31st EDITYON • 1954

THESTANDARD MANUAL OF AM\&TEHK
RADIO COMMUNICAXIOI?

PUBLISHED BY THE AMERICAN RADIO RELAY-IEAGUR

SCHEMATIC SYMBOLS USED IN CIRCUIT DIAGRAMS

fixed condenser (See Footnote 1)

Variable or adjustable CONDENSER
A-Single-section
B-Split-stator
(See footnote 2)

AIR-CORE INDUCTOR
A- Fixed coil or r.f. choke B-Coil with fixed tap c-Coil with variable tap (small circles indicate plug.andjack or binding-post terminals)

A-AIR-CORE TRANSFORMER OR INDUCTIVELY-COUPLED COILS (Arrow used only if coupling is variable)
B- LINK-COUPLED COILS

VARIABLE RESISTOR, POTENTIOMETER, VOLTAGE DIVIDER, RHEOSTAT, ETC.

WIRING-DIAGRAM DEVICES A - Wires connected B - Wires not connected
I

TWISTED-PAIR CABLE

SHIELDED WIRE OR CABLE

faraday shield

TERMINALS with appropriate labels

SWITCHES
A- S.PS.T. C- D.P.S.T.
B-S.P.D.T. D-Rotary Multipoint

MICROPHONES A-Single-button D- Dynamic B -Double-button E - Velocity C -Condenser F-Crystal

LOUDSPEAKER

BUZZER

A-Normally-open
B-Normally-closed

A-Nonrectifying
B-Selfrectifying

METER
(with ${ }^{\text {H }}=$ proper iaentification $-V, M A$, etc.)

$-1|I| I \mid+{ }^{+}$-
BATTERY SINGLE CEIL

neon bulb orvoltage regulator (VR) TUBE

[^0]
THE RADIO AMATEUR'S HANDBOOK

By the HEADQUARTERS STAFF of the
AMERICAN RADIO RELAY LEAGUE WEST HARTFORD, CONN., U.S.A.

1954
Thirty-first Edition

COPYRIGHT 1954 BY゙
 THE AMERICAN RADIO RELAY LEAGUE, INC.

Copyright secured under the Pan-American Convention

International Copyright secured

This work is Publication No. 6 of The Radio Amateur's Library, published by the League. All rights reserved. No part of this work may be reproduced in any form except by written permission of the publisher. All rights of translation are reserved. Printed in U. S. A.

Quedan reservadoa todos los derechos

Thirty-first Edition

\$3 in U. S. A. proper
$\$ 3.50$ in U. S. Possessions and Canada
\$4 elsewhere

THERUMFORD PRESS
Concord, Now Hampshire, U. S. A.

Foreword

In twenty-eight years of continuous pullication The Radio Amateur's Handbook has become as much of an institution as amateur radio itself. Produced by the amateur's own organization, the American Radio Relay League, and written with the needs of the practical amateur constantly in mind, it has earned unisersal acceptance not only by amateurs but by all segments of the technical radio world, from students to engineers, servicemen to operators. This wide dependence on the Handbook is founded on its practical utility, its treatment of radio communication problems in terms of how-to-do-it rather than by abstract discussion and abstruse formulas.
But there is another factor as well: dealing with a fast-moving and progressive science, sweeping and virtually continuous modification has been a feature of the Handbook - always with the objective of presenting the soundest and best aspects of current practice rather than the merely new and novel. Its amnal rewriting is a major task of the headquarters group of the League, participated in by skilled and experienced amateurs well acopainted with the practical problems in the art.

In contrast to most publications of a comparable nature, the Handbook is printed in the format of the League's monthly magazine, QST. This, together with extensive and usefully-appropriate catalog advertising by manufacturers producing equipment for the radio amateur and industry, makes it possible to distribute for a very modest charge a work which in volume of subject matter and profusion of illustration surpasses most available radio texts selling for several times its price.

This thirty-first edition takes note of the changes in terhnical practice that have occurred in the past year. A considerable amount of new equipment in all eategories appears thronghout the book. The chapter on highfrequency transmitters includes new units for the Novice as well as more elaborate units for the accomplished amateur. Continuing the trend of recent years, all transmitting equipment has been designed with the reduction of harmonics in the telecasting bands as a primary feature. The chapter on v.h.f. receivers has been extensively redone, making use of the newest circuits and tubes. And the ahways informative data chapter on vacuum tuhes and semiconductors has heen expanded to include over 150 new tube types plus transistors.

The Ilandbook has long been considered an indispensable part of the amateur's equipment. We earnestly hope that the present edition will succeed in bringing as much assistance and inspiration to amateurs and would-be amateurs as have its predecessors.

General Manager, A.R.R.L.
West Hartford, Conn.

CONTRNTS

Frontispiece 2
The Amateur's Code 8
Chapter 1 -Amateur Radio 9
2 - Electrical Laws and Circuits 15
3-Vacuum-Tube Principles 52
4-High-Frequency Communication 70
5-High-Frequency Receivers 76
6-High-Frequency Transmitters 129
7 -Power Supplies 205
8-Keying and Break-In 229
9 -Speech Amplifiers and Modulators 238
10-Amplitude Modulation 265
11 - Frequency and Phase Modulation 284
12 -Reduced-Carrier and Single-Sideband 291
13-Transmission Lines 307
14-Antennas 330
15-About V.H.F. 361
16-V.H.F. Receivers 365
17-V.H.F. Transmitters 385
18- V.H.F. Antennas 412
19 - U.H.F. and Microwave Communication 421
20 - Mobile Equipment 433
21 - Measurements 457
22 -Assembling a Station 485
$23-\mathrm{BCI}$ and TVI 491
24 - Construction Practices 512
25-Operating a Station 520
26-Miscellaneous Data 535
27 - Vacuum Tubes and Semiconductors V1Catalog SectionIndex

THE
 AMATEUR'S
 CODE

- ONE•

The Amateur is Gentlemanly... He never knowingly uses the air for his own amusement in such a way as to lessen the pleasure of others. He abides by the pledges given by the ARRL in his behalf to the public and the Government.
-TWO •
The Amateur is Loyal . . . He owes his amateur radio to the American Radio Relay League, and he offers it his unswerving loyalty.

- THREE•

The Amateur is Progressive... He keeps his station abreast of science. It is built well and efficiently. His operating practice is clean and regular.
-FOUR•
The Amateur is Friendly... Slow and patient sending when requested, friendly advice and counsel to the beginner, kindly assistance and coöperation for the broadcast listener; these are marks of the amateur spirit.

- FIVE•

The Amateur is Balanced ... Radio is his hobby. He never allows it to interfere with any of the duties he owes to his home, his job, his school, or his community.

- SIX •

The Amateur is Patriotic . . . His knowledge and his station are always ready for the service of his country and his community.

- Paul M. Segal

Amateur Radio

Amateur radio is a scientific hobby, a means of gaining personal skill in the faccinating art of electronics and an opportunity to communicate with fellow citizens by private shortwave radio. Scattered over the globe are more than 150,000 annateur radio operators who perform at service defined in international law as one of "splf-training, intercommunication and technical investigations can ricedon loy . . . duly authorizod persons interented in radio trehnique solely with a personal aim and without pecuniary interest,"

From a humble begiming at the turn of the century, amateur radio has grown to become ath established institution. 'Today the Ameriran followers of amateur radio number over 100,000 , trained communicators from whose ranks will come the professional communic: fions specialists and executives of tomorrow just as many of today's radio leaders were first allacted to radio by their early interest in amateur radio commanication. A powerful and prosperous organization now provides a hond between amateurs and proteets their interests; an internationally-respected magazine is published sokely for their benefit. The Army and Navy seek the cooperation of the amateur in developing communications reserves. Amaterur radio supports a manufacturing industry which, by the very demands of amateurs for the latest and best equipment, is always up-to-date in its designs and production lechniques - in itself a national assed. Amateurs have won the gratitude of the mation for their heroid performances in times of natural disaster. Through their organi\%ation, amateurs have coüperative working agreements with such agencies :ts the I nited Nations and the Red Cross. Amateur radio is. indeed. : margnificently useful institution.

Although as old as the art of radio itself, amatera radio did mot ahays enjoy such prostige. Its first anthusiasts were private ritizens of an ceperimental turn of mind whose imatginations went wild when Mareoni first proved that messages atotually could be sent by wireless. They sot about learning enough about the new seientifie marvel to build homemade stations. By 1912 there were numerous Government and commercial stations, and hundreds of amateurs; regulation was needed, so laws, licenses and wavelength specifications for the various services appeared. There was then no amateur organization nor spokesman.

The official viewpoint toward amateurs was something like this:
" Amateurs? . . . Oh, yes. . . . Well, stick 'em on 200 meters and below; they'll never get out of their backyards with that."

But as the years rolled on, amateurs found out how, and DN (distance) jumped from local to 500 -mile and even occasional 1,000 -mile twoway contacts. Because all long-distance messiges had to be relayed, relaying developed into afine art - an ability that was to prove invaluable when the Government suddenly called hundreds of skilled amateurs into war service in 1917. Meanwhile U. S. amateurs began to wonder if there were amateurs in other countries across the seas and if, some day, we might not span the Atlantic on 200 meters.

Most important of all, this period witnessed the birth of the American Radio Relay League, the amateur radio organization whose name was to be virtually synonymous with subsequent amateur progress and short-wave development. Conceived and formed by the famous inventor, the late Hiram Perey Maxim, ARIRL was formally launched in early 1914. It had just begun to exert its full force in amateur activities when the ['nited States declared war in 1917, and by that act sounded the knell for amateur radio for the next two and a half years. There wore then over 6000 amateurs. Over 4000 of them served in the armed forees during that war.

Today, few amateurs realize that Word

HIRIM PERCY MIXIM
President ARRL, 1914-1936

War I not only marked the close of the first phase of amateur development but came very near marking its end for all time. The fate of amateur radio was in the balance in the days immediately following the signing of the Armistice. The Ciovernment, having had a taste of supreme authority over commonications in wartime, was more than half inclined to keep it. The war had not been ended a month before Congress was considering legislation that would have made it impossible for the amateur radio of old ever to be resumed. ARRL's President Maxim rushed to Washington, pleaded, argued, and the bill was defeated. But there was still no amateur radio; the war ban continued. Repoated representations to Washington met only with silence. The League's offices had boen closed for a year and a half, its records stored away. Nost of the former amateurs had gone into service: many of them would never come back. Would those returning be interested in such things as amateur radio? Mr. Maxim, determined to find out, called a meeting of the old Board of Directors. The situation was diseouraging: amateur radio still banned by law, former members scattered, no organization, no membership, no funds. But those few determined men financed the publication of a notice to all the former amateurs that could be located, hired Kenneth 13. Warner as the League's first paid secretary, floated a bond issue among old laague members to obtain money for immediate running expenses, hought the magazinc $Q S^{\prime} I$ to be the League's official organ, started activities, and dunned officialdom until the wartime ban was lifted and amateur radio resumed again, on October 1, 1919. There was a headlong rush by amateurs to get back on the air. (iangway for King Spark! Manufacturers were hard put to supply radio apparatus fast enough. Each night saw additional dozens of stations crashing out over the air. Interference? It was bedlam!
l3ut it was an era of progress. Wartime needs had stimulated technical development. Vacuum tubes were being used both for receiving and transmitting. Amateurs immediately adapted the new gear to 200 -meter work. Ranges promptly increased and it became possible to bridge the continent with but one intermediate relay.

TRANS-ATLANTICS

As DI became 1000, then 1500 and then 2000 miles, amateurs began to dream of transAtlantic work. Could they get across? In December, 1921, ARIRL sent abroad an expert amateur, Paul F. Godley, 2ZE, with the best receiving equipment available. Tests were run, and thirty American stations were heard in Europe. In 1922 another trans-Atlantic test was carried out and 315 American calls were logged by European amateurs and one French and two British stations were heard on this side.

Everything now was centered on one objective: two-way amateur communication across the Atlantic! It must be possible - but somehow it couldn't quite be done. More power? Many already were using the legal maximum. Better receivers". They had superheterodynes. Another wavelength? What about those undisturhed wavelengths below 200 meters:' The engineering world thought they were worthless - but they had said that about 200 meters. So, in 1922, tests between Martford and boston were made on 130 meters with encouraging results. Early in 1923, ARLLL-sponsored tests on wavelengths down to 90 meters were successful. Reports indicated that as the wavelength dropped the results were better. A growing excitement began to spread through amateur ranks.
liually, in November, 1923, after some months of careful preparation, two-way amat teur trans-Atlantic communication was accomplished, when Schnell, 1 MO , and Reinartz, 1NAM (now W9UZ and h613.J, respectively) worked for several hours with Deloy, 8A13, in France, with all three stations on 110 neters! Additional stations dropped down to 100 meters and found that they, too, could easily work two-way across the Atlantic. The exodus from the 200 -meter region had started. The "short-wave" era had begun!
l3y 1924 dozens of commercial companies had rushed stations into the 100 -meter region. Chaos threatened, until the first of a series of national and international radio conferences partitioned off various bands of frequencies for the different services. Although thought still centered around 100 meters, League oflicials at the first of these frequency-determining conferences, in 1924, wisely obtained amateur bands not only at 80 meters but at 40, 20, and even 5 meters.

Eighty meters proved so successful that "forty" was given a try, and QSOs with Australia, New Zealand and South Africa soon became commonplace. Then how about 20 meters.' 'This new band revealed entirely unexpeeted possibilities when IXAM worked 6TS on the West Coast, direct, at high noon. The dream of amateur radio - daylight. DX! was finally true.

PUBLIC SERVICE

Amateur ratio is a grand and glorious hobby but this fact alone would hardly merit such wholehearted support as is given it by our Government at international conferences. There are other reasons. One of these is a thorough appreciation by the Army and Navy of the value of the amateur as a source of skilled radio personnel in time of war. Another asset is best described as "public service."

About 4000 amateurs had contributed their skill and ability in '17-'18. After the war it was only natural that cordial relations should prevail between the Army and Navy and the amateur. These relations strengthened in the next
few yoars and, in gradual steps, grew into cooperative activities which resulted. in 1925, in the establishment of the Naval Communications Reserve and the Army-Amateur Radio System (now the Military Affiliate Radio System). In World War II thousands of amateurs in the Naval Reserve were called to active duty, where they served with distinction, while many other thousands served in the Army, Air Forces, Coast Guard and Marine Corps. Altogether, more than 25,000 radio amateurs served in the armed forces of the United States. Other thousands were engaged in vital civilian electronic researeh, development and manufacturing. They also organized and manned the War Emergency Radio Service, the communications section of OCD).

The "public-service" record of the amateur is a brilliant tribute to his work. These activities can be roughly divided into two classes, expeditions and emergencies. Amateur cooperation with expeditions hegan in 1923 when a league member, I On Mix, 1TS, of Bristol, Conn. (now assistant technical editor of QST), arcompanied MacMillan to the Arctic on the sehooner Boudoin with an amateur station. Amateurs in Canada and the U.S. provided the home contacts. The success of this venture was such that other explorers followed suit. During subsecquent years a total of perhaps two hundred voyages and expeditions were assisted by amateur radio, and for many years no expedition has taken the field without such plans.

Since 1913 amateur radio has been the principal, and in many cases the only, means of outside communication in several hundred storm, flood and earthquake emergencies in this country. The 1936 castern states flood, the 1937 Ohio River Valley flood, the southern California flood and Long Island-New England hurricane disaster in 1938, and the FloridaGulf Coast hurricanes of 1947 called for the amateur's greatest emergency effort. In these disasters and many others - tornadoes, sleet storms, forest fires, blizzards - amateurs played a major role in the relief work and earned wide commendation for their resourcefulness in effecting communication where all other means had failed. During 1938 ARRL, inaugurated a new emergency-preparedness program, registering personnel and equipment in its Emergency Corps and putting into effect a comprehensive program of coöperation with the Red Cross, and in 1047 a National Emergency Coördinator was appointed to full-time duty at League headquarters.

The amateur's outatanding record of organized preparation for emergency commmnications and performance under fire has been largely responsible for the decision of the Federal Government to set up special regulations and set aside special frequencies for use by amateurs in providing auxiliary communications for civil defense purposes in the event of war. Under the banner, "Radio Amateur Civil Emergency Service," ama* taurg are aetting up and manning community and
arca networks integrated with civil defense functions of the municipal governments. Should a war cause the shut-down of routine amateur activities, the IRACLS will be immediately available in the national defense.

TECHNICAL DEVELOPMENTS

Throughout they many years the amateur was careful not to shight experimental development in the enthusiasm incident to international DN. The experimenter was constantly at work on ever-higher frequencies, devising improved apparatus, and learning how to cram several stations where previously there was room for only one! In particular, the amateur pressed on to the development of the very high frequencies and his experience with five meters is especially representative of his initiative and resourcefulness and his ability to make the most of what is at hand. In 1924, first amateur experiments in the vicinity of 56 Mc . indicated that band to be practically worthless for DX. Nonetheless, great "short-haul" activity eventually came about in the band and new gear was developed to meet its special problems. Beginning in 1934 a series of investigations by the brilliant experimenter, Ross Hull (later QST's editor), developed the theory of v.h.f. wave-bending in the lower atmosphere and led amateurs to the attainment of better distances; while occasional manifestations of ionospheric propagation, with still greater distances, gave the band uniquely erratic performance. By l'earl Harbor thousands of amateurs were spending much of their time on this and the next higher band, many having worked hundreds of stations at distances up to several thousand miles. Transcontinental 6meter D. is now a commonplace occurrence; even the oceans have been bridged! It is a tribute to these indefatigable amateurs that today's concept of v.h.f. propagation was developed largely through amateur research.

The amateur is constantly in the forefront of technical progress. His incessant curiosity, his eagerness to try anything new, are two reasons. Another is that ever-growing amateur radio continually overcrowds its frequency assignments, spurring amateurs to the devolopment and adoption of new techniques to permit the

A gornar of the ARRL laboratory.
arcommodation of more stations. For examplas, a matours turned from spark to c.w., designed more seloctive receivers, adopted crystal control and pure d.c. power supplies. From the ARRL's own laboratory in 1932 came James Lamb's "single-signal" superheterodyne - the world's most advanced high-frequancy radiotelegraph receiver and, in 1936, the "noise-silencer" circuit. Amateurs are now turning to sperech "clippers" to reduere bathdwidthe of 'phome transmiswions and "singh--sidebound suppressed-canrien" sustems as well as even more solectivity in recoiving equipment for greater afficieney in spectrum the.

During World Wiar 11, thousathds of skilled amateurs contributent their knowledge oo tho development of secret radio deviecs, both in Government and private laboratories. Equally as important, the prewar technical progress by amateurs provided the keystone for the development of modern military communications equipment. Perhap)s more important today than individual contributions to the art is the mass eroperation of the amateur body in Government projorets such as propagation stulaes: cach participating station is in reality a separate fich lathoratory from which roports are mato for correlation and analysis.

Emergeney reliof, "xpedition contact, experimental work and countless instances of other forms of public service - rendered, as they always have been and always will be, without hope or expectation of material reward - made amateur radio an integral part of our peacetime national life. The importance of amateur participation in the armed forees and in other aspeets of national defense have emphasized more strongly than ever that amateur radio is vital to our national existence.

- THE AMERICAN RADIO RELAY LEAGUE

The Alklif, is today not only the spokesman for amateur radio in this country but it is the largest amateur organization in the world. It is strictly of, by and for amateurs, is noncommereial and has no stockholders. The members of the League are the owners of the Al? RI, and QぶT.

Tho league is pledged to promote interest in two-way amateur communication and experimentation. It is interested in the relaying of messages by amateur radio. It is concerned with the advancement of the radio art. It stands for the maintenane of fratormalism and a high standard of comduct. It represents the ambiteur in legislative matters.

One of the lodague's principal purposes is to keep amateur activitics so well eonductod that the amateur will continue to justify his existence. Amateur radio offers its followers countless pleasures and unending satisfaction. It also calls for the shouldering of reaponsibilities - the maintenance of high standards,

The operating room at WiAll.
a mongerative loyalty to the traditions of amateur radio, a dedication to its ideals and principles, so that the isstitution of amateur radio may contimue to operate "in the public interest, convenience and necessity."

The operating territory of ARRILL is divided into one Canadian and fiftern U. S. divisions. The aftaits of the League are managed by a board of Directors. One director is elected (wory two yoars by the membership of each U. S. division, and one by the Canadian membership. These directors then choose the president :und vice-president, who are also menhers of the Board. The secretary and treasurer are also appointed by the Board. The tirectors, as representatives of the amateurs in their divisions, meet annually to examine current amateur problems and formulate ARIRL, policies thereom. The direetors appoint a general manager to supervise the operations of the league and its headguarters, and to carry out the policies and instructions of the Board.

ARIRL owns and publishes the monthly magazine, QST. Acting as a bulletin of the Losague's organized activities, QsT' als, servers as a medium for the exchange of ideas and fosters amateur spirit. Its technical articles are ronowned. It has grown to be the "amateur"s bible," as well as one of the foremost radin magazines in the world. Membership dues include a subscription to QST .

ARRL maintains a model headquarter: amateur station, known as the IViram l'erey Maxim Memorial Station, in Newington, Comm. Its call is W1AW, the call held by Mr. Masim until his death and later transforred to the league station by a special ICC action. separate transmitters of nuximum legal power on each amatcur band have permitted the station to be heard regularly all over the world. More important, W1AW transmits on reqular schedules bulletins of general interest. to :mmeters, conducts code practice as a traning feature, and cngages in 1 wo-way work on all popular bands with ats many amateure as time permits.

It the headquarters of the I.cague in Wost Hartiord. Comn., is a well-oquipped laboratory to assist staff memhors in preparation of techniral material for oss and the Rodio Amateur's IIandbook. Imong its other ac-
tivities, the League maintains a Communications Department concerned with the operating activities of League members. A large field organization is headed by a Section Communications Manager in each of the League's seventy-two sections. There are appoint ments for qualified members as Official Relay Station or Official 'Phone Station for traffic handling; as Official Observer for monitoring frequencies and the quality of signals; as Route Manager and 'Phone detivities Manager for the establishment of trunk lines and networks; as Emergency Coordinator for the promotion of untateur preparedness to cope with matural lisasters; and as Official Experimental Station for those pioneeting the frepuencies above 50 Mc. Mimeographed bulletins keep appointees informed of the latest developments. special activities and contests promote operrating skill. A special section is reserved each month in QST for amateur news from every section of the country.

AMATEUR LICENSING IN THE UNTTED STATES

Pursuant to the law, FCC has issued detailed regulations for the amateur service.

A radio amateur is a duly authorized person interested in radio technique soldy with a perbonal aim and without pecuniary interest. Amateur operator licenses are given to U.S. citibens who pass an examination on operation and apparatus and on the provisions of law and regulations affecting amateurs, and who demonstrate ability to send and receive colle. There are four available classes of amateur license - Novice, Technician, General (called "Conditional" if exam taken by mail), and Amateur Lxtra Class. Each has different requirements, the first two being the simplest and consequently conveying limited privileges as to frequencies available. Examinations for all classes but the Amateur Extra may be taken by mail where the applicant lives further than a specified distance from the examining eenters. Station licenses are granted only to licensed operators and permit communication between such stations for amateur purposes, i.e., for personal noncommereial aims flowing from an interest in radio technique. An amateur station may not be used for material compensation of any sort nor for broadcasting. Narrow bands of frequencies are allocated exclusively for use by amateur stations. Transmissions may be on any frequency within the assigned bands. All the frequencies may be used for c.w. telegraphy and some are available for radiotelephony by any amateur, while others are reserved for radiotelephone use by persons holding higher grades of license. The input to the final stage of amateur stations is limited to 1000 watts and on frequencies below 144 Mc . must be adequatel y filtered direct current. Emissions must be free from spurious radiations. The licensee must provide for measurement of the transmitter frequency and establish a procedure for checking it regularly. A complete log of station oper-
ation must be maintained, with specified data. The station license also authorizes the holder to operate portable and mobile stations subject to further regulations. An amateur station may be operated only by an amateur operator licensee, but any licensed amateur operator may operate any amateur station within the scope of privileges conveyed by the licenses. All radio licensees are subject to penalties for violation of regulations.

Amateur licenses are issued entirely free of charge. They can be issued only to citizens but that is the only limitation, and they are giver without regard to age or physical condition to anyone who successifully completes the examination. When you are able to copy code at the required speed, have studied basic transmitter theory and are familiar with the law and amateur regulations, you are ready to give serious thought to securing the Government a mateur licenses which are issued you, after examination at a local district office or examining points in most of our larger cities, through FCC at Washington. A complete up-to-theminute discussion of license requirements, and study guides for those preparing for the examinations, are to be found in an ARRL publication, The Radio Amateur's License Manual, available from the American Radio Relay League, West Hartford 7, Conn., for 50\&, postpaid.

LEARNING THE CODE

In starting to learn the code, you should consider it simply another means of eonveying
A
B
C
D
E
F
G
H
I
J
K
L
M
1
2
3
4

didah	N dahdit
dahhdididit	O dahdahdah
dahdidahdit	P didahdahdit
dahdidit	Q dahdahdidah
dit	R didahdit
dididahdit	S dididit
dahdahdit	T dah
didididit	U dididah
didit	V didididah
didahdahdah	W didahdah
dahdidah	X dahdididah
didahdidit	Y dahdidahdah
dahdah	Z dahdahdidit
didahdahdahdah	6 dahdidididit
dididahdahdah	7 dahdahdididit
didididahdah	8 dahdahdahdidit
dididididah	9 dahdahdahdahdit
dididididit	0 dah dahdahdahdah

dahdit
dahdahdah
P didahdahdit
dahdahdidah
didahdit
dididit
dah
U dididah
V didididah
W didahdah
X dahdididah
Y dahdidahdah
Z dahdahdidit
6 dahdidididit
7 dahdahdididit
8 dahdahdahdidit
9 dahdahdahdahdit
0 dah dah dahdahdah

Period: didahdidahdidah. Comma: dahdahdididahdah. Question mark: dididahdahdidit. Error: (lidididididididit. Doubledash :dahdidididah. Wait: didahdididit. End of message: didahdidahdit. Invitation to transmit: dahdidah. End of work: didididahdidah. Fraction bar: dahdididahdit.
Fig. 1-I - The Continental (International Morse) code.
information. The spoken word is one method, the printed page another, and typewriting and shorthand are additional examples. Learning the code is as easy - or as difficult - as learning to type.

The important thing in beginning to study code is to think of it as a language of sound, never as combinations of dots and dashes. It is casy to "speak" code equivalents by using "dit" and "dah," so that A would be "didih" (the "t" is dropped in such combinations). The sound "di" should be staccato: a code character such as " 5 " should sound like a mathinegun burst: dididididit! Stress each "leh" equally; they are underlined or italieized in this text beaause they should be slightly accented and drawn out.

Take a few characters at a time. Jarn them thoroughly in didah language before going on to new ones. If someone who is familiar with code can be found to "send" to you, either by whistling or by means of a buzzer or code oscillator, enlist his coöperation. Learn the code by listening to it. Don't think about speed to start; the first reguirement is to learn the characters to the point where you can recognize each of them without hesitation. Concentrate on any difficult hetters. Learning the code is not at all hard; a simple booklet treating the subject in detail is another of the begimer pmblieations available from the League, and is cotitled, Learning the Radiotelegraph Code, $2 \overline{5} \mathrm{c}$ postpaid.

THE AMATEUR BANDS

Amateurs are assigned bands of frequencies at approximate octave intervals throughout the spectrum. Like assignments to all serviees, they are subject to modification to fit the changing pieture of world communications needs. Modifications of rules to provide for domestic needs are also oecasionally issued by FCC and in that respect each amateur should keep himself informed hy WiAW bulletins, QST reports, or by rommunication with ARRL Ilq. concerning a specific point.

In the adjoining talble is a summary of the U. S. amateur bands on which operation is permitted as of our press date. Figures are megacycles. A0 means an unmolulated carvier, Al means c.w. telegraphy, A 2 is tone-modulated $c \cdot w$. telegraphy, A3 is amplitude-modulated 'phone, At is faesimile, A 0 is tolevision, n.f.m. designates narrow-band frequence- or phase-modulated radiotelephony, and f.m. means frequeney modulation, 'phone (including n.f.m.) or telegraphy, FI is frequeney-shift keying.

$\begin{gathered} 80 \\ \text { meters } \end{gathered}$	3.500-4.000	- A1
	3.500-3.800	- Fl
	3.800-4.000	- A3 und n.f.mı.
40 m .	7.000-7.300	- A1
	7.000-7.200	- Fl
	7.200-7.300	- 13 and n.f.m.
20 m.	14.000-14.350	- A1
	14.000-14.200	- F 1
	14.200-14.300	- A3 and n.f.an.
	14.300-14.350	$-\mathrm{Fl}$
1.5 m.	$21.000-21.450$	- A 1
	$21.000-21.250$	- Ft
	$21.250-21.450$	- A3 and n.f.th.
11 ml .	26.060-27.230	- AB, A1, A2, A3, At, f.m.
10 mm	$28.000-29.700$	- 11
	$28.500-29.700$	- Ais and n.f.m.
	$29.000-29.700$	- f.m.
fim,	50-54	- A1, A2, A3, At, n.f.m.
	52.5-54	- f.m.
$\begin{aligned} & 2 \mathrm{ml} \\ & 3 / 4 \mathrm{~m} . \end{aligned}$	144-148	
	220-225	Ab, A1, A2, A3, At. f.m.
	420-4501	A0, A1, A2, A3, A4, A5,
	1,215-1,300 \}	f.i1).
	2,300-2,450	
	3,300-3.500	
	5,650-5,925	A6, A1, A2, A3, A4, A5,
	10,000-10,500	f.m)., pulse
	21,000-22,000	
	11 above 30,000	

${ }^{1}$ Psak antenna power must not exceed io watts.
In addition, 11 and $\mathbf{A 3}$ on portions of $1.801-2.000$, as follows:

		Power (witti)	
Area	Band. kc.	Day	Nijht
Minn., Iowa. Mo., Ark., La. and	1800-1825	500	200
statis east, plus Puerto Rico and	1875-1900		
Virgin Ids.			
N. and S. Dak., Neb., Colo., N.	1900-1925	500**	$200 *$
Mex., and states west, plus Hawaitan Ids.	1975-2000		
Texas, Okla., Kansas	1800-1825	200	75
	1875-1900		

* Exept in state of Washington where daytime power limited to 200 watts and nighttime power to 50 watts.

Novice licensees may use the following frequencies, transmitters to be crustal-eontrolled and have a maximum power input. of 75 watts.

$3.700-3.750$	A1	$21.100-21.250$	A1
$7.17 i-7.200$	A1	$14,-147$	A1. A2,
			A3, f.11.

Terhnician licensees are permitted all amateur privileges in the bands 220 Me . and above.

Electrical Laws and Circuits

- ELECTRIC AND MAGNETIC FIELDS

When something occurs at one point in space bocouse something else happened at another point, with no visible means by which the "cause" ran be related to the "effect," we say the two events are connected by a field. The fields with which we are concerned are the electric and magnetic, and the combination of the two called the electromagnetic fiold.

I field has two important propertics, intensity (magnitude) and direction. The field exerts a force on an object immersed in it: this force represents potential (rady-to-he-used) energy, so the potential of the field is a measure of the field intensity. The direction of the field is the direction in which the ohject on which the force is exerted will tend to move.

An electrically-charged object in an electric fied will be acted on by a foree that will tend to move it in a direction determined by the direction of the field. Similarly, a magnet in a magnetic field will be subject to al foree. Fveryone has seen demonstrations of magnetic fields with poeket magnets, so intensity and direction are not hard to grasp.

A "static" field is one that neither moves nor changes in intensity. wuch a field can be sot up by a stationary electric charge (electrostatic field) or by a stationary magnet (magnetostatic field). But if either an clectric or magnetic field is moving in space or changing in intensity, the motion or change sets up the other kind of field. That is, a changing electric field sets up a magnotic field, and a changing magnetic field genarates an electrio field. This interrelationship between magnetic and electric fields makes possible such things as the electromagnet and the clecta ic motor. It also makes possible the electromagnetic waves by which radio communioation is carried on, for such waves aro simply traveling fields in which the energy is alternately handed back and forth between the electric and maynetie fields.

Lines of Force

Although no one knows what it is that composes the field itself, it is useful to invent a pirture of it that will help in visualizing the forces and the way in which they act.

I field can be pictured as being made up of lines of force, or flux lines. These are purely imaginary threads that show, by the direction in which they lie, the direction the ohject on
which the foree is exerted will move. The number of lines in a chosen cross section of the field is a measure of the intensity of the force. The number of lines per square inch, or per square centimeter, is called the flux density.

- ELECTRICITY AND THE ELECTRIC CURRENT

Jverything physical is built up of atoms, particless so small that they cammot be seen even through the most powerful microseope. But the atom in turn consists of several different kinds of still smaller particles. One is the electron, essentially a small particle of electricity. The quantity or charge of electricity represented by the electron is, in fact, the smallest quantity of elertricity that ran exist. The kind of electricity associatted with the electron is called negative.

In ordinary atom consists of a central core called the nucleus, around which one or more electrons circulate somewhat as the earth and other planets circulate around the sum. The nucleus has an electric charge of the kind of electricity called positive, the amount of its charge being just exartly equal to the sum of the negative charges on all the electrons associated with that nuclens.

The important fact about these two "opposite" kinds of electricity is that they are strongly attracted to each other. Also, there is a strong force of repulsion between two charges of the same kind. The positive nueleus and the negative electrons are attracted to each other, but two electrons will be repelled from each other and so will two nuclei.

While in a normal atom the positive charge on the nueleus is exactly balanced by the nogative charges on the electrons, it is possible for an atom to lose one of its electrons. When that happens the atom has a little less negative change tham it should - that is, it has a net positive charge. Such an atom is said to be ionized, and in this case the atom is a positive ion. If an atom picks up an extra electron, as it sometimes does, it has a net negative charge and is called a negative ion. I positive ion will attract any stray electron in the vicinity, including the extra one that may be attached to a nearby negative ion. In this way it is possible for electrons to travel from atom to atom. The movement of ions or electrons constitutes the electric current.

The amplitude of the current (that is, its intensity or magnitude is determined by the rate at which electric charge - an accumulation of elec-
trons or ions of the same kind - moves past at point in a rireuit. Sime the rharge on a single alecteon or ion is extremely smatl, the number that must move as a group to form even a tiny curent is almost inconcerathly large.

Conductors and Insulators

Atoms of some materials, notably metals and arids, will give up an electrom readily, but atoms of other materials will not part with any of their electrons even when the electric fore is extremely strong. Materials in which electrons or ions (ant tre moved with relative case are called conductors, while those that refuse to permit such movement are called nonconductors or insulators. The following list shows how some common materials divide between the comdactor and insulator classifications:

('ondinclors	Insulutions
Motals	1)ry dir
(arlon	Wexed
Acids	Ioreekain
	'roxtiles
	(ilass:
	Rubher
	Resins

Electromotive Force

The clertric fore or potential (atled electromotive force, and abhreviated e.m.f. that causes current flow may be developed in several ways. The attion of reatain chemical solutionse on dissimilar metals sets up an e.m.f.: such a combination is called a cell, and a group of erells fomms an cecetric battery. The amount of current that such cells coun carry is limited, and in the course of current flow one of the metals is eatell anay. The amount of electrioal energy that ean be taken from a battery romsequently is mather small. Where a large amount of emorgy is needed it is usually furnished by an electric generator, which develops its e.m.f. bey ambination of magnetio and mechamiad means.

In pisturing eurrent flow it is natural to think of a single, constant fore causing the electrons to move. When this is so, the electrons always move in the same direction through a path or circuit made up of eonductors conmected thgether in a continuous chain. Surh a current is called a direct current, abbeviated d.c. It is the trpe of current furnished by batteries and by vertain types of generators. However, it is alsin presible to have an e.m.f. that periodially reverses. With this kind of e.m.f. the current flows first in one direstion through the cireuit and then in the other. Surh an e.m.f. is ralled an alternating e.m.f., and the eurrent is called an alternating current (nbbreviated a.c.). The reversals (alternations) may ocour at any rate from a few per second up to several billion per serond. Two rerersals make a cycle; in one cuole the forer ats first in one direction, then in the other, and then refurns to the first direction. The number of evales in one serombl is called the frequency of the alternating current.

Direct and Alternating Currents

The difference between direct current and alternating current is shown in Fig. 2-1. In these graphs the horizontal axis measures time, inereasing toward the right away from the vertical axis. The vertical axis represents the amplitude on strength of the current, increasing in either the un or down direction away from the horizontal axis. If the graph is above the horizontal axis the eurrent is flowing in one direction through the circuit (indirated by the + sign) and if it is below the horizontal axis the current is flowing ia the reverse direction through the eirenit (indi(ated by the - sign). Fig, $2-1 \mathrm{~A}$ shows that, if we close the cireuit - that is, make the path for the current complete - at the time indicated by \mathfrak{X}, the current instantly takes the amplitude indicated by the height A. Ifter that, the current continues at the same amplitude as time goes on. This is an ordinary direct current.

In Fig. 2-113, the current stirts flowing with the amplitude A at time X, continues at that amplitude until time Y and then instantly ceases. After an interval $\}^{\circ} Z$ the curnent again begins to flow and the same son't of start-and-stop performance is repeated. This is an intermittout direct curvent. We coald get it be alternately closing and opening a switeh in the cireuit. It is a dired curvent bereanse the direction of curment flow dows mot change; the graph is alway's on the + side of the horizontal axis.

In Fig. 2-1 (C the current starts at zero, inreases in amplitude as time goes on until it reaches the amplitude A_{1} while flowing in the + direction, then deroches mutil it drons to zow amplitude once more. It that time (N) the
(A)

(B)

(C)

Fis. 2.1-Ihree types of current how. A - direct rurrint: B - internititent direet current; C - alternating current.

ELECTRICAL LAWS AND CIRCUITS

direction of the current flow reverses; this is indicated by the fact that the next part of the graph is below the axis. As time goes on the amplitude increases, with the current now flowing in the direction, until it reaches :mplitude A_{2}. Then the amplitude decreases until finally it drops to zero (${ }^{\circ}$) and the direction reverses once more. This is an allernuting current.

Waveforms

The type of alternating current shown in Fig. $2-1$ is known as a sine wave. The variations in many a.c. Waves are mot so smooth, nor is one half-cyole necessarily just like the preceding one in shape. However, thesc complex waves cam be shown to be the sum of two or more sine waves of frequencies that are exact integral (whole-mumbey) multiples of some hwer frequency. The lowest frepuency is called the fundamental frogueney, and the higher frequencies (2 times, : times the fundamental frepuchey, and so on) are called harmonics.

Fig. :-2 whow how a fundemental and a secend harmonic (twire the fund:mental) might add to form a complex wave. simply by changing the relative amplitudes of the two waves, ats well as the times at which they pass through zero amplitude, an infinite number of waverh:upes c:un be constructed from just a fundamental and serond harmonic. Waves that are still more complex can be constructed if more harmonies are used.

Electrical Units

The unit of electromotive forer is ralled the volt. An ordinary flawhight cell generates an c.mif. of alout 1.5 volts. The e.m.f. commonly supplied for domestic lighting and power is 115 volts, usually a.c. having a frequency of fol cyeles per second. The voltages used in radio receiving and transmitting circuits range from a few volts (usually a.ce.) for filament heating to as high as a few thousand d.e. volts for the operation of power tubes.

The flow of electrie current is meesured in amperes. One ampere is equivalent to the novement of many billions of clectrons past a paint in the circuit in one second. Currents in the neighborhonal of an ampere are required for heating the filaments of small power tules. The direct currents used in anate eur radio equipment tisually. are not so large, and it is customary to measure such currents in milliamperes. Onc milliampre is "qual to one one-thousiandth of an :mpere, or 1000 milliamperes equals one ampere.

A "d.c. ampere" is a measure of at stem! rent, but the "ale ampere" must measure a current that is continually varying in amplitude and perioclically reversing dircction. To put the two on the same basis, an a.ce ampere is defined as the amount of current that will canse the same heating effect (see later section) as one ampare of steady direct current. For sine-wave a.c., this effective (or r.m.s.) value is equal to the maximum amplitude (A_{1} or A_{2} in Fig . 2-1C) multiplied by 0.707 . The instantaneous value is the value

Fig. 2.2-A complex waveform. A fundamental (top) and second harmonic (center) added together, point by point at each instant, result in the waveform show at the lootom. When the two eomponents have the sante polarity at a selected instant, the resultant is the simple sum of the two. When they have aposite polarities, the resultant is the difference: if the negative-polarity commonnont is larger, the resaltant is negative at that instant.
that the current (or voltage) hats at any selected instint in the cyrle.
If all the instantancons values in a sine wave are averaged over a half-ryele, the resulting figure is the average value. It is equal to $0.0 ; 36$ times the maximum amplitude. The average value is useful in comertion with rectifier systems, as described in a bater chapter.

FREQUENCY AND WAVELENGTH

Frequency Spectrum

Frequencies ranging from about 15 to 15,000 cycles per second are called audio frequencies, because the vibrations of air particles that our ears recognize as sounds oceur at a similar rate. Audio frequencies (abbreviated a.f.) are used to actuate loudspeakers and thus create sound waves.
Frequencies above about 15,000 cycles are ealled radio frequencies (r.f.) because they are useful in radio transmission. Frequencies all the way up to and beyond $10,000,000,000$ eycles have been used for radio purposes. At radio frequencies the numbers become solarge that it lecomes emvenient to use a larger unit than the rycle. Two such units are the kilocycle, which is equal to 1000 cycles and is abbreviated kc., and the megacycle, which is equal to $1,000,000$ cycles or 1000 kilocycles and is abbreciated Mc.

The various radio frequencies are divided off into classifications for ready identification. These classifications, listed below, constitute the frequency spectrum so far as it extends for radio purposes at the present time.

Classification
Very-low freguencies Low freguencies Medium frequencies High frequencies Very-high frequencies L'It rahigh frequencies Superhigh frequencies

Abbreciation v.l.f. 1.f.
m,f.
h.f.
v.h.f.
u.h.f.
s.h.f.

Wavelength

Radio waves travel at the same speed as light - $300,000,000$ moters or about 186,000 miles a second in space. They can be set up by a radiofrequency current flowing in a circuit, because the rapidly-changing current sets up a magnetie field that changes in the same way, and the varying magnetic field in tum sets up a varying electrice field. And whenever this happens, the two fields move outward at the speed of light.
suppose an r.f. current has a frequency of $3,000,000$ (rydes per serond. The fields will go through complete reversals (one cyele) in $1 / 3,000,000$ second. In that same period of time the fields - that is, the wave - will move $300,000,000 / 3,000,000$ meters, or 100 meters. 13y the time the wave has noved that distance
the next eycle has begun and a new wave has started out. The first wave, in other words, covers a distance of 100 meters before the beginning of the next, and so on. This distance is the wavelength.

The longer the time of one cycle - that is, the lower the frequency - the greater the distance occupied by each wave and hence the longer the wavelength. The relationship between wavelength and frequency is shown by the formula

$$
\lambda=\frac{: 300,000}{f}
$$

where $\lambda=$ Wavelength in meters
$f=$ Frequency in kilocyeles
or $\quad \lambda=\frac{300}{f}$
where $\lambda=$ Wavelength in meters $f=$ Frequency in megacycles
Fxample: The wavelength corresponding to a frequeney of 36.50 kilocycles is

$$
\lambda=\frac{300,000}{3650}=82.2 \text { meters }
$$

Resistance

(iiven two conductors of the same size and shape, but of different materials, the amount of current that will flow when a given e.m.f. is applied will be found to vary with what is called the resistance of the material. The lower the resistance, the greater the current for a given value of e.m.f.

Resistance is memsured in ohms. A cireuit has a resistance of one ohm when an applied e.m.f. of one volt causes a current of one ampere to flow. The resistivity of a material is the resistance, in ohms, of :t colse of the matorial measuring one contimeter on enth edge. One of the hest comductors is copper, and it is frequently convenient, in making resistance calculations, to eompare the resistance of the material under consideration with that of a copper conductor of the same size and shape. Table $2-I$ gives the ratio of the resistivity of various conductors to that of copper.

The longer the path through which the current flows the higher the resistance of that conductor. For direct current and lon-frequency altemating

TABLE 2-1
Relative Resistivity of Metals

Material

Aluminum (pure)	1. 11
Brass.	3.5%
Cadmium	5.26
Chromium	1.80
Copper (hard-drawn)	1.12
(iopper (annealed)	100
lron (pure).	5.03
Lead.	11.3
Nickel	8.33
Phosphor Bronze	2.88
Silver.........	0.91
T'in	7.0
/inc.	3.84

currents (up to a few thousand cycles per seeond) the resistance is inversely proportional to the cross-sectional area of the path the current must travel; that is, given two conductors of the same material and having the same length, but differing in ross-sectional area, the one with the larger area will have the lower resistance.

Resistance of Wires

The problem of determining the rexistance of a round wire of given diameter and length - or its opposite, finding a suitable size and lempth of wire to supply a desired amount of resistance can be easily solved with the help of the copperwire table in the Discellaneons Jata chapter. This table gives the resistance, in ohms per thousand feet, of each standard wire size.

> Example: suppose a resistance of 3.5 ohms is needed and some No. 28 wire is on hand. The wire table in the Miscellancous Duta ehapter shows that No. 28 has a resistanee of 66.17 ohms per thousand feet. Nince the desired resistance is 3.5 ohns. the lengt of wire reciuired will be

$$
\frac{3.5}{643.17} \times 1000=5.32 .84 \text { feet. }
$$

Or. suppose that the resistance of the wire in the cirenit must not exeeed 0.05 ohm and that the length of wire repuired for waking the connections totals 14 feet. Then

$$
\frac{14}{1000} \times R=0.05 \mathrm{ohm}
$$

where R is the maximum allowable resistance in ohms per thousand feet. Rearranging the formula gives

$$
R=\frac{0.05 \times 1000}{14}=3.57 \mathrm{ohms} / 1000 \mathrm{ft}
$$

Reference to the wire table shows that No. 15 is the smallest size having a resistance less than this value.

When the wire is not copper, the resistance values given in the wire table should be multi-

Types of resistors used in radionequipe ment. Those in the foreground with wire learls are rarbon ty m's, ramging in size from $1 / 2$ watt at the lift 102 watts at the right. The larger resistors Hise resimtance wire wound on ceramic tulues: sizes shown range from 5 watt. to (0) watts. Thres are the adjustable type, using a sliding contart on an elposed section of the resistance winding.

plied by the ratios given in Table 2-1 to obtain the resistance.

$$
\begin{aligned}
& \text { Examule: If the wire in the first example were } \\
& \text { iron instead of conper the length reguired for } \\
& 3.5 \text { ohms would be } \\
& \frac{3.5}{60.17 \times 5.65} \times 1000=9.35 \text { feet. } \\
& \text { Temperature Effects }
\end{aligned}
$$

The resistance of a conductor changes with its temperature. Although it is seldom necessiry to consider temperature in making resistance calculations for anateur work, it is well to know that the resistance of practically all metallic conductors increases with increasing temperature. Carbon, however, acts in the opposite way; its resistance decrenses when its temperature rises. The temperature effect is important when it is necessary to maintain a constant resistance under all conditions. Special materials that have little or no change in resistance over a wide temperature range are used in that case.

Resistors

A "package" of resistance made up into a single unit is called a resistor. Resistors having the same resistance value may he considerably different in size and construction. The flow of current through resistance causes the conductor to become heated; the higher the resistance and the larger the current, the greater the amount of heat developed. Resistors intended for carrying large currents must be physically large so the heat can be radiated quickly to the surrounding air. If the resistor does not get rid of the heat quirkly it may reach a temperature that will cause it to melt or burn.

Skin Effect

The resistance of a conductor is not the same for alternating current is it is for direct current. When the current is alternating there are internal effects that tend to force the current to flow mostly in the outer parts of the conductor. This decreases the effective cross-nectional area of the conductor, with the result that the resistanne incremsem.

For low audio frequencies the increase in re, sistance is unimportant, but at radio frequencies this skin effect is so great that practically all the current flow is confined within a few thousandths of an inch of the conductor surface. The r.f. resistance is consequently many times the d.c. resistance, and increases with increasing frequency. In the r.f. range a conductor of thin tubing will have just as low resistance as a solid conductor of the same diameter, because material not close to the surface carries practically no current.

Conductance

The reciprocal of resistance (that is, $1 / R$) is called conductance. It is usually represented by the symbol (i. A circuit having large conductance has low resistance, and vice versa. In radio work the term is used chiefly in connection with vacuum-tube characteristics. The unit of conductance is the mho. A resistance of one ohm has a conductance of one mho, a resistance of 1000 ohms has a conductance of 0.001 mho , and so on. A unit frequently used in connection with vacuum tubes is the micromho, or one-millionth of a mho. It is the conductance of a resistance of one megohm.

OHM'S LAW

The simplest form of electric circuit is a battery with a resistance connected to its terminals, as shown by the symbols in Fig. 2-3. A complete circuit must have an unbroken path so current

Fig. 2-3-A simple circuit consisting of a battery and resistor.

can flow out of the battery, through the apparatus connected to it, and back into the battery. The circuit is broken, or open, if a connection is removed at any point. A switch is a device for making and breaking connections and thereby closing or opening the circuit, either allowing turrent to flow or preventing it from flowing.

TABLE 2－II Convorsion Factorn for Fractional and Multiple Units			
To change from	To	Divide h．	Multiply by
Units	Micro－units Milli－units Kilo－units Mega－units	$\begin{gathered} 1000 \\ 1.000 .000 \end{gathered}$	$\begin{gathered} 1,000,000 \\ 10000 \end{gathered}$
Miero－units	Milli－units Init：	$\begin{aligned} & 1000 \\ & 1.000,000 \end{aligned}$	
Milli－units	Micro－nmia Init＊	1060	10010
Kilo－unit，	lnita Mequ－mita	1010	100%
Mera－units	Inits Kilo－nnits．		$\begin{aligned} & 1.000,000 \\ & 10001 \end{aligned}$

The values of current，voltage and resistance in a circuit are by no means independent of earh other．The relationship between them is known as Ohm＇s Law．It can be stated as follows：The current flowing in a circuit is directly propor－ tional to the applied e．m．f．and inversely propor－ tional to the resistance．Expressed as ：un equa－ tion，it is

$$
I \text { (amperes) }=\frac{E(\text { volts })}{R(\text { ohms })}
$$

The equation above gives the value of current when the voltage and resistance are known． It may be transpesed so that each of the three quantities may be found when the other two are known：

$$
E=I R
$$

（that is，the voltage arting is equal to the cur－ rent in amperes multiplied by the resistance in ohms）and

$$
R=\frac{E}{I}
$$

（or，the resistance of the rircuit is equal to the applied voltage divided by the current）．

III three forms of the equation are used almost constantly in radio work．It must be remembered that the quantities are in volls，ohms and amperes； other units cannot be used in the equations without first being converted．For example，if the current is in milliamperes it must be changed to the equivalent fraction of an ampere before the value can be substituted in the equations．
Table 2－II shows how to convert between the various units in common use．The prefixes at－ tarched to the basic－unit name indicate the nature of the unit．These prefixes are：

$$
\begin{aligned}
& \text { micro - one-millionth (abbreviated } \mu \text {) } \\
& \text { milli - one-thousandth (abbreviated } m \text {) } \\
& \text { kilo - one thousand (abbreviated } l \text {) } \\
& \text { mega - one million (abbreviated } M I \text {) }
\end{aligned}
$$

For example，one microvolt is one－millionth of a volt，and one megohm is $1,000,000$ ohms．There are therefore $1,000,000$ microvolts in one volt， and 0.000001 megohm in one ohm．

The following examples illustrate the use of Ohm＇s Law：
The current flowing in a resistance of 20,000 ohms is 150 milliamperes．What is the voltage？ since the voltage in to he found，the equation＂＂ use is $E \Rightarrow I R$ ．The current numst first be con－ verted from milliamperes to amperes，and refer－ ence to the table shows that to do so it is neces－ sary to divide by 1000 ．Therefore，

$$
\boldsymbol{b}^{\prime}=\frac{150}{1000} \times 20,000=3000 \text { volta }
$$

When a voltage of 1 to is applied to a circuit the curment is measured at 2.5 thmeres：What is the resistanef of the eirnuit？In this sease k is the lunknown，so

$$
H=\frac{\dot{B}}{j}=\frac{150}{2.5}=\mathbf{6} 0 \text { ohmes }
$$

No conversion wat necekars In wathe the volt－ age and current were given in volta and ampere⿻⿱一⿱日一丨一力丶丶．

How much rurrent will flow if 9.0 colts is ay－ plied to a 5000 －olm resistor？Since I is unk nown

$$
I=\frac{E}{R}=\frac{250}{5000}=0.05 \text { ambere }
$$

Milliampere units would the more convenient for the current，and 0.0 ）amp．$\times 1000=. \overline{0} 0$ mil－ liamperes．

SERIES AND PARALLEL RESISTANCES

Very few actual clectric eircuits are as simple as the illustration in the preceding section．Com－ monly，resistances are found connected in a
\approx

Fig．2－4－Resis．
tors connected in series and in par－ allel．
\approx

variety of ways．The two fundamental methods of connecting resistances are shown in lig．2－4． In the upper drawing，the current flows from the source of e．m．f．（in the direction shown by the arrow，let us say）down through the first re－ sistance，R_{1} ，then through the second，R_{2} ，and then back to the source．These eesistors are con－ nected in series．The current everywhere in the circuit has the same value．

In the lower drawing the current flows to the common comection point at the top of the two resistors and then divides，one part of it flowing through R_{1} and the other through R_{2} ．At the lower comection point these two currents again combine；the total is the same as the current that flowed into the upper common connection． In this case the two resistors are connected in parallel．

Resistors in Series

When a rireuit has a number of resistances eomsected in series, the total resistance of the circiat is the sum of the individual resistances. If these are numbered R_{1}, R_{2}, R_{3}, etc., then $R_{i} \quad($ total $)=R_{1}+R_{2}+R_{3}+R_{4}+$
where the dots indicate that as many resistors as neressary may be added.
Examble: sunuse that three resistors are
*onnerted to at sourer of a., In, f, as show in in F'ig.

$$
\begin{aligned}
& K_{2} \text { is } 20,0(M) \text { whms, and } K_{i} \text { is } 8000 \text { ohths. The } \\
& \text { total resistathe is them } \\
& h^{2}=h_{1}+h_{2}+K_{3}=30(0)+20,000+8000 \\
& =33,0(0) \text { whms }
\end{aligned}
$$

The crament flowing in the cirmit is then

$$
\left.I=\frac{E}{h}=\frac{2.30}{3 B, 000}=0.0007 .7741+1\right\}=7 . .72 \mathrm{~m}, \mathrm{a}
$$

(We ned mot carry caloulations lieyond three signitiorat figures, and often two will suffice beremuse the atrouracy of meatarements is seldom botter than afew per cent.)

Voltage Drop

Ohm's Law applies to an! part of a cirruit as well as to the whole circuit. Although the rurrent is the same in all three of the rexistaners in the example, the total voltage divides among them. The voltage appeiring abeross each resistor (the voltage drop) can be found from Ohm's I atw.

Exatuple: If the voltage arross Rif (F'ig. 2-5) is called E_{1}, that across K_{2} is called E_{2}, and that arroses H_{3} is called Es, then

$$
\begin{aligned}
& k_{1}=l k_{1}=0.00757 \times 5000=37.9 \text { volts } \\
& k_{2}=l k_{2}=0.00757 \times 20,000=1.51 .4 \text { volts } \\
& k_{3}=l . i_{3}=0.00757 \times 8000=60.6 \text { volts }
\end{aligned}
$$

The applied voltage must enual the sum of the individual voltate drous:

$$
\begin{gathered}
A_{1}=b_{1}+b_{2}+E_{3}=37.9+1.31 .4+60.6 \\
=244.9 \text { volts }
\end{gathered}
$$

I'he answor womld have been mome nearly exart if the curront had been caleulated to more derimat places, but ase explained above a vory high ordev of arcuracy is not neressary.
In problems such as this eonsiderable time and trouble can be saved, when the current is small enough to be expressed in milliamperes, if the

Fis. 2-5 - In example of resintors in suries. The solution of the circuit is worked but in the text.
resistance is expressed in kilohms rather than whms. When resistance in kilohms is substituted direstly in Ohm's Law the current will be in milliampores if the e.m.f. is in volts.

Resistors in Parallel

In a circuit with resistances in parallel, the total resistance is less than that of the lomest value of resistance present. This is because the
total current is always greater than the current in any individual resistor. The formula for finding the total resistance of resistances in parallel is

$$
R=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\frac{1}{R_{4}}+\cdots \cdot}
$$

where the dots again indicate that any number of resistors can be combined by the same method. For only two resistances in parallel (a very common (ase) the formula is

$$
R=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

Example: If a $500 \cdot o h m$ rusistor is paralleled with one of 1200 ohms, the total resistanere is

$$
\begin{aligned}
R=\frac{l_{1} l_{2}}{R_{1}+l_{2}} & =\frac{5(0) \times 1200}{.501)+1200}=\frac{000,600}{1700} \\
& =3.3 .3 \text { ohns }
\end{aligned}
$$

It is prohably easier to solve practical problems by a different methoel than the "reciproral of reciprocals" formula. Suppose the three re-

Fia. 2-6 - In example of resistors in parallel. The solution is worked out in the text.
sistors of the previous example are connected in parallel as shown in Fig. '2-6. The same e.m.f., '200 volts, is applied to all three of the resistors. The current in cach can be found from Ohm's Law is shown below, I_{1} being the current through R_{1}, I_{2} the current through R_{2} and I_{3} the current through R_{3}.

For convenienec. the resistance will be expressed
in kilohms so the rurrent will be in millimmperes.

$$
\begin{aligned}
& I_{1}=\frac{F}{h_{1}}=\frac{2.50}{5}=50 \mathrm{ma} \\
& I_{2}=\frac{F^{\prime}}{R_{2}}=\frac{2.50}{20}=12.5 \mathrm{ma} \\
& I_{3}=\frac{E}{l_{3}}=\frac{0.50}{8}=31.25 \mathrm{ma}
\end{aligned}
$$

The total eurrent is

$$
l=I_{1}+I_{2}+I_{3}=50+12.5+31.25
$$

$$
=93.75 \mathrm{ma}
$$

The total resistance of the circuit is therefore

$$
\mathrm{R}=\frac{E}{I}=\frac{2.50}{93.75}=2.66 \text { kilohms }(=26000 \text { ohms })
$$

Resistors in Series-Parallel

An actual circuit may have resistances both in parallel and in series. To illustrate, we use the same three resistances again, but now connected as in Fig, 2-7. The method of solving such a circuit such as Fig. 2-7 is as follows: Consider R_{2} and R_{3} in parallel as though they formed a single resistor. Find their equivalent resistance. Then this resistance in series with R_{1} forms a simple series circuit, as shown at the right in Fig. 2-7.

Fig. 2.7 - An example of resistors in series-parallel. The solution is worked out in the text.

Example: The first ste, is to find the equivalent resistance of R2 and Ra. From the formula for two resistances in paw: del,

$$
\begin{aligned}
R_{\mathrm{c} 9}= & \frac{R_{2} R_{3}}{R_{2}+R_{3}}=\frac{20 \times 8}{20+8}=\frac{160}{28} \\
& =5.71 \text { kilohms }
\end{aligned}
$$

The total resistance in the circuit is then

$$
\begin{aligned}
\mathrm{I}=R 1 & +R_{\text {rul }}=5+5.71 \text { kilohms } \\
& =10.71 \text { kilohms }
\end{aligned}
$$

The current is

$$
I=\frac{E}{R}=\frac{250}{10.71}=23.4 \mathrm{ma}
$$

The voltage drops across R_{1} and $R_{\text {eq }}$ are
$E_{1}=I R_{1}=23.4 \times 5=117$ volts
$E_{2}=I R_{\text {eqi. }}=23.4 \times 5.71=133$ volts
with sufficient aecurary. These total 250 volts, thus checking the calculations so far, because the sum of the voltage drons must equal the applied voltage. Since E_{2} appears across both R_{2} and R_{3}.

$$
\begin{aligned}
& I_{2}=\frac{E_{2}}{R_{2}}=\frac{133}{20}=6.75 \mathrm{ma} \\
& I_{3}=\frac{E_{2}}{h_{3}}=\frac{133}{8}=16.6 \mathrm{ma}
\end{aligned}
$$

where $I_{2}=$ Current through R_{2}

$$
I_{3}=\text { current through } R_{3}
$$

The total is 23.3 .5 mat, which checks closely enough with 23.4 mib., the current through the whole cirenit.

POWER AND ENERGY

l'ower - the rate of doing work - is equal to voltage multiplied by current. The unit of electrical power, called the watt, is equal to one volt multiplied by one ampere. The equation for power therefore is

$$
I^{\prime}=E I
$$

where $P=$ Power in watts
$E=$ E.m.f. in volts
$I=$ Current in amperes
Common fractional and multiple units for power are the milliwatt, one one-thousandth of a watt, and the kilowatt, or one thousand watts.

Example: The plate voltage on a transmitting vacuum tube is 2000 volts and the phate current is 3.50 milliamperes. (The current must be changed to amperes before substitution in the formula, and so is 0.35 amp.) Then

$$
P=E l=2000 \times 0.35=700 \mathrm{watts}
$$

By substituting the Ohm's Law equivalents for E and I, the following formulas are obtained for power:

$$
\begin{aligned}
& P=\frac{E^{2}}{R} \\
& P=l^{2} R
\end{aligned}
$$

These formulas are useful in power calculations
when the resistance and either the current or voltage (but not both) are known.

Lxample: How much power will be used up in a 4000 -ohn resistor if the voltage applied to it is 200 volts? From the equation

$$
P=\frac{E^{2}}{R}=\frac{(200)^{2}}{4000}=\frac{40,000}{4000}=10 \mathrm{watts}
$$

Or, suppose a current of 20 milliamperes flows through a 300 -ohm resistor. Then

$$
\begin{gathered}
P=I^{2} R=(0.02)^{2} \times 300=0.0004 \times 300 \\
=0.12 \text { watt }
\end{gathered}
$$

Note that the current was changed from milliamperes to amperes before substitution in the formula.

Electrical power in a resistance is turned into heat. The greater the power the more rapidly the heat is generated. Resistors for radio work are made in many sizes, the smallest being rated to "dissipate" (or carry safely) about $1 / 4$ watt. The largest resistors used in amateur equipment will dissipate about 100 watts.

Generalized Definition of Resistance

Electrical power is not always turned into heat. The power used in running a motor, for example, is converted to mechanical motion. The power supplied to a radio transmitter is largely converted into radio waves. l'ower applied to a loudspeaker is changed into sound waves. But in every case of this kind the power is completely "used up" - it cannot be recovered. Also, for proper operation of the device the power must be supplied at a definite ratio of voltage to current. Both these features are characteristics of resistance, so it can be satid that any device that dissi-, pates power has a definite value of "resistance." This concept of resistance as something that absorbs power at a definite voltage/current ratio is very useful, since it permits substituting a simple resistance for the load or power-consuming part of the device receiving power, oft en with considerable simplification of calculations. Of course, every electrical device has some resistance of its own in the more narrow sense, so a part of the power supplied to it is dissipated in that resistance and hence appears as heat even though the major part of the power may be converted to another form.

Efficiency

In devices such as motors and vacuum tubes, the object is to obtain power in some other form than heat. Therefore power used in heating is considered to be a loss, because it is not the useful power. The efficiency of a device is the useful power output (in its converted form) divided by the power input to the device. In a vacuum-tube transmitter, for example, the object is to convert power from a d.c. source into a.c. power at some radio frequency. The ratio of the r.f. power output to the d.c. input is the efficiency of the tube. That is,

$$
E f f .=\frac{P_{0}}{P_{1}}
$$

```
where Eff, = Efficiency (as a decimal)
    P
    P
```

Example: If the d.e, input to the tube is 100 watts and the r.f. power outןut is 60 wates, the efficiency is

$$
E f,=\frac{P_{n}}{P_{\mathrm{i}}}=\frac{60}{100}=0.6
$$

Fifieioncy is ustully expressed as a percentage; that is, it tells what ger cent of the input nower will be avalable as useful output. The efficiency in the ubove example is 60 per cent.

Energy

In residences, the power company's bill is for electric energy, not for power. What you pay for is the work that electricity does for you, not the rate at which that work is done.

Electrical work is equal to power multiplied by time; the common unit is the watt-hour, which means that a power of one watt has been used for one hour. That is,

$$
W=I T
$$

where W = Fnergy in watt-hours
$l^{\prime}=$ Power in watts
$T=$ Time in hours
Other energy units are the kilowatt-hour and the watt-second. These units should be selfexplanatory.

Energy units are seldom used in amateur practice, but it is obvious that a small amount of power used for a long time can eventually result in a "power" bill that is just as large as though a large amount of power had been used for a very short time.

Capacitance and Condensers

Suppose two flat metal phates are placed close to each other (but not tourhing) as shown in Fig. 2-8. Normally, the plates will be electrically "neutral"; that is, no electrical charge will be evident on either plate.

Now suppose that the plates are connected to a battery through a switch, as shown. At the

Fig. 2-8-A simple condenser.
instant the switch is closed, electrons will be attracted from the upper plate to the positive terminal of the battery, and the same number will be repelled into the lower plate from the negative hattery terminal. This electron movement will continue until enough electrons move into one plate and out of the other to make the c.m.f. between them the same as the c.m.f. of the battery.

If the switch is opened after the phates have been chargeal, the top plate is left with a deficiency of electrons and the bottom plate with an excess. In other words, the plates remain charged despite the fact that the battery no longer is connected. However, if a wire is touched between the two plates (short-circuiting them) the excess olectrons on the bottom plate will flow through the wire to the upper plate, thus restoring electrical neutrality to both plates. The plates have then been discharged.

The two plates constitute an electrical capacitor or condenser, and from the discussion above it should be clear that a condenser possesses the property of storing electricity. It should also be clear that during the time the electrons are moving - that is, while the condenser is being charged or discharged - a current is flowing in the circuit even though the circuit is "broken" by the gap between the condenser plates. However, the current flows only during the time of
charge and discharge, and this time is usually very short. There can be no continuous flow of direct current "through" a condenser.

The charge or quantity of electricity that can be placed on a condenser is proportional to the applied voltage and to the capacitance or capacity of the condenser. The larger the plate area and the smaller the spacing between the plates the greater the caparitance. The capacitance also depends upon the kind of insulating material between the plates; it is smallest with air insulation, but substitution of other insulating materials for air may increase the capacitance of a condenser many times. The ratio of the caparitance of a condenser with some material other than air between the plates, to the capacitance of the same condenser with air insulation, is called the specific inductize capacity or dielectric constant of that particular insulating material. The material itself is called a dielectric. The dielectric constants of a number of materials

TABLE 2-III		
Dielectric Constants and	Breakdown	Voltages
Materinl	llelectric Constant	P'uncture Voluge*
Air	1.0	19,8-29,8
Alsimag $\triangle 196$	5.7	$\underline{3} 40$
Bakelite (paper-hase)	3.8-5.5	(60)-750
Bakclite (mica-filled)	56	$4.5-600$
Celluloid	4-16	
Cellulose acetate	6.8	300-1000)
Fibuer	$5-7.5$	150-180
F'orniera	$4.6-1.9$	450
(ilass (window)	7.6-8	200-250
Glase (photographic)	7.5	
(${ }^{\text {ams (Pyrex) }}$	4.3-4.9	335
lacite	2.3-3	480-500
Mica	$2.5-8$	
Mica (clear India)	6.4-7.5	600-1500
Mycalex	7.4	250
Paper	2.0-2.6	1250
Polyethylene	2.3-2.4	1000
Polystyrene	2.4-2.9	500-2500
Porcelain	6.2-7.5	40-100
Rubber (hard)	2-3.5	450
Steatite (low-loss)	4.4	150-315
Wood (dry oak)	2.5-6.8	

commonly used as dielectrics in condensers are given in Table 2-III. If a sheet of photographic glass is substituted for air between the plates of a condenser, for example, the copacitance of the condenser will be increased 7.5 times.

Units

The fundamental unit of capacitance is the farad, but this unit is much too large for practical work. ('apacitance is usually measured in microfarads (abbreviated $\mu \mathrm{fd}$.) or micromicrofarads ($\mu \mu \mathrm{ff}$.). The microfurad is one-millionth

Fig. 2-9 - I multiple-phate condenser. . Iternate plates are connertad together.
of at forad, and the micromierofarad is one-mitlionth of a microfarad. Condensers nearly ahwes have more than two plates, the alternate plates being commerted together to form two sets as shown in Fig. 2-9. 'This makes it possible to attain at fairly large copanitance in a small same as compared with a two-plate condenser, since several plates of smaller individual area com be stacked to form the equivalent of a single large plate of the same total area. Also, all plates, except the two on the ends, are exposed to plates of the other group on both sides, and so we twice as effective in increasing the colphitance.

The formula for calculating the capacitance of a condenser is.

$$
C^{\prime}=0.224 \frac{K .4}{d}(n-1)
$$

where (${ }^{\prime}=($ Capacitance in $\mu \mu \mathrm{fd}$.
$K^{-}=$Dielectric constant of material between plates
$A=$. Wea of one side of one plate in square inches
$d=$ Leparation of plate surfaces in inches
" = Number of plates

If the plates in one group do not have the same area as the plates in the other, use the area of the smaller plates.

$$
\begin{aligned}
& \text { Example: A " variable" condenser has } 7 \text { semi- } \\
& \text { circular plates on its rotor, the diameter of the } \\
& \text { semicircle being } 2 \text { inches. The stator hats } 6 \text { rec- } \\
& \text { tangular plates, with a semieiteular cut-out to } \\
& \text { clear the rotor shaft, but otherwise larke enough } \\
& \text { to face the entire area of a rotor plate. The diam- } \\
& \text { eter of the cut-out is } 1 / 2 \text { inch. The distance be- } \\
& \text { tween the adjacent surfaces of rotor and stator } \\
& \text { plates is } 1 / 8 \text { inch. The dielectric is air. What is the } \\
& \text { capacitance of the condenser with the plates } \\
& \text { fully theshed? } \\
& \text { In this case, the "effective" area is the area } \\
& \text { of the rotor plate minus the area of the ent-out } \\
& \text { in the stator mate. The area of either semicircle } \\
& \text { is } r^{\prime 2} / 2 \text {. where } r \text { is the radius. The area of the } \\
& \text { rotor plate is } \pi / 2 \text {. or } 1.57 \text { spuare inclues (the } \\
& \text { ramlins is } 1 \text { inch). The area of the rat-ont is } \\
& \pi(1 / 4) 2 / 2=\pi / 32=0.10 \mathrm{square} \text { inch. approxi- } \\
& \text { matels: The "effertive" areo is therefore } 1 . .57 \text { - } \\
& 0.10=1.47 \text { sutare inehes. The eapowitance is } \\
& \text { therefore } \\
& C=0.224 \frac{K .1}{d}(11-1)=0.224 \frac{1 \times 1.47}{0.12 .5}(13-1) \\
& =0.22 .4 \times 11.76 \times 12=31.6 \mu \mu \mathrm{fd} . \\
& \text { (The answer is onty approximate, bereallse of the } \\
& \text { diffienty of acenrate memanement. plas a } \\
& \text { "fringing" effect at the edges of the plates that } \\
& \text { makes the aetual eapacitance a little higher.) }
\end{aligned}
$$

The usefulness of a condenser in electrical cireuits lies in the finet that it can be changed with electricity at one time and then discharged at a later time. In other words, it is eapable of storing aleatrical energy that wan be released later when it is needed; it is an "electrical resorvoir."

Condensers in Radio

The types of condensers used in radio work differ consideably in physical size, construction, and caparitance. Some representative types are shown in the photograph. In variable condensers (ahmost always constructed with air for the diebectric) one sot of plates is made movable with respere to the other set so that the capac-itance can be varied. Fixed eondensers - that is, having fixed caparitance - also can be manle with metal phates and with air as the dielectric, but usually

Fixed and variahbe eomensers. The hottom row includea, left to right, a high-woltage mira livel combenver, a tubular efectrolytic, tubular paper, (wo sizes of "pristageontamp" mirato. a small ceramic isme (temperature compensating), an adjustalle emondenser with erramic insulation (for nentralizing in tramemittora), " "Intton" reramia comdenarr, amb ant ad inetabla. "parding" comberner'. F'omer simes of variable romdensers are shown in the second rom. The two. plate comdenser with the misometer anlostment is used int transmitter. The condenser enclosed in the turtal case is a high-voltage paper type used in power-supply filters.
are constructed from plates of metal foil with a thin solid or liquid dielectric sandwiched in between, so that a relatively large capacitance can be secured in a small unit. The solid dielectrics commonly used are mica, paper and special ceramics. An example of a liquid dielectric is mineral oil. The electrolytic condenser uses alumi-num-foil plates with a semiliquid conducting chemical compound between them; the actual dielectric is a very thin film of insulating material that forms on one set of plates through electrorhemical artion when a d.r. voltage is applied to the condenser. The capacitance obtained with a given plate area in an electrolytic condenser is very large, compared with condensers having other dielectrics, berause the film is so extremely thin - much less than any thickness that is practicable with a solid dielectric.

Voltage Breakdown

When a high voltage is applied to the plates of a condenser, a considerable force is exerted on the electrons and nuclei of the dielectric. Berause the dielectric is an insulator the clectrons do not become detached from atoms the way they do in conductors. However, if the force is great enough the dielectric will "break down"; usually it will puncture and may char (if it is solid) and permit current to flow. The breakdown voltage depends upon the kind and thickness of the dielectric, as shown in Table 2-llI. It is not directly proportional to the thickness; that is, doubling the thickness does not quite double the breakdown voltage. If the dielectric is air or any other gas, breakdown is evidenced by a spark or are between the plates, but if the voltage is removed the are ceases and the condenser is ready for use again. Breakdown will occur at a lower voltage between pointed or sharp-edged surfaces than between rounded and polished surfaces; consequently, the breakdown voltage between metal plates of given spacing in air can be increased by buffing the edges of the plates.
since the dielectric must be thick to withstand high voltages, and since the thicker the dielectric the smather the capacitance for a given plate area, a high-voltage condenser must have more plate area than a low-voltage condenser of the same catpuitance. Iligh-voltage high-capacitince condensers are physically large.

- CONDENSERS IN SERIES AND PARALLEL

The terms "parallel" and "series" when used with reference to condensers have the same circuit meaning as with resistances. When a number of condensers are connected in parallel, as in Fig. $2-10$, the total capacitance of the group is equal to the sum of the individual capacitances, so
$C^{\prime}($ total $)=C_{1}+C_{2}+C_{3}+C_{4}+\ldots \ldots \ldots$.
However, if two or more condensers are comnected in series, as in the second drawing,

Fig. 2-10-Condensers in series and paraliel.
\approx
the total caparitance is less than that of the smallest condenser in the group. The rule for finding the eapacitance of a number of seriesconnected condensers is the same as that for finding the resistance of a number of paralletconnected resistors. That is,
$C($ total $)=\frac{1}{\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}+\frac{1}{C_{4}}}+\ldots \ldots \ldots$.
and, for only two condensers in series,

$$
C(\text { total })=\frac{C_{1} C_{2}}{C_{1}+C_{2}^{\prime}}
$$

The same units must be used throughout; that is, all caparitances must be expressed in either $\mu \mathrm{fd}$. or $\mu \mu \mathrm{fd}$.; you cannot use both units in the same equation.

Condensers are connected in parallel to obtain a larger total capacitance than is available in one unit. The largest voltage that can be applied safely to a group of condensers in parallel is the voltage that can be applied safely to the condenser having the lourest voltage rating.

When condensers are comnected in series, the applied voltage is divided up among the various condensers; the situation is much the same as when resistors are in series and there is a voltage drop across each. However, the voltage that appears across each condenser of a group connected in series is in inverse proportion to its capacitance, as compared with the capacitance of the whole group.

[^1]

Fig. 2-11 - An example of condensers connected in series. The solution to this arrangement is worked out in the text.
nected in sories ats shown in l'ig. 2-11. The total capacitance is

$$
\begin{gathered}
C=\frac{1}{\frac{1}{C_{3}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}}=\frac{1}{\frac{1}{1}+\frac{1}{2}+\frac{1}{4}}=\frac{1}{\frac{7}{4}}=\frac{4}{7} \\
=0.571 \mu \mathrm{fd} .
\end{gathered}
$$

The voltage across each condenser is proportional to the fotal eapacitane divided by the eapacitance of the condenser in uusstion, so the voltage across C_{1} is

$$
\begin{aligned}
& \qquad E_{1}=\frac{0.571}{1} \times 2000=1142 \text { volts } \\
& \text { Siuilarly, the voltares abross } C_{2} \text { and } C_{3} \text { are } \\
& E_{2}=\frac{0.571}{2} \times 2000=571 \text { volts }
\end{aligned}
$$

$$
E_{3}=\frac{0.371}{4} \times 2000=280 \text { volts }
$$

totaling approximately 2000 volts, the applied voltage.
Condensers are frequently connerted in seriss to enable the group to withstand a larger voltage (at the expense of decreased total capacitance) than any individual condenser is rated to stand. However, as shown by the previous example, the applied voltage does not divide equally among the condensers (except when all the capacitances are the same) so care must be taken to sec that the voltage rating of no condenser in the group is exreeded.

Inductance

It is possible to show that the flow of current through a conductor is accompanied ber magnetic efferts; a compass needle brought near the conductor, for example, will be deflected from its normal north-south position. The current, in other words, sets up a magnetic field.

If a wire condurtor is formed into a coil, the same current will set up a stronger magnetic field than it will if the wire is straight. Also, if the wire is wound around an iron or steel core the field will be still stronger. The relationship between the strength of the field and the intensity of the current causing it is expressed by the inductance of the conductor or coil. If the same current flows through two coils, for example, and it is found that the magnetic field set up by one coil is twice as strong as that set up by the other, the first coil has twice as much inductance as the seeond. Inductance is a property of the conductor or coil and is determined by its shape and dimensions. The unit of inductance (corresponding to the ohm for resistance and the farad for capacitance) is the henry.

If the current through a conductor or coil is made to vary in intensity, it is found that an e.m.f. will appear across the terminals of the
conductor or coil. This e.m.f. is entirely separate from the e.m.f. that is cansing the current to flow. The strength of this induced e.m.f. becomes greater, the greater the intensity of the magnetic field and the more rapidly the current (and hence the field) is made to vary: Since the intensity of the magnetic field depends upon the inductance, the induced voltage (for a given current intensity and rate of variation) is proportional to the inductance of the conductor or coil.

The induced e.m.f. (sometimes called back e.m.f.) tends to send a current through the circuit in the apmesite direction to the current that flows because of the external e.m.f. so long as the latter current is increasing. However, if the current caused by the applied e.m.f. decreases, the indured e.m.f. tends to send current through the circuit in the same direction as the current from the applied e.m.f. The effect of inductance, therefore, is to oppose any change in the current flowing in the circuit, regardless of the nature of the change. It accomplishes this by storing energy in its magnetic field when the current in the circuit is being increased, and by releasing the stored energy when the current is being decreased.

Inductance eoils for power and radio frequencies. The two iron-core coils at the upper left are "chokes" for power-supply filters. "The three "pie". wound coils at the lower right are used as chokes in radio-frequency circuits. The other coils are for r.f. tuned cireuits ranging in power from 2.3 watts to a hilowatt.

The values of inductance used in radio equipment vary over a wide range. Inductance of several henrys is required in power-supply circuits (see chapter on Power Supplies) and to obtain such values of inductance it is necessary to use coils of many turns wound on iron cores. In radio-frequency circuits, the inductance values used will be measured in millihenrys (a millihenry is one one-thousandth of a henry) at low frequencies, and in microhenrys (one one-millionth of a henry) at medium frequencies and higher. Although coils for radio frequencies may be wound on special iron cores (ordinary iron is not suitable) most r.f. coils made and used by amateurs are the "air-core" type; that is, wound on an insulating form consisting of nonmagnetic material.

Inductance Formula

The inductance of air-core coils may be calculated from the formula

$$
L(\mu \mathrm{~h} .)=\frac{0.2 a^{2} n^{2}}{3 a+9 b+10 c}
$$

where $L_{S}=$ Inductance in microhenrys
$a=$ Average diameter of coil in inches
$b=$ Iength of winding in inches
$c=$ Radial depth of winding in inches
$n=$ Number of turns
The notation is explained in Fig. 2-12. The quantity 10 c may be neglected if the coil only has one layer of wire.

Example: Assume a coil having 35 turns of No. 30 d.s.c. wire on a form 1.5 inches in diameter. Consulting the wire table (Miscellaneous 1)ata chapter), 35 turns of No. 30 d.s.c. will oreupy 0.5 inch. Therefore, $a=1.5, b=0.5$. $n=3 \overline{3}$, and

$$
L=\frac{0.2 \times(1.5)^{2} \times(3.5)^{2}}{(3 \times 1.5)+(9 \times 0.5)}=61.25 \mu \mathrm{~h}
$$

To calculate the number of turns of a singlelayer coil for a required value of inductance:

$$
N=\sqrt{\frac{3 a+9 b}{0.2 a^{2}} \times L}
$$

bxample: Suppose an inductance of 10 microhernts: is refuired. The form on which the coil is to be wound has a diameter of one inch and is long enough to arcommodate a coil length of $11 / 4$ inches. Then $a=1, b=1.25$, and $L=10$. sulstituting.

$$
\begin{aligned}
N & =\sqrt{\frac{(3 \times 1)+(9 \times 1.25)}{0.2 \times 12} \times 10} \\
& =\sqrt{\frac{14.25}{0.2} \times 10}=\sqrt{712.5} \\
& =26.6 \text { turns. }
\end{aligned}
$$

I 27-turn coil would be close enough to the reyuired value of induetanee, in practical work.

Fig. 2-12-Coil dimensions used in the inductance formula.

Since the coil will be 1.25 inches lond, the number of turns per ineh will be $27 / 1.25=21.6$. Consulting the wire tablc, we find that No. 18 enameled wire (or any smaller size) can be used. We obtain the proper inductance by winding the required number of turns on the form and then adjusting the spacing between the turns to make a uniformly-spaced coil 1.25 inches long.
Every conductor has inductance, even though the conductor is not formed into a coil. The inductance of a short length of straight wire is small - but it may not be negligible, because if the current through it changes its intensity rapidly enough the induced voltage may be appreciable. This will be the case in even a few inches of wire when an alternating current having a frequency of the order of 100 Mc . is flowing. However, at much lower frequencies the inductance of the same wire could be left out of any calculations because the induced voltage would be negligibly small.

IRON-CORE COILS

Permeability

Suppose that the coil in Fig. 2-13 is wound on an iron core having a cross-sectional area of 2 square inches. When a certain current is sent through the coil it is found that there are 80,000 lines of force in the core. Since the area is 2

Fig. 2-1.3-Typical construction of an ironocore coil. "Ihe small air gapprevents magnetic saturation of the iron and increases the inductance at high currents.
square inches, the flux density is 40,000 lines per square inch. Now suppose that the iron core is removed and the same current is maintained in the coil, and that the flux density without the iron core is found to be 50 lines per square inch. The ratio of the flux density with the given core material to the flux density (with the same coil and same current) with an air core is called the permeability of the material. In this case the permeability of the iron is $40,000 / 50=800$. The inductance of the coil is increased 800 times by inserting the iron core, therefore.

The permeability of a magnetic material varies with the flux density. At low flux densities (or with an air core) increasing the current through the coil will cause a proportionate increase in flux, but at very high flux densities, increasing the current may cause no appreciable rhange in the flux. When this is so, the iron is said to be saturated. "Saturation" causes a rapid decrease in permeability, because it decreases the ratio of flux lines to those obtainable with the same current and an air core. Obviously, the inductance of an iron-core coil is highly dependent upon the current flowing in the coil. In an air-core
coil, the inductance is independent of curent berause air does not "saturate."

In amateur work, iron-rore eobils such as the one sketched in Fig. ㄹ-13 are used chicofly in power-supply equipmont. They usually have direct eurront flowing through the winding, and the variation in inductance with current is usually undesirable. It maty be overcome by kocping the flux density below the satuation point of the irom. This is done by cutting the core so that there is amall "air gap," as indicated by the dashed lines. The magnetid "resistance" introduced by such ag gatp is so latere - even though the gap, is only a small fraction of an ineth - compared with that of the iron that the gap, rather than the iron, controk the flux density: This naturally reduces the indurtance compared to what it would be without the air gap - but 1 he inductance is practically. constant regardless of the value of the curvent.

Eddy Currents and Hysteresis

When alternatng curnent flows through it eoil wound on an iron core an c.m.f. Will be indued, wis previousliy explained, and since iron is a conductor a curvent will flow in the core. surh rurrent: (called eddy currents) represent a waste of power because they flow through the resistance of thr iron and thas camse heating. Diddycurrent losses can be reduced by laminating the core: that is, by cutting it into thin strips. These strips or laminations must be insulated from ewh other loy painting them with some insulating material such as varnish or shellam.

There is also another type of energy loss in an ifon core: the iron tends to resist any change in its magnetic state, so a rapidly-rhanging emrent such as ace is toreod contimuatly to supply energy to the iron to overome this "inertia." Lasses of this sort are called hysteresis Ioseses.

Wddy-rurrent and hysteresis losses in irm increase rapidly as the frequenery of the alternating current is increased. For this retwon, we can use ordinary iron cores only at power and
 biven so, a very good grade or iron or stem is necessany if the cure is to protiom well at the higher atulio frequencies. Imon anes of this type are completely uscless at radio fropucncies.

For radio-frequeney work, the foses in iron cores can be reduced to a satisfactory figure by grinding the iron into a powder and then mixing it with a "binder" of insabating material in such a way that the individual iron particles are insulated from each other. By this means cores can be made that will function satisfuctorily even through the v.h.f. range - that is, at frequencies up to perhaps 100 Ne. Hecause a large part of the magnetic path is through a nonmagnetic material, the permeability of the iron is low compared mith the values obtained at power-supply frequencies. The core is usually in the form of a "slug" or revinder which fits inside the insulating form on which the eoil is wound. Despite the fact that, with this construe-
tiom, the major portion of the magnetic path for the flux is in the air surounding the woit, the slug is quite affective in increasing the eovil inductance. By poshing the shy in and out of the roil the inductance can be varied over a "onsiterable range.

- INDUCTANCES IN SERIES AND PARALLEL

When two or more inductance coils (or inductors, as they are frequently called) are connerted in series (Fig. 2-14, left) the total indue-

tance is equal to the sum of the individuad indurtances, provided the coils are sufficionll!, sepurated so that mo cril is in the mumnetic firld of unnther. That is,

$$
I_{\text {outal }}=I_{1}+I_{2}+I_{03}+I_{4}+\ldots \ldots \ldots
$$

If inductames are commeded in parallel (lig. ?-11, right $\}$, the totil inductance is
and for two inductancer in paralled,

$$
L=\frac{L_{1} L_{2}}{L_{1}+L_{2}}
$$

Thus the rules for combining inductances in serion and parallel are the same as for resistances, if the coils are far onough apart su that auch is unafferted by amother's magnetic fiold. When this is not so the formulas given above (ammot lie used.

- MUTUAL INDUCTANCE

If two coiks are arranged with their axes on the same line, as shown in Fig. -1 - , a $^{\text {a }}$, ourent sent through Coil 1 will canse at magnetio fiedd which "ruts" (coil 2. Consequently, an e.m.f. will be induced in Coil 2 whenever the field strength is changing. This induced e.m.f. is similar to the e.m.if. of self-induction, but since it appears in the second coil because of current flowing in the first, it is a "mutual" effect and results from the mutual inductance between the two coils.

If all the flux set up of one coil cuts all the turns of the other coil the mutual inductanee has its maximum possible value. If only a small part

Fig. 2-15 - Muntal inductance, When the switeh, S, is rlosed eurrent flows through exil Vo. l. setting up a magnetie field that induees an e.m.f. in the turns of coil No. 2.
of the flux set up by one coil cuts the turns of the other the mutual inductane is relatively small. Two coils having mutual inductane are said to be coupled.

The ratio of actual mutual inductance to the maximum possible value that could theoretically lre ohtained with two given coils is ealled the coefficient of coupling between the eoils. Coils that have nearly the maximum possible mutual inductance are said to be closely, or tightly, coupled, but if the mutual inductance is relatively small the coils are said to be loosely coupled. The degree of eoupling depends upon the physiral spacing between the coils and how they are placed with respect to each other. Maximum coupling exists when they have a common axis and are as close together as possible (one wound over the other). The coupling is least when the coils are far apart or are paced so their axes are at right angles.

The maximum possible eoefficient of coupling is closely appoached only when the two roils are wound on a dosed iron eore. The roefficient with ar-are roils may run as high as 0.6 or 0.7 if one coil is wound over the other, but will be much less if the two coils are separated.

Time Constant

Capacitance and Resistance

In lig. 2-16. a hattery having an e.m.f., E, a switch, S, a resistor, R, and condenser, ${ }^{\prime}$, are connerted in series. suppose for the moment that R is short-circuited and that there is no other resistence in the cireuit. If s is now chosed, condenser (' will charge instandly to the battery voltare; that is, the electroms that constitute the charge redistribute thenselves in a time interial so small that it call be comsidered to be zero. For just this instiant, therefore, a very large current flows in the circuit, because all the elertricity needed to charge the condensor has moved from the battery to the condenser at an extremely high rate.
When the resistance R is put into the circuit the condenser wo longer can be charged instantaneously. If the battery e.m.f. is 100 volts, for example, and R is 10 ohms, the maximum current that can flow is 10 amperes, and even this much cun flow only at the instant the switch is closed. But as som as atiy current flows, romdenser ('begins to acquire a charge, which means that the voltage between the condenser plates rises. Since the upper plate (in lig. 2-16.1) will be positive and the lower negative, the voltage on the eondenser tries to send a current through the arenit in the opposite direction to the current from the battery. Immediately atter the switch is closed, therefore, the current drops below its

Fif. 2-I6 - Sehematics illaserating the time constant of an KC : circuit.
initial Ohm's Law value, and as the condenser continues to aconire charge and its potential or e.m.f. rises. the current becomes smatler and smaller.

The length of time required to eomplete the charging process depends upon the capacitance of the condenser and the resistance in the rircuit. Theoretically, the charging process is never really linished, but eventually the current dreps to a value that is smaller than anything that gan be meisured. The time constant of such a cireuit is the length of time, in seconds, required for the voltage across the condenser to roach 63 pre rent of the applied o.m.f. (this figure is chosen for mathematical reasons). The voltage across the condenser rises logarithmically, as shown by lig. 2-17.

The formula for time constant is

$$
T=C R
$$

where ${ }^{\prime}$ ' = 'Time eonstint in seeonds
$C^{\prime}=($ apmatitance in farads
$R=$ Resistance in ohms
If C is in microfarads and R in megohms, the time constint also is in seconds. These units usually are more convenient.

$$
\begin{aligned}
& \text { Example: The time constant of a } 2-\mu \mathrm{fd} \text {, con- } \\
& \text { denser and a } 250.000 \text {-ohm resistor is } \\
& \qquad T=C R=2 \times 0.25=0.5 \text { sccond } \\
& \text { If the applied c.m.f. is } 1000 \text { volts, the voltage } \\
& \text { across the condenser plates will be } 630 \text { volts at } \\
& \text { the end of } 1 / 2 \text { second. }
\end{aligned}
$$

If a eharged condenser is discharged through a resistor, as indicated in Fig. 2-16B, the same time constant applies. If there were no resistance, the condenser would discharge instantly when S was elosed. However, since R limits the current flow the condenser voltage cannot instantly go to zero, but it will decrease just as rapidly as

Fig. 2-17 - Ulow the voltare across a condenser rises, with time, when a condenser is charged throngh a re sistor. 'The' lower eurve shows the way in which the voltage decreases across the condenser terminals on discharging through the same resistor.
the condenser can rid itself of its charge through R. When the condenser is discharging through a resistance, the time constant (calculated in the same way as above) is the time, in seconds, that it takes for the condenser to lose $6: 3$ per cent of its voltage; that is, for the voltage to drop to 37 per cent of its initial value.

Fxample: If the condenser of the example above is charged to low volts, it will discharge to 370 volts in $1 / 2$ second through the $250,000-$ ohm resistor.

Inductance and Resistance

A comparable situation exists when resistance and inductance are in series. In lig. 2-18, first consider L to have no resistance and also assume that R is zero. Then closing s would tend to send a eurrent through the circuit. However, the instantaneous transition from no current to a finite value, however small, represents a very rapid change in current, and a back e.m.f. is developed by the self-inductance of L that is practically equal and opposite to the applied c.m.f. The result is that the initial current is very small.

The back e.m.f. depends upon the change in current and would rease to offer opposition if the current did not continue to increase. With no resistance in the circuit (which would lead to an infinitely-large curront, by Ohm's Law) the current would increase forever, always growing just fast enough to keep the e.m.f. of self-induction equal to the applied e.m.f.

When resistance is in series, Ohm's Law sets a limit to the value that the current can reach. In such a circuit the current is small at first, just as in the case without resistance. But as
the current increases the voltage drop across R becomes larger. The back e.m.f. generated in L has only to equal the difference between E and the drop across R, because that difference is the voltage actually applied to L. This difference becomes smaller as the current approaches the final Ohm's Law value. Theoretically, the back e.m.f. never quite disappears (that is, the current never quite reaches the Ohm's Law value) but practically it becomes unmeasurable after a time. The difference between the artual current and the Ohm's Law value also becomes undetectable. The time constant of an inductive rircuit is the time in seconds required for the current to reach $6: 3$ per cent of its final value. The formula is

$$
T=\frac{L_{2}}{R}
$$

where $T=$ Time constant in seconds
$L=$ Inductance in henrys
$R=$ Resistance in ohms
The resistance of the wire in a coil acts as though it were in series with the inductance.

Example: A coil having an inductance of 20 henrys and a resistance of 100 ohms has a time constant of

$$
T=\frac{L}{R}=\frac{20}{100}=0.2 \text { second }
$$

if there is no other resistance in the circuit. If a d.e. e.m.f. of 10 volts is apmlied to such a coil, the final current, by Ohm's Law, is

$$
I=\frac{E}{I}=\frac{10}{100}=0.1 \text { amp. or } 100 \mathrm{ma} .
$$

The current womld rise from zaro to 6.3 millianperes in 0.2 secomd after clusing the switeh.

In inductor camot be discharged in the same way as a condenser, because the magnetic field disappears as soon as current flow ceases. Opening is does not loave the inductor

Fig. 2-18 - 'I'ine constant of an $L R$ circuit.
"charged." The energy stored in the magnetic field instantly returns to the rireuit whon s is opened. The rapid disappoanance of the field causes a very large voltage to be induced in the roil - ordinarily many times larger than the voltage applied, because the induced voltage is proportional to the specel with which the field changes. The eommon result of opening the switeh in a circuit such as the one shown is that a spark or are forms at the switch contacts at the instant of opening. If the inductance is large and the current in the circuit is high, a great deal of energy is released in a very short period of time.

It is not at all unusual for the switch eontacts to burn or melt under such circumstances.

Tine constants play an important part in numbrous devices, such as electronic keys, timing
and control circuits, and shaping of keying characteristics by vacuum tubes. The time constants of circuits are also important in such applications as automatic gain control and noise limiters.

Alternating Currents

PHASE

The term phase essentially means "time," or the lime interval between the instant when one thing occurs and the instant when a second related thing takes place. When a baseball piteher throws the ball to the catcher there is a definite interval, represented by the time of flight of the ball, between the act of throwing and the act of catching. The throwing and catching are "out of phase" because they do not occur at exactly the same time.

Fig. 2-19 - An a.c. cyele is divided off into 360 degrees that are used as a measure of time or phase.

Simply saying that two events are out of phase does not tell us which one orcurred first. To give this information, the later event is said to lag the carlier, while the one that occurs first is said to lead. Thus, throwing the ball "leads" the eatch, or the catch "lags" the throw.

In a.c. circuits the current amplitude changes continuously, so the concept of phase or time becomes important. l'hase can be measured in the ordinary time units, such as the second, but there is a more convenient method: Since each a.c. cycle occupies exactly the same amount of time as every other cycle of the same frequency, we can use the cycle itself as the time unit. l'sing the cycle as the time unit makes the sperification or measurement of phase independent of the frequency of the current, so long as only one frequency is under consideration at a time. If there are two or more frequencies, the measurement of phase has to be modified just as the measurements of two lengths must be reconciled if one is given in feet and the other in meters.

The time interval or "phase difference" under consideration usually will be less than one cycle. Phase difference could be measured in derimal parts of a cycle, but it is more convenient to divide the cycle into 360 parts or degrees. A phase degree is therefore $1 / 360$ of a cycle. The reason for this choice is that with sine-wave alternating current the value of the current at any instant is proportional to the sine of the angle that corresponds to the number of degrees - that is, length
of time - from the instant the cycle began. There is no actual "angle" associated with an alternating current. Fig. 2-19 should help make this method of measurement clear.

Measuring Phase

To compare the phase of two currents of the same frequency, we measure between eorresponding parts of cycles of the two currents. This is shown in IFig. 2-20. The current labeled A leads the one marked B by 45 degrees, since A 's cycles begin 45^{5} degrees sooner in time. It is equally correct to say that B lugs A by 45 degrees.

Two important special cases are shown in Fig. 2-21. In the upper drawing B lags 90 degrees behind A; that is, its cycle begins just omequarter cycle later than that of A. When one wave is passing through zero, the other is just at its maximun point.

In the lower drawing A and B are 180 degrees out of phase. In this case it does not matter which one is to lead or lag. B is always positive while A is negative, and vice versa. The two waves are thus completely out of phase.

The waves shown in IFigs. 2-20 and 2-21 could represent current, voltage, or both. A and B might be two currents in separate circuits, or A might represent voltage while B represented current in the same circuit. If A and B represent two currents in the same circuit (or two voltages in the same circuit) the total or resultant current (or voltage) also is a sine wave, because adding any number of sine waves of the same frequency always gives a sine wave also of the same frequency.

Phase in Resistive Circuits

When an alternating voltage is applied to a resistance, the current flows exactly in step with the voltage. In other words, the voltage and current are in phase. This is true at any frequency if the resistance is "pure" - that is, is free from the reactive effects discussed in the next section. Practically, it is often diflicult to obtain a purely

Fig. 2-20 - When two waves of the same frequency start their cycles at slightly different times, the time difference or phase difference is measured in degrees. In this drawing wave B starts 45 degrecs (one-eighth eycle) later than wave A, and so lags 45 degrees behind A.

Fig. 2.21 - Two important special rases of phase diffarence. In the upper drawing, the phase difforeme be twenn A and B is 90 degrees; in the lower drawing the ohase difforence is $\mathbf{I 8 0}$ degrees.
resistive cireuit at radio frequencies, because the eartive offects become more pronouncel as the frequency is increased.

In a purely resistive circuit, or for purely resistive parts of circuits, Ohm's Law is just as valid for a.e. of any frequeney as it is for d.e.

REACTANCE

Alternating Current in Condensers

Suppose a sine-wave a.c. voltage is applied to at condenser in a circuit eontaining no resistance, as indieated in Fig. 2-22. In the period (0.1, the applied voltage increases from zero to 38 volts; at the end of this period the condenser is rharged to that voltage. In interval $A B$ the voltage increases to 71 volts; that is, 333 volts additional. In this interval a smaller quantity of charge has been added tham in OA, because the voltage rise during interval $A B$ is smaller. Consequently the average curvent during $A B$ is smaller than during $O . A$. In the third interval, $B C$, the voltage rises from 71 to 92 volts, an increase of 21 volts. This is less than the voltage increase churing $A B$, so the quantity of electricity added is lews; in other words, the average current during interval $B C$ is still smaller. In the fourth interval, (1), the voltage inereases only 8 volts; the charge added is smaller than in any preceding interval and therefore the current also is smaller.

Thus as the instantaneous value of the applied voltage increases the current decreases.
l3y dividing the first quarter cyele into a very large number of intervals it eould be shown that the current charging the condenser has the shape of a sine wave, just as the applied voltage does. The current is largest at the beginning of the ryele and becomes zero at the maximum value of the voltage (the condenser cannot be charged to a higher voltage than the maximum applied, so no further current can flow) so there is a phase difference of 90 degrees between the voltage and current. During the first quarter cycle of the applied voltage the current is flowing in the nor-
mal waty through the cirenit, since the condenser is teing charged. Hence the current is positive during this first quarter cycle, as indicated by the dashed line in Fig. 2-22.

In the second quarter cycle - that is, in the time from I to H, the voltage applied to the eondenser decreases. During this time the condenser loses the charge it acquired during the first quarter cyrle. Applying the same reasoning, it is plain that the current is small in interval $I D E$ and continues to increase churg earh succeeding interval. However, the current is flowing aguinst the applied voltage because the condenser is discharging $i n t o$ the circuit. Hence the eurrent is negutive during this quarter cole.

The third and fourth quarter eycles repeat the events of the first and second, respectively, with this differener - the polarity of the applied voltage has reversed, and the curent whanges to correspond. In other words, an allermating surrem tlows "through" a condenser when an a.c. miltage is applical to it. (Actually, current never flows "through" a eondenser. It flows in the associated circuit because of the alternate charging and discharging of the capacitance.) As shown by Fig. 2-22, the current starts its cycle 90 dogrees before the voltage, so the current in a condenser leads the appliad valtuge i, 90 degroses.

Capacitive Reactance

The imount of charge that is alternatey stored in and released from the condenser is proportional to the applied voltage and the eapacitanes. Consequently, the current in the circuit will be proportional to both these quantities, since current is simply the rate at which charge is noved. The current also will be proportional to the frequency

Hig. 2-22 - Voltage and current phase relationships when an alternating voltage is applied to a condenser.
of the a.c. voltage, because the same charge is being moved back and forth at a rate that is proportional to the number of cyoles per second.

The fact that the current is proportional to the applied voltage is important, because it is the same thing that Ohm's Law says about current flow in a resistive circuit. That being the case, there must be something in the condenser that corresponds in a general way to resistance something that tends to limit the current that ean flow when a given voltage is applied. The "something" clearly must inelude the effect of eapaci-

ELECTRICAL LAWS AND CIRCUITS

tance and frequency, since these also affert the amount of current that flows. It is called reactance, and its relationship to capacitance and freguency is given by the formula

$$
X_{t}=\frac{1}{2 \pi f t}
$$

where $X_{C}=$ Condenser reactance in ohms $f=$ Frequency in cyoles per second
$C^{*}=$ ('apacitance in farads
$\pi=3.14$
Reartance and resistance are not the same thing, but because they have a similar currentlimiting effect the same unit, the ohm, is used for both. Thlike resistance, reactance docs not consume or dissipate jower. The energy stored in the condenser in one quarter of the crele is simply returned to the circuit in the next.
The fundamental units (oycles per second, farads) are too large for practical use in radio circuits. However, if the rapacitance is in mirofarads and the frequency is in mogacyeles, the reartance will come out in ohms in the formula.

Exaturle: The reactance of a condenser of $\mathbf{4 7 0}$ $\mu \mu \mathrm{f}$. ($0.000047 \mu \mathrm{fd}$) at a frequency of 7150 kc . (7.15 Me .) is

$$
X=\frac{1}{2 \pi f C}=\frac{1}{6.28 \times 7.15 \times 0.00047}=47.4 \mathrm{ohms}
$$

Inductive Reactance

When an alternating voltage is applied to a circuit containing only inductance, with no resistance, the current always changes just rapidly enough to induce a back e.m.f. that coguals and opposes the applied voltage. In Fig. $2-23$, the eycle is again divided off into equal intervals. Assuming that the current hats a maximum value of 1 ampere, the instantancous current at the end of each interval will be as shown. The value of the indured voltage is proportional to the rate at which the current chanues. It is therefore greatest in the intervals 0.1 and $G I I$ and least in the intervals (O) and IVE. The induced voltage actually is a sine wave (if the eurrent is a sine wave) as shown by the dashed curve. The applied voltage, berause it is always equal to and opposed by the induced voltage, is equal to and 180 degrees out of phase with the induced voltage, as shown by the second dashed curve. The result, thercfore, is that the current flowing in an inductance is 90 degrees out of phase with the applied voltage, and lags behind the applied voltage. This is just the opposite of the condenser case.

Since the value of the induced e.m.f. is proportional to the rate at which the current changes, a small current changing rapidly (that is, at a high frequency) can generate a large back e.m.f. in a given inductance just as well as a large current changing slowly (low frequency). (onsequently, the current that flows through a given inductance will decrease as the frequency is raised, if the applied e.m.f. is held constant. Also,
when the applied voltage and frequency are fixed, the value of current required becomes less as the inductance is made larger, because the induced e.m.f. also is proportional to indurtance.

When the frequency and inductance are constant but the applied e.m.f. is varied, the necossary rate of current change (t o induce the proper bark e.m.f.) (an be oltained only if the amplitude of the current is directly proportional to the voltage. This is Ohm's Law again, and again the current-limiting effert is similar to, but not identical with, the effect of resistance. It is called inductive reactance and, like capacitive reactance, is measured in ohms. There is no energy loss in inductive reartance; the energy is stored in the magnetic field in one quarter cycle and then returned to the circuit in the next.

The formula for indurtive reactance is

$$
X_{\mathrm{L}}=2 \pi f L
$$

where $X_{L}=$ Inductive reartance in ohms

$$
\begin{aligned}
& \int=\text { Frequency in cycles per second } \\
& l=\text { Inductance in henrys } \\
& \pi=3.14
\end{aligned}
$$

Example: The reactance of a coil having an inductance of 8 henry's, at a frequency of 120 cycles, is
$X_{L}=2_{\pi} f L=6.28 \times 120 \times 8=6029$ ohms
In radio-frequency eircuits the inductance values usually are small and the frequencies are large. If the inductance is expressed in millihenrys and the frequency in kilocycles, the conversion factors for the two units cancel, and the formula for reactance may be used without first

Fig. 2.2.3-Phase relationships between voltage and current when an alternating voltage is applied to an inductance.
converting to fundamental units. Similarly, no conversion is necessary if the inductance is in microhenrys and the frequency is in megacycles.

$$
\begin{aligned}
& \text { Example: The reactance of a } 15 \text {-microhenry } \\
& \text { coil at a frequency of } 14 \mathrm{Mc} \text {. is } \\
& X_{L}=2 \pi f L=6.28 \times 14 \times 15=1319 \mathrm{ohms}
\end{aligned}
$$

The resistance of the wire of which the coil is wound has no effect on the reactance, but simply acts as though it were a separate resistor conneeted in series with the coil.

Ohm's Law for Reactance

Ohm's Law for an a.e. cireuit containing only reactance is

$$
\begin{aligned}
I & =\frac{E}{\mathrm{~N}} \\
E & =I X \\
X & =\frac{E}{I}
\end{aligned}
$$

where $E=$ li.m.f. in volts
$I=$ Current in amperes

$$
X=\text { Reactance in ohms }
$$

The reartance may be either inductive or caperitive.

Example: If a current of 2 amberes is flowing thirongh the comdenser of the previous example (reactance $=47.4$ ohms $)$ at 71.50 kc ., the volt age drop ateross the condenser is

$$
E=I X=2 \times 47.4=14.8 \text { volts }
$$

If 100 volte at 120 cycless is amplied to the 8 henry inductance of the previons example, the eurrent throngh the coil will be

$$
I=\frac{E^{\prime}}{N^{\prime}}=\frac{400}{6024}=0.0463 \mathrm{amp}(666.3 \mathrm{ma})
$$

When the cirmuit consists of an inductance in series with a eaparitance, the same furrent flows through both reartances. However, the voltage across the coil leads the current by 90 degrees, and the voltage across the condenser lays behind the current by 90 degreas. The coil and condenser voltages therefore are 180 degrees out of phase.

A simple eirenit of this type is shown in lig. 2-2.4. The same figure also shows the current (hoavy line) and the voltage drops across the inductance $\left(E_{1}\right)$ and caparitance ($E_{\mathrm{c}} \cdot$). It is assumed that X_{1} is larger than X_{e} and so has a harger voltage drop. Nince the two voltages are completely out of phase the total voltage (that is, the applied voltage $E_{A c}$) is equal to the difformer between them. This is shown in the drawing as $E_{\mathrm{L}}-E_{\mathrm{C}}$. Notice that, herause E_{L} iv larger than E_{C}, the resultant voltage is exartly in phase with E_{L}. In other words, the circuit as a whole simply acts as thongh il were ant inducturnce - an inductance of smaller value than the atual indurtance present, since the effere of the actual inductive reactance is reduced by the capacitive reartance in series with it. If X_{1} is larger than $X_{\text {Le }}$, the arrangement will behave like a caparitane - again of smaller reactance than the actual caparitive reactance present in the cireuit.

The "equivalent" or total reactance of any circuit containing inductive and capacitive reartances in series is equal to $\lambda_{1}-N_{C}$. If there are several coils and condensers in series, simply add up all the inductive reactances, then add up all the capacitive reactances, and then subtract the latter from the former. It is customary to call inductive reartance "psitive" and caparitive reactance "negative." If the equivalent or net reartance is positive, the voltage leads the current by 90 degrees; if the net reartance is negative, the voltage lags the current by 90 degrees.

fig. 2-2.4-Current and voltages in a cireuit having inductive and capacitive reactances in series.

Reactive Power

In Fig. 2-24 the voltage drop across the mil is larger than the voltage applied to the rircuit. This might seem to be an impossible condition, but it is not: the explamation is that while encrgy is being stored in the coil's magnetie field, energy is being returned to the cireuit from the comdenser's clectric field, and vice versa. This stored energy is responsible for the fart that the voltages across reatances in series can be lager than the voltage applied to them.

In a resistance the flow of current canses heating and a power lospequal to /" h. The power in a reactance is equal to $J^{2} I$, but is not a "loss"; it is simply power that is transforred back and forth between the field and the circuit but mot used up in heating anything. Po distinguish this "nondissifated" power from the power which is artually eonsumed, the unit of reactive power is called the volt-ampere instead of the watt. Reartive power is sometimes called "wattless" power.

IMPEDANCE

The fact that resistance, inductive readtance and caparitive readance all are moasured in ohne does not indirate that they can be eombined indiseriminately. Voltage and current are in phase in resistance, but differ in phaso by a quarter cerlo in reactance. In the simple cireuit shown

Fig. 2-2.5-Resinance and inductive reatatance connected in series.
in Fig. 2-25, for example, it is not possible simply to add the resistance and reactance together to obtain a quantity that will indicate the opposition offered by the combination to the flow of current. Inasmuch as both resistance and reactance are present, the total effect can obviously be reither wholly one nor the other. In circuits containing both reactance and resistance the opposition offect is called impedance (Z). The unit of impodance is also the ohm.

The term "impedance" also is generalized to include any quantity that can be expressed as a ratio of voltage to current. I'ure resistance and pure reactance are both included in "impedance" in this sense. A circuit with resistive impedance is either one with resistance alone or one in which the effects of any reactance present have been eliminated. Similarly, a reactive impedance is one having reactance only. A complex impedance is one in which both resistance and reactance effects are observable.

It cin be shown that resistance and reactance can be combined in the same way that a rightangled triangle is constructed, if the resistance is laid off to proper seale as the base of the triangle and the reactance is laid off as the altitude to the same scale. This is also indicated in lig. $2-25$. When this is done the hypotenuse of the triangle represents the impedance of the circuit,

Fig. 2.26-Re. sistance and capacilive react-
ance in series.
to the same scale, and the angle between Z and R (usually called 0 and so indicated in the drawing) is equal to the phase angle between the applied e.m.f. and the current. By geometry,

$$
Z=\sqrt{R^{2}+\lambda^{2}}
$$

In the case shown in the drawing,

$$
Z=\sqrt{(75)^{2}+(100)^{2}}=\sqrt{1 \overline{5}, 62 \overline{5}}=125 \text { ohms. }
$$

The phase angle can be found from simple trigonometry. Its tangent is equal to X / R; in this case $X / R=10075=1.33$. From trigonometric tables it can be determined that the angle having a tangent equal to 1.33 is approximately 5:3 degrees. In ordinary amateur work it is seldom necessary to give much consideration to the phase angle.

A circuit containing resistance and caparitance in series. (Fig. 2-26) can be treated in the same way. The difference is that in this case the current leads the applied e.m.f., while in the resistanceinductance rase it lags behind the voltage.

If either λ or R is small compared with the other (say $1 / 10$ or less) the impedance is very nearly equal to the larger of the two quantities. For example, if $R=1 \mathrm{chm}$ and $X=10 \mathrm{ohms}$,

$$
\begin{aligned}
Z=\sqrt{R^{2}+X^{2}} & =\sqrt{(1)^{2}+(10)^{2}} \\
& =\sqrt{101}=10.05 \mathrm{ohms}
\end{aligned}
$$

Hence if either X or R is at least 10 times as large as the other, the error in assuming that the impedance is equal to the larger of the two will not exceed $1 / 2$ of 1 per cent, which is usually negligible.

Since one of the components of impedance is reactance, and since the reartance of a given coil or condenser changes with the applied frequency, impedance also changes with frequency. The change in impedance as the frequency is changed may be very slow if the resistance is considerably larger than the reartance. However, if the impedance is mostly reactance a change in frequency will cause the impedance to change practically as rapidly as the reactance itself changes.

Ohm's Law for Impedance

Ohm's Law can be applied to circuits containing impedance just as readily as to circuits having resistance or reactance only. The formulas are

$$
\begin{aligned}
I & =\frac{E}{Z} \\
E & =I Z \\
Z & =\frac{E}{I}
\end{aligned}
$$

where $E=$ E.m.f. in volts
$I=$ ('urrent in imperes
$Z=I$ mpedance in ohms
Example: Assume that the e.m.f. applied to the circuit of Fig. $2-25$ is 250 volts. Then

$$
I=\frac{E}{Z}=\frac{250}{125}=2 \text { amperes. }
$$

The same current is flowing in both R and X_{L}, and Ohn's Law as applied to either of these guantities says that the voltage drop across R should equal $/ R$ and the voltage drop across X_{L} should equal $I X_{L}$. Substituting.

$$
\begin{aligned}
E_{\mathrm{R}}= & I R=2 \times 75=150 \text { volts } \\
& E_{\mathrm{x}_{\mathrm{L}}}=/ \mathrm{S}_{\mathrm{L}}=2 \times 100=200 \text { volts }
\end{aligned}
$$

The arithmetical sum of these voltages is greater than the applied voltage. However, the actual sum of the two when the phase relationship) is taken into account is equal to 250 volts r.m.s., as shown by Fig. 2-27, where the instantancous values are added throughout the cycle. Whenever resistance and reactunce are in series, the

Fir. 2-27 - Voltage drops around the circuit of Fig. 2.25. Because of the phase relationships, the applied voltage is less than the arithmetical sum of the drops across the resistor and inductor.
individual voltage drons alwas uld up, arithmetically, to more than the applied voltage. There is nothing fietitious about these voltage drons; they can be neasured readily be suitahle instruments. It is simply an illustration of the importance of phase in a.c. circuits.
A more complex scries circuit, containing resistance, inductive reactance and caparitive reatance, is shown in lig. ?-28. In this case it is necessary to take into arcount the fact that the phase angles between current and voltage differ

Fig. 2.28-Resistance. inductive reactance, and capaeitive reactance in series.
in all three elements. Since it is a series circuit, the current is the same throughout. Considering first just the inductance and capacitance and neglecting the resistance, the not ractance is
$X_{\mathrm{L}}-X_{\mathrm{C}}=150-\overline{0} 0=100$ ohms (inductive)
Thus the impedance of areuit containing resistance, inductance and capabitance in series is

$$
Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}
$$

Fxample: In the cirenit of lig. 2-28. the impedance is

$$
\begin{aligned}
Z & =\sqrt{R^{2}+\left(N_{L}-N_{c}\right)^{2}} \\
& =\sqrt{(20)^{2}+(150-50)^{2}}=\sqrt{(20)^{2}+(100)^{2}} \\
& =\sqrt{10.4(0)}=102 \mathrm{ohms}
\end{aligned}
$$

The phase angle can be found from X / R, where $\boldsymbol{X}=\boldsymbol{N}_{\mathrm{L}}-\boldsymbol{N}_{\mathbf{C}}$.

Parallel Circuits

Suppose that a resistor, eondenser and coil are connected in parallel as shown in Fig. 2-29 and an a.c. voltage is applied to the combination. In any one branch, the current will be unchanged if one or both of the other two branches is disconnerted, so long as the applied voltage remains unchanged. Hener the current in cach branch can be calculated quite simply by the Ohmis Lall formulas given in the preceding sections. The total current, I, is the sum of the eurrents through all three branches - not the arithmetialal sum, but the sum when phase is taken into aroount.

Fis. 2-29- Resistance. inductance and raparitance in parallel. Insermments connected as nhown will read the total current, l, and the individual currents in the three branches of the rireait.

The currents through the various branches will be as shown in Fig. "-30, assuming for putposes of illustration that X_{L} is smaller than X_{C} and that X_{C}. is smaller than R, thus making I_{L} larger than $/ \mathrm{c}$, and $/ \mathrm{c}$ larger than $/_{\mathrm{R}}$. The current through (' leads the voltage be 90 degrecs and the current through L lags the voltage by 90 degrees, so these two currents are 180 degees out of phase. Is shown at E: the total reactive current is the difference between I_{6} and $I_{\text {L. }}$. This resultant current lags the voltage by 90 derrees, because I_{L}, is larger than I_{6}. When the ractive current is added to I_{R}, the total current, I, is as shown at F. It can be seen that $/$ lags the applied voltage by an angle smaller than on degrees and that the total current, while less than the simplo sum (neglecting phase) of the three branch currents, is larger than the current through R alone.

The impedance looking into the parallel direuit from the source of voltage is equal to the applied

Fig. 2-30 - Phase relationships between branch currents and applied voltage for the circuit of Fig. 2.29. The total enrrent througli $L_{\text {, and }}$ C in parallel ($/ L+I^{\circ}$) and the cotal corrent in the entire circuit (I) also are shown.
voltage divided by the total or line current, I. In the ('ase illustrated, I is greater than I_{i}, so the impedance of the cireuit is less that the resistamer of R. How much less depends upon the net reative current flowing through L and ${ }^{\prime}$ ' in parallel. If X_{1} and \mathcal{X}_{c} are very nearly equal the net reactive current will be quite small beranse it is equal to the difference between two nearly cqual currents. In such a case the impedance of the circuit will be almost the same as the resistance of R alone. On the other hand, if X_{L} and
X_{C} are quite different the net reactive current can be relatively large and the total current also will be appreciably larger than I_{R}. In such a case the circuit impedance will be lower than the resistance of R alone.

Power Factor

In the circuit of Fig. 2-25 an applied e.m.f. of $2: 0$ volts results in a current of 2 amperes. If the circuit were purely resistive (rontaining no reactance) this would mean a power dissipation of $2: 50 \times 2=500$ watts. However, the circuit actually consists of resistance and reactance, and only the resistance consumes power. The power in the resistance is

$$
I^{\prime}=I^{2} R=(2)^{2} \times 75=300 \text { watts }
$$

The ratio of the power consumed to the apparent power is called the power factor of the circuit, and in the case used as an example would be 300) $500=0.6$. Power factor is frequently expressed as a pereentage; in this case, the power factor would be 60 per cent.
"Real" or dissipated power is measured in watts; apparent power, to distinguish it from real power, is measured in volt-amperes (just like the "wattless" power in a reactance). It is simply the product of volts and amperes and has no direct relationship to the power actually used up or dissipated unless the power factor of the circuit is known. The power factor of a purely ressistive circuit is 100 per cent or 1 , while the power factor of a pure reactunce is zero. In this illustration, the reactive power is

$$
\begin{aligned}
\mathrm{I} A(\text { volt-imperes })=I^{2} X= & (2)^{2} \times 100 \\
& =400 \mathrm{volt} \text {-amperes. }
\end{aligned}
$$

Complex Waves

It was pointed out early in this chapter that a complex wave (a "nonsinusoidal" wave) can be resolved into a fundamental frequency and a series of harmonic frequencies. When such a complex voltage wave is applied to a cireuit containing reactance, the current through the circuit will not have the same waveshape as the applied voltage. This is berause the reatance of a coil and condenser depend upon the applied frequency. For the second-harmonic component of a complex wave, the reactance of the coil is twice and the reactance of the condenser one-half their values at the fundamental frequency; for the third harmonic the coil reactance is three times and the condenser reactance one-third, and so on.

Just what happens to the current waveshape depends upon the values of resistance and reactance involved and how the circuit is arranged. In a simple circuit with resistance and inductive reactance in serics, the amplitudes of the harmonics will be redaced beanse the inductive reactance increases in proportion to frequency. When a condenser and resistance are in serics, the harmonic current is likely to be aceentuated because the condenser reatance becomes lower as the frequency is raised. When both inductive and caparitive ractance are present the shape of the current wave can be altered in a variety of ways, depending upon the circuit and the "constants," or values of L, C ' and R, selected.
This property of nonuniform behavior with respect to fundamental and harmonies is an extremely useful one. It is the basis of "filtering," or the suppression of undesired frequencies in favor of a single desired frequency or group of such frequeneies.

Transformers

Two coils having mutual inductance constitute a transformer. The coil comected to the source of energy is called the primary coil, and the other is called the secondary coil.
The usefunness of the transformer lies in the fact that electrical energy can be transferred from one circuit to another without direct connection, and in the process can be readily changed from one voltage level to another. Thus, if a deviee to be operated requires, for example, 115 volts and only a 440 -volt source is available, a transformer can be used to change the source voltage to that required. I transformer can be used only with a.c., since no voltage will be induced in the seeondary if the magnetic field is not changing. If d.c. is applied to the prinary of a transformer, a voltage will be induced in the seecondary mily at the instant of closing or opening the primary eirreuit, since it is only at these times that the field is changing.

The Iron-Core Transformer

As shown in Fig. 2-31, the primary and secondary coils of a transformer inay be wound on a core of magnetic material. This increases the inductance of the coils so that a relatively small number
of turns may be used to induce a given value of voltage with a small current. .I closed core (one having at continuous magnetic path) such as that shewn in Fig. 2-31 also tends to insure that practically all of the field set up hy the current in the primary coil will cut the turns of the secondary coil. However, the core introduces a power loss bectuse of hysteresis and eddy currents so this type of construction is practicable only at power and audio frequencies. The discussion in this sertion is confined to transformers operating at such frequencies.

Fig. 2.31 - The transformer. Power is transferred from the primary coil to the secondary by means of the magnetic field. The upper symbol at right indieates an ironcore transformer, the lower one an airecore transformer.

Voltage and Turns Ratio

For a given varying matgnetic field, the voltage induced in a coil in the fied will be proportional to the number of turns on the coil. If the two coils of at transformer are in the same fielel (which is the case when both are wound on the same closed eore) it follows that the indured voltages will be proportional to the number of turns on each coil. In the primary the indured voltage is practically equal to, and opmoses, the applied voltage. IIence,

$$
E_{\mathrm{E}}=\frac{n_{\mathrm{B}}}{n_{\mathrm{r}}} \boldsymbol{E}_{\mathrm{y}}
$$

where $E_{\mathrm{s}}=$ Secondary voltage
$E_{\mathrm{p}}=$ Irimary applied voltage
$n_{s}=$ Number of turns on seeondary
$n_{1}=$ Number of turns on primary
The ratio n_{ε} / n_{p} is called the turns ratio of the transformer.

Example: A transformer has a primary of 400 turns and a serondary of 2800 turns, and 115 volts is applied to the primary. The secondary voltage will be

$$
\begin{aligned}
E_{s}=\frac{n_{n}}{n_{0}} E_{0} & =\frac{2800}{400} \times 115=7 \times 115 \\
& =805 \text { volts }
\end{aligned}
$$

Also, if 805 volts is applied to the 2800 -turn winding (which then becomes the primary) the output voltage from the 400 -turn winding will be 115 volts.

Fither winding of a transformer ran be used as the primary proriding the winding has enough turns (enough induetanes) to induce a voltare egtal to the applied voltage without requiring an exnssive current flow.

Effect of Secondary Current

The current that flows in the primary when no current is taken from the serondary is called the magnetizing current of the transformer. In any properly-designed transformer the primary indurtance will be so large that the magnetizing current will be quite small. The power consumed by the transformer when the secondary is "open" - that is, not delivering power - is only the amount neressary to supply the losses in the iron core and in the resistance of the wire of which the primary is wound.

When power is taken from the secondary winding, the secondary current sets up a magnetic field that opposes the field set up by the primary current. But if the indured voltage in the primary is to equal the apppied voltage, the original field must he maintained. Consequently, the primary must draw enough additional current to set up a field exactly equal and opposite to the field set up by the seeondary current.

In practical calculations on transformers it may be assumed that the entire primary eurrent is caused by the seromdary "load." This is justifiable because the magnetizing current should be very small in comparison.

If the magnetic fields set up by the primary and secondary currents are to be equal, the primary current multiplied by the primary turns
must equal the secondary current multiplied by the secondary turns. From this it follows that

$$
I_{\mathrm{p}}=\frac{\mu_{\mathrm{s}}}{n_{v}} I_{\mathrm{s}}
$$

where $I_{\mathrm{p}}=$ Primary current
$I_{\mathrm{s}}=$ Secondary current
$n_{1}=$ Number of turns on primary
$n_{n}=$ Number of turns on secondary

> Example: suppose that the secondary of the transformer in the previous example is delivering a current of 0.2 ampere to a lowd. Then the primary chrrent will be
$I_{1}=\frac{n_{n}}{n_{1}} I_{n}=\frac{2800}{400} \times 0.2=7 \times 0.2=1.4 \mathrm{amp}$,
Although the secondary moltage is higher than the primary voltuge, the secondary current is lower than the primary corront, and by the stane ratio.

Power Relationships; Efficiency

A transformer cannot create power; it can only transfer and transform it. Ience, the power taken from the secondary camot exced that taken by the primary from the souree of applied e.m.f. There is always some power loss in the resistance of the coils and in the iron core, so in all practical eases the power taken from the source will exceed that taken from the secondary. Thus,

$$
l_{o}=n l_{\mathrm{i}}
$$

where $l_{o}=$ lower output from secondary
$l_{i}=$ Power input to primary
$n=I$ Efliciency factor
The efficiency, ", always is less than 1 . It is usually expressed as a percentage; if n is 0.65 , for instance, the efficiency is 60 per cent.

Example: A transformor has an chinefucy of 8. ' $_{6}$ at its full-load outjut of 150 watts. The power input to the primary at full secondary load will be

$$
P_{i}=\frac{P_{\mathrm{c}}}{n}=\frac{150}{0.8 .5}=176.5 \text { watts }
$$

A transformer is usually designed to have its highest efficiency at the power output for which it is rated. The efficiency decreases with either lower or higher outputs. (On the other hand, the lonses in the transformer are relatively smatl at low output but increase as more power is taken. The amount of power that the transfomer can handle is dotermined by its own losses, heause these heat the wire and core and raise the operating temperature. There is a limit to the temperature rise that can be tolerated, because too-high

Fig. 2-32- The equivatent circuit of a transformer Includes the effects of leakage inductance and resistance of both primary and secondary windings. The resistance Rc: is an equivalent resistance representing the constant core losies. Since these are comparatively small, their effect may be neglected in many approximate calculations.
temperature cither will melt the wire or cause the insulation to break down. I transformer alwass can be operated at reduced output, even though the efficiency is low, because the actual loss also will be low under such conditions.

The full-load efliciency of small power transformers such as are used in radio receivers and transmitters usually lies between about 60 per cent and 90 per cent, depending upon the size and design.

Leakage Reactance

In a practical transformer not all of the magnetie flux is common to both windings, although in well-designed transformers the amount of flux that "ruts" one coil and not the other is only a small percentage of the total flux. This leakage flux rauses ath e.m.f, of self-induction; consequently, there are small amounts of leakage inductance associated with both windings of the transformer. Leakage inductance aets in exartly the same way as an equivalent amount of ordinary inductance inserted in series with the cirenit. It has, therefore, a certain reactance, depending upow the amount of leakage inductance and the frequency. This reactance is called leakage reactance.

Gurrent flowing through the leakage reactance causes a voltage drop. This voltage drop increases with increasing eurrent, hene it increases as more power is taken from the secondary. Thus, the greater the secondary current, the smaller the secondary terminal voltage beromes, The resistances of the transformer windings also cause voltage drops when current is flowing: although these voltage drops are not in phase with those cadsed hy leakage reartance, together they result in a lower secondary voltage under load than is indieated by the turns ratio of the transformer.

At power frequencies (60 (.yoles) the voltage at the secondary, with a reasonably well-designed trimsformer, should not drop more than about 10 per eent from open-rimenit conditions to full had. The drop in voltage may be considerably more than this in a transformer operating at audio freguencies because the leakage reactance increases directly with the frequenc. y .

Impedance Ratio

In an ideal transformer - one without losses or leakage reactance - the following relationship is true:

$$
Z_{\mathrm{p}}=Z_{8} N^{2}
$$

where $Z_{1}=I$ mpedanee looking into primary terminals from source of power
$Z_{\mathrm{s}}=$ Impedance of load connested to secondary
$N=$ Turns ratio, primary to secondary
That is, a load of any given impedance connected to the secomalary of the transformer will be transformed to a different value "Iooking into" the prinary from the source of power. The impedance transformation is proportional to the square of the primary-to-secondary turns ratio.

Example: A transformer has a primary-tosecondary turns ratio of 0.6 (primary has $6 / 10$ as many turns as the secondary) and a load of 3000 olims is connected to the secondary. The impedane looking into the primary then will he

$$
\begin{gathered}
Z_{s p}=Z_{x} N^{2}=3000 \times(0.6)^{2}=3000 \times 0.36 \\
=1080 \text { ohms }
\end{gathered}
$$

I3y choosing the proper turns ratio, the impedance of a fixed load (am be transformed to any desired value, within practiral limits. The transformod or "reflected" impedance has the same phase angle as the actual load impedanere; thus if the load is a pure resistance the load presented by the primary to the souree of power also will be a pare resistance.

The above relationship may be used in practical work even though it is hased on an "ideal" transformer. Aside from the normal design requirements of reasomably for internal losses and low leakage reactance, the only requirement is that the primary have enough inductance to operate with low magnetizing current at the voltage applied to the primary.

The primary impedance of a transformeras it looks to the seurer of porerer-is determined wholly by the load connected to the secondary and by the turns ratio. If the characteristics of the transformer have an appreciable effeet on the impedance presented to the power source, the transformer is either poorly designed or is not suited to the voltage at which it is being used. Most transformers will operate quite well at voltages from slightly above to well below the design figure.

Impedance Matching

Many deviess require a specific value of load resistance (or impedance) for optimum operation. The impedance of the actual load that is to dissipate the power may differ widely from this value, so a transformer is used to transform the actual load into an impedance of the desired value. This is called impedance matching. From the preceding,

$$
N=\sqrt{\frac{Z_{\mathrm{s}}}{Z_{\mathrm{p}}}}
$$

where $N=$ Required turns ratio, seeondary to primary
$Z_{s}=1$ mpedinne of load connected to seeondary

$$
Z_{\mathrm{p}}=\operatorname{lmpedanc} \text { required }
$$

Example: A vachum-tube af. amplifier requires a load of 5000 ohnos for optimum performance, and is to be comeeted to a londspeaker having an impedance of 10 ohns. The turns ratio, socondary to primary, repuired in the coupling transformer is

$$
N=\sqrt{\frac{\overline{Z n}}{Z /}}=\sqrt{\frac{10}{5(000}}=\sqrt{\frac{1}{500}}=\frac{1}{22.4}
$$

The primary therefore must have 22.4 times as many turns as the secondary.
Impedance matching means, in qeneral, adjusting the load impedance - by means of a transformer or otherwise - to a desired value. However, there is also another meaning. It is
possible to show that any source of power will have its maximum possible output when the impedance of the load is cqual to the internal imperdance of the source. The impedance of the somere is said to be "matched" under this condition. The effieicuey is only so per cent in surh a cowe just as much power is used up in the soture as is delivered to the load. Beraluse of the poor efficiency, this type of impedance matehing is limited to cases where only a small amount of power is available.

Transformer Construction

Transformers usually are designed so that the magnetic path around the core is as short as pessible. I short magnetie path means that the transformer will operate with fower turns, for a given applied voltage, than if the path were long. It also helps to reduce flux leakage and therefore minimizes loakage reactance. The number of turns required also is inversely proportional to the cross-sedtional area of the cere.

CORE TYPE
Fig. 2-3.3 - Two common types of transformer construction. Core pieves are interleaved to provide a continuons magnetic pata with as low reluetane an possible.

Two core shapes are in common use, as shown in Jig. e-33. In the shell type both windinge are placed on the inner leg, while in the core type the primary and secondary windings may be phaed on separate legs, if desired. This is sometimes done when it is necessary to minimize a apacity effects between the primary and seomedary, or when one of the windings must operate at very high voltage.

Core material for small transformers is usually
silieon steel, called "transformer iron." The eore is built up of laminations, insulated from each other (bey a thin coating of shellare, for example) to prevent the flow of eddy rurrents. The laminations overlap at the ends to make the mametio path as contimums as passible and thas reduce flux leakiure.

Fig. 2-.34 - 'The antotransformer is hatsed on the trans. formar principle, lint bsea only one wimding. The lime and load eurrents in the ammon winding (.1) fhew in opposite dirertions, ses that the resultant current is the difference between then. The voltange arrosis is is pro. mortional to the turns ratio.

The number of tums required on the primary for a given appliod a.m.f. is determined by the size, shape and type of core material used, and the frequency: is a rough indication, windings of small power transformers frequently have about six to eight turns per volt on a core of 1 -square-inch cross section and have a magnetie path 10 or 12 inches in length. 1 longer path or smaller cross section requires more turns per volt, and vice versa.

In most transfomers the coils are wound in layers, with a thin shect of paper insulation between each layer. Thicker insulation is used between coils and between coils and core.

Autotransformers

The transformer principle can be utilized with only one winding instead of two, as shown in Fig. 2-34; the principles just discussed apply equally well.. one-winding transformer is called an autotransformer. The current in the common section (A) of the winding is the difference between the line (primary) and the load (secondary) currents, since these currents are out of phase. Hence if the line and load currents are nearly equal the common section of the winding may be wound with comparatively small wire. This will be the rase only when the primary (line) and secondary (load) voltages are not very different. The autotransformer is used chiefly for boosting or reducing the power-line voltage by relatively small amounts.

Radio-Frequency Circuits

RESONANCE

Fig. 2-35 shows a resistor, condenser and coil connected in serios with a source of altemating current, the frequency of which can be varied over a wide range. At some lor froquency the condenser reartance will be much larger than the resistance of R, and the inductive reartance will be small compared with either the reactance of C or the resistance of R. (R is assumed to be the same at all frequencies.) On the other hand, at some very high frequency the reartance of $($ ' will be very small and the reactance of L will be very
large. In either case the rurrent will be small, hecause the reactance is large at either low or high frequencies.

It some intermediate frequency, the reactances of $('$ and L will be equal and the voltage drops across the coil and condenser will be equal and 180 degrees out of phase. Therefore they cancel each other completely and the current flow is determined wholly by the resistance, R. It that frequency the current has its largest possible value, assuming the source voltage to be constant regardless of frequency. A series circuit in which
the inductive and capacitive reactances are equal is said to be resonant.

Although resonance can occur at any frequency, it finds its most extensive application in radio-frequency circuits. The reartive effects associated with even small inductances and capacitances would place drastic limitations on r.f. circuit operation if it were not possible to "cancel them out" by supplying the right amount of rearetance of the opposite kind - in other words, "tuning the circuit to resonance."

Resonant Frequency

The frequelicy at which a series circuit is resonant is that for which $X_{\mathrm{L}}=\boldsymbol{X}_{\text {c }}$. Substituting the formulas for inductive and capacitive reactance gives

$$
f=\frac{1}{2 \pi \sqrt{L C}}
$$

where $f=$ Frequency in cycles per second
$L=$ Inductance in henrys
$C^{*}=$ Capacitance in farads $\pi=3.14$
These units are inconveniently large for radiofrequency circuits. I formula using more appropriate units is

$$
f=\frac{10^{6}}{2 \pi \sqrt{L C}}
$$

where $f=$ Frequency in kilocycles (ke.)
$L=$ lnductance in microhenrys ($\mu \mathrm{h}$.)
${ }^{\prime}=$ Capacitance in micromicrofarads
($\mu \mu \mathrm{fd}$.)
$\pi=3.14$
Example: The resonant frefuency of a series circuit containing a $\bar{j}-\mu h$. coil and a $3 \overline{5}-\mu \mu \mathrm{fd}$. condenser is

$$
\begin{aligned}
& =\frac{10^{8}}{2 \pi \sqrt{L C}}=\frac{10^{8}}{6.28 \times \sqrt{5 \times 35}} \\
& \quad=\frac{10^{6}}{6.28 \times 13.2}=\frac{10^{9}}{83}=12.050 \mathrm{ke}
\end{aligned}
$$

The formula for resonant frequency is not affected by the resistance in the circuit.

Resonance Curves

If a plot is drawn of the current flowing in the circuit of Fig. 2-35 as the frequency is varied (the applied voltage being constant) it would lonk like one of the curves in Fig. 2-36. The shape of the resonance curve at frequencies mear reswmance is determined by the ratio of reactance to resistance at the particular frequency considered.

Fig. 2-35- I series circuit montaining L, C and R is eremonant" at the applied freguency when the reactanee of C is equal to the reactance of I.

PER CENT CHANGE FROM RESONANT FREQUENCY
Fig. 2-36-Current in a series-resonant circnit with varions value of surids resistance, The values are arhitrary and would not apply to all circuite, but represent a tsinal rase. It is assuned that the reactances (at the resonam frequency) are 1000 olms (minimum ()$=10)$. Note that af frepmoneies at least plus or mimaz ten per cent away from the resonant frequeney the current is substantially unafieeted liy the resistance in the eircuit.

If the reactance of oither the eoil or condenser is of the same or ler of magnitude as the resistance, the curent derrases rather slowly as the frequency is moved in either direction away from resonance. such a curve is satid to be broad. On the other hand, if the reactance is considerably larger than the resistance the eurrent decrawes rapidly as the frequency moves away from resonance and the circuit is said to be sharp. A sharp circuit will respond a great deal more readily to the resomant frequency than to frequencies quite close to resonance; a broad circuit will respond almost equally well to a group or hand of frequencies centering around the resonant frequency.

Both types of resonance eurves are useful. A sharp circuit gives good selectivity - the ability to respond strongly (in terms of current anpilitude) at one desired frequency and diseriminate against others. I broad circuit is used when the apparatus must give about the same response over a band of frequencies rather than to a single frequency alone.

Most diagrams of resonant circuits show only inductance and capmoditane; in resistance is indicated. Nevertheless, resistanere is always present. At frequencies up to perhaps 30 Mc . this resistance is mostly in the wire of the coil. Above this frequency energy loss in the condenser (principally in the solid dielectric which must be used to form an insulating support for the condenser plates) becomes appreciable. This energy loss is equivalent to resistance. When maximum sharpness or selectivity is needed the object of design
is to reduce the inherent resistance to the lowest prssible value.

The value of the reactance of either the coil or condenser at the resonant frequency, divided by the resistance in the circuit, is called the Q (quality factor) of the circuit, or

$$
Q=\frac{X}{R}
$$

where $Q=$ Quality factor
$X=$ Reactance of either coil or condenser in ohnis
$R=$ Resistance in ohms
Example: The coil and condenser in a series circuit each have a reartance of 350 ohms at the resonant frequency. The resistance is ohms. Then the Q is

$$
Q=\frac{X}{R}=\frac{3.50}{5}=70
$$

The effect of Q on the sharpness of resonance of a circuit is shown by the curves of Fig. 2-37. In these curves the frequency change is shown in percentage above and below the resonant frequency. (Qs of 10,20 , ,50 and 100 are shown; these values cover much of the range commonly used in radio work.

Voltage Rise

When a voltage of the resontint frequency is inserted in series in a resonatht circuit, the voltage that appears across either the eoil or condenser is considerably higher than the applied voltage. The current in the cireuit is limited only by the actual resistance of the coil-condenser combination in the cirenit and mat have a relatively high value: however, the sime current

Fig. 2-37-Current in series-remonant circuits having different Q_{s}. In this grapla the curent at resonance is aswumed to be the same in all cases. 'The lower the Q, the more slowly the current decreases as the applied frequency is moved away from resonance.
flows through the high reactences of the eoil and condenser and causes large voltage drops. The ratio of the reactive voltage to the applied voltage is equal to the ratio of remetance to resistance. This ratio is the () of the circuit. "Therefore, the voltage across either the coil or eondenser is equal to Q times the voltage inserted in series with the circuit.

Example: The inductive reactance of a circuit is 200 ohms, the caparitive ratemere is 200 ohms, the resistance $\overline{5}$ ohms, and the amplied voltage is 50 . The two reactaneres cancel and there will be but 5 ohms of pure resistance to limit the current flow. Thus the eurrent will be $50 / 5$. or 10 amperes. The voltage developed across either the coil or the condenser will be erfual to its reactance times the current, or $200 \times 10=2000$ volts. An alternate methom: The Q of the circuit is $N / R=2(0) / 5=40$. The reactive voltage is egual to Q times the applied voltage, or $40 \times 30=2000$ volts.

Parallel Resonance

When a variable-frequency source of constant voltage is applied to a parallel eireuit of the type shown in lig. 2-38 there is a resonance effect

similar to that in a series circuit. However, in this case the current (measured at the point indicated) is smallest at the frequency for which the coil and condenser reactances are equal. At that frequeney the current through L is exaetly eanceded be the out-of-phase current through C, so that only the current taken by R flows in the line. At frequencies helow resonance the eurrent through L is larger than that through ${ }^{*}$, becanse the reactance of L is smaller and that of C^{\prime} higher at low frequencies; there is only partial cancellation of the two reactive eurrents and the line eurment therefore is larger than the current taken by R alone. At frequencies above resonance the situstion is reversed and more current flows through (' than through L, so the line current again increases. The current at resonance, being determined wholly by R, will be small if R is large and large if R is small.

The resistance R shown in Fig. 2-38 seldom is an actual resistor. In most eases it will be an "equivalent" resistance that represents the actual emergy loss in the circuit. This loss can be inherent in the coil or condenser, or may represent energy transferred to a load by means of the resonant eireuit. (For example, the resonant circuit may be used for transferring power from a vacuum-tube amplifier to an antenna system.)

Parallel and series resonant circuits are quite alike in some respects. For instance, the circuits given at A and B in Fig. 2-39 will behave identically, when an external voltage is applied, if (1) L and C are the same in both cases; and (2) R_{p}
multiptied $\mathrm{b}_{\mathrm{V}} \boldsymbol{R}_{\mathrm{s}}$ coguals the square of the reactance (at resomaner) of (ither L or ((When these conditions are met the two circuits will have the same (2s. (These statements are approximate, but are quite arcurato if the (Q) is 10 or more.) "The eircuit at A is a series rireuit if it is viewed from the "inside" - that is, going around the loop formed by L, C and $R-$ so its $(Q$ can be found from the ratio of X to R_{s}.

Thus a circuit like that of lig. 2-39A has an equivalent parallel impedance (at rosomaner) equal to K_{11}, the relationship, between R_{s} and K_{1} boing as explained aloove. Although K_{t} is not an aretual resistor, to the sourer of voltage the paratlel-resomant rireuit "looks like" a pure resistanee of that value. It is "pure" rexistange beranse the coil :and comdenser curvents ate 180 degrees out of phase and are equal: thus there is no reactive eurrent in the line. At the resonant frecpuency the paralled impedaner of a resonant circuit is

$$
Z_{\mathrm{r}}=Q . X^{\prime}
$$

Where $Z_{r}=$ Resistive imperdaner at resonance $Q=$ Quality factor
$X=$ leactanere (in ohms) of aither the eoil or condenser
Fixamule: The parallelimpertaner of a rircuit
having a Q of 50 and having inductive and ca-
powitive reactances of 300 ohms will he
$Z_{\mathrm{r}}=Q \mathrm{~S}^{-}=50 \times 300=15,000$ ohmus.

At frequeneies off resomance the impedance is no longer purely resistive because the coil and eondenser currents are not equal. The offresonant impedance therofore is complex, and

is lower than the resonant impedance for the reasons previously outlined.

The higher the () of the circuit, the higher the parallel impedance. Curves showing the variation of impedance (with frequency) of a parallel circuit have just the same shape as the curves showing the variation of current with frequency in a series circuit. Fig. 2-40 is a set of such curves.

Parallel Resonance in Low-Q Circuits

The preceding discussion is accurate only for Qs of 10 or more. When the Q is below 10, resonance in a parallel circuit having resistance in series with the coil, as in lig. 2-39A, is not so easily defined. There is a set of values for L and C that will make the parallel impedanee a pure resistance, but with these values the impedance does not have its maximum possible value. Another set of values for L and C will make the parallel impedance a maximum, but this maxi-

PER CENT CHANGE FROM RESONANT FREQUENCY

Fig. 2-10- Iielative impedance of parallel-resonant circuits with diflerent (s.. 'l'hese curves are similar to thane in Fig. -37 for current in a series-resonant cirenit. The effert of $(1$ on impedance is most marked near the resonant frequency.
mum value is not a pure resistance. Either eondition could be called "resonance," so with low-Q circuits it is necessary to distinguish between maximum impedance and resistive impedance paralled resoname. The difference in tuning is appreciable when the Q is in the vicinity of 5 , and becomes more marked with still lower Q values.

Q of Loaded Circuits

In many appliations of resonant circuits the only power lost is that dissipated in the resistance of the cirruit itself. It frequencies below :30 Mr. most of this resistance is in the coil. Within limits, increasing the number of turns on the coil increases the reartance faster than it raises the resistance, so coils for circuits in which the () must be high may have reactances of 1000 ohms or more at the frequency under consideration.
llowever, when the circuit delivers energy to a load (as in the case of the resomant circuits used in transmitters) the energy consumed in the circuit itself is usually negligible compared with that consumed by the load. The equivalent of such a circuit is shown in Fig. 2-411, where the parallel resistor represents the load to which powet is delivered. If the power dissipated in the

Fig. 2-41 - The equivalent circuit of a resonant circuit delivering power to a load. 'The resistor K represents the livad resistance. At IS the load is tapped across part of L, which by transformer action is equivalent to using a higher load resistance across the whole circuit.
load is at least ten times as great as the power lost in the coil and condenser, the parallel impedance of the resonant circuit itself will be so high compared with the resistance of the kad that for all practical purposes the impedance of the combined cireuit is equal to the load resistance. V'nder these conditions the Q of a parallelresomant circuit loaded by a resistive impedance is

$$
Q=\frac{Z}{X}
$$

where $Q=$ (Quality factor
$Z=$ larallel load resistance (ohms)
$X=$ Reactance (ohms) of either the coil or condenser
Example: A resistive load of 3000 ohms is connected arross a resonant rireuit in which the inductive and mapmitive reactances are cach 2.00 ohms. The circuit Q is then

$$
Q=\frac{Z}{X}=\frac{3000}{250}=12
$$

The "effertive" (? of a circuit loaded by a parallel resistance becomes higher when the reantanes of the roil and condenser are decreased. A circuit loaded with a relatively low resistance (a few thousand ohms) must have low-reactance elements (large capacitance and small inductance) to have reasonably high ().

Impedance Transformation

An important application of the parallelresonant circuit is an impedance-matching device in the output circuit of a vacuum-tube r.f. power amplifier. As described in the chapter on vacuum tubes, there is an optimum value of load resistance for each type of tube and set, of operating conditions. However, the resistance of the load to which the tube is to deliver power usually is considerably lower than the value required for proper tube operation. To transform the actual load resistance to the desired value the load may be tapped across part of the coil, as shown in Fig. 2-413. This is equivalent to comnecting a higher value of load resistance across the whole circuit, and is similar in principal to impedance transformation with an iron-core transformer. In high-frequency resonant circuits the impedance ratio does not, vary exactly as the square of the turns ratio, because all the magnetic flux lines do not cut every turn of the coil. A desired reflected impedance usually must be obtained by experimental idjustment.

When the load resistance has a very low value (say below 100 ohms) it may be connected in series in the resonant circuit (as in Fig. 2-39.1, for example), in which rase it is transformed to an equivalent parallel impedance as previously described. If the (ℓ is at least 10 , the equivalent parallel impedance is

$$
Z_{\mathrm{r}}=\frac{X^{-2}}{h}
$$

where $Z_{\mathrm{r}}=$ Resistive impedince at resonance
$X=$ Reartance (in ohms) of either the coil or condenser
$R=$ Load resistance inserted in series

If the () is lower than 10 the reactance will have to be adjusted somewhat, as described previously, to obtain a reastive impedance of the desired value.

L/C Ratio

The formula for resonant frequenty of a circuit shows that the same frequency always will be ohtained so long as the product of L and U is constant. Within this limitation, it is evident that L ran be large and ('small, L small and C'large, ete. The relation between the two for a fixed trequency is called the L / C ratio. 1 high- C circuit is one which has more eaparity than "normal" for the frequency; a low-C cireuit one which has less than normal caparity. These terms depend to a considerable extent upon the particular application considered, and have no exart numerical meaning.

LC Constants

It is frequently convenient to use the numeriral value of the $L C$ constant when a number of calculations have to be made involving different L / C^{\prime} ratios for the same frequency. The eonstant for any frequency is given by the following equation:

$$
L C=\frac{25,330}{f^{2}}
$$

where $L=$ Inductance in microhenrys ($\mu \mathrm{h}$. .)
(; = Capacitance in micromicrofarads: ($\mu \mu \mathrm{fd}$.)
$f=$ Frequency in megarycles
Fxample: Find the inductance required to resonate at 3650 ke (3.65 Mc Me) with eaparithanees of $25,50,100$, and $500 \mu \mu \mathrm{fd}$. The $L C^{*}$ constant is

$$
\begin{aligned}
& L C=\frac{25,330}{(3.63 .5)}=\frac{2.5,330}{133.35}=10000 \\
& \text { With } 2.5 \mu \mu \mathrm{fd} . L=1900 / C=1900 / 2 \% \\
& =76 \mu \mathrm{l} . \\
& 50 \mu \mu \mathrm{fl} . ~ L=1900 / C=19(0) / 50 \\
& =38 \mu \mathrm{~h} . \\
& 100 \mu \mu \mathrm{~d} . L=1900 / C=10000 / 100 \\
& =19 \mu \mathrm{~h} \text {. } \\
& 500 \mu \mu \mathrm{fd} . L=1900 / C=1900 / 500 \\
& =3.8 \mu \mathrm{~h} \text {. }
\end{aligned}
$$

COUPLED CIRCUITS

Energy Transfer and Loading

Two circuits are coupled when energy can be transferred from one to the other. The eircuit delivering power is called the primary circuit; the one receiving power is called the secondary circuit. The power may be practically all dissipated in the secondary circuit itself (this is usually the case in receiver circuits) or the secondary may simply act as a medium through which the power is transferred to a load. In the latter case, the coupled cireuits may act as a radio-frequency impedance-matching device. The matching can be accomplished by adjusting the loading on the secondary and by varying the amount of coupling between the primary and secondary.

Coupling by a Common Circuit Element

One method of coupling between two resonant ricuits is through a circuit element eommon to both. The three variations of this type of coupling shown at A, B and C ' of Fig. $2-42$, utilize at rommon inductance, caparitance and resistance, respectively. ('urrent cireulating in one $L A^{*}$ branch flows through the common element (l_{c}, C_{c} or R_{c}) and the voltage developed across this element causes current to flow in the other $L C$ branch.

Fig. 2-42 - Four methords of circuit coupling.
If both eireuits are resonant to the same frequency, as is usually the case, the value of coupling reartance or resistanee required for maximum energy transfer is generally quite small compared with the other reactances in the cireuits. The common-circuit-element method of coupling is used only oecasionally in amateur apparatus.

Capacitive Coupling

In the eireuit at D the coupling inereases as the raparitance of $\left({ }_{c}\right.$, the "roupling eondenser," is made greater (reactance of C_{c}^{*} is decreased). When two resonant circuits are coupled by this means, the capacitance required for maximum energy transfer is quite small if the Q of the secondary circuit is at all high. For example, if the parallel impedance of the secondary cireuit is 100,000 ohms, a reactance of 10,000 ohms or so in the condenser will give ample eoupling. The eorresponding capacitance required is only a few mieromicrofarads at high frequencies.

Inductive Coupling

Figs. 2-43 and 2-44 show inductive coupling, or coupling by means of the mutual inductance between two coils. Circuits of this type resemble the
iron-core transformer, but because only a part of the magnetic flux lines set up by one coil cut the turns of the other coil, the simple relationships between turns ratio, voltage ration and impedance ratio in the iron-eore transfomer do not hold.
Two types of indurtively-coupled circuits are shown in Fig. :-43. (Only one circuit is resonant. The circuit att I is frequently used in receivers for coupling between amplifier tubes when the tuning of the circuit must be varied to respond to signals of different frequencies. ('irruit 13 is used principally in transmitters, for coupling a radiofrequency amplifier to a resistive load.

In these rircuits the coupling between the primary and secondary coils usually is "tight" that is, the coefficient of coupling between the eoils is large. With very tight coupling either circuit operates nearly as though the device to which the untuned coil is connerted were simply tapped across a corresponding number of turns on the tuned-circuit coil, thus either cireuit is approximately equivalent to Fig. 2-41B.

By proper choice of the number of turns on the untuned roil, and by adjustment of the eoupling, the parallel impedance of the tuned circuit may be adjusted to the value required for the proper operation of the device to which it is comnerted. In any case, the maximum energy transfer possible for a given coeffieient of eoupling is ohtaincd when the reactance of the untuned eoil is equal to the resistance of its load.
The Q and parallel impedance of the tuned eireuit are reduced by coupling through an untuned eoil in mueh the same way as by the tapping arrangement shown in Fïg. $2-41 \mathrm{~B}$.

Coupled Resonant Circuits

When the primary and secondary circuits are both tuned, as in Fig. $2-44$, the resonance efferts in looth rircuits make the operation somewhat more complicated than in the simpler eircuits just eonsidered. I magine first that the two circuits are not coupled and that earh is independently tuned to the resonant frequency. The impedanee of each will be purely resistive. If the primary eircuit is connected to a source of r.f. energy of the resonant frequency and the secondary is then loosely eoupled to the primary, a current will flow in the secondary eireuit. In flowing through the resistance of the seeondary eircuit and any load

Fig. 2-43-Single.tuned inductively-coupled circuits.
that may be connerted to it, the current causes a power loss. This power must come from the energy source through the primary eirenit, and manifests itself in the primary as an increase in the equivalent resistance in series with the primary coil. Hence the (and parallel impedance of the primary circuit are decreased by the coupled secondary. As the coupling is made greater (without changing the tuning of either circuit) the coupled resistance becomes larger and the parallel impedance of the primary continues to decrease. Also, as the coupling is made tighter the amount of power transferred from the primary to the secondary will increase to a maximum at critical coupling, hut then decreases if the eoupling is tightened still more (still without changing the tuning).

Fig. 2-1.4 - Inductively ocoupled resonant ciresits. Circuit A is used for high-resistance loads (at least several times the reartance of cituer f_{2} or C_{2} at the resonant frefueney). (irenit B is suitable for low resistance loads where the reactance of either $L 2$ or C_{2} is at heast several times the load resistance.

Critical coupling is a function of the (k s of the two circuits. A higher eocflieient of eoupling is required to reach aritical coupling when the ($2:$ are low; if the (s are high, as in receiving applications, a coupling eoefficient of a few per cent may give critical eoupling.

With loaded circuits such as are used in transmitters the Q may be too low to give the desired power transfor even when the coils are eoupled as tightly as the physical construction permits. In such case, increasing the () of either circuit will be helpful, although it is generally better to increase the Q of the lower- Q circuit rather than the reverse. The Q of the parallel-tuned primary (input) circuit can be increased by decreasing the L / C ratio because, as shown in connection with lig. 2-39, this circuit is in effect loaded by a parallel resistance (effect of coupled-in resistance). In the parallel-tumed secondary circuit, Fig. $2-44 \lambda$, the Q can be increased, for a fixed value of load resistanee, either by decreasing the L/C' ratio or by tapping the load down (see lige. 2-41). In the series-tuned seenndary circuit, Fig. $2-4413$; the (2 may be increased by incrensing the L/C'ratio.

There will generally be no difficulty in sceuring sufficient coupling, with practicable coils, if the Q of each cireuit is at least 10. Smaller values will

Fig. 2-45 - Showing the refert on the output voltage frem the serondary circuit of changing the recefieciont of compling between two resonant dircuts independently tuned to the same frequency. The voltage applied to the primary is held constant in amplitule while the frequeney is variod, and the output voltage is meatired across the secondary.
suffice if the coil construction permits tight coupling.

Selectivity

In Figg, 2-4:3 only one cirenit is tuned and the selectivity curve will be that of a single resonant circuit, Is stated, the effertive (Q depends upon the resistance eomnered to the untuned coil.

In Fig. 2-44, the seleetivity is the same as that of a single tuned circuit having a (equal $^{\text {equ }}$ the product of the (Qs of the individual circuits - if the coupling is well helow eritical and both circuits are tuned to rewonance. The (os of the individual circuits are afferted be the degree of coupling, beeause cach couples resistance into the other: the tighter the colpling, the lower the individual (ss and therefore the lower the over-all selectivity.

If both circuits are independently tuned to resonance, the over-all solectivity will vary about as shown in Fig. e-lja the compling is varied. With loose coupling, A, the output voltage (abross the secoudary circuit) is small and the selectivity is high. As the coupling is incroased the secondary voltage also inereases intil eritical coupling, 13 , is reached. At this point the output voltage at the resonant freguency is maximum but the selectivity is lower than with fonser coupling. At still tighter coupling, (', the outpout voltage at the resonant frequency deereases, but as the frequency is varied either side of resoname it is found that there are two "humps" to the curve, one on either side of resonance. With very tight coupling, D, there is a further decrease in the output voltare at resonance and the "humps" are farther away from the resomant frequency. Curves such as those at ($'$ and 1) are called flattopped because the output voltage does not change much over an appreciable band of frequencies.

Note that the off-resonance humps have the same maximum value as the resonant output voltage at eritical coupling. These humps are caused by the fart that at frequencies off resomane the secondary circuit is reartive and couples reartance as well as resistance into the primary. The conpled resistance decreases off resonance and the humps represent a new eondition of eritical coupling, at a frequency to which the pimary is detuned by the coupled-in reactance from tho secondary.

Band-Pass Coupling

Over-coupled resonant circuits are useful where substantially uniform output is desired over a continuous hand of frequencies, withont readjustment of tuning. The width of the flat top of the resonamee curve depends on the Qsiof the two circuits as well as the tightmess of coupling: the frequency separation between the humps will increase, and the curve become more flat-topped as the Qs are lowered.
band-pass operation also is secured by tuning the two circuits to slightly different frequencies, which gives a double-humped resonance curve even with loose coupling. 'This is called stagger tuning. However, to secure adequate power transfer over the frequency band it is usually necessary to use tight coopling and adjust the two cireuits, by experiment, to give the desired performance.

Link Coupling

A modification of inductive coupling, ralled link coupling, is shown in Fig. :-16. This gives the effert of inductive coupling between two coils that have no mutual inductance; the link is simply a means for providing the mutual inductance. The total mutual indurtance between two coils coupled by a link camot be made as great as if the eoils themselves were coupled. This is because the eoefficient of eoupling between airrore coils is considerably loss than 1 , and since there are two coupling points the over-all coupling coefficient is less than for any pair of coils. In practier this need not be disadvantageous because the power transfor can be made great enough by making the tuned circuits sufficiently high-e. link coupling is convenient when ordinary inductive coupling would he impracticable for constructional reasons.

The link eoils usually have a small number of turns compared with the resonant-circuit coils. The number of turns is not greatly important, because the cocfficient of coupling is relatively independent of the number of turns on either coil; it is more important that both link coils should have about the sume indurtance. The length of the link between the coils is not critical if it is very small compared with the wavelength, but if the length is more than about one-twentieth of a wavelength the link operates more as a transmission line than as a means for providing mutual inductance. In such case it should be treated by the methots deseribed in the chapter on Transmission Lines.

Fig. 2-46 - Jink compling. The mutual induetances at both ends of the link are equivalent to mutual induetance between the tuned cireuits, and serve the same ригрояе.

Piezoelectric Crystals

A number of erystalline sulstances found in nature have the ability to transform mechanical strain into an electrical charge, and vice versa. This property is known as piezoelectricity. A small plate or har cut in the proper way from a quartz erystal, for example, and placed between two conducting electrodes, will be mechanically strained when the electrodes are connented to a source of voltage. Conversely, if the erystal is squeezed between two electrodes a voltage will develop between the electrodes.
liezoelectric crystals can be used to transform mochanical energy into electrical energy, and vice versa. They are used, for example, in microphones and phonograph pick-ups, where mechanial vibrations are transformed into alternating voltages of corresponding frequency. They are also used in headsets and loudspeakers, transforming electrical energy into mechanical vibration. Crystal plates for these purposes are cut from large crystals of Rochelle salts.

Fig. 2-47-Eupuivalent circuit of a erystal resonator. I, , and R are the elertrieal equivalents of mechanical properties of the erysial; C.is the raparitance of the electrodes with the erystal plate letween them.

Crystalline plates also are mechanical vibrators that have natural frequencies of vibration ranging from a few thousand cycles to several megacycles per second. The vibration frequency depends on the kind of erystal, the way the plate is cut from the natural erystal, and on the dimensions of the plate. Because of the piozoclectric effert, the crystal plate can be coupled to an electrical circuit and made to substitute for a coil-and-rondenser resonant circuit. The thing that makes the crystal resonator valuable is that it has extremely high Q, ranging from is to 10 times the Qs obtainable with good $L C$ resonant circuits.

Inalogies ran be drawn between various mechanical properties of the erystal and the electrimal characteristics of a tuned circuit. This leads to an "equivalent circuit" for the crystal. The electrical coupling to the crystal is through the electrodes between whirh it is sandwiched; these electrodes form, with the erystal as the dielectric. a small condenser like any other condenser constructed of two plates with a dielectrie between. The erystal itself is equivalent to a series-resomant cireuit, and together with the eaparitance of the electrodes forms the equivalent (ireuit shown in Fig. 2-47. The equivalent inductance of the crystal is extremely large and the series capacitance, C, is correspondingly low; this is the reason for the high Q of a crystal. The electrode capacitance, C_{h}, is so very large compared with the series rapacitance of the crystal that it has only a very small effect on the resonant frequency.

Crystal plates for use as resomators in radiofrequency rireuits are almost always cut from quartz crystals, beratuse for mochanical reasons quartz is ber far most suitable material for
this purpose. (quartz crystals are used as resonators in reacivers, to give highly-solective reception, and as frequency-controlling elements in transmitters to give a high order of frequeney stability.

Practical Circuit Details

COMBINED A.C. AND D.C.

Most radio rircuits are built around varuum tubes, and it is the nat ure of these tubes to require direct current (usually at a fairly high voltage) for their operation. They convert the direct current into an alternating eurrent (and sometimes the reverse) at frequencies varying from wedl down in the audio range to well up in the superhigh range. The conversion proress almost invariably requires that the direct and alternating currents meet somewhere in the circuit.

In this meeting, the a.e. and d.e. are artually combined into a single current that "pulsates" (at the a.e. frequency) about an average value equal to the direct current. This is shown in Fig. $2-48$. It is convenient to consider that the alternating current is superimposed on the dircet current, so we may look upon the actual current as having two components, one d.e. and the other is.e.

Fig. 2-18 - Pulsat ink. composed of an alternating current or voltage superimposed on a steady direct current or voltage.

In an altemating current the positive and negative alternations have the same average amplitude, so when the wave is superimposed on a direct current the latter is altemately increased and decreased by the same ammoml. There is thus no avernge change in the direct current. If a d.e. instrument is being used to read the current, the reading will be exartly the same whether or not the a.c. is superimposed.

However, there is artually more power in such a combination current than there is in the direct current alone. This is because power varies as the squar of the instantaneous value of the current, and when all the instantaneous squared values are averaged over a rycle the total power is greater than the d.e. power alone. If the a.c. is a sine wave having a peak value just equal to the d.e., the power in the cireuit is 1.5 times the d.e. power. In instrument whose readings are proportional to power will show surh an increase.

In many circuits, also, we may have two alternating currents of different frequencies; for example, an audio frequency and a radio frequency may be combined in the same circuit. The two in turn may be combined with a direct current. In some cases, too, two r.f. currents of widelydifferent frequencies may be combined in the same circuit.

Series and Parallel Feed

Fig. 2-49 shows in simplified form how d.c. and a.c. may be combined in a vacuum-tube circuit. (The tube is shown only in bare outline; so far as the d.e. is concerned, it can be looked upon as a resistance of rather high value. On the other hand, the tube may be looked upon as the generator of the a.c. The mechanism of tube operation is described in the next chapter.) In this case, it is assumed that the a.c. is at radio frequency, ats suggested by the coil-and-condenser tuned circuit. It is also assumed that r.f. curent com easily flow through the d.c. supply; that is, the impedance of the supply at radio frequencies is so small as to be negligible.

In the eircuit at the left, the tube, tuned rireuit, and d.e. supply all are comented in series. The direct current flows through the r.f. coil to get to the tube; the r.f. current generated by the tube flows through the d.e. sumply to get to the tuned circuit. This is series feed. It works beause the impedance of the d.e. supply at radio frequencies is so low that it does not affect the flow of r.f. current, and hemanse the d.e. resistance of the coil is so low that it does not affect the flow of direct current.

In the circuit at the right the direct current does not flow through the r.f. tuned circuit, but instead goos to the tube through a second eoil, $R F^{\prime \prime}$ (radio-frequency choke). Dirert current cannot flow through L because a blocking condenser, (', is pared in the circuit to prevent it. (Without r', the d.e. supply would be shortcircuited by the low resistance of L.) (On the other hand, the r.f. current generated by the tube ('an casily flow through (' to the tuned circuit hecause the capacitance of (' is intentionally chosen to have low reactance (compared with the impedance of the tuned circuit) at the radio frequency. The r.f. current amot flow through the d.c. supply because the inductance of $R F^{\prime \prime}$ is intentionally made so lange that it has a very high reactance at the radio frequency. The resistance of $R F^{\prime} C^{\prime}$, however, is too low to have an apre-

Fir. 2-49-Illustrating series and parallel fecd.

ELECTRICAL LAWS AND CIRCUITS

ciable effect on the flow of direct eurrent. The two currents are thus in parallel, hence the mame parallel feed.
lither type of feed may be used for both a.f. and r.f. circuits. In parallel feed there is no d.c. voltage on the a.c. circuit, a desirable feature from the viewpoint of safety to the operator, hecause the voltages applied to tubes - particularly transmitting tubes - are dangerous. On the other hand, it is somewhat diffirult to make an r.f. choke work well over a wide range of frequencies. Neries feed is usually preforred, therefore, healuse it is relatively casy to keep the impedance between the a.e. circuit and the tuhe low.

By-Passing

In the series-feed circuit just discussed, it was assumied that the d.c. supply had very low impedance at radio frequencies. This is not likely to be true in a practical power supply, partly

\approx
Fig. 2.50-Typical use of a by-pass condenser in a series-fled circuit.
because the normal physical separation between the supply and the r.f. circuit would make it necessary to use rather long connecting wires or leads. At radio frequencies, even a few feet of wire can have fairly large reactance - too large to be considered a really "Iow-impedance" connertion.

An actual circuit would be provided with a by-pass condenser, as shown in Fig. 2-50. Condenser (' is chosen to have low reactance at the operating frequency, and is installed right in the circuit where it can be wired to the other parts with quite short comnecting wires. Hence the r.f. current will tend to flow through it rather than through the d.e. supply.

To be effective, the reactance of the by-pass condenser should not be more than one-tenth of the impedance of the by-passed part of the cireuit. Very often the latter impedance is not known, in which case it is desirable to use the largest capacitance in the by-pass that rireunstances permit. To make doubly sure that r.f. current will not flow through a non-r.f. circuit such as a power supply, an r.f. choke may be eonnected in the lead to the latter, as shown in Fig. 2-50.

The same type of by-passing is used when audio frequencies are present in addition to r.f. Because the reactance of a condenser changes with frequency, it is readily possible to choose a capaci-
tance that will represent a very low reactance at radio frequencies but that will have such high reactance at audio frequencies that it is practically an open circuit. I capacitance of $0.001 \mu \mathrm{fd}$. is practically a short circuit for r.f., for example, but is almost an open circuit at audio frequencies. (The actual value of calparitance that is usable will be modified by the impedances concerned.) By-pass condensers also are used in adodio circuits to carry the audio frequencies around a d.e. supply.

Distributed Capacitance and Inductance

In the discussions earlier in this chapter it was assumed that a condenser has only capacitance and that a coil has only inductance. Unfortunatele, this is not strictly true. There is always a certain amount of inductance in a condurtor of any length, and a condenser is bound to have a little inductance in addition to its intended capacitance. Also, there is always rapacitance between two conductors or between parts of the same conductor, and thus there is appreciable capacitance between the turns of an inductance coil.

This distributed inductance in a eondenser and the distributed capacitance in a coil have important practicoll efferets. Ictually, every condenser is a tuned circuit, resomant at the frequency where its capacitance and distributed inductance have the same reactance. The same thing is true of a coil and its distributed capacitance. At frequencies well below these natural resonances, the condenser will act like a normal capacitance and the coil will art like a normal inductance. Near the natural resonant points, the eoil and condenser act like self-tuned eircuits. Above resonance, the condenser acts like an inductance and the roil acts like a condenser. Thus there is a limit to the amount of capacitance that can be used at a given frequency. There is a similar limit to the indurtance that can be used. At audio frequencies, caparitances measured in microfarads and inductances measured in henrys are practiable. At low and medium radio frequencies, inductances of a few millihenrys and eaparitances of a few thousand micromicrofurads are the largest practicable. . It high radio frequencies, usable inductance values drop to a few mirrohenrys and capacitances to a few hundred mieromicrofurads.

Distributed capacitance and inductance are important not only in r.f. tuned circuits, but in by-passing and choking as well. It will be appreciated that a by-pass condenser that actually acts like an inductance, or an r.f. choke that acts like a condenser, cannot work as it is intended they should.

Grounds

Throughout this book there are frequent references to ground and ground potential. When a connection is said to be "grounded" it does not mean that it actually goes to earth (although in many cases such earth comnections are used). What it means is that an actual earth connection
could be made to that point in the cireuit without disturbing the operation of the circuit in any way. The term also is used to indieate a "common" point in the rircuit where power supplies and metallie supports (such as a metal chassis) are electrically tied together. It is customany, for example, to "ground" the nogative terminal of a d.e. power supply, and to "ground" the filament or heater power supplies for vacuum tubes. Nince the eathode of a vacuum tube is a junction point for grid and plate voltage supplies, it is a natural point to "ground." Also, since the various rircuits commected to the tube elements have at least one point commected to cathode, these points also are "roturned to ground." "(iround" is therefore a eommon reference point in the radio circuit. "(iround potential" means that there is no "difference of potential" - that is, no voltage - between the circuit point and the earth.

Single-Ended and Balanced Circuits

With reference to ground, a circuit may be either single-ended (umbalanced) or balanced. In a single-ended cirenit, whe side of the ribruit is commerted to ground. In a balanced circuit, the clectrical midpoint is eomerted to

ground, so that the circuit has two ends each at the same voltage "above" ground.

Typieal single-ended and balanced circuits are shown in Fig. 2-inl. R.f. circuits are shown in the upper row, while iron-eore transformers (such as are used in power-supply and audio cireuits) are shown in the lower row. The r.f. circuits may he balanced either by connecting the center of the coil to ground or by using a "balanced" or "spilit-stator" condenser and connecting the condenser rotor to ground. In the iron-core transformer, one or both windings may be tapped at the center of the winding to provide the ground comnection.

In the single-ended eireuit, only one side of
the circuit is "hot" - that is, has a voltage that differs from ground potential. In the balanced circuit, both ends are "hot" and the grounded center point is at gromed potential.

Shielding

Two circuits that are physically near earh other usually will be coupled to each other in some degree even though no coupling is intended. The metallie parts of the two rireuits form a small caparitance through which energy ran be transferred by metins of the electric field. Also, the magnetic field about the coil or wiring of one circuit can couple that circuit to a second through the latter's abil and wiong. In many cases those unwanted couplings must be prevented if the eireuits are to work property.

Caparitive coupling may readily be prevented by enclosing one or both of the circuits in grourded low-resistance metallie rontainers, called shields. The electrice field from the circuit emponents does not penetrate the shield. A metallif plate, called a baffle shield, inserted between two components also may suffice to provent electrostatie coupling betweron them. It should be large enough to make the eomponents invisible to atch other.
similar metallie shiehting is used at radio froquencies to prevent magnetic coupling. The shielding effere increases with frergeney and with the conductivity and thickness of the shielding material.

A elosed shiold is required for good magnetie shielding: in some cases separate shields, one about earh eroil, maty be recquired. The batfle shied is rather ineffertive for magnetic shiedding, although it will give partial shielding if placed at right angles to the axes of, and between, the eoils to be shielded from rach other.

Shiolding a coil reduces its inductance, because part of its field is canceled by the shield. Also, there is always a small amount of resistance in the shield, and there is therefore an energy loss. This loss mases the effertive resistance of the coil. The decrease in indurtance and increase in resistance lower the ($)$ of the coil. The reduction in inductance and () will be small if the shield is sufficiently far away from the coil; the spacing between the sides of the coil and the shield should be at least half the eoil diameter, and the spacing at the ends of the coil should at least equal the coil diameter. The higher the conductivity of the shield material, the less the effect on the indurtance and (). Copper is the best material, but aluminum is quite satisfactory.

For good magnetic shiedding at audio frequencies it is necessary to enelose the coil in a container of high-premeability iron or steel. In this rase the shield ran be quite close to the coil without harming its performance.

Modulation, Heterodyning and Beats

Since one of the most widespread uses of radio frequencies is the transmission of speech and musie, it would be very convenient if the audio
spectrum to be transmitted could simply be shifterl up to some radio frequency, transmitted as radio waves, and shifted bark down to the andio spec-
trum at the receiving point. Suppose the audio signal to he transmitted by radio is a pure $1000-$ cyrle tone, and we wish to transmit it at some frequence around 1 Mc . ($1,000,000$ eycles). One possible way might be to add $1,000,000$ ereles and 1,000 reveles together, thereby obtaining a madio frequence of $1,001,000$ eveles. linfortunately, no simple method for doing such a thing directly has erer been devised, although the effect is obtitined and used in some advanced communications terhniques.

Intually, when two different frequencies are present simultaneonsly in an ordinary circuit (sperifically, one in which Ohm's Law holds) each behaves as though the other were not there. It is true that the total or resultant voltage (or current) in the circuit will be the sum of the instantaneous values of the two at every instant. This is because there can be only one value of current or voltage at any single point in a circuit at any instant. Fig. $2-i)^{2} d$ and B show two such frequencies, and () shows the resultant. The amplitude of the $1,000,000$-evele current is not atfereded by the presence of the 1000 -recle eurrent, but merely has its axis shifted back and forth at the 1000 -cyole rate. An attempt to transmit such a

Fig. 2.52-Amplitude-rs.-time and amplitude-rss.frequency plots of varions signals. (1) $11 / 2$ cycles of a 1000 -ryele signal. (13) A $1,000,000$-cycle signal plotted to the same srale as 1 . Becanse there are 1.000 regles during this time, they cannot be shown accurately. (c) The signals of 1 and B flowing in the same circuit. (I) 'The signals of A and 13 combined in a circuit where A ran eontrol the amplitude of 13 . The $1,000,000$ egycle signal is moduluted by the 1000 -cy cle signal. (E), (F), (G), (HI) Amplitude-vs.-frequency plots of the signals in $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D .
combination as a radio wave would result simply in the transmission of the $1,000,000$-rycle frequency, since the $1000-\mathrm{cyc}$ le frequency retains its identity as an audio frequency and hence will not be radiated.

There are devices, however, which make it possible for one frequency to control the amplitude of the other. If, for example, a 1000 -evele tone is used to control a 1-Me. signal, the maximum r.f. output will be ohtained when the 1000 -cycle signal is at one peak and the minimum will occur at its other peak. The process is called amplitude modulation, and the effect is shown in Fig. 2-521). The resultant signal is now entirely at radio freguency, but with its amplitude varying at the modulation rate (1000 cyrles). Recciving equipment adjusted to receive the $1,000,000$-cycle r.f. signal can reproduce these changes in amplitude, and thus tell what the audio signal is, through a process called detection or demodulation.

It might be assumed that the only radio frequeney present in surh a signal is the original $1,000,000$ cyeles, but such is not the case. It will be found that two new frequencies have appeared. These are the sum $(1,000,000+1000)$ and difference ($1,000,000-1000$) frequencies, and hence the radio frequencies appearing in the circuit after modulation are $999,000,1,000,000$ and 1,001,000 cycles.

Many circuits have been devised for obtaining amplitude modulation, and they will be treated in detail in later chapters. When an audio frequency is used to control the amplitude of a radio frequency, the process is generally called "amplitude modulation," as mentioned previously, but when a radio frequeney modulates another radio frequency it is called heterodyning. Ifowever, the processes are identical. I general term for the sum and difference frequencies generated during heterodyning or amplitude modulation is "beat frequencies," and a more specific one is upper side frequency, for the sum frequency, and lower side frequency for the difference frequency.

In the simple example, the modulating signal was assumed to be a pure tone, but the modulating signal can just as well be a band of frequencies making up speech or music. In this case, the side frequencies are grouped into what are called the upper sideband and the lower sideband. In any case, the frequency that is modulated is called the carrier frequency.

In A, B, C and D of Fig. 2-52, the sketches are obtained by plotting amplitude against time. Ilowever, it is equally helpful to be able to visualize the spectrum, or what a plot of amplitude vs. frequency looks like, at any given instant of time. E, F, G and II of Fig. 2-52 show the signals of Fig. 2-52.A, B, C and D on an amplitude-vs.frequency basis. Any one frequency is, of course, represented by a vertical line. Fig. 2-521I shows the side frequencies appearing as a result of the modulation process.

Amplitude modulation (AM) is not the only possible type nor is it the only one in use. This and other types of modulation are treated in detail in later chapters.

Vacuum-Tube Principles

CURRENT IN A VACUUM

The outstinding difference between the vatuum tube and most other electrical deviees is that the electric current does not flow through a conductor but through empty space - a vacuum. This is only prosible when "free" electrons - that is, electroms that are mot attathed to atoms - are somehow introduced into the vacuum. Free electrons in an evatouated satee will be attracted to a positivelrcharged object within the same spare, or will the repelled by a negatively-chatged object. The movement of the electrons under the attratetion or repulsion of such charged objects constitutes the current in the vacuum.

The most practical way to introduce a suffi-eiently-large number of electrons into the evacuated spare is by thermionic emission.

Thermionic Emission

If a thin wire or filament is heated to incandescence in a vacum, electrons near the surface are given enough energy of motion to Hy off into the surrounding space. The higher the temperature, the grater the number of clectrons emitted. A more general name for the filament is cathode.

If the eathonde is the only thing in the varum, most of the emitted electrons stay its its immediate vicinity, forming is "doud" about the eathode. The reason for this is that the elertrons in the space, bring negatioe electricity, form a megative chatge (space charge) in the region of the cathode. The space charge repels

Representative tube types. The miniature, metalenvelope and small glass tuhes in the foreground are receiving types. The two tubes with connections at the top of the bulb, lying down, are tramamiting triodes of moderate power ratings. 'Those in the rear are trans-mitting-ty pe bean tetrodes.
those electrons nearest the cathode, tending to make them fall back on it.

Now suppose a second conductor is introduced into the vacuum, but not comnerted to anything else inside the tube. If this second condurtor is given a positive charge by connerting a source of e.m.f. between it and the

Fík. 3.I-Condurtion liy thermionic emission in a vactum tuble. One hattery is used to heat the filament tu a temperature that will caluse it to emit rlectroms. The other battery mahes the plate positive with respect to the filament, therely cansing the eminted electrons to be altrated to the plate. Finctronts captured by the plate tlow back through the battery to the filament.
(athode, as indicated in Fig. 3-1, electrons emitted by the cathode are attracted to the positivelycharged conductor. An electric current then flows through the cirenit formed by the cathode, the charged comductor, and the source of c.m.f. In Fig. : $3-1$ this a.m.f. is supplied by a battery ("B" battery); a second bittery ("A" battery) is also indicated for heating the athode or filiment to the proper operating temperature.

The positively-charged conductor is usually a metal plate or celinder (surrounding the eathode) and is called an anode or plate. like the other working parts of a tube, it is a tube element or electrode. The tube shown in Fig. $3-1$ is a two-element or two-electrode tube, one element being the cathode or filament and the other the anode or phate.

Since electrons are negative electricity, they will be attracted to the plate omly when the plate is positive with respert to the rathode. If the plate is given a nerative charge, the electrons will he repelled back to the cathode and no current will flow. The vacuum tube therefore can conduct only in one direction.

Cathodes

Before electron emission can occur, the cathode must be heated to a high temperature. However, it is not essential that the heating cur-

Fig. .3.2-Types of eathode construction. Dirertly-heated rathoden or filamenta are shown at $.1,13$, and (.. The inverted V filament is used in small recoising tubes, the M in foth receiving and transmitting tubes. The spiral filament is a transmitingtube type. The indirectly-lieated cathorles at I) and E show two types of heater construction, one a twisted loop and the other lumehed heater wires. Both types tend to cancel the magnetic fields set up by the current through the heater.
rent flow through the artual material that does the emitting; the filament or heater can be electrically separate from the emitting cathode. such a mathode is called indirectly heated, while an emitting filment is called directly heated. lig. :3-2 shows looth types in the forms in which they are commonly used.

Much greater electron emission can be olstained, at relatively low temperatures, by using special cathode materials rather than pure metals. One of these is thoriated tungsten, or tungsten in which thorium is dissolved. Still greater pfficiency is arhieved in the oxide-coated cathode, a rathode in which rare-earth oxides form at roating over a metal base.

Although the oxide-coated cathode hats much the highest efficiency, it cin be used successfully only in tubes that operate at rather low plate voltages. Its use is therefore confined to receiv-ing-type tubes and to the smaller varieties of transmitting tubes. The thoriated filament; on the other hand, will operate well in high-voltage tubes.

Plate Current

If there is only a small positive voltage on the plate, the number of electrons reaching it will be small because the spare charge (which is negative) prevents those electrons nearest the rathode from being attracted to the plate. As the plate voltage is inereased, the effert of the space charge is inereasingly overome and the number of electrons attracted to the plate becomes larger. That is, the plate current inereases with inereasing plate voltage.

Fig. :3-3 shows a tupical plot of plate current vs. plate voltage for a two-element tulse or diode. A curve of this type man be obtaned with the cireuit shown, if the plate voltage is increased in small steps and a current reading taken (by means of the current-indicating instrument - a "milliammeter") at each voltage. The plate current is zero with no plate voltage and the curve rises until a saturation point is reached. This is where the positive charge on the plate has sul)stantially overcome the space charge and
almost all the electrons are going to the plate. At higher voltages the plate atrent stays at practicatly the same value.

The plate voltage multiplied by the plate current is the power input to the tube. In a circuit like that of Fig. 3-3 this power is all used in heating the plate. If the power input is large, the plate temperature may rise to a very high value the plate may berome red or even white hot). The heat developed in the plate is radiated to the bulb of the tube, and in turn radiated by the bulb to the surrounding air.

RECTIFICATION

Since current can flow through a tube in only one direction, a diode can be used to change altermating current into direct current. It does this by permitting current to flow when the plate is positive with respect to the cathode, but by shutting off current flow when the plate is negative.

Fig. $3-\frac{1}{2}$ shows a representative circuit. . Ilternating voltage from the secondary of the transformer, ' T ', is applied to the diode tube in series with a load resistor, R. The voltage varies as is usual with a.e., but current flows through the tube and R onl! when the plate is positive with respert to the cathode - that is, during the half-cycle when the upper end of the transformer winding is positive. During the negative half-rycle there is simply a gap in the current flow. This rectified alternating current therefore is an intermittent direet current.

The load resistor, R, represents the actual circuit in which the rectified altermating current does work. All tubes work into a load of one type or another; in this respect a tube is much like a generator or transformer. A eireuit that did not provide a load for the tube would be like a short-cireuit across a transformer; no useful purpose would be aceomplished and the only result would be the generation of heat in the transformer. So it is with vacuum tubes; they must deliver power to a load in order to serve a uscful purpose. Also, to be efficient most of the power must do useful work in the load and not be used in heating the plate of the tube. This means that most of the voltage should appear as a drop aeross the load rather than as a drop between the plate and cathode.

Fig. 3.3- The dionle, or two-element tube, and a typical eurve showing how the plate eurrent depends upon the voltage applied to the plate.

With the diode comnerted as shown in Fig. $3-4$, the polarity of the voltage drop across the load is such that the cond of the load nearest the cathode is pesitive. If the eommertions to the diode chements are reversed, the dirertion of rextified rument flow ako will be reversed through the loud.

Fíg. 3-1 - Rectification in a dionde. Current llows only when the plate is prositive with respert to the cathonle, so that only halferectes of current flow through the load resistor, R.

Vacuum-Tube Amplifiers

- TRIODES

Grid Control

If a third element - ralled the control grid, or simply grid - is inserted between the rathode and phate as in Fig. $3-5$, it an be wed to control the effert of the space eharge. If the grid is given a positive voltage with respert to the rathode, the positive charge will tend to neutalize the negative spare charge. The

Fig. 3-5-Comstruction of an elementary triale vasumm tube, slowing the filament, arid (with an end viow of the grid wires) and plate. 'The relative density of the space charge is indicated ronghly by the dot density.
result is that, at any selected plate voltage, more electrons will flow to the plate than if the grid were not present. On the other hand, if the grid is made negative with respert to the cathode the negative charge on the grid will add to the space charge. This will reduce the number of electrons that can reach the plate at any selected phate voltage.

The grid is inserted in the tube to control the spare eharge and not to attract electrons to itwelf, so it is made in the form of a wire mesh or spiral. Dileetrons then call go through the open spaces in the grid to roach the plate.

Characteristic Curves

For any particular tube, the effect of the grid voltage on the plate current wan be shown by a set of characteristic curves. A typical sut of curves is shown in lig. :3-6, together with the eirrout that is used for gotting them. For eath value of plate voltage, there is a value of negative grid voltage that will reduce the plate current to zero; that is, there is at the right.
a value of negative grid voltage that will cut off the plate current.

The curves rould be extended by making the grid voltage powitive aw well as negative. When the grid is negative, it repels elertrons :und therefore mone of them reaches it; in other words, mo current flows in the grid cirruit. However, when the grid is prositive, it attrats electrons and a current (grid current) flows, just as current flows to the positive plate. Whenever there is grid current there is an arompanying power loss in the grid circuit, but so long as the grid is negative no power is used.

It is obvious that the grid can act as a valve to emontrol the flow of plate current. Actually, the grid has a much greater effect on plate current flow than does the plate voltage. A small change in grid voltage is just as effective in bringing about a given change in phate current as is a large change in phate voltage.

The fart that a small voltage acting on the grid is equivialent to a large voltage acting on the phate indicates the possibility of amplification with the triode tube. The many uses of the electronif thbe nearly all are based upon this amplifying feature. The amplified output is not ohtained from the tube itself, but from the source of em.f. comerted between its phate and cathode. The tube simply controls the power from this source, changing it to the desired form.

To utilize the controlled power, a loud must be connected in the plate or "output" circuit, just as in the diode case. The load may be

Fie 3.6 -- Grid-voltake-rs.oplate-current curves at various fixed values of plate vohtage (Bin $^{\prime}$) far a typieal small triode. (haracteristic curves of this type can be taken by varying the battery voltages in the eirenit
either a resistance or an impedance. The term "impedance" is frequently used even when the load is purely resistive.

Tube Characteristics

The physical construction of a triode determines the relative effectiveness of the grid and plate in controlling the plate current. If a very small change in the grid voltage has just as much effect on the plate current as a very large change in plate voltage, the tube is said to have a high amplification factor. Amplification factor is commonly devignated by the (ireck letter μ. . In amplification factor of 20 , for example, means that if the grid voltage is changed by 1 volt, the effect on the plate current will be the same as when the plate voltage is changed by 20 volts. The amplification factors of triode tubes range from 3 to 100 or so. . 1 high $-\mu$ tube is one with an amplification factor of perhaps: 30 or more; medium- μ tulues have amplification factors in the approximate range 8 to 30 , and low- μ tubes in the range below 7 or 8 .

It would be natural to think that a tube that has a large μ would be the best amplifier, but to olitain a high μ it is necessary to construct the grid with many turns of wire per inch, or in the form of a fine mesh. This leaves a relatively small open area for electrons to go through to reach the plate, so it is difficult for the plate to attract large numbers of electrons. Quite a large change in the plate voltage must be made to effect a given change in plate current. This means that the resistance of the plate-cathode path - that is, the plate resistance - of the tube is high. Since this resistance acts in series with the load, the amount of current that can be made to flow through the load is relatively small. On the other hand, the plate resistance of a low- μ tube is relatively low.

The best all-around indication of the effectiveness of the tube as an amplifier is its transconductance - also called mutual conductance. This characteristic takes account of both amplification factor and plate resistance, and therefore is a figure of merit for the tube. Transconductance is the change in plate current divided by the change in grid voltage that causes the platecurrent change (the plate voltage being fixed at a desired value). Since current divided by voltage is conductance, transconductance is measured in the unit of conductance, the mho. Practical values of transconductance are very small, so the micromho (one-millionth of a mho) is the commonly-used unit. Different types of tules have transconductances ranging from a few hundred to several thousand. The higher the transconductance the greater the possible amplification.

AMPLIFICATION

The way in which a tube amplifies is best shown by a type of graph called the dynamic characteristic. Such a graph, together with the
circuit used for obtaining it, is shown in Fig. 3-7. The curves are taken with the plate-supply voltage fixed at the desired operating value. The difference between this circuit and the one shown in Fig. 3-6 is that in Fig, 3-7 a load resistance is connected in series with the plate of the tube. Fig. 3-7 thus shows how the plate current will vary, with different grid voltages, whon the plate current is made to flow through a load and thus do useful work.

Fif. 3- $\overline{-}$ - Dy namic eharacterintics of a small trisule with varions load resistances from , $\mathbf{0} 000$ to 100,0100 ohms.

The several curves in lig. 3-7 are for varions values of load resistance. When the resistance i, small (as in the case of the $5000-\mathrm{ohm}$ load) the plate current changes rather rapidly with a given change in grid voltage. If the load resistance is high (as in the 100,000 -ohm curve), the change in plate current for the same grid-voltage change is relatively small, so the curve tends to be straighter.

Fig. :3-8 is the same type of curve, but with the circuit arranged so that a source of alternating voltage (signal) is inserted between the grid and the grid battery (" C " battery). The voltage of the grid battery is fixed at -5 volts, and from the curve it is seen that the plate current at this grid voltage is 2 milliamperes. This current flows when the load resistance is 50,000 ohms, as indicated in the circuit diagram. If there is no a.c. signal in the grid cireuit, the voltage drop in the load resistor is $50,000 \times 0.002=100$ volts, leaving 200 volts between the plate and cathode.

When a sine-wave signal having a peak value of 2 volts is applied in series with the bias voltage in the grid circuit, the instantaneous voltage at the grid will swing to -3 volts at the instant the signal reaches its positive peak, and to -7 volts at the instant the signal reaches its negative peak. The maximum plate current will occur at the instant the grid voltage is -3 volts. As shown by the graph, it will have a value of 2.65 milliamperes. The minimum plate current occurs a ${ }^{4}$. the instant the grid voltage is -7 volts, and has a value of 1.35 ma . At intermediate values of grid voltage, intermediate plate-current values will occur.
The instantaneous voltage between the plate

Fig. 3-8 - Amplifier operation. When the plate carrent varies in response to the signal aprliad to the grid, a varying voltare drop apprars atrow the load, $K_{\text {be }}$ a shown by the dashed curve, $E_{\mathrm{p}} . I_{p}$ is the plate current.
and cathode of the tube also is shown on the graph. When the phate current is maximum, the instantaneous voltage drop in R_{p} is 50,000 $\times 0.002(65=132.5$ volts; when the plate current is minimum the instantancous voltage drop in R_{p} is $50,000 \times 0.00135=67.5$ volts. The actual voltage between plate and eathode is the difference between the plate-supply potential, 300 volts, and the voltage drop in the load resistance. The plate-to-cathode voltage is therefore 167.5 volts at maximum plate current and 232.5 volts at minimum plate current.

This varying phate voltage is an a.c. voltage superimposed on the steady plate-rathode potential of 200 volts (as previously determined for m-signal conditions). The pat value of this a.c. output voltage is the difference between either the maximum or minimum pate-athode voltage and the no-signal value of 200 volts. In the illustration this difference is $232.5-200$ or 200167.5 ; that is, 32.5 volts in either case. Nince the grid signal voltage has a peak value of 2 volts, the voltage-amplification ratio of the amplifier is $32.5 / 2$ or 16.25 . That is, approximately 16 times as much voltage is ohtained from the plate circuit as is applied to the grid cirenit.

As shown by the drawings in Pig. :3-s, the alternating compment of the plate voltage swings in the negutive direction (with reference to the no-signal value of plate-cathode voltage) when the grid voltage swings in the positive direction, and vice versa. This means that the alternating component of plate voltage (that is, the amplified signal) is 180 degrees out of phase with the signal voltage on the grid.

Bias

The fixed negative grid voltage (ealled grid bias) in Fig. 3-8 serves a very useful purpose. Onc object of the type of amplification shown in this drawing is to obtain, from the plate circuit, an alternating voltage that has the same waveshape ats the signal voltage applied to the grid. To do so, an operating point on the straight part of the curve must be selected. The curve must be straight in both directions from the operating point at least far enough to accommordate the maximum value of the signal applied to the grid. If the grid signal swings the plate current bark and forth over a part of the eurve that is not straight, as in Fig, 3-9, the shape of the a.e. wave in the phate circuit will not be the same as the shape of the grid-sigmal wave. In such a cise the output waveshape will be distorted.

A second reason for using ungative grid bias is that any signal whose peak positive voltage does not exceed the fixed negative voltage on the grid camot cause grid current to flow. With no current flow there is no power consumption, so the tuke will amplify without taking an! poreer from. the signal source. (However, if the positive poak of the signal does exeed the negative bian, cumrent will flow in the grid cireuit during the time the grid is positive.)

Distortion of the output waveshape that results from working over a part of the curve that is mot straight (that is, a nonlinear part of the (unve) has the effect of transforming a sint-wave grid signal into a more complex waveform. As explained in an earlier chapter, a complex wave can be resolved into a fundamental and a series of harmonies. In other words, distortion from nonlinearity causes the generation of hammonic. frequencies - Frequencies that are not presont in the signal applied to the grid. Harmonic distortion is undesirable in most amplifiers, although

Fid. 3-9-Ilarmonic distortion resulting from choice of an operating point on the curved part of the tube chararteriztic. 'The low or half-e? ole of plate iourrent dota not have the same shatre a- the biper halforyche.
there are ocasions when harmonics are deliberately generated and used.

Amplifier Output Circuits

The useful output of a vacuum-tube amplifier is the alternating component of plate current or plate voltage. The d.c. voltage on the plate of the tube is essential for the tube's operation, but it almost invariably would cause difficulties if it were applied, along with the a.e. output voltage, to the load. The output circuits of vacuum tubes are therefore arranged so that the a.c. is transferred to the load but the d.e. is not.

Three types of couphing are in common use at audio frequencies. These are resistance coupling, impedance coupling, and transformer coupling. They are shown in Fig. 3-10. In all three cases the output is shown coupled to the grid cireuit of a subsequent amplifier tube, but the same types of circuits can be used to couple to other devices than tubes.

In the resistance-coupled circuit, the a.c. voltage developed across the plate resistor K_{p} (that is, between the plate and cathode of the tube) is applied to a second resistor, R_{g}, through a coupling condenser, (c. The condenser "blockss off" the d.e. voltage on the plate of the first tube and prevents it from being applied to the grid of t uhe B. The latter tube has negative grid bias supplied by the battery shown. No current flows in the grid circuit of tube B and there is therefore mo d.e. voltage drop in R_{g}; in other words, the full voltage of the bias battery is applied to the grid of tube l.

The grid resistor, R_{g}, usually has a rather high value (0.5 to 2 megohms). The reactance of the coupling condenser, (c, must be low enough compared with the resistance of R_{g} so that the a.c. voltage drop in (${ }^{\prime}$ is negligible at the lowest frequency to be amplified. If R_{g} is at least 0.5 megohm, a $0.1-\mu \mathrm{fd}$. condenser will be amply large for the usual range of audio frequencies.

So far as the altemating component of plate voltage is concerned, it will be realized that if the voltage drop in C_{c} is negligible then K_{p}, and K_{g} are effectively in parallel (although they are quite separate so far as d.c. is concerned). The resultant parallel resistance of the two is therefore the actual load resistance for the tube. That is why R_{g} is made as high in resistance as possible; then it will have the least effect on the load represented by R_{p}.

The impedance-coupled circuit differs from that using resistance coupling only in the substitution of a high-inductance coil (usually several hundred henrys for audio frequencies) for the plate resistor. The advantage of using an inductance rather than a resistor is that its impedance is high for alternating currents, but its resistance is relatively low for d.c. It thus permits obtaining a high value of lond impedance for a.c. without an excessive d.c. voltage drop that would use up a good deal of the voltage from the plate supply.

The transformer-coupled amplifier uses a transformer with its primary comnected in the plate

Fig. 3-10 - 'Three basic forms of coupling hetween vacuum-tube amplifiers.
circuit of the tube and its secondary conneated to the load (in the circuit shown, a following amplifier). There is no direct comection between the two windings, so the plate voltage on tube A is isolated from the grid of tube 13 . The trans-former-roupled tmplifier has the same advantage as the impedance-coupled circuit with respert to loss of voltage from the plate supply. Also, if the secondary has more turns than the primary, the output voltage will be "stepped up" in proportion to the tums ratio.

Resistance coupling is simple, inexpensive, and will give the same amount of amplification - or voltage gain - over a wide range of frequencies; it will give substantially the same amplification at any frequency in the audio range, for example. Impedance coupling will give somewhat more gain, with the same tube and same plate-supply voltage, than resistance coupling. However, it is not quite so good over a wide frequency range; it tends to "peak," or give maximum gain, over a comparatively narrow band of frequencies. With a good transformer the gain of a trans-former-coupled amplifier can be kept fairly constant over the audio-frequency range. On the
other hand, transformer coupling in voltage amplifiers (see below) is best sulted to triondes having amplification factors of about 10 or less, for the reason that the primary inductance of a practicable transformer eamot be made large enough to work well with a tube having high plate resistance.

An amplifier in which voltage gain is the primary consideration is called a voltage amplifier. Maximum voltage gain is secured when the load resistance or impedance is made as high atsonsible in comparison with the plate resistane of the tube. In such a case, the major pertion of the voltage generated will appear arross the load and only a relatively small part will be "lost" in the plate resistance.

Voltage amplifiers belong to a group ablled Class A amplifiers. A ('lass A amplifier is one operated so that the waveshape of the output voltage is the same as that of the signal woltage applied to the grid. If a Class A amplifier is biased so that the grid is always negative, even with the largest signal to be handled by the grid, it is called : Class A_{1} amplifier. Voltage amplifiers are always Class A_{1} amplifiers, and their primary use is in driving a following (lass M_{1} amplifier.

Power Amplifiers

The end result of any amplification is that the amplified signal does some trork. For example, an andio-frequeney amplifier usually drives a loudspoaker that in turn produces sound waves, The greater the amount of a.f. perer supplied to the 'spaker, the louder the sound it will produce.

Fig. 3-11 - An Mementary mower-amplifier circuit in which the powereconsuming loan is compled to the plate cireuit through an impeifanee-matehing transformer.

Fig. :3-11 shows an elementary power-amplifier circuit. It is simply a transformer-coupled amplifier with the lond comerted to the secondary. Athough the load is shown as a resistor, it actually wond be some device, such as a loudspeaker, that employs the power usefully. Bvery power tulve requires a specific value of load resistance from plate to cathode, usually some thoustuds of ohms, for optimum operation. The resistance of the actual load is rarely the right value for "matching" this optimum load resistance, so the transformer turns ratio is chosen to reflect the proper value of resistance into the primary. The turns ratio may the either step-up or step-down, depending on whether the actual lond resistance is higher or lower than the load the tube wants.

The power-amplification ratio of an amplifier is the ratio of the power output obtained from the plate circuit to the power reguired from the a.c. signal in the grid circuit. There is no power lost in the grid circuit of a Class A_{1} amplifier, so surh an amplifier has an infinitely large power-amplification ratio. However, it is quite possible to operate a (lass A amplifier in such a way that current flows in its grid circuit during at least part of the cyole. In such a case power is used up in the grid circuit and the power amplification ratio is not infinite. A tube operated in this fashion is known as a Class A_{2} amplifier. It is necessary to use a power amplifier to drive a Class λ_{2} amplifier, because a voltage amplifier camot deliver power without serious distortion of the wave-shape.

Snother term used in connertion with power amplifiors is power sensitivity. In the case of a ('lass λ_{1} amplifier, it means the ratio of powe output to the grid signal voltage that causes it. If grid surrent flows, the term usually moans: the ratio of phate power output to grid power input.

The a.e. power that is delivered to a lond by an :mplifier tube hav to be paid for in power taken from the source of plate voltage and current. In fact, there is always more power going into the plate circuit of the tube than is eoming out as useful ontput. The differenec betwen the input and output power is used up, in heating the plate of the tube, as explained previously: The ratio of useful power output to d.c. plate input is called the plate efficiency. The higher the pate efficiency, the greater the amount of power that can be taken from a tube having a fixed plate-dissipation rating.

Parallel and Push-Pull

When it is necessary to obtain more power output than one tube is capable of giving, two or more similat tubes may be connerted in parallel. In this case the similar elements in all tubes are comected together. This method is shown in Fig. 3-12 for a transformer-coupled amplifier. The power output is in proportion to the number of tubes used; the grid signal or exciting voltage required, however, is the same as for one tube.

If the amplifier operates in such a way as to consume power in the grid circuit, the grid power required is in proportion to the number of tubes used.

An incease in power output also can be secured by emmecting two tubes in push-pull. In this case the grids and plates of the two tubes are comnected to opposite ends of a balanced circuit as shown in Fig. :3-12. At any instant the ends of the secondary winding of the input transformer, T_{t}, will be at opposite polarity with respert to the athode comnertion, so the grid of one tube is swong positive at the same instant that the grid of the other is swang negative. Hencr, in any push-pull-comected amplifier the voltages and currents of one tube: are cout of phase with those of the other tube.

Push-Pull
Fig. 3-12 - Parallel and push-pull a.f. amplifier circuits.
In push-pull operation the even-harmonic (serond, fourth, etr.) distortion is balanced out in the plate circuit. 'This means that for the same power output the distortion will be less than with parallel operation.

The exciting voltage measured between the two grids must be twice that required for one tube. If the grids consume power, the driving power for the push-pull amplifier is twice that taken by either tube alone.

Cascade Amplifiers

It is readily possible to take the output of one amplifier and apply it as a signal on the grid of a second amplifier, then take the second amplifier's output and apply it to a third, and so on. liach amplifier is called a stage, and a number of stages used successively are said to be in cascade.

Class B Amplifiers

Fig. 3-13 shows two tubes connected in a push-pull circuit. If the grid bias is set at the point where (when no signal is applied) the plate current is just cut off, then a signal can cause plate current to flow in either tube only when the signal voltage applied to that particular tube is positive. Since in the balanced grid circuit the sigmal voltages on the grids of the two tubes always have opposite polarities, plate current flows only in one tube at a time.

The graphs show the operation of such an amplifier. The plate current of tube B is drawn inverted to show that it flows in the opposite direction, through the primary of the output transformer, to the plate current of tube A. Thus each half of the output-transformer primary works alternately to induce a half-cycle of voltage in the secondary. In the secondary of T_{2}, the original waveform is restored. This type of operation is called Class B amplification.

The Class B amplifier is considerably more efficient than the Class I amplifier. Further-
more, the d.c. plate current of a Class B amplifier is proportional to the signal voltage on the grids, so the power input is small with small signals. The d.e. plate power input to a Class A amplifier is the same whether the signal is large, small, or absent altogether; therefore the maximum input that can be applied to a Class A amplifier is equal to the rated plate dissipation of the tube or tubes. Two tubes in a Class B amplifier can deliver approximately twelve times as much audio power as the same two tubes in a Class A amplifier.

A Class 13 amplifier usually is operated in such a way as to secure the maximum possible power output. This requires rather large values of plate current and to obtain them the grids must be driven positive with respect to the cathode during at least part of the cycle, so grid current flows and the grid circuit consumes power. While the power requirements are fairly low (as compared with the power output), the fact that the grids are positive during only part of the cycle means that the load on the preceding amplifier or driver stage varies in magnitude during the cycle; the effective load resistance is high when the grids are not drawing current and relatively low when they do take current. This must be allowed for when designing the driver.

Certain types of tubes have been designed specifically for Class I3 service and can be operated without fixed or other form of grid bias ("zero-bias" tubes). The amplification factor is so high that the plate current is small without signal. Beasuse there is no fixed bias, the grids start drawing current immediately whenever a signal is applied, so the grid-current flow is continuous throughout the cycle. This makes the load on the driver much more constant than is the case with tubes of lower μ biased to platecurrent cut-off.
Class B amplifiers used at radio frequencies are known as linear amplifiers because they are

Fig. 3-13 - Class 13 amplifier operation.
adjusted to operate in such a way that the power output is proportional to the square of the r.f. exciting voltage. This permits amplification of a modulated r.f. signal without distortion. Pushpull is not required in this type of operation; a single tube can be used equally well.

Class AB Amplifiers

A Class AB amplifier is a push-pull amplifier with higher bias than would be normal for pure Class I operation, but less than the cut-off bias required for Class I 3 . It low signal levels the tubes operate practichly as Class .1 amplifiers, and the plate current is the same with or without signal. At higher signal levels, the plate eurrent of one tube is cut.off during part of the negutive cycle of the signal applied to its grid, and the plate current of the other tube rises with the signal. The plate current for the whole amplifier also rises above the no-signal level when a large signal is applied.

In a properly-designed Class . IB amplifier the distortion is as low as with a Class A stage, but the efficiency and power output are considerably higher than with pure Class I operation. A (Class AB amplifier can be operated either with or without driving the grids into the positive region. A Class $A B_{1}$ amplifier is one in which the grids are never positive with respect to the cathode; therefore, no driving power is required - only voltage. A Class AB_{2} amplifier is one that has grid-current flow during part of the cycle if the applied signal is large; it takes a small amount of driving power. The Class AB_{2} amplifier will deliver somewhat more power (using the same tubes) but the Class. MB_{1} amplifier avoids the problem of designing a driver that will deliver power, without distortion, into a load of highly-variable resistance.

Operating Angle

Inspection of Fig. 3-13 shows that either of the two tubes actually is working for only half the a.c. cycle and idling during the other half. It is eonvenient to describe the amount of time during which plate current flows in terms of electrical degrees. In Fig. :3-13 earh tube hats " 180 -degree" exeitation, a half-eycle being equal to 180 degrees. The number of degrees during which plate current flows is called the operating angle of the amplifier. From the descriptions given above, it should be clear that a Class A amplifier has 360 -degree exitation, because phate current flows during the whole cycle. In a Class Als amplifier the operating angle is between 180 and 360 degrees (in cach tube) depending on the particular operating conditions chosen. The greater the amount of negative grid bias, the smaller the operating angle becomes.

An operating angle of less than 180 degrees leads to a considerable amount of distortion, because there is no way for the tube to reproduce even a half-cycle of the signal on its grid. Using two tubes in push-pull, is in Fig. 3-13, would merely put together two distorted half-cycles. An operating angle of less than 180 degrees
therefore cannot be used if distortionless output is wanted.

Class C Amplifiers

In power amplifiers operating at radio frequencies distortion of the r.f. waveform is relatively unimportant. For reasons described later in this chapter, an r.f. amplifier must be operated with tuned circuits, and the selectivity of such circuits "filters out" the r.f. harmonics resulting from distortion.

