radio Relay league:Headquarters12-13
Hiram Percy Maxim Nemorial Station 12-13, 532-533
Joining the League 535
Ampere 17
Amplification 5
Amplification leactor
91
Amplifier A.V.C
58
Class 1 58
(lass I360
Amplifier (latswifications S8-60
Amplifior, Surech 241
Amplifiers (see basic classifications, eg.,
"Receivers," "7ransmitters," "Radio-
telophone," and "V.Il.F.")
Amplitude, Current $15-16$
Amplitude Modulation 51, 266
Angle of ladiation 73, 331, 332
Anorle
352-361
Antemna ('onstruetion
32
Antenna ('ouplers 317
352-353
Antors, $453-457$
Antennas, Receiving 351-352
Antermal 1 engeth -
Antennan Switehing 3:2
Antemmas for Restricted Space 33)-3.10
Antemmas for V.11.F. $413-421$
Antenna for 80 Meters 157
Antennas for 160 Meters 3+1-342
Antinorle 309
Antistatic Powder. 435-436
Array 344
Arrays in Combination 351
Assembling a sitation 491-496
Atmosphere Bending. 72-75, 365
Atoms 16
Audio-Amplifier ('lassifications 58-40
Audio-('ircuit Rectification $449-500$
Audio Converters 86
Audio Frecpuencies 17
Audio Harmonics, Suppression of

	Micruphones Prage
	Microphones . 241
(ylindrical Antennas. 420	
I) Region . 7 .	
Data, Miscellaneousjisi-st9	W.M.F., Back , .
I.C.. 16-17	H..M.F., Induced. 26
D. (Instruments. 468	Eddy Current. 28.10
	Ifffective (urrent Vialue 28 , 10
IX Operating Code. 526	
U ead Spots. 81	Amplifier . $1: 388138$
Decary, Voltage . 339	
1)eciber. 5 537	Transformer . 38 , 38
Decoupling $88-89$, 24i-2-4\%	Elvetric Current . 38 , 16
Deflection lpates 479	Flectrical Charge . 10
Degencration . $60-61$	Wheetrical Laws and (ircuits.
Degreere, Ihase	p:leetrode . .
Deionizing Voltage . 66	Filectrolytic Condensers ${ }^{2}$
	lelcetromagnetic:
Delta Matehing Tramstormer. 3200 , 3i36,	Defleetion. 479
1)emodulation. .	Fiold. 1.5
	Waves. 15,71
Design of speech Amplifiers $2+1-24$	1:Inctromotive Force (roupled Oscillator.) 163
Detection. 1 , 76-s\%	Weretron-C oupled Oscellator 130, 133
Detertors:	
Crystal . 77	1ras. ${ }^{479}$
Diode . 7 .	Transit Time . ${ }_{4} 79$
(rid-1 eak . 0 (0-8)	Ielectronie:
Infinite-Impedanco $79-80$	Conduction . 16
Ilate. 79	
Regenerative .80-8\%	Switching . 26.
Deviation Ratio. 288	
1)iagrams, Schematic sumbols for ${ }^{\text {a }}$	
Diamond Intenna $343-344$	
Dielectric. 23	(oupling .is 16
Dielectric Constants. 2 2	Deflartion . 4 . 78
Dies . 15	1'iold . 4 .
Difference of Potential in, 16	Shicla . 6 \%, 1209
I iffraction of Radio Waves. 71	Waves . 12.8 , 009
Diode Detertors .	Foldment Spating, Antenna $71-72$
Diodes....... 8.3	I\%lements, Antenna. 314
I Sipole, Folderl318-319, 3000), 415	filements, Vacuum Tube. -
Dipole, Ilalf-wave :33:3	dimergency ('ommunication 2 20-831
Direct (urrent . 16-17	Eimergeney (ommunications. 2 2.-i. 30
Direct l'ced loor Antennas. 3335	Emergency Coördinator. 531
Directive Antemnts.333--334, 344-3:31	Limergency Power Supply 226-230)
	Imission: ${ }^{\text {a }}$
Director, Antemna 348	Eifectron . 52
Directors, ARRL .	Socondary .
Discharging, (ondenser 2 .	'1hermionic . 52
Discriminator. 101	Eind Effert . 32
Dissumation, (rrid 139	
Dissipation, Jlate and serect 13s-1+1	Hortgy . 22 2-2:3
Distortion, Ilarmonicte-57	Fxcitation . 1384 -139
Distribut ed (apacianme and Inductanco.. 49	
Dividers, Voliage21--218	
Divisions, ARRL. 12	Wxciter l'nits (see "rranmitters) ${ }^{\text {a }}$
Door-Kinob Thube . 127	Exating Voltage ${ }^{\text {S }}$
Doubler, Frequency 129	Extended Double-gepp Lutemar. ${ }_{3}$
Dubulet, Folded. $315-319,380,415$	
Doublet, Half-Wave 3 , $3: 3$	F-Iaiver 73,363
Double-Ilumped Resonance ('urveti-47	Fidlo-Outs, Radio. .
Double-sidehand Reduced- (irrier. 394	Frading . ${ }_{\text {\% }}$
Double superheterodyne. 84	Fiatad. ${ }^{4}$
Drift, lireduency $\mathrm{if}_{7}-68.182$	Faraday shicld 125, 5009
Drift Spare $428-129$	Jowd, surnes and laraliel $88-49$
)rill sizes (Table) 15	Fored-3ack. 60-61, 96-97, 261-262
Driven Element Direntive Autemats..... . 344	Ferders and Foed Šstems. . . . $307-330,335-337$
Driver Driver buw6, 59, 129	Fereding (lose-Spaced Antemma Arrays. . 349
Wriver Power................3s-1:39, 241	Feeding Half-Wawe Antennas. 335-337
Orivers lior (lass 13 Modulators. 25\%-26\%	Fording lang-Vire Antennas 339
)riving-Power Plat e-(ireuit-Eficiency (urve 1:39	Fidelity. 77 , 88, 240
)ummy Antennat 1.52, 508	Firld Dirrotion .
Ouplex-Diode, Triodes and I'entodes. 6 it	Field, Electromagnotic .
	liold, blectrostatic. .
)ynamic:	Fiold Intonsity . 331
Characteristics .s	Fiold, Magnetostatic. ${ }^{\text {a }}$, 38
Instability .67-688	Field Strength . 3 3 3