A radio-frequency power amplifier therefore can be used with an operating angle of less than 180 degrees. This is called Class C operation. The advantage is that the plate efficiency is increased, beaduse the loss in the plate is proportional, among other things, to the amount of time during which the plate current flows, and this time is reduced by decreasing the operating angle.

Depending on the type of tube, the optimum load resistance for a Class (, amplifier ranges from about 1500 to 5000 ohms. It is usually secured by using tumed-circuit arrangements, of the type described in the chapter on circuit fundamentals, to transform the resistance of the actual load to the value required by the tube. The grid is driven well into the positive region, so that grid eurrent flows and power is consumed in the grid circuit. The smaller the operating angle, the greater the driving voltage and the larger the grid driving power required to develop full output in the load resistance. The best compromise between driving power, plate efficiency, and power output usually results when the minimum plate voltage (at the peak of the driving eycle, when the plate current reaches its highest value) is just equal to the peak positive grid voltage. Inder these conditions the operating angle is usually from 150 to 180 degrees and the plate efficiency lies in the range of 70 to 80 percent. While higher plate efficiencies are possible, attaining them requires excessive driving power and grid bias, together with higher plate voltage than is "normal" for the particular tube type.

With proper design and adjustment, a ('lass (') amplifier can be made to operate in such a way that the power input and output are proportional to the square of the applied plate voltage. This is an important consideration when the amplifier is to be plate-modulated for radiotelephony, as deseribed in the chapter on amplitude modulation.

F FEED-BACK

It is possible to take a part of the amplified energy in the plate circuit of an amplifier and insert it into the grid circuit. When this is done the amplifier is said to have feed-back.

If the voltage that is inserted in the grid cirruit is $\mathbf{1 8 0}$ degrees out of phase with the signal voltage acting on the grid, the feed-bark is called negative, or degenerative. On the other hand, if the voltage is fed back in phase with the grid simasa, the feed-back is called positive, or regenerative.

Negative Feed-Back

With negative feed-back the voltage that is fed back opposes the signal voltage. This decreases the amplitude of the voltage acting between the grid and cathore and thus has the effect of reducing the voltage amplification. That is, a larger exciting voltage is required for obtaining the same output voltage from the plate circuit.

The greater the amount of negative feel-back (when properly applied) the more independont the amplification becomes of tube characteristics and circuit conditions. This tends to make the frequency-response chartcteristic of the amplifier flat-that is, the amplification tends to be the same at all frequencios within the range for which the amplifier is designed. Also, any distortion generated in the phate circuit of the tube tends to "buck itself out." Implifiers with negative feed-back are therefore comparatively free from harmonic distortion. These advantages are worth while if the amplifier otherwise has enough voltage gain for its intended use.

(A)

Fig. 3.14-Simple circuits for producing feed-back.
In the circuit shown at \mathbf{I} in Fig. :3-14 resistor R_{c} is in series with the regular plate resistor, R_{p}, and thus is at part of the load for the tube. Therefore, part of the output voltage will appear across R_{c}. However, R_{c} also is comerted in series with the grid circuit, and so the output voltage that appears arross R_{c} is in series with the signal voltage. The output voltage aross R_{c} opposes the signal voltage, so the actual a.c. voltage between the grid and cathode is equal to the difference between the two voltages.

The circuit shown at B in Fig. 3-14 can be used to give either negative or positive feel-hark. The secondary of at transformer is connected bark into the grid cireuit to insert a desired amount of feed-hack voltage. Reversing the terminals of either transformer winding (but not both simultaneously) will reverse the phase.

Positive Feed-Back

Positive feed-back increases the amplification because the feed-back voltage adds to the original signal voltage and the resulting larger voltage on
the grid causes a larger output voltage. The amplification tends to be greatest at one frequency (depending upon the particular circuit arrangement) and hamonic distortion is increased. If enough energy is fed back, a selfsustaining oscillation - in which energy at essentially one frequency is generated by the tube itself - will be set up. In such case all the signal voltage on the grid cin be supplied from the plate circuit; no extornal signal is needed because any small irregularity in the plate current - and there are always some such irregularities - will be amplified and thus give the oscillation an opportunity to build up. Oseillations obviously would be undesirable in an ordinary audiofrequency amplifier, and for that reason (as well as the others mentioned above) the use of positive feed-back is confined principally to "osciltators."

INTERELECTRODE CAPACITANCES

Each pair of elements in a tube forms a small condenser, with each element acting as a condenser "plate." There are three such caparitances in a trionle - that between the grid and cathode, that between the grid and plate, and that between the phate and cathole. The capacitances are very small - only a few micromicrofarads at most - but they frequently have a very pronounced effect on the operation of an amplifier circuit.

Input Capacitance

It was expluined previously that the a.c. grid voltage and a.c. plate voltage of an amplifier having a resistive load are 180 degrees out of phase, using the cathode of the tube as a reference point. However, these two voltages are in phase going around the cirruit from pate to grid as shown in Fig, 3-15. This means that their sum is arting hetween the grid and phate; that is, across the grid-plate caparitance of the tube.

As a result, a rapacitive current flows anound the circuit, its :mplitude being directly proportional to the sum of the a.c. grid and plate voltages and to the grid-plate capacitance. The source of grid signal must furnish this amount of current, in addition to the capacitive current that flows in the grid-athode capacitance. Hence the signal source "sees" an effective capacitance that is larger than the grid-rathole capacitance. The greater the voltage amplifioation the greater this effective input caparitance. The input capari-

Fig. 3.15-The are voltage appearing belween the grid and plate of the amplifier is the sum of the signal voltage and the outgut voltage, as shown by this sim. plified circuit. Instantancons polarities are indicated.
tance of a resistance-coupled amplifier is given by the formula

$$
C_{\text {input }}=C_{\mathrm{kk}}+C_{\mathrm{kp}}(A+1)
$$

where $C_{k k}$ is the grid-to-cathode capacitance, $C_{\text {sp }}$ is the grid-to-plate capacitance, and.t is the voltage amplification. The caparitance may be as much as several hundred micromicrofiarads when the voltage amplification is large, even though the interelectrode enpacitances are quite small.

Output Capacitance

The principal component of the output capacitance of an amplifier is the actual plate-tocathode eapacitance of the tube. The output apmatitance usually need not be considered in audio amplifiers, but becomes of importance at radio frequencies.

Tube Capacitance at R.F.

At radio frequencics the reartances of even very small interelectrode capacitances drop to very low values. A resistance-coupled amplifior cammot be used at r,f., for example, because the reactances of the interelertrode "condensers" are so low that they practically short-circuit the input and output circuits and thus the tube is unable to amplify. This is overcome at radis frequencies by using tuned circuits for the grid and wate, making the tube capacitances part of the tuning capacitances. In this way the circuits can have the high resistive impedanees necessary for satisfactory amplification.

The grid-plate capacitance is important at radio frequencies because it is, in effect. it coupling condenser between the grid and plate cirruits. Since its reantance is relatively low at r.f., it offers a path over which energy can be fed back from the plate to the grid. In practically every case the feed-back is in the right phase and of sufficient amplitude to cause oscillation, so the circuit becomes useless as an amplifier.
special "neutralizing" circuits can be used to prevent feed-back but they are, in general, not too satisfactory when used in radio receivers. They are, however, widely used in transmitters.

SCREEN-GRID TUBES

The grid-plate capacitance cian be reduced to a negligible value by inserting a second grid between the control grid and the plate, as indicated in Fig. 3-16. The second grid, called the screen grid, acts as an electrostatic shield to prevent cupacitive coupling between the control grid and plate. It is made in the form of a grid or coarse sereen so that electrons can pass through it.

Berause of the shielding action of the soreen grid, the positively-charged plate camot attract electrons from the cathode as it does in a triode. In order to get electrons to the plate, it is also necessary to apply a positive voltage (with respect to the cathode) to the sereen. The screen then attracts electrons much as does the plate in a triode tube. In traveling toward the screen the electrons acquire such velocity that most of them
shoost between the screen wires and then are attracted to the pate. I certain proportion do strike the screen, however, with the result that some current also flows in the screen-grid circuit.

To be a good shield, the sereen grid must be connected to the cathode through a circuit that has low impedance at the frequency heing amplified. A by-pass condenser from sereen grid to cathode, having a reactance of not more than a few hundred ohms, is generally used.

A tube having a cathode, control grid, sceen grid and plate (four elements) is called a tetrode.

Fiy. 3.16-Representative arrangement of elementa in at screengriil tulue, with front part of plate and sersen grid ent away. In this draw. ing the control-grid comnerelion is made llirongh a cap on the top of the tuber thus eliminating the caparitance that wonld exist ley ween the plata-and prid-lad wires if looth pasied thronyh the base" "Singhe-tomed" tulves tisat have tooth leade geting through the base use sperial shichding aml construption to eliminate interlead capacitance.

Pentodes

When an electron traveling at approciable velocity through a tube strikes the plate it dislodges other electrons which "splash" from the plate into the interelement space. This is called secondary emission. In a triode the negative grid repels the secondary electrons back into the phate and they cause no disturbance. In the sorcen-grid tube, however, the positively-charged sereen attracts the secondary electrons, causing a reverse current to flow between screen and plate.

To overcome the effects of secondary emission, a third grid, called the suppressor grid, may be inserted between the sereen and plate. This grid, which usually is connerted directly to the cathode, repels the relatively low-velocity secondary electrons. They are driven back to the plate without appreciably ohstructing the regular plate-current flow. A five-element tube of this type is called a pentode.

Although the sereen grid in either the tetrode or pentode greatly reduces the influence of the plate upon plate-rurrent flow, the control grid still can control the plate current in cesentially the same way that it does in a triode. Consequently, the grid-plate transeondurtince (or mutual eonductance) of a tetrode or pentode will be of the same order of value as in a triode of cor-
responding structure. On the other hand, since a change in plate voltage has very little effect on the plate-current flow, both the amplifieation factor and plate resistance of a pentode or tet rode are very high. In small receiving pentodes the amplification fitetor is of the order of 1000 or higher, while the plate resistance may be from 0.5 to 1 or more megohms. Because of the high plate resistance, the atual voltage amplification possible with a pentode is very much less than the large amplifieation factor might indicate. A voltage gain in the vicinity of 50 to ' 200 is typical of a pentode stage.

In practical screen-grid tubes the grid-phate capacitunce is only a small fraction of a micoomicrofarad. This caparitance is too small to cause an appreciable increase in input capacitane as described in the preceding soction, so the input rapacitance of a sereen-grid tube is simply the sum of its griderathome capacitance and control-grid-to-screon capacitance. The output capacitance of a sorom-grid tube is equal to the capacitance between the plate and sereen.

Pentode R.F. Amplifier

Fig. 3-17 shows a simplified form of r.f. amplifier circuit using a pentode tube. Radiofrequeney energy in the small coil coupled to L_{1} is built up in voltage in the tuned circuit, $L_{1} f_{1}$, when $L_{1} r^{\prime}{ }_{1}$ is tumed to resonance with the frequency of the incoming signal. The voltage that appeans ateross $L_{1} f_{1}$ is applied to the grid and eathode of the tube and is amplified bev the tube. I second resomant circuit, $I .2{ }^{\circ} \cdot 2$, is the load for the plate of the tube, its parallel impedance being high becouse it is tuned to resonance with the frequency applied to the grid. IR.f. output can be taken from the coil coupled to La. The sereengrid voltage is whtained from a tap on the phate battery; most tubes are designed for operation with the sereen voltage considerably lower than the pate voltage. In this circuit the batteries are assumed to have low impedance for the r.f. current; in a pactical dircuit, by-pass condensers would be used to make sure that the impedinces of the return paths are so low as to be negligible.

Audio Amplification

In addition to their applications as radiofrequency amplifiers, pentode or tetrode sereengrid tubes also can be constructed for audiofrequency power amplification. In tubes designed for this purpose the chief function of the screen is to serve ats an arcelerator of the electrons, so that layge values of plate current can be drawn at relatively low hate voltages, such tubes have quite high power sensitivity compared with triodes of the same power output, although harmonic distortion is somewhat greater.

Beam Tubes

A beam tetrode is a four-element screen-grid tube constructed in such a way that the electrons are formed into concentrated beams on their way to the plate. Additional design features overome the effects of secondary emission so that a suj-

Fig. 3-17-Simplified pentode r.f.-amplifier circuit. $I_{1} C_{1}$ and $L_{2} \mathrm{C}_{2}$ are tuned to the same freguency.
pressor grid is not needed. The "bcam" construction makes it possible to draw large plate currents at relatively low plate voltages, and increases the power sensitivity.

For power amplification at both audio and radio frefuencies beam totrodes have largely suphinted the pentode trpe because large power outputs cin be secured with very small amounts of grid driving power. The circuits with which they are used are practically identical with those used for pentodes.

Fig. 3-18 - Curves showing the relationship hetween nutual conductance and negative grid bias for two small receiving pentomes, one a sharp cut-off type and the other a variable- μ type.

Variable- μ Tubes

The mutual conductance of a vacuum tube decreases with incroasing negative grid bias, assuming that the other electrode voltages are held constant. Since the mutual conductance eontrols the amount of amplification, it is possible to adjust the gain of the amplifier by adjusting the grid bias. This method of gain eontrol is universally used in radio-frequency amplifiers designed for receivers. Some means of controlling the r.f. gain is essential in a receiver having a number of amplifiers, berause of the wide range in the strengths of the incoming signals.

The ordinary type of tube has what is known as a sharp cut-off eharacteristic. The mutual conductanee decreases at a uniform rate as the
negative bias is inereased, as shown in Fig. :3-18. The amount of signal voltage that such a tube can handle without causing distortion is not suffirient to take care of very strong signals. To overeome this, some tubes are made with a variable- μ characteristio (that is, the amplifieation factor changes with the grid bias), resulting in the type of curve shown in Fig. :3-18. The variable- μ tube can handle a much larger signal thatn the sharp cut-off teje before the signal swings aither beyond the zero grid-biats point or the platerevirent cut-off point.

OTHER TYPES OF AMPLIFIERS

In the amplifier circuits so far discussed, the signal has been applied between the grid and cathode and the amplified output has been taken from the plate-to-cathode cireuit. That is, the call ade has been the meoting point for the input and output cirruits. However, it is possible to use any one of the theoe principal elements as the common point. This leads to two different kinds of amplifiers, commonly called the grounded-grid amplifier (or grid-separation circuit) and the cathode follower.

Fis. 3-14- In the upper circuit, the grid is the jumetion point between the input and output circuits. In the lower drawing, the plate: is the junetion. In either rase the ontput is ale. veloped in the load resistor, R, and may tee compled to a following amplifier ly the asual methorls.

These two circuits are shown in simplified form in Fig. 3-19. In both circuits the resistor h represents the load into which the amplifier works; the actual load may be resistance-conaritancecoupled, transformer-coupled, may be a tuned circuit if the amplifier operates at radio frequencies, and so on. Also, in both circuits the batteries that supply grid biats and plate power are assumed to have such nerligible impedance that they do not enter into the operation of the circuits.

Grounded-Grid Amplifier

In the groundod-grid amplifier the input signal is applied between the cathode and grid, and the output is taken between the plate and grid. The grid is thus the common element. The plate current (including the a.c. component) has to flow through the signal source to reach the eathode. This source always has appreciable impedance,
and the alternating phate current causes a voltare drop that is out of phase with the signal and the cireuit is therefore degenerative. Also, since the souree of signal is in series with the load through the phate-to-athode resistance of the tube, some of the power in the land is supplied by the signal souree. The result is that the signal soure is called upon to fumish a considerable amount of power.
The input impedanee of the grounded-grid amplifier consists of a caparitance, calculated in a similar way as for the grounded-athode amplifier, in parallel with an equivalent resistance representing the power furnished by the driving sonde to the load. The output impedanere, neglecting the interelectrode capacitances, is equal to the pate resistane of the tube. This is the same as in the case of the grounded-rathode amplifier.
The groonded-grid amplifier finds its chief application at r.h.f. and u.h.f., where the more conventionad amplifier circuit fails to work property. With a triode tube designed for this type of operation, ath ref. amplifier can be built that is free from the type of feed-back that causes oscillation. This requires that the grid ant as a shield between the cathode and plate, reducing the plate-cathode capacitance to a very low value.

Cathode Follower

The cathode follower uses the plate of the tube as the common element. The input signal is applied between the grid and plate (assuming negligible impedane in the batteries) and the output is taken from between rathode and plate. This circuit, like the grounded-grid amplifier, is degenerative; in fact, all of the output voltage is fed back into the input circuit. The input signal therofore has to be larger than the output voltage; that is, the cathode follower gives a loss in voltage, although it gives the same power gatin as other circuits.

An important feature of the cathode follower is its low output impedance, whieh is given he the formula (neglecting the grid-to-cathode capacitance)

$$
Z_{\text {output }}=\frac{r_{\mathrm{p}}}{1+\mu}
$$

where r_{p} is the tube plate resistance and μ is the amplification factor. This is a valuable characteristio in an amplifier designed to eover a wide hand of frequencies. In addition, the input capacitance is only a fraction of the grid-to-eathode capacitance of the tube, a feature of further benefit in a wide-band amplifier. The eathode follower is useful as a step-down impedance transformer, since the input impedanee is high and the output impedance is low.

CATHODE CIRCUITS AND GRID bIAS

Most of the equipment used by amateurs is powered by the a.c. line. This includes the filaments or heaters of vacuum tubes. Although supplies for the plate (and sometimes the grid)

Fig. 3-20 - Filament center-tapping methods for use with directlyheated tubes.
are usually rectified and filtered to give pure d.c. - that is, direct current that is constant and without a superimposed a.c. component - the relatively large currents required by filaments and heaters usually make a rectifier-type d.c. supply impracticable.

Filament Hum

Alternating current is just as good as direct current from the heating standpoint, but some of the a.c. voltage is likely to get on the grid and cause a low-pitched "a.c. hum" to be superimposed on the output.

Hum troubles are worst with directly-heated eathodes or filaments, because with such cathodes there has to be a direct connection between the source of heating power and the rest of the circuit. The hum can be minimized by either of the connections shown in Fig. 3-20. In both cases the grid- and plate-return circuits are connected to the electrical midpoint (center-tap) of the filamont supply. Thus, so far as the grid and plate are concerned, the voltage and current on one side of the filament are balanced by an equal and opposite voltage and current on the other side. The balance is never quite perfect, however, so filament-type tubes are never completely humfree. For this reason directly-heated filaments are employed for the most part in power tubes, where the amount of hum introduced is extremely small in comparison to the power-output level.

With indirectly-heated cathodes the chief problem is the magnetic field set up by the heater. Occasionally, also, there is leakage between the heater and cathode, allowing a small a.c. voltage to get to the grid. If hum appears, grounding one side of the heater supply usually will help to reduce it, although sometimes better results are obtamed if the heater supply is center-tapped

Fig. 3-2I - Cathode biasing. R is the cathode resiz. tor and C is the cathode by-pass condenser.
and the center-tap grounded, as in Fig. 3-20.

Cathode Bias

In the simplified amplifier circuits discussed in this chapter, grid bias has been supplied by a battery. However, in equipment that operates from the power line cathode bias is the type commonly used.

The cathode-bias method uses a resistor (athode resistor) comnected in series with the cathode, as shown at R in Fig. 3-21, The direction of platecurrent flow is such that the end of the resistor nearest the cathode is positive. The voltage drop arross R therefore places a negative voltage on the grid. This negative bias is obtained from the steady d.c. plate current.

If the alternating component of plate current flows through R when the tube is amplifying, the voltage drop caused by the a.c. will be degenerative (note the similarity between this circuit and that of Fig. 3-14.1). To prevent this the resistor is by-passed by a condenser, (', that has very low reactance compared with the resistance of R. Depending on the type of tube and the particular kind of operation, R may be between about 100 and 3000 ohms. For good by-passing at the low audio frequencies, C should be 10 to 50 microfarads (electrolytic condensers are used for this purpose). At radio frequencies, capacitances of about $100 \mu \mu \mathrm{fd}$. to $0.1 \mu \mathrm{fd}$, are used; the small values are sufficient at very high frequencies and the largest at low and medium frequencies. In the range 3 to 30 megacycles a capacitance of $0.01 \mu \mathrm{fd}$. is satisfactory.

The value of cathode resistor for an amplifier having negligible d.e. resistance in its plate circuit (transformer or impedance coupled) can easily be calculated from the known operating conditions of the tube. The proper grid bias and plate current always are specified by the manufacturer. Knowing these, the required resistance can be found by applying Ohm's Law.

Example: It is found from tube tables that the tube to be used should have a negative grid bias of 8 volts and that at this bias the plate rurrent will be 12 millimmperes (0,012 annp, , Tive required eathode resistance is then

$$
R=\frac{E}{1}=\frac{8}{0.012}=667 \text { olıms. }
$$

The nearest standard value, 680 ohme, would be clowe enotgh. The power used in the resistor is

$$
P=E I=8 \times 0.012=0,006 \text { watt. }
$$

A $1 / 2$-watt or $1 / 2$-watt resistor would have ample rating.

The current that flows through R is the total cathode current. In an ordinary triode amplifier this is the same as the plate current, but in a screen-grid tube the cathode current is the sum of the plate and screen currents. Hence these two currents must be added when calculating the
value of cathode resistor required for a screengrid tube.

Example: A receiving pentode requires 3 volts negative biass. It this bias and the recommended plate and sereen voltages, its plate current is ! nat. and its sereen eurrent is 2 mab. The ratherme current is therefore 11 mit. (0.011 anp.). 'l'hn' required resistitnce is

$$
R=\frac{E}{I}=\frac{3}{0.011}=272 \text { ohms. }
$$

A 270 -ohn resistor would be satisfactory. The power in the resistor is

$$
P=E I=3 \times 0.011=0.033 \text { watt. }
$$

The cathode-resistor methol of biasing is selfregulating, because if the tube characteristics vary slightly from the published values (as they do in practice) the hits will increase if the plate current is slightly high, or decrease if it is slightly low. This tends to hold the plate current at the proper value.

Calculation of the athode resistor for a re-sistance-coupled amplifier is ordinarily not practicable by the method deseribed above, because the plate current in such an amplifier is usually much smaller than the rated value given in the tube tables. However, representative data for the tubes commonly used as resistance-roupled amplifiers are given in the chapter on audio amplifiers, including cathode-resistor values.

Screen Supply

In practical circuits using tetrodes and pentodes the voltage for the soreen frequently is taken from the plate supply through a resistor. I typical circuit for an r.f. amplifier is shown in Fig. 3-2\%. Resistor R is the screen dropping resistor, and C is the screen by-pass condenser. In flowing through R, the screen current causes a voltage drop in R that reduces the plate-supply voltage to the proper value for the screen. When the plate-supply voltage and the screen current are known, the value of R can be calculated from Ohm's Law.

> Example: An r.f. receiving pentode has a rated screen current of 2 milliamperes (0.002 amp.) at normal operating eonditions. The rated sereen voltage is 100 volts, and the phite supply gives 250 volts. To put 100 wolts on the screen, the drop across R must be equal to the difference between the plate-supaly voltabe and the sereen voltage; that is, $2.50-100=150$ volts. Then

$$
R=\frac{E}{I}=\frac{150}{0.002}=75,000 \text { ohns. }
$$

The power to be dissijuted in the resistor is

$$
P=E I=150 \times 0.002=0.3 \text { watt }
$$

A $1 / 2$ - or 1 -watt resistor would be sutisfactory.
The reactance of the screen by-pass condenser, C, should be low compared with the screen-tocathode impedince. For radio-frequency applications a capacitance in the vieinity of $0.01 \mu \mathrm{fd}$. is amply large.

In some circuits the screen voltage is obtained from a voltage divider connected across the plate supply. The design of voltage dividers is discussed at length in the chapter on Power Supplies.

Fig. 3-22 - Screen-voltage supply for a pentode tuhe through a dropping resistor, R. The sereen by-pass condenser, C, must have low enough reactance to bring the sureen to ground potential for the frequeney or frefuencies being amplitied.

SPECIAL TUBE TYPES

Multipurpose Tubes

"Combination" tubes are available to perform more than one function, particularly in receiver circuits. For the most part these are simply multiunit tubes made up of individual tubeelement structures, combined in a single bulb, for compactness and economy.

Among the simplest multipurpose types are full-wave rectifiers, combining two diodes in one envelope, and twin triodes, consisting of two triodes in one bulb. More complex types include duplex-diode triodes (two diodes and a triode in one structure), duplex-diode pentodes, converters and mixers (for superheterodyne receivers), combination power tubes and rectifiers, and so on.

Mercury-Vapor Rectifiers

For a given value of plate current, the power lost in a diode rectifier will be redured if it is possible to decrease the voltage drop from plate to cathode. A small amount of mercury in the tube will vaporize when the cathode is heated and, further, will ionize when plate voltage at least equal to a certain minimum value (ionizing voltage) is applied. The positive ions neutralize the space charge and reduce the phate-cathode voltage drop to a practically constant value of about 1.5 volts, regardless of the value of plate current.

Since this voltage drop is smaller than can be attained with purely thermionic conduction, there is less power loss in a mercury-vapor rectifier than in a vacuum rectifier. Also, the voltage drop in the tube is constant despite variations in load current. Mercury-vapor tubes are widely used in rectifiers built to deliver large power outputs.

Grid-Control Rectifiers

If a grid is inserted in a mercury-vapor rectifier it is found that, with sufficient negative grid bias, it is possible to prevent plate current from flowing. However, this is true onl!! if the bias is present before plate voltage is applicd. If, after applying plate voltage, the bits is lowered to the point where plate current can flow, the mercury vapor will ionize and the grid will lose control of
plate current, because the space charge disappears when ionization occurs. The grid can assume rontrol again only after the plate voltage is reduced below the deionizing voltage, which is somewhat less than the plate-cathode voltage drop during plate-current flow.

The same phenomenon also occurs in triodes filled with other gases that ionize at low pressure. Grid-control rectifiers or thyratrons find considerable application in "electronic switching," and in timing deviors. Both triode and tetrode types are manufactured.

Oscillators

It was mentioned earlier in this chapter that if there is enough positive feed-back in an amplifier circuit, self-sustaining oscillations will he set up. When an amplifier is arranged so that this condition exists it is culled an oscillator.

Oscillations normally take phate at only one frequency, and a desired frequency of oscillation can be obtained by using a resonant circuit tuned to that frequency. For example, in Fig. 3-2:3A the circuit $L C$ ' is tuned to the desired frequency of oscillation. The cathode of the tube is connected to a tap on coil L and the grid and plate are commerted to opposite ends of the tuned circuit. When an r.f. current flows in the tuned rircuit there is a voltage drop across L that inarases progressively along the turns. Thus if the top end of L is positive at some instant the bottom end will be negative, and the point at which the tap is connected will be at an intermediate potential. The amplified current in the plate circuit, which flows through the bottom section of $L_{\text {, }}$, is in phase with the current already flowing in the circuit and thus in the proper relationship for positive feed-back.

Fig. 3-2.3- Batic orillator rirenits, Feed-hack voltage is ohtaillod by tapping the grid and cathode across a portion of the tumed eireuit. In the Hartley circuit the tap is on the cail, but in the Colpitts circonit the voltage is obtained from the drop across a condenser.

The amount of feed-back depends on the position of the tap. If the tap is too near the gridend the voltage drop, between grid and cathode is too small to give enough fred-back to sustain oscillation, and if it is too near the plate end the impedance between the cathode and plate is too small to permit good amplification. Maximum
feed-hack usually is obtained when the tap is somewhere near the center of the coil.

The circuit of $\mathrm{Fig}, 3-23.1$ is parallel-fed, C_{b} being the blocking condenser. The value of C, is not critical so long as its reactance is low (a fow humdred ohms) at the operating frequency.

Condenser (${ }_{k}$ is the grid condenser. It and R_{z} (the grid leak) are used for the purpose of obtaining grid bias for the tube. In practically all oscilator circuits the tube generates its own bias. During the part of the crole when the grid is positive with respent to the cathode, it attracts eleatrons. These electroms cannot flow through L back to the cathode berause (g "blocks" direet current. They therefore have to flow or "leak" through R_{k} to cathode, and in doing so cause a voltage drop in R_{k} that places a negative bias on the grid. The amount of bias so developed is equal to the grid current multiplied by the resistance of R_{k} (0hm's Law). The value of gridleak resistance required depends upon the kind of tube used and the purpose for which the oscillator is intended. Values range all the way from a few thousand to several hundred thousand ohms. The caparitance of e_{k} should be large enough to have low reactance (a few hundred ohms) at the operating frequency.

The rircuit shown at 13 in Fig. :3-2:3 uses the voltage drops across two condensers in series in the tuned circuit to supply the feed-bark. Other than this, the operation is the same as just described. The feed-back can be varied by varying the ratio of the reactances of C_{2} and C_{2} (that is, by varying the ratio of their eapacitances).

Another type of oscillator, called the tunedplate tuned-grid circuit, is shown in lig. 3-24. Resonant circuits tuned approximately to the same frequency are connerted between grid and cathode and between plate and cathode. The two coils, L_{1} and L_{2} are not magnetically coupled. The feed-back is through the grid-plate capacitance of the tube, and will be in the right phase to be pusitive when the plate rirruit, (${ }_{2} L_{2}$, is tuned to a slightly higher frequency than the grid cirenit, $L_{1} \prime^{\prime}{ }_{1}$. The amount of feed-back can be adjusted by varying the tuning of either circuit. The frequency of oscillation is determined be the tumed circuit that has the higher (2 . The grid loak and grid condenser have the same functions as in the other cireuits. In this cuse it is convenient to use serios foed for the plate circuit, so ('i, is a by-pass condenser to guide the r.f. current around the plate supply.

There are many oscillator circuits, some using two or more tubes, but the basic feature of all of them is that there is positive feed-back in the proper amplitude to sustain oscillation.

Oscillator Operating Characteristics

When an oscilator is delivering power to a load, the adjustment for proper feed-bank will depend on how heavily the cseillator is loaded - that is, how much power is being taken from the cincuit. If the feed-back is not large enough grid excitation too small - a small increase in load may tend to throw the circuit out of oscillation. On the wher hand, too much feed-hark will make the grid current excessively high, with the result that the power loss in the grid cireuit is larger than necessary. Since the uscillator itself supplies this grid power, excessive foed-batek lowers the over-all efficiency beause whatever power is used in the grid circuit is not available as useful output.

One of the most important eonsiderations in oscillator design is frequeney stability. The prin(ipal factors that couse a change in frequency are (1) temperature, (2) plate voltage, (3) loading, (1) mechanical variations of circuit elements. Temperature changes will cause vacum-tube elements to expand or contract slightly, thus calusing variations in the interelectrode caparitances. Since these are unavoidably part of the tuned cireuit, the frequency will change correspondingly. Temperature changes in the coil or condenser will alter their inductance or capreitance slightly, again calusing a shift in the resonant irequency. These effects are relatively slow in operation, and the frequeney change caused by them is called drift.

A change in plate voltage usually will cause the frequency to change a small anomit, an effect called dynamic instability. Dynamic instalbility can be reduced by using a tuned circuit of high effective Q. Since the tube and load

Fig. 3-27- The tuned-plate tuned-grid oseillator.
represent a relatively low resistance in parallel with the circuit, this means that a low L / C ratio (high-C) must be used and that the circuit should be lightly loaded. A high value of grid leak resistance also is helpful because, by increasing the grid biats without inereasing grid current, it raises the effeetive tube grid and plate resistames as scen by the tank circuit. Vsing relatively high
plate voltage and low plate current also is desirable.

Load variations act in much the same way as plate-voltage variations. I temperature change in the load maty also result in drift.

Dechanical variations, usually caused by vibration, cause rhanges in inductance and/ or caparitance that in turn cause the frequency to "wobble" in step with the vibration.

Methods of minimizing frequency variations in oscillators are taken up in detail in later chapters.

Ground Point

In the oseillator circuits shown in ligs. 3-2:3 and $3-24$ the cathode is comerted to ground. It is not actually essential that the radiofrequency circuit should be grounded at the eathode; in fart, there are many times when an r.f. ground on some other point in the circuit

Fig. 3-25 - Showing how the plate may he groundeal for r.f. in a typical useillator circuit (Itartley)
is desirable. The r.f. ground can be placed at any point so long as proper provisions are made for ferding the supply voltages to the tube elements.

Fig. 3-2: shows the Ifartley circuit with the plate end of the circuit grounded. Nor.f. choke is needed in the plate circuit because the phate already is at ground potential and there is no r.f. to choke off. . Wl that is necessary is a by-pass condenser, (h , across the plate supply. Direct current flows to the cathode through the lower part of the tuned-circuit coil, L. In advantage of such a circuit is that the frame of the tuning condenser can be grounded.

Tubes having indirectly-heated a athodes are more easily adaptable to circuits grounded at other points than the cathode thin are tubes having directly-heated filaments. With the latter tubes sperial proctutions have to be taken to prevent the filament from being bypassed to ground by the caparitance of the filament-heating transformer.

Semiconductor Devices

Although not varuum tubes, there is another group of rectifying devices that can perform similar functions. These include the crystal diode and the transistor. They make use of the peculiar properties of eertain crystals, particularly germanium, called semiconductors.

CRYSTAL DIODES

As the name implies, the crystal diode is a twoelement rectifying device comparable with a tube diode. In its common form it consists of a small piece of an appropriate erystalline substance with one contact made through a fine pinted wire or
catwhisker. The other contact is through the metal mounting, as shown in Fig. 3-26. Such a device will conduct current much more readily in one direction thim the other.

Fip. 3.26 - The germanium crystal and circuit symbol. The arrow points in the direction of minimum resistance.

As compared with a tube diode, the rrystal diode has the advantages of very small size, very low interelectrode capacitance (less than one micromicrofarad), and requiring no heater or filament power. Its forward resistance - in the favored direction of current flow - is a few humdred ohms, comparable with that of a tube diode. Its disadvantage is a relatively low inverse peak voltage rating (see Power Supply chapter) and a back resistance (in the direction of least current flow) that may be as low as 20,000 ohms, alt hough in some types the back resistance may be as high as a megolim. The tube diode, in contrast, simply does not conduct in the reverse direction, and so has infinite back resistance for all practical purposes.
The crystal diode is widely used in measuring equipment and as a det ector and mixer in receivers.

TRANSISTORS

If two catwhiskers are placed very close together on a germanium crystal and a positive voltage applied to one while a negative voltage is applied to the other, both with respect to a common connection called the base, it is found that a change in current through the first (the emitter) will cause a corresponding change in the corrent through the second the collector), and vice versa. Such a device, shown in lig. 3-27, is called a pointcontact transistor.

Amplification

A current of several milliamperes will flow in the emitter circuit when the positive bias is only a fratction of a volt, so the impedance of the emitter circuit is quite low - of the order of a few hundred ohms. On the other hand, the output resistance of the collector cireuit is of the order of tens of thousimels of ohms. The current gain the ratio of change in collertor current to the change in amitter current - varies with the type of transistor and may range from somewhat less
than 1 to a value as high as 3 or 4 . Ilowever, the emitter current is flowing in a low impedance while the collector current is flowing in a high impedance, so there is a power gain in proportion to the impedances. This gain may be 20 db . or more.

The base circuit of a transistor also has considerable internal resistance, common to the emitter and collector circuits. Inherent feedbark occurs because the collector current flows through the base resistance and is thus int roduced into the emitter circuit. If the current gain is greater than 1 this feed-back may cause selfoscillation.

Junction Transistors

Another form of transistor, called the junction type, is also shown in lig. 3-27. This consists of a sandwich of germanium wafers having opposite conduction characteristics - that is, one type conducts because of a deficieney of electrons (p type) and the other hecause of an excess of electrons (n type). Junction transistors may be made either of an $n-p-n$ or $p-n-p$ sandwich. IBiases of opposite polarity are used on the emitter and collector, just as in the case of pointcontact transistors, but these biases are reversed when a $p-n-p$ is substituted for an n-p-n.

Transistor Applications

Since transistors will both amplify and oscillate, they can perform many of the same functions as vacuum tubes. Their advantages are very small size and weight, no cathode power required, and operation at very low voltages and currents of the order of 3 to $\mathbf{6}$ volts for the emitter and 10 to 25 volts for the collector. At present, their power-handling capacity is quite limited, confining their use to very low power applications. In many respects the characteristies of transistors are the opposite of those of vacuum tubes, so that the circuit techniques are quite different. Since transistors have only very recently been made available commercially, their application in amaleur radio is largely a field for future exploration.

Fig. 3-27- The point-contact transistor (left) and junction-type transistor (right). Plus and mimusigns indicatepolarities of hias voltages applied to the
elements, with respect to the hase.

High-Frequency Communication

Murh of the appeal of amateur communication on the high frequencies lies in the fact that the resulte are not always predictable. Transmission conditions on the same frequence vary with the vear and even with the time of day. Athough these variations usually follow certain establishod cycles, many peculair effects can bo observed from time to time. Every radio amateur should have some understanding of the known facts about radio wave propagation so that he will stand some chance of interpreting the unusual
conditions when they oweur. The observant amateur is in an excellent position to make worthwhile contributions to the science, provided he has sufficient baekground to understand his results. He may discover new farts about propagation at the very-high frequencies or in the microwave region, as amateurs have in the past. In fact, it is through amateur efforts that most of the extemded-range possibilities of various radio frefuencies have been discovered, wither through aceident or long and careful investigation.

What To Expect on the Various Amateur Bands

The $1.8-\mathrm{Mc}$., or " 160 -moter," band offers reliable working over ranges up to $2 \overline{2}$ miles or so during daylight. On winter nights, ranges up to several thousand miles are not imposible. Only small sections of the band are currently avaiable to amateurs, because of the presence of the loran servier in that part of the spectrum. The pulsetype interference sometimes caused by loran can be readily climinated be using an audio limiter in the recoiver.

The 3.5-Mc, or "80-meter," band is a more useful band during the night than during the daylight hours. In the davitime, one can seldom hear signals from a distane of greater than 200 miles or so, but during the darkness hours distanees up to several thousand miles are not unusual, and transoceanic eontacts are regularly made during the winter months. During the summer, the static level is high in some parts of the world.

The $\overline{-}$-Me., or " 10 -moter," band has many of the same characteristics as 3.5 , except that the distances that can be covered during the day and night hours are increased. During daylight, distances up to a thousand miles can be covered under good conditions, and during the dawn and dusk periods in winter it is possible to work stations as far as the other side of the world, the signals following the darkness path. The winter months are somewhat betior than the summer onos. In general, summer static is much less of a problem than on 80 meters, although it can be serious in the semitropical zones.

The 1+-Mc., or "20-meter," band is probably the best one for long-distance work. During portions of the sunspot cycle (discussed later in this chapter) it is open to some part of the world during practically all of the 21 hours, while at other times it is generally useful only during daylight hours and the dawn and dusk periods.

The 21-Mc., or "15-meter," band shows highly variable characterist ics depending on the sunspot evele. During sumspot maxima it is useful for long-distance work during a large part of the 24 hours, but in vears of low sumspot activity it is almost wholly a davtime band, and sometimes unusable even in daytime. However, it is often possible to maintain communication over distances up to 1500 miles or more hy sporadic- E ionization (described later), which may oecur either day or night at any time in the sunspot cyrle.

The 27-Mc. ("11-meter") and 28-Mc. ("10moter") bands are generally considered to be 1). hands during the daylight hours and good for local work during the hours of darkness, although at the peak of the sunspot eyele, they are "open" into the late evening hours for DX communication. It the sunspot minimum these bands are usually "dead" for long-distance communication in the northern latitudes. Nevertheless, sporadic- E propagation is likely to oceur at any time, just as in the case of the 21-Me. band. The v.h.f. and u.h.f. bands (50 Mc . and higher) are considered in detail in the chapter on v.h.f. propagation.

Characteristics of Radio Waves

Radio waves are basically of the same nature as light and heat, which also are forms of electromagnetic radiation. The principal difference is in the wavelength, which in the case of radio
waves is much greater thatn the wavelengths of light or heat. llowever, all three types of radiation travel at the same speed $(300,000,000$ meters per second) in free space, and have similar prop-
erties in that they all can be reflected, refracted, and diffracted.

As described in the ehapter on fundamentals, an electromagnetic wave is composed of moving fields of clectric and magnetic force. The lines of force in the two fields are at right angles, and are mutually perpendicular to the direction of travel. A simple representation of a wave is shown in Fig. 4-1. In this drawing the electric lines are perpendicular to the earth and the magnetic lines are horizontal. They could, however, have any position with respect to earth so long as they remain perpendicular to each other.

Fi\& 4-1 - Representation of electroatatic and electromagnetie lines of force in a radio "ave, Irrows indicate instantaneous directions of the fields for a wave traveling toward the reader. Reversing the direction of one set of lines would reverse the direction of travel.

The plane contalining the continuous lines of electric and magnetic force shown by the grid- or mesh-like drawing in ligg. $4-1$ is called the wave front.

Polarization

The polarization of a radio wave is taken as the direction of the lines of force in the electric field. If the electric lines are perpendicular to the earth, the wave is said to be vertically polarized; if parallel with the earth, the wave is horizontally polarized. The longer waves, when traveling along the ground, usually maintain their polarization in the same plane as was generated at the antenna. The polarization of shorter waves may be altered during travel, however, and sometimes will vary quite rapidly.

Medium of Propagation

The medium in which electromagnetie waves travel hats a marked influence on the speed with which they move. When the medium is empty space the speed, as stated above, is $300,000,000$ meters per seeond. It is almost, but not quite, that great in air, and is much less in some other substances. In dielectrics, for example, the speed is inversely proportional to the dielectric constant of the material.

When a wave mects a good conductor it eannot penetrate it to any extent (although it will
travel through a diclectrie with ease) because the clectric lines of force are practically shortcircuited.

Reflection

A light ray traveling through air of uniform chatacteristic's goes in a straight line, but when it meets some object having different properties its path is shifted. If the "diseontinuity" is sufficiently great in extent, as eompared with the wavelength of light, and if the change in propertics is abrupt, the ray may be reflected. The discontinuity maty be either a change in the dielectric eonstant or the conductivity of the medium. Similarly, a radio wave will be reflected under comparable conditions. However, the discontinuity set up buy the reflecting objert must at least be comparable with the wavelength in size, to caluse reflection of radio waves. Nevertheless, objects as small ats ath airplane, a tree, or even a man's body will refleet waves a few feet long and less.

Refraction

When a wave meets a discontinuity that it can penctrate, the change in speed causes its path to bedeflected, if it enters at any angle other than the perpendicular to the surface of the new medium. That part of the watve front that enters the new medium first travels at the new speed before the trailing part of the wave front enters, and so the wave as a whole is swung around or refracted. The new direction depends on the difference in speed in the two media, and on the wavelength. Wave "bending" by refraction is the mechanism by which long-distance communication at high frequencies is possible. The medium in which the bending takes place is an ionized region, eatled the ionosphere, in the upper atmosphere. The eomposition and properties of the ionosphere are discussed later in this chapter.

Diffraction

When a wave grazes the edge of an objert in passing, it tends to be bent around that edge. This effect, called diffraction, results in a diversion of part of the energy of those waves which normally follow a straight path, so they may be received at some distance below the summit of an ohstruction or around its edges.

Spreading

The field intensity of a wave is inversely proportional to the distance from the souree. Thus if one receiving point is twice as far from the transmitter as another, the field strength at the more distant point will be just half the field strength at the nearer point. This results from the fact that the energy in the wave front must be distributed over a greater area as the wave moves away from the source. This inverse-distance law is based on the assumption that there is nothing in the medium to absorb energy from the wave as it travels, which is true in free space but not in practical communication along the ground and through the atmosphere.

Types of Propagation

According to the altitude of the paths along Which they are propagated, radio waves may be rlassified as ionospheric waves, tropospheric waves or ground waves.

The ionospheric wave or sky wave is that part of the total radiation that is directed toward the ionosphere. Depending upon variable conditions in that region, as well as upon tramsmitting wavelength, the ionospherie wave may or may not be returned to earth by the efferts of refrastion and reflection.

The tropospheric wave is that part of the total radiation that undergoes refraction and reflection in regions of abrupt change of dielectric constant in the troposphere, such as the boundaries between air masses of differing temperature and moisture content.

The ground wave is that part of the total radiation that is directly affected by the presence of the earth and its surface features, The ground

Fig. 4-2 - Showing how both direct and reflected waves may be receised simultaneously.
wave has two components. One is the surface wave, which is an earth-guided wave, and the other is the space wave (not to be confused with the ionospheric or sky wave). The space wave is itself the resultant of two components - the direct wave and the ground-reflected wave, as shown in Fig. 4-2.

Ionospheric Propagation

PROPERTIES OF THE IONOSPHERE

Except for distanees of a few miles, nearly all amateur communication on frequencies below 30 Me. is by means of the sky wave. Cpon leaving the transmitting antema, this wave travels upward from the earth's surface at surh an angle that it would continue out into space were its path not bent sufficiently to bring it back to earth. The medium that celuses such bending is the ionosphere, a region in the upper atmosphere, above a height of about 60 miles, where free ions and electrons exist in sufficient quantity to have an apprecialle offect on the speed at which the waves travel.

The ionization in the upper atmosphere is lelieved to be caused by ultraviolet radiation from the sun. The ionosphere is not a single region but is composed of a series of layors of varying densities of ionization oceurring at different heights. Bach layer consists of a central region of relatively dense ionization that tapers off in intensity both above and below.

Refraction and Reflection

The greater the intensity of ionization in a layer, the more the path of the wave is bent. The amount of bending also depends on the wavelength; the longer the wave, the more the path is bent for a given degree of ionization. Thus lowfrequency waves are more readily bent than those of high frequency. For this reason the lower frequencies - 3.5 and 7 Mr. - are more "reliable" than the higher frecuencies - 14 to 28 Me; there are times when the ionization is of such low value that waves of the latter frequency range are not bent enough to return to carth.

In addition to refraction, reflection may take phace at the lower boundary of an ionized haver if the boundary is sharply defined; i.e., if there is an appreciable change in ionization within a relatively short interval of travel. For waves approaching the layer at or near the perpendicular, the change in ionization must take place within a difference in hoight comparable with
the wavelength; hence, ionospheric reffection is more apt to occur at longer wavelength: (lower frequencies).

Absorption

In traveling through the ionosphere the wave gives up some of its enorgy by setting the ionized particles into motion. The energy absorption from this cause increases with the wavelength; that is, absorption is greater at lower frequencies. It also increases with the intensity of ionization, and with the density of the atmosphere in the ionized region.

Ionospheric absorption decreases the strength of the signal at the receiving point below the value that would be experted from the normal spreading of a wave traveling the same distance.

Virtual Height

Although an ionospheric layer is a region of considerable depth it is convenient to assign to it a definite height, called the virtual height. This is the beight from whieh a simple reflection would give the sme effect as the gradual refracetion that actually takers phace, as illustrated in Fig. t-3. The wave traveling upward is bent back over a path having an appreciable radius of turning, and a measurable interval of time is consumod in the turning process. The virtual height is the height of at triangle having equal sides of a total length proportional to the time taken for the wave to travel from T to R.

Fig. 4.3-Bending in the ionosphere, and the echo or rellection method of atetermining virtual height.

Normal Structure of the Ionosphere

The lowest useful ionized layer is called the E layer. The average height of the region of maximum ionization is about 70 miles. The air at" this height is sufficiently dense so that the ions and electrons set free by the sun's radiation do not travel far before they meet and recombine to form neutral particles, so the laver ran maintain its normal intensity of ionization only in the presence of continuing radiation from the sun. llence the ionization is greatest around local noon and practically disappears after sundown,

In the daytime there is a still lower ionized area, the D region. The D-region ionization is proportional to the height of the sun and is greatest at noon. Low-frequency waves (80 meters) are almost completely absorbed by this layer while it exists, and only the highangle radiation is reffected by the E layer. (Lower-angle radiation travels farther through the 1) region and is absorbed.)

The second principal layer is the F layer, which has a height of about 175 miles at night. At this altitude the air is so thin that recombination of ions and electrons takes place very slowly, inasmuch as particles can travel relatively great distances before meeting. The ionization decreases after sundown, reaching a minimum just bofore sumrise. In the davtime the F laver splits into two parts, the F_{1} and F_{2} layers, with average virtual heights of, respectively, 140 miles and 200 miles. These lavers are most highly ionized at about local noon, and merge again at sunset into the F layer.

SKY-WAVE PROPAGATION

Wave Angle

The smaller the angle at which a wave leaves the earth, the less will be the bending required in the ionosphere to bring it back and, in general, the greater the distance between the point where it leaves the earth and that at which it returns. This is shown in Fig. 4-4. The vertical angle (such as the angle A in the figure) that the wave makes with a tangent to the earth is called the wave angle or angle of radiation.

Skip Distance

Sincegreater bending is reguired to return the Wave to earth when the wave angle is high, at the higher frequencies the refraction frequently is not enough to give the required bending unless the wave angle is smaller than some eritioal value. This is illustrated in Fig. $4-4$, where A and smaller angles give useful signals while waves sent at higher angles penetrate the layer and are not returned. The distance between ' T and R_{1} is, therefore, the shortest possible distance, at that particular frequency, over which eommunication be normal ionospheric refraction can be accomplished.

The area between the end of the useful ground wave and the brgimning of ionospheric-wave reception is called the skip zone, and the distance from the transmitter to the nearest point where the sky wave returns to earth is called the skip distance. The extent of skip zone depends upon the frequency and the state of the ionosphere, and also upon the height of the layer in which the refration takes place. The higher layers give longer skip distances for the same wave angle. Witve angles at the transmitting and receiving points are usually, although not always, approximately the same for any given wave path.

Fig. 7.1- Refraction of shy waves, showing the critical wave angle and the skip zone. Waves leaving the transmitter at angles above the eritical (greater than A) are not bent enongh to be returned to earth. As the angle is decreased, the waves return to earth at inereasingly greater distances.

Critical and Maximum Usable Frequencies

If the frequency is low enough, a wave sent vertically to the ionosphere will be reflected back down to the transmitting point. If the frequency is then gradually increased, eventually a frequency will be rached where this vertical reflection just fails to orrur. This is the critical frequency for the layor under consideration. When the operating froquency is helow the eritical value there is no skip zone.

The critical frequmey is a useful index to the highest frequency that con be used to transmit over a specified distince - the maximum usable frequency (m.u.f.). If the wave leaving the transmitting point at angle 1 in Fig. $4-4$ is, for example, at a frequency of $14 \mathrm{Mc} \cdot$, and if a higher freguency would skip over the recoiving point R_{1}, then it Me, is the m.u.f. for the distance from T to R_{1}.

The greatest possible distance is covered when the wave leaves along the tangent to the earth; that is, at zero wave angle. Under average eonditions this distance is about 4000 kilometers or 2500 miles for the F_{2} layer, and 2000 km , for 12.0 miles for the E layer. The distances vary with the laver height. Frequencies above these limiting m.u.f.'s will not be returned to earth at any distance. The $4000-\mathrm{km}$. m.u.f. for the F_{2} layer is approximately 3 times the critical frequency for that layer, and for the E layer the $2000-\mathrm{km}$. m.u.f. is about 5 times the critical frequency.

Absorption in the ionosphere is least at the
maximum usable frequency for the distance, and increases very rapidly as the frequency is lowered below the m.u.f. Consequently, best results with low power always are secured when the frequency is as elose to the m.u.f. as possible.

It is readily possible for the ionospheric wave to pass through the E laver and be refracted back to earth from the F, F_{1} or F_{2} layers. This is because the critical frequencies are higher in the latter layers, so that a signal too high in frequency to be returned by the E layer can still come back from one of the others, depending upon the time of day and the existing conditions. Depending upon the wave angle and the distance, it is sometimes possible to carry on communication via either the E or $F_{1}-F_{2}$ layers on the same frequency.

Multihop Transmission

On returning to the earth the wave can be reflected upward and travel again to the ionosphere. There it may once more be refracted, and again bent baek to earth. This process may be repeated several times. Multihop propagation of this nature is necessary for transmission over great distances because of the limited heights of the layers and the curvature of the earth, which restrict the maximum one-hop distance to the values mentioned in the preceding sertion. However, ground losses absorb some of the energy from the wave on each reflection (the amount of the loss varying with the type of ground and loing least for reflection from sea water), and there is also absorption in the ionosphere at each reflection. Hence the smaller the number of hops the greater the signal strength at the receiver, other things being equal.

Fading

Two or more parts of the wave may follow slightly different paths in traveling to the receiving point, in which case the difference in path lougths will cause a phase difference to exist between the wave components at the rereiving antenna. The total field strength will be the sum of the eomponents and may he larger or smaller than one component alone, since the phases may be such as either to aid or oppose. Since the paths change from time to time, this causes a variation in signal strength called fading. Farling can also result from the combination of single-hop and multihop waves, or the combination of a ground wave with an ionospheric or tropospherie wave. The latter condition results in an area of severe fading in the region where the two waves have about the same intensity; better reception is obtained at either shorter or longer distances where one component is eonsiderably stronger than the other.
Fading may be rapid or slow, the former type usually resulting from rapidly-changing conditions in the ionosphere, the latter oceurring when transmission conditions are relatively stable.

It frequently happens that transmission conditions are different for waves of slightly different frequeneies, so that in the case of voice-modu-
lated transmission, involving sidehands differing slightly from the carrier in frequency, the carrier and various sideband components may not be propagated in the same relative amplitudes and phases they had at the transmitter. This effect, known as selective fading, causes severe distortion of the signal.

Scatter

Even though the operating frequeney is above the m.u.f. for a given distance, it is usually possible to hear signals from within the skip zone. This phenomenon, called scatter, is caused by random reflections from distances beyond the skip zone. Such reflections can occur when the transmitted energy strikes the earth at a distance and some of it is reflected back into the skip zone to the receiver. Other possible scatter sources are "patches" of ionization of different density than the average, or sporadic- E clouds (see later section). Scatter signals are weaker than those normally propagated, and also have a rapid fade or "flutter" that makes them easily recognizable.

It is probable that seatter also plays a considerable part in long-distance transmission (heyond the maximum one-hop distance) - particularly in cases where, with multihop propagation, the m.u.f. at some intermediate reflection point in the ionosphere is below the frequeney actually being used.

OTHER FEATURES OF IONOSPHERIC PROPAGATION

Cyclic Variations in the Ionosphere

Since ionization depends upon ultraviolet radiation, conditions in the ionosphere vary with changes in the sun's radiation. In addition to the daily variation, soasonal changes result in higher eritical frequencies in the E layer in summer, averaging about 4 Mc , as against a winter average of 3 Me. The F laver shows little variation, the critical freguency ineing of the order of 4 to 5 Me in the evening. The F_{1} layer, which has a critical frequency noar 5 Mc. in summer, usually disappears entirely in winter. The daytime maximum critical frequencies for the k_{2}^{\prime} are highest in winter (10 to 12 Me .) and lowest in summer (around 7 Mc.). The virtual height of the F_{2} laver, which is about 185 miles in winter, averages 250 miles in summer. These values are representative of latitude 40 deg . North in the Western hemisphere, and are subjert to considerable variation in other parts of the world.

Very marked changes in ionization also oerur in step with the 11-year sunspot cycle. Although there is no apparent direet corndation between sumsoot activity and eritical frequencies on a given day, there is a definite correlation between averufe sumpot activity and critical frequencies. The oritical frequencies are highest during sumspot maxima and lowest during sunspot minima. During the period of minimum sunspot activity the lower frequencies - 7 and 3.5 Mc. - fre-
quently are the only usable bands at night. At such times the 28-Nic. band is seldom useful for long-distance work, while the 1 t-Mc. band performs well in the doytime but is not ordinarily useful at night. The next sunspot minimum is forecast for the winter of 195 t 55 . The most recent maximum occurred in the winter of 194748.

Ionosphere Storms and Other Disturbances

Certain types of sunspot artivity rause considerable disturbances in the ionosphere (ionosphere storms) and are acompaniod by disturbances in the earth's magnetic field (magnetic storms). Ionosphere storms are characterized by a marked increase in alsorption, so that radio conditions become poor. The aritical frequeneies also drop to relatively low values during at storm, so that only the lower frequencies are useful for communication. Ionosphere storms may last from a few hours to several days. Since the sun rotates on its axis once every 28 days, disturbances tend to recur at such intervats, if the sumspots responsible do not become inactive in the meantime. Absorption is usually low, and radio conditions therefore good, just preceding a storm.

Cnusually high ionization in the region of the atmosphere below the normal ionosphere may increase absorption to such an extent that skywave transmission beeones difficult and sometimes even impossible. The length of such a disturbance maty be several hours, with a gradual falling off of transmission conditions at the heginning and an equally gradual building up at the end of the period. Fade-outs, similar to the above in cffect, are caused by sudden disturbances on the sun. They are characterized by very rapid ionization, with sky-wave transmission disappearing almost instantly, occur only in daylight, and do not last as long as the first type of absorption.

Magnetie storms frequently are arcompanied be unusual aturoral displays, creating an ionized "curtain" in the polar regions which can act as a reflector of radio waves. Auroral reflection may be observed on any frequener, depending upon the conditions, and it is always characterized by a flutter on all signals that makes voice work difficult. It is most noticeable in the northern latitudes and on signals traveling through the Auroral zone - that is, through the polar regions and over the North Itlantic.

Sporadic-E Ionization

Scattered patches or clouds of relatively dense ionization occasionally appear at heights approximately the same an that of the E layer. This sporadic- E ionization is most prevalent in the equatorial regions, where it is substantially continuous. In northern latitudes it is most frequent in the spring and early summer, but is present in some degree a fair pereentage of the time the year 'round. It accounts for a good deal of the
night-time short distance work on the lower frequencies (3.5 and 7 Me.) and, when more intense, for similar work on 14 and 28 Mc. Exceptionally intense sporadic- E ionization is responsible for work over distances excreding 400 or 500 miles on the 50-Mc. band.

Thereare indications of a relationship between sporadic- E ionization and average sunspot activity, but it does not appear to be directly related to daylight and darkness since it may oreur at any time of the day. Ilowever, there is an apparent tendency for the ionization to peak at mid-morning and in the early evening.

Meteor Trails

A phenomenon that frequently occurs on signals from within the skip zone is a sudden increase in intensity, called a burst. Bursts are caused by meteors which, entering the earth's atmosphere at high speed, are followed by an ionized trail of rather high intensity. The ionization is caused by hating from the friction between the meteor and the air molerules in the ionosphere region. The ionization usually disappears in less than a serond, but during that time it is often (aptable of roflecting signals up to 100 Me or so. The lower frequence limit depends on the length of the ionized trail. l Bursts are frequently observed on the 14 - and 28-Mc. bands, especially during those times of the year when "meteor showers" oceur. When the meteor is moving in a direction somewhat parallel to the wave path, it can induce a rising or falling "whistle" on the signal, for a second or so.

Tropospheric Propagation

Changes in temperature and humidity of air masses in the lower atmosphere often permit work over greater than normal ground-wave distances on 28 Ac, and higher frequencies. The effert can be observed on 28 Mr., but it is generally more marked on and 144 Mr. The subjert is treated in detail in a later chapter.

PREDICTION CHARTS

The Central Radio Propagation Laboratory of National Bureau of Standards offers prediction charts three months in advance, by means of which it is possible to prediet with considerable areuracy the maximum usable frequency that will hold over any path on the earth during a monthly period. The charts are based on ionosphere observations made at a number of stations throughout the world, coupled with considerable statistical data. They are conservative enough to enable the amateur to anticipate and plan his best operating times, particularly on the $1+$ and 28-Mc. bands. The charts can be obtained from the Superintendent of Dowuments, U. S. Government Printing Office, Washington 2π, D. C. for 10 cents a copy or $\$ 1.00$ per year on subscription. They are called "CRIPI-I) Basic IRadio I'ropagation Predictions."

High-Frequency Receivers

A good receiver in the amateur station makes the difference between mediocre contacts and solid ($2 \mathrm{~S}(\mathrm{O}$ s, and its importance cannot be overemphasized. In the uncrowded v.h.f. bands, sensitivity (the ability to bring in weak signals) is the most important factor in a receiver. In the more crowded amateur bands, good sensitivity must be combined with selectivity (the ability to distinguish between signals separated by only a small frequency difference). To receive weak signals, the receiver must furnish enough amplification to amplify the minute signal power delivered by the antenna up to a useful amount of power that will operate a loudspeaker or set of headphones. Before the amplified signal can operate the 'speaker or 'phones, it must be converted to audio-frequency power by the process of detection. The sequence of amplification is not too important - some of the amplification can take place (and usually does) before detection, and some can be used after detection.

There are two major differences between receivers for 'phone reception and for c.w. reception. A 'phone signal has sidebands that make the signal take up ahout 6 or 8 kc . in the band, and the audio quality of the received signal is impaired if the passband of the receiver is less than half of this. (On the other hand, a c.w. signal occupies only a' few hundred cycles at the most, and consequently the passband of a c.w.
receiver can be small. In either case, if the passband of the receiver is more than necessary, signals adjacent to the desired one can be heard, and the selertivity of the receiver is said to be poor. The detertion process delivers directly the audio frequencies present as modulation on a phone signal. There is no modulation on a c.w. signal, and it is necessary to introduce a second radio frequency, differing from the signal frequency by a suitable audio frequency, into the detector circuit to produce an audible beat. The frequency difference, and hence the beat-note, is generally made on the order of 500 to 1000 cycles, since these tones are within the range of optimum response of both the ear and the headset. If the source of the second radiofrequency is a separate oscillator, the system is known as heterodyne reception; if the detector is made to oscillate and produce the second frequency, it is known as an autodyne detector. Modern superheterodyne receivers (described later) gencrally use a separate oscillator to generate the beat-note. summing up the two differences, 'phone rereivers can't use as much selectivity as c.w. receivers, and c.w. receivers require some kind of beating oscillator to give an audible signal. Broadcast receivers can receive only 'phone signals because no beat oscillator is included. Communications receivers include beat oscillators and often some means for varying the selectivity.

Receiver Characteristics

Sensitivity

In commercial circles "sensitivity" is defined as the strength of the signal (in microvolts) at the input of the receiver that is required to produce a specified audio power output at the 'speaker or headphones. This is a satisfactory definition for broadeast and communications receivers operating below about 20 Mc., where atmospheric and man-made clectrical noises normally mask any noise generated by the receiver itself.

Another commercial measure of sensitivity defines it as the signal at the input of the receiver required to give an audio output some stated amount (generally 10 db .) above the noise output of the receiver. This is a more useful sensitivity measure for the amateur, since it indicates how well a weak signal will be heard and is not merely a measure of the over-all amplifieation of the rereiver. However, it is not an absolute method for comparing two receivers, because the passhand width of the receiver plays a large part in the result.

The random motion of the molecules in the antenna and receiver circuits generates small voltages called thermal-agitation noise voltages. The frequency of this noise is random and the noise exists across the entire radio spectrum. Its amplitude increases with the temperature of the circuits. Only the noise in the antenna and first stage of a receiver is normally significant, since the noise developed in later stages is masked by the amplified noise from the first stage. The only noise that is amplified is that which falls within the receiver passband, so the noise appearing in the receiver output is less when the passhand is reduced. Noise is also gencrated by the current flow within the first tulse itself; this effect can be combined with the thermal noise and called receiver noise.

The limit of a receiver's ability to detect weak signals is the thermal noise generated in the input circuit. Even if a perfect noise-free tube were developed and used throughout the receiver, the limit to reception would be the
thermal noise. (Atmospheric- and man-made noise is a practical limit below 20 Ms .) The degree to which a receiver approaches this ideal is called the noise figure of the receiver, and it is expressed as the ratio of noise power at the input of the receiver required to increase the noise output of the receiver 3 db . Since the noise power passed by the receiver is dependent on the passband, the figure shows how far the receiver departs from the ideal. The ratio is generally cexpressed in db., and runs around 6 to 12 db . for a good receiver, although figures of 2 to 4 db . have becon oltained. Comparisons of noise figures cian be made by the amateur with simple equipment. (Ner (SNT, August, 1949, page 20.)

Selectivity

Sclectivity is the ability of a receiver to diseriminate against signals of frequencios differing from that of the desired signal. The over-all selectivity will depend upon the selectivity of the individual tuned circuits and the number of such circuits.

The selectivity of a receiver is shown graphacally by drawing a curve that gives the ratio of signal strength required at various frequenries off resonance to the signal strength at resonance, to give constant output. I resonance curve of this type is shown in Fig. i)-1. The bandwidth is the width of the resonance curve (in cueles or kilocyrles) of a receiver at a sperified ratio; in Fig. 5-1, the bandwidths are indicated for ratios of response of 2 and 10 (" 6 db. down" and " 20 db. down").

The bandwidth at 6 db . down must be sufficient to pass the signal and its sidebands if faithful reprodurtion of the signal is desired. However, in the crowded amateur bands, it is generally advisable to sarrifice fidelity for intelligibility. The ability to rejert adjarent-chammel signals depends upon the skirt selectivity of the receiver, which is determined by the bandwidth at high attenuation. In a receiver with good skirt selectivity, the ratio of the $6-\mathrm{db}$. bandwidth to the $60-\mathrm{db}$. bandwidth will be about 0.25 for c.w. and 0.5 for 'phone. The minimum usable bandwidth at $6-\mathrm{db}$. down is about 150 cycles for c.w. reception and about 2000 cycles for 'phone.

Fig. 5-1 - Typical selectivity curve of a nodern superheterodyne receiver. Relative response is plotted against deviations above and below the resonance frefurncy. The scale at the left is in terms of voltage ratios. the eorresponding decilel steps are shown at the right.

Stability

The stability of a receiver is its ability to "stay put" on a signal under varying conditions of gain-control setting, temperature, supplyvoltage changes and merhanical shock and distortion. The term "unstable" is also applied to a reveiver that breaks into oscillation or a regenerative condition with some settings of its eontrols that are not specifically intended to control such a condition.

Fidelity

Fidelity is the relative ability of the receiver to reproduce in its output the modulation carried by the incoming signal. For perfect fidelity, the relative amplitudes of the various components must not be changed by passing through the receiver. However, in amateur communication the important requirement is to transmit intelligence and not "high-fidelity" signals.

Detection and Detectors

Detertion is the process of recovering the modulation from a signal (see "Modulation, Heterodyning and Beats"). Any device that is "nonlinear" (i.e., whose output is not exactly proportional to its imput) will act as a detector. It can be used as a detector if an impedance for the desired modulation frequency is connected in the output circuit.

Detector sensitivity is the ratio of desired detector output to the input. Detector linearity is a measure of the ability of the detector to reproduce the exact form of the modulation on the incoming signal. The resistance or impedance of the detector is the resistance or impedance it presents to the circuits it is con-
nected to. The input resistance is important in receiver design, since if it is relatively low it means that the detector will consume power, and this power must be furnished by the preceding stage. The signal-handling capability means the ability to accept signals of a specified amplitude without overloading or distortion.

Diode Detectors

The simplest detector for a.m. is the diode. A galena, silicon or germanium crystal is an imperfect form of diode (a small current can pass in the reverse direction), and the principle of detection in a crystal is similar to that in a vacuum-tube diode.

Fig. 5.2 - Simplified and practical diode detector circuits. A, the elementary half-wave diode detector; 13, a practical circuit, with r.f. filtering and andionoutput coupling; C, full-wave diode detector, with output coupling indicated. 'The circuit, $L_{2}(i$, , is tumed to the signal freguency; typical values for C_{2} and R_{1} in A and C are $250 \mu \mu \mathrm{fd}$. and 250,000 ohms, respectively; in 13 . Ci2 and (i3 are $100 \mu \mu \mathrm{fl}$, each; $R_{1}, 50,(0) 0$ ohms: and $R_{2}, 250,000$ ohms. C_{4} is $0.1 \mu \mathrm{fd}$. and R_{3} may be 0.5 to 1 megohm.

Circuits for both half-wave and full-wave diotes are given in lig. 5-2. The simplified half-wave circuit at $5-2.1$ includes the r.f. tuned circuit, $L_{2} C_{1}$, a coupling coil, L_{1}, from which the r.f. energy is fed to $L_{2} C_{1}$, and the diode, l, with its load resistance, R_{1}, and bypass condenser, C_{2}. The flow of rectified r.f. current causes a d.c. voltage to develop aeross the terminals of R_{1}. The - and + signs show the polarity of the voltage. The variation in amplitude of the r.f. signal with modulation caluses corresponding variations in the value of the d.c. voltage across R_{1}. In audio work the load resistor, R_{1}, is usually 0.1 megohm or higher, so that a fairly large voltage will develop from a small rectified-current flow.

The progress of the signal through the detector or rectifier is shown in Fig. 5-3. A typical modulated signal as it exists in the tuned circuit is shown at A. When this signal is applied to the rectifier tube, current will flow only during the part of the r.f. cycle when the plate is positive with respect to the cath-
ode, so that the output of the rectifier consists of half-rycles of r.f. These current pulses flow in the load circuit comprised of R_{1} and C_{2}, the resistance of R_{1} and the capacity of C_{2} being so proportioned that C_{2} charges to the peak value of the rectified voltage on each pulse and retains enough charge between pulses so that the voltage across R_{1} is smoothed out, as shown in C. C_{2} thus acts as a filter for the radio-frequency component of the output of the rectifier, leaving a d.c. component that varies in the same way as the modulation on the original signal. When this varying d.c. voltage is applied to a following amplifier through a coupling condenser (C_{4} in Fig. 5-213), only the variutions in voltage are transferred, so that the final output signal is a.c., as shown in 1).

In the circuit at $5-2\left[3, R_{1}\right.$ and C_{2} have been divided for the purpose of providing a more effertive filter for r.f. It is important to prevent the appearance of any r.f. voltage in the output of the detector, because it may cause overloading of a succeeding amplifier tube. The audiofrequency variations can be transferred to another circuit through a coupling condenser, C_{4}, to a load resistor, R_{3}, which usually is a "potentioneter" so that the audio volume can be adjusted to a desired level.

Coupling to the potentiometer (volume control) through a condenser also avoids any flow of d.e. through the control. The flow of d.e. through a high-resistance volume control often tends to make the control noisy (scratchy) after a short while.

The full-wave diode circuit at $5-2 \mathrm{C}$ differs in operation from the half-wave circuit only in that both halves of the r.f. cycle are utilized. The full-wave circuit has the advantage that very little r.f. voltage appears across the load resistor, R_{i}, berause the midpoint of L_{2} is at the same potential as the cathode, or "ground" for r.f., and r.f. filtering is easier than in the half-wave circuit.

The reactance of C_{2} must be small compared

Fig. 5.3- Diagrams showing the detection process.

Fig. 5-1- Circuits for plate detection. A, triode; B, pratode. 'lhe input circuit, $/, \mathrm{Ci}$, is tuned to the rignal frequeney. 'lypical values for the other components are:
Component
Circuil A
Circuit B

($\mathrm{i}_{2} 0.5$ ¢ ff . or larger.	0.5 afl. or larger.
(330.001 to 0.002 $\mu \mathrm{fd}$.	250 to $300 \mu \mu \mathrm{~d}$.
(4) $0.1 \mathrm{\mu} \mathrm{fd}$.	0.14 fl .
(is	0.3 fid. or larser.
$\mathrm{R}_{1} 25,000$ to 150,000) ohms.	10,000 to 20,1000 ohms.
$\mathrm{R}_{2} 50,000$ to 100,000 ohms.	100,000 to $2.50,000$ ohms.
l_{3}	$50,(000)$ ohms.
R_{4}	20, 0100 ohms.
RFC. $2 . \overline{\mathrm{i}} \mathrm{mh}$.	2.5 mb .

l'late voltages from 100 to 2.50 volts may be used. Effective screen voltage in B^{3} should be about 30 volts.
to the resistance of R_{1} at the radio frequency being rectifiod, but at audio frequencies must be relatively large compared to R_{1}. If the capacity of C_{2} is too large, response at the higher audio freguencies will be lowered.

Compared with other detertors, the sensitivity of the diode is low, normally running around 0.8 in audio work. Since the diode consumes power, the () of the tuned rircuit is redured, bringing about a reduction in selectivity. The loading effect of the diode is close to one-half the load resistance. The detector linearity is good. and the signal-handling capability is high.

Plate Detectors

The plate detector is arranged so that rectification of the r.f. signal takes place in the plate circuit of the tube. Sufficient negative bias is applied to the grid to bring the plate current nearly to the cut-off point, so that application of a signal to the grid circuit causes an increase in average plate current. The average plate current follows the changes in signal amplitude in a fashion similar to the rectified current in a diode detector.

Circuits for triodes and pentodes are given in Fig. :-4. C_{3} is the plate by-pass condenser, and, with $R F^{\prime} C$, prevents r.f. from appear-
ing in the output. The rathode resistor, R_{1}, provides the operating grid bias, and C_{2} is a by-pass for both radio and audio frequencies. R_{2} is the plate load resistance and C_{4} is the output coupling condenser. In the pentorle circuit at $I 3, R_{3}$ and R_{4} form a voltage divider to supply the proper screen potential (about 30 volts), and C_{5} is a by-pass condenser. C_{2} and C_{5} must have low reactance for both radio and audio frequencies.

In general, transformer coupling from the plate circuit of a plate detector is not satisfactory, because the plate impedance of any tube is very high when the bias is near the platecurrent cut-off point. Impedance coupling may be used in place of the resistance coupling shown in Fig. i)-4. I'sually 100 henrys or more inductance is required.

The plate detector is more sensitive than the diode because there is some amplifying action in the tube. It will handle large signals, but is not so tolerant in this rexpect as the diode. I.inearity, with the self-hiased circuits shown, is good. Ip to the overload point the detector takes no power from the tuned circuit, and so does not affect its Q and selectivity.

Infinite-Impedance Defector

The circuit of Fig. 5-5 combines the high signal-handling capabilities of the diode detector with low distortion and, like the plate detector, does not load the tuned eirruit it comerts to. The circuit resembles that of the plate detector, except that the load resistance, R_{1}, is connected between cathode and ground and thus is common to both grid and plate circuits, giving negative feed-back for the audio frequencies. The cathode resistor is by-passed for r.f. but not for audio, while the plate eircuit is by-passed to ground for both audio and radio frequencies. R_{2} forms, with C_{3}, an $R C$ filter to isolate the plate from the " 13 " supply. An r.f. filter, consisting of a series r.f. choke and a shunt condenser, can be connected between the cathode and C_{4} to eliminate any r.f. that might otherwise appear in the output.

The plate current is very low at no signal, increasing with signal as in the case of the plate detector. The voltage drop across R_{1} consequently

Fig. 5.5 - The infinite-impedance detector. The input cirruit, $L_{2} C_{1}$, is tuned to the signal frequency. Typical values for the other components are:
$\mathrm{Ci}_{2}-250 \mu \mathrm{ffl}$. R_{1} - 0.15 meцghm.
($3-0.5 \mu \mathrm{fd}$. $\mathrm{H}_{2}-25,000$ ohms.
$\mathrm{C}_{4}-0.1 \mu \mathrm{fd}$. $\mathrm{R}_{3}-0.2 .5$-meqohtin volume control. A tube having a medium amplification factor (alout 20) should be used. Plate voltage should be 250 volts.
increases with signal. lecause of this and the large initial drop acooss R_{1}, the grid usually camot be driven positive by the signal, and no grid current can be drawn.

REGENERATIVE DETECTORS

l3y providing controllable r.f. feed-batck (regencration) in a triode or pentode detector circuit, the incoming signal rat be amplified many times, thereby gioatly increasing the sensitivity of the detector. Regeneration also inereases the effertive () of the rirruit and thus the selectivity. The grid-leak type of detector is most suitable for the purpose.

The grid-leak detector is a combination diode rectifier and andio-frequency amplifier. In the circuits of Fig. $\mathrm{F}-6$, the grid corresponds to the diode plate and the reatifying action is exactly the same as in a diode. The d.e. voltage from rectified-current flow through the arid leak, R_{1}, biases the grid negatively, and the audiofrequence variations in voltage arooss h_{1} are amplified through the tube as in a normal in.f. amplifier. In the phate cireuit, T_{1}, L_{4} and $I_{.3}$ are the plate load resistances, C_{3} is a by-pass comdenser and $R F C$ an r.f. choke to eliminate r.f. in the output cirruit.

A grid-leak detector has considerably greater sensitivity than a diode. The sensitivity is further: increased by using a screen-grid tube instead of : triode, as at $\overline{\mathrm{o}}$-6 I and C . The operation is equivatlent to that of the triode circuit. The sercen $1,5-$ pass condenser, C_{5}, should have low reatance for both radio and atudio frequencies. K_{2} and K_{3} constitute a voltage divider on the plate supply to furnish the proper seveen voltage. In both circuits, (${ }_{2}$ mast have low r.f. reactance and high a.f. reactance compared to the resistance of R_{1}. Athough the regenerative grid-leak detector is mone sensitive than any other type, its many disadvantares commend it for use only in the simplest receivers. The linearity is rather porr, and the signal-handling cupability is limited. The signal-handling capability can be improved by reducing R_{1} to 0.1 megohm, but the sensitivity will be decreased. The degree of antenna coupling is often eritiral.

The rirruits in Fig. io-6 are regenerative, the feed-back being obtained by feeding some signal to the grid barek from the plate eireuit. The amonut of regeneration must be emontrollable, because maximum regenerative amplifiation is secured at the critical point where the circuit is just about to oscillate. The eritical point in turn depends upon circuit conditions, which may vary with the frequency to which the detector is tuned. In the oseillating eondition, a regenerative detector can be detuned slightly from an incoming $(\cdot, w$. signal to give autodyne reception.
The circuit of Fig, in-6A uses a variable by-pass condenser, C_{3}, in the plate circuit to control regeneration. When the caparity is small the tube does not regenerate, but as it increases toward maximum its reartance becomes smaller until there is sufficient leed-back to celuse
oscillation. If L_{2} and L_{3} are wound end-to-end in the same direction, the plate comnection is to the outside of the phate or "tiekler" roil, L_{3}, when the grid connection is to the outside of L_{2}.

The circuit of $\mathrm{a}-6 \mathrm{bl}$ is for a pentode tube, regeneration being controlled by adjustment of the screen-grid voltage. The tirkler, L_{3}, is in the plate circuit. The portion of the control resistor between the rotatirg eontart and ground is by-passed by a latge condonser (0.5)

Fig. 5-6 - 'Friode and pentorle regenerative detector cirnuits. The input eirenit, 18 C, , is tuned to the signal frequency. 'The grid condenser, (i2, shonld have a valne of about $100 \mu \mu$ fil. in all circuits; the prid leak, R_{1}, may range in value from 1 to $\overline{\mathrm{B}}$ megohms. 'lhe tickler coil, L.3, ordinarily will have from 10 to 25 per rent of the number of turnis on L_{2} : in ($\%$, the vathosle tap is about 10 per cent of the namber of turns on $/ 2$ ahove ground. Regeneration-control condenser (C_{3} in I should have a maximum caparity of $100 \mu \mu \mathrm{fd}$. or more: by -pass com. densers C_{3} in B and C are likewise $100{ }_{\mu} \mu \mathrm{fl} \mathrm{I}_{\text {, }} \mathrm{C}_{5}$ is ortinarily I μ fil. or more: R_{2} a 50,000 -ohm potentiometer; $R_{3}, 50.000$ to 100,000 ohms. La in B (L_{3} in (i) is a $500-$ henry inductance, C_{4} is $0.1 \mu \mathrm{fl}$. in both eirenits. T_{1} in A is a conventional atulio transformer for cobuling from the plate of a tube to a following grid. RI' C is 2.3 mh . In A, the plate voltage should be aliout 50 volts for best sensitivity. Pentode rircuise require about 30 volts on the serean; plate potential may be 100 to 250 volts.
$\mu \mathrm{fd}$. or more) to filter out scratching noise when the arm is rotated. The feed-back is adjusted by varying the number of turns on L_{3} or the coupling between L_{2} and L_{3}, until the tube just goes into oscillation at a screen potential of approximately 30 volts.

Circuit (' is identical with 13 in principle of operation. Since the screen and plate are in parallel for r.f. in this circuit, only a small amount of "tickler" - that is, relatively few turns between the cathode tap and ground - is required for oscillation.

Smooth Regeneration Control

The ideal regeneration control would permit the detector to go into and out of oscillation smoothly, would have no effect on the frequency of oscillation, and would give the same value of regeneration regardless of frequency and the loading on the circuit. In practice, the effects of loading, particularly the loading that occurs when the detector circuit is coupled to an antenna, are difficult to overcome. Likewise, the regeneration is usually afferted by the frequency to which the grid circuit is tuned.

In all circuits it is best to wind the tickler at the ground or cathode end of the grid coil, and to use as few turns on the tickler as will allow the detertor to oscillate casily over the whole tuning range at the plate (and screen, if a pentode) voltage that gives maximum sensitivity. Should the tube break into oscillation suddenly as the regeneration control is advanced, making a click, it usually indicates that the coupling to the antenna (or r.f. amplifier) is too tight. The wrong value of grid leak plus too-high plate and screen voltage are also frequent causes of lack of smoothness in going into oscillation.

Antenna Coupling

If the detector is coupled to an antenna, slight changes in the antenna (as when the wire swings in a brecoe) affect the frequency of the oscillations generated, and thereby the beat frequency when e.w. signals are being recoived. The tighter the antenna coupling is made, the greater will be the feedback required or the higher will be the voltage necessary to make the detector oscillate. The antenna roupling should be the maximum that will allow the deteetor to go into oscillation smoothly with the eorrect voltages on the tuls. If capacity coupling to the gride end of the coil is used, gencrally only a vory small amount of rapacity will be meeded to couple to the antenna. Increasing the capacity increases the coupling.

At frequencies where the antemna system is resonant the absorption of encrgy from the oscillating detector circuit will be greater, with the consequence that more regeneration is needed. In extreme cases it may not he possible to make the detector oscillate with normal voltages. The remedy for these "dead spots" is to loosen the antenna coupling to a point that permits normal oscillation and smooth regeneration control.

Body Capacity

A regenerative detertor oceasionally shows a tendency to change frequency slightly as the hand is moved near the dial. This contition (body capacity) can be corrected by better shielding, and sometimes by r.f. filtering of the 'phone lads. 1 good, short ground connection and loosening the coupling to the antenna will help.

Hum

Ilum at the power-supply frequency, even when using battery plate supply, may result from the use of a.c. on the tube heater. Eiffects of this type normally are troublesome only whon the circuit of Fig. $5-6 \mathrm{C}$ is used, and then only at 14 Me. and higher. Connecting one side of the heater supply to ground, or grounding the centertap of the heater-transformer winding, will reduce the hum. The heater wiring should be kept as far as possible from the r.f. circuits.

House wiring, if of the "open" type, may cause hum if the detector tube, grid lead, and grid condenser and leak are not shielded. This type of hum is easily recognizable because of its rather high pitch.

Tuning

For c.w. reception, the regeneration control is advanced until the detector breaks into a "hiss," which indicates that the detector is oscillating. Further advancing the regeneration control after the detector starts oscillating will result in a slight decrease in the strength of the hiss, indicating that the sensitivity of the detector is decreasing.

The proper adjustment of the regeneration control for best reception of c.w. signals is where the detector just starts to oscillate. Then c.w. signals can be tuned in and will give a tone with each signal depending on the setting of the tuning control. As the receiver is tuned through a signal the tone first will be heard as a very high pitch, then will go down through "zero beat" and rise again on the other side, finally

Fig. 5-7 - As the tuning dial of a receiver is turned past a c.w. signal, the beat-note varies from a high tone down through "zero beat" (no audible frequency differ(nece) and back up to a ligh tone, as shown at A, B and (.. The curve is a graphical representation of the action. The heat isists past 8000 or 10,000 eveles but usually is not heard because of the limitations of the andio system.
disappearing at a very high pitch. This hehavior is shown in Fig. 5-7. A low-pitched beat-note cannot be obtained from a strong signal because the detector "pulls in" or "blocks": that is, the signal forces the detector to oscillate at the signal frequency, even though the cireuit may not be tuned exactly to the signal. This phenomenon, is also called "locking-in"; the more stable of the two frequencies assumes control over the other. It usually can be corrected by advancing the regeneration control until the beat-note is heard again, or by reducing the input signal.

The point just after the detector starts oscil-
lating is the most sensitive condition for c.w. reception. Further advaneing the regeneration control makes the receiver less susceptible to blocking by strong signals, but also less semsitive to weak signals.

If the detertor is in the oscillating comdition and a 'phone signal is tuned in, a steady audible beat-note will result. While it is possible to listen to 'phone if the receiver can be tuned to exact zero beat, it is more satisfactory to redure the regeneration to the point just before the receiver goes into oscillation. This is also the most sensitive operating point.

Tuning and Band-Changing Methods

Band-Changing

The resonant eircuits that are tuned to the frequency of the ineoming signal constitute a special problem in the design of amateur receivers, since the amateur frequency assignments consist of groups or bands of frequencies at widely-spaced intervals. The same coil and tuning condenser camot he used for, say, 14 Mc . to 3.5 Me., becanse of the impraticable maxi-mum-to-minimum capacity ratio required, and also becanse the tuning would be excessively critical with such a large frequency range. It is necessary, therefore, to provide a means for changing the eirouit comstants for various froquency bands,. ls a matter of convenience the same tuning condenser usually is retained, but new eoils are inserted in the circuit for earh band.
One method of changing indurtinces is to use a swith having an appropriate number of rontacts, which comnerts the desired coil and disconnects the others. The unused coils are sometimes short-circuited by the switch, to avoid the possibility of undesirable self resonances in the unused coils. This is not necossary if the coils are separated from each other by several eoil diameters. or are mounted at right angles to each other.

Another method is to luse roils wound on forms with contacts (usually pios) that ran be plugged in and removed from a sorket. These coils are advantageous when space in a multiband receiver is at a promium, They are also very useful when ronsiderable experimental work is involved, because they are easier to work on than coils clustered around a switch.

Bandspreading

The tuning range of a given coil and variable condenser will depend upon the inductance of the coil and the change in tuning catacity. For ease of tuning, it is desirable to adjust the tuning range so that prartically the whole dial seale is ocoupied by the band in use. This is called bandspreading. Berause of the varving widths of the bands, spectial tuning methods must te devised to give the correct maximumminimum raparity ratio on cach band. Several of these methods are shown in lig. i-8.

In A, a small bandspread condenser, ('1 (15)to $25-\mu \mu \mathrm{f}$. maximum capacity), is used in parallel with a condenser, ('2, which is usually large
enough (100 to $140 \mu \mu \mathrm{fd}$.) to cover a 2 -to-1 frequency range. The setting of (2 will determine the minimum capacity of the circuit, and the maximum rapacity for bandspread tuning will be the maximum caparity of I^{\prime}, phus the setting of r_{2}. The inductance of the coil ram be adjusted so that the maximumminimum ratio will give adequate bandspead. It is almost impessible, berause of the nonharmonic relation of the various band limits, to get full bandspread on all bands with the same pair of rondensers. $r^{\prime} 2$ is variously ralled the band-setting or main-tuning condenser. It must be reset earh time the band is changed.

The method shown at 13 makes use of comdensers in series, The tuning comdenser, (1 , may have a maximum capacity of 100 $\mu \mu$ id. or more. The minimum capacity is determined principally by the setting of C_{3}, which usually has low capacity, and the maximum capacity by the setting of C_{2}, which is of the order of 25 to 50 $\mu \mu$ id. 'This method is eapatble of clowe adjustment to practically any desired degree of bandspread. Fither C_{2} and r_{3} must be adjusted for each band or separate preadjusted condensers must be switehed in.

(B)

(C)

Fig. \quad - 8 - Vissentials of the three lavichand. guread tuning systems.

The circuit at (; also gives complete spread on each hand. ('1, the bandspread mondenser, may have any convenient value of rapacity; iof $\mu \mu \mathrm{fl}$. is satisfactory. ('2 may be used for continuous frequency roverage ("general roverage") and as a band-setting condenser. The effertive maximum-minimum caparity ratio depends upon the caparity of r_{2} and the point at which ('1 is tapped on the roil. The nearer the tap to the bottom of the coil, the greater the bandspread, and vice versa. For a given coil and tap, the bandspread will be greater if ('2 is set at higher raparity. ('2 may be mounted in the plug-in coil form and preset, if desired.

This requires a separate condenser for each band, but eliminates the neressity for resetting C_{2} each time the band is changed.

Ganged Tuning

The tuning condensers of the several r.f. circuits may be coupled together mechanically and operated by a single control. However, this operating convenience involves more complicated construction, both electrically and merhanically. It becomes necessary to make the various circuits track - that is, tune to the same frequency at each setting of the tuning control.

Fig. 5.9-Showing the use of a trimmer condenser in set the minimum circuit capacity in order toobtain true tracking for gang-tuning.

True tracking can be obtained only when the inductance, tuning condensers, and circuit inductances and minimum and maximum capacities are identical in all "ganged" stages. I small trimmer or padding condenser may be connected across the coil, so that variations in minimum caparity can be compensated. The fundamental circuit is shown in Fig. 5 -9, where C_{1} is the trimmer and C_{2} the tuning condenser. The use of the trimmer necessarily inereases the minimum circuit eapacity, but it is a necessity for satisfactory tracking. Midget condensers having maximum capacities of 15 to $30 \mu \mu \mathrm{fd}$ are commonly used.

The same methods are applied to bandspread circuits that must be tracked. The circuits are identical with those of Fig. 5-8. If both general-coverage and bandspread tuning are to be available, an additional trimmer eondenser must be connected across the coil in each circuit shown. If only amateur-band tuning is desired, however, then ('3 in Fig. 5-813, and C_{2} in Fig. $5-8 \mathrm{C}$, serve as trimmers.

The coil inductance can be adjusted by starting with a larger number of turns than
necessary and removing a turn or fraction of a turn at a time until the circuits track satisfactorily. An alternative method, provided the inductance is reasonably elose to the correct value initially, is to make the coil so that the last turn is variable with respect to the whole coil, or to use a single short-circuited turn the position of which can be varied with respect to the coil. The application of these methods is shown in Fig. 5-10.

Still another method for trimming the inductance is to use an adjustable brass (or copper) or powdered-iron core. The brass core acts like a single shorted turn, and the inductance of the coil is decreased as the brass core, or "slug," is moved into the coil. The powdered-iron core has the opposite effect, and increases the inductance as it is moved into the coil. The Q of the coil is not affected materially by the use of the brass slug, provided the brass slug has a clean surface or is silverplated. The use of the powdered-iron core will raise the Q of a coil, provided the iron is suitable for the frequency in use. (iood pow-dered-iron cores can be obtained for use up to about 50 Mc .

Fig. 5-10 - Methods of adjusting the inductance for ganging. The half-turn in A can be moved so that its magnetic field either aids or opposes the field of the coil. The shorted loop in 13 is not eonnected to the coil, hut operates hy induction. It will have no effect on the coil inductance when the axis of the loop is perpendicular to the avis of the coil, and will give maximum reduction of the eoil inductance when rotated 90°. The loop can bo a solid disk of metal and give exactly the same effect.

The Superheterodyne

For many years (up to about 19:32) practieally the only type of receiver to be found in amateur stations consisted of a regenerative detector and one or more stages of audio amplification. Receivers of this type can be made quite sensitive but strong signals block them easily and, in our present crowded bands, they are seldom used except in emergencies. They have been replaced by superheterodyne receivers, generally called "superhets."

The Superheterodyne Principle

In a superheterodyne receiver, the frequency of the incoming signal is heterodyned to a new radio frequency, the intermediate frequency (abbreviated "i,f."), then amplified, and finally detected. The frequeney is changed by modulating the output of a tunable oseillator (the high-fre-
quency, or local, oscillator) by the ineoming signal in a mixer or converter stage (first detector) to produce a side frequency equal to the intermediate frequency. The other side frequeney is rejected by selective circuits. The audiofrequency signal is obtained at the second detector. C.w. signals are made audible by autodyne or heterodyne reception at the second detector.

As a numerical example, assume that an intermediate frequency of 455 ke . is chosen and that the incoming signal is at 7000 ke . Then the high-frequency oscillator frequency may be set to 74.5 F k., in order that one side frequency (7455 minus 7000) will be 455 kc . The high-frequency oscillator could also be set to 6545 kc . and give the same difference frequency. To produce an audible c.w. signal at
the second detector of, say, 1000 cycles, the autodyning or heterodyning oscillator would be set to either 454 or 456 kc .

The frequency-conversion process permits r.f. amplification at a relatively low frequener, the i.f. Iligh selectivity and gain can be obstained at this frequency, and this selectivity and gain are constant. The separate oscillators can be designed for good stability and, since they are working at frequencies considerably removed from the signal frequencies (percentage-wise), they are not normally "pulled" by the incoming signal.

Images

Each h.f. oscillator frequency will cause i.f. response at two signal frequencies, one higher and one lower than the oscillator frequency. If the oscillator is set to 7455 kc . to tune to a $7000-\mathrm{ke}$. signal, for example, the receiver can respond also to a signal on 7910 ke ., which likewise gives a 450 -kc. beat. The undesired signal is called the image. It can cause unnecessary interference if it isn't eliminated.

The radio-frequency circuits of the receiver (those used hefore the signal is heterodyned to the i.f.) normally are tuned to the desired signal, so that the selectivity of the circuits reduces or eliminates the response to the image signal. The ratio of the receiver voltage output from the desired signal to that from the image is called the signal-to-image ratio, or image ratio.
The image ratio depends upon the selectivity of the r.f. tuned circuits preceding the mixer tube. Also, the higher the intermediate frequency, the higher the image ratio, since raising the i.f. increases the frequency separation between the signal and the image and places the latter further away from the resonance peak of the signal-frequency input circuits. Most receiver designs represent a compromise hetween economy (few r.f. stages) and image rejection (large number of r.f. stages).

Other Spurious Responses

In addition to images, other signals to which the receiver is not ostensibly tuned may be heard. Ilarmonics of the high-frequency oscillator may beat with signals far removed from the desired frequency to produce output at the intermediate frequency; such spurious responses can be reduced by adequate selectivity before the mixer stage, and by using sufficient shielding to prevent signal pick-up by any means other than the antenna. When a strong signal is received, the harmonics generated by rectification in the second detector may, by stray coupling, he introduced into the r.f. or mixer circuit and converted to the intermediate frequency, to go through the receiver in the same way as an ordinary signal. These "birdies" appear as a heterodyne beat on the desired signal, and are principally bothersome when the frequency of the incoming signal is not greatly different from the
intermediate frequency. The cure is proper circuit isolation and shielding.

Ilarmonies of the beat oscillator also may be converted in similar fashion and amplified through the receiver; these responses can be reduced by shielding the beat oscillator and operating it at low powor level.

The Double Superheterodyne

At high and very-high frequencies it is difficult to secure an adequate image ratio when the intermediate frequency is of the order of $45^{5} \mathrm{kc}$. To reduce image response the signal frequently is converted first to a rather high ($1: 500,5000$, or even $10,000 \mathrm{kc}$.) intermediate frequency, and then-sometimes after further amplification - reconverted to a lower i.f. where higher adjacent-rhannel selectivity can be obtained. Such a receiver is called a double superheterodyne.

FREQUENCY CONVERTERS

A circuit tuned to the intermediate frequency is placed in the plate circuit of the mixer, to offer a high impedance to the i.f. voltage that is developed. The signal- and oscillator-frequency voltages appearing in the plate circuit are rejected by the selectivity of this eircuit. The i.f. tuned circuit should have low impedance for these frequencies, a condition easily met if they do not approach the intermediate frequency.
The conversion efficiency of the mixer is the ratio of i.f. output voltage from the plate circuit to r.f. signal voltage applied to the grid. Iligh conversion efficiency is desirable. The mixer tube noise also should be low if a good signal-to-noise ratio is wanted, particularly if the mixer is the first tube in the receiver.

The mixer should not require too much r.f. power from the h.f. oscillator, since it may be difficult to supply the power and yet maintain good uscillator stability. Also, the conversion efficiency should not depend too critically on the oscillator voltage (that is, a small change in oscillator output should not change the gain), since it is difficult to maintain constant output over a wide frequency range.

A change in oscillator frequency caused by tuning of the mixer grid circuit is called pulling. l'ulling should be minimized, because the stability of the whole receiver depends critically upon the stability of the h.f. oscillator. Pulling decreases with separation of the signal and h.f.oscillator frequencies, being less with high intermediate frequencies. Another type of pulling is caused by regulation in the power supply. strong signals cause the supply voltage to change, and this in turn shifts the oseillator frequency.

Circuits

If the first detector and high-frequency oseillator are separate tubes, the first detector is called a "mixer." If the two are combined in one envelope (as is often done for reasons of economy or
efficiency), the first detector is called a "converter." In cither case the function is the same.

Typical mixer circuits are shown in Fig. $\overline{0}$-11. The variations are chiefly in the way in which the uscillator voltage is introduced. In is-llA, a pontode functions as a plate detector; the oscillator voltage is rapacity-soupled to the grid of the tube through ('2. Inductive coupling maty be used instead. The eonversion gain and input selectivity generally are good, so long ats the sum of the two voltages (signal and oscillator) impressed on the mixer grid does not exced the grid bias. It is desirable to make the oscillator voltage as high as possible without exceeding this limitation. The oscillator power required is negligible. If the signal frequency is only $\overline{3}$ or 10 times the i.f., it may be difficult to develop enough oscillator voltage at the grid (because of the selectivity of the tuned imput circuit). However, the circuit is a sensitive one and makes a good mixer, particularly with high- $\left(i_{m}\right.$ tubes like the 6.1(7 and 6.AK5. A good triode also works well in the circuit, and tubes like the 7 F8 (one sertion), the 6.56 (one section), the 12AT7 (one section), and the 6.Jt work well. When a triode is used, the signal frequency must be short-circuited in the plate circuit, and this is done by connecting the tuning capacitor of the i.f. transformer directly from plate to cathode.

It is difficult to avoid "pulling" in a triode or pentode mixer, and a pentagrid mixer tube provides much better isolation. A typical cirruit is shown in Fig. 5-11B, and tubes like the 6×1.17, $7(27$ or 613156 are commonly used. The oscillator voltage is introduced through an "injection" grid. Measurement of the rectified current flowing in R_{2} is used as a check for proper oscillator-voltage amplitude. Tuning of the signal-grid cirruit can have little effect on the oscillator frequency because the injection grid is isolated from the signal grid by a screen grid that is at r.f. ground potential. The pentagrid mixer is much noisier than a triode or pentode mixer, but its isolating characteristics make it a very useful device.

Many receivers use pentagrid converters, and two typical circuits are shown in Fig. 5-12. The circuit shown in Fig. $\mathbf{0}$-12.t, which is suitable for the 6 K S , is for a "triode-hexode" converter. A triode oscillator tube is mounted in the same envelope with a hexode, and the control grid of the oscillator portion is connected internally to an injection grid in the hexode. The isolation

Fig. 5-11 - Typical circuits for separately-excited mixers. (irid injection of a pentode mixer is shown at A, and separate excitation of a pentagrid converter is given in 13 . Typical values for B will he fouml in 'Talle 5-1 the values lelow are for the pentode mixer of A.
(1 - 10 to $50 \mu \mu \mathrm{fd} . \quad \mathrm{R}_{2}-1.0$ megohm.
(i2-5 to $10 \mu \mu \mathrm{fd}$. $\quad R_{3}-0.17$ megohim.
$\mathrm{Cis}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}-\mathbf{0 . 0 0 1} \mu \mathrm{fd} . \quad \mathrm{K}_{4}-\mathrm{I} 000$ ohms.
$R_{1}-6800$ ohms.
Positive supply voltage can be 250 volts with a $6.1 \mathrm{C} 7,150$ with a 6.1 K 5 .
between oscillator and converter tube is reasonably good, and very little pulling results, except on signal frequencies that are quite large compared with the i.f.

The pentagrid-converter circuit shown in Fig. $5-12 \mathrm{~B}$ can be used with a tube like the $6 \mathrm{~s}: 17$, 6SB7Y, 6B. 77 or 6BE6. Generally the only care necessary is to adjust the feed-back of the oscillator circuit to give the proper oscillator r.f. voltage. This condition is cherked by measuring the d.c. current flowing in grid resistor R_{2}.

A more stable receiver generally results, particularly at the higher frequencies, when separate tubes are used for the miver and oscillator. Practically the same number of circuit com-

TABLE 5-I								
Circuit and Operating Values for Converter Tubes								
Plate voltage $=250$		Screen voltage = 100, or through specified resistor from 250 volts						
		Stilif-ExCiteid			Separate Excitation			
Tisbe	Cathode Resistor	Screen Resistor	Grid Leah	Grid Current	Cathode Resistor	Screen Revistor	Grid Leak	Grid Current
61317^{1}.	0	12,000	2-, (0)	0.35 ma.	68	15,000	22,000	0.35 ma.
$613 \mathrm{E} 6^{1}$.	0	22,000	29,000	0.5	150	23,000	22,000	0.5
GK $8^{2}\left(6 A F 8^{1}\right)$	240	27,000	47,00)	$0.15-0.2$	150	18-00	-	-
6S $17^{2}\left(70 \mathrm{~T}^{3}\right)$.	0	18,000	22,000	0.5	150	18,000	22,000	0.5
6S13712...	0	15,000	20,000	0.35	68	15,000	22,000	0.35
${ }^{2}$ Miniature tube ${ }^{2}$ Octal base, metal. ${ }^{3}$ Lock-in base.								

Fig. 5.12-Typical circuits for trionle-hexode (A) and pentagrid (B) converters. Values for K_{1}, R_{2} and K_{3} can lee found in 'T'able 5.1; others are given below.
$C_{1}-47 \mu \mu \mathrm{dd}$. $\mathrm{C}_{3}-0.01 \mu \mathrm{fd}$.
$\mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{5}-0.001 \mu \mathrm{fd} . \quad \mathrm{l}_{4}-1000$ ohms.
ponents is required whether or not a combination tube is used, so that there is very little difference to be realized from the rost standpoint.
Typical circuit constants for converter tubes, are given in Table 5 -l. The grid leak referred to is the oscillator grid leak or injection-grid return, R_{2} of Figs. 5-11 and $)^{-1} 12$.

The effectiveness of converter tubes of the type just deseribed becomes less as the signal frequency is increased. Some oscillator voltage will be coupled to the signal grid through "spacecharge" coupling, an effect that increases with frequency. If there is relatively little frequency difference between oscillator and signal, as for example a 14 - or 28 -Mc. signal and an i.f. of 45% $\mathrm{k} \cdot$., this voltage can berome considerable because the selectivity of the signal circuit will be unable to reject it. If the signal grid is not returned directly to ground, but instead is returned through a resistor or part of an a.v.e. system, considerable bias can be developed which will cut down the gain. For this reason, and to reduce image response, the i.f. following the first converter of a receiver should be not less than 5 or 10 percent of the signal frequency, for best results.

Audio Converters

Converter circuits of the type shown in Fig. $5-12$ can be used to advantage in the reception of c.w. and single-sideband suppressed-career signals, by introducing the local oscillator on the No. 1 grid, the signal on the No. 3 grid, and working the tube into an audio load. Its operation can
be visualized as heterodyning the incoming signal into the audio range. The use of such circuits for audio conversion has been limited to selective i.f. amplifiers operating below 300 kr . and usually below 100 ke. An ordinary a.m. signal cannot be received on such a detector unless the tuning is adjusted to make the local oscillator zero-beat with the ineoming carrier.

Since the beat oscillator modulates the electron stream completely, a large beat-oscillator component exists in the plate circuit. To prevent overload of the following audio amplifier stages, an adequate i.f. filter must be used in the output of the converter.

- THE HIGH-FREQUENCY OSCILLATOR

Stability of the receiver is dependent chiefly upon the stability of the h.f. oscillator, and particular care should be given this part of the recciver. The frequency of oscillation should be insensitive to mechanical shock and changes

Fig. 5.13- IVigh-frequency oscillator circuits. A, pentode grounded-plate oscillator; 13 , triode gromindedplate oscillator; C, triode oncillator with tichlar cirenit. Coupling to the mixermay be tahenfrompoints Xand Y. In A and l3, coupling from) will rednce pulling effects, but gives lean woltuge than from X; this typu is hest adapted to mixer cireuits with small oseillator-voltage requirements. Typical values for componente are as follows:

	Circuit 4	(ircuit ${ }^{\text {B }}$	Circuit C
$\overline{C 1}$	$100 \mu_{\mu} \mathrm{fd}$.	$100 \mu \mu \mathrm{fl}$.	$100 \mu_{\mu} \mathrm{fl}$ I.
(\% 2 -	$0.1 \mu \mathrm{Cl}$.	$0.1 \mu \mathrm{fd}$.	$0.1 \mu \mathrm{fd}$.
$\mathrm{C}_{3}-$	$0.1 \mu \mathrm{fil}$.		
$\mathbf{1 k}_{1}$ -	47,000 ohms.	47,000 ohms.	47,000 ohmis.
R_{2} -	47,000 ohms.	$10,000 t 0$	10,000 to

The plate-supply voltage should be 2 E 0 volts. In eirruits B and C, K_{2} is used to drop the supply voltage to $100-150$ volts; it may be omitted if voltage is obtained from a voltage divider in the power supply.
in voltage and loading. Thermal effects (slow change in frequency because of tube or circuit heating) should be minimized. They can be reduced by using ceramic instead of bakelite insulation in the r.f. circuits, a large cabinet relative to the chassis (to provide for good radiation of developed heat, minimizing the number of high-wattage resistors in the receiver and putting them in the separate power supply, and not mounting the oscillator coils and tuning eondenser too close to a tube. Propping up the lid of a reeeiver will often reduce drift by lowering the terminal temperature of the unit.

Sensitivity to vibration and shook can be minimized by using good mechanical support for eoils and tuning condensers, a heavy chassis, and by not hanging any of the oscillator-circuit components on long leads. Tie-points should be used to avoid long leads. Stiff short leads are excellent because they can't be made to viluate.

Smooth tuning is a great convenience to the operator, and can be obtained by taking pains with the mounting of the dial and tuning condensers. They should have good alignment and no barck-lash. If the condensers are mounted off the chassis on posts instead of brackets, it is almost impossible to avoid some back-lash unless the posts have extra-wide bases. The condensers should be selected with good wiping contacts to the rotor, since with age the rotor contacts can be a source of erratic tuning. All joints in the oscillator tuning circuit should be carefully soldered, beause a loose connertion or "rosin joint" ran develop trouble that is sometimes hatd to locate. The chassis and panel materials should be heavy and rigid enough so that pressure on the tuning dial will not cause torsion and a shift in the frequency.

In addition, the useillator must be capable of furnishing sufficient r.f. voltage and power for the particular mixer rireuit chosen, at all frequencies within the range of the receiver,
and its harmonie output should be as low as possible to reduce the possibility of spurious responses.

The oscillator plate power should be as low as is consistent with adequate output. Low plate power will reduce tube heating and thereby lower the frequency drift. The oscillator and mixer cireuits should be well isolated, preferably by shielding, since coupling other than by the intended means may result in pulling.

If the h.f.-oscillator frequency is affected by changes in plate voltage, a voltage-regulated plate supply (VIR tube) can be used.

Circuits

Several oscillator circuits are shown in Fig. 5-13. The point at which output voltage is taken for the mixer is indicated in each case by $\boldsymbol{\lambda}$ or Y ". ('ircuits I and 13 will give about the same results, and require only one coil. Ilowever, in these two circuits the cathode is above ground potential for r.f., which often is a cause of hum modulation of the oscillator output at 14 Me. and higher frequencies when a.c.-heated-rathode tubes are used. The circuit of Fig. j-13C reduces hum because the cathode is grounded. It is simple to adjust, and it is also the best circuit to use with filament-type tubes. With filament-type tubes, the other two circuits would require r.f. chokes to keep the filament above r.f. ground.
lhesides the use of a fairly high ('/L ratio in the tuned circuit, it is neressary to adjust the feed-back to obtain optimum results. Too much foed-back may cause the oscillator to "squeg" and generate several frequencies simultaneously; too little feed-back will cause the output to be low. In the tapped-coil circuits ($\mathrm{A}, \mathrm{l} 3$), the feedback is increased by moving the tap toward the grid end of the coil. I sing the oscillator shown at C, feed-back is obtained by increasing the number of turns on L_{2} or by moving L_{2} closer to L_{1}.

The Intermediate-Frequency Amplifier

One major advantage of the superhet is that high gain and selectivity can be obtained by using a good i.f. amplifier. This can be a onestage affair in simple receivers, of two or three stages in the more elaborate sets.

Choice of Frequency

The selection of an intermediate frequency is a compromise between conflicting fartons. The lower the i.f. the higher the selectivity and gain, but a low i.f. brings the image nearer the desired signal and hence decreases the image ratio. A low i.f. alsa, increases pulling of the oscillator frequeney. On the other hand, a high i.f. is benelicial to both image ratio and pulling, but the selertivity and gain are lowered. The difference in gain is least important.

In i,f, of the order of $4: 5 \mathrm{ke}$. gives good selectivity and is satisfactory from the standpoint of image ratio and oscillator pulling at frequencies
up to 7 Mc. The image ratio is poor at 14 Mc. when the mixer is connerted to the antema, but adequate when there is a tuned r.f. amplifier between antenna and mixer. It 28 Mc . and on the very-high frequencies, the inage ratio is very porr unless several r.f. stages are used. Above 14 Mr., pulling is likely to be bad unless very loose rouphing can be used between mixer and oscillator.
With an i.f. of about 1600 kc ., satisfactory image ratios can be serured on 14,21 and 28 Me. but the i.f. selectivity is considerably lower. For frequencies of 28. Mr. and higher, the best solution is to use a double superheterodyne, choosing one high i.f. for image reduction (5) and 10 Mr . are freguently used) and a lowes one for gain and selectivity.

In choosing an i.f. it is wise to avoid frequencies on which there is considerable activity by the various radio services, since such siguals
may be picked up directly on the i.f. wiring. Shifting the i.f. or better shielding are the solutions to this interference problem.

Fidelity; Sideband Cutting

Modulation of a carrier causes the generation of sideband frequencies numerically equal to the carrier frequency plus and minus the highest modulation frequency present. If the receiver is to give a faithful reproduction of modulation that contains, for instance, audio frequencies up to 5000 cycles, it must at least be capable of amplifying equally all frequencies contained in a band extending from 3000 eycles above or below the carrier frequency. In a superheterodyne, where all carrier frequencies are changed to the fixed intermediate frequency, this means that the i.f. amplifier should amplify equally well all frequencies within that band. In other words, the amplification must be uniform over a band 5 ke . wide, when the carrier is set at one edge. If the arrier is set in the center, a 10 -kc. band is required. The signal-frequency circuits usually do not have enough over-all selectivity to affect materially the "adjacentchannel" selectivity, so that only the i.f.-amplifier selectivity need be considered.

If the selectivity is too great to permit uniform amplification over the band of frequencies occupied by the modulated signal, some of the sidebands are "cut." While sideband cutting reduces fidelity, it is frequently preferable to sacrifice naturalness of reproduction in favor of communications effectiveness.
The selectivity of an i.f. amplifier, and hence the tendency to cut sidebands, increases with the number of amplifier stages and also is greater the lower the intermediate frequency. From the standpoint of communication, sideband cutting is never serious with two-stage amplifiers at frequencies as low as 455 kc . A two-stage i.f. amplifier at 85 or 100 kc . will be sharp enough to cut some of the higher-frequency sidehands, if good transformers are used. However, the cutting is not at all serious, and the gain in selectivity is worthwhile if the receiver is used in the lowerfrequency bands.

Circuits

I.f. amplifiers usually consist of one or two stages. At 45.5 kr . two stages generally give all the gain usable, and also give suitable selectivity for 'phone reception.

A typieal circuit arrangement is shown in Fig. $\tilde{j}-14$. A second stage would simply duplicate the circuit of the first. The i.f. amplifier practically always uses a remote cutoff pen-tode-t ype tube operated as a Class A amplifier. For maximum selectivity, double-tuned transformers are used for interstige coupling, although single-tuned circuits or transformers with untuned primaries can be used for coupling, with a conseguent loss in selectivity. All other things being equal, the selectivity of an i.f. amplifier is proportional to the number of tuned circuits in it.

In Fig. 5-14, the gain of the stage is reduced by introducing a negative voltage to the lead marked "to a.v.c." or a positive voltage to R_{1} at the point marked "to manual gatin control." In either case, the voltage increases the bias on the tube and redures the mutual conductance and hence the gain. When two or more stages are used, these voltages are generally obtained from common sources. The decoupling resistor, R_{3}, helps to prevent unwanted interstage coupling. (2 and R_{4} are part of the automatic volumecontrol circuit (described later); if no a.v.c. is used, the lower end of the i.f.-transformer secondary is commected to ground.

In a two-stage amplifier the sereen grids of both stages may be from a common supply, either through a resistor $\left(K_{2}\right)$ as shown, the screens being connected in parallel, or from a voltage divider across the plate supply. Separate screen voltage-dropping resistors are preferable for preventing undesired coupling between stages.

Typical values of cathode and screen resistors for common tubes are given in Table $5-11$. The 6K7, 6Sk7, 613.56 and 7117 are recommended for i.f. work. The indicated screen resistors drop the plate voltage to the correct screen voltage, as R_{2} in Fig. 5-14.

When two stages are used the high gain will tend to cause instability and oscillation, so that good shielding, by-passing, and careful circuit arrungement to prevent stray coupling, with exposed r.f. leads well separated, are nec:essary.

I.F. Transformers

The tuned circuits of i.f. amplifiers are built up as transformer units consisting of a metal shield container in which the roils and tuning condensers are mounted. Both air-rore and powdered iron-core universal-wound coils are used, the latter having somewhat higher (s) and hence greater selectivity and gain. In universal windings the coil is wound in layers with each turn traversing the length of the coil, batek and forth, rather than being wound perpendirular to the axis as in ordinary single-layer coils. In a straight multilayer winding, a fairly large

Fig. 5-14- Typical intermediate-frequeney amplifier circuit for a superheterolyne receiver. Representative values for components are as follows:
$\mathrm{C}_{1}-0.1 \mu \mathrm{fd}$. at $4.5 \mathrm{ke} \mathrm{k}: 0.01 \mu \mathrm{fr}$. at 1600 hc . and higher. $\mathrm{C}_{2}-0.01 \mu \mathrm{fd}$.
$\mathrm{C}_{3}, \mathrm{C}_{4},\left(\mathrm{I}_{5}-0.1 \mu \mathrm{fil}\right.$. at $1.5 \mathrm{kc} .: 0.01 \mu \mathrm{fl}$. above 1600 kr . R1, R_{2} - Eee 'l'atile $\mathbf{i - l l} . \mathrm{R}_{3}-1800$ ohms.
$R_{4}-0.22$ megohm.

AIR TUNED
Fig. 5-15 - Representative i.f.-transformer construe. tion. Coils are supported on insulating tubing or (in the air-tumed tswe on wax-impregnated wooden dowels. The shied in the air-tumed transformer prevents capacity coupling betwern the tuming combensers. In the permeabilityetuned transformer the cores consist of findy-divided iron particles supported in an insulating hinder, formed into cylindrical "plugs." the toning capacity is fixed, and the inductances of the coils are varied by moviny the iron plags in and out.
capacity can exist between layers. ['niversal winding, with its "criss-crossed" turns, tends to reduce distributed-capacity effects.

For tuming, air-dielectric tuning condensers are preferable to mica compression types because their capacity is practically unafferted by changes in temperature and humidity. Irom-core transformers may be tuned by varying the inductance (permeability tuning), in which case stability comparable to that of variable air-condenser tuning can be obtained by use of high-stability fixed mica condensers. Such stability is of great importance, since a circuit whose frequency "drifts" with time eventually will be tuned to a different frequency than the other circuits, thereby reducing the gain and selectivity of the amplifier. Typieal i.f.-transformer construction is shown in Fig. 5-15.

Besides the type of i.f. transformer shown in Fig. $\overline{\text { jo}}-1 \overline{5}$, sperial units to give desired selectivity characteristies are available. For higher-than-ordinary adjacent-channel selectivity tripletuned transformers, with a third tuned circuit inserted between the input and output windings, are sometimes used. The energy is transferred from the input to the output windings via this tertiary winding, thus adding its selectivity to the over-all selectivity of the transformer. Varia-ble-selectivity transformers also can be obtained. These usually are provided with a third (untuned) winding which can be connerted to a resistor, thereby loading the tuned circuits and decreasing the Q to broaden the selectivity curve. The resistor is switched in and out of the circuit to vary the selectivity. Another method is to vary the coupling between primary and secondary, overcoupling being used to broaden the selectivity curve. Special circuits using single tuned circuits, coupled in any of several different ways, are used in some applications.

Selectivity

The over-all selectivity of the r.f. amplifier will depend on the frequeney and the number of stages. The following figures are indicative of the bandwidths to be expected with goodquality transformers in amplifiers so constructed as to keep regeneration at a minimum:

Intermediate Frequency	Bandwidth in Kilocycles		
	6 db .	20 db .	40 db .
	doun	down	down
One stage, iol ke. (iron core)	0.8	1.4	2.8
One stage, 45.5 ke ((ir core)	8.7	17.8	32.3
Oncestage, 45 s ke. (iron core)	4.3	10.3	20.4
Twostages, timis ke. (iron core)	2.9	6.4	10.8
Twostages, 1600 kc .	11.0	16.6	27.4
Twostages, 5 (\%oke.	25.8	46.0	100.0

Tubes for I.F. Amplifiers

Variable $-\mu$ (remote cut-off) pentodes are almost invariahly used in i.f. amplifier stages, since grid-bias gain eontrol is pratically always applied to the i.f. amplifier. Toumes with high phate resistance will have least effect on the selectivity of the amplifier, and those with high mutual conductance will give greatest gain. The choice of i.f, tubes has practically no effect on the signal-to-noise ratio, since this is determined by the preceding mixer and r.f. amplifier.

When single-ended tubes are used, the plate and grid leads should be well separated. With these tubes it is advisable to mount the sereen by-pass condenser directly on the bottom of the socket, crosswise between the plate and grid pins, to provide additional shielding. The outside foil of the condenser should be grounded.

THE SECOND DETECTOR AND BEAT OSCILLATOR

Detector Circuits

The second detertor of a sujerheterodyne reciver performs the same function as the detector in the simple rereiver, but usually operates at a highe: input level because of the relatively

TABLE 5.II				
Cathode and Screen-Dropping Resistors for R.F. or I.F. Amplifiers				
Tube	$\begin{aligned} & \text { Il te } \\ & \text { Volta } \end{aligned}$	sirreen Volts	C'sthode Revistor	Screen Rexistor
$6 \mathrm{AB7}^{1 *}$	300		200 ohms	33,000 ohms
6.1 (71	300		160	62,000
6. $\mathrm{AK} 5^{2}$	180	120	200	27,000
$6 \mathrm{Al} \mathrm{C}^{2}$	250	150	68	33.000
6BA你 ${ }^{\text {²* }}$	250	100	68	33,000
$8 \mathrm{Bl} 16^{2}$	250	150	100	33,000
$613 \mathrm{~J} /$ 2 *	250	100	82	47,000
6.571	250	100	1200	270,000
$6 \mathrm{~K}^{7}{ }^{\text {\% }}$	250	125	240	+7.000
$6 \mathrm{Cl}^{177^{*}}$	250	12.5	68	27,000
	250	150	200	47,000
$6 \mathrm{SH}^{1}$	250	150	68	39,000
$6 \mathrm{NH}^{1}$	250	100	820	180,000
6SK71*	250	100	270	56,000
707/12323	250	100	270	68,000
71773*	250	150	180	27,000
${ }^{1}$ Octal bass - Remote c	metal off ty	${ }^{2} \mathrm{Min}$	ture tube.	${ }^{2}$ Lock-in base.

Fig, 5.16 - Automatic volume erontrol rircuit using a dual-diode-triode as a combined a.v.e. rectifier, seeond de. teetor and first a.f. amplifier.
R_{1} - 0.27 megohm.
$1 R_{2}-17,000$ to 220,000 ohms.
$\mathrm{K}_{3}-18(0)$ ohms.
114-2 to 5 megohms.
$i_{5}-0.45$ to 1 megohm.
$\mathrm{R}_{\mathrm{s},} \mathrm{R}_{7}, \mathrm{R}_{\mathrm{s}}, \mathrm{R}_{\mathrm{o}}-\mathbf{0 . 2 2}$ megohm.
1 K_{10} - 0.5 -megohm variable.
$\mathrm{Ci}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}-100 \mu \mu \mathrm{fd}$.
(.4 - $0.1 \mu \mathrm{fd}$.

Cs, CR, C: $01.01 \mu \mathrm{fl}$.
($\kappa_{0}, \mathrm{Ca}_{9}-0.01$ to $0.1 \mu \mathrm{fd}$.
(io - - to $10 \cdot \mu \mathrm{fd}$. rlectrolytie.
$\mathrm{C}_{11}-270 \mu \mu \mathrm{fd}$.

great amplification athead of it. Therefore, the ability to handle large sighals without distortion is preferable to high sensitivity. Plate detection is used to some extent, but the dione detertor is most popular. It is especially adapted to furnishing automatic gain or volume control. The hasie circuits have been described, althourh in many cases the diode elements are incorporated in a multipurpose tube that contains an amplifier section in addition to the diode.

The Beat Oscillator

Any standard oscillator circuit may be used for the beat oscillator required for heterodyne reception. Special beat-oscillator transformers are available, usually consisting of a tapped coil with adjustable tuning; these are most conveniently used with the circuits shown in Fig. $\overline{0}-13$ A and 13 , with the output taken from Y. A variable condenser of about $2 \overline{5}-\mu \mu \mathrm{fd}$. raparity may be connerted betweon cathode and ground to provide fine adjustment of the frequency. The beat oscillator usually is coupled to the seconddetector tuned circuit through a fixed aondenser of a few $\mu \mu \mathrm{fd}$. caparity.

The beat oscillator should be well shielded, to prevent coupling to any part of the receiver except the second detector and to prevent its harmonies from getting into the front end and being amplified along with desired signals. The b.f.o. power should be as low as is consistent with sufficient audio-frequency output on the strongest signals. However, if the beat-oscillator output is too low, strong signals will not give a proportionately strong audio signal. Contrary to some opinion, a weak b.f.o. is never an advantage.

AUTOMATIC VOLUME CONTROL

Automatic regulation of the gain of the receiver in inverse proportion to the signal strength is an operating convenience in 'phone rereption, since it tends to keep the output level of the receiver constant regardless of input-signal strength. The average rectified d.c. voltage, developed by the received signal across a resistance in a detector circuit, is used to vary the bias on the r.f. and i.f. amplifier tubes. Since this
voltage is proportional to the average amplitude of the signal, the gain is redured as the signal strength beomes greater. The control will bo more complete as the number of stages to which the a.v.c. bias is applied is increased. Control of at least two stages is advisable.

Circuits

A typical cireuit using a diode-triode type tube as a combined a.v.c. rectifier, detertor and first audio amplifier is shown in Fig. $5-16$. One plate of the diocle section of the tube is used for signal detection and the other for a.v.c. rectification. The a.v.e. diode plate is fed from the detector diode through the small coupling condenser, (f3. A negative bias voltage resulting from the flow of rectified carrier current is developed across R_{4}, the diode load resistor. This negative voltage is applied to the grids of the controlled stages through the filtering resistors, R_{5}, R_{6}, R_{7} and R_{8}. When S_{1} is closed the a.v.c. line is grounded, removing the a.v.c. bias from the amplifiers.

It does not matter which of the two diode plates is selected for audio and which for a.v.e. Frequently the two plates are commected together and used as a combined detector and a.v.e. rectifier. This could be done in Fig. 5-16. The a.v.c. filter and line would eonnect to the junction of R_{2} and r_{2}, while C_{3} and R_{4} would be omitted from the circuit.

Delayed A.V.C.

In Fig. 5-16 the audio-diode return is made directly to the cathode and the a.v.c. diode is returned to ground. This places bias on the a.v.e. diode equal to the d.e. drop through the cathode resistor (a volt or two) and thus delays the application of a.v.c. voltage to the amplifier grids, since no rectification takes place in the a.v.e. diode circuit until the carrier amplitude is large enough to overcome the bias. Without this delay the a.v.c. would start working even with a very small signal. This is undesirable, because the full amplification of the receiver then could not be realized on weak signals. In the audio-diode circuit fixed bias would cause distortion, so the return there is directly to the cathode.

Time Constant

The time constant of the resistor-condenser combinations in the a.v.c. circuit is an important part of the system. It must be high enough so that the modulation on the signal is completely filtered from the d.c. output, leaving only an average d.c. component which follows the relatively slow carrier variations with fading. Audiofrequency variations in the a.v.c. voltage applied to the amplifier grids would reduce the percentage of modulation on the incoming signal. But the time constant must not be too great or the a.v.c. will be unable to follow rapid fading. The capacitance and resistance values indirated in Fig. ;-16 will give a time constant that is satisfactory for average reception.

C. W.

A.v.c. can be used for c.w. reception but the circuit is more complicated. The a.v.e. voltage must be derived from a rectifier that is isolated from the beat-freguency oscillator (otherwise the rectified b.f.o. voltage will reduce the rereiver gain even with no signal coming through). This is generally done by using a separate a.v.c. channel comected to an i.f. amplifier stage ahead of the serond detector (and b.f.o.). If the selectivity ahead of the a.v.c. rectifier isn't good, strong adjacent signals will develop a.v.c. voltages that will reduce the receiver gain while listening to weak signals. When elear channels are available,
however, c.w. a.v.c. will hold the receiver output constant over a wide range of signal input. A.v.c. systems designed to work on c.w. signals must have fairly long time constants to work with slow-speed sending, and often a selection of time constants is made available.

Amplified A.V.C.

The a.v.c. system shown in Fig. 5-16 will not hold the audio output of the receiver exactly constant, although the variation becomes less as more stages are controlled by the a.v.c. voltage. The variation also becomes less as the delay voltage is increased, although there will, of course, be variation in output if the signal intensity is below the delay-voltage level at the a.v.c. rectifier. In the circuit of Fig. 5-16, the delay voltage is set by the proper operating bias for the triode portion of the tube. However, a separate diode may be used, as shown in Fig. j-17A. Since such a system requires a large voltage at the diode, a separate i.f. stage is sometimes used to feed the delayed a.v.c. diode, as in Fig. 0 -171B. A system like this, often called an "amplified a.v.c." system, gives superlative control action, since it maintains full receiver sensitivity for weak signals and sulstantially uniform audio output aver a very wide range of signal strengths. To avoid a slight decrease in signal volume "on tune," the transformer coupling V_{2} to V_{3} should not be selective.

Noise Reduction

Types of Noise

In addition to tube and circuit noise, much of the noise interference experienced in reception of high-frequency signals is caused by domestic or industrial electrical equipment and by automobile ignition systems. The interference is of two types in its effects. The first is the "hiss" type, consisting of overlapping pulses similar in nature to the receiver noise. It is largely reduced by high selertivity in the receiver, especially for code reception. The second is the "pistol-shot" or "machinc-gun" type, consisting of separated impulses of high amplitude. The "hiss" tope of interference usuatly is caused by commutator sparking in d.f. and series-wound a.e. motors, while the "shot" type results from separated spark discharges (atce power leaks, switch and key clicks, ignition sparks, and the like).

The only known approach to reducing tube and cireuit noise is through better "front-end" design and through more over-all selectivity.

Impulse Noise

Impulse noise, becuse of the short duration of the pulses compared with the time between them, must have high amplitude to contain much average energy. Hence, noise of this type strong enough to cause much interference generally has an instantancous amplitude much higher than that of the signal being received. The general principles of devices intended to reduce such noise is to allow the desired signal

Fip. 5-18 - Serins-valve noise-limiter eirmits. A. as used with an infinite-impedance detector: 13, with a diode detector. 'Typical values for eomponents are as follows: k_{1} - 0.27 mexohm. $R_{4}-20,000$ to $+7,000$ ohims. $\mathrm{R}_{1}-0.26$ merohm. $\mathrm{C}_{1}-2 \cdot 20$) $\mu \mathrm{fol}$.
$\mathrm{K}_{2}=1,000$ ohms.
$\mathrm{R}_{3}-10,000$ ohms.
$\mathrm{C}_{2}, \mathrm{C}_{3}-0.1 \mu \mathrm{ftl}$.
All other diode-cirenit constants in 1 are conventional.
to pass through the receiver unaffected, but to make the receiver inoperative for amplitudes greater than that of the signal. The greater the amplitude of the pulse compared with its time of duration, the more successful the noise reduction.

Another approach is to "silence" (render inoperative) the receiver during the short duration time of any individual pulse. The listener will not hear the "hole" because of its short durat tion, and very offective noise reduction is obtamed. Such devices are called "silencers" rather than "limiters."

In passing through selective receiver circuits, the time duration of the impulses is increased, because of the Q of the eircuits. Thus the more selectivity ahead of the noise-reducing device, the more dificult it becomes to secure good pulse-type noise suppression.

Audio Limiting

A considerable derrec of noise reduction in conde reception can be accomplished hy am-plitude-limiting arrangements applied to the audio-output circuit of a reseiver. Such limiters also maintain the signal output nearly constant during fading. These output-limiter systems are simple, and adaptable to most receivers. However, they cannot prevent noise paks from overloading previous stages.

SECOND-DETECTOR NOISE LIMITER CIRCUITS

The circuit of Fig. 5 -18 "chops" noise peaks at the second detector of a superhet receiver by means of a biased diode, which becomes nonconducting above a predetermined signal level. The audio output of the detector must pass through the diode to the grid of the amplifier tube. The diode nomatly would be nonconducting with the connections shown were it not for the fact that it is given positive hias from a 30 -volt source through the adjustable potentiometer, R_{3}. Resistors R_{1} and R_{2} must be fairly large in value to prevent loss of audio signal.
The audio signal from the detector can be considered to modulate the steady diode current, and conduction will take place so long ats the diode plate is positive with respert to the cathode. When the signal is sufficiently large to swing the cathode positive with resperet to the plate, however, conduction coases, and that portion of the signal is cut off from the audio amplifier. The point at which cut-ofi occurs ean be selected by adjustment of R_{3}. By setting R_{3} so that the signal just passes through the "valve," noise pulses higher in amplitude than the signal will be cut off. The (itenit of lig. $\bar{i}-18 \mathrm{~A}$, using an infinite-impedance detector, gives a positive voltage on rectili-

Fig. 5-19 - Self-adjusting series
(A) and shunt (B) noise limiters The functions of $1 / 1$ and V^{2} can be combined in one tulse like the 6116 or $6+115$.
(. ${ }_{1}$ - $100 \mu_{\mu} \mathrm{fd}$.
(.2, C.3-0.05 $\mu \mathrm{fd}$.
$\mathrm{R}_{1}-0.27$ meg. in $\mathrm{A} ; 47,000$ ohms in 13 .
$\mathrm{K}_{2}-0.2 \vec{\imath}$ meg. in $\mathrm{A}: 0.15 \mathrm{meg}$. in 13.
$\mathrm{K}_{3}-1.0 \mathrm{megohm}$.
$\mathrm{R}_{4}-0.82$ megohm.
$\mathrm{R}_{5}-6800$ ohms.
cation. When the rectified voltage is negative, as it is from the usual diode detertor, the circuit arrangement shown in Fig. i-1813 must be used.

An audio signal of about ten volts is required for good limiting action. The limiter will work on either c.w. or 'phone signals, but in either case the potentiometer must be set at a point determined by the strength of the incoming signal.

Second-detector noise-limiting circuits that automatically adjust themselves to the receiver carrier level are shown in Fig. 5-19. In either circuit, V_{1} is the usual diode second detentor, $R_{1} R_{2}$ is the diode load resistor, and C_{1}^{\prime} is an r.f. by-pass. A negative voltage proportional to the carrier level is developed across (${ }_{2}$, and this voltage cannot change rapidly because R_{3} and ('2 are both large. In the circuit at λ, diode Γ_{2} arts as a conductor for the audio signal up to the point where its anode is negative with respect to the cathode. Noise peaks that exceed the maximum carrier-modulation level will drive the anode negative instantaneously, and during this time the diode does not conduct. The large time constant of $C_{2} R_{3}$ prevents any rapid change of the reference voltage. In the circuit at B , the diode V_{2} is inactive until its eathode voltage exceeds its anode voltage. This condition will obtain under noise peaks and, when it does, the diode V_{2} short-circuits the signal and no voltage is passed on to the audio amplifier. Diode rectifiers such as the 6H6 and 6AL5 can be used for these types of noise limiters. Neither circuit is useful for c.w. reception, but they are both quite effective for 'phone work. The series circuit (A) is slightly better than the shunt eireuit.

I.F. Noise Silencer

In the circuit shown in Fig. 5-20, noise pulses are made to decrease the gain of an i.f. stage momentarily and thus silence the receiver for the duration of the pulse. Any noise voltage in excess of the desired signal's maximum i.f. voltage is taken off at the grid of the i.f. amplifier, amplified by the noise-amplifier stage, and rectified by the full-wave diode noise rertifier. The noise circuits are tuned to the i.f. The rectified noise voltage is applied as a pulse of negative bias to the No. 3 grid of the 6 L 7 i.f. amplifier, wholly or partially disabling this stage for the duration of the individual noise pulse, depending on the amplitude of the noise voltage. The noise-amplifier/rectifier circuit is biased by means of the
"threshold control," R_{2}, so that rectification will not start until the noise voltage exceeds the desired signal amplitude. With automatic volume control the a.v.c. voltage can be applied to the grid of the noise amplifier, to augment this therehold bias. In a typical instance, this system improved the signal-to-noise ratio some : 30 db . (power ratio of 1000) with heavy ignition interference, raising the signal-to-noise ratio from -10 db . without the silencer to +20 db . with the silencer.

SIGNAL-STRENGTH AND TUNING INDICATORS

An indicator that will show relative signal strength is a useful receiver accessory. It is an aid in giving reports to transmitting stations, and it is helpful in aligning the receiver circuits, in conjunction with a test oscillator or other steady signal.

Two types of indicators are shown in Fig. 5-21. That at 1 uses an electron-ray tube, several types of which are available. The grid of the triode section usually is comected to the a.v.e. line. The particular type of tube used depends upon the voltage available for its grid; where the

Fig. 5-20 - I.f. noise-silencing circnit. The plate supply should be 2.50 volts. Typical values for components are: $C_{1}-50-250 \mu \mu \mathrm{fl}$. (use smallest valuc possible without r.f. feed-back).
$\mathrm{C}_{2}-47 \mu \mu \mathrm{fd}$.
$\mathrm{R}_{2}-5000$-ohm variable.
$\mathrm{C}_{3}-0.1 \mu \mathrm{fd}$. $\quad \mathrm{R}_{3}$ - 22,000 ohms.
$\mathrm{R}_{1}, \mathrm{~K}_{4}, \mathrm{R}_{5}-0.1 \mathrm{mcg} . \quad \mathrm{R} \mathrm{FCC}^{2}-20 \mathrm{mh}$.
' ${ }^{\prime}$ - Full-wave diode transformer.
a.v.c. voltage is large, a romote cut-off type (6G5. 6N5 or 6.1D6(i) should be used in preference to the sharp cut-off type ($6 \mathrm{BLO}_{\mathrm{N}}$).

The system at B uses a milliammeter in a bridge cireuit, arranged so that the meter readings increase with the signal strength. The voltage developed by the a.v.e. circuit is approximately a logarithmic function of the signal, so if the phate current of the tuhe is proportional to the grid voltage, the meter wilk road according to a linear decilod scale and will not be "rrowded" at some point.

To adjust the system in lig. $5-2113$, pull the tube out of its socket or otherwise break the cathode circuit so that no plate current flows, and adjust the value of resistor R_{1} across the meter until the scale reading is maximum. The value of resistance required will depend on the internal resistance of the meter, and must be determined by trial and error (the current is approximately 2.5 ma). Then replace the tube, allow it to warm up, turn the a.v.c. switch to "off" so the grid is shorted to ground, and adjust the 3000 -ohm variable resistor for zero meter current. When the a.v.c. is "on," the meter will follow the signal variations up to the point where the voltage is high enough to cut off the meter tube's plate current. This will oceur in the neighborhood of 15 volts with a 6.J5 or GSN7GT, and represents a rather high-amphitude signal.

The bridge circuit, while not exactly linear, is quite satisfactory from a practical standpoint. It will handle a signal range of well over 80 db . The meter cannot be "pinned" herause

Fig. 5-21-T'uning-indicator or S-meter circuits for superheterodyne receivers. 1 , elactron-ray indicator: 13. bridge circuit for anse.comirulled tube.

MI - 0-I or 0-2 milliammeter.
R_{1} - See text.
the maximum reading oreurs when the tubre plate current is driven to zero, at which point further increases in a.v.c. bias cause no change.

Improving Receiver Selectivity

INTERMEDIATE-FREQUENCY AMPLIFIERS

As mentioned earlier in this chapter, one of the big advantages of the superheterodyne receiver is the improved selectivity that is possible. This selectivity is obtained in the i.f. amplifier, where the lower frequency allows more selectivity per stage than at the higher signal frequency. For 'phone reception, the limit to useful selectivity in the i.f. amplifier is the point where so many of the sidebands are cut that intelligibility is lost, although it is possible to remove completely one full set of side-hands without impairing the quality at all. Maximum receiver selectivity in 'phone reception requires good stability in both transmitter and receiver, so that they will both remain "in tune" during the transmission. The limit to useful selectivity in code work is around 100 or 200 cycles for hand-key speeds, but this much selectivity requires good stability in both transmitter and recoiver, and a slow receiver tuning rate for ease of operation.

Single-Signal Effect

In heterodyne r.w. reception with a superheterodyne recciver, the beat oscillator is set to give a suitable andio-frequency beat note when the incoming signal is converted to the intermediate frequency. For example, the beat oscillator may be set to 456 kc . (the i.f. being $4 \pi 5 \mathrm{kc}$.) to give a 1000 -cycle beat mote. Now, if an interfering signal appears at 4.57 kc ., or if the receiver is tuned to heterodyne the incoming signal to 457 kc ., it will also be heterodyned by the beat oscillator to produce a $1000-$ cycle beat. Hence every signal can be tuned in at two places that will give a 1000 -rycle beat (or any other low audio frequency). This audiofrequency image effert can be reduced if the i.f. selectivity is such that the incoming signal, when heterodyned to 457 ke ., is attenuated to a very low level.

When this is dome, tuning through a given signal will show a strong response at the desired beat note on one side of zero beat only, instead of the two beat notes on either side of zero beat characteristic of less-selective reception, hence the name: single-signal reception.

HIGH-FREQUENCY RECEIVERS

The necessary selertivity is not obtained with nonregenerative amplifiers using ordinary tuned circuits unless a low i.f. or a large number of circuits is used.

Regeneration

Regeneration can be used to give a singlesignal effert, particularly when the i.f. is 455 ke . or lower. The resmance curve of an i.f. stage at critical regeneration (just below the oscillating point) is extremely sharp, a bandwidth of 1 ke . at 10 times down and $\overline{5} \mathrm{kc}$. at 100 times down being obtainable in one stage. The audio-frequency image of a given signal thus can be reduced by a factor of nearly 100 for a 1000 -cerele beat note (image 2000 (ycles from resonance).

Regeneration is easily introduced into an i.f. amplifier by providing a small amount of raparity coupling between grid and plate. Bringing a short length of wire, connected to the grid, into the vicinity of the plate lead usually will suffice. The feed-back may be controlled by the regular cathode-resistor gain control. When the i.f. is regenerative, it is preferable to operate the tube at reduced gain (high bias) and depend on regeneration to bring up the signal strength. This prevents overloading and increases selectivity.
The higher selectivity with regeneration reduces the over-all response to noise generated in the earlier stages of the receiver, just as does high selectivity produced by other means, and therefore improves the signal-to-noise ratio. However, the regenerative gain varies with signal strength, being less on strong signals, and the selectivity varies.

Crystal Filters

Probably the simplest means for obtaining high selectivity is by the use of a piezoelectric quartz crystal as a selective filter in the i.f. amplifier. Compared to a good tuned circuit, the Q of such a crystal is extremely high. The crystal is ground to be resonant at the desired intermediate frequency. It is then used as a selective coupler between i.f. stages.

Fig. 5-22 gives a typical rerstal-filter resonance curve. For single-signal reception, the audio-frequency image can be reduced by a factor of 1000 or more. Besides practically eliminating the a.f. image, the high selectivity of the crystal filter provides good discrimination against signals very close to the desired signal and, by reducing the band-width, reduces the response of the receiver to noise.

Crystal-Filter Circuits; Phasing

Several crystal-filter circuits are shown in Fig. 5-23. Those at A and B are practically identical in performance, although differing in details. The crystal is connected in a bridge circuit, with the secondary side of T_{b}, the input transformer, balanced to ground either through a pair of condensers, $C-C(A)$, or by a centertap on the secondary, $L_{2}(\mathrm{~B})$. The bridge is completed by the crystal and the phasing condenser, ('2, which has a maximum capacity some-
what higher than the capacity of the crystal in its holder. When ('2 is set to balance the crystal-holder capacity, the resonance curve of the crystal circuit is practically symmetrical; the crystal acts as a series-resonant circuit of very high $(Q$ and thus allows signals of the desired frequency to be fed through (${ }_{3}$ to $L_{3} L_{4}$, the output transformer. Without (2 , the holder capacity (with the crystal acting as a dielectric) would pass undesired signals.

In the circuit at C, the Q of the load circuit for the filter is adjusted by the setting of R, which in turn varies the bandwidth of the filter from "sharp" to a bandwidth suitable for 'phone reception. This circuit or a modification of it is found in practically all of the better communications receivers these days.
The "bandpass" crystal filter at D uses two crystals separated slightly in frequency to give a bandpass characteristic to the filter. If the frequencies are removed only a few hundred evoles from each, the characteristic is an excellent one for c.w. reception. With crystals about 2 ke. apart, a good 'phone characteristie is obtained.

Additional I.F. Selectivity

Many commercial communications receivers do not have sufficient selectivity for amateur use, and their performance can be improved by adding additional selertivity. One popular method is to couple a $13 \mathrm{C}-453$ aircraft receiver (war surplus, tuning range 190 to 550 kc .) to the tail end of the 46.5 -kc. i.f. amplifier in the communications receiver and use the resultant output of the $13 \mathrm{C}-453$. The aircraft receiver uses an $85-\mathrm{kc}$. i.f. amplifier that is quite sharp - 6.5 kc . wide at -60 db . - and it helps tremendously in separating 'phone signals and in backing up crystal filters for improved c.w. reception. (See QST, January, 1948, page 40.)

Fig. 5-22-Graphical representation of single-signal selectivity. 'The shaded area indicates the over-all bandwidth, or region in which response is ohtainable.

If a BC-4.53 is not available, it is still a simple matter to enjoy the benefits of improved selectivity. It is only neressary to heterodyne to a lower frequency the $465-\mathrm{ke}$. signal existing in the rereiver i.f. amplifier and then rectify it after passing it through the sharp low-frequeney amplifier. The IIammarlund Company and the J. W. Miller Company both offer 50-ke. transformers for this application.

Qs'T references on high i.f. selectivity include: Mchaughlin, "Selectable Single Sideband," Aprit, 1948; (iithens, "Super-Selective C.IW. Receiver," Aug., 1948.

RADIO-FREQUENCY AMPLIFIERS

While selectivity to reduce audio-frequency images can be built into the i.f. amplifier, diserimination against radio-frequence images ean only be ohtained in circuits ahoad of the first detector. These tuned rircuits and their associated vacuum tubes are called radio-frequency amplifiers. For top performance of a communica-

Fig, 5-2.3- (irystal-filter circuits of four types. 'The first three give variable hamlwidth, with (: having the greatest range of gelectivity.
tions receiver on frequencies above 7 Mc ., it is mandatory that it have one or two stages of r.f. amplification, for image rejection and improved sensitivity.

Receivers with an i.f. of 4 bo ke. can be expected to have some r.f. intage response at a signal frequency of 14 Mc. and higher if only one stage of r.f. amplification is used. (Regeneration in the r.f. amplifier will reduce image response, but regeneration usually requires frequent readjustment when tuning arross a hand.) With two stages of r.f. amplification and an i.f. of 45 ke., no images should be apparent at it Mr., but they will show up on 28 Me, and highor. Three stages or more of r.f. amplification, with an i.f. of $4 \overline{5} \mathrm{ke}$., will reduce the images at 28 Mc., but it really takes four or more stages to do a good job. The better solution at " 28 Me , is to use a "triple-detection" superheterodyne, with one stage of r.f. amplification and a first i.f. of 1600 ke . or higher. A normal receiver with an i.f. of 45.5 ke . asm be converted to a triple superhet by connecting a "eonverter" (to be described later) ahead of the recciver.

For best solectivity, r.f. amplifiers should use high-() circuits and tubes with high input and output resistance. Variahbe- μ pentodes are practirally always used, although triodes (neutralized or otherwise comected so that they won't oscillate) are often used on the higher frequenries because they introduce lass noise. l'entodes are better whore maximum image rejection is desired, because they have less loading effect on the circuits.

FEED-BACK

Feed-back giving rise to regencration and oscillation can occur in a single stage or it may atpear as an over-all feed-back through several stages that are on the same frequency. To avoid feed-hark in at single stage, the output must be isolated from the input in every wily possible, with the varcum tube furnishing the only coupling betwern the two circuits. An oscillation can be obtained in an r.f, or i.f. stage if there is any undue caparitive or inductive coupling between output and input circuits, if there is too high an impedance between cathode and ground or soreen and ground, or if there is any appreriable impedance through which the grid and plate currents can flow in eommon. This means good shielding of coils and condensers in r.f. and i.f. circuits, the use of good berpass condensers (mica or ceramic at r.f., paper or ceramic at i.f.), and returning all by-pass condensers (grid, (athode, plate and sereen) with short leads to one spot on the chassis. If single-ended tubes are used, the sereen or cathode by-pass condenser should be mounted across the socket, to serve as a shield between grid and plate pins. Less care is required as the frequency is lowered, but in high-impedance circuits, it is sometimes neressary to shield grid and plate leads and to te careful not to run them close together.

To avoid over-all feed-back in a multistage
amplifier, attention must be paid to avoid running any part of the output circuit back near the input circuit without first filtering it carefully. Since the signal-carrying parts of the circuit (the "hot" grid and plate leads) can't be filtered, the best design for any multistage amplifier is a straight line, to keep the output as far away from the input as possible. For example, an r.f. amplifier might run along a chassis in a straight line, run into a miser where the frequency is changed, and then the i.f. amplifier could be rum back parallel to the r.f. amplifier, provided there Was a very large frequency difference between the r.f. and the i.f. amplifiers. However, to avoid any possible coupling, it would be better to run the i.f. amplifier off at right angles to the r.f.amplifier line, just to be on the safe side. (bood shiedding is important in preventing over-all oscillation in high-gain-per-stage amplifiers, but it beromes less important when the stage gain drops to a low value. In a high-gain amplifier, the power leads (including the heater circuit) are common to all stages, and they can provide the over-all coupling if they aren't properly filtered. (iood by-passing and the use of series isolating resistors will generally eliminate any possibility of coupling through the power leads. l.f. chokes, instead of resistors, are used in the heater leads where necessary.

CROSS-MODULATION

Since a one- or two-stage r.f. amplifier will have a passband measured in hundreds of ke . at 14 Mc. or higher, strong signals will be amplified through the r.f. amplifier even though it is not tuned exactly to them. If these signals are strong enough, their amplified magnitude may be measurable in volts after passing through neveral r.f. stages. If an undesired signal is strong enough after amplification in the r.f. stares to shift the operating point of a tube (by driving the grid into the positive region), the undesired signal will modulate the desired signal. This effert is called cross-modulation, and is often encoun-

Fig. 5.24 - ' 1 'ypical radio-frequency amplifier cironit for a sumerheterodyne receiver. Representative values for components are as follows:
$\mathrm{C}_{1,} \mathrm{C}_{2,} \mathrm{C}_{3,}\left(\mathrm{C}_{4}-0.01 \mu \mathrm{fl}\right.$. below $15 \mathrm{Mc} ., 0.001 \mu \mathrm{fd}$, at 30 Mr.
$\mathrm{R}_{1}, \mathrm{l}_{2}$ - Sce Table 5-1I.
$1_{3}-1800$ ohms.
$\mathbf{R}_{4}-0.22$ megohm.

Fig. 5-25 - Converter-cireuit tracking methods. Following are approximate circuit values for $450.10465 \cdot \mathrm{ke}$. i.f.s, with thming ranges of approximately 2.15-to.-1 and Co having $1+10-\mu \mu \mathrm{ff}$. maximum, and the iotal minimum capaeitanee, inclucing C_{3} or C_{4}, being 30 to $36 \mu \mu \mathrm{fd}$.

Tuning Range	L_{1}	L_{2}	C_{5}
1. - 11 l	$50 \mu \mathrm{~h}$.	$40 \mu \mathrm{~h}$.	$0.01013 \mu \mathrm{fll}$.
3.7-..i Me.	$14 \mu \mathrm{~h}$.	$12.2 \mu \mathrm{~h}$.	$0.0022 \mu \mathrm{fl}$.
$7-15$ Ne.	$3.5 \mu \mathrm{~h}$.	$3 \mu \mathrm{~h}$.	0.00 .45 ufi.
11-30 \r.	$0.8 \mu \mathrm{~h}$.	$11.78 \mu \mathrm{~h}$.	None used

Apronimate values for 450 . to 16.5 the. i.f.s with a
 mum, minimunı including C_{3} and C_{4} being 40 to $50 \mu \mu \mathrm{fd}$.

Tuning Range	If	I. 2	C5
$0.5-1.5 \mathrm{Mc} \cdot$		$130 \mu \mathrm{~h} \text {. }$	
1.a-4 110	$3: 3 \mathrm{~h}$.	$2.5 \mu \mathrm{~h}$ 。	$0.0011 . \bar{\mu} \mathrm{ffl}$.
$1-1011 \because$	$4.5 \mu \mathrm{~h}$	$1 \mu \mathrm{~h}$.	$0.0028 \mu \mathrm{fll}$.
$10-25 \mathrm{Mc}$	$0.8{ }_{\mu} \mathrm{h}$.	$11.75 \mu \mathrm{~h}$.	None usel

tered in receivers with several r.f. stages working at high gain. It shows up as a superimposed modulation on the signal being listened to, and often the effect is that a signal can be tuned in at several points. It can be reduced or eliminated by greater selectivity in the antenna and r.f. stages (diflicult to olstain), the use of variable- μ tubes in the r.f. amplifier, reduced gain in the r.f. amplifier, or reduced antenna input to the receiver.

A receiver designed for minimum crosis-modulation will use as little gain as possible ahead of the high-seleotivity stages, to hold strong unwanted signals below the overload point.

Gain Control

To avoid eross-modulation and other overload effects in the first detector and r.f. stages, the gain of the r.f. stages is usually made antjustable. This is aceomplished by using vari-able- μ tubes and varying the d.e. grid bias, either in the grid or cathode circuit. If the gain control is automatic, as in the case of a.v.e., the bias is controlled in the grid circuit Manual control of r .f. gain is generally done in the cathode circuit. A typical r.f. amplifier stage with the two types of gain control is shown in schematic form in Fig. 5-24.

Tracking

In a receiver with no r.f. stage, it is no inconvenience to adjust the high-frequency oscillator and the mixel circuit independently, beause the mixer tuning is broad and requires little attention over an amateur band. However, when r.f. stages are alded ahead of the mixer, the r.f. stages and mixer will require retuning over an entire amateur band. Hence most receivers with one or more r.f. stages gang all of the tuning controls to give a single-tuning-control receiver. Obviously there must exist a constant difference in frequency (the i.f.) between the oscillator and the mixer/r.f. cireuits, and when this condition is achieved the cireuits are said to track.
Tracking mothods for covering a wide frequency range, suitable for generab-overage receivers, are shown in Fig. 5-2\%. The tracking capacity, ('5. rommonly consists of two con-
densers in parallel, a fixed one of somewhat less caparity than the value needed and a smatler variable in parallel to allow for adjustment to the exant proper value. The trimmer, $\left({ }^{\prime} 4\right.$, is first set for the high-frequency end of the tuning range, and then the tracking condenser is set for the low-frequency end. The tracking capucity beromes larger as the percentage difference between the oncillator and signal frequencies becomes smaller (that is, as the signal frequency becomes higher). Typieal (ircuit values are given in the tables under lig. in-25. The coils ean be conveniontly cathoulated with the ARRI, Lightning Calrulator and then trimmed in the eircuit for best tracking.

In anateur-band receivers, trarking is simplified by choosing a bandspread circuit that gives practically straight-line-frequency tuning (equal frequency change for each dial division), and then adjusting the oscillator and mixer tuned circuits so that both cover the same total number of kilorycles. For example, if the i.f. is 45) k. and the miver circuit tunes from 7000 to 7300 ke . between two given points on the dial, then the oscillator must tune from 74in) to 775 kc . between the same two dial readings. With the bandspread arrangement of Fig. i-8. the tuning will be prowtically straght-line-frequency if ('2 (bandset) is 4 times or more the maximum (apacity of ('1 (bandspread), as is usually the case for strictly amateur-hand coverage. C C_{1} should be of the straight-line-caparity type (semicircular plates).

Improving Receiver Sensitivity

The sensitivity (signal-to-moise ratio) of a receiver on the higher frequencies above 20 Mc. is dependent upon the bandwidth of the receiver and the noise contributed by the "front end" of the receiver. Neglecting the fact that inage rejoction may be por, a raceiver with no r.f. stage is generally satisfactory, from a sensitivity point, in the 3.5 - and 7 -Ma. hands. However, as the frequency is increased and the atmonpheric noise beeomes less, the advantage of agood "front end" hecomes apparent. Itence at If Mc. and higher it is worth while to use at least one stage of r.f. anplifieation ahoad of the first detector for best sensitivity as well as image rejection. The multigrid converter tubes have very poor noise figures, and even the best pentodes and triodes are three or four times noisier when used as mixers than they are when used as amplifiers.

If the purpose of an r.f. amplifier is to improve the receiver noise figure at It Me. and higher, a high- g_{m} pentode or triode should be used. Among the pentodes, the best tubes are the 6A($7,6 \mathrm{AK}$) and the 6s(i7, in the order named. The 6.15\% takes the lead around 30 MI . The $6.54,6.56,7 \mathrm{~F} 8$ and triode-comnected $6.1 \mathrm{~K}^{5} 5$ are the best of the triodes. For best noise figure, the antenna circuit should be coupled a little heavier than optimum. This camot give best selectivity in the antenna cireuit, so it is futile to try to
maximizo sensitivity and selectivity in this eirenit. When a receiver is satisfactory in every respect (stability and selectivity) except sensitivity on 14 through 30 Mc ., the best solution for the imateur is to add a preamplifier, a stage of r.f. amplification designed expressly to improve the sensitivity. If image rejertion is lacking in the receiver, some selectivity should be built into the preamplifier (it is then called a preselector). If, however, the recoiver operation is poor on the higher frequencies but is satisfactory on the lower ones, a "eonverter" is the best solution.

Some commercial receivers that appear to lack sensitivity on the higher frequencies can be improved simply by tighter coupling to the antenna. Since the receiver manufacturer has no way to predict the type of antenna that will be used, he gener:ally designs the input for some compromise value, usually around 300 or 400 ohms in the high-frequency ranges. If your antenna looks like something far different than this, the receiver effectiveness can be improved by proper matching. This can be arcomplished by changing the antenna to the right value (as determined from the receiver instruction book) or by using a simple matehing device as described later in this chapter. Overcoupling the input circuit will often improve sensitivity but it will, of course, always reduce the image-rejection contribution of the antenna circuit.

Commercial receivers can also be "hopped up" by substituting a high- g_{m} tube in the first r.f. stage if one isn't already there. The amateur must be prepared to take the consequences, however, since the stage may oscillate, or not track without some morlification. A simpler solution is to add the "hot" r.f. stage ahead of the rereiver.

Regeneration

Ragencration in the r.f. stage of a receiver (where only ono stage exists) will often improve the sonsitivity berause the greater gain it provides serves to mask more completely the firstdetertor noise, and it also provides a measure of automatic matching to the antema through tighter roupling. ILowever, acrurate ginging beromes a problem, berause of the increased selectivity of the regenerative r.f. stage, and the receiver almost invariably becomes a two-handedtuning device. Regeneration should not be overlooked as an expedient, however, and amatemrs have used it with considerable sucress. High- $-\frac{\mathrm{m}}{\mathrm{m}}$
tuber are the best as regenerative amplifiers, and the feed-bark should not be controlled by changing the operating voltages (which should be the same as for the tube used in a high-gain amplifier) but by changing the loading or the foed-biack coupling. This is at trieky process and another reason why regeneration is not too widely used.

Gain Control

In a receiver front end designed for best signal-to-moise ratio, it is advantageous in the reerption of weak signals to eliminate the gain eontrol from the first r.f. stage and allow it to run "wide" open" all of the time. If the first stage is eontrolled along with the i.f. (and other r.f. stages, if any), the signal-to-noise ratio of the remerem will suffer. Is the gain is reduced, the g_{m} of the first tule is redured, and its noise figure beromes higher. I good receiver might well have two gain controls, one for the first radio-froquenes stage and another for the i.f. and other rif. stages.

Extending the Tuning Range

As mentioned earlier, when a receiver doesn't cover a particular frequency range, either in fart or in satisfactory performance, a simple sulution is to use a converter. A converter is another "front end" for the receiver, and it is made to tune the proper range or to give the neressary performance. It works into the receiver at some frequency between 1.6 and 10 Mc . and thus forms with the receiver a "triple-detection" superhet.

There are several different types of converters in vogue at the present time. The commonest type, since it is the oldest, uses a regular tunable oscillator, mixer, and r.f. stages as desired, and works into the receiver at a fixed frequency. A second type uses broad-banded r.f. stages in the r.f. and mixer stages of the converter, and only the oscillator is tuned. Since the frequency the converter works into is high (7 Mr . or more), little or no trouble with images is experienced, despite the broad-band r.f. stages. A third type of converter uses broad-banded r.f. and output stages and a fixed-frequency oscillator (self- or (rystal-controlled). The tuning is done with the receiver the converter is connerted to. This is an exeellent system if the receiver itself is well shielded and has no external piek-up of its own. Many war-surplus receivers fall in this category. 1 fourth type of converter uses a fixed oscillator with ganged mixer and r.f. stages, and requires two-handed tuning, for the r.f. stages and for the receiver. The r.f. tuning is not criti-
cal, however, unless there are many stages
The broad-banded r.f. stages have the advantage that they can be built with short leads, since no tuning caparitors are required and the unit can be tuned initially by trimming the inductances. They are more prone to aross-modulation than the gang-tuned r.f. stages, however, because of the lack of selertivity. The fourth type of converter is probably the most satisfactory, particularly if a crystal-controlled highfrequency oscillator is used. It not only has the advantage of the best selectivity and protection against images and eross-modulation, but the crystal gives it a stability umobtainable with selfcontrolled oscillators. Amateurs who specialize in operation on 28 and s0 Mc. generally use good converters ahead of eonventional communications receivers, and it pays off in better performance for the station.

While converters can extend the operating range of an existing receiver, their greatest advantage probably lies in the opportunity they give for getting the best performance on any one bind. By selerting the best tubes and techniques for any particular band, the amateur is assured of top receiver performance. With separate converters for each of several bands, changes can be made in any one without disabling or impairing the receiver performance on another band. The use of converters ahead of the low-frequency receiver is rapidly becoming standard practice on the bands above 14 Mc.

Tuning a Receiver

C. W. Reception

For making code signals audible, the beat oscillator should be set to a frequency slightly different from the intermediate frequency. To
adjust the beat-oscillator frequency, first tune in a moderately-weak but steady carrier with the beat oscillator turned off. Adjust the receiver tuning for maximum signal strength, as indicated
by maximum hiss. Then turn on the beat osrillator and adjust its frequency (leaving the receiver tuning unchanged) to give a suitable beat note. The beat oscillator need not subsicquently be touched, except for occasional cherking to make certain the frequency has not drifted from the initial setting. The b.f.o. may be set on sither the high- or low-frequency side of zero beat.

The best receiver condition for the reception of (C.N: signals will have the first r.f. stage running at maximum gain, the following r.f., mixer and i.f. stices operating with just enough gain to maintain the signal-to-noise ratio, and the audio gatin set to give comfortable headphone or speaker volume. The atudio volume should be controlled hy the audio gain control, not the i.f. gain control. Vinder the above conditions, the selectivity of the recoiver is being used to best advantage, and cross-modulation is minimized. It precludes the use of a receiver in which the gain of the first r.f. stago and the i.f. stages are controlled simultaneously.

Tuning with the Crystal Filter

If the receiver is equipped with a crystal filter the tuning instructions in the preceding paragraph still apply, but more care must be used both in the initial adjustment of the beat oseillator and in tuning. The beat oscillator is set as described above, but with the crystal filter set at its sharpest position, if variable selectivity is available. The initial adjust ment should be made with the phasing control in an intermediate position. Once adjusted, the beat oscillator should be left set and the receiver tuned to the other side of zero beat (audio-frequency image) on the same signal to give a beat note of the same tone. This beat will be considerably weaker than the first, and may be "phased out" almost completely by careful adjustment of the phasing control. This is the adjustment for normal operation; it will be found that one side of zero heat has pratctically disappeared, leaving maximum response on the other.

An interfering signal having a beat note differing from that of the a.f. image can be similarly phased out, provided its frequency is not too near the desired signal.

Depending upon the filter design, maximum selectivity may cause the dots and dashes to lengthen out so that they seem to "run together." It must be emphiwized that, to realize the benefits of the crystal filter in reducing interference, it is necessary to do all tuning with it in the circuit. Its high selectivity often makes it difficult to find the desired station quickly, if the filter is switched in only at times when interference is present.

'Phone Reception

In reception of 'phone signals, the normal procedure is to set the r.f. and i.f. gain at maximum, switeh on the a.v.e., and use the audio gain control for setting the volume. This insures maximum effectiveness of the a.v.c. system in com-
pensating for fading and maintaining constant audio output on either strong or weak signals. On occasion a strong signal close to the frequency of a weaker desired station may take control of the a.v.c., in which case the weaker station may disappear because of the reduced gain. In this case better reception may result if the a.v.c. is switched off, using the manual r.f. gain control to set the gain at a point that prevents "blocking" by the stronger signal.

When receiving an AM signal on a frequency within 5 to 20 kc . from a single-sideband signal it may also be necessary to switch off the a.v.e. and resort to the use of manual gain control, unless the receiver has excellent skirt selectivity. No ordinary a.v.c. circuit can handle the sylhabic bursts of energy from the SSB station.

A crystal filter will help reduce interference in 'phone reception. Although the high selectivity cuts sidebands and reduces the audio output at the higher audio frequencies, it is possible to use quite high selectivity without destroying intelligibility. As in c.w. reception, it is advisable to do all tuning with the filter in the circuit. Variableselectivity filters permit a choice of selectivity to suit interference conditions.

An undesired carrier close in frequency to a desired carrier will heterodyne with it to produce a beat note equal to the frequency difference. such a heterodyne can be reduced by adjustment of the phasing control in the crystal filter.

A tone control often will be of help in reducing the effects of high-pitched heterodynes, sideband splatter and noise, by cutting off the higher audio frequencies. This, like sideband cutting with high selectivity circuits, causes some reduction in naturalness.

Spurious Responses

Spurious responses can be recognized without a great deal of difficulty. Often it is possible to identify an image by the nature of the transmitting station, if the frequency assignments applying to the frequency to which the receiver is tuned are known. However, an image also emn be recognized by its behavior with tuning. If the signal causes a heterodyne beat note with the desired signal and is actually on the same frequency, the beat note will not change as the receiver is tuned through the signal; but if the interfering signal is an image, the beat will vary in piteh as the receiver is tuned. The beat oscillator in the receiver must be turned off for this test. l'sing a crystal filter with the beat oscillator on, an image will peak on the side of zero beat opposite that on which desired signals peak.

Harmonic response can be recognized by the "tuning rate," or movement of the tuning dial required to give a specified change in beat note. Signals getting into the i.f. viat high-frequency oscillator harmonics tune more rapidly (less dial movement) through a given change in heat note than do signals received by normal means.
larmonics of the beat oscillator can be recognized by the tuning rate of the beat-oscillator
pitch control. A smaller movement of the control will suffice for a given change in beat note than that necessary with legitimate signals. In poorly-
shielded receivers it is often possible to find b.f.o. harmonics helow : Mc., but they should be very weak at higher frequencies.

Narrow-Band Frequency- and Phase-Modulation Reception

FM Reception

In the reception of NFM (narrow-band FM) by a normal AM receiver, the a.v.c. is switched off and the incoming signal is not tuned "on the nose," as indicated by maximum reading of the S-meter, but slightly off to one side or the other. This puts the carrier of the incoming signal on one side or the other of the i.f. selectivity characteristic (see Fig. i-1). As the frequency of the signal changes back and forth over a small range with modulation, these variations in frequency are translated to variations in amplitude, and the consequent AM is detected in the normal manner. The signal is tuned in (on one side or the other of maximum carrier strength) until the audio quality appears to be best. If the audio is too weak, the transmitting operator should be advised to increase his swing slightly, and if the audio quality is bad ("splashy" and with serious distortion on volume peaks) he should be advised to reduce his swing. Coöperation between transmitting and receiving operators is a necessity for best audio quality. The transmitting station should always be advised immediately if at any time his bandwidth exceeds that of an AM signal, since this is a violation of FCC regulations, except in those portions of the bands where wideband FM is permitted.

If the receiver has a discriminator or other detector designed expressly for l'M reception, the signal is peaked on the reeciver (as indicated by maximum s-meter reading or minimum back-
ground noise). There is also a spot on either side of this tuning condition where audio is recovered through slope detection, but the signal will not he as loud and the background noise will be higher.

PM Reception

Phase-modulated signals ean be received in the same way that NFM signals are, except that in this case the audio output will appear to be larking in "lows," because of the differences in the deviation-ns.-audio characteristies of the two systems. This can be remedied to a considerable degree by advancing the tone control of the receiver to the point where more nearly normal speerh output is obtained.

Nl'M signals can also be received on communications receivers by making use of the erystal filter, in which case there is no need for audio compensation. The rystal filter should be set to the sharpest position and the earrier should be tumed in on the ervistal peak, not set off to one side. The phasing condenser should be set not for exact neutralization but to give a rejection notch at some eonvenient side frequency such as 1000 cyeles off resonance. There is eonsiderable attenuation of the side bands with such tuning, but it can readily be overeome by using additional audio gain. NFM signals received through the crystal filter in this fashion will have a "boomy" charactaristic because the lower frequencies are accentuated.

Reception of Single-Sideband Signals

Single-sidehand signals are generally transmitted with little or no carrier, and it is neressary to furnish the carrior at the receiver bofore proper reception can be obtained. Because little or no carrier is transmitted, the a.v.c. in the recoiver has nothing that indicates the average signal level, and manual variation of the r.f. gain control is required.

A single-sideband signal can be identified by the absence of a strong carrier and by the severe variation of the S-meter at a syllabie rate. When such a signal is encountered, it should first be peaked with the main tuning dial. (This centers the signal in the i.f. passhand.) After this operation, do not touch the main tuning dial. Then set the r.f. gain control at a very low level and switch off the a.v.e. Increase the audio volume control to maximum, and bring up the r.f. gain control until the signal can be heard weakly. Switeh on the beat oscillator, and carefully adjust the frequency of the beat oscillator until proper speech
is heark. If there is a slight amount of carrier present, it is only necessary to zero-beat the beat oscillator with this weak earrier. It will he noticed that with incorrect tuning of an SSB signal, the speerh will sound high- or low-pitehed or even inverted (very garbled), but no trouble will be had in getting the correct setting once a little experience has been obtained. The use of minimum r.f. gain and maximum audio gain will insure that no distortion (overload) oceurs in the receiver. It may require a readjustment of your tuning habits to tune the receiver slowly enough during the first few trials.

Once the proper setting of the b.f.o. has been established by the procedure above, all further tuning shoukd be done with the main tuning control. However, it is not unlikely that SSill stations will be encountered that are transmitting the other sidehand, and to receive them will require shifting the b.f.o. setting to the other side of the receiver i.f. passband. The initial tuning pro-
erdure is exactly the same as outlined above, exeapt that you will end up with a considerably difforenthif.o. setting. The twob.f.o. setimgs should be noted for future referenere, and all tuning of sisl signals can then be done with the matin tun-
ing dial. After a little experience, it beromes a simple matter to determine which way to tune the readiver if the readiver (or transmitere) drifts off to make the received signal sound low- or high-pitchod.

Alignment and Servicing of Superheterodyne Receivers

I.F. Alignment

A calibrated sigmal generator or tost oscillator is a useful devier for aligmment of an i.f. amplifier. Some means for measuring the output of the rereiver is required. If the reociver hats a tuning motcr, its indications will serve. Lateking ant S-metor, a high-resistame voltmetor or a vacumatube voltmetor can be connereded arross the sere-ond-deteretor load resistor, if the second detertor is a diode. Alternativels, if the signal gemerator is a modulated type, an a.ce. voltmeter wan be connected across the primary of the transformer feeding the 'speaker, or froni the plate of the last audio amplifice through a $0.1-\mu \mathrm{fd}$. Wocking condonser to the recoiver chassis. Lacking an ace. voltmeter, the atulio output can be judged by ear, although this method is not as accurate as the others. If the tuming metor is used as an indieation, the alvere of the receiver should be turned on, but any other indication requires that it be turned off. Lacking a tost oscillator, a stoady signal thaed through the input of the receever (if the joh is one of just tourhing up the i.f. amplifier will be suitable. However, with no oscillator and buning an amplifior for the first time, ones only recourse is to try to peak the i.f. transormers on "noise," a difficult task if the transformers are badly off resonance, as they are apt to be. It would be much better to spend a little time and haywire together a simple oscillator for test purposes.

Initial aligumont of a new i.f. amplifier is as follows: The test osecillator is set to the eorrect frequency, and its output is coupled through a condenser to the grid of the last i.f. amplifier tube. The trimmer condensers of the transformer ferding the serond detertor are then adjusted for maximum output, as shown by the indieating deviee boing used. The oseillator output lead is then elipped on to the grid of the next-to-the-last i.f. amplifier tuhe, and the serond-from-the-last tramsformer trimmer adjustmonts are paked for maximum output. This procoss is continued, working back from the second detector, until all of the i.f. transformers have been aligned. It will be neeessary to reduce the output of the test oscillator as more of the i.f. amplifier is brought into use. It is desirable in all cases to use the mininum signal that will give useful output readings. The i.f. tramsormer in the plate cireuit of the miser is aligned with the signat int rodued to the grid of the miser. Since the tuned circuit freding the mixer grid may have a very low impedance at the i.f., it may be neressary to boost the tost generator output or to disconneet the
tuned rircuit tomporarily from the mixer-stine grid.

If the i.f. amplifier has a crevstal filter, the filter should first be switched out and the alignment carried out as above, setting the test oscillator as closely as possible to the erystal frequener. When this is completed, the erystal should be switehed in and the oseillator frequeney varied bach and forth ovor a small range either side of the crystal freguency to find the exact froquency, as indicated bes a sharp rise in output. Leaving the test oseillator set on the erystal peak, the i.f. trimmers should be realigned for maximum output. The neerssary readjustment should be small. The oseillator frequency should be cherked frequently to make sure it has not drifted from the erystal peak.

A modulated signal is not of much value for aligning a rerstal-filtor i.f. amplifier, since the high selectivity euts sidebouds and the rosults may be inaceurate if the andio output is used ats the tuning indication. latcking the al.v.e. tuning moter, the transformers may be conveniently aligned be ear, using a weak umodulated signal adjusted to the errstal peak. Switeh on the beat oscillator, adjust to a suitable tone, and align the i.f. transormers for maximum audio output.

In :mplifier that is only slightly out of alignment, als a result of normal drift or aging, ean be realigned by using any steady signal, such as a Lowal broadeast station, instead of the test oscillator. Onos: 100-ke, standard makes an excellont sigmal somre for "touching up" an i.f. amplificr. Allow the receiver to warm up thoroughly, tume in the signal, and trim the i.f. for maximum output.

If you bought your roceiver instead of making it, be sure to read the instruction book earefully before attempting to realign the reemiver. Most instruetion books indude alignment dotaik, and any little special tricks that are pecouliar to the receiver will also be deseribed in detetil.

R.F. Alignment

The objective in aligning the r.f. circuite of a gang-tuned reediver is to serure adectate tracking over each tuning range. The adjustment, may be earried out with a test oscillator of suitable frequency range, with harmonics from your 100-ke. standard or other known oscillator, or even on noise or such signals as may be heard. First sot the tuning dial at the high-frequeney end of the range in use. Then set the test oseit-
lator to the frequence indicated by the receiver dial, The test-oseillat or output may be comented to the antemma terminals of the receiver for this test. Adjust the oscillator trimmer condenser in the receiver to give maximum response on the test-oscillator signal, then reset the recoiver dial to the low-frequency end of the range. Set the test-oseillator frequency near the frequency indieated be the recoiver dial and tune the test oscillator until its signal is hard in the receiver. If the frequency of the signal as indieated by the test-oscillator calibration is higher than that indicated hy the receiver dial, more indurtance (or more capateity in the tracking condenser) is needed in the receiver oscillator circuit: if the frequency is lower, less inductance (less tracking eapacity) is required in the receiver oscillator. Most commercial receivers provide some means for varying the inductance of the coils or the capacity of the tracking condensor, to pormit aligning the reeever tuning with the dial calibration. Sid the test oseillator to the frequener indicated by the receiver dial, and then adjust the tracking capacity or inductaner of the recoiver oscillator coil to obtain maximum rexponse. After making this adjustment, recheck the high-frequency end of the suale as previously deseribed. It may be neressary to golarek and forth between the ends of the range several times before the proper combination of indureance and capacity is secured. In many eases, better over-all tracking will result if frequencios near but not actually at the conds of the tuning range are selected, instead of taking the extreme dial settings.
Ater the oseillator range is properly adjusted, set the receiver and test oscillator to the highfrequency end of the range. Adjust the mixer trimmer condenser for maximum hiss or signal, then the r.f. trimmers. Reset the tuning dial and test owejlator to the low-freguencer chad of the range, and repeat: if the circuits are properly designed, no change in trimmer settings should be neressary. If it is neressary to increase the trimmer eapacity in any circuit, it indicates that more inductance is neded; conversely, if less capacity resonates the circuit, less inductance is reguired.

Tracking seldom is perfeet throughout a tuning range, so that a check of aligmment at intermediate points in the range may show it to be slightly off. Normally the gain variation from this cause will be small, however, and it will suffice to bring the circuits into line at both ends of the range. If most reception is in a particular part of the range, such as an amateur band, the circuits may be aligned for maximum performance in that region, even though the ends of the frequency range as a whole may be slightly out of alignment.

Oscillation in R.F. or I.F. Amplifiers

Oscillation in high-frequeney amplifier and miser circuits shows up as squeals or "birdies" as the tuning is varied, or by complete lack of audible output if the oscillation is strong enough to caluse the a.v.e. system to reduce the receiver
gain drastically. ()scillation can be caused by poor connections in the commong ground cireuits. Inadequate or defective by-pass condensers in cathode, plate and sereon-grid circuits abo can cause such oscillation. A motal tube with an ungrounded shell may atuse trouble. Improper screen-grid voltage, resulting from a shorted or too-low sereen-grid series resistor, also may be remponsible for such instability.

Oseillation in the i.f. circuits is independent of high-frequency tuning, and is indicated by a continuous squeal that appears when the gain is advanced with the cew. beat oseillator on, It can result from defects in i.f.-amplifier circuits similar to those above. Inadequate sereen or plate by-pass capacitance is a common cause of such oscillation. An additional by-pass eondenser of 0.1- to 0.25- $\mu \mathrm{id}$. extuatiance of ten will remedy the trouble.

Instability

"Birdies" or a mushy hiss orrurring with tuning of the high-frequency oscillator may indicate that the oscillator is "squegring" or oscillating simultaneously at high and low frequencies. This may be calused by a defeetive tube, too-high oscillator phate or serem-grid voltage, exeessive feed-batek, or too-high grid-leak resistance.

A varying beat noto in c.w. reeption indieates instability in either the h.f. oseillator or beat oscillator, usuatly the former. The stability of the beat oseillator can be checked by introducing a sigual of intermediate frequency (from a test oscillator) into the i.f. amplifier; if the beat note is unstable, the trouble is in the beat oseillator, boon connections or defective parts are the likely causc. Instability in the high-frequency oscillator may be the result of poor eircuit design, loose connections, defective tubes or circuit components, or poor voltage regulation in the oseillator phate- and/or screct-supply cireuits. Mixer pulling of the oscillator cirruit also will catuse the beat note to "rhirp" on strong c.w. signak hecause the oscillator lowd changes slightly.

In 'phone reception with a.v.e., at peculiar type of instability ("motorboating') may appear if the h.f.-oseillator frequency is sensitive to changes in plate voltage. As the a.vece voltage rises the currents of the controlled tubes decerase, decreasing the load on the power supply and rausing its output voltage to rise. Nince this inercases the voltage applied to the oseillator, its frecpuency changes correspondingly, throwing the signal off the peak of the i.f. resonance curve and reducing the a.v.e. voltage, thas tending to restore the original conditions. The process then repeats itself, at a rate determined by the signal strength and the time constant of the powersupply circuits. This effect is most pronounced with high i.f. selectivity, as when a erystal filter is used, and can be cured by making the oseillator insensitive to voltage changes or by regulating the plate-voltage supply. The better receivers use Vli-type tubes to stabilize the oseillator voltage - a defective VIR tube will cause trouble with oseillator instability.

A One-Tube Regenerative Receiver

The reeciver shown in Figs. 5-26, 5-27, 5-28 and $5-29$ represents close to the minimum requirements of a useful short-wave reeciver. Coder suitable conditions, it is capable of receiving signals from many foreign countries. It is an excellont receiver for the beginner, berause it is easy to build and the components are not expensive.

Fin. 5.26 - The simple one-tube regenerative receiver is built on a wond-and-l'restwond chassis, with an aluminnm panel. The large left -hand kash drives the ealibrated seale on the bandspread condenser. The large right-hatd knoh is for the band-set condenser.
section serving as an audio amplifier to the headphones. A variable antenna-coupling condenser, (1 , minimizes "dead spots" in the tuning range that might be caused by antennaresonance offects. Two tuning condensers are used. The band-set condenser, ('4, tumes to the desired frequency band, and the bandspread condenser, $C_{2} \cdot C_{3}$, allows the operator to tune slowly through the band. The bandspread comedenser is a dual rondenser made from a single midget variable, and on all of the amateur bands exrepht 3.is Mc. only the (3 portion is connered in the eircuit. The 3.j-Me, coil includes a jumper that connects ("2 on that band. Regeneration is controlled by varying the plate voltage on the detector with R_{4}.

The mechanieal design is made as simple as possible. Work on the ehassis and the front panel can be done with only a No. 18 drill, a $1 / 2$-inch drill, and a round file. There is no complicated motal work or bending. To reduce the panel size, the knob on the band-set condenser overlaps the fridetion-driven tuning dial.

The front panel is a 7×7-inch shoet of $1 / 16$-inch alumimum. It carrios the tuning eontrols, the regeneration adjustment and the antemmatooupling condenser shaft. The sides of the chassis are soft wood strips, $7 \times 2 \times 5 / 8$ inches. The deck of the chassis is a 7×7-inch sheet of $1 / 4$-inch Presdwood

From the eireuit in Fig. 5-28, it can be seen that the only tube in the receiver is a 6SN7 twin triode. One seetion is used as a regemerative detector, the other triode

ドiд. J. 27 - Inother view of the one-tinge resenerativeroveiver shows how the tube and coil sonkets arte monnterl. 'Tha* headphone tips plug into the twosmall tip jacks on the rear manel - the set of fonur marhioe serews and buts is for comnerting to the power supply. (or Masonite). The $6 s^{\prime} \overline{7}$ socket is supported on "א-inch-long mounting pillars, and the e-

Fïg. 5-28 - Wiring diagram of the one-tube regencrative receriser.
C_{1} - Homemade adjusiable eondenser. see text.
$\mathrm{C}_{2}, \mathrm{C}_{3}$ - Reworked midget variable (Millen 21935). See text.
$\mathrm{C}_{4}-10(1-\mu \mu \mathrm{fd}$. midget variable (M illen 20100).
(F, H - 100 - $\mu \mathrm{ffl}$. mica.

(ix - $12-\mu \mathrm{fd}$. 1.30 - oft elertrolytic. ($9-10-\mu \mathrm{fll}, 25$-volt electrolytic.
R_{1} - $1 . \overline{5}$ megohms, $1 / 2$ watt.
R_{2} - 0.15 megohm, $1 / 2$ watt.
B_{3} - 1.000 , whms, 1_{2} watl.
$\mathrm{R}_{4}-50$ (ONO-ahm wire-wound potentiameter.
$\mathrm{R}_{5}-33,000$ ohme, I watt.
RFCi - 2.in-mh. r.f. chohe (Natimal $100 \mathrm{O}^{\prime}$).
' T_{1} - Interstage audio transformer (Stancor A-1Tご3).
prong coil socket is on $7 / 8$-inch pillars. The grid loak, R_{1}, and grid condenser, C_{5}, are located above the deck. The back panel is made of $1 / 4$-ineh Presdwood and carries the binding posts. The binding posts are $3 / 4$-inch $10-32$ machine serews with suitable nuts and washers. The chassis is assembled with $3 / 4$-inch No. if round-head wood serews. Upon completion, the assembly is given a coat of flat black paint. The front panel is secured to the chassis side members with No. if round-head wood serews.

The bandspread condenser, C_{2} / C_{3}, is made by modifying a Millen 21935 variable rondenser. Using a hack-saw blade, the stator hars are carefully cut between the eighth and ninth
plates (counting back from the front panel). The ninth plate is removed by twisting it loose with long-nosed pliers. C2 is the sertion noarest the panel.

C"oil sizes and data are given in the eoil table. All coils are wound on l -inch diameter 5 pin coil forms. The aroll for the 80 -meter range is closi-wound and requires no treat ment, but the spaced-turns coils shouk be secured by ruming a little Duco remont arross the wire at several points. Before rementing the turns, each eoil should be tried in the recoiver. 'To obtain smooth regenoration. it may be neressary to make minor changes in spacing betwern L_{1} and L_{2}.

The antenna condenser, C_{1}, is made from two l-inch squares of sheret copper. One plate is seecured to the underside of the deck on a tiepoint. The other plate is carried by a $1 / 4$-inch diameter polystyrene rod. Rotating the shaft swings the moving plate away from the fixed plate and provides a capacity of from 5 to less than $1 \quad \mu \mu \mathrm{fl}$. The polystyrene rod passes through the fromt paneland out the baek panel. It is secured at the back hy a $1 / 4$-inch shaft collar. The panel enel carries a tuning knob, and a rubber grommot under slight compression, placed between the knob and the panel, acts as a friction lock. "The moving plate is secured to the polystyrene rod by a copmerwire hairpin soldored to the plate and fixed into a pair of holes drilled in the rod. A flexible

Fig. 5-29-'lhis view underneath the one-tube regenerativereceiver shows the arrangement of parts and the construction of the variable antenna-coupling con. denser.

All coils wound on Millen 45005 l-inch diantiter coil forms. Both L_{1} and L_{2} should be wound in the same diacerion, with L_{2} closer to the pins of the form, ["he grid and of L_{1} and the plate end of L_{2} shend l be on the outside ands of the eoils.			
Range	\boldsymbol{L}_{1}	L_{2}	$\begin{aligned} & S_{L_{1}} L_{2} \end{aligned}$
$\begin{aligned} & 3.8-6 \mathrm{Mc} . \\ & \text { (81) meters) } \end{aligned}$	2.5. No. 16 emam, close-wormu	4t. No. 26 	3/8inch
$\begin{gathered} 5.9-13.5 \mathrm{Mc} . \\ (40 \text { meters }) \end{gathered}$	 cham., spaced to serupy 3/8inch	11年. No, $\because 6$ -nam., close-wound	1/4 inch
$\begin{aligned} & 13.6-30 \mathrm{Me} . \\ & \text { (20 and } 14 \\ & \text { meters) } \end{aligned}$	$51+\mathrm{t}$. No. $2=$ enain., spaced to occupy 5/8 inch	$18 / 4$ t. No. 26 (Tham., close-wount	3/8 inch
$\begin{aligned} & 24.5-40 . \mathrm{S}_{1} . \\ & (10 \mathrm{and} 11 \\ & \text { mettrs) } \end{aligned}$	$11 \frac{2}{2} \text { t. No. } 2 ?$ снап., rlosemoun. 1	$1{ }^{3} 4 \mathrm{t}$. No. 26 (2ana., closar-wound	510 inch

separation betweon strips is just enough ($11 / 4$ inches) to chear the tube socket and dectrolytic condensers, and the leads from the transformer and choke also pass through this opening. Binding posts are made in the same manner as on the reeceiver, with No. 6 machine serews and suitable nuts and washers.

Although it is satisfactory to mount the power supply on the same tahle with the receiver, it should be at least one or two feet away, to avoid the possibility of a.e hum pick-up. For the same reason, the antemata lead should not pass too close to any a.c. wiring from or to the power supply.
lising the parts listed in Fig. $\overline{-}-31$ should result in a power supply that gives about 180 volts when connected to the receiver. However, if the 65×7 in the receiver appears to run too hot (as tested by touehing the tube after the reeriver has been rumning for 5 or 10 minutes), the output voltage can be reduced by inereasing the resistance at R_{1} (Fig. ©-31). Adding

Lead is soldered to the protruding wire, and the lead passes out through a hole in the side of the chassis to make eonneetion to the antennat knots in this wire, on either side of the chassis wall, secure the wire firmly in place. The fixed plate is covered with a single layer of cellophane scotch Tape, to prevent a shorterireuit when the condenser is positioned at maximum capacity.

All wiring is No. 14 timmed copper. Dieect leads from the eomdensers to the roil socked add to the strengt hand rigidity of the reeniver. The r.f. ehoke RFC(3, by-pass comdensers, and the atadio transformer all are fastened to the underside of the deek.

The power supply for the receiver, shown in Figs. $\overline{\mathrm{B}}$-30 and s -31, is simple to assemble because it is built on a wooden chassis. 'lwo stripe of 1 12 X $3 / 4$-inch wood, 12 iuches long, are nailed to two short and pieres. The

F'is. 5.30 - The prower supply for the regenerative receiver is tuill on a simple wooden chassis.

Fíp. $3-31$ - Circnit diagram of the power supply for the regenerative receiver.
($\mathrm{A}_{1}, \mathrm{C}_{2}-16-\mu \mathrm{Fd}$. 5.50 -volt dectrolytie (Mallory RS-21i).
$\mathrm{K}_{1}-20 .(100)$ ohm 10 -watt wire-wound.
La-7-henry 50 -ma, filter choke (Staneor C-I 07).
P_{1} - 11.5 -volt line plag.
$\mathrm{H}_{1}-275-0.25$ volts at 50 ma., 6.3 v at 2.5 amp .5 v . at 2 amp . (Thordarsm TV2R30).

5000 or 10,000 ohms in series with R_{1} shoulel do the triek. Or it may be possible to borrow a voltmeter for mosasuring the output voltage.

The tuning proedure for a regenerative rereber is given earlier in this chapter. Even a short piece of wire hung inside the operating room will sorve as an antema, but for best results an antema from 30 to 75 fere tong, strung as high as possible, should be used.

In buying headphones for use with this roceiver, one should avoid the "low-impedance" headphones offered in many of the surplus outlets. While these headsets are excellent when used in the proper cireuits, this simple receiver requires the use of "high-impedanee" headphones for maximum signal output. Good, inexpensive headphones of this type can be found in any radio store.

A Two-Band Five-Tube Superheterodyne

The five-tube superheterodyne shown in Figs. $5-32,5-34$ and $5-36$ is a double-conversion receiver tuning the $3.5-$ and 7 -Me. amateur bands. It is not difficult to build, and it has stahility and selectivity not surpassed by factory-built receivers costing much more.

As can be seen in Fig. 5-33, the eireuit diagram, the receiver uses intermediato frequencies of 1700 and 100 ke . The $1700-\mathrm{ke}$. first i.f. permits using an oscillator that tunes only one range for the two bands. Tuning the oscillator from 5.2 to 5.7 Me. gives an i.f. of 1700 ke . for the 3.5 - to $4.0-\mathrm{Me}$. range and the same i.f. for the 6.9 - to 7.4 -Nc. range. The oscillator components are soldered in place (no switching or plug-in coils) and the dial calibration is made once and can then be relied upon. 'To change bands, it is only necessary to swing the input condenser, C_{1}, to the 80 - or 40 meter band. The $1700-\mathrm{kc}$. i.f. eliminates any pulling on the oscillator, in cither range.

With no r.f. stage, the receiver's signal-tonoise ratio is determined by the mixer. The 6.107 is the best tule available for the purpose. To minimize spurious responses, two tuned eircuits are used in the input between antemna and converter grid. The stator plates of the dual condenser, C_{1}, are shiclded from each other, as are the two coils L_{2} and L_{3}, and the coupling between circuits is ohtained by the $0,001-\mu \mathrm{fl}$. condenser.
The 1700 -ke. signal from the first converter is converted in the (K 8 second converter to 100 ke . The use of a $1600-k e$ erystal for the oscillator at this point permits using an r.f. gain control that has no effect on the frequency. No frequency change with gain-control setting is a desirable characteristic of any good recoiver, so the 1600ke . ervstal at $\$ 2.75$ is not a luxury. While the 1600-ke oscillator could be made self-controlled, it would be almost certain to "pull" with gaincontrol changes.

The specified $1700-\mathrm{kc}$. transformer, T_{1}, is a relatively expensive item, but there can be no compromise at this point, because a poor transformer will not have enough rejection to avoid the secondary images (200 ke . away) that might otherwise ride through.

The 100-ke. output from the GK8 is filtered through three tuned circuits and feeds

Fig. 5-32- The five-tulbe double-conversion superheterodyne tunes the 3.5 - and 7 Me. lands without band*witching. The controls on the left are audio vohume (upper) and b, for switeh, and those on the right are antenna tuning (upper) and i.f. gain.
a triode plate detertor ($1 / 2$ (3SN7). This detector is regenerative, but the regeneration is fixed and doesn't have to be bothered with by the operator unless he changes tubes and the new tube has considerably different characteristies. The regeneration in the $100-\mathrm{ke}$. detector gives the receiver its single-signal e.w. reception characteristic, since there aren't enough tuned circuits to give it otherwise. The b.f.o. uses the other triode in the 6sN7 envelope, and stray coupling is used for the b.f.o. injection. No panel control of b.f.o. pitch is available, because the selectivity is not adjustable and the variable-piteh feature is not essential.

Up to this point the gain of the receiver is not too high, and two stages of audio amplification are used. Omitting the cathode by-pass condensers still leaves more than enough audio for any pair of high-impedance headphones.

By keeping the signal level low up to and through the selective stages, there is a minimum opportunity for overloading and cross-modulation, and the gain need be kept only high enough to prevent degrading the signal-to-noise ratio. Further, a regenerative stage has a tendency to "flatten out" with strong signals, so the regenerative detertor is somewhat protected by holding the gain down. However, the receiver has quite adequate sensitivity - in any normal location and with a fair to good antenna, any signal that can be heard by a large receiver can be heard by this one, exeept in rare cases where the large receiver's superior sclectivity makes the difference.

Construction

The eonstruction of the receiver is unconventional in that two chassis are used, as shown in Figs. 5-32 and 5-34, and the pancl is mounted away from the chassis. All of the electrical components are mounted on the aluminum $7 \times 11 \times$ 2 -inch chassis, and this sits on an inverted 7×11 $\times 2$-inch steel chassis that serves as a base and bottom cover. The bottom chassis has rubber feet (grommets) at its corners that prevent its slipping

Fig. 5-33 - Wiring diagrans of the five-tulie receiver.
$\mathrm{C}_{1}-140 . \mu \mathrm{ff}$. - per-section dual variable (llammarlund MCD.140-M).
$\mathrm{C}_{2}-35-\mu \mu \mathrm{fd}$. midget variable (Bud $1 . \mathrm{C}-1643$ or Llammarlund HF-35).
$\mathrm{C}_{3}-100 \cdot \mu \mu \mathrm{fd}$. midget variable (National PSR-100).
H_{5} - 1000 -ohm wirewound potenfionteter (Mallory AIMP).
All resistors $1 / 2$-watt unless specified otherwise.
$\mathrm{L}_{1}-8$ turns No. 30 d.c.c. close-wound over ground end of L_{2}.
$\mathbf{L}_{2}, \mathrm{~L}_{3}-35$ turns No. 30 d.e.c. close-wound on National XR-50 slug-tuned form.
$L_{4}-23$ turns No. 24 bare space-wound 32 turns per inch, $5 / 8$ inch diam. Tickler is $18 / 4$ turns spaced
1 turn from L_{4}. See text. (Made from $15 \$ \mathbf{W}$ 3008 Miniductor.
L_{5} - $20 \cdot \mathrm{mh}$. (approx.) slug-tuned coil (RCA 205R1).
$\mathrm{T}_{1}-1700-\mathrm{he} . \mathrm{i} . \mathrm{f}$. transformer, modified (Millen 62161).
$\mathrm{T}_{2}, \mathrm{~T}_{3}$ - 100 -kc. transformers made from TV components (RCA 205R1). See text.
T_{4} - Small 3:1 andio transformer (Stancor A-63-C).
RFCit - $\overline{5} 0$) $\mu \mathrm{h}$. (National R-33).
The $1600 \cdot \mathrm{kc}$ c crystal is a Peterson Radio type Z.2.
 supported away from the aluminum chas-
sis on $1 / 2$-inch-long brass collars, secured on the table. The 8×12-inch panel is

Fig. 5.35 - The $1700-k$ e. i.f. ean is modified by drilling two holes in the side of the ean.
On the transformer assembly proper, the old prid (green) and ground (black) wires are removed. On the tuning condenser connected to the coil nearest the thming condensers, a new plate lead is connected to the stator and a new 13+ lead to the rotor. The old plate lead (blue) becomes the new krid lead, and the old 13+ lead (red) becomes the new ground lead by transferring it from the terminal to the rotor wire near the coil.

During reassembly, the new plate and $B+$ leads should be soldered to a length of wire that is passel through the shield-can hole before the entire assembly is completed. Otherwise it is diffieult to snake out the new plate and 13+ leads unless small flexible wire is used.

6-32 at each end. These rods pass through holes in the top and lip of each chassis. The only holes that are required in the sted chassis are those for the two tie rods, the four holes for the rubler feet, and a $11 / 4$-inch diameter hole to clear the headphone jack.

In the oscillator circuit, the $35-\mu \mu \mathrm{fd}$. tuning condenser, C_{2}, is supported by a small aluminum bracket. The eorrect location of the condenser on the bracket can be found after the dial-andchassis assembly has been completed. It is imperative to the smooth operation of the tuning condenser that the shaft of the condenser be correctly aligned with the coupling of the dial. The 100$)-\mu \mu \mathrm{fd}$. trimmer, C_{3}, is mounted under the chassis with its shaft extending through to the top, so that the caparitor is adjustable from above the chassis. Neither C_{2} nor (${ }_{3}$ is grounded to the chassis through its mounting - leads from the rotors are grounded to the chassis at one point near the $6 . \mathrm{AC7}$ tube socket. The oscillator coil, L_{4}, is mounted by its leads on a small multiple tie point.

The shield between the input coils, L_{2} and L_{3}, is made of thin aluminum. It has a noteh in the edge that goes against the chassis side, to clear the antenna-coil leads, and it has a hole through it for the lead between the bottoms of L_{2} and L_{3}. The dual condenser, C_{1}, is fastened to the chassis by a single 6-32 serew, and the head of this serew has a copper shield soldered to it for minimizing coupling between $C_{1 A}$ and $C_{1 B}$. The shield is easily cut out from copper flashing and soldered to the serew head. The rotor assembly of C_{1} must be

removed to put the shicld in place, but this is just a matter of loosening four serews. Ion't touch the stator plates. The serew with the shield on it, which holds C_{1} to the chassis, also holds the coil shicld in place underneath the chassis.

The $1700-\mathrm{kc}$. i.f. transformer is mounted on its side because the chassis and panel sizes are such that the receiver can be mounted in a small cabinet, and mounting the transformer upright would prevent any surh installation. To lay the transformer on its side, two $3 / 8$-inch diameter holes are drilled in the side of the i.f. can, opposite the coils. The leads from the i.f. transformer are brought out these holes and through corresponding holes in the chassis. An cnd plate on the transformer has a elearance hole for the grid lead. Fig. 5-35 shows these modifications and how the leads are connerted. The 1700-ke. transformer is fastened to the chassis with two clamps using spade bolts. An alternative method would be to make a bracket of the end plate and another bracket at the adjusting-serew end of the transformer.

The 10 -ke. circuits use a TV component, the RCA 205121 Horizontal Oseillator coil. As purchased, they have the soldering lugs and tuning screw out of the top of the can, but they are easily reversed by uncrimping the can and reversing the assembly. Before reassembly, however, there are

Fig. 5-34-A top view of the five-tube superheterodyne shows how an aluminum and a steel chassis are combined for greater weight and strength. The 6C4 oscillator and 6AC. mixer are at the left, and the two 6SN7s are at the extreme right. Note the shield between the stator sections of the condenser on the left.

a fow things to be done. The large coil is used for the $1(0)-k e$, tuned eireuit by eomeding at $1(0)-$ $\mu \mu \mathrm{fl}$. mica condenser between lins I and F and lifting the center-tap) from Pin (\% 1)on't break the center-tap) - the easiost waty is to serape the two wires first to remowe the insulation, flow a drop of solder on the soraped portion, and then cut the two wires away at the pin. The other winding is used as the primary in T_{2} and the tickler in T_{3}. The primary in T_{2} can be tund from the top, because there is also an iron slug in this smatler coil.

In wiring the set, use tio points liberally so that no romponents will be floppes. The only shielded wires are the one ruming from the volume control to Pin I of the audio amplifier and the leads from T_{3} to lins t and 5 of the detector. The shiedds are grounded to the chassis at the conds and any other eonvenient points.

The oscillator coil, L_{4}, is made from 13 \& W Miniductor. To separate the twor roils of L_{44}, push the 3rd or th turn from one end of the piece of Miniductor through toward the center of the exil. suip this wire with a pair of cutters and push the two ends back out. Fitch ond is then peoded around for $1 / 2$ turn. The two coils are adjusted to the right number of turns by working in from the outside ends.

The rotor of 0_{1} is comeneted underneath the ehassis to the (0,(א)1- $\mu \mathrm{fd}$. coupling condenser by rumning a wire from the front support of the
rotor through a $1 / 4$-inch clearance hole in the chassis. The 0.001- μ fid. coupling condenser and L_{2} and L_{3} are grounded to the lug under L_{2}.

Adjustment

There are two typers of adjustment that must be made to get the recelver working: adjusting the circuits to the proper frequencies and adjusting the oscillators and the regemerative detertor to the proper amplitudes. To this lat ter end, leave the eathode end of R_{1} disconnereded in the original wiring, and lightly soleder (so that it cim be changed later) the lead from P'in 5 of the detector to Terminal C of T_{3}. Resistors that maty require changing are R_{2} and R_{3}, so don't solder then too well at first.

Connort a power supply to the receiver and soe that the tubes light and that the power-supply voltages are approximately correct. The 250 volts ran be anything 25 volts either side of 250 , and the $10{ }^{5}$ volts, coming from a V'R tube, will be nothing to worry about if the VR tube lights, A suggested pow supply is shown in lig. 5-37.

Next eomed a low-range milliammeter between R_{1} and cathode (+ lead to (athode) and apply powor atain. The grid current should rad about (0.05 mat. ($50 \mu \mathrm{ab}$.). If it reads much more than this, try as aghtly larger resistor at R_{2}, or a smaller one if the grid current is too low. Nake these adjustments with the rotor arm of the r.f.

Fig. $5-36$ - A bottom view of the five-tuthe superheterodyne. The audio chohe, lef, is in the upper right-hand

gain control at the grounded end.
Next cheek the oweillation of the 6 Ct high-frequency oseillator. To do this, comert a $0-10$ voltmeter across the foun-ohm 7 resistor in the plate circuit of the $6 \mathrm{C} \cdot \mathrm{t}(+$ terminal to +10 s side, - terminal to the $0 .(0) 1-\mu$ fol condenser). Observe the voltage reading and then touch rour finger to the stator of C'z or ('3. If the owillator is working. the volteneter reading will increase. If you got no change, it means the oscillator isn't working. With both roils of L_{4} wound in the satme direction (as they will be if Miniductor is used). the stator of the funing condenser should be comerted to the outer end of the larger coil, and bin 5 of the $6(1 /$ should be comected to the outside turn of the smaller coil.

If you can bormon a serviceman's test oscillator that will give a modulated signal at $1700 \mathrm{ke} \cdot$, this signal can be introduced at the grid of the 6 に8 and the $100-k e$. i.f. circuits ran be peaked (b.f.o. turned off), listening in the headphones for maximum response. The $1700-\mathrm{ke}$, signal can then be transferred to the grid of the $6: 168$ and the trimmers peaked on T_{1}. Lacking the signal gernarator, the alternative is to provide a modulated signal in the 80 or 40 -meter hand and couple it to the stator of $C_{1 B}$. If the signal is from at crestal oscillator or VFO at 3750 kc . (for example), rumning from an unfiltered power supply to furnish the modulation, set the tuning dial vertical. If the signal is at 3500 ke ., set the tuning condenser C_{2} at almost full capracity. Rork (${ }^{3}$ slowly until the signal is heard. Then peak the 100 -ke. transformers T_{2} and T_{3}, reducing the signal input as neressary to avoid overloading. Next turn on the b, f.o. and adjust the slug in L_{5} until a beat note is heard. Then peak the trimmers in T_{1}.

With the initial tuning of the $100-\mathrm{ke}$. chanmel done, the slugs of L_{2} and L_{3} can be adjusted for maximum signal, with no antemma connereted. Set C 1 at almost full capacity, the signal near 3.5 Ma.., and adjust the iron slugs for maximum in the hadphones. If a VFO or erystal oscillator is furnishing the signal, there will probably be conough pick-up without any apparent coupling, but a short 6 -inch wire comereded to the antema terminal may to reguired to piek up the output from a low-powered signal source.

It is not likely that the 100 -ke. eiredits will low tuned to the exaet frequency that makes the calibrations coincide on 80 and 40 meters. While this isn't necessary, of course, it does make the dial book eleaner. To bring the calibrations into lime, beg or borrow a frequeney standard that will give signals at $100-k e$. intervals. First locate the 4.0- and $7.0-$-Mc. points on the rerediver dial, by referring the harmonies from the $100-\mathrm{ke}$. standard to the original signal you used for alignment. If, for example, the 80-meter signal you used was at : 3650 ke , , you know that the first $100-\mathrm{ke}$. harmonic you hear on the high-frequeney side will be 3700 kr ., and the first one on the low side will he 3600

Fig. 5.37 - Suggested circuit diagram for the receiver power supply.
T_{1} - Stancor l-M.8 10 or or equivalent.
S_{1} - S.p.s.t. loggle switch.
ke . The second harmonic of the 3650 -ke. signal will furnish a cherek point at $7: 300 \mathrm{kre} .(2 \times 3650)$, so swinging (x_{1} to about $1 / 3$ mesherl (where it will peak the 7 -Mc. signals) will allow you to locate the 7 -Mc. points. Thus you will have 100 -ke. intervals on the dial from 3.5 to 4.0 Mes and from 6.9 to 7.4 Me., but not necessarily coinciding. To make them coincide, some slight retuning of the 100 -ke, transformers is required. If, for cxample, the 7.0 - Me, point oceurs to the right of the 3.6 , Mre point, the $100-\mathrm{kr}$. amplifier is tuned low, and the slugs should be turned out slightly. A fow trials will bring the circuits into place.

Now chere the regeneration of the deteretor by connereting the lead from l'in 5 of the deteretor to I) on T_{3}. If a strady beat is heard, indicating that the deteretor is oscillating, tune both circeuits of T_{2} and sce if they will kill the oscillation. Their adtion is to load the regenerative detertor to where it won't oscillate - if the action persists. try a 4700 -ohm resistor at R_{3} as a last resort. These circuits should be peaked on a modulated signal, with the b.for turned off.

After the deteretor has becon made regencrative, the calibration can again be chereked as in a preceding paragraph, and any minor changes in tuning made as are found necessary. Once the $100-\mathrm{ke}$. circuits have beon aligned they ean be left alone, and if the $3.5-$ and $4.0-\mathrm{Me}$. points don't come where you want them on the tuning dial, a slight adjustment of C_{3} will correct it.

Conneert a $140-\mu \mu \mathrm{fd}$. variable in series betworn antemat and the antema post. On 80 meters, peak C_{1} on a signal and rock the adjustment slug of L_{2}. If it tunes fairly sharp, the antemat coupling is not too tight on that band. Swing C_{1} out until you are listening on 40 (to a signal) and again rock the slug on L_{2}. If it tunes broad, reduce the capacity of the $140-\mu \mu \mathrm{fl}$ antemat condenser until L_{2} shows a definite peak. Note the settings of the condenser for the two bands.
The input condenser, C_{1}, will tume sharply on either band, and it should always be peraked when listening to a weak signal. Detuning it slightly will attenuate abmormally. loud signals.

The power-supply requirments for the receiver are slight: about 15 ma . at 250 volts and 25 ma. at 105 . A 60 -ma. power supply will take (are of this and the extra 10-12 ma. for a VR-105. A circuit. diagram with suggested values is shown in liig. 5-37.

A Clipper/Filter for C.W. or 'Phone

The clipper/filter shown in lig. 5 -39 is plugged into the recciver headphone jark and the headphones are plugged into the limiter, with no work required on the receiver. The limiter will cut down serious noise on 'phone or c.w. signals, it

The circuit is shown in Fig. 5 -38. The constants are not too critical, and have been adjusted for operation at the signal levels ordinarily available from the headphone jack on a receiver. The elipper output circuit is heavily by-passed by C_{6}

Fig. 5-38- Circuit diagram of the andio clipper unit. Jower
reguirements are 16 ma , at 250 v . d.e., 1.2 amp. at 6.3 v. a.e.
$\mathrm{C}_{1}, \mathrm{C}_{4}, \mathrm{C}_{7}-470-\mu \mu \mathrm{fl}$. mica.
$\mathrm{C}_{2}-0.04-\mu \mathrm{fl}$. paper.
(3-0.1- 3 fd , paper.
C: 8- 8 - fil. 450 -volt clectrolytic.
CB-0.00.3- ff d, paper.
(: $8-10$ - $\mu \mathrm{fl}$. 2 D -volt plectrolytic.
$\mathrm{C}_{3}-0.2 \overline{3}-\mu \mathrm{fl}$, paper.
$\mathrm{R}_{1}, \mathrm{R}_{3}$ - 1 megohm, $1 / 2$ watt.
$R_{2}, R_{0}-1500$ olims, $1 / 2$ watt.
will keep the strength of ew. signals at a constant level, and it will add seloctivity to your receiver for c.w. reception. It will do murh to relieve the operating fatigue caused by long hours of listening to static crashes, key clicks enoountored on the air and with break-in operation, and the like.

Fig. 5.39- The audio clipper unit inchodes input and output amplifiers of the eathodefollower type, a daal-triode elipper circuit, and a selective audio system. It is built in a snall utility box, with a cable for power-*upply connections and a cord and plug to pick up audio from the receiver's headphonc jack.

Fig. 5.40-Inside view ot the -lipper unit. The gain eontrol, switch, headphone jach, and the larger fixed rondensers are monnted on the walls of the box. The two tubes and the selective audio cirenit are monntid on the remosable panel, "Ilse willetive circuit, consisting of the chohe coil and two tulular condensers, weoprias the upper half of the baned in this sew. "Mue soceket at the lifft is for the input and ontput amplifiers: the right-hand soshet is for the double-triode elip. per.
contribute to the effectiveness of the audio filter, $L_{1} C_{2}{ }_{2}$ C $_{3}$. A threer-position switch, S_{1}, is provided so that the unit can be cut out entitely, used with straight limiting and no selectivity, or with both solectivity and limiting. The "off" position is usoful principally to convine the skeptical, and the limiting without seloctivity is useful for impulse noise, when encountered. High selectivity and good noise suppression do not go hand in hand.