	Page		Page
Negative-Resistance	($88-69,429$	Plate Efficiencr	58, 138-139
Operating Characteristics of.	6-78	Plate Modulation	. 270
lierce.	130	Plate Neutralization	145
Tri-Tet	130	Plate Resistance.	\%5
Tuned-1 late Tuned-Grid	67-48	Plate Resistor	57
U.11.F.	+27-433	Plate Supply	$2 \% 96$
V.11.F	$3!10$	Plate Transformer	21i-216
Oscillators, Test	479	Plate 'Tuning, Power-Anplifier	149-152
Oscilloseope Amplifiers	183-484	Plates, Deflection.	479
Oscilloscope l'atterns	264, 27! -281,	"Plumber's Delight" Antenna	3-8-359
	2!6, 301, 481	Poharization. 71,	333, +13-414
Osrillosropes	. . . 263-265	Portahle Antemnas	420, 45.3-1.57
Output Condenser, Pilter.	215	Positive leed-laack	
Output limiting	217	Pot Tiank Circuits	428
Output Power. .	58, 152	Potential Difference	i5, 16
Output Voltage	. 242	Potential, (iround	49-50)
Oxide-Conted Cath	53	Powder, Intistatic	133-4:36
Overexcitation	259	Power.	22-23
Overmodulation	268	Power Amplification	58-60
Overmodulation Indicators	281	Power-Amplification Ratio	
1' (l'ower)	22-23	lower Practor	
PM (see "1'hase Modulation")		Power Gain, Antenna	1, 3:38
ladding Condenser	83	l'ower Input	
P'arabolice Reflector	120-121	Power Measuremen	2:3, 4 (69
Parallel Amplifiers	5, 117-148	l'ower Output . .	58, 152
Parallel Antenna Tu	323-321	P'ower, Reactive	. 34
Parallel (apacitan	25	1'ower', Reflected	308
Parallel (ircuits.	2i-26, 28, 36	Power Sensitivity	58
Prarallel-(${ }^{\text {a }}$ (${ }^{\text {a }}$ ductor	312	Power-Supply (onstruction Data	25-226
Parallel Fed.	48-49	Power supplies:	
Parallel Impedance	36-37, 43	A.C.-1). ${ }^{\text {C. Converters }}$	7
Paralled Inductanees	. 28	Bias supplies.	20202
Parallal Resistamers	24)-22	Combination A.C.-storage Ba	$\because \text { sup- }$
Parallel Resonance	$12-43$	plies	$\ldots 30$
Paratlel Touning.	323-32	Constructional (Wee also (ha	live
Pamasitic Elcments, Antoma A	with 3-18-351	and six):	
Parasitic Lxcitation.	348	Dry leateries	2:30
Parasitic Oseillations	146-147,149	Dyammotors.	26
Passhand, Recriver .	77, 78	Emergence Power Supply	26-2:30
Patterns, Oscilloscop	264, 279-281,	Filament Supply.	216
	296, 301, 481	Gememotors.	2:30
Patterns, Radiatio	. . . 334, 338	Heaw-1)uty Regulat ed Pow	upply, 219
Patterns, TVI.	. . 0 0:3	Soise lilimination. 2:8, 230
Peak-C'urrent Value	17	late supply	259, 269
Peak Voltage Rating	210	1'rinciples. .	, 208
Pencil Tulnes. . .	$367,386,389$	Receivers.	106, 111,124
Pentagrid Converter $8 \overline{5}-81$	Vibrators 227
Pentode Amplifiers		Vibrator Suppli	$227-230$
Pentode ('rystal ()sei	130	Preamplifier, Recedver	. 98-99
Pentodes.	62-6i3	Predietion Charts.	- 7
Pereentage of Modu	266-277	Prefarred Values, Component	519
Per Cent Ripple.	212-21:3	Prefixer.	48-549
Permeability.	. 27	Preselaetors	. 98
Phase.	31-32	Primary Coil	
Phase Inversion	$2+4$	l'roeddure, C.W	52,-i23
Phase Modulation (sere also	quaner	Procedure, Viose	$524-525$
Modulation').	280-288	Propagation, Ionospheric.	$-75,362-363$
Phase-Modulation Receptiont	101	Propagation Modes $422^{5}-426$
Phase lelations, Amplifiers.	30	Propagation Patterns	33:4-338
Phase Shift.	287	I'ropatation Phenomena	36:3-365
Phased Antemmas.	346	Proparation Predictions.	.75, 36:3
'Phone Aetivities Manager	531	Propagation, V.M.1'.	36\%
'Phone Remeption.	100	Protective Bias. .	139-140
Phonetic Alphabet	525	Public Relations	497-498
Pilot Lampl)ata (Pable)	54,	l'ublic service.	. 10-11
Pi-Noction Filters	138	Pullew, Intenna	354
Pieree Oseillator	130	"Puling'". ...	si-82, s4
Piezorlectric (rwstals	47-48	Pulsating Current	. . . 23
Piezuelertric Microphone	241	Puncture Voltage	23, 25
Piezoelactricity.		l'ush-P'ull Amplifice	58-59, 148
Plano-Reflector Antennas.	+20	Push-I'ull Multiplier	. 149
Plate.	52	Push-tu-talk	
Plate-Cathode (apacitance	61-62, 145	Q . . . $41-48,83,93,1358$, it	
Plate-Circuit-Pdficieney-D)ri	-l'ower	$" 05-\mathrm{er} "$. . .93-96
Curve	139	"($)^{\prime}$ " Intenna	+14
Plate C urrent	53	Q, Loaded (irmits.	43-44
Plate-Current Shift	282-283	"()"-seetion Transormer	. 317,414
Plate Detectors	. 79	Q Signats.	\cdots
Plate Dissipation.	.138-139	(2ST).	