The unit, shown in ligs. 5 -39 and 5-40, is built on one pand and the sides of a 3 by 4 by 5 utility box. The parts on the pand and the box proper are eomereted though cathled leads made long enough so the panel ean be swoug out as shown. Any type of construction ean be used, since there is nothing critical in the layout. One preceation to ohserve is to use a shielded lead lotwern the "hot" input terminal and the switeh, to prevent possible stray eoupling between the input and later high-impolance circuits beanse of the cabled leads.

The seloctive audio circuit chosen gives a type of frequency-response curve that is quite useful. The peak at 800 cyeles is broad enough to avoid tuning difficulties, even when used in eonjunction with the erystal filter in the receiver. Nowortheless, the response drops off rapidly enough, particularly on the high-frequeney side, to make a marked difference in resperet to the "eapturing" of the limiter by strong off-resonance signals. There is a "notch" at 1700 (ycles.

There is a wide latitude in choice of inductances for L_{1}. The Millen coil listed under Fig. 5-38 was

the best of avaifable low-priced units tried, in terms of sharinness of the response curve and the depth of the rejoetion noteh. Some of the small filter chokes sueh as the Stancor (-1515 and Thordarson T200(53 also work reasmahly well. The former will resonate at approximately the same frequercies as given above with $330{ }^{\mu} \mu \mathrm{fd}$. at ("2 and $470 \mu \mu \mathrm{ft}$. at (${ }^{3}$; the latter choke requires $0.001 \mu \mathrm{fd}$. at (${ }_{2}$ and $0.002 \mu \mathrm{fd}$. at ('3. With any coil the values of capacitane required to place the prak and noteh at frequmenes that hest fit one's taste in heat notes can casily and quickly be determined by simple ent-and-try. Other types of selective audio circuits can, of course, also be substituted.

In use, the recoiver's gain controls should be set so that only the stronger signals are clipped; too-deop clipping will nake the reserver sound as though pratetically every signal overloads it. Once the proper settings for elipping level are determined, the ardual audio volume is adiusted by the gain eontrol on the unit. A lit tle juggling bark and forth between the reveiver controls and the output control in the clipper unit will eventually result in the recciver's sounding very much like it does without the elipper present. The difference is that the signals and noise, including one's own transmitter signal, don't rise above the level set as a ceiling.

The "Selectoject"

The Selectoject is a recoiver adjunct that can be used as a shatp amplifier or as a single-froquency rejection filter. The frequeney of operattion may be set to any point in the audio range by turning a single knob. The degree of sellectivity (or depth of the null) is contimuously adjustable and is independent of tuning. In 'phone work, the rejecetion noteh can be used to reduce or eliminate a hoterodyne. In e.w. reecption, interforing signals may be rejected or, alternatively, the desired signal may be pioked out and amplified. The Soloctoject may also be operated ats a low-distortion variable-frequency audio oseillator suitable for amplifier frequeney-response meaturements, medulation tests, and the like, by advancing the "selectivity" control far enough in the seloctivoamplifier condition. The seloctojere is connereted in a receiver between the detector and the first audio stage. Its power requirements are 4 mat at 150 volts and 6.3 volts at 0.6 ampore. For proper operation, the 150 volts should be obtained from across a Vll-150 or from a supply with ath output capacity of at least $20 \mu \mathrm{fcl}$.

The wiring diagram of the Soleetojeet is shown in Fig. 5-41. Resistors R_{2} and R_{3}, and R_{4} and R_{5}, (am be within 10) per cent of the nominal value but
they should be as close to each other as possible. An ohmmeter is quite satisfactory for doing the matehing. One-watt resistors aro used because the larger ratings are usually more stable over a long period of time.

If the station receiver has an "accessory sooket" on it, the cable of the Solectoject can be made up ta mateh the conneretions to the socket, and the numbers will not neressarily mateh those shown in Fig. $\bar{j}-\mathrm{d} 1$. The lead between the serond detector and the receiver gain eontrol should be broken and run in shioded laads to the two pins of the socket corresponding to those on the plug marked "A.F. Input" and "A.F. Output." If the receiver has a Vlk-150 included in it for voltage stabilization there will be no problem in getting the plate voltage - otherwise a suitable voltage divider should be incorporated in the recoiver, with a 20- to $40-\mu$ fd. clectrolytic condenser connered from the +150 -volt tap to ground.

In operation, overload of the receiver or the Solectoject should be avoided, or all of the possible solectivity maty not he realized.

The solectoject is useful as a means for obtaining mueh of the performance of a crystal filter from a recoiver lacking a filter.

$\mathrm{C}_{1}-0.01-\mu \mathrm{fl}$. mica, 400 volts.
$\mathrm{C}_{2}, \mathrm{C}_{3}-0.1-\mu \mathrm{fl}$. paper, 200 wits.
C4, (is - 0.00$)^{2}-\mu \mathrm{fd}$. paper, $f(x)$ volts.
($\dot{5}_{5}-0.05-\mu \mathrm{fll}$ paper, 100 volts.
C_{6} - $10-\mu \mathrm{fll}$. 150 -volt electrolytic.
$\mathrm{C}_{7}-0.000 \mathrm{O}_{-\mu \mathrm{fl}}$. mica.
$11_{1}-1$ megohm, $1 / 2$ watt.
$\mathrm{R}_{2}, \mathrm{R}_{3}-1000$ ohms, I watt, matched as closely as possible (see text).
$\mathrm{I}_{4}, \mathrm{R}_{5}-2000$ ohms, 1 watt, matrhed as elosely as possible (see test).

1R-_ oun ohms, $1 / 2$ wat
$\mathrm{K}_{\mathrm{s}}-10,000$ ohms, 1 watt.
$\mathrm{R}_{6}-6000$ ohmes, $1 / 2$ watt.
$R_{10}-20,000$ ohms, $1 / 2$ watt.
$R_{n_{1}}-0.5$-megohm $1 / 2$-watt potentionnter (selectivity).
$\mathrm{R}_{12}, \mathrm{R}_{13}$ - Canged $\boldsymbol{\text { Bemegohm potentiometers, standard }}$ audio taper (tuning control).
$R_{14}-0.12$ megohm, $1 / 2$ watt.
$\mathrm{N}_{1}, \mathrm{~S}_{2}$ - IJ.p.d.t. toggle (can be ganged).

A Bandswitching Preselector for 14 to 30 Mc .

The performance of many receivers begins to drop off at 14 and 30 Mc. The signal-tonoise ratio is reduced, and trouble with r.f.image signals become's apparent. The preselector shown in Figs. 5-42 and 5-44 can be added ahead of any receiver without making any changes within the receiver, and a self-contained power supply climinates the problem of furnishing heater and plate power.

As can be seen from the wiring diagram, Fig. $5-43$, a 6 AKis r.f. pentode is used in the preselector. Both the grid and plate eircuits are tuned, but the tuning condensers are ganged and only one control is required. The gain through the amplifier is controlled by changing the cathode voltage, through R_{3}. i solenium rectifier is used to supply plate power, and the heater power comes from a step-down transformer. The chassis is at r.f. ground but the d.c. circuit is isolated, to prevent shortcircuiting the a.c. line through external connections to the proseleetor.

A two-section ceramic switch selects either the 14 - to 21-Me. or the $28-$ Mc. coil, or the antema ran be fed through directly to the receiver input. When operating in an amateur band betwern 14 and 30 Mc ., switching to the band not in use will attenuate one's own signal suffieiently to permit direct monitoring, in most cases.

As shown in Fig. $5-42$, the ganged condensers are controlled from the front pand by a National MCN dial, and a small knob to the right of this dial is connected to the antemat trimmer, (${ }_{4}$, for peaking the tuning with various antemas. The a.e. line is controlled by s_{2}, a toggle switch mounted on the panel.

The preselector is built on a $3 \times 5 \times 10-$ inch chassis, and a 6×6-inch plate of thin metal is used for a panel. A $13 / 4 \times 3$-inch aluminum bracket mounted about $31 / 2$ inches behind the front panel supports the tuning
condenser, C_{5}, and the antenna trimmer, C_{4}. Millen 3900 - flexible couplings are required to handle the offset shaft of ('4. Both C_{5} and C_{8} are mounted on the chassis with 6-32 screws, but the chassis should be scraped free of patint before installation, to insure good contact.

The shield partition between the two switch sections (Fig. 5-44) straddles the tube socket and shields the grid from the plate circuit. The switehed ends of all coils are supported by their respective switch points, and the other ends are soldered to tie points mounted on the

COIL TABLE FOR THE PRESELECTOR

$L_{1} 5$ t. No. 24, 3/4-inch diameter (13 \& IV 3012)
$L_{2} 5 \mathrm{t}$. No. 24, 1-inch diameter ($13 \& W 3016$)
$L_{3} 6$ t. No. 2 t, $3 / 4$-inch diameter (13\& W 3012)
$L_{4} \quad 7 \mathrm{t}$. No. 20,1 -inch diameter (B \& W 3014)
$L_{5} \quad 71 / 2 \mathrm{t}$. No. $20,3 / 4$-inch diameter ($13 \&$ W 3010)
$L_{6} \quad 3 \mathrm{t}$. No. 24 , 1-inch diameter (B\& W 3015)
$L_{7} 11$ t. No. $2 t$ d.c.c., close-wound, $1 / 2$-inch diameter
$L_{8} 4$ t. . T o. 28 d.c.c., close-wound, $1 / 2$-inch diameter
L_{8} and L_{28} are wound adjacent on a $1 / 2$-inch diamp. ter polystyrene form (National PRD-2)
chassis. The mica trimmers, C_{9} and C_{10}, are supported on short lengths of stiff wire, and a hole in the side of the chassis is required to reach C_{10} with an aligning tool.

The power-supply components are mounted as near the rear of the chassis as possible. The solenium rectifier must be insulated from the chassis.

Fig. 5-42- A bandswitch. ing preselector for it and 28 Mc. I single $6.1 \mathrm{~K} . \mathrm{S}$ ampli. fier is used, and the power supply is included in the unit. The antenna-trimming condenser is monntedon the small aluminum partition.

The coils are made from B \& \mathbb{W} "Miniductors," as shown in the coil table, with the exeeption of one plate and coupling eoil whichare wound on a polystyrene form. The ground roturns for the eathode and plate by-pass condensers are made to a common terminal, a soldering lug under one of the mounting screws for ${ }^{\prime \prime}{ }_{8}$.

When the wiring has been completed and checked, the antenna is connected to J_{1} and a cable from J_{2} is run to the recoiver input. Tune the receiver to the $14-\mathrm{Mc}$. band and sot S_{1} to the proper point. Then turn the main tuning dial until the noise or signal increases to a maximum. This should oceur with ('s and C"s set at close to maximum capacity. Then peak the noise by adjusting C_{10} and ('4.

The 28-Mc. range is adjusted in the same

Fig. 5-4. - I view under. neath the chassis of the bandswitchink preselector, showing the shield partition herween switch sections and the selenium rectifier and associated filter.

An Antenna-Coupling Unit for Receiving

It will often be found advantageous on the 14- and 28-Me. bands to tune (or mateh) the receiving-antenna feed line to the receiver, in order to get the most out of the antemana. (ne way to do this is to use, in reverse, any of the lincocoupling devices advocated for use with a transmitter. Naturally the eomponents can be smadl, because the power involved is negligi-

Fig. 5-1.0 - Cirruit diagram of the coopling unit.
 (:2-100- $\mu \mathrm{ff}$. midget warialle (Millen $221(0)$).
1.1, 1.2 - 25 turns Vo. 26 d.c.r. space-wound to oreupy 1 inch on !-inch dianter form (Millen 4.50100), tapped at $2,5,8,12$ and 18 turns.
S_{1} - -arenit 5 -position single section ceramic wafer swith (Mallory 173C.).
be, and small recoiving condensers and eoils are quite satisfactory. Some provision for adjustable coupling is recommended, as in the transmitting case, becanse the signal-to-noise ratio at 14 and 28 Me , is dependent, to a large extent, on the degree of coupling to the antemia system. The tuning unit can be built on a small chassis located near the receiver, or it can be mounted on the wall and a piece of $\mathrm{KCi}-59 / \mathrm{U}$ run from the unit to the receiver input, in the mamer of a link line in transmitting praetice. For ease in changing bands, the coils can be switched or plugged into a suitable socket. Adjustable coupling not only offers an opportunity to adjust for best signal-to-noise ratio, but the coupling can be decroased when a strong local signal is on the air, to diminate "blorking" and crossmodulation efferts in the reociver.

Fig. $\quad 5.46$ - A compaet roupling network for mateling a balanced line to the receiver on 14 and 2811 c .

One conveniont type of antenna-coupling unit for receivers uses the familiar pi-section filter circuit, and can be used to match a wide range of antenna impedances. The diagram of a compact unit of this type is shown in Fig. i--f. . Through proper selection of eondensers and inductances, a mateh can be obtained over a wide range of values. The doviee can be placed close to the readiver and left commerted all of the time, since it will have little or no effert on the lower frequencies. A shont longth of 300 -ohm Twin-trad is convenient for eonnceting the antenna coupler to the receiver.

The antenma coupler is built in a $5 \times 7 \times 2$ inch motal chassis. All of the eomponents except the two coils are mounted on the front and rair faces. The condensers are mounted of the panel by the spacers furnished with the condensors, and a clearance hole for the shatt prevents any short-circuit to the pancl. The coils, wound on Millen 45000 phenolie forms, are fastened to the chassis with brass serews, and the coils should be wound on the forms as far away as possible from the mounting end. The switch should be wired so that the switehing sequence puts in, in cith coil, 2 turns, 5 turns, 8 turns, 12 turns, 18 and $2 \bar{i}$ turns.

The unit is adjusted for maximum signal by switching to different coil positions and adjusting C_{1} and (${ }_{2}$. It will not be necessary to retrim the eondensers except when going from one end of a band to the other. and when the unit is not in use, asi on 7 and 3.5 Me., the eoils should be set at the minimum number of turns and the condensers sot at minimum. The small reataznes rematining hatve a nogligible refere The eoil in the gromaled side should be shorted if coaxial-line fered is used.

Receiver Matching to Tuned Lines

The pi-section coupler shown in Figs. 5-45 and 5-46 can be used in many instanees for matehing a balanced open-wire line to the receiver, and it can be used with an unbalaneed line by short-circuiting the indurtance in the grounded side of the umbalanced line. However, there are many applications where another type of coupher is slightly more advantageous, as when an all-band antemat systom with tuned ferders is used. or where a wide ratuge of lime impedandes may be en-

 reeriser to a tund line. The unit is made evther seriesor parallel-tuned by the position of the abterna conneetion blach.
countered. This other type of couphor, shown in Figs. $5-17,5-18$ and $5-49$, is simply a scaleddown transmithor eouplor, with provision for either series or parallel tuning. The change from sorios to paralle! tuming is made simply Ly the matnere in which the antemat eommertion plate is plugered into the unit.

As can be seron in the wiring diagram, lig. 5-48, when the antemat conneetion plate is plugged in so 1 hat all four contato are engagent, the two eondensers are conmeded arense the coil in sores, to givo parallel tuning. When the plate is dropped down, so that only the antennat plugs cogage at A and B, the unit is commeded for sories luming. small low-power fransmitting coils with swinging links ato used.

The unit is built in a $+\times 4 \times 2$-inch box, with the eoil socket mounted on one 2×4 inch side. One of the $+\times 4$-inch side phates is mplaced by a shere of polystyrene or ot her insulating material, on which are mounted four batana jarks. A similar hut smatler piecer of insulating material is drilled at the same time

Fir, 5-48- Cirruit of the tumed antonna compler.
 1.1- Coil tur ture to hand in use, with swingiog link ($)_{\text {aticmal }}$ AK-| 6).
to take four hamata phogs. A pair of clearanow holes must be added to the larger plate to deat two of the plages when the series connection is used.

The two eondonsers are mounted in the box and ganged with an insulated shaft coupling. The remaining $+\times 4$-inch side plate is drilled and filed to form an oval hole that will pass the 300 -ohm line from the eoupler to the reeeiver. A rubber grommet should be fitted in the hole 10 protere the line from the metal and to provide a lithe elearatuere

In operation, the eoupher is used in exactly the same way that one is used with a transmitter. Some experimenting is neessary to dotermine whether series or parallel tuning shoulal be used on the various bands, and it maty be ne enssary to use the eofl from the next lower-frequeney batd if series tuning is indieated, or to remove a fow turns from a mol if paralled tuning is required. In any event. the tumer should tume fairly sharply and give "dofinite "parak" to the incoming signals. When this condition hat been found on any one hand, the coupling can then be adjusted for maximum response to the signals, by adjusting the pesition of the link windeng within L_{1}.

Fig. \quad - -49 - Another siew of the tuned antenna coupler.

A One-Tube Converter for 10 and 11 Meters

The 10- and 11 -meter eonverter shown in Figs. $5-50$ and $5-52$ is a simple unit that can be built in a few hours, for a cost of less than fourtern dollars. The converter uses a fixedtume i.f. and tumable input and ascillator circuits, in preference to a fixed-frequency oscillator and a tumable output circuit. With a one-tube converter of the latter type, it is atmost impossible to avoid pieking up at least a few signals in the tuning range of the receiver. Using a tunable oscillator and a fixed-frequency output circuit pemits one to select an i.f. free from interference. The platecurrent demand is only 5 ma., and it is usually possible to operate the converter from the reeriver power supply.

As can be seen in lig. 5-i) 1 , the llartley circuit is used in the oscillator portion of the filsA7 pentagrid converter. A padding condenser, ('2, is switehed in through s_{1} to change the range for 11 -moter operation. Condenser C_{4} is used for tuning, and the imput circuit is tuned to either range with ('1. The sereern grid of the (il3A7 is operated at about fis volts, since higher voltuges will incerese the total tube current without any marked improvement in performather. Dlowerer, sine the available supply voltage will vary with different receivers, the value of the sereen dropping resistor, \mathcal{R}_{2}, ramot be sperified, and it must be calculated, as deseribed later.

There is a good reason for not using an antema switeh for straight-through operation of the eomvorter. With practically any available switch it is vory difficult to prevent capacity compling betwen the input and output cireuits of the converter. Any such capacity coupling increases the problem of eliminating interforence at the i.f. By equipping the converter and the reroiver with identieal input terminals and using similar plugs on both the antema feed line and the converter output cable, antenna changeover is no problem. 'The metal partition scparating L_{2} and $L_{L_{3}}$, shown in lig. $\overline{5}-\overline{5} 2$, redueses the offere of oscillator harmonics beating with high-frecpueney (FM) broatcast stations.

Construction

The convertar is built on a ${ }^{5}$ by 7 by 2 -ineh aluminum chassis, and at by 7 -inch panel is hodd in plate by the eomponents mounted on the front wall of the chassis. The main tuning dial is a National type MCN.

It can be seem in lige. 5-50) that the oseillator tming condenser. (4 , is mounted on $1 / 4$-inch

Fig. 5-50 - A one-tuhe converter for extending the tuning range of a receiver to 10 and 11 meters. The arys. tal socket on the bach of the chasis recerives the antema plug (Millen 37.112).
motal pillars. A National type (iS-10 stand-off insulator is located at the front-right-hand side of C_{4}, and a soldoring lug at the top end of this insulator is soldered to the stator teminal lug of the condenser. This added support for the tuning condenser improves oscillatar stability, by preventing rocking of C_{4} as the control shaft is turned. A feed-through bushing at the other front terminal of the condenser is used to support and insulate the lead passing through the chassis to the coil below. The padder condensers for the oscillator cireuit, ('3 and C_{5}, are mounted on the rear terminal lugs of the tuning contenser.

The grid coil, L_{2}, is mounted on the terminal lugs of the input funing condenser, Ci. The antema coil, L_{1}, should be wound around L_{2} before the larger eoil is soldered in place. The tube socket, to the rear of (' L_{2}, is mounted with pius No. 1 and 7 facing toward the rear of the chassis. The aluminum shield between the input and the oscillator coils has a $3 / 8$-inch lip bent over along one colge, for fastoning to the chassis. The shield is slotted to clear the cathode-tap lead.

The sareen and deroupling resistors, R_{2} and R_{s}, respectively, are supported at the powersupply onds be a tie-point strip which is hele in place be the same serew that anchors the soldering lug for L_{3}. If the receiver supply voltage is known at this time, it is possible to calculate the correct value for the serecn-dropping resistor, and the resistor can be mounted on the tiopoint strip. The resistor value is obtained from the equation
R (ohms) $=\frac{\text { supuly voltage }-6.5}{0.0016}$
Example: Supply voltage 260; the resistor value is $\frac{260-6.3}{0.0046}=\frac{42.391 \text { ohms. Ansthing within } 200_{0}}{\text { of this figure would be satisfactory. }}$
The coaxial output cable is terminated at the chassis end at a tio-point strip located at the left end of the chassis.

Fig. 5-51 - Cireuit diagram of the low-enst 10- and II-meter converter.
$C_{1}-15-\mu \mu f_{1}$. variahle (Itillen 2001.5).
C. $\mathrm{C}_{3}-3-30-\mu \mu \mathrm{ft}$. miea trimmer.
 2 rotor piates removed).
C $: 5-68-\mu \mu \mathrm{fd}$. vilver mica.

(: $7, \mathrm{C} 4-0.01-\mu \mathrm{fl}$, dise ceramie.
Cs - 8: $-\mu \mu \mathrm{fl}$. mica.
K_{1} - $20,0(0)$ ohms. $1 / 2$ watt.
K_{2} - Screen resintor: see text.
$\mathrm{K}_{3}-1000$ ohms, $1 / 2$ watt.
I.1 - 3 turns No. 24 d.s.e., space wound armund L_{2}.

It is important that the link from the converter to the reereiver be well shiclded, to avoid pieking up any signals directly in the reeceiver. A length
 necessary, a small shiedd should be momoted over the antema hinding post of the receiver. However, it is usually possible to set the reereiver somewhere near 3 Itc. that will be free from even the weakest straight-through interferences.

If no communications receiver is available, a War-sirplas $B(-4 \bar{s} 4$ aircratt reeciver (tuning range of 3 to (6 Me.) makes an inexpensive rereiver for use with this converter.

Testing

Power for the comverter can be obtained from a separate supply, but it is usually more convenient to "steal" the power from the reeceiver. The converter requires 6.3 volts at 0.3 ampere for the heater and 200 to 250 volts d.e at $\overline{5}$ to 6 ma , for the phate and soreen.

After the power supply has been connected, it

$1.2-13$ turns No. $\mathbf{2 0}^{0}$ tinned, $5 / 8$-inch diam., 13 íb-inch long (15 \& $\mathbf{N I}^{\prime} 3000^{\circ}$).
1.3-6 1 urns No. 18 timned, $1 / 2$-imeh diam., $8 / 4$-inch long, cathote tap $18 / 4$ turns from gromend end ($15 \mathbb{N} \mathbf{N}$ $30102)$.

$1_{5}-10$ lurns λ_{0}, it d.s.c. scramble wound at cold end of L_{4}.
J_{1} - I'anel-mounting male sorket (Amphenal 86-CP-4)
J' - 300-ohm 'I'win-Learl plug (Millen 37412).
$\mathrm{S}_{1}, \mathrm{~S}_{2}$ — $\mathrm{S} \cdot \mathrm{H}, \ldots \mathrm{t}$. tog g le switeh.
is adrisable to cherek the sereren and plate voltages with a voltmeter. It may be neressary to change the value of k_{2} if the sereen voltage isn't in the recommended range of 60 to 70 .

If your transmitter uses Vfo, set the VFO to have a harmonic fall at 28 Me., and tune the receiver to 3 Mr . If you have erystal control, furn on the oscillator and set the receiver to the (rystal's 28-Nt. harmonic minus 25 Me. If, for example, your crystal has a harmonic at 28,6 on) ke ., sot the receiver to 3650 ke . Set the tuming condenser, C_{4}, to where you want the test frequency (tamsmitter-oscillator harmonic) to appear on the dial, and tune it in by adjusting C_{3}. If the signal is too loud, remove any test antemna from the converter. With a reasonable signal, choerk the tuning of the input eirenit, $C_{1} L_{2}$, and adjust L_{4} for maximum signal in the receiver.

Once the converter hats been set up on known frequencies within the 10- and 11 -meter bands, C'2 and c's are left fixed athd the tuning is done with C's. The bandepread will be approximately 80 dial divisions on 10 and 20 or so on 11 meters. (C_{1} need not be touched over a tuming range of about 200 ke , and so should be used at intervals if the entire band is being eombed.
fig. $5.52-$ A lottom view of the one-tulue converter. 'The toggle switches are for banderhanging and opening the heater cireuit.

Crystal-Controlled Converters for 14, 21 and 28 Mc.

The principle of using a fixed high-fregueney oseillator in a converter and tuning the reeciver the converter works into ran be elaborated upon by using a stage of r.f. amplification ahead of the mixer and by using a crystalcontrolled oseillator for maximum stability. Since such a converter is generally used on a high frequency where fundamental erystals are not available, it is necessary to use a harmonic of a lower-frequeney erystal. A crystalcontrolled converter of this type is shown in Figs, $\overline{5}-\mathrm{j}^{2} 3$ and $5-\mathrm{jaj}$. A separate converter is required for the 14-, 2l-and 27-/28- 11 e. bands, since by using separate converters it is possible to simplify their construction and to maximize their performance.

The converter uses the harmonic of a arystal oseillator to provide an exeedingly stable highfrequeney oseillator signal. For example, in the 10-meter converter a 12,25-Me, arystal doubles to 24.5 Me , and this signal is fed to the mixer. by tuning the amplifior ((oour prosent reviver) following the mixer over the range 3.5 to 5.2 Mc , you are, in effeet, tuning across the $28-\mathrm{Mc}$. band. The r.f. circuits in the converter are tuned to 28 Mc., and only have to be touched up when going from one end of the band to the other.
 neutralized triode-connected $6 \mathrm{~A} \boldsymbol{N}^{\circ}$) is used for the r.f. amplifier. There is some question ats to its necessity on 14 and 21 Me., where the at mospheric noise is generally high enough to limit the maximum usable sensitivity. I pentodeconnected (iAKiz eould probably be used with mo detertable differrnee in performance on 14 iod 21 , but the triode is casy to handle and you con't lose anything by using it. Using high-impedance circuits with the mentode might give trouble from regeneration, unless the stage wore neutralized. Diljustable antenna coupling and a Faraday sereen are in-
cluded to accommodate various antenna systems and to eliminate capacity coupling to the antema line. The r.f. stage runs at 105 volts on the plate, since this gives the best noise figure. The separate plate lead also offers an opportunity to kill the converter by opening this circuit. The (i.lに゙5 pentode mixer is easy to hatude and quiet enough so that its noise doesn't impair the over-all performance. A trionde mixer might be used, but the pentode runs with low curront and is quiet.

The plate eircuit of the miver is tuned to the conter of the recoiver tuning range by setting L_{4} to resonate with the various shant cireuit eapacities. The eircuit has a low Q and there is little variation in gain over the range. I 604 cathode follower is used as a low-impedance coupling to the receiver input.

One section of a 6.56 twin triode is used for the erystal oscillator, and the ot her half serves as a frequency multiplier. To minimize the other harmonics existing in the plate cireuit of the multiplier, the plate is tapped down on $L_{\text {fif }}$.

To get the best possible r.f. eireuits, within the space limitations, B \& \mathbb{I} " Miniductors" are used for L_{1}, L_{2} and L_{3}. Their () is woll above that obtainable with smaller-diameter coils, and they are casy to handle. To insure good shiclding and low-resistance ground paths, an aluminum chassis is used in preference to the more common stoel units.

The converter is built on a $5 \times 91 / 2 \times 3$-inch aluminum chassis, with several shield partitions to reduce unwanted interstage coupling. The most important shield is the one that stradilles the r.f. amplifier socket and separates the grid and plate cireuits of this stage. The grid toning condenser, ('2, is mounted on bakelite insulating washers, and its ground lead returns to the common ground at the tube socket, to climinate stray coupling through chassis cur-

Fig. 55.3-A 28. De. erystal-controlled converter. The adjustable antema eropling can he seen at the left front. The thare shieds. from left toright, cover the triode erommerted $6: 1 \mathrm{~K}, \mathrm{y}$ r,f, amplitier, the $6, \mathrm{~K} 5 \mathrm{~s}$ miver and the of:4 eathode follower. The unshinded tube is the 6J6 oscillator-multiplier.

$\mathrm{C}_{1}-10 \cdot \mu \mu \mathrm{fl}$. mica.
$\mathrm{C}_{2}-20$ - $\mu \mathrm{ff} \mathrm{f}$, midget varialde (Johnsem 160-110).
$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{14}, \mathrm{C}_{15}, \mathrm{C}_{12}, \mathrm{C}_{20}-\mathbf{0 8 0}-\mu \mathrm{ffl}$.
mi"a.
($6,-5-\mu \mathrm{fd}$. midget variathe (Johnson l(0)-102).
(: - $11-\mu \mu \mathrm{fi}$ midgel loutterlly (Johnson 10)-211).

(0) - Twisted wire. Sere test.

Gre, Gra - Ser coil table.
C. 1×-47 - $\mu \mu \mathrm{fd}$, mica.
$\mathrm{K}_{1}, \mathrm{~K}_{9}-290$ ohms.
R_{2} - 2200 ohms, 1 watt.
ronts. If this isn't done, you may have trouble neutralizing the amplifier.

A $21 / 4$-inch diameter hole is punched in the chassis, so that the externally-mounted antenna coil, L_{1}, ean be coupled to the gride coil, L_{2}. The Faraday sereen is then mounted aeross this hole on the umberside of the chassis. To construct the faraday shicld, first cut a piece of $1 / 8$-inch-thiek polstyrene (Millen (Quart z-()) to measure $21 / 2$ by $3 \frac{1}{4}$ inchos, and drill a pair of holes at one end to clear No. 6 serews, for mounting the finished shield. (These are the same serews that hold the mounting strip for the antemna rondenser, ('i, visible in ligg, 5 -53.) At the opposite end of the poly sheet, drill a small hode in cach corner, for securing the wire used in making the shidd. Then wind No. 20 tinned wire tightly around the poly sheet in the long direction, spateing it with string or more So. 20 wire. Whan the winding is finished and secured at both ends, unwind the spacing string (or wire) and remove it. If you have done the job carefully, you will have neat parallel lines of wire across the polyst yrene ath equally spaced and all lying fairly flat. Then apply two or three heavy coats of Duen coment to one sile only, allowing sufficient time botween coats for the cement to harden thoroughly. When this has heen done, it will be found an easy job to cut each wire on the uncemented side. Straight-
R_{3} - 50,000 oh ints.
$1 \mathrm{R}_{4}$ - $\mathbf{6 8 1 0 0}$ ohims.
1_{5} - 0.1 megulim.
$\mathrm{K}_{6}, \mathrm{~K}_{10}, \mathrm{~K}_{12}, \mathrm{~K}_{14}-4 \mathrm{~K}_{6}$ ohms.
R:, $\mathrm{R}_{11}-4.01$ ohms.
18*- 1.18 megohm.
$\mathrm{R}_{13}-82,000$ ohms.
All resiztors 1_{2} wat umles otherwise specified.
$1_{11}, I_{2}, I_{23}, 1_{4}, 1_{5,}, I_{6}$ - Ser moil table.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Cahle-rominertur sochets (Jomes S.l0D).

X'IV. Stec eoil table.
en out the wires so that you now have a flat shoet of parallel wires, and trim off the wires at the mounting holes end of the sheet alone a line inside the mounting holes. Figs. $\overline{-}-\mathrm{in}$ a and 5-ift show what this looks like. When trimming these wires, be caroful to sere that no wire is left touching an aijacent one. Trim the wire ends at the other end bo about $1 / 2$ inch from the polystyrene. (lamp the shield in a vise, between two pieces of wood, and wrap eath wire end around a pioce of No. 12 timed eopper, as shown in lig. b-iff. With a good hot iron, run a bead of solder along the bus, and your shield is finished. Work fast, and no heat will reach the polv. The shield is mounted with the smooth side exposed through the hole, and one end of the No. 12 bus is grounded at the r.f. tube socket.

The grid coil, L_{2}, is supported by its leads and a couple of drops of Duco cement that hold its grounded end to the Faraday shield. The antenna coil, L_{1}, is mounted by its leads on a piece of $1 / 4$-inch diameter polystyrene rod. The rod is supported by a shaft bushing. A small wire pin through the rod at the back of the bushing and a rubber grommet between the bushing and the control knob give a soft friction lock that holds the coupling in any position. Flexible leads run from the coil to ('1 and the shield of the RG-59/U coaxial line.

The r.f. plate coil, L_{3}, is eomented to a small piecere of polysterene sheret that is supported by two small brackets. The neutralizing condenser, (6 , is supportad by one terminal of C_{7} and at stiff wire lead back to the grid pin on the tube socket. The coupling condenser, Ca, is simply an insulated wire wrapped onee around the lead from ('s to the grid of the mixer. It is brought out of the oscillator compartment through a polystyreme or rubber grommet.

After the usual last cherk of the wiring, commert at power supply and remove
 its socket. Jisten in on your rereiver at the arystal froquency, and if you don't find the ervstal signal, adjust L_{5} until you do. Them set your receiver on the proper harmonic frequency and peak L_{6} for maximum sighal, as indicated by your S-meter. Then back off on L_{5} at little, because there is no need to run the erystal at maximum.

Then tune your receiver - its antenna circuit must complete the cathode circuit of the 6Ct follower - to about 3.8 Mc. and peak L_{4} for maximum noise. The adjust ment is not sharp. If your receiver has an antennat trimmer, peak it too. Then plug in the GAKEr.f. amplifier and, after the tube hats warmed up, roek C_{2} and C_{-}. Through the hole in the bottom plate, use an aligument tood to adjust Co a lit tle at a time, until
J.5 No. 32 enam..

COIL TABLE FOR THE CRYSTAL-CONTROLLED CONVERTER
 14 Mc .
 21 Mc .
 28 Mc .

I.1 23 t. \o. 24
$3 / 4$-incla diam. (13 X W 3012)
$12 \quad 21 \mathrm{t} . \mathrm{Xt}_{\mathrm{t}, 24} 24$
3/4-inell diam. ($13 \times 1 / 3012$)
$1.3 \quad 38 \mathrm{t}$. No. 24 $3 / 4$-inch diam. center-lapped (13 N W 3012)

9 t. No. 24
l-inch diam.
($13 \times 1 / 3016$)
10 t. No. 20
l-ineh diam.
(13 \& W 3015)
22 t. No. 24
$3 / 4$ inch diam.. center-tapped (13 N W 3012)

10 t. No. 20
l-inch diam.
(13 \mathbb{N} N 3015)
9 t. No. 20
l-inch diam. (13 N W 3015)

16 t. No. 24
3/4-inelh diam., conter-tapped (B \& W 3012)
L_{4} Sheg-tuned coil (Cambider Thermionic Corp. I-Me. ISM with
 ameter (ambridge "Ihermionic (Sorp, LSM forms)

No. 32 enam.,
close -wound,
$1 / 2$ inch long
20 1. No. 20
enam.. close-woumd.
center-tapped
$7 \overline{5} \mu \mu \mathrm{fil}$.
29 а 2 fll .
58.5 ke . (triples)

30 t. No. 28
enaim.,
close-wonnd
20 1. No. 24
enam., flose-wound. centertapiond
$33 \mu \mu \mathrm{fl}$.
$22 \mu \mu \mathrm{dd}$.
12,250 he. (doubles)
you lose any unpleasant sounds with all settings of C_{2} and C^{\prime}, and the r.f. stage is neutralized. Connect the antema, and peak C_{2} and C_{7} on a signal. Do all of your tuming with your regular receiver, and only use C_{2} and C_{7} to peak the signal when you make a big frequeney excursion. The adjustable antemna coupling provides some measure of gain control for the unit, but it is generally best to use fairly tight coupling and hold the gain down in your regular receiver. The antema coupling is designed for low-impedance input, and will work satisfactorily with
riц. 5-5.5-'His view of the underside of the converter with the bottom cover removed shows the Faraday shield at the lower right, the shichl straddling the r.f. amplifier sochet (lower center) and the shielded osaillator sertion (top) center). 'The nentralizing condenser for the r.f. stage is adjusted through a hole in the lootom cover.

50 - or 75 -ohm line. If you use $300-$ hhm TwinLead, it is better to leave the short length of coaxial line ungrounded and to use something other than a coaxial fitting for connecting the antenna. If your antenna uses 600-ohm line or tuned feeders, it is best to use a small antonna tuning unit link-coupled through a length of $1\{\dot{G}-59 / \mathrm{U}$ to the converter input.

There is nothing sacred about the crystal frequencies used, other than to be sure that they have no harmonics falling within the sig-nal-frequency range. For the crystals suggested in the coil table, the receiver tunes from 4 to 3.6 to cover 14 to 14.4 Mc. (yes, it tunes backwards!), 3.375 to $3.82 \overline{5}$ for 21 to 21.45 Mc., and 3.5 to 5.2 for 28 to 29.7 Mc. The $27-$ Mc. amateur band is also covered by the 10 -meter converter, simply by tuning your receiver below 3.5 Mc.

What first i.f. (tuning range of your receiver) you will use depends on the available crystals and the range your present receiver tumes. Using the second or third harmonic of the crystal should be satisfactory in practically every case. By eareful selection of crystal frequencies, you can arrange things so that the

Fig. 5-56-Constructional details of the Faraday shield, before soldering the ends of the No. 20 wires to the No. 12 wire bus.
band edges start at some even 100-kc. mark on your recoiver, thus giving you frequencycalibrated reception (with the necessary mental correction factor). The accuracy of calibration of your receiver on the one tuning range, together with the accuracy of the crystal used in the oscillator portion of the converter, will determine the accuracy of calibration of the receiving system.

Power Supply

The circuit diagram of a suitable power supply for use with the converters is shown in Fig. 5-57, although any source of 6.3 volts a.c. and 105 and 180 volts d.c. will do. One set of connections runs to the converter in use, and the other goes to a small control box located on the operating table. If desired, the a.c. switch can be incorporated in the power supply, but the plate switch, in the 105 -volt lead to the r.f. stage, should be handy to the operator. A switch can be provided for shifting the pewer from one converter to another. Sinceseparate receiving antennas are generally used at these frequencies, the antennas do not require switching.

Fig. 5.57 - A power supply for the erystal-controlled converter.
$\mathrm{C}_{1}, \mathrm{C}_{2}-8-\mu \mathrm{fd}$. 450-volt electrolytic.
$\mathrm{R}_{1}-1500$ ohms, 10 watts.
$\mathrm{H}_{2}-10,000$ ohms, 10 watts.
1.1-16-hy. 50-ma. chohe (Staneor C-1003).
' 1 ' $240-0-240$ at 40 ma., 5 and 6.3 v. (Staneor 1’.6297).

HIGH-FREQUENCY RECEIVERS

An All-Purpose Super-Selective I.F. Amplifier

The amplifier shown in Figs. 5-58 and 5-60 is designed to connert to any receiver at the grid of the first i.f. tube, to give superior salertivity for either 'phone or c.w. reception. The signals at 455 kc are heterodyned to 50 kc . and filtered through either or both of two selective amplifiers. One of the amplifiers uses 11 high- Q tuned circuits to give a selectivity characteristic that is about 350 eycles wide at 6 db . down and 1300 cyeles wide at 60 db . down. The other amplifior uses 9 "stagger-tuned" circuits that give a 2300 -evele bandwidth at 6 dl . down and 5 kc . at 60 db . down. The broader amplifier has its tuning adjusted so that it is centered about 1700 cyeles higher in frequency than the sharp one. Thus, when a phone carrier is tuned to fall in the center of the sharp amplifier, one sideband falls in the broader amplifier. The outputs of the amplifiers are fed to a common detector, and the relative amplitude of carrier and sideband at the detector can be changed by controlling the gains through the two amplifiers. By emphasizing the carrier at the detertor, "exalted-carrier" reception is obtained, which has the advantage that fewer distortion products are generated on a signal in the presence of QRMI. For c.w. reception, only the sharp amplifier is used, while the reception of SSB signals requires only the broad amplifier.

The complete circuit of the amplifier is shown in Fig. 5-59. Receiver output at 455 kc ., at as low a level as possible (to avoid overloading), is fed into the GBE6 converter stage, where a arystal-controlled oscillator is solected either 50 ke . higher or lower, to use the selectable-sideband principle. ${ }^{1}$ A third position of the switch, S_{1}, permits running looth crystals at once, for alignment purposes, as deseribed later.

The two i.f. amplifiers follow the converter, and two 613.J6 variable- μ pentodes are used in each channel. There are isolation resistors and condensers in each power lead to prevent any over-all feed-back.

1 McLaughin, "Exit Heterodyne QRM," QST, Oct., I947.

The resistor, R_{50}, between gain control, R_{17}, and ground, is used to bring the relative maximum gains of the two chanmels to approximate equality. The gain of the broad channel will vary with the degree of stagger-tuning, so R_{50} should be inserted only after the alignment procedure has been completed. Its value, of course, may work out differently than that shown.

The detector uses two 12.1 UT dual triodes in in the "product detector" circuit. The advantage of the circuit is that it minimizes intermodulation at the detector and doesn't require a big b.f.o. signal for exalted-carrier reception. A signal-level indicator circuit conmeeted to the sharp amplifier doesn't indicate b.f.o. voltage, so the signallevel meter reads the same with b.f.o. on or off.

The signal-level circuit, labeled "A.V.C.Rect." in Fig. 5-59, consists of a cathode follower driving a diode. In three positions of S_{2}, the rectified current simply works the meter, but an a.v.e. voltage is applied throughout the amplifier in the fourth position.

The tuning meter is important. It permits the operator to center the carrier in the sharp amplifier, and also warns him when the amplifier is in danger of overloading. Overloading will tend to nullify the advantages of high selectivity, so it is important that the unit always be operated below this point. The manual gain controls will take care of about $60-\mathrm{dl}$, range.

The series trap, $R F C_{5} C_{48}$, is tuned to 50 kc . to by-pass the r.f. and prevent its getting on the audio grids. A choice of two low-impedance outputs is provided, for 'phones and loudspeaker.

Construction

There are only a few departures from conventional construction technique in this amplifier. Miniature tubes were used only to provide room for the tuned circuits - on a larger chassis or with a different layout, metal tubes should be perfectly satisfartory. However, no attempt should be made to save space by mounting the

Fig. 5-58 - The super-seloctive i.f. amplifier uses two channels in, parallel a sharp ote for c.w. or for "phone carrier, and a broad one for a "phone sideband,

The sharp i.f. is the strip at the rear of the chassis, and the broad one is just in frout of it. The two tubes at the right-hand end of the broad amplifier are the "product detector." The h.f.o. can is at the front right, next to the tube, and the near-by tube and can are in the signal-metering circuit.
The controls, from left to right, are sidehand selector switch, andio volume, broad i.f. gain, sharp i.f. gain, function switch, and b.f.o. piteh control.

tuned circuits in anything but a straight line. The shied cans do not provide complete mannetic: shielding at 50 ke ., and it is possible to couple right through the thin aluminum.

The i.f. strips proper are built on aluminum chanmels. Ill power leads are brought out through shidded wires, to minimize coupling via the common power circuits. Esing the shielded wire is also an aid to construction, beerase the shields are soldered to lugs at points near the tube sockets, and the isolating resistore are then mounted botwern tube socket (or coil terminal) and the exposed conds of the shielded wires. The Hatlicrafters coils leave no room for the assoriated shunt condensers, so they are connereted direretly across the terminals.

The IRCA coils, used in the broal amplifier, must be reworked slightly trefore using. Is supplied, the terminals come out the top of the can, so the coil must be removed by untwisting
four small tats. The coil to the used is connereted to Torminals I and F , and another coil conneeted to Torminals ((and I) should have its leads suipped. The $390-\mu \mu \mathrm{fl}$. silver-mica condenser can then be soldered to Terminals A and F before the assembly is replated in the shield can.
The b.f.o. coil, L_{1}, uses both eoils of the RCDA 205 l 1 connected in sorics. This is done by lifting the single wire from Terminal (and connereting it to Terminat F . Dxternally, Terninals A and D are used.
The main chassis is aluminum, 12 by 17 by 2 inches, and the front panel is a standard relayrack affair 7 inches high. The shiolded loads from the i.f. strips proper are brought out through holes to tie points conveniently located away from signal dircuits. Two short pieces of lR(i-59/U coaxial rable are used - one from the input jack at the rear of the rhassis up to the 6131% grids, and the other from the output of the sharp

Fig. 5-59 - Wiring diagram of the 50 -ke. selective amplificr.
$\mathrm{C}_{1}-\mathbf{0 . 0 0 5}-\mu \mathrm{fd}$. ceramic.
$\mathrm{C}_{2}, \mathrm{C}_{6}, \mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{18}, \mathrm{C}_{19}, \mathrm{C}_{20}, \mathrm{C}_{21}, \mathrm{C}_{28}, \mathrm{C}_{30}, \mathrm{C}_{31}$, $\mathrm{C}_{32}, \mathrm{C}_{36}, \mathrm{C}_{37}, \mathrm{C}_{34}, \mathrm{C}_{34}, \mathrm{C}_{42}, \mathrm{C}_{44}, \mathrm{C}_{45}, \mathrm{C}_{50}-0.1$ μ fil. 400 -volt.
$\mathrm{C}_{3}, \mathrm{C}_{5}, \mathrm{C}_{10}, \mathrm{C}_{17}, \mathrm{C}_{29}, \mathrm{C}_{35}, \mathrm{C}_{43}, \mathrm{C}_{52}-0.01-\mu \mathrm{fd}$. ceramic.
$\mathrm{C}_{4}-47-\mu \mu \mathrm{fl}$. ceramic.
$\mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{44}, \mathrm{C}_{25}, \mathrm{C}_{18}, \mathrm{C}_{22}, \mathrm{C}_{23}, \mathrm{C}_{24}-2.4-\mu \mu \mathrm{fd}$. mica (two $4.7-\mu \mu \mathrm{fd}$, in series if lower value not available).
$\mathrm{C}_{25}-100-\mu \mu \mathrm{fd}$. ceramic.
$\mathrm{C}_{27}, \mathrm{C}_{28}, \mathrm{C}_{33}, \mathrm{C}_{34}, \mathrm{C}_{40}, \mathrm{C}_{41}-4.7$, $\mu \mathrm{fd}$. mica.
$\mathrm{C}_{48}, \mathrm{C}_{51}$ - $16-\mu \mathrm{fd} .450$-volt electrolytic.
$\mathrm{C}_{47}-0.002-\mu \mathrm{fl}$. ceramir.
C_{48} - 250-970- $\mu \mathrm{fld}$. adjustable mica (EI Meneo 306).
$\mathrm{C}_{49}-\mathbf{0 . 0 0 1}-\mu \mathrm{ff}$. ceramic.
$\mathrm{C}_{50}, \mathrm{C}_{53}-10$. fd . 50 -volt electrolytic.

($\mathrm{C} 56-220-\mu \mu \mathrm{fd}$. silver mica.
(:57, ($\mathrm{C}_{58}-3300$) $\mu \mu \mathrm{fd}$, silver mica.

($6_{62}-10-\mu \mu \mathrm{fd}$. ceramic.
$\mathrm{K}_{1}-\mathbf{0} .15$ megohm.
$\mathrm{K}_{2}, \mathrm{R}_{9}, \mathrm{R}_{13}, \mathrm{~K}_{19}, \mathrm{R}_{23}, \mathrm{R}_{32}, \mathrm{R}_{40},-0.1$ megohm.
$\mathrm{R}_{3}, \mathrm{R}_{5}-0.12$ meqohn.
R_{4}, $\mathrm{R}_{6}-330$ ohms.
$\mathrm{H}_{7}, \mathrm{R}_{8}-2.00$ ohms.
$\mathrm{R}_{10}, \mathrm{R}_{14}, \mathrm{R}_{20}, \mathrm{R}_{24}, \mathrm{~K}_{48}-100$ ohms.
$\mathbf{R}_{11}, \mathbb{R}_{12}, \mathbb{R}_{15}, \mathbb{R}_{16}, \mathbb{R}_{21}, \mathbb{R}_{22}, \mathbb{R}_{27}, \mathrm{~K}_{28}-10,000$ ohms.
$\mathrm{R}_{17}, \mathrm{R}_{26}-2000$-ohm wirr-wound potentiometer.
$\mathrm{R}_{18}, \mathrm{R}_{25}-27,100$ obme, 1 watt.
$\mathrm{R}_{29}-1500$ ohms.
i.f. amplifier to the grid of the $12 \mathrm{AU7}$ a.v.e.rectifier. The input and output signal leads from the i.f. amplifiers are fed through Dillen :32150 ceramic bushings, where the projecting wire serves as a tie point. The detector bias rontrol, R_{38}, is mounted at the rear of the chassis, since it need not be touched after the original adjustment for minimum deteretion in a single chamel, exept when a $12: 107$ detector tube is replaced.

Alignment

The best point in a receiver to take off the signal for this i.f. amplifier is at the grid of the first i.f. stage in the receiver. If the receiver has a crystal filter between mixer and i.f. stage, it won't be used normally. The crystal filter can be used, but it reguires getting two oscillator erystals for the sharp i.f. amplifier of just the right frepurney.

The frequency to which the selective amplifier
is aligned is determined by the frequencies of the two crystals in the 6Blid converters. Assume that the nominal i.f. frequency of the receiver is 455 ke ., and that the available crystals are 408 and 505 ke . The sharp i.f. will then be aligned to half the difference, or $48.5 \mathrm{kr} .(408+48.5)$, but the fart that this is 1.5 ke . higher than the nominal 455 is nothing to worry about.

Set a signal generator or test oscillator to half the erystal-oscillator difference (o.g. 48.5 kc .) and align the sharp channel by working back from the detector, introduring the signal first at the grid of the second GBJJ6, and aligning the following circuits, and then introducing the signal at the first 613 J 6 and then the (13 E 6 mixar. The final touching up of the sharp amplifier is done by switching S_{1} to the point where both 6BEWis are operative and tuning a signal at 455 ke. until it "zaro beats" with itsolf, as heard in the output. The sharp rircuits are then given a fi-

nal peaking, as indicated by the tuning meter. During alignment procedures, always work with a minimum signal and with the gain control, h_{17}, advanced to maximum gain.

The b.f.o. is abligned bev switching it on, setting C_{55} to the center of its range, and adjusting the slug in L_{1} to zero beat on a signal peaked through the sharp amplifier.

The broad i.f. amplifier is "staggor-tunce," which means that alternate circuits are tumed to the same frequence. First, peak cireuits $L C^{\prime}{ }_{12}$ through $L\left({ }^{\prime}{ }_{20}\right.$ to a slightly higher (1.i) ke.) frequeney than the sharp chamnel. While doing this, the lead from the meter circuit can be transfored from $L C^{\prime}$ in to $L C^{2}$, and the signal introduced to the grid of a biski. Then sot the signal source to a frequency 750 ereles higher than the frequency at which the sharp chanmed was praked, and peak circuits $L C_{13}, L C_{14}, L C_{16}$, $L C_{18}$ and $L C_{20}$, as indicated by the meter. Then set the signal source to a frequency 2750 cerdes higher than the sharp-rhannel frequence, and pak circuits $L C_{13}, L C_{15}, L C_{17}$ and $L C_{19}$. Now, varring the frequeney of the signal souree, the response indicated by the meter will show a respense that has two unequal peaks. The peaks ran be cqualized, or nearly so, bey readjustnuent of L_{12}. The lad from the meter circuit can now be returned to $L \dot{C}_{11}$.

If an audio output meter is available, get a final check on the response of the broad amplifier by setting the b.fo. to the midfreguency of the sharp amplifier and, with the sharp amplifior turned down, swing the input signal aross the range and watch the audio response. It should be fairly flat from about 500 to 2700 eveles or so, dropping off rapidy beyond that.

Without areres to at signal generator, it may be necessary to rig up a $5(0)$ or a tin (l-ke osciliator with good stability and at slow tuning rate.

Operation

The operator has his choice of several types of operation with this amplifier. For highly-selective c.w. reception, use switch S_{2} in the "C.W." position, with the b.f.o. offset to give the favorite beat-note frequency. Signals will drop in and out rapidly as one tunes across a band, and a slow tuning rate is highly desirable. For less critical reception of c.w., or for net operation, switch to "sisis" and use the broad i.f. characteristie, reducing the gain in the sharp chamel to a minimum. The same settings maintain for the reereption of SSB 'phone signals - the b.f.o. is set to the midfrequency of the sharp chammel and all tuning is done with the main tuning dial of the recoiver.

Regular A.M 'phone signals are received with S_{2} set either to "MAN." or "A.V.C.," depending upon the (QRM conditions. In either case', the carrier is peaked on the meter for accurate tuning, and the two gain controls are set for best listening. In "MA.N." operation this will usually mean riding gain on the sharp chamel so that the meter never goes beyond half-scale, and with the broad-amplifier gain control backed off proportionately. In""A.V.(.,." both eontrols can be run wide open, but as one tunes aross some signals the set may overload until the tuning is centered on the desired carrior. A hoterodyne on one sideband will be eliminated by switching S_{1}. "Practice" is the only alvier one (:an give on handling the i.f. amplifier to its greatest capabilities, always remembering that you have the choice of two sidebands to liston to plus the ability to vary the relative amplitudes of carrier and sidehands.

Is in all selective amplifiers, overload is the big enemy, and it is generally lest to run the audio volume at or near maximum and the i.f. gain at the lowest usable value.

Fig. 5-60-1 Mis view underneath the chassis show: the two oscillator erystals at the lower right. Most of the shielded leads are power leads to the i.f. strifs, although some of the low. level audio leads are also run in shielded wire. The eight holes across the center are for arcess to the tuning slags of the broad i. f. strip.

CHAPTER 6

High-Frequency Transmitters

The principle requirements to be met in e.w. transmitters for the amateur bands hetween 1.8 and 30 Mc . are that the frequency must be as stable as good practice permits, the output signal must be free from modulation and that harmonies and other spurious emissions must he eliminated or reduced to the point where they do not cause interference to other stations.

The over-all design depends primarily upon the bands in which operation is desired, and the power output. I simple oscilator with sat isfactory frequency stability may be used as a transmitter at the lower frequencies, as indirated in Fig. 6-1A, but the power output obtainable is small. As a general rule, the output of the oscillator is fed into one or more amplifiers to bring the power fed to the antema up to the desired level, as shown in 13 .

An anplifier whose output frequency is the same as the input frequency is called a straight amplifier. If such a straight amplifier is placed in an intermediate position between two other transmitter stages it is sometimes called a buffer amplifier.
lhecause it becomes increasingly difficult to maintain oscillator frequency stability as the frequency is increased, it is most usual pretetice in working at the higher frequencios to operate the oscillator at a low frequency and follow it with one or more frequency multipliers as required to arrive at the desired output frequency. A frequency multiplier is an anplifier that delivers output at a multiple of the exciting frequency. 1 doubler is a multiplier that gives output at twice the exciting frequency; a tripler multiplies the exriting frequency by three, etc. From the viewpoint of any particular stage in a transmitter, the preceding stage is its driver.

As a general rule, frequency multipliers should not be used to feed the antenna system directly, but should feed a straight amplifier which, in turn, feeds the antenna system, as shown in lrig. 1-C, D) and E. As the diagrams indieate, it is often possible to operate more than one stage from a single power supply.
(iond frequency stability is most easily obtained through the use of a crystal-controlled oscillator, although a different crystal is needed for each frequency desired (or multiples of that frequency). I self-controlled oscillator or VFO (variable-frequency oscillator) may be tuned to any frequency with a dial in the maner of a
receiver, but requires great care in design and construetion if its stability is to compare with that of a crystal oseilator.

In all types of trinsmitter stages, sereen-grid tubes have the advantage over triodes that they require less driving power. With a lower-power exciter, the problem of harmonic reduction is made easier. The most satisfartory ascillator circuits require the use of a sereen-grid tube.

Fig. 6-1 - Block diagrams showing typical combinations of oscillator and amplifiers and power-supply arrangements for transmitters. A wide selection is possilhe, depending upon the number of bands in which operation is desired and the power output.

Oscillators

Crystal Oscillators

The frequency of a crystal-controlled oscillator is held constant to a high degree of accuracy by the use of a quart erystal. The frequeney depends almost entirely on the dimensions of the crystal (essentially its thickness): wher circuit values have comparatively neg!igible effert. However, the power ohtainable is limited by the heat the crystal will stand without fracturing. The amount of heating is dependent upon the r.f. crystal current which, in turn, is a function of the amount of feed-back required to provide proper excitation. Crystal heating short of the danger point results in frequence drift to an extent depending upon the wity the crystal is cut. Excitation should always be adjusted to the minimum nevessary for proper operation.

Crystal-Oscillator Circuits

Fig. 6-2 shows three eonmonly-used erystaloscillator circuits. . All are of the electron-coupled type in which the screen of the tube serves as the plate of a triode oscillator. A separate output tank eircuit is used in the actual plate circuit. I3ectuse of the shielding effert of the sereen and suppressor grids, the coupling between the two circuits is comparatively small and exists principally through the common electron stream within the tube. Thus when the load is coupled to the output circuit, its effect will be much less than if it were coupled direetly to the frequencygenerating circuit.

In the Tri-tet circuit of A, the sereen is the grounded "plate" of a t.g.t.p. triode oscillator, the erystal taking the place of the roil-andeondenser grid tank. Excitation is controlled by adjustment of the tank $L_{1} C_{1}$ which should have a low L / C ratio and be tuned considerably to the high-frequeney side of the erystal frequency (approximately 5 Mc . for a 3.n-Mc. (rystal) to prevent over-excitation and high erystal current. Once the proper adjustment for average crystals has been found, C C_{1} may be repliced with a fixed condenser of equal value.

In the grid-plate rircuit of Fig. 6-213, the oseillating circuit is the equivalent of a groundedplate Colpitts. Lxaitation is adjusted by changing the ratio of the two caparitances, C_{6} and C_{7}. The oscillating circuit of the modified Pierce oscillator in C is also busically a Colpitts, this time with a grounded eathode. The grid-cathode and screen-cathode capacitances serve the same purpose as the two condensers connected across the circuit in B3. 'lo obtain proper adjustment of excitation, the screen-rathode capacitance is augmented by ('g which may be adjusted for optimum excitation.

In these cireuits, output at multiples of the crystal frequency may be obtained by tuning the plate tank circuit to the desired harmonic, the output obtainable dropping off, of course, at the higher harmonies.

If the behavior of these circuits is to be pre-
dieted with any degree of aceuracy, the tube used must be one having good soreening. From all ronsiderations, the $6.10 ; 7$ is recommended. With a woll-soreened tube and proper exeitation adjustment, the output phate tuning characteristic

Fig. 6-2 - Commonly -used arystal-controlled nscillator circuits. Values are those recommended for a 6:197 tube. (Sce reference in text for other tubes.)
C_{1} - Vecd-backemitol mondenser - 3.5- Me. crystals
 approx. $150-\mu \mu \mathrm{fd}$. mica.
C_{2} - Ontput tank condenser - 100- $\mu \mu \mathrm{fd}$. variable for single-hand tank; $2 \overline{5} 0-\mu \mu \mathrm{fl}$. variable for twoband tank (see text).
C_{3} - Sereen by-pass - 0.001- $\mu \mathrm{fd}$. disk ceramic.
(:4- Plate by-pass - $0.001-\mu \mathrm{fa}$. disk ceramic.
C \dot{S}_{s} - Output coupling condenser - 50 to $100-\mu \mu \mathrm{fd}$. mica.
C: Excitation-control condenser - approx. 10- \quad - fd . mica.
C_{7} - Fixcitation-control condenser-290- $\mu \mu \mathrm{fd}$. mica.
(is - I).c. Wlocking condenser - 0.001- μ fil. mica.
C. - Fivitation-control condenser - 220- $2 \mu \mathrm{fd}$. mica.

Cio - Heater by -pass - $0.001-\mu \mathrm{fd}$. dish eceramic.
R_{1}-Grid leak - 0.1 megohm, $1 / 2$ watt.
$H_{2}-S c r e e n$ resistor - $\mathcal{T}, 000$ ohms, 1 watt (see text if oscillator is to he keyed).
$\mathbf{1}_{1}$ - Exeitation-control inductance - 3.5 . Me. erystals - approx. $4 \mu \mathrm{~h} .:$ T-Mc. ©rystals - approx. $2 \mu \mathrm{~h}$.
L_{2} - Output-circuit coil - single-hand:-3.5 Mc.$17 \mu \mathrm{h.;} 7$ Mc. $-8 \mu \mathrm{~h} . ; 14$ Мc. $-2.5 \mu \mathrm{h.;} 28$ Mc. -I ph. 'Iwo-band operation: 3.5 \& 7 Mc. $7.5 \mu \mathrm{h}:. 7 \mathrm{X} 1.4$ Mc. $-2.5 \mu \mathrm{~h}$. (See text.)
1RFC ${ }_{1}$ - 2.5-mh. 50-ma. r.f. choke.
at the crystal fundamental, as well as at harmonies, will be similar to that shown in Fig. 6-3 and tuning will cause less than 25 cycles change in frequency. Crystal current, under these conditions, should not be excessive. If the oscillator is to be keyed, best characteristics will be obtained by omitting the screen resistor, R_{2}, and comnerting the screen lead to a regulated source of 75 to 150 volts.

If a tube with poorer screening is used, the effect of tuning the output circuit will not be greatly different at harmonies of the crystal frequency, but the operation at the crystal fundamental may be altered drastically. When the output circuit is tumed near resonance, oscillation may stop entirely, necessitating a critical adjustment to one side of resonance for good keving characteristies and to prevent a marked rise in crystal current. Inder these conditions, the frequency may vary as much as 200 cycles.

Crystal current may be estimated by observing the relative brilliance of a $60-\mathrm{ma}$. dial lamp comnerted in series with the crystal. For stable operation, crystal current should be limited as much as possible and satisfactory output should be obtained with a current of 40 ma. or less. If the oscillator is to be keyed, the lamp should be removed to prevent chirps.

Fig. 6-3- Plate tuning characteristie of electroncoupled circuits with a well-sereened tube. 'lhe plate-enrrent dip at res. oname broadens and is less pronounced when the o circuit is loaded.

Fior best harmonic output a tube with high mutual conductance should be used. This is especially important in the circuit of Fig. 6-2C. The 6.t ${ }^{\text {i }} 7$ also meets this requirement. I low- C output tank circuit is desirable, especially for harmonic output. However, if a tank condenser large enough to cover two adjacent bands with the same coil is used, the output at the crystal fundamental and at the harmonic will be approximately the same, since the L / C ratio will be high when the cireuit is tuned to the harmonic, where low (' is of the greater importance.

For best performance with a $6 . \mathrm{M}$ (i7 tube, the values given under Fig. 6-2 should be followed dosely. (For a discussion of values for other tubes, see (QST for March, 1950, page 28.)

Quartz-Crystal Characteristics

While crystals are produced for frequencies as high as io Me., by far the majority of those used in amateur high-frequency transmitters are cut for the 3.5 - and 7 -Mc. bands. With suitable frequency-multiplying stages, this permits the use of a single crystal for operation in the har-monically-related parts of higher-frequency bands, as well as at the crystal fundamental frequency. As an example, a $3501-k e$. crystal with appropriate multipliers may he used for the fre-

The characteristics of a crystal - particularly in the thickness-frequency and temperaturefrequency relationships - depend upon the plane in which the crystal plate is cut from the natural quartz block. While other cuts are useful in certain applications, those for amateur transmitters invariably are of either the "AT" or "BT" types. Their respective temperature characteristics are as follows:

> AT-cut -+10 eveles per Mc. per degree at 0 degrees C .
> - 0 cycles per Mc. per degree at 45 degrees C.
> -+20 eyrles per Mc. per degree at 85 degrees C.
> BT'cut - - 10 cyrles per Mc. per degree at 0 degrees C.
> 0 eycles per Mc. per degree at 30 degrees (:
> - - 20 eycles per Mc. per degree at 70 degrees C .

The relationship between the thickness of a crystal and its frequency is given by:

$$
f \mathrm{Mc}_{\mathrm{c}}=\frac{k}{t_{\mathrm{mil}}}
$$

where $f_{\text {Mc }}$. is the frequency in megarycles, t the thickness in thousandths of an inch and k is a constant of the crystal cut approximately as follows:

$$
\begin{aligned}
& \text { AT-cut - } 66.2 \\
& \text { BT-eut - } 100.78
\end{aligned}
$$

An AT crystal usually is more active than one of the IST-cut type, but since it is thinner for the same frequency, there is greater danger of fracture in operation. Therefore, AT-cut crystals usually are used for frequencies below 5 Mc., while the $13 T$-cut is used for crystals whose frequencies lie above 5 Mc ., although this is not true in all cases.

While crystals are sometimes cut for fundamontal frequencies as high as 14 Mc., most crystals used by amateurs for frequencies higher than the 7 -Mc. band are "harmonictype" crystals; that is, the thickness corresponds to a frequency of one-third (sometimes one-fifth) of the normal operating frequency. The other dimensions of the crystal are proportioned so that the merhanical vibration is at three times (or five times) the fundamental frequency.

Regrinding Crystals

Because crystals near any desired frequency can be purchased reasonably these days, it is not profitable for the amateur to cut and grind his own blanks. However, frequently it may be desirable to make a limited increase in the frequency of a crystal at hand. Indispensable requirements are a piece of plate glass, a good micrometer, supplies of size 800 aluminum oxide for light grinding, and size 400 silicon carbide for coarse grinding, and a test oscillator. I test oscillator of the regenerative type, such as the one shown in lig. $6-213$, is meferred. The oscillator should be equipped with a grid-current milliammeter,
preferably one with a $0.5-\mathrm{ma}$. scale. The grid current should be cherked first with the erystal to be reground, and preferably with several others known to have satisfactory artivity, to obtain an average of the grid current to be experted for normal crystal artivity.

The most important factor in respect to activity is that of maintaining the proper surface contour. When properly ground, the erystal is thicker in the renter than at the edges. The difference in thickness should vary from about 0.001 inch for a $3 . \bar{j}$-Mc. erystal $1 / 2$ inch square to about 0.00015 inch for a $7-$ Mc. crystal.

The grinding compound should be sprinkled on the glass plate and moistened with water to make a very thin paste. One side of the crystal should be marked at a comer with a pencil and all of the grinding should be done on the opposite side. The crystal should be swirled around in figure-eight paths. The path should be changed frequently to another part of the glass plate so that the plate will be worn evenly, light pressure with the finger on a corner of the crystal should be used. Miake three or four " 8 's" to eanh of the corners in succession and then repeat. पse lighter pressure and make fewer " 8 ' s " as the desired frequency is approached.

If a calibrated receiver is available, it can be used to keep a continuous check on the frequency as the erystal is being ground. Place a sheet of tinfoil or metal under the plate glass and connect it t o the antenna terminal of the receiver. Then as the crystal is being ground, it will produce a hiss in the receiver that peaks close to the crystal frequency. To be safe, however, it is advisable to limit the use of this method of checking to within 20 ke . of the desired frequency at 7 Mc . Then if it is found that the artivity is not up to normal, the contour can be corrected without overshooting the desired frequency.

The erystal should be thoroughly cleaned of grinding compound and other matter before using the micrometer or cherking in the test oscillator, of course. I'se soap, warm water and a tooth brush, and dry with a lintless cloth or tissue. Ilandle the crystal by the edges only after cleaning.

Lowering Frequency

If a crystal has accidentally been ground down tow far, or if it is desired to lower slightly the frequency of any other crystal, this can often be done by loading the erystal. Loading, however, may reduce the crystal artivity if it is carried too far. With a good active crystal, it should be possible to decrease the frequency as much as one per rent - 35 ke . for a $3500-\mathrm{kc}$. erystal. Cold soft solder rubbed into the erystal surface is suitable. The solder should be applied gradually while the frequency and activity are cherked. Start off by marking a circle about $1 / 4$ inch in diameter at the center of the crystal and use this as a boundary for additional applications of the solder. The loading should be applied to both surfaces as equally as possible.

VARIABLE-FREQUENCY OSCILLATORS

The frequency of a VFO depends entirely on the values of indurtance and rapacitance in the circuit. Therefore, it is necossiry to take careful steps to minimize changes in these values not under the control of the operator. Is examples, even the minute changes of dimensions with temperature, particularly those of the coil, may result in a slow but noticeable change in frequency called drift. The effertive input capacitance of the oscillator tube, which must be connerted across the circuit, changes with variations in electrode voltages. This, in turn, causes a change in the frequency of the oscillator. To make use of the power from the oscillator, a load, usually in the form of an amplifier, must be coupled to the oscillator and variations in the load may reflect on the frequency. Very slight mechanical movement of components may result in a shift in frequency, and vibration can cause undesirable modulation.

VFO Circuits

Fig. 6-4 shows the most commonly used circuits. They are designed to minimize the efferts mentioned above. All are of the electron-coupled type discussed in connection with crystal oscillators.

The oscillating circuits in Figs. 6-1.1 and B are the llartley type; those in C and D are Colpitts circuits. "There is little choice between the circuits of A and C. In both, all of the efferts mentioned, except changes in indurtance, are minimized by the use of a high-() tank circuit obtained through the use of large tank caparitances. Any uncontrolled changes in capacitance thus become a very small percentage of the total circuit capacitance.

In the series-tuned Colpitts circuit of Fig. 6-11) (sometimes called the Clapp circuit), a high-Q circuit is obtatined in a different manner. The tube is tapped across only a small portion of the oscilating tank circuit, resulting in very loose coupling between tube and circuit. The taps are provided by a series of three condensers across the coil. In addition, the tube capacitances are shunted by harge condensers, so the efferts of the tube - changes in electrode voltages and loading - are still further reduced. In contrast to) the preceding circuits, the resulting tank circuit has a ligh L / C ratio and therefore the tank current is much lower than in the circuits using high-(' tanks. As it result, it will usually be found that, other things being equal, drift will be less with the low- $($, circuit.

For best stability, the ratio of $C_{11}+C_{12}$ to (${ }_{13}$ or ('14 (which are usually equal) should be as high as possible without stopping oscillation. The permissible ratio will be higher the higher the () of the coil and the mutual conductance of the tube. If the circuit does not oscillate over the desired range, a coil of higher () must be used or the capacitance of C_{13} and C_{14} reduced.

Load Isolation

In spite of the precautions already diseussed, the tuming of the output plate cireuit will cause a noticeable change in frequency, particularly in the region around resomanes. This effect ran be reduced considerably he designing the oscillator for half the desired frequency and doubling frequency in the output eircuit, although there will be some samrifice in output.
It is desirable, although not a striot neressity if detuning is recognized and taken into arcount, to approach as closely as possible the condition where the adjustment of tuning controls in the transmitter, beyond the VFO frequency control, will have negligible effere on the freguency. This ean be dond by substituting a fixel-tuned eireuit
in the output of the oscillator, and adding one or more fixed-tumed amplifiers or doublers, as shown in Fig. (i-i, to give the desired isolation betwen the oscillator and the first tunable amplifier stage. The fixed-tuned circuits maty romsist of nonresonant chokes or. for greater output or frequency multiplying, slug-tuned coils adjusted to the desired frequency. I voltage-regulated supply is recommended.

Chirp

In all of the circuits shown there will be some change of frequency with changes in screen and plate voltages, and the use of regulated voltages for looth usually is neressary. One of the most serious results of voltage instability oecurs if

Fig. $6.4-\mathrm{VFO}$ circuits. Approximate values for 3.5 Me. are siven below. For 1.3 .5 Me., all tank-cirenit values of caparitance and indurtance, all tuning eapacitances and C_{13} and C_{14} shoulil be dombled; for 7 Me., they should be cut in half.
C_{1} - Warillator handepread tuning eondenser-150. μ_{μ} fil, variable.
(2 - (hutjut-circuit tank condenser - 100)- μ ffl. variable.
 mioa.
C. 4 - Crid reoupling eondenser - 100- $\mu \mu$ fil. zero-temp. mica.
Cas - Ilcater by-pass - 0.(0)l- fd . disk ceramic.
C. - Suren by-pass - $0,001-\mu$ fil. disk ceramic.

C_{8} - (hutpit coupling condenser - 50 to 100$)_{\mu \mu \mathrm{fd}}$. mica.
C_{9} - Oscillator tank condenser - 680- $\mu \mu \mathrm{fl}$. zero-temp. mica.
$\mathrm{C}_{10}-\mathrm{Oscillator}$ tank condenser $-0.0022-\mu \mathrm{fd}$. zero-
C_{11} - (Oscillator hamdspread padder - $50-\mu \mu \mathrm{f}$. . variable air.
C_{12} - Osiditator handspread tuning eondenser-25. $\mu \mu \mathrm{fil}$. variable.
C.43, C.44-' 'ubereropling condenser - 0.001- $\mu \mathrm{fl}$. zerotemp. mica.
$R_{1}-12,000$ ohms. $1 \underline{2}$ watt.
 third-way from promaded end.
1.2- (Hutput-circuit tank coil-2.2 $\mu \mathrm{h}$.
I. 3 - (Sirillator tank cosil - $1.3 \mu \mathrm{~h}$.

IA_O (Seillator tank roil- $333^{\mu} \mathrm{h}$. ($13 \&$ W JEL-80).

I_{1} - 6AN? preferred; other well-screened types usable. $V_{2}-6: 1 G 7$ required.
the oscillator is keyed, as it often is for break-in operation. Although voltage regulation will sapply ateady voltage from the power supply and therefore is still desirable, it camot alter the faet that the voltage on the tube must rise from zero when the key is open, to full voltage when the key is closed, and must fall back again to zero when the key is opened. The result is a chirp each time the k ey is opened or closed, unless the time constant in the keying rircuit is reduced to the point where the ehirp takes place so rapidly that the receiving operator's car camont deteret it. Infortumately, as explained in the chapter on keying, a cortain minimum time comstant is neressary if key clicks are to be minimized. Therefore it is evident that the measures neressary for the reduction of chirp and clicks are in opposition, and a compromise is neressary. For host keying rharacteristies, the oscillator should be allowed to run continuonsly while a subsequent amplifier is koved. However, a keved amplifier represents a widely variable load and unless sufficient isolation is provided between the oseillator and the keyed amplitier, the keying characteristios may be little botter than when the oscillator itsolf is keyed.

Frequency Drift

Frequency drift is further reduced most easily by limiting the power input as much as possithe and by mounting the components of the tuned

Fig. 6-5- Diagram showing two isolating amplifier stages following a VFO.

C_{1} - Compling condenser - 100 $\mu \mu$ fol. mica.
$\mathrm{C}_{2}-$ Hy-pass condenser - (0.0(t)$\mu \mathrm{fl}$. disk ceramic.
C_{3} - Heater ly-pasas - $0.001-\mu \mathrm{fal}$. dish reramic.
R_{1} - Grid leak - $\mathbf{5 0 , 0 0 0}$ ohms.
R_{2} - Cathode hiaxing resiator - 200 to $\mathbf{D} 00$ olims. 1 watt.
 slug-tuned coil.

Variable condensers should have ceramic insulation, good bearing contacts and should preferably be of the double-bearing tope, and fixed condensers should have zero tomperature coefficient. The tube sooket also should have ceramic insulation and sperial attention should be paid to the selection of a tank coil in the osrillating section.

Oscillator Coils

The (8 of the tank roil used in the oscillating portion of any of the circuits under discussion should be as high as cireomstances (usually space permit, since the losses, and therefore the heating, will be less. With recommended cure in regard to other factors mentioned previously, most of the drift will originate in the coil. The eoil should be wedl spaced from shielding and other large metal surfaers, and be of a type that radiates heat woll, such as a commercial airwound type, or should be wound tighty on a threaded reramie form so that the dimensions will not change retudily with temperature. The wire with which the eoil is wound should he as large as practicable, espercially in the high-e circuits.

Mechanical Vibration

Todiminate merhanical vibration, components should be mounted sercurely. Particularly in the (ircuit of Fig. 6- \&D, the condenser should profarably have small, thick plates and the eoil braced, if meressary, to prevent the slightest mechanieal movement. Wire ronnertions botworn tank-rireuit romponents should be as short an possible and flexible wire will have bess femblency to vibrate than solid wire. It is advisable to cushion the entire oscillator unit beymounting on sponge rubber or other shork mounting.

Tuning Characteristic

If the circuit is oscillating. tourhing the grid of the tube or any part of the circuit connereted to it will show a change in plate reurent In tuning the plate output circuit without had, the plate current will he redatively high until it is tunerl near resomance where the plate eurrent will dip to a
circuit in a separate shielded compartment, so that they will be isolated from the direct hat from tubes and resistors. The shied ding also will eliminate changes in frequencr caused be movement of netrby objerts, such as the operaton's hand when tuning the Vro. The circuit of lig. 6-41) lends itself well to this arrangement, since relatively long leads between the tube and the tank eirenit have negligible effect on frequency because of the large shunting capacitances. The grid, cathode and ground leads to the tube ean be bunched in a cable up to several feet long.
low value, as illustrated in lig. 6-3. When the output rireuit is loaded, the dip should still be foumd, but broader and much less promounced as indieated be the dashed line. The rireuit should not be loaded berond the point where the dip is still reeognizable.

Checking VFO Stability

A VFO should be cheeked thoroughly before it is placed in regular operation on the air. Sinee sueceeding amplifier stages may affeet the signal charaeteristies, final tests should be made with
the complete transmitter in operation. Almost any VFO will show signals of good quality and stability when it is rumning free and not connected to a load. I wroll-isolated monitor is a neressit!: Perhaps the most convenient, as well as one of the most satisfactory, well-shielded monitoring arrangements is a recoiver combined with a crostal oscillator, as shown in Fig. 6-6. (Fer "(rystal Oscillators," this chapter.) The erystal frequencer should lie in the band of the lowest freduency to be checked and in the frequeney range where its harmonies will fall in the higher-frequeney bands. The receiver b.f.o. is turned off and the VF() signal is tumed to beat with the signal from the crystal owillator instoad. In this way any receiver instability caused by overloading of the input cireuits, which may result in "pulling" of the h.f. oscillator in the reeciver, or by a change in line voltage to the recerver when the transmitter is keyod, will not affere the reliability of the chere. Most presentday errstals have a sufficiently-low temperature coefficiont to give a satisfactory cheek on drift as well as on chirp and signal quality if they are not averloaded.

Hammonies of the ervestal may be used to beat with the transmitter signal when monitoring at the highor frequencies. Since any chirp at the lower frequencies will bo mannified at the higher frequencies, accurate ehecking can best be done by monitoring at the latter.

The distance between the crystal oscillator and receiver should be adjusted to give a good beat between the crystal oscillator and the trammitter signal. When using harmonies of the erystal oseillator, it may be necossary to attach a piece of wire to the oscillator as an antema to give sufficient signal in the receiver.

Checke may show that the stability is suffi-

 should be tumed preforably to a hatmonie of the lifo freduency. "The eryat sacillator may operate somewhere in the hand ith which the VPGI is operating. 'The receriver bif.o. should he turnad off.
ciently good to permit oscillator kering at the lower frequencies, where Ireak-in operation is of greater value, but that chirp beromes objectionable at the higher frequencies. If further improvement does not seem possible, it would be logical in this ease to use osellator keying at the lower frequencies and amplifier keying at the higher frequencies.

R. F. Power Amplifiers

IR.f. power amplifiers used in amateur transmitters usually are operated under Chass C comditions (sere chapter on varuum-tube fumdamentals). Fig. ($\mathrm{j}-\overline{\mathrm{z}}$ shows a sereen-grid tube with the required tuned tank in its plate circuit. liquivalent cathode commetions for a filamenttree tube are shown in Fig. 6-8. It is assumed that the tube is being properly driven and that the various electrode voltages are apmopriate for Class C operation. The main objeetive, of course, is to doliver as much fundamental power as possible (or as desired) into a load, R, without exceeding the tube ratings. The load resistance R may be in the form of a transmission line to an antenna, or the grid circuit of another amplitier. A further oljecetive is to minimize the harmonic energy (always generated by a (lass C amplifier) fed into the load circuit. In attaining these ohjectives, the Q of the tank circuit is of importance.

- plate tank Q

The Q is determined (sce chapter on electrical haws and circuits) be the L / C ratio and the load resistance of the tube (not the resistance of the load cireuit). The tube load resistanee is related, in approximation, to the ratio of the d.e plate voltage to d.e. plate current at which the tube is operated. The amount of C that will give a Q of 12 for various ratios is shown in Fig. (6-9). A Q of 12 is a value chosen as an average that will satisfy most of the requirements to be discussed. Certain
specifie considerations may make a higher or lower value desitable. For a given plate-voltage/ plate-current ratio, the Q will vary direetly as the tank caparitance, twice the capacitance doubles the Q etc.

Effect of Q on Tube Plate Efficiency

For good tube plate efficicnery, the voltage drop across the tank (which determines the instantaneous plate voltage should approach a sine wave charatereristic. Although the plate currend flowing through the tank is in the highly-distorted form of short pulses containing considerable harmonic energy, a resonant circuit discriminates against harmonic rollages across the circuit acccording to the Q of the circuit. If the Q is suffi"iently high, the wave shape of the voltage drop arross the tank circuit will be essentially sinusoidal. So far as tube plate efficieney is concerned, repuirements will be met satisfactorily if the tank Q is 5 or greater. However, as the Q is increased, the current circulating in the tank circuit beromes greater, inereasing the tankcircuit loss. If the $(Q$ is greater than about 20 , the losses in the tank rirevit caused by the increasingly greater tank current will offset any- further improvement in plate efficioner:

Harmonic Output Reduction

Strictly speaking, a high-(Q tank circuit does not "atteruate" harmonics. The plate current pulses remain unchanged with Q. However, it has
been explained above that the harmonic voltage drop across the tank circuit (a pure sine wave has no harmonic content) decreases with an incrase in () and therefore when the load cirouit is coupled across the tank circuit eapacitively, as shown in Fig. (i-7 B , the harmonic voltage across the load will be reduced as the (2 of the tank cireuit is increased.

When inductive coupling is used, as in Fig. 6-7A, hamonic reduction in the load eomes ahout for a different reason. At resomance, as explained in the chapter on electrical laws and circuits, there is a buidd-up of fundamental current in the tank circuit, and this current beeomes greater as the Q is inereased. As the current through the tank coil increases, the same powor in the load will be obtained with looser inductive coupling (a smaller coupling coefficient). Sine e the harmonic current through the coil remsins fixed irrespertive of Q, the amount of harmonie energy coupled out becomes less as the couphing is decreased.

As stated above, tank-rireuit loss increases with Q, so that the choiee of Q must be a compromise depending upon whether efliciones or harmonic reduction is considered the more important.

Q vs. Coupling

Also, as explained above, it is seen that the Q has an influence on coupling to a load when the compling is inductive. The higher the Q, the largor the tank rurrent and the smaller the coesticient of coupling to the load can be for a given value of current in the bad. Conversely, the lower the Q, the greater the coefficient of coupling must be.

Fig. 6.7-Output compling circuits. A-In-
ductive link coupling. B-Caparitive coupling.
C_{1} - Plate tank condenser - sec text and fig. 6-9) for caparitance, Fig. (0-29) for voltage rating.
C_{2} - Heater by pass - $0.001-\mu \mathrm{fd}$. disk eqramic.
Ci3 - Sureen by-pass - voltage rating depends on method of sereen supply. see sertion on sereen considerations. Voltage rating sante as plate voltage will be safe under any condition.
C_{4} - I'late hy-pass - $0.001-\mu \mathrm{fd}$. disk ceramie or mica. holtage rating same as Ci, plus safely factor.
Cis_{5} - Coupling condenser - see Fiz. 6-18.
L_{1} - 'To resonater at operating frequency with C_{1}. see $L C$ chart in miseel-lancous-data chapter and inductance formala in clectrical-laws chapter, or use ARRL, Lishtning Calculator.
\mathbf{L}_{2} - Reactance equal to line impedanee. See reactance chart in miserllane-ous-latia chapter and inductance formula in electrical-laws chapter, or use (RRI, Lightning Calculator.
R - Representing load.

Q and Broadbanding

Amateur frequencies are in hands - not spot frequencies - and it becomes desirable to design the eircuits of the tramsmitter so that it may be

Fig. 6-8- Pilament centerotap connections to be substituted in phace of cathode commedions slown in diagrams when filament-type thene are subistituted. T_{1} is the filament transformer. Pilanemt loy-pisses Ci, should be $0.041-\mu \mathrm{fd}$. dish ceramic condensers.
operated within a band with a minimum of retuning. It is therefore desirable to use the minimum Q that will satisfy the previously discussed requirements.

OUTPUT COUPLING SYSTEMS

Coupling to Flat Coaxial Lines

When the load R in Fig, $6-\bar{Z}, 1$ is located for eonvenience at some distance from the amplifier, or when maximum harmonic reduction is desired, it is advisable to feed the power to the load through a low-impedance consial cable. The shielded construction of the cable prevents radiation and makes it possible to install the line in any convenient mammer without danger of unwanted coupling to other eircuits.

If the line is more thatn a smatl fraction of a wavelongth long, the load resistance at its output end should be adjusted, by a matching eireuit if noeressary, to match the characteristic impedanee of the eable. This roduces losses in the eable to a minimum and makes the coupling adjustments at the transmitter independent of the cable length. Matehing circuits for use between the rable and another transmission lime are diseussed in the chapter on transmission lines, while the matehing adjustments when the load is the grid circuit of a following amplifier are described elsewhere in this chapter.

Assuming that the cable is properly terminated, proper loading of the amplifier will be assured, using the rircuit of Pig. 6-10C, if

1) The plate tank circuit has reasomahly high value of Q. A value of 10 or more is usually sufficient.
2) 'The induetance of the piekup or link coil is close to the optimum value for the frequency

Fig. 6-9 - Chart showing plate tank eapacitance reguired for a O of I2. 'lo use the elart, divitle the tube blate voltare by the plate current in milliamperes. Selact the wricial line eorresponding to the answer obtained. Follow this vertioal line to the diagonal line for the band in quosion, and thene horizontally to the left toread the raparitance, fior a miven ratio of platevoltage/plate curremt, dombling the capacitance shown doubles the ofre. When a sulit-itator condenser is used in a balanced eireuit, the capacitance of each sertion may be one half of the value given by the ehart.
and type of line used. The optimum coil is one whose self-inductance is such that its reactance at the oprating frequency is equal to the characteristic impedance, $Z Z_{0}$, of the line.
3) It is possible to make the coupling between the tank and pirk-up coils very tight.

The socond in this list is often hard to meet. Few manufactured link coils have adequate inductance even for coupling to a 50 -ohm line at low frequencies.

If the lime is operating with a low sw.w., the
Capacitance in $\mu \mu \mathrm{fd}$. Required for Coupling to
Flat Coaxial Lines with Tuned Coupling Circuit
Frequeney
Band
Characteristic Impedance of Line
Mic.
1.8
${ }^{1}$ (Capacitanee values are maximum usable.
Note: Indurtance in cirenit most be adjusted to resonate at operating frecpueney.
system shown in Fig. (6-10C will reguire tight coupling betwern the two coils. Since the secondary (pick-up roil) rirruit is not resonant, the latakge ractancre of the pick-up) coil will canse some detuning of the amplifier tank circuit. This detuning effect increases with increasing coupling, but is usually not serious. However, the amplifier tuning must be adjusted to resonance, as indicated by the plate-current dip, each time the coupling is changed.

Tuned Coupling

The design difficulties of using "untuncd" pick-up coils, montionod above, can be avoided be using a coupling circuit tuned to the operating frequency. This contributes additional selectivity as well, and honce aids in the suppression of spurious radiations.

If the line is flat the input impedance will be essontially resistive and equal to the Z_{0} of the lime. With coaxial cable, which has a Z_{0} of 75 ohms or less, a circuit of reasonable Q can be ob)tained with practicable values of inductance and capacitance connected in series with the line's input terminals.

Suitable circuits are given in Fig. 6-10 at A and 13 . The values of inductance and eaparitance in the coupling circuits are not highly eritical, but the L / C ratio must not be too small. The Q of the coupling circuit often may be as low as 2 , without running into difficulty in getting adequate coupling to a tank circuit of proper design. Larger values of Q can be used and will result in inereased ease of coupling, but as the Q is increased the frequency range over which the circuit will operate without readjustment becomes smaller. It is usually good practice, therefore, to use a couplingcircuit Q just low enough to permit operation, over as much of a band as is normatly used for a particular type of communication, without requiring retuning.

(A)

(B)

Fig. 6-10 - With flat transmission lines power transfer is obtained with looser coupling if the line input is tuned to resonanee. Ci and L_{1} should resonate at the operating frequency. See table for maximmm usable value of C_{L}. If circuit does not resonate with maximum C_{1} or less, inductance of L_{1} must be increased, or added in series at L_{2}.

Capacitance values for a Q of 2 and line impedances of 52 and 75 ohms are given in the accompanying table. These are the maximum values that should be used. The inductanee in the circuit should be adjusted to give resonance at the operating frequency. If the link coil used for a particular band does not have enough inductance to resonate, the additional inductance may he connected in series as shown in Fig. 6-1013.

In practice, the amount of inductance in the circuit should be chosen so that, with somewhat loose coupling between L_{1} and the amplifier tank coil, the amplifier phate current will increase when the variathe condenser, C_{1}, is tuned through the value of eaparitance given by the table. The coupling betwern the two coils should then be increased until tho amplifier loads normally, without changing the setting of C_{1}. If the transmission line is flat over the entire frequener band under consideration, it should not he necessary to readjust C_{1} when changing frequency, if the values given in the table are used. However, it is unlikely that the line actually will be flat over such a range, so some readjustment of C_{1} maty be needed to compensate for changes in the input impedance of the line as the frequency is changed. If the input impedance variations are not large, (${ }^{\prime}$ may be used as a loading control, no changes in the coupling between L_{1} and the tank coil being necessary.
The degree of coupling between L_{1} and the amplifier tank coil will depend on the couplingrircuit Q. With a Q of 2 , the eoupling should be tight - comparable with the coupling that is typical of "fixed-link" manufactured coils. With a swinging link it may be necessary to increase the Q of the coupling cireuit in order to get sufficient power transfer. This can be done by increasing the L / C ratio.

Pi-Section Output Tank

A pi-section tank circuit may also be used in coupling to a low-imperdanee transmission line, as shown in Fig. 6-11. The output condenser, C_{2},

Fig. 6-11 - Pis-section output tank circuit.
C_{1} - Input condenser - sce text and Fig. (b.) for capacitance. For wolake rating see Cob, lig. 6.7.
C_{2} - Ontput combenser - adjustable to half reattance of line impedaner - see text and reartance chart in ehapter of miseellaneous data. Voltage rating - receiving spacing good for 1 kw . at 50 or 75 ohms if line is terminated in liak, otherwise plate voltage phes 25%.
Cs - Heater by-pass - $0.001 \cdot \mu \mathrm{ft}$. disk eeramic.
C_{4} - Sireen by-pass - see Fig. $6-\mathrm{-}$.
C5 - l'late ly-pass - see lig. 6- - .
C_{6} - Plate blocking rondenser - $0.001-\mu \mathrm{fd}$. disk ceramic or mica. Voltage rating same as C_{1}.
L_{1} - Inductance approx. same as L_{1}, Fig. $0-\frac{7}{\text {. }}$.
should be adjustable to a reactance of about half of the characteristic impedance of the line. C_{1}, the input condenser, and L_{1} should have values approximately the same as used in a conventional tank circuit for a Q of 12 (see Fig. (i-9).

A decrease in the capacitance of C_{2}, or the induetance of L_{1}, will increase the coupling and vice versa. Bach time L_{1} or C_{2} is changed, C_{1} must be readjusted for resonance.

R.F. AMPLIFIER-TUBE OPERATION

Driving Power, Efficiency, Dissipation and Power Input

One of the most significunt tube ratings is the maximum phatedissipation rating. This is the power that can be safely dissipated in the tube as heat. It is the difference between r.f. power output and the d.e. power input to the plate. For a given dissipation rating, the theoretical power output from a tube depends on the efficiency with which it ean be made to operate. The P_{w} / P_{d} curve of Fig. (i-12 shows the theoretical power output obtainable at various effiecieneios in terms of the plate-dissipation rating. For instance, at an effie ieney of efo per rent, the eurve shows that the output will be 1.5 timos the elissipation rating, while at an efficiency of 90 per cent a power of ! times the dissipation rating might be obtained. However, the I_{i} / P_{d} eurve shows that the power input at 90 per cent would have to be 10 times the dissipation rating. An input of this magnitude would exced the power-input rating (plate voltage X plate current) of the tube, which is based on cathode emission and clectrode insulattion. Also, referring to lig. 6-13, it is seen that the higher efficiencies are obtainathle only by the use of an inordinate amount of driving power. In other words, the power amplifiration deereases rapidly. The typial operating conditions given in the tulo tables represent a compromise of these factors. Fig. 6-12 shows the usual praction efficiencies attainable for various classes of tube operation. For instance, at an efficiency of $\mathbf{7 5}$ per cent, a ('lass C amplifier could normally be operated at a power input of 4 times its plate dissipation. A doubler, however, normally operating at about 35 per rent efficiencer, could handle an input of only about 1.5 times its dissipation rating. The efliciensies shown for Class 13 amplifiers are for full excitation and full input.

The figures for driving power listed in the tube tables do not include coupling-eircuit losses and to assure adequate cacitation, the driver tube should be capable of an output power three or four times the rated driving power of the amplifier. For normal operation, proper exeitation is indicated when rated d.e. grid current is obtained at rated hias (see tube tables).

Depending on the material from which the plate is mate, the plate will show no color, or varying degrees of redness, whon operating at rated dissipation. This can be checked by operating the tube without excitation, but with plate

Fig. 6-12-Curves showing the relationship of power output (Γ_{0}), power input (P_{i}), plate dissipation ($\boldsymbol{P}_{\mathrm{d}}$) and efficiency according to class of amplifier tobe operation.
and screen voltages applied, for a period approximating normal operation. Fixed bias should be applied to bring the plate current to some low value at the start. The bias should be graduatly redured until the input to the tube (plate voltage X plate current in decimal parts of an ampere) equals the rated dissipation. The color of the plate at this imput should be noted so that it can be compared with the color showing in normal operation. A brighter color in operation would indieate that the dissipation rating is being exeeeded. However, most tubes of recent design do not show color at rated dissipation.

Maximum Grid Current

Maximum grid dissipation usually is axpressed in terms of the maximum grid current at which the tube should be operated to prevent damage to the tube. A common result of exerssive grid heating is a condition where the grid current gradually falls off. If the bias is supplied largely by grid-leak action, the bias drops and the tube draws excessive plate current. The total effect is one in which the temporature of the tube rapidly rises to the danger point. Sometimes, but not always, the tube will restore itself to normal if all power, exeept filament, is turned off for several minutes. If the overload has been serious or prolonged, with a thoriated-filament tube, it may be possible to reactivate the filament, as described below, but sometimes the tube will be permanently damaged.

Filament Voltage

The filament voltage for the indirectly-heated cathode-type tubes found in low-power classifications may vary 10 per cent above or below rating without seriously reducing the life of the tube. But the voltage of the higher-power fila-ment-type tubes should be held closely between the rated voltage as a minimum and 5 per cent above rating as a maximum. Make sure that the plate power drawn from the power line does not eause a drop in filament voltage below the proper value when plate power is applied.

Thoriated-type filaments lose emission when the tube is overlonded apprediably. If the overload has not been too prolonged, emission sometimes may be restored by operating the filament at rated voltage with all other voltages removed for a period of 10 minutes, or at 20 per cent above rated voltage for a few minutes.

Bias and Tube Protection

The portion of the excitation eycle over which the amplifier draws plate grid eurrent (operating angle) is governed be applying a negative biasing voltage between grid and cathode. Recommended values will be found in the tube tables. Several methods of obtaining bias are shown in Fig. 6-14. In A, bias is obtained by the voltage drop across a resistor in the grid d.c. return circuit when rectified grid current flows. The proper value of resistance may be determined by dividing the required biasing voltage by the d.c. grid current at which the tube will be operated. The tube is biased only when cxeitation is applied, since the voltage drop across the resistor depends upon grid-current flow. When excitation is removed, the bias falls to zero. At zero bias most tubes draw power far in excess of the platedissipation rating. So it is advisable to make provision for protecting the tule when exeitation fats by aceident, or by intent as it does when a preceding stage in a e.w. transmitter is keved. This protection can be supplied by obtaining all bias from

Fig. 6-13 - Curves slowing relationship of driving power, power amplification and plate-rirenit efficiency of an r.f. power-amplifier stage.
a source of fixed voltage, as shown in Fig. (i-1 113. It is preferable, however, to use only sufficient fixed bias to protect the tube and obtain the balance needed for operating hias from a grid leak, as indicated in C. The grid-leak resistance in this case is calculated as above, exerept that the fised voltage used is subtracted first.

Fixed bias may the obtained from dry batteries or from a power pack (see power-supply chatpter). If dry batteries are used, they should be cheeked periodically, since even though they may show normal or abovenormal voltage, they eventually develop, a high intermal resistance. Grid-current flow through this battery resistance may increase the bias considerably above that anticipated. Tho life of batterios in hias service will he approximately the same as though they were subject to at drain equal to the grid current, despite the fact that the grid-current flow is in such a direction as to charge the battery, rather than to discharge it.

If the maximum c.w. ratings shown in the tube tables are to be used, the input should be cut to zero when the key is open. Aside from this, it is not necessary that phate current be cut off completely but only to the point where the rated dissipation is not exceeded. In this case platemodulated phone ratings should be used for c.w. operation, however.

In Fig. (6-14F, hiats is oltained from the voltage drop across a resistor in the athode (or filament center-tap) lead. Protective bias is ob-
tained by the voltage drop across R_{5} as a result of plate (and soreon) rurrent flow. Since plate current must flow to obtain a voltage drop a a ross the resistor, it is obvious that cut-off protertive bias cannot be obtained be this system. When excitation is applied, plate (and sereen) current increases and the grid current also contributes to the drop a acoss R_{5}, thereby increasing the bias to the operating value. Since the voltage between plate and cathode is reduced by the amount of the voltage drop across R_{5}, the over-all supply voltage must be the sum of the phate and operat-ing-bias voltages. For this rason, the use of cathode bias usually is limited to low-voltage tubes when the extra voltage is not diflicult to obtain.

The resistance of the cathode bianing resistor R_{5} should be adjusted to the value which will give the correct operating bias voltage with rated grid, plate and sereen currents flowing with the amplifier loaded to rated input. When excitation is removed, the input to most types of tubes will fall to a value that will prevent damage to the tuber, at least for the period of time required to remove plate voltage.

A disadvantage of this biasing system is that the cathode r.f. connertion to ground depends upon a by-pass condenser. From the consideration of v.h.f. harmonies and stathility with highperveance tubes, it is preferable to make the rathode-to-ground impedance as elose to zero as possible.

Fig. 6.14-Various systems for obtaining protective and operating hias for r.f. amplifiers, A-Crid-leak. B - Battery. (: - Combination hattery and grid leak. 1)- Grid leak and adjusted-voltage bias pack. E - Combination grid leak and voltage-regulated pack. F - Cathode bias.

Protecting Screen-Grid Tubes

Screen-grid tubes eannot be eut off with bias unless the sereen is operated from a fixed-voltage supply. In this case the cut-off bias is approximately the sereen voltage divided by the amplifieation factor of the sereen. This figure is not always shown in tubedata sheets, but cut-off voltage may be determined from an inspection of tube curves, or by experiment.
When the sereen is supplied from a series dropping resistor, the tube can be protected by the use of a sereen-elamper tube, as shown in Fig. 6-15. The grid-leak hias of the amplifier tube with excitation is applied also to the grid of the clamper tube. This is usually suflicient to cut off the rlamper tube. However, when excitation is removed, the clamper-tube bias falls to zero and it draws enough current through the sereen dropping resistor usually to limit the input to the amplifier to a safe value. If eomplete sereenvoltage eut-off is desired, a VIR tube may be inserted in the sereen lead as shown. The VRtube voltage rating should be high enough so that it will extinguish when excitation to the amplifier is removed. One VIR tube should be used for each 40 ma . of screen eurrent, other tubes being added in parallel if needed.

Screen Considerations

Since the power taken by the sereen does not contribute to the r.f. output, it is dissipated entirely in heating the soreen, so the dissipation can be calculated simply by multiplying the screen voltage by the screen current.

It should be kept in mind that sereen current varies widely with both excitation and loading. If the sereen is operated from a fixed-voltage source, the tube should never be operated without plate voltage and load, otherwise the sereen may be damaged within a short time. Supplying the screen through a series dropping resistor from a higher-voltage source, such as the plate supply, affords a measure of protection, since the resistor causes the sereon voltage to drop ats the eurrent increases, thereby limiting the power drawn by the sereen. However, with a resistor, the serecon voltage may vary considerably with excitation, making it neressary to check the voltage at the screen terminal under artual operating conditions to make sure that the sereen voltage is normal. Reducing excitation will cause the sereen current to drop, increasing the voltage; increasing excitation will have the opposite effeet. These rbanges are in addition to those caused by changes in bias and plate loading, so if a screengrid tube is operated from a series resistor or a voltage divider, its voltage should be checked as one of the final adjustments after exeitation and loading have heen set.

An approximate value of resistance for the sereen-voltage dropping resistor may be obtained loy dividing the voltage drop reguired from the supply voltage (difference between the supply voltage and rated screen voltage) by the rated screen current in deeimal parts of an ampere.

Fig. 6-1.5 - Screen clamper circuit for protecting sereenkrid power tubes, the Vh tube is needed only for complete cut-off.
$C_{1}-0.001-\mu \mathrm{fd}$. disk ceramic. $\mathrm{H}_{1}-100$ ohms.

Some further adjustment may be necessary, as mentioned above, so an adjustable resistor with a total resistance above that calculated should be provided.

FEEDING EXCITATION TO THE GRID

In eoupling the grid input circuit of an amplifier to the output circuit of a driving stage the objective is to load the driver plate eircuit no that the desired amplifier grid excitation is obtained without exceeding the plate-input ratings of the driver tube.

As explained carlier, the grid of a Class C amplifier must be driven positive in respect to cathode over a portion of the excitation cycle, and rectified grid current flows in the grid-cathode circuit. This represents an average resistance across which the exciting voltage must be developed hy the driver stage. In other words, this is the load resistance into which the driver plate circuit must be coupled. The approximate grid imput resistance is given by:

$$
\begin{aligned}
& \text { Input impedtence (ohms) } \\
& =\frac{\text { dribing power }(\text { watts })}{\text { d.c. grid current }(\text { mat. })^{2}} \times 622 \times 10^{3} \text {, }
\end{aligned}
$$

For normal operation, the values of driving power and grid current may be taken from the tube tables.

Since the grid input resistance is a matter of a few thousand ohms, an impedanee step-down is necessary if the grid is to be fed from a lowimpedanee transmission line. This can be done by the use of a tank as an impedanee-transforming deviee in the grid cireuit of the amplifier as shown in Fig. 6-16. This coupling system may be considered either as simply a means of obtaining mutual inductance between the two tank eoils, or as a low-impedance transmission line. If the line is longer than a small fraction of a wavelength, and if a s.w.r. bridge is available, the line is more easily handled by adjusting it as a matched transmission line.

Inductive Link Coupling with Flat Line

In adjusting this type of line, the objert is to make the s.w.r. on the line as low as possible over as wide a band of frequencies as possible so that power can be transferred over this range without retuning. It is assumed that the output coupling considerations discussed earlier have been observed in connection with the driver plate circuit. So far as the amplifier grid circuit is foncerned, the controlling factors are the Q of the tuned grid circuit, $L_{2} C_{2}$, (see Fig. ($6-17$) the inductance of the coupling coil, L_{4}, and the degree of coupling betwern L_{2} and L_{4}. Variable eoupling between the coils is eonvenient, but not strictly necessary if one or both of the other factors can be varied. An s.w.r. indieator (shown as "SWlR" in the drawing) is essontial. An indicator such as the "Mieromateh" (a commercially a vailable inst rument) may be connered as shown and the adjustments made under actual operating conditions; that is, with full power applied to the amplifier grid.

Assuming that the coupling is adjustable, start with a trial position of L_{4} with respert to L_{2}, and adjust C_{2} for the lowest s.w.r. Then change the coupling slightly and repeat. Continue until the s.w.r. is as low as possible; if the circuit constants are in the right region it should not be difficult to get the s.w.r. down to I to 1 . The Q of the tuned grid cireuit should be designed to be at least 10, and if it is not possible to got a very low s.w.r. with such a grid circuit the probable reason is that L_{4} is too small. Maximum coupling, for a given degree of physical coupling between the two coils, will ocrur when the inductance of L_{4} is such that its reactance at the operating frequency is equal to the characteristic impedance of the link line. The reactance can be calculated as deseribed in the chapter on electrical fundamentals if the inductane is

Fig. 6.16-Coupling excitation to the grad of an r.f. power amplifier by means of a low-impedance coaxial line
$\mathrm{C}_{1}, \mathrm{C}_{3}, \mathrm{I}_{1}, \mathrm{I}_{3}$ - Sce corresponding components in Fig. 6- 7 .
(.2 - Amplifire grid tanh condenser - see text and Fig. 6 - 17 for capacitance, Fik. 6-30 for voltage rating.
$\mathrm{C}_{4}-0.001-\mu \mathrm{fl}$, disk ecramic.
1.2 - To resmate at operating frequency with C.2. See IC chart in miscellane-ous-data chapter and indurtance formula in electrical-laws chapter. or use IRRL, Lightning Calculator.
L_{4} - Reactance equal to line impedance - see reactance phart in miscel-laneous-data chapter and indurtance formula in eleetrical-laws chapter, or use ARRI. Lightning Cialeulator.
R is used to simulate prid impedance of the amplifier when a low-power s.w.r. indicator, such as a resistance bridge, is used. See formula in text for calmating value. Standing-wave indicator $S W^{\prime} R$ is inserted in line only while line is made flat.

Fig. 6-17 - Chart showing required grid tank capacitance for a O of 12 . To use, divide the driving power in watts by the square of the d.e. prid current in milliamperes and proceed as described under Fig. 6.9. Driving power and grid current may be taken from the tuhe tables. When a split-stator condenser is used in a bal. aneed grid eircuit, the capacitance of each section may be half that shown by the ehart.
known; the inductance can either be calculated from the formula in the same chapter or measured as described in the chapter on measurements.

Once the s.w.r. has been brought down to 1 to 1, the frequency should be shifted over the band so that the variation in s.w.r. can be observed, without changing C_{1} or the coupling between L_{2} and L_{4}. If the s.w.r. rises rap)idly on either side of the original frequency the circuit can be made "Hatter" by reducing the $(Q$ of the tuned grid circuit. This may be done by decreasing C_{2} and correspondingly incroasing L_{2} to maintain resonance, and by tightening the colupling between L_{2} and L_{4}, going through the same adjustment process again. It is possible to set up the system so that the s.w.r. will not exceed 1.5 to 1 over, for example, the entire $7-\mathrm{Me}$, band and proportionately on other bands. Under these circumstances a single setting will serve for work anywhere in the band, with essentially constant power transfer from the line to the power-amplifier grids.

If the coupling between L_{2} and L_{4} is not adjustable the
same result may be secured by varying the L / C ratio of the tuned grid circuit - that is, by varying its Q. If any difficulty is encountered it can be overeome by changing the number of turns in L_{4} until a mateh is secured. The two coils should be tightly coupled.

When a resistance-bridge type s.w.r. indieator - (see measuring-equipment chapter) is used it is not possible to put the full power through the line when making adjustments. In such case the operating conditions in the amplifier grid circuit can be simulated by using a carbon resistor ($1 / 2$ or 1 watt size) of the same value as the calculated amplifier grid impedance, connected as indicated by the arrows in Fig. 6-I6. In this case the amplifier tube must be operated "cold" - without filament or heater power. The adjustment proeess is the same as deseribed above, but with the driver power reduced to a value suitable for operating the s.w.r. bridge.

When the grid coupling system has been adjusted so that the s.w.r. is close to 1 to 1 over the desired frequency range, it is certain that the power put into the link line will be delivered to the grid circuit. Coupling will be facilitated if the line is tuned as described under the earlier section on output coupling systems.

Link Feed with Unmatched Line

When the system is to be treated without regard to transmission-line effects, the link line must not offer appreciable reactance at the operating frequency. Unless the constants happen to tune the link near resonance, any appreciable reactance, inductive or capacitive, will in effect reduce the coupling, making it impossible to transfer sufficient power from the driver to the amplifier grid circuit. Coaxial cables especially have considerable capacitance for even short lengths and for this reason it may be more desirable to use a spaced line, such as Twin-Lead, if the radiation can be tolerated.

The reactance of the line can be nullified only by making the link resonant. This may require changing the number of turns in the link coils, the length of the line, or the insertion of a tuning eapacitance. The disadvantages of such a resonant link are obvious. Since the s.w.r. on the link line may be quite high, the line losses increase because of the greater current, the voltage increase may be sufficient to cause a break-down in the insulation of the cable and the added tuned creuit makes adjustment more eritical with relatively small changes in frequences.

These troubles may not be encountered if the link line is kept very short for the highest frequency. A length of $\overline{5}$ feet or more may be tolerable at 3.5 Mc ., but a length of a foot at 28 Mc. may be enough to caluse serious effects on the functioning of the system.

Adjusting the coupling in such a system depends so much on the dimensions of the link line used that it must necessarily be largely a matter of cut and try. If the line is short enough so as to have negligible reactance, the coupling between the two tank circuits will increase within
limits by adding turns to the link coils, maintaining as close as possible equal inductances in each coil, or by coupling the link coils more tightly, if possible, to the tank coils. If it is impossible to change either of these, a variable condenser of $300 \mu \mu \mathrm{fu}$. may be connected in series with or in parallel with the link coil at the driver end of the line, depending upon which connection is the most effective. If coaxial line is used, the condenser should be connected in series with the inner conductor. If the line is long enough to have appreciable reactance, the variable condenser is used to resonate the entire link' circuit. As mentioned previously, the size of the link coils and the length of the line, as well as the size of the condenser, will affect the resonant frequency and it may take an adjustment of all three before the condenser will show a pronounced effeet on the coupling. When the system has been made resonant, coupling may be adjusted by varying the link condenser.

Simple Capacitive Interstage Coupling

The capacitive system of Fig. 6-18A is the simplest of all coupling systems, (See Fig. 6-8 for filament-type tubes.) In this circuit, the plate tank eireuit of the driver, $C_{1} L_{1}$, serves also as the grid tank of the amplifier. Although, it is used more frequently than any other system, it is less flexible and has certain limitations that must be taken into consideration.

The two stages cannot be separated physically any appreciable distance without involving loss in transferred power, radiation from the coupling lead and the danger of feed-back from this lead. Since both the output capacitance of the driver tube and the input capacitance of the amplifier are across the single circuit, it is sometimes difficult to obtain a tank circuit with a sufficiently low Q to provide an efficient circuit at the higher frequencies. The coupling can be varied by altering the capacitance of the coupling condenser, C_{2}, but no impedance transforming is possible. The driver load impedance is the sum of the amplifier grid resistance and the reactance of the coupling condenser in series, the coupling condenser serving simply as a series reactor. Driver load resistance increases with a decrease in the capacitance of the coupling condenser.

When the amplifier grid impedance is lower than the optimum load resistance for the driver, a transforming action is possible by tapping the grid down on the tank coil, but this is not rocommended because it invariably causes an increase in v.h.f. harmonics and sometimes sets up a parasitic circuit.

So far as coupling is concerned, the Q of the circuit is of little significance. However, the other considerations discussed earlier in connection with tank-circuit Q should be observed.

Pi-Section Tank as Interstage Coupler

A pi-section tank circuit, as shown in Fig. 6-18B, may be used as a coupling device between screen-grid amplifier stages. The circuit is actually a capacitive coupling arrangement with the
grid of the amplifier tapped down on the circuit by means of a capacitive divider. In contrast to the tapped-coil method mentioned previously, this system will be very cifective in reducing v.h.f. harmonies, because the output condenser, C_{8}, provides a direct capacitive shont for harmonies across the amplifier grid circuit.

To be most effective in reducing v.h.f. harmonies, ('s should bea mica condenser connerted directly across the tubo-socket terminals. Tapping down on the circuit in this mamer also helps to stabilize the amplifier at the operating frequeney because of the grid-cireuit loading provided by Cs. For the purposes both of stat bility and harmonie roduction, exporience has shown that a value of $100 \mu \mu \mathrm{fd}$. for C_{8} usually is

(B)

Fig. 6.18-Capacitive-coupled amplifiers. A - Simple cabacitive coupling. 3 - Pi-section coupling.
C_{1} - Driver plate tank rondenser - see text and lig. 6.7 for caparitaller, liz. 6. .2) for voltage rating.
 for desired compling. Voltage rating sim of driver plate and amplifier liasing voltakes, phes safety factor.
 or mica. Voltage rating same as plate voltage, plus safety fanctor.
C_{4} - Crid Ly -pass - $0.001-\mu \mathrm{fl}$. dish ceramic.
Cs - Heater ley-pass - $0.001-\mu \mathrm{fl}$. dish ceramic.
$\mathrm{C}_{6}-\mathrm{D}$)river plate howhing condenser - $0.001-\mu \mathrm{fd}$. disk ceramic or mica. Vothage rating same as (is.
C_{7} - l'inestion ithot condenser - see tent and Fig. (o-9 for caparitance. Voltake rating same as Ci.
C_{8} - l'i-seretion output comdenser - IOI- $-\mu \mathrm{ff}$. mica. Voltage rating same as driver plate voltake plos safety factor.
 misecellaneous-data chapter and inductance formula in electrical-laws chapter, or use 1 R1BL. lighening Calculator.
I_{2} - I'i-siction inductance - See text. Appronimately same as Lat.
RFC_{1} - Crid r.f. chohe - $\mathbf{2 . 5}$-mh. Current rating minimum of prid-current to be expected.
$\mathrm{RH}_{\mathrm{C}}^{2}$ - I river plate r.f. chohe -2.5 mh . Current rating minimum of plate current expected.

Fig. 6.19-Circuit of sensitive neutralizing indicator. Ntal is a 1 N 3 t crystal detector, M/A a 0 - 1 direct-current milliammeter and C: a (0.001-ufil. mica by-pass condenser.
sufficient. In general, C_{7} and L_{2} should have values approximating the capacitance and inductance used in a ronventional tank circuit. A reduction in the indurtanere of L_{2} results in an increase in coupling because C_{7} must be inereased to retune the circuit to resonance. This thanges the ratio of C_{7} to C_{8} and has the offect of moving the grid tap up on the circuit. Since the coupling to) the grid is comparatively loose under any condition, it may be found that it is impossible to utilize the full power eapability of the driver stage. If sufficient excitation cannot be oltained, it may be neeressary to raise the plate voltage of the driver, if this is permissible. Otherwise a larger driver tube may be requircd. As shown in Fig. 6-1813, parallel driver plate feed and amplifier grid feed are necessary.

STABILIZING AMPLIFIERS

External Coupling

A straight amplifier operates with its input and output circuits tuned to the same fregueney. 'Thorefore, unless the coupling betweon these two circuits is brought to the neressary minimum, the amplifier will oscillate as a tuned-plate tuned-grid cirenit. Care should be used in arranging compononts and wiring of the two cireuits so that there will be negligible opportunity for coupling exthratal to the tube itself. Complete shidding between input and output circuits usually is required. All r.f. leads should be kept as short as possible and particular attantion should be paid to the r.f. return paths from plater and grid tank circuits to cathode. In genoral, the best arrangement is one in which the cathode (or filament conter tap) connertion to ground, and the plate tank cireuit are on the same side of the chassis or other shielding. Then the "hot" lead from the grid tank (or driver plate tank) should be brought to the socket through a hole in the shielding. Then when the grid tank condenser, or br-pass is grounded, a return path through the hole to cathode will be encouraged, since transmission-line chararteristies are simulated.

A check on external coupling between
input and output circuits can be made with a sensitive indicating deviee, such as the one diagrammed in Fig. (6-19. The amplifier tube is 1 omoved from its socket and if the plate terminal is at the soeket, it should be diseonneeted. With the driver stage romning and tuned to resonanoe, the indicator should be coupled to the output tank coil and the output tank condenser tuned for any indication of r.f. feed-through. Vxperiment with shiclding and rearrangement of parts will show whether the isolation can be improved.

Neutralizing Circuits

The phate-grid caparitance of sereen-grid tubes is reduced to a fraction of a miero-miorofarad by the interposed grounded sereen. Nevertheless, the power sensitivity of these tubes is so great that only a very small amount of food-back is neressary to start oseillation. To assure a stable amplifier, it is usually neressary to load the grid circuit, or to use a neutralizing eirenit. A neutralizing eitenit is one external to the tube that balances the voltage fed batek through the grid-plate raparitance, by another voltage of opposite phase.

Fig. (i-20) shows how a screon-grid amplifier may be neutralized by the use of an induetive link line coupling the input and output tank eireuits in proper phase. The two coils must be properly polarizad. If the initial comenetion proves to be incorrect, comeretions to one of the link eoils should be reversed. Neutralizing is adjusted by changing the distance betwern the link eoils and the tank coils, onere correct polarization has been determined. A wrong conneretion will catuse the amplifier to oweilate still more strongly. In the case of capacitive coupling, one of the link eoils will be coupled to the plate tank coil of the driver stage.

A eaparitive neutralizing system for sercengrid tubes is shown in lig. 6-2013. (r_{2} is the noutralizing condenser. The caparitance should be chosen so that at some adjustment of 6, , the ratio of C_{2} to C_{1} equals the ratio of the tube grid-plate capacitance to the grid-cathode capacitance. If ('1 is $0.001 \mu \mathrm{fll}$, then

$$
C_{2}=\frac{1000 C_{\mathrm{kp}}}{C_{\mathrm{gk}}}
$$

The grid-cathote capacitance must include all strays directly across the tube caparitance, including the capacitance of the tuning-condenser stator to ground. This may amount to 5 to 20 $\mu \mu \mathrm{fid}$. In the case of eapacitance coupling, as shown in Fig. (i-20C, the output capacitance of the driver tube must be actded to the gridcathode caparitance of the amplifier in arriving at the value of Cg. If Cew works out to an impractically large or small value. C'l can be changed to compensate by using combinations of lixed mica condensers in parallel.

Neutralizing Adjustment

The procedure in neutralizing is essentially the same for all types of tuhes and circuits.

The filament of the amplifier tube should be lighted and axcitation from the preceding stage fed to the grid circuit. There should be no plate voltage applied to the amplifier.
The immediate oljecetive of the neutralizing process is reducing to a minimum the r.f. driver voltage fed from the input of the amplifier to its output circuit through the grid-plate capacitance of the tube. This is done by adjusting carefully, bit by bit, the neutralizing condenser or link coils until an r.f. indicator in the output circuit reads minimum.

Fig. 6-20 - Screen-grid nentralizing rircuits. A - Inductive neutralizing. $\mathrm{B}-\mathrm{C}$ - Capacitive neutralizing.
C_{1} - Grid by-pass condenatr - approx. 0.001- $\mu \mathrm{fd}$, mica. Doltage rating same as hiasing voltage in 13, same as driver plate voltage in (S.
C_{2} - Neutralizing condenser - approx. 2 to $10 \mu \mathrm{fd}$. - see text. Toltage rating same as amplifier pate voltage for e.w., twice this value for plate modulation.
L_{1}, L_{2} - Veutralizing link - usually a turn or two will be sufficient.

The devica shownin Fig, $(\mathrm{i}-19$ makes a sensitive neutralizing indicator. The link should be couphed to the output tank coil at the low-potential or "ground" point. Care should he taken to make sure that the coupling is loose enough at all times to prevent burning out the meter or the rectifior. 'The plate tank condenser should be readjusted for maximum reading after each change in neutralizing.

A simple indicator is a flashlight bulb, (the lower the power the more sensitive) connerted at the center of a turn or two of wire coupled to the tank roil at the low-potential point. However, its sensitivity is poor compared with the milliam-meter-redtifier.

The grid-current milliammeter may also be used as a neutralizing indicator. If the amplifier is not neutralized, there will be a large dip in grid current as the plate-tank tuning passes through resoname. This dip in grid current reduces as neutralization is approached until at exact neutralization all change in grid current should disappear.

When neutralizing an amplifier of medium or high power, it may not be possible to bring the reading of the rectifier indicator down to zoro, but a minimum point in the adjustment of the neutralizing eont rol should be found where higher readings are ohtained on either side.

Grid Loading

The use of a noutralizing eircuit may often be avoided by loading the grid cirruit if the driving stage has some power capability to spare. Lataling by tapping the grid down on the grid tank coil (or the plate tank coil of the driver in the (ase of (abacitive coupling), or by a resistor from grid ta cathode is effective in stabilizing an amplifier, but either device will increase v.h.f. harmonics. The best loading system is the use of a pi-section filter, as shown in Fig. (j-1813. This circuit plares a capacitance directly betwengrid and cathode. This not only provides the desirahle

Fig. 6-21- A - Usual parasitic eircuit. \mathbf{B} - Resistive loading of parasitic circuit. (: - Inductive coupling of loading resistance into parasitic circuit.
loading, but also a very effective capacitive short for v.h.f. hammonics. A $100-\mu \mu \mathrm{fl}$. mica condenser for C_{s}, wired directly betwern tube terminals will provide sufficient loading for most sereengrid tubes.

V.H.F. Parasitic Oscillation

Unless steps are taken to prevent it, parasiticoseillation in the v.h.f. range will take place in almost every r.f. power amplifier. The heavy lines of Fig. 6-21: show the usual parasitic tank circuit, which resonates, in most cases, betwern 150 and 200 Me. For each type of tetrode, there is a region, usually above the parasitic frequency, in which the tube will te self-neutralized. Therefore, a v.h.f. parasitic oscillation may be suppressed by addling sufficiont inductance, L_{p}, to tune the "ircuit into this region. However, to avoid TVI, the self-neutralizing frequency must not be above 100 Me., proferably 120 Me . When it is lower, the circuit must be limited to $1(0)$ or 120) Me. and the parasitice suppressed by loading the circuit with resistance, R_{p}. A coil of + ar 5 turns, $1 / 4$ inch in diameter, is a good starting size. With the tank condenser turned to maximum capacitance, the circuit should be chorecod with a g.d.o. to make sure the resonance is above 100 Me . Then, with the shortest possible leads, a noninductive 100 -ohm 1 -watt resistor should be conmected arross the entire coil. The amplifier should be tuned up to its highest-frequency hand and operated at low voltage. The tap should be moved a little at a time to find the minimum number of turns required to suppress the parasitic. Then voltage should be increased until the resistor begins to feel warm after several minutes of operation, and the power input noted. This input should be compared with the normal input and the pewer rating of the resistor increased by this proportion: i.e., if the power is half nomat, the wattage rating should be doubled. This inaroase is best made by connereting 1 -watt carbon resistors in parallel to give a resultant of about 100 ohms. is power input is increased, the parasitic may start up again, so power should be applied only momentarily until it is made certain that the parasitic is still suppressed. If the parasitic starts up again when voltage is raised, the tap must be noved to include more turns. so long as the parasitic is suppressed, the resistors will heat up only from the opratingfrechucmey current.

Sinee the resistor can be placed across only that portion of the parasitic circuit represented by L_{p}, the latter should form as large a portion of the circuit as possible. Therefore, the tank and bypass eondensers should have the lowest possible imductance and the leads shown in heavy lines should be as short as possible and of the heaviest practical conductor. This will permit L_{p} to the of maximum size without tuning the circuit below the $100-\mathrm{Mc}$. limit.

Another arrangement that has been used successfully is shown in lig. (i-21C. A small turn or two is inserted in place of L_{p} and this is cou-

HIGH-FREQUENCY TRANSMITTERS

pled to a circuit tuned to the parasitic frequency and loaded with resistance. The heavy-line circuit should first be checked with a g.d.o. Then the loaded circuit should be tuned to the same frequency and coupled in to the point where the parasitic ceases. The two coils can be wound on the same form and the coupling varied by sliding one of them. slight retuning of the loaded circuit may be required after coupling. Start out with low power as before, until the parasitic is suppressed. Since the loaded circuit in this case carrics much less operating-frequency current, a single 100 -ohm 1 -watt resistor will often be sufficient and a $30-\mu \mu \mathrm{fd}$. mica trimmer should serve as the tuning condenser, C_{p}.

Low-Frequency Parasitic Oscillation

The screening of most transmitting screen-grid tubes is sufficient to prevent low-frequency parasitic oscillation caused by resonant circuits set up ly r.f. chokes in grid and plate circuits. Should this type of oscillation (usually between 1200 and 200 kc .) oceur, see section under triode amplifiers.

PARALLEL-TUBE AMPLIFIERS

The circuits for paralleltube amplifiers are the same as for a single tube, similar terminals of the tules being comnected together. The grid impedance of two tubles in parallel is half that of a single tube. This means that twice the grid tank capacitance shown in Fig. 6-17 should be used for the same Q. The plate load rusistance is halved so that the plate tank condenser capacitance for a single tube (Fig. 6-9) also should be doubled. The total grid current will be doubled, so to maintain the same grid bias, the grid-leak resist-

(B)

Fig. 6-22 - Push-pull screen-grid amplifier circuits.
A - Inductive-link coupling. 13 - Capacitive coupling.
C_{1} - Split-stator grid tank condenser - see text and liig. 6.17 for capacitance, Tig. 6.30 for voltage rating.
$\mathrm{C}_{2}-\mathrm{S}_{\text {plit -stator plate tank conden }}$
Fig. 6-29 for voltage rating.
C_{3} - Grid by-pass condenser - $0.001-\mu \mathrm{fd}$. disk ceramic.
$\mathrm{C}_{4}, \mathrm{C}_{5}$ - Filament lyy-pass - 0.001 - $\mathrm{\mu f}$ fi. disk ceramic.
$\mathrm{C}_{6}, \mathrm{C}_{7}$ - Screen by-pass -0.001 - $\mu \mathrm{fd}$. disk ceranic or pends on maximum voltage to which scramic or mica. Voltage rating deit is supplied. Voltage rating equal to plate may soar, depending on how
voltage will be safe in any case. plate voltage for c ; wise ceramic or mica. Voltage rating same as factor.
C_{9} - Driver plate tank condenser - see section on simple capacitive coupling with single tuble. Fior same O, cach section shomplat have half the capacitance shown in Fig. 6-9. Voltage rating of each section sloothe be twice
d.c. plate voltake of driver.
$\mathrm{C}_{10}, \mathrm{C}_{11}$ - Col
driver plate voltage.
$\mathrm{C}_{12}-0.001$ - $\mu \mathrm{fd}$. disk ceramic or mica. Voltage rating same as plate voltage phas
C_{13} - See text.
$\mathrm{L}_{1}, \mathrm{~L}_{2}$ - To resonate at operating frequency. See $L C$ chart in miscellaneons-data chapter and inductance formula in electrical-laws chapter, or use ARRRL
$\mathrm{L}_{\mathrm{a}} \mathrm{L}_{4}$ - Con
chart in miscellaneous-datia equal to feed-hine impedance. See reactance laws chapter.
L.4. I.s - Neutralizing linhs - usually a turn or two will he sufficient.
$\mathrm{RFC}_{1}-2.5-\mathrm{mh}$. r.f. choke, to carry grid current.
$1 \mathrm{RCC}_{2}-2.5-\mathrm{mh}$. r.f. chohe to carry plate current.
ance should be half that used for a single tube. The required driving power is doubled. The capacitance of a noutralizing condenser, if used, should be doubled and the value of the screen dropping resistor should be cut in half. In treating parasitic oscillation, it may be necessary to use individual chokes in each plate and grid lead. rather than one in the common leads. Input and output capacitances are doubled, which may be a factor in efficient operation at higher freguencies.

PUSH-PULL AMPLIFIERS

Circuits for push-pull amplifiers are shown in Fig. 6-22. With this arrangement both gridinput impedane and optimum plate load resistance are doubled. For the same Q, each section of the split-stator tank condensers should have half the capacitance for a single tube drawing the same total plate current and having the same grid impedance shown by Figs. (0-9) and 6-17. This means that the total tank-circuit eapacitance is onequarter that for a single tube and that the inductances of the tank coils must be quadrupled to resonate at the same frequencr. Other values remain the same, except that the total grid, sereen and plate currents will be twice the values for a single tube and the stage will require twice the driving power.

In Fig. ($\mathrm{f}-22 \mathrm{~A}$, inductive link coupling is shown. The neutralizing circuit is shown in heavy lines and may not be necessary: Fig. ti-2213 shows capacitive coupling to the grids. The driver in this case must be provided with a balanced output cireuit. To maintain balanced excitation, it may be necessary to place C_{13}, shown in dashed

Fig. 6-2.3 - Connections for tuhes in push-pull when fila-ment-1ypes are maed. 'The by-pass condensers, C_{1}, should be $0 .(\mathrm{m}) \mathrm{l}-\mathrm{fld}$. disk ceramic, one placed rlose to each filament terminal. T_{1} is the filament transformer.
lines, across the lower portion of the circuit to balance the driver-tube output capacitance across the upper half. The remainder of circuit 13 is the same as A. If a neutralizing link is needed, it should be coupled at the center of the driver plate tank coil.

It is advisable to use separate screen and heater by-pass condensers, especially when TVI
is a factor. Fig. 6-23 shows equivalent "cathode" connertions to be substituted when filament-type tubes are used. Also, individual v.h.f. parasitic chokes will be necessary.

Balance in Push-Pull Amplifiers

Proper push-pull operation requires an arcurate balance between the two sides of the circuit. Otherwise the dissipation will not be distributed evenly betwern the two tubes, one being overloaded if an attempt is made to operate the amplifier at full rating. Unbalance is indicated when the grid and/or plate currents are not equal and, if serious, is accompanied by a visible difference in the color of the tube plates. If interchanging the tubes does not change the unbatance, the circuit is not symmetrical electrically.

If the coil center-tap in split-stator tank circuits is sufficiently well-isolated from ground, the balance will depend upon the accuracy of capacitance balance in the tank condensers, the length of leads connecting the tubes to the condenser (including the roturn lead from rotor to filament.) and the settings of the neutralizing condensers. Unbalance in the plate circuit will seldom influence the balanee in the grid circuit, but the opposite may not be true. Lengthening one or the other of the leads between the tubes and the tank condenser will alter the hatance, particularly in the plate circuit. In extremes it may be neressary to place a trimmer across one sertion of the split-stator condenser. Small differences of ten may be taken care of by a readjustment of the neutralizing condensers, possibly to slightly unequal settings. Otherwise, the neutralizing condensers are adjusted together, keeping the capacitances as equat as possible at each step.

FREQUENCY MULTIPLIERS

Single-Tube Multiplier

Output at a multiple of the frequency at which it is being driven may be obtained from an amplifier stage if the output circuit is tuned to a harmonic of the exciting frequency instead of to the fundamental. Thus, when the frequency at the grid is 3.5 Mc ., output at 7 Me ., 10.5 Mc., it Mc., etc., may be obtained by tuning the plate tank circuit to one of these frequencios. The circuit otherwise remains the same as that for a st raight amplifier, although some of the values and operating conditions may require change for maximum multiplier efficioncy.

Efficiency in a single- or parallel-tube multiplier comparable with the efficiency obtainable when operating the same tube as a straight amplifier involves decreasing the operating angle is proportion to the increase in the order of frequency multiplication. Obtaining output comparable with that possible from the same tube as a straight amplifier involves greatly increasing the plate voltage. A practical limit as to efficiency and output within normal tube
ratings is reached when the multiplior is operated at maximum permissible plate voltage and maximum permissible grid current. The plate current should be redued as neeessary to limit the dissipation to the rated value by incroasing the hias. Wigh efficiency in multipliers is not often required in pratice, since the purpose is usually served if the frequency multiplication is obtained without an appreciable gain in power in the stage.

Multiplications of four or five sometimes are used to reach the bands above 28 Mc . from a lown-frequency erystal, but in the majority of lower-frequency transmitters, multiplication in a single stage is limited to a factor of two or three, berause of the rapid derdine in prateticably obtainable eflieiency as the multiplication factor is inereased. Sereon-grid tubes make the best frequency multipliers berause their high power-sensitivity makes them easier to drive properly than triodes.

Since the input and output eireuits are not tuned close to the same frequeney, neutralization usually will not be required. Instances may be encountered with tubes of high transconductance, however, when a doubler will oscillate in t.g.t.p. fashion, requiring the introduction of neutralization. The link neutralizing s.stem of Fig. 6-20A is convenient in such a contingency.

Push-Pull Multiplier

A single- or parallol-tube multiplier will deliver output at either even or odd multiples of the exeiting frequency. A push-pull multiptier does not work satisfatorily at evon multiples because even harmonics are largely catrcoled in the output. On the other hand, amplifiers of this type work woll as triplers or at other odd harmonies. The operating requiremonts are similar to those for single-tube multipliers.

Push-Push Multipliers

A two-tuhe circuit which works well at even harmonies, but not at the fundamental or odd harmonies, is shown in Fig. 6-24. It is known as the push-push circuit. The grids are connected in push-pull while the plates are connered in parallel. The efficiency of a doubler using this "ircuit may approach that of a straight amplifier under similar operating conditions, because there is a plate-current pulse for each cycle of the output frequency.

This arrangement has an advantage in some applications. If the heater of one of the tubes is turned off, making the tube inoperative, its grid-plate capacitance, being the same as that of the remaining tube, serves to neut ralize the circuit. Thus provision is made for either straight amplification at the fundamental with a single tube, or doubling frequency with two tubes as desired.

The grid tank cireuit is tuned to the frecgueney of the driving stage and should have the same constants as the grid tank circuit of a push-pull

Fig. 6-24-Circuit of a push-push frequency multiplier for even harmonics.
$C_{1} l_{1}$ and $C_{2} L_{2}$ - See tent.
C3- Plate lig-pass - $0.10101-\mu \mathrm{fl}$. disk reramir or mira. Soltage rating equal to plate voltage plus safety factor.
$1 \mathrm{RHC}-2.5-\mathrm{mh}$. r.f. chohe.
amplifier (see Fig. 6-22). The plate tank circuit is tuned to an even multiple of the exciting frequency, usually the second harmonic, and should have the same values as a straight amplifier for the harmonie frequency (see Fig. (i-9), bearing in mind that the total plate current of both tubes determines the C to be used.

- TRIODE AMPLIFIERS

Circuits for triode amplifiers are shown in Fig. (6-25. Neglecting roferences to the sereen, all of the foregoing information applies equally well to triodes. All triode straight amplifiers must be neutralized, as Fig. 6-25 indieates. From the tube tables, it will be seen that triodes require considerably more driving power than screengrid tubes. However, they also have less power scmsitivity, so that greater feed-back can be tolerated without the danger of instability.

Low-Frequency Parasitic Oscillation

When r.f. chokes are used in both grid and plate circuits of a triode amplifier, the splitstator tank condensers combine with the r.f. chokes to form a low-frequeney parasitice cireuit, unless the amplifier eireuit is arranged to prevent it. In the cirruit of Fig. $6-2513$, the amplifier grid is sories fod and the driver plate is parallel-fed. For low freguencies, the r.f. choke in the driver plate rircuit is shorted to ground through the tank coil. In Figs. (6-25C and I), ar resistor is substituted for the grid r.f. choke. This resistance should be at least 100 ohms. If any grid-leak resistance is used for biasing, it should be substituted for the $100-\mathrm{ohm}$ resistor.

TUNING A TRANSMITTER

Fig. 6-26 shows where milliammeters and voltmeters may be connected to obtain desired readings. Metering of all stages is usually not necessary except for initial adjustments. After prereding stages have been adjusted for proper operating conditions, a transmitter can often be tuned up using only grid- and plate-rurrent milliammeters in the final-amplifier circuit.

While cathode metering often is used for rea-
sons of safety to the operator and meter insulation, it is frequently difficult to interpret readings that are the resultant of three currents, one of which may be falling while the other two are increasing. Fig. 6-27 shows a commonly-used system for switching a single meter to read current in any of several different circuits. The resistors, R, are connected in the various circuits in place of the milliammoters shown in Fig. 6-26. Since the resistance of R is several time the internal resistance of the milliammeter, it will have no practical effect upon the reading of the meter itself.

When the meter must read currents of widely differing values, a meter with a range sufficiontly low to accommodate the lowest values of current to be measured may be selectod. In the eircuits in which the current will the ahove the scale of the meter, the resistance of R can be adjusted to a lower value whieh will give the meter reading a multiplying factor. (Sere chapter on measurements.) Care should be taken to observe proper polarity in making the connections between the resistors and the switch.

The first step, in adjusting each stage is to eheck for parasitio owoillation as discussed carlicer. The second step is to adjust neutralizing if neutralization is required.

While it is usually possible to make all initial
tuning adjustments of low-power stages with plate voltage applied, it is preferable to disconned the plate voltage until adjustments of excitation have been made. Starting with the oscillator, its output tank eircuit should be resonated as indicated by a dip in the plate-current reading (see lig. 6-3), or by a maximum reading of grid current to the following stage if it is coupled c:apacitively. Both readings should occur simultaneously. At this point, the frequeney of the ascillator output should be checked with an absorption wavemeter to make sure that it is tuned to the desired band. If transmission-line coupling is used, the coupling to the grid of the amplifier should first be adjusted for minimum standing-wave ratio as deseribed carlier. After this adjustment, the coupling at the oseillator end of the line only should be altered. If the amplifier grid current is much above rated value, the coupling to the oscillator should be redured. Conversely, if the amplifier grid current is low, coupling should be increased. As the coupling is increased, the oscillator should draw more plate current :und the dip at resonance should become less pronounced, as indicated in Fig. (i-3. If it is possible to increase the coupling to the point where the oscillator plate current is up to the rated value and vet the required grid current is not up to rated value, the hiasing voltage should

Fiq. 6-25-Triode amplifier rirenits. A-I Ink eompling, single tube. 13 - Capacitive coupling, single tube. (: - Linh eoupling, push-pull. I) - Capacitive compling, push-poll. Aside from the neutralizing circuits, which are mandatory with triedes, the cirenits are the same as for sereen-grid tubes, and should have the same valurs throughout. The neutralizing condenser, C_{1}, shouhd have a caparitance somen hat preater than the prid-plate capacitance of the tube. Voltage rating should be twiee the d.c. plate voltage for c.w., or four times for plate momation, plus of fety factor. The resistanee R_{1} shonld he at least 100 ohms and it may consist of part or preferably all of the grid leak. For other component values, see similar screen-grid diagrams.

Fig. 6-26 - Diagrams showing placement of voltmeter and milliammeter to obtain desired measuremento. A - Series grid feed, parallel phate feed and sories sercen voltage-dropning risistor. B - Parallel grid feed. series plate feed and sereen voltage divider.
siderations. If the excitation is adjusted first without plate and sereen voltages it may be found that the grid current will change when these voltages are applied and the stage is loaded. It is normal for grid current to drop some what when these voltages are applied and still further when the load is coupled, especially with triodes. When this occurs, exeitation should be increased, to bring the grid current back to rated value.

If it is found that grid current increases when the plate tank rircuit is tuned slightly to the high-fregueney side of resonance, this indicates regeneration. This may be of little conserpuence in exeiter stages so long as oscillation does not result under any normal tuning condition. But in the final amplifier, esperially if it is to be modulated, it is a condition to be avoided by better shielding or more arcurate neutralization.

The main objective in the end, of course, is to obtain adequate excitation to the final amplifier and, in general, any adjustment of earlier stages that will produre this result without overloading anywhere along the line will be satisfactory. In conservative design, the full power capability of the exciter stages may not be needed. In the interests of v.h.f. harmonic reduction, it is desirable to provide an exeitation control so that the expitation to the final amplifier can be limited to that necossary for satisfactory operation. This can lee in the form of a potentiometer control of the screen voltage of the first
be measured with a high-resistance (20,000 ohms per volt) voltmeter. If the stage has a simple biasing resistor from grid to ground, comeet a $2.5-\mathrm{mh}$. r. f. choke in series with the voltmeter prod going to the grid. The bias should be measured with the stage operating under excitation. If the biasing voltage measures too high, thy fixed bias should be reduced and then, if neressary, the grid-leak resistance. If the driver is operating up to rated plate current and rated grid current cannot be obtained with the required bias, the indication is that the sereen and/or plate voltage of the oscillator must be rased if this can be done with safety to the owillator tube. Ilowever, it should be borne in mind that even if an intermediate stage is underdriven. it still may furnish the required driving power for the following stage. Therefore, it is, of course, advisable to check this before making any drastic changes in the oscillator.

The same process is followed in tuning up following amplifier stages, step by step. If there is any difficulty in obtaining the desired exeitation to any particular stage, be sure that the sereen voltage of the driver stage is up to normal as discussed earlier in the section on screen-grid con-

Fig. 6-27 - Method of switching a single milliammeter. The resistors, K, should be 10 to 20 times the internal resistance of the meter; 47 ohms will usually be satisfartory. S_{1} is a 2 -section rotary switch. Its insulation should be ceramie for high voltages, and an insulating coupling should always be used between shaft and control knob.
stage after the oscillator. Then roduction in screen voltage of this stage will reduce expitation all along the line, which is desirable.

- MEASURING POWER OUTPUT

The power output of any transmittor stage can be checked with raasonable accuracy by simply coupling an ordinary lamp to the output tank cirmuit and comparing its brilliance with that of another lamp of the same size operating from a.c. Since it is diffirult to judge power aceurately whon the lamp is over or under normal brilliance, the lamp selected should have a wattage rating as close as possible to that expreted from the amplifier. Flashlight bulbs ean be used for low power. .It frequencies above 7 Mc. sufficient coupling usually is ohtained by conmecting the lamp in series with a fow turns of wire that can be slipped over or inside the tank roil, as sh.own in Fig. (i-28.1. But at 3.5 and $7 \mathrm{M} \cdot$., it is usually neerssury to tap the bulb directly across a portion of the tank eoil, as shown at B. WAIRNING! Turn off the high voltaye when tapping a series-fed tank circuit. The eoupling should be adjusted until the plate current at resonane is the rated loaded value for the tube. A more accurate dummy load is dosoribed in QS'T' for March, 19:1, page 32.

- COMPONENT RATINGS AND INSTALLATION

Plate Tank-Condenser Voltage

In selecting at tank condenser with a spacing between plates suflicient to prevent voltage

Fig. 6.28-1'sing a lamp bulb for an approximate check on the sutput of an oseillator or amplifier. The compling should be adjusted to make the stage draw rated plate eurrent when tuned to resonance. Special cantion should be used in tapping the lamp directly on the coil when series plate fred is used. Aluays turn off the pouter before making a change in the tap.

 control.

(F)

lif. 6.29-Jiagrams showing the peach voltage for which the plate tanh condenser should be rated for c:w. operation with varions circuit arrangements. E is cyual to the d.e. phate coltage. The values shonld be donbled for phate modulation. The circuit is assumed to lue fully loaded. Circuits $1, C$ and E repuire that the tank pondenser be insulated from chasmis or gromod, and from the
breakdown, the peak r.f. voltage acrose a tank eireuit under load, but without modulation, may be taken conservatively as equal to the d.e. plate voltage. If the d.e. plate voltage also appears across the tank condenser, this must be added to the poak r.f. voltage, making the total peak voltage twier the der. plate voltage. If the amplifior is to be plate-modulated, this last value must be doubled to make it four times the d.e. plate voltage, berause both d.e. and r.f. voltages double with loo-per-erent plate modulation. At the higher plate voltages, it is desirable to choose a tank cireuit in which the d.e. and modulation voltages do not appear across the tank condenser, to permit the use of a smaller condenser with less plate sparing. Fig. 6-29) shows the porak voltage, in terms of d.c. plate voltage, to be experted across the tank condenser in various cireuit arrangements. These peak-voltage values are given assuming that the amplifier is loaded to rated plate current. Without load, the peak r.f. voltage will run much higher. Since a e.w. transmitter may be operated without load while adjustmonts are being made, although a modulated amplifier nover should be operated without load, it is somotimes considered logical to solect a condenser for a e.w. transmitter with a peak-voltage rating equal to that required for a phone transmitter of the same power. However, if minimum eost and space are eonsiderations, a condenser with half the spacing required for 'phone operation can be used in a c.w. transmitter for the same carrier
output, as indicated under Fig. 6-29, if power is reduced temporarily while tuning up without load.

In the circuits of Fig. 6-29(, D and I: the rotors are deliberately commected to the positive side of the high-voltage supply, eliminating any difference in d.e. potential betwoen the rotors and stators.

The plate spacing to be used for a given peak voltage will depend upon the design of the variable eondenser, influencing factors being the mechanical construction of the unit, the dielectric used and its placement in respert to intense fields, and the condenser-plate shape and degree of polish. Condenser manufacturers usually rate their products in terms of the peak voltage betwern plates.
l'ate tank condensers should be mounted as clase to the tube as temperature eonsiderations will permit to make possible the shertest capacitive path from plate to cathode. Wererially at the higher frequencies where minimum eireuit capacitane beeones important, the condenser should be mounted with its stator phates well spaced from the chassis or other shiolding. In circuits where the rotor must be insulated from ground, the condenser should be mounted on cramic insulators of size commensurate with the plate voltage involved and - most important of all, from the viewpoint of satedy to the operator - a well-insulated coupling should be used betwern the comdenser shalt and the dial. The sertion of the shaft atturhed to the dial should be well grounded. This can be done conveniently through the use of panel shatt-bearing units.

Grid Tank Condensers

In the circuit of lig. (i-30, the gride tank condenser should have a voltage rating approximately equal to the biasing voltage plus 20 per eront of the plate voltage. In the balanced cireuit of 13 , the voltage rating of each section of the condenser should be this same vatue.

The grid tank condenser is preferably mounted with shielding between it and the tube socket for isolation purposes. It should, however, be mounted close to the soeket so that a short lead can be passed through a hole to the socket termimal. The rotor ground lead or by-pass lead should be run direcetly to the nearest point on the chassis or other shickding. In the circuit of Fig. 6-30. i , the same insulating precautions montioned in connection with the plate tank condenser should be used.

Plate Tank Coils

The inductance of a manufactured coil usually is based upon the highest plate-voltage/ plate-eurrent ratio likely to be used at the maximum power level for which the coil is designed. Therefore in the majority of cases, the eapacitance shown by ligs. 6-9 and 6-17 will be greater than that for which the coil is designed and turns must be removed if a () of 12 or more is nerded. At 28 Mc ., and sometimes 14 Mc ., the value of capacitance shown by the chart for a
high plate-voltage/plate-current ratio may be lower than that attainable in practice with the components available. The design of manufactured coils usually takes this into consideration also and it may be found that values of capacitance greater than those shown (if stray capacitance is included) are required to tune these coils to the band.

Mandfactured coils are rated according to the plate-power input to the tube or tubes when the stage is loaded. Nince the circulating tank current is much preater when the amplifier is unloaded, care should be taken to oprate the amplifier conservatively when untoaded to prevent damage to the coil as a result of exeessive heating.

Tank roils should be mounted at least their diameter away from shiedding to prevent a marked loss in Q. Weept perhaps at 28 Me., it is not important that the eoil be mounted quite close to the tank condenser. Leads up to 6 or 8 inches are permissible. It is more important to kerp the tank condenser as well as other components out of the immediate field of the coil. For this reason, it is preferable to mount the eoil so that its axis is parallel to the condenser shaft, rither alongside the condenser or above it.

Plate-Blocking and By-Pass Condensers

lhate-blocking condensers should have low inductance; therefore condensers of the mica type are preforred. For freguencies between 3.5 and 30 Me., a capacitance of $0.001 \mu \mathrm{fd}$. is commonly used. The voltage rating should be 25 to so per eent above the plate-supply voltage.

Wherever their voltage rating will permit (500 volts), (0.00t- $\mu \mathrm{fd}$. disk ceramic eondensers should be used as by-passes, since, when applied correctly (see TVI (hapter), they are series resonant in the TV range and therefore are an important mensure in filtering power-supply leads. For higher voltages, use 0.001- ffd. mica by-passes.

R.F. Chokes

The r.f. choke in parallel plate feed must have high impedanee at the operating frequency to avoid loss. In multiband transmitters, if it is found that the choke heats excessively on one or more hands, the only solution is to use a different choke for these bands.

Fig. $6-30$ - The voltage rating of the krid tank condenser in A should be equal to the hiasing voltage plus about 20 per cent of the plate voltage, 'This same rating should he applied to each section of the split-stator condenser in 13.

A One-Tube Two-Band Transmitter for the Novice

Figs. (i-31, ($\mathfrak{i - 3 2}$, and (i-33) show the details of a low-power crystal-owillator transmitter covering the 3.5 - and $\overline{7}$-. Ice bands. It is complete with power supply, and an output circuit that will fred directly into a simple antonna without the need for an antematumer. The cireuit diagram appears in lig. ($;-32$. A $6 . \lambda\left(i^{-}\right.$pentode is used in an oscillator of the grid-plate teper. The output circuit, consisting of r_{10}, ('11 and L_{1}, is in the form of a pi-sedion untwork that will couple into a wire of random length. The cireuit is keved in the cathode circuit.
J_{1} is an ortal tuloe socket that is used as a combination crystal sorket and key jack. R_{1} is the grid leak. C_{1} and res are excitation-control condensers, $R P C_{1}$ is neressary to prevent shortriteniting ('2 for r.f. when the key is closed. Re is the sereen voltage-dropping resistor that reduces the voltage to the sereen. R RF' 2 is the plate feed choke. Dlate current is measured be the milliammeter, $. / A_{1} . V_{7}$ is the plate blocking eondenser, and $C_{3},{ }^{\prime}{ }_{3}$ and C_{6} are by-pass condensers.

The power supply is a simple one delivering about 350 volts. The smoothing filter, consisting of C_{8}, C_{9} and L_{2}, is of the condenser-input type. R_{3} is the bleder resistor. S_{1} turns the power supply on and off.

Construction

The parts are assembled on a $7 \times 12 \times 3$-inch aluminum chassis. In the plawement of parts in the transmitter, the power-supply section is kept in a line at the back of the chassis. The r.f. components are mounted toward the front of the chassis. As ran be seen in the photographs, thore are three octal sockets - one for the $\overline{5} \mathrm{l}^{2} 3$ rectifier, one for the GAl i^{-}oscillator, and the third which is used as a erystal socket and key jack.

With the exception of the three sorkets and
the meter, all the mounting holes can be made with an ordinary hand drill. For the socket holes, one can purchase, or borrow, a socket punch. The meter hole can be started with the sorket punch and then conlarged with a half-round or rattail file. The variable condensers are mounted direetly against the under side of the chassis. In placing them, be sure that their shafts extend far enough out from the front of the chassis to areommodate the tuning knobs. These condensers are of the broadeast-receiver replament typo and can be purchased locally, or from one of the large mailorder houses. They are usually listed as singlegang midget t.r.f. condensers and have a maximum caparitance of more than $300 \mu \mu$.

The power transformer is mounted in such a manner that the high-voltage leads and the 5 -volt rovelifier leads are brought out at a point clowest to the $5 \mathrm{Y}: 3$ rectifier socket. I three-terminal tio point is mounted close to the transformer 115volt leads to furnish terminals for the power switeh and transformer leads. . Iftor the sorekets, a.c. switch, moter, and feed-through bushings for holding L_{1} are all mounted in phace, the wiring can be started.

Wiring

Connect the two 11 -volt transformer primary leads (black), each to one of the tie points. Then also comet one of the power-cord wires to one of these 1 ic points, and one terminal of the power switeh, S_{1}, to the other. Connert the remaining side of S_{1}, and the remaining power-erd wire to the third tie point. Fasten one of the (6.3 -volt transformer leads (green) to a soldering lug under the tie-point mounting serew. The remaining 6.3volt transformer wire (green) is comected to lin 7 on the CA(i7 socket.

For the high-voltage wiring, the center-tap

Fig. 6.3I - 'lop view of the Dovice 2 -hand transmitter. L_{1} at the top right-hand side is shown in the 80-meter position. 'The shorting clip is clipped to the ferd-through boshing. The lead to the key is at slort piece of 300 orhm "lwin-lead whicls is terminated in a Millen 300-6hme plug. "This tyue of plug is the correct size for octal sochet l'ins 2 and 4.

Fig. 6-32-Cirenit diagram of the breinner's transmitter.

wire of the high-voltage secondary (red and yollow) is connected to ground, one of the highvoltage leads (red) is romented to Pin t of the 513 socket, whike the other red lead goes to lin ti. (he of the $\overline{5}$-volt reetitier-filament leads (vellow) is conmered to lin 8 of the 5 Y:3 sorket, and the other verlow lead is run to l'in 2. Also romereted to l'in 2 of the 5 Y:3 sooket is a lead from the choke, L_{2}, and the lead marked + from ('s. The other side of ('8, or the negrative side, is grounded. The remaining lead of L_{2}, the plus side of ('9, and a lead from R_{3}, are all run to a terminal on a tie point. The negrtive side of (' 9 and the other lead from R_{3} are grounded. This completes the power-supply wiring.

Pins 1,2 , and 3 of the 6Alif socket are ronneeted together with a bare wire and the wire run to ground. Also, one side of C_{2} must be grounded, so it can be comerted to one of these pins. The other side of $\left({ }_{2} 2\right.$ is run to Pin 5. A lead to $R F C_{1}$ is also commerted to l'in 5 . One side of C_{1}, one side of R_{1}, and a lead to Pin 8 of J_{1} are all soldered to Pin 4 of the GA(is socket. The ot her side of R_{1} is grounded, while the remaining side of C_{1} goes to Pin 5. Pins 4 and 6 of the crystab socket are also grounded. The remaining side of $R F C_{1}$ is connected to l 'in 2 of J_{1}. Also comnerted to l'in 2 is one side of C_{3}. The other side of ('3 is grounded.

The sereen resistor, R_{2}, is connerted between the $13+\left(+\right.$ terminal of $\left({ }_{g}\right)$ terminal and lin $(9$ of the (i.A(it socket. Aso connected to lin 6 is one side of C_{5}^{\prime}. The other side of C_{5} is grounded. A lead is connerted betwern the $13+$ terminal and the + side of the meter. 'The other terminal of the meter is commerted to one side of $R P C_{2}$. Also connerted to this point on $R F C_{2}$ is one side of ${ }^{\prime} 6$, the other side of C_{6} being grounded. The remaining side of $R F^{\prime} C_{2}$ is connerted to lin 8 of the bidd i^{7} socket and C_{7} is comented betwern this side of $R F\left({ }^{2} 2\right.$ and the stator section of C_{10} is also connerted to the nearest of the two feedthrough bushings holding L_{1}. The stator of Cu is commerted to the other feed-through bushing, and a lead is run from this bushing to the trans-
mitter output terminal mounted on the back side of the chassis. This should amplete all wiring below the chassis.

Coil

As shown in the parts list, L_{1} is a Barker \& Williamson stock No. 3016 coil with lis turns removed from ewh end. For 40 -meter operation, it is necessary to short out at large part of the coil. This is ancomplished by use of a short clip lead. One end of the lead is comerted along with one end of L_{1} to the output bushing (the one connerted to C_{11}). The other end of L_{1} is soldered to the input bushing. 'lo operate on 40 meters, it is neressary to attarh the erip to the 30th turn of L_{1}, from the input side. In order not to short out the 20 th and 31 st turns, they can be bent in toward the axis of the coil.

Testing

An 80-meter erystal between $37(0)$ and 3750 ke . will be needed for 80-meter operation. For 40 meter work, one between 3588 and 3598 kc . will be required. (The erystal frequency is doubled for T-Me. operation.)

In tuning up on 80 meters, insert the crystal in Pins $\mathbf{6}$ and 8 of the octal socket. The key leads are inserted in l'ins 2 and 4 . A 115 -volt 10 - or $15-$ watt light bulb will serve as an artificial load for testing purposes. Connect the bulb to the output of the rig ley soldering at piece of wire to the center terminal in the base of the bulb, and one to the serew shell portion. One of the wires is then connected to the output terminal of the transmitter and the other to the chassis. The 115 -volt a.c. switeh is turned on and the tubes allowed a minute or so to warm up. After the rig has been on for a minute, close the key. Tune the station receiver to the crystal frequency and the trinsmitter's signal should be heard. The input condenser, C_{10}, is slowly tuned through its range. Two things shoutd happen - the dummy load lamp shoukd light and the meter should show a dip, or lower reading, at the point where the bulb lights. Also, the signal should be louder at this point. Now
tune the output condenser, (11 , across its range and the bulb should brighten at one point, and the signal get louder in the reeriver. Also, the moter should show a greater reading than before. Switehing back and forth betwern the two condensers, always tune for maximum brilliane in the bull.

Antenna

An antenna may now be substituted for the lamp. The type of output cireuit used in the rig will load with almost any length of wire. However, it will load with a 30 -foot longth of wire on both 80 and 40 meters a great doal easier tham with some lengths, (one end of the wire should be connerted to the output terminal and the other end suspended on an insulator attached to a cored or rope slung from the highest available support. (See the antemat chapter for methods of bringing the wire in to the transmitter.)

Output Indicator

The transmitter can be tuned up by the meter. but sometimes a beginner may berome confused trying to interpert the readings he gets. I simple deviee to show that the antenna is taking power ronsists of two pieres of wire, about two feet long. and a 2 -volt 0.(Hi-ampere flashlight bult, wither No. 48 or 49. The bulh is commertet betwern the two pieces of wire, one lead to the tip of the bull, base and the other lead to the sholl of the base, making a four-foot length of wire with the bull in the center. One cond of this wire is comerted to the output terminal, while the ot her end is elipped on the antemms, three or four feet up. Serape the wise at this point if it is insulated. When the transmitter is turned on and the condensers are tumed, a point will be rached in the tuning where the bull will glow, or light up. Tune the condensers for maximum brillianere in the batb; this is an indication that maximum power isgoing into the antemat.

Forty-meter tune-up procedure is the same as

Shopping List for Novice Transmitter

$2{ }_{2}^{2}-\mu \mu$. mix't mondenser.
23: 10μ 5, mican condernser.
[$0.001-\mu \mathrm{f}$, disk erramic condenisers.
$\because 8-\mu f_{n} 50(0)-$ ohlt midere elentrolytio condensers. fi7.010)-ohan resistor. $1 / 2$ watt.
2:,000-ohm resistor. 1 watt.
0.1-megohm resistor, 2 watts
$\geq 21 / 2-m h$. r.f. whokes (National R100心 or Millen 31102).
\because variable comblowers (minter tylwe t.r.f. onomang broadcast romeiver radumoment).
70 turns of Nos. $\because 4$ wire. 1 -inch diam., $21 / 4$ inches long (B \& W W016 with 13 turns removed from (endi end).

Dower transformor: 3.70-0-3.30) volts r.m.s., 70 ma, ;
 TS-21R02).
3 octal sorkets.
single-pole single-throw togele switeh.
2 feed-through insulators (Niational TII IS),
Tijpjack (Amplanol type 7818).
Z threc-point torminal strips.
(0-i0) or 0-I(k) dier milliammetar (Sharite).
Aluminum chassis 3 by 7 by 12 inches.
difort of hook-up wire.
fi.16:7 tulve.
5j: twhe.
ti solder lugs.
$180-32 \times 1 / 2$-ind nuts, bolts, and washers.
Two tuming knohs to fit $1 / 4$-inch shaft
Crystal.
for 80 with the exeption of using the erreret (rystal, and shorting out the seetion of L_{1}. Remomber to listen on the receiver when tuning up the transmitter on 40 or 80 . When tuning up on f(), the signal shoud be definitely louder on to than on 80 meters, and viee versa for 80 -meter tunt-up.

When the oseillator is fully loaded and tumed to resonanee, the plate current should run betwren 20 and 30 mat., representing a powor input of 7 to 10 watts.
(This unit originally de:sribed in the November, 190:3, issue of asti.)

Fig. 6-3.3-Boltom view of the Nowice one-tube transmittar showing the wiring of parts. The power supply reomponentsare mounted along the loack side while the r,f. section runs along the front. 'The outiont Irad from the fredthrough bushing is clearly visible on the right-hand sille. The only operinges at the back are ihe output terminal and the 115-volt ace, luads.

A Sweep-Tube Transmitter for 3.5 and $7 \mathbf{M c}$.

Figs. 6-34 through 6.37 show a low-power transmitter using a single TV receiver sweep-tube trionde. It will deliver an output of about 10 watts on 80 or 40 meters. Power supply and antenna tuner are included.

As shown by Fig. 6-315, the oscillator utilizes one section of a 6BLa7. J_{1} is the keying jack, and

also serves as the oscillator metering jack. The plate tank, $C_{2} L_{1}$, eovers the frequency range of 3.75 to 9,2 Mc.

Plate voltage for the oscillator is held to approximately 200 volts by a serics-dropping resistor, R_{2}, and output from the stage is capaeitycoupled to the final through C_{6}.

The amplifier employs grid-leak hias, has a split-stator plate eircuit, and is neutralized by
means of caperitor $C_{7} . J_{2}$ is the metering jack and S_{1} is the plate-voltage on-off switch. With excitation available and with S_{1} open, a meter plugged into J_{2} will register amplifier grid current. When the switch is closed, the meter will indicate the combined plate and grid currents.

Output from the amplifier is link-coupled to

Fig, 6-34 - 'The sweep-tube transmitter is housed in a hinged cover metal cabinet. The knobs across the bottom of the 7×10-inch panel, from left to right, control the oseillator, amplifier and the antenna coupler. S_{1} is located directly above J_{1} and to the left of the panel indicator. \boldsymbol{S}_{2} is mounted above the amplifier metering jack, J_{2}.
the antenna tuner, $C_{13} L_{4}$. The tuner components have been wired to feed-through bushings and the antenna feeder terminals in a manner which permits adjustment of the $L C$ ratio for either series or parallel tuning. An accompanying ehart lists the jumper connertions which should be used for setting u_{p}, the tuner circuit.

The power supply employs a condenser-input filter and delivers approximately 330 volts when

Fig. 6-3.3 - This interior view shows the antenna coil centered at the left edge of the $2 \times \underset{\sim}{2} \times$ 4 -inch ahminum chassis, f"ive Geed-through bushings for the antenna circuit are located to the right of the coil and the feeder terminals are at the rear of the hase. Li, the oseillator tube, and the cristal are at the front right-hand section of the ehassis and the 5y3C'l'is on the *enter line just to the lefi of the power transformer. A "后inch hole, equipped with a ruhber srommet, to the front of T_{1}, provides Itrough-chassis elearance for a neutralizing tool. The a.c. input connmetor is loceted on the rear wall of the chassis.

loaded by the transmitter. S_{2} is the on-off switeh for the supply.

Construction

Three photographs of the transmitter show how the components are laid out on the chassis and the panel. The jacks, switches, and the panel indicator are the only parts actually mounted on the panel of the Bud type C-993 cabinet. Tuning capacitors for the oscillator and the amplifier are mounted on the front wall of the chassis and C_{13} of the coupler is mounted on small pillars at the right side (rear view) of the base. C C_{13} must be insulated from ground. An insulated shaft coupling between the capacitor and a panel bearing assembly are provided. Quarter-inch metal pillars space the panel and base at cither end of the unit. Threceeighths-inch holes are drilled in the panel for the tuning shafts of the three capacitors, and $11 / 8$-inch openings are punched in the front wall of the chassis to provide clearance for the panel-mounted jacks.

No. 16 timned is used for the r.f. wiring, and Belden shielded wire No. 8885 is used for the leads running to the switrhes and the pilot lamp. The strip of flashing copper that supports the neutralizing condenser, C_{7}, is $1 / 2$-inch wide at one end and tapers down to $1 / 8$ inch at the tube socket end. C_{7} is mounted in a $1 / 4$-inch hole, drilled at the wide end of the strip.

The three jumpers for the antenna circuit are made with ordinary hook-up wire and Millen type 36021 grid connertors. The holes in the connectors must be enlarged by reaming so that they will fit over the small National type Tl'l3 polystyrene bushings that serve as Terminals 1 through 5 of Fig. 6-36.

Testing

A 15-watt lamp bulh equipped with short wire leads, a $0-100-\mathrm{ma}$. meter, a key and a voltmeter should be available for testing the transmitter. The first test is made with the key plugged into J_{1}, with S_{1} set at the open position and with the

Fig. 6.36-Circuit of the swepp-tabe transmitter. 'The oseillator and amplifier seetions of the circuit are operated at the erystal frequency.
$\mathrm{C}_{1}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{8}, \mathrm{C}_{12}-0.005-\mu \mathrm{fd}$. disk ceramic.

$\left.\mathrm{C}_{5}, \mathrm{C}_{10}, \mathrm{C}_{\mathrm{H}}-0.0 \mathrm{k}\right) 1-\mu \mathrm{fd}$. dish ceramic.
$\mathrm{C}_{B}-15-\mu \mu \mathrm{fd}$. mica or ceramic.
$\mathrm{C}_{7}-1-8-\mu \mu \mathrm{fd}$. whbular triminer (Erie 532-10).
$\mathrm{C}_{0}, \mathrm{C}_{13}-100-\mu \mu \mathrm{fd}$. per-section variathe (Bud L.C:-166.3)
$\mathrm{C}_{44}, \mathrm{C}_{15}-8-\mu \mathrm{fd}$. 450 -volt electrolytic (Sprague TVA. 120.1).
$\mathrm{R}_{1}-68,000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{2}-10,000$ ohms, 5 watts.
R_{3} - 10,000 ohms, $1 / 2$ watt.
$13_{1}-50,0(10)$ olums, 10 watts.
$\mathrm{L}_{1}-33^{\circ}$ turns No. $24,3 / 4$-inch diam., 11_{2} inches long (13 \& W Miniductor No. 3012).
$\mathrm{L}_{2}-3.5 \mathrm{Mc} .-40 \mathrm{Hh}^{-46}$ turns No. 21 , $11 / 4$-inch diam., $11 / 2$ inches long, center-tapped (13 \& W 80.1(1).

7 Mc - 14 нh. - 26 turns No. 22, $11 / 4$-inch diam., $11 / 2$ inches long, center-tapped (B \& 40N(CL).
$\mathrm{L}_{3}-3.5$ and 7 Mc - Fach 3 turns No. 18 , wound with turns spaced wire diam., over center of L_{22}.
$\mathrm{L}_{4}-3.5$ Mc. - 37 нh. - 38 turns No. 16 , $13 / 4$-ineh diam., 27 íc inches long. Wonndin 2 sections with 316 -inch space at center for $L_{5}(13$ \& W 80, \ I $)$. 7 Mc. - $12.8 \mu \mathrm{~h}$. - 22 turns No. $16,13 / 4$-inch diam., 25 í inches long. 2 sections with 3 fo-inch space at center for $L_{5}(\mathbb{B}$ W 40J VI).
$L_{5}-3.5$ and 7 Mc. - Wach 3 turns No. 16 , $1 \frac{3}{4}$-inch diam, turns spaced wire diam.
IA - 8-henry $\mathbf{6 5}$-ma. filter choke (Stancor C1355).
1_{1} - 6.3-volt panel-indicator assembly.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Closed-circuit jachs.
$\mathbb{R P C}, \mathrm{RFC}-1-m h$. .f. choke (Na ational $\mathrm{R}-50$).
RF($i_{3}-2,5-m h$. r.f. choke (National JR-100S).
$\mathrm{S}_{1}, \mathrm{~S}_{2}$-S.p.s.t. togyle switch.
T_{1} - Power tranaformer: 310 volta r.m.s. each side of center tap, 30 ma.; 5 volts, 2 amp.; 6.3 volts, 2.5 amp. (Stancor ${ }^{1} \mathrm{CB} 108$).

Antenna-Coupler Connection Chart			
	Jumper Connertions		
Tuning	Lon-C	Med.-C	High-C
I'arallel	$\begin{gathered} 1-5 \\ 2-3 \end{gathered}$	$\begin{aligned} & 1-5 \\ & 3-4 \end{aligned}$	$\begin{aligned} & 1-5 \\ & 2-5 \\ & 3-4 \end{aligned}$
Serins	1-2	1-4	$\begin{aligned} & 1-4 \\ & 2-5 \end{aligned}$

voltmeter connected across R_{4}. The supply output should exoed 400 volts when S_{2} is closed.

Next, turn off the supply and insert a $3.5-$-11 e erystal in the holder and a $3.5-$ Me. coil in the amplifier. The moter should be plugged into J_{2} and S_{1} must be open for the time being. Now, turn on the power, close the key and tume the oscillator plate capacitor, C_{2}, for an amplifior grid current of approximately 10 ma. If the erystal kicks out as the maximum capacitance of ('2 is reached, the plate tank is tuned too close to the erystal froquency and it is necessary to retume to the high frequency side of resonance. Make certain that the oscillator is not tuned for maximam output inasmuch as this results in exeessive erystal current. If the meter is transferred to.$/{ }_{1}$, it should show a cathode current of 30 ma .

The next step is that of neutralizing the amplifier, Start with (C_{7} set for minimum capacitance (slug all the way out) and then increase the caparitance until the amplifier plate condenser, C'g, cim be swung through resonance without affecting the amplifier grid current. S_{1} must be open during this adjustment.

If the lamp is to be used as the test load, conneet it to the antemna terminals and insert the T-Mr. coil in the coupler. Start the loading adjustments with very loose coupling between L_{4} and L_{5} and with the oscillator adjusted for an amplifier grid current of 5 or 6 ma . Now, close S_{1} and tune C_{9} for resonance. The amplifier rathode current should be approximately 25 ma. with the stage lightly loaded and may be in(reased to 55 or 60 ma. by increasing the coupling between L_{4} and L_{5} and by adjustment of C_{13}. As the loading is increased, make certain that the amplifier and the funcr are kept at resonance by retuning both ('9 and ('13.

With the amplifier fully loaded, the power supply output voltage will drop to approximately 325 volts and, as a result, the rathode current for the oscillator section of the G13L.7 will be lower than that recorded earlier. About 15 ma. is correct for the oscillator and this current may be cherked be inserting the moter plug into. J_{1}. Of course, with the amplifier in operation, it is neressary to subtrant the amplifier cathode current from the reading registered at J_{1} in order to determine the true oscillator drain.
The set-up for testing the transmitter at 7 Me. is identieal to that used at the lower frequency exeept for the antemna eoupler connections, it 7 Me., the bulb loads best with the coupler eircuit adjusted for low-(' operation. One precaution must be observed with the 7 -Mc. arystal in use. Aluags start the oscillator adjustmont with the tank capacitor, C' 2 , set for minimum capacitance and then tune for an amplifier grid current of not more than 5 or 6 ma .

For adjustment of the coupler for a particular antenna, see the transmission-line chapter.
(Original description, (2s'T', April, 1953.)

Fig. 6-37-13ottom view showing L_{1} and $R \mathrm{FC}_{2}$ mounted on tie-jomint strips to the left and the rear of the 6131.7 tulne socket, res spertively, $R F^{\prime}\left(\frac{1}{2}\right.$ is parallel with the left wall of the chassis and RFCostands up to the left of $C_{9} . R_{2}$ and R_{4} are in frost of I_{6} and the filter capacitors at the rear of the ehassis. The neutralizing eapacitor, Con is supported by the rear stator terminal of Ca and by a strip of flashing copper which also serves as the ea-pacitor-to-grid lead. Holes, $11 / 8$ inches in diameter, punched in the chassis just below the eenters of C_{9} and C.13, provide clearance for the coil-socket wiring.

A Beginner's 35-Watt Transmitter

Figs. 6 -38 through (i-40) illustrate a 35 -watt two-stage tranmitter for the 10 - and 80 -meter bands. The neressary power supply is included. The circuit is shown in Fig, 6-38. A 6 Al (7 lierce aystal oscillator operating at 3.5 Mc. drives a 6idid, either as a straight amplifier on 80, or as a doubler to 40 meters. $/ R F C_{1}$ is resonant at about 5 Mc . - sufliciently elose to either band to provide the required drive to the amplifier, yet far enough removed to prevent oscillation in the GIft stage. The output tank circuit, ('9 L_{1}, has sufficient tuning range to include both bands without changing coils; the socket and plug-in form are merely a convenient meath of mounting the roil. The output link is designed to feed an antenna tuner through a coax line. Both stages have parallel plate feed, and are keved simultaneously in the cathode cireuit. $/$ is a dial lamp, used here as a tuning indicator. If desired, it may be replared with a 150 -ma. d.e. milliammeter, either mounted on a bracket on top of the chassis, or set in the front edge.

With the components sperified, the power supply should deliver a voltage of 350 or more under load. A rondenser-input filter is used. (Although a metal-can dual filter condenser, mounted on top of the chassis, is shown, card-
board tubular condensers, mounted under the chassis may be substituted if desired.)

Wiring

Details of construction are covered in the photographs and their captions.

The power supply is wired first, using insulated tie points as junctions wherever a transformer of filter-condenser will not conveniently reach a desired terminal. (All power wiring should be kept close against the chassis, while r.f. wiring should be spared well away from the chassis.) The heaters of the 6A(i7 and 6 L 6 are wired next.

Pin 8 of the 6 L .6 and Pin 5 of the $6 . \mathrm{AC}_{\mathrm{i}} 7$ are wired together and C_{2} and C_{6} are installed. A lead is then run from Pin 5 of the 6AG7 to the key jack and C_{14} is installed across the key jack, kereping the leads of C_{14} as short as possible. This completes the eathode keying cireuit.

The square condenser appearing over the 6Al i^{-7} socket is C_{3} and is connected between Pin 6 and ground. R_{2}, the sereen dropping resistor, is connerted from l'in 6 to the tie point letween the tubes. The $13+$ lead is run to this tie point, and both R_{2} and R_{4} are tied to it. $R P^{\prime} C_{1}$ goes from lin 8 of the $6: 16$ to the tie point of the $13+$ lead. The condenser below $R F^{\prime} C_{2}^{\prime}$ is ('s - it is con-

Fig. 6-38-Cirenit diagram of the Novice 35-watt transmitter
 ceramit (Sprague).
$\mathrm{C}_{3}, \mathrm{C}_{4}-10(\mathrm{f}-\mu \mu \mathrm{fl}$. mica.
(: $8-235-\mu \mu \mathrm{fd}$. variable (Bnd MC-1859).
Cio, $\mathrm{C}_{11}-10$ - fd . 450 -volt electroly tif (see text).
$\mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14}-0.001-\mu \mathrm{fl}$. 500 -volt dish-type ceramic
(Spragne) (see text).
$\mathrm{k}_{1}-56,000$ ohms, $1 / 2$ watt.
$\mathrm{K}_{2}-22,000$ olims, 1 watt.
$\mathrm{R}_{3}-18,000$ ohms, 1 watt.
$\mathrm{K}_{4}-18,000$ ohms, I watt.
$\mathrm{R}_{5}-50,000$ ohms, 10 watts.
$\mathrm{L}_{1}-3.5-7.0$ Me. - 1.5 turns No. 18 enamel, $11 / 2$-inch diam., close-wound (National XlR-4 coil form).

I, 2 - 5 -turn link Ma. 18 cnamel, close-wound below tank coil lot.
1.3-Filter chohe, 10.5 henrys, $110 \mathrm{ma}$.220 ohms (Merit C-2993).
I_{1} - No. 46 pilot-lamp bulb, 6-8 volts, 250 ma., blue bead.
J_{1} - Closed-circuit jack.
J_{2} - Coas conneetor, chasnis-mounting type.

KF(:2-2.5-mh. r.f. chohe (National Kl(O)-S).
S_{1}-S.p.s.t. togyle switch.
T_{1} - Power transformer, 3.0) volts r.m.s. each side of center, 120 ma.: 6.3 volts, 4.7 amp.; 5 volts, 3 amp. (Merit P-29is.3).

Fig. 6.39-The aluminum chassis is $7 \times 12 \times 3$ inches. Power-sipply componemts are along the rear edge, whild the crystal sochet, 6AC:, 6l.6, / and the shimbed coil are in line at the fromt. (entered along the front colpe are the kry jack, power switeh and the single tuning eontrol. All sochets are summounted. The rectifier and the eoil tahe t-prong somekets; the two thles take octal sochcts. The coil shield is IC : A type 1.249. 'IM sumatitution of an toright transformer will avoid rutting a large hole in the chassis.

nowed from l'in 3 of the didit to a tie point and then to the stator of 'sy. The link output termiatals on the eroil socket are comered to the emas comereder with a short longth of coas cable. The v.h.f. filter condensers, (12 and C_{13}, are at the power conmector with leads as short as posible.

Testing

The tramsmiter may be tested by connecting a 2 -watt electrie bulb betwern the ement comtant of the coan comeretor and chassis. When the power is furned on, and the key elosed, the indicator lamp, I_{1}, should light up Brightly. Then,
starting at maximum eapacitance, slowly adjust the tuning condenser, toward minimum raparitaner until the indicator lapup dims. This is vesomane at 80 moters, and the $2 \overline{0}$-watt lamp shonde light up as the indicator lamp dims. Further readjustment of the tuning condenser toward mitumum caparitaner shoahl show a second resonance point, this time at 10 meters, and the 25-watt lamp should light again.

Information on the eonstruction and adjustment of antemna couplers will be found in the chapter on tramemission lines. The bld may be loaded up to a maximum of 100 mat plate current.
 tened against the rear of the ehaswis. The chohe to the rear of the puwer switeh is $R F C_{2}$. The tuning condenser is in the uprer riaht.

A Compact 75-Watt 6-Band Transmitter

Fig. 6-11 - The complete 75-watt 6-band tramsmitter fits into an $8 \times 14 \times 8$-inch cahinet. Along the bottom. from left to right, are the two power switehes (S_{5} and S_{6}), the hey jack (J_{3}), the "oper-ate-test" switch (S_{4}) and the ervstal sochet. Across the centrer are the meter switeln $\left(S_{3}\right)$, theamplifier tank control ((4) and the oseillator tuning rondenser (C'b). 'I'o the right of the meter at the top are the loading eondenser (C_{10}) and the oscillator handswitch (s_{2}).

Figs. 6-11 through 6-47 show the circuit and photographs of a two-stage transmitter delivering an r.f. outpat of 50 watts on all hands from 3.5 to 28 Me., inclusive. It is complete with power supply and a versatile metering system on a $11 \times 7 \times 2$-inch chassis. Provision is mate for connection of a VFO, a plate-and-screen modulator and also an external emergency power supple.

As the circuit diagram of Jig. 6-44 shows, a 5763 is used in a grid-plate oscillator circuit. ('2 is a micor trimmer that permits adjustment of oscillator excitation for proper keying and drive to the amplifier. S_{1} grounds the eathode through C_{3} so that the 56.3 con be driven from a VFO through the erystal socket. L_{1} is tapped to cover
3.5 through 28 Me. with a switch, S_{2}. The oscillator output with either 3.5- or $\overline{-}$-Me, erystabs, at either fundamental or second harmonic, is nore than adequate for proper drive to the 6146 amplifice. Sufficient drive is also obtained quadrupling from 3.5-Mc, erystals to 14 Me , or tripling to 21 Me. from 7 -Me, crystals. Quadrupling from $\overline{\mathrm{T}}$-Mc. crystals, however, does not supply abequate exciation, so frequency is doubled in the output stige for 27 - or $28-\mathrm{Me}$. operation, undess !-Me. crystals for tripling, or 23-Me, erystals, are available.
Plug-in coils are used in the output tank cirenit. Since both stages are parallel-fed in the plate circait, the power supply need not be trimed off while changing coils. The amplifier is

Fig, 6-42- 'The oscillator is in the $2 \times 4 \times$ 4 -inch lox to the left, with the crystal-UF) switeh and $5 \mathbf{5 C} 4 \mathrm{Cim}$ mediately lechind. The amplifier is in the $4 x$ 5×6-inch hox. C_{0} (bottom) and c_{10} (top) are monnted akainst the right-hand side of the bor. 'The ciril soehet is to the rear surrounded b, the 1 . turn nentralizing link. C_{8}, RFC4 and L_{2} are immediately in front of the coil sochet. To the right are the two 6 X 5 O'Ts, the power transformer and Ls_{s}. The pin jacks toward the front are metering jacks. The holes at the rear are for ventilation.

Fig. 6-4.3 - Inside of the oscillator box from the amplifier side. RF' C_{i} and C_{i} are in the foregronnd in this view, IAads from C_{7} and h_{5} are preent to pass through to the amplifier compartment.
neut ralized by means of a simple inductive link system (L_{5} and $L_{f_{6}}$), L_{2} is a v.h.f. parasitic suppressor.
both stages are keyed simultaneously in the rathole rircuit for break-in operation, the key being plugged in at J_{7}.

Power Supply

An economical power supply delivering voltages for both stages is included on the chassis. A voltage of
 600 (under load) for the final amplifier is obtained from an inexpensive broadeast replacement transformer through the use of a

COIL DATA				
Oseillator Coil. L1: Wound with No. 26 enameled wire on 1 -inch diameter form (Millen 45000) in four sections. 1st section: 20 turns close-wound 2nd section: 10 turns close-wound 3rd sertion: 5 turns close-wound 4th section: 4 turns spaced wire diameter				
Taps takell off between sections. Spacing between sections approximately $1 / 8$ inch. Fourth section (21-28 Mc.) turn sparing should be adjusted to cover 30 Mc . with oscillator condenser, C6, near minimum caparitance.				
A mplifier coils, $I_{\text {s }} L_{4}$:				
Band	Wire Size	Turns	Turns 'inch	Space Between Coils
$3.5 \mathrm{Mc} ._{L_{4}}^{L_{\mathrm{a}}}$	22 enam. 22 enam.	$\begin{array}{r} -15 \\ 20 \end{array}$	$\begin{gathered} 20 \\ \text { close-wound } \end{gathered}$	1/8 in.
	18 enam. 18 enam.	$\begin{array}{r} 10 \\ 8 \end{array}$	10 close-wound	$3 / 16 \mathrm{in}$,
$14 \mathrm{Mc}. \mathrm{~L}_{4}$	18 enam. 18 enam.	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	10 10	0.2 in.
$21-28{ }^{L_{3}}$	18 enam.	3	10	0.2 in.
L_{4}	18 enam.	3	10	
Coils wound on $[1 / 2$-inch diameter forms (National XR-4) with L_{3} at bottom and plate terminal down. See Fig. 6-44 for connections in coil form and socket.				

bridge rectifier circuit. The center tap of this sustem provides a voltage of 230 for operating the oscillator and the screen of the amplifier, the latter through the dropping resistor, R_{9}. The chokr, L_{8}, in the high-voitage filtor, it should the moted, is connected in the negative side of the supply. When using the built-in supply, a plug with the pins shorted, as indirated by the doted lines, shoutd he inserted in $/ /_{s}$. When using an emorgeney supply, appropriate voltages can be introluced through J_{8} after the shorting plug has been removed.

Metering Circuits

A 1-ma, milliammeter, M_{1}, is used for measuring the essential currents and voltages. It is ronnereted as a voltmeter having a full-seale range of 5 volts by adding R_{4} in series. Current is determined hy measuring the voltage drop across resistors of prozer value inserted in sories with the circuits in which current is to be measured. This permits the use of standard resistors as current shunts. The ranges selected here are as follows: oscillator eathode current, 50 ma ; amplifier grid current, 10 ma.; amplifier sereen current, 20 ma.; amplifier cathode current, 200 ma . In addition, three tip jacks mounted on the chassis can be selected by a test prod connected to one position on the meter switch. One, J_{5}, is connected to the power-supply low-voltage terminal through R_{13} which is a multiplier giving a full-scale meter reading of 300 volts. A second tip jack, J_{6}, is similarly connected to the high-voltage terminal through a 1000 -volt maltiplier, R_{14}. The third tip jack, J_{4}, connects to another similar jack, J_{3}, at the rear of the chassis so that the meter can be used for external measurenents, such as an
indieator for an s.w.r. bridge or in an r.f. voltmeter for cheeking power output.

Test-Operate Switch

A useful adjunct is the "test-operate" switch, S_{4}. In the "operate" position, the amplifier screen is connected to its normal supply. In the "test" position, the sereen is grounded. This limits the plate current to about 15 or 20 ma . which results in just about the right amount of power to operate an s.w.r. bridge. If the 6146 is to be plate-sereen modulated, the screen voltage must be obtained from the high-voltage tap through a dropping resistor, rather than from the
low-voltage tap. In this case, the cathode should never be opened while the power supply is on, because the voltage ratings of both the tube screen and the ceramic by-pass condensers will be greatly exceeded. $S_{4 A}$ guards against this by grounding the cathode through an auxiliary contare of J_{7} when the key is removed. Then S_{4} beromes the on-off switch, opening both eathode circuits (through $S_{4, ~}$) and groumding the amplifier screen (through S_{418}) when the switch is in the "test" position. To turn the oscillator on and close the amplifier cathode circuit for "test" use, a closed key, or shorted plug, must be inserted in the closed-circuit jack, J_{7}.

Fis, e-15 - The bottom plate of the amplifier box is fastened permanently (1) the chassis and the amplifier partially assembled before fastening the hox in place. KFC_{3} is in the foreground. RFC_{4} standing at the rear. The coil socket at the right is spaced up $13 / 8$ inches, the tube socket $3 / 4$ inch. Notice the "zero-length" leads to the disk eeramic condensers.

Neutralizing Coils

The neutralizing coil, L_{5}, is made simply by drilling two small holes diametrically opposite (lose to the outer (15 -meter) end of the form. A piece of rather stiff wire is threaded through the holes and then the wire inside the form is pressed into a half-turn shape with the finger. Comections are made to earh end outside the form and the half-turn may he rotated in the holes to adjust neutralization. L_{6} is a single turn of No. 12 wire, approximately $17 / 8$ inches in diameter, supported at one end under the serew holding the socket, and at the other end by a tie-point mounted on the same serew.

Adjustment

With the key open, the supply voltage at the high tap should measure about 800 volts and 300 at the low tap. If the $50+\mathrm{G}$ is removed from its socket, the voltage at the low tap will be ahout 400.

With the switeh scet in the "test" position, the oscillator tuning should be adjusted for maximum amplifier grid current. A reading of 4 ma . indicates adequate drive, although on some bands it may run as high as 10 ma . If the minimum read-

[^2]ing of 4 ma . is not obtained, adjust C_{2}. Up to a certain point, increasing this capacitance will increase the oscillator output, but too much feedback may result in chirpy keying. C_{2} should be adjusted for the best compromise between adequate drive and good keying characteristies. The oscillator cathode current should run 25 to 30 ma . on all bands.

Neutralization is adjusted by moving the half turn L_{5} eloser to or farther away from the osrillator tank coil. With S_{4} in the "test" position, the oscillator should he adjusted for maximum amplitier grid current on 21 Me , and the amplifier plate tank circuit tuned to resonance. If the amplifier is not neutralized, there will be a noticeable kick in grid current as the plate tank condenser is swung through resonance. The neutralizing half turn should be adjusted carcfully for minimuni change in grid current. The sann procedure should be followed for 14 Me. If the neutralizing must be readjusted, the half turn should be set for the best average result for tho two bands. The amplifier should then be chereked for oseillation with S_{4} in the "oprrate" position, The amplifier plate current at resonance should swing the meter off scale when the key is closed.
$R_{14}-1$ meyohm, 1 watt.
L_{1} - See coil data.
1:2-I turns No. 16, 復-inch diam., 3 in inch long.
!2, 14 - Sec coil data.
1.:-Filter choke, 40 ma., 300 ohms, approximately.
L.s - 10.5 henrys, 110 ma., 250 ,hms.
F_{1} - Vise, 2 amp .
. 1_{1} - (rystal sochet.
I_{2} - Coax conne tor. ©hasismounting type.
$\mathrm{I}_{3}, \mathrm{~J}_{4}$. I_{5}, If - Itip Jacho. insalated type (Ampheno 78.1P).

1:-Closed-cireuit ’phore jack.
Js - Ortal socket.
$\left.\mathbf{h}_{1}-1\right)_{-1}$ der milliammeter.
p_{1} - "Phone tip teat plug.
$\mathrm{S}_{1}, \mathrm{~S}_{5} . \mathrm{S}_{6}$ - S.p.s.t. togyle.
s_{2} - Single-pole $\overline{\mathrm{S}}$-position ceramie wafer (Centralal) 2.500 or 2501).
S_{3} - 2-pole 5 -position bakelite wafer, non-storting type (Centralal, type 140.5).
s_{4} - I).p.d.t. togkle.
 2500).
$\mathrm{KFC}_{4}-2.5$ mh., 250 ma. (Milken 31102).
T_{1} - Filament transformer. 0.3 v., 1.2 amp.
T_{2} - Power transformer, 301 v , earh side c.1., 120 ma.; 5 v., 3 amp.: 6.3 v., 3 amp . or more.
Note: Manufacturcr's part mumbers given above are to induate size and style. Similar components are generally a vailable from a mumber of different suppliers.

Fig. 6-46 - Looking into the ascillator compartment. La and S_{2} are at the top with C_{8} telow, KPC_{2} and (it are supported on a tic point in the foregremand. K_{1}, C_{2} and C_{4} are to the rear of the tube. C_{5} is soldered betwern Cis and the tube sochet. RPCis and Ci7 are hidden by the tube and tunink condenser. 'the eover of the amplifier is hinged at the renter for changing coils. The lateh at the rear engages the rear lip of the box so that the lid is drawn down tixht. Notice the numerous ventilating holes.

Do not close the key more than momentarily for this cheek.
The output coupling system is dosigned to work into a flat 50 - or $\overline{5}$-ohm line, either to an antenna or to an antenna iuner. The amplifier may be loaded to a cathode curront of 140 Nat. on all hands exeept 28 Mc. Under load, the amplifier grid current should be adjusted to 2 to 2.5 ma. by detuning the oscillator tank circuit. The serem current under these eonditions should run between 10 and 12 ma . At 28 Me., with the final
amplifier doubling, the grid current should be adjusted to the maximum possible (5 to 6 ma. mader load) and the cathode current limited to about 120 mat. Loading (an be adjusted by C'10 which tumes the link cireuit.

In fringe areas, a low-pass filtor may be roruired for 21- and 28-Me, operation. On lower frequencies, or in the presence of good TV signals, the use of a conventional antema tumer will ustally Ir adequate to suppress TVI.
(Originally described in QST', December 1952.)

Fig. 6.f7-Battom view of the G-fand transmitter. 'The highvoltame filter condens. ers, (30 and C.31, and their equalizing resis. tors, R_{11} and R_{12}, are at the rear of the chassis. H_{1} and H_{0} are (t) the loft, with C_{29} and R_{10} alower. J is in the extreme rear left-hand corner, It top center. supported on insulated tie points, l. tor., are Ro. R_{2} and R_{3}. In the upper left-hand eorner are $K_{4} R_{13}$ and K_{14} and F_{1}. $R F_{1}, C_{1}$ and Cos are to the right. Shielled wiring and dish-ceramic condensers are applied ancording to method deseribed in the chapter on TWI.

A Completely-Shielded 90-Watt Transmitter or Exciter

The transmitter shown in Figs. 6-48 through (0-52 is designed for the reduction of v.h.f. harmonic radiation without reguiring special construction for shiedling purposes. It uses a standard 3 by 4 by 17 inch chassis as the main endosure. The plug-in exils are provided with individual shields using 3 -inch diameter removable shicld cans that also are standard items.
The final amplifier is a 6146 , driven by a $6 A(17$ frequency multiplier that is driven in turn by a 6.Aci7 rerstal oscillator-multiplier. Provision is made for driving the latter tube from an external TFO. The power output is approximately fio watts on all hands from 3.5 through 28 Me. at the 90 -watt imput c.w. rating of the 6146 . With plate modulation the 67 -watt input rating gives a carrier output of close to 50 watts.

Oscillator Circuit

The erestal oscillator uses the grid-plate circuit and is intended for use with either 3.5- or 7 Me. erystals. Its plate cirenit, $L_{1} C_{4}$ in Fig. (6-49, covers the range from 7 to 14.5 Mc . and L_{1} is wired permanently in the circuit. When using 7-Mc. erestals C_{4} is tuned toward its highcaparity end when 7 -Me. output is required for the following stage, and near the low-caparity end when the buffer is driven on 14 Me. With 3.5-Me. crystals C_{4} is set near maximum capacity for 7-Me. excitation of the buffer, and at or below midscale for $3 . \bar{n}-1$ - ex. excitation. The tuning in the latter casce eorresponds to the setting that gives minimum harmonic output from the oscillator; at 3.5 Mc . enough fundamental voltage gets through to the buffer grid to give it adequate drive. Coil changing in the oscillator circuit is avoided by this method.

For SFO input the feed-back condenser, C_{2}, is shorted to ground for r.f. by S_{1}. The erystal should be removed from its socket when using the VFO. A coaxial connector is used for the VFO cirruit, and the VFO should be of the type that includes the length of coax as part of its tuned output circuit. The VFO output can be on either $3 . \overline{5}$ or 7 Mc ., depending on the final output froquency and the ehoice of method of operation, as described later.

Fig. 6-18 - A compact and completely shichled low-power transmitter using a 6110 as the final amplifier. It can be used at an input of 90 watts on c.w. or 67 watts for plate-modnated 'phone. 'l'he unit is mounted on a $31 / 2$-inch rack panel.

Frequency Multiplier

The frequency multiplier or buffer stage is coupled to the final amplifier grid by a pin network. This type of circuit permits using a relatively large fixed capacitance, C9, directly from grid to ground in the amplifier circuit and is highly advantageous in preventing v.h.f. harmonics gencrated in the grid circuit from developing an appreciable voltage betwere grid and ground. This not only prevents amplification of such harmonies in the plate cirenit but also helps keep harmonic currents from flowing in the d.c. grid returis lead.
C_{9} is also useful in stabilizing the final amplifier to prevent selforscillation at the operating frecuence. The larger the caparitance of C_{9} in comparison with the capacitance in use at $C^{7} 7$, the greater the impedance step-down betwern the buffer plate and the amplificr grid, thus the buffer plate resistance is reflected as a comparatively low resistance at the grid of the amplifier. This, together with the fact that any conerge fed back from the amplifier plate circuit through the tube's grid-plate caparitance cannot develop much feed-hack voltage arross the large fixed caparitance botweren grid and cathode, effectively prevents self-oscillation and avoids the necessity for neutralization of the amplifier. The optimum circuit values for this purpose are given in Fig. 6-49 and the buffer coil table.

On 3.5 Mre additional capaeitance, C_{8}, is connected in parallel with C_{9} to provide proper cirruit operation. On all frequencies the buffer tuning condenser, C_{7}, is near minimum capacity at the proper operating setting. A $50 \mu \mu \mathrm{fl}$. condenser cam be used instrad of the one specefied in Fig. 6-19, if desired.
L_{2} and L_{3} are small coils in the buffer grid and plate circuits to prevent v.h.f. parasitic oscillations in the buffer stage.

Amplifier Output Circuit

The amplifier output 'irevit also is a pi network, designed sperifically for working into essentially resistive loads between 50 and 75 ohms. It is therffore suitable for working into properly terminated "oaxial cable of the usual impedane values. In eases where the antema is fed by types of line other than coax, an antenna matehing network or antemba tuner of the coascoupled type described in the chapter on transmission lines should be used. This permits operating the coax link at a low standing-wave ratio and provides the proper load for the 6146 amplifier circuit.
The amplifier tank condenser, C_{12}, is a split-statur type connereted to the coil socket in such a way that only one section is used on all hands except 3.5 Mc., where the seecond section is connected in by means of a jumper in the eoil form.

Fig. 6-f9 - Cirruit diagram of the tranmmitter.
C_{1} Cz. Cs. C6 - 170 . $\mu \mu \mathrm{fI}$. mica.
($2_{2}-\mathrm{I} .00 \cdot \mu \mu \mathrm{fl}$. mica.
($4, \mathrm{C},-140-\mu \mu \mathrm{fl}$, variable (Millen 10110)
(in, C_{0} - $11100-\mu \mu \mathrm{fl}$. silver miea.
(in - 0.001- f fid. mica, 1200-solt working.
(ill - 470- $\mu \mu \mathrm{fd}$. mica, 1200 -volt working.
C_{12} - $100-\mu \mu \mathrm{fl}$. prer section variable, lowo-volt spacing (Sational 'TMS-M001)).
C 13 - 325- μ fld. variable (Millen 19325).
(ilt-170- $-\mu_{\mu} \mathrm{fd}$. silver mica.
Cis to Cis2, inc. - $0.001-\mu \mathrm{ful}$, ceramic, midget size.
$11_{1} .1_{3}-47.000$ ohmes. $1 / 2$-watt.
$\mathrm{K}_{2}-47,000$ ohms, 1 watt.
$\mathrm{K}_{4}-15,000$ ohms, I watt.
$\mathrm{R}_{\mathrm{s}}-2 \overline{\mathrm{z}}, 000$ ohms. I watt.
Ro- 1.30 ohms, $1 / 2$ watt.
$18-2.2$ ohms (2. shunt for $0-25$ milliammeter).
L_{4} in the amplifier plate lead is for the purpose of preventing v.h.f. parasitie oseillation in the amplifier.

Other Circuit Details

Cathode currents of all three tubes can be measured by means of the meter switching arrangement shown in Fig. 6-19. The amplifier grid current also can be measured. The () -25 milliampere scale is used directly for measuring the oscillator cathode current and amplifier grid current, the meter being shunted by $100-0 / \mathrm{mm}$ resistances in each of these two positions to proserve circuit continuity when the switeh is in other positions. In the switch position for measuring buffer cathode current the meter is shunted by a low resistance that multiplies the scale by 2 , and when the final amplifier cathode current is measured the meter is similarly shunted by a resistance
$\mathbb{R}_{x}-0.21$ ohms ($10 \times$ shmit for 0.25 milliammeter).
$\mathrm{R}_{\mathrm{g}}, \mathrm{R}_{10}-100$ ohms, $1 / 2$ watt.
$J_{1}, J_{2}-$ Coax connectors, chassix type.
$\mathrm{J}_{3}-$ Closed-circuit jack.
RFC. $, \mathrm{RFC}_{3}, \mathrm{RFC}_{4}-2.5 \mathrm{mh}$. r.f. ehoke (National K-1003).
RF($\mathrm{C}_{2}-1$-mh. r.f. chohe ((ational R-300s).
RFC.5-2.5-mh. r.f. rhoke (Millen 34300-25(0)).
L_{1} - 13 turns No. 22 , diameter 1 inch, lenxth 1 inch. 1.2 - If turns No. 30 d.c.e. on $1 / 2$-wath resistor.

1,s - 6 turns No. It, diameter is inch, lengtly I inch.
$1.4-8$ lurns No. I8, diameter $1 / 4$ inch, length $5 / 8$ inch. L. 5 , I. 6 - Sec coil table.
$\mathrm{M}_{1}-0 \times 3$ d.e. milliammeter (Simpson Model 12:).
s - s.pest toggle.
S_{2} - 2 -pold, 4 -position wafer switch, non-shorting (Centralal) 2.50.5).
that multiplies the range by 10 so that the fullscale reading is 250 milliamperes. The values of multiplier resistance required in these two cases will depend on the type of instrument used and should be adjusted to the proper value experimentally. The method is deseribed in the chapter on measuring equipment.

Ioading is controlled by the output condenser, C_{13}. Although it has the highest capacitance available in condensers of this construction, it is not large enough for proper operation of the pi network on $3 . \bar{j}-4$ Mc., so an additional capacitance, C_{14}, is comnected in on this band by means of a jumper in the coil form. This large fixed capacitance restriets the adjustment range possible with C_{13}, so two coils are needed for proper loading in this hand. The one covering the $3500-$ $3750-\mathrm{ke}$. range is adjusted for proper loading to maximum permissible tube input at c.w. ratings,

Fig. 6 -50 - The shielded power wiring should be installed hefore the r.f. eomponents are permanently mounted, including the ceramic ly-passes across the ends of the shielded wires. The wires ruming along the center of the ehassis ko to the heater and gride chohe of the final amplifier. The two that follow the ehassis corner at the left are from the oscillator and buffer cathodes to the meter switeh.
and the $3750-4000-k e$ coil is similarly adjusted for suffirient range to give maximum tube input at 'phone ratings.

Amplifier cathode keving is shown in Fig. 6-49, but any mothod may be used with appropriate changes in the diagram. A lead is brought out from the "hot" end of the amplifier grid leak, R_{5}, so that the d.c. voltage developed by excitation may be used to control a screen protective tube if an carlier stage is keyed. The eireuit constants in the oscillator and buffer stages in Fig. 6-49 are sueh that both these tubes ran rum without excitation, with a 300 -volt plate supply, without exceeding the plate dissipation rating of either 6AG7. This permits keying the VFO when separate VFO input is used.

Shiclded wiring for preventing harmonies from flowing on supply leads is indicated in the cireuit diagram. These leads should be by-passed by midget ceramic condensers at the points indicated, using the technique deseribed in the TVI chapter. The corresponding technique for highvoltage mica by-passes is used for the amplitier high-voltage plate learl.

All three tubes have parallel plate feed. This permits grounding the tank condensers directly to the chassis, which is advantageous both mechanically and electrically. In the buffer and amplificr stages parallel feed is a necessity because the pi networks cannot be series-fed.

Construction

All of the circuits with the exception of the buffer and amplifier coils are inside the chassis. The metal 6AG7s provide their own shielding. The 6146 mounts through the rear chassis wall and is covered by the same type of shield can (ICA No. 1549) as is used to cover the tank coils except that it is trimmed down a bit in length and is drilled with $1 / 8$-inch holes above and below the tube to give ventilation. The location of the principal components is shown in the bottom view.

Since the space underneath the chassis is limited, some care must be used to fit the parts in. The best plan is first to lay out the complete transmitter and drill all holes in the chassis,
making sure that everything is provided for before anything is permanently mounted. Make the partitions and amplifier tube mounting lracket and fit them in place before drilling any mounting holes for them in the chassis. Mounting holes in these pioces may then be used to locate the corresponding chassis holes. The tube socket bracket and final tank condenser together form a separate subassembly on which most of its wiring may be done, including the shielded cathode lead to the moter switeh, after the merhanical fit has been cherked. The bracket is drilled to clear the rear shaft extension of the condenser and uses holes already present in the condenser back plate for mounting. The plate blocking condensser, C_{10}, is mounted on the serew which is part of the stator plate assembly; this condenser must be as close as possible to the condenser so that it will clear the coil socket mounted on the rear chassis wall. A short stand-off insulator is mounted just to the left of the tube soeket, at the left in the bottom view, to mount the plate lead and one end of the parasitic choke, L_{4}.

The center partition should have a $1 / 2$-inch hole at the point where the amplifier grid lead comes through from the buffer stage, and should be cut out about $1 / 8$ inch at the bottom where it must fit over the shielded wiring laid on the

Buffer and Amplifier Coil Table

Coils wound on $1 / 1 / 2$ inch diameter forms (National XR-4 and XR-5)

	Wire Size	No. of Turns	Turns per Inch	L, uh. ${ }^{*}$
Buffer coil. L_{s}	26	42	28	48
$3.5-4$ Mc.	22	25	20	18.4
7 Mc.	18	10	10	3.5
14 Mc.	18	5	10	1.34
21 Mc.	$31 / 2$	10	0.86	
$27-30 \mathrm{Mc}$.	18			
Anplifier coil. L_{6}				
$3.5-3.75 \mathrm{Mc}$.	18	$231 / 3$	16	14.5
$3.75-4 \mathrm{Mc}$.	22	$251 / 3$	20	18.7
7 Mc.	18	$171 / 3$	12	8.3
14 Mc.	18	$101 / 3$	8	3.25
21 Mc.	16	$61 / 3$	5	1.36
$27-30 \mathrm{Mc}$.	16	$41 / 3$	5	0.84

[^3]Chassis. These parts and the meter shield should be the last things mounterl, after all other assembly and wiring has beon completed.

The shiclded wiring should be laid in first. as shown in Fig. 6-50, Soldering lugs may be used as hold-downs, the wire shield being spot soldered to each such lug. Start the leads, fitted with ceramie by-passes, at the output terminal strip or tube socket, as the case may be, and rum them to their final locations, temporarily mounting the part at which they terminate to get the exact lead length. Then trim the wire and install the ceramie by-pass when called for in the diagram.

After the shidded wiring is in pace, install the amplifier roil sorket and wiring, leaving enough lead length to reath the tank condenser to bee mounted later. This coil socket must be mounted with the ring oulside the chassis in ordor to provide suflicient clearance for the amplifiertubre sulassembly. Then complete the aseillator and buffer assembly and wiring, exerpt that the buffier coil soreket should not be mounted beratuse it interferes with installing the amplifior subassembly. Also mount and wire the key jarek and neter switch, including monting and finishing shiolded latds for the motur.

When this has been done the amplifier tube subassombly may be permanontly installed and the eonnertions to it completed. After installation the amplifier plate choke should be mounted. using the chassis hole for the fil if for aeress. The bulfer coil socket and amplifier ontput condenser. (13 , may then be installed and the wiring complated. The last opration is to mount the moter shick.

Sine the size of some parts is eritical, in view of the limited sparee, the sperifie eomponemts used in the unit shown are designated in the cireuit caption.

Operation

The final amplifier is operated straight through on all hands and the buffer amplifier preforably, although not neressarily, is operated as a frequener multiplier. (On bands where the buffer is used as a straight amplifior care must be taken to choose tuning conditions that do not permit selforevillation in the buffer stage. On 3.5 Me, with either arystal or IF() eontrol there is no tendener for the butfer to solf-oscillate berause its grid circuit is mot resomant at the operating frequeney. On this frequeney the principal precaution to be observed is that (4 should be tumed so that the drive at harmonics of the input frefuenery is not axersive. The proper setting for C_{4} is the one that results in maximum amplifier grid current when the buffer phate cireuit is properly resonated.

When operating on 7 Me ., ('4 should be toward minimum capacitance, but not far enough to resonate at $1+$. We. Adjust for maximum amplifier grid current, with the buffer plate cireuit resonated, be varying C_{4} toward minimum capanity. When the amplifier grid current is maximum, pull out the crrstal or shut off the VFO and the grid current should drop to zoro. If it does not, dorrease ('4 until it does. The grid current should be ample with ("4 set so there is no danger of buffer oseillation.

For 14-ht: opration, set C_{4} near maximum (ilparitance so that the buffer is driven on 7 Me. and oprratés as a doubler. Adjust for maximum amplifier grid rurrent. ()n 21 Mr., operate the buffer as a tripler. driving it on 7 Mr. and adjusting C_{4} in the stme way as for 14 Me .

The preferable methed of operation on 27-30 Mre is to use a $7-\mathrm{Mr}$, erystal or VFO^{2}, adjust C_{4} to resonate at it Ile., and then double in the buffer stage. In this case C_{4} will be near minimum (apacity. Alternativoly, a 3.j-Mc. erystal or

Fig. 6-5I - Hottom view of the trasmitter eompletely wirmi. Wor oriflator plate coil, L_{1}, is between the two variable eomdensers at the right. "The amplifier cirruit ocrupies the left-hand portion of the chassis in this photograph. 'I'he chassis is 3 by 1 by 17 inela alnminum and is covered by a 1×17 alumimm bottom plate (not shown). 'The bracket on whirh the amplifier sonket is monntel is supported at one end by the plate tank condenser and at the other by partition that shields the amplifier section from the oseillator-buffer section. 'The amplifier plate chophe is monnted on the chasis between the tube-socket loweket and the chassis wall, just below the plate-lead terminal.'l'he meter is enclosed by a right-angle shield to prevent stray harmonic piek-up that might canse radiation through the meter hole in the panel.

VFO may be used, in which case the optimum method is to double in the oseillator plate circuit, the setting of C_{4} being near maximum capacity, and use the buffer as a quadrupler. This results in higher amplifier grid current, in the average case, than can be ohtained by quadrupling in the oseillator stage and doubling in the buffer. The grid drive for the final amplifier is less than when using 7-Me. crystals or VFO, but is sufficient for operating the 6146 at maximum ratings on either c.w. or 'phone. Care must be used to selert the right harmonic when quadrupling in the buffer, since the tuning range is sufficient to reach both 21 and 28 Mc . on the $28-\mathrm{Mc}$. coil. In all the preliminary tuning, it is excellent practice to check the actual frequency of each circuit, particularly the buffer plate cireuit, with an absorption wavemeter.
With any of the typers of operation described ahove, the maximum grid rurrent through the $27,000-$ ohm amplifier grid resistor should be from 3 ma . to about 4.5 ma ., with the amplifier fully loaded. These values are in excess of the normal operating figures, the optimum current boing 2.5 to 3 ma . for c.w. operation and 1.8 to 2 ma . for plate-modulated'phone. This is for a plate-supply voltage of 600 , with a plate current of 1.50 ma . for c.w. operation and 113 ma . for 'phone.