	Page		${ }_{7} \mathrm{GE}$
Resonant Transmission Limes	312	Signal-llandling Capability.	
Resomator, Cavit	424-427	Signal-to-Image Ratio	84
Response, Flat	61	Signal Monito ${ }^{\text {a }}$	236, 467-468
Response, Frequency	1, 240, 242	Signal Monitoring	467
Response, Tuned- 'irruit	. 3.40	Signal-Strength Indicators.	93-94
Restricted-spare Antemmas	3!-340	Signal-Strength Scale	547
Restriction of Frequency Response	246	Signal Voltage.	5
Return Trate.	48	Sileners, Noise	92-93
Rewinding Transtomers	216-217	Sine Wave	7, 31-37
Rhombic Antenna	343-344	Single-Wnded Circuits	50
Rhumbatrons	428	Single Sidehand:	
"Riblon" Mierophone	241	Amplifieation.	293-297, 304-306
Ripple Frequency and Voltage	211-212	Hxeiturs.	297-304
Rowhelle Nalts Crystals.	47	Signal Reception	86, 101
Rotary Antennas.	$34!$	Transmission.	293-306
Rotary-Ram Construction	355-361	Irceeption.	
Roate Manager.	531	Single-Signal Recoption	$94-95$
S-Meters. . .	93-94	Skin Effert	19
S siale	547	Skip Mistance	73-74, 363-365
SSB İxci	2! 0^{-304}	Skip Zonc	
Safety	$495-496$	Skirt Selertivit	77
Saturation	27,215	Skywave.	72-7.5
Saturation Point	53	Slug-Tuned Inductance	83
Sawtooth Swerd	483	Smoothing Choke.	215
scatter	74,364	Socker (${ }^{\text {annections (}}$ (iagrams)	:-V12
Sereen 13:-Pass Conden	66	Solar Cuele.	363
Screen (ircuits, Tuned.	$3!2$	Soldering	517
Sercen Inssipation.	141	Spate Charge.	
Screen-I)ropping lesistor	60	Space Wave	
Scren-(irid Amplifiers. .	$134,141,271$	Spark Plug Supprossors	4-435
Screen-Cird Kioving.	232	Special-Type 'Tubes	
Screentirid Tubes.	(62-63	Sperific Inductive Capacit	
Screen-(r id Modulation	$2 \overline{7} 4-2 \overline{6}$	Speetrum, Frequency	7-18, 70
Srreen-Grid Tube Protertion	$1+1$	Speed Amplifiers	241
Scren-Voltage Supply.	$6{ }^{6}$	Speech Amplifier Inesign.	244-245
Second Detector. .	83-84, 80-90	Speerh Clipping and loiltering	247-248
Secondary Coil.	37	Spereh Compression	246-247
Secondary İmissio	62	Spereh liquipment.	240-248
Secondary Frequency Standard	458, 459-460	Splatter.	
Sertion Communirations Manager	. . 531	Sporadic-E Laver lonization	75, 363-364
Soction limergeney Coordinator.	531	Sporadie-E Skip.	363-364
Sertion Nets..	532	Spreading of Radio Waves	
Solertive Fading	74	Spurious liesponses.	84, 100, 512-513
Selertivity . . .	$4 \overline{7}, 76-77$	Spurious Sideloands.	283-284
Selectivity Control	$\cdots 95$	Squegging.	
Selertivity, Receive	77, 94-98	Squench Osoillator.	369
Selenium Rectifiers 21	222-223, 342	Stability, Amplifiers	$\therefore 144-147$
Solf-1Bias	. 139140	Stability, Remejver	$77,103,368$
Self-Controlled Oscillators	129	Stability, VFO.	$134-135$
Self-Inductance.	26	Stabilization, Voltage	218-219
Self-Oseilation.	66-67, 96-97	Stacked Arrays.	345,416
Self-Quenching.	369	Stage, Amplifier	
Sending. . . .	523	Stage, Inriver	
Sensitivity, Receiver	76-77,98-99	Stagger-Tuning	46-47
Series Antenna Tuning	. . 323-324	Standard (omponent Values	519
Series Capacitances. .	25-26	Standards, rrequeney	458
Series Circuits. .	22, 25-26, 28	Standing Waves.	$308-310$
Series Feed.	48-49	Standing-Wave Ratio	310, 486-490
Scries Inductance	28	Starting Voltage.	
Series-Parallel lesistances	21-22	Static Characteristios	
Series Resistances. .	20-21	Statie Collectors	
Series Resoname.	+1-42	Station Control Circuits	492-496
Series Voltage-1)ropping lasistor	217	Station Locations, V.II.F	365
Servicing Superhet Receivers. .	102-103	Straight Amplifior	
Sharp) (ut-Off Tubers. .	63	Stray Rereiver Rectifieation	$499-500$
Sheet Metal Cutting and Bending	517	Striking Voltaga. . .	$317-318$
Shielding.	50, 62	Stubs. Antenna-Matching	$317-318$
Shiclds.	-50	Sunspot Cxele.	$\therefore 74$
Shield, Electrostatio	125, 509	Superheterodyne.	8:3-84
Short Skip......	363-364	Superhigh Frequencios (${ }^{\text {cose also }}$	"Very Iligh 18
Shorting Stick	49\%-496		
Short-C'reuiting	23	Suprrimposed 1.(\% on D.('	
Shot Noiso. .	92	Suprrregeneration	:369
Shunts, Meter	469-471	Superregenerative Receivers	369-370
Sideband Cutting	88	Suppressor (irid	\% 62
Sidehand Interference.	266, 268	Suppressor-(irid Modulation	276-277
Sidebands.	31,266	Suppressor, Noise	92-933
Side Frequencies.	51, 266	Surfare Wave. .	. 72
Signal Generators.	475-478	Surge Impedance.	

 8
Signal Monitor467
Signal-Strength Indicators.547
Signal Voltage.92-93
Sine Wave50
Single Sideband
Implification297-304
Signal reception293-306
Single-Signal Reception $94-95$
Skip Distanco 16
Skirt Selertivity 77Slug-Tuned Inductance83Sooket (connections (Diagrams)V12ercio.517
Spate (harga 52
Spark Plug Suppressors
Sorefific Inductive (apacity 23
Sirerel Amplifirs 241
247-248
pereh compresilon240-248
Splatter 268
Sporadic- E Skip$6+$
71
purious Responses84
squegging. 369
Stabily, Amphifers, 103, 368
Stability, VFO218-219
tacked Arrits59
Stage, Driver 59
Standard (omponent Values. 519
tanding308-310
Standing-Wave Ratio218
Static Characteristics 55
Station Control Cirruits 496Straight Amplifier129
strik Volitr.48:3
Stubs, Antema-Matching74
Superheterodyne18
Suprimposed A.C. on D.(' 48
Superregenerative Receivers370
62
Suppressor-(irid Modulation 6-277
Surfare Wave307

1'M家
Swery (ircuits 48:3-48-
Swerep Wiaveforms . 480
Swing, (irid. it
Swinging (hokr. $21+$
Switch. 19
Switehes, Powrer . 195
Switching Antennat . $3 . \mathbf{n}_{2}$
Switching, Metor. 149-1:32
Symbols for Whectrical (Quantities 243
Synchronous Vibrators. 227
"T"'-Match to Antennas319-320, 350
" 7 "'-suretion Filturs \quad. 41
Titnk-Circuit () 41-48, 1:32, 1:3:)-1:38, +27