The method of tuning the amplifier is the same on all bands. Assuming that the load has beon adjusted to represent a pure resistance, or nearly so, of 50 to 75 ohms, set C_{13} to maximum capacitance, apply plate and soreen voltage, and adjust C_{12} for minimum plate rurrent. Then decrease the capacity of C_{13} by a small amount and rerasonato C_{12}. Continue until the plate current at the minimum of the dip is the desired value. Since the off-resonance plate current of the 6146 may run as high as 2.50 ma . it is advisible to do preliminary testing at reduced plate
$\mathrm{I}_{2}-4.5$ henrys, 200 ma .
T_{1} - Filament transformer: 2.5 v., 4 amp., 1500 .volt insulation.
' \mathbf{I}_{2} - Plate transformer: 800 v . each side e.t., 225 ma. T3 - Filament transformer: 6.3 v., 6 amp.
$\mathrm{S}_{1} \mathrm{~S}_{2}$-S.p.s.t. toggle.
RFC - 2.5 mh . r.f. choke.
and screen voltage, until the proper operating conditions have been once established.

If the load is not the type that is represented by a properly-terminated coax line it may or may not be possible to control the loading adequately by means of C C_{13}. The pi network constants are fairly critical as to loading, and if proper loading cannot be secured it is an indication that the coax line is not flat.

Power Supply

The oscillator and huffer require a totat current of approximately 50 ma , at 300 volts. In order to avoid the excessive plate dissipation that might ocrur with a supply that gives more than 300 volts, the plate voltage should be regulated by means of VIR tubes. The plate currents taken hy the oscillator and buffer do not vary greatly from band to band, the oscillator current being about 20 ma . on all bands and the buffer taking about 25 ma . on all exeept 7 Mc. where it is about 12.
The amplifier requires a 600-volt plate supply capable of an output current of 150 ma., approximately. The screon current averages about 12 ma. through a dropping resistor of 35,000 ohms, the optimum value. A suggested power supply circuit is given in Fig. 6-52. This utilizes a single plate transformer designed to deliver 600 volts at 225 ma . through a choke-input filter.
Compared with other beam tetrodes, the 6146 oprerates with quite low screen voltage and the ordinary screen protective tube circuit does not reduce the screen voltage to a low-enough value to prevent excessive plate dissipation when there is no r.f. excitation. The circuit shown here consequently includes a VR-75 to cut off the screen voltage under such conditions. To compensate for the voltage drop through the VR tube the screen resistor is reduced to 25,000 ohms.
(Originally described in QST, Feb., 1952.)

A 500-Watt Multiband VFO Transmitter

ligs. 6-5:3 through ($6-5$! show the circuit and other details of a 500 -watt transmitter with VFO frequency control, rapable of operation in any band from 3.5 to 28 Mc . It is completely shielded and all tuning adjustments, including band changing, may be done with the panel controls.

As the circuit of Fig. 6 -5t shows, the VFO uses a 5 (o3 in a Clapp cireuit operating over a range of 3370 to 4000 ke ., split into three bandspread ranges, tuned by C_{1}, which is fitted with a calibrated dial. These ranges, selected by proper sotting of C_{2}, are 3500 to $3750 \mathrm{kc}, 3: 330$ to 3405 kc . (for 11 -meter operation) and 3750 to 4000 kc . for 75-meter 'phone work.
The oscillator circuit is followed by two isolating stages. The first is a 6 C 4 connerted as a cathode follower, which is very effective in reduring reaction on the oscillator by subsequent stages. The result is a keyed VFO) with good ehararteristics, even on 10 meters. Since the output of the cathode follower is quite small, it is followed be a 5763 in an amplifier fixed tuned in the 3.5-Mc. region.
Frequency multiplying to reach the higherfrequency bands is done in the next two stages, the first using a 57 (6i3, while the second employs the larger 61.46 to drive the final amplifier. These two stages are tuned with multiband tuners rircuits which have a tuning range that includes all necessary hands. Thus no switching or plug-in coils are needed. Neither of these two stages is operated as a straight amplifier, except on 80 meters. Frequency is doubled in the 6146 stage for output on 40,20 and 10 meters, and tripled for output on 15 meters. The 5763 stage is operated at 3.5 Mc . for 80 - and 40 -meter output, doubles to 7 Me. for 20 - and 15 -meter output, and quadruples to 14 Mc . for 10 -meter output. Wxiltation to the final is adjusted by the potentiomoter in the screen circuit of this stage.

The 813 in the final amplifier also uses a multiband tuner to cover all bands. This stage is always operated as a straight amplifier, and should be entirely stable without neutralization. The only switehing neressary is in the output

link circuit in changing betwern high- and lowfrequencer hands. Loading is adjusted by ('10.

I 50 -ma meter may be switched to read plate current in the axiter stages, grid current in the driver and final-amplifier stages, or sereen current to the 813 . The $1 / 2$-ohm resistor in the 6146 highvoltage lead multiples the meter-sale reading by three. A separate $500-\mathrm{ma}$. meter is used to cheok plate current to the 813.

The two-circuit rotary switch, S_{b}, is used to bias the screens of the 6146 and $81: 3$ negative while tuning up the preceding stages and setting the VFO to frequency. In the first position, both sareens are biased; in the second position, only the $81: 3$ sereen is biased, while positive voltage from a voltage divider is applied to the sereen of the 6146 so that this stage may be tumed up. In the third and fourth positions, positive voltage is applied to both screens, but in the last position, it is applied to the 813 sereen through an audio choke so that the stage may be sereen-plate modulated.

Two bias rectifiers are included in the unit, to supply fixed bias to the 6146 and 813 , so that the plate currents will he cut off during keving intervals. Both rectifier sustems operate from a single 6.3 -volt filament transformer connected in reverse. The bias transformer, T_{2}, is operated from the 6.3 -volt winding of the filament transformer, $T 1$.
Two a.e, outlets are provided for connecting the primaries of external high- and low-voltage supplies into the rontrol cireuit consisting of three toggle switches. B_{1} is the ventilating blower that starts operating as soon as the filament switch is closed. The blower is essential where so much power is confined in a small space. The jack, J_{3}, provides a means of keying the final amplifier, rather than the oscillator, if desired. It also permits plugging in a simple cathode modulator of the type described in the chapter on speech amplifiers and modulators.

It is highty important that the VF() box make good contact with the chassis; otherwise the VFO may be adversely affected by feed-back from the

Fig. 6-5.3 - The standard-rack panel is $121 / 4$ inches high. Controls (Vational MRS) along the bottom, centers spaced at intervals of $21 / 8$ inches either side of center, are, left to right, for $C_{4}, S_{3}, C_{5}^{*}, C_{2}, s_{1}$ (Centralab $1405), \$_{2}$ and C_{10}. Power togyles are below at the center, spaced 1 inch apart. The calibrated VFO dial (National SCN) for Cis at the center, with the excitation control (National I'dial) to the left, and the dial (National AVI) for C_{9} to the right. National CFA chart frames outline the rectangular openings for the recessed meters, 50 -ma. to the left, 500 -ma. to the right. The shielding enclosure is built up using aluminum angle, perforated sheet (also used for the bottom plate), and self-tapping serews.

Fig. 6.54 - The components are assembled on a $17 \times 12 \times 3$-inch aluminum chassis. The meters are housed in $4 \times 4 \times 2$-inch boxes, the VFO enclosure is $6 \times 6 \times 6$, while the box enclosing L_{3} and L_{4}, to the right, measures $3 \times 4 \times 5$ inches. The special plate choke, $R F C_{1}$, to the left of the 813 , is close-wound with 129 turns No. 26 d.c.c. wire, on a Millen $31004{ }^{11 / 6-\text { inch }}$ ceramic pillar. C_{8} is fastencd to the top of the choke, while C_{7} is mounted below near the h.v. feed-through. (Both C_{7} and C_{8} are Sprague 201)K-T5.) The small cones, fastened to the condenser frame by drilling holes in the assembly rods, support L_{9}. A screw, tapped into the same rod, anchors the grounded end of L_{7}, whose outer end connects to the rear stator terminal below. The 813 socket is mounted on $1 / 2$-inch pillars, over a $21 / 4$-inch hole in the chassis. Along the rear apron are $J_{3}, J_{2},+$ h.v. (Millen 37001) and ground terminals, a.c. power-input connector, two a.c. outcts, low-voltage input terminals, and key connector.

adjacent final tank when working on 80 meters. Mounting screws spaced an ineh around the bottom lip of the box, and correspondingly in the top cover, should eliminate this completely.

Coils

$L_{1}(35 \mu \mathrm{~h}$.) is a B \& W $80-\mathrm{BCL}$ coil with the link and base removed. L_{2} is given under Fig. 6-58. $L_{3}(2.6 \mu \mathrm{~h}$.) is 31 turns of $\mathrm{B} \& \mathrm{~W} 3003$ miniductor, while $L_{4}(5.3 \mu \mathrm{~h}$.) is 30 turns of Type 3011 . $L_{5}(1.5 \mu \mathrm{~h}$.) eonsists of 11 turns of No. 16, $3 / 4-$ ineh diameter, 1316 inch long. $L_{6}(8.9 \mu \mathrm{~h}$.) has $291 / 2$ turns of B \& W 3015 miniductor. L_{9} ($1.6 \mu \mathrm{~h}$.) has 7 turns of $1 / 4$-inch copper tubing, 2 inches diameter, $21 / 8$ inches long.
$L_{7}\left(5.1 \mu \mathrm{~h}\right.$.) and $L_{8}(4.2 \mu \mathrm{~h}$.) are made as follows from B\&W 3905-1 strip coil: Count off 101/4 turns, clip the wire without breaking the support bars. lend the last quarter turn out. This portion is L_{7}. Remove the next $3 / 4$ turn to make a $1 / 4$-inch space between L_{7} and L_{8}. Count off 10 turns more, eut the remainder of the coil stock off. Unwind the last turn on L_{8} to make the necessary lead to the stator of C_{9}. Tap L_{8} at the 8 th turn from L_{7}.

Adjustment

A 400 -volt 250 -ma. supply is required for the exciter and the sereen of the final amplifier. For full rated output from the 813, a supply delivering 2000 to 2200 volts at 300 ma . (ineluding bleeder current) is needed. The amplifier may, of course, be operated at lower plate voltage with less power input. The diagram of a suitable power unit is shown in Fig. 6-59.

The VFO tuning ranges should first be adjusted. Set S_{1} to the first position, biasing the screen of the 6146 . Adjust the sereen potentiameter in the 5763 multiplier stage to zero, and turn on the filaments and the low-voltage supply. Set C_{1} at 95 degrees on the dial (near minimum (rapacitance). Set C_{2} aecurately at midscale. Then, listening on a calibrated receiver, adjust C_{3} until the VFO signal is heard at 3750 kc .

Now, tune the receiver to 3500 ke ., and turn C_{1} toward maximum capacitanee until the VFO signal is heard. This should be close to the lower end of the dial. By carefully bending the rearmost rotor plate of C_{1} toward the rear, it should be

Fig. 6.55- The VFO box is placed with its front wall $13 / 8$ inches back of the panel, central on the chassis. L_{1} is mounted on 2 -inch cones to center it in the box. The shaft of C_{1} (Cardwell PL-6001 minus last stator plate) is central on the box front, at a height to mateh that of $C_{9} . C_{2}$ (Cardwell PL. 6002) is mounted, between C_{1} and the coil, shaft downward, to engage the right-angle drive below. C_{3} (Cardwell PL6009) is similarly mounted, to the left of C_{2}. Grouped to the left are J_{4}, L_{2}, and V_{3} in front, with V_{5} and I_{1} to the rear, and I_{2} in the center. Feed-throughs in the bottom of the coil box to the rear conncet L_{3} and L_{4} to C_{4} below. The ventilating holes are over the 6146. C_{9} (Johnson 200DD35) is placed with its shaft $21 / 4$ inches from the end of the chassis, and its rear end plate $15 / 8$ inches in from the back edge. The three feed-throughs to the left connect L_{8} to S_{2}.

possible to adjust the range of 3500 to 3750 kc . so that it covers from 5 to 95 degrees on the dial. Some slight readjustment of C_{3} may be necessary during the plate-hending process to keep the band centered on the dial.

Now, set ('1 at about 15 degrees. Set the reeviver at 3750 ke . and reduce the capacitance of C_{2} until the VF() signal is heard. Then, tuning the receiver to 4000 ke ., the CF() signal should be heard when its dial is set at about 85 degrees. Mark this setting of C_{2} aceurately.

If it is desired to center the 11 -meter band on the dial, sot C_{1} at midscale. Increase the capacitance of (${ }^{2} 2$ until the 1 FP() signat is heard at 3387 ke. Mark this setting of ('2 also aceurately.

Tuning Chart for the 813 Transmitter					
Output Band (Mc.)	Dial ${ }^{1}$	$\begin{aligned} & \text { C. } \\ & \text { Band (.Mc.) } \end{aligned}$	Dial ${ }^{1}$	$\begin{aligned} & \left({ }_{6}^{\prime}\right. \\ & \operatorname{Band}\left(M c_{.}\right) \end{aligned}$	$\begin{gathered} \text { fial } \\ \text { Dial }^{2} \end{gathered}$
3.5	8.8	3.5	6.1	3.5	7
γ	8.8	3.5	0.5	7	9
14	1.5	7	9.5	14	82
21	1.5	7	3.7	21	27
2\%-28	4.7	14	18	28	7
${ }^{1} 10$-division dial - 10 max. capacitance. ${ }^{2} 100$-division dial - 100 max . capacitance.					

The next step can be done most easily with a high-resistance voltmeter connected across the grid leak of the $57(63$ buffer amplifier. Set (${ }^{*}$ and C_{2} at minimum capacitance, and adjust the slug in L_{2} for maximum grid voltage. Then watch the grid voltage as C_{2} is swung through its range. If there is appreciable increase in grid voltage as C_{2}^{4} is turned toward maximum capacitance, tune L_{2} to a higher frequency by moving the slug out more. By correct adjustment of the slug, the grid voltage should remain esselttially eonstant over the entire usable frequency range.

Now realjust C_{2} to midscale and turn the meter switch to read (6146 grid current, and turn the excitation control to give a reading of 2 or 3 ma. Resonate the output tank circuit of the 576.3 frequency multiplier at 80 meters (near maximum (apacitance) as indicated by maximum G14i grid current.

Next, turn s_{1} to the second position, so that screen voltage is applied to the 6146 , but not to the 813. Turn the meter switch to read 6146 plate current, and resonate the $61+(;$ output tank cireuit as indicated by the plate-current dip (ncar maximum capacitance). Turning the meter

switch to read 813 grid current adjust the exritation control to give a final-amplifier grid-current reading of about 25 ma .

The 813 should be tested initially at redured plate voltage. Plate voltage can be reduced by inserting a 150 -watt lamp in series with the highvoltage transformer primary. A 300 -watt lamp bulb) commected across the output commertor can be used as a dummy load for testing. Make sure that s_{2} is turned to the low-frequency position. This position is used for 3.5 - and 7 -Mc. operation. The other position is used for 14,21 and 28 Me, Turn S_{1} to the third position to apply sercen voltage to the $81: 3$, apply plate voltage and resonate the output tank circuit (near maximum capacitance) as indicated by a dip in plate current. Full plate voltage may now be applied and (10 adjusted to give proper loading (220 mit. maximum). Adjust the excitation control to give a final-amplifier grid current of 15 to 20 mat.

Tuning up on the other bands is done in a similar manner, by adjusting the tuners in each circuit to the correct band to obtain the desired multiplication. The table shows the approximate dial setting for each band, but each should be cherked with an absorption wavemeter and tho setting logged for future reference.

A suitable antenna tuner should be used be-
tween the transmitter output and the antenna. Antenna tuners are described in the chapter on transmission lines.
(Originally described in QST for January, 1954.)
ia. 6.57 - Sketch show ing method of monnting meters in shielding boves. 'The meters are suspended from the rear covers.

Fig. 6-58 - The panel dropa 3 位 inch below the binton edge of the ehassis. The National ACD-1 right-angle drive for C is at the center. The other controls along the bottom are paced $11 / 2$ inches up from the botom edge of the chasis. and the corresponding comporents mounted so that their shafts line up with the controls. l'anel buskings sinould be provided for the shafts of C_{10} (Cardwell PL-7006), and the right-dnkle drive; panel-hearing skaft units for C_{4} and C_{5} (Cardwell l'l. -6043), and S_{2} (Centralab 2505). The 6146 is monnted on a $5 \times 21 / 4$-inch brachet be tween C_{4} and C_{5}, whose shafte are fitted with insulating couplings. C_{5} is mounted on spacers, while C_{4} is mounted on its side on a brachet. T_{1} ('Triad F-18A) and T_{2} ('Iriad $\mathrm{F}^{-14 X}$) are mounted on another bracket at the center. L_{5} and L_{3}. at right angles, are soldered bet ween the terminals of C_{5} and l'in 4 of the 813 son:ket, seen throukh the $214-$ ineh hole in the chassis. C_{10} and S_{2} are mounted on small bracketa. T_{3} ('Triad F-23I) and the blower (available from Allied Radio, Chicago, No. $72-142$ motor and $72-703$ fan) are to the left. The screwdriver-shosted shaft of Cos may be seen between the shaft of C_{5} and the shielded power wires to the left. All power wiring is done with shielded wire (Belden 8656, Birnbach 1820, or shielded ignition wire for the 2000 -volt line: lieldeal 8885 for the rest). L_{2}, behind S_{3} (Centralab 1411), is a National XR -50 slug-tuned form elose-wond with 93 urns No. 36 enameled wire.

Fig. 6.59 - Cireuit of a suitable power supply for the 813 transmithers.

C_{1}. $\mathrm{C}_{2}-4$-ufd. $2(\mathrm{OHO}$-volt oil-tilled. $\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}-\mathrm{A}-\mu \mathrm{fd}$, (r)0-velt electrolstic.
$\mathrm{R}_{1}-25,000$ ohms. 200 watts.
$\mathrm{R}_{2}-15,000$ ohms, 25 watt.
$\mathrm{L}_{1}-5 / 25-\mathrm{h}$. $300-\mathrm{ma}$. swinging.
L_{2} - $20-\mathrm{h}, 310-\mathrm{ma}$. smoothing.
$\mathrm{L}_{3} \mathrm{~L}_{4}-7 . \mathrm{h} .250 \mathrm{ma}$. filter choke. I_{1} - 150 -natt lamp ('lone up)
S_{1}, S_{2} - 10 -amp. switeh.
S_{3} - 3-amp- вwiteb.
$\mathrm{T}_{1}-2.5$ volts, 10 amp .
$\mathrm{T}_{2}-2000$ volts d.e., 300 ma .
T_{3} - 400-0-400 r.m.s., 250 ma.: 5 voltr, 3 amp. (UTC S.40)

A 200-Watt Transmitter for 160 and 80 Meters

Figs, 6-60 through 6-64 show circuits and eonstructional details of a 2(M)-watt transmitter designed primarily for the 160 -meter banl. However, it will also work well doubling frequency to the 80 -meter band in the output stage.

Fig. 6.60 - A front virw of the 160 -meter transmitter designed hy U1TRF, showing the panel layout. The \backslash FO is directly calibrated for 1 (1) and 80 meters on the National SCX dial. The lower row of controls are, left to right, keying jack, buffer plate tuning, meter switch and the filament switch. To the sight of the two meters are the final plate-tuning and the ewinging-link controls.

Circait

The circuit is shown in Fig. 6-62. A 6AG7 is used in the series-tuned VFO which works on 160. The oscillator plate cirevit, which is untuned, is capacity coupled to another $6 \mathrm{AG}^{7}$ in the buffer stage. Cathode bias is supplied to the buffer stage by R_{3}. The buffer screen voltage is taken from the regulated source that supplies the VFO section. The buffer operates straight through and is coupled to the final-:implifier grid by C_{14}. An $81: 3$ was chosen because of its low drive requirements and its adaptability to a wide range of plate voltages - it is possible to run an inpul of 200 watts with a plate voltage as low as 1200. The stage is neutralized by means of a simple homemade condenser, r_{17}. The conventional neutralizing connection, shown in dotted lines, wis not used in this instance. Stray wiring eapacitances are such that the circuit is "over-neutralized," requiring the introduction of positive, instend of negative, feed-back for nentralization. Therefore, the neutralizing capacitance is directly from grid to plate. However, the use of different components, or a slightly different layout, may require the conventional connection shown in dotted lines, rather than the one used.

Fised bias is supplied to the final amplifier by a $50-\mathrm{ma}$. selenium rectifier and a small fiament transformer, T_{2}, working in reverse from the 6.3 volt filament supply. A VR-150 is used to stahilize the biasing voltage. Screen voltage is supplied from the high-voltage source through R_{8} and R_{y} to provide a simple means of modulating both plate and sereen.

Construction

The transmitter is constructed entirely on a standard 10×17-inch chassis with a $101 / 2$-inch panel. The VFO portion is built on the left-hand side of the chassis. The 6AG7 socket is inverted so that the tube extends below the chassis. This method allows all of the wiring on the socket to be enclosed within the shield. C_{3}, C_{4}, C_{5} and the grid resistor, R_{1}, are all soldered directly to the soeket, and the filament by-pass condensers, C_{23} and C_{24}, as well as the screen by-pass condenser, C_{7}, are soldered directly to ground from their respective pins. Shielded power wires are brought into the compartment through rubber grommets. The r.f. plate lead to the coupling condenser, C_{8}, is made of a short piece of $\mathrm{RG} / 59-\mathrm{U}$ coaxial cable and this also is brought up through the chassis along with the power leads. L_{1}, the VFO coil, is close-wound on a 1 -inch Millen form and is mounted on a half-inch cone insulator. The ends of the winding are soldered directly to their comnections. Two half-inch spacers are used to hold the VFO tuning condenser, C_{2}, above the chassis so as to line the shaft up with the drive mechanism of the National SCN dial. The oscillator padder, C_{1}, and its mounting bracket are bolted firmly to the chassis. A $3 \times 4 \times 5$-ineh aluminum utility box is used to cover the VFO circuit. A small opening eut in the front cover allows the tuning dial to turn freely.

The oseillator plate choke, $R F C_{2}$, and the buffer grid choke, $R F C_{3}$, are mounted vertically. The choke terminals are used as tie points for the coupling condenser, C_{8}, and the buffer grid re-

Fig. 6-61-A view of the VFO section with the cover removed. The inverted $6 A G 7$ socket is just to the left of the tuning condenser. $R F C_{1}$ is to the front of the $6 A G^{7}$ socket, the shielded wire connected to the choke is the keying lead. 'The grid coil is mounted on a half-inch cone insulator. The padder condenser is mounted on a " $\mathrm{U}^{\text {" }}$. shaped bracket to the right of the tuning condenser,

Fig. 6-62 - (:irchit diagram of the 20)-wat la(0)-meter transmitter.
$C_{1}-100-\mu \mu$ fll. variable (Millem 22100).
(:2- $\mathbf{5} 0-\mu \mu \mathrm{fd}$. varialle (Millen 190. 0) .

($4,(6-680)-\mu \mu$ [d. silvered misa.
 dise reramie.
(:10-140- $\mu \mathrm{Fd}$. variable (Millen 191.40).
(i) - Ventralizing raparitance: see text.

Cis, Ci20, Ci21, (i22-0.0101- $\mu \mathrm{Fd}$. 50010 -volt mida.
(:19-1) Hal-sertion variable, 2(10)- $\mu \mu \mathrm{fl}$.- per-nertion (National IV(C-200-1)),
(i25, $\mathrm{C}_{26}-8-\mu \mathrm{fl}$. 250-volt electrolytic.
Ci27, (i28, (i29, (iso- 0.1- $\mu \mathrm{fl}$. molded.
$\mathrm{k}_{1}, \mathrm{l}_{2}-22,000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{3}-220$ ohms, I watt.
$1 R_{4}-10,000$ ohms, 10 watts, adjustahle.
$R_{5}, K_{6}, K_{7}-100$ ohmes, 2 watts.
Rs - 25.000 ohme, 50 watts. adjustable.
$\mathrm{K}_{9}-25,000$ ohms, 50 watts.
$R_{10}-500$ ohme, 2 watts.
$1.1-100 \mu \mathrm{~h} .-68$ turns No. 30 s.s.e. closerewound on l-inch form.
$\mathrm{L}_{2}-70 . \mu \mathrm{h}$. - 96 turns No. 2.4. 1 -inch diam., 3 inches long (13 \& W 3016 Miniductor).
sistor, R_{2}. The buffer tuning condenser, C_{10}, is mounted directly in front of the tube socket on the vertieal brarket supplied with the condenser. A B \& $\mathbb{I V}^{\circ}: 3016$ Miniductor has just about the right inductance for L_{2}.

The 813 socket is mounted directly on the chassis to the right of the buffer-tube socket, with the coupling condenser, C_{14}, placed so that the leads are as short as possible. $R P C_{5}$, the 813 grid choke, is in front of the tube socket, near the grid-meter shunt. The meter shunting resistors for the buffer plate and the 813 grid circuits are fastened to a pair of two-terminal lug strips. The $81: 3$ sereen-current shunt is mounted on two small cone insulators and is connerted with high-voltage insulated wire, since the sereen voltage rises to the supply value when the tube is not being driven. All external power leads have v.h.f. filters. The components are placed in the enclos-
$1.3-1.8 \mathrm{Mc} .-90 \mu \mathrm{~h}$. - $\mathbf{3}$ (turne Vo. 16,3 -inch diam.. 6 inches long over-all, $8 / 4$-inch space at ernter for $I .4$ (B \& W 160 'TV II or 'TVI. with mounting for plug-in linh).
3.5 Mc. - 10 нh. - 38 turne \o. 14,3 -inch diam., 6 inches long over-all. $8 / 4$-inch space at center for L_{4} (B \& N 80'TVII or 'TVI).
14 - 5 -turn variable linh ($13 \& 甘 3.355$).
MA_{1} - D, C milliammeter, 50 -ma. scale.
$\mathrm{MA}_{2}-11$.e. milliammeter, 500 -ma. seale.
 tional R-I(0)-S).

RHC. - 1 -mh. r.f. chohe (National R-152).
H1 CA_{8} - Line-filter choke (Ohmite $\mathrm{Z}-21$).
S_{1} - Single-wafer double-pole 3 -position ceramic rotary. s_{2} - S.p.s.t. togule.
Si - 50 -ma. selenium rectifier.
T_{1}-6.3-volt 3-amp. filament transformer (Stancor P-5014 or equiv.).
T_{2} - 6.3-volt 1.2 -amp. lilament transformer (Stancor P-6134 or equiv.).
T_{3} - 10 -volt 5 -amp. filament transformer (Stancor P-(6139 or equiv.).
ure formed by the aluminum barrier shield running the length of the chassis.

The neutralizing "condenser," C_{17}, consists of as strip of aluminum about a half inch wide and 2 or 3 inches long, bent at right angles and mounted on a feed-through insulator near the socket grid terminal. The feed-through is connected to the grid terminal and neutrabizing is adjusted by abtering the length of the strip or by bending it closer to, or farther from, the tube.

The output tank condenser, C_{19}, is mounted above the chassis on half-inch cone insulators. The shaft is connected to the tuning dial through a ceramic-insulated shaft coupling. The jack bar for L_{3} is supported on National GS-1 pillar insulators and mounted alongside the tank condenser. Another insulated shaft coupling is used to extend the shaft of the swinging link to the panel. A length of conxial cable is run from the link assom-

Fig. 6.6 .3 - 'Vop view of tho loo-meter chaseis remored from the rabinet. On the rear edge of the chatsis are the Ino filament trannformers and the I R tube for the biassitfly. Th is undermeath. In fromt of the transformers are the bolat huffer tuhe the |R-I.30 requlator for the Ifro and the aluminum bex shiedding the osabillater sertion. Tos We loft of the 813 are the final tanh condensar and the swinging-link assembly. Along the rear of the chassis are the high-voltage ronnertor. the 11.i-volt imput comeretor, the grounding post and the exriter low-voltage emmector.

ble to the antematerminal along the left drop of the chassis.

The stuidding barier is spated 3 inches from the rear. This enclosure contatins all of the atere Wiring, the line chokes and the bias supply. The high voltage to the final is routed through a feedthrough in the shied. L is iemented bet weren two ceramie cone stand-off insulators on the other side of the harrier.

The circuit of a suitable power supply for this unit is shown in Fig. ti-59. A power transformor hatring at rating of 700 volts, $\mathfrak{c} 1 ., 70$ mat. mat be substituted for the one sperefied under T_{3}. S_{t} tums on the low-voltage supply and the filaments of the high-voltage rectifiars. sio turns on the high-voltage transformer, When S_{3} is open, a 11:-volt lamp, I_{1}, is comereted in series with the primary of the high-voltage transformer to redure voltage during adjust ment.

Adjustment

Dfer turning on the low-voltage supply, the slider on R_{4} should tre adjusted to the point where the Vil tube just stays ignited with the key elosed. At resonamere, the buffer plate current should be about 22 mit and sereern current ap-
proximately 8 mat. This should produce an 813 grid current of 18 or 20 mat When the ker is opened, the buffer plate current should drop to about 12 nat. while the sareen current is roduced almost to zoro. If there is any variation in buffer plate current as the tank cifrenit is fumed through its range with the key opror, a clace should ho made for parasitic oseillation, as discussed earlier in this chatpter.

In tuming up the firtal amplifer, the sereere resistor, R_{x}, should be adjustad to leave atomat 20,000 ohms in the cirruat and fuater or hati maximum plate voltage applend. A dumme load should be connerted and the coutput tank tuned to resoname. As the loud is andiustex to take curent, the plate and serpen voltages ean be increased slowly while dhereking the stathility. For mormal operataon at maximmem legai input, the serem voltage is rased to :300 and the :olate voltame to 1200 or 12:0). The conpling to the antenna or load can then be sudjusted, by moans of the varmble link, to ?ming the power input up to 200 watte.

In the ease of 80 -metor operation, it may be of some advantage to raise the sereen voltage to fow.
(Origimally described in: (0, 1 ' for Judy 1952.)

Fis. 0.6 .1 - Bottom view of the 1 oll-meter transmitter, Ris is to the left. 'Ihe inverted $6.16: 5$ oscillator tube is just to the left of the luffer tioningrembernar haft. In front of the 813 sorhet are the meter-ahunting resistors and the meter switeh. R_{x} and R_{9} are to the riyht of the 813 socket. The final plate choke is monnted on the ripht drop of the chassis. All power wiring is done with shielded wire to supprens v.h.f. harnomirs.

A Simple VFO

The details of a simple VFO with output at $1.75,3.5$ or 7 Mc . are shown in ligs. 6-155 through 6-69. In the circuit, shown in Fig. 6-68, a Type 5763 miniature pentode in a series-tuned Colpitts oscillator circuit drives a similar tube as an amplifier or doubler. The output circuit of the oscillator stage is broadbanded through the use

Fig. 6.65-A simple VFO delivering output at 1.75. 3.5 or 7 Mc .
of self-resonant slug-tuned coils at L_{2}, and frequency may be doubled in this circuit, as well as in the output circuit, to obtain 7-Mc. output. For $3 . \bar{z}-\mathrm{Mc}$. output, frequency may be doubled in either stage. The nominal output is approximately 2 watts - sufficient for driving the usual

Fig. 6-66 - The top of the simple VFO fhowing the oscillator tuning condenser, the tubes and plag-in coils.
crystal-oscillator stage of the transmitter.
To simplify the bandspread problem, the oscillator tuning range is restricted. At 3.5 Mc . a range of approximately 250 kc . is covered. For c.w. operation in this band, the band-set condenser, C_{2}, is set so that the tuning condenser, C_{1}, covers approximately 3500 to 3750 kc . For operation in the 'phone portion of the band, C_{2} is reset to shift the range to approximately 3750 to 4000 kc . Corresponding ranges are provided at the harmonies, and the oscillator can be tuned low enough (by C_{2}) to cover the 11 -meter band with appropriate doublers.

Construction

The unit is built in a $5 \times 6 \times 9$-inch steel box with cap-type covers. The components are assembled on an aluminum-sheet base supported by sections of aluminum angle stock that hold the base halfway between the two covers. On top, the tuning eondenser, C_{1}, is fastened directly to the base along the center line. The shaft is fitted with a National Type AM vernier dial. The two tubes and L_{2} are in line to the right in Fig. 6-66 with the output tank eoil, L_{3}, to the left of the amplifier tube. The L_{2} coils are wound on Millen Type 74001 shiedded slug-tuned forms.

Underneath, in Fig. 6-6i7, the band-set condenser, C_{2}, is mounted against the front of the box. A short lead through a feed-through point or cicarance hole connects the stator of C_{2} to the stator of C_{1} above. L_{1} is wound on a Millen 1 -inch eoil form and is placed immediately to the rear of C_{2}. The output tank condenser, C_{14}, is mounted on a bracket with its rear stator termi-

Fig. 6.07 - Bottom view of the simple VFO showing the arrangement of parts underncath.

Fig. 6-68 - (arruit diagram of the simple VFO.

Cit - Approx. $15-\mu \mu \mathrm{fd}$. variable (Millen 19025 with all hut 1 rotor and 2 stators romoved)
(.2 - 100- $\mu \mu \mathrm{fil}$. varialle (Millen 22100).

C 3, C. $-0.001-\mu \mathrm{fd}$. silvered mica.
$\mathrm{C}, \mathrm{C}, \mathrm{C}, \mathrm{C} 5-\mathrm{l} 00-\mu \mu \mathrm{fl}$. mica.
Cf, $\mathrm{Ci}_{7}, \mathrm{C}_{8}, \mathrm{C}_{11}, \mathrm{C}_{12}-0.01-\mu \mathrm{fd}$. dise ceramic.
Cio. Cis - 0.001- $\mu \mathrm{fd}$. dise ceramic.
(Ci4 - $1.40-\mu \mu \mathrm{fd}$. variable (Millen 221.10).
$\mathrm{I}_{1}, \mathrm{R}_{2}-\mathbf{4}_{7,000}, 0 \mathrm{ohms}, 1 / 2$ watt.
$1_{1-1}-62$ turns ${ }^{\text {Vo. }} 30$ d.s.c., 1 inch diam., close-wound.
$1.2-1.75$ Mc. - 210 tırns No. 36 d.s.c., $1 / 2$ inch diam., rlose-wound (Dillen it00l form). ($300 \mu \mathrm{~h}$,)
-3.5 Mc. -126 turns No. 30 d.s.c., $1 / 2$ inch diam.,
nal close to the coil socket. It is placed so that its insulated shaft-cxtension control will balance up with the control for C_{2} in front.

The various r.f. chokes and fixed condensers are grouped closely around the sockets with which they are associated in the circuit. All power wiring is done with shielded wire and coaxial output terminals are provided at the rear for either capacitive or link coupling. Key and power connertions are made through the octal plug. Several ventilating holes are cut in the longer sides of the box and also in the top cover.

Adjustment

The unit requires a regulated 150 -volt supply. The supply diagrammed in Fig. 6-6! is suitable. First adjust R_{1}, Fig. 6-69, to the maximum rewistance that will permit the VR150 to stay ignited when the key is closed. Then, listening on a calibrated receiver, close the key, set C_{1} at maximum (apacitance and adjust Co until the oscillator signal is heard at 3500 kc . 'Tuning C_{1} should then cover the band up to about 3750 ke . Mark the setting of C_{2}, set C_{1} at maximum again and adjust C_{2} until the signal is heard at 3750 kc .
closer-wound (Millen 74001 form). ($75 \mu \mathrm{~h}$.)
 $11 / 2$ inchrs diam.. close-wound (Bud OEL-160), it turns removed).

- 3.5 Me - $16 \mu \mathrm{~h}$. - 20 turns No. 22 d.c.c., $11 / 2$ inches diam., close-wound (Bud OEI.-80, 8 turns removed).
-7 Mc. -5μ h. -12 turns Vo. 22 d.c.c., $11 / 2$ inches diam., $8 / 4$ inch long (13ad OLD,-20).
J_{1} - Chassis-mounting ortal plug.
$\mathrm{J}_{2}, \mathrm{I}_{3}$ - Frmale coaxial connector (Jones Sl01-D).
RIPC1 - $\mathbf{2}, \mathbf{5}-\mathrm{mh}$, r.f. choke (National R-50).
$\mathrm{RHC} \mathrm{C}_{2}, \mathrm{RFC}-2.5-\mathrm{mh}$. r.f. choke (standard type).
Then C_{1} should cover the range from 3750 to approximately 4000 kc . Repeat the process, setting (${ }_{2}$ for about 3350 kc . to obtain the proper range for 11 meters.
To adjust the remainder of the circuit, turn the slug of L_{2} in full. Touch a small neon bulb to the capacitive output terminal and adjust C_{14} for maximum indication. Check the output frequeney with a wavemeter, since indications may be ohtained at any multiple of 1.75 Mc . When the VFO is connected to a following stage, C_{14} and L_{2} should be adjusted for maximum grid current. For capacitive output coupling, connection is made at J_{2}, while J_{3} is provided for link coupling. With capacitive coupling, the output tank circuit should resonate with coaxial-cable lengths up to five or six feet. The frequency should be rechecked, since the setting of C_{14} will be influenced somewhat by the length of the coaxial cable with capacitive coupling. C_{14} may require an occasional touch-up in tuning the VFO across the band. A milliammeter connected in series with the key should read approximately 40 ma ; about half of this is taken by the oscillator screen and plate circuits.

Fig. 6 - 69 - Cirenit diagram of a power supply for the simple VFO. $\mathrm{C}_{1}, \mathrm{C}_{2}-16-\mu \mathrm{fd}$. 450 -volt electrolytic.
$R_{1}-5000$ ohms, 25 watts, adjustable.
$\mathrm{L}_{1}, \mathrm{I}_{2}-10-\mathrm{h} .50-\mathrm{ma}$. filter choke. J_{1} - Octal socket.
$\mathrm{S}_{1}-3$-amp. toggle switch.
T_{1} - l'ower transformer: 325-032.5 volts r.m.s., 40 ma.; 6.3 volts, 2 amp .; 5 volts, 2 amp.

A Silenced VFO for Break-In C.W.

Unfortunately, there is no known practical way in which an oscillator, particularly of the VFO type, can be keyed without a compromise in respect to clicks or chirps. Steps taken to climinate one will aggravate the other. In the VFO unit shown in Figs. $6-70$ through 6-7.t, the oscillator is not keyed, but allowed to run continuously while a subsequent amplifier is keyed. The signal from the oseillator is suppressed by proper shiclding and circuit design, so that it does not interfere with reception on any frequency, including the operating frequency, even with the receiver r.f. gain control at maximum. Any desired shaping of the keved signal can be applied to the amplifier without introducing chirps.

A diagram of the system is shown in Fig. (i-7). A very low-power high-C lartley oscillator ($1 \overline{5}$ to 20 volts at the plate), using a (J 3 I$) 6$ and operating in the region of $8 \mathbf{5} \mathrm{kc}$., drives a second (iblef as a strictly Class A isolating amplifier at the same frequencr. The Class A stage, in turn, drives a $6 \mathrm{~A}(\mathrm{i} 5$ doubler to 1750 ke . This stage is keyed by the blocked-grid method. Thus, until the key is closed, most of the signal is confined to $8 \overline{7}^{\circ} \mathrm{ke}$. Further supression of harmonies from the oscillator is obtained by omitting the mathode by-pass condenser in the Class A stage, thereby introducing a slight amount of degencration.

The output circuits of both the oscillator and buffer are broadbanded, and require only initial adjustment. The output circuit contains a bandpass coupler, thus preserving single-eontrol tuning throughout.

Construction

The photographs of Figs. (6-80 and 6-72 show one method of construction. The unit is housed
in a standard $5 \times 6 \times 9$-ineh steel utility box. Small rubber shock mounts are bolted to the bottom cover of the box so that the entire assembly can be mounted on a chassis close to the input circuit of the transmitter it is used to drive. larts layout within the bos is not critical, and naty be changed from the arrangement shown in the photographs to meet individual preferences, provided that ecrtain considerations are kept in mind. It is desirable to have as much isolation as possible between stages to eliminate stray coupling of the oscillator harmonic to the output circuit. For this reason all heater and d.c. supply leads are made with shielded wire with the shiold braid grounded at several points.

Most of the parts are mounted on an aluminum shelf cut to fit snugly inside the box, and spaced $11 / 8$ inches from the bottom. The interior of the bottom is divided into two compartments by a shicld as shown in the photographs. The larger compartment contains the oseillator eirruit, and the smaller the Class A and doubler stages. The coils in the smaller compartment should be mounted at right angles to one another.

In the top view, Fig. 6-70, the oscillator tube is at the right of the main tuning condenser, the Class A stage at the left, with the doubler eentered about $13 / 8$ inches in from the left hand edge. The adjusting screws for L_{2} and L_{3} are visible between the tubes. Band-sotting condenser 0_{2} is mounted at right angles to the main tuning condenser, with its adjustment shaft projecting through the right hand side of the case. The oscillator eoil is mounted on a ceramic insulator adjacent to the tuning condensers. An extension shaft is brought out from the rear of C_{1} so that additional stages may beganged to the oscillator tuning condenser if desired.

Fig. 6-70 - 'lop wiew of the silenced I HO with cover removed. The dial is a Millen type loos3.

Fig. 6-71 - Cirmit diagram of the silenced VFO.
$C_{1}-140-\mu \mu$ fil. varialle (Millen 191.10).
(2) - $200-\mu \mu \mathrm{fl}$. variable (Villen 10200).

Ca - $680-\mu \mu \mathrm{fd}$. silvered miea.
$\mathrm{C}_{4}, \mathrm{C}_{-}, \mathrm{C}_{11}-100-\mu \mu \mathrm{fl}$. mica.
$\mathrm{C}_{5,5}$ C $\mathrm{C}_{9}-68-\mu \mu \mathrm{fd}$, mica.
C6, C8, Cio, Ci3, Cis, Ci9-0.005- $\mu \mathrm{fl}$. dime veramie. Cl_{12} - ll.0 $0-\mu \mathrm{fd}$. paper.
C C_{14}, C. $\mathrm{C}_{15}-30-\mu \mu \mathrm{fl}$. mica trimmer.
$\mathrm{C}_{16}-\mathbf{2 5}-\mu \mu \mathrm{fl}$. mica.
($1,17-3.3-\mu \mu \mathrm{d}$ d, mica.
$\mathrm{R}_{1}-47,000$ ohms, $1 / 2$ watt.
$R_{2}, R_{4}-10,000$ ohms, $1 / 2$ watt.
$R_{3}-47,000$ ohms, I watt.

Adjustment and Operation

Some ardjustment of the amount of fixed capacitance used in the oseillator circuit may be required to permit tuning the range $8 \overline{5} \mathrm{ke}$, to 1000 kr . With the values shown, only the rew. portion of the $3.5-$ to $4-\mathrm{Mc}$. band will be covered by C_{1}. This results in greator bandspread, but if full coverage is desired, the $200-\mu \mu \mathrm{fd}$. condenser should be used as C_{1}, with the $140-\mu \mu$ fid. unit for C_{2}. A wide range of frequencies including the 11-moter band, can be covered by readjustment of the hand-setting condenser C's.

The most important adjustment is to make sure that the Class A stage is operating true Class A, because if grid current flows in this
$\mathrm{R}_{5}-330$ ohms, I watt.
$R_{B}-0.1$ megohin, $1 / 2$ watt.
$R_{7}-0.2: 2$ megolun, $1 / 2$ watt.
$\mathrm{R}_{\mathrm{s}}-0.25$-megohan potentiometer.
$1_{4}-32{ }^{\mu} \mathrm{h}_{\mathrm{h}}-47$ turns No. $24 \mathrm{~d} . \mathrm{s}, \mathrm{c}$., close-wound, 1 inch diam., tapped 11 turns from ground end.
$\mathrm{I}_{2.2} \mathrm{I}, 3-430 \mu \mathrm{~h}$. (C'TC $1.5-3$, 1 Mc ,
L_{4} - $160 \mu \mathrm{~h}$. - $\mathbf{6} \mathrm{S}$ turns No. 36 enam., I inch diam., close-wound.
I.s - $185 \mu \mathrm{~h}$. - 85 turns Vo. 36 enam., 1 inch diam., close-wound on same form as L_{4}, spaced approx. 3 is ineh.
stage, the oscillator harmonic will be heard in the reeciver even when the key is opened, defeating the purpose of the unit. To do this, resonate the plate circuit of the oseillator in the renter of the desired tuning range. Then do the same for the plate circuit of the Class A stage. If no wavemetor capable of tuning the required range is available, a receiver tuned to the broadcast band can be used. Connect a low-range voltmeter, through a $2.5-\mathrm{mh}$. r.f. choke, across cathode resistor R_{5} of the Class A stage. About 3 volts bias should be indicated. Now pull the oscillator tube out of its socket. 'The voltage read across h_{5} will remain the same if Class A conditions are being met. If they are not, reducing

Fig. 6-72 - Bottom view of the silenced VFO.

Fig. 6-73-Cireuit diagram of a suitable power supply for the silenced VFO,
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}-40-\mu \mathrm{fd} .450$ volt electrolytic.
$\mathrm{K}_{1}-10,000$ ohms, 25 watts, adjustable.
$\mathrm{H}_{2}-5,000$ ohmes, 10 watts, adjustable.
$I_{4}, I_{2}, I_{3}-15$ hy., 50 ma.
si_{1} - S.p.s.t. toykle.
'lí- Power transformer: 3:0)-0350 volts r.m.s., 70 ma.; 6.3 volts, 2.5 amp .; 5 volts, 2 any.

oscillator output be incrasing the size of h_{3}, or decresising the size of cither R_{2} or R_{4} should correct the trouble.

To adjust the bandpass coupler in the output circuit, it is first necessary to connect the unit to the stage it is to drive in the main portion of the transmitter. This should be done with as short a lead as possible. In the arrangement shown in the circuit diagram, direct connection of the output to the grid of the next stage is shown, so that the fixed bias applied to the keying eireuit can also be applied to the following stage. This is a requirement if full advantage of
(A)

(B)

Fig. 6.74- Two suggested methods of coupling the $V F O$ unit to the transmitter. In both cases the GIC7 is used as either a doubler or quadrupler from the output of the VFO. In A, a former crystal-oscillator stage has been revised to operate with fixed bias. In 13, a switching system providing for either VfO or crystal control is shown.
$\mathrm{C}_{1}-0.001-\mu \mathrm{fd}$. (or larger) mica.
$1 h_{1}-10,000$ ohms, $1 / 2$ watt.
$\mathrm{K}_{2}, \mathrm{R}_{3}-47.000$ ohms, $1 / 2$ watt.
S_{1} - I)ouble-pele 3-or-more-position ceramic.
the "silenced" feature of the dowign is to be gained, as explained below. Onee comnertion to the grid of the following stage is make, open one side of the secondary circuit of the bandpass coupler, separate the two coils as far as possible, and resonate the primary eireuit with the oscillattor set to the center of the band. Reconnect the secondary, open the primary circuit, and resonate the secondary cireuit, adjusting it for resonance in the center of the desired pass-band. A grid dip moter will be invaluable in making these adjustments, although they can be done, at a sacrifice of time, by other methods. Once both circuits are resonated properly, move one coil eloser to the other a fraction of an inch at a time until the response of the coupler is flat across the band. Output should be observed by noting grid current in the following stage as the main tuning condenser is tuned through its range. If the output varies widely from one end of the band to the other, readjustment of the trimmer condensers, and the coupling between the windings, is recpuired. sulficient drive for the former erystal oscillator in almost any modern transmitter should be available across the entire band. To climinate the last trace of signal from the oscillator, it is usually necessary to apply a certain amount of fixed bias to the grid of the stage into which the VFO works. When connected as indicated in Fig. $6-71$, the 75 volts bias from the VFO power supply will be applied to the grid of the following stage. If the following stage has a grid blocking or coupling condenser, this should be removed. Any grid leak in this stage also should be eliminated.

Adjustment of the keving eharacteristics is made by changing the resistance and capacitance in the keving circuit, as described elsewhere in this book. A variable resistance, R_{8}, is included, but some experimentation with the value of C_{12} may be needed to suit individual tastes.

The diagram of a suitable power supply for this unit is shown in Fig. ($0-73 . R_{1}$ should be adjusted until the two VIR tubes operating from this branch stay ignited under load. R_{2} should similarly he adjusted until the VR tube stays ignited under operating conditions.
(Originally deseribed in QST, Feb. 1950.)

A Beat-Frequency Exciter

Fig. 6-75 shows the circuit diagram of a transmitter frequenc ϑ-generating unit emploving the heterodyne principle. The output of the didKo crystal oscillator at 6500 kc . and the output of the 6.1 k 6 VF() , covering the range of 2650 to 3000 ke., are combined in a mixer of the babancedmodulator type. The output of the mixer, which makes use of a pair of 6 BL Gs , is tuned to the difference between these two frequencies to give the range of 3500 to $: 3850 \mathrm{kc}$. This range includes the c.w. portion of the 80 -meter band and, by adding suitable frequeney multipliers, all other bands up to and including the 28-Mc. hand can be covered. With a change of ervstal frequener, the unit will also cover the $8(0$-meter 'phone band.

The advantage of such a system is that neither oseillator need he keved for brak-in operation, simee the fundamental and harmonies of both oseillators fall outside amateur bands and therefore do not cause interference in the receiver. Both oscillators run contimuously, while the mixer is keyed. Thus the keying charateristic can be shaped as desired to climinate kev clicks without the danger of introduring chirp.
The 6 BEits in the balanced-modulator circuit are connected with their plates in push-pull. 'I'he VF() drive is fed to the two No. 1 grids in parablel, while the crustal-oscillator signal is fod in pushpull to the No. 2 grids. The VF() fundamental and harmonies are out of phase in the push-pull output cireuit and are cancelled to negligible amplitude, so that the only signal present is the desired difference beat to which the output cireuit is tuned.

Amplifier Section

The output of the circuit shown in Fig. $;-\overline{-7}$ will be quite low, and unless an adequate bufferdoubler section is already available, the addition of an amplifier will be necossary. Fig. 6-78 shows the cireuit of a stable output section sufficient to drive a beam-tetrode final to rated input on the

Fig. 6-75 - A heat-frequency exciter built by W6RZIL. The dial at the left controls the frequency of the VFO and thereby the frequency of the exciter output. The other two dials are for the crystaloseillator and amplifier-output tanks.
fundamental frequency. As a feature of convenience in tuning, a bandpass coupler is incorporated in the output of the mixer, thus making readjustment of this stauge unnecessary over the range of operating frequencies. This coupler, consisting of $C_{1} L_{1}$ and $C_{2} L_{2}$, Fig. 6-78, is merely sulstituted for the output cireuit $C_{7} L_{3}$ in Fig. is-77 when the amplifier section is added. The 6:AQ5 untuned buffer stage, although not strictly essential, provides a small amount of gain and, more important, eliminates the need for neutralizing the output stage, even when a poorly-sereened tube, such as the 6L6, is used.

Construction

Figs. 6-75 and 6-66 show an example of the construction of a unit of this type. The exciter shown in the photographs is not the one whose circuit diagram appears here, although the circuit is essentially the same aside from the use of regular-size tubes. Mechanical stability of the variable oscillator, its drift characteristics and freedom from a.c. ripple are just as important in the beat-frequency unit as they are in a conventional VFO. Although a high-C Hartley VFO is shown in the diagram, a Clapp-type circuit can be used just as well, with a probable improvement in drift characteristies. It is suggested that the first step in construction be the building of the variable oscillator, followed by the crystal circuit and then the mixer and amplifier sections in that order. The proper functioning of each stage can be checked as construction progresses. Individual shielding of the variable-oscillator and mixer coils is recommended. The output tank of the amplifier section should be shielded from the preceding stages by a partition. In the rear-view photograph of Fig. 6-76, the VFO is in a separate shock-mounted box to the right. The tube is mounted externally in a horizontal position. The power-supply to the left is likewise a separate unit and is cushioned to prevent transmitting

Fig. 6.76-Rear view of W6RZI's exciter. The shielded compartment encloses the variable oscillator. The power supply is a detachable shoek-monnted assembly. Octal, instead of miniature tubes, were used in this particular unit.

150 volts above ground, a keving relay is recommended as a safety measure. The electrical eireuit can be traced back from the key in Fig. 6-77. Shaping on both "make" and "break" is provided, with greater emphasis on the "break" characteristic. This gives the type of keving generally arerpted as most desirable. The larger-than-usual (0.1 μ fic.) plate and sereen bypass condensers, as well as the plate decoupling and sereen-dropping resistors, are all part of the shaping network. The "make" lag is introduced in the sereen lead through $L_{\text {fi }}$, which is the primary of a replacement-type 50 L (output transformer. Where the 6.dQ5-6L 6 output section of Fig. 6-78 is used, the sereen of the
Fig. 6.77 - Circuit diagram of Woow D's hasic theatfreguency sonree. Ontput from this mit will loe low and an amplifier is recommended undess alequate bufferdomber stages are already available. (See Fig, 6-78.)
$\mathrm{C}_{1}, \mathrm{C}_{2}-5 \overline{\mathrm{I}}-\mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{3 .} \mathrm{C}_{4}, \mathrm{Cin}_{2}, \mathrm{C}_{13}-\mathbf{0}, 01-\mu \mathrm{fd}$. disk ceramic.
$\mathrm{C} 5, \mathrm{C}_{15}-30-\mu \mu \mathrm{fd}$. trimmer.
$\mathrm{C}_{6}, \mathrm{C}_{8}, \mathrm{C}_{9}-\mathbf{0} .1-\mu \mathrm{fd}$. $\mathbf{6}(1)$-volt paper.
(:- - $100-\mu \mu \mathrm{fd}$, variable.
($\mathrm{i} 10-1.10$ - $\mu \mu \mathrm{fi}$. variable.
(14 - $240-\mu \mu \mathrm{fd}$. silvered mica.
C_{14} - $100-\mu \mu \mathrm{fl}$. mica.
$\mathrm{R}_{1}-1 \overline{2}, 000$ ohms, $1 / 2$ wat1.
$R_{2}, R_{3}, R_{6}-10,000$ ohms, 1 watt.
$R_{4}-1,000$ ohms, 1 watt.
$\mathrm{R}_{5}, \mathrm{R}_{9}-40$ ohms, $1 / 2$ watt.
$R_{7}-10,000$ ohms, 10 watts.
R_{8} - 3.9 megohms, I watt.
1.1-20 turns Xo. 24 d.e.e., $7 / 8$-inch diam., elose wound. L. 2 - 15 turns No. 2.4 d.e.c., center-tapped, wound over L.
L_{a} - 32 turns Vo. 21 d.e.e., $11 / 2$-inch diam., close wound, center-tapped.
Ia - 3 turns No. 18 hooh-up wire womd over center of L_{3}.
Ls - 19 thrns Xo. 20 enam., I $1 / 4$-inch diam., I inch long, tapped 5 turns from bottom.
L_{n} - Primary of 5016 output transformer.
RPC ${ }_{1}-2.5-m h$. r.f. choke.
vibration to the VFO. The tuned circuits of the mixer and amplifier are mounted underncath the chassis, although the tubes of these stages are above.

Keying

The 6BE6 converter tubes present substantially constant loading to the variable oscillator. To preserve this condition, cathode keying cannot be employed. IIowever, the tube design is such that Miller effect with changes in space current is nogligible. Thus, interruption of the plate and screen supply offers an excellent method of keying. Since this plares the "hot" side of the key at

Fig. 6-78-A stable output section giving sufficient loost in drive to handle a high-power heam final on the fundamental fregueney. Note the bandpass conpler sulstituted for the mixer output eircuit in l"ig. 6-7\%. Lise of the 6: 1 Q5 untuned buffer is discussed in the text.
$\mathrm{C}_{1}, \mathrm{C}_{2}-100-\mu \mu \mathrm{fd}$. trimmer.
$\mathrm{C}_{3}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}-0.01-\mu \mathrm{ff}$. disk ecramie.
$\mathrm{C}_{4}-0.1-\mu \mathrm{ff}$. 600 -volt paper.
$\mathrm{C}_{5}-100-\mu \mu \mathrm{fl}$. miea.
$\mathrm{C}_{9}-100-\mu \mu \mathrm{fd}$. variable.
$R_{1}-470$ ohms, $1 / 2$ watt.
$\mathrm{R}_{2}-470 \mathrm{ohms}, 1$ watt.
$\mathrm{R}_{3}-22,000$ ohms, 1 watt.
$\mathrm{R}_{4}-600$ ohms, 2 watts.
Rs - 22,000 olims, 2 watts.
only ones requiring adjustment for QSY. To "zero in" on a station to be called, switch S_{1} applies just enough voltage to the keyod circuit to provide a usable signal in the home-station receiver.

To maintain the keying characteristic through following transmitter stages, it will be necessary to observe two precautions. (1) In stages where fixed bias is used, the amount of this bias should be just sufficient to eut off plate current. Additional operating bias should be secured through grid resistance. (2) Adequate drive must be provided for each stage.

While the special problems of c.w. operation make the heterodyne exciter especially attractive in this field, it is equally adaptable to 'phone work. To cover the 75 -meter 'phone band, a 6850 -ke. erystal must be substituted for the $6500-\mathrm{kc}$. one used for c.w. The 'phone band will
1.1 - 32 turns No. 30 enam., in two equal seetions $11 / 2$ iturhes apart on $11 / 2$-inch-diam. form.
$1.2-26$ turns Xo. 30 enam. wound in area between sections of $L_{\text {t }}$.
La- 28 turns No. 14 enam., on $13 / 2$-inelh-diam. ceramic furm.
L4 - 3 turns No. 18 hooh-up wire, wound at cold end of L.3.
MA_{1} - 100 -ma. milliammeter.
$\mathbf{~} \mathrm{KFC}_{1}$ - 2.5 -mh. r.f. chohe.
RFC . -1.5 mh . r.f. choke.
be covered in the 2850 to $3000-\mathrm{kc}$. range of the variable oscillator.

Narrow-band f.m. is readily obtained by connecting any of the standard reactance-tube circuits to the variable-oseillator circuit. An important advantage of the heterodyne unit is that deviation is unaffected by exciter loading. This factor also makes the unit ideally suited for fre-quency-shift transmission on bands where such operation is authorized.

Fig. 6-79 - Cirenit diagram of a power supply for the beat-frequeney exeiter.
$\mathrm{C}_{1}-8-\mu \mathrm{fd} .600$-volt electrolytic.
$\mathrm{C}_{2}, \mathrm{C}_{3}-8-\mu \mathrm{fd} .450$-volt electrolytic.
$\mathrm{R}_{1}-10,000$ ohms, 10 watts, adjustable.
L. $-2.3-\mathrm{hy}$. $150-\mathrm{ma}$. 60 -ohm filter choke (Staneor 2304).
L_{2} - 16-hy. 50-ma. 580-ohm filter choke (Stancor C-1003).
S_{1} - S.p.s.t. toggle.
' I_{1} - Jower transformer: $350-0-350$ volts r.m.s., 110 ma.; 5 volts, 2 amp.; 6.3 volts, 3 amp. (I'hordarson T-22R32).

A Remotely-Tuned VFO

The VF() shown in Figs. 6-80 through (6-84 is a series-tumed Colpitts (Clapp) circuit built in two sections. The large compartment contans only the tuned cirenit (Fig, 6-81A), while the other contains the 5763 tube and a pair of 0132 voltage regulators (Fig. 6-813). The two are connected with a piece of double-conductor conaial cable that maty be of any length up to 10 feet or so. The advantages of such a sustem are, first, that the tuned circuit is well removed from heatgenerating equipment, including the oscillator tube itself, and second, that it forms a convenient means of remote frefuency control. While this arrangement was designed primarily as a driver for the frequener-multiplier unit deseribed hater in this chapter, in many cases the existing crystal-oscillator tube of a transmitter can be substituted for the second unit mentioned, if the tube is a (iAcis or 5763 . If the gridpliate crystal-oscillator cirruit is in use in the transmitter, it should be possible to feed the tuned circuit directly through the 2 -conduetor cable to the crestal terminals without modifying the crestal circuit in any way, RG-22/L is recommended for the comereting cable.

The oscillator operates in the 3.j-Mc. region and the handspread tuning system, consisting of C_{1}, C_{2} and C_{3}, is designed to cover the desired frequency ranges in three steps, when C_{1} and C_{2} are altered as described under Fig. (0-81. With one setting of C_{2}, the tuning eondenser C_{1} spreads the range of 3500 to 3750 ke , out over 95 per eent of the National ACN dial. Since this fundamental range rovers the most-used 80 -moter c.w. frequencies, and harmonies of this range cover all of the higher-frequeney hinds, excepting only
the 11 -meter band, this range will usually suffiee for 90 per cent of all operating. By shifting the setting of C_{2}, the range of 3750 to $4(0)(0) \mathrm{ke}$. is spread out over about $7 \overline{5}$ per eent of the dial. The 11 -moter band is provided for by a third setting of C_{2}.

Tuned-Circuit Unit

The tumed circuit is housed in a $5 \times 6 \times 9$-inch aluminum box. An enclosure of this size is needed not only to provide mounting for an adequate dial, hut abso to permit spacing the coil well away from the sides of the box so that its Q will not be drasticatly reduced bey the shielding in its field.

The dial is first mounted centrally on one of the 5×0-inch sides of the hox. The tuning condenser, (1 , is then coupled to the dial and the mounting step) at the rear of the condenser is supported against the bottom of the box with a heavy metal spacer cut to fit. The band-set condenser, C_{2}, is shaft-hole mounted 1 inch in from the left side and bottom of the box. This necessitates drilling the shaft hole through the edge of the dial frame. C_{3} is soldered directly across the terminals of (C_{2}, The knob is a National IIRS-5.

The 13 \& W coil is removed from its mounting by first drilling out the rivets in the plug-in base, leaving the motal angle pieces at each end attached to the roil, and unsoldering the leads from the pins. The link winding is carefully removed by snipping the turns and prying the spaceing blocks loose with a knife. (One turn is removed from the eoil itself. The coil is then mounted on National (is-1 pillar insulators so that it will be centrally located in the box in both directions.

The three-contact jack for the remote-tuning

Fig. 6-80 - The remotely-tnmed VFO, The large box contains the tuned eireuit, the smaller one the oscillator and voltage-regulator tubes. 'the two terminals on the smaller box are for output and key eonneetions. 'lhe power connector is at the end obposite the cable connection.

Fig. 6.81 - Circnit of the remotely-tuned V FO.
C_{1} - Approx. 12- $\mu \mathrm{\mu}$ fd. variable (Hammarlund IIF-15, rear stator plate removed, rear rotor plate bent; see text).
C_{2} - Approx. $23-\mu \mu \mathrm{fl}$. variahle (H ammarlund IIV-35, last stator and last two rotor plates remosed).
$\mathrm{C}_{3}-39-\mu \mu \mathrm{fd}$. silvered mica
$\mathrm{C}_{4}, \mathrm{C}_{5}-0.001-\mu \mathrm{fd}$ sitvered wira.
$\mathrm{C}_{0}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{8}-0,001-\mu \mathrm{fl}$) disk ceramic.
13_{1} - 17,000 ohms, $1 / 2$ watt.
R_{2} - 10,000 ohms, 10 watts, with slider.
$\mathrm{I}_{1}-35 \mathrm{~m}_{1}$ - 39 'turns No. $18,17 / 8$ inches long, $11 / 2$ inches diam. (B \& W JiEl.-80, I turn and link removed).
$\mathrm{J}_{1}, \mathrm{~J}_{2}-3$-contact female jack ($\mathbf{7 8}$-1 CCG 3 F).
J_{3} - Key jack - 'phomo inpot jack.
J_{4} - Insulated 'phone-tip jack.
$\mathrm{J}_{5}-4$-contact male connertor (C-I P-301-AB).
RFCi, RFP_{2} - I-mil. r.f. choke (National R-j0).
Note: R(,-22/L remote calble is terminated at cach end with Amphenol 91-N1PM 36 male cemnector to fit J_{1} and J_{2}.
cable is set in the laack of the box, and C_{4} and C_{5} are soldered to its terminals.

Tube Unit

The photographs show the essential details of the assembly of the tube unit. The enclosure is a standard $2 \times 2 \times$-inch aluminum box. The three tubes are mounted on a shelf spaced $1 \frac{1}{2}$ inches from the top of the box. This dimension is reitical if the tubes are to be removed without difficults: The keving and output jacks are mounted in one of the covers, below the shelf level, and the power connector is mounted at one end and the jack for the coas cable at the other. The resistor, R_{2}, is mounted on top of the

Fig. 6.82 - Interior of the toned-circuit box. Ca and Cosare to the rear. C_{3} is soldered across C_{2} to the left in front.
tion of the eonnections to the
keying and output jaeks and
the cable conneetor, can be done before the shelf the cable connector, can be done before the shelf
is placed in the box. This includes connections to the power comector which mounts from the inside. In the bottom view of Fig. ($6-84$, the plate
choke, $R F^{C} C_{2}$ is to the lower left, soldered between side. In the hot tom view of Fig. ($6-84$, the plate
choke, $R F C_{2}$ is to the lower left, soldered between Pin 6 of the 5763 socket and Pin 5 of the sorket of the first 0132 regulator. The cathode choke,
$R F C_{1}$, is above, with one end fastened to I'in 7 of the first 0132 regulator. The cathode choke,
$R F C_{1}$, is above, with one end fastened to I'in 7 of the 5763 socket, while the other end is left freer until the cover plate carrying the key jack is ready to be put in placer C_{6} is soldered directly arross J_{3}. Lauds of proper length are made for
the jacks and cable connector, and these comerarross J_{3}. Leads of proper length are made for
the jacks and cable connector, and these comections can be made after the shelf has been put in place, and just before the cover is put on. Care
should be used in placing the tubes in their sockplace, and just hefore the cover is put on. Care
should be used in placing the tubes in their sockets, since there is little height to spare. If neces-
sary, the tips of the tubes can be run up through ets, since there is little height to spare. If neces-
siry, the tips of the tubes can be run up through the ventilating holes in the top of the box to allow the pins to clear the sockets.

Power Supply

Any power supply delivering between 250 and 400 volts at 50 ma. or more may be used to operate this VFO. If a 12 i -ma. transformer, instead of the $70-\mathrm{ma}$. unit specified for the power-supply diagram of Fig. 6-90, is provided, the VFO and the multiplier unit may be operated from the single supply.
cen 250 and
used to op-
mer, instead
ower-supply
ve VFo and
ed from the
shelf, alongside the tubes, on the same side of the box as the keying and output jacks. This makes it possible to remove the tubes and adjust the slider by removing the blank cover of the box. The resistor is supported between two small angle pieces joined with a piece of threadel rod (or a long 6-32 serew) through the resistor form.

All wiring, with the exreption of the connections to the

Fip. 6-8.3 - The completed tuhe section with the tubes in place. Ventilation holes are drilled in the top of the box and in the plate covering the free side.

Adjustment

Adjustment of the frequency range for maximum bandspread is quite simple. Set C_{1} to a dial reading of 5 . Then adjust (C until the oscillator signal is heard on the receiver at 3500 kc . Set the receiver to $3 \overline{5} 50 \mathrm{kc}$. and andjust C_{1} until the signal is heard. If this occurs with the dial set at less than 100 , carefully bend the rearmost rotor plate of C_{1} away from the adjacent stator plate, making sure that the plates do not touch and short the condenser in any position of the rotor. Turn C_{1} again to a dial reading of 5 , reset C_{2} for 3500 ke , and cherek again for the point where C_{1} tunes to 3750 ke. By proper adjustment of the rotor plate on C_{1}, the $350(0)-$ to-350 $)-\mathrm{ke}$, range can be made to cover the entire dial, or as much of it as desired.

'Phone Band

After this initial range has been set, tune the receiver to 3875 kc . Set C_{1} to midseale and adjust C_{2} until the VFO signal is heard. Then the range of 3750 to $4(0) 0$ ke. should be approximately centered on the diab with a coverage of about $\overline{75}$ divisions. The range can lee shifted one way or the other by simply shifting C_{2} slightly.

11-Meter Band

If it is desired to center the 11-meter band on the dial, set C_{1} to midscale, set the receiver to $338^{-} \mathrm{ke}$, and andjust C_{2} until the VFO is heard. All three settings of C_{2} should be plainly marked so that they can be returned to when desired.

The cathode current may vary from about 28 mas. with both C_{1} and C_{2} set at maximum capacitance to 37 ma , with both at minimum.

In using the VFO, the tube unit should be placed close to the stage to be driven and fastened securely to the chassis. A short lead should be used to comere the output terminal to the grid of the stage to be driven. If the driven stage has no grid condenser, a $100-\mu \mu \mathrm{fd}$. mica condenser should be connected botween the output terminal and the grid of the driven stage. If more than adequate drive is ohtained, the sereen of the oscillator tube can be connected to the junction between the two V'l tubes, rather than to the end of R_{2} as shown in Fig. (i-81. This unit is not a power devire, and adequate gain in the way of a crustal-oscillator tube or other buffer amplifier should he provided.
(Originatly described in QST, Jan. 1953.)

Fig. 6-84- Bottom view of the tuhe-nnit shelf. $K F C_{1}$ is above, $R P C_{2}$ leefow. C_{6} is soldered to J_{3} on the cover plate. The two leads going to the left solder to the cable comnector. The one to the left aloove goes to J_{4}, the lead to the right to J_{3}.

A 6-Band Frequency-Multiplier Unit

The unit shown in Figs. 6-85 through 6-90 is it subassembly containing all tubes and cireuits necessary for multiplying frequency from any low-power 1.75 - or $3.5-\mathrm{Mr}$. VFO or erystal oscillator. It gives enough output on any of the six bands from 3.5 to 28 Mc, to drive any amplifier tube such as the $2 \mathrm{E} 26,80 \mathrm{~F}$, or 6146 . Changing from one band to another is simply a matter of clicking a switch and resonating with the single control for maximum grid current to a following amplifier.

The Circuit

The circuit diagram is shown in Fig. 6-86. The first stage, operating at 80 meters, uses a wellsereened tube, the GAKG, because it is called upon to work as a straight amplifier when the VFO output is in the same band. Type 6 Ct triodes are used in the remaining stages which are alvatys operated as frequeney multipliers.

The 80-meter circuit is designed to cover 3500 to $4000 \mathrm{kc} . \mathrm{C}_{8}$ is a bandspread padder. However, when the bandswitch is turned to the $7-\mathrm{Me}$, and higher-frequency positions, C_{11} adds enough caparitance across the 80 -meter tank rircuit to shift its lowest frequency to about $3: 350 \mathrm{kc}$. so that the harmonics will include the 11 -meter band. It is to this second range that the following stages are tracked. The 21-Mc, bond is reached by tripling frequency in the stage otherwise used for 14 Mc. The bandswitch shorts out an appropriate portion of L_{3} for 21 Mc .

The trimmers, C_{19} and C_{28}, are to compensate for the difference between the input rapacitance of the 6 C 4 s and the larger capacitance of the sercen-grid tube to be used in the amplifier, thereby automatically maintaining proper condi-
tions for tracking. C_{16}, C_{24} and C_{35} adjust the range over which the tuning condensers will tune.

All tubes are protered against excessive dissipation, when not being driven, by the use of cathode biasing resistors.

Construction

If dimensions are to be kept to a minimum, it will he necessary to make a special shielding enclosure of sheet aluminum. However, if size is not considered an important factor, a standard $5 \times 6 \times 9$-inch box can be used.

The chassis shown is made from sheet aluminum about $1 / 16$ inch thick. It is $41 / 2$ inches wide and $71 / 2$ inches long, with $1 / 2$-inch lips bent down along the longer edges for fastening to the sides of the box. The box is made to fit the chassis as closely as possible and has an inside height of $41 / 2$ inches. The front and the two sides are mate from a single piece, with $1 / 2$-inch lips bent along both top and bottom edges. Similar lips are bent along all four edges of the removable baek. The two rear comers of the chassis must be notched out for these lips.

The chassis is placed in the box with its top surface $21 / 4$ inches down from the top of the how and a row of $1 / 4$-inch holes is drilled along each side of the bos, just above the chassis level. The top rover also is perforated.

The bandswitch is made up from Centralab Switchkit parts. The index assembly is Type 1'-12:3 and the ceramic wafers are Type X having 6 positions, 5 of which are used. The switch is mounted on aluminum brakets (with the tie rods in a vertical plane) to loring the center of the shaft $11 / 8$ inches below the chassis. In the bottomview photograph, the first wafer at the top (80) is

Fig. 6-85 - This small package contains the necessary frequency multipliers to give output on any of the six ham bands from 80 to 10 from any $1.75-$ or 3.5-Nic. VFO or crystal oscillator. 'The switch knoh at the bottom selects the band, while the single tuning control resonates all circuits. Oscillator input is eonnected to the pin jack in front: output on the desired band is taken from the one to the rear, The large hole below the row of ventilating holes in the side is for adjusting the 14-Mc. grid trimmer, A single hole in the opposite side provides access to the 10 -meter grid trimmer.

Fig. 6-86-Circuit diagram of the single-control frequency multiplier.
$\mathrm{C}_{1}-470-\mu \mu \mathrm{fd} . \mathrm{mica}$.
$\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{11} \mathrm{O}, \mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14}, \mathrm{C}_{18}, \mathrm{C}_{20}, \mathrm{C}_{21}, \mathrm{C}_{22}$,
 $\mu \mathrm{fd}$ disc ecramic.
$\mathrm{C}_{7}-$ Approx. $^{6} 5-\mu \mu \mathrm{fd}$, variable (sce text).
Cs - 100 - $\mu \mu \mathrm{fd}$. silvered mica.
Co - 220- $\mu \mu \mathrm{fl}$. mica.
$\mathrm{C}_{11}-\mathrm{F}_{-}-\mu \mu \mathrm{fd}$, silvered miea.
Cis - Approx. $35 \cdot \mu \mu \mathrm{fal}$. variable (see text).
Cit - $150-\mu \mu \mathrm{fd}$. niea trimmer or $30-\mu \mu \mathrm{fl}$. nica trimmer and $4--\mu \mu$ fil. silvered mica in parallal.
$\mathrm{C}_{10}, \mathrm{C}_{24}, \mathrm{C}_{28}, \mathrm{C}_{35}-30-\mathrm{m}_{\mu} \mathrm{fd}$. mica trimmer (Millen 27030).
$\mathrm{C}_{17}, \mathrm{C}_{25}, \mathrm{C}_{26}, \mathrm{C}_{27}-100-\mu \mu \mathrm{fd}$. nica.

C:23, (:34-Aprox. 25- $\mu \mu \mathrm{fd}$. variable (sec text).
($33-4 \overline{6}-\mu \mu \mathrm{fd}$ mica.
$R_{1}, R_{4}, R_{f_{1}} R_{8}-22,000$ olimis, $1 / 2$ watt.
R_{2} - 3300 ohms, I watt.
$R_{3}-33.000$ ohms, I watt
$\mathbf{R}_{7}-2350$ ohms, 2 watts (two 4700 -ohm l-watt in (rarallel)
$\mathrm{K}_{9}-19.10$ ohms, 2 watts (3300 -olnn I -watl and 4700 . ohm l-watt in parallel).
 diam., clese-wound, or smaller wire spaced to length of $3 / 4$ inch (see text).
I. 2 - Approx. 4.2μ h. - 17 turns, ;-inclı diam., 1:/32
ineh long (1) \& || 3012 Miniductor).
L_{3} - Approx. $1.8{ }_{\mu} \mathrm{h}$. - 12 turns, $3 / 4$-ineh diam., $3 / 4$ ineh long, tapped at $61 / 2$ turns from ground end; sec text (13 N W 3011 Miniductor)
$L_{4}-$ Approx. $^{0} .4 \mu \mathrm{~h}$. - 7 turns, $1 / 2$-indi diam., Zio inch long (B \& W 3003 Nimintactor).
J_{1} - Fourementact male power connector (Jones P-304-
P_{1} - Four-contact female cable connertor (Jones S. 304 - (.C.J)
 S_{1} - 4-pole 6 -contart rotary switch (sce text for assemhy procedure).

Fig. $6-87$ - Top interior view of the frequency multiplier showing the tubes, coils and the tuning condenser gang. The 80 -meter coil is in the foreground with the 6 AK 6 to the right. The 40 -meter coil and plate trimmer are behind the GAK 6 with the 7-Mc. 6C.4 to the left. In the second section to the rear, the 14-Mc. coil with its 21-Mc. tap is to the left, followed by the 28-Mc. plate trimmer and tube. The $\mathbf{2 0}$-meter $6 \mathrm{C} \cdot \mathrm{i}$, its plate trimmer and the 28 -Mc. coil are to the ripht. The lips along the top edges of the box are duplicated on the bottom. The condenser gang is made up of two Hammarlund type IIFI). 100 units.
spaced $1 / 2$ inch from the index heard, with its point contacts to the left. The second wafer (40) is spaced 1 inch from the first with its point contacts to the right. The third wafer (20 and 15) is spaced 2 inches from the second with its point contacts to the left. The last wafer (output) is spaced 1 inch from the preceding one with its point contacts also to the left. The rear mounting bracket is spaced $1 / 4$ inch behind the last wafer. The front mounting bracket is fastened to the index head at the shaft bushing.

The tube sockets are plared $7 / 8$ inch in from the edges of the chassis. The GAK6 and the $14-\mathrm{Mc} .6 \mathrm{C}+$ are to the right, spaced $11 / 4$ and $43 / 4$ inches respectively back from the front edge of the chassis. The 7-Mc. and 28-Mc, tulses are to the left, spaced back $25 / 8$ and $61 / 4$ inches respectively.

The shafts of the two tuning-condenser units are coupled together with a Millen type 300003 rigid coupling. It may be necessary to file down the front end of the coupling close to the setserew hole to permit the setscrew to get a good grip on the short tail shaft of the front condenser. In the first condenser section at the front (80), the last 5 rotor plates are removed. In the second section (40), the first 9 rotor plates are removed. In the third section (20) and 55), the first 4 rotor plates are left in and the remainder are removed. The fourth stator plate of this section also is removed, but the rest of the stators are left in. In the last section, all rotors except the last four are removed.

The condenser gang is mounted on top of the chassis with its front mounting hole $1 / 2$ inch from the front edge of the chassis. In assembling the unit, the condenser gang should be mounted first with screws at the two inner mounting holes only. Then the switch gang underneath should be positioned and the mounting holes in the brackets drilled to match the front and rear mounting holes of the condenser gang. In other words, the switch brackets should be fastened to the chassis by means of the front and rear condensermounting screws. After the holes have been drilled in the switch braekets, remove the front bracket, fasten it down with the front condensermounting screw, slide the front of the switch into the front bracket, fasten with the shaft nut, and then fasten the rear switch bracket with the rear condenser-mounting screw.

Mount the tube sorkets with the pate terminals toward the nearest switch waider.

The two grid trimmers, C_{19} and C_{28}, are mounted vertically underneath, $C_{\text {I }}$ just to the rear of the second wafer and C_{28} immediately behind the third wafer. Half-ineh holes are drilled in the sides of the box and the chassis lips are notehed out so that these condensere can be adjusted from the outside. The three plate trimmore are fastened on top of the chassis, uing the nearest choke-mounting serew to fasten the grounded side to the chassis. The other termitral of the trimmer is soldered directly to the appropriate tuning-condenser stator terminal.

Coils

Approximate inductance values for the coils are given under Fig. 6-86 for the henefit of those who must wind their own. However, the use of the 13 is Winiductor coils has the advantage that the original coil dimensions can he duplicated closely. This is necessary if pruning of the coils for fracking is to he avoided. The 30 -meter coil, L_{1}, is wound on a Millen bakelite 1 -inch diameter form, fastened to the chassis. The other coils are supported by their leads which are soldered directly to the condenser terminals. The 21-Mc. tap on L_{3} should be made with a piere of wire about 3 inches long. When the outer ends of the owil are soldered arross the condenser terminals, this tap, which comes near the top of the seventh

turn, should be bent in a swerping curve around the outer side of the coil (rounterdorkwise as viewed from the front) to the end of a wire from the boundswitch, coming up through a hole in the chassis drilled alongside the condenser frume. The tap is soldered to the elid of this switch wire. Bon't elip off the exerss till length until adjustmonts for tracking, described hater, have been made.
The Centralah switches have two rotor contats and C_{y} and C_{17} are most conveniently mounted by opening up the lower rotor contart so that it does not make connection with the rotor, and then soldering the condenser hetween this terminal and the other rotor terminal above. The lower terminal is then used also as a tie point for the preceding $0.001-\mu$ fol phate blocking condonser and a lead going through the chassis to the tuning-condenser stator terminal above. C_{25} and C_{26} are soldared directly between the contact terminals of the two switch sections, while \boldsymbol{E}_{27} is soldered between the terminal of the switch and the top end of the near-hy grid choke. LiFC ${ }_{\overline{5}} . C_{1}$ is soldered between the input pin jack and the grid terminal of the 6. AK 6 socket.

Mounting the Unit in a Transmitter

In mounting the multiplier unit on a chassis with other stages, it is not necessary, of course, that it be placel close to the panel. By using extension shafts, it can be placed as far to the rear as desired. The unit should be fastened

Fig. $6-88$ - Bottom view of the multiplier chassis showing the bandswitch, r.f. ehokes and other small components. 'The 80 -meter circuit is at the top, the 10 . meter eircuit at the bottom. The 20 -meter grid trimmer is to the right and behind the second switth wafer. The IO-meter grid trimmer is to the left of the third wafer. This vien also shows how the removalbe back of the enclosure is made. 'The text describes a somewhat diffrent and simpler method of mounting the switch.
securely to the chassis and the amplifier tube mounted close to the output terminal. The grid of the amplifier should be connected to the output terminal of the multiplier unit with a short wire well spaced from the chassis, and the cathode. of the amplifier should be grounded or hy-passed immediately to the chassis. If the grid wire, or the path from the amplifier cathode to the multiplier box is much over 6 inches long, there may be a noticeable loss in output at 28 Me., and it may not be possible to resonate the higher-frequency multiplier circuits.

It is preferable also to have the oscillator located on the same chassis as the multiplier unit so that the coupling leads will be short. However. if the oscillator has the power and tuning range to spare, a piece of coax cable can be used, as shown in Fig. (i-89). In order to do this, it must be possible to retune the oseillator output cireuit to compensate for the capacitance of the cable.

Power Supply

A power supply delivering 375 to 380 volts at 60 or 70 ma . is required to operate the unit. To assure adequate output, the supply voltage should be close to this figure, A suitable circuit is shown in Fig. 6-9.

Adjustment

Until the unit has been tuned up, no plate on screen voltage should be applied to the amplifier. Means should be provided for cherking the amplifier grid current, or the voltage across its grid leak. While it should he possible to make adjust-

TABLE 6-I Typical Voltage Readings* (Supply Voltage 380)									
Stage		80		40		$20 /$	15	10	
Suitch Position	$\begin{aligned} & \text { Cath- } \\ & \text { ode } \end{aligned}$	Grid Leak	Screen	$\begin{gathered} \text { Cath } \\ \text { ode } \end{gathered}$	Grid Leak	$\begin{aligned} & \text { Cath- } \\ & \text { ode } \end{aligned}$	frid Leak	$\begin{gathered} \text { Cath- } \\ \text { ode } \end{gathered}$	Grid Leak
80	65	25	235	17	0	19	0	16	0
40	60	30	221	40	97	19	0	16	0
20	59	30	211	36	96	72	126	16	0
15	58	31	207	34	89	93	106	16	0
10	58	30	207	34	89	69	120	45	130
* By dividing these voltages by the associated resistance values, any desired current value thay be easily calculated.									

ments without matering the multiplier unit, the jol will be a little easier if a milliammeter is inscrted temporarily in the high-voltage lead to the power supply, at least.

With the switch in the 80 -moter position, turn on the oscillator and tune it to 3500 ke . (1750 ke . if the oscillator output is at 160 meters). If the oscillator is crystal-controlled, use the lowestfrequency crystal at hand. Now resonate the multiplier for maximum drive to the amplifier. With the multiplier tuned to resonance, adjust the coupling to the oscillator to give maximum drive to the amplifier. Maximum drive should occur with the oseilator developing a bias of 15 to 30 volts across the grid leak of the 6AK6. If no other means is available, the drive to the Galig can be reduced by reducing the size of C_{1}, Fig. ($0-89$. If a V FO is used, the multiplier should be checked at hoth 3500 and 4000 ke. to make sure it is covering the proper frequency range. (The multiplier must always be retuned, of course, for any appreciahle change in oscillator frequency.) It may be necessary to spread out the last few turns of L_{1} on the coil form to get the circuit to hit both ends of the band. Drive to the

Fig. 6.89 - Suggested method of coupling VFO to multiplier unit. C_{1} should be adjusted to give proper drive to first multi-plier-unitstage.
amplifier should be essentially the same anywhere in the band, providing the output of the oscillator is reasonably eonstant.

With the 80 -meter stage working properly, the switch should be turned to the $\overline{\text {-MC. position. }}$ Set the VFO to 3500 kc . and resonate the multiplier. If there is no indiation of drive to the amplifier, it may he necossary to adjust the 7-Me. trimmer, C_{16}, a little bit at a time, retuning the gang, until an indication of output is ohtained. As an aid, a milliammeter in the highvoltage lead should show a dip when C_{16} is tuned through resonance. When an indieation is obtained, tune the gang for peak drive and then adjust C_{16} to increase the peak. The correct adjustment is the one where no readjustment of either the gang or the trimmer will increase the drive. Now turn the oseillator to 3750 kc . and retune the multiplier. The drive to the amplifier should be essentially unchanged.

Now tune the oscillator back to 3500 ke. and retune the multiplier for maximum output. Leave the multiplier and oscillator tuning at this point and turn the bandswitch to 14 Mc. Adjust first C_{24}, and then C_{19}, for maximum amplifier grid current. It may take a little juggling back and forth between these two before a maximum reading of drive is obtained. The milliammeter in the high-voltage lead should

Fig. 6-90-Cirenit diagram of a snitable power supply for the frequency-multiplier unit.
$\mathrm{C}_{1}, \mathrm{C}_{2}-16-\mu \mathrm{fd}$. $600-\mathrm{vol}$ whg. electrolytic.
R_{1} - 50,000 ohmis, 10 watts.

1. 1 - 12 -hy. 80 -ma. filter choke.

St S.p.s.t. toggle suiteh.
T1-Power transformer: 350.0 .350 volts r.m.s., $\mathbf{T} 0$ ma: 6.3 volts, 2.5 amp; ; 5 volts, 3 amp. (Stancor P-10:8 or eqnivalent).
show a dip when C_{24} is tuned through resonance.
Leaving all tuning adjustments fixed, turn the switch to the 21-Me, position. Now adjust C_{24} carefully and note whether an increase or decrease in caparitance causes an inerease in drive to the amplifier. If it is an increase, lengthen the tap wire (see preceding section on coils) slightly. Then turn the switch back to 14 Me , and readjust C_{24} for maximum drive. Then switch batek to 21 Mc. and cheek carefully arain. By adjusting the length of the tap wire carefully, it should be possible to arrive at a condition where maximum drive is ohtained both at 14 and 21 Mc. with the same adjustment of C_{24}.

Adjustment for 28 Mc . is similar to that for $1+$ Me., although it will he more critical. Careful adjustment of C_{28} and C_{35} will be necessary for maximum amplifier drive. The 11-meter band is eovered by tuning the multiplicr to resonance at the desired frequency with the switeh in the 28-Mc, position. The various circuits should be cheeked with an absorption wavemeter to make sure that they are tuning to the right multiple.
When the above adjustments for the lowfrequency ends of the various bands have been completed as described, it should be found that the output will be essentially the stme at any point within a given band.

The accompanying tables show typical voltage readings taken with the unit in operation driving the grid of a 6146 amplifier.
(Originally deseribed in QST for April 1952.)

TABLE 6-1I Typical Total Current and Output Readings*					
	80	40	20	10	10
Amplifier bias ** (rolts)	152	195	187	144	140
Total B ma. at resonance	41	47	53	60	60
Total B ma. off resonance	45	58	75	78	85
Total B ma., no exicitation - 35					
* Average supply voltage 380 . * Voltage measured across 39,000 -ohm grid leak of unloaded 6146 amplifier.					

A 6146 Multiband Amplifier

Figs. 6-9) through ($6-95$ show the eircuit and constructional details of a 6146 amplifier using a National multiband tuner (Type MB-40SL). It is capable of handling up to 90 watts input at (600) volts with plate-sereen modulation, or up to 750 volts for c.w. operation. This unit, contained in a standard $5 \times 6 \times$ 0-inch aluminum box, was
thereby removing the d.c. from the condenser. The eenter tap of the low-frequency coil, L_{4}, as well as the rotors of the low-frequency tank condenser are grounded. The low-frequency condenser section is the one at the rear.
A combination of fixed bias and a $61 Q 5$ clamp tube cuts the input to zero when excitation is

Fig. 6.91 - Circuit of the shielded 6146 multiband amplifier.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{6}-\mathrm{O},(\mathrm{OH1}-\mu \mathrm{fl}$, disk.
($\mathrm{B}_{3}, \mathrm{C}_{4}-0.001-\mu \mathrm{fd}$. 1200 -vole mica.
$\mathrm{R}_{1}, \mathrm{l}_{2}-20,000$ ohms, 10 watts.
$\left.\mathrm{K}_{3}-11,()_{0}\right)$ ohms, 2 watts (two 22,000 -ohn 1-watt units in parallel).
$\mathrm{R}_{4}-12,000$ ohms, $1 / 2$ watt.
$\mathrm{L}_{1}-5$ turns No. $16,1 / 4$-inch diam., length adjusted for v.i.f. parasitic, approx. $11 / 2$ inches long.
$\mathrm{L}_{2}, \mathrm{I}_{3}, \mathrm{I}_{4}$ - Vultiband-tuner coils (see text).
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Shielded phono jack.
J_{3}-Octal power plug.
designed primarily as an amplifier to follow the 13andbox frequenc y-multiplier unit deseribed in the preceding sertion.

The circuit diagram is shown in Fig. 6-91. To permit operation at 600 or 750 volts without excreding the voltage breakiown rating of the tank condensers in the multiband tuner, the original series plate feed was changed to parallel feed,
removed. The 6adij is connected as a tetrode with its sereen operated from the voltage divider mate up of R_{2} and R_{3}. This provides a heavier clamper-tube current at low amplifier screen volt:iges than with the triode connection which permits the clamper-tube screen voltage to fall along with its plate voltage when excitation is removed from the amplifier.

Fig. 6.92 - In 80 -watt am plifier using a 6146 and a moltihand tuner.

Construction

All assembly and wiring can be done before the unit is placed in the box. As shown in Fig. 6-94, the two tubes are mounted on aluminum brackets slung from the left side of the frame of the tuner condenser. These are each $21 / 2$ inches square, not including a half-inch mounting lip at the rear. (The two separate brackets night well be replaced with a single shelf running the length of the condenser frame.) In the photograph of Fig. 6-94, the lip of the 6146 bracket is bent upward, while the lip of the 6AQ5 bracket is bent downward to provide room for the components underneath. (If a single shelf is used, the lip should be bent downward.) The only other essential precaution is to place the socket of the 6146 far enough away from the tuning unit so that the tube will not interfere with the swinging of the output link. The brackets are fastened to the side strip of the condenser frame by drilling and tapping holes in the frame for $6-32$ screws.

Before the brackets are fastened permanently, the holes for the two controls should lie spotted on the front of the box. These should be centered $11 / 8$ inches from the hottom of the box in Fig. $6-92$, and so that they will line up with the two control shafts when the bottom of the condenser frame is resting against the left-hand side of the box. (The stand-off insulators furnished with the unit should be removed and the tuner mounted directly by its metal feet.) The shafts are cut off so that they may be coupled to panel-bearing units. Holes for the power plug and coax connector should be punched at the rear of the box where they will not interfere with the placement of the unit in the box. Holes should also be drilled in the bex for the output connector, J_{2}. This is placed near the junction of the two brackets, as seen in Fig. 6-94.

Three-terminal tie points should be fastened underneath the 6AQ5 bracket for mounting the

Fig. 6-94 - Side view of the multiband amplifier.

four resistors. The griel choke, $R F C_{1}$, is mounted on a small angle fastened underneath the 6146 bracket.

In Fig. 6-95, the plate r.f. choke is threaded onto one of the assembly screws, while the plate by-pass condenser, C_{3}, is fastened by its lower terminal with a screw tapped into the condenser frame. The plate hlocking condenser, C_{4}, is mounted by soldering one of its terminals to the rear stator terminal of the tank condenser. The parasitic choke, L_{1}, is wound in the lead from the outer end of the plate r.f. choke to the 6146 plate cap. A short lead connects one of the link terminals to J_{2}, while the other link terminal is grounded to one of the J_{2} mounting screws.

All power wiring should be done with shielled wire. This includes all wiring to the clamper tube.

Depending on the most convenient arrangement in combining the amplifier with other units, it may be used either in a horizontal position, as shown in Fig. 6-92, or in a vertical position. In the latter case, ventilating holes should be drilled in the side that will be the top.
The following section discusses power supply for and operation of this amplifier.
(Originally deseribed in QST, May, 1953.)
Fig. 6.95 - Rear view of the 6146 amplifier.

A Bandswitching 80-Watt Transmitter

Figs. 6-96 through 6-99 show how the three preceding units may be combined to form a bandswitching VFO trimsmitter covering 6 hands. lower supply for all units is included.

Circuit Considerations

Fig. 6-97 shows the circuit external to the individual units. Iligh voltige for the 6146 amplifier is obtained from an inexpensive b.c. transformer, T_{1}, working into a bridge rectifier. The supply delivers 550 volts at a full load to the amplifier of 150 ma . on c. 1. A choke-imput filter is used with this supply, and the 6N5(iT rectifier filaments are operated from the 6.3 -volt winding of this trinsformer. The required filter-condenser voltage rating is obtained by connecting 500)-volt electrolyties in serics. I supply voltage of bson for the VHO, frequency multiplior, and the sereon of the 6146 is obtained from at second supply using a condenser-input filter. All trinsmittertube heaters are operated from the 6.3 -volt winding of the low-voltage transformer.

Provision is made for the external connection of a plate modulator. There are Jillen safety terminals at the rear for connecting in the output of the modulator, and an audio choke is included for the sereen circuit. Also, an a.c. outlet and switch, S_{1}, are available for the modulator power supply.

The rotary switch, S_{3}, performs, in a single opration, the combined daties of power control and meter switching. In the mid-position, the moter is switchod to read grid current, plate voltage is removed from the 6146 , and the sereen is grounded. While the switeh is in this position, the VFO may be set to frequency and the frequency multiplien tuned for the desired amplifier
grid current without putting a sigmal on the air. When the switch is thrown to the right, plate and screen voltages are applied to the amplifier, and the meter reals plate current with a 10 -times shunt across the meter. This is the operating position for e.w.

For 'phone operation, the switch is thrown to the left, instead of to the right. In this position, the molulator-input terminals are connected in the phate circuit of the 6146 , and the choke, L_{1}, is inserted in the sereen lead.

Construction

The components are assembled on a $1: 3 \times 17 \times$ 3-inch steel chatssis, with a $3 / 16$-inch aluminum rack panel $83 / 4$ inches high. An aluminum chassis could be used, but is not neressary since the units atre already shielded in aluminum boxes. Also, since each of the r.f. units is shielded and filtered, the power wiring has been done with ordinary unshicked wire, although, of course, there is no objection to the use of shiedded wire.

The frequency-multiplier unit is placed at the left-hand end of the chassis, far enough to the rear to allow space for shaft couplings betwern the panel and the shaft bearings. To facilitate the use of coan-cable r.f. connertions between the units, the bakelite pin-jack input and output terminals of the frequency-multiplier unit were replaced with shieded 'phono jacks, similar to those suggested for the VFO and amplifier units.
The amplifier is mounted at the right-hand end of the chassis. If the shafts of the panel bearings for the amplifier unit are long enough, the unit can be spaced back of the panel the same distance as the multiplier unit. In this case, the link shiff is run through a $1 / 4$-inch hole in the

Fig. $6-96$ - In 80 -wat 6 -hand handswitrhing transmiter built around VF(),
frequency-multiplier and output-stage units descrihed in preceding seetions.

Fig. 6-97 - P'ower and control circuits for the 80-watt multiband transmitter.
$\mathrm{Ci}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}-16-\mu \mathrm{fd}$. B 00 -wht electrolytie (c.g., Acrovox PRS.10).
R_{1} - 100 ohms, $1 / 2$ watt.
R_{2} - 10 -times shumt for 25 -ma, meter (No. 30 wire wound on 1 -watt resistor of 50 ohms or more and eonnected to its terminals. Adjust turns to reQuired multiplication, see instruments chapter). $R_{3}, R_{4}-20,000$ whms, 10 watts.
R_{5} - 50,000 ohms, 10 watts.

L_{2} - i-hy. 150 -ma. filter choke (e.p., Walldorson (:502%.
1.3-10.5-hy. 110 -ma. filter choke (e.g., Staneor 1001). $\mathrm{NA}_{1}-3$-ineh dic, milliammeter, 25 -ma, seale (e.\&., Triplett 32-1).
panel, while the tuning-rondenser shaft is cut to fit the insert of the National AM dial. If the shafts have been cut short, however, it will be necessary to move the unit farther back to make room for shaft couplings.

The VFO unit is mounted in the rear left-hand corner of the chassis, with the remotetuning cable connector toward the left.

All three units are fastened down to the chassis with self-tapping sorews from the bottom. If a steel chassis is used, the aluminum cover plates of the multiplier and amplifier units should be used between the chassis and the bottoms of the boxes, the self-tapping mounting screws going through both the chassis and the covers into the lips of the boxes. The paint on the chassis should

Fip. (0-98 - Inside view of the 80-watl multihand rig. Two power supplies are sandwiched in het ween the individually -shielded umits. Along the rear are modulator-input terminals, a.c. input connector, and an ontlet for an external modulator power supply.
P_{1} - Oetal male connector (Amphenol 86-PF-8).
1_{2} - Vemale cable connector to fit Vfo commeetor (Jones S-304-C(20').
I_{3} - Vemale cable connertor to fit miltiplier connetor (Jones S-304-(CD' ${ }^{(1)}$).
$\mathrm{S}_{1}, \mathrm{~S}_{2}$-S.p.s.t. togyle switele.
S_{3} - 4-wafer 3 -position rotary switeh, bakelite insulation (e.g., Centralab 1.42 ${ }^{-}$, or assembled from Switchkit parts).
Γ_{1} - Power transformer: 3 -5 $0-3 \overline{5}$ volts rimas., lino ma.: 5 volto, 3 amp.: 6.3 volts, 4.1 amp, (e.g. 'Thordarson 241206().
' I_{2} - I'ower transformer: 3600 - $3(0)$ volts r.m.s., 120 ma.: $\overline{3}$ volts, 3 ampr; 6.3 volis, 3.5 amp. (e.g., Haldarson P-9315).
be removed in the areas to be covered by the units, so that the shielding will make good elecetrical contact with the chassis. This operation can the made easier by using an application of paint remover, heing careful not to allow the remover to ereep beyond the limits of the edges of the

CHAPTER 6

Fig. 6-99 - Bottom view of the 80-watt handswitching transmitter. The low-voltage powersupply components and sereen andio choke are in the upper left-hand corner. Below, at the center, are the filter components for the high-voltage supply. The biasing battery is hedd in place by an aluminum eleat and a pair of long machine serews. The power-eontrol switch is at the lower left.
units and thus spoil the appearance of the chassis.

The low-voluge transformer. T_{2}, is centered between the two larger units, and placed as far to the rear as possible. A flush-mounting transformer happened to be on hand, but a vertical type is easier to mount, since it reguires no large cutout on the thassis. The 5 Ii3 iT is plared to the rear of the amplifier box, in such a position that it will not interfere with the power plug.

The high-voluge transformer, T_{1}, is mounted in front of the low-voltage unit with a space of about $1 / 4$ inch between the two. The two 6.55CTs are, in turn, mounted forward of the high-voltage transformer, spaced ahout 3 inehes apart, center to center. The 5 V 4 G is in front of the right-hand 6X5CiT, leaving space for the meter.

The meter is mounted behind the panel as a safety measure. It is held in an aluminum bracket, with the fare of the meter flush with the front elge of the chassis. The meter should be placed so that its eenter comes about 7 inches from the left-hand end of the chassis, and the center of its scale about $5 \frac{1}{2}$ inches up from tive bottom edge. The meter-scale opening in the panel is eut out to fit the inside dimensions of a National CFA chart frame. If lesired, a hole can be drilled in the panel to give access to the zeroadjust serew of the meter. A similar chart frame, centered $31 / 2$ inches below, helps to balance the panel layout and is very useful for logging the multiband-tuner settings for the vartious bands, since it is not too difficult to tune the amplifier up on a harmonie, instead of the desired funditmental, without realizing it.

The two power switehes are placed either side of a line running through the two multiplier controls, and the rotary switeh, S_{3}, is centered on a line between the two amplifier controls, These three switches are mounted $11 / 2$ inches up from the bottom edge.

Pancl bearings for the controls are not used, the short extension shafts riding in $1 / 4$-inch holes, reamed out just enough to provide free turning without excessive play.

Holes lined with rubber grommets are drilled
plugs that fit the shielded 'phono jacks can be easily attached to the ends of the $12 \mathrm{G}-59 / \mathrm{U}$ by baring the center conductor so that it will extend through to the tip of the plug, and fraying the braid out around the shell of the plug, and soldering. Be sure, however, to lave enough of the inner insulation so that the inner conductor does not short against the grounded shell. After the cables have heen carefully made up, it would be well to check for short-circuits with an ohmmeter.

The filter and audio chokes can be seen in the bottom-view photograph. The filter eondensers are also mounted under the chassis, supported at carh end on terminal strips. The biasing battery is held in place with a simple clamping arrangement. A pair of 2 -inch machine serews are spaced slightly greater than the width of the battery. They are fastened permanently in place with nuts. An aluminum cleat with holes to fit the machine-screw spacing is held down with nuts and lockwashers at the bottom ends of the screws.

The cabinet shown is a Par-Metal DI-128. A hole is cut in the left side, toward the rear, to line up with the connector in the VFO unit for the remote-tuning cable.

Adjustment

Adequate drive is obtained with the VFO screen operated from the tap between the two VR tubes in the VFO unit (approximately 108 volts). With a fixed bias of 45 volts and a $12,000-$ ohm grid leak, grid eurrents in excess of 3 ma . shoult be obtatinable on all bands. It should be limited to 3 ma. by detuning the multiplier unit. If the power supply shown is duplicated, the high-voltage supply should deliver 550 volts under a load of 150 ma . plus bleeder current, making the operating input to the amplifier a little over 80 watts. For 'phone operation, the 40 -watt 807 modulator shown in the chapter on speech amplifiers and modulators should be just about right for this transmitter. The modulationtransformer seeondary should be set for 5000 ohms, and the plate current under modulation should be limited to 112 ma .

A High-Power Tetrode Amplifier

Figs. 6-100 through 6-105 show the construction of a high-power tetrode amplifier covering all bands from 3.5 to 29 Mc . It is capable of heing operated at an input of 1 kw ., although it will operate efficiently at less input.

The circuit is shown in lig. 6-101. The tube is the type +250 A . A National type MB-40L "all-band" tank is used in the gride circuit. This circuit is a combination of inductance and variable condensers that may be tuned to any of the above bands without switching or changing coils, A pi-sertion tank circuit is used in the output. It is designed to feed into a flat 52 - or 75 -ohm line, either feeding an antenna directly or through a conventional antenna coupler. A 13 \& W rollingtype variable inductance makes coil switching unneressary in this circuit also. L_{2} is a separate inductance section for $28 \mathrm{Mc} . S_{1}$ selects the proper network output capacitance.

The amplifier is neutralized by the capmitivebridge method. C_{2} is the neutralizing condenser. L_{1} and R_{1} form a v.h.f. parasitic-suppressor circuit. The plate of the amplifier is parallel-fed through the special r.f. choke, $R F C_{4}$. All power leads are filtered for $\mathrm{v} . \mathrm{h} . \mathrm{f}$. harmonics. B_{1} is a small electric blower required as an aid in dissipating the heat developed inside the shielding enclosure. $R F C_{3}$ is a safety choke to provide a d.c. path to ground in case C_{27} breaks down. Otherwise, high voltage will appear on the output cable if the condenser fails.

Construction

The amplifier is assembled on a standard chassis, $17 \times 10 \times 3$ inches, with a $101 / 2$-inch panel. The grid tuner is mounted in a separate shielding enclosure at the right-hand end of the chassis in Fig. 6-102. This box is $31 / 2$ inches wide, 5 inches high and 7 inches deep, made of $1 / 16$-ineh aluminum sheet. This same material is used throughout the construction. A coax fitting at the rear of the grid-tuner box is the input con-
nector. The grid and neutralizing leads pass through the side of the box into the large compartment. The constructional details of the latter maty be seen in Fig. 6-101. The over-all dimensions of this section are $133 / 8 \times 10 \times 71 / 8$ inches high. Three-quarter-inch flanges are bent along atl four edges of the side pieres. The front and back pieces have these lips only along the top edges, since they are made high enough to allow an overlap e cer the edge of the chassis at the bottom. All sides, except the top, are fastened together with $6-32$ serews and nuts. The top lid is fastened down by tapping serew holes along the lips around the top edges, and is perforated with $1 / 4$-inch holes above the area of the tube.

It is important that the pieces for this enclosure be made accurately so as to leave no gap at any point. If necessary, the pieces can be made by a local sheet-metal worker.

The plate timk condenser is mounted centrally in the box, using sheet-aluminum brackets to space it from the bottom. The condenser is placed with its end plates running vertically, i.e., on its side. The variable inductance, L_{3}, is placed alongside the condenser with the small fixed coil, L_{2}, mounted by fastening one end to the forward right-hand terminal of the variable inductance and the other end to a lug under one of the rear condenser-stator nuts. A flexible strip of copper connects the coax output fitting to the rear terminat of the variable coil.

The output condensers, excepting C_{4}, are stacked up behind the variable coil and the selector switch. S_{1}, is mounted on a small bracket to the rear, so that a control shaft may be run to the panel in between the tank coil and condenser. C_{4} is soldered directly across the output connector. It maty be helpful to series-resonate this condenser at the frequency of a local TV station to minimize TVI. This can be done by adjusting the length of the condenser leads and checking with a grid-dip oscillator, as described in the

Fig. 6-100 - A high-power shielded tetrode amplifier. The small enelosure at the left contains an all-band tuner for the grid cirenit. The dial near the center controls the input condenser of a pisection output tank, while the knob at the right is the control for a roller-tyie variable inductance. 'lhe switch below seleets the proper output eapacitanee.

Fig. 6 -101 - Circuil diagram of the amplifier. The broken line separates the alove. and below-ehassis wiring.
$\mathrm{C}_{1}-220-\mu \mu \mathrm{fu}$, mica.
C_{2} - Disc-type neutralizing condenser, apuran. $2 \mu \mu \mathrm{fd}$. will at least $1 / 4$-ind spacing (a atiomal $\lambda \mathbf{0}$: 800 A).
 (vational'TMA-150A).

C9, CAO-470- $\mu \mu \mathrm{fd}$, mica, 2000 volts.
(811 to C.22, ine - $0.0101-\mu$ fal, dise ceramie, 600 volts.

 tralal, 'TV3-501).
R_{1} - Fiwe 0 (RO) orlm I -watt carhon resistors in parallel.
Id - Parasitic miil, $51 / 2$ tarns No. $11,1 / 4$-inch diam. R_{1} tapiod arross 3 turns.
$1_{22}-5$ lurns No. $10,21 / 2$ inches long. $11 / 2-\mathrm{inch}$ diam.

chapter on TVI, At the lower TV frequencies, the condenser lead can be formed into at smadl coil of a turn or so.
The plate-feed r.f. choke, $R F Y_{4}$, is plateed to the rean of the tank condenser. To be effertive on all hands, induding the 21-Mo, band, it is neressary to alter the windings slightly, as shown in Fig. 6-103. It is a good iden to sherk the choke for resonanees with a grid-dip oscillator after it has beren placed in the position it is to orcupr, but before it has been wired in, beesuse proximity to surrounding compononts and shiolding may affect the resonanees. Performane of the choke will be poor at any frecpuency where the g.d.o. shows at resonance with the terminals of the choke short-circuited.

The tube socket is mounterl above the chassis on spacers that are just long emough so that the shiodded wires going to the sereen and filament terminals, with their he-pass condensers, just span the distane between the socket terminals and lugs fastened to the chassis bobow math terminal. The lead then immediately passes through the chassis. Strips of copper sheet connert the plate terminal of the tube to the top torminal of the plate choke and the rotor terminal of the neutralizing rondenser mounted on the righthand wall of the enclosure, as shown in Pig.
L_{4} - 'To series-remate widl C_{4} at desired TV frequency.
B_{1} - Blower and motor, 115 v . a.c. (available from Wlied Radio, (hivako, calalog No. :2-:02 motor and l:-703 fan).
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Coasial comectors, ehassis-mounting type. $\mathrm{HA}_{1}-0-50$ ma. d.e. milliammeter.
 $R F C_{1}$ is not supplied with the Xational $M 13-10 \mathrm{~L}$ multibath anit).
RFC4- Valional yye $\mathrm{K}_{4}-1 / \overline{5}$ choke moditied as shown in Fig . 6-1Ii.
RFC. ${ }_{5}$, $\mathrm{RFC}_{6}-\boldsymbol{Q}-\mu \mathrm{h}$. r.f. choke, 500 ma. (Vational R-(0)).
s_{1} - Sinkererirmit $\overline{\text {-position reramic switch, pros }}$ gressive shorting (Centralah type P'I-A wafer).
J_{1} - Filament transformer, 5 s . 13 amp. (UTC S-59).
(i-102. The strips should be fitted carefully so as to avoid placing any statin on the atp terminal of the tube. The filament transformer is fastened down in the forward righthand corner. Power terminabs are lined up along the rear edge of the chassis, All r.f. grounds should be made direetly to the chassis with the shortest possible lead length - even at hadf inch is worth saving.

Underneath, the dee and are. leads rome out in shichded wire. A $0.001-\mu \mathrm{fl}$. dise ceramic by-pass is used across both ends of each lead exeepting the high-voltage lead (see TVI chatpter for method of commetion). The high-voltage lead is by-mased with TV filter capracitors. RFC C_{6} is installed close to the high-voltage terminal. C_{20}, C_{25}, C_{26} and C_{29} likewise are fastened directly to the power terminals where the leads leave the chassis. The shielding of the power leuds is grounded to the chassis by soldering to lugs wherever they pass Hrough the chassis. The power wires are intentionally made to follow long paths around the edge of the chassis to provide additional harmonic attenuation. The braid is grounded at frequent intervals by soldering to lugs that also serve as hold-downs.
The blower is mounted on a bracket formed from a strip of aluminum. Air is foreed through a set of holes in the chassis that duplicate in
size and arrangement the holes in the 4-250 A soeket. The filament-transformer terminals project through elearance holes drilled in the chassis, and the four v.h.f. by-pass condensers, C_{21}, C_{22}, C_{23} and C_{24}, are connected direetly from the terminals to grounding lugs,

Adjustment

The diagram of a suitable power supply for this amplifier is shown in Fig. 6-105. With 150 volts bias, a grid current of about 25 mas. is optimum, although the plate eflicieney will change but little with any grid current between 15 and 30 mat. The single fixed link provided with the grid tuner will not provide uniform lowding of the driver stage with coax input, so means should be provided in the output circuit of the driver for varying the coupling.

Optimum screen voltage is about 400 and the soreen current should run between 00 and 75 mat. depending on the plate voltage used. At 2750 volts, a full kilowatt ran be run to the amplifier, but it will work well at plate voltages as low as 1500 , with a plate current of 350 ma.

It is important that the coaxial line into which the amplifier works be closely matched (see trins-mission-line chapter) at its terminating end, otherwise there is danger of damage to the mien output condensers. To protect the contacts on the variable inductance, adjustments should be made with litle or no power input to the amplifier. Experience will show where the tap should be

Fig, 6-103 - The R-1-5 choke as modified to work on all amateur bands in the 3.5 . to 30 - Me. range, including 21 Mc.
placed for each band and thereafter it can be preset before atpplying full power. When reducing plate voltage, provision should also be mate for reducing sereen voltage, since otherwise the screen current may run to dangerous proportions.

It is advisable to set the tank rondenser so an to operate the output cireuit at a Q in the meighborhood of 12 , as shown in the graph of Fig. 6-9. although it may not be possible to attain this figure at the extremes of the tuning range.

Fig. 6-102 - Interior of the shielding compartment housing the f-250 A and its output circuit. The neutralizing condenser and filament transformer may be seen in the forward right-hand corner.

Fig. 6.104 - Mottom view of the high-power tetrode amplifier, showing the small ventilating fan and the shiclded power wiring. No botom plate on the chassis is neces. sary.

The neutralizing condenser should be adjusted for minimum reaction on the grid current under actual operating eonditions. The approximate retting can be determined by the use of a grid-dip oscillator tuned to the operating frequency. All voltages should be removed and the g.d.o. coupled to the plate tank circuit. The neut ralizing condenser should be adjusted for minimum r.f. in the grid tank circuit when both tanks are tuned to resonance. IR.f. in the grid circuit can be checked with the aid of an indicating wavemeter of the type deseribed in the measurements
chapter. Final touching up can be done after checking the operation with voltages anglied to the tube. In connection with the neutralizing circuit, the value of C_{1} is farly critical, but a eapmoitance within usual tolerance of the marked value should be satisfactory:

In adjusting the loading on the amplifier, increasing the output capacitance, or increaning the inductance, or both, while maintaining resonance with the tank condenser, will reduce the loarding and vice versin.
(Originally described in QST, Oct. 1952.)

Fig. 6.105-Circuit diagram of a power-supply system for the high. power tetrode amplifier.
$\mathrm{C}_{1}-8-\mu \mathrm{fd}$. 450 .volt electrolytic.
$\mathrm{C}_{2}, \mathrm{C}_{3}-4 \cdot \mu \mathrm{fl}$. 600 -volt electrolvic. $\mathrm{C}_{4}-2 \cdot \mu \mathrm{fd}$. oil-filled, vollage rating same as transformer r.m.s.
$\mathrm{C}_{5}-4 \cdot \mu \mathrm{fd}$. oil-filled, voltage rating same as transformer r.m.s.
$\mathrm{R}_{1}-25,000$ ohme, 25 watts.
$R_{2}-25,000$ ohms, 50 watts.
$\mathrm{R}_{3}-50,000$ ohms, 50 watts.
$R_{4}, R_{s}-25,000$ ohms, 100 watts. \mathbf{L}_{1} - 30-hy. 50-mia. filter choke. $1.2-5 / 25$ hy. 150 .ma. swinging.
1.3-20.hy. 150 -ma. smoothing.
l.4 - $5 / 25$.hy. $500 \cdot \mathrm{ma}$. swinging.

Ls - 20-hy. 500 -ma. smoothing.
$I_{1}-115$.volt lamp of suitable size to reduce voltage for tune-up. $S_{1}-20$-anip. s.p.s.t. switch.
$S_{2}, S_{3}, S_{4}-15$-amp. s.p.s.t. switch.
Sb-Ceramic s.p.s.t. rotary switeh.
'I', ' ${ }^{\prime}$ s - lilament transformer: 5 voles, 3 amp.
T_{2} - Plate transformer: 400 voles d.c., 150 ma.
T_{4} - Filament transformer: 2.5 volts, $10 \mathrm{amp} ., 10,000$-volt insulation.
T_{5} - Plate transformer: up to 2750 volis d.c., 350 ma.
VR - VR-150.30.

S_{1} turns on all filaments and the hias supply. S_{2} turns on the sereen supply and S_{3} the high-voliage supply. With S_{4} open, a 115 -volt lamp is inserted in series with the high-voltage-transformer primary to lower plate voltage for adjustment. Opening S_{5} lihewise reduces screen voltage. With all switches except S_{2} closed, S_{2}
becomes the main control switch. The tap on R_{3} should be adjusted to give the desired screen voltage under operating conditions with 5_{5} elosed. Bias is obtained from the parallel-connected $5 \% 3$ half-wave rectifier. The tap on K_{1} should be adjusted until the VR tube just ignites without excitation to the amplifier.

Power Supplies

Essentially pure direct-current plate supply is required to prevent serious hum in the output of receivers, speech amplifiers, modulators and transmitters. In the case of transmitters, d.c. plate supply is also dictated by government regulation.

The filaments of tubes in a transmitter or modulator usually may be operated from a.c. However, the filament power for tubes in a receiver (excepting power audio tubes), or those in a speech amplifier may be a.c. only if the tubes are of the indi-rectly-heated-cathode type, if hum is to be avoided.

Wherever commercial a.c. lines are availahle, high-voltage d.c. plate supply is most cheaply and conveniently obtained by the use of a transformer-rectifier-filter system. An example of such a system is shown in Fig. 7-1.

In this circuit, the plate transformer, T_{1}, steps up the a.c. line voltage to the required high voltage. The a.c. is changed to pulsating d.c. by the rectifiers, V_{1} and V_{2}. Pulsations in the d.c. appearing at the output of the rectifier (points A and B) are smoothed out by the filter composed of L_{1} and $C_{1} . R_{1}$ is a bleeder resistor. Its chief function is to discharge C_{1}, as a safety measure, after the supply is turned off. By proper selection of value, R_{1}
also helps to minimize changes in output voltage with changes in the amount of current drawn from the supply. T_{2} is a step-down transformer to provide filament voltage for the rectifier tubes. It must have sufficient insulation between the

Fig. 7.1-A typical transformer-rectifier. filter system. In this instance the circuit is that of a full-wave rectifier with a chokeinput filter.

Rectifier Circuits

Half-Wave Rectifier

Fig. 7-2 shows three rectifier circuits covering most of the common applications in amateur equipment. Fig. 7-2A is the circuit of a half-wave rectifier. During that half of the a.c. cycle when the rectifier plate is positive with respect to the cathode (or filament), current will flow through the rectifier and load. But during the other half of the cycle, when the plate is negative with respect to the cathode, no current can flow. The shape of the output wave is shown in (A) at the right. It shows that the current always flows in the same direction but that the flow of current is not continuous and is pulsating in amplitude.

The average output voltage - the voltage read by the usual d.e. voltmeter - with this circuit is 0.45 times the r.m.s. value of the a.c. voltage delivered by the transformer secondary. Because the frequency of the pulses in the output wave is relatively low (one pulsation per cycle), considerable filtering is required to
provide adequately smooth d.c. output, and for this reason this circuit is usually limited to applications where the current involved is small, such as in supplies for cathode-ray tubes and for protective hias in a transmitter.

Another disadvantage of the half-wave rectifier circuit is that the transformer must have a considerably higher primary volt-ampere rating (approximately 40 per cent greater), for the sume d.c. power output, than in other rectifier circuits.

Full-Wave Center-Tap Rectifier

The most universally-used rectifier circuit is shown in Fig. $7-213$. Being essentially an arrangement in which the outputs of two halfwave rectifiers are combinel, it makes use of both halves of the a.c. cerele. A transformer with a center-tapped sernodary is required with the eircuit. When the plate of V_{1} is positive, current flows through the load to the center-tap. Current cannot flow through V_{2} because at this
instant its cathode (or filament) is positive in resperet to its plate. When the polarity reverses, I_{2} conducts and current again flows through the load to the center-tap, this time through V_{2}.

The average output voltage is 0.45 times the rom.s. voltage of the entire trans-former-secondary, or 0.9 times the voltage across half of the transformer secondary. For the same total secondary voltage, the average output voltage is the same as that dolivred with a half-wave rectifier. llowever, as can be seen from the sketches of the output waveform in (B) to the right, the frequency of the output pulses is twice that of the half-wave rectifier. Therefore much less filtering is recpuired. Since the rectifiers work alternately, each handles half of the average load current. Therefore the load eurrent which may be drawn from this circuit is twice the rated load current of a single rectifier.
Two separate transformers, with their primaries connected in parallel and secondaries connected in series (with the proper polarity) may be used in this (irruit. Ilowever, if this sulstitution is made, the primary volt-ampere rating must be reduced to about 40 per cent less than twier the rating of one transformer.

Full-Wave Bridge Rectifier

Another full-wave rectifier circuit is shown in Fig. $7-2 \mathrm{C}$. In this arrangenent, two rectifiers operate in series on each half of the rycle, one rectifier being in the lead to the load, the other boing in the return lead. Over that portion of the cycle when the upper end of the transformer serondary is positive with respert to the other end, current flows through V_{1}, through the load and thence through V_{2}. During this period eurrent cannot flow through rectifier V_{4} because its plate is negative with respect to its cathode (or filament). Over the other half of the evele, current flows through V_{3}, through the load and thence through V_{4}. Three fitament transformers

Fig. 7-2-Fundamental vacuum-tule rectifier eirenits. A - Half-wave. B - Full-wave. (: - Full-wave bridge. A.e.-input and pulsating-d.e: outpat wave forms are shown at the rixht, Output-voltage values indicated do not inelude rectifier drops. Other types of rectifiers may be substituted in these rircuits.
are needed - one for l_{1} and l_{3} and one each for I_{2} and V_{4}. The output waveshape (C), to the right, is the same as that from the simple center-tap rectifier circuit. The ouptut voltage obtainable with this eireuit is 0.9 times the r.m.s. voltage delivered by the transformar secondar: For the same total transformerserondary voltage, the average output voltage when using the bridge rectifier will be twire that obtainable with the center-tap rectifier circuit. However, when comparing rectifier circuits for use with the same lransformer, it should be remembered that the power which a given transformer will handle remains the same regardless of the rectifier circuit used. If the output voltage is doubled by substituting the bridge circuit for the center-tap rectifier circuit, only half the rated load current can be taken from the transformer without exceeding its normal rating. The value of load current which may be drawn from the bridge rectifier circuit is twice the rated d.c. load current of a single reetifier.

Rectifiers

Cold-Cathode Rectifiers

Tube rectifiers fall into three general classifications as to type. The cold-cathode type is a diode which reguires no cathode heating. Certain types will handle up to 350 ma. at 200 volts d.e. output. The internal drop in most types lies between 60 and 90 volts. Rectifiers of this kind are
produced in both half-wave (single-diode) and full-wave (double-diode) types.

High-Vacuum Rectifiers

High-vacuum reetifiers depend entirely upon the thermionic emission from a heated filament and are chararterized by a relatively high
internal resistance. For this reason, their application usually is limited to low power, although there are a few types designed for medium and high power in cases where the relatively high internal voltage drop may be tolerated. This high internal resistance makes them less susceptible to damage from temporary overload and they are free from the bothersome electrical noise sometimes assoriated with other types of rectifiers.

Some rectifiers of the high-vacuum full-wave type in the so-called receiver-tube class will handle up to 250 ma at 400 to $5(0)$ volts d.e. output. Those in the higher-power class can be used to handle up to 500 ma . at 2000 volts d.c. in fullwave circuits. Most low-power high-vacuum rectifiers are produced in the full-wave type, while those for greater power are invariably of the halfwave type. A few of the lower-voltage types have indirectly heated cathodes, but are limited in heater-to-cathode voltage rating.

Mercury-Vapor Rectifiers

In mercury-vapor rectifiers the internal resistance is reduced by the introduction of a small amount of mercury which vaporizes under the heat of the filament, the vapor ionizing upon the application of voltage. The voltage drop through a rectifier of this typer is practically constant at approximately 15 volts regardless of the load current. Tubes of this type are produced in sizes that will handle any voltage or current likely to be encountered in amateur transmitters. For high power they have the advantage of cheapness. Rectifiers of this type, however, have a tendency toward a type of oscillation which produces noise in near-by receivers. This can usually be eliminated by suitable filtering.

As with high-vacuum rectifiers, full-wave types are available in the lower-power ratings only. For higher power, two tubes are required in a fullwave circuit.

Selenium Rectifiers

Selenium rectifiers are available which make it possible to design a power supply capable of delivering up to $4(0)$ or 450 volts, 200 ma . These units have the advantages of compactness. low internal voltage drop (about 5 volts), and the fact that no filament transformer is needed. However, to limit the charging current with condenser input, a resistance of 25 to 100 ohms should be used in series with the rectifier. They may be sul)stituted in any of the basic circuits shown in Fig. $7-2$, the terminal marked " + " or "eathole" corresponding to the filament in these circuits. Circuits in which the selenium rectifier is particularly adaptable are shown later in Figs. 7-20 through $7-22$. Since they develop little heat if operated within their ratings, they are espercially. suitable for use in equipment requiring minimum temperature variation.

Typical ratings are listed in the tube tables.

Rectifier Ratings

Vacuum-tube rectifiers are subject to limitations as to breakdown voltage and current-han-
ding capability. Some types are rated in terms of the maximum r.m.s. voltage which should be applied to the rectifier plate. This is sometimes dependent on whether a choke- or condenserinput filter is used. Others, particularly mercuryvapor types, are rated according to maximum inverse peak voltage - the peak voltage between plate and cathode while the tube is not conducting. In the circuits of lig. $\bar{i}-2$, the inverse peak voltage across each rectifier is 1.4 times the r.m.s. value of the voltage delivered by the entire transformer secondary.

All rectifier tubes are rated also as to maximum d.e. load current and many, in addition, carry peak-current ratings, all of which should be carefully observed to assure normal tube life. With a condenser-input filter, the peak current may run several times the d.e. current, while with a chokeimput filter the peak value may not run more than a few per cent above the d.c. load current.

Operation of Rectifiers

In operating rectifiers requiring filament or cathode heating, care should be taken to provide the correct filament voltage at the tube terminals. Low filament voltage can cause excessive voltage drop in high-vacuum rectifiers and a considerable reduction in the inverse peak-voltage rating of a mercury-vapor tube. Filament connections to the rectifier socket should be firmly soldered, particularly in the case of the larger mercury-vapor tubes whose filaments operate at low voltage and high current. The socket should be selected with care, not only as to contact surface but also as to insulation, since the filament usually is at full output voltage to ground. Bakelite sockets will serve at voltages up to 500 or so, but ceramic sockets, well spaced from the chassis, always should be used at the higher voltages. Special filament transformers with high-voltage insulation between primary and secondary are required for rectifiers operating at potentials in excess of 1000 volts inverse peak.

The rectifier tubes should be placed in the equipment with adequate spare surrounding them

Fig, $7-3$ - Connecting mercury-vapor reetifiers in parallel for heavier currents. K_{1} and K_{2} should have the same value, bet ween $\overline{\mathrm{O}}$ and 100 ohms, and corresponding filament terminals should lo connected together.
to provide for ventilation. When mereury-vapor tubes are first placed in service, and each time after the mercury has been disturbed, as by removal from the socket to a horizontal position, they should be run with filament voltage only for 30 minutes before applying high voltage. After
that, a delay of 30 seconds is recommended each time the filament is turned on.

Rectifiers may he connected in parallel for current higher than the rated current of a single unit. This includes the use of the sections of a
double diode for this purpose. Equalizing resistors of 50 to 100 ohms should be connected in series with each plate, as shown in Fig. 7-3, as a measure toward maintaining an equal division of current between the two rectifiers.

Filters

The pulsating d.c. waves from the rectifiers shown in Fig. 7-2 are not sufficiently constant in amplitude to prevent hum corresponding to the pulsations. Filters consisting of capacitances and inductances are reguired between the rectifier and the load to smooth out the pulsations to an essentially constant d.c. voltage. Also, upon the design of the filter deponds to a large extent the vollage regulation of the power supply and the maximum load current that can be drawn from the supply without exceding the peak-voltage rating of the rectifier.

Power-supply filters fall into two classifications, depending upon whethor the first filter element following the rectifier is a condenser or a choke. Condenser-input filters are characterized by relatively high output voltage in respect to the transformer voltage, but poor voltage regulation. Choke-input filters result in much better regulation, when properly designed, but the outpot voltage is less than would be obtained with a condenser-input filter from the same transformer.

Voltage Regulation

The output voltage of a power supply always decreases as more current is drawn, not only because of increased voltage drops in the transformer, filter chokes and the rectifier (if highvacuum rectifiers are used) but also because the output voltage at light loads tends to soar to the peak value of the transformer voltage as a result of charging the first condenser. By proper filter design the latter effect can be eliminated. The change in output voltage with load is called voltage regulation and is expressed as a percentage.

$$
\begin{aligned}
& \text { Per cent regulation }=\frac{100\left(E_{1}-E_{2}\right)}{E_{2}} \\
& \text { Example: No-load voltage }=E_{1}=1550 \text { volts. } \\
& \text { Full-loud voltage }=E_{2}=1230 \text { volts. } \\
& \text { Percentage regulation }=\frac{100(1550-1230)}{1230} \\
& \qquad=\frac{32,000}{1230}=26 \text { per cent. }
\end{aligned}
$$

IRegulation may be as great as 100% or more with a condenser-input filter, but by proper design ean be held to 20% or less with a choke-input filter.

Good regulation is desirable if the load current varies during operation, as in a keyed stage or a Class B modulator, because a large change in voltage may increase the tendency toward key rlicks in the former case or distortion in the latter. On the other hand, a steady load, such as is represented by a receiver, speech amplifier or unkeyed stages in a transmitter, docs not require good regulation so long as the proper voltage is obtained under load conditions. Another con-
sideration that makes good voltage regulation desirable is that the filter condensers must have a voltage rating safe for the highest value to which the voltage will soar when the external load is removed.

When essentially constant voltage, regardless of current variation is required (for stabilizing an oscillator, for example), special voltage-regulating circuits described elsewhere in this chapter are used.

Load Resistance

In discussing the performance of power-supply filters, it is convenient to express the load connected to the output terminals of the supply in terms of resistance. The load resistance is equal to the output voltage divided by the total current drawn, including the current drawn by the bleeder resistor.

Input Resistance

The sum of the transformer-winding resistance and the rectifier resistance is called the input resistance.

Bleeder

A bleeder resistor is a resistance connected across the output terminals of the power supply (see Fig. 7-1). Its functions are to discharge the filter condensers as a safety measure when the power is turned off and to improve voltage regulation loy providing a minimum load resistance. When voltage regulation is not of importance, the resistance may be as high as 100 ohms per volt. The resistance value to be used for voltageregulating purposes is discussed in later sections. From the consideration of safety, the power rating of the resistor should be as conservative as possible, since a burned-out bleeder resistor is more dangerous than none at all!

Ripple Frequency and Voltage

The pulsations in the output of the rectifier can be considered to be the resultant of an alternating current superimposed upon a steady direct current. From this viewpoint, the filter may be considered to consist of shunting condensers which short-circuit the a.c. component while not interfering with the flow of the d.c. component, and series chokes which pass d.c. readily but which impede the flow of the a.c. component.

The alternating component is called the ripple. The effectiveness of the filter can be expressed in terms of per cent ripple, which is the ratio of the r.m.s. value of the ripple to the d.c. value in terms of percentage. For c.w. transmitters, a reduction of the ripple to 5 per cent is considered adequate.

The ripple in the output of power supplies for voice transmitters and VFOs should be reduced to 0.25 per cent or less. High-gain sperch amplifiers and receivers may require a reduction to as low as 0.1 per cent.

Ripple frequency is the frequency of the pulsations in the rectifier output wave - the number of pulsations per second. The frequency of the ripple with half-wave rectifiers is the same as the frequency of the line supply - 60 cycles with 60 crele supply. Since the output pulses are doubled with a full-wave rectifier, the ripple frequency is doubled - to 120 cycles with f0-cycle supply.

The amount of filtering (values of inductince and capacitance) required to give adequate smoothing depends upon the ripple frequener, more filtering being required as the ripple frequentey is lower.

CONDENSER-INPUT FILTERS

Condenser-input filter sustems are shown in Fig. 7-4. Disregarding voltage drops in the chokes, all have the sime characteristics except

Fig. 7.4-Condenser-input filter circuits. A - Simple condenser. B - Single-section. C -Double-section.
in respect to ripple. Better ripple reduction will he obtained when $L C$ sections are added, as shown in Figs. $7-413$ and C.

Output Voltage

To determine the approximate d.c. voltage output when a condenser-input filter is used, reference should be made to the graph of Fig. 7-5.

Example:
Transformer r.nis. voltage - 350
Input resistance - 200 ohms
Maximum load current, including bleeder current - 175 ma .
Load resistance $=\frac{350}{0.175}=2000$ ohms approx.

Fig. 7.5 - Chart showing approximate ratio of d.c. output voltage across filter input condenser to transformer r.m.s, secondary voltage for different load and input resistances.

From Fig. 7-5, for a load resistance of 2000 ohms and in input resistance of 200 ohms , the d.c. output voltage is given as slightly over 1 times the transformer r.m.s. voltage, or about 350 volts.

Regulation

If a bleeder resistance of $50,000 \mathrm{ohms}$ is used, the d.c. output voltage, as shown in Fig. 7-5, will rise to about 1.35 times the transformer $r, m . s$. value, or about 470 volts, when the external load is removed. For greater accurace, the voltage drops through the input resistance and the resistance of the chokes should be subtracted from the values determined above. For best regulation with a condenser-input filter, the bleeder resistance should be as low as possible without exceeding the transformer, rectifier or choke ratings when the external load is conneeted.

Maximum Rectifier Current

The maximum load current that can be drawn. from a supply with a condenser-input without exceeding the peak-current rating of the rectifier may be estimated from the graph of Fig. 7-6. Using values from the preceding example, the ratio of peak rectifier current to d.c. load current for 2000 ohms, as shown in Fig. $7-6$ is 3 . Therefore, the maximum load current that can be drawn without exceeding the rectifier rating is $1 / 3$ the peak rating of the rectifier. For a load current of 175 ma., as above, the rectifier peak current rating should be at least $3 \times 175=525 \mathrm{ma}$.

With bleeder current only, Fig. 7-6 shows that

Fig. 7-6-Graph showing the relationship leetween the d.c, load current and the reetifier peak plate current with condenser input for various values of lead and input resistance.
the ratio will increase to over 8 . But since the bleeder draws loss thim 10 mat. d.e., the rectifier peak current will be only 90 ma. or lass.

Ripple Filtering

The approximate ripple percentage after the simple condenser filter of lig. 7-4A may be determined from Fig. 7-7. With a load resistance of 2000 ohms, for instance, the ripple will be approximately 10% with an 8 - $\mu \mathrm{fl}$. condenser or 20% with a $4-\mu \mathrm{fd}$. condenser. For other capaci-

Fig. 7.7 - Showing approximate 120 erycle percentage ripple across lilter iuput condenser for various loads,
tances, the ripple will be in inverse proportion to the capucitance, e.g., 5% with $16 \mu \mathrm{dd} ., 40 \%$ with 2μ id., ete.

The ripple cin be reduced further by the indition of $L($ ' sections as shown in Figs. 7-413 and C. Fig. 7-8 shows the factor he which the ripple from any preceding section is reduced depending on the product of the capacitance and inductance added. For instance, if a seetion composed of a choke of 5 hy . and a condenser of $4 \mu \mathrm{ft}$. were to be added to the simple condenser of Fig. 7-4A, the product is $4 \times 5=20$. Fig. $7-8$ shows that the original ripple (10% as above with 8μ fd. for example) will be reduced by a factor of about 0.08 . Therefore the ripple percentage after the new section will be

Fig. 7.8 - Ripule reduction factor for various values of 1. ind C in lilter section. Output riphle $=$ input riphle \times ripple fuctor.
approximately $0.05 \times 10=0.8 \%$. If another seetion is added to the filter, its reduction factor from Fig. $7-8$ will be applied to the 0.5% from the preeding section, ete.

CHOKE-INPUT FILTERS

Much better voltage regulation results when a choke-imput filter, as shown in Fig. 7-9, is used. Choke input also permits better utilization of the rectifior, since a higher load eurrent usually can be drawn without exceding the peak current rating of the rectifier.

If the first choke has a value equal to or greater than

$$
L_{(\mathrm{hy},)}=\frac{L_{\mu(\mathrm{ad}} \text { resistance }(\text { ohms })}{100}
$$

the output voltage will not soar above the average value of the rectified wave at the input of the choke when the load current is small. This is in contrast to the performance of the condenserinput filter where the output voltage tends to soar toward the peak value at light current loads. This value of inductance is known as the critical value.

If the first choke has a value equal to or greater than

$$
L_{(h y .)}=\frac{\text { Lond resistanre (ohms) }}{500}
$$

the peak rectifier current will not exered the d.c. load current by more than 10 per cent when the

Fig. 7.9 - Choke-input filter circuits. A - Single-section. 13 - Doulliesection.
load current is large. This is in contrast to the condenser-input filter where the peak rectifier current may run 2 to $\overline{5}$ times the d.c. load current. "This value of inductance is known as the optimum value.

Both of the above conditions will usually be satisfied for all values of load current drawn from the supply if the choke has at least the critical value of inductance for the minimum current load (usually the bleder resistanceonly) and does not fall below the optimum value for the greatest current load to le drawn.

Specially-designed input chokes, called swinging chokes, are available. These chokes are usually rated in terms of maximum d.e. current and the range of inductance over which they are designed to "swing" with different load currents. For instance, a choke may have a rating of 5 to 25 hy., 250 ma. This means that the inductance is 5 hy: with 250 ma . d.e. flowing through it.

From the formula for optimum inductance, is hy. is optimum for a mimimum load resistance of $5 \times 500=2500$ ohms. (At 250 mil., this resistatuce means a minimum voltage of 2500×0.250 $=625$ volts - at higher voltages than 625 , at the same current, the resulting load resistanere will be higher. Therefore, the choke will have at least optimum inductance for all higher voltages.)

Bleeder Resistance

Also, 25 hy. is the critical inductance for $25 \times 1000=25,000 \mathrm{ohms}$. Therefore the bleeder resistance should be not greater than 25,000 ohms.

In the case of supplies for higher voltages in particular, the limitation on maximum load resistance may result in the wasting of an appreciable portion of the transformer power capacity in the bleeder resistance. A higher bleeder resistance drawing less current can be used, of course, but at a sacrifice in regulation. Two input chokes in series will permit the use of a bleeder of twice the
resistance, cutting the wasted current in half. Another alternative that can be used to advantage in a c.w. transmitter is to use a very highresistance bleeder for protertive purposes and then use only sufficient fixed bias on the tubes operating from the supple to bring the total eurrent drawn from the supply, when the key is open, to the value of current that the required beeder resistance should draw from the supply. Oprating bias is brought back up to normal by increasing the grid-leak resistance. Thus the entire current capacity of the supply (with the exception of the small drain of the protertive bleeder) can be used in operating the transmitter stages.

Output Voltage

Provided the input-choke inductance is at least the critical value, the output voltage may be calculated quite closely by the following equation:

$$
E_{\mathrm{o}}=0.9 E_{\mathrm{t}}-\frac{\left(I_{\mathrm{B}}+I_{1}\right)\left(R_{1}+R_{2}\right)}{1000}-E_{\mathrm{r}}^{\prime}
$$

where E_{0} is the output voltage; E_{t} is the r.m.s. voltage applied to the rectifier (r.m.s. voltage between center-tap and one end of the secondary in the case of the center-tap rectifier); I_{B} and I_{t}, are the bleeder and load currents, respectively, in milliamperes; R_{1} and R_{2} are the resistances of the first and seeond filter chokes; and E_{r} is the drop between rectifier plate and rat hode. The various voltage drops are shown in liig. 7-11. At no load I_{1}, is zero, hence the no-load voltage may be calculated on the basis of bleeder current only. The voltage regulation may be determined from the no-load and full-load voltages using the formula previously given.

Ripple with Choke Input

The percentage ripple output from a singlesection filter (Fig. 7-9A) may be determined to

Fig. 7-10-Graph slowing combinations of inductance and capacitance that may be used to reduce ripple with a single-section chokesiuput filter.
a close approximation, for a ripple frequency of 120 cycles, from Fig. 7-10.

$$
\text { Example: } L=5 \mathrm{~h} ., C=4 \mu \mathrm{fd}, L C=20
$$

From Fig. 7-10, percentage ripple $=5$ per cent.
Example: $L=5$ hy. What eapacitanee is needed to reduce the ripple to 1 per cent? Following the 1 -per-cent line to the right to its intersection with the diagonal, thence downward to the $L C$ scale, read $L C=100.100 / 5=$ $20 \mu \mathrm{fd}$.

In selecting values for the first filter section, the inductance of the choke should be determined by the considerations diseussed previously. Then the condenser should be seleceted that when combined with the choke inductance (minimum inductance in the case of a swinging choke) will bring the ripple down to the desired value. If it is found impossible to bring the ripple down to the desired figure with practieal values in a single section, a serond section can be added, as shown in Fig. 7 -9B and the reduction factor from Fig. $7-8$ applied as discussed under condenser-input filters. The sceond choke should not be of the swinging type, but one having a more or less constant inductance with changes in curient.

OUTPUT CONDENSER

If the supply is intended for use with an audio-frequency amplifier, the reactance of the last filter condenser should be smill (20 per cont or less) compared with the other audiofrequeney resistance or impedance in the circuit, usually the tube plate resistance and load resistance. On the basis of a lower a.f. limit of 100 eycles for speech amplification, this condition usually is satisfied when the output capacitance (last filter capacitor) of the filter has a caparitance of 4 to $8 \mu \mathrm{fd}$, , the higher value of capacitance locing used in the case of lower tube and load resistances.

Resonance

Resoname effects in the series cireuit across the output of the rectifier which is formed by the first choke (L_{1}) and first filter condenser $\left(C_{1}\right)$ must be avoided, since the ripple voltage would build up to large values. This not only is the opposite action to that for which the filter is intendel, but also may cause excessive rectifier peak currents and abormally-high inverse peak voltages. For full-wave rectification the ripple frequency will he 120 cycles for a to-evele supply, and resonance will oceur when the product of choke inductance in henrys times condenser capacitance in microfarads is equal to 1.77. The corresponding figure for 00 -cyele supply (100 -eyele ripple frequeney) is 2.53 , and for 2i-ecyele supply (50 -cyele ripple frequency) 13.5. At least twice these products of inductance and capacitance should be used to ensure against resonance effects. With a swinging choke, the minimum rated inductance of the choke should be used.

RATINGS OF FILTER COMPONENTS

Although filter condensers in a choke-input filter are suljected to smaller variations in d.c. voltage than in the condenser-input filter, it is advisable to use condensers rated for the peak transformer voltage in ease the bleder resistor should burn out when there is no load on the power supply, since the voltage then will rise to the same maximum value as it would with a filter of the condenser-input type.
In a condenser-input filter, the condensers should have a working-voltage rating at least as high, and preferably somewhat higher, than the peak-voltage rating of the transformer. Thus, in the case of a center-tap) rectifier having a transformer delivering 500 volts each side of the center-tiap, the minimum safe condenser voltage rating will be 550×1.41 or 775 volts. An 800 -volt condenser should be used, or preferably a 1000 -volt unit.

Filter condensers are made in several different trpes. Electrolytic condensers, which are available for peak voltages up to about 800, combine high capacitance with small size, since the didertric is an extremely-thin film of oxide on aluminum foil. Condensers of this type may be connected in series for higher voltages, although the filtering capacitance will be reduced to the rosultant of the two capacitances in series. If this arrangement is used, it is important that each of the condensers be shunted with a resistor of about 100 ohms per volt of supply voltage, with a power rating adequate for the total resistor current at that voltage. These resistors may serve as all or part of the bleeder resistance (see choke-input filters). Condensers with highervoltage ratings usually are made with a dielectric of thin paper impregnanted with oil. The working voltage of a condenser is the voltage that it will withstand continuously.
The input choke may be of the swinging tepe, the required minimum no-load and full-load inductance values being calculated as described alove. For the second choke (smoothing choke) values of 10 to 20 henrys ordinarily are used. Since chokes usually are placed in the positive leads, the negative being grounded, the windings should be insulated from the core to withstand the full d.e. output voltage of the supply and be capable of handling the required load current.
Filter chokes or inductances are wound on iron cores, with a small gap in the core to prevent magnetic saturation of the iron at high currents. When the iron becomes saturated its permeability decrease, consequently the inductance also decreases. Despite the air gap, the inductance of a choke usually varies to some extent with the direct current flowing in the winding; hence it is necessary to specify the induetance at the current which the choke is intended to carry. Its inductance with little or no direet current flowing in the winding may be considerably higher than the value when full load current is flowing.

Plate and Filament Transformers

Output Voltage

The output voltage which the plate transformer must deliver depends upon the reguired d.c. load voltage and the type of filter circuit.

With a choke-input filter, the required r.m.s. secondary voltage (ach side of center-tap) for a center-tap rectifier) can be calculated by the equation:

$$
E_{\mathrm{t}}=1.1\left[E_{\mathrm{o}}+\frac{I\left(R_{1}+R_{2}\right)}{1000}+E_{\mathrm{r}}\right]
$$

where E_{0} is the required d.c. output voltage, I is the load current (including bleeder current) in milliamperes, R_{1} and R_{2} are the d.c. resistances of the chokes, and E_{r} is the voltage drop in the rectifier. E_{6} is the full-load r.m.s. socondary voltage; the open-circuit voltage usually will be 5 to 10 per cent higher than the full-load value.
The approximate transformer output voltage required to give a desired d.c. output voltage

Fig. 7.11 - Diagram showing various voltage drops that most be taken into consideration in determining the required transformer voltage to deliver the desired output voltage.
with a given load with a condenser-input filter sustem can be calculated with the holp of Fig. 7-11.

- Example:

Required d.c. output volts - 500
Load current to be drawn - 100 ma
Load resistance $=\frac{\mathbf{5 0 6 1}}{0.1}=5000$ ohms.
If the rectifier resistance is 200 ohms, Fig, 7-5 shows that the ratio of d.c. volts to the recinired transformer r.m,s, voltage is approximately 1.15 ,

The required transformer terminal voltage under load with chokes of 200 and 300 ohuns is

$$
\begin{aligned}
E_{\mathrm{t}} & =\frac{E_{\mathrm{o}}+I\left(\frac{R_{\mathrm{t}}+R_{2}+R_{\mathrm{r}}}{1000}\right)}{1.15} \\
& =\frac{500+100\left(\frac{200+300+200}{1000}\right)}{1.15} \\
= & \frac{570}{1.15}=495 \text { volts. } \\
& \quad \text { Volt-Ampere Rating }
\end{aligned}
$$

The volt-ampere rating of the transformer depends upon the type of filter (condenser or choke input). With a condenser-input filter the heating effect in the secondary is higher because
of the high ratio of peak to average current, consequently the volt-amperes consumed hy the transformer may be sevoral times the watts dolivered to the load. With a choke-input filter, provided the input choke has at least the critioal inductance, the secondary volt-amperes can be calculated quite closely by the equation:

$$
\text { Sec. V.A. }=0.00075 E I
$$

where E is the total r.m.s. voltage of the secondary (botween the outside ends in the case of a conter-tapped winding) and I is the d.e. output current in milliamperes (load current plus bleeder current). The primary volt-amperes will be 10 to 20 per cent higher because of transformer losses.

Filament Supply

Fxcept for tubes designed for battery operation, the filaments or heaters of vacuum tubes used in both transmitters and reenivers are universally operated on alternating current ob)tained from the power line through a stepdown transformer delivering a seoondary voltage equal to the rated voltage of the tubes used. The transformer should be designed to carry the current taken by the number of tubes which may be connected in parallel across it. The filament or heater transformer generally is conter-tapped, to provide a balanced circuit for climinating hum.

For medium- and high-power r.f. stages of transmitters, and for high-power audio stages, it is dexirable to use a separate filament tramsformer for each section of the transmitter, installed near the tube sockets. This avoids the necessity for abnormally large wires to carry the total filament current for all stages without appreciable voltage drop. Maintenance of rated filament voltage is highly important, especially with thoriated-filamont tubes, since under- or over-voltage may reduce filament life.

Rewinding Filament Transformers

Although the home winding of high-voltage transformers is a task that few amateurs undertake these days, the rewinding of a smalltransformer sccondary to give some desired filament voltage is not difficult. It involves a matter of only a small number of turns and the wire is large enough to be handled easily. Often a broulcast-receiver power transformer with a burned-out high-voltage winding, but with the primary winding intact, can be converted into an entirely satisfactory filament transformer without great effort.

The primary volt-ampere rating of a transformer to be rewound may be taken from the label on the transformer or from the manufacturer's catalogue. This will indicate whether or not the transformer will be capable of handling the necessary power. The secondary volt-ampere
rating will be ten to twenty per cent leas than the primary rating. The product of the voltage and the number of amperes required from the new filament winding, plus that for any other secondaries that may be kept in use, should not execed the secondary volt-ampere rating, unless the builder is willing to accept a lower safety factor.

Before diseonneeting the winding leads from their terminals, each should be marked for identification. In removing the core laminations, eare should be taken to note the manner in which the eore is assembled, so that the reassembling will be done in the same manner. Some transformers have secondaries wound over the primary, while in others the order is reversed. In ease the secondaries are on the inside, the turns can be pulled out from the center after slitting and removing the fiber core.

The turns removed from one of the original filament windings of known voltage should be earefully counted as the winding is removed. This will give the number of turns per volt and the same figure should be used in determining the number of turns for the new secondary. For instance, if the old filament winding was rated at 5 volts and has 20 turns, this is $20 / 5=$ 4 turns per volt. If the new secondary is to deliver 7.5 volts, the required number of turns on the new winding will be $7.5 \times 4=30$ turns.

In winding a transformer, the size of wire is an important factor in the heat developed in operation. A cross-sectional area of 1000 circular
mils per ampere is conservative. A value commonly used in amateur-service transformers is 700 c.m.p.a. The windings of some of the lessexpensive broudeast-receiver transformers maty run as low as $5(0)$ (.m.p.a. The larger the e.m.p.a. figure, the cooler the transformer will rum. The current rating in amperes of each wire size shown in the miscellaneous datat rhapter at 1000 c.m.p.a. may be obtained by pointing off three decimal places from the right in the figures in the third column. Similar ratings at 700 c.m.pat are given in a separate column. Ratings at ono com.pa. will be twier the current rating at l(O) emp,at, Is an example, No. 18 hats a rurrent rating of 1.62 amperes at 1000$)$ (.m.pat., 2.32 amperes at $7(0)$ e.m.p.a., or 3.25 amperes at $500 \mathrm{c}, \mathrm{m} . \mathrm{p} . \mathrm{a}$. If the transformer being rewound is a filament transformor, it may be necessary to choose the wire size carefully to fit the small available space. On the other hand, if the transformer is a power unit, with the high-voltage winding removed, there should be plenty of room for a size of wire that will ronservatively handle the required eurrent.
'The insulation to be used between the primary and seeondary windings (and akso between the seeondary winding and the eore if the seeondary is on the inside) will depend on whether the transformer is to be used to supply r.t. tubes or rectifier tubes in a high-voltage supply. A few layers of linen paper should be sufficient for the former service, but insulating eambrie sheet should be used if the voltage betwen primary and secondiuy runs over 1000 volts

Voltage Dropping

Series Voltage-Dropping Resistor

Certain plates and sereens of the various tubes in a transmitter or receiver often require a variety of operating voltages differing from the output voltage of a vailable power supplies. In most cases, it is not economically feasible to provide a separate power supply for each of the required voltages. If the current drawn by an electrode, or combination of electrodes operating at the same voltage, is reasonably constant under normal operating conditions, the required voltage may be obtained from a supply of higher voltage by means of a voltagedropping resistor in series, as shown in Fig. 7-12 A . The value of the series resistor. R_{1}, may be obtained from Ohm's Law, $R=\frac{E_{\mathrm{d}}}{I}$, where E_{d} is the voltage drop required from the supply voltage to the desired voltage and I is the total rated current of the load.

Example: The plate of the tube in one stage and the screens of the tuhes in two other stages require an operating voltage of 250 . The nearest available supply voltage is 400 and the total of the rated plate and screen currents is 75 ma . The required resistance is

$$
R=\frac{400-250}{0.075}=\frac{150}{0.075}=2000 \text { ohms. }
$$

The power rating of the resistor is obtained from $P($ watts $)=I^{2} R=(0.075)^{2}(2000)=11.2$ watts. A 25 -watt resistor is the nearest safe rating to be used.

Voltage Dividers

The regulation of the voltage obtained in this manner obviously is poor, since any change in current through the resistor will cause a di-rectly-proportional change in the voltage drop across the resistor. The regulation can be im proved somewhat by connecting a second resistor from the low-voltage end of the first to the negative power-supply terminal, as shown in Fig. 7-12B. Such an arrangement constitutes a voltage divider. The second resistor, R_{2}, atcts as a constant load for the first, R_{1}, so that any variation in eurrent from the tap becomes a smaller percentage of the total current through R_{1}. The heavier the current drawn by the resistors when they alone are connerted across the supply, the better will be the voltage regulation at the tap.

Such a voltage divider may have more than a single tap for the purpose of obtaining more than one value of voltage. A typical arrangement is shown in Fig. 7-120. The terminal voltage is E, and two taps are provided to give

Fig. 7-12-A - Serieq voltage-dropping resistor. 13 Simple voltage divider. C - Multiple divider circuit.

$$
R_{3}=\frac{E_{1}}{I_{\mathrm{b}}} ; R_{4}=\frac{F_{2}-E_{1}}{I_{\mathrm{b}}+I_{\mathrm{l}}} ; R_{5}=\frac{E-I_{2}}{I_{\mathrm{b}}+I_{1}+I_{2}}
$$

lower voltages, E_{1} and E_{2}, at currents I_{1} and I_{2} respectively. The smaller the resistance between taps in proportion to the total resistance, the smaller the voltage between the taps. For convenience, the voltage divider in the figure is considered to be made up of separate resistances R_{3}, R_{4}, R_{5}, between taps. R_{3} carries only the bleeder current, $I_{\mathrm{b}} ; R_{4}$ carries I_{1} in addition to $I_{\mathrm{b}} ; R_{5}$ carries I_{2}, I_{1} and I_{t}. To calculate the resistances required, a bleeder current, I_{b}, must be assumed; generally it is low

compared with the total load current (10 per cent or so). Then the required values can be calculated as shown in Fig. 7-12C, I being in decimal parts of an ampere.

The method may be extended to any desired number of taps, each resistance section being calculated by Ohm's Law using the need voltage drop across it and the total current through it. The power dissipated by each section may be calculated either by multiplying I and E or I^{2} and R.

Voltage Stabilization

Gaseous Regulator Tubes

There is frequent need for maintaining the voltage applied to a low-voltage low-current circuit at a practically constant value, regardless of the voltage regulation of the power supply or variations in load current. In such applications, gascous regulator tubes (VR10530 , Vle $150-30$, ete.) can be used to good advantage. The voltage drop across such tubes is constant over a moderately wide current range. Tubes are available for regulated voltages of $150,105,90$ and 75 volts.

The fundamental circuit for a gaseous regulator is shown in Fig. $7-13 \mathrm{~A}$. The tuhe is con-

Fig. 7.13 - Voltage-stabilizing circuits using Vh tules.
nected in series with a limiting resistor, R_{1}, across a source of voltage that must be higher than the starting voltage. The starting voltage is about 30 per cent higher than the operating voltage. The load is connected in parallel with the tube. For stable operation, a minimum tube current of 5 to 10 ma . is re-
quired. The maximum permissible current with most types is 40 ma ; consequently, the load current cannot exceed 30 to 35 ma . if the voltage is to be stabilized over a range from zero to maximum load current.

The value of the limiting resistor must lie between that which just permits minimum tube current to flow and that which just passes the maximum permissible tube current when there is no load current. The latter value is generally used. It is given by the equation:

$$
R=\frac{1000\left(E_{\mathrm{B}}-E_{\mathrm{r}}\right)}{I}
$$

where R is the limiting resistance in ohms, E_{s} is the voltage of the source across which the tuhe and resistor are comected, E_{r} is the rated voltage drop across the regulator tube, and I is the maximum tube current in milliamperes (usually 40 ma .).

Fig. 7-1313 shows how two tubes may be used in series to give a higher regulated voltage than is obtainable with one, and also to give two values of regulated voltage. The limiting resistor may be calculated as above, using the sum of the voltage drops across the two tubes for E_{r}. Since the upper tube must carry more current than the lower, the load connected to the low-voltage tap must take small current. The total eurrent taken by the loads on both the high and low taps should not exceed 30 to 35 milliamperes.

Fig. F-I. - Electronic voltage-regulator circuit.
($\mathrm{A}_{1}-0.1-\mu \mathrm{fil}, 400$-volt paper.
R_{1} - 160 -ohim 10 watt potentioneter (balance).
$R_{2}, K_{s}-12,000$ ohms, 2 watts.
$R_{3}, R_{4}-0.47$ megohm, $1 / 2$ watt.
$R_{6}-68,000$ ohms, 1 watt.
$1 \mathrm{R}_{7}-15,000$ ohms, 2 watts.
Rs - 10,000-ohm potentioncter (output control).
$\mathrm{H}_{9}-1$ megohm, $1 / 2$ watt.

Voltage regulation of the order of 1 per cent can be obtained with regulator eircuits of this type.

Electronic Voltage Regulation

Several cireuits have been developed for regulating the voltare output of a power supply electronically. While more eomplicated than the VIRtube circuits, ther will handle higher voltages and currents and the output voltatge may be varied continuonsly over a wide range. In the circuit of Fig. $\overline{-14}$, the ote5t regulator tube supplies the grial (4) of the 6 isla $^{-7}$ with a constant reference voltage. When the lowd connerted across the output terminals increases, the output voltage tends to derrease. This decreases the plate (5) voltage. Since grid (1) is connected directly to plate ($\overline{5}$), grid (1) hecomes less positive and that triode
draws less plate current. The voltage drop across R_{3} being less, the biats on the grids of the 6 As 7 G is reduced, decreasing the voltage drop ateross the 6AS' (i and thereby maintaining the original output voltage.

For a maximum regulated voltarge output of 250 , the filtered d.e. input voltage should be 325 volts at 225 ma . For a constant line voltage the output voltage will remain constant within 0.2 volt over a load-current range of 0 to 225 ma . With a line-voltage variation of plus or minus 10 per eent, the output voltage will vary less than 0.1 volt.

Another similar regulator circuit is shown in Fig. $7-15$. The principal difference is that screengrid regulator tubes are used. The fact that a screen-grid tube is relatively insensitive to changes in plate voltage makes it possible to ob-

Fig. 7-15 - Circuit diayram of an electronically-regu-
lated puwer supply rated at 300 volts max., 1.00 ma , max.
Ci. (.2. $\mathrm{C}_{5}-16 \mu \mathrm{ff}$, (0)0-volt eleetrolytir.

$\mathrm{C}_{4}-1.1-\mu \mathrm{fil}$ papror.
$R_{1}-10.3$ megohm, $1 / 2$ watt.
$R_{2}, R_{3}-100$ ohms, $1 / 2$ watt.
$\mathrm{K}_{4}-510$ ohms, $1 / 2$ watt.
$\mathrm{K}_{5}, \mathrm{~K}_{8}-30,000$ ohms, 2 watts.
$R_{6}-0.2 \cdot 4$ megohm, $1 / 2$ watt.
$\mathrm{K}_{7}-0.15$ megohm, $1 / 2$ watt.

Ka - 9100 ohms. 1 watt.
R_{10} - 0.1 -megohin potentiometer.
$k_{11}-13,000$ ohms, $1 / 2$ watt.
1t-8.hy., 40 -ma. filter choke.
S_{1} - E.p.st toggle.
' H_{1} - Power transformer: 375-375 volts r.m.s., 160 ma.: 6.3 volts, 3 amps.; 5 volts. 3 amps.
('Thor. 22 R 33).

Table of Performancs for Circuit of Fig. 7-15			
I	II	III	Output volurge - 30%
450 v .	22 ma .	3 mv .	150 ma. 2.3 mv.
425 v .	4.5 ma .	4 mv .	125 ma .2 .8 mv .
400 v .	72 ma .	6 mv .	100 ma .2 .6 mv .
355 v .	97 ma .	${ }^{8} \mathrm{mv}$.	$75 \mathrm{ma} . \quad 2.5 \mathrm{mv}$.
350 v .	122 ma.	9.5 mv .	50) ma. 3.0 mv .
325 v .	150 ma .	3 mv .	25 ma .3 .0 mv .
300 v .	150 ma.	2.3 mv .	10 ma .2 .5 mv .

tain a reduction in ripple voltage adequate for many purposes simply by supplying filtered d.c. to the screens with a consequent saving in weight and cost. The accompanying table shows the performance of the circuit of Fig. 7-15. Column I shows various output voltages, while Column II shows the maximum current that can be drawn at that voltage with negligible variation in output voltage. Column III shows the measured ripple
at the maximum current. The second part of the table shows the variation in ripple with load current at 300 volts output.

A single VIR tube may also be used to regulate the voltage to a load current of almost any value so long as the variation in the current does not exced 30 to 35 ma . If, for example, the average load current is 100 ma ., a V'l tube may he used to hold the voltage constant provided the current does not fall helow 85 ma . or rise above 115 mab. In this case, the resistance should be calculated to drop the voltage to the VIR-tube rating at the maximum load current to be expected plus about 5 ma . If the load resistance is constant, the effects of variations in line voltage maty be eliminated by hasing the resistance on the load current plus 15 ma. Voltage-regulator tubes may also be connected in parallel as described hater in this chapter.

Bias Supplies

As discussed in the chapter on high-frecqueney transmitters, the chief function of a bias supply for the r.f. stages of a transmitter is that of providing protective lias, although under certain circumstances, a bias supply, or pack, as it is sometimes called, can provide the operating bias if desired.

Simple Bias Packs

Fig. 7-16A shows the diagram of a simple bias supply. R_{1} should be the recommended grid leak for the amplifier tube. No grid leak should be used in the transmitter with this type of supply. The output voltage of the supply, when amplifier grid current is not flowing, should be some value between the bias required for plate-current cut-off and the recommended operating bias for the amplifier tube. The transformer peak voltage (1.4 times the r.m.s. value) should not exceed the recommended operating-bias value, otherwise the output voltage of the pack will soar above the operating-hias value with rated grid current.

This soaring can be reduced to a considerable extent by the use of a voltage divider across the transformer secondary, as shown at B . Such a system can be used when the transformer voltage is higher than the operating-bias value. The tap on R_{2} should be adjusted to give amplifier cut-off hias at the output terminals. The lower the total value of R_{2}, the less the soaring will he when grid current flows.

A full-wave circuit is shown in Fig. 7-16C. R_{3} and R_{4} should have the same total resistance and the taps should be adjusted symmetrically. In all cases, the transtormer must be designed to furnish the current drawn by these resistors plus the current drawn by R_{1}.

Regulated Bias Supplies

The inconvenience of the circuits shown in Fig. 7-16 and the difficulty of predicting values in practical application can be avoided
in most cases by the use of gascous voltageregulator tubes across the output of the bias supply, as shown in Fig. 7-17A. A Vle tuhe with a voltage rating anywhere between the

Fig. 7-16 - Simple bias-aupply circuits. In A, the peak transformer voltage must not exceed the operating value of hias. The circuits of 13 (half-wave) and C (full-wave) may be nsed to reduce transformer voltage to the rectifier. R_{1} is the reeommended grid-leak resistance.

Fig. 7.17 - Illustrating the use of VR tules in stabiliz. ing protective-bias supplice. R_{1} is a resistor whose value is adjusted to limit the current through each Vir tube to 5 ma , before amplifier excitation is applied. R and R_{2} are current-equalizing resistors of 50 to 1000 ohms.
ing-voltage value which will reduee the input to the amplifier to a safe leved when excitation is removed, and the operating value of bias, should be chosen. R_{1} is adjusted, without amplifier excitation, until the Vle tube ignites and draws about $\overline{5}$ mad. Additional voltage to bring the bias up to the operating value when excitation is applied can be obtained from a grid kak resistor, as discussed in the transmit ter chapter.

Wach VIR tube will handle 40 mat. of grid current. If the grid current exeeeds this value under any condition, similar VR tubes should be added in parallel, as shown in Fig. 7-1713, for cach 40 ma ., or less, of additional grid current. The resistors R_{2} are for the purpose of helphag to maintain equal currents through each V'R tube, and should have a value of 50 to 1000 ohms or more as required.

If the voltage rating of a single VIR tube is not sufficiently. high for the purpose, other Viz tubes maty be used in series (or series-parallel if required to satisfy grid-current requirements) as shown in the diagrams of Fig. 7-17C and 1 .

Fig. 7.18-Cireuit diagram of an electronically-regolated hias supply.
(C_{1} - 20) $\mu \mathrm{fl}$. 450 -volt electrolytic.
Ci2-20-mfd. 150 -volt electrolytic.
$\mathbf{R}_{1}-5000$ ohms, 25 watts.
$\mathrm{H}_{2}-22,000$ ohme, $1 / 2$ watt.
$\mathrm{R}_{3}-68,(000$ ohms, $1 / 2$ watl.
$\mathrm{R}_{4}-0.27$ megrhm, $1 / 2$ watt.
$1 \mathrm{R}_{5}$ - 30100 ohms, 5 , watts.
$R_{\bullet}-0.12$ megohm, $1 / 2$ watt.
H_{7} - 0.1 -megohm potentiometer.
$\mathrm{R}_{8}-27,000$ ohms $1 / 2$ watt.
$L_{1}-2(0-h y, ~ 50$-ma. filter chohe.
Ti - Power transformer: 350 volta r.m.s. cach side of renter, 50 ma.; 5 volt., 2 amp.; 6.3 volts, 3 amp.
in Fig. 7-17E, to adapt them to the needs of each stage.

Providing the VR-tube current rating is not exceeded, a series arrangenent may be tapped for lower voltage, as shown at F.

The circuit diagram of an electronicallyregulated bias-supply is shown in Fig. 7-18. The output voltage may be adjusted to any value between 20 volts and 80 volts and the unit will handle grid currents up to 200 ma , over the range of 30 to 80 volts, and 100 ma . over the remainder of the range. This will take care of the bias requirements of most tubes used in Class B amplifier service. The regulation will hold to about 0.001 volt per milliampere of grid current.

Other Sources of Biasing Voltage

In some cases, it may be convenient to obtain the biasing voltage from a source other than a separate supply. A half-wave rectifier may be connected with reversed polarization to obtain biasing voltage from a low-voltage plate supply, as shown in Fig. 7-19A. In another arrangement, shown at B, a spare filament winding can be used to operate a filament transformer of similar voltage rating in reverse to obtain a voltage of about 130 from the winding that is customarily the primary. This will be sufficient to operate a VR75 or VR90 regulator tube.

Fig. 7-19 - Convenient means of obtaining biasing voltage. A - From a low-voltage plate supply. 13 From spare filament winding. T_{1} is a filament transformcr , of a voltage output similar to that of the spare filament winding, conneeted in reverse to give 115 volts r.m.s, output. If cold-eathode or selenium rectifiers are used, no additional filament supply is required.

A bias supply of any of the types discussed requires relatively little filtering, if the out putterminal peak voltage does not approach the operating-bias value, because the effect of the supply is entirely or largely "washed out" when grid current flows.

Selenium-Rectifier Circuits

While the circuits shown in Figs. 7-20, 7-21 and 7-22 may be used with any type of rectifier, they find their greatest advantage when used with selenium rectifiers which require no filament transformer.

Fig. 7-20-Simple halfowave eireuit for selenium rectifier.
$\mathrm{C}_{1}-0.05 . \mu \mathrm{fd}$. 600 -volt paper.
$\mathrm{C}_{2}-40-\mu \mathrm{fl}$. 200-volt electrolytie.
$R_{1}-25$ to 100 ohms.
Fig. 7-20 is a straightforward half-wave rectifier cireuit which may be used in applications where 115 to 130 volts d.c. is desired. It can be used for bias supply, for instance. In this, as well as other circuits, it will be observed that the negative side of the output is common with one side of the a.c. line and it is suggested that this side be fused with a $1 / 2-$ ampere fuse.

Fig. 7-21 shows several voltage-doubler circuits. Of the three, the one shown at A is the most desirable since there is no sories condenser. It is a full-wave circuit and there will be very little ripple voltage appearing at the output. The arrangement of circuit B is such
that one side of the output may be grounded. In circuit C, the point X is common to both condensers in the rectifier and filter, and a single-unit

Fig. 7-2l-Voltage-doubling eireuits for use with selenium rectifiers.
(: 1 - $0.05-\mu \mathrm{ff}$. 600 -volt paper.
$\mathrm{C}_{2}-40-\mu \mathrm{fd} .2010$-volt electroly tic.
C_{3} - Filter condenser.
$R_{1}-25$ to 100 olims.
1.1 - Fïlter chohe.

3 -section condenser can be used to save space. If the load current is less than 100 mat., this is the loses cireuit.

Fig. $\overline{\text { F }} 22.1$ shows a voltage tripler, and B and C quidruplers.

All components are standard. C_{1} in all circuits is for "hash" filtering and its value is not critical. A 0.0)- μ td. (500 -volt-working condenser should serve. All other condensers should be $40-\mu \mathrm{fd}$. 200 -volt units, exeept those in the tripler and quadrupler circuits. "Whose in the rimeut of Fig. $\overline{7}-22$ should have a rating of $4 \overline{0} 0$ volts working. In the voltage multipliers and in other circuits where a condenser is patsing the full current, good condensers should be used beratuse the ade. ripple mentioned above appears across the condenser and increases as the load increases. If the current is allowed to become too high, it will cause heating and deterioration of the condenser. 'lhis can be kept to a minimum by using a capacitor of high value and making sure it is of good make. R_{1} should be $\mathbf{2 5}$ ohms, but if it is found that the rectifior units are rumning a little too warm, this value may be increased to as high as 100 ohms, with a corresponding drop in output voltage, of course. A single-section filter, as shown in Fig. 7-21C, will provide sufficient smoothing for most applications.

These cireuits should be used with caution, sinee there is always a direct contertion between power line and load.

Fig. 7.22 - A - Tripler circuit. B - Half-wave quadrupler. C - liull-wave qualrupler.
$\mathrm{Ci}_{1}-0.05-\mu \mathrm{ffl}$. 6010 -volt paper.
$\mathrm{C} 2-40$ - ff . i . 0 -volt electroly tic .
C3- $1000-\mu \mathrm{fi}$. 1.50 -volt electrolytic.
$\mathrm{K}_{1}-25$ to 100 ohms.

Power-Line Considerations

POWER-LINE CONNECTIONS

If the transmitter is rated at much more than 100 watts, sperial consideration should be given to the a.c. line rumning into the station. In some residential systems, three wires are brought in from the outside to the distribution board, while in other systems there are only two wires. In the three-wire system, the third wire is the neutral which is grounded. The voltage between the other two wires normally. is 230 , while half of this voltage (115) appears between each of these wires and neutrat, as indicated in Fig. 7-23. . In systems of this type, usually it will be found that the $115-$
volt household load is divided as evenly as possible between the two sides of the circuit, half of the load being connected between one wire and the neutral, while the other half of the load is connected between the other wire and neutral. I Ieavy appliances, such as electric stoves and heaters, normally are designed for 230 -volt operation and therefore are connected arross the two ungrounded wires. While both ungrounded wires should be fused, a fuse should never be used in the wire to the neutral, nor should a switch be used in this side of the line. The reason for this is that opening the neutral wire does not disconnect the equip-

Fig. T-2:3 - Three-wire power-line circuits. 1 - Normal 3-wire-line termination, No fuse should be used in the yrounded (nentral) line. B - Showing that a switeh in the neutral does not remove voltage from either side of the line. C - Connections for hoth 115 . and 230 - olt transformers. D- Operating a 115 -volt plate transformer from the 230 -volt line to avoid light blinking. T_{1} is a $2-t 0-1$ step-don in transformer.
ment. It simply leaves the equipment on one side of the 230 -volt circuit in series with whatever load may be across the other side of the eircuit, as shown in Fig. 7-2:313. Furthermore, with the neutral open, the voltage will then be divided bet ween the two sides in proportion to the load resistance, the voltage on one side dropping below normal, while it soars on the ot her side, unless the loads happen to be equal.

The usual line ruming to baseboard outlets is rated at 15 amperes. Considering the power consumed by filaments, lamps, modulator, receiver and other auxiliary equipment, it is not unusual to find this 15 -ampere rating exceeded by the requirements of a station of only mod-

Fig. 7-24 - Two methods of transformer primary control. At A is a tapped toy transformer which may he connected so as to boost or buck the line voltage as required. At 13 is indicated a variable transformer or atitotransformer (Variae) which feeds the transformer primaries.
erate power. It must also be kept in mind that the same branch may be in use for other household purposes through another outlot. For this reason, and to minimize light blinking when keving or modulating the transmitter, a separate heavier line should be run from the distribution board to the station whenever possible. (A three-volt drop in line voltage will cause noticeable light blinking.)

If the system is of the three-wire type, the three wires should be brought into the station so that the load can be distributed to keep the line balanced. The voltage across a fixed load on one side of the circuit will increase as the load current on the other side is increased. The rate of increase will depend upon the resistance introduced by the neutral wire. If the resistance of the neutral is low, the increase will be correspondingly small. When the currents in the two circuits are balanced, no current flows in the neutral wire and the system is operating at maximum efficieney.

Light blinking can be minimized by using transformers with $2: 30$-volt primaries in the power supplies for the keyed or intermittent part of the load, connecting them across the two ungrounded wires with no connertion to the noutral, as shown in Fig. 7-2:3C. The same can be accomplished by the insertion of a step-
down transformer whose primary operates at 230 volts and whose secondary delivers 115 volts. Conventional 115 -volt transformers may be operated from the secondary of the step-down transformer (see Fig. 7-23D).

When a special heary-duty line is to be installed, the local power company should be consulted as to local requirements. In some localities it is necessary to have such a job done by a licensed electrician, and there may be special requirements to be met in regard to fittings and the manner of installation. Some amateurs terminate the special line to the station at a switch box, while others may use electric-stove receptacles as the termination. The power is then distributed around the station by means of conventional outlets at convenient points. All circuits should be properly fused.

LINE-VOLTAGE ADJUSTMENT

In cortain communities trouble is sometimes experienced from fluctuations in line voltage. Tsually these fluctuations are caused by a variation in the load on the line and, since most of the variation comes at certain fixed times of the day or night, such as the times when lights are turned on at evening, they may be taken care of by the use of a manuallyoperated compensating device. A simple arrangement is shown in Fig. 7-24.1. A toy transformer is used to boost or buek the line voltage as required. The transformer should have a tapped secon lary varying between 6 and 20 volts in steps of 2 or 3 volts and its secondary should be capable of carrving the full load current of the entire transmitter, or that portion of it fed by the toy transformer.

The secondary is connected in series with the line voltage and, if the phasing of the windings is correct, the voltage applied to the primaries of the transmitter transformers can be brought

Fig. 7-25- With thig circuit, a single adjustment of the tap switeh S_{1} places the correct primary voltage on all transformers in the transmitter. Information on consiructing a suitable autotransformer at negligible cost is contained in the text. The light winding represents the regular primary winding of a revamped transformer, the heavy winding the voltage-adjusting section,
up to the rated 115 volts by setting the loytransformer tap switch on the right tap. If the phasing of the two windings of the toy transformer happens to be reversed, the voltage will be reduced instead of inereased. This comertion may be used in cases where the line voltage may be above 115 volts. This method is preferable to using a resistor in the primary of a power transformer since it does not afferet the voltage regulation as seriously. The circuit of 7-2413 illustrates the use of a variable transformer (Variace) for aljusting line voltage to the desired value.

Another scheme ly which the primary voltage of areh transformer in the transmitter may be adjusted to give a desired secondary voltage, with a master control for compensating for changes in line voltage, is shown in Fig. 7-25.

This arrangement has the following features:

1) Adjustment of the switch S_{1} to make the voltmeter read 105 volts automatically adjusts all transformer primaries to the predetermined correct voltage.
2) The necessity for having all primaries work at the same voltage is climinated. Thus, 110 volts ean be applied tos the primary of one transformer, 11 b to another, ete., as required to ohtain the desired output voltage.
3) Independent control of the plate transformer is affordod by the tap switch s_{2}. This permits power-mput control and does not require an extra autotransformer.

Constant-Voltage Transformers

Although comparatively expensive, special transformers called constant-voltage transformers are available for use in cases where it is neeessary to hold line voltage and/or filament voltage constant with fluctuating supply-line voltage. They are rated over a range of 17 va . at 6.3 volts output, for small tube-hater domands, up to several thousand volt-amperes at 115 or 230 volts. In average figures, such transformers will hold their output voltages within one per rent under an input-voltage variation of 30 per cent.

Construction of Power Supplies

The length of most leads in a power supply is unimportant, so that the arrangement of components from this consideration is not a factor in construction. More important are the points of good high-voltage insulation, adequate conductor size for filament wiring, proper ventilation for rectifier tubes and most important of all - safoty to the operator. Exposed high-voltage terminals or wiring which might be bumped into arededentally should not be permitted to exist. They should be covered with adequate insulation or plared inateressible to contact during normal operation and adjust ment of the transmitter. Powersupply units shouht be fused individually, All nerative terminals of plate supplies and positive

Fig. 7.26- A typical simple receiver power supply. Filament and plate voltages are taken from the multicontact tube socket which serves as an outlet.
terminals of hitas supplies should be securely grounded to the chassis, and the chassis connected to a waterpipe or radiator ground. All transformer, choke, and condenser cases should aho be grounded to the chassis.

Rectifier filament latals should be kept short to assure proper voltage at the rectificr socket, and the sockets should have good insulation and allequate contact surface. Plate leads to mercury-vapor tubes should be kept short to minimize the radiation of noise.

Where high-voltage wiring must pass through a metal chassis, grommet-lined clearance holes will sarve for voltages up to 500 or 750 , but coramic feed-througb insulators should be used for higher voltages. Bleeder and

Fig. 7-2:- Bottom view of the simple receiver power supply showing the cut-out for the flush-mounting transformer.

Fig. 7.28- A typical high. voltage transmitter power supply. 'The transformers, chokes and condensers are inverted so that no terminals are exposed to accidental contact. The eaps of the 866 rectitiors are the insulated type.

voltage-dropping resistors should be placed where they are open to air circulation. placing them in confined space reduers the rating.

It is highly preferable from the standpoint of operating convenience to have separate filament transformers for the rectifier tubes, rather than to use combination filament and plate transformers, such as those used in receivers. This permits the transmitter plate voltage to be switched on without the necessity

Fig. 7-29- Bottom view of the transmitter power supply showing the cutoouts for the terminals. Separate power plugs are used for the rectifier-filament and plate transformers so that they may be suitched independ. ently from the control position.
for waiting for rectifier filaments to come up to temperature after each time the high voltage has been turned off. When using a combination power transformer, high voltage may be turned off without turning the filaments off by using a switch between the transformer center tap and chassis. This switch should be of the rotary type with good insulation between eontarts. The shaft of the switch must be grounded.

SAFETY PRECAUTIONS

All power supplies in an installation should be fed through a single main power-line switch
so that all power may be cut off quickly, wither before working on the equipment, or in case of an accident. Spring-operated switehes or relays are not suffiriently reliahle for this important service. Foolproof devires for cutting off all power to the transmitter and other equipment are shown in Fig. 7-30. The arrangements shown in Fig. 7-30A and 13 are similar circuits for two-wire (115-volt) and three-wire (230-volt) systems. S is an enclosed double-throw knife switch of the sort

Fig. 7.30 - Reliable arrangements for cutting off all power to the transmitter. S is an enclosed double-pole knife-type switch, J a standard a.c. outlet, P a shorted plug to fit the outlet and I a red lamp.

A is for a two-wire 115 -volt line, B for a three-wire 230 -volt system, and C a simplified arrangement for low-power stations.
usually used as the entrance switeh in house installations. J is a standard a.c. outlet and I^{P} a shorted plug to fit the outlet. The switch should be located prominently in plain sight and members of the household should be instructed in its location and use. I is a red lamp located alongside the switch. Its purpose is not so much to serve as a warning that the power is on as it is to help in identifying and cuickly locating the switeh should it become necessary for someone else to cut the power off in an emergence.

The outlet J should be placed in some comer out of sight where it will not be a temptation for children or others to play with. The shorting plug can be removed to open the power circuit if there are others around who might inadvertently throw the switeh while the operator is working on the rig. If the operator takes the plug with him, it will prevent someone from turning on the power in his absence and sither injuring themselves or the efuipmeat or perhaps starting a fire.

Those who are operating low power and feel that the expense or complication of the switch isn't warranted can use the shorted-plug idea as the main power switch. In this case, the outlet should be located prominently and identified by a signal light, as shown in Fig. 7-30C.

The test bench ought to be fed through the main power switeh, or a similar arrangemont at the bench, if the latter is remote from the transmitter.

A bleeder resistor with a power rating giving a considerable margin of safety should be used across the output of all transmitter power supplies so that the filtor condensers will be discharged when the high-voltage transformer is turned off. To guard against the possibility of danger to the operator should the bleeder re-

Fig. 7.31 - TVo achemes for shorting the high-voltage supply automatically for safety purpose when the tranmitter dow is opened.
sistor hurn out without his knowledge, and also to protect him in case he neglects to turn off the power supply before opening a cabinet transmitter enclosure, one of the devices shown in Fïg. $7-31$ is recommended. In A , a grounded pivoted metal lever drops by gravity against a contact comnected to the positive high-voltage terminal when the cabinet door is opened, shorting the power supply. When the door is closed, it pushes against the end of the lever protruding through the door opening and the short is removed automatically. In another scheme, shown at 13, a metal ball, suspended on a cord, drops into a triangle of contacts, one of which is grounded, while the other two go to positive terminals of power supplies. The wedge mounted on the door pushes against the suspending cord, lifting the ball when the door is closed. The power supplies should be equipped with suitable fuses to save the equipment in case the device is ever called upon to perform its duty.

Emergency and Independent Power Sources

Emergency power supply which operates independently of a.c. lines is available, or can be built in a number of different forms, depending upon the requirements of the service for which it is intended.

The most practical supply for the avorage individual amateur is one that operates from a 6 -volt car storage battery. Such a supply may take the form of a small motor generator (often called a genemotor), a rotiry converter, or a vibrator-transformer-rectifier combination.

Dynamotors

A dynamotor differs from a motor generator in that it is a single unit having a double armature winding. One winding serves for the driving motor, while the output voltage is
taken from the other. Dynamotors usually are operated from 6-, 12-, 28- or 32 -volt storage batteries and deliver from 300 to 1000 volts or more at various current ratings.

Genemotor is a term popularly used when making reference to a dynamotor designed especially for automobile-receiver, soundtruck and similar applications. It has good rogulation and efficiency, combined with economy of operation. Standard models of genemotors have ratings ranging from 250 volts at 50 ma . to 400 volts at 375 ma . or 600 volts at 250 ma. The normal efficiency averages around 50 per cent, increasing to better than 60 per eent in the higher-power units. The voltage regulation of a genemotor is comparable to that of well-designed a.c. supplies.

Successful operation of dynamotors and genemotors requires heavy direct leads, mechanical isolation to reduce vibration, and thorough r.f. and ripple filtration. The shafts and bearings should be thoroughly "rum in" before regular operation is attempted, and thereafter the tension of the bearings should be checked occasionally to make certain that no looseness has developed.

In mounting the genemotor, the support should be in the form of rubber mounting blocks, or equivalent, to prevent the transmission of vibration mechanically. The frame of the genemotor should be grounded through a heavy flexible eonnector. The brushes on the high-voltage end of the shaft should be bypassed with $0.002-\mu \mathrm{fd}$. mica condensers to a common point on the genemotor frame, preferably to a point inside the end cover close to the brush holders. Short leads are essential. It may prove desirable to shield the entire unit. or even to remove the unit to a distance of three or four feet from the receiver and antenna lead.

When the genemotor is used for receiving, a filter should be used similar to that described for vibrator supplies. A $0.01-\mu \mathrm{fd}$. 600 -volt (d.c.) paper condenser should be connected in shunt across the output of the genemotor, followed by a $2.5-\mathrm{mh}$. r.f. choke in the positive high-voltage lead. From this point the output should be run to the receiver power terminals through a smoothing filter using 4- to $8-\mu$ fld. condensers and a 15 - or 30 -henry choke having low d.e. resistance.

D.C.-A.C. Converters

In some instances it is desirable to utilize existing equipment built for 115 -volt a.c. operation. To operate such equipment with any of the power soures outlined above would require a considerable amount of rebuilding. This can be obviated by using a rotary converter capable of changing the d.c. from 6-, 12 - or 32 -volt batteries to 115 -volt 60 -cycle a.e. such converter units are built todeliver out puts ranging from 40 to 250 watts, depending upon the battery power available.

The conversion efficiency of these units a verages about 50 per cent. In appearance and operation they are similar to genemotors of equivalent rating. The over-all efficiency of the converter will be lower, however, because of losses in the a.c. rectifier-filter circuits and the necessity for converting heater (which is supplied directly from the battery in the case of the genemotor) as well as plate power.

Vibrator Power Supplies

The vibrator type of power supply consists of a special step-up transformer combined with a vibrating interrupter (vibrator). When the unit is connected to a storage battery, plate power is obtained by passing current from the battery through the primary of the transformer. The eircuit is made and reversed
rapidly by the vibrator contacts, interrupting the current at regular intervals to give a changing magnetic field which induces a voltage in the secondary. The resulting squarewave d.c. pulses in the primary of the transformer cause an alternating voltage to be developed in the secondary. This high-voltage a.c. in turn is reetified, either by a vacuum-tube rectifier or by an additional synchronized pair of vibrator contacts. The rectified output is pulsating d.c., which may be filtered by ordinary means. The smoothing filter can be a single-section affair, but the output capacitance should be fairly large - 16 to $32 \mu \mathrm{fd}$.
lig. $7-32$ shows the two types of circuits. At A is shown the nonsynchronous type of vibrator. When the battery is disconnected the reed is midway between the two contacts, touching neither. On closing the battery circuit the magnet coil pulls the reed into contact with one contact point, causing current to flow through the lower half of the transformer primary winding. Simmltaneously, the magnet

Fig. 7-32- Basic types of vibrator power-supply cirenits. A - Nonsymehromons. [3-Synehronous.
roil is short-circuited, deemergizing it, and the reed swings back. Inertia carries the reed into contact with the upper point, causing current to flow through the upper half of the transformer primary. The magnet coil again is energized, and the cycle repeats itself.

The synchronous rircuit of Fig. 7-3213 is provided with an extra pair of contacts which rectify the secondary output of the transformer, thus eliminating the need for a separate rectifier tube. The serondary center-tap furnishes the positive output terminal when the relative polaritios of primary and secondary windings are correct. The proper connections may be determined by experiment.

The buffer condenser, C_{2}, across the transformer secondary, absorbs the surges that oceur on breaking the current, when the magnetic field collapses practically instantaneously and hence causes very high voltages to be induced in the secondary. Without this condenser excessive sparking occurs at the vibrator contacts, shortening the vibrator life. Correct values usually lie bet ween 0.005 and $0.03 \mu \mathrm{fd}$.,
and for $250-300$-volt supplies the condenser should be rated at 1500 to 2000 volts d.c. The exact capacitance is critical, and should be determined experimentally. The optimum value is that which results in least battery current for a given rectified d.c. output from the supply. In practice the value can be determined by observing the degree of vibrator sparking as the capacitance is changed. When the system is operating properly there should be practically no sparking at the vibrator contacts. A 5000 -ohm resistor in series with C_{2} will limit the secondary current to a safe value should the condenser fail.

Vibrator-transformer units are available in a variety of power and voltage ratings. Representative units vary from one delivering 125 to 200 volts at 100 ma . to others that have a 400 -volt output rating at 150 mat . Most units: come supplied with "hash" bilters, but not all of them have built-in ripple fitters. The requirements for ripple filters are similar to those for a.c. supplies. The usual efficiency of vibrator packs is in the vicinity of 70 per cent, so a 300 -volt $200-m$. unit will draw approximately 15 amperes from a 6 -volt storage battery. Sperial vibrator transformers are also available from transformer manufacturers so that the amateur may buid his own supply if he so desires. These have d.e. output ratings varying from 150 volts at 40 mat to 330 volts at 135 ma .

Vibrator-type supplies are also available for operating standard a.c. equipment from a 6 -volt storage battery in power ratings up to 100 watts continuous or 125 watts intermittent.

"Hash" Elimination

Sparking at the vibrator contacts causes r.f. interference ("hash," which can be distinguished from hum by its harsh, sharper pitch) when used with a receiver. To minimize this, r.f. filters are incorporated, consisting of $R F F C_{1}$ and C_{1} in the battery circuit, and $R F C_{2}$ with C_{3} in the d.c. output circuit.

Equally as important as the hash filter is thorough shielding of the power supply and

Fig. 7.33 - Circuit of a combination a.c.-d.c. power supply for emergency work.
$\mathrm{C}_{1}-0.01-\mu \mathrm{fd}$. $600-\mathrm{volt}$ paper.
$\mathrm{C}_{2}-8-\mu \mathrm{fd}$. 1 ha -volt electrolytic.
$\mathrm{C}_{3}-32-\mu \mathrm{fd}$. 550 -volt electrolytic.
$\mathrm{C}_{4}-0.005-\mathrm{to} 0.01-\mu \mathrm{fI}$. 1600 -volt paper.
C: $-500-\mu \mathrm{fd}$. electroly tic, 25 volts or higher.
$\mathrm{C}_{6}-100-\mu \mu \mathrm{fd}$. 600 -volt mica.
R_{1} - 1700 ohms, 1 watt.
L_{1} - 10-1012-hy. filter whoke, 100 ma. (not over loo ohms) (Stancor C-2303 or equivalent).
$\mathrm{RFC}_{1}-2.5-\mathrm{mh}$. r.f. chohe.
$\mathrm{RHC}_{2}-55$ turns No. 12 on l-inch form,
close-wound.
$\mathrm{S}_{1}, \mathrm{~S}_{2}-$ logkle switch.
' ${ }_{1}$ '-Power transformer: 225 to 300 volts r.m.s. each side of center tap, 100 to 150 ma., 6.3 - olt filament windink.
T_{2} - Vibrator transformer (Stancor P-6131 or similar).
ViB - Vibrator unit (Mallory 500P, 294, etc.).

Fig. 7-34 - A typical combination a.c.-d.c. power pack for low-power emergency work. The two tranaformers are mounted at either end of the chassis. The fiter condenser is at the left, the two reetifier sockets at the renter and the vibrator to the rear.
nals. If desired, two rertifier tubes may be used and the changeover made through suitable switches.
R.f. filters for reducing hash are incorporated in both primary and secondary eirraits. The secondary filter consists of a $0.01-\mu \mathrm{fd}$. paper condenser directly across the rectifier output, with a $2.5-\mathrm{mh}$. r.f. choke in series ahead of the smoothing filter. In the primary circuit a low-inductance choke and high-capacitance condenser are needed because of the low impedance of the circuit. A choke of the specifications given should be adeguate, but if there is trouble with hash it may be beneficial to experiment with other sizes. The wire should be large - No. 12, preferably, or No. 14 as a minimum. Manufactured ehokes such as the Mallory RFises are more compact and give higher Inductance for a given resistance because they are bank-wound, and may be substituted if whainable. C_{5} should be at least $500 \mu \mathrm{fd}$.: even more caparitance may help in bad cases of hash. The components are assembled on a $5 \times 10 \times 3$ inch steel chassis. Three socket holes are required -one for the 4-prong sorket for the vibrator and two octal soekets for the rectifier.
The compactness of selonium reetifiors and the faret that they do not require filament voltage make them particularly suited to compart lightweight power supplies for portable amergency work. ,
lig. 7-35 shows the circuit of a vibrator pack that will deliver an output voltage of 400 at 200 ma . It will work with either 115 -volt ac. or 6 -volt battery input. The eircuit is that of the familiar voltage tripler whose d.e output voltage is, as a rough approximation, three times the peak voltage delivered by the transformer or line. An interesting feature of the circuit is the fact that the single transformer serves as the vibrator transformer when op-
erating from 6 -volt d.c. supply and as the filament transformer when operating from an a.c. line. This is accomplished without complicated switching.

The vibrator transformer, T_{1}, is a dualsecondary 6.3 -volt filament transformer connected in reverse. In either event, the filament windings must have a rating of 10 amperes if the full load current of 200 ma . is to be used. The vibrator also must be capable of handling the current. The hash-filter choke, L_{1}, must carry a current of 20 amperes.

The following table shows the output voltage to be expected at various load currents, depending upon the size of condensers used at C_{1}, C_{2} and C_{3}.

$C_{1, ~}, C_{2}, C 3$	Outpui Voltage al			
$(\mu d d)$	50 ma.	100 ma.	150 ma.	200 ma.
60	455	430	415	395
40	425	390	360	330
20	400	340	285	225

In operating the supply from an a.c. line, it is always wise to determine the plug polarity with respect to ground. Otherwise the rectifier part of the eircuit and the transformer eircuit can-

Fig. 7.35 - Circuit diagram of a compact vibrator-a.c. portable power supply using selenium rectifiers.
$\mathrm{C}_{1}-60-\mu \mathrm{fd}$. 200.volt electrolytic.
$\mathrm{C}_{2}-60-\mu \mathrm{fil}$. 100 -volt electrolytic.
$\mathrm{C}_{3}-60-\mu \mathrm{fil}_{1}$. 000 -volt electrolytic.
(i4 - 25- $\mu \mathrm{ff}$. 25-voli electrolytic.
($\mathrm{C}_{5}, \mathrm{C}_{6}-0.5-\mu \mathrm{fl}$. 9. -volt paper.
(is - 0.00 $-\mu \mathrm{fd}$. 1500 volt paper.
$\mathrm{R}_{1}-2,5,000$ ohms. 10 watts.
I_{1} - $2 \boldsymbol{2} \cdot \mu \mathrm{~h} y, 20$ amp. choke.
$\mathrm{S}_{1}-11$-volt togyle switeh.
S_{2} - IJ. r.d.t. heavy rluty knife switch.
$\mathrm{S}_{3}-25 \cdot \mathrm{amp}$ s.p.s.t. switch.
Ti-Seretext.
V - lleavy-duty vibrator (Cornell-Dub. 4123).
not be conneeted to actual ground exeept through by-pass condensers. Rectangular cutouts are also needed for the two flush-mounting transformers. The filter choke, L_{1}, and other small components can be fitted under the chassis. The clip leads to the battery should be no longer thim neressary.

GASOLINE-ENGINE DRIVEN GENERATORS

For higher-power installations, sueh as for communications control centers during emergencies, the most practical form of independent
power supply is the gasoline-cngine driven generator which provides standard 115 -volt (60-cycle supply.

Such generators are ordinarily rated at a minimum of 250 or $\mathbf{3 0 0}$ watts. They are available up to two kilowatts, or big enough to handle the highest-power amateur rig. Most are arranged to charge automatically an auxiliary 6 - or 12 -volt battery used in starting, Fitted with self-starters and adequate mufflers and filters, they represent a high order of performance and efficiency. Many of the larger models are liquid-cooled, and they will operate continuously at full load.

A variant on the generator idea is the use of fan-belt drive. The disadvantage of requiring that the automobile must be running throughout the operating period has not led to general popularity of this idea among amateurs. Such generators are similar in const ruction and capacity to the small gas-driven units.

The output frequency of an engine-driven generator must fall between the rolatively narrow limits of 50 to 60 cycles if standard (60-cycle transformers are to operate efficiently from this source. A 60 -cycle electric clock provides a means of checking the output frequency with a fair degree of accuracy. The clock is connected across the output of the generator and the second hand is checked closely against the second hand of a watch. The speed of the engine is adjusted until the two second hands are in synchronism. If a 50 -cycle clock is used to check a 60 -cycle generator, it should be remembered that one revolution of the second hand will be made in 50 steconds and the clock will gain 4.8 hours in each 24 hours.

Output voltage should be checked with a voltmeter since a standard 115 -volt lamp bulb, which is sometimes used for this purpose, is very inaccurate. Tests have shown that what appears to be normal brilliance in the lamp may occur at voltages as high as 150 if the check is made in bright sunlight.

Noise Elimination

Electrical noise which may interfere with receivers operating from engine-driven a.c. generators may be reduced or eliminated by taking proper precautions. The most important point is that of grounding the frame of the generator and one side of the output. The ground lead should be short to be effective, otherwise grounding may actually increase the noise. A water pipe may be used if a short connection can be made near the point where the pipe enters the ground, otherwise a good separate ground should be provided.

The next step is to loosen the brush-holder
locks and slowly shift the position of the brushes while checking for noise with the recciver, Usually a point will be found (almost always different from the factory setting) where there is a marked decrease in noise.

Fig. 7.36-Connections used for eliminating interference from gas-driven generator plants. (ishould be I $\mu \mathrm{fl} ., 300$ volts, paper, white Ci_{2} may lee $1 \mu \mathrm{fd}$. with a voltage rating of twice the d.c. output voltage delivered by the generator. X indicates an added connection between the slip ring on the grounded side of the line and the generator frame.

From this point on, if necessary, by-pass condensers from various brush holders to the frame, as shown in Fig. 7-36, will bring the hash down to within 10 to 15 per cent of its original intensity. if not entirely eliminating it. Most of the remaining noise will be reduced still further if the high-power audio stages are cut out and a pair of headphones is connected into the second detector.

- POWER FOR PORTABLES

Dry-cell batteries are the only practical source of supply for equipment which must be transported on foot. From certain considerations they may also be the best source of voltage for a receiver whose filaments may be operated from a storage battery, since no problem of noise filtering is involved.

Their disadvantages are weight, high cost, and limited current capability. In addition, they will lose their power even when not in use, if allowed to stand idle for periods of a year or more. This makes them uneconomical if not used more or less continuously.

Dry " B " batteries are made in a variety of sizes and shapes, from a 45 -volt unit weighing about 1 lb . that has an intermittent service rating of 20 hours at a drain of 20 ma ., to a $12-\mathrm{lb}$. unit rated at 130 hours at 40 ma . " A " batteries for filament service range from a 6 -volt unit weighing $1 \frac{1}{2}$ lbs. delivering in intermittent service an average of 60 ma . for 150 hours, to a $61 / 4-1 \mathrm{~h}$. 1.5 -volt unit having a service life of 870 hours at 200 ma . Miniature batteries, suitable for hand-portable use, are also available.

CHAPTER 8

Keying and Break-In

Offhand it would appear that keying a transmitter is a simple matter, since on the face of it nothing more is involved than turning the transmitter ontput on and off to correspond to the code characters being sent. Unfortunately, it is not this simple, and perfert keving of a c.w. rig is ats diffieult to come by as perferet voice quality is with a 'phone transmitter. The problem cannot be dismissed lightly.

Although the operation is basically that of turning the tramsmitter output power on and off, it is complieated by the fact that it must not be turned on and off instan/aneonsly. lnstead, the output must be made to rise to (and fall from) maximum in some finite period of time, if key clicks are to be avoided. These clicks are the inescapable result of changing the power level rapidly, and they appear in the radio spectrum adjacent to the signal proper. The more rapidly the output is varied, the farther the clicks will extend in frequency and the greater will be their amplitude. They interfere unnecessarily with other signals and, if severe enough, can be cause for a discrepancy report by the $\mathrm{P}^{2} \mathrm{C} C$.

Inother effert of improper keying of a transmitter is the introduction of chirp, a change in freguency at the instant of making or breaking the signal. A chirp of 50 cycles is enough to make a signal unpleasant to copy, and a chirp of several hundred eyoles may render the signal difficult to eopy or a target for an FCO discrepancy report. Much depends, of courso, upon the selectivity and beat note being used at the receiver, but the saffest procedure is to sim for no detectable rehirp.

A third koying fault is backwave, which consists of power leaking through and radiating when the key is "up." I strong hackwave makes the signal unpleasant or diflicult to copy.

In code transmission, there are intervals between dots and dashes, and slightly longer intervals between letters and words, when no power is being radiated by the transmitter. If the receiver can be made to operate at normal sensitivity during these intervals, it is possible for the receiving operator to signal the transmitting operator, by holding his key down. This is useful during the hathding of messages, since the receiving operator ean immediately signal the transmitting operator if he misses part of the message, It also redures the time neressary for calling in answer to a "(()." The ability to hear sigmals during the short "key-up" intervals is called break-in operation.

- SELECTING THE STAGE TO KEY

It is often desirable from an operating standpoint to design the c.w. transmitter for breakin operation. In most cases this requires that the oscillator be keyed, since a continuouslyrunning oscillator will create interference in the receiver and prevent break-in on or near one's own frequency, unless the oseillator stage is well shiolded. ${ }^{1}$ (hirpless and elickless keying of an oscillator is difficult to obtain, since the necessary slow turning on and off of the oseillator (for click elimination) shows up any oseillator freguency-rs,-voltige changes, It is easy to key an oscillator without chirps or without clicks but not without both. The affect of a chirp is multiplied with frequency, and it is difficult to obtain chirpless oscillator keying at an output frequency of 14,21 or 28 Me .

The best-sounding keying (and the simplest to aldust) is usually obtained by keying the output or driver stage, or both. With the oseillator rumning continuously and "buffered" by several intermediate stages, its frequency remains constant throughout all parts of the keving eyclo. The only problem in keying then beromes that of properly "shaping" the keving to reduce or eliminate clieks. When keving several stages atwy from the output amplifier, it is neeessary to bias the stages following the keyed stage so that they draw little or no plate current when the key is up, to avoid exeessive plate dissipation. If the stages are biased too heavily, however, these subserpaent amplifiers tend to shorten the rise and fall times and thus reintroduce clicks. This should always be borme in mind when a multistage transmitter is used with low-level keving.

The power broken by the key is an important consideration, both from the standpoint of safety to the operator and that of sparking and sticking at the key contacts. Keying of the oscillator or a low-power stage is favorable on both counts. The use of a keying relay or keyer tube is recommended when a high-power circuit is keyed.

Berause transmitters vary widely in design, there is no specifice recommendation that can be made about choosing the stage to key. If the oscillator alone keys satisfactorily (no chirps or clicks), even when listening to its

[^4]harmonics on 21 or 28 Mc., the transmitter should be keyed there, but the effect of adding the additional multipliers and amplifiers should be carofully checked, to see that clicks are not reintroduced. Methods for checking will be given later. If the oscillator camot be keyed satisfactorily by itself or with the following stage added, a stage near the output should be
keyed and any thought of break-in operation should be discarded. A close approach to break-in operation can be obtained by using a convenient and fast "on-off" switch for the oscillator, or the break-in system described later in the chapter can be used. Foot-actuated switches are available for use as the "on-off" switch - they leave both hands free at all times.

Keying Circuits

The plate circuit is a good one to key in an oseilator or low-voltage amplifier, berause it is easy to shape the keving properly in this circuit. When plate-circuit keying is used, it is usually done in the negative lead, since this permits one side of the key to be g"ounded. The stage can be keyed in the positive latal, but both sides of the keyed circuit will be "hot," and a keying relay is advisable. Fig. 8-1 shows the general circuit for meativelead keying in cither an oseillator or an amplifier. Two examples are shown using triodes, but screen-grid tubes can be used just as readily. Plate-circuit keying is recommended only for low-voltage circuits if no keving relay is used, since a large portion of the supply voltage can appear across the open key.

Shaping circuits applicable to this and later circuits will be discussed in this chapter under "Testing Your lieying."
somewhat closely related to plate-circuit keying is screen-grid keying, shown in Fig. 8-2. The only basio differener is that the screen grid is pulled down to a negative voltage when the key is up, to avoid the barkwave that may

Fig. 8.1 - Negative plate-lead keying for eathode- or filament-type tubes, These cirenits are useful for oscillator or low-power stages, where the voltage across the open key is not very dangerous. Tetrode or pentode stages ean be keyed in this mamer, but the sereen cirenit should be stabilized with I R tubes or a heavy volt. age divider. R_{1} is the nermal krid lrak, C_{1}, C_{2}, C_{3} and C\& arc r.f. hy-pass eondensers.
be present when the screen goes only to zero volts. The negative supply can be small, since its current demand is only a few milliamperes. If the screen voltage is taken from the plate supply, it should come from a volt inge divider rather than a simple dropping resistor.

Fig. 8.2-Screen-grid keying, suitable for oscillator or amplifier keying. R_{1} is the normal grid leak, R_{2} should be abont 200 to 500 oluns per sereen volt, ant C_{1}, C_{2} and C_{3} are normal by-pasis condensers.

Grid-circuit, or blocked-grid, keying is shown in lig. 8-3. With the key up, a negative voltage is applied to the grid sufficient to cut off the tube and prevent current flow. With the key closed, the grid circuit develops normal grid bias through R_{2}. The drain on the negative-voltage supply is small, since it is limited by the size of R_{1}. Griderircuit keying is generally used with low-power stages or where the voltage necossary to cut off the amplifier is only a few hundred volts. The value of C_{1} determines the keying characteristic, together with the ratio of R_{2} and R_{1}, and will be discussed later.
l3y placing the key in the cathode (or center tap) circuit of an oscillator or amplifier, both the grid and plate (and screen, if any) eircuits are opened by the key. Cathode keying is good for use with amplifiers, because the proper

Fig. 8.3-Bloched-grid keying. R_{1}, the current-limiting resistor, should have a value of about $\mathbf{5 0 , (\mathrm { KOO }}$ ohms. Ci may have a capacity of 0.1 to 1 pfl., depending upon the keying eharaeteristic desired. K_{2} is the normal value of grid leak for the tube.

Fig. 8-1 - (Gathole and eenter-tap) keying. The condens. ers (: are r,f, by-pass condensers. Their capacity is not critical, values of 0.001 to 0.01μ fu. orditarily being used.
shaping can be accomplished readily. It is also widely used with oscillators, but here the shaping is often complicated by the gridcircuit time constant. Cathode keying is shown

Fig, 8-5-The basic heyer-tube cireuit for cathode or negative-lead keying. in Fig. 8-4. It is popular for use in low- and me-diam-power stages, although a keying relay or kever tube should te used where the plate voltage is more than 300.

A popular method of keying involves using one or more tulnes as keyer tubes, in plate of a relay. A keyer tube (or tubes) can be used in the negative-lead or cathodekrying circuits of Figs, 8-1 and 8-4. One advantage of tube keying is that the voltage across
the key is limited by large resistors, and so the oprator has no chance for anything but the slightest electrical shoek. A further advantage is that the shaping is done in the grid circuit of the kever tube with inexpensive parts. The hasie keyer tube circuit is shown in Fig. 8-5 - it is similar to the grid-circuit keying of Fig, 8-3.

I keying relay can be substituted for a kev in any of the keying circuits shown in this chapter. Most keying relays operate from 6.3 or 115 volts a.c., and they should be selected for their speed of operation and adequate insulation for the job to be done. Adequate cur-

Fis. 8-6 - A keying relay can always he substituted for the key, to provide better isolation from the keyed cireuit. An r.f. filter is generally remuired at the key, and the keving filter is connected in the heyed circuit at the relay contacts.
rent-handling capability is also a factor. A typical circuit is shown in Fig. 8-6.

The relay-coil current that is broken by the key will cause clicks in the receiver, and an r.f. filter (see later in this chapter) is often necessary across the key. The normal keying filter comects at the relay armature contants in the usual manner. Vibration effects of the keying relay upon the oscillator circuit should be avoided.

Testing Your Keying

The choice of a keying circuit is not as important as its complete testing. Iny of the circuits shown in this section can be made to give satisfactory keying, but they must be adjusted properly.

The casiest way to find out what your keyed signal sounds like on the air is to trade stations with a near-by ham friend some evening for a short (QSO. If he is a half mile or so away, that's fine, but any distance where the signals are still S9 will be satisfactory:

After you have found out how to work his rig, make contact and then have him send slow dashes, with dash spacing. (The letter "T" at about 5 w.p.m.) With the reystal filter out, cut the r.f. gain back just enough to avoid receiver overloading (the condition where you get crisp signals instead of mushy ones) and tune slowly from out of beat-note range on one side of the signal through to zero and out the other side. Knowing the tempo of the dashes, you can readily identify any elicks in the vicinity as yours or someone else's. A good signal will have a thump on "make" that is perceptible only where you can also hear the beat note, and the
click on "break" should be practically negligible at any point. Fig. 8-7. shows how it should sound. If your signal is like that, it will sound good, provided there are no chirps. Then have him run off a string of 35- or 40-w.p.m. dots with the bug - if they are casy to copy, your signal has no "tails" worth worrying about and is a good one for any speed up to the limit of manual keving. If the receiver has poor selectivity with the crystal filter out, make one last check with the filter in (Fig. 8-7 B), to see that the clicks off the signal are negligible even at high signal level.