Teldevision Interferencre, Elimination of
(12, $407-51: 3$
Temperaturr Vifferts 19
Tromperature Inversion 3 .
Termination, Lime........... 308
Tertiary Winding 89
Tetrode $\mathbf{i n}^{2}$
Tetrode Amplitiers. 141
Tetrodes, beam.
Thermal-. Agitation Nois ${ }^{\prime}$. 76
Thermionic limission
Thoriated-Tungsten Cathodes
Thuratrons
Tickler Coil
Time Base
Time Constant
Tire statio
Tone Control
Tools.
Trace, Cathode-lkay
Traning Nois
Truckine -
Trucking Capacity 98
Tracking Capacity
-32
Training dids........................... 10
Trans-Athantios
10
Transeonductance, (irid-Plate
Transformation, Impedance.
4
Trimsformers
37-40
Transformer (color Codes. 521
Transformer (oupling 242
Transformer, Deltat-Mlatching 320. 314
Transformer lefficienery. 38-39
Transformer, "(Q"-section
114
Transformer Ratio.
257
Transformer lewinding 216-217
Transformerkess lower supplies 222-22:3
Transformers:
Air-Tunnd
Constant-Voltage . $88-89$
224
Filament216-217
I.F, . . .
.88-89
Linear-Circuit
817
I'ermeability-Tuned 89
Plate
21:-216
Triple-Tuned 89
Variable-siblectivity. 89
Transitron. 69
Transit Time' . 427
Transmission Lines307-330
Transmission Lines as ('ircuit Elements. . . . $42: 3$
Transmission-Lim Construction 313
Transmission-I.ine Coupling. 136i-1:38
Transmission-I ine Ferd for Half-W: Antemnas.

3:3:5-3:37
Transmission, Multi-[lop. 74
Transmitters: wee also "Very High Froquencias", "Cltra-lligh Frequencios": and "Molile") Constructional:

Complete 'Transmitter Assemblies
1-Tube 'Transmitter for the Baginter.i.t-1,58
17.)-Watt Transmitter for the 160-Metor Band
T-Band Miniature-Tube TransmitterExciter $16: 3-166$
75-Witt Transmitter for 3 Bands 167-169
Al1-Band Bandpass Vixcitor. 179-18t
Completrly-shielded 90-Wiatt Transmitter or lixaiter. 170-174
shichded 100-Watt Transmitter for Four Bands. 175-178
Nilenced VFO for 13rak-In C.W... 194-19世
simple VFO. 192-19:3
single-Control Low-l’ower Transmitter.
159-162
Single-813 Transmitter, 18.)-188
Iower Amplificrs:
1-KW Beam-Tetrodr Amplifier 204-206 450-Watt Push-Pull 'Triode Amplifirr . 197-190
Push-Pull 813 Amplifier 200-203
I inn-Voltaige Adjustment 224
Mrtcring. 149-152
Principles and Design 129
IRack Construction....................... 207
Transverse Eheotric and Magnotic Mode. 42i)-426
Trapmoidal Pattern.280-281
'Trimer Condenser. 83

Triode Amplifiers 149-150
Triple-l Deteetion Superheterodyne. 96
Tripler, Firequency 129, 149, 391
'Tri-Tet ()scillator'. 130
Troposphere Propagation 72, 75
Tropospherie Bending.72-75, 365
'Iropospheric Wiaves.72, 75
Froublo Shooting (Receivers) 102
Tube lilements. 52
'Tube kiver. 236
T'ulne Noise . 76
Tubes, Driver. 261
Tubers, Modulator 257
Tubes, Parallel and Push-Pull isx-59
Tuned-(iircuit Response 540
'Tuned Coupling. 137-138, 321-322
Tuned Serern Cireuits. 392
Tunced-Grid Tuned-Plate C'irruit67-68
Tuned-Line Tank ('ircuit 391
Tuned Transmission Iines. 312
Tuners, Antemna, Construction of:
Coas-Coupled Matehing Circuit 326-328
Lower-Powor Rack-Mounted Antenna Coupler
328-329
Reeciver Coupler, 117-119
Series-Parallel Coupler for Wall Mounting.
328
Wide-Range Antemna ('oupler 329-330
Tuning Indicators. 9394
Tuning R.F. Amplificrs. 149-152
'luning lange, lixtending the Receiver.... 99
Tuning Rerepivers. 81-82,99-100
Tuning slug . 83
Tuning Transmitters 149-1:32
Turns Ratio. 38
TVI. 392, 497-513

"Twin-Iamp" Standing-W:Wve Indicator 488-490
Twin-lead
.313-314
["ltra-IIigh-Frequencies:
"But terfly"" (Vircuits. 424
(Gavity lesonaturs. 424-427
Klvitrons $428-429$
"Lighthouse" Tubes.367, 386, $428-431$
Lumped-Constant Cirruit............ $423-124$
Magnetrons . 428
Megatrons . $422-424$
'rechniques. 430-433
Transmission-I Line Tanks. 423
Tubers. 427-430
Velocity Modulation 428

Unbalance in Amplifiers ${ }_{\text {Page }}^{\text {Pa }}$	
Universal Antenna Couplers.	32--330
Untuned Transmission Lines	312
Upward Modulation	267-268
"V" Antennas	342-343
VR-Tubes	218
Vacuum-Tube Principles	52-69
Variable Condenser	
Variable-Frequency Oscillators:	
	476-478
VFOs	132-135
(See also "Transmitter, Constructional,"	
"Mobile," and "V.II	
Variable- μ Tubes	63
Variable Solectivity	94-98
Velocity Factor	315
Velocity Microphone	
Velocity-Modulated Tubes	
Velocity Modulation	
Velocity of Radio Waves	, 70-71
Vertical Amplifiers.	484
Vertical Angle of Radiation	
Vertical Polarization of Radio Waves	
Very-High Frequencies (V.II.F.) :	
Antenna Systems:	
Broadhand Antennas	420
Coaxial Antenna	
Cone Antenna	
Corner-Reflector Antenna	421
Cylindrical Antemnas	
Delta Match.	
Design Factors	41
Directive Arras	
Folded Dipole	
"J" Antenna	
Long-Wire Antennas	
Mobile Antennas	453-457
Parabolic Refleetors	420-421
Phased Arrays	
Plane-Sheet Reffectors	
Polarization	413
"Q" Section	114
Stacked Anten	+16-417
"T"-Match.	414-415
"Y"-Match	414
50 and 144 Mc	+15-418
220 and 420 Mc	419-421
Constructional:	
Crystal-Controlled Converters.... . 370-376	
Crystal-Controlled Converter for 220 or	
144 Mc .	375-376
Receivers for 420 Mc	384-386
IR.F. Amplifiers for 420 Mc .	387-388
2-Meter Mobile Converter	443-444
28 - and $50-\mathrm{Mc}$. Simple Converter.	380-382
$6 \mathrm{J6}$ Preamplifier for 28, 50 and 144	
Me	383-384
144-Mc. Low-Noise Converter	377-379
420-Me. Converter	
Transmitters:	
$50-144 \mathrm{Mc} .400$ Wat	393-398
$50-144 \mathrm{Mc}$. Crystal Controlled Mobile	
Transmitters	448-452
420-Mc. Transmitters	409-412
Crystal Control on 220 Mc	407-408
V.II.F. Man's VFO	398-401
Transmitter-Exciters for 00 and 144	
Me	402-405
100-Watt IR.F. Amplifier for 00 and	
144 Mc $405-407$	
Propagation	
Receiver Considerations. 366	
Station Locations. $36{ }^{\text {3 }}$	
Superregenerative Receiver.	.369-370
Transmitter Design 389	

V.II.F. Receiver Design:	
Mixer Circuits.	8
Oscéllator Stability	368-369
R.F. Amplifier Design	366-368
Superregenerative Receivers.	369-370
What to Expeet	362
$V \mathrm{FO}$.	129
Virtual Height	227-229
	72
Voice Control.	297
Voice Operating	524-52.5
Volt. Volt-Amperes	17
	37
Volt-Ampere Rating	216
Voltage Amplification	242
Voltage Amplifier	58
Voltage lreakdown	25
Voltage Decar.	539
Voltage Dividers	217-218
Voltage Distribution, Ante	334, 337
Voltage 1)rop.	21, 217
Voltage Feed for Antennas	335
Voltage Gain. . .	57,242
Voltage Loop	309
Voltage-Amplification Ratio	56
Voltage-Multiplier C'ircuits.	222-223
Voltage Node.	
Voltage Ratio, Transformer	38
Voltage Regulation	
Voltage, Ripple Voltage Rise	211-212
Voltage-Regulator Interference	44
Voltage Stabilization.	218-219
Voltage-stabilized Power Supplies.	218-219
Voltmeters......................	468-474
Volume (ompressio	246-247
W1AW .	12, $532-$-533
WAC Certificates	534
Was Award...	
Watt-Hour	
Watt-Seeond Wave Angle	23
	73, 334
Wave Angle.	267
Wive Front. . .	71
Wave Guides.	424-427
Wave, GroundWave Propara	72-73
	72-75
Wave, Sine	7, 31-37
Wave, Sky	. $72-75$
Waveform.	
Wavelength	
Wavelength-FrequencyWavelength Performance	
Wavelengths, Amateur.	
Wavemeter (See "Frequency ment")	Measure-
Waves, Complex	
Waves, Distorted	
Waves, Electromag	
Wavetraps:	501
Wheel Static	
Wide-Band Antennas	420
Wire Table.	
Wiring Diagrams, Symbols for	
Wiring, Station	496
Wiring, Transmitter.	517-519
Word lists for Aceurate Transmission	sion . . . 525
Working 1)X.	.525-526
Working Voltage, Condensid	215
	514-521
Workshop Practice. WWY' Schedules.	459
X (Reactance)	32-34
"Y"-Matching 'Transformer	320, 114
Z (Impedance)	34-36
Zero Beat	81-82

[^0]: 1 Where it is necessary or desirable to identify the electrodes, the enrved element represents the outside clectrode (marked "outside foil," "ground." ete.) in tised paper- and ceramic-dielectric condensers, and the negative elcetrode in electrolytic condensers.
 ${ }_{2}$ In the modern symbol, the curved line indicates the moving element (rotor plates) in variable and adjustable airor misa-dielectric condensers.

 In the case of switches, jacks, relays, etc., only the basie combinations are shown. Any eombination of these sym. bols may be assembled as refuired, following the elementary forms shown.

[^1]: * Excent in State of Wiwhington where datime powre limited to 20 watts and night time power to 50 watto.

[^2]: Fig. 5-3-1 Hiagrams showing the detection process.

[^3]: 'MeLamghlin, "Exit Ileterudync QRM," QST, October, 1447.