If you don't have any convenient friends with whom to trade stations, you can still check your keying, although you have to be a little more careful the first step is to get rid of the r.f. click at the key, because if you don't you eannot make further observations. Locally (meaning in your own receiver) this click will eoincide in time with clicks that may or may not be on your signal, so there is just no way to ohserve your signal without first eliminating the r.f. click. And unless you have a keying system that breaks no current, you have a

Fig. 8-7-Representations of a clean c.w. signal as a receiver is tuncel through it. (1) shows a receiver with no crystal filter and the b.fos, set in the center of the passband, and (13) shows the crystal filter in and the receiver adjusted for single-signal reception. The variation in thickness of the lines represents the relative signal intensity. The andio frefueney where the signal disappears will depend upon the receiver selectivity eharacteristic and the strength of the signal.
click at the key. Even the current broken by the key in a vacuum-tube keyer circuit (which is sometimes only 0.1 ma. or so) will cause r.f. clicks that can be heard in your receiver and often in the b.c. set. If you key with a relay, the key opens the relay-coil circuit and clicks are generated at the key as well as at the relay contacts. Don't make the very common mistake of thinking these clicks are the same as the on-the-air clieks discussed earlier - they are not! They are simply local clicks that you must eliminate before you can observe your signal in your receiver. These clicks are the same as the ones you get when you turn an electric light on or off - when you suddenly start or stop current flow, no matter how little, you generate r.f. and that's the click.

Getting rid of this little click is generally no trick at all, unless you're breaking a lot of current. All it requires is a small r.f. filter, as shown in lig. 8-8. Sometimes just a snatl ($0.001-\mu \mathrm{fd}$.) condenser mounted right at the key terminals will do it, and sometimes it will require the full treatment complete with r.f. chokes and second condenser. Measure the normal current through the key leads, remove the transmitter letds, and then connect a d.c. power supply and resistor to give the same current through the key. When your key will break this eurrent with no click, as observed in your receiver and the b.c. set (tuned off any station), you have a suitable r.f. filter at the

Fig. 8-8 - A filter for eliminating the r.f. click at the key. lijest try (i, then add the two r.f. chokes, and then C. . 'This filter dors not eliminate on-the-air $^{\text {a }}$ clicks, but it is necessary if you are trying to eheck keying in your own receiver. It should be mounted right at the key.
$C_{1}, C_{2}-0.01$ to $0.001 \mu \mathrm{fit}$, not critical.
RFC, RFC: - to 2.5-mh, r.f. choke.
key and you can reconnect the transmitter. If you use a vacuum-tube keyer, just don't turn on the transmitter but key the normal keyer grid current. If you use a keying relay, first climinate the click at the key by just keying the relay and adding filter across the key, and then eliminate the click at the relay contacts with another r.f. filter in the relay-keyed circuit. The filter should be mounted right at the key or relay contacts. The objertive is to be able to make or break normal key current without generating a local click, and the filtering is usually so simple that the junk box will yield the parts and the process takes longer to describe than to apply.
so far you haven't done a thing for your signal on the air and you still don't know what it sounds like, but you may have cleaned up some elicks in the b.e. set. Now diseomert the antenna from your receiver and short the antenna terminals with a short piece of wire. Tune in your own signal and reduce the r.f. gain to the point where your receiver doesn't overload. Detune any antenna trimmer the receiver maty have. If you can't avoid overload within the r.f. gain-control range, pull out the r.f. amplifier tube and try again. If you still can't avoid overload, listen to the second harmonic as a last resort. Since an overloaded receiver can generate clicks, it is easy to realize the importance of eliminating overload during any tests or observations.

Describing the volume level at which you should set your receiver for these "shack" tests is a little difficult. The r.f. filter should be effective with the receiver running wide open and with an antenna connected. When you turn on the transmitter and take the other steps mentioned to reduce the signal in the receiver, run the audio up and the r.f. down to the point where you can just hear a little "rushing" sound with the b.f.o. off and the receiver tuned to the signal. This is with the crystal filter in. . It this level, a properly-iddjusted keving circuit will show no clicks off the rushing-sound range. With the b.f.o. on and
the same gain setting, there should be no elicks outside the beat-note range. When observing clicks, make the slow-dash and fast-dot tests out lined previously.

Now you know how your signal sounds on the air, with one exception, If keying your transmitter makes the house lights blink or the dial light in your receiver flicker, you may not be able to tell too accurately about any (chirp on your signal. Itowever, if you are satisfied with the absence of chirp when tuning either side of zero beat, it is safe to assume that your receiver isn't chirping with the light flicker and the observed signal is a true representation. No rhirp either side of zero beat is fine - some chipp can be either in your transmitter or your remeiver, when the lights flicker. But don't try to make these tests without first getting rid of the r.f. eliek at the key, becouse clicks cath mask a chirp.

In some instances, particularly if the transmitter power is several hundred watts or more, you maty find that a small click still persists on all frequencies. If such a elick is observed, pull out the last i.f. amplifier tube in your receiver and listen again. If the elick is still there, it indieates reatifiation in the audio system of your receiver, the same type of 130 , we condemm cheap midget receivers for. You can cure it with the usual resistor-condenser filter used for curing surh I3CI cases, or you can leave it in and make mental compensation for it. Any dick you hear on your signal should reduce to this minimum click immediately off the signal.
. Another unavoidable dick ran be encountered by r.f. pick-up on the lead from a rereiver i.f. amplifier to an "outrigger" selertive i.f. amplifier ("(25-er"). Here again the elick will be present at any setting of the recoiver tuning control. The solution here is to make your checks with the (e5-er diseonnected and the lead removed from the receriver.
key clicks are caused by the key turning your transmitter on and off too fast - and sometimes by parasitic oscilations in an amplifier - and all a key-click filter does is to slow down the turning-on and tuming-off processes. Parasitic clicks occur at points 25 to 100 ke . cither side of the signal, and are caused hy low-frequency parasitic oscillations triggered by the keving. The cure consists of oliminating the oscillation, not adding key-relick filters.
l'late, sereen or cathode keying requires a key-click filter of the type shown in Fig. 8-9. Adjustment of such a filter is a simple matter. If the signal has too heavy a click or thump on "make," L should have more inductance. If the click is too heavy on "break," C should have more capacity. The "break" characteristic is also influenced by the value of L, so start with a value of C that reduces the elicks noticeably on "break," adjust the value of L
for hest "make" characteristic, and then clean up the "break" by further modification of $($ '. Since you may have only a few stray inductances around the shack, you may not find just the value yon want for L. In this case, use a value that gives too soft a "make" and then shunt the inductance with resistance to reduce its effert. Transformer windings will often serve as well as standard chokes in this application, so try everything around the shack until you find what you need. For a given voltage, high-current circuits will require more C 'and less L than will low-current ones.

In the screen-grid keying circuit (Fig. 8-2), the value of R_{2} will also affect the "hreak" characteristic. If R_{2} is too large the "break" will tail off too gradually, if it is too small it may introduce a click on "break." In general it is best to start with a value as suggested in Fig. 8-2 and adjust C (Fig. 8-9) for the proper "break" characteristic.

Fig, 8-9-A keyorlick filter for cathode, negative. lead or screen krying. It can be located anywhere in the keving line. 'The' values of I and C will vary widely with different currents and voltages, and must be found by cut-and-try. lior srren krying, the resistor R_{2} (Fig. 8-ï) should eonnect to the junetion of L and C.
(; - 0.0. to $2.0 \mu \mathrm{fll}$.

1. - 0.5 to 30 henrys.

Adjustment of control-grid or keyer-tube keying characteristies is simple, since the important components are (${ }_{1}, R_{1}$ and R_{2} (Figs. 8-3 and 8-5). For a given value of (1 , increasing the value of R_{2} will soften the "make" sharacteristic, and increasing the value of R_{1} will soften the "break." The value of R_{1} will be many times the value of R_{2}. With grid-block keving, the value of R_{2} is determined already if the tube runs grid current, because this will Ie the normal grid leak, and so the value of C_{1} must be adjusted for proper "make" characteristic and then the "break" made satisfactory by adjustment of R_{1}. Tubes rumning heavy grid current are not too suitable for grid-block keying because the value of R_{1} generally ends up comparatively kow and the negative supply must furnish too much current when the key is down.

If you are keying in a bow-level stage, don't overlook the elipping action of subsequent stages that are fixed-biased beyond cut-off. It ran reintroduce clicks. ${ }^{2}$. Ind if you key your oscillator, don't be too disappointed in the chirp that shows up when you have clickless keying. Amplifier keying is the answer.

[^5]
Vacuum-Tube Keyers

The practical tube-keyer circuit of Fig. 8-10 can be used for keying any stage of any transmitter. Depending upon the power level of the keyed stage, more or fewer Type 45 tubes cin be comected in parallel to handle the necessary current. The voltage drop through a single 45 varios from about 90 volts at 50 ma . to 50 volts at 20 ma . Tubes added in parallel will reduce the drop in proportion to the number of tubes used.

When connecting the output terminals of the keyer to the circuit to be keyed, the grounded output terminal of the kever must be commeted to the transmitter ground. Thus the keyer can be used only in negative-lead or cathode keying. When used in eathode keying, it will introduce
voltage is available from some other souree, sueh as a bias supply. A simplified version of this circuit could eliminate S_{1} and S_{2} and their associated resistors and condensers, since they aro incorporated only to allow the operator to select the combination he prefers. But once the values have been selected, they can be soldered permanently in place. The rule for adjusting the kering characteristic is the same as for blocked-grid keying.

A Low-Power Keyer

If a low-level stage running only a fow watte is to be keyed, the tube-kever circuit of Fig. 8-11 offers a simple solution, By using a $11 / \mathrm{L} / \mathrm{f}$ type

Fig. 8-10 - Wiring diagram of a practical varmum-tube keyer.
$\mathrm{C}_{1}-2 . \mu \mathrm{fd}$. 600 -volt paper.
$\mathrm{C}_{2}-0.0033-\mu \mathrm{fII}$. mi"a.
(33-0.0047- μ fil mica.
h_{1} - $0.2: 2$ megohm, 1 watt.
$\mathrm{l}_{2}-50,000$ ohms, 10 watts.
$\mathrm{R}_{3}, \mathrm{R}_{4}-4.7$ megohmes, 1 watt.
$1 h_{5}-0.17$ megohm, 1 watt.
s_{1}, s_{2} - I-circuit rotary switch.
Ti - $3.0(1)-10-350$ volts, 5 volts and 2.5 volts (Staneor 1'6(к)3).
cathode bias to the stage and reduce the output. This can be eompensated for by a roduction in the grid-leak bias of the stage.

The negative-voltage supply (T_{1}, C_{1}, R_{1} and the 80 rectifier) ean be eliminated if a negative

Fig. 8-II - Simple low-power vaeum-tube keyer.
$\mathrm{C}_{1}-0.5-\mu \mathrm{fl}$. fiotosolt paper.
$R_{1}-1$ megohm, $1 / 2$ watt.
$\mathrm{C}_{2}-8-\mu \mathrm{fd}$. 450 - a olt electrolytie.
$\mathrm{h}_{2}-0.1$ megohm, $\frac{1}{2}$ watt.
C_{3} - $0.01-\mu \mathrm{fl}$. ceramic.
Connect keyer to a low-voltage power supply at point " X ".

tube, which incorporates its own rectifier, it is only necessary to connect to some existing power supply at the point marked " \boldsymbol{X} ". The keying charactoristic will vary with many factors, so the values of R_{1} and R_{2} only represent starting points for experimentation.

When the key or keving load has poor insulation, the resistance may become low colough (particularly in humid weather) to reduce the blocking voltage and allow the kever tube to pass some current. This may cause a slight backwave, but it can becured ber letter insulation, or beredueed values of K_{3} and \dot{K}_{4} in Fig. 8-10 or R_{1} in Fir. 8-11.

Monitoring of Keying

In general, there are two common methods for monitoring one's "fist" and signal. The first, and perhaps more common type, involves the use of an audio oseillator that is keyed simultaneously with the tranmitter.

The second method is one that permits receiving the signal through one's recciver, and this generally requires that the receiver be tuned to
the transmitter (not always convenient unless working on the samo frequency) and that some mothod be provided for preventing overlowding of the reeceiver, so that a good replica of the transmitted signal will be received. Dixeept where quite low power is used, this usually involves a relay for simultancously shorting the receiver input terminals and redueing the receiver gain.

The Monitone - for C.W. and 'Phone

The " Monitone" is a useful device for monitoring c.w. or 'phone transmissions. When used for c.w. work, it furnishes an audio tone every time the transmitter key is closed, and it also blanks the rereiver output at the same time. When used with a 'phone transmitter, it blanks the receiver when the transmitter carrior is turned on, and also furnishes an audio replica of the transmitted sigmal, at any desired volume level. The Monitone requires no direet conneetion to the transmitter or key, and no changes are needed in the receiver. The sidetone and blanking are keyed by the r.f. output of the transmitter, regardless of frequency.

Reforring to Fig. 8-12, the 6SL7(iT acts as a dual amplifier, for the reeoiver output and for the sidetone oscillator (consisting of the neon bulb

One nethod of eonstruction of the Monitone is to use a 6 -inch cube aluminum utility box (ICA No. 29843) for a cabinet, mounting the compomonts on one removable wall and a small 2 -inch chassis fastened to this wall. $R_{6}, R_{11}, S_{2}, J_{2}$ and Nb-2 can be mounted on the panel, with NH-2 projecting through a rubler grommet. The 1 N 34 crystal and most of the neon-oseillator parts can mount on the fojs socket, and the audio components can be grouped around the GSL 7 socket. A tip jatek for the r.f. pick-up lead can be mounted on the rear wall of the ehassis, near where the $11 \overline{5}$-volt line cord and the shiedded lead to P_{1} are brought out. It is advisable to kerep the powersupply wiring and components away from the audio.

Fig. 8-12 - Wiring diagram of the Monitone.
$\mathrm{C}_{1}-0.005-\mu \mathrm{fl}$. dise ceramic.
C_{2}, $\mathrm{C}_{3}-0.1-\mu \mathrm{fel}$. 400 -volt paper.
$C_{4}-250-\mu \mu$ fll. ceramic.
C. $5-1(0)-\mu \mu$ fil. ceramic.
($\mathrm{B}-0.001-\mu \mathrm{fl}$. dise ceramic.
$\mathrm{C}_{7}, \mathrm{C}_{8}-8-\mu \mathrm{fd} .450$-volt electrolytic.
[$\mathrm{R}_{1}-6800$ ohms, $1 / 2$ watt.
$R_{2}-1000$ ohms, $1 / 2$ watt.
$1 R_{3}-0.56$ megohm, $1 / 2$ watt.
$R_{4}, R_{5}-1200$ ohms, $1 / 2$ watt.
1 B_{8} - 1-megohm potentiometer (Mallory L-5.3).
$13_{7}-22,001$ ohms, 1 watt.
$\mathrm{R}_{8}-68,000$ ohms, $1 / 2$ watt.
$\mathrm{K}_{9}, \mathrm{R}_{10}-1$ inegohm, $1 / 2$ watt.
R11 - 3-memohn motentiometer (Mallory (-59).
$11_{12}-2.2$ megohms, $1 / 2$ watt.
$11_{13}-47,000$ ohms, 1 watt.
$\mathrm{R}_{14}-\mathrm{O} .1$ megohm, 1 watt.
J_{1} - 'Tip jack.
J_{2} - Open-eircuit jack.
I't - 'Phone plug.
RF(is-2.⿹-mh. r.f. choke.
$S_{1 A}, S_{t B}-$ S.p.d.t. switch; see text. (Mallory l's-28.) S_{2} - S.p.s.t. tomple switch.
l' - Replacement transformer (Stancor I'-(6)l0).

$N \mathrm{~N}-2, C_{6}$ and $\left.R_{10}+R_{11}\right)$. When r.f. from the transmitter is fod in at J_{1} it is rectified by XT.AL and a negative voltage is developed arross R_{9}. This negative voltage euts off the 6.5: and one-half of the 6SL7(a'T. The neon-hulb oseillator goes into artion and the resultant tone is amplified in the other half of the 6SLatia'. For 'phone work, S_{13} is opened and $S_{1 a}$ is closed. This turns off the sidetone oscillator and feeds the rectified audio from the transmitter through volume control R_{6}.

The tone of the neon-bult oscillator is varied by the position of R_{11}. Since the power drain of the Monitone is only about 5 ma . at 250 volts, a resistor is used instead of a filter choke in the power supply.

Changeover switch $S_{1 A} S_{1 B}$ is mounted on the tone potentiometer, R_{11}, and is wired so that $S_{1 A}$ is closed when the control arm for the potentiometer is rotated to the extreme counterelockwise position. S_{14} should opern at this setting of the tone control. $S_{1, ~} S_{13}$, lateled by the manufacturor as a s.p.d.t. switch, is artually a pair of s.p.s.t. switches huilt into a single assembly.

Installation \& Operation

The Ionitone is used by plugging the audio plug, l_{1}, into the headphone jack of the receiver, the headphones into J of the Monitone, and applying 115 volts a.c. A length of wire must he run from the r.f. input jack, J_{1}, to a point where it can pick up r.f. from the transmitter
antenna system. With S_{13} and the power switch, S_{2}, closed, the transmitter may be turned on and the position of the r.f. pick-up) lead (Caution! lligh voltage!) adjusted for a sustamed oscillation of the neon tube circuit. Sufficient r.f. coupling between the transmitter and the monitor is indicated by a glow in the bulb and by the sidetone as heard in the headphones.

The r.f. field around the antenna sustem may vary in strength as the transmittor is switched from one band to another. Usually, however, a coupling adjustment made at one frequeney will suffice for all other frequencies as long as the pick-up line is coupled to one side of the antema tuner and not the transmission line.

Break-In Operation

Break-in operation requires a separate receiving antenna, since none of the available antenna change-over relays is fast enough to follow keying. The recciving antenna should be installed as far as possible from the transmitting antenna. It should be mounted at right

the same time is often necessary. The system shown in lig. 8-13 permits quiet break-in operation for higher-powered stations. It reguires a simple operation on the receiver but otherwise is perfectly straightforward. R_{1} is the regular receiver r.f. and i.f. gain control. The ground lead is lifted on this control and run to a rhoostat, K_{2}, that goes to ground. A wire from the junction runs outside the reediver to the keging relay, R_{p}. When the key is up, the ground side of R_{1} is comeneded to ground through the relay arm, and the receiver is in its normal operating condition. When the key is closed, the relay eloses, whieh breaks the ground comnection from $R_{\text {t }}$ and applias additional bias to the tubes in the receiver. This bias is controlled by R2. When the relay closes, it also closes the circuit to the transmitter oscillator.
 suppress the clicks caused by the relay curront.

The keying relay should be mounted on the receiver as close to the antenna terminals as posible, and the leads shown heavy in the diagr:m should be kept short, since long leads will allow too much signal to get through into the receiver. A grool high-speed keying relay should be used. If a two-wire line is used from the receiving antenna, another r.f. choke, $R F C_{4}$, will be required. The revised portion of the schematic is shown in Fig. 8-14.

A DE LUXE BREAK-IN SYSTEM

In many instances it is quite difficult to key an oscillator without clicks and chirps. Most oscillators will key without apparent chirp if the rise and deay times are made very short, but this introduces key clicks that cannot be

Fig. 8-1.4 - Necessary circuit revision of fig. 8 -13 if a two-wire lead from the receiving antenna is used. RFCi4 is a $\mathbf{2} . \overline{5}$-mh. r.f. choke - other values are the same as in Fig. 8-13.

Fig. 8.15 - A de luxe break -in gystem that holds the osillator cireuit closed (and the receiver input shorted) during a string of fast dots but opens between letterz or words.
$\mathrm{C}_{1}-0.001-\mu$ fl. mica.
$\mathrm{C}_{2}-0.0047-\mu \mathrm{fl}$. mica.
$R_{1}-20,000$ ohms, 10 watts, wire-wound.
$\mathrm{R}_{2}-1800$ ohms.
$\mathrm{R}_{3}-1500$ ohms.
$\mathrm{R}_{4}, \mathrm{R}_{5}-1.0$ megohm.
$R_{B}-4700$ olms.
$\mathrm{K}_{7}-6.8$ megohm.
R_{s} - 0.47 megohm.
$\mathrm{K}_{\mathrm{g}}-\mathbf{- 5 0}$-ohm center-tapped resistor, 2 watts.
All resistors l-watt composition unless otherwise noted. $\mathrm{KFC}_{1}-2.5-\mathrm{mh}$. r.f. choke.
Ity - Iligh-speed relay, 1400 -ohm 18-volt coil (Stevens. Arnold 'Type 172 Millisec relay).
avoided. The system shown in Fig. 8-15 avoids this trouble by turning on the oscillator quickly, keying an amplifier with a vacuumtube keyer, and turning off the oscillator after the amplifier keying is finished. The oscillator is turned on and off without lag, but the resultant clicks are not passed through the transmitter. Actually, with keying speeds faster than about $15 \mathrm{w} . \mathrm{p} . \mathrm{m}$., the oscillator will stay turned on for a letter or even a word, but it turns off between words and allows the transmitting station to hear the "break" signal of the other station. It requires one tube more than the ordinary vacuum-tube keyer and a special high-speed relay.

As can be seen from Fig. 8-15, the circuit is a combination of the break-in system of Fig. 8-13 and the tube keyer of Fig. 8-11, with a 6SN7 tube and a few resistors added. Normally the left-hand portion of the $6 \mathrm{~S} 工 7$ is biased to a low value of plate current by the drop through R_{2} (part of the bleeder $R_{1} R_{2} R_{3}$) and the relay is open. When the key is closed and C_{2} starts to discharge, the right-hand portion of the 6SN7 draws current and this in turn puts a loss-negative voltage on the grid of the left-hand
portion. The tube draws current and the relay closes. The relay will stay closed until the negative voltage across C_{2} is close to the supply voltage, and consequently a string of dots or dashes (which doesn't give C_{2} a chance to charge to full negative) will keep the relay closed. In adjusting the system, R_{2} controls the amount of idling current through the relay and R_{6} determines the voltage across the relay. R_{7}, R_{8} and C_{2} are the normal resistors and condenser for the tube keyor. When adjusted properly, the rolay will close without delay on the first dot and open quickly during the spaces between words or slower letters. When idling, the voltage across the relay should be one or two volts - with the key down it should be 18 volts.
The oscillator should be designed to key as fast as possible, which means that series resistances and shunt capacitances should be held to a minimum. Negative plate-lead keying is slightly faster than cathode keying and should be used in the oscillator. The keyer tubes are connected in the cathode circuit of an amplifier stage to avoid reaction on the oscillator. By using blocked-grid keving of the amplifier stage, the keyer tubes can be eliminated.

Full desoriptions of allied systems for break-in operation can be found in the following QS'I articles:
Miller and Meichner, "TVG - An Aid to Break-In," March, 1953.
Puckett, "'Deluxe' Keying Without Relays," September, 1953; P'art II, Dec., 1953.

- ELECTRONIC KEYS

Welectronie keys, as contrasted with mechanical automatic keys, use vacuum tubes or relays (or both) to form automatic dashes as well as automatic dots. Full descriptions of electronic keys can be found in the following QS'I articles:
Brann, "In Search of the Ideal Electronic Key," Feb., 1951.
Turrin, "Debugging the Electronic Bug," Jan., 1950.

Montgomery, "Corkey' - A Tubeless Automatic Key," November, 1950.
13artlett, "Compact Automatic Key Design," Dec., 1951.
Turrin, "The 'Tur-Key"", December, 1952. Correction, February, 1953.
Kilye, "The 'l"Itimatic' - The Key with a Memory," February, 1953. Note on suitable relays, April, 1953.
Brann, "A Dot Anticipator for the Electronic Key," July, 1953.

CHAPTER 9

Speech Amplifiers and Modulators

The audio amplifiers used in radiotelephone transmitters operate on the principles outlined carlier in this book in the chapter on vacuum tubes. The design requirements are determined principally by the type of modulation system to he used and by the type of microphone to be employed. It is necessary to have a clear understanding of modulation principles before the problem of laying out a speech system can be approached successfully. Those principles are diseussed under appropriate chapter headings.

The present chapter deals with the design of audio amplifier systems for communication purposes. In voice communication the primary objective is to obtain the most effective transmission; i.e., to make the mossage be understood at the receiving point in spite of adverse conditions crated by noise and interference. The methods used to accomplish this do not necessarily coincide with the methods used for
other purposes, such as the reproduction of music or other program material. In other words, "naturalness" in reproduction is distinctly secondary to intelligibility.

The fact that satisfactory intelligibility can be maintaned in a relatively narrow band of frequencies is particularly fortunate, because the width of the channel ocrupied by a phone transmitter is directly proportional to the width of the audio-frequency band. If the chamel width is redued, more stations can occupy a given band of freguencies without mutual interference.

In speech transmission, amplitude distortion of the voice wave has very little effect on intelligibility. Its importance in communication lips almost wholly in the fact that many of the audiofreguency harmonics caused by such distortion lie outside the chamel noeded for intelligible speech, and thus will croatr umoeressary interference to other stations.

Speech Equipment

In designing speceh erguipment it is necessary to know (1) the amount of audio power the modulation system must furnish and (2) the output voltage developed by the microphone when it is spoken into from normal distance (a few inches) with ordinary loudness. It then becomes possible to choose the number and type of amplifier stages needed to generate the recquired audio power without overloading or disturtion any where in the system.

MICROPHONES

The level of a microphone is its electrical output for a given sound intensity. Level varies greatly with microphones of different types, and depends on the distance of the speaker's lips from the microphone. Only approximate values based on averages of "normal" speaking voices can be given. The values given later are based on close talking; that is, with the microphone about an inch from the speaker's lips.

The frequency response or fidelity of a microphone is its relative ability to convert sounds of different frequencics into alternating current. For understandable speech transmission only a limited frecuency range is necessary, and intelligible speech can be obtained if the output of the microphone does not vary more than a few decibels at any frequency within a range of about 200 to 2500 cycles. When the variation expressed in terms of decibels is small between two fre-
quency limits, the microphone is said to be flat between thowe limits.

Carbon Microphones

The carbon microphone consists of a metal diaphragm placed against an insulating rup eontaining loosely-packed carbon gramules (microphone button). Current from a hattery flows through the gramules, the diaphragm being one conncetion and the motal backplate the other. Fig. 9-1. 1 shows conmetions for carbon mierophoness. A variable resistor is included for adjusting the button current to the value as specified with the microphone. The primary of a transformer is comected in series with the battery and microphone.

As the diaphragm vibrates, its pressure on the granules alternately increases and decreases, causing a corresponding increase and decrease of current flow through the circuit, since the pressure changes the resistance of the mass of granules. The resulting change in the current flowing through the transformer primary causes an alternating voltage, of eorresponding frecueney and intensity, to be set up in the transformer secondary.

Good-quality carbon microphones give outputs ranging from 0.1 to 0.3 volt across 50 to 100 ohms ; that is, aeross the primary winding of the microphone transformer. With the step-up of the transformer, a peak voltage of between 3 and 10 volts can be assumed to be available at the grid of the
amplifier tube. The usual button current is 50 to 100 ma.

Crystal Microphones

The crystal microphone makes use of the piezerelectrie properties of Rochelle satts arystals. This type of miorophone requires no battery or transformer and can be commerted directly to the grid of ant amplifier tube. It is the most popular twhe of microphone among amatours, for these reatons as well as the fact that it has good frequency response and is avalable in inexpensive models. The input circuit for the crystal microphone is shown in Fig. 9-113.

Although the level of ervatal microphones vartios with different models, an output of 0.03 volt or so is representative for communication types. The level is affected by the length of the rable connecting the microphone to the first amplifier stage; the above figure is for lengths of © or 7 feet. The frequeney characteristie is unaffortod by the eable, but the load resistance (amplitier grid resistor) does affect it; the lower frequencies are attenuated as the value of load resistance is lowered. A grid-resistor value of at hoast 1 megohm should be used for reasonably flat response, 5 megohms being a customary figure.

Velocity and Dynamic Microphones

In a velocity or "ribbon" microphone, the clement acted upon by the sound waves is a thin corrugated motallic ribbon suspended between the poles of a magnet. When vibrating, the ribbon cuts the lines of foree between the poles, first in one direction and then the other, thus generating atl alternating voltage.

Velocity microphones are built in two types, high impedanere and low impedance, the former being used in most applications. A high-impedance microphone can be directly commented to the grid of an amplifier tube, shunted by a resistance of 0.5 to 5 mogohms (Fig. :1-1(). Lowimpedance microphones are used whon a long connecting cable (75 feet or more) must be employed. In such a case the output of the microphone is coupled to the first amplifier stage through a suitable step-up transformer, as shown in Fig. 9-11).

The level of the velority microphone is about 0.03 to 0.05 volt. This figure applies directly to the high-impedance type, and to the low-impedance type when the voltage is measured across the secondary of the coupling thansformer.

The dynamic microphone somewhat resembles a dynamic loudspeaker. A light-weight voice coil is rigidly attached to a diaphragm, the eoil being suspended between the poles of a permanent magnet. Sound causes the diaphragm to vibrate, thus moving the coil back and forth between the magnet poles and generating an alternating voltage.

The dynamic microphone usually is built with high-impedance output, suitable for working directly into the grid of an amplifier tube. If the connecting cable must be unusually long, a low-
imperlance type should be used, with a step-up transformer at the end of the cable.

A small permanent-magnet 'speaker can be used ats a dynamic microphone, although the fidelity is not as good as is obtainable with a properly-designed microphone.

THE SPEECH AMPLIFIER

The audio-frequency amplifier stage that rauses the r.f. carrier output to be varied is called the modulator, and all the amplifier stages prereding it comprise the speech amplifier. Depending on the modulator usod, the speech amplifier may be called upon to deliver a power output ranging from practically zero fonly voltage required) to 20 or 30 watts.

(A) SB CARBON

Fig. 9-1 - Specth input circuits used whit various types of microphones.

(B) CRYSTAL
(C) HI-Z VELOCITY

Before starting the design of a speech amplifier, therefore, it is necessary to have seleeted a suitable modulator for the transmitter. This selection must be based on the power required to modulate the transmitter, and this power in turn depends on the type of modulation system selected, as described in other chapters. With the modulator picked out, its driving-power requirements (audio power required to excite the modulator to full output) ean be determined from the tube tables in the last chapter. Generally speaking, it is advisable to choose a tube or tubes for the last stage of the speech amplifier that will be eapable of

Fir. 9.2 - Resistance-coupled voltage-amplifier circuits. A, pentode; B, triode. Designations are as follows: Cl - Cathole by-pass eondenser.
C_{2} - Plate by-pass condenser.
C - Output roupling condenser (bloching condenser).
C_{4} - Screen by -pass condenser.
1 1_{1} - Cathode resistor.
H_{2} - Grid resintor.
Ifs - Plate resistor.
B_{4} - Next-stage grid resistor.
Ins - Plate decoupling resistor.
R_{6} - Screen resistor.
Values for suitable tubes are given in Table 9-I. Values in the deconoling circuit, $C_{2} R_{5}$, are not rritical. R_{5} may Le about 10% of $R 3$: an 8 - or $10-\mu \mathrm{ft}$. electrolytis: condenser is usially large emongh at is.
developing at least 50 per cent more power than the rated driving power of the modulator. This will provide a factor of safeiy so that losses in coupling transformers, etc., will not upset the (alculations.

Voltage Amplifiers

If the last stage in the sperech amplifier is a ('lass AB_{2} or Class B amplifier, the stage ahead of it must be capable of sufficient power output to drive it. However, if the last stage is a Chass $A B_{t}$ or Class A amplifier the preceding stage can be simply a voltage amplifier. From there on back to the microphone, all stages are voltage amplifiers.

The important characteristios of a voltage amplifier are its voltage gain, maximum undistorted output voltage, and its frequency response. The voltage gain is the voltage-amplification ratio of the stage. The output voltage is the maximum a.f. voltage that can be secured from the stage without distortion. The amplifier frequeney response should be adequate for voice reproduction; this requirement is easily satisfied.

The voltage gain and maximum undistorted output voltage depend on the operating conditions of the amplifier. Data on the popular types of tubes used in speech amplifiers are given in Table 9-I, for resistance-coupled amplification.

The output voltage is in terms of peak voltage rather than r.m.s.; this makes the rating independent of the waveform. Exceeding the peak value causes the amplifier to distort, so it is more useful to consider only peak values in working with amplifiers.

Resistance Coupling

IResistance coupling generally is used in volt-age-implifier stages. It is relatively inexpensive, good frequency response an be secured, and there is little danger of hum piek-up, from stray magnotic fields associated with heater wiring. It is the only tape of coupling suitable for the output circuits of pentodes and high- μ triodes, because with transformers a sufficiently high load impedance cannot be obtained without considerable fregueney distortion. Typical cireuits are given in Fig. 9-2 and design data in Table 9-I.

Transformer Coupling

Transformer coupling between stages ordinarily is used only when power is to be transferred (in such a case resistance coupling is very inefficient), or when it is mecessary to couple between a single-ended and a push-pull stage. 'Triodes having an amplification factor of 20 or less are used in transformer-coupled voltage amplifiers. With transformer roupling, tubes should be operated under the Class A conditions given in the tube tables at the end of this book.

Representative circuits for coupling singleended to push-pull stages are shown in Fig. !-3. The circuit at A combines resistance and transformor coupling, and may be used for exciting the

Fig. 9.3 - Transformer-compled amplifier cireuits for driving a push-pull amplifier, A is for resistance-transformer coupling: B for transformer coupling. Decignations correspond to those in Fig. 9-2. In A, values can be taken from 'Tahle 9 -I. In 13 , the cathode resistor is calculated from the rated plate current and grid hias as given in the tube tables for the particular type of tube used.

TABLE 9－I－RESISTANCE－COUPLED VOLTAGE－AMPLIFIER DATA
Date are given for alate supply of 300 volts．Departures of as much as 50 per cent from this supply voltage will not materially change the operating conditions or the voltage gain，but the output voltage will be in proportion to the new voltage．Voltage gain is measured at 400 cycles，conden ser values given are based on 100 －cycle cut－off．For increased low－frequency response，all condensers may be made larger than specified（cut－off hequency in inverse proportion to condenser values provided all are changed in the same proportion）．A variation of 10 per cent in the values given has negligible effect on the performance．

	Plate Resistor Megohms	Next－Stage Grid Resistor Megohms	Screen Resistor Megohms	Cathode Resistor Ohms	Screen By－pass $\mu \mathrm{fd}$ ．	$\begin{gathered} \text { Cathode } \\ \text { By-pass } \\ \text { ufd. } \end{gathered}$	Blocking Condenser $\mu \mathrm{fd}$ ．	Output Volts （Peak）${ }^{1}$	Voltage Gain ${ }^{2}$
6SJ7，19SJ7	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.35 \\ & 0.37 \\ & 0.47 \end{aligned}$	$\begin{aligned} & 500 \\ & 530 \\ & 590 \end{aligned}$	$\begin{aligned} & 0.10 \\ & 0.09 \\ & 0.09 \end{aligned}$	$\begin{array}{r} 11.6 \\ 10.9 \\ 9.9 \end{array}$	$\begin{aligned} & 0.019 \\ & 0.016 \\ & 0.007 \end{aligned}$	$\begin{array}{r} 78 \\ 96 \\ 101 \end{array}$	$\begin{array}{r} 67 \\ 98 \\ 104 \end{array}$
	0.95	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.89 \\ & 1.10 \\ & 1.18 \end{aligned}$	$\begin{aligned} & 850 \\ & 860 \\ & 910 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.06 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 7.4 \\ & 6.9 \end{aligned}$	$\begin{aligned} & 0.011 \\ & 0.004 \\ & 0.003 \end{aligned}$	$\begin{aligned} & 79 \\ & 88 \\ & 98 \end{aligned}$	$\begin{aligned} & 139 \\ & 167 \\ & 185 \end{aligned}$
	0.5	0.5 1.0 2.0	2.0 2.2 2.5	$\begin{aligned} & 1300 \\ & 1410 \\ & 1530 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.05 \\ & 0.04 \end{aligned}$	6.0 5.8 5.8	$\begin{aligned} & 0.004 \\ & 0.002 \\ & 0.0015 \end{aligned}$	$\begin{aligned} & 64 \\ & 79 \\ & 89 \end{aligned}$	$\begin{aligned} & 200 \\ & 938 \\ & 263 \end{aligned}$
$\begin{aligned} & \text { 6J7, 7C7, } \\ & 12 \mathrm{~J}^{\prime} 7-\mathrm{Gr} \end{aligned}$	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.5 \\ & 0.53 \end{aligned}$	$\begin{aligned} & 500 \\ & 450 \\ & 600 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.07 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.3 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 0.02 \\ & 0.01 \\ & 0.006 \end{aligned}$	$\begin{aligned} & 55 \\ & 81 \\ & 96 \end{aligned}$	$\begin{aligned} & 61 \\ & 82 \\ & 94 \end{aligned}$
	0.25	0.25 0.5 1.0	$\begin{aligned} & 1.18 \\ & 1.18 \\ & 1.45 \end{aligned}$	$\begin{aligned} & 1100 \\ & 1900 \\ & 1300 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.04 \\ & 0.05 \end{aligned}$	5.5 5.4 5.8	$\begin{aligned} & 0.008 \\ & 0.005 \\ & 0.005 \end{aligned}$	$\begin{array}{r} 81 \\ 104 \\ 110 \end{array}$	104 140 185
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.9 \\ & 2.95 \end{aligned}$	$\begin{aligned} & 1700 \\ & 8900 \\ & 8300 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.04 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 4.1 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 0.005 \\ & 0.003 \\ & 0.0025 \end{aligned}$	$\begin{array}{r} 75 \\ 97 \\ 100 \end{array}$	$\begin{aligned} & 161 \\ & 200 \\ & 930 \end{aligned}$
$\begin{aligned} & \text { 6AU6, 6SH7, } \\ & \text { 12AU6, } 125 H^{\prime} 7 \end{aligned}$	0.1	$\begin{aligned} & 0.1 \\ & 0.28 \\ & 0.47 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.24 \\ & 0.26 \end{aligned}$	$\begin{array}{r} 500 \\ 600 \\ 700 \\ \hline \end{array}$	$\begin{aligned} & 0.13 \\ & 0.11 \\ & 0.11 \\ & \hline \end{aligned}$	$\begin{aligned} & 18.0 \\ & 16.4 \\ & 15.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.019 \\ & 0.011 \\ & 0.006 \end{aligned}$	$\begin{array}{r} 76 \\ 103 \\ 189 \\ \hline \end{array}$	$\begin{aligned} & 109 \\ & 145 \\ & 168 \end{aligned}$
	0.29	$\begin{aligned} & 0.29 \\ & 0.47 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.48 \\ & 0.5 \\ & 0.55 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1000 \\ & 1100 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.098 \\ & 0.09 \end{aligned}$	$\begin{aligned} & 19.4 \\ & 19.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 0.009 \\ & 0.007 \\ & 0.003 \end{aligned}$	$\begin{array}{r} 92 \\ 108 \\ 182 \end{array}$	$\begin{aligned} & 164 \\ & 230 \\ & 862 \end{aligned}$
	0.47	$\begin{aligned} & 0.47 \\ & 1.0 \\ & 2.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.1 \\ & 1.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1800 \\ & 1900 \\ & 9100 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.075 \\ & 0.065 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.6 \\ & 7.3 \end{aligned}$	$\begin{aligned} & 0.0045 \\ & 0.0028 \\ & 0.0018 \end{aligned}$	$\begin{array}{r} 94 \\ 105 \\ 182 \\ \hline \end{array}$	$\begin{array}{r} 248 \\ 318 \\ 371 \\ \hline \end{array}$
6AO6，6AO7， 6AT6，607， 6SL7GT，6SZ7， 6T8，12AT6． 12OT－GT， 19SL7－GT （one triode）	0.1	$\begin{aligned} & 01 \\ & 0.22 \\ & 0.47 \end{aligned}$	二	$\begin{aligned} & 1500 \\ & 1800 \\ & \$ 100 \end{aligned}$	－	4.4 3.6 3.0	$\begin{aligned} & 0.027 \\ & 0.014 \\ & 0.0065 \end{aligned}$	$\begin{aligned} & 40 \\ & 54 \\ & 63 \end{aligned}$	$\begin{aligned} & 34 \\ & 38 \\ & 41 \end{aligned}$
	0.22	$\begin{aligned} & 0.29 \\ & 0.47 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 9600 \\ & 3200 \\ & 3700 \end{aligned}$	－	2.5 1.9 1.6	$\begin{aligned} & 0.013 \\ & 0.0065 \\ & 0.0035 \end{aligned}$	$\begin{aligned} & 51 \\ & 65 \\ & 77 \end{aligned}$	42 46 48
	0.47	$\begin{aligned} & 0.47 \\ & 1.0 \\ & 2.2 \\ & \hline \end{aligned}$		$\begin{aligned} & 5200 \\ & 6300 \\ & 7200 \\ & \hline \end{aligned}$	二	1.2 1.0 0.9	$\begin{aligned} & 0.006 \\ & 0.0035 \\ & 0.008 \end{aligned}$	$\begin{aligned} & 61 \\ & 74 \\ & 85 \end{aligned}$	$\begin{aligned} & 48 \\ & 50 \\ & 51 \end{aligned}$
$\begin{aligned} & \text { 6AV6, } 12 A V 6, \\ & 12 A \times 7 \\ & \text { (one triode) } \end{aligned}$	0.1	$\begin{aligned} & 0.1 \\ & 0.29 \\ & 0.47 \\ & \hline \end{aligned}$		$\begin{aligned} & 1300 \\ & 1500 \\ & 1700 \\ & \hline \end{aligned}$	－	$\begin{array}{r} 4.6 \\ 4.0 \\ 3.6 \\ \hline \end{array}$	$\begin{aligned} & 0.027 \\ & 0.013 \\ & 0.006 \end{aligned}$	$\begin{aligned} & 43 \\ & 57 \\ & 66 \end{aligned}$	45 59 57
	0.22	$\begin{aligned} & 0.29 \\ & 0.47 \\ & 1.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 2800 \\ & 2800 \\ & 3100 \\ & \hline \end{aligned}$	－	3.0 9.3 8.1	$\begin{aligned} & 0.013 \\ & 0.006 \\ & 0.003 \end{aligned}$	54 69 79	$\begin{aligned} & 59 \\ & 65 \\ & 68 \end{aligned}$
	0.47	$\begin{aligned} & 0.47 \\ & 1.0 \\ & 2.2 \\ & \hline \end{aligned}$	－	$\begin{aligned} & 4300 \\ & 5900 \\ & 5900 \end{aligned}$	－	1.6 1.3 1.1	$\begin{aligned} & 0.006 \\ & 0.003 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 69 \\ & 77 \\ & 99 \end{aligned}$	$\begin{aligned} & 69 \\ & 73 \\ & 75 \end{aligned}$
$\begin{gathered} \text { 6SC7, } 1 \text { QSC7 } \\ \text { (one triode) } \end{gathered}$	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \\ & \hline \end{aligned}$	－	$\begin{array}{r} 750 \\ 930 \\ 1040 \\ \hline \end{array}$	－	－	$\begin{aligned} & 0.033 \\ & 0.014 \\ & 0.007 \end{aligned}$	$\begin{aligned} & 35 \\ & 50 \\ & 54 \end{aligned}$	$\begin{aligned} & 29 \\ & 34 \\ & 36 \end{aligned}$
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 1400 \\ & 1680 \\ & 1840 \\ & \hline \end{aligned}$	－	－	$\begin{aligned} & 0.019 \\ & 0.006 \\ & 0.003 \end{aligned}$	$\begin{aligned} & 45 \\ & 55 \\ & 64 \end{aligned}$	$\begin{aligned} & 39 \\ & 49 \\ & 45 \end{aligned}$
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$	－	$\begin{aligned} & 2330 \\ & 2980 \\ & 3980 \end{aligned}$	－	－	$\begin{aligned} & 0.006 \\ & 0.003 \\ & 0.009 \end{aligned}$	50 68 72	45 48 49
6J5，7A4 7N7，6SN7Gr， 12J5－GT， 12SN7－G＇ （one triode）	0.05	$\begin{aligned} & 0.05 \\ & 0.1 \\ & 0.25 \\ & \hline \end{aligned}$	－	$\begin{aligned} & 1080 \\ & 1270 \\ & 1500 \\ & \hline \end{aligned}$	－	3.56 2.96 2.15	$\begin{aligned} & 0.06 \\ & 0.034 \\ & 0.012 \end{aligned}$	41 51 60	$\begin{aligned} & 13 \\ & 14 \\ & 14 \end{aligned}$
	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \\ & \hline \end{aligned}$	－	$\begin{aligned} & 1900 \\ & 9440 \\ & 9700 \end{aligned}$	二	2.31 1.42 1.2	0.035 0.0125 0.0065	43 56 64	$\begin{aligned} & 14 \\ & 14 \\ & 14 \end{aligned}$
	0.25	$\begin{aligned} & \hline 0.25 \\ & 0.5 \\ & 1.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 4590 \\ & 5770 \\ & 6950 \end{aligned}$	－	$\begin{aligned} & 0.87 \\ & 0.64 \\ & 0.54 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.0075 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 46 \\ & 57 \\ & 64 \end{aligned}$	14 14 14
$\begin{gathered} 6 C 4 \\ 12 A U ́ 7 \\ \text { (one triode) } \end{gathered}$	0.047	$\begin{aligned} & 0.047 \\ & 0.1 \\ & 0.28 \end{aligned}$	－	$\begin{array}{r} 870 \\ 1200 \\ 1500 \end{array}$	－	4.1 3.0 8.4	$\begin{aligned} & 0.065 \\ & 0.034 \\ & 0.016 \end{aligned}$	38 59 68	$\begin{aligned} & 19 \\ & 18 \\ & 18 \end{aligned}$
	0.1	$\begin{aligned} & 0.1 \\ & 0.28 \\ & 0.47 \end{aligned}$	－	$\begin{aligned} & 1900 \\ & 3000 \\ & 4000 \end{aligned}$	－	1.9 1.3 1.1	$\begin{aligned} & 0.032 \\ & 0.016 \\ & 0.007 \end{aligned}$	44 68 80	18 18 18
	0.29	$\begin{aligned} & 0.29 \\ & 0.47 \\ & 1.0 \end{aligned}$	二	$\begin{array}{r} 5300 \\ 800 \\ 11000 \end{array}$	－	$\begin{aligned} & 0.9 \\ & 0.52 \\ & 0.46 \end{aligned}$	$\begin{aligned} & 0.015 \\ & 0.007 \\ & 0.0035 \end{aligned}$	$\begin{aligned} & 57 \\ & 82 \\ & 92 \end{aligned}$	$\begin{aligned} & 18 \\ & 12 \\ & 12 \end{aligned}$

[^6]grids of a Class A or AB_{1} following stage. The resistance coupling is used to kerp the d.c. plate current from flowing through the transformer primary, thereby preventing a reduction in primary inductance below its no-current value; this improves the low-frequeney response. With low- μ triodes ($6 \mathbf{C} 5,6.5$, cete.), the gain is equal to that with resistance coupling multiplied by the sec-ondary-to-primary turns matio of the transformer.

In is the transformer primary is in serios with the plate of the tube, and thus must rarys the tube plate current. When the following amplifier operates without grid current, the voltage gain of the stage is practically equal to the μ of the tube multiplied he the transformer ratio. This circuit also is suitable for tramsferring power (within the capabilities of the tube) to a following Class AB_{2} or Class B stage.

Phase Inversion

Push-pull output may be secured with resistance coupling hy using "phase-inverter" or "phase-splitter" "irruits as shown in Fig. 9-4.
The circuits shown in Fig. 9-4 are of the "selfbalancing' type. In A, the amplified voltage
(A)

Fig. 9-4-Self-halancing phase-inverter cirenits. Ii and V_{2} may be a double triode suth as the fin an' 1 or 6SLaCTI' ${ }^{\prime}$ may he any of the triodes listed in Table 9-I, or one section of a double triode.
R_{1} - (Grial resistor (1 megohm or tess).
H_{2} - Cathode resistor; use one-half value given in Table 9.1 for tube and operating conditions chosen.
$\mathbf{R}_{3}, \mathrm{R}_{4}$ - Plate resistor; select from Table 9.I.
$\mathrm{K}_{5}, \mathrm{~K}_{6}$ - Following-stage grid resistor (0.22 to 0.47 megohm).
$\mathrm{H}_{7}-0.22$ megohm.
Rs - Cathode resistor; seleet from Table 9.I.
$\mathrm{H}_{3}, \mathrm{H}_{10}$ - Fach one-half of plate load resistor given in 'Table 9.I.
$\mathrm{C}_{1}-10-\mu \mathrm{fd}$. electrolytic.
$\mathrm{C}_{2}, \mathrm{C}_{3}-0.01$ - to $0.1-\mu \mathrm{fd}$. paper.
from V_{1} appears across R_{5} and R_{7} in series. The drop across R_{7} is applied to the grid of V_{2}, and the amplified voltage from I_{2} appears adross R_{6} and R_{7} in series. This voltage is 180 degrees out of phase with the voltage from V_{1}, thus giving push-pull output. The part that appears across R_{7} from V_{2} opposes the voltage from V_{1} arross R_{i}, thus reducing the signal applied to the grid of I_{2}. The negative feed-batek so obtained tends to regulate the voltage applied to the phaseinverter tube so that the output voltares from both tubes are substantially equal. The gain is slightly less than twice the gatin of at single-tule amplifier using the same operating conditions.

In the single-tube eireuit shown in Fig. :9-4] the phate load resistor is divided into two equal parts, R_{9} and R_{10}, one being conneeted to the plate in the normal way and the other between rathode and ground. Sinee the voltages at the plate and eathode are 180 degress out of phase, the grids of the following tubes are fed equal :af. voltages in push-pull. The grid return of V_{3} is made to the junction of R_{5} and R_{10} so normal bias will be applied to the grid. This circuit is highly degenerative beeause of the waty R_{10} is conneeted. The voltage gain is less thatn 2 even when a high- μ triode is used at $V^{\prime}{ }_{3}$.

Gain Control

A means for varying the over-all gain of the amplifier is necessary for keeping the final output at the proper level for modulating the trimsmitter. The common mothod of gain control is to adjust the value of ace voltage applied to the grid of one of the amplifers by means of a voltage divider or potentiometer.
The gainecontrol potentiometer should be near the input end of the :mplifier, at a point where the signat voltage level is solow there is no danger that the stager ahead of the gain control will be overloaded by the full mirrophone output. With earbon microphones the gain control maty be placed directly arross the microphone-transformer secondary. With other types of miorophones, however, the gain control usually will affert the frequeney response of the misrophone when eomected directly arross it. Aso, in a high-gain amplifier it is better to operate the first tube at maximum gain, since this gives the best sigmal-to-hum ratio. The control therefore is usually placed in the grid circuit of the second stage.

Designing the speech AMPLIFIER

The steps in designing a speceh amplifier are as follows:

1) Determine the power neded to modulate the transmitter and solect the modulator. In the case of plate modulation, a Class 13 amplifier may be required. Welect a suitable tube type and determine from the tube tables at the end of this book the grid driving power reduired, if any.
2) As a safety factor, multiply the required driver power by at least 1.5.
3) Select a tube, or pair of tubes, that will deliver the power determined in the second step. This is the last or output stage of the speechamplifier. Receiver-type power tubes can be used (beam tubes such as the 61.6 may be needed in some cases) as determined from the receiving-tube tables. If the speech amplifier is to drive a Class IS modulator, use a Class A or AB_{1} amplifier, in preference to Class Al_{2}, if it will give enough power output.
4) If the speech-amplifier output stage must operate ('lass AB3, use a medium- μ triode (such as the (h.5a or corresponding types) to drive it. In the extreme case of driving 61.6 s to maximum output, two triodes should be used in push-pull in the driver, In cither case transformer coupling will have to be used, and transformer manufacturers' catatogs should be consulted for a suitable type.
5) If the specth-amplifier output stage operates Class A or AB_{1}, it may bedriven by a voltage amplifier. If the output stage is push-pull, the driver may be a single tube coupled through a transformer with a balanced secondary, or may be a dual-triode phase inverter. Dotermine the signal voltage required for full output from the last stage. If the last stage is a single-tube Class A amplifier, the peak signal is equal to the grid-bias voltage: if push-pull Class A, the peak signal voltage is equal to twice the grid bias; if Class $A B_{1}$, twice the hias voltage when fixed bias is used; if cathode bias is used, twice the bias figured from the cathode resistance and the no-signal plate current.
6) From Table 9-I, select a tube capable of giving the required output voltage and note its rated voltage gain. A doublo-triode phase inverter (lig. 9-4A) will have approximately twice the output voltage and twier the gain of one triode operating as an ordinary amplifier. If the driver is to be transformer-roupled to the last stage, solert a medium- μ triode and calculate the gain and output voltage as deseribed earlier in this chapter.
7) Divide the voltage required to drive the output stage by the gain of the preceding stage. This gives the pak voltage reguired at the grid of the next-to-the-last stage.
8) Find the output voltage, under ordinary conditions, of the mierophone to be used. This information should be obtained from the manufacturer's catalog. If not available, the figures given in the section on microphones in this chapter will sarve.
9) Divide the voltage found in (7) by the output voltage of the mierophone. The result is the over-all gain required from the microphone to the grid of the next-to-the-last stage. To be on the safe side, double or triple this figure.
10) From Table $9-1$, select a combination of tubes whose gains, when multiplied together, give approximately the figure arrived at in (9). These amplifiers will be used in caseade. If high gain is required, a pentode may be used for the first speech-amplifier stage, but it is not advisable to use a second pentode because of the possibility
of feed-back and self-oscillation. In most cases a triode will give enough gain, as a second stage, to make up the total gain required. If not, a medium $-\mu$ triode, may be used as a third stage.

A high- μ double triode with the sections in cascade makes a good low-level amplifier, and will give somewhat greater gain than a pentode - medium $-\mu$ triode combination. With resist-ance-coupled input to the first section the cathode of that section may be grounded, which is helpful in reducing hum.

SPEECH-AMPLIFIER CONSTRUCTION

Once a suitable circuit has been selected for a speech amplifier, the construction problem resolves itself into avoiding two difficulties excessive hum, and unwanted feed-bark. For reasonably humless operation, the hum voltage should not exceed about 1 per cent of the maximum audio output voltage - that is, the hum should be at least 40 db . below the output level.

C'nwanted feed-back, if negative, will reduce the gain below the calculated value; if positive, is likely to cause self-oseillation or "howls." Feedback can be minimized by isolating each stage with "decoupling" resistors and condensers, by avoiding layouts that bring the first and last stages near each other, and by shielding of "hot" points in the circuit, such as grid leads in lowlevel stages.

Specrh-amplifier equipment, especially voltage amplifiers, should be constructed on steel chassis, with all wiring kept below the chassis to take advantage of the shiedding afforded. Exposed leads, particularly to the grids of low-level high-gain tubes, are likely to pick up hum from the electric field that usually exists in the vicinity of house wiring. Even with the chassis, additional shielding of the input circuit of the first tube in a highgain amplifier usually is necessary. In addition. such circuits should be separated as much as possible from power-supply transformers and chokes and also from any audio transformers that operate at fairly-high power levels; this will minimize magnetic coupling to the grid circuit and thus reduce hum or audio-frequency feed-back. It is always safe, although not absolutely necessary, to separate the speech amplifier and its power supply, building them on separate chassis.

If a low-level microphone such as the crystal type is used, the microphone, its connecting cable, and the plug or conncetor by which it is attached to the speech amplifier, all should be shielded. The microphone and cable usually are constructed with suitable shielding: this should be connected to the speech-amplifier chassis, and it is advisable - as well as usually necessary - to connect the chassis to a ground such as a water pipe. With the top-cap tubes, complete shiclding of the grid lead and grid cap is a necessity.

Heater wiring should be kept as far as possible from grid leads, and either the center-tap or one side of the heater-transformer secondary winding should be connected to the chassis. If the center-
tap is grounded, the heater leads to earh tube should be twisted together to reduce the magnetic field from the heater current. With either type of connection, it is advisable to lay heater leads in the corner formed by a fold in the chassis, bringing them out from the corner to the tube socket by the shortest possible path.

When metal tubes are used, always ground the shell connection to the chassis. Glass tubes used in the low-level stages of high-gain amplifiers must be shielded; tube shields are obtainable for that purpose. It is a good plan to enclose the entire amplifier in a metal box, or at least provide it with a cane-metal cover, to avoid feed-back difficulties caused by the r.f. field of the transmitter. R.f. picked up on exposed wiring, leads or tube clements causes overloading, distortion, and self-oscillation of the amplifier:

When using paper condensers as by-passes, be sure that the terminal marked "outside foil" is connected to ground. This utilizes the outside foil of the condenser as a shield around the "hot" foil. When paper condensers are used for coupling between stages, always connect the outside-foil terminal to the side of the circuit having the lowest impedance to ground. Usually, this will be the plate side rather than the following-grid side.

INCREASING THE EFFECTIVENESS OF THE 'PHONE TRANSMITTER

The effectiveness of an amateur 'phone transmitter can be increased to a remarkable extent by taking advantage of speech characteristics. Measures that may be taken to make the modulation more effective include band compression (filtering), volume compression, and speech clipping.

Compressing the Frequency Band

Most of the intelligibility in speech is contained in the medium band of frequencies; that is, between about 500 and 2500 cycles. On the other hand, the major portion of speech power is normally concentrated below 500 cycles. It is these low frequencies that modulate the transmitter most heavily. If they are eliminated, the frequencies that carry most of the actual communication can be increased in amplitude without exceeding 100 -per-cent modulation, and the effectiveness of the transmitter is correspondingly increased.

One simple way to reduce low-frequency response is to use small values of coupling capacitance between resistance-coupled stages, as shown in Fig. 9-5A. A time constant of 0.0005 second for the coupling condenser and following-stage grid resistor will have little effect on the amplification at 500 cycles, but will practically halve it at 100 cycles. In two cascaded stages the gain will be down about 5 db . at 200 cycles and 10 db . at 100 cycles. When the grid resistor is $1 / 2$ megohm a coupling condenser of $0.001 \mu \mathrm{fd}$. will give the required time constant.

The high-frequency response can be reduced by using "tone control" methods, utilizing a con-

Fig. 9.5 - A, use of a small coupling condenser to reduce low-frequency response; B, tone-control circuits for reducing high.frequency response. Values for C and R are discussed in the text; $0.01 \mu \mathrm{fd}$. and 25,000 ohms are typical.
denser in series with a variable resistor connected across an audio impedance at some point in the speech amplifier. The best spot for the tone control is across the primary of the output transformer of the speech amplifier, as in Fig. 9-5l3. The condenser should have a reactance at 1000 cycles about equal to the load resistance required by the amplifier tube or tubes, while the variable resistor in series may have a value equal to four or five times the load resistance. The control can be adjusted while listening to the amplifier, the object being to cut the high-frequency response as much as possible without unduly sacrificing intelligibility.
Restricting the frequency response not only puts more modulation power in the optimum frequency band but also reduces hum, because the low-frequency response is reduced, and helps reduce the width of the channel occupied by the transmission, because of the reduction in the amplitude of the high audio frequencies.

Volume Compression

Although it is obviously desirable to modulate the transmitter as completely as possible, it is difficult to maintain constant voice intensity when speaking into the microphone. To overcome this variable output level, it is possible to use automatic gain control that follows the average (not instantaneous) variations in speech amplitude. This can be done by rectifying and filtering some of the audio output and applying the rectified and filtered d.c. to a control electrode in an early stage in the amplifier

A practical circuit for this purpose is shown in Fig. 9-6. The rectifier must be connected, through the transformer, to a tube capable of delivering some power output (a small part of the output of the power stage may be used) or
else a separate power amplifier for the rectifier circuit alone may have its grid connected in parallel with that of the last voltage amplifier.

IResistor R_{4}, in series with R_{5} arross the plate supply, provides an adjustable positive hias on the rectifier cathodes. This prevents the limiting action from begiming until a dosired mierophone input level is reached. $R_{2}, R_{3}, C_{2}, C_{3}$ and C_{4} filtor the audio freduencies from the rectified output. The output of the rectifier may be conneeted to the suppressor grid of a pentode first stage of the speech amplifier.

A transformer with a turns ratio such as to give about 50 volts when its primary is conmected to the output circuit of the power stage should be used. If a transformer having a center-tapped serondary is not available, a half-wave rectifier maty be used instead of the full-wave circuit shown, but it will be harder to get satisfactory filtering.

The over-all gain of the system must be high enough so that full output can be secured at a moderately low voice level.

Speech Clipping and Filtering

In speech waveforms the average power content is considerably less than in a sine wave of the same peak amplitude. Since modulation perrentage is based on peak values, the modulation or sideband power in a transmitter modulated 100 per cent by an ordinary voiee waveform will be considerably less than the sideband power in the same transmitter modulated 100 per cent by a sine wave. In Fig. ()- 7 the upper drawing, A, represents a sine wave having a maximum amplitude that just modulates a given transmitter 100 per cent. The speech wave at B also represents 100 -per-(ent modulation.

If the amplitude of the wave shown at 13 is increased so that its power is comparable with or higher than the power in a sine wave, but with evorything above 100 -per-cent modulation cut off, it will appear as shown at C. This signal will not modulate the transmitter more than 100 per cont, but the voice power is several times greater than 13. The wave is not exactly like the one at B, so the result will not sound exactly like the original. However, "clipping" of this trpe can be used to secure a worth-while increase in modulation power without sacrificing intelligibility. Once the system is properly adjusted it will be impos-

Fig. 9.6-Sperch-amplifier output-limiting rircuit. $C_{1}, C_{2}, C_{3}, C_{4}-0.1 . \mu \mathrm{fd}: R_{1}, R_{2}, R_{3}-0.22$ megohm: $R_{4}-25,000$-ohum prot; $R_{5}-0.1$ megohm; T-see text.

Fig. 9.7-The normal speech wave (B) has high peaks but low average energy content. When the peaks are clipped the signal may he increased to a considerablyhigher power level without causing overmodulation (C).
sible to overmolulate the transmitter because the maximum output amplitude is held to the same value no matter what the amplitude of the signal applied.

By itself, clipping generates the same highorder harmonics that overmodulation does, and a signal modulated by the elipped waveform shown in Fig. 9-7 would "splatter". To prevent this, the audio frequencies above those needed for intelligible speech must be filtered out, after clipping and before modulation. The filter required for this purpose should have relatively little attenuation at frequeneics below about 2500 cycles, but high attenuation for all frequeneies above 3000 cycles.

It is possible to use as much as 25 db . of clipping before intelligibility suffers; that is, if the original peak amplitude is 10 volts, the signal can be clipped to such an extent that the resulting maximum amplitude is less than one volt. If the original 10 -volt sigual represented the amplitude that caused 100 -per-rent modulation on peaks, the cripped and filtered signal can then be amplified up to the same 10 -volt peak level for modulating the transmitter, with a very considerable increase in modulation power.

There is a loss in naturalness with "deep" clipping, even though the voice is highly intelligible. With moderate clipping levels (6 to 12 db .) there is almost no perceptible change in "quality" but the voiee power is four to sixteen times as great as in ordinary modulation.

Before drastic clipping can be used, the speech signal must be amplified several times more than is necessary for normal modulation. Also, the hum and noise must be much lower than the tolerable level in ordinary amplification, because the noise in the output of the amplifier increases in proportion to the gain.

One type of clipper-filter system is shown in blook form in Fig. 9-8. The clipper is a peaklimiting rectifier of the same general type that is used in receiver noise limiters. It must clip both positive and negative peaks. The gain or clipping

Fig. 9.8- Block diagram of speech-clipping and filtering amplifier.
control sets the amplitude at which elipping starts. Following the low-pass filter for climinating the harmonic distortion frequencies is a second gain control, the "level" or modulation control. This control is set initially so that the amplitude-limited output of the elipper-filter camot modulate the transmitter more than 100 per cent.

It should be noted that the peak amplitude of the audio waveform actually applied to the modulated stage in the transmitter is not necessarily held at the same relative level as the peak amplitude of the signal coming out of the rlipper stage. When the elipped signal gors through the filter, the relative phases of the various frequency eomponents that pass through the filter are shifted, particularly those components near the rut-off frequeney. This may cause the peak amplitude out of the filter to exceed the peak amplitude of the rlipped signal applied to the tilter input terminals. Similar phase shifts can orenr in amplifiers following the filter, esperially if these amplifiers, including the modulator, do not have good low-frequeney responser. With poor low-frequency response the moreor-less "square" waves resulting from clipping tend to be changed into triangular waves having higher peak amplitude. Best practice is to cut the lowfrequency response before clipping and to make all amplifiers following the clipper-filter as flat and distortion-free as possible.

The best way to sot the modulation control in such a system is to cherek the actual modulation precentage with an oscilloseoper connected as deseribed in the chapter on modulation. With the gain control set to give a desired clipping level with normal voice intensity at the microphone, the level eontrol should be adjusted so that the maximum modulation dors not exeed 100 per rent no matter how much sound is applied to the microphone.

Iractical circuits for clipping and filtering are illustrated in a speech amplitier deseribed in this chapter.

High-Level Clipping and Filtering

Clipping and filtering also can be done at high level - that is, at the point where the modulation is applied to the r.f. amplifier - instead of in the low-level stages of the speech amplifier. In one rather simple but effective arrangement of this type the clipping takes place in the Class-B modulator itself. This is accomplished by carefully adjusting the plate-to-plate load resistance for the modulator tubes so that they saturate or clip peaks at the amplitude level that represents

100 per cent modulation. The load adjustment can be made be choice of output transformer ratio or by adjusting the plate-voltage/platecurvent ratio of the modulated r.f. amplifier. It is best done by examining the output waveform with an oscilloscope.

The filter for such a system consists of a choke and condensers as shown in Fig, 9-9. The values of L and (' should be chosen to form a low-pass filter seetion having a cut-off frequency of about 2500 cerles, using the modulating impedance of the r.f. amplifier as the load resistance. For this cut-off frequency the formulas are

$$
\begin{aligned}
L_{1} & =\frac{R}{7850} \\
C_{1}=C_{2} & =\frac{63.6}{R}
\end{aligned}
$$

Where R is in ohms, L_{1} in henrys, and C_{1} and C_{2} in microfarads. For example, with a pate modulated amplifier oprerating at 1500 volts and 200 ma . (modulating impedance 7500 ohms) L would be $7500 / 7850=0.96$ henry and C_{1} or C_{2}

Fig. 9.9-Splatter-suppression filter for use at high level, shown here connected between a Class Is modu. lator and plate-modulated r.f. amplifier. Values for L_{1}, C_{1} and C_{2} are determined as described in the text.
would be $63.6 / 7500=0.0085 \mu \mathrm{fd}$. By-pass condensers in the plate circuit of the r.f. amplifier should be included in C_{2}. Voltage ratings for C_{1} and $(2$ when connerted as shown must be the same as for the plate blocking condenser - i.e., at least twice the d.c. voltage applied to the plate of the modulated amplifier. L and C values can vary 10 per cent or so without seriously affecting the operation of the filter.

Besides simplirity, the high-level system has the advantage that high-frequency components of the audio signal fed to the modulator grids, whether present legitimately or as a result of amplitude distortion in lower-level stages, are suppresed along with the distortion eomponents that arise in clipping. Also, the undesirable efferets of poor low-frequener response following elipping and filtering, mentioned in the preceding secetion, are avoided. Phase shifts cin still occur in the high-level filter, however, so adjustments proferably should be made by using an oseilloseope to cherk the actual modulation percentage undor all conditions of speech intensity. (For further discussion see Bruene, "IIigh-Level Clipping and Filtering", QST, November, 1951.)

A Clipper-Filter Speech Amplifier-Driver

The spereh amplifier shown in figs. !-10 to 9-11, inclusive, uses push-pull triodes to ohtain a power output of 13 watts with negligible disfortion - sufficient to drive most of the emm-monly-used Class-13 modulator tubes. It includes a chipper-filter for increasing the effectiveness of modulation and for confining the chamel width to frequencies needed for intulligible spereeth. The over-all gatin is ample for use with communieat-tions-type crystal microphones when using clipping of the order of 12-15 dh. Miniature tubes are used in the voltage-amplifier stages. The output tubes are 6B4Gis, operated ('lass AB3 with fixed bits. 'Two power supplies are included, one for the voltage amplifier stages and the other for the output tube platers.

As shown in lig. 9-11, the first two stages are voltage amplifiors of ordinary dasign, using a 6Al'6 pentode in the first stage and a $6 \mathrm{C}+\mathrm{t}$ triode in the seeond. The output of the seeond stage can be switched either to the 12 AC 7 doubhetriode clipper or to the 6 ('t voltage amplifior that drives the 61346 grids. In the latter catie the amplifier operation is conventional. The clipper, when oprative, provides additional voltage gatin as well as clipping. Its output groes through a simple low-pass filter $\left(L_{1} C_{11} C_{12}\right)$ so that harmonios genorated by clipping will be attentated before the signal reaches the gride of the sereond 6('t. The frequeney response of the amplifier with the filter in eireuit, but with the signal below the clipping level, drops at the rate of roughly 6 d . per octave below 500 a celes: above 1000 eycles the response is down $2 \dot{5} \mathrm{db}$. compared with the medium audio range.

A two-seretion filter is used in the plate supply for the voltage-amplifier stages. The hum level must be kept low herause of the high gain reguired when using clipping. A single-section filter is sufficiont for the output stage. Bias for the (ibte grids is ohtained from the low-voltage supply by means of R_{16}, br-passed by (${ }_{14}$.
Two gain controls are included, one (R_{6}) for setting the level into the elipper cireuit and thus determining the amount of elipping, and the
seoond $\left(R_{13}\right)$ for setting the output level after clipping. With the clipper in use, proper setting of R_{13} will kerep the modulation level high but will prevent overmodulation.

Construction

As shown in lig. 9-10, the voltage amplifiers oceupy the left front section of the chassis. The 6 A 6 first amplifier is at the loft, followed in order to the right by the first 6(4, the 12AL7, and the serond tic't. The 613 thes and their output transformer are at the right front. The eylindrical unit just behind the second 6C'4 is the interstage audio transformer, T_{1}.

Power supply components are grouped along the rear edge of the chassis, with the low-voltage supply at the left. The power transformers should be kept wedl separated from the voltage amplifiers, particularly the first two stages, in order to minimize hum difficulties.

On the front panel, the mierophone input connerotor is at the lower left. Next to it is the - Clipp ing control, then the elipper in-out switeh, and then the modulation control. The two toggle switrones at the right are s_{2} and S_{3}. The ate input socket is be-passod by C_{15} and C_{16}, to reduce the possibility that r.f. pioked up on the line cord will got into the low-level sperech stages.

The wiring underneath the ehassis is relatively simple, ats shown by lig. 9-12. The microphone input circuit, including $R F C_{1}$ and C_{1}, is onclosed in at National jack shiold, and the lead from $R F^{\prime} C_{1}$ to the 6AL6 grid also is shielded.

Adjusting the Clipper-Filter Amplifier

The good efferet of the low-pass filter in eliminating splatter ean tre entirely nullified if the amplifier stages following the filter can int roduce appreciable distortion. Amplifier stages following the unit must be oprated well within their (:ap)abilities; in particular, the Class 13 output fransformor (if a Class 13 modulator is to be driven) should be shunted by eondensers to redure the high-frequentey response as deseribed in the sertion on Class 13 modulators.

Fig. 9-IO - This sprech-amplitier and Iriver has ample sain for a crystal mirrophone and is complite with power supply. The meas. ured undiatorted ontput is 13 watte, It ins corporates a clipper-file er satem for imerasing modulation effectiveness and dereratsing channel width.

Fip. 9-12 - Btlow erhassis view of the clip-per-filter speech amplifier. The relatively small number of eomponents below the chassis makes wiring simple.
'Ihe setting of R_{13} is most important. It is most easily done with the aid of an oseilloseope (one having a linear sweep) and an audio oscillator, using the test set-up shown in the section on testing of spereh equipment. L"se a resistance load on the output transformer to reflect
 the proper load resistance (3000 ohms) at the plates of the 6 il3tins, First set R_{13} at about $1 / 4$ the resistance from the ground end, switch in the clipper-filter, and apply a $500-$ eycle sine-wave signal to the microphone input. Increase the signal amplitude until clipping starts, as shown by flattening of both the negative and positive peaks of the wave. To cherk whether the clipping is taking plare in the clipper or in the following amplifiers, throw S_{1} to the "normal" or "out" position; the waveshape should return to normal. If it does not, return s_{1} to the "in" position and roduce the setting of R_{13} until it does. Then redure the amplifier gain by meats of R_{6} until the signal is just bolow the clipping level. At this point the signal should be a sine wave. In-
$C_{1}-100-\mu \mu$ fil. mica.
$\mathrm{C}_{2}, \mathrm{C} 6, \mathrm{C} 13-2(\mathrm{O}-\mu \mathrm{fl}$. 25 -volt electrolytic.
C. $3-11.1-\mu \mathrm{ft}$. 400-volt paper.

C5, Cx - 8-pfil. 4. © 0 volt electrolytic.

(in - 0.0602 $\mu \mathrm{fd}$. mica or paper.
(i2 - 330) $-\mu \mathrm{fft}$ mica.
(it - 30) μ fd. I (3)-volt alectrolytic.

(:20, (21-8.pfol. 150 -volt ehetrolytic (can type).
$1 k_{1}-2.2$ mexohms, $1 / 2$ watt.
$\mathrm{K}_{2}, \mathrm{~K}_{14}-2204$ ohms, $1 / 2$ watt.
$\mathrm{K}_{3}-1$ megolim, \boldsymbol{I}_{2} watt.
$\mathrm{R}_{4}, \mathrm{R}_{9}-1 \mathrm{I}_{4} 4 \mathrm{~m}$ megohm, $1 / 2$ watt.
$\mathrm{K}_{5}-47,0100$ ohms, $1 / 2$ watt.
$\mathrm{K}_{6}-2$-magolm volume control.
$\mathrm{K}_{5}-390$ ohma, ${ }^{1}{ }_{2}$ watt.
R_{s} - 0.1 meqohm. $1 / 2$ watt.
$\mathrm{K}_{10}-1.000$ ohms, I watt.
$K_{11}-15,000$ ohms, I watt.
R_{12} - 50,000 ohms. $1 / 2$ watt.

$\mathrm{K}_{15}-10,000$ ohms. 20 watts.
\mathbf{K}_{16} - 2000-ohm 25-watt adjustable.
I. - 20 henrys, $9(0)$ ohms (stameor (i-1.51.5).
1.2, $1.3-15$ henrys, 5 ma. (Stancor (C .1002).
1.4 - $10 . \bar{i}$ herney, 110 ma. (Stancor (-1001).

Ji- Nierophone cathle receptade (Amphenol PCI M).

\therefore - D.p.d.t. rotary switeh (Mallory 3122-J).
$\mathrm{S}_{2}, \mathrm{~S}_{3}$ - Sp.p.t. tokyle.
'li- Audio iransformer, single plate to p.p. grids, ratio 2:1 ('Thordarson "1'20.A1\%).
T_{2} - Driver transformer, variahle ratio, p.p. Iriver to Class-13 prids, pri, rating 120 ma, per side (Stan. cor 1-1763).
T_{3} - Power tramsformer: 700 ध. c. $1 ., 90$ tha.: $5 \mathrm{v} ., 2$ amp: 6.3 v. 3.5 amp. (Stancor P'40.9).
'ly - Power tranaformer: 500 v.c. t., 110 ma.: 5 v., 3 ampe: (0.3 v. l.ī amp. (Stancor P'4080).
KP(i)-2.5 mh. r.f. chokre.
crease R_{13}, without touching R_{6}, until the wave starts to become distorted, and then back off R_{13} until distortion disappears.

Next, change the input-signal frequency to 2500 cycles, without changing the signal level. Slowly increase R_{8} while ohserving the pattern. At this frequency it should be almost impossible to get anything except a sine wave through the filter, so if distortion appears it is the result of overloading in the amplifiers following the filter. Reduce the setting of R_{13} until the distortion disappears, even when R_{6} is set at maximum and the maximum available signal from the audio oscillator is applied to the amplifier. The position of $R_{1 s}$ should lie noted at this point and the ohserved setting should never be exceeded.

To find the operaling setting of R_{23}, leave the audio-oseillator signal amplitude at the value just under the elipping level and set up the complete transmitur for a modulation check, using the osellloseope to give the trapezoidal pattern. With the claws C amplifier and modulator running, find the setting of R_{13} (keeping the audio signal just under the clipping level) that just gives 100 -per-cent modulation. This sotting should be bolow the maximum setting of R_{13} as previously determined; if it is not, the driver and modulator are not capable of modulating the transmitter 100 per cent and must be redesigned - or the Class \mathbf{C} amplifier input must be lowered. Assuming a satisfartory setting is found, conneet a microphone to the amplifier and set the amplifier gatin control, R_{6}, so that the transmitter is molulated 100 per cent. Observe the pattern closely at different settings of R_{6} to see if it is possible to overmodulate. If overmodulation does not oecur at any setting of R_{6}, the transmitter is ready for operation and R_{13} may be locked in position; it need never be touched subsequently. If some overmolulation does occur, R_{13} should le backed off until it disappears and then locked.

In the abisence of an oscilloscope the other methods of checking distortion described in the section on speceh-amplifier testing may be used. The object is to prevent distortion in stages following the filter, so that when the clipping level is exceeded the following stages will be working within their capabilities.

A Simple Grid Modulator

The modulator cireuit shown in lig. 9-1 4 is (equable of modulating any transmitter, up to the maximum power limit, to about 80 per cent with low distortion. It require no power supply other than heater power for the tubes, sine it gots plate power from the eathode circuit of the r.f. amplifier with which it is used. Although the modulator output is comerted in series with the r.f. amplifier eathole, the modulation is essentially of the grid-hias type (see chapter on ampli-

Fig. 9.1.3-A simple modalator of the grid-hias tym. usable with transmitter- hasing e.w. plate inputs up to a kilowatt. Plate power for the unit is ohtained anto. matically from the r,f, amplifier sumply.
tude modulation). A useful charateristic of the system is that it does not require a fixed source of grid hist for the amylifier.

The sperech amplifier uses at high- μ double triode to give two stages of resistance-coupled amplification. This gives suffieicnt gatn for a erystal microphone, Resistors R_{3}, R_{7} and R_{10},
together with C_{1} and C_{3}, provide deroupling and additional fitering of the dec. obtained from the r.f. amplifior cathote cireuit.

The output stage uses one or more $6 \mathrm{l}^{2} \mathrm{bl}$ is in paralled: in determining the number of tubes required to modulate a particular amplifier, use one 6) 60 ; for each 200 ma. of amplifier plate current based on the oprerating conditions for e.w. work. The audio output voltage is developed across L_{1} and h_{11} in series: R_{11} may be omitted if the d.e. voltage between the sereen and cathode of the 6 \% 6 i i dones not rexeed the rated value of 135 volts.

No spectial constructional precautions need be olserved in lyying out the amplifier. The unit shown in Fig. 9-1:3 is built on a homemade chassis folded from a sheot of aluminum, but a small standard chassis may be used instead. A filament transformer may be included in the unit in case the heater power eamot eonveniently be ohtained from the transmitter itsolf.

To use the modulator, first tune up the transmitter for ordinary e.w. opration with the modulator diseonneeted. Then combect the modulator output torminels in serios with the amplifier cathode as indicated in lig. 9-14. (Make certain that the modulator gathodes are up to operating temperature before applying plate voltage to the r.f. amplifier.) The amplifier plate current should drop to apmoximately one-half the c.w. value. If the phate current is too high, increase the value of h_{9} until it is in the proper region: if too low, decrease the resistance at hig. Once this adjustmont is made the system is ready for 'phone operation. The r.f. amplifier plate rurrent should show no change with speech input, except for a slight upward kick on voice peaks.

The carrier power outpat with this sustem is somewhat less than would be oltained with conventional grid molulation herause the d.e. voltage drop in the $6 \mathrm{Y}^{\prime}$ (6G modulators subtracts from the amplifier plate voltage. The difference is small with r.f. tubes operating at 1000 volts or more.

Fig. 9-14-Circuit diagram of the sperete amplifiar and modulator.
$\mathrm{C}_{1}, \mathrm{C}_{3}, \mathrm{C}_{6}-8-\mu \mathrm{fil}$, chertrolytic. 450 wolts.
$\mathrm{C}_{2}-0.005 \mathrm{~s}$ fil. 100 volles.
($\mathrm{C}_{4}-0.01 \mu \mathrm{ff} .400$ vilts.
C S_{5} - B). $\mu \mathrm{fd}$, electrolytic. i() volts.
$\mathrm{R}_{1}-2.2$ megohms, 1_{2} watt.
$\mathrm{R}_{2}-0.22$ megohm, $1 / 2$ watt.
$\mathrm{K}_{3}, \mathrm{~K}_{7}, \mathrm{H}_{10}-22,000$ ohms, $1 / 2$ watt.
R_{4} - 0.i-megohm volume control.
$\mathrm{K}_{5}-2200$, ohmes, $1 / 2$ watt.
$\mathrm{R}_{6}, \mathrm{R}_{\mathrm{s}}-0.1 \mathrm{megohm}, 1 / 2$ watt.
R_{0} - $\boldsymbol{j l l}$ olms, 2 watts (spee text).
$R_{11}-2000$ ohms, 2 watts (see text).
L. - Small filter chohe, "a.c", ol.c." type satisfactory.

Screen Modulator Circuit

Fig. 9-15 is a representative circuit for a modulator for the screol grid of a be:um tetrode. Most r.f. tubes of this type require very little modulating power in the sereen circuit, so a recoivingtype audio power amplifier usually is sufficient. The cireuit shown has ample gain for a crystal microphone and will fully modulater a sereen grid that does not require an average adudio power of more than three or four watts. It rat also be used for modulating a pair of r.f. tules where these requirements are not exceeded. The chapter on amplitude modulation should be consulted for information on determining the voltage swing and modulating power for a particular tube type. The turns ratio required in T_{1}, primary to secondary, will range from 1 to 1 to 0.8 to 1 for various r.f. tubes, since the peak output voltage of the tube areross the primary of the transformer is about 200 volts. An inexpensive driver transformer, of the type used for coupling a triode or pentode to Class AB_{2} tetrodes of the 61.6 class, will be satisfactory. It should preforably have two or three primary taps so the turns ration can lx adjusted. Transformer coupling is used in preference to direct coupling (i.e., "clamp-tube" modulation of the sereen) because of simpler adjustment, ease of modulating 100 por cont, and bereanse it permits using a low-voltage supply for the screen grid of the modulated r.f. amplifier.

The speech input stage uses a 6s.J7 pentode and is followed be a 6.J5 voltage amplifier. The $6 \mathrm{~V}^{\prime} 6$ output stage uses nogative foed-back, the feedbank voltage being taken from the plate cireut hemens of the voltage divider $R_{10} R_{11}$ and ap-
plied in serins with the plate resistor, R_{7}, of the preceding stage. Negative feed-back in the molulator is very desirable when a screen or control grid is to be modulated berause the load on the modulator varies over the atudio-freguency crele, and ferd-back reduces the distortion that arises from this cause. In this circuit the pereent feedback is chosen to be as large as possible while still rotatining enough voltage gain for normal voice intensity into a crustal microphone.
The lead betwern the microphone connector and the Gid7 grid should the shiolded, as should also the first-stage grid-resistor, R_{1}. Such shielding prevents hum pirk-up on the grid lead. Aside from this, no sperial premations need be observed in construeting the amplifier, beyond kecping the heater leads woll away from the plate and grid leads of the tubes.

The heater requirement for the unit is 1 ampere at 6.3 volts. Plate-supply requirements vary from about 70) to 85 mat at 250 to 300 volts, deperoding on the screen current taken by the tube being modulated. R_{13} should be adjusted, by means of the slider, to give the proper d.e. voltage at the screen of the modulated stage. This voltage will, in general, be approximately half the d.c. screen voltage recommended for c.w. operation, as desoribed in the chapter on amplitude modulation. The method of adjustment for linear modulation is also covered in that chapter.

The stme circuit mity be used for control-grid modulation of either triode or tetrode r.f. amplifiers. The method of adjustment is deseribed in the chapter on amplitude modulation.

Fig. 9. 15 - Modulator cirruit for sereen or control grid modulation.
$\mathrm{C}_{1}, \mathrm{C}_{4}-10-\mu \mathrm{fl}, 25$ - wilt electrolyiic.

$C_{3}^{2}, C_{5}-0.01-\mu \mathrm{Fid}$. $\mathbf{1 0 0}$-volt paper.
$\mathrm{C}_{6}-50-\mu \mathrm{fd}$. 510 -volt electrolytic.
$\mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}-10 . \mu \mathrm{fil}$. $1.0(1)$-volt electrolytic.
$R_{1}-2.2$ mesohms, $1 / 2$ watt.
R_{2}, $R_{6}-1500$ ohms, $1 / 2$ watt.
R_{3} - 1 megolım, $1 / 2$ watt.
K_{4} - 0.22 megohm, $1 / 2$ watt.
$\mathrm{K}_{s}-1$-megohm potentioneter, audio taper.
$\mathrm{R}_{7}, \mathrm{R}_{8}-0.1$ megohm, $1 / 2$ watt.
$\mathrm{R}_{\mathrm{g}}-235$ ohms, 2 watts. (Two 470 ohm 1-watt mits in parallel.)
$R_{10}, R_{12}-4 \overline{7}, 000$ olmens, 1 watt.
$1 \mathrm{~h}_{11}-2 \overline{2},(0) 0$ ohms, 1 watt.
$\mathrm{H}_{13}-\mathbf{2 5 , (0) 0} 0$ ohm adjustable, 25 watts.
J_{1} - Microphone jack.
$S_{1}-4$-pole 2 -position rotary swith (see text).
' l ' - Audio driver transformer (see text).

40-Watt Class AB1 Modulator

The modulator unit shown in Figs. 9-16 to !-18, inclusive, has an undistorted power output of somewhat better than 40 watts. Although designed as a companion unit for the 7 o-watt transmitter described in the chapter on transmitters, it may be used with any transmitter operating at a d.c. plate power input of 80 watts or less.

Speech Circuit

The speerh amplifier uses a high- μ dual triode as a two-stage resistance-rouplen amplifier, followed by a medium- μ triode. The latter is transformer-coupled to the modulator grids. The gain from the microphone input to the 807 grids is more than ample for cristal and other microphones of similar output level. Battery bias is used for the modulator grids since it is the simplest method and a small battery such as those made for hearing-aids can be used. Since no rurrent is taken from the battery, its life is the same as the normal shelf life.
The frequency response of the amplifier is adjusted to put maximum energy in the range where it contributes most to speech intelligibility: that is, the output is highest between 500 and 1200 cycles and drops off gradually on either side. The lower frequencies are reduced by low values of eapacitance at ('3 and C_{4}, and the high-frequency end is attenuated by C_{6} and C_{7}.

Power Supply

The power supply uses a replacement-type transformer with a bridge rectifier to obtain dual output voltages. A single-section filter is used on the high-voltage output and a double-section filter on the low voltage. With the values shown in Fig. $9-17$ the hum level is 40 db . below full output of the modulator.

Control Circuits

The switching arrangement in the control section provides an on-off control for 'phone operation, disables the modulator when c.w. is to be used, and includes a "Test" position similar to that in the 75 -watt transmitter. In the
"'Phone" position the rontrol swituh diseronneets the 6146 r.f. amplifier sereen from the supply in the transmitter unit and coments it to the screen-dropping resistor, R_{18}. Simultamoonsly, the serondary of the modulation transformer is comected in series with the $61+6$ d.e. plate lead, and the cathodes of the 807 modulators are ronnected to ground through R_{16}. The drop in voltage across R_{16} is used for measuring the modulator plate current. In the "C.W." position the modulator cathode circuit is opened, the secondary of the modulation transformer is short-circuited, and the $61+6$ sereen is connected to the sereen supply in the transmitter unit. In both the "Test" and "(OfT" positions the 6 (46 sereen is disconnerted from its supply and grounded, and the modulation transformer secondary is shorted. If a key is plugged into the jack on the transmitter, either position can be used for testing; but the key must be left open when using the "()ff" position for on-off 'phone switehing.

A few changes in the original transmitter cireuit are required. Referring to the eireuit diagram in the transmitter chapter. these are:

1) Diswonnert the lead hetween the arm of S_{4}. and J_{7}. This seation of S_{4} is no longer nereded.
2) Remove R_{9} from the eireuit. (This resistor is replaced by R_{17} in Fig. 9-17.)
3) ('onnect Pin 2 on the auxiliary socket, J_{8}. to the top contart of J_{7}. This connerts the $\overline{3}$. $6: 3$ and 6116 athodes to the auxiliary socket and thene through the connerting eable to the modulator.

I six-wire cable is used for making connections between the two units. The same pin numbers are used for corresponding circuits at each end, so it is merely neressary to connert l'in 1 in one plug to Pin 1 in the other, and so on. Pins 5 and ${ }^{6}$ must be connerted by a jumper in order to complete the heater circuit in the transmitter.

The meter in the transmitter is used for making measurements on the modulator by means of a cord with pin jacks rumning between the "Wixternal Voltmeter" jack on the transmitter and the jatcks (J_{2} to J_{5}, inclusive) shown in lig. 9-17.

Fig. 9.16 - The 10 . watt modnator along. side the F-w-watt tranmitter descrilied in the transmitting rhapter. It is completely gelf-rontained, with power supply amd control circuits, on a $5 \times 10 \times 3$-inch chassis.

The control switch, center, has four positions - off, test, phone, and r.w. Mierophone commector and gain eontrol are at the left; a.c. switehes at the lower risht. The two speerh amplifier tulues are at the left front, followed liy the 80is and the SV4C to the rear. The modulation transformer is at the right front and the power transformer is at the right rear.

Fig. 9.17-Circuit diagram of the Class A13 modulator using 8078.
$\mathrm{C}_{1}-100-\mu \mu \mathrm{fd}$. ceramic.
C. 2 - Dual 8- μ fd. electrolytic, 450 volts.
$\mathrm{C}_{3}, \mathrm{C}_{4}-0.0015-\mu \mathrm{fd}$. ceramic.
(is - 10- f d. electrolytic, $\mathbf{2 5}$ volts.
$\mathrm{C}_{6}-4 \% 0 \cdot \mu \mu \mathrm{fl}$. ccramic.
$\mathrm{C} 7-0.002$ - to $0.004-\mu \mathrm{fd}$. paper, 600 volts.
Cis - Dual electrolytic, 8 (A) and 16 (B) $\mu \mathrm{fd} ., 450$ volts.
(9, C $\mathrm{C}_{10}-30-\mu \mathrm{fd}$. electrolytic, 450 volts.
$\mathrm{C}_{11}-0.004-\mu \mathrm{fd}$. paper, 1600 volte.
$\mathrm{C}_{12}-0.1-\mu \mathrm{fd}$. paper, 600 volts.
$R_{1}-2.2$ megohms, $1 / 2$ watt.
$R_{2}, R_{6}-0.1$ megohm, $1 / 2$ watt.
Rs - 47,000 ohms, $1 / 2$ watt.
R_{4} - 1 -megohm volume control, preferably log taper.
$R_{5}-1500$ ohms, $1 / 2$ watt.
$1 \mathrm{R}_{7}-10,000$ ohms, $1 / 2$ watt.
$R_{8}-1$ megohm, $1 / 2$ watt.
$R_{9}-1000$ ohms, $1 / 2$ watt.
$\mathrm{K}_{10}-0.1$ megohm, 1 watt.
$R_{11}, R_{12}-20,000$ ohms, 10 watts.
$R_{13}, R_{19}-1$ megohm, 1 watt.
$\mathrm{R}_{14}-0.47$ megohm, $1 / 2$ watt.
$\mathrm{K}_{15}-15,000$ ohms, $1 / 2$ watt.
$\mathrm{h}_{16}-50 \mathrm{ohms}, 1 / 2$ watt.
$R_{17}-4700$ ohms, 1 watt.
$R_{18}-35,000$ ohmis, 10 watts.
$R_{20}-1000$ ohms, $1 / 2$ watt (value not critical).
F_{1} - 2 -amp. fuse.
I_{1} - Pilot light, $6.3 \mathrm{v} ., 150 \mathrm{ma}$.
J_{1} - Panel-type microphone connector (Amphenol P(:1M).
$\mathrm{J}_{2}, \mathrm{~J}_{3}, \mathrm{~J}_{4}, \mathrm{~J}_{5}$ - Insulated tip jack.
J_{6} - Octal socket.
$\mathrm{I}_{4}-4.5$ henrys, 50 ma., 300 ohms.
$\mathrm{L}_{2}-8$ henrys, 100 ma., 375 ohms.
S_{1}, S_{2}-S.p.s.t. toggle.
$\mathrm{S}_{3}-4$-section, 5 -position ceramic wafer switch (2 wafers), 4 positions uscd.
T_{1} - Interstage audio transformer, center-tapped secondary, $10-\mathrm{ma}$. primary, total secondary-toprimary turns ratio 3 to 1 .
T_{2} - Adjustable-ratio modulation transformer, app. 30 watts (UT'C CVM-1).
T_{3} - Filament transformer, 6.3 v . at 1.2 amp .
'1'4 - Power transformer, 350 v . each side c.t., 90 ma ; 5 v . at 2 amp . 6.3 v . at 3 amp .
B'II - 22.5-volt battery (hearing-aid type uscd in modulator shown in photographs).

Modulator plate current is read through J_{4}; the full seale range is 100 mat with at 50 -ohm resistor at R_{16}. A.f. voltage for an owilloweope can be taken from J_{5}, through the voltage divider formed by R_{15} and $R_{19} . C_{11}$ is a blocking eondenser for the voltage divider. R_{15} and the total resistance are such as to give about 10 volts peak.
C_{12} and h_{20} are used to suppress sparking at the control switch.

When the transmitter and modulator are connered by the cable all the control functions, exeret keving, are performed by the switch on the modulator unit. The "Test-l)perate" switch on the transmitter should be left permanently in the "Opreate" position. The key may be left permanently in the jack on the transmitter. Both power supplies run continuously. The (SN 5 (xT heater transformer in each unit should be turned on sufficiently ahead of the power transformer to allow the 6×5 (iT heaters to attain temperature before the $5 \mathrm{~V}+\mathrm{G}$ 'T.

Construction

Although the unit shown is complete on a $5 \times 10 \times 3$-inch chawsis, such compart construction is not ordinarily neressary. A larger chassis will provide more fredom for phaeement of components and will make wiring easier.
In choosing a layout, it is advisable to keep the output transformer, T_{2}, well separated from the low-level sperech amplifier circuits. This will tend to reduce stray coupling and feed-back and thus prevent any temdency toward self-oseillation. To prevent such oseillation in the layout shown, it was neressary to install a small aluminum
shield between the speceh amplifier circuits and the output transformer terminals (Fig. 9-18), and to use a shieded lead from the "hot" termimal ((C) of the transformer to the terminal sooket at the rear of the chassis.

Operating Values

The optimum plate-tro-plate load resistanco for 80 s operating Class $.1 B_{1}$ with the voltages indicated is approximately $13,(\mu)$ ohms. For motulating the 75 -watt transmitter at full rated 'phone imput of 67.5 watts for the 6146 the proper transformer tans are indicated in Fig. 9-17. The antenna loading should be adjusted to make the 6il4 plate current 106 mat, at which load the sereen current should be 12 ma . and the plate voltage 640. The 6146 grid current should be adjusted to he 3 to 4 ma.

For other tubes or different voltages and currents, or for a different trpe of modulation transformer, the load rewistance should be calculated as deseribed in the chapter on amplitude moclulation and the transformer taps chosen aceordingly.

The d.e. power supply voltages in the modulittor unit (line voltage 120) should measure beO) and 260 for the high and low supplies with no audio input. The modulator idling current is about 50 mat. under these conditions with a now 22.5 -volt (autual voltage 24.5 volts) battery for bian. With tone input and the gain adjusterd for maximum undistorted output, the modulator eathode eurrent is about loo ma. Ilowever, with sperech the motulator plate current should not kick beyond 60 to 65 ma. on voice peaks; this represents 100 per cent modulation.

Fig. 9-18 - The principal components along the lower wall of the chassis, from left to right, are the filament trans-

 are mounted on a tie-point strip on the front wall (at the right in this view) near the control switeh, tis. The screendropping resistor, R_{1}, for the r.f. amplifier is monnted between the \dot{S}_{3} and a tid point on the chassis.
'The components visille along the upper wall are the low-voltage filter choke, $I_{1} 1$, at the left, transformer Ti at the center, and C8 at the right. 'The bias battery is mounted by a bracket on the chassis wall in the space between T_{1} and the chassis deck.

Push-Pull 807 Modulator and Speech Amplifier

The speech amplifier and modulator shown in Fig. $9-19$ is eapable of modulating a power input to the modulated amplifier of approximately 200 watts when the mwximum rated voltage of $\overline{5} 0$ is applied to the 80 op plates. The maximum undistorted audio power output is 100 watte at that plate voltage, after allowing for losses in the output tramformer. The $80 \overline{\mathrm{~s}}$ are operated as Class AB_{2} :amplifiers.

As shown in Fig. 9-20, the first sperech amplifier tube is a fis.J7, with its input circuit arranged for use with a crastal microphone. The serond statge, also a resistancocoupled voltage amplifier, uses a (i.j). The third stage, which must drliver power to the grids of the (Mass AB2 modulator tubes, uses a 6 k6 pentode. Nogativo ferd-back is incorporated in this stage as at means for improving its output voltage regulation and reducing distortion. The 6 ki 6 is coupled to the modulator grids through a transformer.

In the modulator stage small chokes, $R P C_{1}$ and $R P C_{2}$, are eonnerted in the grid leats and 100ohm resistors are commerted in the soreen leads to prevent the parasitie oscillations that freguently occur with 807 s . Watch screen resistor is
separately by-passed to ground with a mica condenser for the same reason.

A filament transformer capable of handling all tube heaters is inclusled as part of the unit.

Circuit constants have been selected so that the overall frequency response is sufficiently flat in the normal range of voice frequencies, but drops off above 3000 eycles and below 150 eyeles.

Fif. 9-19 - Volulator unit using push-pull 80is with speech amplifier designed for crystal-microphone input. It is built on a 7 by 17 by 3 stert chasis and can be nounted on a standard 83/4 inch relay-rach pancl. The audio pewer ontput obtainable vari* from 50 to 100 watts depending on the plate voltage supplied to the 80 is.

Fip. 9-20 - Circuit diakram of the push-pull 807 modulator
$\mathrm{C}_{1}, \mathrm{C}_{4}-10-\mu \mathrm{fd}$. 2.5 volt electrolytic.
Ci2-0.I- μ fil lownevolt paper.
C3, ($\because=0,001 \bar{n}-\mu \mathrm{fd}$. mica.

Ci, Co $-111-\mu \mathrm{fd}$. 4.50 - wolt electrolytio
$\mathrm{C}_{9,} \mathrm{C}_{10}, \mathrm{C}_{12}-11.002-\mu \mathrm{fl}$. mica.
C_{11} - 680 - $\mu \mathrm{\mu fl}$. mica.
R_{1} - 2.2 mesohms, $1 / 2$ watt.
$R_{2}, R_{8}-1500$ ohms, $1 / 2$ watt.
$\mathrm{K}_{3}-1$ megohm, $1 / 2$ watt.
$1 \mathrm{k}_{4}-0.22$ megolimı, $1 / 2$ watt.
$\mathrm{M}_{5}-1$-megohm potentiometer, audio taper.
$\mathrm{R}_{7}, \mathrm{R}_{\mathrm{s}}-0.1$ megoh:n, $1 / 2$ watt.
Rs - 680 ohms, I watt.
$\mathrm{R}_{10}-0.1$ mekohm, 1 watt.
$\mathrm{R}_{\|}-\mathbf{2} \mathbf{2}, 000$ ohms, I watt.
$\mathrm{R}_{12}-16,000$ ol lm s, 1 watt.
$\mathrm{K}_{13}, \mathrm{I}_{14}-100$ ohmes, $1 / 2$ watt.

J_{1} - Wicrophone jark.
S_{1} - S.p.s.t. witch (part of kain-rontrol assembly).
T_{1} - 6.3 volts al.c., 3 amp .
T_{2} - Class $\mathrm{A} 3_{2}$ driver transformer, single plate to p.p. grids, turns ratio 2 to 1, pri. to $1 / 2$ sec.
T_{3} - Out put transformer (see text).

Fir. 9.2I-Buttom view of the push. pull 80: modulator. In this virw the microphone commetor is at the lower right, with the gain control just to its left. The filament transformer is in the upper left corner. (ieramic feedehrough insulators are used to earry the output transformer connections through the chassis, and safety terminals are used for the high-voltage d.e. lead and the output transformer secondary terminals.

The general layout of the unit is shown in Figs. 9-19 and 9-21. The metal tute nearest the front of the chassis is the 6 S .57 am the 6.55 is toward the rear. The layout is not eritical, exeept that it is advisable to keep the filament transformer well separated from the low-level stages and the input transformer, T_{2}.
'To prevent hum piek-up the lead from the microphone connertor to the grid of the 6א.J7 should be shiclded, as should also the grid resistor, R_{1}. A satistactery shied for the grid rosistor may be made hy slipping a short piece of spaghetti tubing over the resistor and then covering the tubing with shield braid. The braid should be grounded to the chassis. The leads to the gain control, R_{5}, should the made from shielded wire.

The type of output transiomer to use will depend on the modulating impedance of the Class C r.f. stage. At maximum ratings the 307 s require a plate-to-plate load of 6950 ohms, so the output transformur turns ratio must the selected accordingly.

In casc the input to the morlulated stage is less than 200 watts, the 807 s may be operated at a reduced phate voltage to obtain the necessary atudio power output Typical operating conditions at various plate voltages are given below:

I'late voltage	$\mathbf{4 0 0}$	500	600	750	volts
Screen voltage	300	300	300	300	volts
(irid bias	-25	-29	-30	-32	volts
P'ate current, max.					
sig.	240	240	200	240	ma.
Plate current, no sig.	90	72	60	52	ma.
Load resistance	3200	4240	6400	6950	ohms
Power output	55	75	80	120	watts

The output figures given above are tube output only, and do not include transformer losses. They should be reduced by aloout 15 per cent to obtain the actual power available for modulating the transmitter. For example, with a plati-supply voltage of 500 the actual output can be expected to be about 65 watts, stificient for modulating 130 watts input.

The table above gives the power supply requirements for the 807 s at various plate voltages. The fixed tias may be supplinal by batteries or a bias supply such as is cteseribed in the chapter on power supplics. The sereen voltage may be be-
tween 250 and 300 in the practical case; at 250 volts somewhat less bias is needed and the driving power required is slightly increased but the power output is approximately the same.

The first three stages of the unit may le operated from a small power supply giving approximately 70 ma at 250 to 300 volts. A suitable circuit diagram is given in Fig. 9-22. This cirruit also supplies the fixed bias for the 807 grids, be utilizing the voltage drop letweren the negative side of the high-voltage output and ground through the tap on resistor R_{2}. The slider on R_{2} should be adjusted so that the proper bias voltage, as given by the table on this page, is obtatimed. It is advisable to check the 807 sereen curront, with no plate voltage on the 807 s , to be sure that the rated sereen dissipation of 3.5 watts prer tube is not exereded. If it is, the bias should be inerrased to keep the dissipation within rating. This will prevent damage to the screens during stand-by periods.

Such a power supply can be incorporated in the modulator unit, if desired. The prineipal precaution to be observed is that the power transformer should not be mounted near the low-level stages. A slightly deeper chassis may be required.

Fig, 9-22- Power supply for speech-amplifier stages of 80^{-}morlutator. The unit also supplics fixed bias for the 80 g grids.
C., (:2 - 8- $\mu \mathrm{ft}$, elertrolytie, 150 volts.
$\mathrm{C}_{3}-50-\mu \mathrm{fd}$. Hectrolytic, 50 volts.
La - Filter chohe, 30 herorys, 75 ma.
$1 \mathrm{~K}_{1}-15,000$ ohms, 10 watts.
$\mathrm{K}_{2}-1000$-ohm aljustable, 10 watts.
S_{1} - S.p.s.t. tokple.
Γ_{1} - I'ower transformer, 350 volts each side e.t., 30 ma.: 5 v. 3 amp.; 6.3 v. 3 amp.

Modulators and Drivers

CLASS-AB AND -B MODULATORS

(Class 113 or B modulator circuits are basically identical no matter what the power output of the motulator. The diagrams of Fig. 9-2:3 therefore will sarve for any modulator of this type that the amateur may deat to buide. The triode cirenit is givenat.d and the cercuit for tetrodes at 13 . When smatl tubes with indirerollo-heated cathodes are used, the cat hodes should be connected to ground.

Modulator Tubes

The audio ratings of various trpes of transmitting tubse are given in the chapter containing the tube tables. Choose a pair of tubes that is (:idmable of delivering sinc-wave audio power equal to somewhat more than half the d.e. input to the modulated Class \mathbf{C} amplifier. It is somotimes conveniont to use tubes that will operate at the same plate voltage as that applied to the Class C stage, because one power supply of adequate curront eapacity may then suffice for both stages.

In estimating the output of the modulator, remomber that the figures given in the tables are for the fulbe output only, and do not include out-put-transformor losses. 'To be adequate for modulating the transmitter, the modulator should have

Rig. 9-2:3 - Modulator cirenit diasrams. Tubes and cirruit considerations are discussed in the text.
a theoretical power capability about 25 per cent greater than the actual power needed for modulation.

Matching to Load

In giving audio ratings on power tubes, manufacturers sperify the plate-to-plate load impedance into which the tubes must operate to deliver the rated audio power output. This load impedance selfom is the same as the modulating imporlance of the Class C r.f. stage, so a mateh must be brought about by adjusting the turns ratio of the coupling transtormer. The required turns ratio, primary to secondary, is

$$
N=\sqrt{\frac{Z_{\mathrm{p}}}{Z_{\mathrm{m}}}}
$$

where $N=$ Turns ratio, primary to secondary
$Z_{\mathrm{m}}=$ Modulating impedance of Class \mathbf{C} r.f. amplifier
$Z_{p}=$ Plate-to-plate load impedance for Class is tubes

Example: The modulated r.f. amplifier is to operate at 12.50 volts and 250 ma. The power input is

$$
P=E I=1250 \times 0.25=312 \text { watts }
$$

so the modulating power required is $312 / 2=$ 156 watts. Increasing this by 25% to allow for losses and a reasonable operating margin gives $156 \times 1.25=195$ watts. The modulating improtance of the Class C stage is

$$
Z_{\mathrm{m}}=\frac{E}{I}=\frac{12.50}{0.25}=50100 \text { oluns. }
$$

From the tube tables a pair of Class is tubes is solected that will give 200 watts output when working into a 6900 -ohm load. plate-to-plate. The primary-to-srcondary turns ratio of the modulation transformer therefore should be

$$
N=\sqrt{\frac{Z_{p}}{Z_{n}}}=\sqrt{\frac{6400}{5000}}=\sqrt{1.38}=1.17 \%: 1
$$

The required transformer ration for the ordinary range of impedances are shown graphically in Fig. 9-2t.

Many modulation transformers are provided with primary and secondary taps, so that various turns ratios can be obtained to meet the requirements of particular tube combinations.

It may be that the exact turns ratio required camot bo secured, even with a tapped modulation transformer. Small departures from the proper turns ratio will have no serious effect if the modulator is operating woll within its capabilities; if the actual turns ratio is within 10 per cent of the ideal value the system will operate satisfactorily. Where the diserepancy is larger. it is usually possible to choose a new sot of operating conditions for the Class (stage to give a modulating impedance that

Fig, 9.2.1 - Transformer ratios for matehing a Class ©: modulating imperlance to the reguired plate-to-plate load for the Class IS modulator. 'The ratios given on the corves are from tatal primary to secomdary. Rexistance valurs are in hilohums.
ean be matehed he the turns ration of the available transformer. This may require operating the Class (; :anplifier at higher voltage and less plate current, if the modulating impedance must be increased, or at lower voltage and higher current if the modulating impedanee must be decreased. llowever, this process camot be carried very far without exereding the ratings of the Class (: tubes for either phate voltage or plate current, even though the power input is kept at the same figure.

Suppressing Audio Harmonics

Instortion in either the driver or Class 13 modulator will rause a.f. harmonics that may lie outside the freguency band noeded for intelligible spech transmission. While it is almost impossible to avoid some distortion, it is pessible to cut down the amplitude of the higher-frocquency harmonics.

The purpose of condensers C_{1} and C_{2} across the primary and secondary, respectively, of the Class 13 output transormer in Fig. $9-2: 3$ is to reduce the strength of harmonics and unneressary highfrequeney components existing in the modulation. The eondensers ant with the loakage inductance of the transformer winding to form a rudimentary low-pass filter. The values of capacitane required will depend on the load resistance (modulating impodance of the Class (C amplifier) and the leakage inductance of the particular transformer used. In genemal, rapacitances botween about 0.001 and $0.01 \mu \mathrm{fd}$. will be required; the larger values are neeressary with the lower values of load resistance. The voltager rating of each condenser should at least be exual to the d.e. voltage at the transformer winding with which it is associated. In the case of C_{2}. part of the total raparitance required will be supplied by the plate by-pass or
blocking capacitor in the modulated amplifier.
A still better arrangement is to use a low-pass filt or as shown in Fig. (1-9, even though elipping is not deliberately emploved.

Grid Bias

Certain triodes designed for (Class 13 audio work can be operated without grid bias. Besides eliminating the grid-hias supply, the fact that grid current flows over the whole audio cyole represents a more constant load resistance for the driver. With these tubes the grid-return lead from the renter-tap of the input transformer socondary is simply connected to the filament center-tap or cathode.

When the modulator tubes require bias, it should always be supplied from a fixed voltage source. (Gathode bias or grid-leak bias camot be used with a (Class 13 amplifior: with both types the bias changes with the amplitude of the signal voltage, whereas proper operation demands that the bias voltage be unvarying no matter what the strength of the signal. When only a small amount of bias is required it can be obtained conveniently from a few dry cells. When grater values of bias are required, a haveduty " 13 " battery may be used if the grid current does not exeeed to or 50 milliamperes on voire peaks. liven though the batteries are charged by the grid current rather than discharged, a battery will deteriorate with time and its internal resistane will increase. When the increase in internal resistance becomes appreciable, the battery tends to act like a gridloak resistor and the bias varies with the applied signal. Batteries should be eheremed with a voltmeter occasionally while the amplifier is operating. If the bias varies more than 10 per cent or so with voice excitation the battery should be replared.

As an altermative to batteries, a regulated bias supply may be used. This type of supply is desoribed in the power supply chapter.

Plate Supply

The plate supply for a Class B modulator should be sufficiently woll filtered to prevent hum modulation of the r.f. stage. An additional ro quirement is that the output condenser of the supply should have low reartance, at 100 cereles or less, compared with the load into which carch tube is working. A $4-\mu$ fld, output condenser with a 1000 -volt supply, or a $2-\mu$ fd. eondonser with a 2000-volt supply, usually will be satisfactory. With other plate voltages, condenser values should be in inverse proportion to the plate voltage.

To kerp distortion at a minimum, the voltage regulation of the plate supply should be as good as it can be made. If the d.c. output voltage of the supply varies with the load current, the voltage at maximum current determined the amount of power that can be taken from the modulator without distortion. A supply whose voltage chops from 1500 at no load to 1250 at the full modulator plate current is a 1250 -volt supply, so far as the modulator is concerned, and any
estimate of the power output available should be bised on the lower figure.

It is particularly important, in the case of a tetrode (lass 13 stage, that the sereem-voltage power-supply source have excellent regulation, to prevent distortion. The sercen voltage should be sot as exartly as possible to the recommended value for the tubr. The audio imperdance between screen and cathode also must be low.

Overexcitation

When a Class B amplifier is overdriven in an attempt to serure more than the rated power, distortion increases rapidly. The high-frequeney harmonies which result from the distortion modulate the transmitter, producing spurious sidobands which can cause serious interference over a band of frequencies several times the channel width required for speeth. (This com happen even though the modulation pereentage, as defined in the chapter on amplitude modulation, is less than 100 pere cent, if the modulator is incapable of rlelivering the audio power required to modulate the transmitter.)

As stated carlier, such a condition may be reached be deliberate dosign, in case the modulator is to be adjusted for paak clipping. But whether it happens by acerident or intention, the splatter and spurious sidelands (an be climinated by inserting a low-pass filter (Fig, 9-9) between the modulator and the modulated amplifier, and then taking rare to see that the artual modulation of the r.f. amplifier does not execed 100 per cent.

Operation Without Load

Exaitation should never be applied to a Class 13 modulator until after the Class C amplifier is turned on and is drawing the value of phate reurrent required to present the rated load to the modulator. With no load to absort the power, the primary impedaner of the transformer tises to a high value and exessive audio voltages are developed arross it - frequently high enough to break down the transformer insulation. If the modulator is to be tested separately from the transmitter, : resistance of the same value as the modulating impedance, and capable of dissipating the full power output of the modulator, should be connerted across the secondary.

DRIVERS FOR CLASS-B MODULATORS

Class AB_{2} and Class B amplifiers are driven into the grideurrent region, so power is con-
sumed in the grid cirruit. The preeeding stage or driver must be rapable of supplying this power at the reguired peak audio-frequency grid-to-grid voltage. Both of these quantities are given in the manufacturer's tube ratings. The grids of the Class 13 tubes reprosent a variable load resistance over the audio-frefuency erre, because the grid current does not increase direetly with the grid voltage. To prevent distortion, therofore, it is necessary to have a driving source that will maintain the waveform of the signal without distortion even though the load varios. That is, the driver' stage must have good regulation. To this end, it should be capable of delivering somewhat nore power than is consumed by the Class 13 grids, as previously deseribed in the discussion on speerh amplifiers.

The driver transformor, T ' or T_{2} in Fig. : $1-25$, maty couple dirertly betwern the driver tube and the modulator grids or maly be designed to work into a low-impedance ($200-$ or 500 -ohm) line. In the latter case, a tube-to-line output transformer must be used at the output of the driver stage. This type of coupling is recommended only when the driver must be at aronsiderable distance from the modulator; the serond transformer not only introduces additional losses but also impairs the voltage regulation of the driver stage.

Fig. 9-25-Trinde driver cireuits for Clase B modalators. A, resintance foupling to grids: 13 , transformer compling. R_{1} in A is the piate resistor for the preceding tage, value determined by the type of tube and operating condition* as siven in "lable 9). . Ci and R_{2} are the coupling condensar and grid resistor, resectively: values also may he taken from Table 9.I.

In booth cirenit = the output transformer, T. Ten whond have the proper $^{\text {s }}$ turns ratio to couple hetwern the driver tubes and the (lass 13 grids. T in B is usually a $2: 1$ transformer, secomary to primary. R, the cathode resistor, should be calculated for the particular tubes used. The value of C, the cathode by-jase, is determined as described in the text.

Driver Tubes

To serure good voltage regulation the internal impedance of the driver, as seen by the modulator grids, must be low. The principal component of this impedanee is the plate resistane of the driver tube or tubes as reflected through the driver transformer. Henere for low driving-source impedance the effective plate resistance of the driver tubes should be low and the turns ratio of the driver transformer, primary to secondary, should be as large as possible. The maximum turns ratio that can be used is that value which just permits developing the modulator grid-to-grid af. voltage reguired for the desired power output.

Low- μ triodes such as the 613.4G have low plate resistance and are therefore good tubes to use as drivers for Class $\mathrm{A} B_{2}$ or Class 13 modulaters. Totrodes such as the 6 d, 6 make very poor drivers in this respect whon used without negative feed-back, but with such ford-back the effertive plate resistance cath be redured to a value comparable with low- μ triodes.

In solecting a driver stage always choose Class A or $A 3_{1}$ operation in proforence to Class ABe. This not only simplifies the spereh-amplifier design but also makes it easicr to apply nerative ferd-back to tetrodes for reduction of plate resistance. It is possible to obtain a tube power output of approximataly 25 watts from 6 L (is without going beyond ('lass AB1 operation; this is ample driving power for the popular Class 13 modulator tubes, even when a kilowatt tramsmitter is to be modulated.

The rated tube output as shown by the tube tables should be reduced by about 20 per cent to allow for losses in the (lass 13 input transformer. If two transformers are used, tube-to-line and line-to-grids, allow about 35 per cent for tramsformer losses. Another 25 per cent should be allowed, if possible, as a safety factor and to improve the voltage regulation.

Fig. !-25 shows representative circuits for a push-pull triode driver using cathode bias. If the amplifier operates Class A the cathode resistor need not be by-passed, because the a.f. currents from each tube flowing in the cathode resistor are out of phase and cancel earh other. However, in Class Al3 operation this is not true: considerable distortion will be generated at high signal levels if the eathode resistor is mot bepassed. The bo-pass rapacitancerequired can be calculated by a simple rule: the cathode resistance in ohms multiplied bey the by-pass caparitance in midrofarads should equal at least 25,000. The voltage rating of the condenser should be equal to the maximum bias voltage. This can be found from the maximum-signal plate current and the a athode resistame.

Fig. 9.26 - Negative feed-lack rirchits for drivers for Class 13 mondulators. A -singleonded leam-tetrode driver. If I_{1} and b_{2} are a obsand 6 Wo. resuetively, the following values are suggested:

 ohos, the following values are suggested: R_{1}. O.1 megolim; R_{2},

tionship betweren R_{4} and R_{5}. Cirruit values for a typical tule combination are given in detatil in Fig. (9-26.
The push-pull rireuit in Fig. 9-26B requires an audio transformer with a split secondary. The feed-batek voltage is obtained from the plate of each output tube by means of the voltage divider, R_{1}, R_{2}. The blocking condenser, \boldsymbol{C}_{1}, prevents the d.e. plate voltage from being applied to $R_{1} R_{2}$: the reatenne of this eondenser shoudd twe low, compared with the sum of R_{1} and h_{2}, at the lowest audio frequeney to be amplified. Also, the sum of R_{1} and R_{2} should be high (ten times or more) rompared with the rated load resistance for V_{2} and V_{3}.

In this eircuit the feerl-back voltage that is developed across R_{2} appears at the grid of V_{2} (or V_{3}) through the transformer secondary and griderathode circuit of the tube, provided the tubes are not driven to grid current. The per cent frex-back is

$$
n=\frac{R_{2}}{R_{1}+R_{2}} \times 100
$$

where n is the feed-back pereentage, and R_{1} and R_{2} are connerted as shown in the diagram. The higher the ferd-bark perentage, the lower the effective plate resistance. However, if the porcentage is made too high the proceding tube, l_{1}, may not be able to develop enough voltage, through T_{1}, to drive the push-pull stage to maximum output without itself generating harmonie distortion. Distortion in V_{1} is not compensated for by the feed-back cireuit.

If V_{2} and V_{3} are (iLfis operated self-biased in Class AB_{1} with a loud resistance of 9000 ohms, V_{1} is a (6 J 5 , and T_{1} hats a turns ratio of 2-to-1,
tetal serondary to primary, it is possible to use over 30 per cont ferd-back without going beyond the output-voltage catrabilitios of the 6.5.5. Twenty per erent feed-back will reduer the coffertive plate resistance to the point whare the output voltage regulation is botter than that of fiblles or ad3s: withont feed-barck.

If the grid-rathorle impedance of the tulnes is relatively low, as it is when gride corrent flows, the ferd-bick voltage derratses berause of the voltage drop through the transformer serondary. The circuit should not be used with tubes that are operated Cliss A 3_{2}.

SPEECH-AMPLIFIER CIRCUIT WITH NEGATIVE FEED-BACK

A circuit for a speceh amplifier suitable for driving at Class 13 modulator is given in Fig. ! $1-27$. In this amplifior the GLdis are operated Chass .$~ \$ 13_{1}$ and will deliver up to 20 watts to the grids of the Class 13 amplifier. 'The feed-hack cirenit refuires no adjustment, but does require an interstage transormer with two separate secondary windings (split secondarv).

Any convenient chassis layout may be used for the amplifier provided the prineiples outlined in the section on speech-amplifier construction are observed. The over-all gatin is ample for a eom-munirations-type rerstal microphone.

The output tr:ustormer, T, should be soleeted to work betwoen : 0000 -ohm platr-to-plate loat and the gride of whatever Class B tubes will be used. The power-supply requirements for this amplifior are 145 mat at 360 volts and 2.7 amp. at 6.3 volts.

Fig. 9.27 - Circonit diagram of speech amplifier using 6L6A with negative feed-back, suitable for driving Class is modulators up to $\mathbf{5 0 0}$ watts output.
$\mathrm{C}_{1}, \mathrm{C}_{5}, \mathrm{C}_{8}-20-\mu \mathrm{fd}$. $2 . \mathrm{j}$-volt electrolytic.
$C_{2}, C_{9}, C_{10}-0.1-\mu \mathrm{ft} .100$-volt paper.
$\mathrm{C}_{3}, \mathrm{C}_{6}-0.01$ - fd . $\mathbf{0} 0 \mathrm{o}$ - volt paper.
$\mathrm{C}_{4}, \mathrm{C}_{-1}, \mathrm{C}_{12}-10$ - fd . 450 -volt electrolytic.
C_{11} - 100 - $\mu \mathrm{fl}$. $\mathbf{5 0} \mathbf{0}$ valt eleetrolytic.
R_{1} - 2.2 megoluns, $1 / 2$ watt.
$R_{2}, R_{7}-1500$ ohms, $1 / 2$ watt.
R_{3} - 1.3 megoluns, $1 / 2$ watt.
R_{4} - 0.12 megohm, $1 / 2$ watt.
$\mathrm{R}_{5}, \mathrm{R}_{\mathrm{x}}-47,0100$ ohms, $1 / 2$ watt.
R_{6} - 1 -megolm volume control.
$\mathrm{R}_{9}-0.17$ megohm, ${ }^{1}$ w watt.
$1810-1.500$ olms. I watt.
11_{11} - 10,000 ohme. $1 / 2$ watt.
$\mathrm{K}_{12}, \mathrm{R}_{13}-0.1 \mathrm{~mm}$ mohm, 1 watt.
$\mathrm{K}_{14,} \mathrm{R}_{15}$ - 22,000 ohms, $1 / 2$ watt.
$1 \mathrm{R}_{16}$ - 2.50 , whms. 10 watts.
$1 \mathrm{~h}_{17}-2000$ ohtins, 10 watts.
T_{1} - Interstage audio, 2:1 secondary (total) to primary, with shlit secondary winding.
T_{2} - Class is imput transformer to suit modulator tubes.

Class B Modulator with Filter

Representative Class is molulator ronstruction is illustrefer thy the unit shown in ligs. :1-28 and 9-30. This morlulator indudes a spatter

Fig. 9-28-A typical Chas 16 molulator arrangement. This unit mase a pair of 811 Is , cabable of an andion power ontput of 340 watts anm inedales a splater filter. The modulation transformer is at the left and the splatter chohe at the right. Ill high-veltage terminals are envered so they cannot ber fourhed accidentally.
filter, $C_{1} \mathrm{C}_{2} L_{1}$ in the rircuit diagram, Fig. 9-2!, and also has provisun for short-dircuiting the modulation transformer secondary when c.w. is to be used.
The autio input transformor is not built into this unit, it being assumed that this transformer will be induded in the driver assembly as is customary. If the modulator and speech amplifier-

Fig. 9.29 - (i ireuin diagram of the Class H modulator.
 Sli-3*40.)
K_{1}-1).p.d.t. rolay, high-voltage insulation (Advance type f(0)
M - 0-30) In e milliammeter, bakelite case.
\mathbf{r}_{1} - Iardable-ratio mowhlation transformes (Chicago Trateformer type (CNS゙-1).
'I' 2 - Filamemt transformer, 6.3 v., 8 amp. I_{1} - 6.3-volt pilot lighe.
$\mathrm{X}_{1}, \mathrm{X}_{2}$ - Ghasis-lyme $115-\mathrm{volt}$ plugs, mate. X_{3} - (hatsis ly fre llix-solt receplacle, female. S_{1}-S.p.sit. togyle.
driver are mounted in the same rack or cabinet, the length of leads from the driver to the modulator grids presents no probldem. The bias reduired ber the modulator tubes at their higher platevoltage ratings should be fod through the centertap on the serondary of the driver transformer. At a plate voltage of boo or las no bias is needed and the center-tap connertion on the transformer can be grounded.
The values of C_{1}, C_{2} and L_{1} depernd on the modulating imperdance of the (lass C r.f. amplifior. They ran be determined from the formulas given in this chapter in the soetion on high-level clipping and filtering. The splatter filter will be effective regardless of whether the modulator operating conditions are chosen to give high-level clipping. but it is worth-while to design the systam for elipping at 100 per rent modulation if the tube corves are availahbe for that purposes. The voltage ratings for C_{1} and C_{2} should at least equal the d.e. voltage applied to the modulated r.f. amplifier.

A relay with high-voltage insulation (aretually an anteman relay is used to short-circuit the

Fis. 9-30 - The filament transformer is mounted bedow the chassis. "The relay is used as described in the text. Ci and fore monmed on small standerf insilators on the chassis wall.
secondary of T, when the relay coil is not energizod. A momally-rdosed contact is used for this purposes. The other arm is used to close the primary direnit of the modulator phate supply when the relay is energized. shorting the tramsformer serondary is mecessary when the r.f. amplifier is keved, to prevent an inductive discharge from the tramsformer winding that would put "tails" on the keyed characters and, with cathode keving of the amplifier, would cause exeresive sparking at the key contacts. The control cireuit should be armanged in such at way that K_{1} is not energized during e.w. operation but is energized by the send-receive switch during 'phone operation.

Careful attention should be paid to insulation since the instantaneous voltages in the secondary rireuit of the transformer will be at heast twiee the d.c. voltage on the r.l. amplifier. Stand-off insulators are used in this unit wherever necessary, including the mounting for the relay.

Checking Amplifier Operation

An adequate joh of checking speech amplifiers can be done with equipment that is neither eleborate nor expensive. A simple set-up is shown in lig. 9-31. The construction of a simple audio osecilator is deseribed in the ehapter on measurements. The audio-frequeney voltmeter can be either a varuum-tule voltencter or at multimage volt-ohm-milliammeter that has a rectifier-type a.e. range. The headset is included for aural checking of the amplifier performance.

An audio osicilator usually will have an output control, but if the maximum output voltage is in exress of a volt or so the output setting may be rather eritical when a high-gain speech amplifier is being tested. In such cases an attenuator such as is shown in Fig. 9-31 is a convenience. Each of the two voltage dividers reduces the voltage ly a factor of roughly 10 to 1 , so that the over-all attenuation is about $100 \mathrm{t}, \mathrm{I}$. The relatively low value of resistance, R_{4}, across the input terminats of the amplitier also will minimize stray hum piek-up on the comereting leads.

As a preliminary check, cover the microphone input terminals with a metal shiodd (with the audio) osecillator and attenuator diseomeneted) and, while listening in the headset, note the hum level with the amplifier gain control in the off position. The hum should be vary low under these conditions. Then inerease the gaine-control setting to maximum and observe the hum; it will no doubt ineremse. Next eonnect the audio oseitlator and attenuator and, starting from minimum signal, increase the audio input voltage until the voltmeter indieates full power output. (The voltage should equal $\sqrt{ } P^{\prime} R$, where l ' is the expected power output in watte and R is the load resistance $-R_{G}$ in the diagram.) While increasing the input, listern carefully to the tone to see if there is any change in its character. When it begins to sound like a musieal ortave instrad of a single tone, distortion is beginning. Assuming that the output is substantially without audible distortion at full output, substitute the mierophone for the audio, osicillator and speak into it in a normal tone while Watching the voltmeter. Reduce the gain-control setting until the meter "kicks" nearly up to the

Fip, 9.31- Simple test set-up for checking a speech amplifier. It is not necessary that the frequeney range of the andio oseillator be entituronsly variable: a number of "spot frequencies, or even one such frequency, will be watisfartory. Suitable resistor values are: R_{1} and K_{3}, in,060) olums: R_{2} and R_{4}, 1000 odins: R_{6}, rated load resis tance for amplifier nutput staze; R_{5} determine by trial for comifortable headphone level (25 to 100 olms, ordinarily). I' is a hiigh-resistance a.c. voltmeter, multirange rectifier type.
full-power reading on voice pask. Note the hum level, as read on the voltmeter, at this point; the hum level should not execed one or two per cent of the voltage at full output.

If the hum level is too high, the amplifier stage that is causing the trouble can be located by temporarily short-cirecuiting the grid of ead tube to ground, starting with the output amplifier. When shorting a particular grid makes at marked dervease in hum, the hum presumably is coming from a preceding stage, although it is possible that it is getting its start in that particular grid eircuit. If shorting a grid does not derrease the hum, the hum is originating either in the plate rircuit of that tube or the grid circuit of the next. Aside from wiring errors, a defective tube, or

Fig, 9-32 - 'Fest set-1ג! using the oscilloscope to eheck for distortion. 'These connections will result in the type of pattren whon in Fris. $9-3: 3$, the horizontal sweep heing prosided liy the amdio input signal. For waveform patterns. monit the eonnection between the andion oscillator and the horizontal amplifier in the 'scope, and use the horizontal linear sweep.
inadequate plate-supply filtering, objectionable hum usually originates in the first stage of the amplifier.

If distortion occurs bolow the point at which the expected power output is secured, the stage in which it is occurring can be locateal by working from the last stage toward the front end of the amplifier, applying a signal to each grid in turn from the audio oseillator and adjusting the signal voltage for maximum output. In the case of push-pull stages, the signal may be applied to the primary of the interstage transformer - after diseonnecting it from the phate-voltage source. Assuming that normal design principles have been followed and that all stages are theoretically working within their capabilities, the probable causes of distortion are wiring errors (such as aceidental short-cireuit of a eathode resistor), defective eomponents, or use of Wromg values of resistance in cathode and plate eircuits.

Using the Oscilloscope

Sperch-amplifier checking is facilitated eonsiderably if an oseilloseope of the type having amplifiers and a linear sweep cireuit is available. A typical set-up for using the oscilloscope is shown in Fig. $9-32$. With the connections shown, the sweep circuit is not required but horszontal and vertical amplifiers are neressary. Audio voltage from the oseillator is
fed directly to one oscilloscope amplifier (horizontal in this (ase) and the output of the speech amplifier is connected to the other. The 'seope amplifier gains should be adjusted so that each signal gives the same line length with the other signal shut off.

Under these conditions, when the input and output signals are applied simultancously they are compared directly. If the speech amplifier is distortion-free and introduces no phase shift, the resulting pattern is simply a straight line, as shown at the upper left in Fig. 9-3:3, making an angle of about tis degrees with the horizontal and vertioul axes. If there is no distortion but there is phase shift, the pattern will be a smooth ellipse, as shown at the upper right. The greater the phase shift the greater the tendence of the ellipse to grow into a cirele. When there is evenharmonie distortion in the amplifier one end of the line or ellipse becomes curved, as shown in the serond row in Fig. !-3:3. With odd-harmonic distortion such as is characteristie of overdriven push-pull stages, the line or ellipse is curved at both ends.
patterns such as these will be obtaned when the input signal is a fairly good sine wave. They will tend to become compliated if the input waveform is complex and the speech amplifier introduces appreciable phase shifts. It is therefore advisable to test for distortion with :u input signal that is as nearly as possible a sine wave. Also, it is hest to use a frequency in the $500-1000$ cerle range, since improper phase shift in the amplifier is usually least in this region. Thase shift in itself is not of great importanere in an atudio amplifier of ordinary design becamse it does not change the character of speech so far as the ear is concerned. However, if a complex signal is used for testing, phase shift may make it diffecult to detert distortion in the oseilloseope pattern.

In amplifiers having nogrative feed-back, excessive phase shift within the feod-hack koon may cause selfoscillation, since the sighat fed back may arrive at the grid in phase with the applied signal voltage instead of out of phase with it. Such a phase shift is most likely to be associated with the output transformer. ()acillation usaally oreurs at some freepueney above 10,000 eveles, athough orcasionally it will oedur at a very low frequeney. If the pass-band in the stage in which the phase shift oceurs is deliberately restrieted to the optimum voiee range, as deserribed carlier, the gain at both very high and very low frequencies will be so low that self-escillation is unlikely, evell with large amounts of feed-back.
(iencrally spoaking, it is casior to dotect small amounts of distortion with the type of pattorn shown in Fig. !-3:3 than it is with the waveform pattern oltained bev feeding the output signal to the vertical plates and making use of the linear sweep in the "scope. However, the wavelorm pattern com be used satisfactorily if the signal from the audio aseillator is a reasonably good sine wave. One simple mothod is to examine the output of the oseillator alone and trame the pattern on a shect of transparent paper. The patern

Fig. 9-3.3- Typical patterns obtained with the conneetions shown in lig, 9.33. Jepending on the number of stages in the amplifier, the pattern may slope upward to the right, an whown, or upward to the left. Also, depending on where the distortion originates, the curvature in the second row may appear either at the top or bottom of the line or ellipse.
given by the output of the amplifier can then be compared with the "standard" pattern by adjusting the oseilloseope gain to make the two patterns coincide as closely as possible. The pattern diserepancies are a measure of the distortion.

In using the oscilloseope care must be taken to avoid introducing hum voltages that will upset the measurements. Ium piek-up on the 'seope leads or other exposed parts such as the amplifier load resistor or the voltmoter can be detected by shutting off the audio oseillator and serech amplifior and connecting first one and then the other to the vertieal plates of the 'scope, setting the internal horizontal sweep to an appropriate width. The trace should be a straight horizontal line when the vertical gain control is set at the position used in the actual measurements. Waviness in the line indieates hum. If the hum is not in the 'seope itself (eheek by diseonneeting the leark at the instrument) make sure that there is a grood ground comection on all the equipment and, if nocessary, shield the hot leads.

The owilloseope ean be used to good advantage in stage-hy-stage testing to check waveforms at the grid and plate of each stage and thus to determine rapidly where a source of trouble may be located. When the seope is conmeted to circuits that are not at ground potential for d.c., a condenser of about $0.1 \mu \mathrm{fd}$. should be connected in series with the hot owilloscope lead. The probe load should be shieded so that it will not pick up, hum.

Amplitude Modulation

The type of modulation most commonly employed in amateur radiotelophony is called amplitude modulation (AM). The name arises from the fact that the methods of generating a modulated wave of a particular type all acomplish the desired result by varying the instantaneous amplitude of the r.f. output of the transmitter. As described in the rhapter on circuit fundamentals, the process of modulating a signal sets up groups of frequencies called sidebands, these sidebands appearing both above and below the frequency of the ummodulated signal or carrier. An amplitude-modulated signal actually comsists of a carrier which does mot vary in amplitude plus sets of side freguencies or sidebands which in turn may or may not vary in amplitude. Modulation by a simgle-freguency, constantamplitude tone, for eximple, sots up side frequencies that do not vary in amplitude. Modulation by voice sets up bands of side frecuencies that do vary with the amplitude of the speech.

Amplitude modulation is freguently described as a process of "varying the amplitude of the carrier." A variation in amplitude does take place, when the composite signal as a whole is viewed in a cireuit that acerpts equally well all frequencies, carrier and sidebamds, contained in the sigual. 'The total r.f. output amplitude varies at the modulation-frequeney rate because it is the resultant of the instantaneous amplitudes of the earrier and all side frequencios, which eontinually vary (at radio frequency) in both amplitude and phase relationships. Misunderstanding often occurs because commonly no distinetion is made between the carrier, which does not vary in amplitude at modulation frequency, and the signal as a whole, which doos vary in amplitude with modulation. In this chapter the torm "signal" is used for the composite effect of (arrier plus sidehands.

It is illuminating to consider amplitude modelation ats a process of frequenco conversion or mixing, in which ease the relationship betwern the carrier, modulating frequencies, and sidebands is straightforward (sece chapter on fundamentals). The amplitude variations in the signal arise as a result of the mixing procoss. Theso amplitude variations are highly important from a design standpoint, since they sot up eertain power requirements that must be mot, so they are considered in detail in this chapter.

AM Sidebands and Channel Width

As described in the chapter on fundamentals, combining or mixing two frequencies in an appropriate circuit gives rise to sum and difference frequencies, Speech can be electrically reproduced, with high intelligibility, in a band of fre-
queneios lying between approximately 100 and 3000 eveles. When these frequencies are combined with a radio-frequeney caurier, the sidobands ocruper the freguence suectrom from about 3000 evedes below the earrier frequeney to 3000 eveles above - a total band or "ehamel" of about if kilocereles. Actual speceh frepuencies extend up to 10,000 cycles or so, so it is posible to oceupy a 20 -ke. chamel if no provision is made for reducing its width. For communication purposes such a chamel width represents a waste of valuable spectrum space, sinee a (j-ke, chamel is fully adequate for intolligibility. Oceupring more than the minimum chanmel creates unneerssary interfercner, so speech equipment and transmit ter adjustment and operation should be pointed toward maintaming the chanel width at the minimum.

- THE MODULATED SIGNAL

In lig. 10-1, the drawing at A shows the unmodulated r.f. signal, assumed to be a sime wave of the desired radio frequenes. The graph can be taken to represent either voltage or eurrent.

In I3, the sigmal is assumed to be modulated hy the audio-frequence shown in the small drawing above. This frepurncy is much lower than the carrier frequency, a nocessary eomdition for good modulation, and always the case in radiotelephony because the atudio frequencios used are very low compared with the radio frequencer of the carrier. When the modulating voltage is "positive" (ahove its axis) the signal amplitude is incrased abore its ummodulated amplitude; when the modulating voltare is "negative" the signal amplitude is decreased. Thus the signal grows largor and smaller with the polarity and amplitude of the modulating voltage.

The drawings at ('shows what happens with stronger modulation. The amplitude is doubled at the instant the modulating voltage reaches it: positive peak. On the negative peak of the modulating voltage the amplitude just reaches zero; in other words, the signal is completely modulated.

Percentage of Modulation

When a modulated sigmal is detected in a recoiver, the detector climinates the carrier and takes from it the modulation. The stronger the modulation, therefore, the greater is the useful receiver output. Obviously, it is desirable to make the modulation as strong or "heavy" as possible. A wave modulated as in Fig. 10-1C would produce considerably more useful audio output than the one shown at 13 .

The "depth" of the modulation is expressed
as a percentage of the ummodulated carrier amplitude. In cither 13 or C, Fig. 10-1, 1 represents the ummodulated carrior amplitude, Y is the maximum amplitude on the modulation up-peak, and Z is the minimum amplitude on the modulation downeak.

The outline of the modulated wave is called the modulation envelope. It is shown by the thin line outlining the patterns in Fig. 10-1. In a properly-operating modulation systens either side of this outline is an arcurate reproduction

Fig. 10-7 - Craphical reprosentation of (d) r.f. output monodulated, (B) modulated 50%, (${ }^{(0)}$ modulated 100%.
of the modulating wave, as can be seen in Fig. 10-1 at B and C by eomparing the upper outline of the moslulation envelope with the waveshape of the modulating wave. The lower outline duplieates the upper, but simply appears upside down in the drawing.

The percentage of modulation is
\% Mod. $=\frac{Y-X}{X} \times 100$ (upward modulation), or
\% Mod. $=\frac{X-Z}{X} \times 100$ (downward modulation)
If the waveshape of the modulation is such that its peak positive and negative amplitudes are equat, then the modulation pereentage will be the same both up and down. If the two pereentages differ, the larger of the two is eustomarily. specified.

Power in Modulated Wave

The amplitude values shown in Fig. 10-1 eorrespond to current or voltage, so the drawings may be taken to represent instantaneous values of either. Now power varies as the square of either the current or voltage, so at the peak of the modulation up-swing the instantaneous power in the signal of Fig. $10-1\left({ }^{\prime}\right.$ is four times the unmodulated carrier power (because the current and voltage both are doubled). At the peak of
the down-swing the power is zero, since the amplitude is zero. These statements are true of 100 per cent modulation no matter what the waveform of the modulation. The instantaneous power in the modulated signal is proportional to the square of its amplitude at every instant. This faet is highly important in the operation of every mothod of amplitude modulation.

It is conveniont, and enstomary, to deseribe the operation of modulation systems in terms of sine-wave modulation. Although this waveshape is seldom actually used in practiee (voice waveshapes depart very considerably from the sine form) it lends itself to simplo calculations and its use as a standard permits eomparison between systems on a common hasis. With sinc-wate modulation the power in the modulated signal averaged over any number of full cyaldes of the modulation fregueney is found to be 13 dimes the power in the unmodulated cerrier. In other words, the power output incrases 50 por eont with 100 per eent modulation by a sine wave. This relationship is very useful in the design of modulation systems and modulators, since ans. such system that is capable of increasing the average power output by jo per eent with sinewave modulation automatieally fulfills the requirement that the instantancous power at the modulation up-poak be four times the carrior power. No such simple relationship exists with eomplex waveforms, eonsequently systems in which the additional power is supplied from outside the modulated r.f. stage (e.g., plate modula ${ }^{-}$ tion) usuatly are designed on a sine-wave basis as a matter of convenience. Modulation spestems in which the additional power is secured from the modulated r.f. amplifier (e.g., grid modulation) usually are mome conveniently designed on the basis of peak power rather than average power.

The extra power that is contanod in a modulated sighal goos entirely into the sidebands, hatf in the upper siddeband and half in the lower. As a numerical example, full modulation of a 100 Watt earrier by a sine wave will add so watts of sidehand power, 25 in the lower and 25 in the uppor sideband. Supplying this additional power for the sidehands is the object of all of the various systems devised for amplitude modulation.

Complex waveforms such as speech do not, as a rule, contain as much average power as a sine wave. Ordinary specech waveforms have about half ats much average power as a sino wave, for the same peak amplitude in both waveforms. Since it is the peak amplitude, not the average power, that determines the pereentage of modulation, the sidehand power with ordinary sueech averages only about half the power with sinewave modulation, for the same modulation percontage in both eases.

Unsymmetrical Modulation

In an ordinary olectrie erenit it is possible to increase the amplitude of current flow indefinitely, up to the limit of the power-handling capability of the components, but it eamot very well be decreased to less than zero. The same

Fif. 10.2 - Molulation by an meymmetrieal waveform. "this drawing shows 100% downward modulation ahong with 300% urward nombatation. 'There is mo distortion, sine the modnlation enveloge is an areurate reprodurtion of the waveform of the modulating voltage.
thing is true of the amplitude of an r.f. signal ; it can be modulated upeard to any desired extont, but it eannot be modulated domeword more than 100 per cent.

When the modulating waveform is unsymmetrical it is possible for the upward and downward modulation pereentages to be different. A simple case is shown in Fig. 10-2. The positive prak of the modulating signal is about 3 times the amplitude of the negative prak. If, as shown in the drawing, the modulating amplitude is adjusted so that the peak downward modulation is just 100 per cont $(Z=0)$ the poak upward modulation is 300 prer cent $(Y=4 N$). The carrior amplitude is represented by X, as in Fig. 10-1. The modulation envelope reproduces the waveform of the modulating signal accurately, henee there is no distortion. In such a modulated signal the increase in power output with modulation is eonsiderably greater than when the modulation is symmetrical and has to be limited to 100 per eent both up and down. However, the peak amplitude, Y, is four times the carrice amplitude, X, so the preak pouer is 16 times the a arrior power. When the upward modulation is more than 100 per erent the peak power eapacity of the modulating sustem obviously must be increased sufficiontly to take care of the much larger peak amplitudas.

Overmodulation

If the amplitude of the modulation on the downward swing beromes too great, there will he a period of time during which the output is entirely cut off. This is shown in lFig. 10-3. The shape of the downward half of the modulating wave is no longer aceurately reproduced by the modulation envelope, conserpontly the modulation is distorted. Operation of this type is called overmodulation. The distortion of the modulation envelope causes new frequenties to be generated (harmonies of the modulating frequency, which combine with the carrier to form new
sidebands correspondingly spaced from the carrier frequency) that widen the channel occupied by the modulated signal. These spurious frequencies are commonly called "splatter,"

It is important to realize that the chamed oceupiod bey amplitude-modulated signal is deperndont on the waveshape of the modulation encelope. If this waveshape is complex and can be resolved into : wide band of audio frequencies, then the channel necupied will be correspondingly large. The modulation-convelope waveshape shown in Fig. 10-3 will contain a large number of harmonics of the original sine-wave frequency of the modulating wave because of the sharp corners in the waveshape when it is "clipped" at the zoro axis. However, if the original modulating wave had had exactly this same shape the chamed oecupied be the modulated signal would be exactly the same. Basially, it is not the fact that the signal camot be modulated more than 100 per cont downward that causes splater, but the fact that any distorted waveshape contains higher frecpucucies than were present in the original undistorted wave. A wave that is efficiently elipped, as is the case with the waveshape shown in Fig. 10-3, will contain a wider range of spurious frepurmios than one in which there are no highly abrupt changes in amplitude.

Fip. 10-3 - An overmodulated signal. The modalation envelope is not an acrurate roproduction of the waveform of the modulating voltage. This or any type of distortion occurring during the modulation process generates spurions sidehands or "splatter."

Breanse of the elipping action at zero amplitude, it is important that care be taken to prevent applying too large a modulating sigmal in the downward direetion. Overmodulation results in more splatter than is caused by most other types of distortion in a 'phone transmitter.

GENERAL REQUIREMENTS

For proper operation of an amplitude-modulated tramsmitter there are a fow genoral reguirements that must be met no matter what particular mothod of molulation may be used. Failure to med them is aceompanied by undesirable effects, principally distortion of the modulation mpolope that increases the channel width as compared with that required by the legitimate frequencics contaned in the original modulating wave.

Frequency Stability

For satisfactory amplitude modulation, the carrier frequency must be antirely unaffected by modulation. If the application of modulation conses a change in the carrior frequency, the frequencer will wobble batek and forth with the modulation. This causes distortion and widens the channel taken by the signal. Thus unnecessary interference is caused to other transmissions.

In practice, this undesirable frequeney modulation is prevented by applying the modulation to an r.f. amplifier stage that is isolated from the frequency-controlling oscillator by a buffer amplifier. Amplitude modulation applied directly to an oscillator always is aceompanied by frequency modulation, Vnder existing FCC regulations amplitude modulation of an oscillator is pormitted only on frequencies above 144 Me. Below that frequency the regulations require that an amplitude-modulated transmitter be eompletely free from frequency modulation.

Linearity

At least up to the limit of 100 per eent upward modulation, the amplitude of the r.f. output should be directly proportional to the amplitude of the modulating wave. Fig. 10-t is a graph of an ideal modulation characteristic, or curve showing the relationship between r.f. output amplitude and instantaneous modulation amplitude. The modulation swings the r.f. amplitude bark and forth along the eurve A, as the modulating voltage alternately swings positive and negative. Assuming that the negrative peak of the modulating wave is just sufficient to reduce the r.f. output to zero (modulating voltage equal to -1 in the drawing), the same modulating voltage peak in the positive direction $(+1)$ should cause the r.f. amplitude to reach twice

Fig. $10-4$ - The morlulation characteristic shows the rolationship between the instantaneous amplitude of the r.f. output enrrent (or voltage) and the instantaneous amplitude of the modulating voltage. 'The ideal characteristic is a straight line. as shown by curve A.
its unmodulated value. The ideal is a straight line, as shown by curve A. such a modulation characteristic is perfectly linear.

A nonlinear characteristic is shown by curve B. The r.f. amplitude does not reach twice the unmodulated carrier amplitude when the modulating voltage reaches its positive peak. A modulation characteristic of this type gives a modulation envelope that is "flattened" on the uppeak; in other words, the modulation envelope is not an exact reprodurtion of the modulating wave. It is therefore distorted and harmonies are generated, cursing the transmitted signal to occupy a wider channel than is necessary. I nonlinear modulation characteristie can easily result when a transmitter is not properly designed or is misadjusted.

The modulation capability of the transmitter is the maximum percentage of modulation that is possible without objectionable distortion from nonlinearity. The maximum eapability can never exceed 100 per cent on the down-peak, but it is possible for it to be higher on the up-peak. The modulation capability should be as close to 100 per cent as possible, so that the most effective signal can be transmitted.

Plate Power Supply

The d.e. power supply for the plate or plates of the modulated amplifier should be well filtered; if it is not, plate-supply ripple will modulate the carrior and eause anoying hum. The ripple voltage should not be more than about I per eent of the d.e. output voltage.

In amplitude modulation the plate current varies at an adio-frequency rate; in other words, an alternating eurrent is superimposed on the d.e. plate current. The output filter eondenser in the plate supply must have low reactance, at the lowest audio frequency in the modulation, if the tramsmitter is to modulate equally woll at all audio frequencies. The condenser capacitance roquired depends on the ratio of d.c. plate current to phate voltage in the modulated amplifier. The requirements will be mot satisfactorily if the eat pacitance of the output condenser is at least equat to

$$
C^{\prime}=2 \overline{5} \frac{l}{E}
$$

where (' = Capacitance of output condenser in $\mu \mathrm{fil}$.
$l=1$.e. plate current of modulated amplifier in milliamperes
$E=$ Plate voltage of modulated amplifirr
Fxample: A modulated amplifier operates at $12 \overline{50} 0$ volts and $2 \overline{5} 5$ mas. The camacitance of the output condenser in the plate-supply filter should be at least

$$
C=25 \frac{I}{E}=25 \times \frac{275}{1250}=25 \times 0.22=5.5 \mu \mathrm{fd}
$$

Modulation Systems

An amplitude-modulated signal can be generated by a variety of mothods, the only pres-ently-used ones being those in which a modulat-
ing voltage is applied to one or more tube alements in an r.f. amplifier. The proper object of all mothods is to generato an r.f. signal having a modulation envelope which reproduces the waveform of the modulating voltage with as little distortion as possible.

The methods deseribed in this chapter are the basic ones. There are many sperialized variations, usually involving some form of grid modulation
with the ohject of inerasing the rather low plate efficiency that is an inherent charateristic of grid modulation. Such systoms, when they actually achieve substantially distortionkess modulation, are rather complicated cireuitwise, are difficult to adjust and are not well adapted to rapid frecuency change. 'They have so far hat little or no lasting application in amateur communication.

Amplitude Modulation Methods

- Plate modulation

The most popular sustem of amplitude modulation is plate modulation. It is the simplest to aplly, gives the highest cfliciencer in the montuhated amplifior, and is the easiost to adjust for proper operation.

Fig. (0-i) shows the most widely-used systom of plate modulation, in this case with triode ref. tubers. A bataned (push-pull Class A, ('lass AB or (lass (3) modulator is transformer-coupled to the phate cireuit of the modulated r.f. amplifior. The atudio-frequeney power generated bey the modulator is combined with the d.e. power in the modulated-amplifier plate circuit hey transfor through the eoupling transformer, \dot{T}, For 100 per cent modulation the adio-frequency output of the modulator amd the turns ratio of the coupling transformor must be such that the voltage at the plate of the modulated amplifior varios between zoro and twice the d.e operating plate voltage, thus rausing corresponding variations in the amplitude of the r.f. output.

I'ig. 10-5 - Pate modubation of a Clase (i r.f. amplifier. The r.f. plate by pate comdenser. C. in the amplificr stage hould have rasomathy hish reactane at andio freopurncies. A value of the order of 0,00) μ fil, to $0.005 \mu \mathrm{fl}$. is satisfactory in practieally all cases. (See (hapter on modulators.)

Audio Power

As stated earlior, the average power output of the modulated stage must increase during modulation. The modulator must be capable of supplying to the modulated r.f. stage sine-wame : madio power equal to 50 per cent of the d.e plate input. For example, if the d.e plate power input to the r.f. stage is 100 watts, the sine-wave audio power output of the modulator must be 50 watts.

Modulating Impedance; Linearity

The modulating impedance, or load resistaner presented to the modulator by the modulated! r.f. amplifier, is equal to

$$
Z_{\mathrm{m}}=\frac{F_{\mathrm{b}}}{I_{\mathrm{p}}} \times 1000 \mathrm{ohms}
$$

where $E_{0}=$ D.e. plate voltage

$$
I_{\mathrm{b}}=1 \text {.e. plate current (ma.) }
$$

Fin and $^{\prime} I_{1}$ are measured without modulation.
The power output of the r.f. amplifier must vary as the square of the instantaneous plate voltage (the rif. woltage must be proportional to the plate voltage) in order for the modulation to be linear, This will be the case when the amplifier operates under Class (Couditions. The linearity depends upon having sufficient grid exeitation and proper bias, and upon the adjustment of circuit constants to the proper values.

Adjustment of Plate-Modulated Amplifiers

The general operating conditions for Chass (' operation are deseribed in the chapter on tramsmitters. 'The grisl bias and grid eurrent recpuired for phate modulation usually are given in the opreating datas supplied by the tube manufacturer; in gemeral, the bias should le such as to give an oprotating angle of about 120 degrees at the d.c. plate voltage used, and the grid exeitation should be great emough so that the amplifier's plate efficiener will stay constant when the phate voltage is varied over the range from zoro to twice the ummodulated value For best linearity, the grid bias should be obtained partly from a fixed source of about the eut-off value, and then supplemented by grid-leak bias to supply the remainder of the required operating bias.

The maximum permissible d.e. plate power input for 100 per cent modulation is twice the sine-wave audio-frefuency power output available from the modulator. This input is obtained by varying the loading on the amplifier (keeping its tank (ircuit tunod to resonance) until the
product of d.e. plate voltage and plate current is the desired power. The modulating impedance under these conditions must be transformed to the proper value for the modulator be using the correet output-transformer turns ratio. 'This point is considered in detail in the chapter on modulator design.

Neutralization, when triodes are used, should be as nearly porfect as possible, since rageneration may cause nonlinearity. The amplifier also must be complotely free from parasitic oscillations.

Although the total power input (d.e. plus audio-frecpueney a.e.) increases with modulation, the d.e. plate current of a plate-modulated amplifier should not change when the stage is modulated. This is because each increase in plate voltaqe and plate current is balanced by an equivalent decrease in voltage and current on the next half-evele of the modulating wave. D.e. instruments cannot follow the a.f. variations, and since the average d.e. plate current and plate voltage of a properle-operaterl amplifier do not change, neither do the moter readings. A change in plate current with molulation indicates nonlinearity. On the other hand, a thermocouple r.f. ammater connected in the antenna or tranmission line will show an increase in r.f. current with modulation, because instruments of this type respond to power rather than to current or voltage.

Screen-Grid Amplifiers

Screen-grid tubes of the pentode or beamtetrode type can be used as Class C plate-modulated amplifiers bey applying the modulation to both the plate and sereen grid. The usual method of feeding the screen grid with the necessary d.c. and modulation voltage is shown in Fig. 10-(b. The dropping resistor, R, should be of the proper value to apply normal d.e. voltage to the sereen under steady carrier conditions. Its value can be calculated by taking the difference between plate and screen voltages and dividing it by the rated screen eurrent.

Fig. 10.6 - Plate and sereer modulation of a Class C r.f. amplifier using a screen-mrid tube. Whe whate r.f. by-pass condenser, fi, should have reasonably ligh reactance at all audio, frequencios: a value of 0.001 to 0.06% ufd. is generally satiefactory. The werem by-past, C_{2}, should be 0.002 jfd. or lewn in the usual cates:

When the modulated amplitier is a beam tetrode the suppressor comnection shown in this diagram may be ignored. If a base terminal is provided on the tube for the beam-forming plates, it should be connected as recommended by the manufacturer.

The modulating imperlaner is found by dividing the d.e. plate voltage by the sum of the plate and sereen curronts. The plate voltage multiplied by the sum of the fwo currents gives the power input to be used as the hasis for determining the audio power reguired from the molulator.

Fig. 10.7- I'late modulation of a beam tetrole, usinge an audio impedance in the screen cirenit. The valare of L_{1} is discusised in the text. See lrig. (0-6 for data on by. pass capacitors C_{1} and C_{2}.

Modulation of the sereen along with the phate is necossary because the sereen voltage has a much greater effect on the phate current than the plate voltage does. Very little modulation takos place and the modulation characteristic is monlinear if the plate alone is modulated. However, beam tetrodes ean be modulated satisfactorily by applying the modulating power to the plate circuit alone, provided the sereen is "floating" at andio freguencies - that is, is not grounded for in.f. Iut is comected to its d.c. supply through an aturlo impedance. The circuit is shown in Fig. 10-7. The choke coil L_{1} is the audio impedance in the sereen circuit; its inductance should be large enough to have a reactance (at the lowest desired audio frequencer) that is not less than the impedance of the sercen. The latter can be taken to the approximately equal to the d.c. screen voltage divided by the dee screen eurrent.

Choke-Coupled Modulator

One of the oldest typer of modulation system is the choke-coupled Class A modulater shown in Fig. 10-8. Benaluse of the relatively low power output and plate afficiency of a Class A amplifior, the mothod is seddom used now exerept for a fow special applications. The audio power output of the modulator is combined with the d.e. power in the plate cireuat, just as in the case of the transformer-eoupled modulator. However, theres is considerably less freedom in adjustment, since no transformer is avalable for matching impedaners.

The modulating impedance of the r.f. amplifier must be adjusted to the value of lond imperdance reguired by the particular modulator tube used, and the power input to the r.f. stage must mot cxeed twiec the rated a.f. power output of the modulator. A complication is the fict that the plate voltage on the modulator must be higher than the plate voltage on the r.f. amplifier, for 100 per cent modulation. This is because the a.f.

Fig. 10-8 - Choke-roupled Class A motulator. 'The cathode resistor, R_{2}, should have the normal value for opreration of the molulator tube as al (lass I power amplifier. The modulation ehoher, L_{1}, whould le S henrys or more. I value of 0.001 to $0.005 \mu \mathrm{fil}$, is satisfactory at C. 2, the r.f. amplifier blate by-pass eondenser. See text for discussion of \boldsymbol{C}_{1} and R_{1}.
voltage devcloped by the modulator cannot swing to zero without a great deal of distortion. R_{1} provides the neeressary d.e. voltage drop between the modulator and r.f. :mplifier, but its value camot be caleulated without using the publishod plate family of eurves for the modulator tube used. The voltage drop through R_{1} must equal the minimum instintaneous plate voltage on the modulator tube under normal operating condifions. (${ }_{1}$, an audio-frequence by-pass across $/ R_{1}$, should have a capabitance such that its reactance at 100 egeles is not more than about one-tenth the resistanee of R_{1}. Without $R_{1} C_{1}$ the pereentage of modulation is limited to 70 to 80 per cent in the average care.

GRID MODULATION

The principal disadvantage of plate modulattion is that a considerable amount of a adio power is required. This requirement can be avoided by appling the modulation to a gride element in the modulated amplifier. However, the convenience and eeronomy of the low-power modulator must be paid for, sine no modulation system gives something for nothing. The increased power output that accompanies modulation is paid for, in the ease of grid modulation, by a reduction in the carrier power output obtainaible from a given r.f. amplifier tube, and by more rigorous operating requirements and more eomplieated adjustment.

The term "grid modulation" as used here applies to all tupes - eontrol grid, sereen, or suppressor - since the operating principles are exactly the same no matter whieh grid is aetually
modulated. With grid modulation the phate voltage is constant, and the inerease in power output with modulation is ohtained by making both the plate current and plate efficioney vary with the modulating signal as shown in Fig. 10-9. For 100 per cent modulation, both plate eurrent and efficiener must, at the peak of the modulation up-swing, be twice their carrier values. Thus at the modulation peak the powor input is doubled, and sinee the plate afficieney also is doubled at the same instant the peak output power will be four times the earricr power. The efficieney obtainable at the peak depends on how earefully the molulated amplifier is adjusted, and sometimes can be as high as so per cent. It is generallys lese when the amplifior is adjusted for good linearity, and under average conditions a round figure of $2 / 3$, or 66 per eent, is representative. Since the carrier efliciency is only hatf the peak efficioney, the efficioney for earrier conditions, without modulation, is only about 33 per cent. Thus the earrier output is about one-fourth the power obtainable from the same tube in c.w. operation, and about one-third the carrier output obtainable from the tube with plate modulation.
The modulator is required to furnish only the audio power dissipated in the modulated grid under the operating conditions chosen. A speech amplifier eapable of delivering 3 to 10 watts is usually sufficent.

Generally speaking, grid motulation does not give as linear a modulation eharacteristie as plate modulation, even under optimum operating conditions. When misadjusted the nonlinearity may be severe, resulting in bad distortion and splatter. However, with careful adjustment it is eapable of quite satisfactory results.

Fig. 10.9 - In a perfect grid-modulated amplifier both plate eurrent and plate effieiency would vary with the instantancous modulating voltage as shown. When this is so the modulation characteristie is as given by eurve A in lig. 10-1, and the peak output power is four times the unmodulated rarrier powar. The variations in plate current with modulation, indicated above, do not resister on a d.c. moter, so the plate meter shows no change when the signal is modulated.

Plate-Circuit Operating Conditions

The d.e. plate power input to the modulated :umplifier, aswuming a round figure of $1 / 3$ (33 por rent) for the plate efliciency, should not exceed $11 / 2$ times the plate dissipation rating of the tube or tubes used in the modulated stage. It is genarally best to use the maximum plate voltage permitted by the manufateturer's ratings, berause the optimum onerating comditions are more easily achieved with high phate voltage and the linearity also js improved.

$$
\begin{aligned}
& \text { Exampra: Two tubes having plate dissijation } \\
& \text { ratings of :ns watts carh are to he heed with erid } \\
& \text { modulation. } \\
& \text { The maximman permissible power infut, at } 33^{\prime} \text { o } \\
& \text { effieiancy, is } \\
& P=1.5 \times(2 \times 5.5)=1.5 \times 110=165 \text { watts } \\
& \text { The maximum recommended bate voltare for } \\
& \text { these tubes is } \operatorname{lig}(x) \text { volts. Desing this figure, the } \\
& \text { average pate current for the two tubes will tw- } \\
& I=\frac{P}{E}=\frac{115}{1 \pi 00}=0.11 \text { amp. }=110 \text { ata. } \\
& \text { At } 33 \% \text { effriency, the earrior ontpmt to the ex- } \\
& \text { pected is his watts. } \\
& \text { The plate-voltage/plate-currant ratio at turice } \\
& \text { carrior plate current is } \\
& \frac{1.004}{220}=6.8
\end{aligned}
$$

The tank-eireuit L / C ratio should be ehosen on the basis of twie the average or carrior plate eurrent. If the L / C ratio is based on the plate voltage/plate current ratio under carricr conditions: the Q may be too low for good colapling to the output circuit.

Control-Grid Modulation

Control-grid modulation may be used with any trpe of r.f. amplifier tube A typical triode cireuit is given in Fig. 10-10. The same eireuit can be usod with serecongrid tubes morely be supplying the normal value of serecol voltage bey any convonient means; however, the sereen should be ber-passed for audio ($1 \mu \mathrm{fl}$, or morr) as well as

Fis. 10.10- Control-grid modulation of a Class C am. plifier. The r.f. grid by-pass condenser, C, should have high reactance at audio freguencies ($0,000.5 \mathrm{fd}$. or less. $)$.
ratio frequencios, The audio signal is inserted, by means of transformer T, in series with the grid-bias lead. In a push-pull amplifior the transformer is connered in the common bias lead.

In control-grid modulation the d.e grid bias is the same as in nommal (lass (${ }^{\prime}$ amplifior service, but the ref. grid excitation is somewhat smallor. The andio voltage superimposed on the die bias dhanges the instantaneous grid bias at an audio rate, thus varying the operating conditions in the gride circuit and controlling the output and aflicieney of the amplifior.

The change in instentaneous bias voltage with modulation catues the rectified grid current of the amplifier to vary, which places a variable load on the modulatar. 'To reduce distortion, resistor R in Fig. 10-10 is combereted in the output cirenit of the motulator as a constant load, so that the over-all load variations will he minimized. This resistor should be equal to or somewhat higher that the load into which the modulator tulo is rated to work at normal audio output. It is also reeommended that the modulator aircuit incorporate as much nogative ferol-tark as posible, as a further aid in reduefing the intermal resistance of the modulator and thus improving the "regulation" - that is, reducing the efferet of loat variations on the audio output voltage. The turns ration of transformer T should be about 1 to 1 in most casces.
The had on the r.f. driving stage also varies with modulation. "This in turn will catuse the cexcitation voltage to vare which maty catuse the mondulation characteristie to be nonlinear. 'To overeome it, the driver should be capable of two or three times the ref. power output actually reguired to drive the amplifier. The exeess power may be dissipated in a dummy load (such as an incanderent lamp of approperiate power rating) that then preforms the same function in the r.f. circuit that resistor R does in the audio eiredit.
The des. bias souree in this system should have low internal resistance. Batterios or a voltage regulated supply are suitahbe. Grid-leak hias should not be used.

Adjustment

A control-grid modulated amplifior should be adjusted with the aid of an oseillosenpe connoeted as shown in Fig. 10-11. A tone source for modulating the transmitter is a convenionec, since a stady tone will give a steady pattom on the oscilloseope. A steady patterm is easier to study that one that flickers with voice modulattion.

Itaving determined the permissible carrion plate current as previously deseribed, apply ref. exeitation and plate voltage and, without modalation, adjust the plate loading to give the required plato current (keoping the plato tank cireuit tuned to resonance). Next, apply modulation and increase the modulating voltage until the modulation charateteristic shows eurvature (see later section in this chapter for use of the oseilloseope). If curvature occurs well below 100 per cent modulation, the plate efficiency is too

Fig. 10-11 - Lsing the oseilloseope for adjustment of a grid-modulated amplifier. The ronmertions shown are for krid-hias modulation. W'ith sereen or suppressor modulation the eonnertion to the horizontal plates of the scope should le taken from the grid being modulated: the r.f. piek-up arrangement remains unchanged.

L and © should tune to the operating fremuency, and may be compled to the transmitter tank cirmit through a twistod pair or max, using single oturn linhs at eath ond. The 0.0) - ffil. blecking comdenser that comples the andio voltage the the
 wise the des. voltage on the grid that is bering modulated.
formor, as shown in Fig. 10-12. In an ideal beam tetrocle the plate curront and output should be comspletely rut off with zoro sereen voltage, but in practical tubes it is neressary to drive the serven somewhat negative with resperet to the cathode to gret com-pletecut-off. For this reason the peak modulating voltago reguired for 100 phr aont modulation is usually 10 per cent or so greater that the d.e screen voltage. The latter, in turn, is approximately half the rated seroon voltage under maximum ratings for c.w. operation.
The audio power roquired is approximately
high. Increase the plate loading slighty and reduere the expetation to mantain the sime mate current; then apply modulation and chack the chatrateristio again. (omtinue this process until the characteristic is as linear as possible from the horizontal axis to twien the carrier amplitude.

Screen Modulation

Power tubes of the beam tetrode type have very good modulation charactoristies when the modulating voltage is superimposed on the dee. sererotgrid voltage. The rffieneney and plate current should vary with the modulating voltage : s shown in lig. 10-9.

In many waysereren modulation is more satisfactory than control-grid modulation, sine the system does not reguire a fixed-bits supply for the eontrol grid, and is not highly aritical as to ceritation voltage. However, the operating prinriples are identical, and the carrier output is limited to about one-half the phate dissipation rating of the tube or tubse used in the modulated amplifier.

The most satisfactory way to apply the modudating voltage to the serem is through a trans-

Fig. 10.12-Sereen-grid modulation of heam tetrode. Gondoneer C is an r.f. by-pase condenser and should have hish reactancer at andio frequencies. A value of (1,002 μ fll. is satisfartory. 'The krid leah can have the same vahue that is used for c.w. operation of the tube.

Fig. 10.13 - A twical sereen voltage-current pitre of a lu'am tetrole adjusted for optimum eonditions for soreen modulation.
one-fourth the d.e. power input to the sereom under e.w, operation, but varies somewhat with the operating conditions. A receriving-type atudio power amplifier will suffee as the modulator for most trathemitting tules. Begause the relationship betwern sereon voltage and serren current is not linear (a typieal curve giving this relationship is shown in Fig. 10-1:3) the load on the modulator varies ower the adudiofrequeney evele, and it is therefore highty advisable to use negative food-hack in the modulator cireuit, If excess andio power is available, it is also advisable to load the modulator with a resistane eorresponding to R in Fig. 10-10, the value of R being adjusted to dissipate the exess power. Cnfortunately, there is no simple way to determine the proper rosistance oxerpt experimentally, by observing the elfect of different values on the waveshape with the aid of an oscilloseope.

On the assumption that the modulator will be fulty loaded by the sereen plus the additional load resistor R, the turns ratio required in the
coupling transformer may be calculated as follows:

$$
N=\frac{E_{11}}{2.5 \sqrt{\Gamma R_{\mathrm{L}}}}
$$

where N is the turns ratio, secondary to primary; E_{d} is the rated sereen voltage for cers. operation; P is the rated audio power output of the modulator; and R_{1} is the rated load resistance for the modulator.

The best mothod of adjustment is to use an oscilloseope (the commetions of Fig. 10-11 may be used, except that the audio sweep voltage is taken from the sereen instead of the control grid) and adjust plate loading, grid excitation, and modulating voltage for the greatest output compatible with good linearity at 100 per cent modulation. The amplifier should be londed heavily and the grid eurrent should be kept at the point where a further reduction deereases the r.f. output. Under proper operating eonditions the platecurrent dip ats the amplifer plate eircuit is tuned through resomance will be litte more than just diserernil)

In an alternative adjustment method not requiring an oseilloseope the r.f. amplifier is first tuned up for maximum output without modulation and the rated d.e. sereen voltage (from a fixed-voltage supply) for ew. operation applied. Ise havy loading and reduce the grid exeitation until the output just starts to fall off, at which point the resonance dip in plate current should be small. Note the plate current and, if possible, the r.f. antenna or feeder current, and then reduce the d.e. sereen voltage until the plate current is one-half its previous value. The r.f. output current should alse tre one-half its previous value at this sereen voltage. 'The amplifier is then ready for molulation, and the modulating voltage may he increased until the pate emrent just starts to shift upward, which indieates that the amplifier is modulated 100 per erent. With voiee modulation the plate current should remain stealy, or show just an oceasiona! mmall upward kiek on intormittent peaks.

It is desirable to operate with the grid eurrent as low as possible, sinee this reduees the sereen current and thus reduces the amount of power requived from the modulator. With proper adjustment the linearity is good up to about 90 per ront modulation. When the sereen is driven negative for 100 per eent modulation there is a kink in the modulation ehamateristic at the zerovoltage print that introduces a small amount of distortion. The kink c:un be removed and the ovar-all linearity improved by applying a small amount of modulating voltare to the control grid simultaneously with sereen mondulation, but this requires adjustment with the oseilloweope.

"Clamp-Tube" Modulation

A method of sereen-grid motulation that is convenient in transmitters provided with a sereen protective tube ("elamp" tube) is shown in Fig. 10-14. Jasically, the idea is that an audio-from quency signal is applied to the grid of the clamp tube, which then becomes a modulator. The
simplicity of the circuit is somewhat deceptive, since it is considerably more difficult from a dewign standpoint than the transformer-coupled arrangement of Fig. 10-12.

For proper modulation the clamp tube must be operated as a triode ('lass A amplifier, and it will be recognized that the mothod is essentially identical with the choke-coupled (Class A plate modulator of Fig. 10-8 with a resistance, R_{2}, substituted for the choke. R_{2} in the usual case is the sercen dropping resistor normally used for c.w. opera-

Fig. IO.If-Grean modulation liy a "clamp" tule 'I'le grid leak is the normal value for c.w. operation and
 of $C_{1,}, R_{1}, R_{2}$ and $K_{3} . R_{3}$ slould have the proper value for Class A operation of the modulator tube, but cannot lue calculated unless triode curves for the tube are a vailable.
tion. Its value should be at least two or three times the load resistance required by the C'lass A modulator tube for optimum audio-frequency output. Cnfortunatels, relatively little information is availatale on the triode operation of the tubes most frequently used for sereen-protective purposes.

Like the choke-coupled modulator, the clamptube modulator is incapable of modulating the r.f. stage 100 per eent unloss the dropping resistor, R_{1}, and andio by-pass, \boldsymbol{C}_{1}, are ineorporated in the circuit. The same design considerations hold, with the addition of the fiat that the sereen must be driven negative, not just to zero voltage, for 100 per cent modulation. The modulator tube must thus be operated at a voltage ranging from 20 to 40 per eent higher than the sereen that it modulatos. Proper design requires knowledge of the sereen charateristies of the r.f. amplifier :und a sot of plate-voltage plate-current eurves on the modulator tube as a trionde.

Adjustment with this system, onee the design voltages have been determined, is carried out in the same way as with transormer-coupled sereen modulation, preferably with the oscilloseope. Without the oscilloserope, the amplifier may first be adjusted for c.w. operation as deseribed carlier, but with the modulator tube removed from its
socket. The modulator is then replaced, and the cathode resistance, R_{3}, idjusted to reduce the amplifier plate current to one-half its e.w. value. The amplifier plate current should remain constant with modulation, or show just a shall upwatd Hieker on oceasional voice peaks.

Controlled Carrier

As explained earlier, a limit is placed on the output ohtainable from a grid-modulation system be the low r.f. amplifior plate eflicioner (approximately 33 por cent) under unmodulated carrier

Fig. 10-15-Cireuit for carrier control with sereen modulation. A small trionle such as the 6.J can loe used as the eontrol amplifier and a $6 \mathbf{O}^{\prime \prime} 0$ (is suitable as at rarriereoontrol tuler. 'T' is an interstage audio transformer having a leto-l or larger turns ratio, K_{4} is a 0.5-megohm volime control and also serves ate the grid resistor for the modulator. A mermanimm ersial may be used as the rectifier. Other values are dissussed in the text.
conditions. The plate efficiency increases with modulation, since the output increases while the d.e. input remains constant, and rearhes a maximum in the neighborhood of 50 per cent with 100 per cent sine-wave modulation. If the power input to the amplifier can be reduced during periods when there is little or no modulation, thus reduring the plate loss, advantage can be taken of the higher efficiency at full modulation to ohtain higher effertive output. This can be done hy varying the powor input to the modulated stage, in accordance with average variations in voice intonsity, in such a way as to maintain just sufficiont carrier power to keep the modulation high, but not excerding 100 per cent, under all conditions. Thus the carrier amplitude is controlled by the voire intensity. Proporly utilized, controlled carrier permits incroasing the effective carrior output at maximum level to a value equal to the rated plate dissibation of the tube, or twice the autput obtainable with constant carrier.

It is desirable to control the power input just enough so that the plate loss, without modulation, is safely below the tube rating. Fxeresive eontrol is disadvantageons beeate the reediver's a.v.c. s.istem must continually follow the varia-
tions in average signal level. The eireuit of Fig. 10-15 permits adjustment of both the maximum and minimum powor input, and although somewhat more complicated than some circuits that have bern used is actually simpler to operate because it soparates the fumetions of modulation and carrier control. A portion of the audio voltage at the modulator grid is applied to a (lass A "control amplifior" which drivesa rectifier eircuit to produee a d.e. voltage negative with respect to ground. ('i filters out the audio variations, leaving a d.e. voltage proportional to the average voice lavel. This voltage is applied to the grid of a "elamp" tube to control the d.e. sereen voltage and thas the r.f. carrier level. Maximum output is obtained when the carrier-eontrol tube grid is driven to cut-off, the voice level at which this oceurs being determined by the setting of K_{4}. Minimum input is set to the desired level (usually abont equal to the plate dissipation rating of the modulated stage $)$ ber adjusting R_{2}. R_{3} maty he the normal sereen-dropping resistor for the modulated bam tetrode, but in case a separate serem supply is used it need be just large enough to give sufficient voltage drop to reduce the no-modulation power input to the desired value.
(${ }^{\prime}$, R_{1} should have a time constant of about 0.1 seeond. The time constant of C_{2} / R_{3} should be no larger, Further details maty be found in (QST for April, 1951, page 64. An oscilloscope is required for proper adjustment.

Suppressor Modulation

Pontole-type tulos do not, in general, modulate well when the modulating voltage is applied to the sereen grid. However, a satisfactory modubation characteristicean be obtaned be applying the modulation to the suppressor grid. The circuit arrangement for suppresisor-grid modulation of a pentode tube is shown in Fig. 10-16.

The mothod of adjustment elosely resembles that used with serrern-grid modulation. If an oscilloseope is not available, the amplifier is first adjusted for optimum c.w. output with zero bias on the suppressor grid. Negative bias is then applied to the suppressor and inereased in value until the plate current and r.f. output eurrent drop to half their original values. When this condition has bern oltained the amplifier is ready. for modulation.

Fig. 10-16-Suppresoor-grid modnation of an r.f. amplifier using a pentode-tyme tulue. 'The suppressorgrid r.f. by-basis condenser, C. should be the same as the grid by-pass condenser in control-grid modulation.

Since the suppressor is always negatively biased, the modulator is not required to furnish any power, so a voltage amplifier can be used. The suppressor hias will vary with the tyen of pentode and the operating conditions, but usually will be of the order of -100 volts. The peak a.f. voltage required from the modulator is equal to the suppressor hias.

- CATHODE MODULATION

Circuit

The fundamental cireuit for eathode modulation is shown in Fig. 10-17. It is a combination of the plate and grid mothods, and permits a carrior efficieney midway between the two. The audio power is introduced in the cathode circuit, and both grid bias and plate voltage are modulated.

Fip. 10.17- Circuit arrangement for cathose: modulation of a Clase (C r.f. amplifier. \alues of by-pass condensers in the r.f. circuits should be the same as for other modulation methods.

Because part of the modulation is he the control-grid mothod, the plate efficiency of the modulated amplifior must vatry during modulation. The carrier efficiency therefore must be lower than the efficiency at the modulation peak. The required reduction in efficiones deperads upon the proportion of grid modulation to plate modulation; the higher the percentage of plate modulation, the higher the permissible carrier efficiency, and viere versa. The audio power required from the modulator also varies with the percentage of plate modulation, being greater as this pereentage is increased.

The way in whieh the various quantities vary is illustrated by the curves of lig. 10-18. In these eurves the performance of the eath-ode-modulated r.f. amplifier is plotted in terms of the tube ratings for plate-modulated telephony, with the percentage of plate modulation as a base.

Fig. 10-18 - Cathode-motulation performance curnes. in torms of perentage of plate modulation ploted against percentage of Class (: telephony tube ratings. $W_{\text {in }}$ - I I.c. plate input watts in terms of percentage of plate-modulation rating.
$W_{0}-$ Carrier output watts in per cent of plate-mendujation rating (based on plate eflicieney of -6.5%).
W_{a} - Ahdio power in per cent of d.c. watts input.
N_{p} - 1'late efficieney of the amplifier in pererntage.
As the perecotage of plate modulation is decreased, it is assumed that the grid modulation is increased to make the over-all modulation reach 100 per cent. The limiting condition, 100 per eont plate modulation and no grid modulation, is at the right (1): pure grid modulation is represented by the left-hand ordinate ($/ 3$ and (').

Fxample: Assume that the r.f. tube to be used has a $1000^{\prime} / 6$ plate-mondulation ratime of 2.50 watts input and will give a catrier power output of 190 watts at that ingut. Cathode modulation with 40% mate modalation is to be ased. From Fig. 10-18, the carrier ellicioney will be $\mathbf{i f 6} / \mathrm{c}$ with $40^{\prime \prime}$, plate modulation, the jermissible dare input will be bis'o of the plate-modulation rating, and the r.f. ontput will be 48% of the mate-modulation rating. That is,

Power juput $=2.50 \times 0.65=162.5$ watts
Power output $=190 \times 0.48=01.2$ watts
The ropuired audio power, from the chart, is roual $1020 / 6$ of the d.c. input to the modulated amplifier. Therefore

Audio jower $=162.5 \times 0.2=32.5$ watts Thee modulator should sumply a suati amount of extra power to take care of lossess in the arid circuit. These should not exereed four or five watts.

Modulating Impedance

The modulating impedanee of a cathodemordulated amplifier is approximately equal to

$$
m \frac{l_{1}}{l_{1}}
$$

where $m=$ Perentage of phate modulation (rxpressed as a dereimal)
$E_{1}=$ D.c. plate voltage on merlulaterl amplifier
$I_{1}=$ D.c. plate eurrent of modulated amplifier
Fxample: Assume that the molulated amplifier in the example above is to operate at a plate potential of 1250 volts. Then the d.c. plate current is

$$
I=\frac{P}{E}=\frac{162.5}{12.50}=0.13 \mathrm{amp} .(130 \mathrm{114.})
$$

The modulating impedance is

$$
m \frac{E_{\mathrm{b}}}{I_{\mathrm{b}}}=0.4 \frac{12.50}{0.13}=3846 \text { ohms }
$$

The modulating impedance is the load into which the modulator must work, just as in the case of pure plate modulation. 'This load must be matched to the load required by the modulator tubes by proper choice of the turns ratio of the monlulation transformer, as described in the chapter on speech equipment.

Conditions for Linearity

R.f. excitation requirements for the eathodemodulated amplifior are midway between those for plate modulation and control-grid modulation. More excitation is required as the percontage of plate modulation is increased. Grid bias should be considerably beyond cut-off; fixed hias from a supply having good voltage regulation is preferred, especially when the pereentage of plate modulation is small and the amplifier is operating more nearly like a grid-hias modulated stage. At the higher percentages of plate modulation a combination of fixed and grid-leak bias can be used, since the variation in rectified grid current is smaller. The grid leak should be by-passed for audio frequencies. The percentage of grid modulation may be regulated by choice of a suitable tap on the modulation-transformer secondary:
The cathode circuit of the modulated stage
must be independent of othor stages in the transmitter. When directly-heated tubes ure modulated their filaments must be supplied from a separate transformer. The filament br-pass condensors should not be larger than about 0.002 $\mu \mathrm{fl}$., to avoid by-passing the audio-frequency modulation.

Adjustment of Cathode-Modulated Amplifiers

In most respeets, the adjustment procedure is simitar to that for grid-bias modulation. The eritical adjustments are antemna loading, grid bias, and excitation. The proportion of grid-bias to plate modulation will determine the operating conditions.

Adjustments should be made with the aid of an oscilloscope connected in the same way as for grid-bias modulation. With proper antenna loading and excitation, the normal wedge-shaped pattern will be obtained at 100 per cent modulation. As in the case of grid-bias modulation, too-light antenma loading will cause flattening of the upward peaks of modulation as also will too-high excitation. The eathode current will be practically constant with or without modulation when the proper operating conditions have beren established.

Checking AM 'Phone Operation

USING THE OSCILLOSCOPE

Proper adjustment of a phome transmitter is aided immeasurably be the oscilloseope. The 'scope will give more information, more aceuratcly, than almost any collection of other instruments that might be named. Furthermore, an oscilloscope that is entirely satisfactory for the purpose is not necessarily an expensive instrumont; the cathode-ray tube and its power supply are about all that are needed. Amplifiers and linear sweep circuits are by no means necessary.

In the simplest scope circuit, radio-frequency voltalge from the modulated amplifier is applied directly to the vertical deflection plates of the tube, and audio-frequeney voltage from the modulator is applied to the horizontal deflection phates. As the instantancous amplitude of the audio signal varies, the r.f. output of the transmitter likewise varies, and this produces a wedgeshaped pattern or trapezoid on the sereen. If the oscilloseope has a built-in horizontal swerp, the r.f. voltage is applied to the vertical plates as before (never through an amplifier) and the swep will produce a pattern that follows the modulation envolope of the transmitter output, provided the sweep frequency is lower than the modulation frequeney. This produces a waveenvelope modulation pattern.

The Wave-Envelope Pattern

The connections for the wave-envelope pattern are shown in Fig. 10-19A. The vertical deflection plates are coupled to the amplifier tank coil (or an antemat eoil) through a twisted-pair line and pick-up coil. As shown in the alternative drawing,
a resonant circuit tumed to the operating frequence may be comocted to the vertical plates, using link eoupling betweren it and the transmitter. This will eliminate r.f. harmonics, and the tuning control provides a convenient means for adjustment of the pattern height.

The position of the pick-up coil should he varied until an unmodulated carrier pattern, Fig. 10-2013, of suitable height is obtained. The horizontal sweep voltage should be adjusted to make the width of the pattern somewhat more than half the diameter of the sereen. When voice modulation is applied, a rapidly-changing pattorn of varying height will be obtained. When the maximum height of this pattern is just twice that of the earrier alone, the wave is being modulated 100 per cent. This is illustrated hy Fig. 10-20I), where the point X represents the horizontal sweep line (refarence line) : alone, $Y Z$ is the carrior height, and $P(Q$ is the maximum height of the modulated wave.

If the height is greater than the distance I '(), as illustrated in E, the wave is overmodulated in the upward direction. ()vermodulation in the downward direction is indicated by a gap in the pattern at the reference axis, where a single bright line appears on the sereen. Overmodulation in either direction may take place even when the modulation in the other direction is less than 100 per cent.

The Trapezoidal Pattern

Connections for the trapezoid or wedge pattern as used for checking plate modulation are shown in Fig. 10-1913. The vertical plates of the e.r. tube are coupled to the transmitter tank through

Fig. 10-19 - Methods of comerting the oscilloscope for modulation chacking. A - connertions for wase-fovehope pattern with any modulation method: Is - connections for trapezaidal pattern with plate mendulation. See lig. IO-1I for seope comnections for traperoidal pattern with grid modnlation.
a piek-up loon, preferably using a tumed circuit, as shown in the upper drawing, adjustatbe to the oprating frecurnes. Audio voltage from the modulator is applied to the horizontal plates through a voltage divider, $R_{1} R 2$. This voltage should be adjustable so a suitable pattern width can be obtaned; a 0.25-megohm volume control can be used at R_{2} for this purpose, with e.r. tubes up, ta the 3 -inch size.

The resistance required at R_{1} will depend on the d.e. plate voltage on the momblated amplifier. The total resistance of R_{1} and R_{2} in serios should be about 0.2 e mogohm for eath 100 volts of d.e. plate voltage. For example, if the modulated amplifier operates at 1500 volts, the total resistance should be 3.75 megohms, 0.25 megohm at $R 2$ and the remainder, 3.5 mogohms, in $R_{1} . R_{1}$ should the composed of individual resistors not larger than 0.5 megohm each, in which case 1-watt resistors will be satisfactory.

For good low-freguency coupling the capacitance, in macrofarads, of the blocking eondenser, (, should at least equal $0.004 / R$, where R is the total resistance ($h_{1}+R_{2}$) in mogohms. In the example above, where R is 3.75 megohms, the capacitance should be at least $0.004 / 3.75=0.001$
$\mu \mathrm{fl}$, approximately. The voltage rating of the condenser should be at least twier the d.e. voltage applied to the modulated amplifier. The capacitance can be made up of two or more similar units in seriow, so long as the total eapacitaneo is equal to that required, in cerse a single unit of suffieient voltage rating is not available. 'Two or more units may be used in paralled if condensers having adequate voltage rating but insuffieient capateitance are available.

The corresponding 'seope eomnections for grid modulation were given in lig. 10-11. This cirenit will be satisfactory for checking sereen-grid modulation (the audionemne etion of eourse heing made to the sereen grid rather than to the control grid) for d.e. sereen voltages up to 200 volts or so, which will include most heam tetroder. If the de. sereen voltage, adjusted for proper modulation, exceds 200 volts a voltage divider similar to that shown in Fig. 10-19 should be used, the values being ealeulated as deseribed above using the sereen voltage instead of the plate voltage.

Tranozoidal patterns for various conditions of modulation are shown in Fig. 10-20 at F to J, each alongside the eorresponding wave-envelope pattern. With no signal, only the cathode-
(A)

(F)
NO CARRIER
(B)

(G)
(C)

(H)
100% MUDULATION

(1)
100% MODULATION
(E)

(J)

Fig. $10-20$ - Wave-envelope and trapezoidal palterus representing different conditions of modulation,
ray spot appears on the screen. When the unmodulated carricr is applied, a vertical line appears; the length of the line should be adjusted, by means of the pick-up coil coupling, to a convenient value. When the carrier is molulated, the wedge-shaped pattern appears; the highor the modulation percentage, the wider and more pointed the wedge becomes. At 100 per eent modulation it just makes a point on the axis, N, at one end, and the height, $P^{\prime}()$, at the other end is equal to twier the carrier height, IZ. Overmodulation in the upward direction is indicated by increased height over $P($) and in the downward direction by an extension along the axis X at the pointed end.

Checking Transmitter Performance

The trapezoidal pattern is far more useful than the wave-envelope pattern for checking the operation of a 'phone tramsmitter. The latter type of pattorn is of use principally for checking modulation perecontage, and even when the sperech system is fed with a sine-wave tone for close examination of the pattorn it is diflicult to tell with sufficiont arcuracy whether the transmitter is opreating lincarly: Also, even when distortion is evident in the wave-envelope pattern there is no clue as to whether it is orcurring in the modulated amplifier or is catused by a defere in the spereh equipment.

On the other hand, the trapezoidal pattern is actually a graph of the modulation characteristio: of the modulated amplifier. The sloping sides of the wedge show the r.f. amplitude for every value of instantaneous modulating voltalge, exactly the type of curve plotted in Fig. 10-4. If these sides are perfectly straight lines, as drawn in Fig. 10-20 at 11 and 1 , the modulation characteristio is linear. If the sides show curvature, the characteristic is nominear to an extent that is shown by the degree to which the sides depart from perfeet straightness. This is true regardless of the waveform of the modulating voltage.

If the speech system can be driven by a good audio sime-wave signal instead of a microphone, the trapezoidal pat tern also will show the presence of even-harmonic distortion (the most common type, especially when the modulator is overloaderd) in the speceh :mplifier or modulator. If there is no distortion in the audio system, the trapezoid will extend horizontally equal distances on each side of the vertical line representing the ummodulated earrier. If there is even-hamonie: distortion the traperoid will extend farther to one side of the ummodulated-carrior position than to the other. This is shown in lig. 10-21. 'The prohable cause is intodequate power output from the modulator, or ineorrect load on the modulator.

An audio oscillator having reasonably good sine-wave output is highly desimble for testing both speech equipment and the 'phone transmitter as at whole. A very simple single-tone oscillator such as is shown in the chapter on masurements is quite adequate. With such an oseallator and the 'seope, the pattern is steady and cent be studied closely to determine the effects of various operating adjustments.

The patterns shown in Figs, 10-21 and the top four groups of lig. 10-22 show both correct and incorrect transmitter adjustments. The object of modulated-amplifier adjustment is to obtain a pattern closoly resombling that in Fig. 10-22A, which shows excellent linearity (sides of wedge pattern (quite straight) over the whole characteristic at 100 per cent modulation. Since no modulated amplifier is perfect, the sides will never be perfeclly straight, but a close approach is possible. Different methods of modulation give different characteristic results. lig. 10-22A is typical of correctly-operated plate modulation. With control-grid modulation the sides usually are somowhat concave, particularly near the point of the traperoid, while sereen modulation gives the characteristie pattern shown in Fig. 10-21. As mentioned carlier, it is necessary to drive the wereen somewhat negative in order to reach complete plate-current cut-off and thus modulate 100 per eent downward.

Aside from overmodulation downward, Fig.

Fig. 10.21-Top - a typieal trapezoidal pattern obtained with screen modulation adjusted for optimum conditions. 'I'he sudden ehange in slope near the point of the wedge oeeurs when the sreen voltape passes through zero, Center - If there is no audio distortion, the unmodulated carrier will have the height and position shown by the white line suprimposed on the sinewave modulation pattern. Bottom - Even-harmonic distortion in the audio system, when the audios signal applied to the speed amplifier is a sine wave, is indicated by the fact that the modulation pattern does not extend equal distances either side of the unmodulated carrier.

These photegraphs show various comditions of modalation ans dispayed by the wedge or trapezoidal patterns in the lefthand columan and the wave-envelope patterns in the right-hand column. (Photographs reprobuced through montesy of the Ilfen B. DilInnt Laboratoriea, Iner, Pasaic, N. J.)

10-2213, which is casily cured by kecping the speech amplifier gain or speech intensity bolow the point that causes it, the most common type of improper operation is shown bey the pattern of Fig. 10-22('. The flattening at the large end of the trapezoid results from the inathility of the modulated amplifier to deliver sufficient power output on the modulation up-peak. With plate morlulation the most likely cause is insufficient grid exeltation or ineorrect grid bias or both. With grid modulation this flattoning is the result of attempting to oprate the amplifier at too-high carrier effiefency. The remody is to increase the loading on the output circuit and reduce the grid exeitation, or both in combination, until the pattern sides are straight.

In this conneretion, it should be noter that while the trapezoidal pattern of Fig. 10-22(' shows nomlinearity in the modnated amplifier, the corresponding wave-envelope pattern of the same figure could result either from this caluse or from modulator overloading. With the traporgoidal pattern, modulator ovorloading will be evident by the fact that the position of the vertical line representing the ummodulated carrior will not be at the center of the pattern (when the modulating voltage is cut off) but modulator overloading will not affect the shape of the pattern. This assumes that the atudo signal is a sine wave.

Curvature near the point of the traperoid calusing it to alpmoneh the horizontal axis more slowly than would oceur with straight sides, indicates that the out put power does not decrease rap)idly enough in this region ; it may be calused ber.f. leakage from the exaiter through the finat stage. This ean be chocked by removing the voltage from the modulated stage, when the earrior should disappear, leaving only the beam spot remaining on the sereen (lig. 10-20F). If a small vertical lise romains, the amplifier should be carefully noutralized; if this does not climinate the lines, it is an indication that the 'serone is getting r.f. from fower-power stages, either by coupling through the final tank or viat the piok-up) loop.

Faulty Patterns

Figs. 10-20, 10-21, and 10-22 A through I) show what is momally to be experted in the waty of pattern shapes when the osefloseope is used to check modulation. If the actual patterns differ considerably from those shown, it may be that the pattern is faulty rather than the transmitter.

It is important that r.f. from the modulated stage only be coupled to the oscilloseoper, and then only to the vertical plates. The offect of stray r.f. from othor stages in the transmitter hats been mentioned in the preededing section. If r.f. is present also on the horizontal plates, the pattern will lean to one side instead of being upright. If the oscilloseope cannot be moved to a position whore the unwanted pick-up (isap)pears, a small by-pass condenser ($10 \mu \mu \mathrm{fd}$.) should be comected across the horizontal plates as chose to the eathode-ray tube as possible. An r.f.
choke (2.5 mh. or smaller) may also be connected in series with the ungrounded horizontal plate.
"Folded" trapezoidal patterns, and patterns in which the sides of the traperoid are elliptical instead of straight, lig. 10-22F (left), occur when the audio sweep voltage is taken from some point in the audio system other than that where the at.f. power is applied to the modulated stage. Such pattorns are caused by a phase difference betwern the sweep voltage and the modulating voltage. The commections should ahways be as shown in lig. 10-11 and 10-19B.

MODULATION CHECKING WITH THE PLATE METER

The plate milliammeter of the modulated amplifier provides a simple and fairly reliable means for checking the performance of a 'phone transmitter, although it does not give nearly as definite information as the oscilloseope does. If the modulated amplifior is perfootly linear, its plate current will not change when modulation is applied if

1) the upward modulation percentage does not exered the modulation capability of the amplifier,
2) the downard modulation does not exceed 100 per eront, and
3) there is no change in the d.c. operating voltages on the transmitter when modulation is applied.

This is true of any of the methods of modulation discussed in this chapter, with the single exeption of the controlled-earrier system. The plate moter cannot give a rediable check on the performance of the latter system because the plate current increases with the intensity of modulation. With this system the plate-current variations should be correlated with the transmitter performance as observed on an oscilloscone before the plate moter is used for cheeking modulation.

Plate Modulation

With plate modulation, a downward shift in plate current may indicate one or more of the following:

1) Insufficient excitation to the modulated r.f. amplifier.
2) Insufficient grid bias on the modulated stage.
3) The r.f. amplifier is not loaded properly to present the reguired value of modulating impedance to the modulator.
4) Insufficient output capacitance in the filter of the modulated-amplifier plate supply.
5) D.e. input to the r.f. amplifier, under carrier conditions, is in excess of the manufacturer's ratings for plate modulation. Alternatively. the filiment emission of the amplifier tubes may be low.
6) In plate-ind-sereen modulation of tetrodes or pentodes, the sereen is not being sufficiontly modulated along with the plate. In systems in which the d.c. screen voltage is
obtained through a dropping resistor, a downward dip in plate current may oceur if the sereen by-pass condenser capacitance is large enough to be-pass audio frequencies.
7) Poor voltage regulation of the modulatedamplifier plate supply. This may te caused by voltage drop in the supply itself, when the modulated amplifier and a Class B amplifier are operated from the same supply, or may be caused by volage drop in the primary supply from the power line when the modulator load is thrown on. It is readily checked by measuring the voltage with and without modulation. Poor line regulation will be shown be a drop in filament voltage with modulation.
Any of the following may eatuse an upward shift in plate current:
8) Overmodulation (exeressive audio power, audio gain too great).
9) Incomplete meutralization of the modulated amplifior.
10) Parasitic oseillation in the modulated amplifier.

Grid Modulation

With any type of grid modulation, any of the following maly cause a downward shift in modu-lated-amplifier plate corment:

1) Too much r.f. exatation.
2) Insufficient grid hias particularly with control-grid modulation. (irid bias is usually. not eritical with sereen and suppressor modulation, the value of grid leak recommended for ew. oproration being satisfactory.
3) With eontrol-grid modulation, exeessive resistance in the bias supply.
4) Insufficient output capacitaner in platesupply filter.
5) Pate efficiener too high under carrier eonditions; amplifier is not loaded hoavily enough.
Because grid modulation is not perfectly linear (always less so than plate modulation) a properlyoperating amplifier will show a small upward plate-current shift with modulation, 10 per cent or less with sinc-wave modulation and amounting to an occasional upward flieker with voies. An upward plate current shift in excess of this may be caused by
6) Overmodulation (excessive modulating voltage).
7) Regeneration (incomplate neutralization).
8) With eontrol-grid or suppressor modulation, bias too great.
9) With sereen modulation, d.c. screen voltage too low.
In grid-modulation systems the modulator is not necessarily operating linearly if the phate current stays constant with or withont modulation. It is reatily possible to arrive at a sot of operating conditions in which flatening of the up-peaks is just balinced be overmodulation downard, resulting in practically the same plate current as when the transmitter is unnodulated.

The oseilloseope provides the only eertain check on grid modulation. While the same tree of improper operation is possible with plate modulation, it occurs only rarely.

COMMON TROUBLES IN THE 'PHONE TRANSMITTER

Noise and Hum on Carrier

Noise and hum may be detected by listering to the signal on a recoiver, provided the reeciver is far enough away from the transmitter to avoid overloading. The hum level should be low eompared with the voier at 100 per cent mondulation. IIum may conne either from the speed amplifier and modulator or from the r.f. section of the transmitter. IIum from the r.f. seetion cat be detected by eompletely shutting off the modu. lator; if hum remains when this is done, the power-supply filters for one or more of the r.f stagres have insuffiriont smoothing. With a humfree carrier, hum introduced by the modulatom can be checked by turning on the modulator but leaving the spech amplifier off; power-supply filtering is the likely source of such hum. If carrien and modulator are both clean, conneet the spered amplifier and observe the increase in hum level If the hum disappors with the gain eontrol at minimum, the hum is being introduced in the stage or stages preceding the gain control. The mierophone also may pick up hum, a conditior that can be checked by removing the microphon from the circuit but leaving the first speech-amplifior grid circuit otherwise unchanged. A goow ground (to a cold water piper, for (example) on the microphone and specech system usually is essential to hum-free operation.

Spurious Sidebands

A superheterodyne receiver having a erysta filter is noeded for checking spurious sidethand: outside the normal communication chamel. The r.f. input to the reeriver must be kept low rough ber removing the antemat or bey adequate spara tion from the trammitter, to avoid overloadins and consequent spurious receiver responses. At "s",-meter reading of about half seale is satis factory. With the crystal filter in its sharpes position tune through the region outside the normal channed limits (3 to 4 kiloceveles each sid of the carrier) while another person talks into the microphone. Spurious sidebands will be observer as intermittent "clicks" or crackles well awat from the carrior frequency. Sidebands more that 3 to 4 kiloeveles from the carrier should be o negligible strength, eompared with the carrier in a properly-modulated 'phone transmitter. Thu causes are overmodulation or nomlinear operation

With sine-wave modulation the relative inten sity of sidetands can be observed if a tone of 1001 cyeles or so is used, since the erystal filter readil. can separate freguencies of this order. Th "S"-meter will show how the spurious side fre quencios (those spaced more than the modulatim frequency from the carrier) compare with th carrier itself. Without an " S "-meter, the a.v.c
should be turned off and the b.f.o. turned on; then the r.f. gatin should be set to give a moderatcley strong beat note with the earrier. The intensity of side frequencies can be estimated from the relative strength of the brats ats the recoiver is tuned through the spectrum adjacent to the carrier.

R.F. in Speech Amplifier

A smatl amount of r.f. current in the spereh amplifier particularly in the first stage, which is most susecptible to such r.f. piek-up - will camse overloading and distortion in the low-level stages. Frequently also there is a rogenorative effect which canses an audio-frequener oscillation or "howl" to be set up in the audio system. In such cases the gain control camot be advanced very far before the howl buids up, wen though the amplifier may be perfectly stable when the r.f. seetion of the transmitter is not turned on.
('omplete shiedding of the mierophone, mierophone cord, and spereh amplifier is neressary to prevent r.f. pick-up, and a ground connection soparate from that to which the transmitter is connected is advisable.

- MODULATION MONITORING

It is ahwas desirable to modulate as fully as possible, but 100 per cent modulation should not be exeeded - particularly in the downward direction - because harmonic distortion will be introduced and the chanmel width inereased. This canses unneersary interferener to other stations. The oseilloseope is the best instrument for continuously checking the modulation. However, simpler indicators may be used for the purpose, once calibrated.

A conveniont indicator, when a Class 13 modulator is used, is the plate milliammeter in the ('lass 13 stage, siner plate current of the modulator fluctuates with the voice intensity. (Tsing the oseilloseope, determine the gain-control setting and voice intensity that give 100 per cent modulation on voice peaks, and simultaneously observe the maximum (lass 13 plate-milliammeter roading on the peaks. When this maximum reading is obtained, it will suffice to adjust the gain so that it is not excerdend.

A high resistance (1000 -ohms-per-volt or more) rectifier-tupe voltmeter (copper-oxide or germanium trpe) also can be used for molulation monitoring. It should be connocted across the output cireuit of an audio driver stage where the power level is a fow watts, and similarly calibrated against the oscilloseope to determine the reading that represents 100 per cent modulation.

The plate milliammeter of the modulated r.f. stage also is of value as an indicator of overmodulation. As explained carlier, the d.e phate current stays constant if the amplifier is linear. When the amplifier is overmodulated, esperially in the downward direction, the operation is no longer linear and the average plate current will
change. A flicker of the pointer mat therefore be taken as an indication of overmodulation or nonlinearity. However, since it is possible that under some ofreating conditions the plate current will remain constant even though the amplifier is considerably ovormodulated, an indicator of this tupe is not wholly reliable unless it has been checked against an oseilhseope.

Overmodulation Indicators

Overmolulation on negative peaks is usually the worst type, as explaned earlier in this chapter. The milliammeter in the negative-peak indicator of Fig. 10-23 will show a reading on each prak that carrios the instantaneous voltage on a plate-modulated amplifier "below zero" - that is, negative. The rectifier, V°, cannot eonduct so long as the negative half-cyele of audio output voltage is less than the d.c. voltage applied to the r.f. tube.

The invorso-peak-voltage rating of the rectifior tube must be at least twice the d.e. plate voltage of the modulated amplifier. The filament transformer likewise must have insulation rated to withstand twice the d.c. plate voltage. lither mercury-vapor or high-vacuum rectifiers can be used. The 15 -volt brakilown voltage of the former will introduce a slight error, since the plate voltage must g() at least 15 volts negative before the rectifier will ionize, but the error is inconserfuential at plate voltages above a few hundred volts.

The offectiveness of the monitor is improved if it indicates at somewhat less than 100 per cont modulation, as it will then warn of the danger of overmodulation before it actually occurs. It can be adjusted to indicate at any desired modulation perentage be making the meter return to a point on the power-supply bleder as shown in the atternative diagram. The bepass condenser, C, insures that the full audio voltage appears across the indicator circuit.

Fig. $10-23$ - Negative-peak overmodulation indicator. The milliammeter M. 1 may be any low-range insirument (inj) to $0-.30$ mat or ser). The inverse-peak-woltage rating of the rectifier, V, must be at least twice the d.e. voltage applied to the Hate of the r.f. amplifier. 'The atternative meter-return eirenit can be nsed to indicate modulation in exerss of any desired value below (o) per eent, 'The reartance of the by-pass condenser,
 sistance arross which it is connerted. An $8-\mu$ fid. clectro. Iytic condenser will be satisfactory if the resistance it shants is 1000 ohms or more.

Frequency and Phase Modulation

It is possible to convey intelligenere by modulating any property of a carrior. These properties are amplitude, frequenes and phase. Amplitude modulation (AMI) is described in another chapter. When the frequenes of the carrier is varied in aceordance with the variations in a modulating signal, the result is frequency modulation (FM). Similarls, varring the phase of the carrier current is called phase modulation (PM).

Frequency and phase modulation are not indopendent, sine the frequenes cannot be variod without also varuing the phase, and vier vorsa. The differenere is largely a matter of definition.
The effertivenoss of FM and PM for communication purposes dopends almost entirely on the receiving methods. If the reeriver will respond to frequence and phase changes but is insensitive to amplitude changes, it will diseriminato against. most forms of noise, particulatle impulse noise such as is set up bey ignition systems and other sparking devieses. Special methods of detection are required to areomplish this result. Sincer most amateur reaceivers do not incorporate the proper circuits, the noise-reducing propertios of lid or Pal reecption are sedom realized in amateur work.

Modulation mothods for FM and l'M are simple and require practically no audio power. There is also the advantage that, sime there is no amplitude variation in the signal, interference to broadeast reeption of the type resulting from rectification in the audio eremits of the b.e. receiver is substantially eliminated. These two points represent the prineipal reasons for the use of FM and l'M in amateur work. Fnfortunately, the user of PAI or PMI is unable to get the benefit of the inherent noiserreducing advantages of the sustem, and is furthermore at a considerable disadvantage with respect to AM of the same power, berause most of his communication will be with amateurs using receivers dosigned specifically for IMI.

Frequency Modulation

lig. $11-1$ is a representation of frequency modulation. When a modulating signal is applied, the earrier frequency is increased during one half-eyele of the modulating signal and decreased during the half-corle of opposite polarity. This is indicated in the drawing by the fact that the r.f. cyeles oreupy less time (higher frequency) when the modulating signal is positive, and more time (lower frequeney) when the modulating signal is negative. The ehange in the carrior frequenes (frequency deviation) is proportional to the in-
stantancous amplitude of the modulating signal, so the deviation is small when the instantaneous amplitude of the modulating signal is small, and is greatest when the modulating signal reaches its peak, either positive or negative. That is, the freguency deviation follows the instantancous changes in the amplitude of the modulating signal.

As show he the drawing, the amplitude of the signal dows mot chamge during modulation.

Phase Modulation

To understand the difference between FM and lal it is mecessary to appreciate that the frequeney of an alternating current is determined by the rate at which its phase changes.

If the phase of the eurrent in a circuit is ehanged there is an instantaneous fremenery change during the time that the phase is being shifted. The amoment of freguency change, or deviation, depends on how rapidly the phase shift is acromplished. It is also dependent upon the total amount of the phase shift. In a properlyoperating P'M system the :amount of phater shift is proportional to the instantanoons amplitude of the modulating signal. The rapidity of the phas shift is direrely proportional to the frequence of the modulating signat. (onsequently, the frequency doviation in lil is proportional to both the amplitude and frequence of the modulating sighal. The latter reprosents the outstanding difference betwern FM and PM, since in FM
(A)

(B)

(C)

Fiq, 11.1-Graphical representation of frequency modulation. In the unmodalated varrior at I. cach r.f. recle orompies the same amomut of time. When the motulating signal. B , is applied, the radio frequeney is incroased and decreased according to the amplitude and molarity of the modnlating signal.
the frequence deviation is proportional only to the amplitude of the modulating signal.