[^4]: (:35-100- $\mu \mu \mathrm{fd}$. variable (Millen 20)(0)).
 (32, ($3 x-600-\mu \mu \mathrm{fl}$, silver mira.
 (:51-0.005-pfil. ceramie (Eprague 20(:1).
 ($52-12-\mu \mu \mathrm{fd}$, tubular air comdenser (nee text).
 (5_{3} - $75-\mu \mu \mathrm{fl}$, variable (National l'sE- T 5).
 (C_{4} - $125-\mu \mu \mathrm{fd}$, pr -section variable (Vational TMS. 125-[)).
 C.5s - $0.00 \mathrm{l}-\mu \mathrm{fd}$. 2500 -volt micad.
 $\mathrm{C}_{57}-170-\mu \mu \mathrm{fd}$. mica.
 C 58 - $170-\mu \mu \mathrm{fl} .2500$-volt mica.
 ($59-300-\mu \mu \mathrm{fl}$. variable ($\mathrm{Jational} \mathrm{S}[\mathrm{ll}-300$).
 C60, (:01-0.1 1 fil, 250 volts (Sprague IIypam),
 $\mathrm{R}_{1}, \mathrm{R}_{6}-2,2,000$ ohms, I watt.
 $1 R_{2}-0.15$ megohm, $1 / 2$ watt.
 R_{3}, R_{12} - 0.1 megohm, $1 / 2$ watt.
 $R_{4}, R_{16}-0.47$ megohn, $1 / 2$ watt.
 $R_{5}, R_{1}-1000$ ohms, $1 / 2$ watt.
 $R_{7}, R_{19}-170$ ohms, 1 watt.
 Rs - 1 megohm, $1 / 2$ watt.
 $R_{10}, R_{15}-0.22$ megolim, $1 / 2$ wat .
 $R_{11}-12,000$ ohms, I watt.
 R_{13} - $\mathrm{O}_{1} . \mathrm{j}$-megohm potentiometer.
 $\mathrm{R}_{14}-10,000$ ohmes, $1 / 2$ watt.
 R_{15} - 300 ohtms, $1 / 2$ watt.
 $R_{18}, R_{20}-47,000$ ohms, $1 / 2$ watt.
 R_{21} - 47 ohms, $1 / 2$ watt.
 $R_{22}-22,000$ ohms, $1 / 2$ watt.
 $R_{23}-330$ ohms, 1 watt.
 K_{24} - $\mathbf{0} 000$ ohms, 10 watts.
 $R_{2 s}-1.500$ ohms, I watt.
 $\mathrm{R}_{26}-2000$ ohms, 10 watts.
 $\mathrm{K}_{27}-1 . \overline{\mathrm{h}},(0) 0$ ohms, 10 watts.
 I_{1} through I_{18} - See coil table.
 $I_{1}, I_{2}-I^{\prime}$ anel lamp.
 $\mathrm{J}_{1}, \mathrm{~J}_{2}$ - (inaxial-cable connertor.
 J_{3} - B -prong male plog.
 M. $\boldsymbol{I}_{1}-0-25$ d.e. milliammeter.

 M $\mathrm{A}_{2}-0-300 \mathrm{dic}$ milliammeter.
 RFCi, $\mathrm{RFC}_{2}, \mathrm{RFC}_{4}, \mathrm{RFC} \mathrm{S}_{5}, \mathrm{RFC}_{5,}, \mathrm{RFC}_{7}-2.5-\mathrm{mh}$, r.f. choke.
 RFC3 - 300 - $\mu \mathrm{h}$. r.f. choke (Millen 31300).

 \mathbf{S}_{1} - 6-pole 3 -section 5 -position selector switch (Centralab 2525).
 S_{2} - S.p.d.t. center-off toggle switeh.
 S_{2} - 6.3-volt 6-amp. filament transformer (Thordarson (T-21F11).

[^5]: * Any or all holes for smaller panels that follow may be added or substituted as desirable. Hole distances are from either top or bottom edges of panel.

[^6]: ${ }^{1}$ For a description of a well-shiehded oseillator. see Suith, "A Solution to the Keyed-VFO Problem," QST, Febzuary, 1950.

[^7]: 2 For a more complete dismssion of this effert, see Carter, "Reducing Key Cliolis." QNT, Mareh, 1949.

[^8]: 1 Voltage across next－stage grid resistor at grid－current point．
 ${ }^{2}$ Al 5 volts r．m．s，output．
 ${ }^{2}$ Cathode－resistor values are for phase－inverter service．

[^9]: $\mathrm{C}_{1}-100-\mu \mu \mathrm{fl}$. micat.
 (:2, Co, ($A_{13}-20-\mu \mathrm{fd}$. 2.-volt electrolytic.
 (\because - 0) I- $\mu \mathrm{ff}$. 4 (N) wolt baper.

 (E , ($\mathrm{K}-8-\mu \mathrm{fd}$. E - 0)-volt electrolytic.
 Con, (il- 1:0)- $\mu \mathrm{ffl}$ mira.
 (:in - 0.012- $\mu \mathrm{fl}$ l. mioa ur paper.
 (12 - 330- $\mu \mathrm{ffl}$ mica.