Modulation Depth

Pereentage of modulation in FM and I'M has to be defined differently than for A.M. Pratically. " 100 per erot modulation" is reachod when the transmitted signal orcupies a chamel just equal to the bandwidth for which the receiver is designed. If the frequener deviation is greater than the receiver com acrept, the reosiver distorts the signal. Llowever, on another roroiver designed for a different bandwidth the same signal might be equivalent to only 25 per cent modulation.

In amatreur work "narrow-hand" FX or PM (frequently abbreviated NPM) is defined as having the same chamel width as a properlymodulated AM signal. That is, the chammel width does not exceed twior the highest audio frequence in the modulating signal. NliN transmissions based on an upper audio limit of 3000 cereles therefore should occupy a channel no wider than 6 kr .

FM and PM Sidebands

The sidetands set up ber FM and l'I differ from those resulting from $1 . X$ in that they oceur at integral multiples of the modulating frequency oneeither side of the carrier rather than, as in AM, consisting of a single set of side freguencies for each modulating frequence. An liM or l'M signal therefore inherently oceupies a wider chammel than IM.

The number of "extra" sidebands that oceur in $F M$ and liN depends on the relationship botween the modulating frequener and the frequence deviation. The ratio between the frequence deviation, in croles per second, and the modulating frequency, also in evelos per second, is celled the modulation index. That is,
Morlulation index $=\frac{\text { Parrier fiequency demiation }}{\text { Mobblating frequency }}$ Example; The maximum freguency deviation in an FM tranmitter is 3000 chelow either side of the carrier frequency. The modulation index when the modulating frequency is tom cyedes is

$$
\text { Modulation index }=\frac{3000}{10(1)}=3
$$

At the same devation with 3000 -evele modulation the index would be 1 ; at 100 ereles it wouhd be 30 . and so on.
In l'M the molulation index is constant regatdless of the modulating frequence; in liM it varios with the modulating frequemey, as shown in the previous example, In an FM system the ratio of the maximum carrior-frequence doviation to the highest modulating frequenes used is called the deviation ratio.

Fig. 11-2 shows how the amplitudes of the carrier and the various sidebands vary with the modulation index. This is for single-tone modulation; the first sideband factually a pair, one above and one below the carrior) is displaced from the

Fig. 11-2-How the amplitule of the paire of sidebands varies with the molulation index in an F'X or PW signal. If the eurves were extended for greater values of moblulation index it would he seon that the carrior amplitule goes through zaro at several points. "The same statement aloo applies to the sidebands.
carrier by an amount equal to the modulating freguency, the serond is twice the modulating frequeney away from the carrier, and so on. For example, if the modulating frequenes is 2000 eveles and the carrier frequency is $29,500 \mathrm{ke}$., the first sideband pair is at 29,498 ke and $29,502 \mathrm{kc}$., the serond pair is at $29,496 \mathrm{kc}$, and $29,50+\mathrm{kc}$. the third at $29,49+\mathrm{ke}$, and 29,506 ke., ete. The amplitudes of these sidebands depend on the modulation index, not on the frequener deviation. In . IM, regardless of the pereentage of modulation (so long as it does not exceed 100 per cent) the sidebands would appear ont! at 29, 498 and $20,502 \mathrm{ke}$, under the same conditions.

Note that, as shown be lig. 11-2, the earrier strength varies with the modulation index. (In amplitude modulation the carrior strength is constant; only the sideband amplitude varies.) At a modulation index of approximately 2.4 the carrier disappears entirely. It then becomes "negative" at a higher index, meaning that its phase is reversed as compared to the phase without modulation. In $\mathrm{F} M$ and l'M the energy that goes into the sidebands is taken from the carrier, the lotal power remaining the same regardless of the modulation index.

Frequency Multiplication

Since there is no change in amplitude with modulation, an leM or l'M signal can be amplified by an ordinary (lass (amplifier without distortion. The modulation can take place in a very low-level stage and the signal can then be amplified by either frequeney multipliers or straight amplifiers.

If the modulated signal is passed through one or more frequency multipliers, the modulation index is multiplied by the same factor that the carrier frequency is multiplied. For example, if modulation is applied on 3.5 Me , and the final output is on 28 Mc . the total frequeney multiplieation is 8 times, so if the frequeney deviation is 500 eveles at 3.5 Me . it will be 4000 ceveles at 28 Me, lerequency multiplieation offers a means for ohtaining practieally amy desired amount of frequeney deviation, whether or not the molulator itself is eapable of giving that much deviation without distortion.

Narrow-Band FM and PM

"Narrow-land" FM or PM, the only type that is authorized for use on the lower frequencies where the 'phone bands are crowded, is defined as FM or lPM that dors not occupe a wider chamel than an AMI signal having the same audio modulating frequencies, Narmowhand operation requires using a relativel! small modulation index.

If the modulation index (with single-tone modulation) dors not exced about 0.6 the most important extra sideband, the serond, will be at least 20 dh, below the ummodulated earrier level, and this shoudd represent an effective chamel width about equivalent to that of an AXI signal. In the case of epeceh, a somewhat higher modulation index can be used. This is beause the energy distribution in a complex wave is such that the modulation index for any one frequency romponent is reduced, as compared to the index with a sine wave having the same peak amplitude as the voice wave.

The chiof advantage of narrow-band F.M or 1'M for frequencies below 30 Mr. is that it eliminates or reduces certain types of interference to broadeast reception. Also, the modulating equipment is relatively simple and inexpensive. Ilowever, assuming the same umodulated carrier power in all cases, narrow-band FM or PM is not as effective as AMI with the methods of reerption used by most amateurs. As shown by Fig. 11-2, at an index oi 0.6 the amplitude of the first sideband is about 25 per eent of the un-modulated-carrier amplitude; this eompares with a sideband amplitude of 50 per cent in the case of a 100 per eont modulated AM transmitter. That is, so far as effectiveness is concerned, a nar-row-hand FM or l'M transmitter is about equivalent to a 100 per cent modulated AMI transmitter operating at one-fourth the earrier power.

Comparison of FM and PM

Freguency modulation camnot be applied to an amplifier stage, but phase modulation can. PMI is therofore readily adaptable to transmitters
employing oscillators of high stability such as the crystal-controlled type. The amount of phase shift that can be obtained with good linearity is surh that the maximum practicable motulation index is aloout 0.5 at the radio frequency at which the modulation takes place. Berause the phase shift is proportional to the modulating frequencer. this index can be used only at the highest frequency present in the modulating signal, assuming that all frequencies will at one time or another have equal amplitudes. Taking 3000 eveles as a suitable upper limit for voier work, and setting the modulation index at 0.5 for 3000 rerles, the frequeney response of the sperehamplifier system above 3000 reveles must be sharply aftenuated, to prevent sidehand splatter. Also, if the "timn"" quality of PM as recoived on an leM reeriver is to be avoided, the I'M must be ehanged to FM, in which the modulation index decreases in inverse proportion to the modubating frequency. This requires shaping the sperehamplifier frequener-response curve in such a way that the output voltage is inversely proportional to frequency, at least over the voier range. When this is done the maximum modulation index can only be used at the lowest audio fregueners, approximately 100 eveles in voice transmission. and must decrease in proportion to the incraso in frequency. The result is that the maximum linear frequency deviation is only about 50 eycles. when PME is changed to RM. To increase the deviation to $3(O)$ creles requires a frequency multiplication of $3000 / 50$, or (6) times.

In contrast, it is relatively casy to secure a fairly-large frequency deviation when a selfcontrolled oscillator is frequeney-modulated direatly. (True frequency modulation of a crystaleontrolled oscillator results in only verv small deviations and so requires a great deal of trequency multiplication.) The chiof problem is to maintain a satisfoctory degree of carrier stability, since the greater the inherent stability of the oscillator the more difficult it is to secure a wide frequency swing with linearity.

Methods of Frequency and Phase Modulation

FREQUENCY MODULATION

The simplest and most satistactory devior for amateur FM is the reatance modulator. This is a varuum tule connected to the r.f. tank rircuit of an owillator in such a way as to act as a variable inductance or caparitance.
figg. $11-3$ is a representative rireuit. The rontrol grid of the modulator tulse, .1 , is comerted across the oscillator tank circuit, $\mathcal{C}_{1} L_{1}$, through resistor K_{1} and blocking conclenser ('z. ('s represents the imput capacitance of the modulator tube. The resistance of h_{1} is made large compared to the reactance of (' 8 , so the r.f. current through R_{1} ('s will be practically in phase with the r.f. voltage appearing at the terminals of the tank circuit. However, the voltage arross ('8
will lag the current by do degrees. The r.f. current in the plate cireuit of the modulator will lee in phase with the grid voltage, and consequently is 90 degress behind the current through f 's, or 90 degrees behind the r.f. tank voltage. This lagging current is drawn through the oscillator tank, giving the same effect as though an inductance were comected aross the tank. The frequency increases in proportion to the amplitude of the lagging plate current of the modulator. The audio voltage, introduced through a radio-frequency choke, RFC', varies the tramsonductance of the tube and thereby varies the r.f. plate current.

The modulated oscillator usually is operated on a relatively low frequeney, so that a high order of carrier stability ean be secured. Frequency

Fig. 11-3 - Reactance modulator using a bighetransponductance prontode ($6 . \mathrm{S}_{2}^{2}, 6.1(37$, etc.).
(:I - R.f. tank raparitance (see text).
($\mathrm{I}_{2}, \mathrm{C}_{3}-0,001-\mu \mathrm{fl}, \mathrm{mina}$.

(:- It- \quad fid, electrolytic.
(\therefore - liube inpmit capatitance (see text).
$R_{1}-4$, (10) ohms.
İ2- 0.17 inegohm.
IR - Sireen dropling resistor; selert to sive proper screan voltage on type of modulator tobe used. R_{4} - Cathome hias rexintor; seleet as in case of R_{3}.
$I_{\text {A }}$ - Rif. tank inductance.

multipliers are used to raise the frequency to the final frequence desired. The frequency deviation increases with the number of times the initial frequency is multiplied; for instance, if the oscillator is operated on 6.5 Me. and the output frequence is to be 52 Mc , ath oseillator frequency deviation of 1000 eveles will be raised to 8000 reves at the outpat frequeney.

A roactance modulator ean be commected to a rrystal oseillater as well as to the self-controlled type. However, the resulting signal is more phasemodulated than it is frequeney-motulated, for the reason that the frequeney deviation that ean be secured by varying the tuning of a erystal oscillator is quite small.

Design Considerations

The sensitivity of the modulator (frequeney change por unit change in grid voltage) depends on the transeonductance of the motulator tubes. It increases when R_{1} is made smaller in comparison with ('8. It also increases with an increase in $L_{/} /$(ratio in the oscillator tank cirruit. Sine the carrier stability of the oscillator depends on the L / C ratio, it is desirable to use the highest tank raparitance that will permit the desired deviation to be secured while keeping within the limits of linear operation.

I change in any of the voltages on the modulator tube will cause a change in r.f. plate current, and consequently a frequency change. Therefore it is advisable to use a regulated plate power supply for hoth modulator and oscillator. At the low voitages used (250 volts) the required stabilization can be secured by means of gaseous regulator tubes.

Speech Amplification

The spereh amplifier precerting the motulator follows ordinary design, except that no power is required from it and the a.f. voltage taken by the
modulator grid usually is small - not more than 10 or 15 volts, even with large modulator tubes. Beculuse of these modest requirements, only a few sucech stages are needed; a two-stage amplifier consisting of a pentode followed by a triode, looth resistance-coupled, will more than suffice for erystal microphones.

- PHASE MODULATION

The same type of reactance-tulse circuit that is used to vary the tuning of the oscillator tank in FM ean be used to vary the tuning of an amplifier tank and thus vary the phase of the tank current for PM. Hence the modulator cireuit of Fig. 11-3 can be user for PM if the reactance tube works on an amplifier tank instead of directly on a self-eontrolled oscillator.

The phase shift that occurs when a cireuit is detuned from resonance depends on the amount of detuning and the (Q of the circuit. The higher the Q, the smaller the amount of detuning needed to secure a given number of degrees of phase shift. If the () is at least 10 , the relationship between phase shift and detuning (in kilocyeles either side of the resonant frequency) will be substantially linear over a range of about 25 degrees. From the standpoint of modulator sensitivity, the () of the tuned circuit on which the modulator oprates should be as high as possible. (On the other hand, the effective $($) of the circuit will not be very high if the amplifier is delivering power to a lom since the load resistance reduces the (8 . There must therefore be a compromise between modulator sensitivity and r.f. power output from the modulated amplifier. An optimum figure for ($($ appears to be ahout 20; this allows reasonable loading of the modulated amplifier and the neressary tuning variation can be secured from a reactane modulator without difficulty: It is advisable to modulate at a very low power level - preferally in a transmitter stage where receiving-1ype tubes are used.

Reactance modulation of an amplifier stage usually also results in simultaneous amplitude moduation because the modulated stage is detuned from resonance as the phase is shifted. This must be eliminated by feeding the modulated signal through an amplitude limiter or one or more "saturating" stages - that is, amplifiers that are operated Class C and driven hard enough so that variations in the amplitude of the grid excitation produce no appreciable variations in the final output amplitude.

For the same type of reactance modulator, the spech-implifier gain required is the same for PM :s for FM. However, as pointed out earlier, the fact that the actual frequency deviation inereases with the mothlating adodio frequency in PM makes it necessary to cut off the frequencies above about 3000 (yeles before modulation takes place. If this is not done, unnecessary sidebands will be generated at frequencies considerably away from the carrier.

Reactance-Modulator Unit for Narrow-Band FM

The Fill speech-amplifier and modulator unit shown in Figs. 11-4 and 11-5 uses a pentoderactance modulator in a cireuit which is basically that of Fig. Il-3, It differs only in the detail that the audiosignal is applied to the control grid in parallel with the ref. voltage from the oscillator, instead of the series-feed arrangement shown in Fig. 11-3. Berause of the paralled fered, resistor R_{4} is incorporated in the rireuit to prevent r.f. from appearing in the plate cireuit of the sperech-amplifier tube

The unit uses miniature tubes for the sake of making a compact assembly that can be mounted in any eonvenient spot near the VFO tuned eircuit. In Fig. 11-4 it is shown mounted on the outside of the VFO rase. When this type of momoting is used the unit should be placed so that the lead between the VFo tumed eircuit and the modulator is as short as possible. If there is space available, it is preferable to mount the unit inside the Vre() cabinet.

The chassis for the unit is 4 inches long by ? inches wide, and has a mounting lip 2 inches deep. As shown in the photographs, it is formed froma piece of aluminum with the edges turned over to stiffen it. The various components are easily arcommodated undermath. The r.f. lads should be kept short and separated as much as possible from the autio and powersupply wiring.

Filament and plate power can usually be taken from the VFO sumply, since the total plate current is only a few milliamperes. Filament current required is 0.6 amp. The mirrophone input is carried through a shiclded lead

Fig. 11-1-Miniature reactance modulator that can be used with any HPO. The shiehled lead is for miero. phone input; the other two wires bring in filament and platesupply.

to the unit. thas the mierophone connector ean be placed in any convenient location on the VFO unit itself. Once the proper setting of the

Fig. II-j-I nolerneath the modulator unit. 'The r.f. commection to the VIPO goes through the feed-through bushing at the left.
gain control is found it need not be touched again, so serewdriver aljustment is quite aderquate.

The adjustment of reactance modulators is diseussed in a later section in this chapter.

Fiz. 11.0 - Cironit diagram of the narrow-band FII modulator unit.
(1)-680. $\mu \mu \mathrm{fd}$ mica
($2, \mathrm{C}_{4}-11.01 \mathrm{ffd}$, bapur, 100 volts.
(3-0.02:- 3 fil. parer, 200) volts.
Cs. Co - $1 \mathrm{C}^{-}-\mu \mu \mathrm{fd}$, milas.
R_{1} - 1.2 meqohms. ${ }^{1}$ watt.
R_{2}. Kn - 0.2 .2 meqohm, 1 watt.
K_{3} - $0 . \mathrm{B}$-magolim potentioneter.
K_{4} - 10.1 mexohm, $3 / 2$ watt.
K_{5} - $10,0,000$ ohms, $1 / 2$ watt.
K_{6} - 10.17 mepohm, $1 / 2$ watt.
118-390 ohme, 3_{2} watt.
Hf(: - ..imh r.f. choke.

Checking FM and PM Transmitters

Accurate checking of the operation of an FM or PM transmitter requires different mothods that the corresponding ehecks on an A.M set. 'This is because the common forms of measuring devices either indicate amplitude variations only (a d.e. milliammeter, for example), or becane their indications are most easily interpreted in terns of amplitude. There is no simple measuring instrument that inclicates frequency deviation in a modulated signal directly.

However, there is one favorable feature in FW or PM eluecking. The modulation takes pace at a very low level and the satges following the one that is modulated donot affeet the limearity of modulation so long as they are properly tunerl. 'Therefore the modulation may be checked without pulting the transmitter on the air, or even on a dummy antenna. The power is simply eat off the amplifiers following the modulated stage. This not only avoids ameressary interference to other stations during testing periods, but also keeps the signal at such a

Fiz. $11 . \overline{-}$ - W.e. method of cheching frequency deviation of at ractanderetohe-modetated oscillator. A $\overline{\text { onfol}}$. or IONO-ohm putentionteter may be used at R.
bow level that it may be observed quite atsily on the station receiver. I good receiver with at restal filter is all essential parto of the cherking aquipment of an liM or lPa transmiter, particularly for narrow-band FM or I'M.

The quantities to be checked in an FM or l.M tramsmitter are the linearity and frequeney deviation. Because of the essential difference between liM and l'M the methods of checking differ in detail.

Reactance-Tube FM

It was explained earlier that in F M the frequency deviation is the same at any a udio modulation frequency if the audiosignal amplitude does not vary. Since this is true at any audio frequency it is true at zero frequency. Consequently it is possible to calibrate a reactance modulator by applying an adjustable d.c. voltage to the modulator grid and noting the change in oscillator frequency as the voltage is varied. A suitable circuit for applying the adjustable voltage is shown in Fig. 11-7. The battery, B, should have a voltage of 3 to 6 volts (two or more dry cells in series). 'The arrows indicate clip connections so that the battery polarity ean be reversed.

The oscillator frequency deviation should be measured by using a recciver in conjunction with an accurately-calibrated frequency meter,
or by any means that will permit accurate metsurement of frequency differences of a few hundred eycles. One simple method is to tune in the osmillator on the receiver (diseonneating the receiving antenna, if necessary, to keep the signal strength well below the overload point) and then set the recciver b.f.o. to zero beat. Then increase the d.e. voltage applied to the modulator grid from zero in steps of about la volt and note the beat frequency at each change. Then reverse the bat tery terminals and repeat. The frequency of the beat note may be moasured by comparison with a calibrated audio-frequency oseillator. Note that with the battory polarity positive with resperet to ground the radio frequency will move in one direction when the voltage is incrased, and in the other direction when the battery teminals are reversed. When several readings have been taken a curve may be ploted to demonstrate the relationship between grid voltage and freguency deviation.

A sample curve is shown in Fig. 11-8. The usable portion of the curve is the center part which is essentially a st raght line. The bending at the conds indicates that the modulator is no longer linear; this departure from linearity will culuse harmonic distortion and will broaden the chamel occupied by the signal. In the example, the characteristic is linear 1.5 kc . on either side of the center or carrier frequeney. This is the maximum deviation permissible at the frequency at which the measurement is made. At the final output frequency the deviation will be multiplied by the same namber of times that the measurement frequency is multiplied. 'llois must be kept in mind when the check is made at a frequency that differs from the output frequency.

A good modulation indicator is a "magiceye" tube such as the 6F5. 'This should be connected across the grid resistor of the reactance modulator as shown in Fig. 11-!. Note its deHection (using the d.e. voltage method as in Fig. 11-7) at the maximum deviation to be used. This deflection represents " 100 per cent

Fig. 11-8 - A typical curve of frequency deviation es. moviulatur grid voltage,
mondalation" and with spereh input the gain should be kept at the puint where it is just reached on voior praks. If the tatnemitter is used on more than one band, the gain controb should be marked at the proper sotting for each band, becouse the sighal amplitude that gives the corred deviation on one hand will be cither toogreat or tow small on another, for narrow-band FM the proper deviation is approximately 2000 excles (based on an upper at.f. limit of 3000 cyoles and a deviation ratio of 0.7) at the final output frequency. If the output frequency is in the 2)- Me, band and the weillator is on 7 Mc ., the deviation at the ascillotor frequency shomal not exered 2000 t, or BO cycles.

Checking with a Crystal-Filter Receiver

With IM the d.e. method of chereking just despibed camont be used, beatuse the fiequency deviation at zero frequency also is zero. Fiom narrow-band l'M it is neressary to check the at ual width of the chanmel oecupied hy the thansmission. (The same method also can be used to cherk Fill. For this purpose it is neressary to have a erystal-filter receiver and ath ati. oseilatar that gromates a 3000-cycle sine wave.

Fis. $1 /-9$ - of:. modulation indicator for FVI or PM nodulators. Tou insure suffirient grid voltage for a good dellection, it may he mesersary to comeret the gain comerol in the modulator grid eirenit rather than in an carlier apeceti-amplifier stage.

Kecping the signal intensity in the receiver at a medium level, tune in the carrier at the output frequency. Do not use the a.v.e. switeh on the beat oscillator, and set the crystal filter at its sharpest position. Peak the signal on the arystal and adjust the b.f.o. for any comvenient beat note. Then apply the 3000 -eyde tone to the spereh amplitior (through an attenuator, if necessary; to avoid overloading; sere chapter on audio amplifiers) and incroase the atudio gain until there is a small amount of modulation. Tuning the receiver near the earrier frequeney will show the presence of sidebands 3 kc . from the earrier on both sides. With low audio input, these two should be the only sidebands detcetable.

Now inerease the audio gain and tune the receiver over a range of about 10 kc . on both sides of the carrier. When the gain becomes high enough, a second set of sidebtuds spared 6 kc . on either side of the carrier will be detected. The signal amplitude at which these sidehands berome deteretable is the maximum speed am-
plitude that should be used. If the gili. moduladion indicator is incorporated in the modubator. its deflection with the 3000 -cycle tone will be the " 100 per cent modulation" deflection for speereh.

When this mothod of cherking is used with a reactance-tubromodulated FN (not IM) transmitter, the linearity of the system can be cherked by observing the carrier as the at, gain is slowly increased. The beat-note frequency will stay constant so long as the modulator is linear, but nonlinearity will be ateompanied by a shift in the average carrier frequency that will cause the beat mote to ehange in frequency. If such a shift oreurs at the same time that the 6 -ke, sidebands appear. the extra sidebands may be caused by modulator distortion rather than by an excessive modulation index. This means that the modulator is not capable of shifting the frequmey over a wideenough range. The li-ke. sidebands shond appear before there is any shift in the carrier frequency.

R.F. Amplifiers

The r.f. stages in the tramsiniter that follow the modulated stage may be designed and adjusted as in ordinary operation. In fact, there are nosperial requirements to be mot exerpt that all tank circuits should be carefully tumed to resonance (to prevent unwanted if. phase shifts that might interact with the modulation and thereby introduce hum, noise and distortion). In meutralized stares, the neutralization should be as exact as prossible, also to minimize unwanted phatse shifte. With FM and l'M, all r.f. stages in the transmitter can be operated at the manafarturer's maximum c. w-telegraphy ratings, since the avorage power input does not vary with modulation as it does in A. M 'phone operation.

The output of the transmitter should be checked for amplitude modulation by observing the antenna current. It should not change from the ummodulatededarrier value when the transmitter is modulated. If there is mo antemat ammeter in the transmitter, a Hashlight lamp and lown can be coupled to the final tank coil to serve as a current indicator. If the carrier amplitude is constant, the lamp brilliance will not change with modulation.

Amplitude modulation accompanying FM or l'M is just as much to be avoided as frequence or phase moduation that arcompanies ADI. A mixture of AM with either of the other two systems results in the generation of spurious sidebands and consequent widening of the chamel. If the presence of $A M$ is indicated by variation of antenna current with modulation, the cause is almost certain to be monlinearity in the modulator. In very wide-band F.I the selectivity of the transmit ter tank circuits may cause the amplitude to decrease at high deviations, but this eondition is not likely to nocur on amateur frequencies at which wide-hand F.M would he used.

Reduced-Carrier and Single-Sideband

The most signiticant development in amateur radiotelephony in the past several years has bern the increased use of single-sidehathd suppressedcamior trammissions. This system has tremendous potentialities for increasing the effectiveners of 'phone transmission and for reducing interference, Because onty one of the two siddeands momally produced in modulation is tramsmitted, the channel width is immediately cut in half. However, when only one sideland is transmitted the carrier - which is essential in doublo-sideband transmission - no longer is necessary; it can be supplied without too much difficulty at the reeciver. With the carrior eliminated there is a great saving in power at the transmitter - or, from another viewpoint, a great increase in offere tive power output. Assuming that the same finalamplifier tube or tubes are used either for mormad AM or for single-sidehand, carrier suppressed, it ran be shown that the use of sibls ran give an effertive gain of ! db. over AM - equivalent to increasing the transmitter pewer 8 times. Eliminating the carrier also eliminates the heterodene interference that wreeks so much communieation in congested phone bands.

SUPPRESSING THE CARRIER

The carrier can be suppressed or nearly eliminated hy an extremely sharp filtor or by using a balanced modulator, The basic principle in any balanced modulator is to introduce the carrier in such a way that it does not appear in the output but so that the sidebands will. This requirement is satisfied by introducing the audio in push-pull and the r.f. drive in parallel, and comeeting the output (plate circuit) of the tubes in push-pull, as shown in Fig. 12-1.1. Balanced modulators can alse be connected with the r.f. drive and audio inputs in push-pull and the output in parallel (Fig. 12-113) with equal (ffertiveness. The choice of a balanced modulator circuit is generally dotermined by constructional considerations and the method of modulation prefered by the huileder. Sereen-grid modulation is shown in the examples in Fig. 12-1, but control-grid or plate modulation can be used equally as well. Balancodmodulator circuits using four rectifiers (germanium, copper oxide, or thermionic) in "bridge" or "ring" cireuits are often used, particularly in commercial applications. Two-rectifier airouits are atso available, and they are widely usod in amatedr sisl equipment. Bxamples of rectifiortype halanced modulators are shown in Fig. 12-2.

In any of the vacuum-tube circuits, there will be no output with no atudio signal berause the cirruits are batancerl. The signal from one tube is balaneed or cancelled in the output cireuit by the signal from the other tube. The cireuits are thas balaned for any value of parallel audio signal. When push-pull audio is applied, the modulating voltages are of opposite polarity, and one tube will condurt more than the other. Since any modulation process is the same as "mixing" in rereivers, sum and difference frequendes (sidebands) will be generated. The modulator is not

 ruit- using s.rara-grid modalation. In I the r.f. Mritation is in parallal in both tubes. and the andio and ontput are in push-pull. In 13 the matation and andion are in push-pull, the ontput is in parallel. In either ease. the carrier frequency, f, does not appear in the outpot cir-
 $f-r \prime$, will apperar. 'The bian fed to the wererets is a practical roquiremollt with all sererom-grid tuhes for proper linear operation, and is not a sperial requirement of balanced modulaters.

Fig. 12-2-Typiaal rectifier-type balanced modulators.
"The eirenit at λ is called a "bridge" balanced modulator and has been widely nsed in eommercial work.
"l'he balamed modutator at 13 is shown with comstants suitathle for operation at 4 in k e. h is usefal for working into a ersstal bamdpatis filter. Ti is a tratisformer designed to worh from the andion somree into a (0)1-ohnm load, and T_{2} is an ordinary i, f. Iran-former with the trimmer reemmented in series with a $0.001-\mu$ fil. comelenser. for int-pedance-matrhing purposes from the mondulator. 'The eomedernater C_{1} is for carrier balanee and may le found unnecersary in sonte inatances - it should te tried comnected on rither side of the carrier inpot circoit and used where it
 tiometer is normally all that is required for earrier balance. 'The earrier innot should be suflicient fo develop several volts across the resistor string.

The halanced modulator cireuit at Ca is shown with eonstants suitable for opreration at 3.9 Ne. $1 \mathrm{H}_{3}$ is a small strp-down ourtput transformer (lifl: 16-38A), xhmentfed to eliminate d.c. from the windings. L_{1} ean the a simall coupling exil wound on the "eold" and of the earrier-nseillator tank coil, with suflicient eompling to give two or three wolles of r.f, adroses its outport. $/ 2$ is a slug-tmed coil that resonates to the carrier freduency with the efferetise: $0.001 \mu \mathrm{fl}$. aeross it. The 1000 -ohm potentioneter is for earrier babanes.

Palaned for the sidobunds, and they will appear in the onatpat.

The ammant of carrior suppression is dependent upon the matching of the two tubes and their associated circuits. Normatly two tubes of the same tape will halance closels enough to give at least 15 or 20 dh. carrier suppression withoat any alloustmant. If further suppression is remaired, frimmer condensers to balatace the grid-phate capacities and separate bias adjustments for setting the oproating points can be used.

In the re tifier-t pebalaned modulators shown in Fig, 12-2, the diode rectifiers are conmected in sudh a manmer that, if the hatve equal forward resistanees, no r.f. can pass from the carrier source to the ontput cirenit via either of the two possible paths. The not effert is that no r.f. energe apperss in the output. When autio is applied, it unbaliances the cireuit by bitsing the diode (or diedes) in one path, depending upon the inst:untancons polarity of the audio, and henee some r.f. will thpeatr in the output. The ref. in the output will appear ins a double-sidehand suppressedcarrier signat. (loor a more eomplete deseription of diode-modulator operation, sere "Diode Monlulators," (QN'T, April, 1953, page 39.)

In any diode modulator, the r.f. voltage should he at leatst tor 8 times the peotk andio voltage. for minimum distortion. The usual operation involvers at fartion of at volt of audio and several volts of r.f. The diondes should he matehed as closely as possible - ohmmeter measurements of their forward resistamees is the usual test.
(The circuit of Fig. 12-213 is desoribed more fully in Weaver and Brown, "Crystal Lattice Filters for 'Tramsmitting and Rereiving." QST', Iugust, 1451. The rireuit of Fig. 12-2C is suitalble for use in a double-bataneed-modulator circuit and is so desuribed in "ssits. Jr.," (ieneral Electoir Ham Neus, soptember, 1950.)

REDUCED-CARRIER SIGNALS

Woulsho-sideband reduced-rarriar sigmals, whtained her unbalameing a balaneed modulator suflieiently to allow some carrier to appear in the output, offer a number of advantages orer eomventional AM signals: considerahly higher efliceneney, where efficieney is defined as the ratio of sidebsud (useful) power output to total power input; high output with comparatively little atulio power; and a considerable reduction in heterodyne interference. The signal can be received by ordinary methods, and merely sounds as though it had "a lot of modulation for the cutrier."

In ordinary amplitude-modulated systems, the sidehand amplitude can never exered 0.5 the carrier amplitude without gronerating spurious side freguencies (when sine-wave modulation is used). Conder these conditions, $2 / 3$ of the total power is in the carrier and $1 / 3$ is in the sidebands. However, with DSRC, generated by the unbatameitg of a balaneed modulator, it is possible (1) have an!! amplitude of sidelamols without generating spurieus side frefurncies. In practical
tests it has beren found that a modulation factor of 4 is perfectly practical, and the distortion under normal demodulation is not enough to impair the eommunication value of the signal. Under these ronditions, the sideband power is $21 / 2$ times as great as could be obtatined with straight A3 transmission (grid-modulated) with the same tubes, or about $3 / 4$ of what could be olotained with the same tules plate-modulated 100 per cent. Since the adio-power requirements can be kept low, and the no-modulation wate current may be only a little more tham half of the full-signal plate current, the advantages of DSIRC are obvious for work where the total power avatilable is limited, as in mobile or portable work.

A DSLRC signal ean be generated at a low power level and amplified in a linear amplifier (discussed later in this chapter). Under these conditions, a relatively powerful signal can lo ohtained with a minimum of audio power and total power input to the entire transmitter.
(For further information on DSSRC', see (irammer, "D.S.R.C. Radiotrlophony," (\&NT", May, 19:3, and (irammer, "Practical D.S.IR.C. Transmitter Dasign," (QS'T, June, 19il.)

SINGLE-SIDEBAND GENERATORS

Two basie systems for generating Sill signals are shown in Fig. 12-2. One involves the use of a bandpass filter latving suffieient selertivity to pass onc sideband and rejoet the other. Filters having such characteristies can only be constructed for rolatively low frequencies, and most filters used by amaterus are designed to work somewhere betworn 10 and 20 ke . Good sideband filtering (an be done at frequencies as high as 500 ke . by using multiple-rrystal or electromedhanical filters. The low-freduency oscillator output is combined with the audio output of a speech amplifier in a loalanced modulator, and only the upper and lower sidehands appear in the output. One of the sidebands is passed by the filter and the other rejected, so that an SSB signal is fed to the mixer. The signal is there mixed with the output of a high-freguency r.f. oscillator to produce the desired output frequency. For additional amplific:ition a linear r.f. amplifier (Class A or Class: 13) must be used. When the still signal is generated at 10 or 20 ke ., it is generally first heterodymed to somewhere around 500 ke. and then to the operating frequence. This simplifies the problem of rejerting the "image" frequencies resulting from the heterolyne process. The problem of image frequences in the froguency conversions of NSils signals differs from the probem in reeceivers becanse the beating-oscillator frogueney beomes important. Withor balanced modulators or sufficient selectivity must be used to attenuate these frequencies in the output and hener minimize the possibility of unwanted matiations.

The seeond nystrom is based on the phase relationships between the carrier and sidebomds in a modulated signal. As shown in the diagram, the audio signal is split into two eomponents that are identical exerpt for a phase difference of 90 de-
grees. The output of the r.f. osellator (which may be at the operating frequeney, if desired) is likewise split into two separate components having a 90 -degree phase differenere. One r.f. and one audio component are combincd in each of two separate balathed modulators. The carrier is suppressod in the modulators, and the relative phases of the sidebands are such that one sideband is balanced out and the other is aceentuated in the combined output. If the output from the balanced modulators is high emough, such an SSB exciter can work directly into the antemna, or the power level an be inereased in a following amplitier.

Iroperly adjusted, cither system is capable of good results. Arguments in favor of the filter system are that it is somewhat easior to adjust without an oscilloseope, since it reguires only a reeriver and a v.t.v.m. for alignment, and it is more likely to remain in adjustment over a long period of time. The chicf argoment against it, from the amstcur viewpoint, is that it requires quite a few stages and at least one frequence conversion after modulation. The phasing system requires fewer

Fig. 12-3 - Two hasie syatems for generating single. sidehand suppresederarrier signals.
stages and can be designed to require no frequeney conversion, but its aligmment and adjustmont areoften considered to bea little "trickier" than that of the filter shstem. This probably stemmed from lack of fiuniliarity with the system rather than any actual difficulty, and now that commercially-availablo preadjusted audio-phasing notworks are available, most of the alignment difliculty has been eliminated. In most cases the phasing system will cost less to apply to an existing transmitter.

Regardless of the mothod used to generate a NiB signal of 5 or 10 watts, the minimum cost will be found to be higher than for an A.M transmitter of the same low power. IFowever, as the power level is inereased, the sisl transmitter becomes more economical than the AMI rig, both initially and from an operating standpoint.

AMPLIFICATION OF SSB SIGNALS

When an sisB wignal is generated at some frequence other than the oprating frequenes; it is necessary to change frofueney by heterodyne methots. These are exactly the rame as those used in reeoivers, and any of the normat mixer or converter circuits can be used. One exeeption to this is the case where the original signal and the hoterodyning oscillator are not too different in fredurney (as when heterodyning a $20-\mathrm{ke}$, signal to mon ke.) and, in this case, a balaneod mixer should be used, to eliminate the hoterodyning oscillator frequener in the output.

To incroase the powor lowel of an Sill signal, a linear amplifier must bo used. The simplest form of limat amplifier (r.f. or andio) is the ('lass A amplifier, which is used atmost without exeception throughout receivers and low-level sperech equipment. While its linoarity can be matle relatively good, it is ineffieient. The theoretieal limit of offiemery is ander eent, and most practical amplifiers run $25-35$ per econt efficient at full output. At low lovels this is not worth worrving alout, hut when the 2- to 10 -watt level is exeoeded something else must be done to improve this efficieney and reduce tube, powersupply and oprrating costs.
('lass 113_{1} amplifiers make exeollent linear amplitiers if suitable tubes are sededed. Primary advantages of (lass $A B_{1}$ amplifiers are that they give much greater output than straight Class A amplifiers using the sime tubes, and they do not require any grid driving power (no grid current drawn at any time). Athough triodes can be used for (dass AB1 operation, tetrodes or pentodes are usualle to be preferred, since (latss $.1 B_{1}$ operation requires high poak plate current without grid current, and this is casior to obtain in tetrodes and pentodes than in most triodes.

To obtain maximum output from tetrodes, gentodes and most triodes, it is neressary to oparate them in (Miss $.1 B_{2}$. . Wt hough this produres maximum peak output, it increases the drivingpower requirements and, what is more important, requires that the driver regulation (ability to matintatin wateform under varring load) be good or exocllent. The usual mothod to improve the driver regulation is to add fixed resistors aneross the grid cireuit of the drivern stage, to offer a loal to the driver that is modified only slightly he the additional load of the tube when it is driven into the gridedurrent region. This inereases the driver's output-power requirements. Purther, it is desirable to make the grid cirruit of the Class AB3 stage a high-e cirreut, to improve regulation and simplify coupling to the driver. i "stiff" bias soure is also required, sine it is important that the bias rematin constant, whether or not grid current is drawn.

Class B amplifiers are theoretically capable of 78.5 por went efficioney at full output, and practical amplifiers run at $60-70$ per cent efliciency at full output. Tubes nomally designed for (?ass 13 andio work can be used in r.f. linear amplifiers and will operate at the same power rating and
cfficiency provided, of course, that the tube is capable of operation at the radio frequener. The oprerating eonditions for r.f. are substantially the same as for audio work - the only difference is that the input and output transformers are replaced by suitable ref. tank eireuits. Further, in r.f. circuits it is readily possible to operate only one tube if only half the power is wanted - pushpull is not a nereosity in (lass is r.f. work. However, the r.f. harmonics will be higher in the case of the single-ended amplifier, and this should be taken into consideration if TVI is a problem.

For proper operation of Class 13 amplifiers, and to reduce harmonies and facilitate coupling, the input and output circuits should not have a low C-to-L ratio. A good guide to the proper size of tuning condenser is ligs. 6-9 and 6-17 and, in case of tony doubt, it is well to be on the higheapacity side. If zero-bias tubes are used in the Class 13 stage, it may not be neerssary to and mueh "swamping" resistance across the grid cireuit, beemse the grids of the tubes load the cireuit at all times. Howerer, with other tubess that reguire bias, the sivamping resistor should be such that it dissipates from five to tern times the power reguired be the grids of the tubes. This will insure an atmost eonstant load on the driver stage and good regulation of the grid voltage of the ('lass 13 stage.
Before going inte dotail on the adjustment and loading of the linear amplifier, a few general considerations should be kept in mind. If proper operation is expereted, it is essential that the amplifier be so constructed, wired and noutratized that no trace of regeneration or parasitie instability remains. Needless to sty, this also applies to the stages driving it.

The bias supply to the Chass 13 linear amplifier should be quite stiff, such as batteries or some form of voltage regulator. If nonlinearity is notired when testing the unit, the bias supply may be cherked by means of a large electrolytie eapareitor. Simply shunt the supply with 100μ fl. or so of caparity and see if the linearity improves. If so, rebuild the bias supply for better regulation. Do nol rely on a large comalenser alone.
Where tetrodes or pentodes are used, the soreen supply should have good regulation and its voltage should remain constant under the varying rurrent demands. If the maximum sereen eurrent dons not exceed 30 or 35 mst, at string of VIR tubes in series con be used to regulate the sereen voltage. If the eurrent demand is higher, it maty be necessitry to use atn electronically-regulated power supply or a heavily-hled power supply with at rurrent capacity of several times the current demand of the sereen circuit.
Where VR tubes are used to regulate: the: sereen supply, they should be selected to give a regulated voltage as close as possible to the tube's rated voltage, bat it does not have to be exact. Minor differenses in idling plate rurrent can he made up her radjusting the grid bias.

From the standpoint of ease of adjustment and availatility of proper operating voltages, a linear
amplifier with (lass AB, tetrodes or pentodes or one with zoro-bias (lans 13 triodes would be first choice. The (lases 13 amplifier would require more driving power. (For examples of Class Al_{1} tetrode amplifiers, see Russ. "The 'Little Firerracker' Limear Amplifier," (SS'T, September, 195:3, and liekhardt. "The Single Side-saddle Linear," (SSI', November, 1953.)
"lable 12-1 lists a few of the more popular tubes eommonly used for sisk linear-amplifier operation. Wxerpt where otherwise noted, these ratings are those given by the manufacturer for atudio work and and as surh are based on a sine-wave signal. These ratinge are adequate ones for use in NiSk amplifier design. but they are eonservative for surh work and henee do bot weressarily rep)resent the maximum powers that can be obtained from the tubes in voice-signal sish service. In no ease should the averuge plate dissipation lse exreeded for any ronsiderable length of time, but the mature of a ssils signal is such that the average plate dissipation of the tube will run well below the peak plate dissipation. Ilence in Ssis oferattion the peak plate dissipation maty exceed the average by several times.

Getting the most out of a linear amplifier is done by increasing the peak power without exreeding the average plate dissipation over anco appreriable length of time. This can be done by rasing the plate voltage or the peak current (or both), provided the tube man withstand the inerease. For example, the 6146 is shown with 750 volts maximum on the plate, and it is quite likely. that this can loe increased to 900 or 1000 volts without any appreciable shortening of the life of the tube. However. the mandiaturers have not released any data on such operation, and any extrapolation of the atudio ratings is at the risk of the amateur, $\lambda: 35$ - to 50 -prer ent increatice atove plate-voltage ratinge should be porfectly safe in most eases. In a tetrode or pentode, the peak plate current ean be boosted some by raising the sereen voltage.

When rumning a linear amplifier at considerably. higher than the audio ratings, the "two-tome test signal" (deseribed bedow) should nevor be applied at full amplitude for more than a few seronds at any one time. The above statemonts about working tubes above ratings applon only when a voice signal is used - a prolonged whistle or two-tone test signal may damage the tuler.

Adjustment of Amplifiers

The two eritical aljustments for obtaining proper operation from the linear amplifier are the plate loading and the grid drive. Since these atljustments are proforahly made with power on, it is a matter of pratieal eonvenience to have both controls reatily available, at least during initial tune-up.

The 'seoper can show misadjustment at a glance and will greatly facilitate all adjustments. In addition, it is the most reliable instrument for observing modulation amplitude and, once used, is likely to broome the most nearly essential instrument in the shatek.

With single sideband, 100 per eent modulation with a single tone is a pure r.f. output with no modulation envolope, and the point of amplifier overload is difficult to observe. Howerer, if the input signal eonsists of two sine waves of different frequencies (for example, 1000 e.p.s. difference) but equat amplitudes, the output of the singlesidchand tramsmitter should have the envelope shown in Fig. 12-4. This is called a "two-tone" test signal to distinguish it from other test signals. lts first advantage lies in the fact that any flattening of the positive peaks is readily disecrnible, which makes the adjustment of the linear-amplifier drive and output eoupling ase simple a proredure as that for A.M systems. Flattening of the praks (to be avoided) is illustrated in Fig. 12-5.

Those who use the filter mothod for obtaining single-sidehand signats ean obtain sueh a test signal by mixing the output of two audio oveillattors of good waveform. The experimenters using the phasing method of single-side-hand signal generation will recognize the pattern as that ohtained when a single test tome is applied to one of the halaned modulators. For this latter group a two-tone tost signal may be readily obtained be disabling one of the balaned modulators in the exciter and applying a single input tone.
suppose that the linear amplifier has been coupled to a dummy load and the single-sidehand exriter has beon eonnected to its input. 3 . oh or serving the oseillosoope coupled to the amplifier output, it will be possible to adjust the drive and output coupling so that the peaks of the two-tone test signal waveform are on the verge of flattening. The peak input power maty now be ehecked. This is readily possible, for with the twortone test

Fig. 12-1-Oscillogram of a two-tone test signal through a linear amplifier.

Fig. 12.5 - Flattening cansed by overdrive or in. suflicient pate loading.

Fig. 12-6- Tha' distorted pattern obtained when the hias voltage is ingorment.

TABLE 12－I－LINEAR－AMPLIFIER TUBE－OPERATION DATA
Except where otherwise noted，ratings are manufacturers＇for audio operation．Volues given ore for one fube．Driving powers represent fube losses only－circuit losses will increose the figures．

Tube	Closs	Plate Voltoge	Screen Voltoge	D．C．Grid Volloge	Zero－Sig． D．C．Plate Current	Max．－Sig． D．C．Plote Current	Zero－Sig． D．C． 5 creen Current	Max．－Sig． D．C．Screen Current	Peak R．F． Grid Vollage	Max．－Sig Avg．Grid Current	Max．－Sig． Avg．Driving Power	Max，－Roted Screen Dissipotion	Max．－Roted Grid Dissipotion	Avg．Plate Dissipation	Max．－Sig． Useful Power Oulput
$2 E 26$	A_{1}	250	200	-14	35	42	7	10	14	－	0	2.5		10	5
	AB：	$\begin{aligned} & 400 \\ & 500 \end{aligned}$	$\begin{array}{r} 125 \\ 125 \\ \hline \end{array}$	$\begin{array}{r} 15 \\ -\quad 15 \\ \hline \end{array}$	$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$		$\begin{aligned} & .2 \\ & .2 \end{aligned}$	$\begin{aligned} & 25 \\ & 2.5 \end{aligned}$		$\begin{aligned} & 10 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 21 \\ & 27 \end{aligned}$
6146	AB_{1}	$\begin{aligned} & 600 \\ & 750 \end{aligned}$	$\begin{array}{r} 200 \\ 200 \\ \hline \end{array}$	$\begin{array}{r} -\quad 50 \\ -\quad 50 \\ \hline \end{array}$	$\begin{aligned} & 26 \\ & 29 \end{aligned}$	$\begin{aligned} & 120 \\ & 114 \end{aligned}$	$\begin{aligned} & .6 \\ & .5 \end{aligned}$	$\begin{aligned} & 13 \\ & 14 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	－	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} \mathbf{3} \\ \mathbf{3} \\ \hline \end{array}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 47 \\ & 60 \end{aligned}$
	AB_{2}	$\begin{aligned} & 600 \\ & 750 \end{aligned}$	$\begin{aligned} & 185 \\ & 165 \end{aligned}$	－ 50 -45	$\begin{aligned} & 21 \\ & 18 \end{aligned}$	$\begin{aligned} & 135 \\ & 120 \end{aligned}$	$\begin{aligned} & .5 \\ & .3 \end{aligned}$	$\begin{aligned} & 15 \\ & 11 \end{aligned}$	$\begin{aligned} & 57 \\ & 51 \end{aligned}$	$\begin{aligned} & .4 \\ & .4 \end{aligned}$	$\begin{array}{r} .02 \\ .02 \end{array}$	$\begin{aligned} & 3 \\ & 3 \\ & \hline \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 58 \\ & 65 \end{aligned}$
$\begin{aligned} & 807 \\ & 1625 \end{aligned}$	AB ${ }_{2}$	$\begin{array}{r} 600 \\ 750 \end{array}$	$\begin{aligned} & 300 \\ & 300 \end{aligned}$	$\begin{array}{r}\text {（ } 30 \\ -\quad 32 \\ \hline\end{array}$	$\begin{array}{r} 30 \\ 26 \end{array}$	$\begin{array}{r} 100 \\ 120 \\ \hline \end{array}$	$\begin{array}{r} .4 \\ .3 \end{array}$	$\begin{aligned} & 6 \\ & 8 \end{aligned}$	$\begin{aligned} & 39 \\ & 46 \end{aligned}$		$.1$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$		$\begin{aligned} & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & 40 \\ & 60 \end{aligned}$
811.4	B	$\begin{aligned} & 1000 \\ & 1250 \\ & 1500 \end{aligned}$	$=$	$\begin{array}{r} 0 \\ 0 \\ -\quad 4.5 \\ \hline \end{array}$	$\begin{aligned} & 22 \\ & 27 \\ & 16 \end{aligned}$	$\begin{aligned} & 175 \\ & 175 \\ & 157 \\ & \hline \end{aligned}$		－	$\begin{aligned} & 93 \\ & 88 \\ & 85 \end{aligned}$	13	$\begin{array}{r} 3.8 \\ 3.0 \\ 2.2 \end{array}$			$\begin{aligned} & 65 \\ & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 124 \\ & 155 \\ & 170 \end{aligned}$
4．65A	$A^{\prime}{ }_{1}$	$\begin{aligned} & 1000 \\ & 1500 \\ & 1750 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \\ & 500 \end{aligned}$	$\begin{aligned} & -85 \\ & -85 \\ & -90 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & 85 \\ & 90 \\ & 85 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 12 \\ 7 \\ 9 \end{array}$	$\begin{aligned} & 85 \\ & 85 \\ & 90 \end{aligned}$	\square	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$		$\begin{aligned} & 45 \\ & 63 \\ & 62 \end{aligned}$	$\begin{aligned} & 40 \\ & 73 \\ & 88 \end{aligned}$
	AB_{2}	$\begin{aligned} & 1000 \\ & 1500 \\ & 1800 \end{aligned}$	$\begin{array}{r} 250 \\ 250 \\ 250 \end{array}$	$\begin{array}{r} -301 \\ -\quad 351 \\ -\quad 351 \end{array}$	$\begin{aligned} & 30 \\ & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 150 \\ & 125 \\ & 110 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 23 \\ & 15 \\ & 13 \end{aligned}$	$\begin{array}{r} 105 \\ 100 \\ 90 \end{array}$		$\begin{aligned} & 2.5 \\ & 1.6 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 65 \\ & 63 \\ & 63 \end{aligned}$	$\begin{array}{r} 85 \\ 125 \\ 135 \end{array}$
	B ${ }^{\text {a }}$	$\begin{aligned} & 1500 \\ & 2000 \\ & 2500 \end{aligned}$	$\begin{aligned} & 300 \\ & 400 \\ & 500 \end{aligned}$	$\begin{array}{r} 50 \\ -75 \\ -100 \end{array}$	$\begin{aligned} & 33 \\ & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & 200 \\ & 270 \\ & 230 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 35^{3} \\ & 50 \\ & 35^{3} \end{aligned}$	$\begin{aligned} & 190 \\ & 270 \\ & 300 \end{aligned}$	$\begin{array}{r} 13 \\ 17 \\ 6 \end{array}$	$\begin{aligned} & 2.4 \\ & 4.6 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 60 \\ & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 150 \\ & 300 \\ & 325 \end{aligned}$
813	AB_{2}	$\begin{aligned} & 2000 \\ & 2250 \\ & 2500 \end{aligned}$	$\begin{aligned} & 750 \\ & 750 \\ & 750 \end{aligned}$	$\begin{array}{r} -90 \\ -90 \\ -95 \end{array}$	$\begin{aligned} & 20 \\ & 23 \\ & 18 \end{aligned}$	$\begin{aligned} & 158 \\ & 158 \\ & 180 \end{aligned}$	$\begin{array}{r} .8 \\ .8 \\ .6 \end{array}$	$\begin{aligned} & 29 \\ & 29 \\ & 28 \end{aligned}$	$\begin{aligned} & 115 \\ & 115 \\ & 118 \end{aligned}$		$\begin{aligned} & 1 \\ & .1 \\ & .2 \end{aligned}$	$\begin{aligned} & 22 \\ & 22 \\ & 22 \end{aligned}$		$\begin{aligned} & 100 \\ & 100 \\ & 125 \end{aligned}$	$\begin{aligned} & 228 \\ & 258 \\ & 325 \end{aligned}$
4－125A	AB_{1}	$\begin{aligned} & 1500 \\ & 2000 \\ & 2500 \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \\ & 600 \end{aligned}$	$\begin{array}{r} -901 \\ =94 \\ -961 \end{array}$	$\begin{array}{r} 30 \\ 25 \\ 25 \end{array}$	$\begin{aligned} & 111 \\ & 120 \\ & 116 \end{aligned}$	-.5 $=.3$ -.2	$\begin{aligned} & 9 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 90 \\ & 94 \\ & 96 \end{aligned}$	$=$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \end{aligned}$		$\begin{array}{r} 88 \\ 125 \\ 125 \end{array}$	$\begin{array}{r} 79 \\ 115 \\ 165 \end{array}$
	$\mathrm{AB}_{\text {？}}$	$\begin{aligned} & 1500 \\ & 2000 \\ & 2500 \end{aligned}$	$\begin{array}{r} 350 \\ 350 \\ 350 \end{array}$	$\begin{aligned} & -41 \\ & =45 \\ & -43 \end{aligned}$	$\begin{aligned} & 44 \\ & 36 \\ & 47 \end{aligned}$	$\begin{aligned} & 200 \\ & 150 \\ & 130 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 17 \\ 3 \\ 3 \end{array}$	$\begin{array}{r} 141 \\ 105 \\ 89 \end{array}$	$\begin{aligned} & 9 \\ & 7 \\ & 6 \end{aligned}$	$\begin{gathered} 1.25 \\ .7 \\ .5 \end{gathered}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 125 \\ & 125 \\ & 122 \end{aligned}$	$\begin{aligned} & 175 \\ & 175 \\ & 200 \end{aligned}$
4－250A	$A^{\text {B }}$ ，	$\begin{aligned} & 1500 \\ & 2000 \\ & 2500 \\ & 3000 \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \\ & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & -95 \\ & -104 \\ & -110 \\ & -116 \end{aligned}$	$\begin{aligned} & 60 \\ & 55 \\ & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 200 \\ & 203 \\ & 215 \\ & 209 \end{aligned}$	$\begin{aligned} & =.2 \\ & =.2 \\ & =.2 \\ & -\quad .1 \end{aligned}$	$\begin{array}{r} 12 \\ 11 \\ 7 \\ 5 \end{array}$	$\begin{aligned} & 64 \\ & 88 \\ & 90 \\ & 93 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 35 \\ & 35 \\ & \hline \end{aligned}$		$\begin{aligned} & 145 \\ & 175 \\ & 225 \\ & 250 \end{aligned}$	$\begin{array}{r} 155 \\ 230 \\ 313 \\ 375 \end{array}$
	AB_{2}	$\begin{aligned} & 1500 \\ & 2000 \\ & 2500 \\ & 3000 \\ & \hline \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \\ & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & -48 \\ & =481 \\ & =53 \end{aligned}$	$\begin{aligned} & 50 \\ & 60 \\ & 60 \\ & 63 \end{aligned}$	$\begin{aligned} & 243 \\ & 255 \\ & 250 \\ & 237 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 17 \\ & 13 \\ & 12 \\ & 17 \end{aligned}$	$\begin{array}{r} 96 \\ 99 \\ 100 \\ 99 \\ \hline \end{array}$	$\begin{aligned} & 11 \\ & 12 \\ & 11 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.2 \\ & 1.1 \\ & 1 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{array}{r} 150 \\ 185 \\ 205 \\ 190 \\ \hline \end{array}$	$\begin{aligned} & 214 \\ & 325 \\ & 420 \\ & 520 \end{aligned}$
3047L	$\mathbf{A B}_{1}$	$\begin{aligned} & 1500 \\ & 2000 \\ & 3000 \end{aligned}$	－	$\begin{array}{r} -105 \\ -160 \\ -260 \\ \hline \end{array}$	$\begin{array}{r} 135 \\ 100 \\ 65 \\ \hline \end{array}$	$\begin{aligned} & 286 \\ & 273 \\ & 222 \end{aligned}$	－	二	$\begin{aligned} & 105 \\ & 160 \\ & 260 \end{aligned}$	二	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	二		$\begin{aligned} & 300 \\ & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & 128 \\ & 245 \\ & 365 \end{aligned}$

Adjust to give stated zero－signal plate current
Single－sideband suppressed－carrier linear amplifier ratings，vaice signal．
Due to intermittent nature of vaice，average dissipation is considerobly less than max．－signal dissipation
signal applied, the prak input power will be 1.57 times the d.e power input to the linear amplifier. should this be different from the design value for the particular linear amplifier, the drive and loading adjustments can be quickly changed in the proper direction (always adjusting the loading so that the peaks of the envelope are on the verge of flattening and the proper value reached.

As a final cherk, before eoupling the lincar amplifier to the antemat, the singlo-sideband operator will do well to checek the linearity of the system, since distortion in the linear amplifior probably will result in the generation of sidebands on the side that was suppressed in the exeiter. Here again the two-tone test signal will be of great help, since distortion of the sighal will be readily recognized. A check of the bits supply hats already been recommodeded. The next most likely form of distortion will be caused bey curvature of the tube characteristie near cut-off, and will be recognizable from a two-tone test pattern that looks like Fig. 12-ti, A slight readjustment of has (or applying a fow solts of positive or negative bias, in the came of zero-bias tubes) will nsually straighten out the kink that exists where the pattern erosses the zero axis. Make this addjustment with sperial care, howerer, becatuse the dissipation of the tuber with no input signal will be very sensitive to this adjustmont. There are a fow tubes that will not permit this adjustment to be carried to the point where the kink is entirely eliminated without exceding the rated plate dissipation.

The anteman maty now be coupled to the linear amplifier until the plate input with the exeitation as determined above is the same as that obtained with the dummy load. The sestem has now heron adjusted for optimum performanere, although it is well to monitor it with a seope.
(For further reading on lincar amplifiers, soe I ong, "sugar-Coated Lincou-Amplifier Theorv," (QN'T, October, 1951 , and Whrlieh, "How To Test and Align a Linear Amplifier," (QNTT, May, 1952.)

VOICE-CONTROLLED BREAK-IN

Although it is possible for two Sisl3 stations operating on widely different frequencies to work "duplex" if the carrior suppression is great roongh (inadequate carrier suppression would be a violation of the $\mathrm{F}(\mathrm{C}$ males), most sisl operators prefer to use voice-controlled break-in athd operate on the same frequenes. This overcomes any posibility of violating the FCC rules and permit, three or more stations to engrge in a "round table."

Many various sustems of voice-controlled break-in are in use, but they are all basically the s:ame. Some of the audio from the spereh amplifier is amplified and rectified, and the resultant d.c. signal is used to key an oscillator and one or more stages in the sisil transmitter and "blank" the reroiver at the time that the transmitter is on. 'lhus the dramsmitter is on at any and all times that the operator is spoaking but is off during the intersals betweren sentemes. The voice-control circuit must have a small amount of "hold" built into it, so that it will hold in between words, but it should be made to turn on rapidly at the slightest voice signal coming through the sperech amplifier. Both tube and relay keyres have been usent with good sucerss. Most voiee-sontrol sustems require the use of headphones by the operator, but a loudspacaker can be used with the proper rircuit. (Sce Nowak, "Voiec-Controlled Break-In . . . and a Loudspeakor," QST', May. 1951, and Hunter, "Simplified Voice Control with a Loudspeaker," (QST', Oetober, 1953.)

A Phasing-Type SSB Exciter

The exciter shown in Figs. 12-7, 12-! and 12-12 is an excellent unit for the amateur who might like to try single-sideband with a minimum of cost and cffort, It requires r,f. driving power from onmes present exeiter and a power supply. It will Woliver sisk output in the $3.3-$ Me. 'phone band, dither to an antema for locel work or to an r.f. amplifier atjusted for linear operation. The operating freguence can be varied over a wide range without seriously impairing the atjustmont. Provision is made for tramsmitting either the mpere or the lower sideband.

The schematic of the exciter is shown in big. 12-8. Four (ive tubes are used as babanced moxulators. The plate rireuit of the balaned modulators uses a push-pull-parallel arrangement. The grids of one pair of balanced modulators are ford through a phase-shift network romsisting of a 300 -ohm resistor and an inductance that is antjustable to 300 ohms reactance at the operating frequence. The grids of the second pair of balanced modulators are fed through a phase-shift
network consisting of a 300 -ohm resistor and a condenser which is adjustable to 300 ohms reartance at the operating frequency. The input impedance of the two phase-shift networks in paraillel is 300 ohms.
lath babaned-modulator tube grid is fed through a blocking condenser and provided with grid-leak bias. The bias eircuit of earh batatued modulator is made adjustable for control of the carricr suppression. Drovision is also made for the addition of fixed biats, in case the exeiter is ured in a voice-controlled aircuit where the r.f. excitation is removed during listening periods.
sorem modulation is used, and the sercen of each modulator tube is be-patsed to ground for r.f. A transformer with a center-tapped seeondary is used in the output of each audio amplifier to provide push-pull modulating voltages.

A reversing switeh, S_{1}, allows switehing to either the upper or lower sideband. If this switeh has a renter "off" position, it will facilitate using the "two-tone test" procedure mentioned earlier.

Fig． $12-\vec{\circ}-\mathrm{A}$ small single－sill hand exciter that in－ chudes voice－controlled break－in．Receiving－type tubes are used throughemut．

Wierophone ingut and andin gain eontrol are at the left hand side of the froml－the switch select－the uniner or lower sideland．（Revised version，$\| 2 \mathrm{~L} N J$ ，Aug．， 1949，（0゙げ）

A voltage divider is inserted het ween eath output of the andio phase－shift network and the corre－ sponding amplifier grid．（）ne of these voltage dividers is made variable t a provide for balaneing of the two adudio chamels．The network constants are compensated for the load of these dividers．

Speech Amplifier and Voice Control

The spereh amplifier is designed to attenmate both low and high frequencies，amplifying only： the audio range required for good intelligibility： The wiring diagram is shown in Fig．12－11．The output of the sprech amp：ifior is coupled to the input of the audio phase－shift network through a trabsformor with a center－tapped secondary，to provide push－pull audio fin the phasershift net－ wowk．

Part of the cutput of the speech amplifier is taken off through an aljustable voltage－divider cireuit and bheking condenser to the voice－ eontrol eireuit．There it is rectified bey the diontes of the tive（2），and the resulting d．c．Voltage is used to charge Cu negative．An audio ehoke prevernts audio eomponents from appearing across G_{14} ． ＂The triode soetion of the fise（e＂is nomatly con－ ducting and holding the relay elosed，hat when the negative voltage appeats across C_{14} the
 When the andio signal is removed，Cut discharges through h_{15} and the triode again conducts，closing the relay．

The Audio Phase－Shift Network

The audio phase－shift network requires elose matehing of resistance and capacity values and， to）do this ecomonically，advantage is taken of the fact that resistoms amb enodemsers in junk boses and in stork at lowal deaters vary con－ siderably from their nominal values．

Trable $12-11$ is used in sitlecting the network components．The proeedure is to colledt ats many resistors and combonsers as possible with mominal values as indicated in the serome column of the
chart．Measure atl of the condensers first，and sillect the six confensers whose measured values are closest to the＂target values＂in the third rolumn．Finter the measured values of these con－ densers in the fourth eolumn of the chart．Then rateulate the＂target values＂for the resistors and select the six resistore whose measured values are closest to these target values．

A capacity bridge，of the type used by serviec－ mon，and a good ohmmeter should give sufficiont accuracy in seloeting the network components． Absolute accurace is not important，if the com－ ponentsare all in eorrect proportion to each other． I difference in preventage crror between the re－ sistane metsurements and the capacitance meas－ urements will merely shift the operating range of the network．The network eomponents are mounted on a small sheet of insulating material to facilitate wiring．

Networks already adjusted are available through radio dealers－they cam be used in this exciter to simplity the construction．The ner－ essary circuit modifications for using a com－ mercial network are shown in Fig．12－10．

Construction

The exciter and its associated audio equipment ate assembled on at $1: 3$ by 17 her 2 －inch aluminum chassis．The four bVe balanced－modulator tubes are arranged in a souare pattern toward the front ernter of the chassis，with the plate tuning con－ denser and coil off to one site and the tikitatio amplifier tubes on the other．The two modulation transformers are under the chassis directly below the plate tuning condenser．The speech amplifier is arranged along the left－hand side of the chassis， with the fosit at the rear and the output trans－ lonmer on the top of the ehassis at the front．The audio phase－shift network is below the output transformar．

The reactive components of the r．f．phasing notwork，L_{1} and C° ，are mounted in a plug－ia

TABLE 12－H Phase－Shift Network Design Data			
I＇art	$\begin{aligned} & \text { Nomimal } \\ & \mathbf{I}_{\text {alue }} \end{aligned}$	Target 1 aluar	Meysured I＇alue
Cil	0.001	（1）．19010．	（ imb）$^{\text {a }}$
C	0.0113	11.00210	（Cim2）
（\％）	0.016	13，016．30	（ C （im3）
Cis	0.0015	11，0015	（ CiH_{4} ）
（ 8	0.01	0.009 .01	（Cims）
（if	0．0．3	0.1108 .7	（Cim6）
R_{1}	1011，0011	1161	
N_{2}	S11，01001	Cin1 10.5 10	
μ_{3}	1．5，0106	$\begin{aligned} & \overline{\left(m n_{2}\right.} \\ & \underline{1001}= \end{aligned}$	
R_{1}	1000,1000	$\operatorname{lim3}$ $\operatorname{lin} 3$ $=$	
R	．710．000	Cim4 1.6 1.6	
Rod	（i．， 1104	$\frac{\sqrt{(.115}}{\frac{1.3}{1.1166}}=$	
All tondensers mica，all resistors ！watt．			

shichd e:m that momets diverty behind the balaned-modulatar whes. "The" shiold rath is grounded to the chassis through the spare pins of its plug. The voltage regulator tube is mounted to the left of the shield eam, and the tise p^{7} voidecontrol tube is to the right. The componants in the veiee-eontrol cirenit are momened under the chassin at the rear.

Associated Equipment

'The r.f. input imperdance of the exciter is 300 ohms, but a link line of hower chatacteristic impedance will operate satisfactorily for the short distamor usually moquired. A motans for
adjusting the r.f. driving power is desirable. A surplas ($o m m m a d$ set trantimittor (BC-bith or 'T-1! AlR(--i), onerating al low plate voltagns, makes an ideal r.f. soured, but any VPO or erstal oscillator with a few watts output will do.

The plate voltage for the spereh amplifier must not be taken from the same point in the power supply that furnishes voltage for the 6 Kk : amplifiors, since interaction may oreur that will upset the phase relationship at the output of the two blifos. If separate plate voltage sources are not available, an added filter section maty be used to isolate the voltage to the speech amplifier.
'The built-in voier-controlled relay' ean be used

frig. $12-8$ - (irnuit diagram of the single-sideband expiter.

 $1000 \mu \mathrm{fl} .: 11 \mathrm{Mc}$: $3 . \mathrm{S} \mu \mu \mathrm{fd}$.
C_{8} - Apprux. W0- $\mu \mu \mathrm{fl}$. per section, b.c. receivar tuning comdenser.
Co - $0,(00)-\mu \mathrm{fd}$. 10000 -sole mica.

$R_{1}-R_{B}$-sier Tablue 12-II.
 parallel).
$R_{9}-0.5$-megolim linear volame control.
$\mathrm{R}_{10}-0.47$ megohm.
R_{11} - $0 . \mathrm{T}$. mecohm.
$\mathrm{R}_{12}-0.24$ megohm.
$\mathrm{R}_{13}-\mathrm{R}_{18}-\mathrm{lo}, \mathbf{0 (1 0)}$ ohms.

$\mathrm{h}_{19}-7.500$ ohmis, 10 watts.
R_{20}. R_{21} - 681 ohmme, 2 watts.
IIl resistors 1-watt maless poncified otherwise.

7 Vr: 18 thrns No. 20 enam.
if Mc: I 2 urns No. 20 rnam.
IIf coils clowe-wound at mominting end of siot of Dational XR-s0 slug-tuned form.
 link (Bud (IIS-40).

- Mc: : On-metor $\overline{\mathrm{n}}$-watt tank enil with swinging linh (Bud OIN-20).
14 Me.: $1 \overline{5}-$ meter $\overline{5}-$ watt tank eoil with swinging link (13nd OLS-1.).
12 $\mathrm{FC}_{1}-2.5 \mathrm{mh}$. r.f. chohe.
$S_{1}-1$.p.d.t. togigle, preferally with center off. See civt.
$\mathrm{T}_{1}, \mathrm{~T}_{2}$ - B-watt modulation transformer, 10,000 ohms c.1. to 1000 ohms (S tancor A-3812).
in a number of wate to provide the rapid voied braak-in eommonly used on 3.!1-Ma. SSB 'phome. If a good cow. brak-in sostom is alromly in use at the station, the voice-eontwol relay eondiats may be substituted for the key, and no whor changes are necessary.

If the local oscillator in the receiver will key in the plate voltage lead satisfactorily, then a simple voice break-in system may be ohtained

Fig. 12-9- Λ rear view of the phating-type exciter. The two r.f. phasing adjustments project from the shirld ran. The potentiometer shaft at the left sets the voice-exntrol threshold level. The jark is for the keyed cirenit, the r.f. connector takes the excitation eable, and the octal socket is for the power cable.
by using the relay contacts to shift the plate voltaige from the receiver local oscillagor to the VFO. A drifting receiver oscillator must be avoided in this system, however.

Operating Conditions

If voice control is mot used, and d.c. operating voltuges are removed when excitation is removed for stathd-by, then mo fixed bias is required on the balanced modulators and a jumper can be plawed aeross the biat terminals. When exeitation is romoved with d.c. voltages applied, as in voicecontrolled operation, then 4 , volts of fixed bias shoukd be used to limit the plate and sereen currents on the balaneed modulators.

With 400 volts applied to the balinneed-modulator plates and 250 volts to all other plate : anpply inputs, the operating currents will be approximately as follows:
$\begin{array}{ll}\text { Total balanecd-modulator plate current } & 8.3 \text { ma. } \\ \text { VR tube suphy current } & 20 \text { ma. } \\ \text { Total 6k6 amplifirr eurrent } & 02 \text { ma. } \\ \text { Total speech-amplifier current } & 12 \text { ma, }\end{array}$
The total balanced-modulator grid current, measured at the bias forminals, will vary with excitation, but it shoudd be in the range 3 to 5 mat.

These currents will not change appreciably with varying audio input and, with the exception of the grid current, will not change appreciahly when the excitation is removed, provided that $41 / 2$ volts of fixed bias is used on the balancedmodulator grids.
The exeiter may be coupled directly to an antenna for use as a low-power transmitter, but most amateurs will wish to use it to drive a buffer or final amplifier. All stages following the exciter must be operated under Class A, AB, or [3 condi-
tions. In gemeral, the enred aprating eonditions lor stages following the exeiter may he found by reformg to the atulo oproting eonditions for the tube under consideration. (irid-bias and sereon voltages should have very good regulation. For amateur voier operation, tubes may be operated considerably bevond the ratings given in the tube manuals, as diseussod oarlier. When the r.f. amplifer is operated Class . 13_{2}, the grid tank cireuit will require shunting by a resistor in order 10 provide better regulation of the exeiting voltage. The value of this resistor is usually determined hevexperiment. It should be as small as posible ronsistent with grool output and lincar operation.

Adjustment

Adjustment of the exeiter is best made under actual operating eonditions. Comect the excitur to the tramsmitere load the exefore with at dummy lowd, apply r.f. exeitation, foed sine-wave andio into the sperech amplifier, and tume the output tuming comdenser in the conventional way for maximum ontput.

Reduee the audio input to zero, and adjust potentiomoter's R_{17} and R_{18} for minimum carrior output. Minimum carrier output may be detormined by any sensitive r.f. indicator coupled to the final-amplifier plate circuit. A 0-1 milliammeter, in series with a crestal detector and a two-turn eoupling loop, will make a satisfactory indicator. The moter should be br-passed with a $0.00 \cdot \mathrm{~F}-\mathrm{fl}$. comdenser. If a null indication camot be obtained within the range of the potentiometers, the 6 ivi tubes are not evenly matehed. Exchanging the positions of the 6lis may aid in obtaining the batanee, or other tubes may have to be used.

After the carrier balince is obtained, tune in the r.f. source on the station receiver, and with

Fig. $\mathbf{1 2 - 1 0}$ - Circuit revisions for including a commercial phase-shift network in the SSB exeiterof lix. 12-8. PSN N_{1} - I'hase-shift network (Millen -i.ell I'hasing Unit).
$T_{1}-3: 1$ audio transformer, reversed (stancor A-53.(\%).
the antema terminals shorted, and the crestal seloctivity in sharp position, adjust the ervatal phasing to the point where only one sharplypeaked response is obtained as the recoiver is tumed through the signal. Now apply sime-wave audio of about 1 ion-evole frequency to the sperech amplifier, and find the two sidebands on the receiver. Three distinet peak indications will be observed on the s-meter is the receiver is tuned. Set the receiver on the weaker of the two side-

b:ands and : adjust L_{1}, C_{7} and R_{9} for minimum sidehand strength. If suppression of the other sideband is desired, throw st to its other position. A dip ohtained with one set of :aljustments is not neressarily the minimum. Other eombinations should be tried. The final adjustment should give s-moter readings for the two sidehateds which differ by at least 30 ath. The bits voltage on all four balaned modulator tubes will be approsimately equal.

Difer the adjustments hate beon eompleted, the r.f. drive to the exater shombld be adjusted to the point where a decrease in drive will camse :a decrease in output, but an increase in drive will hot cather ath increase in output. The eomplete adjustment procedure should then be rechecked. The rig is then realy for a microphone, an antennt, and anon-theair test.

If an oseilloseope is available, a simpler and more retiable adjustment procodure mity be used. Wither linear or sine-wave horizontal sweep may be used on the oseilloseope. The vertieal input should be compled to the output of the transmitter in the same manner as is used for ohsorving amplitude modulation. The sinc-wave audio-frequency input to the spereh amplifier shoukd be : and convenient multiple of the oscilloscope swerp frequency. A bo-eycle sweep froquency and a boorcyele adudio frequency are commonly used.

Fip. 12.12 - linderneath the ehassis of the exciter. The two potentionnters are the bian balancing montrols, R_{17} and K_{1}.

Fig. 12-I3-Sketches of the oscilloseope face showing different conditions of aljustment of the recitor unit. (1) shows the suhstantially elean carricr ohtained when all aljustments are at optimum and a sine-watse signal is fed to the audio input, (3) shows improper r.f. phase and unhalance between the ontputs of the two halanod modulators. (\mathbf{C}_{0}^{*}) =lows improper r.f. phasing but obiputs of the two balaneed modulators equal. (1)) shows proper r.f, phasing but unbabance between outputis of two bataneed modulators.
loseope maty also be used for continuous monitoring during transmissions to avoid overbotding of any stage of the transmitter. ()verlobding is indicated by a flattening of the morlulation-poak patterns at the top and botom. In ohserving these pattorns, it is diflicult to soparate the efferes of sideland and rarrice suppression. Howevar, considered separately, sideband or carrier suppression of 30 dth. would give a 3 per eront ripple, 25^{5} dth. a ripple of 6 per cont, and 20 db . a 10 per
ront ripple. Harmonies present in the audio modulating signal will modify the results and invalidater this test if they run more than 1 per cent, horner it is essential that the audio signal be as pure as possible.

The cxator is capable of driving athy pair of beam fubes commonly used in amatene transmitters, or any pair of triodes in (lass AB_{1}. A buffer stage will ordinarily be required to drive Class 13 triodes.

A Crystal-Filter SSB Exciter

The exeiter uses a quart $\%$ erystal filtor oprotang at fino ke. (or viefinty). The filter allows a passband of 300 to 3000 eveles: the sideband rejoertion should man 35-60 dh, over 300 to 3000 adeles. At no time within the reject range is the rejocetion lose than 30 dth ; at some places it approaches 60 dh. (rystals suitable for use in the filter are available on the war sumplas market for less thate one dollar earh. The most usoful of these erystals are in the series that runs from 375 to 525 kc . in l.388-ke. stepos; this series is mathed at 72 times the erystal frequeney in a sorios of chammels from 28.0 to 38.0 Ne. The hodder pins hatve ${ }^{2}$.2ind sparing. The crystals maty be serket-mounted or soldared directly inte the filter at the buideres disuretion.

The filter is of bridge design with complex ent ry and terminating sedions. The complex sedetoms are used to suppress the carrier and modify the response chatateteristios of the bridge. Fig. 12-14 shows the filter proper, set for rejertion of the upper sidehand. The transformers T_{1} and T_{2} are replacoment-type $455-k c$ i.f. transformers, mica-tuned and ail-cored.
The original filter was designed to operate at a carrier frepuency of 1.50 ke., although the filter will work at frequencies betwern 425 and $4!00 \mathrm{ke}$. without a!teration of the areuit or transformers. Ender the eondition of dexign for 450-ke. carrier, crystal " 13 " is

Fig. $12-1.1$ - The 450 -kc. erystal filter used for sideloand and carrier rejection.
($1, \mathrm{C}_{2}$, ($\mathrm{A}_{4}, \mathrm{C}_{5}-100$ - $\mu \mu \mathrm{ff}$, miea or ceramic.
($3_{3}-3-10$: 30- μ fifl. ceramid trimmer.
' 1 '1 - 45.5-ke. interstage i.f. transfermer (Meissmer 16-66.59) or Miller $312(2)$.
 For a carrier fromuency of 450 he., the erystals are: (irystal $\quad \|$ () Digh-frest rejert $\quad 1.52 .8 \mathrm{ke}$. $\quad 18.6 \mathrm{ke} . \quad 4.50 .0 \mathrm{he}$, Lew-frict reject $\quad 11: 2 \mathrm{ke} \quad 451.1 \mathrm{ke} . \quad 150.0 \mathrm{ke}$.
2.78 ke , higher than 450 ke, or 2 channels higher in the errstal series. (rystal "C" is 1.39 ke . lower than tin0 ke., or 1 channel lower. Crustal "I)" is 450 ke . (rustal "A," also at 450 ke , is used in a crystal oscillator to generate the initial earrier. (hammel makings on these ervatals are as follous:

$$
\begin{aligned}
& \text { "A" - 32.1 Mr., ("hammel 324 } \\
& \text { "B" } 32.6 \text { Mc., ('hammel } 326 \\
& \text { "(") -32.3 Mc., ("hannel 323 } \\
& \text { "1)" - 32.4 Mr., ('hammel } 324
\end{aligned}
$$

Any other group within the range of the i.f. transtormers may be utilized; only the ehammel relationship need be retained.

I diagram of the exditor proper is shown in Fig. 12-15. The blis hoxometriode sorves as t. 0 - k es. oscillator and audiomixer. Approximately. 3 volts of atedio is required at the signal grid of

(:x-l(0) $\mu \mu$ fil. variable air condenser, monnted in shield can with I 1 .
C $9-0.02 \cdot \mu \mathrm{ffl}$. 600 - volt mica.
(ino-0.01- μ fld. 100 . wolt paper.
Cx - l'rimumers in $\%_{3}$.
$R_{1}-1 I_{17}$ memohm.
$\mathrm{R}_{2}-2.20$ ohms.
$R_{3}, R_{11}-20,000$ onlmen, I watt.

$\mathrm{K}_{6}, \mathrm{IR}_{7}, \mathrm{R}_{8}-10,001$ ohms.
the GK8 for optimum results. The GK8 delivers al carrier (450 ke .) and sidelands to the input of the filter. The filter rejects one sideland (dopending upon the selection of (erystals) and delivers singlo-sidehand energy to the (isNo mixer. The filter also suppresses the earrier, The (6SN C mixer combines the single sideland energy (in the vieinity of $4 \overline{0} 0 \mathrm{ke}$.) with the output of the
 provered in the output (3850 to 4000 ke). I VFO signal of about if to 8 volts is required. The output of the mixer is fed to the grid of at Class A GA(is luned r.f. amplifier. The output is sufficient to drive a pair of 807s (latss ABo. Operation on 10) and 20 motets can be aceomplished by hetorodyning again to the desired bathd. Most Vros in use cover or may be easily mate to eover 3100
 lowing a BC-221 might be used as at VFO for this exeiter.

Construction

The original tramsmitter was built for mohile opration and much hole drilling and experimentation has oretmed on the ehassis. Momming the erystals on opposite sides of the transformers will kerp stray caparity coupling at a minimum. No shichding other than that provided hey the i.f. cans and the output tank ean is reguired. It is important that capacity coupling aroumd the orystal filter be minimizod - no modulated signal most reath the bscit mixer by any route exom through the filter. If choice of sidethands is desired. a dual filter using ob cryatale will he reduired. This filter is shown in Fig. 12-17. A double-section

Rg - 1.011 ohmo. 1 watl.
R10-1000 olmos.
$R_{12}-15,000$ ohnis.
111 resistors $1 / 2$ watt umbess specified otherwise.
1.1-2.in-mb. r.f. chowe.

 $11(0)$)。
 remesemband 8-turn linh wound ower eold end of primary. Ill fiwed caparitors removed.

Wafer switch selects the upper or lower sidelomd. These wafer seetions must be separated by approximately 3 inches to minimize stray eoupling. It is reeommended that the crystals he wripped with several laters of adhesive tape and then strapped to the chassis with metal brackets: comnertions may then be mide by soldering to the holder pins.

Alignment

Aligument of the filter is straightforward, and once aligned it will need littheatention.

1) Crystal " Δ " is first remosed from the circuit. This arystal is hest provided with at sument monnt so it can be removed during aligmmont.

 for molile work, complete with roweis er eonverter and WHO. The top dish in the esciter (with coner remoned). The metar reade eathente earrent to a bair of 807-s driven by the unit, and the 1 wo knols hamdle carrier reinsartion and 6 A(:

 tions rall for adjusting the infun condenser.
2) A callanated signal generator cowering the erystal range is commeted to the grid of the triode seretion of the dils.
3) A varum tube voltmeter is comareted from grid to ground of one of the tixNi grids.
t) Nwing the signal gemerator through the erystal range butil at maximum response is moted at the voltmeter. 'This will indicate the seriow-restonath frequeney of crestal "(") and with the erystals deseribed, based on a tool-ke. carrior, will be approximately HK.t ke.
b) Nign all tramsormer trimmers for maximum response on this frequencer.
b) Next, adjust the sigmal gernerator ston'!! in the higher-frefueney direstion until at mall is obtained. This will the the serios-resolatht frequene

4) Nowe the signal gemerator $1 / 2 \mathrm{ke}$. Inerer than this null and adjust the trimmer on the input side of Ter for maximum response.
5) Rotum signal gemerator to mull.
6) Nowe the signal generator approximately 1 to 1.2 ke . higher than the null and adjust ('s for minimum response.
7) Move the signal generator higher mutil another null is foumd: this will be the series-resonant frequencer of crustal "B." approximately ti 2.8 kr . with the erystals shown.
8) Continue appoximately $1 / 2 \mathrm{ke}$. higher thatt this nud and adjust the outpat trimmer on T_{1} slightly for moderate null.
9) Kupeat siteps 7 through 11 to compensate for interaction, and alignmont is complete.

For alignment of the dual filter the procedure is identival but must be dome once for eath sideband. However, when adjusting the filter for rejecting the lower sidehand and whore sitepes 1-12 montion "higher" insert "lower"
and vice versa. The alignment ehart, Fig. 12-I: will simplify the aligmment procedure. For additional information, see Wehb. "Aligning the

The slug-tumed i.f. transtormer is peaked al 3030 ke : athe then stagger-tumed slightly to provide roverage of the entire batud. The 6.10 .5 pate tank capanitor is adjustable from the fromt pand and is touched up when shifting frequencs: It is
 and show no tendency to oscillate. (Good shied ling of its grid and plate circuits is usually rerguired. and occasionally at tohm composition resistor
 to avoid regeneration.

Mang variations of this basid exemitar cirruit atre possible If a balaned modulator (using a pair of (ikes) is used, the carrior suppression is readily ohtained without chose matching of arestals. Other filter circuits cath be used, ats those shown in Good, "Crestal Filter for 'Phone Reereption." QST, Ontober, 1951. For an alvanced design for at ervatal-filter SSB exciter, see Weaver \& Brown. "(Trystal Lattice liilters for Transmitting ami Romeriving," (SNT, August, IQal.

Fig. 12.18 - An alimnment rhart of the erytal filter. The numbers in the circles evrespond tu the steps ondined in the texi.

A Two-Stage Linear Amplifier

The amplifier shown in Frigs. 12-1!9 and 12-21 is designed to follow a low-powered sisk expiter. An 807 (Mass A driver is used to cexeite a pailr of $811-\mathrm{As}$ oprorating Clase 13. Only a few watts is required to drive the 807 . The $811-$ As will deliver about 180 watts paak with 1000 volts on the plates and 250 watts peak at 1200 volts. Oporaifion ats a linear amplifier for SSB with 1500 volts on the plates is not reoommended beatuse the driver stage is likely to introduce too much distortion, although a smatl amount of fixed bias ($3-4 \frac{1}{2}$ volts) on the grids of the $811-$ As will permit e.w. operation at this higher phate voltage.

The eirenit is not unlike ordinary Chas C practiere exeept for the bias voltages insolved. The S07 stage uses cathode hias, and the XII-As run with zoro bias (bias terminals short-eireuited hy a jumper wire). The 807 loading is adjusted by varring the position of the link coil in L_{3} and the link to L_{6} is controlled from the front panel.

I low-inductance by-pass condensor, Ca, made from a piece of coaxiat line, helps to climinate parasitics in the 807 stage, as does returning the sereen be-pass condenser, (3, to the eathode instead of to ground. (ride chokes, L_{4} and L_{5} and resistors $R_{3} K_{4}$ and R_{5} were found neressary to avoid high-frequenco parasitic oscillations in the $811-\mathrm{d}$ stage. All wiring other than r.f. Was ran in shiold hraid. Pilament by-pass condensers were unnecessary.

Construction

The amplifier is built on a $1: 3$ by 17 by 3 -inch atuminum chassis. The panel is an aluminum
relaty-rack patuel, 15^{3}. inches high, held to the dhaswis by the shat bearings and meters, and fur-

Fig. 12-19 - 4 roar view ol the lintar amplifier, showing the pu-to-pull $8 / 1.1$ ontput amplifier and the 80 driver. "iho enver of the rectangular shirld can slides off for arcesis to the final arid coil. "The round shictd cans are for the $80-6$ grid and plate coils.

The grid eooil for the 807 pluge in to a socket nounted at the rear of the chassis and shiolded by an IC'A No. 1549 3-inch diameter aluminum shield can.

Fig. 12-20 - Wiring diagram of the linsar amplifier.
(: - 1 II $-\mu \mu \mathrm{fd}$, variahle (Millen 101 t 0).
 lengels. 6 inchers.
Cis. (as-0.0ns. μ ful. dise erramic.
(5 - $140-\mu \mu$ fd. variable (Millen 201 10).
(.f - $11.011-\mu \mathrm{fd}$. I: 0 (0)-volt mica.
(ia - Dnal variable, 100 - $\mu \mu \mathrm{fil}$, prer sertion (Xillen $\because 1160$)

Cin - Inal variable, $2(0)-\mu \mu \mathrm{fl}$. per section, 0.0^{--}-inch spating (National M(i-z(0)I)).
$\mathrm{H}_{1}-100$ oltms, 1 (2 watt.

R_{4}. $18.5-20$ ohmes, watts.
Ra- lOMO ohms. I watt.
All resintors are composition. nost wirrewoud.
 inc!es lons.
II $_{1}-10-50$ milliammutor.
$\| V_{2}-0-310$ milliammeter.
IRFC - 2,

The plate coil plugs in to a sorket mounted t inches alowe the chatsis. The platiom for ther soreket also shields the plate eondenser, ("5. Duother :-inch diameter shield can proterets the 807 plate roil. The plate ber-pases condensed. (6 , is mounted under the chatsis near the 807 socket, and the lead from (E_{5} and L_{2}, is brought down to it in shicleted wire.

The grid reoil for the 81 I-As is shiclded bey an IC'A No. 2:38.42 + be be 6 alumimum cablinet. To speed coil chathging, the gabinet is fistened to the chassis and a friction-fit cover is mate from : piece of sheet aluminum. The inside lips on the top of the cathine should be bent down to allow more room for the hatad that ehatuges eobils.

The output tank combenser, ('m, is monnted on the ehassis with alumimum brackets that also support the jack bar for the output coil, Lo6. The variablo link mounts on the jack bar.

Adjustment

With a signal from the exciter coupled through I_{1}, and plate and woren voltages oll the 807 , it shomald le quite possible to drive the $811-\mathrm{A}$ grid current off sacale (with no plate voltage on the 81I-. ls). Back off the expitation to about 2 F mat. gride current and mentratize the 811-A stage ber adjusting ('x and ('g. I se the "flick" in grid curment as Cus is tuned through resonance, or a more sensitive indication such as a erystal diode and

0-1 milliammeter comereded to I_{2}.
Couple a dummy boad to J_{2} and apply plate voltage to the 811-As. Couple an oseitloseope to the dummy. load and :tpply a "two-tone" test sigmal, as deseribed earlier in this chapter. The 81I-A no-signal plate eurrent should run around 40 or 50 mat., depending upon the plate voltage. Adjust the two-tone signal amplitude for 10 or 15 mat. grid eurrent and resonate all cireuits. Then inerease the expatation unt the two-tone pattern just begins to flatten on the peaks. When using 1000 volts on the $81 \mathrm{I}-\mathrm{As}$, this flattening should not oecur before $1 / L_{2}$ indicates 160 man, or so with 120 volts the current should run up to 190 mas, without noticeable flattoning. If flattening orrurs sooner, it indicates that the 817-A stage shombl be compled more tightly to its load, or that the 80 - stage is mot delivering enough drive to the $811-\mathrm{A}$ grids.

Fix. 12-21-1'uder. neath the elasisuix. showing all hult r.f. prads in shirld hraid. The coils in the learle from the split-xtator grid condenest are parasitic chokes.

Transmission Lines

The phace where r.f. power is enemerated is very frectuently not the place where it is to le utilizerl. A transmitter and its antemat are a good example: The antemna, to ratiate well. should be high aloove the ground and should be kept dear of trees, buildings and other objoerts that might absort cuergy, but the tramsmitter itself is most eonvenientio installed indoors where it is medily ateressible. There are many other instane where power must bedelivered fromone point to another.

The means by which power is tramported
from print fo print is the r.f. trammission line. At ratio lreguencies a line exhibits entirely different ehatrateristies than it does at commereial power frepucheies. This is bectuse the speed at which electrical energes travels, while tremendousty high as compared with mechatnical motion, is not infinite. The peruliarities of r.f. transmission lines result from the fant that at time int terval companable with ath r.f. cyele must elatpse before energy leaving one point in the ciredit wan reath another just a short distance away.

Operating Principles

Suppose we have a battery and a pair of partalle wires extending to a very great disfance. At the moment the battery is connered (1) the wires, electrons in the wire ne:tr the pesifive terminal will be attrated to the battery, and the same number of electrons in the wire near the negative battery derminal will be repelled out ward aldong the wire.

Thus a current flows in each wire near the battery at the instant the battery is conneded. However, a definite time interval will elatpse before these eurrents are evident at a distance from the battery. The time interval mas be very smatl. For eximple, one-millionth of at serond (one midereseond) after the embere ion is mate the eurrents in the wires will hate triveled 300 meters, or metrly bom feet, from the battery terminals.

The eurent is in the natture of at charging eurrent, fowing to rhatge the catpatitame between the two wires. But unlike an ordinaty condenser, the conductors of this "linear" mondenser hawe appreatible inductanere. In fiade

F'ip. li3-1-H゙quivalent of a transmisaion line in lampred circuit comotants.
we maty think of the line as being compened of a whole series of smabl inductiones and capareitances comeded as shown in Fig. 1:3-1, where eath coil is the inductane of a very short sere tion of one wire and eath eondenser is the eatpat(itane between two sumh short sections.

Characteristic Impedance

An infinitely-long chatin of coils and eondensers commerted is in lig. 1:3-1, where eirh L is the same tw all others and atl the (s) have the
sitme value, his an important property. To an electrical impulse applied at one end, the combination appears to hatve an impedance - called the characteristic impedance or surge impedance - that is atpproximately equal in $\sqrt{L} / \overline{C^{\prime}}$, where L and C^{\prime} are the inductance and eaparitane per unit length. This impedinere is purely resistive.

In defining the chatrateristic impedane as $\sqrt{\prime} / /^{\prime}$, it is assumed that the condurtors hate no inherent resistane - that is, there is no $I^{2} R$ loss in them - and that there is no power low in the dielectrie surfounding the eondurtors. In other words, it is :swimed there is no power loss in or from the line no matter how greas its longth. This does not serm ronsist ent with calling the chatrue eristio impedance :t pure resistane, which implies that the power supplied is all dissipated in the line. l3at in an in-tinitely-long line the effert, so lar as the soure of power is conermed, is exatuly the sitme as though the power were dissipated in at resistance, becanse the pewor leaves the souree and travels out ward forever abong the line.

The charatereristic impedance determines the amoment of current that fom flow when a given voltuge is :tpplied to an infinitely-long line, in exatelly the sime wate that at definite value of actual resistance limits eurrent flow when at given voltage is :upplied.

The inductance and capabitance per unit length of line depend upon the size of the conductors and the spating between them. The closes the two comduretors and the greater their diameter, the higher the eatpatiture and the lower the inductince. I line with large eonductors clasely spared will have low impedtare. while one with smatl eonduetars widely spated will have relat ively high impedance.

"Matched" Lines

Aetual trimsmission lines do not extend to infinity but have at definite length and are connected to, or terminate in, it load at the "onatput"
end, or end to which the power is delivered. If the load is a pure resistance of a value equab to the eharamerist ie impedame of the line, the remrent trabeling abong the line to the load does mot find conditions changed in the least when it meets the load; in fart, the load just looks like still mone transmission line of the same charateristic impedance. Conseruently, conneet ing such ab lowd to as short trammission line allows the current to travel in exatly the same fashion as it would on ath infinitely-long line.

In other words, a short line terminated in a purely-resistive load equal to the chatrateristic. impedane of the line abets just as though it were infinitely long. such a line is saded to be matched. In a matched tatasmission line, power travels outward abong the line from the source unill it rearhes the load, where it is completely unsorbed.

R.F. on Lines

The discussion above, although based on directcurrent flow from a hatt ery, ablso holds when an r.f. voltarge is applied to the line. The difference is that the ablernating voltage cames the amplitude of the current ath the input terminals of the line to vary with the voltage, and the direction of current flow also periodically reverses when the polatity of the applied voltage reverses. In the time of one erale the energy will travel a distance of one wavelength atong the line wires. The eurrent at a given instant at any point along the line is the result of a voltage that was applied at some ernlier instant at the input terminals. Hence the instantaneous amplit ude of the current is different at all points in ane-wavelength sertion of line; in fibet, the current flows in opposite directions in the same wire in adjarent half-wavelength sections. However, ath any given point abong the line the current goes through similar variations with time that the current at the input terminals did.

The result of all this is that the current (and voltage) travels abong the wire as a series of waves having a length equal to the velocity of travel divided be the frequency of the are. voliage. On an infinitely-long line, on one properly mat ched at the load, an ammeter inserted antwhere in the line will show the same current, since the ammeter aberages out the variations in current during ab evele. It is only when the line is not properly matehed that the wave mot ion becomes apparent. This is disenssed in the next section.

STANDING WAVES

In the infinitely-long line for its matehed counterpart, the impedance is the same at any point on the line because the ratio of voltage to current is always the same. However, the impedance at the end of the line in loig. 13-2 is zero - or at least extremely small - hecause the line is short-rircuited at the end. The outgoing power, on meeting the short-rirruit, reverses its direction of flow and goes back along the transmission tine toward the input end. There is a large current in the short-rirruit, but substintiably no voltage
arrose the line at this point. We now hatere a voltage and current representing the power going outwatrd lowatd the short-rirenit, and a second voltabe abd curent representing the reflected power tratweling babek toward the sourece.

The refleeted current travels at the same speed as the ougroing current, an its instantameous value will be different ab every point abong the line, in the distance represented by the time of one revele. It some prints abong the line the pham of the outgoing and reflected currents will be such that the rurrents cancel each other white at others the amplitude will be doubled. It inbelwen prints the amplitude is between these two extremes. The points at which the currents are in :and out of plase depend only on the time requised for them to travel and so depend only on the distance along the line from the point of reflection.

In the short-cireuit at the end of the line the two current components are in phase and the total current is large. It a distance of one-hablf wavelength back along the line from the shortcircuit the outgoing and reflected components will again be in phase and the resultant current will again have its maximum value. This is also

Fig. 13-2 - Standing wave of whatare and corrent atong ehort-cirenited Iransmission lime.
true at any print that is a multiple of a hatiwavelength from the short-eirenited end of the tine.

The outgoing and reflected curents will cancel at a point one-quarter wavelength, along the line, from the short-rircuit. At this point, then, the eurent will be zero. It will also be zero at all proints that are an odd multiple of one-quarter wavelength from the short-cireuit.

If the eurrent abong the line is measured at sureessive proints with an ammeter, it will be found to vary about an shown in liig. 1:3-213. The same result would be ohtained by mesaruring the current in either wire, since the immeter cannot metsure phase. However, if the phase could be checked, it would be found that in each successive half-watvelength section of the line the currents at any given instant are lowing in opposite directions, as indicated be the solid line in Fig. 13-20. Furthermore, the current in the second wire is flowing in the opposite direction the current
in the adjacent sertion of the first wire. This is indieated by the broken curve in lig. liz-20. The variations in "urrent internsty along the transmiswion line are roferred to as standing waves. The point of maximum line current is called a current loop or current antinode and the point of minimum line eurrent a current node.

Voltage Relationships

Since the end of the line is short-cireuited, the voltage at that point has to be gero. This can only be so if the voltage in the outgoing wave is mot, at the end of the line, by a refleceded voltage of equal amplitule and opposite polarity. In other words, the phate of the voltage wave is reversed when reflection takes place from the short-circuit. This reversal is equivalent to an extrat half-eycle or half-wavelength of travel. As a result, the outgoing :und returning voltages are in phase a quarter wavelength from the end of the line, and again out of phase a half-watvelength from the end. The standing waves of voltage, shownat D) in Fig. 13-2, are therefore displaced by one-rquarter wivelength from the standing waves of current. The drawing at lis shows the voltages on both wires when phase is taken into acrount. The polarity of the voltage on each wire reverses in each half-wivelength section of transmission line. A voltage maximum is called a voltage loop or antinode and a voltage minimum is called a voltage node.

Open-Circuited Line

If the end of the line is open-circuited instead of short-circuited, there can be no current at the end of the line but a large voltage can exist. Again the outgoing power is reflected hack toward the source. In this case, the outgoing and reflected components of curreul must be equal and opposite in phase in order for the total current at the end of the line to be zero. The outgoing and reflected components of voltage arre in phase and add together. 'The result is that we again have standing waves, but the conditions are reversed as compared with a short-circuited line. Fig. 13-3 shows the open-circuited line case.
(A)

Fig. 13.3-Standing waves of current and voltage along an open-eireuited transmission line.
(A)
(B)
(C)

Fig. 13.4-standing waves on a transmission line terminated in a resistive load.

Lines Terminated in Resistive Load

Fig. $1: 3-4$ shows a line terminated in a resistive load. In this case at least part of the outgoing power is absorbed in the load, and so is not available to be reflected bick twatal the source. Becanse only part of the power is reflected, the reflected components of voltabe and current do not have the same mannitude as the outgoing components. Therefore neither voltage nor current cancel completely at any point along the line. However, the speed at which the outgoing and reflected components travel is not affected by their amplitude, so the phase relationships are similar to those in open- or short-circuited lines.

It was pointed out carlier that if the load rosistance, Z_{r}, is equal to the characteristic impedance, Z_{0}, of the line all the power is ahsorbed in the load. In such a case there is no reflected power and therefore no standing waves of current and voltage. This is a special ease that represents the change-over point between "short-circuited" and "open-rireuited" lines. If Z_{r} is less than Z_{0}, the current is largest at the load, while if Z_{r} is greater than Z_{0} the voltage is langest at the load. The two conditions are shown att 13 and C , respectively, in Fig. 1:3-4.

The resistive termination is an important pratetical case. The termination is seldom an actual resistor, the most common terminations being resonant cireuits or resonant antennat ststems, both of which have essentially resistive impedances. If the load is reactive as well as resistive, the operation of the line resmbles that shown in Fig. 13-4, but the presence of reattince in the load causes two modifications: The loons and nulls are shifted toward or away from the load; and the amount of power reflected back toward the source is increased, as compared with the amount reflected by a purely resistive load of the same total impedince. Both rffeets become more pronounced as the ratio of reactance to resistance in the load is made larger.

Standing-Wave Ratio

The ratio of maximum current to minimum current along a line, lig. 13-5, is called the standing-wave ratio. The sime ratio holds for maximum voltage and minimum voltage. It is a measure of the mismatch between the load and the line, and is equall to 1 when the line is per-
feetly matched. (In that catse the "maximum" and "minimum" are the same, sine the current and voltage do not vary along the line.) When the line is terminated in a purely-resist ive load, the standing-wave ration is

$$
\begin{equation*}
\text { S.U'R. }=\frac{Z_{\mathrm{r}}}{Z_{0}} \text { or } \frac{Z_{0}}{Z_{\mathrm{r}}} \tag{13-A}
\end{equation*}
$$

Where S. U'.R. = Standing-wave ratio

$$
\begin{aligned}
& Z_{\mathrm{r}}= \text { Impedance of load (must be } \\
&\text { pure resistance }) \\
& Z_{0}=(\text { hatarteristie impedane of } \\
& \text { line }
\end{aligned}
$$

Fxample: A line haviner a charnetoristic inspectance of 300 ohms is terminated in a resjstive loud of 2,5 ohms. T"he s.w.r, is

$$
S . W^{\prime} . R .=\frac{Z 0}{Z_{\mathrm{s}}}=\frac{300}{25}=12 \text { to } 1
$$

It is customary to put the larger of the two quantities, Z_{5} or Z_{0}, in the numerator of the frumtion so that the s.w.r. will be expressed by a number larger than 1 .

It is casier to measure the standing-wave ratio than some of the other guantities (such as the

Fig. 13.5 - Meaturamellt of standing-wateratio. In lhis drawing, $f_{\text {man }}$ is 1.5 and $f_{\text {min }}$ is 0.5 , so the sw.r. $=I_{\text {пия }} / I_{\text {mita }}=1.5 / 0.5=3 \mathrm{t} 1$,
impedance of an antemma) that enter into trans-mission-!ine computations. (onsequently, the sw.r. is a convenient basis for work with lines. The higher the s.w.r., the greater the mismateh botweren line and load. In pratical lines, the power loss in the line itself increases with the s.w.r.

INPUT IMPEDANCE

The input impodance of a transmission line is the impedance seen looking into the sending-end or input terminals; it is the impedane into which the soure of power must work when the line is comerted. If the load is perfertly matched to the line the line appears to be intinitely long, as stated earlier, and the input impedance is simply the ehatrateristie imperdane of the line itself. However, if there are standing wases this is no fonger true; the input impedane may have at wide range of values.

This can be understood by referring to Figs. $1: 3-2,1: 3-3$, or $1: 3-4$. If the line length is such that standing watves canse the voltage at the input
ferminals to be high and the eurrent low, then the imput impedane is higher than the Zo of the line, since impedance is simply the rat io of voltage to current, ('onversely, low volt ige and high current at the input terminals mean that the input inpedance is lower than the line Z_{0}. Comparison of the three drawings also shows that the range of input impedance values that maty be encountered is greater when the far end of the line is open- or short-cireuited than it is when the line has a resistive load. In other words, the higher the s.w.r. the greater the range of input impedane values when the line length is varied.

In addition to the variation in the absolute value of the input impedance with line lengt h, the presence of standing waves abo causes the input impedane to contain both reactance and resistance, even though the load itself may be a pure resistance. The only exceptions to this occur at the exact current loops or nodes, at which points the input impedance is apure resistance. These are the only points at which the outgoing and reflected volliges and currents are exactly in phase: At atl other distances atong the line the current either leads or ligs behind the voltage and the effect is exactly the sime as though a eapacitance or inductance were part of the input impedance of the line.

The input impedince catn be represented by either a resistance and a cabaritance, or by a resistance and an inductance, as shown in Fig. 13(. Whe her the impedance is induct ive or capanitive depends on the characteristies of the load and the length of the line. It is possible to represent the equivalent circuit by resistance and reatance cither in series or parablel, so long as the totat impedance and phase angle are the same in either nase. Meeting this last eondition requires different values of resistance and reatance in the series case than in the paratlel case.

The magnitude and charater of the input impedance is quite important, since it determines the method hew which the power source must be coupled to the line. The ealeulation of input impedance is rather complicated and its measurement is not feasible with ordiary equipment. Fortunately, in amateur work, it is unnecessary either to ealculate or measure it. The proper couphing cat be arhieved be relatively simple mothods dessribed later in this rhapter.

Unterminated Lines

The input impedane of a short-cireuited or open-direvited lime not an exact multiple of onequarter wavelength long is practically a pure reactaner. This is berause there is very litthe power lost in the line. Sueh lines are frequently used as "linear" inductances and capacitaneres.

If a shorted line is less than a quarter wave long, as at X in l"ig. 13-2, it will have indurtive reatetanere. The reactance increases with the line length up to the quarter-wave point. Beyond that, as at l, the reactane is eapacitive, high near the guarter-wave point and beroming lower as the half-wave point is approached. It then alternates betweon indurtive and raparitive in surcessive
quarter-wave sections. Just the reverse is true of the open-cireuited lime.

At exact multiples of a quarter wavelength the impedance is purely resistive. It is apparent, from examination of 13 and 1) in lig. $13-2$, that at points that are a multiple of a half-wavelength i.e., ${ }^{2}, 1,1 \frac{1}{2}$ wavelengths, ete. - from the shortcircuited end of the line the current and voltage

current and low voltage, The relationship between the load impedance and imput imperdace is given by:

$$
\begin{equation*}
Z_{\mathrm{s}}=\frac{Z_{0}{ }^{2}}{Z_{\mathrm{r}}} \tag{13-B}
\end{equation*}
$$

Where $Z_{s}=I$ impedanee looking into line thine length an odal multiple of one(fuarter wavelength)
$Z_{r}=I m p e d a n c e$ of bad (must be pure
resistance)
$Z_{0}=$ (haratereristic impedance of line
Example: A quarter-wavelength lime having a characteristic impedance of sho ohtus is terminated in an resistive load of 7.5 ohmes. The imbed ance losking inte the ingut or sendiay end of the line is

$$
Z_{4}=\frac{Z 0^{2}}{Z_{r}}=\frac{(500)^{2}}{\bar{\pi}}=\frac{2.00,(1010)}{75}=3333 \text { oltus }
$$

If the formula above is rarranged, we have

$$
\begin{equation*}
Z_{11}=\sqrt{Z_{3} Z_{\mathrm{r}}} \tag{13-C}
\end{equation*}
$$

This means that if we have two values of imprelanere that we wish to "match," we can do so if we connect them together bey a quarter-wave transmission line having a characteristic impedance equat to the square root of their product. A quarter-wave lime, in other words, hats the charatteristies of a transformer.

Resonant and Nonresonant Lines

Because the input impedance of a line oprating with a high s.w.r. is eritically dependent on the line longth, and furthermore is usually reactive ats well as resistive, special tuning means are roquired for effertive power transfer from the source to the line. Lines operated in this way are commonly called "tuned" or "resonant" lines. On the other hand. if the s.w.r. is low the input imperdane is close to the Z_{10} of the line and does not vary a great deal with the line length. Such lines are called "flat," or "untuned," or "nonresonamt."

There is no sharp line of demarcation bet ween tumed and unduned lines. If the s.w.r. is below 1.5 to I the line is essent ially flat, since the same coupling method will work with all line lengths. If the s.w.r. is aloove 3 or +1.01 the typo of eoupling sistem, and its adjustment, will depend on the line length and such times fall into the "tumed" category.

It is always advantagenns to make the s.w.r. as low as possible. "Tuming the line" beemmes nerensury only when a eonsiderable mismatech between the load and the line has to be tolerated. The most important practical example of this is when a single antemma is operated on several harmonically-redated frequencies, in which case the antenna impedance will have widely-different values on different harmonies.

RADIATION

Whenever a wire carries alternating current the electromagnetio fieds thated away into spate with the velority of ligh. At power-line freguencies the tield that "grows" when the current is
increasing has plenty of time to moturn or "collapse" about the conductore when the current is deereasing, because the alternations are so slow. But at radio frequencies fields that travel only a relatively short distance do not have time to get betek to the conduetor before the next exele eommeners. The ronsequenee is that some of the clectromagnetie energy is prevented from being restored to the conductor; in other words, energy is ratiated into space in the form of ele tromangnetic waves.

The amount of cuergy radiated elepends, among other things, on the length of the condurtor in relation to the freguenes or wavelength of the r.f. current. If the eonturtor is very shomet compared to the wavelength the energy radiated will be small. However, a transmission line used to feed power to an antomat is not short in this sense ; in fact, it is ahmost always an appreciahbe fraction of a wavelength long and may have a length of several wavelongths.

The lines previously considered have consisted of two parallel conduetors of the same diameter. Provided there is mothing in the system to destroy frmmetry, at every point along the line the eurrent in one conductor has the same intensity as the current in the other conductor at that point, but the currents flow in opmosite dirertions. This

Was shown in Figs. 1:3-2(' and 13-3C. It means that the fields set up about the two wires have the same intensity, but ofposite directions. The consequencer is that the total field set up about such a transmission line is zero; the two fields "cancel out." Hence no energy is radiated.

Aetually, the fields do not completely cancel out berause for them to tho so the two conductors would have to oreupy the samo space, whereas they are slightly semated. However, the cancellation is substantially complete if the distance between the conductors is very small compared to the wavelength, Tramsmission line radiation will be nemligible if the distane between the eonductors is 0.01 wavelength or less, provided the ruments in the two wires acthally are bataned as dencribed.
The amount of radiation also is proportional to the current flowing in the line. Berause of the way in which the cerrent varies along the line when there are standing waves, the offeretive eurrent, for purposes of radiation, beromes greater as the s.w.r. is increased. For this peason the radiation is least when the lime is flat. However, if the ronduetor spacing is small and the currents are batamed, the radiation from a line with even a high s.w.r. is ineonsequential. A small unbalance in the line currents is far more serious.

Practical Line Characteristics

The foregoing discussion of transmission lines has beren based on a line consisting of two parallel conductors. Actually, the parallel-conductor line is but one of two general types. The other is the coaxial or concentric line. The coaxial linc consists of a round conductor placed in the erenter of a "irecular tube. The inside surface of the tube and the outside surfare of the smaller inner ronduretor form the two conducting surfaces of the line.

In the coaxial line the fields are entirely inside the tube, hecouse the tube acts as a shield to prevent them from appearing outside. This redures radiation to the vanishing point. so far as the electrical behavior of coasial lines is concerned, all that has previously beon saith about the operation of parallel-conductor lines applies. There are, however, practical differences in the construetion and use of parallel and coaxial lincs.

PARALLEL-CONDUCTOR LINES

A common type of paralled-conductor line used in amateur installations is one in which two wires (ordinarily No. 12 or No. 14) are supported a fixed distance apart by means of insulating rods called "spacers." The sparings used vary from two to six inches, the smaller spacings being necessary at frequerneres of the order of 28 Mc . and higher so that radiation will be minimized. The construction is shown in Fig. 1:3-7. Such a line is said to be air-insulated. Typiral subters are shown in l"ig. 1:3-8. The characteristic impedance of such "open-wire" lines is between t00 and 600 ohms, depending on the wire size and spacing.

Parallel-enductor lines also are sometimes constructed of motal tubing of a diameter of $1 / 4$ to $1 / 2$ inch. This redues the characteristic imperdane

 'The line ronductor lits in a proove in the end of the elater, and is held in place by a tie-wire anchered in a hole near the groose.
of the line. Such lines are mostly used as quarterwave transformers, when different values of impedance are to be matched.

Prefabricated parallel-conductor line with air insulation developed as a low-loss line for television reception can be used in transmitting applications. This line consists of two No. 18 conductors held at a spacing of one-half to one inch by moded-on spacers. The characteristic impedanec is 375 to 450 ohms, depending on the spacing.

A convenient type of mamufartured line is one in which the parallel conductors are imbededed in low-loss insulating material (polyethylene). It is commonly used as a TV lead-in and has a charac-

Fia. $1: 3.8$ - 'ivpinal manufardurod Iransumisoion lims and-patrors.
terist ic impedance of 300 ohms. It is sold under various names, the most common of which is "Twin-Tad." This type of line has the advantages of light weight, close and uniform condurtor spaceing, flexibility and neat appearance. Ifowever, the lowses in the solid dielectric are higher than in air, and dirt or moisture on the line tends to change the characterist ic impedance. Moisture effects can be reduced by coating the line with silicone grease. A special form of 300 -ohm Twinlad for transmitting uses a polvethylene tube with the conductors molded diametrically opposite; the longer dielectric path in such line reduces moisture troubles.

In addition to 300 -ohm line, Twin-L ead is obtainable with a characterist ic impedance of 75 olums for transmitting purposes. Light-weight $75-$ and 150 -ohm Twin-head also is available.

Characteristic Impedance

The chatracteristic impedance of an air-insulated paralleleronductor line is given be:

$$
\begin{equation*}
Z_{0}=2 \pi 6 \log \frac{b}{a} \tag{13-D}
\end{equation*}
$$

Where $Z_{0}=$ Chatacteristic impedance
$b=$ Center-to-center distanme between conductors
$a=$ Radius of conductor (in same units as b)
It does not matter what units are used for a and b so long as they are the same units. Both quantit ies maty be measured in contimoters, inches, ote Sine it is necessary to have a table of common logarithms to solve practimal problems, the solution is given in graphical form in l"ig. 1:3-9 for a number of eommon conductor sizes.

Th solid-dielectric parallel-eonduet or liness such as Twin- acal the chatacteristio impedance cannot be calculated readily, because part of the electric field is in air as well as in the dieleetric.

Unbalance in Parallel-Conductor Lines

When installing paralleleconductor lines care should be taken to avoid introducing electrical unbalance into the system. If for some reason the current in one eonductor is higher than in the
other, or if the currents in the two wires were not exactly out of phase with cath of her, the electeromatgnetic fields will not cancel completely and at considerable amount of power may be radiated by the line.

Matintaining good line balance requites, first of all, a balanced load at its end. For this reason the antemint should be fed, whenever possible, at a point where eath conductor "soes" exactly the same thing. [sually this mosus that the antemat sistem should be fed at its electrical eenter. Wiven though the antenma appeats to be symmetrical, physically, it ean be unbalanced electrically if the part connected to one of the line eonductors is intadvertently coupled to something (such as house wiring or a metal pole or roof') that is not duplicated on the other part of the antemat. Sivery affort should be made to keep the antema as far th possible from other wiring or sizable

Hig. 13.9- Chart showing the characteristic imped. ance of spaced-ronductor parallel transmistion lines with air dielectric. J'ubing sizes given are for outside diameters.
metallic objects. The tramsmission line itself will caluse some unbalanere if it is not brought away from the antemat at right angles to it for a distance of at least a quarter wavelength.

In installing the line conductors take care to see that they are kept away from metal. The minimum separation between either conductor and all other wiring should be at least four or five times the conductor spacing. The shunt capacitance introdued by close proximity to metallic objects can drain off enough current (to ground) to unbalance the line currents, resulting in inereased madiation. A shunt capmemance of this sort, also const itutes a reactive load on the line, catusing an impodance "bump" that will prevent making the line actually flat.

- COAXIAL LINES

The most common form of coaxial line consists of either a solid or stranded-wire inner conductor surrounded by polyethylene dielectric. Copper braid is woven over the dielectric to form the
oulcre conductor, and a watorpoof vingl eovering is plaed on top of the braid. This cable is made in a number of different diameters. It is moderatcely thexible, and so is convenient to install. some different trpes atre shown in lig. 13-8. This solid coaxial eable is commonly available in impedances approximating 50 and 60 ohms.
dir-insulated roaxial lines have fower losses than the solid-dielectric tepe, but are bess used in amateur work beranse they are expensive and diflicult to install as eompared with the flexible cable. The eommon tepe of air-insubat ed coasial line uses a solid-wire conductor inside a copper tube, with the wire held in the center of the tube be neans of insulating "beads" placed at regular intervals.

Characteristic Impedance

The chatatertistic imperdance of ath air-insulated coaxial line is given be the formula

$$
\begin{equation*}
Z_{0}=13 \times \ln \frac{b}{a} \frac{b}{a} \tag{13-E}
\end{equation*}
$$

where $Z_{n}=$ Characteristic impedance
$b=$ Inside diameter of outer conductor
$a=$ Outside diameter of inner conductor (ill same units as b)
('urves for tapical conductor sizes are given in Fig. 1:3-10.

The formula for eotsial lines is approximately. correct for lines in which bead spaters are used, provided the beads are not too elosely spaced. When the line is filled with a solid dieleetrie, the chatracteristie impodance as given by the chart should be multiplied by $1 / \sqrt{ } \bar{K}$, where K is the dieneetric constant of the material.

- electrical length

In the disenssion of line operation earlier in this chaptor it was assumed that currents traveled atong the conductors at the speed of light. Actually, the velocity is somewhat less. the reason boing that clectromagnetice fields travel more

Fig. 13-10- (:hart showing characteristic impedance of various air-insulated eoneentric lines.

TABLE 13-I Transmission-Line Data				
'lype	Description or 'Type Simmier	(haracteristic Impedance	Velowity foactor	Capaci- tance per fioct: $\mu \mu \mathrm{ful}$.
Cimaxial		$50-100$ 53 53 3. 73	$\begin{aligned} & 0.8 .1^{1} \\ & 0.060 \\ & 0.66 \\ & 0.66 \\ & 0.66 \end{aligned}$	$\begin{aligned} & 29.5 \\ & 28.5 \\ & 20.5 \\ & 21.0 \end{aligned}$
P'arallal-Combuetor	$\begin{aligned} & \text { 1ir-insulaterl } \\ & 11-1880^{3} \\ & 11-0.3^{3} \\ & 1103^{3} \\ & 11-0.00^{3} \\ & 11-0.0^{3} \\ & 14-0) 22^{3} \end{aligned}$	$\begin{gathered} 200-6100 \\ 75 \\ 30 \\ 130 \\ 300 \\ 300 \\ 300 \end{gathered}$	$0.9-5^{2}$ 0.0 .8 0.51 0.58 0.8 .8 0.84 0.8 .5	$\begin{array}{r} 10.0 \\ 30.0 \\ 10.0 \\ 5.8 \\ 3.4 \\ 3.0 \end{array}$

'Average figure lor small-dameter limes with ceramic beads.
${ }^{2}$. Iverage figure for lins insulated with reramic spacers at intervals of a low fieet.
${ }^{3}$ Amphemal tyre nusubors and lata. line sinilar to $14-0.50$ is made by several manufacturers. hut rated lose may differ from that given in lig. 13-11. Pypers it-023, it-476, and 14-022 are mate for transmiting aphlications.
slowly in material dielectries than they do in free space. In air the velocity is practically the same as in empty space, but a practical line alawise has to be supported in some fashion bey solid insulating materials. The result is that the fields are showed down: the currents travel a shorter distance in the time of one evele than the $\begin{gathered}\text { do in }\end{gathered}$ space, and so the wavelength along the line is loss than the wavelength would be in free space at the same fregurners.

Whenever reference is made to a line as being so many wavelongths (surh as a "half-wavelength" or "quarter watvelength") long, it is to be understood that the electricellength of the line is moint. Its actual phesical length ats measurent by a tape always will be somewhat less. The phesical length corresponding to an electrical wavelength is given by

$$
\begin{equation*}
\text { Lenglh in feet }=\frac{984}{f} \cdot V \tag{13-F}
\end{equation*}
$$

Where $f=$ Frenguene in megacyeles
$V^{\prime}=V^{\prime}$ (lorite fartor
The velocity factor is the ratio of the actual velocity along the line to the velocity in free space Values of for several common types of lines are given in Table 1:3-I.

Example: A 75-foot length of 300-ohun TwinLend is used to carry power to an anterna at a frempeney of 71.50 kr , トrom Tahle 13-I, V is 0.82 . At this fredturey ($7.1 \% \mathrm{Me}$) a wavelongth is

$$
\begin{gathered}
\text { Length (feet) }=\frac{984}{f} . V=\frac{984}{7.15} \times 0.82 \\
=137.6 \times 0.82=112.8 \mathrm{ft}
\end{gathered}
$$

The line length is therefore $75 / 112.8=0.665$ wavelength.

Becaluse a quarter-wavelength line is frequently used as a linear transiormer, it is con-

Fig. 13-1I - Attemation data for common typers of transmisxion lines. Curve A is the nominal attemattion of 000 (1) mom open-wire linewith Mo. 12 conductors, not ineluding dielertric lowe in sparers nor poswible radiation lowses. Additional line data are gisen in 'Table 13-I.

venient to eateulate the length of a quarter-wave line directly. The formula is

$$
\begin{equation*}
\text { Length }(\text { feet })=\frac{246}{f} \cdot V \tag{13-G}
\end{equation*}
$$

where the symbols have the same meaning as above.

LOSSES IN TRANSMISSION LINES

There are thrce ways by which power may be lost in a transmission line: by radiation, by heating of the conductors ($/ L^{2} / 2$ loss), and by hating of the diolectric, if any. There is no appreciable radiation loss from a coaxial line, but radiation from a paratlederonductor line may exered the heat losses if the line is unbalaneed. Since radiation losses camot readily be estimated or measured, the following discussion is based only on ronductor and diedecetric lossers.

Heat losses in both the conductor and the dielectrice increase with frequency. Conductor losses atso ate greater the lower the characteristioe impedaner of the line, beause :a higher comernt flows in a low-imperance line for a given power imput. The converse is true of didentric losses because these increase with the voltage, which is greater on high-impodance lines. The dielectries Foss in air-insulated lines is negligible (the only loss is in the insulating sparers) and surh liness oprate at high efficiency when radiation losses are low.

It is convenient to express the loss in a transmission line in elecibels pre unit length, since the lose in dh. is directly propurtional whe the hength. Losses in various tupes of linus operated without standing waves (that is, ferminated in a resistive load equal to the characteristie imped-
anere of the line) are given in graphical form in lig. 1:3-11. In these curves the radiation loss is assumed to be negligible.

Whon there are standing waves on the line the power loss increases as shown in lige 13-12. Whether or not the increase in loss is serious depends on what the original loss would have been if the line were perferelly matehed. If the loss with perfert matching is very low, a large s.w.r. will not greatly affeet the efficionc! of the line - i.e.,

Fik, 13-12 - Fiffect of standing-wase ration line lons. 'Ther ordinates give the ahlitional lose in deribele for the lows. imalor perforety-ziatulted conditions, shown on the horizontal seale.
the ratio of the power delivered to the load to the power put into the line.

Example: A 150-foot length of RCi-11/U cable is operatimg at 7 Mc. with a $\overline{\text { ontotel }}$ s.w.r. If perfectly matehed, the loss from Fig. 13-11 would tee $1.5 \times 0.4=0.6$ dh. From Fig. 13-12 the additional loss becanse of the s.w.r. is 0.73 db . The total loss is therefore $0.0+0.73=1.33 \mathrm{db}$.
An appreciable s.w.r. on a solid-dielectric line may result in excessive loss of power at the higher frequencies. Such lines, whether of the
parallel-conductor or coaxial type, should be oprated as mearly flat as possible, partieularly when the line length is more tham 50 feet or so. As shown be lig. 1:3-12, the increase in line loss is not too serious so long as the sw. w. is below? to 1 , but increases rapidly when the s.w.r. rises above 3 to 1. Tuned transmission lines such as are used with multiband antennas always should be air-insulated, in the interests of highest efficiency.

Matching the Load to the Line

The load for a transmission line may be any devier capable of dissipating r.f. power. When lines are used for transmitting applications the most common type of load is an antema, but there are also practionl cases where the grid cirenit of a power amplifier may represent the load. When a tramsmission line is conneced betweren an antenna and a receiver, the receiver imput cireuit (not the antenna) is the load, beeause the power taken from a passing wave is delivered to the receiver.

Whatever the application, the conditions existing at the load, and only the load, dotermine the standing-wave ratio on the line. If the load is purely resistive and equal in value to the charactreristie imperdance of the line, there will be no standing waves. If the load is not purely resistive, and or is not equal to the line Za, there will be standing waves. No adjustments that ran be made at the input end of the line can change the sw.r., nor is it affected by changing the line length.

Only in a few special catses is the load inherontly of the proper value to match a practicable transmiswion line. In all other rases it is necessary either to operate with a mismateh and aecept the s.w.r. that results, or else to take steps to bring about a proper match between the line and load by means of transformers or similar devices. Impedance-matching transformers may take a vatuete of phesical forms, depending on the circumstances.

Note that it is esential, if the sow.r. is to be made as low as possible, that the load at the point of eonnection to the transmission line be purely resistive. In general, this requires that the load be tuned to resonance. If the load itself is not resonant at the operating frequence the tuning sometimes can be accomplished in the matehing system.

- the antenna as a load

Every antenna system, no matter what its physical form, will have a definite value of impedance at the point whore the line is to be connected. The problem is to transform this antenna input impedance to the proper value to mateh the lime. In this resperet there is mo one "heses" type of line for a particular anterma system, because it is possible to transiom impedanees in
any desired ratio. ('onsequently, any tepe of line may to used with any type of antennas. Thore are frequently reasens other than impodane matching that dietate the use of one type of line in preference to another, such as case of installation, inherent loss in the line, and so on, but these are not considered in this sertion.

Whough the imput impedance of an antemat system is seldon known very aceurately, it is often possible to make a reasonathly close estimate of its value. The information in the chapter on antennas can be used as a guide.

Matching circuits may the constructed using ordinary coils and condensers, but are not used very extensively becouse they must be supported at the antennat and must be weatherproofed. The sistems to be described use linear transformers.

The Quarter-Wave Transformer or "Q" Section

As described carlicer in this chapter, a quarterWave tramsmission line may be used as an impedance transformer. Knowing the antenna imb pedance and the characteristic impedance of the

Fig. 1:3-1:3-"Q" matching section, a cuarter-wave impedance traniformer.
transmission line to be matched, the required characteristic imperdaner of a matching seetion such as is shown in Fig. 1:3-1:3 is

$$
Z=\sqrt{Z_{1} Z_{0}}
$$

where Z_{1} is the anternat impedane and Z_{0} is the characteristic impedance of the line to which it is to be matched.

Example: To match a G00-olim line to an antenna presenting a 52 -ohm load, the quarterwave matching sertion wond require a chatrate teristic impedance of $\sqrt{32 \times(30)}=\sqrt{43,200}$ $=208$ ohms.
The spacings betwern conductors of various sizes of tubing and wire for different surge impedaneres are given in graphical form in Fig. 13-9. (With

1-2incla tubing, the spacing in the example above should the $1 . \overline{5}$ inches for an impedance of "08 ohmes.)

The length of the quarter-wave matehing section is given ley Liquation l:3-(

The antemman meresonant at the operating frequence. setting the antema length by formula is amply acrenate with single-wime antennas, but in other systems, particularly chosespaced arraps, the antemat should be adjusted to resonamee before the matehing sertion is commeted.

When the antemat input impedance is not known aceurately, it is advisable to construat the matahing section so that the sareing betwern conductors ean be changed. The spacing them may be adjusted to give the lowert possihle s.w.r. on the transmission line.

Stub Matching

When a transmiswon line is not matehed be the load, the impedance looking into the line toward the load varies with the distane from the load, as discussed earlier in this chapter. (onsidering the

F̈g, 13.1.f - Matching the antuma to dar line lig means of a stal, \}. Curvor for determining the lengethe \backslash amd
 the lime seretion 1 and section) all have the same chararteristid impodanes.
input impedane to be equivalont to a resistame in parallel with a reactance, at some distance along the line such as X in lig. 1:3-1 the resistive part of the input impedance will be eyual to the Zo of the line. If at this point a reactance equal to the reactive part of the input impedaner, but of the opposite type, is connerted across the line, the reactanes will eancel and leave only the resistive "omponent. From this point back to the transmitter or other source of chergy the line will the matehed.

The reactances used for mattehing in this way are usually linear reactances - sertions of tramsmission line - called stubs. Nitulne may be opern or closed, demending on whether the free end is left open or is short-circuited, arconding to the tepe of reactance reguired in a particular come The tepe and longth of stub), ats well ats the point at which it shonld be attached to the line, can be found without :my knowledge of the antemat input impedance, providing that the s.w.r. on the lime can be mostured before the stab, is attan:hed, and providing that the position of a current mode (voltage loop) (ran be determined under the same (omditions.

When the sew.r. and the position of a current node are known Figs. 1:3-15 and 1:3-16 give the

lïs. 13-1.5- Craph for detarmining position and lengh of a shorted stul). Dimensions may be comverted to lincar units after values have been taken from the дгад.
st ub information neeessary for impedance matching. Sub lengthe are given in wavelengths, which man he converted to fere with the help of bequation 1:3-1". The data in Figs, 1:3-15 and 1:3-16 are based on the assumption that the line and stab both have the same $\%$ al.

With this systom of matching it is not neeossary that the anteman sistem be exactly resonant, siner the matrh is brised on the position of a current node along the lime. The node nearest the antemna should be used for determining the position of the stub so that as much ats possible of the tramsmission line will be operating with a low s.w.r.

Folded Dipoles

A hall-wave antemna chement can le mate to mateh varions lime impedanees if it is split into two or more parallel conductors with the tramsmission line attanched at the eenter of only one of them. Various forms of sueh "folded dipoles" are shown in Fig. 1:3-17. Currents in all comductors are in phase in a folded dipole, and since the conductor sparing is small the folded dipole is equivalont in radiating properties to an ordinary single-conductor dipole. However, the current flowing into the input terminals of the antemat from the line is the current in one comductor only, and the contire power from the line is delivered at this value of current. This is cequivalent to saying that the input impedance of the

Fig. 13-16 - Craph for determining pusition and lengeth of ath ofen stub. Dimensimis may be collorted to linear units after values latave luen taken from the graph.

Fig. 13-1"- 'The folled dipols, a method for mang the antemaa element itnelf to provide an impedance transformation.
antenna has beren mased by splitting it up into two or more conductors.

If the conductors of a folded dipole are all the same diameter and the spacing betwern them is small, the impedance at the input terminals is appoximately equal to the imput impedance of an ordinary dipole multiplied ber the squatre of the

Fig, 13-18-1mpedance tranformation ratio, tworonductor folded dipole. 'The dimensions d_{1}, d_{2} and s are hown ont the inset drawing. (.urses slom the ratio of the impedame (resistive) sere lot the tramemikeion lime (o) the radiation resiotance of the resonant antelloa ss.stem.
number of conductors. A simple half-wave antemna has an impedance of about 70 ohms, so a two-conductor folded dipole will have an input impedance of 280 ohms, and a threc-conductor dipole an imperdaner of 630 ohms. These values are sufficiently chose for good matehing to $300-$ ohm or 600 -ohm line, respertively.

Other values of impedance ratio may be obtained by making one conductor larger in diameter than the other, as shown at (in Fig. 1:3-17. The recpuired ration of conductor radii (or diametens) for a desired impedance ratio using two conductors may be ohtained from lig. 13-18. Similar information for a 3 -sonductor dipole is: given in Fig. 1:3-19. This graph applies where all three condureos are in the same plane and the 1 wo conductors not comere ed to the tramsmission line are equally spaced from the fed conductor, and have equal diameters (this diameter nered mot equal the diameter of the fed conductor). The unequat-conductor method has beren found partticularly useful in matching to low-imperanere

Fip, 13-19-Impedance transformation ratio, there eonduetor folded dipole". 'Vhe dimeramian $d_{1} d_{2}$ ands are shown on the inset drawing. (hurves show ther ratio of the impedance (resistive) seren by the transmiasion Jine to the ratiation resistance of the resomant antenat -yitem.
antemans such as directive armas using chosespaced parasitio elements.

The length of the antama eloment should I_{r} : surh as to be approximatery self-resonant at the modian operating frogurner. The length is usuatly not highly obitiral, beceate this mothod of materhing tends to rompensate for changes in antenna reactance with frequeney and thus broaterne the frequency-response curve of the antenna.

'T"' and 'Gamma' Matching Sections

The mothod of matching shown in Fig. $13-20.1$ is based on the fact that the impedance
betweron any two points along at resmant antemat is mesistive, and has a vallog which deperads on the sparing between the two points. It is therefore possible to choose a pair of points betweon which the impedaner will have the right value to mateh a transmission line. In practioe, the line camot

Fig. 13.20-The "'T" match and "kamma" match.
be connered direetly at these points beatuse the distance between them is much greater than the conductor spacing of a practicable transmission line. The "T" arrangement in lig. 13-20.1 overfomes this difficulty by using a serond condurtor paralleling the antema to form st matehing seretion to which the line may be connerted.

The "T" is particularly suited to use with a parallel-conductor line, in which case the two points along the antema should be equidistant from the eenter so that elecerical halanee is maintained.

The operation of this system is somewhat eomplex. Each "T" ronductor (! in the drawing) forms with the antemat conductor opposite it a short sertion of transmission linc. Fach of these transmission-line seretions can be considered to be terminated in the imperdane that exists at the peint of commetion to the antemna. Thus the part of the antenna between the two points carrios at transmission-line curvent in addition to the normatl :mentena current. The two tramsmission-line matelhing sertions are in serios, as sern by the main transmission line.

If the antema by itself is resonant at the operating frequency its impedance will be purdy resistive, and in such case the matehing-seretion lines are terminated in a resintive load. However, since these seretions are shorter than a quartor wavelength their input impedance - i.e., the impedaner seern by the main transmission line looking into the matrehing-section terminals - will be reactive as well as resistive. This prevents a perfere mateh to the main transmission line, since its load must be a pure resistanee for perferet matehing. The reative component of the imput impedane must be tund out before a proper mateh ean be secured.

One waty to do this is to detune the antemm just enough, by changing its length, to cause ractance of the opposite kind to be reflected to the input terminals of the matehing section, thus cancelling the reactance introduced by the batter, Another
mothod, which is comsiderably easier to andust, is (o) insort a variable comdenser in suries with the matehing seetion where it conneres to the transmission lime, as shown in Fig. 13-21. A condenser having a maximum capacitance of 1 b0 $\mu \mu \mathrm{fd}$, or so will be about right in the average case, for $1 . t$ Me. and higher. The eondenser must be protereted from the weather.

The mothod of adjustment eommonly used is to cut the antema for approximater resonance and then make the spacing x some value that is convenient constructionally. The distanee !/ is then adjusted, while maintaining symmetry with respert to the eenter, until the s.vir. on the transmission line is as low as possible. If the s.w.r. is not below 2 to 1 atter this adjustment, the antemat lemeth should be changed slightly and the matching-seretion taps adjusted again. This procas maze be continued until the s.w.r. is as close to 1 to 1 as possible.

When the series-rondenser methot of ractance compensation is used (Fig. 1:3-21) the athtemma should tee the proper length to be resonant at the operating frequences. Trial positions of the mateh-ing-sertion taps are taken, eath time adjusting the condenser for minimum s.w.r., until the

Fig 13-2I - Using series comdensers for tuning out reactance in the matching sertion with the ""J" matel and "kamma" mateh. 'The eomdenser ('s should hatue a
 If Dre and may hase proporionataly lowar rapatio tances fer shortar waschonghs. Rereivingetype rondensers can be insed for powers up to a few humdred watts.
standing waves on the transmission line are brought down to the lowest possible value.

The unbalaneod ("famma') arrangement in Fig. 13-2013 is similar in principle to the "F," but is adapted for use with simglo roon line. The method of adjustment is the same.

The 'Delta'" Match

The matching sustem in Fig, 13-22 is based on the vatriation in impedance between two points symmetrically located with respere to the renter of the antenna, as in the case of the " T " mateh, but uses a different matching section. If the two conduetors of a transmission line are fanned out, the Zon of the line will increase with the inerease in spacing. I fanned section of hime can be used to
match a given load impedance to the Za of a uni-formly-spaced transmission line, provided the line Z is lower than the impedaner of the load. strictly, such a match can be made only if the conductor spacing in the famed sertion of line increases at ann exponential rate, but the "delta" arrangemont in lig. 13-22 is a rough appoximation to this type of spacing.

Dimensions a and b in Fig. 13-22 depend on the antemat impedance (whether it is a simple hall-

Fig. I3-22-The "dulta" matching sertion.
wave antenna or the driven element of a multielement heam), the size of the conductors in the delta, and the Zo, of the tramsmission line to be matchod. Methods for calculation are not available, but dimensions for partical cases are given in the chapters on antermas.

BALANCING DEVICES

An antenna with open ends, of which the halfwave type used as an illustration in this seetion is an example, is inherently a balanced radiator, having equal and opposite voltages at its conds and minimum voltage at therenter. When opened at the center and fod with a parallele-onduetor line this balance is maintained throughout the system, including the transmission line, so long as the causes of unbabance discussed eartior in this chapter are avoided.

If the antenna is fed at the eenter through a comxial line, as indicated in Fig. 1:3-23: A , this batanee is upset beratuse one side of the radiator is romereded to the shied while the other is conneected to the inner conductor. The :untemna current on the side connereded to the shied can flow down over the outside of the coasial line, and the fields thus set up cannot be canceled by the fields from the inner conductor beanse the fields $i n s i d e$ the line camot escape through the shielding afforded by the outer conductor. Hence these "antenna" currents flowing on the outside of the line will be responsible for radiation. (In the gamma mated of fige, 13-2013 such ratation is largely prevented because the radiator is continuous and the outer conductor is connected to its center, a point whieh is at ground potential.)

Linear Baluns

Line radiation can be prevented by a number of devices whose purpose is to detune or decouple the line for "antenna" currents and thus greatly reduce their amplitude. Such deviees generally are known as baluns (a contraction for "babaned to unbalaneed"). lig. 13-2:3B shows one such arrangement, known as a bazooka, which uses a sleeve over the transmission line to form, with

Fis. 13-23 - Raliator with eoaxial feed (A) and methods of preventing unhalance (eurrens from flowing on the outside of the transmission line (B and (:). The half. wave phasing section shown at I) is used for compling between an unbalanced and a balanced circuit when a 4-to-1 impedance ratio is desired or can be acepted.
the outside of the outer line conductor, a shorted quarter-wave line section. As described eatier in this chapter, the impedance looking into the open end of such a section is very high, so that the end of the outer conductor of the coaxial line is effectively insulated from the part of the line bolow the sleeve. The length is an electrical quarter wave, and mary be physically shorter if the insulattion between the sleeve and the line is other than air. The bazooka has no effect on the impedance relationships between the antematand the coaxial line.

Another method that gives an equivalent effect is shown at C . This uses a second conductor, generally of the same diameter as the coaxial line (a piece of the same type of line may be used, the inner conductor being disregarded) to form a parallel-conductor quarter-wave "insulator," thus isolating both halves of the antenna equally from the remainder of the line below the shorting connection.

Fig. 13-23D shows a third balun, in which equal and opposite voltages, balanced to ground, are taken from the inner conductors of the main transmission line and half-wave phasing section. Since the voltages at the balanced end are in series while the voltages at the unbalanced end are in parallel, there is a 4 -to- 1 step-down in impedance from the balanced to the unbabaneed side. This arrangement is useful for coupling between a balanced 300 -ohm line and a 75 -ohm coaxial line, for example.

Coil Baluns

Another form of linear balun is shown in the upper drawing of Fig. 13-2.4. Two transmission lines of equal length having a characteristic impedance Z_{0} are connected in series at one end and in parallel at the other. At the series-connected end the lines are balanced to ground and wil! mateh an impedance equal to $2 Z_{0}$. At the parallelconnected end the lines will be matched by an impedance equal to $Z_{0} / 2$. One side may be connerted to ground at the parallel-connected end, provided the two lines have a length such that, considering each line as a single wire, the balanced end is effectively decoupled from the paral-lel-connected end. This requires a length that is an odd multiple of $1 / 4$ wavelength. The impedance transformation from the series-connected end to the parallel-connected end is 4 to 1 .

A definite line length is required only for decoupling purposes, and so long as there is adequate decoupling the system will act as a t-to-1 impedance transformer regardless of line length. If each line is wound into a coil, as in the lower drawing, the inductances so formed will act as choke coils and will tend to isolate the seriesconnected end from any ground connection that may be placed on the parallel-connected end. Balun coils made in this way will operate over a wide frequency range, since the choke inductance is not critical. The lower frequency limit is where the coils are no longer effective in isolating one line from the other; the length of line in each coil
should be about equal to a quarter wavelength at the lowest frequency to be used.

The principal applieation of such coils is in going from a 300 -ohm balanced line to a $75-\mathrm{h} \boldsymbol{\mathrm { h }} \mathrm{m}$ coaxial line. This requires that the Z_{0} of the lines forming the coils be 150 ohms . Design data for winding the coils are not available; however, Diduation 13-D can be used for determining the approximate wire spacing. Allowance should be made for the fact that the effective dielectric constant will be somewhat greater than 1 if the coil is wound on a form. The proximity effect botween turns can be reduced by making the turn spacing somewhat larger than the conductor spacing. For operation at 3.5 Mc . and higher frequencies the length of each conductor should be about (60 feet. The conductor spacing can be adjusted to the proper value by terminating each line in a resistor equal to its characteristic impedance and adjusting the spacing until an s.w.r. bridge at the input end shows the line to be matched.

A balun of this type is simply a fixed-ratio transformer and does not make up for inaccurate

Fig. 13-24- Haluns for matching between push-pull and single-ended circuits. The impedance ratio is 4 to 1 from the push-pull side to the unhalaneed side. Coiling the lines as shown in the lower drawing increases the frequency range over which satisfactory operation is obtained.
matehing elsewhere in the system. With a " 300 ohm" line on the balanced end, for example, a 75 -ohm coax cable will not be matched unless the 300 -ohm line actually is terminated in a 300 -ohm load.

NONRADIATING LOADS

Important practical cases of nonradiating loads for a transmission line are the grid circuit of a power amplifier (considered in the chapter on trimsmitters), the input circuit of a receiver, and another transmission line. This last case includes the "antenna tuner" - a misnomer lecause it is actually a device for coupling a transmission line to the transmitter. Because of its importance in amateur installations, the antenna coupler is considered separately in a later section of this chapter.

Coupling to a Receiver

A good match between an antenna and its transmission line does not guarantee a low stand-ing-wave ratio on the line when the antenna system is used for receiving. The s.w.r. is determined wholly by what the line "sees" at the receiver's antenna-input terminals. For minimum s.w.r. the receiver input circuit must be matehed to the
line. The rated input impedance of a receiver is a nominal value that varies over a considerable range with frequeney. Methods for bringing about a proper match are diseussed in the chapter on receivers.

It should be noted that if the receiver is matehed to the line, then it is desirable that the antenna and line also be matched, since this results in maximum signal transfer from the antenna to the line. If the receiver is not matched to the line, the input impedance of the line (at the terminals of the antenna itself) in turn eannot mateh the antenna impedance. In sueh a ease the signal input to the receiver depends on the coupling system used between the line and the receiver. For greatest signal strength the coupling system has
to be adjusted to the best compromise hetween reeeiver input impedance and load appearing at the input (antenna) end of the line. The proper adjustments must be determined by experiment.

A similar situation exists when the receiver input impedance inherently matches the line: Z_{0}, but the line and antema are mismatehed. Under these conditions perfect matching at the recoiver does not result in greatest signal strength; a deliberate mismateh has to be introduced so that the maximum power will be taken from the antenna.

The most desirable condition is that in whieh the reeeriver is matehed to the line Z_{0} and the line in turn is matched to the intemna. This transfers maximum power from the antema to the receiver with the least loss in the transmission line.

Coupling the Transmitter to the Line

The type of coupling system that will be needed to transfer power adecuately from the final r.f. amplifier to the transmission line depends almost entirely on the input impedance of the line. As shown earlier in this chapter, the input impedance is determined by the standing-wave ratio and the line length. The simplest case is that where the line is terminated in its characteristie impedance so that the s.w.r. is 1 to I and the input impedane is merely the Z_{0} of the line, regardless of line length.

Coupling systems that will deliver power into a flat line are readily designed. For all practical purposes the line can be considered to be flat if the s.w.r. is no greater than about 1.5 to I. That is, a coupling system designed to work into a pure resistance equal to the line Z_{0} will have enough leeway to take eare of the small variations in input impedance that will oecur when the line length is changed, if the s.w.r. is higher than 1 to 1 but no greater than 1.5 to 1.
(coupling cireuits suitable for coaxial lines are discussed in the chapter on transmitters. As stated in that chapter, an untuned "pick-up" or "link" coil connected direetly to the transmission line should have an indurtanee such that the reatance at the operating frequency is approximately equal to the Z_{0} of the line, to assure adequate coupling to a line that is actually flat, While this condition is sometimes met well enough at the higher frequencies, at least for coaxial lines, by manufactured link eoils, it is definitely not met when a parallel-conductor line having a Z_{0} of 300 ohms or more is used. The optimum piek-up coil for coupling to such lines will have alout the same inductance as the plate tank coil itself.

Amateurs are frequently suceessful in coupling power into a line even though the pick-up coil is quite small and is loosely coupled to the amplifier tank coil. When sueh coupling is possible it is an indication that the line is operating at a fairly high s.w.r. and that the line

Fig. 13-25 - Tuned circuits for coupling to a flat parallel-conductor line. Values for C_{1} are given in Table 13-II; L_{1} is chosen to resonate with the value given at the operating frequency. In the alternative circuit the total induetance of L_{1}, L_{2} and L_{3} should equal L_{1} in the circuit at the left.
length is such as to bring a current loop near the input end. It is eustomary to "prune" the line length in such cases until adequate coupling is secured - a practice that has given rise to the wholly fallacious belief, on the part of many, that pruning the line reduees the standing-wave ratio and that a flat line will load an amplifier with a small link and very loose roupling. Pruning the line aceomplishes nothing if the line is actually that beause, as explained earlier in this chapter, the input impedance of a matched line is equal to its Z a regardless of the line length. If the line is not flat, pruning changes the input impedance and eventually results in a value such that the link or pick-up) eoil is actually tuned to the operating frequeney by the line, a condition that will give maximum power transfer with minimum eoupling. The higher the s.w.r. the more loose the eoupling can be. . Although there is nothing inherently wrong with this method of adjustment, it works only when the s.w.r. is fairly high and will not work with a line that actually is flat.

Tuned Coupling

A tuned coupling circuit has the same advantages, when used with properly-terminated paral-lel-conductor lines, that were outlined in the transmitting chapter in connection with coaxial lines. The prineiples are the same as well, but a resistance of 300 to 600 ohms is too high to be connected in series with a tuned eireuit. Consequently, parallel-tuned circuits must be used with

Fiz. 13-26 - Matrhing circuits using a coavial link, for use with parallelcondurtor transmission lines. Adjustment set-up using an s.w.r. bridge is shown in the lower drawing, Design eonsiderations and method of adjustment are discussed in the text.
these lines, Typical arrangements are shown in Fig. 1:3-25. The capacitance values given in Table 13-1 1 are for a Q of 2 and are the minimum values that should be used. The Q may be increased, permitting full power transfor with looser coupling between the coils, by increasing the caparitance and decreasing the inductance correspondingly to maintain resonance.

The capacitance values given are the total capacitance required, so if a balanced condenser is used as indicated at C_{1} in Fig. 13-25 each sertion of the condenser should have twiee the eapacitance given. A single-ended condenser may be used if eare is taken to mount it far enough away from the chassis or any other grounded conductor so that the eapaeitance from stator and frame to ground is small. In such case the condenser should be tuned by an insulated extension shaft.
The series-tuned circuit shown in the transmitter chapter for coax line can be adapted to use with 75-ohm parallel-conductor line by using two variable condensers, one in each line conductor and each having twice the capacitance specified, and removing the ground connection. This is the bost arrangement for maintaining balanee to ground, but if reasonable eare is taken to mount the condenser as deseribed in the preceding paragraph, a single condenser may be used. In that case the only circuit difference is that neither side of the line should be grounded.

Link Coupling

The coupling arrangements for parallel-conductor line shown in lig. 13-25 are not entirely satisfactory from a constructional standpoint. It is usually more convenient to build the coupling apparatus separate from the final amplifier, and this leads to greater operating flexibility as well. For lines operating at a low standing-wave ratio this is easily aceomplished by connecting the amplifier and coupling cireuits through a short length of transmission line or "link." When properly designed and adjusted, the tuning of both eireuits will be completely indejendent of the length of the line conneeting them. This method has the further advantage that, if the connecting line is coaxial cable, it offers an ideal spot for the inser-
tion of low-pass filters for preventing harmonic interference to television and FM reeeption.

The circuit for coax-link coupling is given in Fig. 13-26. The constants of the tuned circuit (') L_{3} are not particularly eritical; the principal requirement is that the circuit must be capable of being tuned to the operating frequency. Constants similar to those used in the plate tank circuit will be satisfactory. The construction of L_{3} must be such that it ean be tapped at least every turn. L_{2} must be tightly coupled to L_{2}, and the inductance of I_{2} should be approximately the value that gives a reactance equal to the Z_{0} of the connecting line at the frequency in use. An average reactance of about 60 ohms will suffice for either 52 -or 75 -ohm coaxialline.

The eoupling circuit at the amplifier end is merely designed and adjusted for working into a flat coaxial line, as deseribed in the transmitter chapter. Hence the adjustment of coupling at the output end $\left(L_{2} L_{3}\left(C_{1}\right)\right.$ is entirely independent of the adjustment at the input end (tank cireuit and L_{1}).

When the system is properly designed and operated, the cireuit formed by $L_{2} L_{3} C_{1}$ acts purely as a matehing device to transform the input impedance of the main transmission line to a value equal to the Z_{0} of the coaxial link.

The most satisfaetory way to set up the system initially is to comnect a coaxial s.w.r. bridge in the link as shown in Fig. 13-26. A simple resistance bridge such as is described in the chapter on measurements is perfectly adequate, requiring only that the transmitter output be reduced to a very low value so that the bridge will not be overloaded. Take a trial position of the line taps on L_{3}, keeping them equidistant from the center of the coil, and adjust C_{1} for minimum s.w.r. as indieated by the bridge. If the s.w.r. is not close to 1 to 1 , try new tap positions and adjust C_{1} again, continuing this procedure until the s.w.r. is practically 1 to 1 . The setting of C_{1} and the tap positions may then be logged for future reference, since they will not ehange so long as the antenna system and frequency are not ehanged. At this point, eheek the link s.w.r. over the frequeney

Note: Inductance in eircuit must be adjusted to resonate at operating frequeney.
range normally used in that band, without changing the setting of C_{1}. No readjustment will be required if the s.w.r. does not exceed 1.5 to 1 over the range, but if it goes higher it is advisable to note as many settings of C_{1} as maty be neeessary to keep the s.w.r. below 1.5 to 1 at any part of the band. Changes in the link s.w.r. are caused chiefly by changes in the s.w.r. on the main transmission line with frequeney, and relatively little by the coupling eireuit itself. A single sotting of C_{1} at midfrequency will suflice if the antenna itself is broad-tuning.

If it is impossible to get a 1 -to- 1 s.w.r. at any settings of the taps or C_{1}, the s.w.r. on the main transmission line is high and the line length is probably unfavorable. Ordinarily there should be no difficulty if the transmission-line s.w.r. is not more than about 3 to 1 , but if the line s.w.r. is ligher it may not be possible to bring the link s.w.r. down except by using the methods for reartance compensation deseribed in a subsequent section.

The matching adjustment can be considerably facilitated by using a variable condenser in seriss with the matehing-circuit coupling coil as shown in Fig. 13-27. The additional adjustment thus provided makes the tap settings on L_{3} murh less eritieal since varying C_{2} has the effect of varying the coupling between the two circuits. For optimum control of coupling, L_{2} should be somewhat larger than when C_{2}^{\prime} is not used - perhaps twice the reartance recommended above - and the reactance of C_{2} at maximum caparitance should be the same as that of L_{2} at the operating frequeney. L_{3} and C_{1} are the same as before. The method of adjustment is the same, except that for each trial tap position C_{1} and C_{2} are alternately adjusted, a little at a time, until the s.w.r. is brought to its lowest possible value. In general, the adjustment sought should be the one that keeps (C_{2} at the largest possible capacitance, since this broadens the frequency response. Nlso, the (aps on L_{3} should be kept as far apart as possible, while still permitting a mateh, since this also broadens the frequency response of the circuit.

Fig. 13-27-Using a series conlenser for control of empling between the linh and line circoits with the coax coupled matehing circuit.

Once the matching circuit is properly adjusted, the s.w.r. bridge may be removed and full power applied to the transmitter. The input should be controlled by the coupling between L_{3} and the amplifier tank coil, never by making any changes in the settings of the matching circuit. If the amplifier will not load properly, tuned coupling should be used into the coas link.

It is possible to use a circuit of this type without initially setting it up with the s.w.r. bridge. In such a case it is a matter of eut-and-try until
adequate power transfer between the amplifior and main transmission line is secured. However, this method frequently results in a high s.w.r. in the link, with consequent power loss, "hot spots" in the coaxial cable, and tuning that is critical with frequency. The bridge mothod is simple and gives the optimum operating conditions quickly and with certainty.

- "TUNED" LINES

If the s.s.r. on a transmission line is high enough to cause the input impedance to change appreciably as the applied frequency is varied, the coupling between the transmitter and the line must be changed aceordingly to keep the amplifier loading constant. So far as the couphing apparatus is concerned, the primeipal difference between flat and tuned lines is that the system can be designed for relatively constant impedance for flat lines, but must be capable of coupling into a wide range of impedinces if the line is "tuned."

As mentioned carlier, a simple coil can be used for coupling to a line having a high standing-wave ratio providing the line length is adjusted so there is a current loop near the point where it conneets to the piek-up coil. The coupling will be maximum, for a given degree of separation betweon the piek-up coil and the amplifier tank coil, if the line is pruned to a length such that the imput impedaner is just sufficiently capacitive to cancel the inductive reactance of the pick-up coil. This can be done by cut-and-try. The higher the s.w.r. on the line the easier it leeomes to load the amplifier with loose coupling between the two coils. Whether or not good loading ean be obtained over a band of frequencies depends on the chatracteristies of the antenna system. The sharper the antenna and the higher the line s.w.r. the more difficult it beromes to operate over a band without progressively changing the line length.

Series and Parallel Tuning

Rather than adjusting the line length to fit : given coupling coil, it is more practical to adjust the coupling circuit to fit the conditions existing at the input end of the transmission line.

A high standing-wave ratio oceurs principally on parallel-conductor lines, wither berause no attempt has been made at matehing the antenna and the line or berause the system is used for multiband operation, which precludes such matelhing. In the latter case, cutting the line length to a multiple of a quarter wavelength will bring either a current or voltage loop near the input terminals of the transmission line (assuming that the antema itself is resonant) depending on the termination and the line length. If there is a current loop near the input end the impedance will be lower than the line Z_{0}; if a voltage loop, the input impedance will be higher than the line Z_{0}. In both cases the input impedances will be essentially resistive.

ITnder these conditions the circuit arrangements shown in Fig, 13-28 will work satisfactorily. Sories tuning is used when a current loop oceurs

(B)

Equivalent

Fig. 13-28-Series and parallel tuning. This mothond is useful with resonant lines when the length is such as to bring cither a current or voltage loop near the input end. Design data and methods of adjustment are given in the text.
at the input end of the line; parallel tuning when there is a voltage loop at the input end. In the series case, the circuit formed by L_{1}, C_{1} and C_{2} with the line terminals short-circuited should tune to the operating frequeney. (${ }_{1}$ and C_{2} should be maintained at equal capacitance. In the parallel case, the circuit formed by L_{1} and C_{1} should tune to resonance with the line disconnerted.

The L / C ratio in either circuit depends on the transmission line Z_{0} and the standing-wave ratio. With series tuning, a high L / C ratio must be used if the s.w.r. is relatively low and the line Z_{0} is high. With parallel tuning, a low L / C ratio must he used if the s.w.r. is relatively low and the transmission-line Z_{0} also is low. With either series or parallel tuning the L / C ratio becomes less critical when the s.w.r. is high. As a first approximation, coil and condenser values of the same order as those used in the plate tank circuit may be tried.

To adjust the series-tuned circuit, first couple L_{1} loosely to the amplifier tank coil and then vary C_{1} and C_{2}, keeping their capacitances equal, until the setting is found that makes the amplifier plate current kick upward. Keep adjusting the amplifier tank condenser, C, for minimum plate current while this is being done. When the proper settings are found, increase the coupling between the two coils until the amplifier draws normal plate current with C adjusted for minimum. It is unnecessary to readjust C_{1} and C_{2} when the eoupling is increased. Keep the coupling between the coils at the smallest value that will load the amplifier properly. If full loading cannot be ohtained with the tightest possible coupling, use a eoil of more inductance at L_{1}.

The same adjustment procedure is used with parallel tuning, except that there is only one condenser, C_{1}. If full lotding cannot be secured, reduce the inductance of L_{1} and increase C_{1} correspondingly to maintain the same frequency, until the amplifier loads properly.

The r.f. ammeters shown in Fig. 13-28 are not strictly necessary, but are useful for indicating
maximum output. They may be omitted if desired; in most cases the amplifier plate current is a good enough indication of output, providing the amplifier is operating at normal ratings and efficiency.

In ease full loading camot be obtained even when the L / C ratio is varied, the type of tuning in use probably is not suitable and should he changed; e.g., from series to parallel. If satisfactory loading still cannot be sccured, the probability is that the s.w.r. is quite low and the coupling methods designed for flat lines, described earlier, should be used.

Two condensers are used in the series-tuned circuit in order to keep the line balanced to ground. This is because two identical condensers, both connected with either their stators or rotors to the line, will have the same capareitance to ground. A single condenser would be perfectly usahle so far as the operation of the coupling circuit is coneerned, but will slightly unbalance the circuit because the frame has more capacitance to ground than the stator. The unbalance is not esperitilly serious unless the condenser is mounted near a large mass of metal, such as a chassis or shield assembly.

A balaneed condenser is used in the parallel eircuit, in preference to a single unit, for the same reason. In alternative scheme to maintain balance is to use two single-ended condensers in parallel, but with the frame of one connected to one side of the line and the frame of the other connected to the other side of the line. The same two condensers may be switched in series when series tuning is to be used.

Link Coupling

The circuits shown in lig. $13-28$ require a means for varying the roupling between two sizable eoils, a thing that is somewhat inconvenient constructionally. It is easier to use sepatrate fixed mountings for the final tank and antenna coils and couple them by means of a link. As explained in the chapter on circuit fundamentals, a short link is equivalent to providing mutual induetance between two tuned circuits. Typical arrangements for series and parallel tuning are shown in Fig. 13-29. Although these drawings slow variable coupling at both ends of the link, a fixed link coil can be used at either end so long as variable coupling is available at the other.

There is no essential difference between the tuning procedures with these circuits and those of lig. 13-28. The only ehange is that the coupling is adjusted by means of a link instead of by varying the spaeing between L and L_{1}.

In cases where the link will be more than a few inches long, or when coaxial cable is to be used for the link, it is mueh better to consider the link as a transmission line that should be properly matehed. The circuit of Fig. 13-26 is
recommended in that case, except that either a series- or parallel-tuned circuit is substituted for C $_{1} L_{3}$ in that figure. The same considerations apply with respect to the sizes of the link coils, and the best adjustment procedure is that using an s.w.r. bridge.

Lines of Random Length

Sories or parallel tuning will always work satisfactorily with lines having a high stand-ing-wave ratio so long as the electrical longth of the line is approximately a multiple of a quarter wavelength. However, it is not always possible to couple satisfactorily when intermediate line lengths are used. This is berause at some lengths the input impedanee of the line has a considerable reactive component, and because the resistive component is too large to be conneeted in series with a tumed circuit and too low to be conneeted in parallel.

The coupling system shown in lig. 13-26 is capable of handling the resistive component of the input impedance of the transmission lines used in most amateur installations, regardless of the standing-wave ratio on the line. Conscquently, it can generally be used wherever either series or paratlel tuning would normatly be called for, simply by setting the taps properly on the coil. (A possible exception is where the s.w.r. is considerably higher than 10 to 1 and the lime length is such as to bring a eurrent loop at the inpat end. In such a case the resistance may be only a few ohms, which is difficult to mateli by means of taps on a coil.)

Within limits, the same circuit is capable of being adjusted to compensate for the reactive component of the input impedanere; this merely means that a 1 -to-1 s.w.r. in the link will be obtained at a different setting of (' (Fig. 1:3-2 6) than would be the case if the line "looked like" a pure resistance. Sometimes, however, $C 1$ does not have enough range available to give complete compensation, particularly when (as is the case with some line lengths when the s.w.r. is high) the input impedance is principally reactive.

Under such conditions it is necessary, if the line length eamot be changed to a more satisfactory value, to provide additional means for compensating for or "canceling out" the reactive component of the input impedance. Is deseribed

Fig, $13-30$ - Reactance cancellation on random-lengelt lines having a high standing-wave ratio.

Fig. 13-29 - link-coupled series and parallel tuning.
earlier in this chapter (Fig. 1:3-(i) the input impedance can be considered to be equivalent to a circuit consisting either of resistance and inductance or resistame and capacitanese. It is gencrally more convenient to consider these elements as a parallel combination, so if the tine "looks like" $L^{\prime} R^{\prime}$ at A in Fig. 1:3-6, it is apparent that if we connect a capacitance of the right value across L^{\prime} the circuit will beeome resonant and will atppear to be a pure resistance of the value R^{\prime}. Similarly, connecting an inductanee of the right value arross (" in F'ig. 1:3-6ils will resonate the circuit and the impedance will be equal to R^{\prime}. The resistive impedance that remains can easily bo matehed to the coax link by means of the circuit of Fig. 1:3-26.

The practical application of this principle is shown in Fig. 13-30, where L and C are the reartaneses required to cancel out the line reatance, L for cases where the line is rapacitive, C for lines having induetive reactanes. The amount of cither inductance or eapacitance required is easily dotormined by trial. ('sing the s.w.r. Iridge in the coax link, first discomnert the main transmission line and comect a noninductive resistor to the line terminals. A $1 / 2$ - or 1 -watt carbon resistor of about the same resistance as the line Z_{0} will do. . Idjust the coil taps and (r_{1} for a 1-to-1 standingwave ratio in the link, as deseribed earlier, This determines the proper setting of C_{1} for a purely resistive load. Then take off the resistor and connert the line, again adjusting the taps and ('i for minimum s.w.r. If a 1-to-1 ratio can be obtained further compensation is not needed, hut if not, make the s.w.r. as low as possible and compare the new setting of (i, with the original setting. If the caparitance has increased, the line reatance is inductive and a condenser must be connered at ('in Fig. 13-30. The amount of capacitance needed to bring the proper setting of ('i near the original setting can be determined by trial. On the other hand, if the eapacitance of c_{1} is less than the original, an inductance must be eonnected at L. Trial values will show when the proper tuning ronditions have been reached. It is not necessary
that C_{1} be at exactly the original setting after the compensating reactance has been adjusted; it is sufficient that it be somewhere in the same vicinity.

Using this procedure practically ans length of line can be coupled properly to the transmitter,
even when the line s.w.r. is quite high. 'nfortunately, no specific values can be suggested for L and C, since they vary widely with line length and s.w.r. Their values usually are comparable with the values used in the regular coupling circuits at the same frequency.

Coupler or Matching-Circuit Construction

The design of matching or "antenna coupler" circuits has been covered in the preceding section, and the adjustment procedure also has been outlined. Since circuits of this type are most frequently used for transferring power from the transmitter to a parallel-conductor transmission line, a principal point requiring attention is that of maintaining good balance to ground. If the coupler circuit is appreciably unbalanced the currents in the two wires of the transmission line will also be unbalanced, resulting in radiation from the line.

In most cases the matching circuit will be built on a metal chassis, following common practice in the construction of transmitting units. The chassis, because of its relatively large area, will tend to establish a "ground" - even though not actually grounded - particularly if it is assembled with other units of the transmitter in a rack or cabinct. The components used in the coupler, therefore, should be placed so that they are electrically symmetrical with respect to the chassis and to each other.

In general, the construction of a coupler circuit should physically resemble the tank layouts used with push-pull amplifiers. In parallel-tuned circuits a split-stator condenser should be used. The condenser frame should be insulated from the chassis because, depending on line length and other factors, harmonic reduction and line balance may be improved in some cases by grounding and in others by not grounding. It is therefore advisable to adopt construction that permits either. Provision also should be made for grounding the center of the coil, for the same reason. The coil in a parallel-tuned circuit should be mounted so that its hot ends are symmetrically placed with respect to the chassis and other components. This equalizes stray capacitances and helps maintain good balance.

When the coupler is of the type that can be shifted to serics or parallel tuning as required, two separate single-ended condensers will be satisfactory. As described earlier, they should be connected so that both frames go to the same side of the circuit-i.e., either to the coil or to the line - for series tuning, and when used in parallel for parallel tuning should be connected frame-to-stator.

A coupler designed and adjusted so that the connecting link acts as a matched transmission line may be placed in any convenient location. Some amateurs prefer to install the coupler at the point where the main transmission line enters the station. This helps maintain a neat station lay-
out when an air-insulated parallel-conductor transmission line is used. With solid-dielectric lines, which lend themselves well to neat installation indoors, it is probably more desirable to install the coupler where it can be reached easily for adjustment and band-changing. The use of coaxial line between the transmitter and coupler is strongly recommended if the link line is more than a few inches long, for the reasons outlined in the preceding section.

COAX-COUPLED MATCHING CIRCUIT

The matching unit shown in Fig. 13-31 is constructed according to the design principles outlined earlier in this chapter. It uses a paralleltuned circuit with taps for matching a parallelconductor line through a link coil to a coaxial line to the transmitter. It will handle about 500

Fig. 13.31-A coax-coupled matching circuit of simple construction. The entire circuit is mounted on a 3 hy 4 by 5 box. C_{1} is inside; C_{2} and the plug-in coil assembly are mounted on top.
watts of r.f. power and will work, without modification, into lines having an s.w.r. below 3 or 1 to 1 . If the s.w.r. is high, it may be neressary to compensate for the reactive part of the input impedanere of the lime, at certain line lengths, by using an additional coil or condenser as diserused carlier. The neressity for such eompensation ean be avoided, on lines having a high s.w.r., be making the clectrical length of the line a multiple of a quaterer wavelength.

As shown by the cireuit diagram, fig. I:3-32, the link cireuit is adjusted bey means of a variable rondenser, (1, to facilitate matrhing the main tranmission line to the coan link. The roils are constructed from eommercially-available coil matterial, and the link inductances are chosen to provide adequate coupling for flat lines. The link coil, of smaller diameter than the tank roil, is mounted inside the batter at the eenter. Duco cement is used to hold the coils together at thair bot tom tie strips. The eoils are mounted on Willen type 40305 plugs and require no other support than the stiffuess of the short lengths of wire going into the cond prongs of the plug from the tank coil. Short lengths of spaghetti tubing are sliperd over the leads to the link coil where they go between the tank coil turns to reach the plug.

Taps on the tank roil for conneretion to a paral-lel-conductor transmission line are made by bending ordinary soldering lugs around the wire and soldering them in phace. The clips are Johnson type e:35-8ibo, adjusted so that they lit suugly over the taps when pushed on sidewise. I'sed this way, the clips provide an casy and rapid method of connecting and diseonnecting the line. The proper positions for the taps may be determined by first using the flips in the normal fashion.

The maximum length of roil that can be mounted satisfactorily on the plugs is about 4 inchos, and a eoil of this size cammot be tuned to the 3.5 -Me. hand with the $100-\mu \mu$ fol-per-sedion split-stator condenser used in this unit. To cover the 3.5-Mc. band it is neressary to shunt the eoil with an additional caparitane of about $75 \mu \mu \mathrm{fl}$.

The matehing cercuit should be adjusted with the aid of an s.w.r. bridge, as described carlier in this chapter. In general, the tuning will be less

 matu-hing circuit.

 'I゚ $11 \mathrm{~K}-1(000)$.
J_{1} - Chassis-lyue coav emmertor.

	Coil Data	
Bund	l.1, turns	I.2. turns
3.7 11c.*	$21(1-\mu \mathrm{h}$.	10 (5 $\mathrm{m}_{\text {li }}$.)
- 118.	18 (12 н 月.)	$6(2.5 \mu \mathrm{hi}$.
11.110.	10 ($5, \mu \mathrm{~h}$.	$3(1 \mu \mathrm{l}$.
$21-28$ Nr.		2

* Adel $5 \cdot 5 \mu \mathrm{fd}$. in parallel with (.2.
l.1-No. 12 tinned wire, $21 / 2$ inches dia., 6 turns per infla (13 \& W 30(0.5-1).
$12-$ Vo, 10 wire, 2 inclies dia., 10 turns per inch (3 S $W^{3} 390$ or $390-1$).
rritical, and the eirenit will work over a wider frequency range without readjustment, if the taps are kept as far toward the conds of the coil as possible and Cis is set at the largest rapacitanere that will permit bringing the s.w.r. in the cons link down to 1 to 1 .

- A'UNIVERSAL" MATCHING CIRCUIT

The matching circuit shown in Fig. 13-3:3 offers considerable flexibility in that it ean be used as a tapped-eoil mateling network of the same type as that just described, and also can be used as either a series- or parallel-tuned "antemma roupler." It can also be addapted to other types of coupling by simple changes in the plug-connection arrangement of the coils.

Two condensers are used in the tank circuit. Their rotors are insulated from earh other but are turned simultaneously hy a right-angle drive unit. When used either for parallel tuning or the tappederoil method of matehing, the rotors are ronnected together to form a split-stator conclenser having a maximum capacitane of 150

Fig. 1.3-3.3-A compler or matching network that ean also be used for series or parallel tuning of tuned lines.

Fig. 13.34 - Circuit diagram of the "universal" coax. eoupled matching net worh. Fior use as a tapped matehing circuit, connect the line to taps on L_{1}, ats at $A-I$, and connert the jumper, I. to A-B; the jumper is also used for paralled tuning but with the line connerted to $\mathrm{I} \cdot \mathrm{F} \cdot \mathrm{F}$. Fior scries tuning, remove the jumper and connert the line to ($\therefore-1$). The ground connestion to the middle prong of the enil socket is provided for cases where it is desirable to pround the center of L_{1}.
Ci $-300-\mu \mu \mathrm{fd}$. variable, approximately $0.02 \cdot 4^{\prime \prime}$ spacing. Ci2, (i3-300- $3 \mu \mathrm{fl}$. variable, 1000 volts (National TMS. 300).
J_{1} - Chassis-type coax conmector.

Coil Data

Band	Li, turns	I, 2 , turns
3.3-7 Mc.	20 ($14 \mu \mathrm{~h}$.)	10 (5 $\mu \mathrm{h}$.)
${ }^{-14} \mathrm{Mc}$.	$10\left(5 \mu h_{\text {c }}\right.$)	6 ($2.5 \mu \mathrm{~h}$.
1.1-28 Hc.	$4(1.5 \mu \mathrm{~h}$.	

1_{1} - No. 12 tinned wire, $21 / 2$ inches dia., 6 turns per inch (13 \& W 3905.1).
1.2 - No. 16 wire, 2 inches dia., 10 turns per inch (13 N W 3907 or 3907.1).
$\mu \mu \mathrm{fl}$. When used for series tuning the condenset frames connect to the parallelerenductor tramsmission line, the jumper that connerts the rotora together being removed.

The unit is built on a 7 by 9 by 2 aluminum chassis and has a 7 by 10 panel. The tank condensers are mounted on small aluminum plates
supported on $3 / 4$-inch stand-off insulators, to insulate the frames from the chatssis; this method is preferable to mounting the condensers directly. on the insulators as it lessens the mechanical strain on the latter The soldering lugs projecting from the condensers provide means for connecting the line elips for series and parallel tuning. The jumper for connecting the rotors together is in the foreground: it uses banama plugs that fit into jarcks mounted on the comdenser mounting plates. The link condenser is located underneath the chassis.

The coils shown are designed primarily for use In the tapped matching eircuit or for parathel tuning, but will also be satisfactors for series tuning if the transmission line length is such as to bring at current loop near the input end. (oil taps are made in the same way as in the coupler proviously described, Soldering lugs are also used as taps on C_{2} and ('3 to make the necessary connertions for series or parallel tuning. Bectuse of the fairly large value of maximum capacitance available when the tank condensers, C_{2} and C_{3}, are used together as a split-stator condenser, it is possible to cover a 2 -to-l frequency range. (onsequently, only threr coil assemblies are neoded to cover the 3.5 to 30 -Mc. range, and each one can be used for two (in the case of the smallest coil, three) adjacent amateur bands.

As a tapped matehing circuit, adjustment is the same as for the unit just deseribed. When using cither series or parallel tuning, the s.w.r. bridge should be used as bofore, adjusting C_{1} and (y (' ${ }^{3}$ for minimum s.w.r. in the coan link.

CHAPTER 14

Antennas

An antenna system can be considered to include the antenna proper (the portion that radiates the r,f. energy), the feedline, and any coupling devices used for transforring power from the transmitter to the line and from the line to the antenna. Some simple systems may omit the transmission line or one or both of the coupling devices. This chapter will describe the antenna proper, and in many cases will show popular types of lines, as well as line-toantenna couplings where they are required. However, it should be kept in mind that an! antenna proper ran be used with any type of ferdline if a suitable coupling is used bet ween the antenna and the line. Changing the line does not change the type of antenna.

Selecting an Antenna

In selecting the type of antenna to use, the majority of amateurs are somewhat limited through space and structural limitations to simple antenna systems, exropt for v.h.f. opcration where the small spare requirements make the use of multielement beams readily possible. This chapter will ronsider antennas for frequencies as high as 30 Me. - a later chapter will describe the popular types of v.h.f. antemnats. However, even though the available space may be limited, it is well to consider the propagation characteristies of the frequency band or bands to be used, to insure that best possible use is made of the available facilities. The propagation characteristies of the various bands, up to 30 Me., are described in Chapter Four. In general, antenna construction and location berome more critical and important on the higher frequencies. On the lower frequencies (3.5 and 7 Mc.) the vertieal angle of radiation and the plane of polarizattion may be of relatively little importance; at 28 Me, they may be all-important. On a given frequency, the particular type of antemat best suited for long-distance communication may not be as good for shorter-range work as would a different type.

Definitions

The important properties of an antenna proper are its polarization, vertieal and horizontal angles of maximum radiation, impedance, gain and bandwidth.

The polarization of a straight-wire antenna is determined by its position with respect to the earth. Thus a vertical antenna radiates vertically-polarized waves, while a horizontal
antenna radiates horizontally-polarized waves in a direction broadside to the wire and vertically-polarized waves at high vertical angles off the ends of the wire. The wave from an antenna in a slanting position, or from the horizontal antenna in directions other than mentioned above, contains both horizontal and vertical components.

The vertical angle of maximum radiation of an antenna is determined by the free-spare pattern of the antemna, its height above ground, and the nature of the ground. The angle is measured in a vertical plane with respect to a tangent to the earth at that point, and it will usually vary with the horizontal angle, except in the case of a simple vertical antenna. The horizontal angle of maximum radiation of an antenna is determined by the free-spare pattern of the antema.

The impedance of the antenna at any point is the ratio of the voltage to the current at that point. It is important in connection with feeding power to the antemm, since it constitutes the load to the line offered by the anteman. It can be either resistive or complex, depending upon whether or not the antenna is resonant.

The field strength produced by an antema is proportional to the current flowing in it. When there are standing waves on an antenna, the parts of the wire carrying the higher current have the greater radiating effect. All resonant antennas have standing waves - only terminated types, like the terminated rhombic and terminated "V," have substantially uniform current along their lengths.

The ratio of power required to produce a given field strength, with a "comparison" antenna, to the power required to produce the same field strength with a specified type of antenna is called the power gain of the latter antenna. 'The fied is measured in the optimum direction of the antemat under test. In amateur work, the comparison antenna is generally a half-wave antenna at the same height and having the same polarization as the antenna under consideration. P'ower gain usually is expressed in decibels.

In unidirectional beams (antenna systems with maximum radiation in only one direction) the front-to-back ratio is the ratio of power radiated in the maximum direction to power radiated in the opposite direction. It is also a measure of the reduction in received signal when the beam direction is changed from that for maximum response to the opposite
direction. Front-to-back ratio is usually expressed in decibels.

The bandwidth of an antenna generally refers to the frequency range over which the
gain and impedance are substantially constant. It is of importance primarily in connection with multielement beams fed by a "flat" transmission line.

Ground Effects

The radiation pattern of any antenna that is many wavelengths distant from the ground and all other objects is called the free-space pattern of that antenna. The free-spare pattern of an antenna is almost impossible to obtain in practice, except in the v.h.f. and u.h.f. ranges. Below 30 Mc ., the location of the antenna with respect to ground plays an important part in determining the actual radiation pattern of the antemna.

When any antenna is near the ground the free-space pattern is modified by reflection of radiated waves from the ground, so that the actual pattern is the resultant of the free-space pattern and ground reflections. This resultant is dependent upon the height of the antenna, its position or orientation with respect to the surface of the ground, and the electrical characteristics of the ground. The effect of a perfectly-reflecting ground is such that the

Fig. 14-1 - Effect of ground on radiation of horizontal antennas at vertical angles for four antenna heights. 'This chart is hased on perfectly-conducting ground.
original free-space field strength may be multiplied by a factor which has a maximum value of 2 , for complete reinforcement, and having all intermediate values to zero, for complete cancellation. These reflections only affect the radiation pattern in the vertical plane - that is, in directions upward from the earth's surface - and not in the horizontal plane, or the usual geographical directions.

Fig. 14-1 shows how the multiplying factor varies with the vertical angle for several representative heights for horizontal antemas, As the height is increased the angle at which complete reinforcement takes place is lowered, until for a height equal to one wavelength it occurs at a vertical angle of 15 degrees. At still
greater heights, not shown on the chart, the first maximum will occur at still smaller angles.

Radiation Angle

The vertical angle of maximum radiation, is of primary importance, especially at the higher frequencies. It is advantageous, therefore, to erect the antenna at a height that will take advantage of ground reflection in such a way as to reinforce the space radiation at the most desirable angle. Since low angles usually are most effective, this generally means that the antenna should be high - at least one-half wavelength at 14 Mc., and preferably three-quarters or one wavelength, and at least one wavelength, and preferably higher, at 28 Mc . The physical height required for a given height in wavelengths decreases as the frequency is increased, so that good heights are not impracticable; a half-wavelength at 14 Mc. is only $3 \overline{5}$ feet, approximately, while the same height represents a full wavelength at 28 Mc . At 7 Mc . and lower frequencies the higher radiation angles are effective, so that again a useful antenna height is not difficult of attainment. Ileights between 35 and 70 feet are suitable for all bands, the higher figures being preferable.

Imperfect Ground

Fig. 14-1 is based on ground having perfect conductivity, whereas the actual earth is not a perfect eonductor. The principal effect of actual ground is to make the curves inaccurate at the lowest angles; appreciable high-frequency radiation at angles smaller than a few degrees is practically impossible to obtain over horizontal ground. Above 15 degrees, however, the curves are accurate enough for all practical purposes, and may be taken as indicative of the result to be expected at angles between 5 and 15 degrees.

The effective ground plane - that is, the plane from which ground reflections can be considered to take plare - seldom is the actual surface of the ground but is a few feet below it, depending upon the character of the soil.

Impedance

Waves that are reflected directly upward from the ground induce a current in the antema in passing, and, depending on the antenna height, the phase relationship of this induced current to the original current may be such as either to increase or decrease the total current in the antenna. For the same power input to the antenna, an increase in current is equivalent to a decrease in impedance, and vice versa. Hence, the impedance of the au-
tenna varies with height. The theoretical curve of variation of radiation resistance for an antema above perfectly-reflecting ground is shown in Fig. 14-2. The impedane approtehes the free-spare value as the height becomes large, but at low heights may differ considerably from it.

Choice of Polarization

Polarization of the transmitting antenna is generally umimportant on frequencies between 3.5 and 30 Me . However, the question of whether the antenna should be installed in at horizontal or vertical position deserves consideration for other reasons. I vertical halfwave or quarter-wave antenna will ratiate aqually well in all horizontial directions, so that it is substantially mondirectional, in the usual sense of the word. If installed horizontally, however, the antenna will tend to show directional effeets, and will radiate best in the direction at right angles, or broadside, to the wire. The radiation in surh a ease will be least in the direction toward which the wire points.

The vertical angle of radiation also will be

Fig. 14-2 - Theoretical curve of variation of radiation resistance for a halfowave horizontal antenna, as a function of height in wavelength above prefectly-refliecting ground.
affected by the position of the antenna. If it were not for ground losses at high frequencies, the vertical half-wave antemna would be preferred berause it would concentrate the radiation horizontally.

The Half-Wave Antenna

The fundamental form of antenna is a single wire whose length is approximately equal to half the trimsmitting wavelength. It is the unit from which many more-complex forms of antemmas are constructed. it is variously known as a half-wave dipole, half-wave doublet, or Hertz :ntenna.

The length of a half-wavelength in space is:

$$
\begin{equation*}
\text { Length }(\mathrm{feet})=\frac{492}{\text { Freq. (Me.) }} \tag{14-A}
\end{equation*}
$$

The actual length of a half-wave antenna will not be exactly equal to the half-wave in space, but depends upon the thickness of the conductor in relation to the wavelength as shown in lig. $14-3$, where K is a factor that must be multiplied by the half-wavelength in free space to obtain the resonant antenna length. An additional shortening effect oecurs

Fig. 14.3- Effect of antenna diameter menterth for half-wave resonance, shown as a multiplying fartor, K, to be applied to the free-space half-wavelength (Iifuation 14-A). The effect of conductor dianneter on the impedance measurel at the center also is shown.
with wire antennas supported by insulators at the ends because of the capacitance added to the system by the insulators (end effect). The following formula is sufficiently accurate for wire antennas at frequencies up to 30 Mc .:

Length of half-wave antemnt (feet) $=$

$$
\begin{equation*}
\frac{492 \times 0.95}{\text { Freq. }(\mathrm{Mc} .)}=\frac{46 \mathrm{~s}}{\text { Freq. }} \text { (Mc.) } \tag{14-B}
\end{equation*}
$$

Example: A half-wave antenna for 7150 ke . (7.15 Mc .) is $\frac{41 \mathrm{~K}}{7.15}=6 \mathrm{j} .4 \mathrm{j}$ feet, or 65 feet 5 inches.

Above 30 Mc . the following formulas should te used, particularly for anteminas constructed from rod or tubing. K is taken from Fig. 14-3.

$$
\text { Length of half-wave anteuna (feet) }=
$$

$$
\begin{gathered}
\frac{492 \times K}{\text { Freq. }(\mathrm{Mc} \cdot)} \\
\text { or length (inches) }=\frac{5905 \times K}{\text { Freq. }} \frac{(\mathrm{Mc} .)}{(14-\mathrm{C})}
\end{gathered}
$$

Fxomple: Find the length of : half-wavelength antennat at 29) Me., if the antenna is made of 2 inch diameter tuhing. At 29 Mc., a half-wavelergeth in spuce is $\frac{492}{29}=16.97$ feet, from Eq. 14-A. Ratio of half-wavelength to ronductor diameter (changing wavelength to inches) is $\frac{16.97 \times 12}{2}=101.8$. From Fig. $14-3, K=0.963$ for this ratio. The length of the antenna, from Eq. $14-\mathrm{C}$, is $\frac{492 \times 0.963}{29}=16.34$ feet, or 16 feet 4 inches. The answer is obtained directly in inches bey substitution in Eq. 14-1): $\frac{5905 \times 0,963}{29}$ $=196$ inches.

Fig. If-4-The ahove seales. hased on Eif. If-1t, can be used to deternine the length of a half-wave antenna of wire.

Current and Voltage Distribution

When power is fed to a half-wave antemat the current and voltage vary along its length. The current is maximum at the center and nearly zero at the ends, while the opposite is true of the r.f. voltage. The current does not actually reach zero at the current nodes, because of the end effect; similarly, the voltage is not zero at its node because of the resistance of the antenna, which consists of both the r.f. resistance

Fig. 14-5 - The free-space radiation pattern of a halfwave antenna. The antenna is shown in the vertical position. This is a eross-section of the solid pattern de. soribed by the figure when rotated on its vertical avis. The "doughnut" form of the solid pattern can he more easily visualized by imagining the drawing glued to a piece of eardboard, with a short length of wire fastened on it to represent the antenna. Twirling the wire will give a visual representation of the solid radiation pattern.
of the wire (ohmic resistance) and the radiation resistance. The radiation resistance is :n equivalent resistance, a convenient conception to indicate the radiation properties of an antemna. The radiation resistance is the equivalent resistance that would dissipate the power the antenma radiates, with a current flowing in it equal to the antenna current at a current loop (maximum). The ohmic resistance of a half-wavelength antenna is ordinarily small enough, in comparison with the radiation re-

Fig. 1f-6- Illustrating the importance of vertical angle of radiation in determining antenna directional effects. Uff the end, the radiation is greater at higher angles. Ground reflection is negleeted in this drawing of the free-space pattern of a horizontal antenna.
sistance, to be neglected for all practical purposes.

Impedance

The radiation resistance of an infinitelythin half-wave antenna in free space - that is, sufficiently removed from surrounding objects so that they do not affect the antenna's characteristics - is 73 ohms, approximately. The value under practical conditions is commonly taken to be in the neighborhood of 70 ohms. It is pure resistance, and is measured at the center of the antenna. The impedance is minimum at the center, where it is equal to the radiation resistance, and increases toward the ends. The actual value at the ends will depend on a number of factors, such as the height, the physical construction, the insulators at the ends, and the position with respect to ground.

Conductor Size

The impedince of the antenna also depends upon the diameter of the conductor in relation to the wavelength, as shown in Fig. 14-3. If the diameter of the conductor is made large, the eapacitance per unit length increases and the inductance per unit length decreases. Since the radiation resistance is affected relatively little, the decreased L / C ratio eauses the () of the antenna to decrease, so that the resonance curve becomes less sharp. Hence, the antenna is capable of working over a wide frequency range. This effect is greater as the diameter is increased, and is a property of some importance at the very-high frequencies where the wavelength is small.

Fig. 14.7- Ilorizontal pattern of a horizontal halfwave antenna at three vertical radiation angles. The solid line is relative radiation at 15 degrees, Iottedlines show deviation from the $\mathbf{1 5}$-degree pattern for angles of 9 and 30 degrees. The patterns are useful for shape only, since the amplitude will depend upon the height of the antenna above ground and the vertical angle considered. The patterns for all three angles have been proportioned to the same scale, but this does not mean that the maximum amplitudes necessarily will be the same. The arrow indicates the direction of the horizontal antenna wire.

Radiation Characteristics

The radiation from a half-wave antenna is not uniform in all directions but varies with the angle with respect to the axis of the wire. It is most intense in directions perpendicular to the wire and zero along the direction of the wire, with intermediate values at intermediate angles. This is shown by the sketch of Fig. 14-0, which represents the radiation pattern in free space. The relative intensity of radiation is proportional to the length of a line drawn from the center of the figure to the perimeter. If the antema is vertical, as shown in the figure, then the fied strength will be uniform in all horizontal directions; if the antenna is horizontal, the relative field strength will depend upon the direction of the receiving point with respeet to the direction of the antenna wire. The variation in radiation at various vertical angles from a half-wavelength horizontal antema is indicated in ligs. 1t-6 and 14-7.

- FEEDING THE HALF-WAVE ANTENNA

Direct Feed

If possible, it is advisable to locate the antenna at least a half-wavelongth from the transmitter and use a transmission line to carry the power from the transmitter to the

Fig. 1.4-8 - Methods of direcoly exating the half-wave antemma. Λ, curront ferd, series tuning; 13 , voltage fied, capacitive compling; C, voltage feed, with in. ductivelveroupled allwona tank. In A, the compling circuit is not inclucled in the effertive eleretrical length of the antennasystem proper.
antenna. However, in many cases this is impossible, partieularly on the lower frequencies, and direct feed must be used. 'Three cxamples of direct feed are shown in Pig. 14-8. In the method shown at A, C_{1} and C_{2} should be about $150 \mu \mu \mathrm{fd}$. each for the $3.5-\mathrm{Mc}$. band, $75 \mu \mu \mathrm{fd}$. each at 7 Mr ., and proportionately smaller at the higher frequencies. The antenna coil connered betweon them should resonate to 3.5 Me. with about 60 or $70 \mu \mu \mathrm{fd}$., for the $80-$ meter hand, for 40 meters it should resonate with 30 or $35 \mu \mu \mathrm{fl}$., and so on. The circuit is adjusted by using loose coupling between the antema coil and the transmitter tank coil and adjusting C_{1} and ('2 until resonance is indicated by an increase in plate current. The coupling between the coils should then be inereased until proper plate current is drawn. It may be necessary to reresonate the transmitter tank eircuit as the coupling is increased, but the change should be small.

The circuits in Fig. 14-813 and C are used when only one end of the antemat is acressible. In B, the coupling is adjusted by moving the tip toward the "hot" or plate end of the tank coil - the condenser (may be of any convenient value that will stand the voltage, and it doenn't have to be variable. In the circuit at C, the antenna tuned circuit ($(\% 1$ and the antenna coil) should be similar to the transmitter tank circuit. The antenna tuned eircuit is adjusted to resonance with the antenna connected but with loose coupling to the transmitter. Heavier loading of the tube is then ohtained by tightening the coupling between the antenna coil and the transmitter tank coil.

Of the three systems, that at A is preferable because it is a symmetrical system and generally results in less r.f. powor "floating" around the shack. The system of 13 is undesirable because it provides practically no protection against the radiation of harmonies, and it should only be used in emergencies.

Transmission-Line Feed for Half-Wave Antennas

Since the impedance at the center of a halfwavelength antemat is in the vicinity of 75 ohms, it offers a good match for 7 5-ohm twowire transmission lines. several types are a vailable on the market, with different powerhanding capatilities. They can be comerededin the center of the antenna, across a small strain insulator to provide a convenient commertion point. Coaxial line of 75 ohms impedance can also be used, but it is hetvier and thus not as convenient. In either case, the transmission line should be run away at right angles to the antenna for at least ontoquarter waselongth, if possible, to avoid current unbalance in the line caused by pirk-up from the antenna. The antenna length is calculated from liquation 14-B, for a half-wavelength antema. When No. 12 or No. 14 enameled wire is used for the antenna, as is generally the case, the length of the wire is the over-all length measured from the loop through the insulator at eath end. This is illustrated in Fig. 14-9.

The use of 75 -ohm line results in a "flat" line over most of any amateur band. However, be making the half-wave antenna in a special manner, called the two-wire or folded dipole, a good match is offered for a 300 -ohm line. such an antenna is shown in Fig. 1t-10. The open-wire line shown in lig. 14-10 is made of

Fig. 14.9- Construction of a half-wave doublet fed with $7 \overline{6}$-ohm line. The length of the antenna is calculated from Equation 14-13 or Pig. 14-4.

Fig. 14-10 - The construetion of an open-wire folded doublet fed with 3010 orbin line. The tength of the ant tenna is caleulated from Equation It-13 or Hig. 14-t.

No. 12 or No. 14 enameled wire, separated by lightweight spacers of Lucite or other material (it doesn't have to be a lou-loss insulating material), and the spacing can be on the order of from 4 to 8 inches, depending upon what is convenient and what the operating frequency is. At 14 Me., 4 -inch separation is satisfactory, and 8 -inch or even greater spacing can be used at 3.5 Mc.

The half-wavelength antenna can also be made from the proper length of 300 -olm line, opened on one side in the center and connected to the feedline. After the wires have been soldered together, the joint can be strengthened by molding some of the excess insulating material (polyethylene) around the joint with a hot iron, or a suitable lightweight clamp of two pieces of Lucite can be devised.

lig. 14-11 - The construction of a 3-wire folded dipole is similar to that of the 2 -wire folded dipole. '1'he end spacers may have to be slightly stronger than the others because of the preater compression force on them. The longth of the antenna is obtained from Equation 1 . 13 or Fig. 14-4. A suitable line can be made from No. 14 wire spaced $41 / 2$ to 5 inches, or from No. 12 wire spaced 6 inches.

Similar in some respects to the two-wire folded dipole, the three-wire folded dipole of Fig. 1t-11 offers a good mateh for at 600 -ohom line. It is favored by amatcurs who prefer to use an open-wire tranmission line instead of the 300 -ohm insulated line. The three wires of the antemat proper should all be of the same diameter.

Another method for offering a match to a 600 -ohm open-wire line with a half-wavelength antenna is shown in Fig. 14-12. The system is called a delta match. The line is "fanned" as it approaches the antenna, to have a gradu-ally-increasing impedance that equals the antenna impedance at the point of connection. The dimensions are fairly critical, but careful measurement before installing the antenna and matching section is generally all that is neces-
sary. The length of the antenna, L, is calculated from Equation 14-B or Fig. 14-4. The length of section C is computed from:

$$
\begin{equation*}
C(\text { feet })=\frac{118}{\text { Freq. (Me.) }} \tag{14-E}
\end{equation*}
$$

The feeder clearance, l, is found from

$$
\begin{equation*}
E(\text { feet })=\frac{148}{\text { Freq. }(\mathrm{Mc} .)} \tag{14-F}
\end{equation*}
$$

Example: For a frequency of 7.1 Me., the length
$L=\frac{46 \mathrm{~S}}{\mathrm{~B} .1}=\mathbf{6} 5.31$ feet, or $\mathbf{6} \mathrm{E}$ fect 11 inches.
$C=\frac{118}{7.1}=16.62$ fect, or 16 feet 7 inches.
$E=\frac{148}{3.1}=20.84$ feet, or 20 fect 10 inches.

Fig. 14-12 - Delta-matehed antenna system. The dimornsione $C . D$, and E are found hy formmlas given in the text. It is important that the matching section, E, cones straight awas from the antenna without any bends.

Since the equations hold only for 600 -ohm line, it is important that the line be close to this value. This requires $43 / 4$-inch spaced No. 14 wire, 6 -inch spaced No. 12 wire, or $38 / 4$-inch spated No. 16 wire.

If a half-wavelength antenna is fed at the center with other than 75 -ohm line, or if a t wo-wire dipole is fed with other than 300 -ohm line, standing waves will appear on the line and coupling to the transmitter may become awkward for some line lengths, as deseribed in the preceding chapter. Ifowever, in many cases it is not convenient to feed the half-wave antenna with the correct line (ass is the case where multiband operation of the same antenna is desired), and sometimes it is not convenient to feed the antenna at the center. Where multiband operation is desired (to be discussed later) or when the antenna must be

Fig. 14-13 - The half-wave antenna can be fed at the center or at the end with an open-wire line. The antenna length is obtained from Equation 14-B or Fig. 14-4.
fed at one end by a transmission line, an openwire line of from 450 to 600 ohms impedance is generally used. The impedance at the end of a half-wavelength antenna is in the vicinity of several thousand ohms, and hence a standingwave ratio of 4 or 5 is not unusual when the line is connected to the end of the antenna. It is advisable, therefore, to keep the losses in the line as low as possible. This requires the use of
ceramic or Micalex feeder spacers, if any appreciable power is used. For low-power installations in dry climates, dry wood spacers that have been boiled in paraffin are satisfactory. Mechanical details of half-wavelength antennas fed with open-wire lines are given in Fig. 14-13. If the power level is low, below 100 watts or so, 300 -ohm Twin-Lead can be used in place of the open line.

Long-Wire Antennas

An antenna will be resonant so long as an integral number of standing waves of current and voltage can exist along its length; in other words, so long as its length is some integral multiple of a half-wavelength. When the antenna is more than a half-wave long it usually is called a long-wire antenna, or a harmonic antenna.

Current and Voltage Distribution

Fig. 14-14 shows the current and voltage distribution along a wire operating at its fundamental frequeney (where its length is equal to a half-wavelength) and at its second, third and fourth harmonics. For example, if the fundamental frequency of the antenna is 7 Mc., the current and voltage distribution will be as shown at A. The same antenna excited at 14 Mc. would have current and voltage distribution as shown at I3. At 21 Mc., the third harmonic of 7 Mc. , the current and voltage distribution would be as in C; and at 28 Mc., the fourth harmonic, as in D. The number of the harmonic is the number of half-waves con-
 B

2no HARMONIC (FULL-WAVE)

4 IH HARMONIC (2 -WAVE)
Fig. 14.14 - Standing-wave current and voltage distribution along an antenna when it is operated at various harmonics of its fundamental resonant frequency.

Fig. 14-15 - Curve A shows variation in radiation re. sistancer with antrona lenpth. Cirve b shows power in lohes of maximum radiation for long-wire antennas as a ratio to the maximum radiation for a half-wave antema.
tained in the antenna at the particular operating frequency.

The polarity of current or voltage in earh standing wave is opposite to that in the adjarent standing waves. This is shown in the figure by drawing the current and voltage curves successively above and below the antemna (taken as a zero reference line), to indicate that the polarity reverses when the current or voltage goes through zero. Currents flowing in the same direction are in phase: in opposite directions, out of phase.

It is crident that one antema may be used for harmonically-related frequencies, sueh as the various amateur bands. The long-wire or harmonic antenna is the basis of multiband operation with one antema.

Physical Lengths

The length of a long-wire antemna is not an exact multiple of that of a half-wave antenna because the end effects operate only on the end sections of the antenna; in other parts of the wire these effects are absent, and the wire length is approximately that of an equivalent

Fig. 14-16 - IIorizontal patterns of radiation from a full-uave antenna. The solid line shows the pattern for a vertical angle of 15 degrees; dotted lines show deviation from the 15 -dugree pattern at 9 and 30 degrees. All three pat terns are drawn to the same relative seale: actual amplitudes will depend upon the height of the antenna.
portion of the wave in space. The formula for the length of a long-wire antenna, therefore, is

$$
\text { Length }(\text { feet })=\frac{492(N-0.05)}{\text { Freq. (Mc. })}
$$

14-G
where N is the number of half-waves on the antenna.

> Example: An antenna 4 half-wa ves long at 14.2
> Mc. would be $\frac{402(4-0.05)}{14.2}=\frac{402 \times 3.905}{14.2}$
> $=136.7$ feet, or 136 fcet 8 inches.
lt is apparent that an antenna cut as a halfwave for a given frequency will be slightly off resonance at exactly twice that frequency (the

Fip. 14-17- Ilorizontal patterns of radiation from an antenna three half-ucates long. The solid line shows the pattern for a vertical angle of 15 degrees; dotted lines show deviation from the 15 -degree pattern at 9 and 30 degrees. Minor lobes coincide for all three angles.
second harmonic), because of the decreased influence of the end effects when the antenna is more than one-half wavelength long. The effect is not very important, except for a possible unbalance in the feeder system and consequent radiation from the feedline. If the antenna is fed in the exact center, no unbalance will occur at any frequency, but end-fed systems will show an unbalance in all but onefrequency, the frequency for which the antenna is cut.

Impedance and Power Gain

The radiation resistance as measured at a current loop becomes larger as the antenna length is increased, Also, a long-wire antenna radiates more power in its most favorable direction than does a half-wave antenna in its most favorable direction. This power gain is

Fip. 14-18-1Lorizontal patterns of radiation from an antenna two wavelengths long. The solid line slows the pattern for a vertical angle of 15 drgrees; dotiod litures show deviation from the $1.5-d e g r e e^{p}$ pattern at ${ }^{9}$ and 30 degrees. The minor lobes coineide for all threc angles.
secured at the expense of radiation in other directions. Fig. 14-15 shows how the radiation resistance and the power in the lobe of maximum radiation vary with the antenna length.

Directional Characteristics

As the wire is made longer in terms of the number of half-wavelengths, the directional effects change. Instead of the "doughnut" pattern of the half-wave antenna, the dirertional characteristic splits up into "lobes" which make various angles with the wire. In general, as the length of the wire is increased the direction in which maximum radiation occurs tends to approach the line of the antenna itself.

Directional characteristics for antennas one wavelength, three half-wavelengths, and two wavelengths long are given in Figs. 14-16, $14-17$ and $14-18$, for three vertical angles of radiation. Note that, as the wire length in-
creases, the radiation along the line of the antenna becomes more pronounced. still longer antennas can be considered to have practically "end-on" directional characteristics, even at the lower radiation angles.

Methods of Feeding

In a long-wire antemat, the currents in adjacent half-wave sertions must be out of phase, as shown in Fig, 14-14. The feeder system must not upset this phase relationship. This requirement is met by feeding the antemnat either end or at any current loop. A two-wire feeder cannot be inserted at a current node,
however, hecause this invariably brings the currents in two adjacent half-wave sections in phase; if the phase in one section could be reversed, then the currents in the feeders necessarily would have to be in phase and the feeder radiation would not be canceled out.

No point on a long-wire antenna offers a reasonable impedance for a direct match to any of the common types of transmission lines. The most common practice is to feed the antennat ane end or at a current loop with a low-loss open-wire line and acopt the resulting standing-wave ratio of 4 or 5 . When a better match is required, "stubs" are generally used (described in the preeeding chapter).

Multiband Antennas

As suggested in the preceding section, the same antenna may be used for several bands by operating it on harmonics. When this is done it is necessary to use resomant feeders, since the impedance matching for momresonant feeder operation ratn be accomplished only at one frequency unless means are provided for changing the length of a matching section and shifting the point at which the freder is attached to it.

Furthermore, the current loops shift to a new position on the antemat when it is operated on harmonies. further eomplieating the feed situation. It is for this reason that a half-wave antemna that is ernter-fed by a solid-dieketric line is practically useless for harmonie operation: on all even harmonies there is a voltage maximum oceurring right at the fered point, and the desultant impedance mismateh is so bad that there is a large standing-wave rationald consequently high losses arise in the solid dielectric. It is wise not to attempt to use on its harmonices a half-wave antenma conter-fed with coaxial cable. High-impedance solid-dielectric lines such as 300 -ohm Twin-I a ad may be used, however, provided the power does not exeed a few hundred watts.

When the same antemna is used for work in several bands, it must be realized that the directional characteristic will vary with the band in use.

Simple Systems

The most practical simple multiband antenna is one that is a half-wavelength long at the lowest frequency and is fod either at the center or one end with an open-wire line. Although the standing-wave ratio on the feedline will not approach 1.0 on any band, if the losses in the line are low the sy:tem will be efficient. From the standpoint of reduced feodline radiation, a center-fed system is superior to one that is end-fed, but the end-fed arrangement is often more convenient and should not be ignored as a possibility. The center-fed antenna will not have the same radiation pattern as an end-fed one of the same length, exrept on frequencies where the over-all length of the antenna is a half-wavelength or less. The end-fed antenna acts like a long-wire antenna on all bands (for which it is longer than a half-wavelength), but the renter-fed one acts like two antennas of half that length fed in phase. For example, if a full-wavelength antenna is fed at one end, it will have a radiation pattern as shown in lig. 14-16, but if it is fed in the center the pattern will be somewhat similar to Fig. 1t-7, with the maximum radiation broadside to the wire. Either antenna is a good radiator, but if the radiation pattern is a factor, the point of feed must be considered.
since multiband operation of an antema does not permit matehing of the feedline, some attention mast be paid to the length of the feedline if convenient transmittor-coupling arrangements are to be obtained. Table 14-I gives some suggested antenna and foceder langths for multiband operation. In general, the length of the feedline should be some integral maltiple of a quarter wavelength at the lowest frequency.

Antennas for Restricted Space

If the spare available for the antenna is not large enough to acommodate the length necessary for a half-wave at the lowest frequeney to be used, quite satisfactory operation can be secured by using a shorter antennat and making

TABLE 14-I Multiband Resonant-Line Fed Anternas			
Antenna L.ennth (ft.)	Feeder l.engh (ft.)	Rand	Trupe of Tımina
II ith end feed: 120	60	1-Nr. "phome	suries
136	67		scries parallel
67	33	7 and 21 Mr. 11 and 28 Mr.	series parallel
With cemter fead: 132	67	3.5 throryh 28 Vc .	parallel
68	66	7 and 21 Mc . 14 and 28 Ne.	serirs parallel
68	3.4	7 through 28 Ve.	parallel
The antenna lenpths given represent compro. mises for harmonic operation becanse of different end effecta on lifferent bands. 'The 136 -foot endfed antenna is slightly long for 3.0 No. hut will work well in the rekion (3500-3600 he.) that quadruples into the 1 - Vir. hand. Bands not listed are not reeommended for the partieutar antema, 'Thes eenter-fed systems are less critical as to longth. 'luning connections are for open-wire line and may differ for 300 -chmo 'I'win-Lead. The end-fed and center-fed antennas will have the same directional eharacteristics only on the lowest frepueney, as explained in the text.			

up the missing length in the feeder system, The antenna itself may be as short as a quarter wavelength and still radiate fairly well, although of course it will not be as effective as one a half-wave long. Nevertheless, such a system is useful where operation on the desired band otherwise would be imposible.

Resonant feders are a pratical necossity with such an antenna system, and a center-fod antemat will give best all-around performance. With and feed the feeder currents become badly unbalanced.

With conter feed practically any convenient length of antenna ran be used, if the feeder length is adjusted to accommodate at least one half-wave around the whole system.

A practical antenna of this type ean be made as shown in Fig. 1t-19. Table 1t-11 gives a few recommended lengths. However, the antema can be made any convenient length, provided the total length of wire is a half-wavelength at the lowest freguency, or an integral multiple of a half-wavelengeth.

In using the tables, it should be held in mind that the "type of tuning" will vary from that listed if the ferd-line lengths are not as shown or if solid-dielectric line (Twin-Jend) is used. This should not be interpreted as a fault in the antenna, and tuy tuning system (series or parallel) that works well without any trace of heating is quite satisfactory.

Bent Antennas

Since the field strength at a distance is proportional to the current in the antenna, the high-current part of a half-wave antenna (the center quarter wave, approximately) does most of the radiating. Advantage can be taken of this fact when the space available does not permit building an antoma a halfwave long. In this case the ends may be bent, either horizontally or vertically, so that the

Fif, 14-20 - Fooldel arrangenuent for shortened antennas. The total length is a half-wave, not inchding the feeders. The horizontal part is made as long as eonvenient and the ends dropped down to make up the reguired length. 'The ends may be bent back on themselves like fecelers to cancel radiation partially. 'The borizontal section should be at least a quarter wave long.
total length equals a half-wave, even though the straightaway horizontal length may be as short as a quarter wave. The operation is illuntrated in Fig. $1+-20$. Such an antenna will be a somewhat better radiator than a quarterwavelength antenna on the lowest freguency, but is not so desirable for multiband operation because the onds play an increasingly important part as the frequency is raised. The performance of the system in such a case is difficult to prediet, esperially if the ends are vertical (the most convenient arrangement) because of the complex combination of horizontal and vertical polarization which results as well as the dissimidar directional characteristies. However, the fact that the radiation pattern is incapable of prediction does not detrart from the general usefulness of the antenna. For one-band operation, end-louding with coils (5 feet or so in from each end) is practical and efficiont.

TABLE 14-II Antennas and Feeder Lengths for Short Multiband Antennas, Center-Fed			
Intenna l.ength (ft.)	Foreder limph (fl.)	Rand	Type of Tuning
100	83	$\begin{aligned} & 3.3 \mathrm{Me} \\ & \text { 7, } 11.21 \mathrm{Ve} . \\ & 28 \mathrm{Mc} . \end{aligned}$	parallel series series or parallel
68	31	$\begin{gathered} 3 . .711 \mathrm{c} \\ 7.11 .21 \\ \text { and } 28 \mathrm{Mc} . \end{gathered}$	series parallel
50	43	$\begin{gathered} 7,11,21 \\ \text { and } 28 \\ 11 \\ \hline \end{gathered}$	parallel
33	51	$\begin{gathered} 7.11,21 \\ \text { and } 28 \text { \1e. } \end{gathered}$	parallel
33	31	7 and 21 Vc . 11 and 28 Mc .	series parallel

Vertical Antennas

A vertical quarter-wavelength antenna is often used in the low-frequency amateur bands to obtain low-angle radiation. Four typical examples and suggested methods for feeding are shown in Fig. 14-21. The antenna may be wire or tubing supported by wood or insulated guy wires. When

Fig. 14-21 - A quarter-wavelength intenna can be fed directly with 50 -ohm coaxial line (1) with a low stand-ing-wave ratio, or a conpling network can be used (13) that will permit a line of any impedanee to be ased. In (B_{s}, L_{1} and (i1 slould resonate to the operating frequency, and I_{1} should be larger than is mormally used in a plate tank circuit at the same frequeney.

By using multiwire antennas, the quarter-wave vertical can be fed with (C) 150 . or (1)) 300 -ohm line.
tubing is used for the antenna, or when guy wires (broken up by insulators) are used to reinforce the structure, the length given by the formula is likely to be long by a frw per cent. A cherk of the standing-wave ratio on the line will indicate the frequeney at which the s.w.r. is minimum, and the length of the antenna can be adjusted accordingly.
The examples shown in Fig. 14-21 all require an ant enta insulated from the ground, to provide for the feed point. A grounded tower or pipe cem be used ats a radiator by employing "shunt feed," which consists of tapping the inner conductor of the coaxial-line fed up on the tower until the best mateh is ohtained, in much the same mamer as the "gammat match" (described later") is used on it horizontal element. If the antenna is not an electrical quarter-wavelength long, it is nocessary to tume out the reactance by adding capacity or inductance between the coaxial line and the shunting conductor. A motal tower supporting a TV antenna or rotary beam ean be shunt-fed only if all of the wires and louds from the supported antenna run down the center of the tower and
underground away from the tower, since otherwise they would heeome part of the low-frequency antenna system.

- THE GROUND.PLANE ANTENNA

A ground-plane antenna is a vertical quarterwavelength antenna using an artificial metallis: ground, usually consisting of four rods or wires perpendicular to the antemna and extending radially from its base Unlike the quarter-wavelength vertical antennas without an artificial ground, the ground-plane antenna will give low-angle radiation regardless of the height above actual ground. It is a useful antemna for DX work in any of the amateur hands below 30 Mc .

The vertical portion of the ground-plane antemia can be made of self-supported aluminum tubing, or a top-supported wire, depending upon the neressary length and the available supports. The radials are also made of tubing or heavy wire, depending upon the available supports and necessary lengths.

The radiation resistaner of a ground-plane antemna varies with the diameter of the vertical flement, as shown in Fig. 14-22. Since the radiation resistance is usually in the vicinity of 30 to : 32 ohms, the antenna can be fed with 75 -ohm coasial line if a quarter-wavelength matching soction of 50 -ohm roaxial line is used between the line and the antenna. (Sere Chapter Thirteen, "(Quarter-Wave Transformers.")

Fig. 14-22 - Radiation resistance of a quarter-wave antenna (with ground plane or grounded) as a function of M. The values apply only when the antenna is of the resonant length.

Fig. J.4-23- The ground plane antenna with shumt matching. 'The antenna length, h_{a}, matching stub lenkth, $I_{x x}$, amel radial length, I.r, are determined as dewribed in the text, for matching a transmission line of given characteristie impedance. As shown in the insert, the radials and the outside conductors of the stub and line are all connected together.

It is also possible to feed the ground-plane antenna with coaxial line and a "shunt" matehing section, as shown in Fig. 1-23. The various values required for proper matching will depend on the particular type of line used, as well as on the radiation resistance, resonant length, and reactance per unit length of the antemata. These antenna characteristies are dependent on the length/diameter ratio - that is, the ratio of a half wavelength in free space to the diameter of the antenna element - and allowance must be made for this factor. The necessary information for design purposes is given in Figs. 1+22, 1+-24 :and $1+25$.

Determining the antenna dimensions can be reduced to a series of steps, as follows:

F'ig. 1-1-24-The antenna-length factor as a function of the ratio of a free-spaee half wavelength to the conductor diameter. The length factor multiplied liy a free-space quarter wavelength is the length of a quarterwave radiator resonant at the selected frepueney.

First determine .17 . the ratio of a free-space half wavelength to the conductor diameter. The following formula may be used:

$$
M=\frac{5006}{F l}
$$

where $F=$ trequency in megacreles,

$$
D=\text { conductor diameter in inches. }
$$

lising the value of M so found, read the length factor (K_{a}) from Fig. $1+-2+$, the reactance change per 1 per cent change in length (K_{x}) from Fig. $1+25$, and the radiation resistance $\left(R_{r}\right)$ from Fig. $1+22$.

Since the antemna is to be shortened, these values must be modified appropriately. The actual radiation resistance, after the antenna is properly shortened. will be

$$
R_{o}=R_{\mathrm{r}}-\frac{Z_{1}}{4 R_{\mathrm{r}}} \mathrm{ohms}
$$

where $R_{0}=$ radiation resistance after shortening,
$Z_{1}=$ charateristic impedance of transmission line to be matched.
The proper value of eapacitive reactanee in the shortened antemat is given by

$$
X_{n}=S R_{0} \text { ohms }
$$

where $X_{n}=$ capacitive reactance of antenna, and

$$
s=\sqrt{\frac{Z_{1}}{R_{0}}-1}
$$

The antenna length that gives the proper capacitive reactance is

$$
L_{\mathrm{st}}=\frac{2053 K_{a} K_{\mathrm{b}}}{r^{\prime}} \text { inches, }
$$

where $L_{a}=$ required antenna length, and

$$
K_{1}=1-\frac{K_{\mathrm{a}}}{100 K_{\mathrm{x}}}
$$

The only remaining steps are to find the dimensions of the indurtive stuh and the length of the radial ground-plane rods.

The required stub reactance is given by

$$
\mathrm{X}_{\mathrm{g}}=\frac{Z_{1}}{S} \text { ohms }
$$

OHMS REACTANCE CHANGE PER 1% CHANGE IN LENGTH
Fig. 14-25 - Reactance change with antenna length as a function of M, for quarter-wave protmen-plane (or promiled) antennas. If the antenna is longer than the resonant length the reactance is inductive; if shorter, the reactance is eapacitive. 'The eurve is acourate for lengths within 10 per cent of the resonant length. Multiply reactance values by 2 for half-wave antennas.
where $X_{B}=$ inductive reactance of stub).
The length of the shorted stul) is

$$
L_{\mathrm{B}}=\frac{32.8 l^{\prime} L_{L}}{F^{\prime}} \text { inches, }
$$

where $L_{\mathrm{s}}=$ stub length,
$l^{\prime}=$ velocity factor of line used in stub,
$L=$ length of stub in clectrical degrees having required $X_{\text {a }}$.
L is equal to the angle whose tangent is X_{3} / Z_{8},
where Z_{s} is the characteristic impodance of the stub.

The length of each radial is given by

$$
L_{\mathrm{r}}=\frac{2!5.53 h_{\mathrm{s}}}{F} \text { inches, }
$$

the length being measured from the center line of the radiator to the tip of the radial.

If the radials have a different diameter than the radiator (a common practice) the $/ / /$ and K_{a} for radials and antemat must be considered separately.

Wxample: Assume a ground-plane antenna to be constructed with a vertical radiator of 2 -inch diametor tubing and radials of No. 10 (0,10 -inch diam.) wire, for a frequency of 7.1 Mc . and to be matched to 7%-ohm R(i-8/ L° coaxial line by using a stub of the same material.

$$
\begin{aligned}
& F^{\prime}=7.1 M \mathrm{c}, D=2 \text { inches, } Z_{1}=Z_{n}=72 \text { ohms, } \\
& V=0.66, M=3006 \div(7.1 \times 2)=416 .
\end{aligned}
$$

From Figs, 14-2.4, 14-25 and 14-22, it is found that

$$
K_{\mathrm{a}}=0.971, K_{\mathrm{z}}=5.5, l_{\mathrm{r}}=30.9
$$

From the formula,

$$
R_{0}=30.9-\frac{72}{4 \times 30.9}=30.3 \mathrm{ohms}
$$

and the factor

$$
S=\sqrt{\frac{72}{30.3}-1}=1.09
$$

Hence $X_{n}=1.09 \times 30.3=33$ ohms.
Also, $K_{\mathrm{b}}=1-\frac{3.3}{100} \times 0.5 \mathrm{~B}=0.94$.
Thus the antenna length,
$L_{\mathrm{a}}=\frac{30.33 \times 0.971 \times . .948 \text { inches. }}{7.1}=380$ inches $=31$ feet.
To find the stub dimensions,

$$
X_{n}=\frac{72}{1.09}=66
$$

I. is the angle whose tangent is $60 \div 72=0.918$, and from a table of tangents is fornd to be $\mathbf{4 2 . 6}$ degrees.
Then $I_{\text {es }}=\frac{32.8 \times 0.66 \times 42.6}{7.1}=\frac{130 \text { inches }}{13 n c l e ' s}=10$ feet 10
For the radials,

$$
\begin{aligned}
M & =5419 \div(7.1 \times 0.1)=83.40, K_{\mathrm{s}}=0.978 \\
\text { Hence } L_{\mathrm{r}} & =\frac{29.5 .3 \times 0.478}{71}=407 \text { inehes }=33 \text { feet } 11 \text { inches. }
\end{aligned}
$$

Antennas for 160 Meters

Results on 1.8 Mc. will depend to a latge extent on the antenna system and the time of day or night. Ahmost any random long wire that can be tuned to resonance will work during the night but it will generally be found very ineffective during the das. A vertical antenna - or rather an antenna from which the radiation is predominantly verticatly poJarized - is probably the best for 1.8- Me. operation. A horizontal antenna (horizontallypolarized radiation) will give better results during the night than the day berause daytime absorption in the ionosphere is so high at this frequency that the reflected wave is too weak to be useful. At night the performance inproves because nighttime ionosphere conditions generally permit the reflected wave to return to earth without too much attenuation. The vertically-polarized radiator gives a strong
ground wave that is effective day or night, and it is to be preferred on $1,8 \mathrm{Me}$.

There is another reason why a vertical antenna is better than a horizontal for 160moter operation. The fow-angle radiation from a horizontal antemna $1 / 8$ or $1 / 4$ wavelength above ground is almost insignificant. Any reasonaile height is small in terms of Wavelength, so that a horizontal antemia on 160 meters is a poor radiator at angles useful for long distances ("long," that is, for this band). Its chief usefulness is over relatively short distances at night.

Bent Anterincs

Since ideal vertical antennas are generally out of the question for practical amateur work, the best compromise is to bend the antenna in such a way that the high-current

Fig. 14.26 - Bent antenna for the 160 -meter hand. In the system at A, the vertical portion (length X) should be made as long as possible. In either antorna system, $L_{1} C_{1}$ shondal resonate at 1900 ke, roughly. To adjust L_{2} in antenna A, resonate $L_{1} C_{1}$ alone to the oprerating fregueney, then connect it to the antenna system and adjust L_{2} for maxinum loading. Fiurther loading can be obtained by increasing the coupling bet ween l_{11} and the link.
portions of the antenna run vertically. It is, of course, advisable to place the antenna so that the highest currents in the antenna occur at the highest points above actual ground. Two antenna systems designed along these lines are shown in Fig. 14-26. The antematat A uses a loading coil, L_{2}, to increase the electrical length of the antenna to a half wavelength, so that the antenna can be fed at its high-voltage point through the coupling circuit $L_{1} C_{1}$. The antenna of Fig. $14-26 \mathrm{~B}$ uses a full half-wavelength of wire but is bent so that the high-current portion runs vertically. The horizontal portion running to $L_{1} C_{1}$ should run 8 or 10 feet above ground.

Grounds

A good ground connection is generally important on 160 meters. The ideal system is a number of wire radials buried a foot or two underground and extending 50 to 100 feet from the central connection point. As many radials as possible should be used.

If the soil is good (not rocky or sandy) and generally moist, a low-resistance connection to the eold-water pipe system in the house will often serve as an adequate ground system. The connection should be made close to where the pipe enters the ground, and the surface of the pipe should be scraped clean before tightening the ground clamp around the pipe.

A 6 - or 8 -foot length of 1 -inch water pipe, driven into the soil at a point where there is

Fiょ. 14-27-An arrange ment for kepping the main radiating portion of the antenna vertical. considerable natural moisture, can be used for the ground conneetion. Three or four pipes driven into the ground 8 or 10 feet apart and all joined together at the top with heavy wire are more effective than the single pipe.

The use of a counterpoise is recommended where a buried system is not practicable or where a pipe ground cannot be made to have low resistance because of poor soil conditions. A counterpoise consists of a number of wires supported from 6 to 10 feet ahove the surface of the ground. Generally the wires are spared 10 to 15 feet apart and located to form a square or polygonal configuration under the vertical portion of the antenna.

Long-Wire Directive Arrays

THE "V" ANTENNA

It has been emphasized that, as the antenna length is increased, the lobe of maximum radiation makes a more acute angle with the

Fig. 14-28 - The basic "V" antenna, made by comlining two long wires.
wire. Two such wires may be combined in the form of a horizontal " V " so that the main lobes from each wire will reinforce along a line bisecting the angle between the wires. This increases
both gain and directivity, since the lobes in directions other than along the bisector cancel to a greater or lesser extent. The horizontal "V" antenna therefore transmits best in either direction (is bidirectional) along a line bisecting the "v" made by the two wires. The power gain depends upon the length of the wires. l'rovided the necessary" sparee is available, the " V " is a simple antenna to build and operate. It ean also be used on harmonies, so that it is suitable for multiband work. A top view of the " V " antenna is shown in Fig. 14-28.

Fig. 14-29 shows the dimensions that should be followed for an optimum design to obtain maximum power gain for differentsized " V " antennas. The longer systems give good performance in multiband operation. Angle \propto is approximately equal to twice the

Fig, $14.29-1$ - $\mathbf{~ - ~ i g n ~ c h a r t ~ f o r ~ h o r i z o n t a l ~ " ~} V$ " antennas, giving the enclosed angle between sides ts, the length of the wires. Values in parentheses represent approximate wave angle for height of one-half wavelength.
angle of maximum radiation for a single wire equal in length to one side of the " V,"

The wave angle referred to in Fig. $14-29$ is the vertical angle of maximum radiation, Tilting the whole horizontal plane of the " V " will tend to inerease the low-angle radiation off the low end and decrease it off the high end.

The gain increases with the length of the wires, but is not exactly twice the gain for a single long wire as given in Fig. 14-15. In the longer lengths the gain will be somewhat increased. because of mutual coupling between the wires. A " V " eight wavelengths on a leg, for instance, will have a gain of about 12 db . over a half-wave antenna, whereas twice the gain of a single eight-wavelength wire would be only approximately 9 db .

The two wires of the " 5 " must be fed out of phase, for correct operation. A resonant line may simply be attached to the ends. as shown in Fig. 14-28. Alternatively, a quarter-wave matching section may be employed and the antemna fed through a nonresonant line. If the antenna wires are made multiples of a half-wave in length (use Equation 14-G for computing the length), the matching section will be closed at the free end. A stub can be comnected across the resonant line to provide a mateh, as described in the preceding chapter.

THE RHOMBIC ANTENNA

The horizontal rhombic or "diamond" antenna is shown in Fig. $14-30$. like the " r ," it requires a great deal of space for erection, but it is capable of giving exeellent gain and directivity

Fig. 14-30-The horizontal rhombic or diamond antenna, terminated. Important design dimensions are indieated; details in text.

Fig. 14.31-Compromise-methorl design chart for rhombic antennas of varions leg lengths and wave angles. Tha examples at the right illustrate the use of the chart:

>>

fior feeding the anternat, the antemat impedance will be matched by an 800 -ohm line. which may be constructed from No. 16 wire spuced 20 inches or from No. 18 wire spated 16 inches. The 800 -ohm line is somewhat ungainly to install, howevor, and may be replaced by an ordinary 600 -ohm line with only a negligible mismatch. Alternativoly, a matching section may be installed between the antenna terminals and a low-impedance line. However, when surh an arrangement is used, it will be necessary to change the match-ing-section constants for each different band on which operation is contemplated.
(1) Given:
length $(L)=2$ wavelengths
Jrsired wave angle $(\Delta)=20^{\circ}$.
lon Find: H, Φ.
Wethod:
Draw vertical line through point a ($L=2$ wavelengths) and point bonabscissa ($1=20^{\circ}$). Read angle of tilt (Φ) for point a and height (II) from intersection of line ab at point c on curve $I I$. IResult:
$\phi=60.5^{\circ}$.
$I I=0.73$ wavelength.
(2) Given:

Length $(L)=3$ wavelengths.
Angle of tilt $(\Phi)=78^{\circ}$.
l'ol'ind: $I I, \Delta$.
Viothod:
I raw a vartical lime from point d on curve $L=3$ wavelengths at $\Phi=78^{\circ}$. Head intersection of this line on curve $I I$ (point e) for height, and intersection at point f on the abscissa for 1.
Result:
$H=0 . . \bar{h}$ wavelangth.
$د=2(1.6)^{\circ}$.
The same design details apply to the unterminated rhombic as to the torminated type. When used without a terminating resistor, the system is bidirectional. Resonant feeders are generally used with the unterminated rhombic. A nonresonant line may be used by incorporating at matching section at the antenna, but is not readily adaptable to satisfactory multiband work.

Rhomhic antennas will give a power gain of 8 to 12 db . or more for leg lengths of two to four wavelengths, when constructed according to the charts given. In general, the larger the antemna, the greater the power gain.

Directive Arrays with Driven Elements

By combining individual half-wave antennas into an array with suitable spacing between the antennas (called elements) and feeding power to them simultaneonsly, it is possible to make the radiated fieds from the individual elements add in a favored direction, thus increasing the field strength in that direction as compared to that produced by one antenna element alone. In other directions the fields will more or less oppose each other, giving a reduction in field strength. Thus a power gain in the desired direction is secured at the expense of a power reduction in other directions.

Besides the spacing between elements, the instantancous direction of current flow (phase) in individual elements determines the directivity and power gain. There are several methods of arranging the elements. If they are strung end to end, so that all lie on the same straght line, the elements are said to be collinear. If they are parallel and all lying in the same plane, the elements are said to be broadside when the phase of the current is the same in all, and end-fire when the currents are not in phase. lilements that receive power from the transmitter through the transmission line are called driven elements.

The power gain of a directive system inreases with the number of elements. The proportionality between gain and number of elements is not simple, however. The gain depents upon the effect that the spacing and phasing has upon the radiation resistance of the elements, as well as upon their number.

Collinear Arrays

Simple forms of collinear arrays, with the current distribution, are shown in Fig. 14-32. The two-element array at A is popularly known as "two half-waves in phase." It will be recognized as simply a center-fed antenna operated at its second harmonic. The way in which the number of elements may be extended for inereased direetivity and gain is shown in Fig. 14-28B. Note that quarter-wave phasing sections are used between clements; these give the reversal in phase necessary to make the currents in individual antenna elements all flow in the same direction at the same instant. Any phase-reversing section may be used as a quarter-wave matehing section for attaching a nonresonant feeder, or a resonant transmission line may be substituted for any of the quarterwave sections. Also, the antenna may be end-fed

Fig. 14-32-Collinear half-wave antennas in phase. The system at A is generally hnown as "two half-waves in phase." IB is an extension of the system; in theory the number of elements may le carried on indefinitely, but practical considerations usually limit the elements to four.
by any of the systems previously deseribed, or any element may be center-fed. It is hest to feed at the center of the array, so that the energy will be distributed uniformly among the elements.

The gain and directivity depend upon the number of elements and their sparing, center-to-renter. This is shown by Table 14-III. Although three-cluarter wave spacing gives greater gain, it is difficult to construet a suitable phase-reversing system when the ends of the antenna elements are widely separated. For this reason, the half-wave spacing is most generally used in actual practice.
(ollinear arrays may be mounted either horizontally or vertically. Horizontal mounting gives increased horizontal directivity, while the vertical directivity remains the same as for

TABLE 14-III Theoretical Gain of Collinear Half-Wave Antenas					
Spacing between centers of adjacent half-wares	Number of half-ruares in urray vs. gain in db.				
	2	3	4	5	6
$1 / 2$ wave $3 / 4$ wave	1.8 3.2	3.3 4.8	1.5 6.0	5.3 7.0	6. 7.8

a single element at the same height. Vertieal mounting gives the same horizontal pattern as a single element, but concentrates the radiation at low angles. It is seldom practicable to use more than two elements vertically at frequencies below 14 Mc . because of the excessive height required.

Broadside Arrays

Parallel antenna elements with eurrents in phase may be combined as shown in Fig. 14-3:3 to form a broadside array, so named because the direction of maximum radiation is broadside to the plane containing the antemans. Again the gain and directivity depend upon the number of elements and the spacing, the gain for different sparings being shown in Fig. 14-34. Half-wave spacing generally is used, since it simplifies the problem of feeding the system when the array has more than two elements. Table $14-I V$ gives theoretical gain as a function of the number of elements with half-wave spacing.

Broadside arrays may be suspended either with the elements all vertical or with them horizontal and one above the other (stacked). In the former case the horizontal pattern heromes quite sharp, while the vertical pattern is the same as that of one element alone. If the array is suspended horizontally, the horizontal pattern is equivalent to that of one clement while the vertical pattern is sharponed, giving low-angle cadiation.

Broadside arrays may be fed sither by resonant transmission lines or through cuarterwave matching sections and nonresonant lines. In Fig. 14-3:3, note the "erossing over" of the feeders, which is necessary to bring the elements into proper phase relationship,

Fig. 14-33 - Broadside array using parallel hatf-wave dements. Arrows indicate the direction of current flow. 'l'ransposition of the feeders is necessary to loring the antenna currents in phase. Any reasonable number of elemonts may to used. 'The array is bidirectional, with maximum radiation "broadside" or perpendieular to the antenna plane (perpendicularly through this page).

Combined Broadside and Collinear Arrays

lbroadside and collinear arrays may be combined to give both horizontal and vertical directivity, as well as additional gain. The general plan of constructing such antennas is shown in Fig. 14-35. The lower angle of radiation resulting from starking elements in the vertical plane is desirable at the higher frequencies. In general, doubling the number of elements in an array by stacking will raise the gain from 2 to 4 db .. depenting upon whether vertical or horizontal clements are used - that is, whether the stacked elements are of the broadside or collinear type.

The arrays in lig. 14-35 are shown fed from one end, but this is not especially desirable in

Fig, 14-3.4- Gain x s. spating for two parallel half-wave elements combined as either broalside or end-fire arrays.

\left.| TABLE 14-IV | |
| :---: | :---: |
| Theoretical Gain vs. Number of Broadside | |
| Elements (Half-Wave Spacing) | |$\right]$| Vo. of elements | 4 dh. |
| :---: | :---: |
| 2 | 5.5 |
| 3 | 7 |
| 4 | 8 |
| 5 | 9 |

the case of harge arrays. Better elistribution of energy between elements, and hence better over-all performance, will result when the feeders are at tached as nearly as possible to the center of the array. Thus, in the eight-element array at A , the feeders could be introduced at the middle of the transmission line between the second and third set of elements, in which case the connecting line would not be transposed between the second and third set of elements. Alternatively, the antenma could be constructed with the transpositions as shown and the feeder connected between the adjacent ends of either the second or third pair of collinear clements.

A four-dement array of the general type shown in Fig. 14-35l3, known as the "la\%y-11"

Fig. 14-35 - Combination broadside and collinear arrays. A, with vertical elements; $\mathbf{3}$, with horizontal elements. Both arrays give low-angle radiation. Two or more sections may he used. Ther gain in th. will be equal. approximately, to the sum of the gain for one set of broadside elements (Table 14-IV) plas the gain of one set of collinear elements ('lable 14-Iil). For example, in A each broadside set has four clements (gain 7 db.) and cach collincar set two elements (gain 1.8 dt .), giving a total gain of 8.8 db . In I3, each lroadside set has two elements (gain 4 dh .) and each collinear set three elements (gain 3.3 db), making the total gain 7.3 db . The result is not strictly accurate, because of mutual coupling between the elements, but is good enough for pratical purposes.
antenna, has been quite frequently used. This arrangement is shown, with the feed point indicated, in Fig. 14-36.

End-Fire Arrays

Fig. 14-37 shows a pair of parallel half-mave elements with currents out of phase. This is known as an end-fire array because it radiates best along the plane of the antennas, as shown.

The end-fire array may be used either vertically or horizontally (elements at the same height), and is well adapted to amateur work because it gives maximum gain with relatively elose element spacing. Fig. $14-34$ shows how the gain varies with spacing. End-fire elements may be combined with additional collinear and broadside elements to give a further increase in gain and directivity.

Either resonant or nonresonant lines may be used with this type of array. Nonresonant lines

Hig: 14-36 - A four-element comhination broadsidecollincar array, popularly known as the "lazy-H" antenna. A elosed quarter-wave stub may be used at the feed point to mateh into a 600 -ohm transmission line, or resonant feoders may be attached at the point indicated. 'The gain over a half-wave antenna is 5 to 6 d).
preferably are matched to the antenna through a quarter-wave matching section or phasing stub.

Phasing

Fig.. $14-35$ and $14-37$ illustrate a point in connection with feeding a phased antenna system which sometimes is confusing. In Fig. $14-37$, when the transmission line is connected as at I there is no crossover in the line connecting the two antennas, but when the transmission line is comnected to the center of the comerting line the crosisover becomes necessary (B). This is because in 13 the two halves of the comecting line are simply branches of the same line. In other words, even though the conneeting line in 13 is a half-wave in length, it is not actually a half-wave line but turo quarter-wave lines in parullel. The same thing is true of the untransposed line of Fig. $14-3513$. Note that, under these conditions, the antenna elements are in phase when the line is not transposed, and out of phase when the transposition is made. The opposite is the case when the half-wave line simply joins two an-

Fig. 14.37 - End-fire arrays using parallel half-wave elements. The elements are shown with half-wave spacing to illustrate feeder connections. In praftice, eloser spacings are desirable, as shown by Fig. 14-34. Direction of maximum radiation is shown by the large arrows.
tenna elements and does not have the feed line comected to its center, as in Fig. 14-33.

Adjustment of Arrays

With arrays of the types just described, using half-wave spacing between elements, it will usually suffice to make the length of each element that given by liquations $14-13$ or $14-(\%$ The half-wave phasing lines between the parallel elements should be of open-wire construction, and their length can be calculated from:

$$
\begin{gathered}
\text { Length of half-wave line (feet) }= \\
\frac{480}{\text { Freq. (Me.) }}
\end{gathered}
$$

Example: A half-wavelength phasing line for
28.8 Me. would be $\frac{4 \times 0}{28.8}=16$, fif feet $=16$ feet. 8 inches.
The spacing between elements can be mate cqual to the length of the phasing line. No special adjustments of line or element length

or spacing are needed, provided the formulas are followed closely.

With collinear arrays of the type shown in Fig. 14-3213, the same formula may be used for the element length, while the length of the quarter-wave phasing section can be found from the following formula:

Length of quarter-urare line (feet) $=(14-1)$ $\frac{240}{\text { Freq. (Me.) }}$
Example: A quarter-wavelength phasing line
for 14.25 Me. would he $\frac{940}{14.25}=16.84$ fert $=16$ feet 10 inches.
If the array is fed in the center it should not be necessary to make any particular adjustments, although, if desired, the whole system can be resonated by connecting an r.f. ammeter in the shorting link of each phasing section and moving the link back and forth to find the maxi-mum-current position. 'This refinement is: hardly necessary in practice, however, so long as all elements are the same length and the system is symmetrical.

The phasing sections can be made of 300ohm Trwin-Lead, if Iow power is used. However, the lengths of the phasing sections must then be only $8 t$ per cent of the length obtained in the two formulas above.

Example: The half-wavelength line for 28.8 Mc. would become $0.84 \times 16.66=13.99$ feet $=$ 14 feet 0 inches.
Using Twin-Lead for the phasing sections is most uscful in arrays such as that of Fig. 14-3213, or any other system in which the element spacing is not controlled by the length of the phasing section.

Simple Arrays

Several simple directive-antenna systems using driven clements have achieved rather wide use among amateurs. Four of these systems are shown in Fig. 14-38. Tuned feeders are assumed in all eases; however, a matehing section readily ean be substituted if a nonresonant tranmission line is preferred. Dimensions given are in terms of wavelength; actual lengths can be caleulated from the equations for the antenna and from the equation above for the resonant transmission line or matching section. In cases where the transmission line proper connects to the midpoint of a phasing line, only half the length of the latter should be added to the line to find the quarter-wave point.

It A and 13 are two-dement end-fire arrangements using close spacing. They are electrically equivalent; the only difference is in the mothod of connecting the feeders. Ib may also be used on the second harmonic, although the spacing is not optimum (Fig. 14-34) for such operation.

A close-spaced four-element array is shown at C. It will give about 2 db . more gain than the two-element array.

The antenna at D, commonly known as the "extended double-Zepp," is designed to take advantage of the greater gain possible with collinear antennas having greater than halfwave center-to-center spacing, but without introducing feed complications. The elements are made longer than a half-wave in order to bring this about. The gain is 3 db . over a single half-wave antenna, and the broadside directivity is fairly sharp.

The antennas of A and 13 may be mounted either horizontally or vertically; horizontal
susuension (with the elements in a plane parallel to the ground) is recommended, since this tends to give low-angle radiation without an unduly sharp horizontal pattern. Thus these systems are useful for coverage over a wide horizontal angle. The system at C, when mounted horizontally, will have a sharper horizontal pattern than the two-element arrays because of the effect of the collinear arrangement. The vertical pattern, however, will be the same as that of the antennas in A and 13 .

Directive Arrays with Parasitic Elements

Parasitic Excitation

'The antenna arrays previousily described are bidirectional; that is, they will radiate in directions both to the "front" and to the "back" of the antenna system. If radiation is wanted in only one direction, it is necessary to use different element arrangements. In most of these arrangements the additional elements recoive power by induction or radiation from the driven element, generally called the "antenna," and reradiate it in the proper phase relation-

Fig. 14-39 - Gain rs. element spacing for an antenna and one parasitic element. The reference point, 0 db ., is the field strength from a half.wave antenna alone. The greatest gain is in direction A at spaeings of less than 0.14 wavelength. and in direction B at greater spaeings. 'The frontoto-bach ratio is the differener in db, between corves A and B. Variation in radiation resistance of the driven element also is shown. These curves are for a selfresomant parasitie element. At mosit spacings the gain as a reflector can be increased by slight lengthening of the parasitic element; the gain as a director can be increased by shortening. This also improves the front-to-hack ratio.
ship to achieve the desired effect. These elements are called parasitic elements, as contrasted to the driven elements which receive power directly from the transmitter through the transmission line.

The parasitic element is called a director when it reinforces radiation on a line pointing to it from the antenna, and a reflector when the reverse is the case. Whether the parasitic element is a director or reflector depends upon the
parasitic-element tuming, which usually is adjusted by changing its length.

Gain vs. Spacing

The gain of an antenna with parasitic elements varies with the spacing and tuning of the elements, and thus for any given spacing there is a tuming condition that will give maximum gain at this spacing. The maximum front-to-back ratio soldom, if ever, oceurs at the same condition that gives maximum forward gain. The impedance of the driven element also varies with the tuning and spacing, and thus the antenna system must be tuned to its final condition before the mateh betwen the line and the antenna can be completed. However, the tuning and matehing may interlock to some extent, and it is usually necessary to rum through the adjustments several times to insure that the best possible tuning has been obtained.

Two-Element Beams

A 2-element heam is useful where space or other considerations prevent the use of the larger structure required for a 3 -element beam, The general practice is to tune the parasitie element as a reflector and space it about 0.15 wavelength from the driven element, although some successful antennas have been built with 0.1wavelength spacing and director tuning. Gain v s. element spacing for a 2 -clement antenna is given in lig. $14-39$, for the special case where the parasitic element is resonant, but it is indicative of the performance to be expected under maximumgain tuning conditions.

Three-Element Beams

Where room is available for an over-all length greater than 0.2 wavelength, a 3 -element beam is preferable to one with only 2 elements. Once the over-all length has been decided upon, the curves of Fig. 14-40 can be used to determine the proper spacing of director and reflector. If, for example, the distance between director and reflector ean be made 0.4 wavelength, Fig. 14-40 shows that a spacing of 0.2 l)-(0.2R gives a gain of 7.9 db ., and a sparing of $0.25 \mathrm{D}-0.15 \mathrm{I}$ gives a gain of 8.2 db . Obviously the latter is the better choice, although the practical difference might be difficult to measure, and practical (mechanical) considera-

Fig. 11-40- Gain vs. element spacing for 3-element beams using a driven element and a director and a reflector. The 0 -db. reference level is the field strength from a half-wavelength antenna alone. These purves are for the system tuned for maximum forward gain.

The element spacing shown is the fraction of a wavelength determined by $\frac{984}{f(M 1 \cdot)}$. Thus a wavelength at $1.1 .2 \mathrm{M} \cdot=08.4 / 14.2=60.3$ feet. A spacing of 0.15 wavelength at 14.2 Mc . would be $0.15 \times 69.3=$ 10.4 feet $=10$ fret 5 inches.
tions might call for using the more balanced $0.21)-0.2 \mathrm{R}$ construction.
When the over-all length has been decided upon, and the element sparing has been determined, the element lengtins can be found ber referring to Fig. 14-41. It must be remembered that the lengths determined by these charts will vary slightly in actual practice with the element diameter and the method of supporting the clements, and the tuning of a beam should always be checked after installation. However, the lengths obtained by the use of the charts will be close to correct in practically all cases, and they can be used without checking if the beam is difficult of aceess.
The preferable method for checking the beam is by means of a field-strength meter or the S-meter of a communications receiver, used in conjunction with a half-wave dipole antenn: located at least 10 wavelengths away and as high as or higher than the beam that is being checked. A few watts of power fed into the antema will give a useful signal at the observation point, and the power input to the transmitter (and hence the antema) should be held constant for all of the readings. Beams tuned on the ground and then lifted into place are subject to tuning errors and cannot be depended upon. The impedance of the driven element will vary with the height above ground, and good practice dictates that all final matching between antenna and line be done with the antenna in place at its normal height above ground.

Simple Systems: the Rotary Beam

Two- and 3 -element systems are popular for rotary-beam antennas, where the entire antenna system is rotated, to permit its gain and direc-
tivity to be utilized for any compass direction. They may be mounted either horizontally (with the plane contaning the elements parallel to the earth) or vertically.

A 4 -clement beam will give still more gain than a 3-element one, provided the support is

Fig. If-41- Element lengths for a 3-element beam. 'These lengths will hodd elosely for tubing elements supported at or near the renter. The ratiation resistance (I) is useful information in planning for a matehing system, but it is subject to variation with height above ground and must be considered only as an approximation.

The driven-clement length (C) may regnire modification for tuning out reactance if a 'l'- or gamma-match feed system is used, as mentioned in the text.

A 0.21 - 0.2 R heam cut for 28.6 He, would have a director length of $15 \mathbf{2} / \mathbf{2 8 . 6}=\mathbf{1 5 . 8}=15$ feet 10 inches, a reflector length of $400 / 28.6=17.1=17 \mathrm{feet} 1 \mathrm{inch}$, and a driven-element length of $470.5 / 28.6=16.45=16$ fect 5 inches.
sufficient for at least 0.2 -wavelength spacing between elements. The tuning for maximum gain involves many variables, and complete gain and tuning data are not available.

The elements in close-spaced (less than onequarter wavelength element spacing) arrays preferably should be made of tubing of onehalf to one-inch diameter. A conductor of large diameter not only has less ohmic resistance but also has lower Q; hoth these factors are important in close-spaced arrays because the impedance of the driven element usually is quite low compared to that of a single half-wave dipole. With 3 - and 4 -element arrays the radiation resistance of the driven element may be so low that ohmic losses in the conductor can consume an appreciable fration of the power. Low radiation resistance means that the antenna will work over only a small frequency range without retuning unless largediameter conductors are used.

Feeding Close-Spaced Arrays

Any of the usual methods of feed may be applied to the driven element of a parasitic array. The preferred methods are shown in Fig. 14-42. Resonant feeders are not recommended for lengths greater than a half-wavelength unless open-wire lines of copper-tubing conductors are used.

Three versions of the popular "T"-mateh are shown, for two-wire lines of Twin-Lead at A, for single coaxial line at 13 , and for double coaxial line at C. The match is adjusted by moving the shorting bars, keeping them equidistant from the center, until the minimum s.w.r. is obtained on the line. If the s.w.r. minimum is not 1.5 or less, the transmitter frequency should be shifted to find the frecpuence where the minimum s.w.r. occurs. If it is higher than the original test frequeney, increase the antenna dement length slightly. The purasitic element lengths taken from Fig. 14-41 should not require much adjustment unless considerably different spacing is used, but it may be necessary to change the position of the shorting bars and the length of the antemna element once or twice before the s.w.r. at the test frequeney is acceptable. The matehing seetion may be made of the same tepe of conductor as the element and spaced a few inches from it. The length of the matching section will be greater with higher-impedance lines and with wider element spacing. A good starting point for a 28-Mc. wide-spaced ($0.2 \mathrm{D}-0.15 \mathrm{R}$) beam fed with 300 -ohm Twin-Lead is 28 inches each side of center. A similar antenna and line on 14 Mc. might require about 56 inches each side.

The gamma match, shown in Fig. 14-42D, can be considered as one-half a "T"'match, and the same principles hold. However, when the length of the element is changed, in an effort to minimize the s.w.r., only the side to which the movable bar is connected should be ehanged - the other side should remain at one-half the length obtained from Fig. 14-41.

Fig. 14-12- Recommended methods of feeding the driven antenna element in close-spaced parasitic arrays. The parasitic elements are not shown. A, B, C, "F". match; I), "gamma" match; E, delta matching transformer; F, coaxial-line quarter-wave matching section; G, folded dipole. Adjustment details are discussed in the text.

With 52 -ohm coaxial line feed, the length of the matching element may run around 15 to 20 inches in a 28-Mc. beam, and twice this value in a 14-Mc. array.

An alternative to adjusting the element length for tuning out the residual reactance is to use a smatl variable condenser in series at the junction of the coaxial-cable inner conductor and the matehing section of the gamma match. A small $140-\mu \mu \mathrm{fd}$. receiving-type variable is adequate at
powers of a few hundred watts, and it can be weatherproofed by mounting it in a small plastic cup or other housing. The T-match of Figs. 14-42 A, 3 or C would require two condensers, one in each side.

The delta matching transformer shown at E : is probably easier to install, mechanically, than any of the others. The positions of the taps (dimension a) must be determined experimentally, along with the length, b, by checking the standing-wave ratio on the line as adjust ments are made. Dimension b should be about ${ }^{5}$ p per cent longer than a.

The coaxial-line matching section at F will work with far accuracy into a close-spaced parasitic array of 2,3 or 4 elements without necessity for adjustment. The line is used as a quarter-wavelength transformer, and, if its characteristic impedance is 70 ohms (RG$11 / \mathrm{U}$), it will give a good match to a 600 -olim line when the resistance at the termination is about $8 . \overline{5}$ ohms. Over a range of 5 to 15 ohms the mismatch, and therefore the standingwave ratio, will be less than 2 -to- 1 . The length of the quarter-wave section may be calculated from

$$
\begin{equation*}
\text { Length }(\mathrm{feet})=\frac{2161^{\circ}}{f} \tag{14-J}
\end{equation*}
$$

where $V=$ Velocity factor

$$
f=\text { Frequency in Mc. }
$$

Example: A quarter-wave transformer of RG-1I/U is to be used at 28.7 Me. From the table in Chapter Thirteen, $V=0.66$.

$$
\begin{aligned}
\text { Length }=\frac{2.16 \times 0.60}{28.7} & =5.67 \text { feet } \\
& =5 \text { feet } 8 \text { inelies }
\end{aligned}
$$

The folded-dipole antenna, Fig. 14-42G, presents a good mateh for the line when properly designed. Details are given in Chapter Thirtern. Different impedance step-up ratios can be obtaned by varying the number of conductors or their diameter ratio.

Sharpness of Resonance

Peak performance of a multielement parasitic array depends upon proper phasing or tuning of the elements, which can be exact for one frequency only. In the case of close-spaced arrays, which because of the low radiation resistance usually are quite sharp-tuning, the frequency range over which optimum results can be secured is only of the order of 1 or 2 per cent of the resonant frequency, or up to about 500 kc . at 28 Mc . However, the antemin can be made to work satisfactorily over a wider frequency range by adjusting the director or directors to give maximum gain at the highest frequency to be covered, and by adjusting the reflector to give optimum gain at the lowest frequency. This sacrifices some gain at all frequencies, but maintains more uniform gain over a wider frequency range.

As mentioned in the preceding paragraphs, the use of large-diameter conductors will broaden the response curve of an array be-
cause the larger diameter lowers the Q. This causes the reactances of the elements to change rather slowly with frequency, with the result that the tuning stays near the optimum over a considerably wider frequency range than is the case with wire conductors.

Combination Arrays

It is possible to combine parasitic elements with driven elements to form arrays composed of collinear driven and parasitic elements and combination broadside-collinear-parasitic elements. Thus two or more collinear elements might be provided with a collinear reflector or director set, one parasitic element to each driven element. Or both directors and reflectors might be used. A broadside-collinear array could be treated in the same fashion.

When combination arrays are built up, a rough approximation of the gain to be experted may be obtatined by adding the gains for each type of combination. Thus the gatin of t wo broadside sets of four collinear arrays with a set of reflectors, one behind each clement, at quarter-wave spacing for the parasitic elements, would be estimated as follows: From Table 14-III, the gain of four collinear elements is 4.5 db . with half-wave spacing; from lig. 14-34 or Table 14-IV, the gain of two broadside elements at half-wave spacing is 4.0 db .; from Fig. 14-40, the gain of a parasitic reflector at quarter-wave spacing is 4.5 db . The total gain is then the sum, or 13 d$)$. for the sixteen clements. Note that it makes no difference in the final result if the arrity is considered as a grouping of several sets of antennas plus reflectors or as an array of antennas plus an array of reflectors. The actual gain of the combination array will depend, in practice, upon the way in which the power is distributed between the various elements and upon the effect which mutual coupling between elements has upon the radiation resistance of the array, and may be somewhat higher or lower than the estimate.

A great many directive-antenna combinations can be worked out by combining elements according to these principles.

RECEIVING ANTENNAS

Nearly all of the properties possessed by an antenna as a radiator also apply when it is used for reception. Current and voltage distribution, impedance, resistance and directional characteristics are the same in a receiving antenna as if it were used as a transmitting antenna. This reciprocal behavior makes possible the design of a receiving antenna of optimum performance based on the same considerations that have been discussed for transmitting antennas.

The simplest receiving antenna is a wire of random length. The longer and higher the wire, the more energy it abstracts from the wave. Because of the high sensitivity of modern receivers, sometimes only a short length of wire strung

Fin. 1 f 13 - Antenna-switching arrangements for various types of antennas and coupling systems. A - For tuned lines with separate antenna tuners or low-impedance lines. B - For a voltage-fed antenna. (: - For a tuned line with a single antenna tuner. I) - Fir a voltage-fed amoma with a single tuner. E-For two tuned-line antennas with a tuner for each antenna or for two lowinpedance lines. f- - For combinations of several two-wire lines.
aroutd the room is used for a receiving antenna, but such an antenna camnot be experted to give good performance, although it is adequate for loud signals on the 3.5 - and $\bar{i}-\mathrm{Mc}$. bands. It will serve in emergencies, but a longer wire outdoor: is always better.

The use of a tuned antenna improves the operation of the receiver, however, because the signal strength is raised more in proportion to the stray noises picked up than is the case with wires of random length. Since the transmitting antenna usually is given the best location, it can also be expected to serve best for receiving. This is especially true when a directive antenna is used, since the directional effects and power gain of directive transmitting antennas are the same for receiving as for transmitting.

In seleeting a directional receiving antenna it is preferable to choose a type that gives very little response in all but the desired direction (small minor lobes). This is even more important than high gain in the desired direction, because the cumulative response to noise and
unwanted-signal interference in the smaller lobes may offset the advantage of increased desired-signal gain. The feed line from the anterma should be balanced so that it will not pick up signals and thus greatly reduce the diroctivity effects.

Antenna Switching

Switching of the antenna from receiver to transmitter is commonly done with a changeover relay, connected in the antenna leads or the coupling link from the antenna tuner. If the relay is one with a 115 -volt a.c. coil, the switch or relay that controls the transmitter plate power will also control the antenna relay. If the convenience of a relay is not desired, porcelain knife switches can be used and thrown by hand.

Typical arrangements are shown in Fig. 14-43. If coaxial line is used, the use of a coasial relay is recommended, although on the lower-frecpuency bands a regular switch or change-over relay will work almost as well.

Antenna Construction

The use of good materials in the antenna system is important, since the antenna is exposed to wind and weather. To keep electrical losses low, the wires in the antenna and feeder system must have good conductivity and the insulators must have low dielectric loss and surface leakage, particularly when wet.

For short antennas, No. 14 gauge hard-drawn enameled copper wire is a satisfactory conductor. For long antennas and directive arrays, No. 14 or No. 12 enameled copper-clad steel wire should be used. It is lest to make feeders and mat ching stubs of ordinary soft-drawn No.

14 or No. 12 enameled copper wire, since harddrawn or copper-clat steel wire is difficult to handle unless it is under considerable tension at all times. The wires should be all in one piece; where a joint cannot be avoided, it should be carefully soldered.

In building a two-wire open line, the spacer insulation should be of as good quality as in the antenna insulators proper. For this reason, good ceramic spacers are advisable. Wooden dowels boiled in paraffin may be used with untuned lines, but their use is not recommended for tuned lines. The wooden dowels
can be attached to the feeder wires by drilling small holes and binding them to the feeders with wire.

At points of maximum voltage, insulation is most important, and Pyrex glass, Isolantite or Steatite insulators with long leakage paths are recommended for the antenna. Glazed porcelain also is satisfactory. Insulators should be

Fig. 1.1-14 - Details of a simple $40-\mathrm{font}$ " A "-frame mast suitable for erection in locations where space is limited.
cleaned once or twice a year, especially if they are subjected to much smoke and soot.

In most cases poles or masts are desirable to lift the antenna clear of surrounding buildings, although in some locations the antenna will be sufficiently in the elear when strung from one chimmey to another or from a housetop to a tree. Small trees usually are not satisfactory as points of suspension for the antenna because of their movement in wind y weather, If the antenna is strung from a point near the center of the trunk of a large tree, this difficulty is not so serious. Where the antenna wire must be strung from one of the smatler branches, it is best to tie a pulley firmly to the branch and run a rope through the pulley to the antenna, with the other end of the rope attached to a counterweight noar the ground. The counterweight will keep the tension on the antenna wire reasonably constant even when the branches sway or the rope tightens and stretches with varying climatic conditions.

Telephone poles, if they can be purchased and installed economically, make excellent supports because they do not ordinarily require guying in heights up to 40 feet or so. Many low-cost television-intenna supports are now available, and they should not be overlooked as possible antenna aids.

- 'A"-FRAME MAST

The simple and inexpensive mast shown in Fig. 14-44 is satisfactory for heights up to 35 or 40 feet. Clear, sound lumber should he selected. The completed mast may be proterted by two or three coats of house paint.

If the mast is to he erected on the ground, a couple of stakes should be driven to keep the bottom from slipping and it may then be "walked up" by a pair of helpers. If it is to go on a roof, first stand it up against the side of the building and then hoist it from the roof, keeping it vertical. The whole assembly is light enough for two men to perform the complete operation - lifting the mast, carrying it to its permanent berth, and fastening the guys with the mast vertical all the while. It is entirely practicable, therefore, to crect this type of mast on any small, flat area of roof.

By using 2×3 s or $2 \times 4 s$, the height may be extended up to about 50 feet. The 2×2 is too flexible to be satisfactory at such heights.

SIMPLE 40-FOOT MAST

The mast shown in Fig. 14-45 is relatively strong, easy to construct, readily dismantled, and costs very little. Like the "A"-frame, it is suitable for heights of the order of 40 feet.

The top section is a single 2×3, bolted at the bottom between a pair of $2 \times 3 \mathrm{~s}$ with an overlap of about two feet. The lower section thus has two legs spaced the width of the narrow side of a 2×3. At the bottom the two

Fig. 14-45 - A simple and sturily mast for huights in the vicinity of 40 feet, pivoted at the base for easy erection. The height can be extended to 50 fert or more by using $2 x$ 4 s instead of $2 \times 3 \mathrm{~s}$.
legs are bolted to a length of 2×4 which is set in the ground. A short length of 2×3 is placed between the two legs about halfway up the bottom section, to maintain the spacing.

The two back guys at the top pull against the antenna, while the three lower guys prevent buckling at the center of the pole.

Fig. 14-46 - Using a lever for twisting heavy guy wires.
The 2×4 section should be set in the ground so that it faces the proper dircation, and then made vertical be lining it up with a plumb bob. The holes for the bolts should be drilled beforehand. With the lower section laid on the ground, bolt A should be slipped in pace through the thrce pieres of wood and tightened just enough so that the section can turn freely on the bolt. Then the top section may be bolted in place and the mast pushed up, using a ladder or another 20 -foot 2×3 for the job, As the mast goes up, the slack in the guys can be taken up so that the whole structure is in some measure continually supported. When the mast is vertical, bolt B should be slipped in place and both A and $/ 3$ tightened. The lower guys can then be given a final tightening, leaving those at the top a little slack until the antema is pulled up, when they should be adjusted to pull the top section into line.

GUYS AND GUY ANCHORS

For masts or poles up to about 50 feet, No. 12 iron wire is a satisfactory guy-wire material. IHeavier wire or stranded cable may be used for taller poles or poles installed in locations where the wind velocity is high.

More than three guy wires in any one set usually are unnecessary. If a horizontal antenna is to be supported, two guy wires in the top set will be sufficient in most cases. These should run to the rear of the mast about 100 degrees apart to offset the pull of the antenna. Intermediate guys should be used in sets of three, one rumning in a direction opposite to that of the antenna, while the other two are spaced 120 degrees either side. This leaves a clear space under the antenna. The guy wires should be adjusted to pull the pole slightly back from vertical before the antenna is hoisted so that when the antenna is pulled up tight the mast will be straight.

When raising a mast that is big enough to tas the facilities available, it is some advantage to know nearly exactly the length of the guys. Those on the side on which the pole is lying can then be fastened temporarily to the anchors beforehand, which assures that when the pole is raised, those holding opposite guys with be able to pull it intonearly-vertical position with no danger of its getting out of eontrol. The guy lengths can be figured by the right-angledtriangle rule that "the sum of the squares of the two sides is equal to the square of the hypotentase." In other words, the distance from the base of the pole to the anchor should be measured and squared. 'To this should be added the square of the pole length to the point where the guy is fastened. The square root of this sum will be the length of the guy.

Guy wires should be broken up by strain insulators, to avoid the possibility of resonance at the transmitting frequency. Common practice is to insert an insulator near the top of each guy, within a few feet of the pole, and then cut each scction of wire between the insulators to a longth which will not be resonant either on the fundamental or harmonies. An insulator every 25 feet will be satisfactory for frequencies up to 30 Mc . The insulators should be of the "egg" type with the insulating material under compression, so that the guy will not part if the insulator breaks.

Twisting guy wires onto "egg" insulators may be a tedious job if the guy wires are long and of large gatuge. The simple timo- and finger-saving device shown in Fig. 14-46 can be made from a piece of heavy iron or sted by drilling a hole about twice the dimeter of the guy wire about a half inch from one end of the piece. The wire is passed through the insulator, given a single turn bey hand, and then held with a pair of pliers at the point shown in the sketch. By passing the

wire through the hole in the iron and rotating the iron as shown, the wire may be quickly and neatly twisted.

Guy wires may be anchored to a tree or building when they happen to be in convenient spots. For small poles, a 6 -foot length of 1 -ineh pipe driven into the ground at an angle will suffice. Additional bracing will be provided by using two pipes, as shown in Fig. 14-47.

HALYARDS AND PULLEYS

Halyards or ropes and pulleys are important items in the antenna-supporting system. Particular attention should be directed toward the
choice of a pulley and halyards for a high mast since replacement, once the mast is in position, may be a major undertaking if not entirely impossible.

Galvanized-iron pulleys will have a life of only a year or so. Espreially for coastalarea installations, marine-type pulleys with hardwood blocks and bronze wheels and bearings should be used.

For short antennas and temporary installations, heavy clothesline or windowsash cord may be used. However, for more permanent jols, $3 / 8$-inel or $1 / 2$-inch waterproof hemp rope should the usel. liven this should be replaced about once a year to insure against breakage.

Nylon rope, used during the war as glider tow rope, is, of course, one of the best materials for halyards, since it is weatherproof and has extremely long life.

It is advisable to carry the pulley rope back up to the topin "endless" fashion in the manner

Fig. $14-48$ - In anl tenna leat-in panal may te placed over the top sash or under the loner sash of a window. Substituting a smaller height sash in half the window will simplify the weatherproofing prollem where the sash overlap.
of a flag hoist so that if the antenna breaks close to the pole, there will be a moans for pulling the hoisting rope back down.

BRINGING THE ANTENNA OR FEED LINE INTO THE STATION

The antenna or transmission line should be anchored to the outside wall of the buitding, as shown in Fig. 14-49, to remove strain from the lead-in insulators. Holes cut through the walls of the building and fitted with feed-through insulators are undoubtedly the best moans of bringing the line into the station. The holes should have plenty of air clearance about the conducting rod, especially when using tuned lines that develop high voltages. l'robably the best place to go through the walls is the trimming board at the top or bottom of a window frame which provides flat surfaces for lead-in insulators. Either cement or rubber gaskets may be used to waterproof the exposed joints.

Where such a procedure is not permissible, the window itself usually offers the best opportunity. One satisfactory method is to drill holes in the glass near the top of the upper sash. If the glass is replaced by plate glass. a stronger

Fig. 14-49- A - Anchoring feeders takes the strain from feedthrough insulators or window klass. Is - Coing through a full-length sereen, a cleat is fastened to the frame of the sereen on the inside. Clearance holes are cut in the cleat and also in the sireen.
job will result. Plate glass may be obtained from automobile junk yards and drilled before placing in the frame. 'The glass itself provides insulation and the transmission line may be fastened to bolts fitting the holes. Rubber gaskets will render the holes waterproof. The lower sash should be provided with stops to prevent damage when it is raised. If the window has a full-lingth screen, the scheme shown in Fig. 14-4913 may be used.

As a less permanent method, the window may be raised from the bottom or lowered from the top to permit insertion of a board which carries the feed-through insulators. This lead-in arrangement can be made weatherproof by making an overlapping joint between the board and window sash, ats shown in Fig. 14-48.

LIGHTNING PROTECTION

An ungrounded radio antenna, particularly if large and well elevated, is a lightning hazard.

Fig. 14-50 - Low-loss lightning arresters for transnit-ting-antenna installations.

When grounded, it provides a measure of protection. Therefore, grounding switches or lightning arresters should be provided. Examples of construction of low-loss arresters are shown in lig. 1.4-50. At A, the arrester electrodes are mounted by means of stand-off insulators on a fireproof asbestos board. At 13 , the electrodes are enclosed in a standard sterd outhet box. The gaps should be made as small as possible without danger of breakdown during operation.

Lightning-arrester systems require the best ground comertion obtainable.

The most positive protection is to ground the antema system when it is not in use; grounded Hexible wires provided with clips for connection to the feeder wires may be used. The ground lead should be of short length and rum, if possible, directly to a driven pipe or water pipe where it enters the ground outside the building.

Rotary-Beam Construction

It is a distinct advantage to be able to shift the direction of a bean antenna at will, thus securing the benefits of power gain and directivity in any desired compass direction. A favorite method of doing this is to construct the antema so that it can be rotated in the horizontal plane. The use of such rotatable antennas is usually limited to the higher frequencies - It Me, and above - and to the simpler antema-element combinations if the structure size is to be kept within practicable bounds. For the 14-, 21-and 28-Mc. bands such antennas usually consist of two to four dements and are of the parasitic-array type described carlier in this chapter. At 50 Mc . and higher it becomes possible to use more chaborate arrays berausc of the shorter wavelength and thus obtain still higher gain. Antennas for these bands are described in another chapter.

The problems in rotary-beam construction are those of providing a suitable mechanical support for the antemma elements, furnishing a means of rotation, and attaching the transmission line so that it does not interfere with the rotation of the system.

Elements

The antenna clements usually are made of motal tubing so that they will be at least partially self-supporting, thus simplifying the supporting structure. The large diameter of the eonductor is beneficial also in reducing resistance, which becomes an important consideration when close-spaced elements are used.

Dural tubes of ten are used for the elements, and thin-walled corrugated steel tubes with copper coating also are available for this purpose. The elements frequently are constructed of sections of telescoping tubing making length adjustments for tuning quite easy. Vilertriciin's thin-walled conduit also is suitable for rotary-beam elements.

If steel elements are used, special precautions shouk be taken to prevent rusting. Even cop-per-coated steel does not stand up indefinitely, since the coating usually is too thin. The elements should be conted both inside and out with slow-drying aluminum paint. For coating the inside, a spray gum may be usod, or the paint may be poured in one end while rotating the tubing. The excess paint may be caught as it comes out the bottom end and
poured through again until it is certain that the entire inside wall hats been covered. The ends should then be plugged up with corks sealed with glyptal varnish.

Supports

The supporting framework for a rotary beam usually is made of wood or metal, using as lightweight construction as is consistent with the required strength. Generally, the frame is not required to hold much weight, but it must be extensive enough so that the antemna elements can be supported without excessive sag, and it must have sufficient strength to stand up under the maximum wind in the locality. The design of the frame will depend on the size and strength of the cements, whether they are mounted horizontally or vertically, and the method used to rotate the antenna.

The general preference is for horizontal polarization, primarily because less height is required to clear surrounding obstructions when all the antenna elements are in the horizontal plane. This is important at 14 and 21 Me. Where the elements are fairly long.

The support may be coupled to the pole by any convenient means which permits rotation or, alternatively, it may be firmly fastened to the pole and the latter rotated in bearings affixed to the side of the house.

Fis. $\quad 14-51$ - A ladder-supported 3-element 28. Me. hean. It is mounted on a pipe mast that projects through a bearing in the roof and is turned from the attic operating room. (W1MRK in August. 1946. QST.)

One type of construction is shown in Fig. 14-5l. It uses a section of ordinary ladder as the main support, with erosspieces to hold the tubing antenna elements.

Metal can be used to support the elements of the rotary beam. For 28 Me ., a piece of 2 inch diamoter duraluminum tubing makes a good "boom" for supporting the elements. The elements can be made to slide through suitable holes in the boom, or sperial clamps and brackets can be fashioned to support the clements. littings for TV antemas can oftem be used on 28-Mc. beams.

With all-metal construction, delta, "gamma" or "T"'-mateh are the only practical matehing mothods to use to the line, sime anything olse requires opening the driven element at the conter, and this complicates the support problem for that element.

A Wooden Boom for 14 Mc .

Many amateurs prefor to build their beam booms from standard pieces of lumber, and the bean shown in Figs. $14-52$ and $14-\overline{3} 3$ is an example of excellent design in wooden-boom construction. The boom members are two 20foot 2×4 fastened to the $4 \times 12 \times 24$-inch conter block with six lag serews. The two conter screws serve as the axis for tilting the other four lock the boom in position after

Fig. 14-52-A woolden hom for a 4 -element if. Ne. home can he made puite strong ly judicions use of gay wircs. This installation is made on a windmill tower, and the drive motor is mounted halfway down on the tower. (N'6MJB, Nov., 191\%. QST.)
final assembly and adjust ment have been comploted. Tho blocks midway from each end are $2 \times$ is spaced about six inches apart, with a long bolt betwern them. When this bolt is drawn tight, a very sturdy box brace is formed. The crossarms are 3×3 s twelve feet long, bolted to the boom with carriage bolts.

The umbrella guys should have turnbuckles in them, and the guys are fastened to the center support after the beam has: been permanently locked in its horizontal position. W'ith the turnburkles properly adjusted, there will be no sag in the bow and the elements will be neat.

The elements are $13 / 8$ - and $11 / 2$-inch diameter duraluminum tubing, supported by $11 / 2$-inch stand-off insulators. Hose clamps are used to hold the eloments on the insulators. Final adjustment of element lengths is possible through "hairpin" loops. The tower for the beam shown in Fig. 14-0゙2 was a sears-Roebuck windmill tower. The driving motor for the beam was located half way down the tower, the torque being transmitted through a length of $11 / 2$-inch drive shaft. A pipe flange is welded to the drive shaft and bolted to the center block. A rone bearing is obtained by turning both the flange and in sleeve of 2 -inch pipe to mateh, as shown in lige $14-53$.

One method of matching the line to the antenna is to use a quarter wavelength of 7 i -ohm Twin-lead botwen the radiator and the slipring contacts, to match a 600 -ohm line from the slip rings to the transmitter.

I 600 -ohm open-wire line is run to a point about halfway up on the tower, then up the side of the tower to the slip rings. The slip rings are mounted on the top of the tower, directly under the center block. A quarter-wavelongth matching sertion of transmitting-type 7 To-ohm Amphenol Twin-lead hangs in a loop between the driven dement and the slip-ring contacts.

"Plumber's-Delight" Construction

The lightest beam to build is the so-called "plumber"s delight" - an array constructed entirely of motal, with no insulating members between the elements and the supporting structure. suggested constructional details are shown in Figs. 14-5.4, 14-55, 14-56, 14-57 and 14-58.

The boom can be built of two lengths of 3-inch diameter Gis-Tr dural tubing of 0.072 -inch wall thickness, as shown in lig. 11-54. The two sections are splieed together with a three-foot length of $; \times 6$ oak, turned down at each end to fit inside the tubing. The center of the block is left square to provide a flat surface to attach to the vertical rotating pipe, It each extremity of this boom is cut a hole the exact diameter of the parasitic rlements. A two-foot length of $3 / 4$-inch pipe, complete with flange mounting phate, is bolted to the top surfare of the oak block, and a single guy wire is run to each end of the boom. An egg insulator and a turnbuckle are placed in each gus. The turnbuckles should be tightened until there is no sag in the boom when it is supported at the center, and then safety-wired.

Finally the center block should be given a good coat of paint or varnish.
The elements can be made of three 12 -foot lengthe of dural tubing, the two outside lengths telescoping inside the center section. The ends of the center section should be slotted for a distance of ahout 4 inches with a hack saw, but it is advisable to do the slotting after the center sections have been assembled on the boom. The parasitie-cement renter sections are fastened to the boom with $1 / 4$-inch bolts, as shown in Fig. $14-55$, while the driven element is secured in a cradle made of half sertions of iron pipe welded together, as shown in Fig. 14-56. The cradle is bolted to the boom with three $1 / 4$-inch bolts, and the driven element is hold fast with two bolts or with adjustable air-craft-tubing clamps.
The feed line for the anterma can be any balanced line, of from 200 to 600 olims impedance, and it is most conveniently coupled through a "T"'-match. This " Γ "mateh assembly can be made from two 4 -foot lengths of dural tubing joined together by a piece of broomstick, as shown in Fig. 14-58. The " T " is connected to the antenna by two clamps fashioned of 1-inch-wide brass strip.

A convenient method for supporting the boom atop the pipe used to rotate the beam is shown in l"ig. 14-57. A "l"-channel into which the boom will fit is welded to the end of the pipe. Holes are drilled in the side of the chamnel corresponding to holes in the boom. The boom is hoisted up and positioned between the two flanges and a bolt run through the flanges and the boon. The boom can then be swung into a horizontal position and the second bolt put in place.

Feeder Connections

For beams that rotate only 360 degrees, it is common to bring off feeders by making a short section of the feeder, just where it leaves the

Fig. 14.54 - The boom is made of two 10 -foot lengths of dural tubing slipped over a 3 -foot oak block and held in place with 2 -inch wood serews. Guy wires from the center add strength to the boom structure.
rotating member, of flexible wire. Enough slack should be left so that there is no danger of breaking or twisting. Stops should be placed on the rotating shaft of the antenna so that it will be impossible for the feeders to "wind up."
loor continuous rotation, the sliding contact is simple and, when properly built, quite practicable. The chief points to keep in mind are that the contact surfaces should be wide enough to take care of wobble in the rotating shaft, and that the contact surfaces should be kept clean. Spring contacts are essential, and an "umbrella" or other scheme for keeping rain off the contacts is a desirable addition. Sliding contacts preferably should be used with nonresonant open-wire lines, so that the line current is low.

The possibility of poor connec-

figg. 14-55 - Whe center element section is held in the hom with a $1 / 4.28$ machine serew, nut and hek wather. The giny wire attaches to the head of the bolt.
tions in sliding contacts can be avoidod by using inductive coupling at the antenna, with one coil rotating on the antema and the other fixed in position, the two coils being arranged so that the coupling does not change when the antema is rotated. A quarter-wave feeder system is conneeted to a tuned piek-up circuit whose inductanee is coupled to a link. The link coil comneets to a twisted-pair transmission line, but any type of line such as flexible coaxial cable can be used. The eireuit would be adjusted in the same way as any link-coupled circuit, and the number of turns in the link should be varied to give proper loading on the transmitter. The rotating coupling cireuit tunes to the transmitting frequency: The system is equivalont to a link-coupled antenna tuner mounted on the pole, using a parallel-tuned tank at the end of a quarter-wave line to center-

Fig. 14-56 - The elamp for the driven element is nade by splitting 1 -foot lengths of iron pipe and welding them as shown.
feed the antenna. For constint coupling, the two coils should be rigid and the pole should rotate without wobble. The two eoils might be made a part of the upper bearing assembly holding the rotating pole in position.

There are other variations of the inductivecoupled system. The tuned circuit might, for instance, be placed at the end of a 600 -ohm line, and a one-turn link used to couple directly to the center of the antema, if the construction of the rotary member permits. In this caso the coupling ean be varied hy changing the L / C ratio in the tuned cireuit. For mechanieal strength the coupling coils preferably should be made of $1 / 4$-inch copper tubing, woll braced with insulating strips to keep them rigid.
motor driven rotators on the market, and they are easy to mount, convenient to use, and require little or no maintenance. Cenerally speaking, light-weight units are botter because they reduce the load on the mast or tower.

The speed of rotation should not be too great - one or two r.p.m. is about right. This

fig. If-if - The mounting plate is mate from a length of" ["e.channel iron cut and drilled as shown. The lwom is raised vertically until one set of bolt holes is in tine and a bolt is slipred through. The foom is thron swang into its horizontal position and the other hole is put in place.
requires a considerable gear reduction from the usual $1750-\mathrm{r} . \mathrm{p} . \mathrm{m}$. speed of small induction motors; a large reduction is advantageous because the gear train will prevent the bean from turning in weather-vane fashion in a wind. The usual beam does not require a great deal of power for rotation at slow speed, and a $1 / 8$-hp. notor will be ample. A reversible motor should be used so that it will not be necessary to go through nearly 360 degrees to bring the beam back to a direction only slightly different, but in the opposite direction of rotation, to the direction to which it may be pointed at the moment. In cases where the pole is stationary and only the supporting framework rotates, it will he necessary to mount the motor and gear train in a housing on or near the top of the pole. If the pole rotates, the motor can be installed in a more aecessible location.

Driving motors and gear housings will stand the weather better if given a coat of aluminum paint followed by two coats of enamel and a coat of glyptal varnish. Even commoreial units will last longer if treated with glyptal varnish. Be sure that the surfaces are clean and free from grease before painting. Grease can be removed by brushing with kerosene and then squirting the surface with a solid stream of water. The work can then be wiped dry with a rag.
The power and control leads to the rotator should be run in electrical conduit or in lead covering, and the metal should be grounded.

Rotation

It is convenient but not essential to use a motor to rotate the beam. If a rope-andpulley arrangement can be brought into the operating room or if the pole can be mounted near a window in the operating room, hand rotation of the beam will work.

If the use of a rope and pulleys is impracticable, motor drive is about the only alternative. There are several complete

Fig. 14.58 - Details of the "r"-match assembly.

About V.H.F.

While it is possible to use the frequencies above 30 Mc. without knowing anything about waye propagation, the amateur who understands something of the means by which his signals reach distant points will be able to do a better job of it. Berause much of the pleasure
and satisfaction to be derived from v.h.f. work lie in making the best possible use of propagation vagaries assoriated with natural phenoment, a working knowledge of the basic principles of wave propagation is a most useful tool for the v.h.f. operator.

Characteristics of the Bands Above 50 Mc.

The assignments from 30 Me. up are superior to our lower bands in one outstanding respect: their ability to provide interferencefree communication consistently within a limited service area. Lower frequencios are more subjeet to varying conditions that impair their efferetiveness for work over a radius of 100 miles or less at least part of the time, and the heavy orcupancy thes support creates a continuing interference problem. Our v.h.f. bands, on the other hand, are seldom crowded, and their characteristies for local work are more stable. Because of these attributes the a() and $1+4-\mathrm{Mc}$. bands, particularly, enjoy considerable popularity in areas where there are dense concentrations of population.

In addition, it hats been found that there are several media by which v.h.f. signals are propagated beyond the loral range, and operation on the v.h.f. bands has beron taken up by many operators who must depend almost entirely on "1)X" for their contacts. The latter group, paticularly, will benefit from a familiarity with common propagation phenomena. The material to follow is intended to supplement the more detailed intormation in Chapter Four, doaling with wave propagation as it affeets the world above 50 Mc .

50 to 54 Mc .

This band is borderline territory bet ween the frequencies regularly used for long-distance communication and those normally amployed for local work. Thus just about every form of wave propagation to be found throughont the radio speretrum will appear, on oreasion, in the 50-Me, region. This diversity hats contributed greatly to the growing popularity of the ato- Ine. band in the amateur pieture.

During the peak rears of the sunspot eycle it is occasionally possible to work $50-$ Ne. I)N of worldwide proportions, by reflection of signals from the F_{2} laver. Sporadic- E skip provides opportunities for work over distances from 400 to 2500 miles or so during the early
summer months, regardless of the solar rycle. Reffection from the aurora regions atocounts for communication over 100 to (i00-mile paths during pronounced ionospheric disturbances. The ever-changing weather pattern offors frequent opportumities for extension of the normal coverage to as much as 300 miles. This tropospheric condition develops most often during the warmer months, but may occur at any season. In the absence of any favorable propagation, the average wellequipped 50 - Me. station should be able to work regularly over a radius of 75 to 100 miles or more, depending on local terrain.

144 to 148 Mc .

Ionosphoric effects are greatly reduced at 144 Me. It is doubtful whether Fo-layer reflection ever oceurs at this frequencr, and sporadio- E skip is rare. Aurora ID is fairly common, but the signals are generally weaker than on 50 Me. Tropospheric effects are more pronounced than on 50 Mc., and distances covered during favorable weather conditions are greater than on lower bands. Air-matss boundary bending has been responsible for communication on 144 Me. over distunces in excess of 1100 miles, and 500 -mile work is fairly common in the warmer months. The reliable working range under normal conditions is slightly less than on 50 Me., when comparable erfuipmont and antennas are used.

220 Mc. and Higher

Ionospheric propugation is umlikely at 220 Me . and up, but tropospheric bending is more prevalent than on lower bands. Amateur experience on 220 and 420 Me. is showing that they can be as useful as 144 Mc., when comparable equipment is used. Under minimum conditions the range may be slightly shorter, but when signals are grod on 144 Me., they may be better on 220 or 420. Even at 1215 Me and higher there is evidence that paths well beyond line of sight may be eovered successfully.

Propagation Phenomena

The various known means by which v.h.f. signals may be propagated over unusual distances are disensed below.

F_{2}-Layer Reflection

The "normal" contacts made on 28 Mc. and lower frequencies are the result of reflection of the transmitted wave by the F b layer, the ionization density of which varies with solar activity, the highest frequencies boing reflected at the peak of the 11 -year solar cycle. The maximum usable frequency (m.u.f.) for F_{2} reflection also rises and falls, with other welldefined cycles, including daily, monthly, and seasonal variations, all related to conditions on the sun and its position with respect to the earth.

At the low point of the 11-ycar eyele, such as the priod we emountered in the carly ' 50 s , the m.u.f. may reach 28 Me. only during a short period each spring and fall, whereas it may go to (00 Me or higher at the peak of the cycle. The fall of 1946 saw the first ant hentic instances of long-distance work on 50 Mc. by Fo-layer reflection, and ats late as 1950 contacts were still being made in the more favorable areas of the world hy this medium. In the northern latitudes there are peaks of m.u.f. (atch spring and fall, with a low period during the summer and a slight dropping-off during the midwinter months. At or near the Equator conditions are more or less constant at all scasons.

Fortunately the F_{2} m.u.f, is quite readily
determined by observation, and moans are available whereby it may be estimated quite aceurately for any path at any time. It is predictable for months in advance, ${ }^{1}$ enabling the v.h.f. Worker to arrange tort schedules with distant stations at propitious times. Is there are numerous signals, both harmonics and fundamental transmissions, on the air in the range between 28 and 50 Mc ., it is possible for an olserver to dotormine the approximato m.u.f. by careful listoning in this range. A sories of daily observations will sorve to show if the m.tof. is rising or falling from day to day, and once the prak for a given month is detormined it can be assumed that the peak for the following month will oceur ahout 27 days later, this cyele coimeding with the turning of the sun on its axis. The working range, via F_{2} skip, is roughly comparable to that on 28 Me., though the minimem distance is somewhat longer. Two-way work on 50 Mr . by reflection from the F_{2} hayer has been aceomplished over distances ranging from 2200 to 10,500 miles. The maximum frequeney for F_{2} reflection is believed to be in the vicinits of $70 \mathrm{Me}, \mathrm{F}_{2} \mathrm{DX}$ on 50 Me . is untikely again before 1956 .

Sporadic-E Skip

latehy concentrations of ionization in the E-layer region are often responsible for re-
${ }^{1}$ basic Radio l'ropagation I'radictions, issued montllys. three months in ardvanee, by the Central Rudio Propagation Lathoratory of the National Bureau of standards. Order from the supt. of Docunents, Washington 2.5, 1). ('.; $\$ 1.00$ per year.

Fig. $15-1$ - ' 1 'he principal means by which w.h.f. signals may be returned to earth. The F_{2} layer, highest of the known rellecting regions of the ionosphere, is capable of reflecting $50-$ Ne. signals during the peak period of the 11 . year solar cycle. Such commanieation may be world-wide in seope. Sporadie ionization of the li layer produces the familiar "short shio" contacts ovor medium distances at 28 and 50 Ve. On thre hands it is a fairly frequent oecurrence regarilless of the solar cyele. It is most common in Way throngh Auguat. Refraction of vih.f. Waves also takes plare at air-mas boundaries in the lower atmosphere. making possible communication over distances of several hundred miles, usually without a skip zonte. on all v.h.f. bands.
flection of signals on 28 and 50 Mc . This is the popular "short skip" that provides fine contacts on both bands in the range between 400 and 1300 miles. It is most common in May, June and July, during morning and early evening hours, but it may occur at any time or season. Since it is largely unpredictable, at our present state of knowledge, sporadie-E skip is of high "surprise value." Multiple-hop effects may appear, when ionization develops simultaneously over large areas, making possible work over distances of more than 2500 miles.

The upper limit of frequency for sporadie- E skip is not positively known, but seattered instances of $14+\mathrm{Mc}$. propagation over distances in excess of 1000 miles indicate that E-layer reflection, possibly aided by tropospheric effects, may be responsible.

Aurora Effect

Low-frequency communication is occasionally wiped out by absorption of these frequencies in the ionosphere, when ionospheric storms, associated with variations in the earth's magnetic field, occur. During such (listurbances, however, v.h.f. signals may be reflected back to earth, making communication possible over distances not normally workable in the v.h.f. range. Magnetic storms maty be arcompanied ty an aturora-borealis display, if the dist urbance oceurs at night and visibility is good. When the aurora is confined to the northarn sky, aming a directional array at the auroral curtain will bring in signals strongest, regardless of the true direction to the transmitting station. When the display is widespread there may be only a slight improvement noted when the directional arraty is aimed north. The latter condition is often noticed during the period around the peak of the H-year cycle, when solar activity is spread well over the sun's surface, instead of boing concentrated in the region near the solar equator.

Aurora-reflected signals are characterized by a rapid flutter, which lends a "dribbling" sound to $28-$ Mc. carriers and may render modulation on 50 and $144-\mathrm{Mc}$. signals completely unreadable. The only satisfactory
means of communication then becomes straight c.w. The effect may be noticeable on signals from any distance other than purely local, and stations $u p$ to about 800 miles in any direction may be worked at the peak of the disturbance. Unlike the two methods of propagation previously deseribed, aurora effect exhibits no skip zone. It is observed frequently on 50 Mc., and pronounced disturbances affect the $144-\mathrm{Mc}$. hand similarly. The highest frequency for aurora reflection is not yet known.

Scatter

When long-distance communication is possible on 50 Me., stations within the skip zone may be heard with a wavery quality indicative of multipath reception. Such signals have traversed a normal ionospheric path, via either the F_{2} or E layer, and a small amount of onergy has returned to the receiver by reflection from a distant point on the earth's surface, The proeess is similar to that of a radar echo, excopt that an ionospheric route is followed.
The effect is most marked with high-gain directional arrays and high transmitter power. The direction from which scatter signals are olserved indicates the region of most intense ionization, and adaptations of radiur methods make it possible to "sound" the ionosphere to determine what distances and directions may be covered on a given frequency.

Reflections from Meteor Trails

Probably the least-known means of v.l.f. wave propagation is that resulting from the passage of meteors across the signal path. Reflections from the ionized meteor trails may he noted as a Dopplereeffect whistle on the carrier of a signal alrearly being received, or they may cause bursts of roception from stations not normally receivable. Sudden large increases in strength of normally-weak signals are another manifestation of this effect. Ordinarily such reflections are of little value in extending communication ranges, since the increases in signal strength are of short duration, but moter showers of considerable magnitude and duration may provide fluttery v.h.f.

Fig. 15.2 - Illustrating a typical weather sequence, with associated variations in v.h.f. propagation. At the right is a cold air mass (fair weather, high or rising barometer, moderate summer temperatures). Approaching this from the left is a wartn moist air mass, which overruns the cold air at the point of contact, creating a temperature inversion and ennsiderable bending of v.h,f. waves. At the left, in the storm area, the inversion is dissipated and signals are weak and subject to fading. Barometer is low or falling at this point.
signals from distances up to 1000 miles or more. Signals so reflected have a combination of the characteristics of aurora and sporadic- E skip.

Tropospheric Bending

Refraction of radio waves takes place whenever a change in refractive index is encountered. This may occur at one of the ionized layers of the ionosphere, as mentioned above, or it may exist at the boundary area between two different types of air masses, in the region close to the carth's surface. A warm, moist air mass from over the Gulf of Mexico, for instance, may overrun a cold, dry air mass which may have had its origin in northern Canada. Each tends to retain its original characteristics for considerable periods of time, and there may be a well-defined boundary between the two for as much as several days. When such airmass houndaries exist along the path hetween two v.h.f. stations separated by 50 to 300 miles or more, a considerable degree of refraction takes place, and signals run high above the average value. Inder ideal conditions there may be almost no attenuation, and signals from far beyond the visual horizon will come through with strength comparable to that of local stations.

Many factors other than air-mass movement of a continental character may provide increased v.h.f. operating range. The convection that takes place along our eoastal areas in warm weather is a good example. The rapid cooling of the earth after a hot day in summer, with the air aloft cooling more slowly, is another, producing a rise in signal strength in the period around sundown. The early-morning hours, when the sun heats the air aloft, hefore the temperature of the earth's surface begins its daily rise, may frequently be the best hours of the day for extended v.h.f. range, partieularly in clear, calm weather, when the barometer is high and the humidity low.

Any weather condition that produces a pronounced houndary between air masses of different temperature and humidity characteristics provides the medium by which v.h.f. signals cover abnormal distances. The ambitious v.h.f. enthusiast soon learns to correlate various weather manifestations with radiopropagation phenomena. By watching temperature, harometric pressure, changing cloud formations, wind direction, visibility, and other easily-observed weather signs, he is able to tell with a reasonable degree of accuracy what is in prospect on the v.h.f. bands.

The responsiveness of radio waves to varying weather conditions increases with frequency. Our 50-Mc. band is considerably more sensitive to weather variations than is the 28 - Mc. band, and the $144-$ Mc. hand may show strong signals from far beyond visual distances when the lower frequencies are relatively inactive. The maximum distance over which
tropospheric propagation is frequently observed on 50 Mc . is in the neighborhood of 300 miles. On 144 Mc. distances of 500 miles are not uncommon. It is probable that this tendency continues on up through the microwave range, and that our assignments in the u.h.f. and s.h.f. portions of the frequency spectrum may someday support communication over distances far in exeess of the optical range. Already 144-Mc. tropospheric communication by amateurs has passed the 1100 -mile mark, and even greater distances are believed possibe on this and higher frequencies.

STATION LOCATIONS

In line with our early notions of v.h.f. wave propagation, it was once thought that only highly-elevated v.h.f. stations had any chance of working beyond a few miles. Amost all the work was done by portable stations operating from mountain tops, and only hilltop home sites were considered suitable for fixed-station work. It is still true that the fortunate amateur who lives at the top of a hill enjoys a certain advantage over his fellows on the v.h.f. bands, but high elevation is not the all-important factor it was once thought to be.
Improvements in equipment, the wide use of high-gain antenna systems, and an awareness of the opportunities afforded by weather phenomena have enabled countless v.h.f. workers to achieve excellent results from seemingly poor locations. In $50-\mathrm{Mc}$. DN work particularly, elevation has ceased to be an important factor, though it may help in extending the range of operation somewhat under normal conditions. A high elevation is somewhat more helpful on 144 Mc. and higher frequencies, particularly when no unusual propagation factors are present, as during the winter months. Other factors, such as close proximity to large bodies of water, may more than compensate for lack of elevation during the other seasons of the year, however.

Stations situated in sea-level locations along our coasts have been consistent in their ability to work long distances on 144 Mc.; weather variations provide interesting propagation effects over our Middle Western plain areas; and even the worker situated in mountainous country need not necessarily feel that he is prevented ly the nature of his horizon from doing interesting work. Contacts have been made on 50 and 144 Mc. over distances in excess of 100 miles in all kinds of terrain.

The consistently-reliable nature of 50 and 144 Me . for work over such a radius and more, regarilless of weather, time or season, and the occasional opportunities these frequencies afford for exciting DN, have caused an inereasing number of amateurs to migrate to the v.h.f. bands for extended-local communication, once thought possible only on the lower frequencies.

CHAPTER 16

V.H.F. Receivers

Evan more than in work on lower frequendies, receiver performanee is all-important in the v.h.f. station. High sensitivity and good signal-to-noise ratio, neecsary attributes in a receiving system for 50 Me . and higher bands, are best attained through the use of a eonverter, working in conjunction with a communieations receiver designed for lower frequeneies. Thourh reerivers and converters for $50,1+1$, and wom 220 Me . are available on the amateur market, it is possible for the v.h.f. worker to build his own with fully as good results, and at a considerable saving in cost.

In its basic principles, modern receiving equipment for these bands differs little from that employed on lower frequencies, and the same order of selectivity may be used in amateur work up to at least tion Mr. The greatest practical selectivity should be used in v.h.f. work, as wedl as on the frequencies below 30 Me., as it not only promits more stations to operate in a given band, but is an important factor in improving the signal-to-moise ratio. The efferive sensitivity of a reoceiver having "communication" sadectivity ean be made eonsidarably better than is possible with broadland systems. First on sf Me., more than a decade ago, then more recontly on 144 Me., and currently on 220 and 420 Mc., the change to sellestive superheterodyne receivers marked the beginning of real extensions of the opreating range.

The superregenerative receiver, onde very popular for v.h.f. work, is now used principally for portable operation, or for other applications where maximum semsitivity and selectivity are not of prime importance. It is still capable of surprising performanee, for a given number of tubes and components, but its lack of selectivity, its poor signal-to-noise ratio, and its tondency to radiate a strong interfering signal rule out the superregenerator as a fixed-station reeceiver in areas where there is appreciable v.h.f. activity.

R.F. AMPLIFIER DESIGN

The amount of noise generated within the recoiver itself is an important factor in the effectiveness of v.h.f. recoiving gear. At lower frequencies the external noise is a limiting factor, but at 50 Me , and higher the receiver noise figure, gain and seleetivity determine the
ability of the system to respond to weak signals. Propar selection of r.f. amplifier tubes and appropriate cireuit design amed at low noise figure are of more inportance in the v.h.f. reeeiver "front end" than mere gain.

Certain triode or triode-connected pentode tubes have bern found superior in this respeet, their superiority beeoming more pronounced as we go highor in fregueney. At 144 Mc ., for instance, a triode r.f. stage may give substantially the same gain as a pentode, but with a much lown noise figure. With the execption of the simplest unit, the equipment described in the following pages incorporates low-hoise r.f. amplifier teehnique.

When triodes are used as r.f. amplifiers some form of neutralization of the grid-plate capacit ance is required. This can be capacitive, ats is commonly used in transmitting applications,

Fig. 16.1-Schematic diayran of a push-pull r.f. amplifier for v.h.f. receiver use. This circuit is well suited to use with antenna systems fed by hadaned lines. (Coil and condenser sizes witl be governed by the hand for which the amplifier is to be used.
$\mathrm{C}_{1}-0.00 \mathrm{D}_{-\mu \mathrm{f}} \mathrm{fl}$. dise reramic.
Co - Neutralizing caparitance, about $2 \mu \mu f 1$. Nay be made from lengths of $75-0 h m$ 'Twin-lead about $1 \frac{1}{2}$ inche's long.
$\mathrm{R}_{1}-1 . \overline{0} 0$ ohms, $1 / 2$-watt carbon.
$\mathrm{H}_{2}-1000$ ohms, $1 / 2$ watt carbon.
or inductive. The alternative to neutralization is the use of gromnded-grid technique. Circuits for v.h.f. triode ref. amplifier stages are given in Figs. 16-1 through 16-4.

A dual triode operated as a neutralized push-pull amplifier is shown at 16 - . This arrangement is woll adapted to v.h.f. preamplifier applications, or as the first stage in a converter, particularly when a balanced transmission line such as the popular 300 -ohm Twit-Lead is used. It is relatively seleetive

Fig. 16.2-Cirenit of the cascode r.f. amplifier. Preferred antenna coupling methods for coavial or balanced lines are shown. The lirst r.f. prid coil, and the neutralizing coil, L. , should be a high-(design. Other coils are not critical as to (0. $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{5}-\mathbf{0} .005-\mu \mathrm{fd}$. dise ceramic.
$\mathrm{C}_{3}, \mathrm{C}_{6}-50-\mu \mathrm{fd}$, rerantie.
R_{1}, R_{2} - 100 ohms, $1 / 2$-watt carbon.
$\mathrm{R}_{3}, \mathrm{R}_{4}-1000$ ohms, $1 / 2$-watt carbon.
L_{N} - Should resonate at signal frequency with 6 AK 5 grid . plate capacitance.
and may require resistive loading of the plate cireuit, when used as a preamplifier. The loading effect of the following circuit miny be sufficient to give the required bandwidth, when the push-pull stage is inductively coupled to the mixer.

A two-stage triode amplifier having execllent noise figure and broadhand characteristies is shown in lig. 16-2. Commonly called the cascode, it uses a triode or triode-eonnected pentode followed ber a triode grounded-grid stage. This eireuit is extremely stable and uneritical in adjust ment. At 50 Me and higher its over-all gain is at least equal to the best single-stame pentode amplifier and its noise figure is far lower.

Neutralization is areomplished by the eoil L_{N}, whose value is such that it resonates at the signal freguener with the grid-plate capacitance of the tube. Its inductance is mot eritical; it may be onitted from the cireuit without the stage going into oseillation, but neatralization results in a lower noise figure than is possible without it. Any of several v.h.f, tubes maty be used in the eascode cireuit, the most popular arrangement boing the 6AK゙ラ-6J6 combination, Fig. 16-2.

A simplified version of the cascode, using a dual triode tube designed especially for this application, is shown in Fig, 16-3. By rolueing atray capacitance. through direct coupling between the two triode sections, this circuit
makes for improved performance at the frequeneies above $\mathbf{1 0 0 ~ M e}$. The two scetions of the tube are in series, as far as phate voltage is concerned, so it requires higher voltage thin the other circuits shown.

The neutralization process for the cascode and neutralized-triode amplifiers is somewhat similar. With the cireuit operating normally the neutralizing adjustments (capacitance of C_{N} in lig. $16-1$; inductance of L_{N} in Figs. 16-2 and 16-3) can be set for best signal-to-noise ratio. The middle of the range over which no oscillation oceurs is approximately the proper setting. Finer adjustment can be made by diseomnecting ono heater lead from the r.f. amplifier tube socket and adjusting the neutratizing for minimum signal. The best results atre obtained using a noise generator, adjusting for lowest noise figure, but the two mothods deseribed above will provide a fair approximation. Noise generators and their use in v.h.f. recoiver adjustment are treated in July, 1953, (2s'T, page 10.

Grounded-grid r.f. amplifior techmique is illustrated in Fig. 16-4. Here the input circuit is connerted in the cathode lead, with the grid of the tube grounded, to act as a shield between cathode and plate. The grounded-grid cireuit is stable and easily adjustod, and is woll adapted to broadband applications. The gatin per stage is low, so that two or more stages are ordinarily required.

Choie of tubse is fairly limited, the best for the joh being the (iJt, GiN. . fid.J. and G.D.M. triodes esperially designed for grounded-grid service. The 6.J6 is used occasionally, as in Fig. 16-2. Disc-seal tubes such as the "lighthouse" and "pencil tube" types are often used as r.f. amplifiers above 500 Mc., where most miniature tubes become ineffertive becanse of exeessive lead inductance.

 dual triodes. This circuit is particularly effective at 144 Mc, and higher. Coil and condrnser values not piven depend on frequeney. The neutralizing roil, L_{x}, should resonate at the signal frequency. lif. chokes in the heater circuit shoult be resonant with the plate-to-gromind capacitance of the first triode section, at the highest frequency to be covered, They are bifilar wound.

Fig. 16-4-Grounded-trid r.f. amplifier. Position of cathode taps on coils shoulal be adjusted for lowest noise ligure.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{5}$, $\mathrm{C}_{6}-\mathbf{0}, 00.5-\mu \mathrm{fl}$. dise ceramic. Cis - $\overline{50}-\mu \mu \mathrm{fil}$ e eramic.
$R_{1}, R_{3}-220$ ohms, $1 / 2$ watt carbon.
$R_{2}, R_{4}-470$ ohnms, $1 / 2$ watt carbon.

MIXER CIRCUITS

Triode tubes are favored for v.h.f. applications, as they are less eritical as to operating conditions and the highest frequency at which they will operate satisfactorily is well above that of most pentodes. When used in converters having no r.f. amplifier stage triodes are usually quieter in operation as well.

A simple triode mixer circuit is shown in Fig. 16-5A. The grid circuit is tuned to the signal frequeney, the plate circuit to the intermediate frequency. A dual-triode version is given at 13. The latter is particularly suitable for use at the higher frequencies. Frequently a

(A)

(B)

Fig. 16-5 - Two types of triode mixers suitable for v.h.f. receivers. A single-ended triode circuit is shown at A. 'The tube may be half of a dual triode, with the other portion used as the oseillator, or separate tubes may be used. The dual triode version, B, is particularly useful for 144 Mc. and higher bands.
$\mathrm{C}_{1}-50-\mu \mu \mathrm{fl}$. ceramic or mica.
$\mathrm{C}_{2}, \mathrm{C}_{6}-30-$ to $50-\mu \mu \mathrm{fl}$, ceramic or mica.
$\mathrm{C}_{3}, \mathrm{C}_{4},\left(\mathrm{C}_{5}-0.005-\mu \mathrm{fd}\right.$. dise ceramic.
$R_{1}-1$ megohm, $1 / 2$ watt.
$R_{2}, R_{4}-1000$ olms, $1 / 2$ watt.
$1_{3}-150$ ohme, $1 / 2$ watt.
dual triode is used as a combination mixer-oscillator, using the circuits of Figs. 16-5A and 166A. 'The amount of oseillator injection is usually not critical, but in the interest of stability it should to kept as low as practical. In dual triodes having separate cathodes ($7 \mathrm{~F} 8,12 \mathrm{~A}^{\prime} \mathrm{T} 7$, 2('5l, ete.) some external coupling may be required, but the common cathode of the 6.J6 will provide sufficient injection in most cases. If the injection is more than necessary it can be reduced by dropping the oscillator plate voltage, either directly or by increasing the value of the dropping resistor, R_{1}.
A pentorle mixer may be less subject to oscillator pulling than a triode, and it will probably require less injection voltage. If a pentode miser is used. its plate current should be held to the lowest usable value, to reduce tube noise. This may be controlled by varying the mixer sereen voltage. The principal use of pentode mixers in v.l.f. work is in the interest of simplicity of eircuit layout, as in multiband converters employing bandswitching.

Oceasionally oscillation near the signal frequoney may the encountered in v.h.f. mixers. This usually results from stray lead inductance in the mixer plate circuit, and is most common with triode mixers. It may be corrected by connecting a small capacitance from plate to cathode, direcily at the tube sooket. Ten to $25 \mu \mu \mathrm{fd}$. will be sufficient, depending on the signal frequency.

OSCILLATOR STABILITY

When a high-selectivity i.f. system is emploved in v.h.f. reception, the stability of the oscillator is extremely important. Slight variations in oseillat or frequency that would not be noticed when a broadhand i.f. amplifier is used become intolerable when the passband is reduced to erystal-filter proportions.

One satisfactory solution to this problem is the use of a crystal-controlled oscillator, with fregueney multipliers if needed, to supply the injection voltage. Such a converter usually employs one or more broadband r.f. amplifier stages, and tuning is done by varying the intermediate frequency to cover the desired frequeney range.

When a tunable oscillator and a fixed intermediate frequency are used, special attention must be paid to the oscillator design, to be sure that it is mochanically and electrically stable. The tuning condenser should be solidly built, preferably of the double-bearing type. Splitstator condensers specifically designed for v.h.f. service, usually having ball-bearing end plates and special construction to insure short leads, are well worth their extra cost. Leads should be made with stiff wire, to reduce vibra-
tion effects. Mechanical stability of air-wound coils can be improved by tying the turns together with narrow strips of household cement at several points.

Recommended oscillator circuits for v.h.f. work are shown in Fig. 16-6. The single-ended oscillator may be used for 50 or 144 Mc, with good results. The push-pull version is recommended for higher frequencies and may also be used on the two lower hands, as well. Circuit A works well with almost any small triode, the 6AB4, 6AF4 or one half of a 6,56 or $12 A^{\prime} T$ being most commonly used. The 6.J6 is well suited to push-pull applications, as shown in circuit 16-613.

Fig. 16-6 - Kecommended circuits for , h.f. oseillators. lohe push-pull arrangement at 13 is recommended far 220 and 120 Mr., particularly.
($\left.\mathrm{i}_{1}-50\right)_{\mu} \mathrm{fd}$.
R_{1} - Anysmall carbon resistor, 1000 ohms or less. $1 k_{2}-10,000$ ohms, $1 / 2$ watt.
$1 k_{3}-3000$ to 5000 ohme, $1 / 2$ watt.

THE I.F. AMPLIFIER

Superheterodyne receivers for 50 Mc . and up should have fairly high intermediate frequencies, to reduce both oscillator pulling and image response. Approximately 10 per cent of the signal frequency is commonly used, with 10.7 Mc . being set up as the standard i.f. for commercially-built FM receivers. This particular frequency has a disadvantage for 50-Mc. work, in that it makes the reeciver subjeet to image response from $28-\mathrm{Mc}$. signals, if the oscillator is on the low side of the signal frequency. A spot around 7 Mc . is favored for amateur converter service, as practically all communications receivers are capable of tuning this range.

For selectivity with a reasonable number of i.f. stages, double conversion is usually emphoyed in complete receivers for the v.h.f. range. A 7 -Me. intermediate frequeney, for instance, is changed to 455 ke ., by the addition of a second miser-oscillator. This procedure is, of course, inherent in the use of a v.h.f. converter ahead of a communications receiver.

If the receiver so used is lacking in sensitivity, the over-all gain of the converter-receiver combination may be inadequate. This can be corrected by building an i.f. amplifier stage into the converter itself. Such a stage is useful even when the gain of the system is adequate without it, as the gain control can be used to
permit operation of the converter with receivers of widely-different performance. If the roceiver has an s-motor, its adjustment may be loft in the position used for lower frequencies, and the converter gain set so as to make the meter read normally on v.h.f. signals.

Where reception of wide-band FM or unstable signals of modulated oscillators is desired, a converter may be used ahead of an FM broadeast receiver. A superregenerative detector operating at the intermediate frequency, with or without additional i.f. amplifier stages, also may sorve as an i.f. and detector system for reception of wideband signals, By using a high i.f. (10 to 30 Me , or so) and by resistive loading of the i.f. transformers, almost any desired degree of bandwidth can be secured, providing good voice quality on all but the most unstable signals. Any of these methods may be used for reeception in the mierowave region, where stabilized transmission is extremely difficult at the current state of the art.

- THE SUPERREGENERATIVE RECEIVER

The simplest type of v.h.f. receiver is the superregenerator. It affords fair sensitivity with fre tubes and elementary circuits, but its weaknesses, listed earlier, have polegated it to applica1 ions where small size and low power consumption are important considerations.

Fig. 16-7 - Super. regenerative detector circuit using a self-quenched detec. tor. $L_{2} \mathrm{C}_{1}$ tumes to the simal frequency. "'ypical values for other components are given below.
$\mathrm{C}_{2}-47 \mu_{\mu} \mathrm{fil}$.
Ci3-0.0101 $100.005 \mu \mathrm{fl}$.
$11_{1}-21110$ megohms.
Π_{2} - $51,0(100)$-ohm potentiometer.
$1 \mathrm{R}_{3}$ - $\mathrm{L}, \mathrm{O}(100$ olims, 1 watt.
IRH: - Single-layer r.f. choke, for frequency involved. H_{1} - Interstage audio transformer.

Its sensitivity results from the use of an alternating quenching voltage, usually in the range between 20 and 200 kc ., to interrupt the normal oscillation of a regenerative detector. The regeneration can thus be increased far beyond the amount usable in a straight regenerative circuit. The detector itself can be made to furnish the quenching voltage, or a separate oscillator tube can be used. Regeneration is usually controlled by varying the plate voltage in triode detectors, or the sereen voltage in the case of pentodes. A typical circuit is shown in Fig. 16-7.

Crystal-Controlled Converters for 50, 144 and 220 Mc.

The family of converters shown in Figs. 16-8 through 16-16 was designed to provide optimum reception on all v.h.f. bands. Crystal-controlled injection is used to insure stability, and the r.f. circuit design provides the lowest practical noise figure for each frequency. Sperial attention has been paid to the reduction of spurious responses, often a troublesome point in broadband converter design. A separate converter section for each band connerts to a common i.f. amplifier and power supply by means of a single plug and cable. This carries the mixer output, and plate and filament voltages.

The R.F. Circuits

A pentode r.f. amplifier (6CB6) is used in the 50 -. Me. converter in the interest of simplicity. With proper design, such a stage can be made to deliver a satisfactory noise figure at 50 Mc . Its performance is quite adequate: it will be found that outside noise picked up by the antenna will be the limiting fartor in weak-signal reception, even in a quiet receiving location.

The 144-and 220-Mc. converters have modified cascode circuits with dual triorles (6BQ7A, 6BK7 or $613 \% 7$) in the first stages. The $220-\mathrm{Me}$. converter has an additional pentode stage, to buidd up the gain and improve the ability of the converter to reject unwanted frequencies. It will be noted that the converters differ somewhat as to circuitry in other respects, but this was done primarily to show examples of various cireuit techniques, rather than because of any superiority of one approach over another. This applies particularly to the methods of coupling between stages.

When a fixed injection frequency is used with a variable intermediate frequency, the r.f. and i.f.
circuits of the converter must be made broadband, to avoid the need for readjusting them as the receiver with which the converter is used is tuned across the i.f. range. Spurious responses, both at the i.f. range and at frequencies adjarent to the desired signal frequencies, pose a speeial problem. I Bandpass characteristics are attained through the use of overcoupled double-tuned circuits in the converter r.f. circuits. These circuits present a high impedance at the signal frequency, but they look like a short eircuit to signats in the i.f. range that are picked up by the antema.

Spurious responses that might develop as the result of the injection of unwanted frepuencies at the mixer grid are reduced by the use of a separate tube for the mixer, and coupling the injection voltage from the multiplier stage through a link. Isolation of the mixer and multiplier stages is further increased in the 144- and 220-Mc. converters by the installation of a shied partition along the middle of the base plate.

Crystal Oscillator Details

Crystal frequencies were selected so that all bands would start at the same spot on the communications recoiver dial; in this case $7(0) 0 \mathrm{kc}$. Crystal frequencios, multiplier details and i.f. tuning ranges are shown in Table I6-I. Other i.f. tuning ranges that may be better suited to some communications recoivars may be employed by suitable alteration of the crystal and multiplier frequencios.

A fairly high oscillator frequency is desirable, to reduce the possibility of oscillator harmonics appearing in the tuning range, as wrll as to keep down the number of multiplier stages. Wach con-

Fig. I6.8-Crystalcontrolled converters for $220,14.4$ and $50 \mathrm{Mc} .(\mathrm{I}$, to r.) with their common i.f. amplifier and power supply. All chassis are standard sizes, refuiring a minimum of tnetal work.

verter in this serios uses a roadily-obtainabla crystal operating on its thirel overtone. This may result in a frequency of oscillation that is not exactly there times that marked on the crystal, but it is close mough for ordinary calibration purposes. Overtone erystals of the desired froquency may be obtained on order, at somewhat higher prices than for fume amental-type erystals. Conventional operation of erystals in the $\bar{T}-\mathrm{Me}$. range, making up the multiplication with additional stages, is not recommended because of the difficulty in avoiding liodies from erystal harmonies. In the overtone rirenit, no frequancy lower than the overtone at which the crystal oscillates is heard.

Layout

Each converter is built on a single 5×7-ineh aluminum plate, and mounted on a stantand chassis that serves as shiclding and caso. The three $5 \times 7 \times 3$-inch chassis are holted to the back of the i.f. unit, to be described later. In this way each converter is a separate entity, permitting the constructor to build any one of them, omitting those bands in which he maty not be interested. The shape of the i.f. mit is not important, and it could very readily be built in more compact fashion if less than the three converters are plamed. The method of construetion shown requires a minimum of metal work, and a converter can be rebuilt or replaced without afferting the operation of the others.

As only three tubes are used in the 50 Me. converter they are arranged in a single line down the middle of the base plate. The other models have the oseilator-multiplier and amplifier-mixer sections separated by a vertical shield partition.

- THE 50-MC. CONVERTER

The simplest of the three eonverters is the 50Me. unit, shown in Figs. 16-9 and 16-10. The r.f. and mixer stages use 6Cl30 pentodes and at (i.Jl serves as erystal oscillator and multiplier. A

TABLE 16-I Crystal-Controlled Converter Data				
Band (.Mc.)		$\begin{gathered} I, F_{0} \\ \left(M_{c,}\right) \end{gathered}$	$\begin{gathered} \text { Crus- } \\ (a l \\ (\mathrm{kc}, \mathrm{O} \end{gathered}$	Oeflone d Multiplication
50	43	7-11	7166	$3 \mathrm{ril} \times 2$
144	137	7-11	7611	$3 \mathrm{rid} \times 3 \times 2$
220	213	7-12	7100	$3 \mathrm{rd} \times 5 \times 2$
$420 *$	38:	50)-5.4*	7071	$3 \mathrm{rd} \times 3 \times 3 \times 3 \times 2$
$420 *$	406	26i-30*	7518	san
* For covering 432 to 436 Mc. only. To tume the rest of the hand additonal rersital frequencies or a wider i.f. tuning range must be used.				

somewhat lower noise figure could have been obtalined with a triode r,f. amplifier, but the clewign shown has a noise figure under 5 dt . With the considerable external noise picked up by the antennat at 50 Me., even in a quiet location, there is little to be gained in woak-signal reception by going lower than this figure.

The bottom view of the converter, Fig. 16-9, shows the r.f. amplifier socket and components at the loft side. I sinall shied arross the socket isolates the grid and plate circuits. The r.f. plate tuning condenser, C_{2} is near the center. The plate coil, L_{3}, is the lower of the two eoils in the middle of the photograph, with the mixer grid coil, L_{4} just above it. An enaneled-wire link may bo seen rumning from this coil to the doubler plate coil, L_{10}, at the lower right. The oscillator inductance, L_{9}, is at the upper right corner.

Two methods of antemna eoupling are shown in the sehematie, Fig. 16-10, but the constructor need install only the one that is suited to the type. of transmission line he intends to use to feed his antrmat system. If coas is used, comection is mate directly to the r.f. amplifier grid coil, L_{2}. This same type of comnertion may be used with a balum for balancer lines, or the coupling winding, L_{3}, may be added. In some instances it inay be desimable to comnect a triminer botwen J_{1} and $L_{\text {a }}$ as shown in the 220-Mc. converter, if spurious signals are a problem.

Fig. $76.9-130 t-$ tom view of the 50. Dr. comerter. The r.f. amplifier socket, disitied by a shield partition, is at the left. Crystal oscillator and multiplier components are at the right, with the mixer in the middle.

Fig. 16.10 - Schematic diakram of the 50 -Me. erystal-controlled converter.
$C_{1}, C_{2}, C_{3}-20-\mu \mu \mathrm{f}$, min. variable (Johnson 20N111). C. $-50-\mu \mu \mathrm{f}$. min. padder (Hammarlamd 11 Al' $: 50$). C $0_{5}-25 \cdot \mu \mu \mathrm{f}, \mathrm{min}$. padder (Ifammarlund NAPC: 25). $L_{1}-3$ turns fine ins. wire wound over cold end of L_{2}. L.2, I_{4} - 9 turns No. 20 tinned, $1 / 2$-inclı diam., $11 / 16$ inch long (13 \& W Miniductor No. 3003).
$1.3-10 \frac{1}{2}$ turns similar to La. These coils are mounted in line with their cold ends $1 / 8$ inch apart.
L_{5} - No. 28 enameled wire rlose-wound one inch on $3 / 8$-inch slug-tuned form (National XR-9l). laçuer and dry hefore winding L_{6}. Wind on upper portion of form.

Adjustment of the converter is very simple. First the oveillator and multiplier are tuned up, with the r.fí and mixer tubes out of their sockets, or with their plate voltage removed. Proper adjustment of the overtone oseillator follows practice outlined in the introductory portion of Chapter seventeen, and the doubler portion need only be resonated for maximum output initially. This (an be ehecked with a (0)-mia. pilot lamp) connerted arross a one-turn loop coupled to the cold end of L_{10}. The frequency of the output should be cheeked to be sure that the right overtone and harmonic are being used, and the oscillator tested to see that it is controlled by the ervstal.

Now a signal source will be helpful. This can be a signal generator, an amateur signal, or the harmonic of a receiver or transmitter oscillator of known frequency. If the signal is derived locally it should be possible to hear it with only the mixer and oscillator-multiplier stages ruming, and with no pick-uן) antemna. If a weak sigmal is used it may be neecssary to put a temporary roupling winding (similar to L_{1}) on the mixer grid coil, L_{4}. 'eak this circuit and the slug in the mixer plate circuit for maximum response. The plate voltage should be removed from the r.f. stage during this period, but the tube should be left in the sorket with the heater voltage on.
Next feed the signal into the r.f. stage, by either of the coupling methods shown, and peak L_{2} and L_{3} for maximum response. There should be a considerable rise in noise as the adjustments
$L_{6}-10$ turns same wonnd over cold end of I_{5}.
L.7, L_{8} - Lomp of No. 22 enameled wire inserted in cold ends of L_{4} and L_{10}, comected by link of same material. Fasten in place with erment.
L9 - 13 turns No. 20 tinned, $5 / 8$-inch diam., $3 / 4$ inch long, tapped at $31 / 2$ turns from erystal end (I) \& W No. 300\%).
La - 8 turns similar to L_{2}.
J_{1} - Coaxial fitting.
I_{2} - Crystal socket for antenna terminal.
$\mathrm{J}_{3}-4$-pin male ehatssis fitting (Jones P^{P}-304-AB).
are made, so the noiso level can be used as an indication of resonamce in the absence of a test signal.

The converter is now ready for final adjustment, for best signal-to-noise ratio and uniform response across the band. The first can best be done with a noise generator, though a test signal can be used. Noise figure will be affected principally by the tuning of the first stage, and by the aldjustment of the antenna coupling. Watch for improvements in the margin of signal over noise, rather than maximum gain, as these two characteristics may not oecur coineidentally. The eoupling between L_{43} and L_{4} affects the passband of the system and the tuning of these eircuits and the slug in the mixer plate winding ean be staggered to provide uniform response aeross the lond. Peaking of the input cireuit may be neeessury as the receiver is tuned across the entire band, though a setting can be made for the middle of the range most used and this will hold for at least a megacyle eithor way. Receiver noise can be used ats it check on the uniformity of response, in the absence of signals.

The amount of injection from the multiplier should be set at the least that will provide satisfactory performance. This will not be at all critical, but more injection than needed will inerease the tendency to spurious response. It is controlled hy the size and position of the coupling loops, L_{7} and L_{48}. In the original model they are about twothirds the diameter of the windings in which they

CHAPTER 16

Fig. 16-11 - The 144-Mc. converter is separated into two parts ly a shich partition. At the top are the r.f. and miver stages, with the oscillatur and multiplier portion below the shield.
are inserted. The loop ean be made small enough to slip through between the strips of polystyrene on the Ninductor, and then spread lo give the desired coupting. Cement the loops in place when this is achieved.

THE 144-MC. CONVERTER

The 2-meter converter is shown in Figs. 16-11 and 16-12. From the photograph it may be sern
that the r.f. and miser components are separated from the oscillator-multiplier chain by a shield partition. The r.f. portion is in the upper half of the pieture. Itse of smatl phatice trimmers for the tunded circuits saves emough space so that the :additional tuls is handled without crowding.

The r.f. circuit is the simplified citsoode, using any of the soveral dual triodes designed for this: application, Jouble-tuned circuits in the r.f. plato and mixor grid provide bandpass response

 8:32-1(1).
$\mathrm{C}_{4}-50-\mu \mu \mathrm{f}$. min. $\mathbf{t r i m m o r}$ (Hammarlund MAPC-50).
L. - 5 turns Vo. 20 timed, $1 / 4$-indidiam. Ddjust spacing for nentralizing: sere text.
$\mathrm{L}_{1}-6$ turns No. 20 timned, $1 / 4$-inch diam., turns spared diam, of vires. 'l'ap at $21 / 2$ turns.
$L_{2}-4$ turns Vo. 20 enam. $3 x$-inch diam., $3 / 8$ inelı long.
$\mathrm{L}_{3}-3$ turns. No. 20 enam., 8 -inch diam. $5 / 16$ ind h hong. L_{2} and I_{3} are in line, with their cold ends $1 / 8$ imeh apart.
I. - - No. 28 enara. close womnd 1 inch on $3 / 8$-indh shuptuned form (Nationa! XR. $\boldsymbol{\prime}$). Lacquer and dry lefore winding I_{5}. Wind on upper portion of form.
$\mathrm{l}_{5}-10$ turns, same, wound over cold end of L_{4}. l. $6-12$ turns No. 20 tinned, spaed sliam, of wire, $5 / 8$-illoh diam. T'al at $31 / 2$ turns.
1.7 - 11 turns No. 20 enam., $3 / 8$-inch diam., $3 / 4$ inoh forns.
$L_{18}-8$ turns like $L_{.7}, 5 / 8$ inch long. $L_{.7}$ and L_{28} are in line with their codd ends $3 / 16$ inch apart.
L.4 - 1 turns like $1.7,3 / 8$ inch long.
$\mathrm{L}_{10}, \mathrm{~J}_{11}$ - I turn insulated wire at cach end, linhing L_{3} with L_{0}.
J_{1} - Gomxial litting.
$J_{2}-4$ - pin thale thassis fiting (Jones P-30)I- \B).
 pieces of No. 20 enameled wire together and wind 15 turns on $1 / 4$-inch diameter.
and help to attenuate unwanted signals on other frequencies. The oscillator-multiplier circuit is similar to the 50-Mc. converter, except that the second half of the 6.56 is a tripler. This is coupled through another pair of double-tuned eircuits to an additional doubler stage.

The order of frequency multiplication can be altered to take care of local interference conditions. Should it turn out that unwanted signals are brought in as a result of frequencies appearing in the multiplier chain, the second stage can be made a doubler and the pentode a triphor. The use of link coupling, and the isolation afforded by the shield, should reduce spurious responses to negligible proportions in most locations, however.

The first steps in adjustment of the $1 \mathrm{H}-\mathrm{Mc}$. converter are similar to those outlined for the $50-$ Mc. model. The only additional work required is the neutralization of the $613(27$ stage. This is done by adjusting the spacing of the turns in L_{N} for lowest noise figure, as indieated with a noise generator, or by best signal-to-noise ratio on a test signal. The inductance is not extremely eritical, and it may be set somewhat on the lowinductance side of the largest value that can be used without oscillation developing in the r.f. stage.

Other than the neutralization, only the tuming of the input circuit will affect the noise figure materially. This is also best done with a noise generator. It will be found that best results will be obtained with $L_{1} C_{1}$ resonated somewhat on the low-frequeney side of the point that produces maximum gain. The tap on L_{1} should be set higher on the coil than the point that gives maximum signal response. The objective, as in the other adjustments outlined above, is best signal-to-noise ratio, rather than maximum gain,

Uniform response across the band can be attained by stagger-tuning the r.f. plate, mixer grid and mixer plate circuits. Injection coupling should be set as low as will deliver optimum performance. This can be controlled by the position
of the coupling loops, L_{10} and L_{11}, or by varying the output of the pentode stage by raising or lowering the value of the screen dropping resistor.

THE 220-MC. CONVERTER

Circuitry and layout for the $220-$ Mc. converter, Figs. 16-13 and 16-1t, are very similar to the $1+1-$ Me. model, except that an additional stage is used following the cascode, and an additional shield divides the socket of this stage. This helps to make up for the somewhat lower gain of the cascole at the higher frequency, and it improves the rejection of unwanted sigials considerably. The latter condition has been found to be troublesome in 220-Mc. work, particularly in areas where TV and FM broadcasting stations are in operation.

No tuning condensers are used in the r.f. circuits, the coils being tuned to the desired frequency by adjusting the turn spacing until they resonate properly with the tube capacitances that appear across them. A variation on the doubletuned cireuit is used in which a center-tapped coil sorves as both grid and plate inductance. This type of circuit is well adipted to use at frequencies where tube capacitance becomes a limiting factor in the performance of r.f. amplifiers.

A different form of i.f. output coupling is shown in this converter, though it works identically to the method used in the other models. Note that the mixer plate coil is loaded by a 4700 -ohm resistance in this case. The i.f. must cover from 7 to 12 Mc . for the $220-\mathrm{Mc}$. band, so a broader response is required. The value of this resistance can be altered to attain the desired degree of uniformity, though lower values than the one shown will result in lower over-all gain.

The tuning condenser in the input circuit tunes out the reactance of the line to the antenna. It may not be necessary in some installations, but it is likely to be helpful in reducing spurious responses. The same technigue may also be applied

Fig. 16.1.3-ilns 220 . V1. crystalecors. trolled ronserter. Ninte that twoshicleds aro used; orle sepra. rating the injection and r.f. chains, the other dividing the sorket for the 6 IK 5 r.f. stage. R,f. comeponents oreupy the lower half of the as. sembly.

Fig. 16.11 - Schematic diagram and parts information for the 290-Me. converter.
 50).
C. 2 - 8 - $\mu \mathrm{\mu}$ f. plastic trimmer (Eric 532-10).

 center tapped.
$\mathrm{I}_{\mathrm{N}}-5$ turns No. 20 timed, $1 / 4$-ind diam. Aljust spaeing for neutralization; ser text.
$\mathrm{I} .2, \mathrm{~L}_{3}$ - 7 turns No. 20 tinned, spaced $1 \mathrm{diam} ., 1 / 4$-inch diam., conter-tapped.
I_{4} - No. 28 enam. wond one indh on $3 / 8$-inch slug. tuned form (Xational \R-9) $)$.
to advantage in the other converters, when spurious signals are bothersome.

Adjustment procedure is similar to that outlined for the $1+4-\mathrm{Me}$. model, exerept that the spaceing of the turns in the r.f. coils must be adjusted, rather than tuning them by capacitors. ds in the 14-Me. converter, the order of frequenery multiplication ean be altered to take care of any extreme local interference problems resulting from near-hy TV, FM or other high-powered stations that maty ride through as spurious responses. The oscillator ean be operated on its fifth overtone instead of the third, making the second and third stages operate as doubler and tripler, or viee versa. Fifth-overtone operation of the oscillator will require more care in adjustment of feedbaek than is the case with the third.
The coupling between L_{8} and L_{3} will be a fateror in holding down spurious responses. It should be set at the lowest value that will allow satisfactory performanee, by altering the pesition of the coupling loops, L_{9} and L_{10}, or by varring the value of the sereen-dropping resistor in the last fre-quency-multiplier stage.

If a moise generator is available, and care is used in making the adjustments, it should be possible to athirve noise figures under (i dh. for the $220-\mathrm{Me}$. converter and 5 dh . for the $1+1$ - and 50-Me. models,
diam.. tapued at $31 / 2$ turns (B \& $|\mid$ Minidurtor No. 3067).
$\mathrm{L}_{6}-4$ turns No. 30 timned, $1 / 2$-inch diam., $1 / 4$ inch long (B \& 1 Winiductor Vo. 3003).
$\mathrm{L}_{7}-5$ turns like L_{6}. L_{n} anded L_{7} are in line with their cold ends spaced $1 / 8$ inch.
L.s - $21 / 2$ turns No. 20 enam., $1 / 4$ inch long.
L.9, $\mathrm{L}_{10}-2$ turns insulated wire between turns of L_{8} and $h .3$, cannected ly linh of same material. J_{1} - Coaxial fitting.
J_{2} - Male 1-prong chassis fitting (Jones 1-304. AB).

V.H.F. RECEIVING BALUNS

As pointed out in the preceding converter deseriptions, conxial antema input circuits are preferable in v.l.f. receivers where single-ended circuitry is emploved. Where long transmission lines must be used, however, the losses in coasial line diseourage its use in feeding the antemat system. Particularly on lit Me, and higher, many amateurs profer closespared open-wire lines for runs of 50 feet or more between the operating position and the antenna.

The advantages of coavial input coupling and the low losses of open-wire balanced lines can both be retained if some means of eoupling between the balanoed line and the unbalaneed recoiver input circuit is provided. Such at device, usually ealled a "hahu," is shown in Fig. 1:3-2:3D). V.h.f. receiver baluns are usually mate of small coaxial line such as R(i-59/U, and installed at the converter imput terminal. The propagation factor of the line should be taken into account, making the actual length of the folded portion (6a per cent of a half-wave. The straight portion may be any convenient length, though it is usually a wavelength or less.
A 3-band balun for v.h.f. receiving use may also be made by using the coils from a so-ealled "elevator transformer" for this purpose that can

Fig. 16-15 - Bottom view of the i.f. and power supply unit with hottom cover removed. 「ower compouents are at the left. A smaller chassis may be used if less than the theee converters are to be built.
be obtained from some TV reesiver parts distributows. Such a halun would consist of two pairs of coils, comerted in parallel at one and and in series at the other. The parallel end is wired to a coaxial comector and the series end to a erystal socket or a pair of binding posts. The assembly should be housed in at copper or aluminum box that may be as small as $1 \times 1 \frac{1}{2} \times 21 / 2$ inches.

Like the coaxial-line balun, this converts from balanced to unbalaned termination, and provides a 4 -to- 1 impedance transformation in the process. The coils are designed for use across the v.h.f. TV range, 54 to 216 Mc ., so they will serve well for all three amateur v.h.f. bands, 50, 14 and 220 Me . Se lig. 1:3-2 4 for connections.

THE I.F. AMPLIFIER AND POWER SUPPLY

The i.f. amplifier (Figs. 16-15 and 16-16) serves two usdful purposes. It buide up the gain, for receivers that may be poor performers at 7 Mc., and it provides a mans of controlling the over-all gain of the sustem without disturbing the gain or s-meter controls on the receiver itself. The recoiver may thus be operated exartly as it would be on 7 . 1 co., and the gain of the converter adjusted so that v.h.f. signals will be receiver?
similaty to those on lower frequency bands.
It is obvious from the photographes that the i.f. and power supply unit rould have been built in a smaller space. If the huilder is considering only one or two of the converters he may wish to do this, but where all three are used the arrangement shown is a convenient one. The i.f. chassis is a standard size, $3 \times+\times 17$-inch ahuminum, to which a bot tom phate is added for shiclding. IRabber feet can be attached to the two fends of the base, and one on citch of the converters at the rear, to prevent the combination from marring a recoiver top.

The heater voltage, the plate voltage and the i.f. input lead are all carred on sheded wire to a t-pin phug. This is connerted to whichever converter is to be used at the moment, and no other changes other than plugging the antenna into the proper jack are required in ehanging from one v.h.f. band to :mother. The shielded wires in the cable are bonded together several times and then wrapped with phastic tape. The coaxial fitting for the ronnertion to the readerer is at the extreme right on the rear wall of the i.f. chassis.

The only adjustment required in the i.f. unit is to set the coil slugs (on moise or signal) so that the response will be as nearly flat a possible across $\overline{7}$ to 11 Me.

Fiy. 16-16 - Sehematic diagram and parts information for the i.f. and power supply unit used with the crystalconirolleil eonverters.
$L_{1}, 1_{2}$ - Vn. 28 enameled wire close wound on $3 / 8$-inch slug-tuned form (National XR-9)). Laceucrer and dry before adding coupling winding. W'ind on upper portion of form.
L_{3}. $\mathrm{L}_{4}-10$ turns same wound over cold ends of L_{1} and L_{2}.
J_{1} - Coaxial titting.
P_{1} - Female 4-pin on end of eable (Jones S-304-CCT).

A Simple Converter for 50 and 144 Mc .

Though the more complex equipment already described is typical of the gear that must be used in order to attain top performance on the v.h.f. bands, it is possible to start with simpler devices and still do a good jol). The converter shown in Figs. 16-17 through $16-20$ provides the best performance that can be expected from simple equipment. It was not built to be the simplest possible receriving device; rather, it was designed to provide good results with a minimum of complication and cost.

It uses a dual triode, bjo, as a combined mixer-oscillator, followed by a 6.1K55 i.f. amplifier. The latter is necessary; do not try to do without it. The output of a triode mixer is too low to give adequate gain for most recoivers. The i.f. amplifier stage makes the converter usable with even the simplest reecivers, and provides a convanient means of controlling the over all gain of the system. Plug-in eoils mounted inside tube-hase type forms provide the means of changing hands.

Mechanical Details

Though it could be built in a much smatler space, the converter uses a 3 by a by 10 -inch chassis, allowing plenty of room for the work that must be done underside. The main tuning condenser is a split-stator variable made from a double-bearing double-spaced $15-\mu \mu \mathrm{fl}$. type. Weteh section is reduced to three stator and two rotor plates. This unit is mounted under the chassis, ass close to the top plate as possible, to make room for the varnier dial on the front panel. The mixer and i.f, plate coils, L_{4} and L_{5}, are mounted under the chassis. Normally this will provide all the shielding necessary for the i.f. circuits. If trouble is experienced with sigmals on the intermediate frequence a bottom plate masy be added to the chassis. The parel is set out from the chassis front with habf-ineh pillars.

A smooth-rumning dial on the oscillator tuning is a neressity in a v.h.f. converter when com-mumications-recoiver solectivity is used. The Nat-
tional type SCN has a good tuning rate, plus ample space for calibration scales for both biunds.

The circuit is so simple that no trouble should be experienced if the general parts arrangement is followed. Look over the photographs closely before starting to lay out the chassis for drilling. In the rear view, Fig. 16-18, the oseillator eoil, the fiJb tube, and the mixer grid coil, $L_{L_{1}-L_{2}}$, appear in that order, from left to right, close to the panel. The 6.1 K 5 tube is nearer the back, with the shug adjustment serews of the mixer plate coil, L_{4}, and the i.f. plate coils, $L_{5}-L_{6}$, at the right and left, respectively, Iloles are drilled in spare spatee at the back of the chassis to provide for storage of the set of coils not in use.

Looking in the bottom view, Fig. 16-20, we see the oscillator tuning condenser, C_{5}, at the center, the (iJd socket at the left and the coil socket at the right. Note that the latter is as close to C_{5} as possible.

The only critical job in the adjust ment procedure is involved in getting the inductance of the oscillator plug-in coils, L_{3}, to the correct value. Thore being only one parallel trimmer for the oscillator (('4) the coils must he made and adjusted earefully in order to have the desired bandspread on both ranges.

Considerable care must be used in the placemont of the oscillator and mixor components, so that all leads will be very short; otherwise it will not be possible to resonate these circuits at 148 Mc. The 6 Jd socket is at the left of C_{5} in the bottom view, and the miser grid cireuit components appear just to the left of the middle. The i.f. amplifier gain control, R_{7}, is at the right. The 300 -ohm line from the erystalsocket antenma torminal, J_{1}, may be seen at the far left.

The mixer plate coil, the i.f. amplifier socket, and the output coil assembly are arross the bottom of this view, from left to right. The anterna terminal, power plug and i.f. output comentor are on the rear watl in the same order.

Fig. 16.17-A 2-tube converter for 50 and 11 Me. "lhe vernier dial is for oscillator tuning. The (wo, knobs are the i.f. gain (om. trol, right, and the mixer tuning condensis. In front are the 2 -me. ter mixer and oscillator plas-in cuils.

Fig. 16. 18- Rear view of the simple converter. Near the panel, left to right, the oscillator coils are -hown in place. The i.f. amplitier tube is nearer the batk of the chassis, with the slong tuned mixer and i,f, plate coils at either side. Coils not in use are stored at the back of the dhassis.

Test Procedure

When the assembly and wiring are completed, the oscillator operation should be checked. The powar supply should deliver 6.3 volts a.c., at 1 ampere, and 150 volts d.c. at 30 mat., preferably regulated. Insert a milliammeter in series with R_{3} and check for oscilla-
tion by touching any bare spot in the oscillator plate or grid cireuit with a pencil. A change in current indicates oscillation.
Two types of bandspread are possible. With the coil values given in the parts list, the $50-\mathrm{Me}$. band covers about 90 divisions of the diad. The 1.4 -Me. band covers about 50 divisions. The capacitance needed at C_{4} is about 12.5μ pid. in

Fig. $16-19$ - Sehematic diagran of the two-tube converter for 50 and 1.14 Me.
$\mathrm{C}_{1}-1,5-\mu \mathrm{fd}$. midget variable (Hammarhond HF-15).
$C_{2}-100-\mu_{\mu} \mathrm{fd}$. mica or ceramic.
$C_{3}, C: 4 \pi-\mu \mu$ fl mica or ceramic.
(:4-35- μ fid. ceramic trimmer ((ientralab 820.C).
C_{5} - Double-spaced split-stator variable, about $8 \mu_{\mu} \mathrm{fd}$. per section (Hammarhnd IIFI-L5-X, reduced to 3 stator and 2 rotor plates in wach section).
$\mathrm{C}_{6}, \mathrm{C}_{11}-68-\mu \mu \mathrm{fd}$. mica or ceramic.
$\mathrm{C}_{7}, \mathrm{C}_{3}, \mathrm{C}_{10}, \mathrm{C}_{12}-\mathbf{0 . 0 1}-\mu \mathrm{Fd}$. disk ceramic.
$\mathrm{C}_{13}-15-\mu \mathrm{fd}$. ceramic. Conneet directly from I'in 5 to Pin 7 on 6.1 k 5 socket.
$\mathrm{K}_{1}, \mathrm{R}_{5}-1$ megolun, $1 / 2$ watt.
$R_{2}-10,000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{3}, \mathrm{R}_{4}, \mathrm{R}_{9}, \mathrm{H}_{10}-1000$ ohms, $1 / 2$ watt
R_{3} - 220 ohms, $1 / 2$ watt.
H_{7} - 20000 ohm i-watt potentiometer
R_{8} - 22,000 ohms, 1 watt.
L_{1} - $50 \mathrm{Mc} \cdot:$? turns No. 22 enam. interwound in cold end of L_{2}.
144 Mr.: 3 turns No. 22 enam. $1 / 4$-inch diam., close-wound at cold end of I_{2}.
L. 2 - 50 Me.: 7 turns No. 22 tinned, $1 / 2$-inch diam., 3/5 incla long (B \& II No. 3003).
$11 /$ Mc.: 2 turns No. 16 tinned, $1 / 4$-inch diam., $1 / 4$-inch long.
1.3-50 Mc.: 6 turns No. 22 tinned, $1 / 2$-inch diam., 76 inch long eenter-tapped (13 \& W No. 3003, with end turns spread slightly). Alternate denign for more bandspread, see text.
141 Mc.: U-shaped loop No. 12 wire, $\frac{3 / 4}{4}$ inch wide, 1 inch long, center-tapped.
Coils L_{1} and L_{2} are supported inside Millen 1 -inch diameter 4 -prong forms. I_{23} in Millen 45005 , 5 -prong. Saw off to $3 / 4$-inch length.
$\mathrm{L}_{4}, \mathrm{~L}_{5}-23$ turns No. 22 enam. elose-wound on National XR-50 slug-tuned form.
$L_{6}-3$ turns No. 22 enam. close-wound at cold end of Ls.
$\mathrm{J}_{\mathbf{1}}$ - Crystal socket for antenna terminal.
J_{2} - Coaxial fitting, female.
$\mathbf{P}_{1}-4$-prong power fitting, male.

CHAPTER 16

this case. If more bandspread is wanted on $1+t$ Mc., the setting of C_{4} can be increased to around $23 \mu \mu \mathrm{~d}$., and L_{3} reduced to + turns. The 2 -meter hand will then cover around 72 divisions. It will not be possible to cover the whole of the 50-Mc. hand with this arrangement, without resetting $(4$, but this is no great handicap so long as activity is concentrated in the lower portion of the band, as at present.

The frequency of the oscillator may be checked with an ahsorption-type wavemeter or lecher wires. For the 50-Me. range, the oseillator should tune from $5 \overline{5} .4$ to $\mathbf{j 1 . 4} \mathrm{Mc}$. in order to beat with an ineoming signal to produce a 7.4 -Mr. i.f. (The oscillator is on the high side of the signal.) A kick in the oseillator plate current, or a flieker in the voltageregulator tube in the power supply, can be used to show when the frequency is found with the measuring device.

Set the patder, C_{4}, so that 57.4 Me. comes at about 5 divisions in from the maximumcapacity end of the tuning range, and check to see where 61.4 Mc. is found. It should come just inside the minimum-capacity end of the range. If the circuit will not tune to 61.4 Mc. the inductance of L_{3} is too low. Move the turns closer together, and reset C_{4} as before for 57.4 Mc. If the bandspread is too smatl, spread the turns and increase the capacitance of C_{4} to compensate, for the desired amount of spread, about 90 divisions on the dial.

Next check the 2 -meter range. Here the coil must be adjusted in inductance until the oseillator will hit 130.6 Mc. somewhere between the middle and the maximum-capadity end of the tuning range of C_{5}. The high end, 1.10 .6 Mc., will then appear about 5 O divisions higher on the dial. The oscillator is on the low side of the signal on this range. Do not change the setting of C_{4} in this process, or it will be neressary to alter the $5(0-$ Me. coil atgain.

Once the oseillator covers the proper frequency ranges the converter maty be tested in actual re-
ception. Comnect the output through a coaxial eable to ab receiver tuned to approximately $7 . t$ Mc. There should be an increase in noise as the gitin control is turned up. The mixer and i.f. amplifier plate windings can be tuned to the proper frequency merely be adjusting the core serews for maximum noise.

The mixer grid eireuit may also be peaked on moise, though eare should be taken to see that it is not peaked on the image, 14.8 Me. away from the signal frequency. If the grid eircuit is tuned to the desired frequeney there will be a considerable increase in the strength of a signal as the grid condenser, C_{1}, is tunced through resonance. If the circuit is tuned to the image frequeney the moise will peak up, but an amateur-band signal will drop in strength as the moise peak oecors. Truning the mixer grid eireuit shifts the oseillator frequency slightly, so it may be peaked more accurately on noise than when listening to a signal.

A final check of the dial calibration may he made be tuning in signals of known frequence, or hy means of an aceurate signal generator. Few wavemeters are sufficiently acemete for final calibration be the mothod outlined earlier.

If trouble is encountered with signals in the T-Me, region leaking through, the i.f. can be shifted slightly to tune out the interforence. In some instances it may be neossary to put a bottom plate on the ehassis. Small changes in intermodiate frequencer can be made without resetting either the oscillator padder or the i.f. coils. With the i.f. amplifier built into the converter, the setup will have adequate gain for use with almost any reeciver. Reception will be nearly angood as with more complex designs, the principal difforence being a somowhat higher noise figure (slightly derrated sigmal-to-noise ratio) in the simpler job. The use of a low-noise ref. amplifier ahead of the converter (an example is the preamplifier of lig. 1(i-22) will make possible rereption equal to the best ohtainable in a converter having in tunable oseillator.

Fig. 16-20-IBottom view of the two-lamd eonverter. 'The splitstator condenser at the center is for omeillator tuning. The oseillator roil sochet is at the right and the 6,16 socket at the left. 'The mixer tuning eondenser and krid eoil socket are in the upper left corner, with the i.f. eoils and tule socket at the rear.

Low-Noise Preamplifier for 144 Mc.

The triode preamplifior shown in Figs. 16-21 to 16-2:3 will improve the sensitivity and signal-tonoise ratio of recivers or converters for $1+4$ Me.

Fig. 16-21 - Two-meter preamplificr using two 6. N 4 tubes, Adjustments are (left to right) input tuning capacitor, slag of neutralizing winding, and the plate tuning capacitor of the second stage.
that are deficient in these respects. Two separate triode tubes are shown, but any of the dual triodes designed for v.h.f. amplifier service may be used similarly. The circuit may be adapted to use on

Fig. 16.22-Schematic diagram and parts list for the low-noise preamplifier.
C. C. C - llastic trimmer, I to $8 \mu \mu \mathrm{fd}$. (Eirie style 532-10).
$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{6}, \mathrm{C}_{6}-\mathbf{0}, 001-\mu \mathrm{fd}$, dish ceramic.
$\mathrm{K}_{1}-68$ ohnse, $1 / 2$ watt, carbon.
$\mathrm{R}_{2}-0.1$ megohm, $1 / 2$ watt.
$\mathrm{R}_{3}-470$ olums, $1 / 2$ watt, carbon.
I, 1 - 1 turns No. 16 timed, $\frac{1 / 4}{4}$-inch diam., spaced 1 diameter, tapped at $18 / 4$ turns from kround end.
I. $2-4$ turns No. 24 on $1 / 4$-inch slug-tuned form.

Las- 5 turns No. 18 enam., $1 / 4$-inel dian., spaced half diameter.
$I_{A}-2$ turns insulated wire wound over cold end of I_{3}.
J - Coaxial antenna fitting.
P_{1} - Coaxial plug on eable of suitable length to reach converter inpit.
$12 \mathrm{FC}_{1}$ - 22 turns No. 22 enam., \%/rond diam., elosewound.
$\mathrm{HFC}, 2, \mathrm{RFC}_{3}-18$ turns cach, No. 21 enam., $1 / 4$-ineh diam. Twist wires tokether before winding. Coat turns with household censent.

50 or 220 Me., by suitable alteration of coil and condenser values.

Pin connections given on the schematic diagram, lig. 16-22, are for the (i.dJt or 6.AML. Other tubes such as the $6 A N 4$ and 417 A will work equally well, if pin connections shown in the tube data section of this IIamalbook are followed. Slightly different values of rathode bias resistor may be needed if tubes other than the (id.Jt are used.
The preamplifier is housed in a standad 3×4 X E-inch aluminum utility box. The eomponents were mounted on a sheet of flashing copper and the preliminary work of wiring was done with this plate as a chassis. The plate was later fastened to the inside of the top of the box. The parts could be mounted on the box directly, but they are more accessible if the work is done as deseribed above.
Looking at the interior view, Fig. 16-2:3, we see the coan fitting, the first tube socket and the input rircuit at the left. Between the tube sockets, at the center of the copper base plate, is the slugtuned neutralizing winding. L_{2}. A small copper shied divides the serond socket, isolating the input and output circuits. This shield is not always needed, but it may be an aid to neutralization. It the far right are the output cireuit and the bifilar-wound r.f. chokes for the heater circuit of the second stage. The tuning condensers, C_{1} and ('2, are plastic trimmers of a design that allows at saving in space and offers lower minimum caparitance and lead inductane than conventional flatplate trimmers.

The five grid pins of the (i.N.J may be strapped together or used individually, as layout reguirements dictate. In this instance, lin 4 is used for

Fig. 16-23 - Interior view of the 144-Ne. r.f. anıplifier. A small shich across the second tube sochet isolates the input and output circuits. The amplifier is built on a copper plate, which is then fitted to the top of a standard aluminum utility box.
the hot end of L_{1}, with the trimmer, C_{1}, connected to Pin 3. In the second stage, Pins 3 and 4 are tied to the grid side of R_{2}, and Pin 1 is hy-passed by C_{4}.

Adjustment

A noise generator will make the adjustment of the amplifier easy, as it is then only necossary to peak the plate circuit (by C_{2}) for maximum gain, and then adjust the inductance of L_{3} and the setting of C, for lowest noise figure. It is possible to follow this routine using signals or a signal generator, but it is a more difficult process.

If a signal is to be used, peak the second plate circuit for maximum response first. Then tune the input circuit for maximum also, if the amplifier does not oscillate. If it should oseillate, vary the setting of the slug in L_{2} to stop it, before attempting to peak any other aljustments. In adjusting
the input circuit, watch for best signal-to-noise ratio, now, rather than for maximum gain. This will show up somewhat on the high-rapacity side of the maximum-gain point, as the rotor of C_{1} is turned into the stator.

The position of the tap on L_{1} can be adjusted in the sume way. The optimum point will be higher on the coil than the point at which maximum gain is olserved. If the amplifier is adjusted at iff Mc. it should not be necessary to repeak it across the entire band.

An amplifier of this sort should not be expected to produce a large improvement in reception when it is used ahead of a converter that already has a good triode front end, but installed ahead of a pentode amplifier, and particularly a cont verter having a bandswitching r.f. circuit, it will help considerably in the reception of weak signals, by increasing the margin of the signal over noise.

Receivers for 420 Mc.

For best signal-to-noise ratio, receivers for any frequency should have the highest degree of selectivity that can be used sucersfully at the frequency in question. With crystal control or its equivalent in stability aceepted as standard prastice on all bands up through 148 Me ., there is little point in using more bandwidth in reacivers for these freguencies than is necessary for satisfactory voice rereption, a maximum of about 10 kc . Such communication solectivity is now being used sueressfully by most workers on 220 and 420 Ma., too, but it imposes several prohlems not encountered on lower bands.

First is the matter of oscillator instability in the converter. Even the best tunable oscillator at 420 Mc . sulfers from vibration and hand-caparity effects sufficiently to make it difficult to hold the signal in a lo-ke. i.f. bandwidth.

Then, there are still some unstable transmitters being used in work on 220 and 420 Me. It is out of the question to copy these on a solective receiver.

Last, searching a band 30 megacycles wide is excessively time-consuming when rommunica-tions-receiver selectivity is used in the i.f. system.

There is no single solution to these problems, but the best approach appears to be that of breaking up of the band into segments for different types of operation. This is being done by mutual agreement among 420 -Mc. operators at present, as follows: 420 to 432 Mc . - modulated oscillators and wideband FM; 432 to 436 Mr. -rrystal-controlled c.w., AM and narrow-band FM: 436 to $450-$ television.

The first segment can be eovered with a superregenerative receiver, a superheterodyne having a wideband i.f. system, or a converter used ahead of an FMI broaldast receiver. The high selectivity required for best use of the middle portion makes a crystal-controlled or otherwise highly stable converter and communications receiver combination almost mandatory, Amateur TV is usually received with a converter ahead of a standard TV
reociver, tuned to some channel that is not in use locilly.

Many of the tubes used on the v.h.f. bands are uscless at 420 Mr ., and the performance of even the best u.h.f. tubes is down compared to lower bands. Only the lighthouse or pencil-triode tubes and a few of the miniatures are usable, and these require modifications of conventional cireuit technique to produce satisfactory results.
(r ristal diodes are often used as mixers in 420)Mc. reorivers, as in this frequency range they work nearly as well as vacuum tubes. The over-all gain of a eonverter having a erystal mixer is about 10 (b). lower than one using a tube, so this difference must be made up in the i.f. amplifier. The noise figure of a receiver having a crystal mixer and no r.f. stage includes the noise figure of the i.f. amplifice following the mixer, so best results reguire that the i.f. amplifier employ low-noise techniques discussed earlier in this chapter. If the i.f. is 50 Mr . or higher it is particularly important that a low-noise triode be used for the first i.f. stage.

Crystal diodes of the type used in radar misers, such as the 1 N 21 series, are woll suited to $420-\mathrm{Me}$. mixer service, though care must be taken to avoid damage from transmitter r.f. energs: Other types of erystal diodes such as the 1×22 and Ck 710 will stand higher values of erystal eurrent, and their use is recommended.

Few conventional vacuum tubes work well as mixers at 420 Mc. and higher. The 6 d 6 is useful where a balanced input circuit is desired, as in Fig. 16-5l3. For single-ended circuitry the 6.AMt and 6ANH are recommended. They may he used in grounded-grid or grounded-cathode circuits.
lor high-selectivity roverage of the 432 - to $436-\mathrm{Me}$. segment of the bund, a common practice is to use a crystal-controlled converter working into another converter for either the 50)- or $144-$ Mr. band, tuning the latter for the four-megacycle tuning range.

(${ }^{-}{ }^{-}$420-MC. R.F. AMPLIFIER

The r.f. amplifier shown in Figs. $16-24$ through $16-26$ is capable of a gain or more than 15 dh. and its noise figure can be as low as (idh. with careful adjustment. It will make a large improvemont in the sensitivity of ans eonverter or recoiver that has no r.f. stage, or one that is working poorly.

The design shown is for either the (6.d.Jt or GAM4, but with suitable socket and pin-eonnertion changes the 417.4 and $6.1 N 4$ will work equally well. It is a grounded-grid amplifier with a half-wave line in the plate eircuit. The antemat is connected to the cathode of the tube through a coupling condenser. As the input impedance of the grounded-grid stage is low, nothing is ganed by the use of a tuned circuit in the cathode lead. Output is taken off through a coupling loop at the point of lowest r.f. voltage along the line.

The amplifier is built in a frame of flashing copper that serves as the outer conductor of the tank circuit. The whole assembly is 10 inches long and $1 \frac{1}{4}$ inches square, except for the bottom, which is about $13 / 4$ inches wide. Edges are folded over with lips $1 / 4$ inch wide which slide into a bottom cover made from copper sheet $21 / 4$ by 10 inches in size, with its edges bent up $1 / 4$ inch wide on each side.

The plate circuit is made of $1 / 4$-inch copper tuling tuned by a eopper-tab capacitor at the fin end from the tube. Plate voltage is ferl in at the point of minimum r.f. voltage, which in this

Fig. 16-25 - Schematie diagram of the 420-Mc, r.f. amplifier.
$\mathrm{C}_{1}-500 \boldsymbol{\mu} \mu \mathrm{fd}$. ceramic.
$\mathrm{C}_{2}, \mathrm{C}_{3}-1000-\mu \mathrm{fd}$. ceramir feed-h hrough (i:rie style 2.104).
C_{4} - Copper tabs, $7 / 8$-inch diam.; see text and photographs.
$R_{1}-150$ ohms, $1 / 2$ watt.
$\mathrm{R}_{2}-4 \pi 0$ ohms, $1 / 2$ watt.
$\mathrm{L}_{1}-1 / 4$-inch copper tuling, $73 / 8$ inches long, tapped $23 / 8$ inches from plate end.
I_{2} - Loop of insulated wire adjacent to L_{1} for $3 / 4 \mathrm{inch}$. $\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Coaxial fitting.
RFC ${ }_{1}, \mathrm{RFC}_{2}, \mathrm{RFC} \mathbf{S}_{3}-9$ turns No. $22,3 / 8$-inch diam., spaced one diam.
instance is about 5 inches from the open end. The antemna is comeeded to the eathode through a coupling condenser. The input imperlance of the grounded-grid amplifier is so low that nothing is gained by using a tuned circuit at this point. The cathode and heater are maintained above ground potential be small air-wound r.f. chokes.

The tulbe socket is two inches in from the end of the trough, and is so oriented that its plate connection, l'in 5 , is in the proper position to comnect to the line with the shortest possible lead. A copper shielding fin is mounted aeross

Fig. 16.24 - A highly effective r.f. amplificr for 420 . Mc. The tank circuit is a half-wave line made of flashing copper. Gaxial fittings are for input and output connections. Heater and nate voltages are bromght in on feedthrough hy-pass capacitors just visible on cither side of the $6 . \mathrm{IJ} 4$ tube.
the interior of the trough $21 / 8$ inches from the end, dividing the socket so that l'ins 3, 4, 5 and 6 are on the plate side of the partition.

Minimum grid-lead induetance is important. This was insured by bending all the grid prongs down against the cramic body of the socket, and then making the mounting hole just big enough to pass this part of the socket and the prongs. They were soldered to the wall of the trough.
lnput and output comertions are coaxial fittings mounted on the side wall of the trough. l3-plus and heater voltage are brought into the assembly on feed-through capacitors mounted on the same side of the trough as the tube. Connection to the inner conductor of the line is made with a grid clip, so that the point of eonneetion can be aljusted for optimum results.
The copper tubing is slotted at the plate end with a hack saw to a depth of about $1 / 4$ inch, and a strip of flashing copper soldered into this slot to make the plate connection. A copper tal) about the size of a one-cent piece is soldered to the other end of the tubing to provide the stationary plate of C_{4}. The line is supported near the low-voltage point by a $1 / 4$-inch-thick block of polystyrene. This is centered at a point $5 \frac{1}{4}$ inches in from the tube end of the trough assembly. The hole for the B-plus feed-through is $41 / 4$ inches from the same end.
The movable plate of C_{4} is soldered to a screw running through a nut soldered to the upper

Fig. 16.26-Hottom view of the 420. Ver, r.f, amplifier, with the slip-on cover removerl. The inter conductor of the tank circuit is hedd in plare ly a block of polystyrene monted near the lowvoltage print on the line. The pate-soltage feed-through and output compling loop may be seen at the left of this support. Ileater, eathode and antenna-circuit components are in a separate compartment at the tube end of the assembly. 'Ithe line is tuned at the opposite end hy a handmade coprer-tab caparitor.
surface of the trough at a point 3 s inch in from the opern end. If a fine-thread serew is available for this purpose it will make for easier tuning, though a $6 / 32$ thread was used in this model. This made a wobly contact, so a coil spring was installed between the top of the trough and the knob to kerp some tension on the adjusting sarew.

Adjustment of the 420-Me, amplifier is made easior if a moise generator is used, though it is not as important as in the case amplifiers with tuned input circuits. If the amplifier is working properly there will be an appreciable rise in nowe as the phate circuit is tuned through resonance, and it may break into oscillation if operated without load. When connered to a following stage, with a reasomably-matched antema plugged into J_{1}, the amplifier should not oscillate unless the coupling loop, L_{2}, is much too far from the inner conductor.

When the amplifier is operating stably and tuned to a test signal (or to a peak of response to a noise generator), the next step is to locate the optimum position for feeding the plate voltage into the line. This may be done be rumning a pencil lead slowly up and down the inner conductor, until a spot is found where tourhing the lead to the line has little or no effere on the operation of the amplifier. The plate voltage clip should be phaced at this point and the process repeated, moving the elips slighty until it is at the minimumvolage point precisely. This adjustment should be made at the midpoint of the tuning range over which the amplifier is to he used.
The position of the coupling loop should then be adjusted for hest signal-to-noise ratio. This will probably turn out to be with the insulated wire lying against the inner conductor for a distance of ahout $3 / 4$ to 1 inch, starting at the minimum-voltage point just located.

A CRYSTAL-CONTROLLED CONVERTER FOR 432 MC .

The converter shown in Figs. 16-27 through $16-30$ is designed to provide high sensitivity and signal-to-noise ratio in reception of signals in the 4:32- to 436 -Ne. range. It uses a grounded-grid r.f. amplifier stage similar to the one shown in Fig. 16-24, working into a crystal-diode mixer.

The intermediate frequener, with the design constante given, is 30 to $5 t$ Me, though lower froquencies could be used by suitable modification of the injection chain.

Crystal-controlled injection on 382 Me , is provided by two (iJdis operating as overtone oscilla-tor-tripler and tripler-doubler, respectively, As only a small amount of $r . f$. is recpuired at 382 Mc .,

Fig. 16.27-A crystal-controlled converter for 4.32 to 436 Me. R,f. and miver stages are in comper subassemblies at the right. Oscillator, multiplier and i,f, amplifier are on the haft side.
this line-up is not diflicult to build or adjust. An inexpensive $\mathbf{7}$-Mc. crystal is used. An i.f. proamplifier stage follow: the crystal mixer. This maty or may not he needed, depending on the performane of the rederiver or converter that will serve as the tumable i.f. Low-noise amplification in the i.f. stage is a factor in the over-all performance of the system, so use of the built-in i.f. stage is recommended.

Construction

The converter is built on a $7 \times 11 \times 2$-inch aluminum chassis, with the r.f. and miser portions in a coppor subassembly that mounts on the top of the chassis. at the right side as seen in

Fis. 16.28 - Interior view of the r.f. amplifier and mixer assemblies. The r.f. rircuit is a half-wave line. The shorter assembly is the quarter-wave line uxing a crystal diode mixer.

Fig. 16-27. The oscillator-tripler and triplerdoubler (oJfos are at the left front, with the $6 \mathrm{~B}(\mathrm{z} . \mathrm{I}$ i.f. amplifier at the rear. The mixer line is the short portion of the (opper assombly, with the r.f. amplifier line at the right. In the bottom view, Fig. 16-28, the injection-chain and i.f. :mplifier components are visible.

Fig. $16-28$ is an interior view of the r.f. and mixer lines. These are mate as two separate assemblies, joined by short length of copper tubing that is visible in the top view. Both tunk cirenits are $11 / 4$ inches square, with $1 / 4$-inch eopper tubing inner conductors. They are made from sheets of flashing copper $41 / 4$ inches wide. The mixer compartment is $51 / 2$ inches long and the r.f. portion is 10 inches long.

The r.f. amplifier is similar structurally to the one described previously. except for the method of coupling between it and the orvatal mixer. This is done with a grid elip on "ach line and a ceramic coupling condenser. The lead from the capacitor, inside the amplifier line, is brought through a half-inch length of copper tubing that is soldered into the walls of both lines. The lead is insulated with spaghetti sleeving.

The 13-plus feed to the r.f. stage should be at the point of minimun r.f. voltage, $17 / 8$ inches from the plate cold of the copper tubing. The coupling tap is one inch out from the 13 -plus feedpoint. The compling point on the miser line is 1 inch from the ground end. The erystal diode is inserted in at small hole in the mixer inner eonductor, $13 / 4$ inches from the groand end. The inner conductors of the r.f. and mixer lines are

7 3/16 and 5 inches long, respectively. Mixer tumng is done with a small plastie trimmer, C_{10}, while the r.f. plate circuit is tuned with a handmade tal, capacitor, C_{9}, similar to C_{4} in Fig. 16-25.

Note the r.f. by-pass, C_{8}, on the outside of the miser line. This is made from a piece of copper $7 / 8$ inch in diameter, insulated from the line housing low a piece of vinyl plastic. Two thicknesses of the material commonly used for small parts envelopes are satisfactory: The erystal, which may be any of the u.h.f. diodes, is slipped through a close-fit hole and is held in plare by the wire soldered ta its outside terminal.
llate and filament voltages are fed into the assembly on ferd-through by-pass capacitors, visille in the top-view photograph. Antenna connection is made through a eoasial fitting on the end of the r.f. assembly. A erystal-eurrent jack, a t-pin power fitting and two i.f. connectors are on the end wall of the chassis. The second coaxial conmertor was installed so that tests could be made with and without the i.f. amplifier stage.

Wiring in the powor circuits is done with shielded wire, in ease that TVI might result from the escillator or multiplier stages. The addition of a bottom plate and power-lead filtering would then le effective. Injection and i.f. coupling leads are also made of shieded wire, this serving in plare of coax line that is harder to handle.

The output of the injection chain is coupled into the mixer line by means of a loop, L_{8}, that is not visible in the photographs. This loop is mounted on the copper base plate that is under

Fis. 16.29- Bottom view of the 432-Ma. converter, show. ing the oscillater, moltiplier and i.f. amplifier cirouts.

Fig. 16.30 - Wiring diakram and parts list for the 432. We. crystal-
controlled eonverter. Values given are for an i.f. of $\mathbf{5} 0$ to 54 Me .
$\mathrm{C}_{1}-75-\mu \mu \mathrm{f}$. niniature trimmer (Hammarlund MAPC:- $\quad \mathrm{L}_{6}$ - Half-wave line, $1 / 4$-ineh copper tubing, $73 / 16$

Cs - Ilandmade eopper-tab by-pass: ser text.
(AB - llandmade copur-tabs variahle: nee tevt.
 (0lk 5).
$I_{1}-131 / 2$ turns No. 20 tinned, $5 / 8$-inch diam., ${ }^{2}$'s inch long, tapped at $41 / 2$ turns ($13 \mathbb{N}$ Miniductor Vo, 300 0_{4}^{\prime}).
$\mathrm{L}_{2}-5$ turns No. 20 timed, $1 / 2$-inch diam., $3 / 8$ inch long (3 S W Winiductor No. 3003).
$L_{4}-23 / 4$ turns similar to L_{2}.
1.4 - 2 thrns Vo. 12 timned, $1 / 4$-inch diamı., $1 / 4$ imeh long.
$L_{5}-1$ turn ins. wire between turns of L_{4}. Nay be inmer conductor of shielded wire, with liraid removed.
the mixer and r.f. assembly. Its size and proximity to the mixer inner conductor are not particularly critical, as there is a surplus of injection under ordinary conditions of operation.

Adjustment

The first step in putting the converter into opcration is to tume up the oscillator and multiplier stages. This process is similar to the adjustment of a transmitter and will not be detailed here. Check to see that the proper frequencies appear as indicated on the schematic diagram. Only enough power at 382 Mc . is needed to develop about 0.5 ma . of crystal current. Anything from 0.2 to 1.0 ma . is satisfactory. Adjustments should be made with no plate voltage on the r.f. stage.

Now connect the converter to a $50-\mathrm{Me}$. receiver or converter and peak the i.f. amplifier
L_{7} inches long. line, $1 / 4$-inch copper tulinge, 5 inches
1.7-Quarter-wave line, $1 / 4$-inch copper tubink. sinchan fong.
Ls - Iomp of insulated wire 1 inch long and $1 / 2$ inch high projeeting through base plate on whieh line assemblies are mounted. Way be made from inner conductor of shielded wire, with braid removed from last two inches.
$L_{9}-2$ tıris No. 22 enam. around cold end of L_{10}.
Ito - 6 turns similar to L_{2}.
I_{11} - 11 turns No. 22 enam, dose-wound on $3 / 8$-ind shog-tuncd form (National XR-0)I).
I. 12 - 4 turns Xo. 28 silk or enamel wound over cold end of $L_{\text {all }}$.
J_{1}, J_{2} - Coavial fitting.
J_{3} - C losed-circuit jack.
$\mathrm{J}_{4}-1$-pin malc chatsis fitting.
HPC. - 10 turns Vo, 22 tinned, $1 / 8$-inch diam. Space turns diam. of wire.
circuits at about 52 Me . on noise. Next apply plate voltage and feed a signal into the r.f. stage. Peak the r.f. and mixer capacitors for maximum response at about 434 Mc . These adjustments can be made on noise also, if the circuits were close to resonance originally. A noise generator will give the best check on converter performance, but the margin of signal over noise that is obtained on a received signal is also usable, if adjustments are made with care.

The points of connection for the 13 -plus and the coupling taps on the r.f. and miser lines are critical adjustments, but if the dimensions given above are followed carefully the points should be close to optimum. Adjustments can he made and checked readily if the r.f.-mixer assembly is mounted in place temporarily with a few selftapping serrews.

CHAPTER 17

V.H.F. Transmitters

Abstract

Beginning with the v.h.f. rogion, amateur fregueney assignments are not in direct harmonic relatonship with our lower-frequeney bands. 'This fart, eoupled with the neressity for extreme care in selection and placement of compononts for low circuit capacitance and minimum lead inductance, makes it highly desirable to construct separate gear for v.h.f. work, rather than attempt to adapt for v.h.f. use a transmitter designed for the lower amateur frequencies.

Transmiter stability regulations for the 50-

 Me. band are the same an for lower bands, and proper design may make it possible to use the same rig for $50,28,21$, and even 14 Me., but ineorporation of 50 Mr . and higher in the usual multiband transmitter is generally not feasible. Rather, it is usually more satisfactory to combine 50 and 144 Me. since the two hands are close to a thitd-harmonic relationship. It least the exeiter portion of the transmittor may be made to rover the requirements for both these bands very readily.Though no stability restrictions are imposed by law on operation at lit Mc. and higher amateur bands (other than that the entire (mission must be kept within the limits of the band in question), experiene has demonstrated the value of using crystal eontrol or its equivalent in v.h.f. work. (rystal-eontrolled transmitters and recoreds having the minimum bandwidth necessary for voice communication make it possible for hundreds of stations to operate without undue isterferenere in a band that would appear crowded if occupiod by a dozen or less stations using broadband recerivers and unstable transmittors.

The use of nartow-band commanications systems also patys off in the form of improved efficieney in both transmittor and reeniver. It is this factor, perhaps more than the interferemer potentialities of the wide-hand systems. which makes it desirable to emphoy advaned tochniques at 220 and even 420 Me. Stabilized
transmitters for 220 Mc, are not ton difficult to build, and their use at this frequency is highly recommended.

Construction of multistage rigs for 420 Mc . is not easy, and the choice of tubes suitable for this type of work is quite limited, but the advancod amateur who is interested in making the most of the interesting possibilities afforded by this developing field will be satisfied with nothing less. The +20-Mc. band is much wider than our lower v.h.f. assignments, however, and interference is not likely to become a limiting factor in this band for a long time to eome. Thus it may be more important, in many localities, to get activity rolling with any sort of gear, leaving porfection in design to eome along as the need develops.

At 420 Mc . and in the higher amateur assignments most standard tubes cannot be used with any degrec of success, and special tubes designed for these frequencies must be emplowed. These types have extromely close electrode sparing, to reduce transit-time effects, and are constructed with leads having virtually no inductance. Several more-or-less conventional tubes are now available which will operate with fair efficiency up to about 500 Mr., but best performaner is ohtained with the " lighthouse," "pencil tube," or coaxindelectrode types built especially for u.h.f. applications, and roquiring specially-dowigned tank circuits.

Frequency modulation may be used throughout the v.h.f. and higher bands, wide-band emission being pormitied above iz.i Mc. and narrow-hand FM anwwhere. Where suitable reerivers are available to make best use of such (missions, either wide-band or harrow-band FM can provide effective v.h.f. communication. Thorig use is particularly advantageous in congested areas where the freedom from interference to brouleast and television reception they enjoy maty permit operation when an amplitude-modulated transmitter of any power would be a constant source of trouble.

Transmitter Technique

The low-power stages of a transmitter for the v.h.f. bands need not be greatly different in design from those used for lower bands, and many of the ideas in (hapter six may be used to good advantage in the initial stages of the v.h.f. rig. The constructor has the choice of starting at some lower freguency, usually around 6,8 or 12 Me ., multiplying to the operating frequency in onc or more additional stages, or he can use a high
initial frequency and thus rerluce the number of multiplier stages required or eliminate them entirely. The first approach has the virtue of employing low-cost erystals, and it usually results in better stability when mothods other than erystal control are used, but high-frequency crystals may effert a considerable economy in power consumption, an important factor in portable or emer-goncy-powered gear.

A high starting frequency may be helpful in preventing TVI that ean result from amplification of unwanted harmonics from a cristal oscillator on 6.8 or 12 Mr . Several troublesome harmonics are eliminated if a crystal frequency of 24 Me . or higher is used.

CRYSTAL OSCILLATORS

Crystal oscillator stages for v.h.f. transmitters may make use of any of the circuits shown in Chapter 6 , when crystals up to 12 Mr . are employed, but certain variations are helpful for higher frefuencies. Crystals for 12 Mc . or higher are usually of the overtone variety. Their frequency of oscillation is an approximate multiple of some lower frequency, for which the erystal is actually ground. Thus $24-$ Me crystals commonly used in 14-Mc. work are S-Mc, cuts, specially treated for overtone characteristies. Lintil revent years such erystals were tricky in operation and subject to excessive drift if operated at high crystal eurrent. The overtone crystals now being suppliod are approximately as stable as those designed for fundamental operation, and they are easy to handle in properly designed cireuits.

Best results are usually ohtained with overtone crystals if some regeneration is added. This makes for casy starting under load and greater output than would be obtainable in a simple triode or tetrote eircuit. Two regenerative eirenits, with constants for 24- or 25-Me, erystals, are shown in Fig. 17-1. 'Triontes are show'o, but the same arrangement may be used with tetrode or pentede tubes. The impertant print in cither case is the amount of regeneration. eontrolled by the position and number of turns in the ferd-hark winding, L_{2}, in Fig. 17-I-A or the position of the tap on L_{1} in B . There should be only enough feed-back to assure casy crystal starting and satisfactory operation under load: too much will result in random oscillation not under the control of the crystal.

Fig. 17-1 - Regenerative rysal ascillator circuits for , hif use. Femd-back is controlled by the position of L. with respeet to L_{1} in A, or by the position of the tap on L_{1} in 13 . Constants brlow are for 24 to 27 Mc .
$\mathrm{C}_{1}-50-\mu \mu \mathrm{fl}$, variable.
$\left.\mathrm{C}_{2}-0.00\right)_{-\mu \mathrm{fli}}$. ceramic or misa.
$\mathrm{C}_{3}-25-\mu \mu \mathrm{fl}$. ceramio or mira.
R_{1} - Decoupling resistor, 1000 to 5000 ohme, carton. R_{2} - (irid leak, to suit tubre used.
$L_{1}(A)-18$ turns No. $18,1 / 2$-incli dia., $11 / 4$ ine hes long.
L_{2} (A) - 3 turns similar to Λ, mounted on same axis, about $1 / 8$ inch apart.
L_{1} (B) - 14 turns No. 18, $1 / 2$-inch dia., I imh long. Tap at about $41 / 2$ turns (see text).

Fig. 13.2- The functions of erystal oscillator, wathonde follower and frepurney multiplier are combined in this dual-triode cirenit. 'The circuit l_{2} Ci tunes to the desired overtone frequency, and $L_{2} \mathrm{C}_{2}$ its second or third harmonic, L_{3} should resonate with tube and erystal eapactanere just below the frequeney of oscillation. The value of the r.f. chokes in the cathode circuit is mot aritical. Values for obtaining 14t-1/e. output with a 24 - Mc, crvatal are given below.
$\mathrm{C}_{1}-20$ - $-\mu \mathrm{fd}$. variable.
$\mathrm{C}_{2}-10-\mu \mu \mathrm{fd}$. variable.
$\mathbf{1 . 1}_{1 .} \mathbf{5}$ turns No. $18,1 / 2$-inch diam., $1 / 2$ inch long. $1,2-2$ turns No. $18,1 / 2$-inch diam., $1 / 2$ inch fong. $\mathrm{l}_{3}-4$ turns No. $18,3 / 8$-inch diam., $1 / 4$ inch long.

Overtone operation is possible with standard fundamental-t ype erystals, using the circuits of Fig. 17-1. Pratically all will oseillate on their third overtones, and fifth and higher odd overtones may be possible. Adjustment of regeneration is more critical, however, if the erystals are mot ground for overtone characteristies. It should also be noted that the frequency may not be an cexart multiple of that marked on the erystal holder, so care should be used in working with erystals that are near a band edge.

Crystals ground for overtone serviee can be made to oscillate on other overtones than the one marked on the holder. A 2t-Me. crystal, actually an 8-. Ir c. cut, may be made to oscillate on 40, 56 , 72 . Me. or even higher odd multiples of its $8-\mathrm{Mc}$. fundamental frequeney, The cireuits of Fig. 17-1 may he used, but for high-order overtones the dual triode cireuit of Figg. 17-2 is more reliable. Values for arhieving 144 - Me. output with a $24-$ II . arystal (9 th overtone instead of 3rd) are given.

The crestal is resonated, by means of L_{3} connected across it, at a frequeney just below the desired overtone, or about 70 Me . in this example. Cireuit $L_{1} \mathrm{C}_{1}$ tunes to the desired overtone, 72 Me.; $I_{2} C_{2}$ to a harmonic, in this case 144 Me . Regeneration is controlled by varying the coupling botween L_{1} and L_{3}, so that only erystal uscillation is developerd. Polarity of these windings is important; bringing them closer should reduce the tendeney to self oscillation.

Crystals are now available for frequencies up to around 100 Mc. They are somewhat more expensive than those for 30 Mc . and lower, however, so they have not been used widely in amateur work, exept where a saving in power is important. Lse of $50-$ Me crystals is made oceasionally as a means of preventing radiation of
the harmonies of lower frequency crystals that might cause interference to television reception.

- FREQUENCY MUL.TIPLIERS

Frequency multiplying stages in a v.h.f. transmitter follow standard practice, the principal precaution being arrangement of eomponents for short lead length and minimum stray caparitance. This is particularly important at 144 Mc . and higher. 'lo reduce the possibility of radiation of oscillator harmonics on frequencios that might interfere with television or other sorviees, the lowest sutisfactory power level should be used. Low powered stages are ausior to shidd or filter, in case such steps become necessary.

Common practice in v.l.f. exeiter design is to make the tuned circuits capable of operation over the whole range from 48 to 54 Mc. , so that the output stage can drive either a $50-$ Nc. amplifior or a tripher from 48 to 144 Me. Tripling is oftor done with push-pull stages, particularly when the output frequency is to be $14+\mathrm{Mc}$. or higher. The output capacitances of the tubes in surh a circuit are in series, permitting a better L / C ratio than is possible with single-ended circuits.

AMPLIFIERS

Most transmitting tubes now used by amateurs will work on 50 Mc ., but for 144 Mc . and higher the tube types are limited to those having low input and output capacitaneres and compact physical structure. Leads must be as short as possible, and soldered connections should he avoided in high-powered circuits, where heating may be great enough to rearh the molting point of the solder used.

Plug-in coils and their associated sockets or jack bars are generally unsatisfactory for use at 144 Mc. and higher because of the stray inductance and capacitance they introduce. One way around this trouble is the dual tank eireuit shown in Fig. 17-3. Here the tank circuit for 144 Mc. is a conventional tuned line, with its shorting bar made removable by plugs or clips. When the stage is to be used on another band the shorting bar is removed and a coil is plugged into the jack bar, the line then serving as a pair of plate leads.

Fig. 17-3 - An efficient two-band tank circuit for 50 and 144 Mc . For operation on 144 Mc . the shorting bar is plagged into the end of the line. For 50 Mc . a suitable tank coil is plugged into the jack bar. The line then serves merely as a pair of plate leads. $R \dot{F} C_{1}$ is a $144-\lambda l$ e, choke; $R F C_{2}$ a $50-\mathrm{Mc}$. choke. The split-stator variable, C_{1}, tunes either circuit.

Fig. 17-1 - Ialf-wave line tank cirenit, for use at 220 or $\$ 20$ Mc, where tube and circuit capacitances prohibit the use of an ordinary tuned eircuit. Plate voltage is fed into the line at the point of lowest r.f. voltage (sce text).

Such an arrangement will operato as efficiently on 144 Mc. as if it were designed for that band alone, yet it can be made to work properly on any lower band.

At 220 Me . and higher it may be necessary to cmploy half-wave lines as tuned circuits, as shown in Fig. 17-4. Ifere the tuning caparitance, instead of being connected directly in parallel with the

Fig. 17-5 - Grounded-grid r.f. amplifier. Driving voltage is fed into the cathode eircuit, with the control grids maintained at ground potential.
output capacitance of the tube, is at the far end of a half-wave line. Plate voltage is fed into the line near the middle, at the point where the r.f. voltage is lowest. The proper point can be located by first operating the stage with the voltage fed in near the middle of the line, and then touching a pencil point along the line to locate the spot where the least effect on the grid or plate current is noted. This check should be made with the pencil in an insulating mount, if dangerous values of plate voltage are used.

Neutralization of triode amplifiers for 50 and 144 Mc. can follow standard practice, but the stray inductance and capacitance introduced by the neutralizing circuits may be excessive for 220 Mc. and higher. In such instances groundedgrid amplifiers may be used as shown in lig. 17-5. Driving power is applied to the cathode circuit, with the grid arting as a shield. Groundedgrid amplifiers are stable, but they require high driving power. Some of the drive appears in the output, so both the driver and amplifier must be modulated when amplitude modulation is used. For this reason the grounded-grid amplifier is used mainly for FM1 applications.

Tetrode and pentode amplifiers may operate without neutralization, but it is advisable to

Fig. 17-6 - Tuned screen circuit for stabilizing a v.h.f. tetrode push-pull amplifier. Cil and C_{2} may the the t wo halves of a split-stator variable comdenser, if the circuit is symmetrical electrieally. 'IThe r,f. choke and condenser values vary with frequency, making this form of neutralization casmolly a one-hand device. C_{3} should be about $0.001 \mu \mathrm{fd}$. for v.h.f. applications.
plan for it in the original layout. With such tubes as the 829 or 832 emough meutralizing catpowitance can be obtained by running short lengths of stiff wire up through the chassis alongside the tube plates, erossing them over to the opposite grid terminals below the chassis. Neutralization is adjusted by trimming or bending the wires.

Instability may show up in tetrode amplifiers as the result of ineffertive sereen by-passing, in which ease conventional eross-over neutralization will accomplish little or nothing. The solution lies in series-resonating the sereen circuits to ground, as shown in lig. 17-6. A small split-stator variable can be used for C_{1} and C_{2} if the layout is completely symmetrical. The r.f, choke and condenser values vary with frequeney, so sereon neutralization is essentially a one-band device.

FREQUENCY MODULATION

Though FM has not enjoyed great popularity in v.l.f. operation, probably beerause of lack of suitable receivers in most v.h.f. stations, its possibilities should not be overlooked, particularly for the higher bands. At 420 Mc ., for instanee, the efficiency of most amplifiers is so low that it is often difficult to develop sufficient grid drive for proper AM service. With lidy any amount of grid drive may be used without affecting the audio quality of the signal, and the modulation process adds nothing to the plate dissipation. Thus considerably higher power can be run with FM than with AM before damage to the tubes develops or the signal is of poor quality.

Frequency modulation also simplifies transmitter design. The principal obstarle to greater use of FMI in v.h.f. work is the wide variation in selectivity of v.h.f. receivers, making it difficuli for the operator to set up his deviation so that it will be satisfactory for all listeners.

TVI PREVENTION AND CURE

Interference to television reception is not ordinarily so serious a problem with v.h.f. gear as with equipment for lower amateur hands, where more harmonis's of the operating frequency fall within the television chamels. The principal
causes of TVI from v.h.f. transmitters are as follows:

1) Adjarent-channel interference in Channel 2 from 50 Mc .
2) Fourth harmonic of 50 Me , in Channels 11 , 12 or 13 , depending on the operating frequenes.
3) Radiation of unused harmonies of the oscillator or multiplier stages. Vxamples are !th harmonic of 6 Me., and 7 th harmonic of 8 We. in Chamel 2; Woth harmonic of 8 Me . in Channel 6; 7th harmonic of 25-Mc. stages in Channel 7 ; th harmonic of 48-Me, stages in Channel 9 or 10; and many other combinations. This may include i.f. piok-up, as in the rases of $24-$ Me. interference in receivers having $21-\mathrm{Mc}$. i.f. systems, and $48-\mathrm{Mc}$. trouble in $45-\mathrm{Me}$. i.f.'s.
4) Fundamental blocking effects, including modulation bars, usually found only in the lower channels, from 50-Me. equipment.
5) Image interferenco in Channel 2 from 111 Me, in receivers having a $45-\mathrm{Me}$, i,f.
(6) Sound interference (picture elear in some cases) resulting from r.f. pick-up by the audio circuits of the TV receiver.

There are many other possibilities, and u.h.f. TV in general use will add to the list, hut nearly all can be corrected completely, and the rest cin be substantially reduced.

Items 1, 4 and 5 are receiver faults, and nothing can be done at the trinsmitter to reduce them, exerpt to lower the power or increase separation between the transmitting and 'TV antenna systems. Item 6 is also at receiver fault, but it ean be alleviated at the transmitter by using FM or c.w. instead of AMI phone.

Treatment of the various harmonic troubles, Items 2 and :3, follows the standard methods detailed elsewhere in this Mamblook. It is suggested that the prospertive builder of new v.h.f. equipment familiarize himself with TVI prevention terhniques, and ineorporate them in new construction projects.

Lise as high a starting frequency as possible, to redure the number of harmonies that might cause trouble. Solect crystal frequencies that do not have harmonies in T'V channels in use locally, Fxample: The 10th harmonic of $8-\mathrm{Mc}$, erystals used for operation in the low part of the 50-N1\%. band falls in Channel 6 , but (b-Mc. crystals for the same frequency range have no harmonie in that chamel.

If TVI is a serious problem, use the lowest transmitter power that will do the job at hand. Wuch interesting work can be done on the v.h.f. bands with but a few watts output, particularly if : good antenna system is used.

Kerep the power in the multiplier and driver stanes at the lowest pratical level, and use link coupling in preference to enparitive eoupling, particularly in the later stages.
l'lan for complete shielding and filtering of the r.f. seetions of the transmitter, should these steps berome neressary.

Use coaxial line to feod the antenna system, and lorate the radiating portion as far as possible from TV recoivers and antennat systems.

A Complete Transmitter for 144 Through 21 Mc.

The rack-mounted equipment shown in Fig. $17-7$ is an example of the way in which the lowpower stages of a rig can be designed to provide for several bands. Each piece of equipment can be used alone, or they combine readily to cover $21,28,50$ and 144 Me., at a power level approaching the legal maximum.

At the bottom is a $V F()$ unit tailored to the needs of the v.h.f. man, but useful on lower frequencies as well. Next is an exciter capable of up to 40 watts output on 21,28 or 48 to 54 Mc. It is a fine low-powered rig for use on 15,10 or 6 meters as well. Above the exciter are two units designed for high-power operation on 144 and 50 Mc .

THE EXCITER

The transmittereexiter shown in Figs. 17-8 through 17-10 was designed for the v.h.f. man who likes to work some of the lower bands as well. It delivers up to 40 watts output on 21,28 or 50 Me., and covers the range down to 48 Me . so that it may he used as a source of excitation for additional stages that multiply to itt Me. Though it was intended for use with the highpowered amplifiers deseribed later, it may be used effectively as a complete transmitter in itself.

Shielding for TVI reduction was achieved by buiding the unit inside a standard aluminum chassis. Each power lead is by-passed at the power plug, and abll wiring was done with shielded wire. Output is taken off through a coaxial fitting, so that a low-pass filter can be inserted in the line for harmonic attenuation if needed.

Circuit Details

The exister circuit follows standand practice. The oseillator is a 5 at $6: 3$ grid-plate type with provision for 10 crystals and VF() input. Crys-

Fig. 17-7- A complete transmitter for 144 through 21 Ne. The four units are, from the bottom up, a VFO with reat. tance modulator: an excitertransmitter with up to 40 watts output; a tripler-driver amplifier for 1.14 Me.; and a shielded amplifier for 50,28 and $\supseteq 1 \mathrm{Mc}$.
tals may be in the $3.5-$, $6-, 7,8-, 14-$ or $24-\mathrm{Mc}$. ranges. On 21 Mc. the oscillator output is on the signal frequency, and best results are obtained with 7 -Mc. erystals, tripling in the plate circuit. For 28 Mc . the oscillator doubles to 14 Mc. with 7 -Mc. erystals, quadruples from 3.5 Mc., or works straight through with 14-Mc. overtone crustals. For operation on 50 or 144 Me, the oscillator output is on 24 to 27 Mc., quadrupling, tripling or working straight through, for 6-, 8or 24 -Mc. crystals, respectively. The $100-\mu \mu \mathrm{fd}$. tuning capacitor at C_{6} tunes the oscillator plate cireuit from 14 to 27 Mc., so no bandswitching is needed in this stage.

Another 5763 follows the oscillator, working straight through on 21 Me., or doubling to 28 or 48 to 54 Mc. Two coils, L_{2} and L_{3}, and a $50-\mu \mu \mathrm{fd}$. condenser, C_{10}, cover 21 to 30 Mc ., and 48 to 54 Me., respectively. In case trouble is encountered in making the 5763 run stably as a 21-Me, amplifier, a third switch position is available for connecting a damping resistor, R_{8}, in series with L_{2}.

The output stage uses a 6146 , with a tapped coil for 21 and 28 Mc., and a second coil for 48 to 54 Mc. Output coupling links in these two

Fig. $17-8$ - Looking into the bandswitching exciter-transmitter from the top front. Oscillator components are in the left compartment. the doubler and power connector in the renter, and the output stage at the right. Note that the 6146 soeket is mounted inside the oupput stage compartment.
eoils are also switched. The 0146 works nicely over a wide range of plate voltages, so this rig may be used in exciter service with as little as 300 volts on the final, or it may be used as a complete transmitter at up to 500 volts. A 2 F 20 may be used in the final stage where its power output is adequate for the jols at hand.

The exciter is built largely inside a $3 \times 5 \times 17-$ inch aluminum chassis and is fitted with a standard $31 / 2$-inch rack panel. Only the crystals, the first two tubes and the filament transformer are outside, and these are mounted on the rear wall of the chassis to keep down the vertical dimension.

Arrangement of parts is not particularly critical, the principal consideration in the first two stages being to mount the tules in such position that the coupling lead (C_{25} to the grid of the second 5763) is short. The grid rircuit of the seeond stage should be isolated from the rest of the components to reduce the tendency toward self-oscillation when the stage is operated straight
through on 21 Mr. The lead to the grid is made with a short piere of RG-59/U eosax, run through as ot in the top of the partition, and a smatl piece of flashing copper is soldered across the 5763 socket between Pins 1 and 9 to isolate the input and out circuits further. Leads from the tube plate to the bandswitoh, S_{2}, and thence to the tuning condenser, (${ }_{10}$, are made with $\sqrt{4}$-inchwide ropper strap, to hold down lead inductance.

Note the method of mounting the socket for the 6146. Contrary to common practice, this socket is mounted on the tube side of the partition. Cathode, heater and screen pins (Nos. 1, 3, 4, 6 and 7) are by-passed individually to separate points on the partition with the shortest possible leads. Heater and cathode leads are brought through the partition with shielded wire, and the control grid and sereen leads are run through on short lengthe of stiff wire insulated with sparghetti sleeving. Mounting the $61+16$ socket inside the final stage compartment provides a short plate-

Fig. 17.9 - Rear view of the exciter. On the rear wall at the right are 10 ersstal sorkets of various $\mathbf{t y p e s}$. Then come the two 5763s, the power pluz, the filament transformer, and the output coaxial fitting. On the inside front wall are, in the same order, the crystal switeh, oseillator tuming, doubler bandswiteh, doubler taning, and final bandswiteh.

(:10-50- $\boldsymbol{\mu} \mu \mathrm{fil}$. midyet variable, shaft-mounting type.
© 12 - $15-\mu \mu \mathrm{fd}$. miea or ceramic.
Cit-20- $\mu_{\mu} \mathrm{fal}$. doublo-spaced midget variable, shaftmounting typr.
$\mathrm{C}_{25}-\mathbf{5 0}-\mu \mu \mathrm{fl}$. ceranie or mica.
R_{1}. $\mathrm{H}_{4}-0.1$ megolun, $1 / 2$ watt.
$11_{2}-220$ ohms, $1 / 2$ watt.
$\mathrm{R}_{3}, \mathrm{R}_{\mathrm{a}}-22,000$ olmme, 1 watt.
$R_{5}, R_{10}-1000$ ohms, $1 / 2$ watt.
$H_{i}-100$ ohms, $1 / 2 \mathrm{watt}$.
H8- 5.5 ohme 1 watt (two 15 -ohm 1/watt resistors in parallel).
$R_{n}-33,000$ ohmes, I wati.
$\mathrm{R}_{11}-20,000$ ohms. 10 watts.
$\mathrm{R}_{12}-68$ ohms, $1 / 2$ watt.
I.1 - $81 / 2$ turns Vo. 20 tinned, $3 / 4$-ineh diam., $1 / 2$ inch long (IS \& W Miniductor Vo. 30Il).
l.2 - Turns tike L_{1}, Tr inch long.
$1.3-1$ turns No. 20 tinned, $5 / 8$-ineh diam., $1 / 2$ ineh long (I及 N W No. 3006) 。
1.4-2 turns No. 18 mosh-bach, $5 / 8$-ined diam., coupled to cold end of $/ .3$.
$1.5-4$ turns Vo. 20 tinned, $3 / 4$-inch diam., $1 / 2$ inch long
to-cathode return. The stage may possibly be unstable if the socket is mounted on the opposite side of the partition from the tube, as is usually done.
The three tuning condensers should be the shaft-mounting type, not the sort that mount on small pillars. Culess the rotor shaft is grounded solidly to the panel it will act as an "antenna" to radiate harmonic energy that is almost certain to cause TVI. The meter tip jarks, J_{5} and J_{6}, may also turn out to be harmonic radiators, unless by-passed right at the point where they come through the rear wall.

The output coupling links, L_{6} and L_{8}, are the smallest diameter 13 \& W Miniductor, which makes a close fit inside the larger size used for L_{5} and L_{7}. They are held in plare with household cement. A coupling link is also provided for L_{3}, so that a smakl amount of power can be taken off at 18 Ne. if desired. This is made of selfsupporting stiff insulated wire, coupled closely to the cold end of L_{3}.

Note that the front-panel appearance is completely symmetrical, the controls being spaced at regular intervals horizontally, and in the center of the panel vertically. The chassis is
(13 \& W No. 3010).
$L_{6}-41 / 2$ turns No. 20 tinned, $1 / 2$-inch diam., $1 / 2$ ineh long, mounted inside cold end of Ls. (1) \& W Miniductor No. 3003.)
I. 7 - 11 turns like If, tapped at 7 turns, $3 / 4$ inch long.
$1.8-9$ turns 13 \& $\mid 1$ No. $3004.1 / 2$-inch diann., $5 /$ inch 6 long, mounted inside cold end of L_{7}.
J_{1}, J_{2}, J_{3} - Coaxial fitting. J_{1} is for VFO input.
J_{4} - Closedreircuit jack.
$\mathrm{J}_{5}, \mathrm{~J}_{6}$ - 'lip jack.
$\mathrm{J}_{7}-8$-pin male chassis fiting.
RFC: $2.5-\mathrm{mh}$. r.f. choke (National R-100-S).
IRFC2 - l'arasitir choke, oturns No. 20 enamel, $1 / 4$-ineh dianı., $3 / 8$ inch long.
$S_{1 A}, S_{1 B}-11$-position 2-section ceramic wafer switch. (Made from centralabl' -122 index assembly and 2 centralah type I switeh sections. Complete assembly (:112, 2513.)
$\mathrm{S}_{2}-$ Similar to ahove, but single section (CRL 2501 on 2503, wafer type \mathbf{X} or Y).
$S_{3 A}, S_{3 B}$ - Same but 2 -pole 3 -position single section (CRI, 2505, wafer type RH).
${ }^{\prime} I_{1}$ - 6.3-v. 3-amp. filament transformer.
bot tom up, with the cover at the top. This allows ready arcess to the inside when the unit is in its normal operating position, but it may be used the other side up, if the buider so desires. Ventilation of the 6146 is afforded by twenty $1 / 4$-inch holes drilled in the top and bottom surfaces over and under the tube.

Testing and Use

For initial tests a power supply delivering 200 to 250 volts is adequate. Wach stage has its platescreen power lead brought out to the plug sepirately, so that individual metering is possible. Applying voltace through I'in 3, we note that the stage draws low current until oscillation is obtaned, because of the cathode bias. Plug a lowrange meter into J_{5} to read the grid current of the following stage, and tune C_{6} for maximum indication, which will be about 0.5 to 1 ma . at normal operating voltage. The oscillator platescreen current will be around 20 ma .

Should the oscillator refuse to start, try other crystals, and then experiment with the values of C_{1} and C_{3}. The grid-to-cathode capacitor, C_{1}, may not be neressary, particularly if crystals no lower than 6 Mc . are used. Use the lowest value
that will permit oscillation with all crystals. The value of C_{3} may be ritical when overtone-type crustals are used. Improper values at either of these positions muy result in intermittent oscillation, or none at all.

Cherk the output frequency with a calibnated wavemeter, or by listening with a receiver whose calibration can be relied upon, and procecel to the following stige. Plug the grid meter into J_{6}, apply power through Pin 4 , and cheek the out put frequeney when ('10 is tuned for maximum grid current. At least 2 mil should be available. Check for self-oseillation by removing exritation. Should self-oscillation orcur on the 21-Mc. range, switch in the dimping resistor, R_{8}. This should be the lowest value permissible, as the output from the stage drops rapidly as the series resistance is increased above a few ohms.

When around 2 mit. of grid current is ohtained the output stage may be cherked. This may be done initially with 250 to 300 volts applied through l'ins 5 and 6 , using a 25 -watt lamp pugged into J_{3} for it dummy lond. Cutting the exeritation (do it only briefly - $61 / 4 \mathrm{~s}$ draw a tremendous amount of plate current!) should result in zero grid current. If the stage is operating correetly the output should be around 15 watts with 300 volts on the plate.

Increasing to 400 to 450 volts it should be possible to get at least 35 watts output on all frequencies. In an enclosed layout of such small dimensions it is not advisable to go much bevond this level, as the heat dissipation may he high enough to damage the small coils used. Where the exeiter is used to drive a high-powered tetrode final stage, 300 volts on the $61 / 4 \mathrm{find} 200$ to 250 volts on the afobis is plenty. The rig maty be used as a complete transmitter, modulating the output stage on 28 or 50 Mc ., at 30 to 50 watts input. The operating conditions in all stages can be adjusted to suit the builder's own requirements by varying the screen resistor values. The exciter is keved in the 6146 cathode lead for c.w. operation.

A 144-MC. DRIVER-AMPLIFIER

Shown just above the exciter in the composite photograph, Fig. 17-7, and separately in Figs. 17-11 through $17-13$ is a threc-stage tripler-driver-amplifier for high-power operation on $14 t$ Mc. It may be used with any exciter that is (:ipable of delivering 5 watts or more on 48 Mc . If a 2 -meter exerter is available the tripler may be omitted. The driving power required in that a ase would be about 10 watts on 144 Mc .

As may be seen from the schematic diugram, Fig. 17-12, a push-pull tripler stage with a pair of $5763 s$ drives a tetrode amplifier using an AX$9903 / 5894$ A, which, in turn, drives a pair of $1-125 . \mathrm{A}$ in the final stage. Input to the final can be up to slightly over 600 watts on AM 'phone, or 750 watts on e.w. By suitable adjustment of the grid drive and the final-amplifier sereen and plate voltages, the input can be run as low as 150 witts with good efficiency. Some method of varying the input is recommended, as much of the operation on $1+4 \mathrm{Me}$. can be carried on satisfactorily with moderate power.

Electrical and Mechanical Details

The tripler uses two tubes in push-pull in preference to a single tules, as this allows the tubes to be operated at low input and still deliver aderuate drive to the succeeding stage without critical idjustments. The tripler grid rircuit is self-resomant. The tripler and driver plate tuning adjustments are ganged. Straps of flashing copper is inch wide are used for the leads from the $57 t i 3$ plates to the tuning condenser, (1 , to hold down lewd inductance.

From the bottom view, Fig. 17-1:3, it will he seen that sheets of flathing copper are fastened to the bottom of the chassis, eovering the area of the driver and final stiges, to improve grounding cireuit conductivit!. Note that the rotor of the driver tuning condenser, (2 , is grounded through a 100 -ohm resistor, R_{5}. This was done to cure a $250-$ Me. parasitic oscillation. Ventila-

Fig. 1/-11 - Rear view 11 the -125 A amplifier for 114 Vro., showing details of the parallel-line plate circuit. 'The 5.763 eripler tubes are at the left. Note ventilation holes. below which is mounted the driver tube, ont of sight under the chassis.

Fig. 17-12 - Wiring diagram and parts list for the high-powered 144-Me. transnitter.
$\mathrm{C}_{1}, \mathrm{C}_{2}-10-\mu \mu \mathrm{fl}$ - pm -section butterfly variable (Cardwell FiR-6-13F/S. Johnson 10L,B15 alternate: see text).
$\mathrm{C}_{3}, \mathrm{C}_{4}-10-\mu \mu \mathrm{fd}$, mical.
$\mathrm{C}_{5}, \mathrm{C}_{6}-(0.001-\mu \mathrm{fl}$. disk ceramic.
$\mathrm{C}_{7}-0.005-\mu \mathrm{fd}$. disk ceramic.
C.s - $50-\mu$ fid-per-sertion split-stator variable (made from Millen 19140: see text).
C_{9} - Ilate-lite tuning adjustment (made from neutralizing eondenser; ser text).
$\mathrm{C}_{10}-0.001$ - $\mu \mathrm{fd}$. 5000 (-volt mica.
Cit - 0.25 - -ff . tubular.
R_{1} - 150,000 ohms, I watt.
$1 \mathrm{R}_{2}-18,000$ ohms, 1 watt.
R_{3} - 100 ohms, $1 / 2$ watt.
$\mathrm{R}_{4}-10,000$ ohms, 1 watt.
$\mathrm{R}_{5}-100$ ohms, 1 watt.
$\mathrm{R}_{8}-10,000$ ohms, 10 watts.
R_{7} - $\mathbf{5 0 (0)}$ ohms, 10 watts.
$\mathrm{R}_{8}-2 \overline{2} .000$ ohus. Wse only if needed; see test.
L, 1 turn No. 14 enam., $3 / 4$-inch diam.
$1.2-6$ urns each side of center, $\mathrm{Vo} .20,5 / 8$-ineli diam., spaced wire diam., $1 / 4$-inch space at center for I_{1} (B \& W Miniductor No. 3007).
1,3-2 turns No. 14 enam., epaced $1 / 8$ inch, $1 / 2$-inch diam.
$\mathrm{I}_{4}-2$ turns No. 14 enam., spaced $3 / 8$ inch, $18 / 8$-inch diann.
tion for the driver tube is provided by drilling holes through the eopper plate and chassis over the tube. An 820.13 may he used in place of the $9903 / 5894$ A, with some sacrifice in driver stage efficiency.

If the 9903 is used, the tube plate leads should be very pliable material, as the tube structure is fragile. The $589+\mathrm{A}$, an improved version of the $990: 3$, is considerably more rugged mechanically. If standard heat-dissipating connectors are used they should be filed down by about one-third of their diameter because of the close pin spareing. Cardwell butterfly capacitors were used for C_{1} and C_{2} because of their inherent provision for ganging. Other types such as the Johnson 10LB15 can be substituted by soldering a ganging extension to the rear end of the rotor shaft of C_{2}.

The driver plate and final grid circuits are widely separated so that coupling between them will be confined to the link circuit. This helps to keep unwanted harmonics from being transferred to the final grids. This potential source of TVI can be further reduced by installing link-coupled tuned circuits in the tripler plate and driver grid positions, if the station location is one where

1s -2 turns No. 18 push-hack, close-spaced, inserted between tirns of L_{4}.
L.f - Loop of No. 14 enam., \ddagger inches long, inside L_{7}.
L. 7 - Copper strap $3 /{ }^{6}$ inch wide and 8 inches overall from grid to grid; see text and bottom-view photograph.
$L_{s}-$ Plate line, $\frac{3 / 8}{}$-inch o.d. copper tubing 12 inches long, spaced $18 / 2$ inches center-to-center. Bend on 1 -inch radius to make inverted " L " $41 / 2$ inches high.
L_{9} - Output coupling loop, made from $131 / 2$-inch piece of No. 14 enam. Sides $7 / 8$ inch spaced. Vertical portion $2 \frac{1}{2}$ inches high.
I 10 - 5 -hy. (nin.) ehoke, 100 ma. or more rating.
$\mathrm{J}_{1}, \mathrm{~J}_{2} . \mathrm{J}_{3}$ - Closed-circuit jack.
J. - Coaxial fitting.

Js - Crystal socket for output terminal.
U. $\Lambda_{1}, \mathrm{MiA}_{2}, \mathrm{MA}_{3}, \mathrm{MA}_{4}-$ Fixternal meters, not shown in photographs, $200,50,100$ and 500 ma., respectively.
$\mathrm{RFC}_{1}, \mathrm{RFC}_{2}, \mathrm{RFC}_{3}, \mathrm{RFC}_{4}, \mathrm{RFC}_{7}-1.8-\mu \mathrm{hy}$. solenoid v.h.f. choke (1 hmite Z-1 1.1).
$\mathrm{RF}^{2} \mathrm{C}_{5}, \mathrm{RFP}_{A B}-\mathrm{i}$ - $\mu \mathrm{hy}$, solenoid , .h.f. choke (Ohmite Z.-50).
$\mathrm{s}_{1}, \mathrm{~s}_{2}$ - S.p.s.t. toggle switch.
T1 - 6.3 -volt t -amp. filament transformer.
T_{2} - 5 -volt 13 -amp. filament transformer (Chicago F(O-513).
192-Mc. energy might cause TVI in Channels 9 or 10.

The relatively high input and output capacitances of the +-125 As rule out conventional coil-and-rondenser circuits at lit Mc., so no grid tuning capacitor is used in the final stage, and only a very small variable capacitance is used in the plate circuit. The entire grid circuit is made of $5 / 16$-inch-wide copper strap. Two pieces each $11 / 2$ inches long connect the grid terminals to feed-through bushings that are provided for mounting neutralizing tabs, if needed. The center portion of the grid circuit is an egg-shaped loop mounted on the feed-throughs, as seen in the bottom view. The bushings are mounted near the inner corners of the $4-125 \mathrm{~A}$ sockets. The holes for them are drilled larger than needed to pass the ceramic portions, to keep the grid-to-ground eapacitance at a minimum.

The principal neutralizing adjustment is the split-stator variahle condenser, C_{8}, connected from the screens to ground. A single-section variable (Millen 19140 or IIammarlund MC-140) having supports at each end of the rotor shaft, was modified for this purpose as these types provide a symmetrical path from rotor to ground

Fig, 17-13 - Looking under the chassis of the hixh-power 2 -meter rig. At the lower right are the compore nents of the tripler stage, with the IX9903 driver tube just above the aluminum partition, 'The 4-12.5. sockets, grid rircuit. and sereen-neutralization eapacitor are at the left. The VR-1ube bias system is mounted on the rear chaseins wall.
for earh side of the rireuit. A strip of hrass or aluminum is first screwed to the metal mounting brackets at each and, twing them tondher electrically and merhanically. Then the stator bats are sawed in half, leaving an equal mumber of plates on cach side. These condensers have ? plates atach on stator and rotor originally. The middle stator phate is cut out and the front rotor plate removed, leaving a split-stator eondenser with + plates on eath stator and 8 on the rotor. The two seperon terminals on each socket are strapped together, and the connertion to the stators of C_{x} is made with copper strap. Symnotry and low inductance are extremely important in this circuit.

The screen dircuit also includes two solenoidteper r.f. chokes connected directly to the sereen terminals. These are under ('s and do not show in the bottom view. Their rommon comnertion is by-passed, and as small filter choke is comnected in the screen voltage lead for modulation purposes. The sorern variable capacitor is driven through two universal joint couplings to hring the drive shaft out to a point that provides a pleasinge front pamel appearance.

Fixed hias for the final stage is provided without use of hatteries or an external supply by inserting a voltage regulator tube in series with the grid leak and heporssing the tube with a low-leakage raparitor. When the gats tube fires with application of exatation, ('n charges. Removing exaitation stops the rurrent fow through the Vik tube and leaves the charge in (11 applied to the $4-125.1$ grids. This cuts off the plate and sereen current until the charge in ("n leaks off. The cut-off time varies with the leakage charanteristics of Cu and associated eomponents, and some experimentation may be neressary. An external bias source of (0) volts or more maty, of course, be substituted.

The construction of the final plate circuit is obvious from the top-view photograph. The tuning device, C_{9}, is made from parts of a standard
neutralizing caparitor (Millen 15011) mounted on t-inch roramic stand-offs (National (aS-l) in the center of the chassis. The lead serew on the adjustable phate is extended by menus of a short length of $1 / 4$-inch diameter brass rod soldered to its and, and this is connected through an insulating coupling and a polystrene rod to a knoh on the front pancl. This tuning arrangement provides no logging sabile or reset indicator of thy sort, hut it results in a very worth-while improvement in tink-rircuit efficiency over conventional tuning methods.

The copper tubing tank circuit is mounted in place by moans of straps of aluminum wrapped around the lines and fastened to the top of the stand-offs. Connection to the tube phates is made with $3 / 4$-inch-wide copmer straps that are bolted to the plate lines. No solder is used anywhere in this plate line assembly: the heat dissipated at the tube end of the line would be sufficient to molt soldered comnections. The hat-dissipating connectors for the $4-125 \mathrm{~A}$ phates were cut down to four fins high to reduce plate lead length. Just beyond the stand-off insulators and C_{9} the plate lines are bent to a vertical position around a radius of about one inch, the bottom of the line ending about a half inch above the chassis. Here an adjustable strap of ftashing copper is wrapped around the lines, and an l.f. choke is comerted through a lug to a feed-through bushing earrying the high-voltage d.e. The be-pass, ('w, is under the chassis.

Details of the antemma coupling loop are visible in the top view. The pirk-up loop is made abljustable by mounting it through it polystyrene rod that can be rotated from the front panel. This rod passes through a shaft bearing and a tension adjusting device (National SB and Millen 10061) mounted on a small aluminum bracket. Note that a short length of rod is fustened at the top of the loop, so that no adjustment of the coupling will allow it to come in contant with the line elentrically.

Adjustment and Operation

This rig contains its own filament transformer so only plate and soreen supplies are external. These should be capable of furnishing 250 volts at 75 ma . for the tripler, 400 volts at 200 ma . for the driver, 300 to 400 volts at 75 ma . for the fimal screens, and 1000 to 2000 volts at 100 mat. for the amplifier plates. The screens of the final and the driver plates maty be run from the same supply, though a more flexible set-up is possible if the voltage applied to the final servens is adjustable separately.

The tripler should be tuned up first. Plug a lowrange milliammeter in the tripler grid current jack, J_{1}, and apply gridedrive through a coaxial rable and J_{4}. Adjust the spacing betwern the two halves of the grid coil, L_{2}, and the position of L_{1}, for maximum grid current. This should be 1 to 2 mat. Transfer the meter to the driver grid jack, J_{2}, and apply plate voltage through R_{3}, tuning (" for maximum grid current, which should be between 3 and 5 ma. The inductance of L_{3} should be adjusted so that the low end of the band is reached with (', set somewhere between the mid-point and the maximum end of its range, Total plate-soreen current to the 5 - $6: 3 \mathrm{~s}$ need not be more than about 50 mat.

Next, tune C_{2} through resonance and note whether the grid current changes. Should it dip down at resonance the stage will require neutralization. This is unlikely with the 9903 or $5894 . \mathrm{A}$, however, as these tubes are designed to be inherently neutralized at frequencies around 150 Me. Next, plug a 200 -mat. meter into J_{3}, or conwert one externally in series with the plate-sereen supply, as shown in lig. 17-12, and apply plate voltage, preferably with a lamp lowd coupled to L_{4}. If the stage is working correctly, it should the possible to light a f()-watt lamp to full brilliance. Check for self-oscillation by removing excitation briefly. To protect the driver tube, it might be well to make these initial tests at 250 volts or so, increasing to $f(0)$ to $5(0)$ volts only when the stage is found to be working correctly.

Next, couple the output from the driver stage to the grid circuit of the final, by means of a coasial cable and L_{5} and L_{6}. The latter should be the same general shape as L_{7}, and mounted inside or just above it, with about $1 / 8$-inch separation. The resonant frequency of the grid circuit con be changed slightly by altering the shape of the grid inductance. Squeezing the sides together raises the frequency; making the tank more nearly round lowers it. When the circuit is properly resonated, it should be possible to develop 25 to 30 mat. grid current, measured in series with the V'R tube and ground ($1 / 1_{2}$ in Fig. 1). The setting of the screen-to-ground capacitor, C.8, will affect the grid current, but it may be set approximately to the proper point by adjusting it for maximum grid current with the plate voltage off. The total plate and sereen current should be 175 to 200 ma . When the coupling loops at both ends of the coas have been adjusted so as to give maximum grid current,
adjust the turn sparing of L_{4} so that its tuning capacitance will be the same as that of C_{1}. The two condensers may then be ganged by means of flexible couplings and an insulating shaft.

Now connect a 100 -watt lamp at the output terminals and apply about $5(0)$ volts to the final plates and 200 or less to the screens, metering both circuits as shown in the schematic diagram. Adjust ('g for maximum output, watehing the grid and plate meters. Move the setting of the sereen adjustment in small steps until maximum output, minimum plate current, and maximum grid current all oreur at the same setting of the plate tuning. This is the sereen adjustment at which the amplifier will operate most stably. Neutralization can also be done by rumning the amplifier without excitation, adjusting C_{8} until there is no evidence of oscillation, but this gives abroader indication than the first method.

Should it be impossible to achieve complete stability by the sereen adjustment alone, it may be neressary to add grid-plate capacitance by mounting stiff wires or tabs on the feed-through bushings. In this amplifier, the capacitance added bey the fred-through rods alone was just about the right amount, however. This is not the convent ional cross-over neutralization, but rather additional grid-plate eapacitance. The amount of caparitance added is adjusted in the same way as for triode neutralizing circuits of the crossover type.

Once the amplifier is stabilizer at low voltages, proceed to final rherks at normal plate and sereen operating conditions. A suitable load for high-power tests is something of a problem, as no lamp combination represents a load that simulates an antematsistem at this frequency. A fair load can be made, however, by connecting three or four (0 (0)-watt lamps in parallel. Lamps larger than the 100 -watt variety are useless for load purposes, as they tend to develop filament hot spots and burn out before reaching anything like normal brilliance.

A method of varying the sereen voltage continuously is extremely useful at this juncture, as the final tubes can be made to draw any desired plate current by suitable variation of the sereen voltage. Sireen dissipation should be watehed closely to see that it does not run much over 20 watts in plate-molulated service or 30 watts on c.w., and it is strongly recommended that a sereen-current meter be made a permanent part of the metering system. Eifficient operation is possible over a range of 800 to 2500 volts on the plates.

The tetrode amplifier with separate sereen voltage supply should never be operated without load, or with no plate voltage applied. Sereen dissipation is certain to be excessive in either ease and tube damage or failure is invited.

Tests with the lamp load should be monitored for freedom from modulation. With some types of chokes for L_{10}, there may be a tendency to oscillation at some audible frequency. Should this develop, it can be damped by loading the choke slightly with a resistor, as shown by R_{8} in Fig.

17-12. The highest value of resistance that will stop the oscillation should be used, if any is necessary. Substituting another choke is a better method. It should have a minimum of 5 henrys inductance, but a wide variety of small filter chokes may he satisfactory.

In general the manufacturer's typical operating conditions for the $4-125$ As cun be followed with good results, but many variations are possible. In v.h.f. work there is no need to run high power at all times, so provision should be made to drop the plate and screen voltages, Efficient operation at plate voltages as low as 800 is possible, if the screen voltage is altered in proportion. Considerable latitude in grid drive is also possible. The principal precaution is to see that none of the tube elements is operated above the maximum safe dissipation given in the manufacturer's literature.

- A FINAL AMPLIFIER FOR 50, 28 AND 21 MC.

The top unit in the rack of v.h.f. equipment, Fig. 17-7, shown in detail in Figs. $17-14$ through $17-16$, is a high-powered companion to the exriter described earlier. It covers the same three bands, with a maximum power rating of 600 watts input on AM 'phone, or 800 on c.w., and may be used with any exciter capable of delivering 15 to 25 watts output in the proper frequency range. It is completely shielded, for TVI reduction, and may be changed from band to band without opening the enclosure.

The plate circuit is a pi network, with a va-
riable inductor as the main element. Conventional bandswitching is employed in the grid circuit. Parasitic suppression and neutralizing methods are the principal departures from familiar practice. The aluminum enclosure calls for forced-air cooling.

Electrical and Mechanical Features

Looking into the top of the amplifier, as in Fig. 17-14, we see the 4-250 A tetrode tube at the left. Just below it is the neutralizing capacitor. At the center of the chassis is the imput tuning condenser, C_{9}, of the pi-network tank circuit, with the variable inductor at its right. The variable condenser at the far right is the output condenser, C_{10}. The small components to the right of the tube comprise the parasitic suppression circuit. The coupling capacitor, C_{8}, and the $50-$ Mc. auxiliary coil, L_{8}, are near the center of the photograph. Grid-circuit components are visible in the bottom view, along with the filament transformer, cooling fan, and modulation choke.

In order to obtain a satisfitctory tuning range and minimum stray inductance, at large neutrial-izing-type condenser is used for tuning the input to the pi-network plate circuit. The capacity range is about 5 to $20 \mu \mu \mathrm{fd}$. The output tuning range needed for C_{10} is roughly 50 to $150 \mu \mu \mathrm{fd}$., so a conventional transmitting variable may be used. With a properly matched load the r.f. voltage across J_{2} is low, and a plate spacing of 0,047 inch is adequate, even with high power.

The variable inductor assembly has considerable stray capacitance, which would make it

Fig. 17-14 - Iooking inside the 3-hand amplifier. Note the neutralizing condenser used for tuning the input to the pi-nctwork tank circuit. The suall air-wound coil, center, is the $50-\mathrm{Mc}$. portion of the tank, L8.

Fig. 17-15 - Schematic diagram and parts list for the 4-250 A amplifier.
C_{1} - $220-\mu \mu \mathrm{fd}$. silver mica.
$\mathrm{C}_{2}-30-\mu \mu \mathrm{fl}$. miniature varialule, dotble-spaced (Itammarlund 11 F-30-X, shaft-mounted).
$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14}, \mathrm{C}_{1},-0.001-\mu \mathrm{fl}$. disk ceramic.
$\mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{Cin}_{14}=\mathbf{5 0 0}-\mu \mu \mathrm{fd}$. 10,000-volt ceramic (Centralat, T\3-501).
 neutralizing condenser, with mounting bracket reversed).
$\mathrm{C}_{10}-200-\mu \mu \mathrm{fl}$. variable, 0.04 .-inch spacing (National TMK-3(0)
$\mathrm{C}_{11}-3-30-\mu \mu \mathrm{fd}$. mica trimmer.
$\mathrm{C}_{17}-2-8-\mu \mu \mathrm{fl}$. neutralizing condenser (National NC. $800 \mathrm{~A})$.
R_{1} - 10,000 ohme, 5 watts.
R_{2} - Siee trxt - use only if needed.
$1 \mathrm{R}_{3}$ - Approximately 106 ohms, 6 watts (three 330 -ohm 2-watl resistors in parallel).
$\mathrm{L}_{1}-2 \frac{1}{2}$ turns \o. 20 timed, -inch diam.: turns spaced $1 / 8$ inch (13 \& W Miniductor No. 3010).
ampossible to develop proper circuit Q at 50 Me. if the variable coil alone were used, so a smatl airwound eoil, L_{8}, is comected ahead of the variable unit. Its inductance is such that only a small portion (one turn or less) of L_{9} is used at 50 Mc.
l'arallel feed of the high voltage, through $R P C_{2}$, permits the tank circuit to be operated with no d.c. applied to its eomponents. The purpose of $R F^{*} C_{3}$ is to provide a path to ground for the high voltage in case ('s should hreak down. The coils L_{5} and L_{6}, the cabaucitor C_{11}, and the resistor R_{3} comprise a parasitic-suppression circuit that will he discussed later.