 $R_{1}-2.2$ mpgohmis, $1 / 2$ watt.
 $\mathrm{K}_{2}, \mathrm{~K}_{14}-22(0)$ ohms, $1 / 2$ watt.
 $\|_{3}$-I megohm, $1 / 2$ watt.
 $R_{4}, R_{4}-0 . t^{-}$merohm, $1 / 2$ watt.
 Rs-45, $0(0)$ ohms. $1 / 2$ watt.
 $K_{6}-2-m e g o h m$ volume eontrol.
 $k_{i}-3900$ ohms, $1 / 2$ watt.
 $\mathfrak{k}_{\mathrm{s}}$ - 0.1 megohm, $1 / 2$ watt.
 $R_{10}-1.500$ ohmis, 1 watt.
 $\mathrm{K}_{11}-\mathrm{F}_{2}^{-}, 000$ ohmen, 1 watt.
 $R_{12}-50,000$ ohms, $1 / 2$ watt.
 R_{13} - 0.5 -megohm volume control.
 $\left.R_{15}-10,000\right)$ ohms, 20 watts.
 $R_{1 B}-2000$-ohm 25 watt adjustalile.
 1,1-20 hesrys, 900 ohms (5 tancor ($(.1515)$.
 $12,1,3-15$ henrs: 55 ma . (Staneor ($\mathrm{S}-1(102$).
 $1.4-10.5$ henrys, 110 ma. (Stancor (\therefore - 1001).
 Jt- Ilierophone cable receptarle (Anphenol PCIM).
 \mathbf{J}_{2} - Chassis-mounting 115 volt plag.
 S_{1} - I).p.d.t, rotary switch (Vallory 3122-J).

 " 1 ' - Audio transformer, single plate to p.p. grids, ratio $2: 1$ ('Ihordarson 120.117).
 \mathbf{I}_{2} - I Mriver traniformer, variable ratio, p.p. driver to Class- 13 mrids, iri. rating 120 na. per side (Stancor 1-4;6,3).
 $\mathrm{T}_{3}-$ I'ower transformer: 700 v. c. $\mathrm{t} ., 90$ ma.: $5 \mathrm{v},{ }^{2} 2$ amp.: $6.3 \mathrm{v}, 3.5 \mathrm{amp}$. (Stancor P-10:9).
 T_{4} - Power transformer: © 01 v. e. t., IIU ma.: 5 v., 3 amp.: 6.3 v. 4.5 amp . (Stancor P-4080).
 $R_{1} C_{1}-2.5 \mathrm{mh}$. r.f. choke.

[^10]: Example: Assume that the r.f. tube to be used has a 100% plate-modulation rating of 250 watts input and will kive a carrier power output of 190 watts at that imput. ('athode modulation with 40% plate modulation is to be used. From Frig. 10-18. the carrier efficiency will be 5 ote with 40% plate modulation, the permissible d.e. input will be 65 in 2 of the plate-modulation rating. and the r.f. output will be 48% of the platemodulation rating. That is,

 Power input $=250 \times 0.65=162.5$ watts
 P'ower output $=190 \times 0.48=91.2$ watts
 The required audio power, from the chart, is equal to 20% of the d.c. input to the modulated amplifier. Therefore

 Audio power $=102.5 \times 0.2=32.5$ watts
 The modulator should supply a small amount of extra power to take care of losses in the arid circuit. These should not exced four or five watis.

[^11]: ${ }^{1}$ Basic Radio Propagation Predictions, issuel nonthly, three months in advance, by the Central Radio Progagation Laboratory of the National Bureau of Standarts. Order from the Supt. of Documents, Wrashington $25, \mathrm{D}, \mathrm{C} . ; \$ 1.00$ per sear.

[^12]: Examples: A resistor of the type shown in the lower drawing of Fig. 24-9 bas the following color bands: A, red; B, red; C, orange; D, no color. The significant figures are 2,2(22) and the decimal multiplier is 1000 . The value of resistance is therefore 22,000 ohms and the tolerance is $\pm 20 \%$

 A resistor of the type shown in the upper drawing has the following colors: body (A), blue; end (B), gray; dot, red; end (D), gold. The

[^13]: OPS Official 'Phone Station. Voice operating, example in setting operating standards, activities on voice. ORS Official Relay Station. Traffic service. operates nets and trunk lines.

[^14]: ${ }^{1}$ A mil is $1 / 1000$（one－thousandth）of an inch．
 The figures riven are approximate only．since the thickness of the insulation varies with different manufacturers．
 3 The current－earrying capacity at 1000 C．M．per ampere is equal to the circular－mil area（Column 3）divided by 1000

[^15]: *Slightly higher west of the Rockies.

[^16]: PLEASE PLACE YOUR ORDER WITH YOUR REGULAR RADIO PARTS JOBBER. IF YOUR JOBBER DOES NOT HANDLE OUR LINE PLEASE SEND YOUR ORDER DIRECT TO US

[^17]: ＊Jower steel only－weight of қuss．insulators，cic．not includerl．