The grid circuit is largely self-explanatory, with the possible exception of the neutralizing method used. ('1 and ('is make up) a capmeity bridge, by means of which cuergy is fed back into the grid circuit from the plate. In this method, C_{1} has a critical value. It should be such that the amplifier can be neutralized with C_{17} at approximately the midpoint of its range. It is possible that some variation in layout might eliminate the need for neutralization, though provision
1.2-4 turns 13 \& W Yo. 3004 cemented inside cold end of l_{1}.
La3-8 turna No. 20 tinuerl, $\frac{3}{4}$ - inch diam., 埳 inch long, tapped at 6 turns (No. 3011).
$L_{4}-7$ turns $13 \& W$ No. 3001 cemented inside cold end of 1,3 .
1.5-3 turns No. 16 , tinned, spaced 16 inch, on $1 / 2$-inch diam. ceramic standooff, 1 inch long.
$1_{\text {a }}$ - - turne similar to L_{5}, and about $1 / 4$ inch away from it on same form.
1.7-10-hy. 100-ma. filter choke.
1.8 - 1 turns \o. 14 tinned, $5 / 8$-ineh diam., spaced $1 / 8$ inch.
$1 a-6.2-\mu h$. varialile inductor (13 \& IV No. 3851).
$1 \xi_{1}$ - Blower motor and fan (Allied Catalog Nos. $\overline{i 2}-702$ and 72-(03).
$\mathrm{J}_{1}, \mathbf{J}_{2}$ - Coasial fitting, female.

$\mathrm{s}_{1 \mathrm{~A}}, \mathrm{~s}_{1 B}$ - 3 -pole 3-position ecramic wafer switeh (Centralah, 2505, wafer type RR).
s_{2} - Single-pole single-throw toggle switeh.
should be made for it when the amplifier is built.
Note that the $4-250 \mathrm{~A}$ socket is mounted above the chassis, with the control grid toward the front. It is raised so that the prongs just clear the chassis. Dach contact, with the execption of the control grid, is then br-passed individually to the chassis with the shortest possible leads.

The sereen voltage is obtained from a separate source, in preference to the use of a dropping resistor connected to the plate supply. The modulation choke, L_{i}, should have a minimum of 10) henrys inductance, and a current-carrying caparity of about twice the expected screm current. The resistor connected across the choke should be added only if needed to suppress "singing" resulting from choke resonance in the audio range. It shoukd be the highest value that will stop such tone modulation of the transmitted signal.

Arrangement of parts should be such that r.f. leads are short, and copper or silver strap should be used in preference to wire in r.f. circuits wherever it is meehanically feasible. The by-pass, C_{7},
and the blorking caparitor, C_{8}, are high-voltage cerrmie units of the type used in TV receiver power supplies. The parasitir-suppression eirenit and the parallel-feed r.f. choke are mounted on a reramie pillar made from two 3 -inch stand-off insulators. The r.f. choke should be as far from the tube envelope as possible, to prevent blistering of the paint hy heat radiated from the tube,

The filament transformer, modulation choke, grid-circuit components and cooling fan are mounted below the chassis, which is a standard $3 \times 10 \times 17$-inch jobs. The fan maty be plated at any point where the blades can rotate chose to an intake hole. If this is not possible, a duct just larger than the area of the fan blades ran be used to chamel the air to the finn. The blades must be bent so that air will be drawn inw:urd. llotes in the chassis just below the tube socket and in the top cover over the tube provide the only air path out of the enclosure. Any other holes should be plugged, and the shielding of the upper portion of the amplifier should make angood fit to the chatssis. (ireulation may be cherked by placing a smoke source near the intake hole. The smoke should be drawn in raphidly, flowing out through the top holes only. A light piece of piper phaced over the holes in the top rover should rise pereeptibly when the fan is started.

The shichling of the main assembly is made in four piowes, fitted to the front, back and sides of the chatsis. The edges are folded over three quarters of an inch and drilled and tapped, or the assembly may be made with self-tapping serews. The entire joh should make good contact electrically and mochanscally, if cooling and TVI prevention mestares are to be effeetive.

Adjustment and Operation

Initial tests may be made on the amplifier with the parasitic suppression and neut ralizing circuits omitted, though both will probstbly be needed. Start with resistor bias only, as instability will be more evident if the phate current is not cut off in the absence of excitation. The plate and screen voltages should be such that the dissipation by these elements is below the permissible maximum for the tube. A suitable load for the first tests can be made by conneding three 100 -watt lamps in par:allel at J_{2}.

With : $25-$ or $50-\mathrm{ma}$. meter connected between R_{1} and ground, apply plate and sercen voltages (but not grid drive) : and watch for signs of grid current. If any appears it will indieate oseillation, either : v.h.f. parrasitie, or tuned-plate tuned-grid feed-back near the operating frequency. If a v.h.f. parasitic is encountered, it can be suppressed with the LCR combination slown in the schematic diagram. L_{6} and C_{11} tune to the parasitic frequeney. L_{5} should be as low inductance as possible, in order to keep the frequency of the parasitic high. The lower the parasitic frequency the greater will be the 50-Me, energy dissipated in the suppression circuit. With the values given in the parts list there is no overheating of the resistors ly dissipation of 50-Me. rnergy, yet the loading at the parasitic frequency is sufficient to prevent oscillations from starting up, if the tuning of C_{11} and the coupling bet ween L_{5} and L_{6} are andjusted carefully.

A check on the need for neutralization maty be made by operating the amplifier normally and observing the grid and phate currents simul-

Fig. 17-16-I3ottom view of the amplifier for 50,28 and 21 Mre, with boltom cover removed. Note method of mounting the ventilating fan. The chassis should be matle as nearly airtight as possible, except for the fan lode and holes drilled under the tube sorket. Air is thus drawn in through the base and forced up around the base seal of the tube, leaving through holes in the top eover. Screcning of the fan hole may be required for I'VI prevention.
tancously. Maximum grid current and minimum plate eurrent should oecur at the same setting of C_{9}. If the grid current rises as the plate circuit is tuned to the high-frequency side of resonathee, more neutralizing eupacitance is needed. If neutralization cannot be achieved at any setting of $C_{1 z}$ it may be necessary to use a different value of eapacitance at ('1. Werfert neutralization may not be possible on all three bands with one setting of C_{17}, but it should be possible to find a sat isfactory compromise.

With the amplifier operating stably, actual on-the-air conditions can be sot up. The typical operating conditions given by the tube manufacturer can be used as a goide, but any of the values can be varied considerably, provided the maximum sate figure for eath of the tube clements is not exereded. Thus it maty be desirable to lower the grid bias when operating at low plate voltage, in order to get the amplifier to draw more plate current. As little as 1000 volts on the plate works well, provided that the grid drive and sareen voltage are properly altered.

If the antenma system has an open-wire or other balaned line, the output of the amplifier should be fed through an antemat coupler that provides for coaxial input and balanced output. A low-pass filter can then be usod, if needed, between the amplifier and the antema coupler, to reduce harmonic radiation that might cause TVI.

Though the adjustments are not eritical, there are certain optimum values of C_{9} and L_{9}. Their sclection is explained in the discussion of tank rircuit (Q elsewhere in this Handbook. Capacitance required at C_{9} will be of the order of 7 to $12 \mu \mu \mathrm{fil}$. for 50 Mc., 10 to 15 for 28 Me ., and around 20 $\mu \mu \mathrm{fd}$. for 21 Mc . This will be nearly "all out" for io Mc., near the midpoint for 28 , and down to about $1 / 4$ inch for 21 . The variable coil can be adjusted for resonance for each band, and the approximate number of turns required an be logged for future reference. Logging of settings
for C_{9} can he done similarly. Adjustment of the variatble coil should the mate at low power level, to avoid areing at the contact surface and possible dumage to the roller and coil.

The capacitance needed at C_{10} will be about 50 $\mu \mu \mathrm{fd}$ for 50 Mc ., 100 for 28 and 150 for 21 Mc . Adjustment of this control is similar to the use of the familiar swinging link. It is an output coupling adjustment only, and either L_{9} or C_{9} should be reset for resonance whenever C_{10} is varied. Adjustment should be made with a standingwave bridge connected in the coaxial line between J_{2} and the antenna coupler, taking care to see that the load is properly matehed.

A V.H.F. MAN'S VFO

The frequeney-control unit shown in Figs. 17-7 and $17-17-17-19$ is designed for the v.h.f. operator, though it may be used on all bands from 3.5 Me . up as well. When used with the other equipment described in these pages it converts the crustal oscillator stage of the exciter to a frequency multiplier. The VPO unit has a speech amplifier and a reactance modulator for narrowland FMI built in.

The oscillator is a 57 (i:3, with a series-tuned Colpitts rircuit having a tuning range of 3000 to 4000 ke. Its plate circuit is untuned, and the output is fed to another 5763 that serves as either amplifier or doubler. The plate eireuit of the second stage may be tuned to the oscillator frequency or to its second harmonie.

With the values given in the parts list, one sweep of the vernier dial tunes the oscillator from 3000 to 3713 ke ., with a lit le leway at each cond. The second stage is normally tuned from 6000 to 7425 ke , taking care of the $21-, 27$-, 28-, 50- and $144-\mathrm{Mc}$. requirements of the complete station as desired. By resetting the band-set condenser, C_{2}, slightly the oscillator range can be extended to 4000 ke., permitting use of the VFO over the entire $3.5-\mathrm{Mc}$. band, as well as the 7 - and $14-\mathrm{Mc}$. bands if the user so desires.

Fig. 17-17- Top view of the VFO unit, with cover removed. Spech-amplifier and reactance-monlulator components are at the right, with the oscillator tuning condenser and coil near the center. An aluminum partition divides the oseillator sochet. The amplifier stage is at the left end.

Fig. 17-18 - Schematic diagram and parts lint for the VF() and reactance modulator.
$\mathrm{C}_{1}, \mathrm{C}_{2}-50_{-\mu \mu \mathrm{fl}}$. variable with rotor hearing at each end of shaft (Ilammarlumi M(:-,j0). Remove plates in Ci for desired bandspread - see text.

Ciz-25- $\mu \mu \mathrm{fil}$. ceramie or mica.

$R_{1}-68,000$ ohms, $1 / 2$ watt.
$R_{2}-1000$ olmens, $1 / 2$ watt.
$\mathrm{R}_{3}-33,000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{4}-92,000$ ohms, 1 watt.
$\mathrm{R}_{5}-1$ megohm, $1 / 2$ watt.
$R_{6}, R_{10}, R_{11}-0.47$ megohm, $1 / 2$ watt.
$\mathrm{K}_{7}-0.22$ megohm.
$R_{8}-0 . \overline{2}-m e g o h m$ potentiometer, with switch.

Construction

Mechanically, the VFO is similar to the exciter, in that it is built inside a standard $3 \times 1 \times 1 \overline{7}-$ inch aluminum chassis, with the tubes and filament transformer projecting from the rear wall. This makes a compact shielded unit that mounts on a $31 / 2$-inch rack panel. Looking into the top front view, lig. 17-17, we see the oscillator tuning condenser, C_{1}, at the center, driven by the vernier dial. The oscillator inductance is to the left. An aluminum partition splits the oscillator tube socket, with pins + to 7 on the right side of the partition. Components of the output stage are at the far left. On the right side are the reactince modulator and speech-amplifier sockets, the deviation control, the band-set condenser, C_{2}, and the microphone jack.
R_{9} - 0.1 megohm, $1 / 2$ watt.
11_{12} - 820 ohms, $1 / 2$ watt.
$11_{13}-10,0(10)$ olmes, $1 / 2$ watt.
$1_{1}-10-\mu \mathrm{l}$. 25-watt transmitting coil (B) \& W Baby Inductor, type $80 \backslash$, with phy-in base removed)
$1.2-14-\mu \mathrm{h}$. 25 -watt transmitting coil, end-linked (B . "1 type 10- $11: 1$, with pluy-in base removed).
1.3-1-turn link, part of L_{2} assembly.
J_{1} - Closed-cirvuit jack.
$J_{2} J_{3}$ - Coaxial fitting, female.
 type (Natimal li-100s or R-100t'),

S-S.f.e.t switch, shaft type.
S_{2} - Switch or sain control, h_{p}.
T_{1} - 6.3-volt 3-amp. filament transformer (Chieag, JO-(6.3).

The inductances in both stages are made from commercial plug-in coil assemblies. The plug-in bases are removed, and the coils mounted on pillars. The oscillotor eoil should have at least one half its diamoter in all directions clear of metal objects of appreciable size. Wiring should be done with stiff wire, and all components connected with the oscillator circuit should be mounted rigidly:

Where the eable between the VFO and the following equipment is very short, the output from J_{2} mas be fed directly into the crustal socket. For more remote operation it may be neressary to install a tuned circuit and link coupling at the exciter end in order to insure efficient transfer of energy between the two units.

The reactance modulator follows standard prontice. The gain of the first 6BA6 stage is sulti-

Fig. $17-19$ - I.ooking into the VFO from the rear. The variable condenger at the left is C_{2}, for setting the band on the vernier dial. The large variable at the right allows the output cireuit to be tumed to the oscillator frequency or its second harmonic.
cient to permit NFM operation on 10, 6 or 2 meters, with a crystal midrophone. With the method of connection between the modulator and the oscillator shown in the sehematic, the deviation is too low for use on frequencies lower than the 27-Mc. band. More deviation can be obtained by connerting the lead from the coupling rapacitors, C_{15} and C_{16}, to the stators of C_{1} and C_{2}, instead of arross the tuned circuit. If the FMI is to be used only above 27 Me., however, the method shown is reeommented.

Provision is made for turning off the heaters
 is not in use. There is some frequency shift when the heaters are turned on and off in this way, however, and if the user experts to change frequently from FMI to other modes it would be well to have So break the 13 -plus lead, rather than the heaters. Where the deviation control is conneded in the reactance-modulator grid circuit, as is done here, abocking calbatitor, (${ }_{14}$, must be added in series with the arm of the potentiometer. Otherwise, variation of the control will affert the frequeney of the oscillator.

Operation

Deviation should be adjusted by listening to the signal on the band where the transmitter is to be usod, as it inereases with each frequency multiplieation. Monitoring the signal is easy, as the proper harmonic of the VFO can be used, and all the rest of the rig left inoperative, thus preventing blocking of the receiver. Deviation requirements of various receivers will vary widely, hut a sufe starting point is to set the control so that speech sounds elean in a communieations receiver with its arystal filter in the broadest "on" position.

The VHO dial (National MCN) can he calibrated with the aid of a receiver capable of tuning the oseillator or doubler range. Set the vernier dial so that the variable condenser is at maximum. Then adjust the bandset condenser until the oscillator frequency is 3000 kc . Check the tuning range before removing plates from C_{1}.

The tuning range can be made to cover 3000 to $4(O) \mathrm{kc}$. without resetting the bandset condenser, or if the user is interested in the v.h.f. bands only, it can be redured to 3000 to 3375 kc ., multiples of which rover the 50 - and $144-\mathrm{Mc}$. bands. Plates can be removed from C_{1}, one at a time, resetting C_{2} each time so that the frequency of the oseillator is 3000 ke . with C_{1} at maximum, and checking the tuning range on the calibrated receiver. To cover 3000 to $3 \overline{1} 1: 3$ ke., C_{1} was redured to 3 stator and 2 rotor plates.

To use the VFO with the exciter described earlier, no more than 150 to 200 volts is needed on the second stage. Cathode current, metered at J_{2}, will be around 10 ma . when the doubler plate circuit is tumed to resonance. At this low input the tuning is unimportant, so long as the stages following receive sufficient excitation, It is not neeressary to retune the doubler plate circuit for frequenty shifts normally made within any one band.
The construction of the Vro () is such that there should be little frequency drift due to heating as the tubes are operated far below ratings, and heing mounted outside the main assembly they cause little temperature change in the frequencycontroling elements of the oscillator circuit. No sperial TVI precautions were taken, other than the shielding inherent in the design, and the use of shielded wire for all power wiring.

It is important that the power supply used on the VFO and modulator be well filtered and free from hum. Particularly where FM is used, the slightest a.c. ripple will show up in objertionable proportions. With suflicient filtering in the power supply, the note should be nearly comparable to restal control, even on the v.h.f. range.

Note that no mention is made of keying the VF() unit. lxperience has shown that oscillator keying results in too much frequency shift to he usable in v.h.f. work without precautions that are out of line for a simple unit such as this. In v.h.f. work, at least, keying should be done two stages or more away from the oscillator unless extensive stability measures are taken.

Transmitter-Exciters for 50 and 144 Mc.

The units shown in Figs. 17-20 through 17-25 are designed to serve several purposes. They may be used individually or together, depending upon whether the buidder wishes to operate on both 50 and $144 . \mathrm{Mc}$. or on either band alone. They may serve as complete transmitters for either mobile or homo-station service, or they may be used as exciters for driving higher powered stages. The dual tetrode amplifier of Fig. 17-26 would be a suitable following stage for up to 100 watts input.

Overtone oscillator circuits are employed in the interest of low power consumption, rircuit simplicity and ease of TVI prevention. Power wiring is done with shielded wire, and the physical arrangement of the parts is such that nearly complete shielding is ohtained. If further enclosure is neded to provent TVI it is morely neerssary to cover the top of the unit. Power output is taken off by moans of coaxial fittings, for convenionce in mobile operation, and for complete shiolding.

The two units are as similar, both meehanically and electrically, as possible. Both are built entirely on their 5×10-inch sheret aluminum top platers. These are screwed onto inverted $3 \times 5 \times$ 10 -inch steel or aluminum chassis. Both use a 12AU7 dual triode as oscillator and frequeney multiplier, with a 2 F26 final amplifier. The $144-$ Me. unit has a 5763 doubler stage betwern the $12 \mathrm{AU7}$ and the $21: 26$, and the operating conditions of the stages vary somewhat.

The needssary driving power for the final is more readily obtained on 50 Ne., so the oscillatormultiplier is sot up to rum at lower input. Imlustive neutralization (L_{4} and L_{5} in Fig. 17-2'2) was used to stabilize the 50-Ne. unit, whereas a small capacitance acromplishes the same eme in the 144-Ne. amplifier. An end-linked tank circuit works well on 50 Me., but a balanced tank with centor link is more satisfactory for 144 Mc.

Both transmitters are set $u p$ to permit complete metering of all stages. Looking at the male chassis fittings in the schematic diagrams, it may be seen that cach grid return, screen and plate lead is brought out to a separate pin. It is helpful during the adjustment of the rigs to be able to meter earh stage withont breaking into the main
wiring. This is done by connecting a meter temporarily between the proper power plug pins. After adjustment is completed the meter can be roplaced with a jumper in the plug. The exciter stages require 250 to 300 volts. The amplifier may be operated at the same level, or if more power is wanted the final plate voltage may be raised to 400 volts.

Adjustment and Operation

With either rig the oscillator stage should be checked first. This should be done with 150 to 200 volts until correct operation is cstablished, and with no voltage on the following stages. froper operation of the oscillator depends on the amount of fered-back, which can be adjusted by varying the position of L_{2} with resperet to L_{4}, of by changing the number of turns in either winding. For hest mechanical stability, the two coils are made from a single piece of 13 \& W Miniduetor, breaking the wire to give the spereified number of turns in cach winding. Because the characteristics of tubes and erystals vary somewhat, it is well to start with at least one extra turn on each winding.
The feed-back should be only enough to insure casy starting of the oscillator under load. Adjustments should be made with the grid circuit of the following stage completed, with a low-range milliammeter conneeted to the proper terminals on the plug to read grid current. Oscillation will be evideneed by the sudden appearance of grid current as C_{I} is rotated. If the feed-back is correct, this will ocrur at only a small portion of the tuming range of C_{1}. Listen to the oscillation at 24 or 25 Mc . It should vary only slightly in froquenery, if at all, as C_{1} is tuned. If the frequence changes gradually across the tuning range the uscillator is not erystal controlled, and too much feed-hark is indicated. IRemove a turn at a time from L_{2} until only crystal-controlled oscillation remains. If there is insufficient feed-hack there will be no oseillation. Feed-back can be inereased be removing turns from L_{1}, or adding turns to L_{2}. If several erystals are available, try to find a median setting that will work with all of them.

Crustals may be the overtone variety, marked

Fig. 17.20- A 25. watt transmitter or enciter for $\mathbf{3 0}$ Mr. ()scillator and donbler are tuned by serewilriver adjustments at lower loft and conter of top plate. The amplifier control is the knoh at the right. The ll-pin power fitting is at the center, rear, and the antenna output fitting is in the upper right.

Fig. 17-21 - Bottom view of the 50. Mc. transmitter-exciter. Oscillator, donhter and final circuits are from left to right. Note the inductive nentralization linh hetween L_{3} and La4. Disrexard the power fitting at the louer left and follow Fig. 17.22 for pow er connections.

for frequencies between 24 and 27 Me., or they may be fundamental-type cuts for 8 to 9 Me., working on their third overtone. Much less feedbark is needed for overtone erystals ordinarily, and if they are to be used exdusively L_{2} may be redued to as little as three turns. If difficulty with starting under load is encountered, the size of the eoupling capacitor, C_{3}, can be reduced, and it nay be advantageous to connert an r.f. shoke hetween Pin 2 of the frequency multiplier and the grid leak, R_{3}.

The second half of the 12.1 U7 is operated as a doubler to 50 Me in the unit for that band, and as a tripler to 72 Mc . in the $144-\mathrm{Mc}$. model. It has no unusual features in either case. The amrplifier is so easy to drive on 50 Me , that inpurt to both the oscillator and doubler stages can be kept at quite low hevel - not more than about 10 ma. plate current for each section. In the 144-Mc. unit the eurrent drains will run about 12 to 15 ma . for each stage. Grid current should be 1 mat. or more in either case.

Fig. 17.22-Schenatic diagram and part: list for the $\mathbf{5 0}$. Mo.. tranmittereeveiter.
(it - $50-\mu \mu \mathrm{fd}$, trimmer (Millen $26050-\mathrm{L}$ N).
($2, \mathrm{C}_{3}, \mathrm{C}_{\overline{7}}, \mathrm{C}_{9}-0 .(\mathrm{H}) \mathrm{I}-\mathrm{ffl}$, dise ceramic.
$\mathrm{C}_{3}, \mathrm{C}_{6}-50-\mu \mu \mathrm{Cd}$. ceramic.
$\mathrm{C}_{4}-2 \mathrm{O}-\mu \mathrm{Hfd}$ trimmer (National MSR-20).
$\mathrm{C}_{8}-20-\mu \mathrm{fd}$. double-spaced shaft-type trimmer (Mii). len 20920).
$R_{1}-39,000$ ohms, $1 / 2$ watt.
$R_{2}, R_{4}-470$ ohms, $1 / 2$ watt.
$R_{3}-100,000$ ohms, $1 / 2$ watt.
$\mathrm{K}_{5}-68,000$ ohms, $1 / 2$ watt.
$11_{6}-30,000$ ohms, 3 watts. (310,000 -ohm 1 -watt resistors in series. May be reduced in resistance and wattage for 300 -volt operation.)
$\mathrm{L}_{1}-9$ turns No. $20,1 / 2$-inch diam., 8 ín inch long ($\mathrm{B} \& \mathrm{H}^{2}$ Minidactor No. 3003).
$12-4$ turns No. $20,1 / 2$-inch diam., $1 / 4$ ineh long. L_{0} and $L 2$ are made from a smole piece of 13 \& 10 Miniductor No. 3003 , 13 turns total. Sece text and Fig. 17-2l.
$1,3-5$ turns vo. $20,1 / 2$ ineth diam., 5ín inch long (13 \& W No. 3003).
Ja, J_{5} - -turn neutralizing loops connected by link, No. 14 enam. See Fie. 17.21.
be -5 turns No. 16 , 1 -inch diam., $11 / 4$ inch long (B \& II No. 3021).
1,7-3 turns No. 14 enam., $3 / 4$ - inch diam., inside cold end of I.c.
$J_{1}-$ Coaxial output fitting.
J_{2} - 11 -pin male chassis fitting (Amphenol 86RCP11). RFC1 - 1 -rnh. r.f. chohe (Aational R-50).
$12 \mathrm{FC}_{2}-2.5-\mathrm{mh}$, r.f. choke (National R-100)

Fïg. 17.2:3-1'op view of the 25 watt 14. Dre transmitter. Layont is similar to (he 50- \or model, except for the additional doulder stage and the mounting of the final tank circuit above the chassis.

The 5763 doubler stage in the 2 -meter unit is of conventional design. Care must be taken in layout to keep, down lead inductance. Note that the lead from the plate to the tuning condenser is made of guarter-inch wide copper strip.

Because of the difference in layouts repuired for the two frequencies, the two amplifiers operate somewhat differently. The 50-Mc. unit has the final tank coil and antenna coupling underneath the chassis. There is thus more feed-back, and neutralization was needed. This is furnished by the link that may be seen in the bottom view, Fig. 17-21. A loop of No. 14 enameled wire is
mounted on stand-offs, with one turn coupled to L_{3} and the other end to L_{6}. The position of the coupling loop at either end is adjusted for neutralization in the same way as for capacitively neutralized amplifiers. The loop) (L_{5}) is betwern the second and third turus of $L_{\text {a }}$, with the anterma coupling coil bolow. Slight variations in layout may eliminate the meed for neutralization, so the amplifier operation should be checked without it at first.

In order to shorten the phate lead, the plate circuit of the 2 -meter unit was mounted above the chassis. This permits use of a balanced tank cir-

Fig. 17-2.2 - Schematic diagram of the 1H-Mr, tranamither. Bhttom view of both power plugand somet are shown.
C_{1} - 50 - $\mu \mathrm{ffl}$. trimmer (National PSil-50),
 eramic.
$\mathrm{C}_{3}, \mathrm{C}_{8}-2 \overline{2}-\mu \mu \mathrm{fl}$. ceramic.
(4-2.)- $\mu \mathrm{ffl}$. trimmer (National PSR-25).
 cut down to 2 rotor and 3 stator plates).
Ci2 - $10-\mu \mu \mathrm{fd}$. ceramic.
Cis - $10-\mu \mu \mathrm{fl}$. per section imaterfly (Johnson 101.315).
$\mathrm{R}_{1}-10,000$ ohms, 1 watt.
$\mathrm{R}_{2}, \mathrm{H}_{4}-470$ olms, $1 / 2$ watt.
R_{3} - 100,000 ohms, $1 / 2$ watt.
$\mathrm{R}_{5}-68,000$ ohms, $1 / 2$ watt.
$R_{6}-12,000$ ohms, $1 / 2$ watt.
$R_{7}-22,000$ ohms, $1 / 2$ watt.
K_{x} - 22, (116O ohms, I watl. Make like R_{6} in Fig. 17-22 if using more than 300 volt phate supply.
1.1, I_{2} - Similar to l'ig. 1--22.
$1.3-4$ turns So. 18 , ${ }^{2}$-inch diam., $1 / 2$ inch long

L4 - 4 turns No. $14,1 / 4$-inch diam., $5 / 8$ incla long.
Ls-6 turns Io. 14. 3 turns each side of center paced diameter of wire, $1 / 2$-inch diam., $1 / 4$-inch space at center of L_{ε}.
$1.8-2$ turns No. 14 enarn., $1 / 2$-inch diam.
J_{1} - Coaxial output fitting.
$\mathrm{J}_{2}-11$-prong male chassis fittiag (Amphenol 86 RCPII).
$12 \mathrm{PC}_{1}$ - Fuh. r.f. choke (Ohmite Z.-50).
$\mathrm{RHC}_{2}, \mathrm{RFC}_{3}, \mathrm{RFC}_{4}-1.8-\mu \mathrm{f}$. r.f. choke (Ohmite 1.-144).

Fig. 17.25-1 Inder-chassis view of the 144-Me. transmitter. Oacillator, tripler and doulber tuned circuits are from left to right.
ruit and practically eliminates the need for neutralization. To make up the difference in capacitance on the two sides of the circuit, a lead from the low side is run through a chassis bushing to just below the chassis level. If there is instability, the length of the lead below the chassis can be varied to effect neutralization. Contact is made to the 2 2V26 metal ring externally by means of a spring elip mounted under one of the socketmounting serews. This contributes to more stible operation of the amplifier, though connertion is made to the ring internally through lin 8 . Shichding may or may not be necessary on the 5763. Operation of the tube without a complete shield results in more effertive cooling, and is recommended if possible.

Operating conditions for the various stages follow the tube manufacturer's recommendations closely. If more or less input to the final stage is

desired it can be controlled by variation of the screen voltage, with a smaller or larger dropping resistor value.

If both transmitters are to be used, their operation may be controlled be an external switch that furnishes heater voltage to the unit desired at the moment. Plate voltages may be left conneoted to both units in this case, as only the one whose heaters are energized will draw current. Loading on the amplifier is varied by adjusting the position of the output coupling winding. In some cases the insertion of a series tuning condenser between the coupling loop and ground may be desirable. Power output will be about 15 watts maximum on 50 Me. and about 10 watts for the $14+-M c$. unit. If the plug connertions given in the schematic diagrams are followed it will be possible to interchange the two power plugs without affecting the operation of the rigs.

A 100-Watt R.F. Amplifier for 50 and 144 Mc.

The r.f. amplifier shown in Figs. 17-26, 17-27 and $17-2 \mathrm{~s}$ is designed for use with a dual beam tetrode such as the 829 B or $\mathrm{A} \times-9903$. It is capatble of handling an input of up to 120 watts on (e.w. or FMI and about 100 wats on .1. ' $^{\text {phone. }}$ The driver stage should have an output of $\overline{5}$ watts or more, to assure adequate driving power. The same general hayout may be used with an 832 A or 815 , if a suitable value of grid resistor is used. The 815 also requires a different socket.

The amplifier is built on an aluminum chatsis 3 by + by 17 inches in size, with practically all components mounted topside. 'The two-band
tank rireuit described in Fig. 17-3 is used, to facilitate easy band changing and assure efficient operation on lit Me. Only the plate circuit is tuned. The gride coils are made to resonate with the imput capacitance of the tube. The plate tuning condenser is cut down to a capacitance suitable for $144-\mathrm{Mc}$. used by removing plates, leaving two stator and throe rotor plates in each section. The two stator plates left are those on either side of the stator eonnection lug. One rotor plate is removed from cach end of the shaft and four from the midelle.

The tube soreket is mounted on a bracket $35 / 8$

Fig. 17-20 - A dual-tetrode am. plifier for 50 and 144 Vlc, with $\overline{3} 0$. Ne, coils in place. In the foreground are the 1.11 - Mr. grid coil and the antenna coupling lown used for 144-Me. oneration.

inches high, with the tube centered $21 / 2$ inches above the chassis. The tuning condenser and coil socket are also mounted on brackets, the former $23 / 8$ inches high. Both brackets have C'shaped cutouts to pass the plate lines with at least 5,1 ; inch elearance all around.

The plate lines are 5 to inches long, exclusive of the flexible portion at the plate end. This is of tinned braid, making $11 / 4$ inches additional, from the end of the lines to the slip-on connertors. The flexible portion of the line is made fast by inserting the cond of the braid in the tubing and rrimping the tubing in a vise. The connection is soldered for added firmness, but the tubing should be squeraed tight enough to hold the braid in place, ats long periods of operation may heat the line sufficiently to loosen soldered conmections. Connections from the lines to the tuning condenser are made by wrapping the tubing with four turns of tinned wire and soldering this wrap to the line and the condenser tah. The far end of the line is mounted on 2 inch standoffs and small copper brackets, bringing the over-all height to $2 \frac{1}{2}$ inches.

The spacing of the lines, $3 / 4$ inch renter to conter, is dotermined by the spacing of the pins of the Miflen 37212 plug used for athorting har. A short is placed across the terminals of the plug, and connection is made for the $[3$-plus with a flexible

Fig. 17-28 - Bottom view of the tetrode amplifier.
lead. The Millen $3 \overline{2} 211$ sorket, mounted at the end of the chassis, sarves as a convenient storage deviee for the plug and ats a terminal strip for $R F C_{2}$. The plus may be used to adjust the line length; sliding it into or out of the line permits an adjustment of about $1 / 4$ inch in over-all length. This may be useful in counteracting for slight variations in tube characteristies.

The grid coil socket is mounted on a plate held in position by the screws on which the tube socket is mounted. It is positioned for minimum lead length - an important consideration. The

Fig. 17-27-schematic diagram of the two-band tetrode amplifier.
$\mathrm{C}_{1}, \mathrm{C}_{2}$ - Ventralizing capacitors, sce text.
$\mathrm{C}_{3}, \mathrm{C}_{4}-0.0101-\mu \mathrm{fd}$. disc ceramic.
C_{5}-Split-stator variable, approx. $15{ }_{\mu} \mu \mathrm{fd}$. per section (Millen 24935 with 2 stator and 3 rotor plates removed from each section).
$\mathrm{C}_{6}-0.001-\mathrm{ufd}$ mica, $\mathrm{I} \mathbf{2} \mathbf{0} 0$-volt rating.
$R_{1}-1700$ ohms, I watt.
$112-10,000$ olums, 10 wattes.

141 Me:: U-shaped loop $1 / 2$ inelt wide and $11 / 8$ inch long, No. 14 tinned.
$\mathrm{L}_{2}-50 \mathrm{VC},: 2$ turns earh side of L_{1}, same dia. and spacing, center tapped. Can be made by removing one turn from each end of a National AR-16 10-S assembly.
144 Ne.: 1 -shaped loop similar to L_{i}, bot center tapped. See Fig. 17-26.
$\mathrm{L}_{3}-3$ turns each side of center, Vo. 12 timel, 1 inch dia., spaced 1 dia., center tapped. Leave $1 / 2$-inch pace for L_{4}.
14 - 3 turns No. 14 enamel, 1 -inch dia.. spaced 1 dia.
$\mathrm{L}_{5 \mathrm{~A}}, 1.5 \mathrm{~B}-1 / 4$-inch o.d. copper tubing, $51 / 2$ inches long, spaced $3 / 4$ inch on centers. Make 7 inches long for $0903 / 5894 \mathrm{~A}$.
Ls - Hairpin coupling loop $31 / 2$ inches long, $3 / 4$ inch wide, No. 12 enamel. $\mathrm{J}_{1}, \boldsymbol{J}_{2}$ - Closed-circuit jack.
J_{3} - Male a.c. comnector.

RKC2 - I. 8 - μ h. r.f. choke (Ohmite $/ 2-144$).
T_{1} - Filament transformer, 6.3 volts, 3 amp .
input eapaeitanee of the 829 B is high enough so that it may be impossible to resonate the grid circuit at 148 Mc ., if appreciable lead length or stray capacitance is introduced. If an 832A or AX-9903 is used the grid coil will be somewhat larger than that specified and neut ralization may not be nereled.

Neutralization is accomplished, when required, by means of leads brought through the bracket, adjacent to the tube plates. These are crossed over to the opposite grids at the socket. Feedthrough bushings are used and soldering lugs are attached to the bushings to provide the neutralizing caparitance. If more is needed these can he replaced with small tahs of sheet eopper.

There maty be a slight change in meutralizing capacitaner needed for the two bands. As neutralization is inclined to be more critical at the higher frequence, the adjustment should be made carefully on $1+4 \mathrm{Mc}$. This same setting may be satisfactory for 50-Mc. operation as well.

The plug-in eoils are mounted on National P13-16 bases, fitting NB-16 sockets. When the stage is used on 144 Mc. the coupling is by means of a hairpin loop which plugs into the coil socket. The r.f. output is thus fed down to a crystal socket on the back of the chassis, for either band. A similar crystal socket is used for the r.f. input, at the tube end of the chassis.

Transmitter-Exciter for 220 Mc .

Construction of a stable transmitter for 220 Me. is not difficult, and though simple oscillatortope rigs may suffice for short-range work, erystal control or its equivalent is highly worth-while. A low-powered transmitter need not be costly, as receiving tubes can be used throughout, and by selection of a frequency near the low edge of the band, a crystal can le obtained that will serve for the upper portion of the $1+4-\mathrm{Me}$. hand as well.

The transmitter shown in Figs. $1 \overline{-29}$, 17-30 and $17-31$ delivers about two watts. The final stage may be modulated for voice work, or the unit may be used as an exciter to drive higherpowered stages. Three 12AT't dual triodes are used. The first serves as a third-overtone oseillator and frequeney tripler. This drives a pushpull tripler to the operating frequence. The output stage is a neutralized push-pull amplifier.

Probably any of the several dual triodes having the same base connections as the 12 AT 7 could be used, and with minor modifications (iJtis will work well. The safe input for 6.J6s is slightly lower, however, as their maximum plate voltage should not be higher than 250 volts. The 12 AT 7 s will stand 300 volts, if the rig is adjusted properly.

Crystal frequencies should lie leotween 8.15 and 8.3:3 Me, or 24.45 and 25 Mc . If the same erystal is to be used in $1+4-$ Me. work, it should be between 8.15 and 8.222 or 24.45 and 24.66 Ma . Where erystals in the 8-Mr. range are used, it is suggested that values multiplying out to frequencies well inside the band edges be chosen, as the overtone frequency may not be exactly three times the frequency marked on the holder.

Construction and Adjustment

The transmitter is built on a shect of aluminum 5 by $91 / 2$ inches in size, so that it may mounted on a standard aluminum chassis of the same dimensions, 2 inches high. This makes for a minimum of mechanical work, and provides exellent shielding. Power leads are made with shielded cable, and each plate and grid lead is decoupled, to prevent radiation of harmoniss through the power cabling. The shielded wire may not be necessary as a TVI-prevention measure, but it makes a neat assembly, and it is easy to install. Should TVI become a problem, most of the preventative moasures will already have heen taken.

In both top and bottom views the principal components may be identified readily. From left to right, we see the erystal and its associated eireuit, the oscillator-tripler tube, the tripler plate cirruit, the push-pull tripler tube, tripler plate and amplifier grid eircuits, and final amplifier stage. Power is brought to the varions circuits through an 8 -pin power fitting, provision being made for metering all important circuits. The tube sockets, cristal socket, tuning condensers and output socket are centered on a line drawn down the middle of the base plate.

Initial adjustment of the transmitter can be done with any power supply that will deliver 150 to 250 volts. The rig can be operated at higher voltages than this, but for the first work it is well to stay Irelow 250 volts, If a 300 -volt supply is used a 10 -watt resistor of about 5000 ohms should be connected in series with the supply voltage temporarily. If the power fittings are wired as shown in lig. 17-30, the various circuits can be metered during the testing operation.

Fig. 17.29 - Top view of the $220-$ Mc. transmitter.
Start, with the oscillator, by connecting a 50-or 100-ma. meter between l'ins 3 and 4. Ieave Pin 2 open for the present. . Ipply plate voltage and note the current as C_{1} is rotated. There will be a sharp dip as the tube goes into oseillation. Check to see if this oscillation is controlled by the erystal. If there is self-uscillation, reduce the size of the feed-back winding, L_{2}, a half turn at a time. If there is no oscillation, more inductance may be needed in L_{2}. Feed-hack may also he controlled by cutting the small winding loose from the larger one, and adjusting the spacing between them. They are made from one picce of $\mathrm{B} \& \mathrm{~W}$ Miniductor, by cutting the wire at the fourth turn.

Gnce the owillator is working correetly, solder a jumper wire between Pins 3 and 4 , and connect the meter betwen l'ins 3 and 5 . Tune C_{2} for a slight dip in plate current, and check the frequency to be sure that the stage is tripling. There should be enough output to light a 2 -volt $60-\mathrm{ma}$. pilot lamp with a single-turn loop coupled at the center of L_{3}. The eapacity of C_{3} should be set at the point that gives the greatest output, readjusting C_{2} each time C_{3} is changed. The purpose of this cupacitor is to balance the tank cireuit. It will peak at a point that simulates the output eapacitance of the tube appearing across the opposite end of L_{3}.

Now connect a jumper from Pin 3 to Pin 5, and conneet the meter between Pins 3 and 6 . A low-range meter (0 -10 or 0-25 ma.) may be connected letween Pins 8 and 7 also, to measure the final grid current. Adjust C_{4} for maximum grid current, or for plate current dip, and move L_{5} with respect to L_{4}, retuning C_{4} as this is done, until the position that gives the highest grid cur-

F゙ig. 1 - 30 - Wiring diagran of the low-powered 220 - Me. transmitter.
$\mathrm{Ci}_{1}-5(0-\mu \mu \mathrm{f}$. miniature trimmer (IIammarlund VAPC .10).
$\mathrm{C}_{2}-11-\mu \mu \mathrm{f}$. miniature batterlly variable (Johnson (1MB11).
$\mathrm{C}_{3}, \mathrm{C}_{5}, \mathrm{C}_{6}-3-30 \mu \mathrm{f}$. mica trimmer.
$\mathrm{C}_{4}, \mathrm{C} ;-8-\mu \mu \mathrm{f}$. miniature lutterfly varialle (Johnson 9 (1314).
$L_{1}-10$ turns No. 20 tinned, $1 / 2$-inch diam., spaced diam. of wire.
$\mathrm{L}_{2}-4$ turns V_{6}. 20 tinned similar to $I_{1 .} L_{1}$ and L_{2} made from single piece of B \& Miniductor Do. 3003: net text.
$\mathrm{L}_{3}-12$ turns No. 18 timed, $3 / 8$-inch diam., spaced diam. of wire, center-talped.
rent is found. There will be little change in plate current, so the finat grid moter is the better indiatar.

Add a jumper from Pin 3 to l'in 6 and proceed with neutralization of the final stage. This mats be done in any of the comventional ways. Setting the noutralizing cabatitors at the point where there is no change in griel comrent as the final plate tank is tuned through resonance is at satisfactory procedure. The two trimmors should be about the satme setting, near minimum capacitance. Now atpuly plate voltage to the final stage, eomareting the moter in series with l'in 2, and tune the final plate cirruit for maximum output as indicated in a pilot lamp plugged into J_{1}. This may be a bluebead 6.3-volt $250-\mathrm{ma}$. bull, which will give at bright indication with about 2 watts output.

14 - 2 urns No. 18 enam., $1 / 2$-inch diam., spaced $1 / 8$ inch, center-tapped.
1.5-2 turns No. 18 enam., $3 / 8$-inch diam., spaced $1 / 16$ inch, center-tapped.
L. - U-shaped loop No. 16 tinned, made from 5 inches of wire. Sides of L are 1 inch apart, bent at right angles 1 inch from open end, center-tapped.
L_{7} - Similar to $L_{6,}$, but no center tap. Wover both loops with insulating spaghetti.
J_{1} - Output terminal (erystal sochet).
J_{2} - Male power fittink, 8 -pin (Ampheno 186 (CP8).
$P_{1}-$ Matehing cable fitting, 8 -pin (Ampheno 168 - $P^{\prime} \mathrm{F} 8$). $\mathrm{RH} \cdot \mathrm{C}_{1}, \mathrm{RFE} \mathrm{C}_{2}$ - 18 turns So. 22 emam., close-wonnd on 1-watt resistor of high value.

If L_{6} will not rewonate the desired frequeney, its indurtance may be varied somewhat by sprading or compressing the sides of the U shaped tank. Making the E narrower lowers the inductaner, broadening it lowers its resonant Frequencer" The position of L_{7} with respect to L_{66} should be adjusted for maximum antennat power. The degree of coupling will probably be some what different than that at which maximum lamp brilliance is found, as the lamp does not simulate the antemat load. Power input to the final stage should not exeed 10 watts.

Average operating currents, with 300 -volt plate supply, will he about as follows: oscillator - 10 mat, tripler - 10 ma., push-pull tripler - 20 mat, final grid current. stage operating - (i-8 $\mathrm{m} \cdot \mathrm{L}$. final phate corront. under lowd - 20-30 ma.

rig. 17.31 - Interior view of the 220 . Mc. transmitter. Components appear in the same order, left to ripht, as in external view.

Transmitting Equipment for 420 Mc.

As on lower frequencies, best results will be obtained in $420-\mathrm{Me}$. work if the narrowest practieal passband is used in the reeeiver. This dietates the use of stabilized transmitters, if the full possibilities of the $420-\mathrm{Me}$. band are to be realized. The band is 30 megreveles wide, however, so there is plenty of room for the use of simple rigs and broadband receivers, both of whieh may be entirely adequate for short-distance experimental work.

Many descriptions of equipment in this category have appeared in QST in recent vears. A bibliography at the end of this ehapter lists these and various artieles dealing with the eonversion of war-surplus equipment for $420-\mathrm{Mc}$. use, as well as artieles on more advanced equipment. Segregation of narrow and wideband techniefues within the band appears desirable, however, and it is suggested that use of the $420-\mathrm{Me}$. band be apportioned as follows:
420 to 432 Me. - Modulated oseillators and wideband F.M.
432 to 436 Mc. - Crystal-control AM, e.w. and narrowhand FM.
436 to 450 Me - Amateur television.

A SIMPLE LOW-POWERED TRANSMITTER

The transmitter shown in Figs. 17-32 through $17-34$ is typical of the sort of thing that can be used to good advantage in developing local artivity on 420 Me. It runs only a few watts input. and delivers only about one watt of output, but it is quite capable of working over a radius of several miles when used with a good antenma

Fig, 17-33-Bottom view of the oscillator assembly, The trongh in whith the components are monnted is made of lashing copper. It is 6 inches long, $17 / 8$ inches high. and $21 / 4$ inches wide, with $1 / 4$-ineh edges folded over for sliding into a dip attached to the main chassis.
system. A single (i di is is used as a push-pull oseillator, with a half-wave line in its plate cireuit. The complete oscillator assembly is built in a trough mate of flashing eopper. The 6.105 modulator and 6C4 speech amplifier are on the main chassis, at the back of which is a eopper elip into which the oscillator unit is fitted. This arrangement permits experimenting with different types of r.f. seetions without the necessity of making changes in the audio portion of the rig.

Ouly three atjustments are neressary in placing the unit into operation. The freguency should be cherked with Lecher wires or a calibrated wavemeter, setting the frequeney near the middle of the batud. The method of determining the proper point for feeding the B-plus to the line is discussed carlier in this chapter. When this is

Fig. 17-32 - A 420-Mle. tranmitter built in two units. The modnlator portion, on a $: \times 7 \times 2$-ineh chussis, uses a 6C4 driving a 6.105 modulator. The oscillator uses a 6.16 and is assembled on a removable trough. shaped chassis.

Fig. 17-3f - Schematic diagram of the $120-$ Me. transmitter.
$\mathrm{C}_{1}, \mathrm{C}_{4}-10 . \mu \mathrm{fil}$. 25-volt electrolytie.
$\mathrm{C}_{2}-8 . \mu \mathrm{fd}$. 4.0)-volt electrolytic.
$\mathrm{C}_{3}-0.01-\mu \mathrm{fd}$. tubular.
$\mathrm{C}_{s}-$ Miniature split-itator variable, $\boldsymbol{q}_{\mu \mu \mathrm{fi}}$, per section. (Millen 2191:l), with one rotor plate removed from cach section.)
R1 - 470 ohmes, I watt.
$\mathrm{K}_{2}-0.33 \mathrm{megohm}, 1 / 2$ watt.
$\mathrm{K}_{3}, \mathrm{R}_{4}-\mathbf{5 0 0 0}$ ohme, S^{2} watts.
$\mathrm{R}_{5}-0.17$ megohm, $1 / 2$ watt.
$1 R_{6}-680$ ohms, 1 watt.
$\mathrm{K}_{7}, \mathrm{R}_{8}-100$ ohme, $1 / 2$ watt, carbon.
done the coupling loop should be adjusted for naximum power in the antenna and the transmitter is ready for use. Frequeney cheeks should be made again, after the antemna is counceted to be sure that the signal radiated is well inside the band limits.

AMPLIFIERS AND FREQUENCY MULTIPLIERS

Not many presently-available tubes work satisfactorily above 400 Mc . The 316A, 703A, $15 \mathrm{E}, 8012$ and 8025, all triodes, work fairly well as oseillators, but are relatively indfective as frequeney multipliers. The 6.56 will deliver a small amount of power as a tripler, and more can be ohtained with a pair conneeted in push-pullparallel.

Of the tetrodes, the 832A and AN9M3 are most used in $420-\mathrm{Mc}$ frequency multipliers and amplifiers. One of these tubes as a push-pull tripler from 144 to 432 Me will drive another as a $432-\mathrm{Mc}$. amplifier. The 832 A will give about 2 and 5 watts, while the AX9903 delivers 10 and 2.5 watts, respectively, in these applications. The 5n75, $2(433$, 2(39 and $4 \times 150 \mathrm{~A}$ are typical of the speeial u.h.f. tubes that are capable of high-efficiency operat tion, but their use involves the employment of speecial tank cireuits and foreed-air cooling.

The tripler-amplifier of Fig. 17-35 uses two A. $2903 / 589+$ A dual tetrodes to deliver 25 to 30 watts output when driven by a $1+t-\mathrm{Me}$ e exeiter of about 10 watts output. Half-wave lines are used in all 432-Mc. circuits, and a self-resonant coil in the grid circuit of the tripler. Adjust ment of eoupling between the stages is done by varying the position of the grid lines, L_{4}, with respect to the tripler plate lines.

Be certain that no mechanieal stress is imposed on the plate pins by the tank circuits, as the 9903
H_{B} - 2700 ohms, $1 / 2$ watt.
L_{t} - Midget filter choke.
1.2 - Plate line matle of two pieees of No. 12 wire, 41/4 inches long, $3 / 8$ inch apart, center to center.
1_{3} - Itairpin of No. 18 wire. I'ortion which couples to L_{2} is ahout $5 / 8$ inch long. Position should he adjusted for mavimum transfer of power to antema.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Closed -circuit jack.
RFCi, $12 \mathrm{RC}_{2}-12$ turns No. 20 enameled wire, 3 is-inch diam., $3 / 4$ inch long.
T_{t} - Single.button microphone transformer.
is very easily broken. The $9903 / 5894 \mathrm{~A}$ is a more rugged type recently introduced.
The point of connection for the plate voltage should be cheeked to be sure that it is at the mininum r.f. voltage point. A pencil lead may be touched along the line until the smallest effect on the output is ohserved. Initially, the plate voltage may be fed into the line at a point just toward the tube end from the center.

The position of the grid lines, L_{4}, is quite critieal and must be adjusted earefully if maximum grid drive is to be ohtained. Move the copper strips a small amount at a time, readjusting C_{1} meanwhile, until at least 5 ma. of grid current is obtained. More may be used if obtainable. The grid cireuit r.f. chokes are eonnected directly to the tube socket terminals, the input eapacitance of the tube being high enough so that the norlal point is within the tube itself. Great eare should be taken to see that the plate and grid lines do not come in eontact with each other in the course of adjusting the coupling. This may be prevented by. inserting thin sheets of mica or teflon between the plate and grid lines. Polystyrene is not usable for this purpose, as the heat radiated from the plate lines will molt it.

Adjustment of antema coupling is also very eritical, and can best be acomplished with a field-strengt h meter, which need be nothing more than acrystal diode inserted in a pick-upantenna. A line of any length may be run from the antenna to the meter, for remote indication.

Because of the relatively low efficiency obtainable at this frequener, the tubes should not be run at more than about 60 per cent of their normal ratings unless provision is made for forced-air eooling. The power capabilities can be stepped up by shielding the tubes and tank eircuits and blowing air through the shields for cooling pur-

Fig. 1:-35-A tripleramplifier for 120 Nl. I sing two daal tet. roded, one as a tripler from Itt Mc. and the second as a straightthrugh amplifier, this unit delivers 25 wats output on 432 Me . It ran be driven by any 14t- Inc. exciter having an output of 8 watt or more.

poses. Up to about 35 watts output can be developed safely in this way.

Bibliography on 420-Mc. Equipment

"Getting Started on 420 Mc." (Iloisington), June 1946 QST, page 43.
"Four-Twenty Is Fun" (Tilton), Nov. 1947 QST', page 13.
"Operating the BC-645 on 420 Mc ." (Ralph and Wood), Feb. 1947 QST', page I 5 .
"Fun on 420 with the I3C-788" (Clapp), July 1948 QST, page 21.
"Operating the APS-13 on 420 Mc ." (Addison), May 1948 QST, page 57.
"Tripding to 420 Mc." (Brannin), June 1948 QST', page 52.
"A Lkorknob Oseillator for 420 Mc ." (Tilton), J.muary 1949 QST', page 29.
"Simpler Giear for the $420-\mathrm{Ml}$ e. Beginner" (Tilton), May 1949 (SST, page 11.
"Better Results on 420 Mc." ('Tilton), August 1950 QST', page 11.
"Coaxial-Tank Amplifier for 220 and 420 Mc ." (Brayley), May 1951 QNT, page 39.
"New Low-Noise Twin Triode" August 1951 QST, page 46.
"A $432-\mathrm{Mc}$. Converter from the Gold-I Piated Test Oscillator," June 1952 (2ST, page 14.

Fig. 17-36 - Sehematis diagram of the tripler-amplifier for 432 Me,
C., C_{2} - Midget split-*tator variable, about $4 \mu \mathrm{ff}$. per section (Millen 219121)).
$\mathrm{C}_{3}-250-\mu \mu \mathrm{fd}$. ceramic.
$\mathrm{R}_{1}-50,000$ ohms, 2 watts.
$R_{2}-100$ ohms, $1 / 2$ watt, at center tap of I. .
$\mathrm{K}_{3}-2.5,000$ ohms, 10 watts.
$\mathrm{R}_{4}-\mathbf{1 0 , 0 0 0}$ olmes, 1 watt.
$\mathrm{K}_{5}-20,000$ ohme, 10 watts.
la - 2 turns No. 14 enamel, 9 go-inch diameter, spaced twiee wire diameter.
 turns of L_{1}.
I_{3} - Flexible copper or silver ribbon, $1 / 2$ inch wide and t inches long. Average spacing about $5 / 8$ in.
\mathbf{L}_{4} - Stiff eopper strips 3 inehes long. Adjust spacing between L_{3} and L_{4} for maximum grid current, as read in J_{2}.
Is - Flexible eopper or silver ribbon, $1 / 2$ inch wide and
$48 / 4$ inches long, including $1 / 4$ inch bent over for fawening to hrat dissipating connectors. Average spacing of line is atomit $5 / 8$ inch. Pend last half inch inward to form padder capacitance. (See lig. 1i-3.5.) The commectors nust be filed down to proside a spacing of at least $\frac{1}{4}$ ineh betucen their inside edser.
L_{6} - Coupling loop of No. 14 enameled wire. U.shaped portion is dbout 1 inch Jong.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Closed-cincuit jack.
J_{3} - Crystal sock (Millen 3310:).
J_{4} - Antenna terminad (National FHG). Not used in resised version. (See Fiu. 17-35.)
$\mathrm{RFC}_{1}, \mathrm{RFC}_{2}$, RFC5, RFC6 - IJ.h.f. choke (Hhmite Z-235). Attach to plate lines at point of lowest r.f. voltage.
$\mathrm{RFC}_{3}, \mathrm{RFC}_{4}-11$ turns No. 22 enamel, 3 亿o-ineh diameter, 1 ineb long. Attach direetly to socket tabs.

V.H.F. Antennas

While the basic principles of antemat design are essentially the same for all frefuencies where conventional elements are used, cortain features of v.h.f. work call for changes in antenna terhnitues above 50 Me. Here the physical size of armas is reduced to the point where an antemma sustem having some gain over a simple dipole can be used in almost any lowation, and experimentation with various types of arrass is amportant part of the program of progressive v.h.f. am: teurs. The importance of high-gain antemnts in v.hf. work camot be overemphasized. By no other means ean so large a return toe obtained from anmall investment as results from the reretion of a good directional array.

DESIGN CONSIDERATIONS

At 50 Me and higher the frequeney range over which antemma systems should oprerate effectively is usuatly wider that that encountered on lower hands: thus more attention must bre forussed on broad frequency response, possibly to the extent of sterificing other qualities such is high front-to-back ratio.

As we go higher in frequency tramisision-line losses rise sharply, and it becomes more important to mateh the antematsestem to the line properly. Most v.f.f. transmission lines are long in terms of wavelength, so it may be more offective to use at high-gain array at relatively low height, rathere than a low-gain system at great height, bartionlatly if the antema location is not completely shielded by heavy foliage, buildings or other obstruetions.

The effertiveness of a v.h.f. armay is almost directly proportional to size, rather than mumber of elements. I telement array for 1322 Me may have as much gain over a dipole ats amilarlydesigned array for 111 Mc., but it will intercept only one-third as much energy in rerciving. To be equat in communication, the array for +32 Mc . must equal the $1+1-\mathrm{Me}$, system in area, requiring three times the number of elements, if similar element configurations are used.

Polarization

Early v.h.f. work was done with simple antemats, and since the vertical dipole gave as good results in all directions as its horizontal counterpart offered in only two directions, vertical polarization became the aceepted standard. Later when high-gain antemas came into use it was only natural that these, too, were put up vertical in areas where v.h.f, atetivity was already well eatahlished.

When the diseovery of various forms of longdistance propayation stired interest in v.h.f. operation in areas where there was no previous experience, many newoomors started in with horizontal arrays, these having been more or less standard practice on frequencies with which these operators were familiar. As use of the same polarization at both ends of the path is needsary for bost results, this lack of standardization resulted in a confliet that, even now, has not ret beren completely resolved.
Tests have shown no large difference in results over long pat has though evidence points to a slight superionity for horizontal in certain kinds of terrain, but vertieal has other factors in its favor. Horizontal arrays are generally easior to build and rotate. Where ignition noise and other forms of man-made interferemer are present, horizontal systems usually provide better signal-to-noise ratio. Simple 3 - or 4 -ement arrays are more effertive horizontal than vertieal, as their radiation patterns are broad in the plane of the elements and sharp in a plane perpendicular to them.

Vertical sustems can provide uniform eoverage in all diredions, a feature that is possibte only with farly complex horizontal arrass. (ain can be built up without introducing directivity, an important feature in net operation, or in locations where the installation of rotatable sustems is not possible. Mobile operation is simpler with vertieat antennas. Fear of increased TVI has kept v.h.f. mon in densely-populated areas from adopting horizontal as astandard.
The factors favoring horizontal have been predominant on 50 M . ., and today we find the standard for that hand, exept for emergeney net operation involving mohile units. The slight advantage it offers in I)N work has acelerated the trend to horizontal on $1+4$ Me, and highor hands,

though vertical polarization is still widely used.
The picture on 220 Mc . is still confused, the tendency being to follow the local $14+$ Mc. trend. Most 420-Mc. work is being done with horizontal. The newcomer to the v.h.f. hands should ascertain which is in general use in the areas he expeets to work, and go along with the others in those areas. In setting up activity where there is no operation presently, it is recommended that horizontal polarization be used, principally as a step toward much-needed standardization.

IMPEDANCE MATCHING

Because line losses increase with frequency it is important that v.h.f. antennasystems be matched to their transmission lines carefully. Lines commonly used in v.l.f. work include open-wire, usually $3(0)$ to 500 ohms impedance, spaced one to two inchos: polyethylene-insulated flexible lines, available in 300,150 and 72 ohms impedance; and coaxial lines of 50 to 90 ohms impedance. Some of the methods by which these may he used to feed antennts of differing impedance are given below.

The ' J^{\prime}

Used mainly for feeding a vertical radiator

Fig.18.2-[1etails of the folded dipole. around which parasitic elements are rotated, the " J " is a half-wave vertical radiator fed with a quarter-wave matching section, as shown in Fig. 18-1. For 50 or $1+4 \mathrm{Mc}$. the spacing of the matching section should be 2 inches or less. The point of attachment of the line will depend on its impedance. It should be slid along the matching section until the point is found that results in the lowest standingwave ratio. The bottom of the mastching section can be grounded, and it can be fed with babanced or consial line. The " J " is useful in l+t-Mc. mobile applications, usually in the form shown in Fig. 18-1B.

The Delta or "Y" Match

A simple arrangement for feeding a dipole, either alone or as part of a parasitic arrav, is the delta or "Y" match, in which the line is fanned out and attached to the radiator at the points where the impedance along the element equals the line impedance. Dimensions for v.h.f. applications can be figured from data in the transmis-sion-line chapter. Its chief weakness is the likelihood of radiation from the matching section, which may impair the effectiveness of a multielement array.

The "T"' Match

The principal disadvantages of the delta system can he overcome through the use of the " T " mateh, also detailed in the transmission lines
chapter. It provides a means of adjustment, by sliding clips along the parallel conduetors, yet the radiation from the matching section is negligible because of its elose proximity to the main element. Its rigid construction is well suited to rotatable arrays. Because the matching is adjustable, the dimensions of the " T " section are not particularly critical. The system may be used with any balaneed line, including a pair of coaxiad lines, the outer conductors of which may be bonded together and grounded.

The Folded Dipole

A flexible means of matching a wide range of antenna impedances is the folded dipole, shown in its simplest form in Fig. 18-2. When made of uniform conductor size the impedance at the feed point is equal to the square of the number of elements in the folded dipole. Thus, the example of lijg. 18-2 has a feed-point impedance of 4×72, or approximately 288 ohms, making it a good match to 300 -ohm line. A 3 -wire dipole steps the impedance up 9 times.

Greater step-up can be ohtained by making the fed portion of the dipole smaller in diameter than the solid portion. The spacing of the conduetors affeets the step-up in this ease. Conductor ratios and spacings can be derived from the foldeddipole monogram in the transmission lines chapter. This principle is applied in the t-element array of Fig. 18-6.

The Gamma Match

A simple device for feeding parasitic arrays with a single coaxial line is shown in Fig. 18-3. Known as the gamma match, it is a modification of the " T " system for unbalanced lines, well adapted to feeding arrays of all-metal construction. With the latter, the outer conductor of the coaxial line may be grounded to the metal boom, or to the center of the driven element. The inner conductor is then connected to a matching section, usually provided with a sliding clip for varying the point of connection to the driven element. The effeetiveness of the system is improved if a condenser is connected in series with the gamma section, to tune out its reaetance, as shown in Fig. 18-3. This should be mounted in a weatherproof box, which may be of metal and attached to the boom, or to the eenter of the driven clement. A standing-wave bridge should lee connected in the coaxial line, and the point of connection between the driven element and the matching seetion varied, readjusting the series condenser each time until minimum s.w.r. is ob-

Fig. 18-3-Schematic version of the gamma match. Values for C and D are given in the text.
tained. The distance out from the center of the driven element will be about 10 inches for 50 Me. and 4 ivehes for 14.4 . The maximum capacitance

Fig. 18 -4 - Intenna coupler for feeding a balanced load with coaxial line. 'Ihe circuit $L_{2}-G$ must resonate at the operating frequency.
required at C will be about 75 and $25 \mu \mu \mathrm{fd}$. respectively. The r.f. voltage is low at this point so a rereiving-type variable condenser may he used.

The Balun

Balanced loads such as are presented by a split dipole or folded dipole can be fed properly with coaxial line only if some form of balanced-1, unbalanced coupler (often called balun) is used at the feed point. Details of the various types of baluns may be found in the transmission lines chapter. One of these provides at 4 -to- 1 impedance step-up in addition to conversion from unbalanced line to balanced load.

The conversion may also be aecomplished with a halaneed circuit, link coupled to the coaxial line. as in Fig, 18-4. The batanced low is tapped onto the tumed circuit at the proper impedanee points, in this case. Such a circuit can be in the array itself, or at any point botwern the tramsmitter and the antema where such a conversion is convenient.

Fig. 18.5 - Collincar array for $14+\mathrm{Ne}$. made of TV ground wire mounted on a $11 / 2$-inch rug pole.

The " Q " Section

A quarter-wavelength of line known as a " Q " seetion may be used to mateh a low center impedance to a higher value of line impedanee, as described in the transmission lines chapter. This maty take the form of two pieces of tubing, $1 / 2$ to $1 / 4$ inch in diameter, momed so that their center-to-ernter sparing can be varied to achieve an impodance matel between the antema and the line, where the antona impedance is not precisely known in advance. Lower values of "()" seretion impedance than are available with tubling sizes can be made from lengths of insulated wire, or "ven coaxial line. The length of the "()" section will take into account the propagation fartor

Fig. 18.6- Dimenaional drawing of a 4-element 50- Mc. array filement length and spacing were derived experimentally for maximum forward gain at 50.5 Me .
of the line, where such insulating materials are used.

In some installations it may be convenient to use "($)$ " sections longer than a single guarter wavelength, in which case any odd multiple of a quarter wavelength may be enplowed. The exact length for any such section may be determined by coupling the line to a sourec of r.f. energy of the proper frequency and trimming the line for maxi-

Dimensions for V.H.F. Arrays, in Inches				
Preq. (Me.)	50	144	220	420
Driven Filement	110	38	$217 / 8$	123/4
Seflector	116	10	261/8	133/x
Ist Director	105	36	$235 / 8$	121/8
2nd Dircetor	103	35314	2.33/8	12
Phasing Section*	114	3912	2578	$131 / 4$
0.25 Wavelength	57	193/4	13	$65 / 8$
0.2 Wavelength	46	$153 / 4$	103/8	53/8
0.15 Wavelength	34	113/4	$73 / 4$	4
* Open-wire line only.				

mum loading. Such a " Q " seetion is often used as the flexible portion of a line feeding a rotatable array, to make connection from the array to a fixed transmission line anehor point at the top of the supporting tower.

Where it is desirable to repeat the antenna impedance at the anchor point, a section of flexible line any multiple of a half wavelength may be used.

- ANTENNA SYSTEMS FOR 50 AND 144 MC.

The designing of v.h.f. array is both a mechanical and electrical prohlem. The electrical principles are basic, but a very wide range of meehanical ideas may be used, and the form that an array will take is usually dictated hy the materials that are available. Most v.h.f. arrays can be built to formula dimensions given in Table 18-1. The driven element is usually cut from the formula:

$$
\text { Length (in inches) } \quad \frac{5540}{\text { Freq. (Mc.) }}
$$

Reflector elements are usually 5 per cent longer than the driven element. Directors are 5 per cent shorter, for the one nearest the driven element, and 6 per eent shorter for the next.

Fig. 18-7 - Detail drawing of inserts which may be used in the ends of the elements of a parasitic array to permit accurate adjustment of element length.

Parasitic element spacing from the driven element is usually 0.15 to 0.25 wavelength for a reflector, and 0.2 or more for directors. The closer the elements are spaced, the lower will be the feed impedanee of the driven element. Close-spaced arrays are generally more diffieult to tune up properly, and the frequancy range over which they work is sharper, so they are seldom used in v.h.f. work.

Elements for 50 Mc . are usually $1 / 2$ to 1 inch in diameter; 144 -Me. elements $1 / 4$ to $1 / 2$ inch; 220 and 420 -Nc. elements $1 / 8$ to $3 / 8$ inch.

A Collinear Array for 144 Mc.

Where some gain over a dipole is needed, yet directivity is undesirable, several half-wave elements may be mounted vertically and fed in phase, as shown in lig. 18-5. The photograph shows three half-wave elements, but five may be used in a similar way. The center element is fed at its midpoint, either directly with 300 -ohm Twin-Lead, or through a " Q " sertion. The two end elements are kept in phase with the eenter one by folded half-wave sections.

The array of Fig. 18-5 is built on a $11 / 2$-inch

Fig. 18-8 - A 16 -element array for 144 Me. using the all-metal construction methods ouslined in ligs. 18-11 to 18-13. The t-element array for 50 Mc . below is also all-metal design.
wooden rug pole, using aluminum TV ground wire for the clements and phasing sections. Inexpensive TV screw-eve insulators are used to support the elements, with the exerption of the supports at the element ends. At these points better insulation is desirable, so ceramic pillars are used.
Two 117 -inch pieces of wire or tuhing are needed. The end elements are 38 inches long, the folded sections 40 inches over all, and the quarterwave portions of the middle dipole are 19 inehes. The " Q " seetion, if used, is 20 inches long. The phasing and " Q " sections are bent around into loops, as shown in the photograph. If the array is fed with 300 -ohm line the " Q " section may" be omitted without serious mismateh. With openwire line, a " Q " section made of the element material, spaced about one inch, gives a good match. The spacing may be adjusted for minimum s.w.r.

A 4-Element Array for 50 Mc .

The array of Fig. 18-6 uses dimensions derived for maximum gain at 50.5 Mc . It will work well over the range from the low end of the band to nearly 52 Mc . If wider frequeney response is desired, the driven element should be cut to the formula given ahove for the desired center frequency, and the reflector made slightly longer and the directors somewhat shorter than the dimensions given. The driven element is a folded dipole of nonuniform conductor size, stepping up the impedance so that the array can be fed with 300 -ohm line. A 3 -olement array of similar dimensions could be matched with a 3-to-1 conductor ratio, instead of 4-to-1. The boom may be of metal or wood. The 50-Mc. array shown in

Fig. 18-9 - Schematic drawing of a 16 -element array. A variable "Q" section may be inserted at the feed point if accurate matching is desired. Reflector spacing is 0.2 wavelength.

Fig. 18-8 uses 0.15 -wavelength spacing for the reflector and 0.2 for the directors, resulting in slightly less gain than the wider spacing, but allowing considerably more compact construction.
Most v.h.f. arrays are erected to formula dimensions, but if the builder wishes to do so hemay tune the array for optimum front-to-back ratio or forward gain. Adjustable inserts for tubing elements may be made by cutting short sections of the element stock lengthwise and inserting these extensions in the ends of the elements as shown in Fig. 18-7.

Stacking Parasitic Arrays

The radiation angle of a v.h.f. antenna system can be lowered and worthwhile gain obtained by stacking two parasitic arrays one above the other and feeding them in phase. The horizontal pattern of a vertically polarized array may be sharpened and gain added by mounting two arrays side by side and phasing them in the same way. The physical spacing between the two arrays is usually $1 / 2,5 / 8$ or 1 wavelength, depending on the phasing method used. Stacked arrays are usually fed at the center of the system to insure uniform current distribution between the driven elements.

In stacking $50-\mathrm{Me}$. arrays the pheasing line is usually 0.5 wavelength long. If the two arrays were set up originally for 300 -ohm feed when used separately, the phasing line, which serves as a double " Q " section, should have an impedance of about 380 ohms, if the main transmission line is to be 300 ohms. No. 12 wires spaced one inch apart make a convenient phasing line. The gain of
two arrays stacked 0.5 wavelength apart is approximately 4 dh. over that of a single array.

Slightly more gain can be obtained by increasing the sparing to $5 / 8$ wavelength. A phasing line for this spacing may be made of two pieces of coaxial line, with the outer conductors connerted together and grounded, if desired. Because of the propagation factor of the coaxial line, such a phasing section is electrically a full wavelength long. The impedance at the midpoint between the two arrays is approxinately half that of one array alone.

For 144 Me. and higher, where the dimensions are within practical limits, the spacing betwern two stacked arrays may be increased to a full wavelength. This wide spacing is recommended only for arrays having three or more elements, and is most commonly used with 5-clement arrays. The phasing line may be open wire, of any convenient wire size and spacing, and the impedance at the midpoint between the two arrays will be half that of one array alone. A "Q" section at the feed point is a convenient method of matching such a " 5 -over-5" array. Its dimensions will depend on the type of dipoles used in the individual arrays.

Phased Arrays

Superior performance is obtainable on $1+4$ Me. and higher hy using curtains of $4,6,8$ or more driven half-wave elements, arranged in pairs fed in phase, and backed up by reflectors. Figs, 18-8 and 18 -9 show a 16 -element array, while $18-10$ is a 12-rlement array of similar design. The gains are about 14 db . for the 16 -element and 12 db . for the 12 -element. They may be used for either horizontal or vertical polarization. The pattern of the 12 -element is similar in both planes.

The elements used in the 16 erement array shown in the photograph are $1 / 4$-inch diameter dural, mounted in the mamer shown in Figs. 18-11 and 18-12. The entire structure is of metal; the supports leing at the low-voltage point of the elements, no insulation is required. The supporting structure for a 12 -element array of similar

Fig. 18.10- Element arrangement and feed system of the 12 -element array. Keflectors are spaced 0.15 wavelength behind the driven elements.
design is shown in detail in Fig. 18-12, with the clamps for holding the array together made as shown in Fig. 18-13.

Element lengths and spacings are not particularly critical in arrays having many driven elements, and careful adjustment is not required for good results. The frequency response of these systems is broader than is the case in arrays where the gain is built up by the use of direetors as well as reflectors. Wither the 12 - or 16 -element array

Fig. 18.11 - Model showing the method of assenbling for allmetal construction of phased arrays. Dinmensions of elamps are given in Fig. 18-13.
may be fed with 300 -ohm line connerted at the center of the system, as shown in the sketches. The reflectors in the 12 -element array are spaced only 0.15 wavelength in back of the driven elements, in order to bring the feed impedance down to roughly 300 ohms. In the 16 -element array 0.2 -wavelength spacing is used for the reflectors, and even so, the feed impedance may be somewhat lower than 300 ohms. If a long fordline is necessary it may be desirable to insert a variable " Q " section at the feed point, in order to insure accurate matrhing for mininum s.w.r. In the 16 -element array shown in the photograph, a " Q " section having an odd number of quarterwavelengths of 300 -ohm Twin-Lead is used to match the center impedance of around 200 ohms to the 450 -ohm open wire line used for a 100 -foot run to the operating position.

In all-motal construction it is important that the supporting structure be entirely in back of the reflector plane. This can be done readily by using the clamp method of assembly detailed in Figs. 18-11, 18-12 and 18-13. Dimensions given in Fig. 18-1:3 are for use with the tubing sizes given in Fig. 18-12, Suitable dimensions for other combinations can be worked out readily by making experimental clips from soft sheet copper, and using these for templates in making the clips to be used in the final assembly. When the array is completely assembled the screws holding it together should be drawn up as tightly as possibleand then coated with durable lacquer or paint to prevent corrosion,

Long-Wire Antennas

Where long-wire systems designed for use on lower frequencies are available they may often be used on the v.h.f. bands with good results, particularly if the feed lines are not too long. "V" and rhombic antenna systems designed expressly for the v.h.f. bands are small enough in size to be used in many locations where similar arrays for lower frequencies would be out of the question. The polarization of longwire systems is normally horizontal, but in locations where they have a downward slope they may also have a considerable vertical component. Their polarization discrimination is seldom as sharp as that of systems using half-wave elements.

Information on the various types of longwire arrays will be found in an carlier chapter. At 144 Mc . and higher it is relatively easy to stack two or more "V" or rhombic arrays a half wave apart. This improves their performance considerably, but makes them essentially one-band devices.

Matching devices that permit feeding longwire antenna systems with flat lines also introduce one-band limitation, so their use is not advisatble except in the case of 50 and 144 Mc ., two bands that are close to third-harmonic relationship. A " Q " section that is approximately three quarter-wavelengths long at 144 Mc . is one quarter-wavelength long at 50 Mc ., so if the feed impedance of the antenna system is the same for both frequencies a " Q " section about

Fig. I8-12-Supporting framework for a 12 -element 144-Nc. array of all-metal design. Dimensions are as follows; clement supports (I) $3 / 4$ by 16 inches; horizontal members (2) $3 / 4$ by 46 inches: vertical members (3) $3 / 4$ ly 86 inches; vertical support (4) $11 / 2$-inch diameter, length as required; reflector-to-driven-element spacing 12 inches. Parts not shown in sheteh: driven elements $1 / 4$ by 38 inches: reflertors $1 / 4$ hy 40 inches: phasing lines No. 18 spaced 1 inch, 80 inches long, fanned out to $31 / 2$ inches at driven elements (transpose each halfwave section).

Fig. 18-1.3 - Wetail drawings of the clamps used io ase semble the all-metal -meter array. A, 13 and Ca are 2 hefore bending into "-… shape. The ripht-angle berods shombl be made first, along the dotted lines as shown, then the plates may be bent around a piece of pipe of the proper diameter. Sheet stock should be $1 / 6$-ibeh or heavier aluminam.

58 inches long may be used for both bands. In the case of a rhombic terminated in 800 ohms and fed with 300 -ohm line, the matching section should have an impedance of about 500 ohms.

ARRAYS FOR 220 AND 420 MC.

The use of high-gain antenna systems is almost a neerssity if work is to be done over any great distance on 220 and 420 Mc . Experimentation with antenna arrays for these frequencies is fascinating inderd, as their size is so small as to permit trying various element arrangemonts and fred systems with ease. Arrays for 420 Me., particularly, are convenient for investigation and demonstration of antenna principles, as even high-gain systems may be of table-top proportions.

Any of the arrays described previously may be. used on the se bands, but those having large numbers of driven elements in phase are more readily adjusted for maximum effertiverness. The 12 and $16-\mathrm{bl}$ ment arrats of Figs. 18-9 and 18-10 arro well adapted to use on 220 or 420 . Suitable dimensions may be found in Table 18-I.

A 16 -edement array for 220 Me , and a $2.4-$ elemont array for 420 Me are shown mounted hark-to-back in Fig, 18-14. The 220-N6. portion follows the 16 erement design already described. It is fed at the eenter of the system with 300 -oham tubular Twin-Lead, matched to the center impeclance of the array through a "($)$ " sertion of 7/6-inch tubing, spaced about $11 / 2$ inches center to eenter. This spacing was adjusted for minimum standing-wave ratio on the line.

Elements in the array shown are of 7 Kif-inch aluminum fuel-line tubing, which is very light in weight and easily worked. The supporting struc-
ture is dural tubing, using the clamp assembly methods of Fig. 18-12.

The $420-$ Mc array uses two 12 -dement assemblies similar to Fig. 18-10, mounted one ahove the other, about one half wavelength separating the bottom of one from the top of the other. The two sets of phasing lines are joined by means of one-wavelength sections of Twin-Lead at the miedde of the array. This junction, which has an impedance of around 150 ohms, is fed with $300-$ ohm tubular Twin-Iad through an adjustable "Q" section.

Elements in the 420-Mc. array are cut from thin-walled $1 / 4$-inch tubing. Their supports are the $7 / 16$-inch stork used for the $220-\mathrm{Me}$. clements. Slots were cut in the ends of these supports to take the elements, and a $4 / 40$ serew was run through both pieres and drawn up tightly with a nut. The horizontal supports were fastened in holes drilled in the vertical members, and wore also held in place with a $6 / 32$ screw and nut. The small size and light weight of the $420-\mathrm{Mr}$. array did not require the use of clamps to make a strong assembly.

The two onewavelength sections of 300 -ohm line are $213 / 4$ inches long, taking the propagation factor into account. The " Q " serction may be of any convenient size of tubing, $1 / 4$ to $1 / 2$ inch diameter. It should be made adjustable, as matehing is important at this frequency. Dimensions for both arrays can be taken from Table 18 -I.

Plane-Reflector Arrays

At 220 Me, and higher, where their dimensions become practicable, plane-reflector arrays are widely used. Pexeept as it afferts the imperdanee of the system, as shown in Fig. 18-15, the sparing between the driven clements and the reflecting plane is not particularly eritical. Maximum gain orcurs around 0.1 to 0.15 wavelength, which is also the region of lowest impedance. Ilighest impedance appears at about 0.3 wavelength. A plane reflector spaced 0.22 wavelength in back of the driven elements has no effert on their feed impedance. As the gain of a plane-reflector array is nearly constant at sparings from 0.1 to 0.25 wavelength, it may be seen that the spateing may be varied to arhieve an impedane mateh.

An ulvantage of the plane reflecetor is that it maty be used with two driven olement systems, one on cach side of the plame, providing for twoband operation, or the incorporation of horizontal and vertical polarization in a single structure. The gain of a plane-reflector arrate is slighty higher than that of a similar number of driven clements barked up by parasitio reflectors. It also has a broader frequency response and highor front-to-tsack ratio. To achieve these ends, the reflecting plane must be larger than the aroa of the driven elements, extending at hast a quarter wavelength on all sides. Chicken wite on a wood or metal frame makes a good plane reflector. Closely-spared wires or rods maty be substituted, with the spacing betwoen them running up to 0.1

Fip. 18-1.4- 124-element array for 1.3 Mc. and a 16. elemint for 2:0 mourted back-\{o-bach on a single support.
wavelength without appreciable reduction in effertiveness.

Corner Reflectors

In the corner reflector two plane surfaces are set at an angle, usually between 45 and 90 degrees, with the antemna on a line bisereting this angle. Maximum gain is oltained with the antema 0.5 wavelength from the vertex, but eompromise designs cat be built with eloser sparings. There is no foeal point, as would be the case for a
parabolic reflector. Corner angles greater than 90 degrees can be used at some sarrifice in gain. At lese than !0 degrees the gain increases, but the size of the reflecting sherts must be increased to roalize this gain.

At a spacing of 0.5 wavelength from the vertex, the impedanee of the driven element is approximatele twier that of the same dipole in free space. The imperdanere dererases with smaller spacings and corner angles, as shown in Fig. 18-15. The gain of a corner-reflector array with a 90 -degree angle, 0.5 wavelength spacing and sides 1 wavelength long is approximately 10 db . Principal advantages of the cormer reflector are broad frequency response and high front-to-back ratio.

- MISCELLANEOUS ANTENNA SYSTEMS

Coaxial Antennas

With the "J" antenna, radiation from the matehing section and the transmission line ternds to combine with the radiation from the antema in such a way as to raise the angle of radiation. At v.h.f. the lowest possible radiation angle is cssential, and the coasial antenna shown in Fig. 18-16 was devoloped to eliminate freder radiation. The center conductor of a 70 -ohm concentric transmission line is cxtended oncequarter wave beyond the end of the line, to act as the upper half of a half-wave antema. The lower half is provided he the quarter-wave sleeve, the upper end of which is connected to the outer conductor of the coneentric line. The slecve acts as a shield about the transmission line and very little current is induced on the outside of the line by the antenna field. The line is non-resonant, since its characteristic impedance is the same as the center impedanere of the half-wave antemna. The sleeve may be made of eopper or brass tubing of suitable diamoter to clear the transmission line. The coaxial antenna is somewhat difficult to const ruct, but is superior to simpler systems in its performanere at low radiation angles.

Fig. 18-15 - Feed inspedance of the driven alement in a corner-reflector array for corner ankles of 180 (flat theet), ($\%$, (00 and 45 degrees. "1)" is the dipole-to-vertex spacing.

Fig. 18.16-Coaxial antenna. The insulated inner conductor of the 70 -obm concentric line is connected to the quarter-wavemetal rod which forms the upper half of the antenna.

Broadband Antennas

Certain types of antennas used in television are of interest because they work across a wide band of frequencie's with relatively uniform response. At very-high frequencies an antenta made of small wire is purely resistive only over a very small frequeney range. Its Q, and therefore its seloctivity, is sufficient to limit is optimum performance to a narrow frequency range, and readjustment of the length or tuning is required for each narrow slice of the spectrum. With tuned transmission lines, the effertive length of the antenna can be shifted by retuning the whole system. However, in the case of antonnas fed by matched-impedance lincs, any appreciable frequeney change requires an actual mechanical adjustment of the system. Otherwise, the resulting mismateh with the line will be sufficient to cause signifieant reduction in power input to the antenna.

A properly designed and eonstructed wideband antema, on the other hand, will exhibit very nearly constant input impedance over several megacyeles.

The simplest method of obtaining a broadband characteristic is the use of what is termed a "cylindrical" antenna. This is no more than
a conventional doublet in which large-diameter tubing is used for the elements. The use of a relatively large diameter-to-length ratio lowers the Q of the antenna, thus broadening the resonance characteristic.

As the diameter-to-length ratio is increased, end effects also increase, with the result that the antenna must be made shorter than a thinwire antenna resonating at the same frequency. The reduction factor may be as much as 20 per cent with the tubing sizes commonly used for amateur antennas at v.h.f.

Cone Antennas

From the cylindrical antenna various specialized forms of broadly-resonant radiators have been evolved, including the ellipsoid, spheroid, cone, diamond and double diamond. Of these, the conical antenna is perhaps the most interesting. With large angles of revolution, the variation in the characteristic impedance with changes in frequency can be reduced to a very low value, making such an anterma suitable for extremely wide-band operation. The cone may be made up either of sheet metal or of multiple wire spines. A variation of this form of conical antenna is widely used in TV reception.

Parabolic Reflectors

A plane sheet may be formed into the shape of a parabolic curve and used with a driven radiator situated at its focus, to provide a highly:directive antenna system. If the parabolic reflector is sufficiently large so that the distance to the focal point is a number of wavelengths, optical conditions are approached and the wave across the mouth of the reflector is a plane wave. However, if the reflector is of the same ordar of dimensions as the operating wavelength, or less, the driven radiator is appreciably coupled to the reflecting sheet and minor lobes occur in the pattern. With an aperture of the order of 10 or 20 wavelengths, sizes that may be practieal for microwave work, a beam-width of approximately 5 degrees may be achicved.

A reffecting paraboloid must be carefully designed and constructed to ohtain ideal performance. The antenna must be located at the focal point. The most desirable foral length of the parabola is that which places the radiator along the plane of the mouth; this length is ergual to onc-half the mouth radius. At other focal distaneres interference fields may deform the pattern or cancel a sizable portion of the radiation.

U.H.F. and Microwave Communication

In moving into the microwave region the amateur encounters marked differences in both the technieal approach and the uses to which his frequency assignments may be put. Above 1000 Me. we must discard most of our conventional circuitry and antemma ideas. Coils and condensers are replaced by coasial tank eireuits and resonant cavities. l'arallel-wire transmission lines give way to coaxial lines or waveguide. Parasitic arrays are abondoned in favor of parabolic reflectors or horns. And in contrast to the random operating that has been so large a part of the amateur picture on our communication frequencies, microwave work is principally a matter of point-to-point communication between two cooperating stations.

These basic differences have tended to raise a natural boundary in the region around 500 Mc ., beyond which relatively few eommunieating amateurs have ventured. The frequencies at the high end of the spectrum have a strong appeal to the
experimenter, however, and the Technician Class license was developed to provide the means whereby this type of worker may legally engage in two-way communication on frequencies above 220 Mc .

At least some amateur work has been done in all the assignments now open to our use. The work of these pioneers in adapting the frequencies above 1000 Mc. to communication purposes has been in line with the best amateur tradition, and it is hoped that the bands beginning at 1215 Mc . will see much amateur exploration in the near future. The frequencies assigned to amateurs in the microwave region are as follows: 1215 to 1300 Mc., 2300 to 2450 Mc., 3300 to 3500 Mc., 5650 to 5925 Me., 10,000 to $10,500 \mathrm{Me}$., and 21,000 to 22,000 Mc. Any frequency above $30,000 \mathrm{Mc}$ may be used. Any type of emission may be used in any of these bands, except in the ease of the lowest, where pulse transmission is prohibited.

U.H.F. Tank Circuits

In resonant circuits as employed at the lower frequencies it is possible to consider cach of the reactance components as a separate entity. A coil is used to provide the required induetance and a condenser is connected across it to provide the neded capacitance. The fact that the coil itsolf has a certain amount of self-capacitance, as well as some resistance, while the condenser also possesses a small self-inductance, con usuatly be disregarded.

At the very-high and ultrahigh frequencies, however, it is no longer possible to separate these components. The connerting leads which, at lower frequencies, would serve merely to join the condenser to the coil now may have more inductance than the coil itsolf. The required inductance coil may be no more than a single turn of wire, yet even this single turn may have dimensions comparable to a wavelength at the operating frequency. Thus the energy in the field surrounding the "coil" may in part be radiated. At a sufficiently high frequency the loss by radiation may represent a major portion of the total energy in the circuit. Since energy which cannot be utilized as intended is wasted, regardless of whether it is consumed as heat by the resistance of the wire or simply radiated into space, the effect is as though the resistance of the tuned circuit were greatly increased and its Q greatly reduced.

For this reason, it is conmon practice to utilize resonant sections of transmission line as tuned circuits at frequencies above 300 Mc . A quarter-wavelength line, or any odd multiple thereof, shorted at one end and open at the other, exhibits large standing waves. When a voltage of the frequency at which such a line is resonant is applied to the open end, the response is very similar to that of a parallel resonant circuit; it will have very high input impedance at resonance and a large current flowing at the short-cireuited end. The input impedance may be as high as 0.4 megohm for a
well-constructed line well-constructed line.

The action of a resonant quarter-wavelength line can be compared with that of a coil-andcondenser combination whose constants have been adjusted to resonance at a corresponding frequency. Around the point of resonance, in fact, the line will display very nearly the same characteristics as those of the tuned circuit. The equivalent relationships are shown in Fig. 19-1. At frequencies off resonance the line displays qualities comparable to the induetive and capacitive reactances of the coil-andcondenser circuit, although the exact relationships involved are somewhat different. For all practical purposes, however, seetions of resonant wire or transmission line can be used in much the same manner as coils or condensers.

In circuits operating above 300 Mc ., the spacing between conductors becomes an appreciable fraction of a wavelength. To keep the radiation loss as small as possible the parallel conductors should not be spaced farther apart than 10 per cent of the wavelength, center to center. On the other hand, the spacing of large-diameter conductors should not be reduced to much less twire the diameter because of what is known as the proximity effect, whereby another form of loss is introduced through eddy currents set up by the adjacent fields. Because the cancellation is no longer complete, radiation from an open line becomes so great that the Q is greatly reduced. Consequently, at these frequencies coaxial lines must be used.

Construction

Practical information concerning the construction of transmission lines for such specitic uses as feeding antemmas and as resonant eircuits in radio transmitters will be found in this

Fig. $19-1$ - Fiquivalent coupling circuits for parallelline, coaxial-line and conventional resonant circuits.
and other chapters of this Mandbook. Certain basic considerations applicable in general to resonant lines used as circuit clements may be considered here, however.

While either parallel-line or coaxial sections may be used, the latter are preferred for higherfrequency operation. Representative methods for adjusting the length of such lines to resonance are shown in Fig. 19-2. At the left, a sliding shorting disk is used to redure the effertive length of the line by altering the position of the short-circuit. In the enter. the same effect is accomplished by using a telescoping twhe in the end of the immer conductor to vary its length and thereby the effertive length of the line. At the right, two possible methods of mounting parallel-plate condensers. used to tune a "foreshortened" line to resonamee, are illustrated. The arrangement with the loading capacitor at the open end of the line has the greatest tuming effect per unit of capacitance; the alternative method, which is equivalent to "tapping" the condenser down on the line, has less effect on the Q of the circuit. Lines with capacitive "loading" of the sort illustrated will
be shorter, physically, than an unloaded line resonant at the same frequency.

The short-circuiting disk at the end of the line must be designed to make perfect electrical contact. The voltage is a minimum at this end of the tine; therefore, it will not break down some of the thimest insulating films. Visually a

Fig. 19-2 - Wethods of lunins emaial reamant lines. soldered comection or a tight (lamp is used to secure good contact. When the length of line must be readily adjustable. the shorting phag is provided with spring collars which make contact on the inner and outer conductors at some distance away from the shorting plug at a point where the voltage is sufficient to break down the film leetween the collar and conductor.

Two methods of tuning parallel-conductor lines are shown in Fig. 19-3. The sliding shortcircuiting strap can be tightened by means of screws and muts to make good electrical contact. The parallel-plate condenser in the second drawing may be placed anywhere along the line, the tuning effect becoming less as the condenser is located nearer the shorted end of the line. Although a low-capacitance variable condenser of ordinary construction can be* used, the circular-plate type shown is symmetrical and thus does not unbalance the line. It also has the further advantage that no insulating material is required.

Fig. 19.3-Methods of tuming paralleltype resotant lines.

liguivalent impedance points, for coupling or imperdance-transformation purposes, are shown in Fig. 19-1 for parallel-line, coaxial-line, and conventional coil-and-condenser circuits.

Lumped-Constant Circuits

It the very-high frequencies the low values of L and C required make ordinary coils and condensers impracticable, white linear circuits offer mechanical difficulties in making tuning adjustments over a wide frequency range, and radiation from unshielded lines may reduce their effectiveness materially.

To overcome these difficulties. sperial high- Q

U.H.F. AND MICROWAVE COMMUNICATION 423

lumped-constant circuits have been developed in which connections from the "condenser" to the "coil" are an inherent part of the structure. Integral design minimizes both resistance and inductance and increases the ($/ L$, ratio.

The simplest of these cireuits is based on the use of disks combining half-turn inductance loops with semicircular condenser plates. By connecting several of these half-turn coils in parallel, the effective inductance is reduced to a value appreciably below that for a single turn. Tuning is accomplished by interleaving grounded rotor plates between the turns. Both by shielding action and short-circuited-turn effect, these further reduce the inductance.

Another type of high- C circuit is a singleturn toroid, commonly termed the "hat" resonator. Two copper shells with wide, flat "brims" are mounted facing each other on an axially-aligned copper rod. The caparitumer in the rircuit is that between the wide shells, while the central rod comprises the inductance.

''Butterfly' Circuits

The tank eircuits described in the preceding section are primarily fixed-frequency deviees. The "hutterfly" circuits shown in Fig. 19-4 are capable of being tuned over an execptionally wide range, while still having high Q and reasonable physical dimensions. The circuit at A is derived from a conventional balanced-type variable condenser. The inductance is in the wide circular band connecting the stator plates. At its minimum setting the rotor plate fills the opening of the loop, reducing the inductance to a minimum. Connections are made to points 1 and 2 . This basic structure climinates all connecting leads and avoids all sliding or wiping electrical contacts to a rotating member. A disadvantage is that the electrical midpoint shifts from point 3 to point 3^{\prime} as the rotor is turned. Constant magnetie coupling may be obtained by a coupling loop located at point 4 , however.

In the modification shown at 1), two sectoral stators are spaced 180 degrees, thereby achiev-

Fig. 19-4 - "Butterfly" tank circuits for v.h.f., showing front and cross-section views and the equivalent eircuit.
ing the electrical symmetry required to permit tapping for balanced operation. Connections to the circuit should be made at points 1 and 2 and it may be tapped at points 3 and S^{\prime}, which are the electrical midpoints. Where magnetic coupling is employed, points \& and 4' are suitable locations for coupling links.

The capacitance of any butterfly circuit may be computed by the standard formula for parallel-plate condensers given in the data chapter. The maximum inductance can be obtained approximatoly by finding the inductance of a full ring of the same diameter and multiplying the result by a factor of 0.17 . The ratio of minimum to maximum inductance varies between 1.5 and 4 with conventional construction.

Any number of butterfly sections may be conneeted in parallel. In practice, units of four to eight plates prove most satisfactory. The ring and stator sections may either be made in a single piece or with separate sectoral stator plates and spacing rings assembled with machine screws.

Wave Guides and Cavity Resonators

A wave guide is a conducting tube through which chergy is transmitted in the form of electromagnetic waves. The tube is not considered as carving a current in the same sense that the wires of a two-eonductor line do, but rather as a boundary which confines the waves to the enclosed space. skin offect prevents any decetromagnetic effects from being evident outside the guide. The energy is injeeted at one end, rither through eapacitive or indurtive coupling or by radiation, and is reocived at the other end. The wave guide then merely confines the energy of the fields, which are propagated through it to the recoiving end by means of refleetions against its inner walls.

The difficulty of visualizing energy transfer without the usual closed circuit can be relieved somewhat by considering the guide as loing evolved from an ordinary two-conductor line.

In lig. 19-5. 1 , several closed quarter-wave stubs are shown connected in parallel arross a two-wire transmission line. Since the open end of each stub is equivalent to an open circuit, the line impedance is not affected by their presence. linough stubs may be added to form a " U ". shaped rectangular tube with solid walls, as at IB, and another identical " $[$ ""-shaped tube may be added edge-to-edge to form the rectangular pipe shown in Fig. 19-5C. As before, the line impedaner still will not be afferted. But now, instead of a two-wire transmission line, the energy is being conducted within a hollow rectangular tube.

This analogy to wave-guide operation is not exact. and therefore should not be taken too literally. In the evolution from the two-wire line to the closed tube the electric- and mag-netic-field configurations undergo considerable

Fig. 19.5 - Evolution of a wave guide from a two-wire transmission line.
tributions of electric and magnetic fields in a rectangular guide are shown in Fig. 19-6. It will be observed that the intensity of the electric field is greatest at the center along the \boldsymbol{x} dimension, diminishing to zero at the end walls. The latter is a necessary condition, since the existence of any elec-
change, with the result that the guide does not actually operate like a two-conductor line shunted by an infinite number of quarter-wave stubs. If it did, only waves of the proper length to correspond to the stubs would be propagated through the tube, but the fact is that such waves do nol pass through the guide. Only waves of shorter length - that is, higher frequency - can go through. The distance x represents half the cut-off wavelength, or the shortest wavelength that is umable to go through the guide. Or, to put it another way, waves of length equal to or greater than $2 x$ cannot be propagated in the guide.

A second point of difference is that the apparent length of a wave along the direction of propagation through a guide always is greater than that of a wave of the same frequency in free space, whereas the wavelength along a t wo-conductor transmission line is the same as the free-space wavelength (when the insulation between the wires is air).

Operating Principles of Wave Guides

Analysis of wave-guide operation is based on the assumption that the guide material is a perfect conductor of electricity. Typieal dis-

Fig. 19-6 - Field distribution in a rectangular wave guide. The $T E_{1,0}$ mode of propagation is depicted.
tric field parallel to the walls at the surface would cause an infinite current to flow in a perfect conductor. This represents an impossible situation.

Zero electric field at the end walls will result if the wave is considered to consist of two separate waves moving in zigzag fashion down the guide, reflected back and forth from the end walls as shown in Fig. 19-7. Just at the walls. the positive 'rest of one wave meets the negative crest of the other, giving complete cancellation of the electric fields. The angle of

Fig. 19.7 - Reflection of two component waves in a rectangular guide. $\lambda=$ wavelength in space, $\lambda g=$ wavelength in guide. Direction of wave motion is perpendienlar to the wave front (crests) as shown lyy the arrows.
reflection at which this cancellation oceurs depends upon the width x of the guide and the length of the waves; Fig. $19-7 \mathrm{~A}$ illustrates the case of a wave considerably shorter than the cut-off wavelength, while 13 shows a longer wave. When the wavelength equals the cut-off value. the two waves simply bounce back and forth between the walls and no energy is transmitted through the guide.

The two waves travel with the speed of light, but since they do not travel in a straight line the energy does not travel through the guide as rapidly as it does in spare. A further consequence of the repeated reflections is that the points of maximum intensity or wave crests are separated more along the line of propagation in the guide than they are in the two separate waves. In other words, the wavelength in the guide is greater than the free-spare wavelength. This is also shown in Fig. 19-7.

Modes of Propagation

Fig. 19-6 represents a relatively simple distribution of the electric and magnetic fields. There is in general an infinite number of ways in which the fields can arrange themselves in a guide so long as there is no upper limit to the

U.H.F. AND MICROWAVE COMMUNICATION 425

frequency to be transmitted. Each field configuration is called a mode. All modes may be separated into two general groups. One group, designated TM (transverse magnetic), has the magnetic field entirely transverse to the direction of propagation, but has a component of electric field in that direction. The other type, designated $T E$ (transverse electric) has the dectric fied entirely transverse, but has a component of magnetic field in the direction of propagation. TM waves are sometimes called E waves, and $T E$ waves are sometimes called $I /$ waves, but the $T M$ and $T \notin \dot{C}$ designations are preferred.

The particular mode of transmission is identificd by the group letters followed by two subscript numerals; for exanıle, $\quad T_{10} E_{10}$, T. $M_{1,1}$, etc. The number of possible modes increases with frequency for a given size of guide. There is only one possible mode (called the dominant mode) for the lowest freguency that can be transmitted. The dominant mode is the one generally used in practical work.

Wave-Guide Dimensions

In the roctangular guide the critical dimension is x in Fig. 19-5; this dimension must be more than one-half wavelength at the lowest frequency to be transmitted. In practice, the y dimension usually is made about "qual to $1 / 2 x^{2}$ to avoid the possibility of operation at other than the dominant morle.

Other cross-sectional shapes than the rectangle can be used, the most important being the circular pipe. Much the same ronsiderations apply as in the rectangular case.

Wavelength formulas for rectangular and circular guides are given in the following table, where x is the width of a rectangular guide and r is the radius of a circular guide. All figures are in terms of the dominant mode.

	Rectanoular	Circular
Cut-off wavelength.	$2 \boldsymbol{x}$	$3.41 r$
Longest wavelength transmitted with little attenuation	- $1.6 x$	3.25
Shortest wavelength before next mode becomes possible. \qquad	- $1.1 x$	$2.8 r$

Cavity Resonators

At low and medium radio frequencies resonant circuits usually are composed of "lumped" constants of L and C; that is, the inductance is concentrated in a coil and the caparitance concentrated in a condenser. However, as the frequency is increased, coils and condensers must be reduced to impracticably small physical dimensions. (tp to a certain point this difficulty may be overcome by using linear circuits but even these fail at extremely high frequencies. Another kind of circuit particularly applicable at wavelengths of the order of centimeters is the cavity resonator, which may be looked upon as a section of a wave guide with the dimensions chosen so that waves of a given length can be maintained inside.

The derivation of one type of cavity resonator from an ordinary $L C$ circuit is shown in Fig. 19-8. As in the case of the wave-guide derivation, this picture must be accepted with some reservations, and for the same reasons.

Considering that even a straight piece of wire has appreciable inductance at very-high frequencies, it may be seen in Fig. 19-8A and 13 that a direct short across a two-plate condenser with air dielectric is the equivalent of a tuned circuit with a typical coiled inductance. With two wires between the plates, as shown in Fig. 19-8C, the circuit may be thought of

(c)

Fig. 19-8-Steps in the derivation of a cavity resonator from a conventional coil-and-condenser tuned circuit.
as a resomant-line section. For d.c. or even low frequency r.f., this line would appear as a short across the two condenser plates. At the ultrahigh frequencies, however, such a section of line a quarter wavelength long would appear as an open circuit when viewed from one of the plates with respect to the other end of the section.

Increasing the number of parallel wires between the plates of the condenser would have no effect on the equivalent circuit, as shown at D. Eventually, the closed figure at E will be developed. Since each wire which is added in D is like connecting inductances in parallel, the total inductance across the condenser becomes increasingly smaller as the solid form is appronched. and the resonant frequency of the figure therefore becomes higher.

If energy now is introduced into the cavity in a manner such as that shown at F, the circuit will respond like any equivalent coil-condenser tank circuit at its resonant frequency. A cavity resonator may therefore be used as a u.h.f. tuning element, along with a vacuum tube of suitable design, to form the main components of an oscillator circuit which will be capable of functioning at frequencies considerably beyond the maximum limits possible when conventional tubes, coils and condensers are employed.

Other shapes than the cylinder may be used as resonators, among them the rectangular box, the sphere, and the sphere with re-entrant cones, as shown in Fig. 19-9. The resonant fre-
quency depends upon the dimensions of the cavity and the mode of oscillation of the waves (comparable to the transmission modes in a wave guide). For the lowest modes the resonant wavelengths are as follows:

The resonant wavelengths of the cylinder and square box are independent of the height when the height is less than a half-wavelength. In other modes of oscillation the height must be a multiple of a hatf-wavelength as measured inside the cavity. Fig. 19-8F shows how a cylindrical cavity can be tuned when operating in such a mode. Other tuning methods include placing adjustable tuning paddles or "slugs" inside the cavity so that the standing-wave pattern of the electric and magnetic fields can be varied.

Fig. 19.9 - Forms of cavity resonators.
A form of eavity resonator in wide practical use is the re-entrant cylindrical type shown in Fig. 19-10. It is useful in connertion with var-uum-tube oscillators of the types described for u.h.f. use elsewhore in this chapter. In ronstruction it resembles a concentric line closed at both ends with capacitance loading at the top, but the actual mode of oscillation may differ considerably from that occurring in coaxial lines. The resonant frequency of such a cavity depends upon the diameters of the two eylinders and the distance d between the ends of the inner and outer cylinders.

CROSS-SECTIONAL VIEW

Compared to ordinary resonant circuits, cavity resonators have extremely-high Q. A value of Q of the order of 1000 or more is readily obtainable, and Q values of several thousand can readily he secured with good design and construction.

Coupling to Wave Guides and Cavity Resonators

Energy may be introduced into or abstracted from a wave guide or resonator by means of either the electric or magnetic field. The energy transfer frequently is through a coaxial line. two methods for coupling to which are shown in Fig. 19-11. The probe shown at A is simply a short extension of the inner ronductor of the coaxisl line, so oriented that it is parallel to the electric lines of force. The loop shown at B is arranged so that it encloses some of the magnetic lines of force. The point at which maximum coupling will be secured depends upon the particular mode of propagation in the guide or a a vity; the coupling will be maximum when the coupling devire is in the most intense fied.

Coupling can be varied by turning either the probe or loop through a 90 -degree angle. When the probe is perpendicular to the electric lines the coupling will be minimum; similarly, when the plane of the loop is parallel to the magnetic lines the coupling will have its least possible value.

Fig. 19.11 - Compling to wave guides and rewonators.

U.H.F. and Microwave Tubes

At ultra-high frequencies, interelectrode eat pacitance and the inductance of internal leads determine the highest possible frequeney to which a vacuum tube can be tuned. The tube usually will not oscillate up to this limit, however, because of dielectric losses, grid emission, and "transit-time" effects. In low-frequeney operation, the actual time of flight of eleetrons between the cathode and the anode is negligible in relation to the duration of the cyele. At 1000 kc., for example, transit time of 0.001 microseeond, which is typical of conventional tubes, is only $1 / 1000$ rycle. But at 100 Me ., this same
transit time represents $1 / 10$ of a cycle, and a full cycle at 1000 Mc . These limiting factors establish about 3000 Mc . as the upper frequence limit for negative-grid tubes.

With most tubes of conventional design, the upper limit of useful operation is around bo Me. For higher frequencios tubes of eperial construction are required. The "acorn" and "doorknob" types have been available for many vars, these being useful up to $5(0)$ Me, or more in sperial (ifcuits. Newer miniature types, developed for use in u.h.f. television rereivers, now provide good performane up to nearly 1000 Mc .

U.H.F. AND MICROWAVE COMMUNICATION 427

Very low interelectrode capacitance and lead inductance have been achieved in the newer tubes of modified construction. In some trpess the electrodes are provided with up to five separate leads which, when connected in parallel, have considerably-reduced effective inductance. In double-lead types the plate and grid elements are supported hy heavy single wires which run entirely through the envelope, providing terminals at either end of the bull. When a resonant circuit is connerted to each pair of leads, the shunting caparitance divides between the two circuits. With linear circuits the leads berome a part of the line and have distributed mather than lumped constants. Radiation loss is minimized and the effect of the transit time is reduced. In "lighthouse" tubes or megatrons the plate, grid and cathode are assembled in parallel planes, as shown in Fig. 19-12, instead of conxially: The uniform coplanar electrode design and diskseal terminals permit low interelectrode capacitance.

Velocity Modulation

In negative-grid operation the potential on the grid tends to reduce the electron velocity during the more negative half of the oscillation eycle, while on the ot her half-cycle the positive potential on the grid serves to accelerate them. Thus the clectrons tend to separate into groups, those leaving the cathode during the negative half-eycle being collectively slowed down, while those leaving on the positive half are accelerated. After passing into the grid-plate space only a part of the electronstream follows the original form of the oscillation rycle, the remainder traveling to the plate at differing velocities. Since these contribute nothing to the power output at the operating frequency, the efliciency is reduced in direct proportion to the variation in velocity, the output reaching a value of zero when the transit time approaches a half-cycle.

This effect, such a disadvantage in conventional tubes, is an advantage in velority-modulated tubes in that the input signal voltage on the grid is used to change the velocity of the electrons in a constant-current electron beam, rather than to

Fig. 19.12 - Sectional view of the "Fighthouse" tube ${ }^{\circ}$ construction. Close electrode nating reduces transit time while the disk electrode connections reduce lead inductance.

Fig. 19.13 - Simple form of calindrical-grid velocitymodulated thbe with retarding-field collector and coaxial-line ontput eircuit, nsed as a superheterodyne high-frequeney oseillator or at a superregenerative detertor. Similar tubes can also be used as r.f. amplifiers and frequency converters in the $5-50 \mathrm{~cm}$, region.
ancolerated through a negatively-liased eylindrical grid by a constant positive voltage applied to a sleeve electrode, shown in heavy lines. This electrode, which is the velocity-modulation control grid, consists of two hollow tubes, with a small space at each end between the inner tube, through which the electron beam passes, and the disks at the ends of the larger tube portion. With r.f. voltage applied across these gaps, which are small compared to the distance traveled by the electrons in one half-cycle, electrons entering the tube will be accelerated on positive half-rycles and decelerated on the negative half-cycles. The length of the tube is made equal to the distance covered by the electrons in one-half cycle, so that the electrons will be further accelerated or decelerated as they leave the tube.

As the beam approaches the collector electrode, which is at nearly zero potential, the clectrons are retarded, brought to rest, and ultimately turned back by the attraction of the positive sleeve electrode. The collector electrode is, therefore, also termed a reflector. The point at which electrons are returned depends on their velocity. Thus the velocity modulation is again translated into current modulation.

Velocity-modulated tubes operate satisfactorily up to 6000 Me . (5 cm .) and higher, with outputs of 100 watts or more.

The Klystron

In the klystron velocity-modulated tube, the electrons cmitted by the rathode are accelerated or retarded during their passage through an electric fied established by two grids in a ravity resonator, or rhumbatron, called the "humeher." The high-frequency electric field botwern the grids is parallel to the electron stram. This field accelerates the electrons at one moment and retards them at another, in arcordance with the variations of the r.f. voltage applied. The resulting velocity-modulated beam travels through a field-free "drift space," where the slowly-moving electrons are gradu-
ally overtaken by the faster ones. The electrons emorging from the pair of grids thercfore are separated into groups or bunched along the direction of motion. The velocity-modulated electron stream is passed to a "catcher" rhumbatron. Again the beam passes through two parallel grids: the r.f. current created by the bunching of the electron beam induces an r.f. voltage between the grids. The catcher cavity is made resonant at the frequency of the velority-modulated electron beam, so that an oscillating field is set up within it by the passage of the electron bunches through the grid aperture.

If a feed-back loop is provided between the two rhumbat rons, as shown in Fig. 19-14, oscillations will occur. The resonant frequency depends on the electrode voltages and on the shape of the cavities, and may be adjusted by varying the supply voltage and altering the dimensions of the rhumbatrons. The bunched beam current is rich in harmonics, but the output waveform is remarkably pure because the high Q of the catcher rhumbatron suppresses the unwanted harmonics.

Magnetrons

A magnetron is fundamentally a diode with cylindrical clectrodes placed in a uniform magnetic fied with the lines of electromagnetide force parallel to the elements. The simple cylindrical magnetron consists of a filamentary cathode surrounded by a concentric cylindrical anode. In the more efficient split-anode magnetron the cylinder is divided longitudinally.

Magnetron oscillators are operated in two different ways. Electrically the circuits are similar, the difference being in the relation between electron transit time and the frequency of oscillation.

In the negative-resistance or dynatron type

Fip. 19.14 - Circuit diagram of the klystron ocedlator, showing the feed-back lonp emupling the frequeney-controlling rhumbatrons and the output loop in the cateher.
of magnetron oscillator, the element dimensions and anode voltage are such that the transit time is short compared with the period of the oseillation frequency. lilectrons emitted from the cathode are driven toward both halves of the anode. If the potentials of the two halves are unequal, the effect of the magnetic field is such that the majority of the electrons

Fig. 19.15-Conventional magnetrons, with equivalent schematic symbols at the right. A, simple cylindrical magnetron, $\mathbf{B}_{\text {, split-anode negative-resistance magnetron. }}^{\text {and }}$.
travel to that half of the anode that is at the lower potential. In other words, a decrease in the potential of either half of the anode results in an increase in the electron current flowing to that half. The magnetron consequently exhibits negativeresistance characteristies. Nega-tive-resistance magnetron oscillators are useful betwen 100 and 1000 Me. Tinder the best operating conditions efficiencies of 20 to 25 per cont may be obtained. Since the power loss in the tube appears as heat in the anode, where it is readily dissipated, relatively large power-handling caparity can be obtained.

In the transit-time mugnetron the frequency is determined primarily by its dimensions and by the electric and magnetic field intensities rather than by the tuning of the tank circuits. The effiriency is much better than that of a positive-grid oscillator and good power output can be obtained even on the superhighs.

In a nonoseilating magnetron with a weak magnetic field. electrons traveling from the cathode to the anode move almost radially, their trajectories being bent only slightiy by the magnetic field. With increased magnetic field the electrons tend to spiral around the filament, their radial component of velority being much smatler than the angular fomponent. ['nder critical conditions of magnetic field strength, a cloud of electrons rotates about the filament. It extends up to the anode but does not actually reach it.

The nature of these electron trajectories is shown in Fig. 19-16. Cases A, 13 and C correspond to the nonoscillating condition. For a smatl magnetic field (A) the trajectory is bent slightly ne:ur the anode. This bending inereases for a higher magnetic field (13) and the electron moves through quite a large angle near the anode before reaching it, signifying a large increase of space charge near the anode. For a
strong magnetic field (C) electrons start radially from the cathode but are soon bent and curl about the filament in the form of a long spiral before reaching the anode. This means a very long transit time and a very large space charge in the whole region where the spiraling takes place. I'nder critical conditions (D), no current flows to the anode and no electron is able to move from cathode to anode. but a large space charge still exists between the cathode and anode. The spiraling becomes a set of concontric circles, and the entire space-charge distribution rotates about the filament.

Fig. 19.16 - Flectron trajectories for increasing values of magnetie field strength, $/ 1$. Below is shown the corresponding curve of plate current, Ia. Oscillations commence when $/ /$ reaches a critical value, $/ I_{c}$; progressively higher-order modes of oscillation oceur beyond this puint.
$\mathrm{Fig} .19-16 \mathrm{E}, \mathrm{F}$ and G depiets higher-order (harmonic-type) modes of operation in which the space charge oscillates not only symmetrically but in transverse directions contrasting to the vibrations of the fundamental.

In a transit-time magnetron oscillator the intensity of the magnetic field is adjusted so that, under static conditions, electrons leaving the cathode move in curved paths which just fail to reach the anode. All electrons are therefore deflected back to the cathode, and the anode current is zero. When an alternating voltage is applied between the two halves of the anode, causing the potentials of these halves to vary about their average positive values, the conditions in the tube become analogous to those in a positive-grid oscillator. If the period of the alternating voltage is made equal to the time required for an electron to make one complete rotation in the magnetic field, the a.c. component of the anode voltage reverses direction twice with each electron rotation. some electrons will lose energy to the electric field. with the result that they are unable to reach the cathode and continue to rotate about it. Meanwhile ot her elect rons gain energy from the field and are returned to the cathode.

Fig. 19.17 -Split-anode magnetron with integral resonant anode cavity for use at u. h.f.

Since those clectrons that lose energy remain in the interelectrode space longer than those that gain energy, the net effect is a transfer of energy from the electrons to the electric field. This energy can be applied to sustain oscillations in a resonant transmission line connected between the two halves of the anode.

Split-anode magnetrons for u.h.f. are constructed with a cavity resonator built in to the tube structure, as illustrated in Fig. 19-17. The asscmbly is a solid block of copper which assists in heat dissipation. At extremely high frequencies operation is improved by subdividing the anode structure into from 4 to 16 or more segments, the resonant cavities for each anode coupled by siots of critical dimensions to the common eathode region, as in lig. 19-18.

The efficiency of multisegment magnetrons reaches 65 or 70 per cent. Slotted-anode magnetrons with four segments function up to 30.000 Mc . (1 cm .), delivering up to 100 watts at efficiencies greater than 50 per cent. Using larger multiples of anodes and higher-order modes, performance can be attained at 0.2 cm .

Traveling-Wave Tubes

Gain as high as 23 db . over a bandwidth of 800 Mc. at a center frequency of 3000 Mc . has been obtained through the use of a fairly-simple traveling-wave amplifier tube. Shown schematically in Fig. 19-19, the circuit consists of a helix, down which an electromagnetic wave travels. An electron beam is shot through the helix paratlel to its axis, and in the direction of propagation of the wave. When the electron velocity is about the same as the wave velocity in the absence of the electrons, turning on the electron beam causes a power gain for wave propagation in the direction of the electron motion.

Fig. 19-19 - Schematic drawing of a travelingwave amplifier tabe.

The portions of lig. 19-19) marked "input" and "output" are wave-guide sertions to which the ends of the helix are coupled. In practice two electromagnetic focusing coils are used, one forming a lens at the electron gun end, and the other
a solenoid running the length of the helis.
The most valuable feature of the travelingwave tube is its great bandwidth. The gain is high, though the efficiency is rather low. Typieal power output is of the order of 200 milliwatts.

Amateur Microwave Technique

All the hands that have heen assigned to amat teurs in the microwave region have been used for experimental twoway communication. Complete descriptions of suitable equipment for all these bands is beyond the scope of this text, but examples of the terhniques employed are shown below. lkeference is made to various artieles that have appeared in QST, describing mierowave gear used by amateurs, for those who wish more details.

1215 Mc ,

In this band it is possible to use a fow morr-or-less conventional triodes with linear circuits, though great rare must be used in designing such layouts, and the efficieney will be very low. A transmitter for 1215 Mc., designed and built by W3MLN and W3IIFW, is shown in Figs. 19-20 - 19-22. It uses a 703A doorknob triode, completely shielded, with the antemas as an integral pait of the assembly. The tube is mounted at the end of a halfwave line. Output is capacitively coupled to the folded quarter-wave antenna by means of a probe mounted alongside the plate line.

It should te emphasized that complete shielding of the osedlating circuit (including the tube (elements) is absolutely neeessary. The circuit will not oscillate at all if the shield is removed from the grid and plate rods, and only very weakly if the tube shield is not in phace. Output is only about ond watt, with an input of 80 ma. at 3 3,

Fig. 19-20-An orrillator and anteona system for 1215 Me., built as one unit. ($N^{\prime} 3 / 1 F^{\prime} W^{\prime}-W^{\prime} 31 / L N$)
volts, but two of these units have been used to communicate over distanees up to 12 miles or so with 89 signals. The equipment is deseribed in detail by the designers in QST for April, 1948, page 16.

Fig. $19-2 \mid$ - Schematic diagram of the $1215-$ Mc. oseillator.

Lighthouse tubes in suitably designed circuits are more efficient at this frequancy. For best rosults cavities should be used, though trough-line and flat-plate cireuits have beren used.

Parabolice reflectors are usuatly employed for this and higher frequencies. It is desirable to make the tranamitter or reecoiver an integral part of the antana system if possible. If this camot be done coaxial line of the shortest usable length may be usid. Air-insulated line is preferred to the flexible polyothyleme-insulated variety, because of the higher losses in the latter.

2300 Mc .

Must of the work on 2300 Mr. has been done with lighthouse tubes it ravity oscillators, though some of the klystron types such as the 707ls have beron used. Cavities for this frequency may be a quate wavelongth, half wavelength or throcequatiter wat wollogh long.

Details of a half-wato eavity ondillator using a 2 ('40 lighthouse tube are shown it Figs. 19-22 athd 19-23. This owillator was designed and built by W2RMA. It may be duplieated by any worker who has access to a few metal-working tools.

The main body of the cavity is 1 -inch brass pipe, silver plated. The end that fits over the tube is cut out to an inside diameter of $1 \frac{132}{}$ ineth, the

Fig. 19.22 - Welail drawing of the in: 1 oseillator for 1215 Mc .
only lathe work required. This rnd is also sawed crosswise at sevoral points so that it may be rlamped tightly to the tube with a brass strap, as seen in the photograph. Plate voltage is fod into the cavity through a feed-through capacitor mounted on the side of the tubing, and power is coupled out by moans of a capacity probe and coaxial fitting at the hot end. The cavity is tuned with a screw mounted in the end, providing a variable capacitane to the anode pest.

Output, with a $2 \overline{5}(0$-volt supply, will be 50 t.0 250 milliwatts. This sermingly small amount of power may be made to do very well with the antenna gain that is possible at this frequency with a parabolie reflector of reasonable dimensions. Gear for 2300 Me. is described in Q.sT for July, 1946, page 32, August, 1947, page 128, and Fobruary, 1948, page 11.

3300 Mc .

Lighthouse oseillators may be used on this frequency, but it is close to the top limit of their capabilities, so beoter results are oblainable with the klystron types. An advantage of the latter is that the frequency of oseillation may be varied over an appreciable range by changing the reflector voltage. This characteristic is also useful in providing a convonient means of obtaining frequeney modulation. 'This sensitivity to voltage ehanges makes it desirable to use a regulated hum-free supply.

On this and higher frequencies a eonveniont system for two-way work is the use of a klystron as both transmitting oscillator and as a local oscillator for receiving. A crustal mixer is uned in this case, its output being fed into a recoiver serving as the i.f. system. If the receiver so used is capable of $\mathrm{f} . \mathrm{m}$. detection it is only neressary to modulate the klystron reflector voltage to provide f.m. commonication of good quality. The oscillators of the two stations in communication are then operated on frequencies differing by the
value of the intermediate frequency selected. A single antenna system is used for both transmitting and receiving, and no change-over arrangement is needed.

5650 Mc .

Amateur work in this range has been done largely with reflex klystrons, two types of which (2 K 43 and 2 K 44) are capable of operation within our band. The one-tube system deseribed above may be used for each station, or of course separate tubes may be used for transmitter and local oscillator. In the latter case two antenna systems are required, but the transmitter efficiency is somewhat higher as some power is dissipated across the erystal in the one-tube arrangement.

Frequency molulation of klystrons is more practical than amplitude modulation. Modulation of the repellor voltage requires no andio power, as there is no current drawn by this tube clement. A carbon mierophone and a miorophone transformer, with the repellor voltage fed through the secondary, will handle the audio requirements nicely.

The first two-way microwave communication in amateur history was carried out in this way by A. E. Harrison, W6BMS/2, and IR. E:. Merchant, W2L, (iF, who operated in the temporary $5300-$ Mc. hand. Their equipment, deseribed in QS'T for January, 1946, page 19, will also work in the present hand.

$10,000 \mathrm{Mc}$.

The 723A/l reflex klystron, available at low cost for some time on the surplus market, provided amateurs with a convenient and inexpensive means of operation on $10,000 \mathrm{Mc}$. As manufictured, the tube will not ordinarily operate in the amateur band without modification.

Like other tubes of the reflex klystron variety, the frequency of oscillation is varided by warping the built-in cavity. It is used with a modified octal socket, with pin No. f removed and the

Fig. 19-23-A half-wave cavity oscillator for 2300 Mc . (V) $2 R M A$)

Fig. 19,24-Mechanical details of the 2300-Mc. lighthouse oscillator.
hole enlarged to pass the coaxial line that is part of the tube. This line is terminated in an "antenna" which is ordinarily used to transfer power to a waveguide.

Two vertical struts are provided for tuning, one of which is already variable by means of a stud, which spreads or contracts the flexible strut on the right side, compressing or stretching
the bellows, lowering or raising the frequency respectively.

The upper limit of frequency range, reached by rotating the tuning stud, will seldom be within the amateur band, hence it is necessary to perform the following operation. It may be seen that the top of the cavity is held in a fixed position on the strut on the side of the tube ly two small nuts which, after having been tightened, have been spot-welded to each other. The spot weld should be filed away until each nut can be moved freely on the threaded stud. Next, the position of these nuts should be adjusted very carefully, to raise the top of the cavity as was done on the other side. Extreme care should be used in this operation, as excessive stretching of the bellows may break some of the seals and render the tube inoperative. It is advisable to move the lower nut only until a firm resistance is felt. The operating frequency should then be checked, and if it is still below the limit of the band another tube should be tried, as any further attempt to raise the frequeney will almost certainly ruin the tube.

Equipment for use on $10,000 \mathrm{Me}$. is described in detail in QST for Fobruary, 1947, page 58.

21,000 Mc.

Operation in this frequency, and in the unassigned region above $30,000 \mathrm{Mc}$. is still highly experimental in nature. Only once has the $21,000-$ Mc. band been used for amateur two-way communication. This was accomplished under lat)oratory conditions by two engineers whose speeialty is development work in this field. Their work is detailed in QST for August, 1946, page 19. Type Z-668 reflex klystrons were used, with horn and parabolic antenna systems, to work two-way over a distance of 800 feet.

CHAPTER 20

Mobile Equipment

The amateur who goes in for mobile operation will find plenty of room for exercising his individuality and developing original ideas in equipment. Each installation has its special problens to be solved.

Most mobile receiving systems are designed around the use of a h.f. converter working into a standard car broadcast receiver tuned to 1500 kc . which serves as the i.f. and audio amplifiers. The car receiver is modified to take a noise limiter and provide power for the converter.

While a few mobile transmitters may run an input to the final amplifier as high as 100 watts or more, an input of about 30 watts normally is considered the practical limit unless the car is equipped with a special battery-charging system. The majority of mobile operators use 'phone.

In contemplating a mobile installation, the car should be studied carefully to determine the most suitable spots for mounting the equipment. Then the various units should be built in a form that will make best use of that space. The location of the converter should have first consideration. It should be placed where the controls can be operated conveniently without distracting attention from the wheel. The following list suggests spots that may he found suitable, depending upon the individual car.

On top of the instrument panel
Attached to the steering post
Under the instrument panel
In a unit made to fit between the lower lip of the instrument panel and the floor at the center of the car
On the left-hand door pancl (detachable when not in use)
Under the left-hand front seat
In the motor compartment (controls extended through the instrument panel)

The transmitter power control can be placed close to the receiver position, or included in the converter unit. This control normally operates relays, rather than to switch
the power circuit directly. This permits a minimum length of heavy-current battery circuit. Frequency within any of the 'phone bands sometimes is changed remotely by means of a stepping-switch system that switches crystals. In most cases, however, it is necessary to stop the car to make the several changes required in changing bands.

Depending upon the size of the transmitter unit, one of the following places may be found convenient for mounting the transmitter:

In the glove compartment
Under the instrument panel
In a unit in combination with or without the converter, built to fit between the lower edge of the instrument panel and the floor at the center
Under the right-hand or left-hand front seat
On the ledge above the rear seat
Fastened to the back of the front seat
In the trunk
In the motor compartment
Most mobile antennas consist of a vertical whip with some system of adjustable loading for the lower frequencies. Power supplies are of the vibrator-transformer-rectifier or motor-generator type operating from the car storage battery.

Units intended for use in mobile installations should be assembled with greater than ordinary care, since they will be subject to considerable vibration. Soldered joints should be well made and wire wrap-arounds should be used to avoid dependence upon the solder for mechanical strength. Self-tapping screws should be used wherever feasible, otherwise lock-washers should be provided. Any shafts that are normally operated at a permanent or semi-permanent setting should be provided with shaft locks so they cannot jar out of adjustment. Where wires pass through metal, the holes should be fitted with rubber grommets to prevent chafing. Any cabling or wiring between units should be securely clamped in place where it cannot work loose to interfere with the operation of the car.

Noise Elimination

Electrical-noise interference to reception in a car may arise from several different sources. As examples, trouble may be experienced with ignition noise, generator and voltage-regulator hash, or wheel and tire static.

A noise limiter added to the car b.c. receiver will go far in reducing some types, especially ignition noise from passing cars as well as your own. But for the satisfactory reception of weaker signals, some investigation and treat-
ment of the car's electrical system will be necessary.

Ignition Interference

Fig. 20-1 indicates the measures that may be taken to suppress ignition interference. The condenser at the primary of the ignition coil should be of the coaxial type; ordinary types are not effective. It should be placed as close to the coil terminal as possible. In stubborn cases, two

CHAPTER 20

on the frame of the generator.
To reduce the noise at 28 Me., it may be necessary to insert a parallel trap, tuned to the middle of the band, in series with the generator output lead. The coil should have about 8 turns of No. 10 wire, space-wound on a 1 -inch diameter and should be shunted with a $30-\mu \mu \mathrm{fl}$. mica trimmer. It can be pretuned by putting it in the antenna lead to the home-station receiver tuncd to the middle of the band, and adjusting the trap to the point of minimum noise. The tuning may need to be peaked up after installing in the car, since it is fairly. critical.
of these condensers with an r.f. choke between them may provide additional suppression. The size of the choke must be determined experimentally. The winding should be made with wire heavy enough to carry the coil primary current. A 10,000 -ohm suppressor resistor should be inserted at the center tower of the distributor, a 5000 -ohm suppressor at each spark-plug tower on the distributor, and a 10,000 ohm suppressor at each spark plug. The latter may be built-in or external. A good suppressor element should be molded of material having low eapacitance. Erie type L.7VR-10ME and L,7VR-5MIE are satisfactory. In extreme cases, it may be nevessary to use shiclded ignition wire. The 1951 Pontiac car was equipped with suppressor ignition wires, the resistance being distributed throughout the length of the wire. This is somewhat superior to lumped resistance and may be used if the lead lengths are right to fit your ear. They should not be eut, but used as they are sold

Generator Noise

Generator hash is caused by sparking at the commutator. The pitch of the noise varies with the speed of the motor. This type of noise may be eliminated hy using a 0.1 - to $0.25-\mu \mathrm{fd}$. coaxial condenser it the gemerator armature circuit. This condenser should be mounted as near the armature terminal as possible and directly

Fig. 20.2-The right was to install by -passes to reduce interference from the regulator. A condenser should never be connected across the generator fietd lead without the small series resistor indicated.

Voltage-Regulator Interference

In eliminating voltage-regulator noise, the use of two coaxial condensers, and a resistor-mica-condenser combination, as shown in Fig. $20-2$, are efferetive. A 0.1 - to $0.25-\mu \mathrm{fd}$. coaxial eondenser should be placed between the battery terminal of the regulator and the battery, with its case well grounded. Another condenser of the same size and type should be placed between the generator terminal of the regulator and the generator, A 0.002- $\mu \mathrm{fd}$. mica condenser with a tohm earbon resistor in series should be connected between the field terminal of the regulator and ground. Never use a condenser across the field contacts or between field and ground without the resistor in series, since this greatly reduces the life of the regulator. In some cases, it may be necessary to pull double-brad shielding over the leads between the generator and regulator. It will be advisable to run new wires, grounding the shiolding well at both ends. If regulator noise persists, it may be necessary to insulate the regulator from the car body: The wire shiclding is then connerted to the regulator case at one end and the generator frame at the other.

Wheel Static

Wheel static shows up as a steady popping in the receiver at speeds over about $15 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. on smooth dry streets. Front-wheel static eollectors are available on the market to eliminate this varicty of interference. They fit inside the dust cap and bear on the end of the anle, effectively grounding the whed at all times. Those designated particularly for your car are preferable, since the universal type does not always fit well. They are designed to operate without lubrication and the end of the axle and dust cap should be cleaned of grease before the installation is made. These collectors require replacement about every 10,000 miles.

Rear-wheel collectors have a brush that bears against the inside of the brake drum. It
may be necessary to order these from the factory through your dealer.

Tire Static

This sometimes sounds like a leaky power line and can be very troublesome even on the broadcast band. It can be remedied by injecting an antistatic powder into the inner tubes through the valve stem. The powder is marketed by Chevrolet and possibly others. Chevrolet deaters can also supply a convenient injector for inserting the powder.

Tracing Noise

To determinc if the receiving antenna is picking up all of the noise, the shielded lead-in should be disconnected at the point where it connerts to the antenna. The motor should be started with the receiver gain control wide open. If no noise is heard, all noise is being pieked up via the antenna. If the noise is still heard with the antenna disconnected, even though it may be reduced in strength, it indicates that some signal from the ignition system is being pirked up by the antenna transmission line. The lead-in may not be sufficiently-well shielded, or the shield not properly grounded. Noise may also be picked up through the 6 -volt circuit, although this does not normally happen if the recciver is provided with the usual r.f.-rhoke-and-by-pass-eondenser filter.

In case of noise from this source, a direct wire from the "hot" battery terminal to the recoiver is recommended.

Ignition noise varies in repetition rate with engine speed and usually can be recognized by that characteristic in the early stages. Iater, however, it may resolve itself into a popping noise that does not always correspond with engine speed. In such a case, it is a good idea to remove all leads from the generator so that the only source left is the ignition system.

Regulator and generator noise may be deteeted by racing the engine and cutting the ignition switch. This eliminates the ignition noise. (ienerator noise is characterized hy its musical whine contrasted with the ragged raspy irregular noise from the regulator.

With the motor rumning at idling speed, or slightly faster, cherks should be made to try to determine what is bringing the noise into the field of the antema. It should be assumed that any control rod, metal tube, steering post, ete., passing from the motor compartment through an insulated bushing in the firewall will carry noise to a point where it ran be radiated to the antemna. All of these should be bonded to the firewall with heavy wire or braid. Ineulated wires can he stripped of r.f. hy by-passing them to groand with $0.5-\mu \mathrm{fd}$. metal-ease condensers. The following should not be overlooked: battery lead at the ammeter, gasoline gauge, ignition switch, headlight and taillight leads and the wiring of any aecessories ruming from the motor compartment to the instrument panel or outside the car.

Fig. 20.3-Diagrams showing addition of noise limiter to car receiver. A - Isual circuit. B-Modification.
$C_{1},\left(i_{3}-100-\mu \mu \mathrm{fd}\right.$. mica.
$\left.\mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{\mathrm{i}}-0,0\right) \mathrm{O}-\mu \mathrm{fd}$. paper.
Cis - 0.1- $\mu \mathrm{fd}$, paper.
$\mathrm{Ri}_{1}-47,000$ ohms.
$R_{2}, R_{10}-1$ megohm.
R_{3} - $1 / 2$ megohm
$\mathrm{K}_{7}, \mathrm{R}_{8}, \mathrm{~K}_{0}-0.47$ megolim.
R_{4} - 10 megohms.
R_{s} - $1 / 4$ megohm.
K_{6} - 0.1 megolim.
${ }^{\prime} \mathrm{I}_{1}$ - I.f. transformer.
V_{1} - Sceond detertor.

The firewall should be bonded to the frame of the car and also to the motor block with heavy braid. If the exhaust pipe and muffler are insulated from the frame by rubber mountings, they should likewise be grounded to the frame with flexible eopper braid.

Noise Limiter

Fig. 20-3 shows the alterations that may be made in the existing car-receiver circuit to provide for a noise limiter. The usual diodetriode second detector is replaced with a type having an extra independent diode. If the car receiver uses ortal-base tubes, a 6S8GT may be substituted. The 7×7 is a suitable replacement in receivers using loktal-type tubes, while the 6T8 may be used with miniatures.

The switch that cuts the limiter in and out of the circuit may be located for convenience on or near the converter panel. Regardless of its placement, however, the leads to the switch should be shielded to prevent hum piek-up.

A Compact Multiband Mobile Converter

Figs. 20-4 through 20-9 show photographs and diagrams of a small mobile converter covering all bands from 3.5 to 29 Mc.

As the diagram of Fig. 20-6 indieates, the circuit includes an r.f. stage, mixer and h.f. oseillator, each using a GAJ5, similar to the 6AK5 which can be used interchangeably in this cireuit. The input circuit can be peaked up with the $50-\mu \mu \mathrm{fd}$. air trimmer, C_{1}. The grid circuit of the mixer is broadbanded, requiring no attention after preliminary adjustment. The main tuning control is C_{18} in the h.f. oscillator circuit. Fixed parallel padders are selected to spread cach of the bands over at good share of the dial. All coils, including the i.f., are slug-tuned. Included in the bandswitch are the sections $S_{1 G}$ and S_{11} which turn off the filament and plate power, as well as the dial lamps, when the gang is thrown to the b.e. positicn. A small relay, controlled from the transmitter panel, cuts the I supply to the converter while transmitting. The over-all dimensions are $37 / 8$ by $51 / 8$ by $63 / 2$ inches, not including protuberances, such as the r.f. tuning knob) and the power plug. The panel is 5 by $33 / 4$ inches and includes the dial, antenna-trimmer control and bandswitch. The chassis is 5 by $53 / 4$ by 2 . All parts of the enclosure are of aluminum sheet.
The dial mechanism is a planctary unit with a 5 to 1 ratio (National AVD). This is mounted on the panel $11 / 4$ inches from the bottom edge. The dial face is a piece of $1 / 4$-inch Lucite or Plexiglas 3 by 5 inches. A semicircle is cut out of the
bottom edge with a jig satw to clear the dial meedhanism, and is also notched out on the right-hand side to pass the shaft of the antenna trimmer. Before making these cuts, however, the various dial seales should be laid out with a compass seriber, using the position of the dial shaft as the seribing center. The back side of the plast ic is covered with ordinary black or other dark-colored paint to form a contrasting bakground for the calibration marks. A dial lamp is mounted in each upper corner of the panel and the plastic is drilled part way through at these points. The ends of the bulls extend into these depressions and the transmitted light illuminates the panel. Twelve-volt lamps (operating at 6 volts, of course), or two \mathfrak{f}-volt lamps in series, provide plenty of light at half normal voltage. A metal cover of light-gatuge aluminum wats fashioned to fit over the upper corners of the plastic to eliminate direet light from the lamps. The pointer is a piece of thin transparent plaside, cut to shape and fastened to the dial mechanism with the serews provided. A line is seribed down the center of the pointer.

Cnderneath, the main tuning-rondenser shaft is matched up) with the dial shaft and mounted in place. While the condenser shown in the photograph is at wo-sertion jol), only one of the seetions is used. An L-shaped shield runs abong the righthand side and across the rear of the condenser to isolate it from the antenna trimmer mounted nearly on the right-hand edge of the chassis.

The bindswitch gang is made up from (en-

Fig. 20-4 - Bandswitching converter designed by W3M\R and W31)Z\% installed under the dashhoard mear the b.e. receiver.

Fig. 20.5 - The dial of the bandswitehing mobile converter is a piece of clear plastic with catibration marhs inscribed. The bandswiteh control is at the lower left and the antema trimmer to the right.

tralab, switch-kit parts and consists of five ceramic wafers. Three wafers carry two circuits of five positions (Centralab type IRIR). The sixth position, shown in the diagram, is the arm slider contact which can be used in this case because the last switch position for all hut S_{11} is an
 fers each having one circuit and six positions (Cen-
tralah type X). The switch is mounted directly behind the main tuning eondenser in a vertical position, its shaft $33 / 8$ inches from the front edge of the chassis. This unusual mounting is convenient for grouping tubos and coils around the switch sections. Goly the switeh index head and the first wafer are below the chassis. The two circuits of this wafer, comprising $S_{1 A}$ and $S_{1 B}$, handle

Fig. 20.6-Circuit of the bandswitching converter.
$\mathrm{C}_{1}-50-\mu \mu \mathrm{fd}$. miniature variable.
$\mathrm{C}_{2}, \mathrm{C}_{8}-50-\mu \mu \mathrm{d}$ d mica.
C3-100- $\mu \mathrm{ff}$. mica.
$\mathrm{C}_{4}^{3}, \mathrm{C}_{5}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{18}-0.001-\mu \mathrm{fd}$. mica.
(:9-220- $\mu \mathrm{fd}$. miea.
$\mathrm{C}_{10}-3 \mu \mu \mathrm{fd}$.
$C_{11}-51-\mu \mu$ fd. silvered mica.
$\mathrm{C}_{12}, \mathrm{C}_{13}-160-\mu \mu \mathrm{fd}$. silvered mica.
Ci4 - 150 - $\mu \mathrm{ffl}$. silvered mica.
$\mathrm{C}_{15}-33-\mu \mathrm{fd}$. silvered mica.
$\mathrm{C}_{16}-33-\mu \mu \mathrm{fl}$. mica.
$\mathrm{C}_{17}-15-\mu \mu \mathrm{fd}$. variable.
$R_{1}, R_{4}, R_{6}-10,000$ ohmes, V_{2} watl.
$R_{2}-180$ ohms, $1 / 2$ watt.
$R_{3} R_{5}-2000$ ohmus, $1 / 2$ wall.
R_{i}, R_{8}-alues dependent on supply vol:age. Adjust for voltages marked.
$\mathrm{I}_{1}, \mathrm{I}_{2}-12$-velt dial lamp.
$\mathrm{J}_{1}, \mathrm{~J}_{3}$ - Coaxial connector.
J_{2} - 5 -pin male power plug.
R y_{1} - 6 -volt relay.
s_{1}-Ceramic rotary switch - 4 wafers, 2 circuits per wafer, 6 pesitions per circuit, and I wafer, 1 circuit, 6 pasitions (t below, 4 above chassis) (made from Centralab kit parts).

Fig. 20.7 - Top viet of the hambwithong converter, showing oncillator and anixer coils grouped aromed the bandswith. "The relay monnted ayainst the front edge of the chassie ats the power to the ronverter thring tramamixsinns.
the r.f. input circuits. The other four wafers are mounted above and a dearanee hobe for the switeh shatf is drifled in the dhassis. Additional bracing agatinst the action of the control fever is provided he adding a stresp) brateled aross the indox head at right angles to the assemble rods. This strap is fistened to holes in the index heal and with long sereus to the chassis

Coil Table for Bandswitching Converter							
Coil	Rand. Mr.	$L_{\mu} h$.	4 \%rn.	$\begin{aligned} & \text { Ifire } \\ & \text { Size } \end{aligned}$	$\begin{aligned} & \text { Levelh. } \\ & \text { Inches } \end{aligned}$	$\begin{aligned} & \text { In!. } \\ & \text { Turns } \end{aligned}$	$\begin{gathered} r_{\text {ath }} \\ T_{\text {an }} \end{gathered}$
$L_{1 .}{ }^{\circ}$	29	(1) 5	12	as us.r.	${ }^{3}$	3	
$L_{2}{ }^{*}$	21	14	113		${ }^{3}$	3	
$L_{3}{ }^{\circ}$	14	31	24	2wds.e.	${ }^{3}$	4	
$L_{\text {d }}$	7	11	52	ごd.s.m.	$\mathrm{r}-\mathrm{w}$.	7	
L.s.	35	38	92	\%ids.e.	r-w.	1.5	-
$L_{\text {cin }}{ }^{\text {a }}$.	29	15	18	$\underline{2 x}$ с.s.s.c.	3_{3}	-	
$L_{7}{ }^{\circ}$	21	28	27	$2 \times$ dis.e.	$3{ }^{3}$	-	-
$L_{5}{ }^{*}$	14	62	35	28 ds.r.m.	r-w.	-	
Ls 9	i	25	98	31 d.s.r.	c-w.		
$L_{10}{ }_{10}$	1	${ }^{12}$	140	33^{3} cıam.	${ }^{\text {c-w. }}$	-	-
$L_{11}{ }^{\circ}$	29	035	9	2х¢...c.	${ }^{3}$	-	3
$L_{12} 0^{*}$	21	026		2x d.s.\%	3_{4}^{4}		3
${ }_{1.13}{ }^{\circ}$	14	050	10	284.s.r.	$3 / 4$	-	+
$L_{14}{ }^{\circ}$	i	19	18		$3 / 4$	-	
$L_{15}{ }^{\text {a }}$	1	15	60	$\underline{\text { one }}$ d.s.c.	c-w.	-	21
$L_{540^{\circ}}$	13	52	100	34 ¢ 4 am.	c-w.	25	
- Wound on National XR-91 irot-slug form, 8-8 in. diam.. $11 / 4$ in. long, as close as possible to ard opposite stug serew; others same, but on XR-93 forms. $18 / 4 \mathrm{in}$. Iong Antorna coils wound over ground end of r.f. grid roils with same size wire. ('athodetap turns rounted from rround pud of oserillator rerils.							

A sketeh of the switch operating mechanism is shown in Fig. 20-8. Dimensions ran be adjusted to suit a variets of condibons. It is merely a matter of expermenting with af fow pieces of cardboard and some thambatacks to find dimensions that will fit eanh catse. The shont :um attached to the switch shatt should proderably be of brass so that the mut cun be soldered fast. The set-serew collar to whith the short surm is at turned is : panel bearing. The theented nerek is cut and filed down *) that it is a littlalonger than the thickness of the arm. The excess is then hammered down over the arm to maks : firm joint. Solder fowed around the hole will ind strength. The flume of the panel bearing should tre drilled amb tapped for two sor scrmas The bandswited seale is a strip) of thin ahminum. The positions for the various bands are" marked with a scriber and the lines filled in with ratyon.

The r.l. futse is the oniy one mounted top-side up. The mixer and oscillator tubes are upside down and have their contoretions and asoociated eoils above the chassis. This arrangement permifs: better utalization of space and the chassis becomes a shield for the r.f. cirenit.

Adjustraent

Standard atutomolile receivers ate denigned for high-impedanco antembas and transmission lines. Since the output of the eonverter is coupled to a low-impedance coan line, considerable mismateh results. Most. b.e. receivers have enough gain so that the losses as a consopucher cam $1+\infty$ foleraterl. However, the gain

Fig. 20.8 -sketrhes showing the construrtion and dimensions of the handswiteh merhanism for the multiband coll. verter.

can be increased censiderably by modifying the r.f. coil in the b.e. set. This is accomplished by winding a link of about 25 turns of No. 28 wire on the "rold" end of the antennas coit. This modifieation, however, will reduce the gain on the b.e. band. One compromise is to use one push button only for the converter
and modify only the coil associated with that ehannel.

The entire converter was wired and aligned with a grid-dip meter before applying power. Depending on the forms used, some slight alteration in the number of turns shown in the coil table maty be necessary.

Fig. 20.9-Bottom view of the bandswitching converter showing the switeh operating mechanism and inverted mounting of the h.f. oserllator and nixer tubers.

A Mobile Converter for 28 and 50 Mc .

The converter shown in Figs. 20-10 to 20-13 was designed for mobile reception on 6,10 , and 11 meters, but it may also be used in fixedstation work with grod results. The intermediate frequency is 1500 ke ., to permit its use with mobile broadeast receivers.

Circuit Details

The converter circuit diagram is shown in Fig. 20-11. A 6.AK5 broadband r.f. amplifier is followed by a 6.56 mixer-oseillator. The oscillator circuit is the ultraudion type, operating 1500 kc . below the signal frequency. The need for gang-tuned circuits is eliminated by the broadband r.f. amplifier: thus only the oseillator tuning condenser, C_{1}, requires adjustment during normal tuning operation. Band

Fig. 20.10 - A handswitrhing convorter for 6, 10 and 11 meters. The pilot light at the lower right has an adjustable beam, for convenience in mobile worh.
changing is accomplished with a 5 -section selector switch, shown on the diagram as $S_{1 A, B, 1, ~ D, ~ E . ~}^{\text {. }}$

Soven commercially-available coils are used, six of them boing identical exopt for the setting of the slugs. The wide inductance range of the slug-tuned units makes it possible to use similar coils for the r.f., mixer and oscillator coils for both ranges. Padder capacitance is added across the 10 -meter r.f. and mixer coils, L_{4} and L_{6}, and across both oscillator coils, $L_{.7}$ and L. 8 . Varying the slug position takes care of the necessary differences in coil inductance for all these positions.

A single whip antenna may be used for both broadeast and amateur reception. A jumper connection between sections A and E of S_{1} completes the circuit between the antenna and the broadcast receiver, with the switch in the position marked B.C.in Fig. 20-11. A filament
switch, S_{2}, is provided to remove the load of the converter tubes from the car battery when the recoiver is being used for broadcast reception.

Broalbanding of the r.f. and mixer circuits is areomplished through the use of low- $(2$ eoils and tight coupling in the antenna circuit. The plate eoil of the miser is self-resonant at the intermediate frequence y, giving a degree of broadness suflicient to permit tuning the receiver over a limited range near the high end of the broadeast band, providing a vernier effect.

Construction

All of the metal components are formed from $\frac{1}{1}$ binch ahminum stork. The interior view, Fig. 20-12, shows the "L,"-shaped section which serves as the front pancl and the bottom plate of the unit. The panel and the bottom areas are each $\overline{5}$ inches squate. Lips, I_{2} inch wide, are folded over along the top and side edges of the pathel and also atong the sides of the bottom section. The rolled-over edges are drilled and tapped to aceommodate (j-32 mathine serews.

I threes-sided portion and a square top plate complett the converter cabinet. Tha sides are \bar{j} inehes square and the rear wall is $51 / 8$ inches wide. All three sides are \bar{b} inches high with !exinch flanges folded over on the top edges and drilled and tapped for 6-32 serews. The sides and bottom edges of the case are drilled to dear machine serews; the holes should line up with the tapped holes of the panelfottom assembly. A reetangular hole, $17 / 8$ inches high and 2 inches wide, is cut at the bottom lefthand corner (as seen from the rear of the converter) of the rear wall, to provide clearance for the cable connectors. The top plate for the converter measures $\overline{5}$ by ${ }^{5}$ inches. Holes, drilled along the edges, allow the cover to be fastened to the flanges at the top of the cabinet.

The physical shape of the converter chassis can best be visualized by stady of the interior views. The chassis is 5 by $47 / 8$ by $13 / 4$ inches in size, with llanges $1 / 2$ inch wide folded over along the front and the bottom edges to provide a means of mounting. A $2 \frac{1}{4} \times 33 / 4$-inch cut-out at the center of the chassis allows clearance for the bandswitch. A large round hole located in the rear wall of the chassis simplifies the jol) of finding the oscillator padeler condenser when this control requires adjustment.

A vertical partition used as the mounting surface for the oscillator tuning condenser, (${ }_{1}$, also serves as the shield between the plate and the grid circuits of the r.f. amplifier. It is $3 \frac{1}{2}$ inches wide and $43 / 4$ inches high, and is notehed to clear the main chassis and the spacer bars and rotor arm of the bandswitch. The partition is held in place by a spade lug which passes through the chassis and by a mounting

Fig. 20.11 - Circuit diagram of the bandswitehing v.h.f, converter.
$C_{1}-1.5 . \mu \mu \mathrm{fd}$. variable reduced to one stator and 2 rotur plates (M illen 2001.).

Cs, C_{10} - 10- $\mu \mu \mathrm{fil}$ erramir (Centralab CC:0Z).

C.12-0.01- $\mu \mathrm{fi}$. ceramic ((ientralah D 10 t8003. 1).
R_{1} - $2 \geqslant 0$ ohms, $1 / 2$ watt.
$\mathrm{R}_{2}, \mathrm{~K}_{6}-680$ ohms, $1 / 2$ watt.
$\mathrm{R}_{3}-1.5$ merohms, $1 / 2$ watt.
R_{4} - $I 2,1$ ONO ohms, $1 / 2$ watt.
R_{5} - $\frac{15,000}{}, 01 \mathrm{~mm}, 1 / 2$ watt.
R : - $\mathbf{5 0 0 0}$ ohms, 10 watts.
LA, L_{2} - 1 turna No. 28 d.s.e. close.wound over ground ends of L_{3} and L_{4}.
lip which is screwed to the bottom side of the cabinet. It is located 3 inches in from the front edge of the chassis.

The heater switch and the pilot-light assembly are mounted at the lower left-and right-hand eorners of the front panel with the bandswiteh at the renter, $11 / 8$ inches up from the bottom edge. The selector-swith index plate should have a rotorshaft length of at least 3 inchers, and the switch wafers should bo mounted on the shaft with the first separated from the index plate by 1 -inch spacers and with the second wafer separated from the first by $15 / 8$ inches.

The National MCN dial is centered above the bandswitch with the control shaft 3 inches above the bottom edge of the panel. It is wise to cut the large mounting hole suggested in the dial-mounting instruction sheet and then do the final fastening down of the dial after the
tuning condenser and its mounting

Fig. 20.12 - Interior view of the converter. Only the oscillator is tunced by the front-panel control, eliminating traching problems.
 close-wound on $3 / 8-$ inch diameter form; slugtuned: inductance range 0.3., to $1.0 \mu \mathrm{~h}$. (Cambridge Thermionic Corp. Las $3-30$ Me.).
L_{0} - Seramble.type windiag on $\frac{3}{8} \cdot$-inch $^{\text {sing.tuned }}$ form: inductance range 325 to $750 \mu \mathrm{~h}$. (Cam. bridge 'lhermiosic Corp. IS \mathbf{S}-1 Mc.).
I.n- 20 turus No. 28 d.s.e. seramble wound next to L_{9}. I_{1} - Aljustablebeam dial-lixht assembly.
$\mathrm{I}_{1}, \mathrm{I}_{2}-$ Coaxial-cable jaeks (Imphenol $7 \mathrm{I} \cdot \mathrm{P}$ (CI M).
$\mathrm{J}_{3}-3$-prong eable connector (Jones $\mathrm{P}-303 \mathrm{~A} \mid \mathrm{B}$).
$1 R F C_{1}-300$ - $\mu \mathrm{h}$. r.f. ehoke (Nillen 34:300).
$\mathrm{S}_{1} \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}-2$-gang (0.cirenit bandswith (two Cen. tralab $\mathrm{SS}^{\text {sections) }}$
s_{2} - S.p.s.t. toggle switch.
plate have been permanently secured in place.
The interior view of the completed converter shows the 6.1 K 5 amplifier tube in front of the shield partition, with the grid indurtances to

the right of the tube. The padder condensers for 27 and 28 Me. are mounted on the forward coil. From left to right across the rear of the chassis are the mixer-oseilator tube, five of the slug-tuned inductances, and the regulator tube. The i.f. output coil and the two oseillator coils are mounted below the chassis, as seen in the bottom view of the chassis subansembly. The r.f. plate coils are above the chassis to the left of the $0 B 2$ regulator, the $28-$ Me. coil being the one with the trimmer condenser mounted across the terminals.

Construction will he simpler if the buider uses coils as shown. The Type L.s3 30-Mc. inductors will resonate at 50 Me . with the tube and circuit caparitances, and only a small padder capacitance is required to tune them to 27 and 28 Mc .

Coaxial jacks for the antenna and i.f. output cables are at the rear of the chassis to the loft of the power-cable jack. They are closely grouped so that the input and output cables maty be taped together to form a common cable.

Wiring can be done rendily if the subassembly method is employed. The bottom-view photograph of the chassis, Fig. 20-13, shows how the circuit eomponents are elosely grouped around the tube sockets, with wiring completed to the point of making comections to the band-switch. Twin-Lead of the 7 bothm type is used to make the comeretion betwern the antenna input jack and the bandswiteh. The two wires enclosed in spagheti at the right of the chassis in the botem view are the 6.3 -volt leads which go to the heater switch.

Testing

The heater requirements of the converter are 6.3 volts at 0.625 amp., and the phate supply should deliver 200 to $2 \overline{5} 0$ volts at 25 to 30 ma. These may be drawn from the reeeiver with which the converter is to be usod, or a separate supply may be emploved. With power turned on, the plate voltage of the mixer and

r.f. amplifier should measure 105 volts and the 6 KK 5 cathode resistor should provide a drop of approximately 2 volts. The 6.115 cathode current should be about 8.5 ma . The regulatortube drain will be about 8 ma .

Alignment of the converter is made most simple if a calibrated signal generator is a vailable, ot herwise amateur transmitter signals of known frequency may be used. The r.f. and i.f. circuits can be peaked on baekground noise. The oscillator stage should be on the low side of the signal frequency. It is possible to vary the bandspread of the converter over a wide range. With a fairly low order of padder capacitance, and with the inductance increased by the tuning slug, the 10 - and 11moter bands can be eovered with one swing of the tuning dial. Angone not interested in 11 meters can increase the bandspread on the 10-meter range be adding more padder capacitance and by decreasing the inductance of L os. The converter as shown has 13 divisions of handspread at 11 meters and 52 divisions at 10 meters, with the logging of frequencies made on the 13 scale of the dial. Bandspread for the 50-Mle. band is 48 divisions on the A seale. This spread may be increased by the same method.
some oprators favor a selected group of frequencies within a band. A shight improvement in the performance of the eonverter can be made in this case by poaking the r.f. amplifier circuits at a favorite spot rather than at the center of a band. There may be a tendeney toward regeneration, in the $50-$ Me. r.f. amplifier, however, if the input and plate cireuits are peaked at precisely the same frequency, making stagger tuning desirable.

Reducing Spurious Responses

In localities where there are stations operating in the high F.M hand a converter or receiver having broadband r.f. stages will experionce eonsidurable interference on the $50-$ Me. range. This can be corrected in several ways, the simplest being the insertion of a $100-$. Ie. trap in the antema lead.

Fig. 20-13 - Construction of the eonverter is made easier if as much wiring as possible is lone before the assembling is completed. This bottom view of the chassis sulassembly shows the wiring completed to the point of emmection to the handswiteh.

A Crystal-Controlled Converter for Two-Meter Mobile Reception

Fig. 20.14- I'op view of W2l'lll`s erystal-controlled converter for 2. meter moble reception. The ossillator-molsiplier talm and eryutal are at the left. At the riglat are the r.f. amplifier, miver and i.f. amplifier, loohing up from the bottom. Because no external adjustments are needed. the anverter may be built in almost ans shape that will fit available spare in the car.

The 1+1-Mc, nowhile converter shown in Figs. $20-14$ through 20-16 is designed primarily for mohile operation. Therefore to serve the sims of simplicity, compactnese and low batters drain, some of the features that might be considered desirable in a frome-station anit have been omited. However, the cost is fow and the performane of the system is ontirely satisfutory. both as to stability and sonsitivity.

Circuit

Since the tuning range of the usual car broadrast receiver is insufficient to permit eoverage of the entire 2 -meter haml without changing arystabs, this convertor is designed to work into another converter which, in turre, works into the regular cour reciver. This serond converter is used as as tunable i.f. and should eover the range of 26 to 30 Mr. to provide the sueressiry 1 - Me. range totake care of the whele of the 2-moter band.

The r.f. stiage uses is ti.llī, pentode connerted. This results in a slight sarrifiee in noise figure, compared to that obtainable with at triode, but with the other noises usually prevalent in mobile work, the ultimate in first-tube is not so important in pratice. The miser is a GABt triode.

The oscillator is the simplest form of triode (riruit, using at erystal at 39.33 Ma . in the first hatif of the $6 . J 6$, the second portion tripling to 118 Me . Crystals such is the Jomes Kinights JK-1117 or 11-173, the Bliley BH-6, or GE Geili3, can be readily obtaned for this frequency.

Where the mixer is asparate tube from the oscillator-multiplier, some injertion coupling maty be necessury, :lthough the minimum required value should be usod. The $1.5 \mu \mu \mathrm{fd}$. needed wats obtaned hy connereting two $3-\mu \mu \mathrm{fd}$. units in series.

The i.f. stage, using a 6 AK5, employs an output circuit that provides low-impedance coupling to the following converter.

Fig. 20 -15- Bottom view of the 2 -meter converter. The coil forsa at the urber left is the nixer pate cir mit. Gseillator-maltiplies components are at the upper ripht.

The converter is built on a 5×5-inch chassis that fits inside a standard utility box. Since there is no adjustment required during operation, the unit can be built in almost any shape that can be fitted into available space in the car. The coils and condensers are mounted under the chassis, and once the initial adjustment is made, they are left alone.

In order to isolate the input and output cireuits, of the r.f. amplifier, a small right-angle shiekd is placed across the 6AK5 socket in such a way as to enclose the antenna coil. The shield may be seen in the lower left side in the bottom view of Fig. 20-15. The antemna is connected directly to the grid coil through coaxial cable.

The mixer output coil, L_{4}, is mounted between
the 6.134 and the i.f. amplifier tube, in the upper right-hand corner in the top view of Fig. 20-14.

At a supply voltage of 150 , the converter drain will be about 15 ma . If a higher supply voltage is used, R_{15} should be inereased aecordingly. Adjustment is straightforward. The slug in L_{5} is first adjusted for maximum background noise in the output of the system. Then L_{4} is adjusted for maximum response on 2 -meter signals in the most-used part of the band. L_{1} can be peaked up by squeezing the turns together or spreading them apart slightly as needed.
With a 10 -ineh whip good signals have been obtained with this converter at distances up to 30 miles or more.

Fig. 20.16 - Schematic diagram and parts list for the erystal-controlled 2-meter emverter. If erystals lower in frequency than 39 Me. are to be used an overtone oscillator circuit can be subitituted for the crystal circuit slown.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{13}, \mathrm{C}_{14}, \mathrm{C}_{18}, \mathrm{C}_{19}-0.001 \mu \mathrm{fd}$.
$\mathrm{C}_{4}, \mathrm{C}_{11}-5 \mu \mu \mathrm{fd}$.
$\mathrm{C}_{5}, \mathrm{C}_{8}-50 \mu \mu \mathrm{fd}$.
$\mathrm{C}_{6}-1.5 \mu \mu \mathrm{fd}$. (two $3 \cdot \mu \mu \mathrm{fd}$. in serics).
$\mathrm{C}:-10 \mu \mu \mathrm{fd}$.
$\mathrm{C}_{12}-30 \mu \mu \mathrm{fd}$.
$\mathrm{C}_{15}, \mathrm{C}_{77}-4-30-\mu \mu \mathrm{fd}$. ceramic trimmer.
$\mathrm{C}_{16}-25 \mu \mu \mathrm{fd}$.
(All fixed capacitors ceramic.)
$\mathrm{H}_{1}-150$ ohms.
$\mathrm{K}_{2}-10,000 \mathrm{ohms}$.
$\mathrm{R}_{3}-0.68$ megohm.
$\mathrm{R}_{4}-1000$ ohms.
$\mathrm{R}_{5}-3300$ ohms.
$\mathrm{R}_{6}-0.1$ megohm.
$\mathrm{R}_{7}-680$ ohmes.
$\mathrm{R}_{8}-39,000$ ohms.
$\mathrm{R}_{\mathrm{g}}-7000$ ohms.
$\mathrm{R}_{10}-1500$ ohms.
$\mathrm{R}_{11}-47,000$ ohms.
$\mathrm{K}_{12}, \mathrm{R}_{14}-\mathrm{F}$ too ohmi.
k_{13} - 0.22 megohm.
$\mathrm{R}_{15}-\mathbf{5 6 0 0}$ ohins, I watt. (All other resistors $1 / 2$ watt.)
$1.1-5$ turns Vo. $16,3 / 8$-inch diam., $1 / 2$ inch long, tapped at $11 / 2$ turns.
$1.2-1 / 2$-watt resistor wound full of No. 30 enameled wire.
1.3-3 turns No. $16,3 / 8$.inch diam., $1 / 4$ inch long.
$\mathrm{L}_{4}-10$ turns No. 24 enam. on ${ }^{13 / 32 \text {-inch diam. form }}$ (Nillen 6904), brass slug.
L_{5} - 10 turns No. 20 enam. on $1 / 2$. .nch slug-tuned form from BC:62. 4 receiver. Xational X 18.50 also usable.
L_{6} - 11 turns No. 18, $1 / 2$-inch diam. ($\mathrm{B} \& \mathrm{~W}$ No. 3003 Miniductor).
L.7-3 turns No. 18, $1 / 2$-inch diam.
L.s, $\mathrm{L} 9-1 / 2 \cdot$ watt resistor wound full of No. 18 enam.
J_{1} - Coaxial fitting, female.
J_{2} - Coaxial fitting, male.
S_{1} - Double-pole single-throw toggle switch.

A Multiband Mobile Transmitter

Fig. 20-17 - The bandswitching mobile transmitter installed under the dashloard of W2RP'C's car.

The unit shown in Figs. 20-17 through 20-19 is a complete bandswitching mobile transmitter, including modulator and covering all bands from 4 to 29 Mc.

The circuit diagram is shown in Fig. 20-19. Either crystal control or VFO is available simply by snapping the toggle, S_{1}. A $6 C+4$ is used in the VFO and this is the only indirectly-heated tube in the transmitter. All others are direct-heater types. The heater of the 6 C 4 operates from a sep)arate cireuit through S_{2} so that it can be left on during receiving periods. This cuts down initial drift and eliminates waiting for the cathode to come up to temperature before cach transmission. VFO output is taken from the cathode tap to minimize loading effects on frequency. The tuning range of the VFO is limited to 3500 to 4000 ke . This makes it necessary to use crystal control on 11 meters, unless it is desired to extend the VFO range. The plate voltage for the VF() is stabilized by an Ol32 regulator tube.

The 5618 following the VFO may be used as an 80- or 40-meter crystal oscillator, or as an amplifier or doubler for the VFO), sine the output cireuit, $C_{9} L_{2}$, will tune to either band, one near maximum capacitance and the other near minimum.

The next stage, also using a 5618 , may be operated as a doubler to 14 Mc., as a tripler to 21 Mc., or a quadrupler to 28 Me., depending on the setting of C_{13} which covers all three bands. This stage is inserted or removed from the circuit by S_{3}. Thirty volts of fixed bias from the modulatorbiasing battery practically cuts off plate current to the 5618 when this stage is not in use.

A 5516 is used in the final amplifier. This tulse has the same power rating as the $2 \mathrm{~F}: 25$, but it is shorter physieally so that it can be fitted into a smatler space. The use of an all-band tuner in the final-amplificr output circuit climinates the necessity for plug-in coils or switching.

In the audio section, a carbon microphone drives a triode-connerted 5618 which, in turn, drives two 2 E 30 s in the Class AB_{2} modulator.

Microphone voltage is obtained from the car battery through the filter consisting of C_{20} and L_{9}.

The milliammeter, $M A_{1}$, can be switched to read current at the important points in the circuit. When switched to position E, it can be used to chork plate voltage for the rig's final amplifier stage.

In the front-view photograph of Fig. 20-17, the control knols across the panel are, from left to right, for VFO , first 5618 , second 5618 , and final amplifier. The meter switeh is to the left of the meter. Along the bottom are the VFO-crystal switch, a dual erystal socket (one socket unwired for a spare crystal), the frequency-multiplier switch, S_{3}, microphone-control jack and the VFO heater switeh.

In the rear-view photograph of Fig. 20-18, the four tuning condensers are lined up across the panel, just above the chassis level. C_{19} is a dual midget Itammarlund, originally of $140 \mu \mu \mathrm{fd}$. per section. To olstain the desired range, one rotor and two stator plates were removed from each sertion. The high-frequenry coil, L_{4}, is mounted vertically at the rear of the condenser, while L_{5} is placed at right angles alongside the condenser to minimize coupling between the two. Care should be taken to make sure, with a grid-dip meter, that the circuit when completed does not tune simultaneously to fundamental and harmonic frequencies. This can be controlled by altering the coils some what.
L_{3} is mounted vertically behind the meter. L_{2}, at right angles, is fastened to $C_{9} . L_{1}$ is vertical behind C_{1}. The r.f. tubes are lined up across the center of the chassis. The 6C4 is hidden by the biasing battery to the right. The two 5618 s are to the right of the 5516 final-amplifier tube. A baffle shield is placed between the tube and L_{3} to the right. The audio components and the 0B2

Fig. 20-18 - Rear interior view of W2RPU's mobile transmitter, showing the arrangement of components on the chassis.
orcupy the rear portion of the chassis. All small components are mounted undermath. The chassis measures $81 / 4$ inches long, $57 / 8$ inches from front to back and I inch derp.

Although this transmitter may be oprated from a suitable dyamotor, there is an advantage in the use of two supplies. While the rest of the transmitter may be opreated at 300 volts, a voltage of 250 is the maximum rated value for the 2 Fin modulators. A separate supply for the Class AB_{2} modulator with its varsing plate current also improves the voltage regulation for the rest of the transmitter. Two 100 -ma. vibator-type
power supplies, one delivering 300 volts and the other 250 volts, are recommended.

The two cxeiter tank circuits, $C_{9} L_{2}$ and $C_{13} L_{3}$, ran be resonated to the desired bands by olserving grid current to the following stage. . I grid current of 2 to 3 mat. should be adequate for the multiplier stage and 3 to 5 ma. for the final.

The antenna should be of the center-loaded type. The RG-8/t roaxial eable fereding the base of the anterna is tapped on L_{5} at a compromise point that serves for all hands. Some slight improvement can be gained by adjusting the tap for the band considered most important

Fig. 20-19 - Circuit diagran of the multiband mohile transmitter.

$\mathrm{C}_{2}-100 \cdot \mu \mu \mathrm{fd}$, silvered mica.
$\left.\mathrm{C}_{3}, \mathrm{C}_{4}-0.0 \mathrm{~K}\right)-\mu \mathrm{fd}$. silvered mica.
$\mathrm{C}_{5}, \mathrm{C}_{6}-\mathrm{l}(\mathrm{NO}-\mu \mu \mathrm{fd}$. mica.
(:- $0.01-\mu \mathrm{ft}$, mica.
$\mathrm{C}_{8,} \mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{15}-\mathbf{0}, 001-\mu \mathrm{fl}$, mica
 $3 / 4$-inch shaft).
$\mathrm{C}_{10}, \mathrm{C}_{14}-4 \overline{-\mu \mu \mathrm{fi} . ~ c e r a m i c . ~}$
$\mathrm{C}_{16}, \mathrm{C}_{17}-\mathbf{0 . 0 0 1}-\mu \mathrm{fl}$. I(M)-volt mica.
C. 18 - 0.0) $\cdot \mu \mathrm{fd}$. 1000.volt mica.
$\mathrm{C}_{10}-110 . \mu \mu \mathrm{fd}$-per-section variahle (llammarlund
HFIJ-I 10; see text).
C. $20-25-\mu \mathrm{fil} .25$-volt electrolytic,
$\mathrm{K}_{1}, \mathrm{~K}_{2}-0.1$ megohm, $1 / 2$ watt.
$R_{3}-\mathbf{5 6 , 0 0 0}$ ohms, $1 / 2$ watt.
$K_{4}, K_{6}-100$ ohms, $1 / 2$ watt.
$R_{s}-27,000$ ohms, 1 watt.
$\mathrm{R}_{7}-2500$ ohms, 5 watts.
R_{8} - $10,0 \mathrm{NO}$ ohms, 2 wats.
$R_{9}-27,000$ ohms, 2 watts.
$R_{10}-2000$ ohms, 2 watts.
$\mathrm{R}_{11}-56,000$ ohms, 2 watts.
$\mathrm{R}_{12}-5000$ ohms, 2 watts.
$\mathrm{K}_{13}, \mathrm{~K}_{14}$ - Neter shunts made of resistance wire to pro-
vide for full-scale meter reading of 100 ma .
$\mathrm{K}_{15}-0.15$ megohm, 1 watt (depends on meter used).
1.1 - 18 turns No. 20 enam., -inch diam., $11 / 4$ inches long (may have to be slighty modified to provide proper handspread).
L_{2} - 28 turns No, 21 enam., 1 -ituch diam., $7 / 8$ inch long.
L.3-9 turn No. 20 enam., $3 / 4$-inch diam., $7 / 8$ inch long.
L. - 16 turns No. 20 enam., $3 / 4$ inch diam., $7 / 8$ ineh tong.

Ls - 19 turns No. 20 enam., $11 / 4$-inch diam., $11 / 4$ inches long, tapped $41 / 2$ turns.
La - $10 \cdot \mathrm{hy}$. 30 -ma. choke (fitter).
$3_{1}-30$ volt hattery with tap at $71 / 2$ volts.
J_{1} - B-contact open-circuit microphone jack (midget). $J_{2}-6$-rontact connector (Jones $P^{-} \mathbf{3} 306 \cdot \mathrm{~A} \mid B$). MA - Villiammeter, 10.ma. scale.

RFC3-2.5•mh. r.f. choke (Vational R-IOOI).
S_{1}-S.p.d.t. toggle switeh.
S_{2} - S.p.d.t. toggle swith.
s_{3} - 1.p.d.t. toggle switeh.
S_{4} - 2-pole $\mathbf{5}$-position rotary switch.
S_{5} - Push-to-talk switch.
' l_{1} - Midget output transformer: single plate to 200 ohms (mic, connerted to 200 olams).
' T_{2} - Single wate to p .p. prids for Class 13_{2}.
' T_{3} - Modulation transformer, Class $\mathrm{Al} 3_{2}$.
Note: J_{2} connections as follows: (1) VFO heater, (2) other heaters, (3) push-to-talk control to power supe plies, (1) +h.v. audio, (5) ground, (6) +h.v. r.f.

A Band-Changing Mobile Transmitter for 50 and 144 Mc.

Figs 20-20 through 20-25 show circuits and constructional details of a compact transmitter covering the 6 - and 2 -meter bands. Band-changing is done entirely by the panel controls. The
circuit resonant at approximately 15 Me, C_{5} has sufficient range to tune the oscillator output circuit from 24 through 36 Mr . This circuit is tuned to 25 Mc . for 50 - Mc . output from the transmitter,

Fig. 20.20-The crystal is mounted above the meter switeh, to the left of the amplifier gridtuning control. The tuning knoh for the oscillator is at the lower left-hand side of the output switch, Si. Controls for the output and amplifier plate eircuits are at the right. The unit may be used vertically by orientating the meter. Ventilating holes should be drilled in the end used as the. top.
unit is only 3 inches deep, and therefore is suitable for instrument-panel mounting.

Output on either band may be obtained using crystals in the 8-, 12-. or 25-N1. ranges. Although it is possible to operate the 2 F 26 output stage at higher voltage. the unit is designed primarily to work from a $3(0)$-vold 100 -mat supply. it single 200-ma, supply should take care of both this unit and a modulator in the latter case. Changing from one bind to the other is aceomplished through the use of wide-range tanks in the exeiter, and a multicircuit tuner in the output. Metering circuits are included.

Circuit

The circuit of the unit is shown in Fig. 20-22. Type 57(i3s are used in the Tri-tet oscillator and the driver stage. The oscillator has a fixed eathode
and may be tuned to either 24 or 36 Mc . for final output at 144 Mc .

The multiplier output circuit, $C_{12} L_{3}$, covers the range of 48 to 72 ML ., and operates as a doubler to 50 Me., or as either a doubler or tripler (depending on the oscillator output frequency) to 72 Mc . for final output at 144 Mc . The multiplier is capacity-coupled to the 2 E 26 amplifier grid. This stage operates straight through at 50 Me., and as a doubler to $14 t$ Mc. A combination of fixed bias and grid leak is used. The value of fixed bias is not eritical-22 to 45 volts. The 22 K screen resistor gives proper screen voltage over a supply-voltage range of 300 to 400 volts.

Fig. 20-2I - In this view the perforated top cover has been removed to show the eompleted transmitter. 'The inpont and output connectors are on the rear chassis wall and the 5763 subamembly is in the foreground, to the loft of the meter switeh. 'The \%shaped partition supports Ci2, RFC.4 and the 2V:26, (i2 is monuted on a ferd-through luwhing. The oseillator tuning eapacitor, (5 , is panel-mounted directly hiflow Ci2. The mutput swith. st is partially hidden by the Zoshaped plate. 'libe multicireuit tuner is at the upper end of the chassis, just thelow the link tioning condenmer, Cis.

The plate tuner for the amplifier consists of a capacitor, C_{17}, and induetors L_{4} and L_{5}. Output from the amplifier is transferred to J_{1} by a seriestuned circuit consisting of C_{18}, L_{6} and $S_{1} . L_{6}$ is electrieally subdivided by a tap which conneets to C'18. That portion of L_{6} above the tap provides output coupling at 50 Mc , and the lower section of the coil couples to L_{5} when S_{1} is set for 141-Me. operation.

The metering circuit uses S_{2}, a $200-\mathrm{ma}$. d.c. milliammeter, and resistors $R_{4}, R_{8}, R_{10}, R_{12}$ and $R_{13} . R_{13}$ is conneeted to Terminals E and E_{1} of the switch and, in turn, to Pins 7 and 8 of the power-input connector, J_{2}. The latter set of connections allows the plate eurrent of an external modulator to be ehecked by the meter.

Provision for connecting either a single or a pair of supplies to the transmitter is made at J_{2}. If a single 300 -volt pack is used for the entire unit, it is necessary to connect a jumper between Pins 3 and 5 of J_{2}. With separate supplies for exciter and final, connect the $30(0)$-volt supply to Pin 3 and the amplifier supply to Pin 5 . When a modulator is connected to the transmitter, conneet the secondary of the modulation transformer between lins 5 and 8 of J_{2}, connect + h.v. to the 2F26 to Pin 8, and then return the + h.v. lead of the modulation-transformer primary to Pin 7.

Construction

A $3 \times 5 \times 10$-inch aluminum chassis is used as the housing for the transmitter. The construction is made easier through the use of subassem-
blies. Fig. 20-24, along with the sketch of Fig. $20-23$, identifies the components for the oscillatormultiplier section. The bracket supporting the components has $3 / 8$-inch lips along the right and bottom edges for fastening to the chassis. The wire leader that later connects to ('s should be about 3 inches long, while the five leads that will be joined to J_{2} and S_{2} ean be about 5 inches long.

Fig. 20-21 shows a $/ /$-shaped partition spanning the chassis. This ean be made and installed most casily in two pieces overlapping and fastened together at the center. The height is made to fit the ehassis depth. In Fig. 20-21, the segment lengths, from left to right, are $21 / 2,1 \frac{1}{8}$, and $21 / 2$ inches. Lips are bent at the ends and along the bottom for fastening to the chassis. A $11 / 4$-inch hole is punched in the center of the segment on which the 2 L 26 is mounted, while a small feedthrough bushing (Millen 32100) is set in the other segment. Position this bushing so that C_{12}, which is mounted on it, will be at the right level, and clear of the partition segment to the rear. The 2E26 socket is mounted on $5 / 8$-inch spacers. Prongs 1, 2, 4, 6 and 8, and the screen by-pass, (9 , should be returned directly to ground on the sockel side of the partition. A 2 -terminal tie point to the rear of the socket supports the heater lead and the h.v. end of the screen resistor, R_{11}.

Mount the meter-shunt resistors across the terminals of S_{2}. Join Contacts A_{1} and B_{1}, and eonnect 8 -inch leads to the rotor-arm contacts and to Stationary Contacts $\mathrm{C}_{1}, \mathrm{D}_{\mathrm{w}}$ E and E_{1}. A

Fig. 20.2:3-Irawing of the parts lasout for the exciter subassembly. A and B are 2 - and 5 -torminal tie-point strips.

lead about 1 foot long should be soldered to (ombact I).

In constructing the multicireuit tumer, first reduce the 30 on 13 \& W Minidurtor to a total of $1+1 / 4$ turns. Without braking the supporting bars, clip the winding at points that will leave $\overline{5}$ full turns at one end and $31 / 4$ turns at the opposite end. The f_{t} turns left intart bet ween end windings are used as the output coupling indurtanere, L_{6}. Short leads of No. 16 wire should now be soldered to the free ends of the three windings. Aso, solder a short lead $11 / 4$ turns in from the $144-\mathrm{Me}$. end of the coupling eooil. This should place the tap at the top of the roil when it is mounted.

To assemble the tuner, turn (1; with the insulated support bar faring toward the partition. leare the coil about $3 / 8$ inch above the condenser, and bend the four leads from L_{4} and L_{5} into plavee. The outside ends of these sections go direetly to the rear stator terminal of the condenser, while the inside load of L_{5} goes to the front stator terminal. The inside end of L_{1} is grounded to the frame at the rear.

In mounting parts on the chassis, center J_{2} on the rear wall $+1 / 4$ inchess from the exciter end
of the chassis, and I_{1} in the lower corner of the amplifier end. On the panel side, the shafts for C_{17} :and C_{18} are 1 inch from the right end. S_{1} is centered $27 / 8$ inches from the right end, while the controls for C_{5} and C C $_{12}$ are $43 / 4$ inches in. A panel bearing is needed for ('12, which is fitted with an insulating shaft coupling. The remaining two controls are $65 / 8$ inches from the right-hand end. The meter is at the left-hand end.

The subassemblies may now be positioned while the mounting holes are marked. The bracket for the 57 (i3ss is placed $31 / 4$ inches from the left-hatud end of the chassis, while the rear end of the $\%$-shaped partition comes at $51 / 8$ inches from the same end.
before fastening the subassomblies in place, proceed with the wiring. Conneet S_{1} to L_{1} and J_{1}; solder the tap on L_{6} to C_{18}; mount L_{2} on the terminals of C_{5}; connect the rotor arms of S_{2} to the moter.

Mount the expiter assembly and attach the proper loose leads to C_{5}, J_{2} and S_{2}. Mount a tie point at the righthand mounting screw of the erystal socket, and fasten R_{9} between the tie point and Contact C of S_{2}. Run leads to the crystal

Fig. 20.24-'Ihis subassent. hly measures 215 伯 $\mathrm{log} 31 / 2$ inchos and smpports most of the ermponents for the er. citer stakns, Cia, with momernd foating free, is at the upper right-hand corner. 'The wire leaders at the botoon of the plate connert to the onsillator tank, meter mwiteh and power connector, as shown liy Fig. 20.22.

Voltage and Current Chart for the V.H.F. Mobile Transmitter												
Osicillator				Multiplier				. taplifitar				
Cryatal Freq., Mc.	$F_{\text {\% }}$	$\begin{gathered} \substack{l_{1} \\ . i a .} \end{gathered}$	$\begin{gathered} \text { Mite } \\ \text { Friq., Mr. } \end{gathered}$	$E_{\text {R }}^{*}$	E_{\sim}	$\begin{aligned} & I_{\mathrm{b}}, \\ & \mathrm{Ma} . \end{aligned}$	$\begin{gathered} \text { Plate } \\ \text { Fry.. Mc. } \end{gathered}$	$L_{\text {k }}$	$\begin{aligned} & I_{\mathrm{g}} \\ & \mathrm{Ma} \end{aligned}$	E_{0}	$\begin{gathered} l_{\mathrm{p}} . \\ M a, \end{gathered}$	Plate Freq., Mr.
83	210	20	25	-80	240	25	50	- 190	4	135	45	50
125	23.5	15	'	-120	245	27	"	-210	4.5	120	"	"
250	210	20	"	-6i0	210	25	"	-185	4	145	"	"
8.0	210	20	21	-8.5	250	25	72	- 1.55	3.2	170	50	$1+1$
120	220	16	24	-140	255	27	"	- 190	4	155	47	-
*	225	18	36	-115	21.5	-*	-	-215	4.5	150	"	*
210	210	21	21	-65	250	\cdots		-141	3	180	50	\cdots

socket and then mount the Z-shaped partition in place.

Testing

For 50-Mc, operation, the arystal frequency must lie within one of the following ranges: 8.3.3:3 to 9.0 Mc.: 12.5 to 13.5 Me.: 25.0 to 27.0 Mc. With a smatll 13 batory for fixed hias and a 300 volt supply rommeeted to the exater, but not the amplifier, tuning of the execter at 50 Me. requires only that (5 and (12 be resonated at 25 and 50 Mce respectively. The chatt shows the approximate operating conditions for the $576: 3 \mathrm{~s}$.

Before testing the amplifier, turn the supply off and connert a jumper between Pins 3 and 5 of J_{2}, and comect a 115 -volt 10 -watt lamp to the output comertor. S_{1} should the wet at the $50-\mathrm{Me}$. position. Apply power and resonate $C_{1 /}$, indicated by a dip in plate current. This should come well toward minimum raparitance. Fet C_{18} near full eapacitance and retume $C_{1 i}$ for resonance. (The amplifier data in the chart were taken with the dunmy load. In operation, the currents will depend upon loading.) If biasing voltages are checked, use a v.t.v.m., or a general-purpose test instrument with a radio-frequency choke in-
ductance of at least 1 mh . commected in series.
In tuning up for 1-4t-Mc. output, work with the exeriter stages only at first, using a crystal in any one of the following frequency ranges: 8.0 to 8.222 Mr.: 12.0 to $12.3: 3: 3$ Mc.: 24 to 24.6666 Mr. If a 12-Me. crystal is selected, the oseillator may be tuned to either 24 or 36 Me. In either rase, the multiplier must be tuned to 72 Me . by C_{12}. The osillator is always tuned to 24 Mr . with crystals in the 8 - and 24 -Mc. ranges.

In checking amplifier operation at $1+4$ Me., S_{1} must be in the 1+4-Mc. position. The plate current will show a relatively small dip at resonance on this band. For resonance, condensers C_{17} and C_{18} will be set well toward minimum capacitance.

Antenna

The tuned-link output rireuit is designed for use with low-impedance antenna systems, no quarter-wave whips are recommended. A logical system for mobile work would make use of a twosection $50-\mathrm{Mc}$. Whip that ram be reduced to $11.4-$ Me. dimensions by removing a top seetion.

Fig. 20-25 shows the circuit of an appropriate modulator.

 transformer leads refor is J_{2} in lïq. 20-22.

T^{\prime} - (Iass 13 modulation (ramsformer (Stamaor $1.3855: 500$-ohm tap).

Mobile Power Supply

By far the majority of amateur mobile installations depend upon the car storage battery as the souree of power. The tube types used in equipment are chosen so that the filaments or heaters may be operated direetly from the battery. lligh voltage may be obtained from a supply of the vibrator-transformer-rectifier type or from a small motor-generator operating from the battery.

Filaments

Because tubes with directly-heated cathodes (filament-type tubes) have the advantage that they can be turned off during receiving periods and thereby reduce the average load on the battery, they are preferred by some for transmitter applications. However, the choiee of types with direct heating is limited, especially among those for 6 -volt operation, and the saving may not always be as great as antioipated, because directly-heated tubes may require greater filament power than those of equivalent rating with indirectly-heated eathodes. In most cases, the power required for transmitter filaments will be quite small eompared to the total power consuined.

Plate Power

Uinder steady running conditions, the vi-brator-transformer-rectifier system and the motor-generator-type plate supply operate with approximately the same efficiener. However, for the same power, the motor-generator's over-all effieiency may be somewhat lower beraluse it draws a heavier starting current. On the other hand, the output of the generator requires less filtering and sometimes trouble is experienced in eliminating interference from the vibrator.

Converter units, both in the vibrator amd rotating topes, are also available. These operate at 6 or 12 volts d.c. and deliver 115 volts a.e. This permits operating standard are-powered cquipment in the car. Although these systems have the advantage of flexibility, they are less officient than the previously-mentioned sustems herause of the additional losses introduced by. the transformers used in the equipment.

[^7]maty then be used for the powar eontrol. A second relay may sometimes be advisable for switching the filaments. If the power unit must be located at some distance from the battery (in the trunk, for instance) the ti-volt cable should be of the heavy military type.

I complete mobile installation may draw 30 to 40 amperes or moro from the (i -volt battery. This reguires a considerably increased demand from the car's battery-charging generator. The voltage-regulator systems on cars of recent years will take care of a moderate increase in demand if the car is driven fair distances regularly at a speed great enough to insure maximum charging rate. However, if much of the driving is in urban areas at slow speed, or at night, it may be neressary to modify the charging sustem. Sperial commu-nications-t ype generators, such as those used in poliog-rar installations, are designed to charge at a high rate at slow engine speeds. The charging rate of the standard sistem can be increased within limits by tightening up slightly on the voltage-regulator and currentregulator springs. This should be done with caution, however, checking for excessive generator temprature or almormal sparking at the commutator. The average car generator has a rating of 35 amperes, but it may be possible to adjust the regulator so that the generator will at least hold even with the transmitter, receiver, lights, heater, ete, all operating at the same time.

Another scheme that has been used to increase generator output at slow driving speeds is to decrease slightly the diameter of the gencrator pulley. This means, of course, that the generator will be running above normal at high driving speeds. Some generators will not stand the higher speed without damage.

If higher transmitter power is used, it may be necessary to install an a.e. charging system. In this system, the generator delivers a.c. and works into a rectifier. I charging rate of 75 amperes is easily obtained. Commutator trouble often experieneed with d.e. generators at high current is avoided, but the cost of such a sustem is rather high.

Some mobile operators prefer to use a separate battery for the radio equipment. Such a syistem can be arranged with a switeh that cuts the auxiliary battery in parallel with the ear batery for charging at times when the car hattery is lightly loaded. The auxiliary battery ran also be charged at home when not in use.

A tip: many mobile operators make a habit of carrying a pair of heavy cables five or six feet long, fitted with clips to make a connection to the battery of another car in case the operator's battery has been allowed to run too far down for starting.
(See power-supply chapter, vibrator supplies.)

The Mobile Antenna

For mobile operation in the range betwern 1.8 and 30 Me., the vertical whip antemat is almost universally used. Since longer whips present mechanical difficulties, the length is usually limited to a dimension that will resonate as a quarterwave antenna in the lo-meter band. The car body serves as the ground comection. This antenna length is approximately 8 feet.

With the whip length adjusted to resonance in the 10 -meter band, the impedance at the feed point, X, Fig. $20-26$, will appear as a pure resistance at the resonant frequency. This resistance will be composed almost entirely of radiation resistance (see index), and the cfliciency will be high. Ilowever, at frequencies bower than the resonant frequeney, the antenna will show an increasingly large capacitive reactance and a decreasingly small radiation resistanere.

Fig. 20.27-At frecquencies below the resonant frequency, the whip antenna will show rapacitive reactance as well as resistancs. Rr is the radiation resistance, and C'A represents the capacitive readance.

The equivalent circuit is shown in Fig. 20-27. For the average 8 -ft. Whip, the reartance of the caparitance, ('A, may range from about 150 ohms at 21 Me. to as high as 8000 ohms at 1.8 Me., while the radiation resistance, l_{R}, varies from about 15 ohms at 21 Mc . to as low as 0.1 ohm at 1.8 Me. Since the resistance is low, considerable current must flow in the circuit if any appreciable power is to be dissipated as ratiation in the resistance. Yot it is apparent that little current can be made to flow in the circuit so long as the comparatively high serios reactance remains.

Fig. 20.28- 'I'he capacitive reactance at fresuencies lower than the resonant frequency of the whip can be canceled out by adding an equivalent inductive reactance in the form of a loading coilin series with the antenna.

Eliminating Reactance

The caparitive roartance can be canceled out by eomereting an equivalent inductive reactance. hat, in series, as shown in Fig. 20-28, thus tuning the system to resonamer.

Unfortunately, all roils have resistance, and this resistance will be added in series, as indicated at RC in Fig. 20-29. While a large coil may radiate some conergy, thus adding to the radiation resistance, the latter will usually be negligible compared to the loss resistance introduced. However, adding the coil makes it possible to feed power to the circuit.

Ground Loss

Another element in the cirenit dissipating power is the ground-loss resistance. Fundamentally, this is related to the nature of the soil in the area under the antemat. Little information

Fig. 20.29 - Equivalent circuit of a loaded whip antenna. CA represents the eapacitive reactance of the antentra, $/ . \mathrm{L}$ an equivalent induetive reartance. $R($ is the loadingecoil resistame, R_{G} the grenand-loss resist. ance, and R_{R} the radiation resistance.
is avaikable on the values of resistance to be expected in practice, hut some measurements have shown that it may amount to as much as 10 or 12 ohms at I Mc. . It the lower frequencies, it may constitute the major resistance in the rircuit.

Fig. 2()-29) shows the cirruit including all of the elements mentioned above. Assuming ('A lossless and the loss resistance of the coil to be represented by Re, it is seen that the power output of the transmitter is divided among throe resistances R_{6}, the coil resistance: R_{i}, the ground-loss resistance: and R_{R}, the radiation resistance. Only the power dissipated in R_{12} is radiated. The power

Fig. 20.30-Graph showing the approximate capacitance of short vertical antennas for various diameters and lengths. These salues should be approximately halved for a center-loaded antenna.

Approximate Values for 8-ft. Mobile Whip						
Base Loading						
$f \mathrm{k}$.	$\begin{aligned} & \text { I.oading } \\ & \text { Lanth. } \end{aligned}$	$\begin{gathered} h_{1} \cdot(Q .00) \\ 0 h m m s \end{gathered}$	$\begin{gathered} \operatorname{Rr}(0 z o f) \\ \text { Ohims } \end{gathered}$	$\begin{gathered} R_{\mathrm{R}} \\ O h m \mathrm{mk} \end{gathered}$	Fred R* Ohms	Matching Iouh,*
1800	34.5	77	13	0.1	23	3
3800	77	37	6.1	0.35	16	1.2
7200	20	18	3	1.35	15	0.6
14.200	4.5	7.7	1.3	5.7	12	0.28
21.850	1.25	3.4	0.5	14.8	10	0.28
49.000	\ldots	. . .			36	0.23
Center Loading						
1800	700	1.58	23	0.2	34	3.7
3800	150	72	12	0.8	22	1.4
7200	40	36	6	3	19	0.7
14,200	8.6	15	2.5	11	19	0.35
21.250	2.5	6.6	1.1	27	29	0.24
$R_{\mathbf{C}}=$ Loading-eoil resistanec $R_{\mathrm{R}}=$ Radiation resistance . * Assuming loading coil $Q=300$, and ineluding estimated ground-luss resistance. Suggested eoil dimensions for the refuired lomding induetances are shown in a following table.						

8-ft. whip, and the resistances of loading coils - one group having a Q of 50 , the other a Q of $3(0)$. I comparison of radiation and coil resistances will show the importane of reducing the coil resistance to a minimum, especially on the three lowerfrequency bands.
To minimize loadingroil loss, the coil shoukd have a high ratio of reactance to resistance, i.e., high Q. A f-Mc. loading coil wound with small wive on a small-diameter solid form of poor quality, and enclosed in a motal protector, may have a Q as low as 50 , with a resistance of 50 ohms or more. Iligh-Q eoils require a large conductor, "airwound" construction, turns spaced, the best insulating material available, a diameter not less than half the length of the roil (not always mechan-
developed in R_{C} and R_{G} is dissipateyl in heat. Therefore, it is important that the latter two resistances be minimized.

minimizing losses

There is little that can be done about the nature of the soil. Ilowever, poor electrical contart between large surfaces of the ear body, and esperially between the point where the feed line is grounded and the rest of the body, can add materially to the ground-loss resistance. For example, the feed line, which should be grounded as close to the hase of the antema as pensible, may be connected to the bumper, while the bumper may have poor contact with the rest of the body because of rust or paint.

Loading Coils

The accompanying table shows the approximate loading-coil induetance required for the various bands. The graph of Fig. 20-30 shows the approximate capacitance of whip antemnas of various average diameters and lengths. For 1.8, 4 and 7 Me, the loading-coil inductance required (when the boading coil is at the base) will be approximately the inductance required to resonate in the desired band with the whip capacitance taken from the graph. For 14 and 21 Me., this rough caleulation will give more than the required inductance, but it will serve as a starting point for final experimental adjustment that must always be made.

Also shown in the table are approximate values of radiation resistance to be expected with an
ically feasible), and a minimum of metal in the field. Surh a coil for 4 Me. may show a Q of $3(1)$ or more, with a resistance of 12 ohms or less. This reduction in loading-coil resistance may be equivalent to increasing the transmitter power by 3 times or more. Most low-loss transmitter plur-in coils of the 100-watt size or larger, eommercially. proluced, show a Q of this order. Where larger inductance values are reguired, lengths of lowhose spacewound coils are available (B) W).

Suggested Loading-Coil $\mathrm{Dimensions}^{\text {a }}$					
$\underset{\substack{\text { Reri, } \\ \text { luib. }}}{ }$	Turns	$\begin{gathered} \text { Wire } \\ \substack{\text { size }} \end{gathered}$	$\begin{gathered} \text { Diam. } \\ \text { In. } \end{gathered}$	$\left\|\begin{array}{c} L e n g t h \\ I n . \end{array}\right\|$	Form or B\& W Type
\%00	190	22	3	10	Putystyrene
340	13.)	18	3	10	Polystyrene
150	100	16	$21 / 2$	10	Polystyrene
$\begin{aligned} & 77 \\ & 77 \end{aligned}$	7.5 29	$\begin{aligned} & 14 \\ & 12 \end{aligned}$	$i^{21 / 2}$	$\begin{aligned} & 10 \\ & 41 / 4 \end{aligned}$	Polustyrene 16iot
$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 28 \\ & 34 \end{aligned}$	$\begin{aligned} & 16 \\ & 1: \end{aligned}$	$\begin{aligned} & 21 / 2 \\ & 23 / 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 41 / 4 \end{aligned}$	$\begin{aligned} & 80 \mathrm{~B} \text { less } 7 \mathrm{t} \text {. } \\ & 80{ }^{\prime \prime} \mathrm{l} \end{aligned}$
$\underset{z 0}{20}$	$\begin{aligned} & 17 \\ & 22 \end{aligned}$	$\begin{aligned} & 16 \\ & 1: 2 \end{aligned}$	$\begin{aligned} & 23 / 2 \\ & 23 / 2 \end{aligned}$	$\begin{aligned} & 11 / 4 \\ & 23 / 4 \end{aligned}$	8013 less 18 t. 80 T less 12 t
$\begin{aligned} & 8.6 \\ & 8.6 \end{aligned}$	$\begin{aligned} & 16 \\ & 15 \end{aligned}$	$\begin{aligned} & 11 \\ & 12 \end{aligned}$	$\stackrel{2}{23 / 2}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 40 \mathrm{~B} \text { lens } 4 \mathrm{t} \text {. } \\ & \text { 4OT less } 5 \mathrm{t} \text {. } \end{aligned}$
$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & 14 \\ & 12 \end{aligned}$	$\stackrel{2}{23 / 2}$	${ }_{4}^{11 / 4}$	$\begin{aligned} & 40 \mathrm{P} \text { less } 10 \mathrm{t} . \\ & 40 \mathrm{~T} \end{aligned}$
$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{array}{r} 12 \\ 6 \end{array}$	$\stackrel{2}{23 / 8}$	$\stackrel{2}{41 / 2}$	$\begin{aligned} & 15 \mathrm{~B} \\ & 1: 5 \mathrm{~T} \end{aligned}$
1.25 1.85	${ }_{6}^{6}$	$\begin{array}{r} 12 \\ 6 \end{array}$	$\begin{aligned} & 184 \\ & 28 / 8 \end{aligned}$	$\begin{aligned} & 2 \\ & 41 / 2 \end{aligned}$	$\begin{aligned} & 10 \mathrm{~B} \\ & 10 \mathrm{~T} \end{aligned}$

Center Loading

The radiation resistane of the whip cam be approximately doubled by placing the loading roil at the center of the whip, rather than at the base, as shown in Fig. 20)-31. (The optimum position varies with ground resistance. The center is optimum for average ground revistance.) However, the inductance of the loading coil must be

Fig. 20-31 - I'lacing the loating eoil at the conter of the whip antemon, instad of at the hase, increases the ratiation resistancre, although a larper emil must he used.
approximately doubled over the value refuired at the base to tune the system to tresonamere. For a coil of the same (), the eroil revistane will akse be doubled. But, even if this is the case, center loading represents a gain in antema efficiencr, espererially at the lowe frequencies. This is bemuse the ground-loss resistane remains the same, and the increased ratiation resistanere beromes a larger portion of the total dircuit resistance, even

Fig. 20 - 32 - The top-loaded d. Mr. antenna used by W6SCX. Tlar loading coil is a 13 \& W transmitting coil. The coil can be tunced liv the variable link which is eonnected in series with the two halves of the coil.
though the coil resistance also increases. However, as turns are added to a hading coil (other factors being equal) the inductance (and therefore the reatance incerases at a greater rate than the resistance, and the larger coil will usually hatve it higher (e.

Top Loading Capacitance

Since the coil resistaner varies with the inductaner of the lomating coil, the coil resistance can be reduced by reducing the number of turns. This cath be dome. while still matintaining resonamee, be adding (aparditaner to the portion of the antemnatare the eoil. This capacitanere can be provided be attarhing a raparitive surface

Fig. 20-33-C Cabreitanees of spheres, dishs and rydinders in fres space. 'Ihese salurs armaprosimately these to be experted when used with top-lozaled whip antennas. The rylinder length is assumed to loe equal to its diameter.
as high up on the antomet as is merhanically fomible. (aptaritive "hate," as they are usually. called, may consist of a light-weight metal ball, erlinder. disk, or whed structure as shown in Fig. 20-32. Fig. 20-333 shows the appoximate added ratjamitance to be expered from topr Koaling deviers of various forms and dimensions. This should loe added to the rapacitance of the Whip above the loading coil (from Fige, 2(1)-30) in determining the approximate induetane of the loadinge coil.

When cemter loading is used, the amonnt of capacitance to be added to permit the use of the same loading induetancer reguired for batac loading is not great, and should be serionsly ronsidered, sinee the total gain made by moving the coil to the renter of the antennat may be quite makked.

Tuning the Band

Wesperiatly at the lower freguencios, where the resistance in the circuit is low eompared to the coil reactance, the antomata will represent a wery high-() dirent, making it nerexsaty ta retume for relatively small chamges in frequeney. Whale many methods have been devised for taning the whip over a hamd, one of the simplest and most efficiont is shown in the sketches of Figs. 20-3. 4 and 20-35, and the photograph of Fig. 20-37. In this colse, a standard 13 o $W^{\prime \prime}$ plug-in coil is used as the loading coil. A length of large-diameter

Fig. 20-3f- Datails of rod eomstrumion. Dimensions Fan be garied to suit the whip diameler and the builder's comprionere. Adjustment of rod lengths is deseribed in the text.
polystyrene rod is drilled and tippod to fit betweon the upper and lower sections of the suntemnat. The assombly also serves to clamp a pair of metal brackets on each side of the polystyreme bloek that serve both as support and eonnections to the loating-coil jack har.

A $1 / 8$-inch steel rod, thout 15 inches long, is brazed to each of two large-diameter washers with holes to pass the threaded end of the upper sertion. The rods form a louding capacitance that varies as the upper rod is swung away from the lower one, the latter being stationary. Dinough variation in tuning can be obtained to cover the 80-mater land. Fig. 20-34 shows the top washer slightly smaller to farilitate marking a frequener scale on the stationary washer, after the uperer

Fis, 20.35-Comstrution detaila of the mounting for the ronds and ulug-in mil.

Wisher has been marked with an index. After the movable rod has been set, it is clamped in position ly tightening up the upper antemat section. The plug-in mounting provides a convenient means of changing loading coils to go to another bind.

- FEEDING THE ANTENNA

It is usually found most convenient to feed the whip antenna with coan line. Inless very low-(Q) loarling coils are used, the feed-point impedance will always be appreciably lower than 52 ohms - the characteristie impedance of the commonly-used coax line, R(i-8/U or RG-58/U. Since the length of the trunsmission line will seldom exceed 10 ft ., the losses involved will be negligible, even at 29 Me , with a fairly-high s.w.r. However, unless a line of this length is made reasonahly flat, difficulty may be encountered in ohtaining sufficient coupling with a link to load the transmitter output stage.

One method of obtaining a match is shown in Fig. 20-36i. A small indurtince, $L a$, is inserted at

the base of the antenna, the loading-coil inductance boing redured correspondingly to maintain resonance. The line is then tapped on the coil at a point where the desired loading is ohtained. The table shows the approximate inductance to be used between the line tap and ground. It is advisable to make the expromental matching coil larger than the value shown, so that there will be provision for varring cither side of the proper position. The matching coil can also be of the plug-in type for changing bands.

Adjustment

For operation in the bands from 24 to 1.8 Me, the whip should first be resonated at 29 Me. with the matching coil inserted, hat the line diseonnerted, using a grid-dip oscillator coupled to the matching coil. Then the line should be attached, and the tap varied to give proper loading, using a link at the transmitter end of the line whose reactance is approximately 52 ohms at the operating frequency, tightly coupled to the output tank circuit. After the proper position for the tap has been found, it may he neressary to readjust the antenna length slightly for resonaner. This ran be checked on a tield-strength moter several fert anay from the car.

The same procedure should be followed for cach of the other bands, first resonating, with the g.d.o. coupled to the matehing coil, hy adjusting the loading coil.

Fig, 20.3"- 148.11 V" ad. justahle caparity hat for thos. ing the whip antenna over a hand. The roil is a B N W type 13 l(ol)-meter mil, with a turn or two removed. Sureading the rods apart increases the rapacitance. 'lhis simple top Ioader has sufficient dapacitance to permit the use of approximately the same load. ing-roil induetance at the eenter of the antenna as would mormally be required for base loadiog.

After the position of the matrhing bap has bene found, the size of the matehing roil can he rechered to only that portion betwerm the tap and ground, if desited. If turns are removed here it will he necessary to reresomate with the loading eoil.

If an entirely flat line is desired, a s.r.r. indirator shond be used while adjusting the !ine 1 atp. With a good match, it shoudd not be neressary to readjust for resonance after the line tap has been set.

It should the emphasized that the figures ahown in the table are only approximate and may he altered considerably depending on the tree of ear on which the antenna is mounted and the spot at which the antema is placed

ANTENNAS FOR 50 AND 144 MC.

A eommon type of antenna employed for mobile operation on 50 and 14 A Me. is the quarter-wave radiator which is fed with a comxal line. The antenna, which mas be a flexible telescoping "fish pole," is mounted in any of several plates on the car. Quite a good mateh may be obtained hy this method with the 50 -ohm conaxial line now awalable: howover, it is well to provide some monas of thaning the system, so that all variables can be taken care of. The simplest tuning arrange-
ment consists of a variable condenser connoeded bet ween the low side of the transmit-

Fig. 20-38 - Mrthod of fecding quarter-wave mohile antennas with eoaxial line. (is should have a maximom caparitance of \bar{i} to $1(0) \mu \mu \mathrm{fd}$. for 28 - and 50 - 11 r. work. Is in an adjustable link.

ter toupling coil and ground, as shown in lig. 20-38. This condenser should have a maximum capticitance of 75 to $100 \mu \mu \mathrm{fd}$. for a 0 Me., and shotid be adjusted for maximum loading with the least coupling to the transmitter. Some method of varying the coupling to the transmitter should be provided.

Bibliography

Beirose, "Short Antemnas for Mobile Operation," QST, Nept., 1953.
Roherge \& Me(Comell, "Let's Go Iligh Ifat!," QST, Jim., 1952.
Dinsinore, "The 'Hot-Rod" Mobile Antemal," Q心\%, Negt., 1953.
Swat?ond, "Improved (bax Feed for Law-Fre-

Measurements

It is practically impossible to oprorate an amateur station without making moasurements at one time or another, even though the methods used may be quite erude. An example of a simple measurement is one that determines whether an amplifierstage in a transmit ter is properly tuned: it can be done with no more chaborate equipment than a flashlight lamp and a piece of wire hut whatever the method used. a mesisurement is essential because the circuit itself gives no visible indieation of the state of its tuning. The more refined the measuring equipment and mothots, the more information can be obtained, and with more information at hand it beromes possibhe to adjust a piere of equipment for optimum performanere more quickly and surely. Measuring and test equipment is espercially valuable in building and in the initial adjustment of radio gear, and in locating and corrocting lnoakdowns and faults.

The basid measurements are those of current. voltage, and frequency. Determination of the values of cireuit elemonts - resistance, inductance and caparitance - are almost equally important. The inspertion of waveform in audiofreduener "ircuits is highly useful. For these pur-
poses there is available a wide assortment of instruments, both complete and in kit form; the latter, particularly, compare very favorably in rost with strictly home-built instruments and are frectuently more sat isfactory both in apperarane and calibration. The instruments described in this chapter are ones having fratures of particular usefulbess in amateur applieations.

In using any instrumont it should always be kept in mind that thore is no surh thing as an "ahsolutr" moasuremont, and that measurements depend not only on the inherent acemacte of the instrument itself (which, in the case of commoreially built units is usualle within a few por cent, and in any event should be specified by the manufarturer but also the conditions under which the mowsurement is made. Iarge crrors can he introducel hy failing to recognize the existene of conditions that affect the instrument readings. The instrument can only record what it sersand what it seres mat he something quite different from what the operator thinks it sees. This is particularly true in certain types of r.f. measurements, where there are many stray effects that are hatel to climinate.

D.C. Measurements

A direct-current instrument - voltmeter, ammeter, milliammeter or microammoter - is a device in which magnetic force is used to defleret a pointer over a calibrated seale in proportion to the current flowing. In the D'Arsonval terpe a coil of wire, to which the pointer is attached, is pivoted between the poles of a permanent magnet, and when current thows through the coil it causes a magnetie field that interacts with that of the magnet to cause the coil to turn. The turning forer is axerted against a spiral spring attached to the coil and the pointer deflection is directly proportional to the current.

A less expensive type of instrument is the moving-vane typr. in which a pivoted iron vano is pulled into a coil of wive be the magnetie fiold set up when current flows through the coil. The farther the vame extemels into the coil the greater the magnetie fore on it, for a given change in current, so this tepe of instrument does not have "linear" deflection - that is, the seale is cramped at the low-corrent end and spread out at the highcurrent end.

The same basid instrument is used for moasuring either current or voltage. Good-quality instruments are made with fairly high sensitivity that is, they give full-seale pointer deflection with very small currents - when intended to be used as voltmeters. The sensitivity of instru-
ments intended for measuring large currents can be lower. but a highly sensitive instrument can be, and frequently is, used for measurement of currents much greater that needed for full-scale deffection.

- voltmeters

Only a fraction of a volt is required for fullscale deflertion of at sensitive instrument (1 mil limpere or hoss full scale) so a high resistance is comereded in sorios with it, Fig. 21-1, for measur-

Fig. 2l.l-How voltmeter multipliers and milliammeter shunts are connected to extend the range of a d.c.meter.
ing voltage. Kinowing the current and the resistance, the voltage can easily be ealculated from Ohm's Law. The meter is calibrated in terms of the voltage drop across the series resistor or multiplier. Practically any desired full-scale
voltage range can be selected by proper choiere of multiplior ressistance. and voltmeters ireduontly have several ranges solected he a witch.
'The sensitivity of the voltmeter is usually axprosed in "ohms per volt." A semsitivity of loon ohme per volt means that the resistance of the voltmeter is 1000 times the full-sicile voltage. and be Ohm's Jaw the current required for fullsate deflection is 1 millimupere. A semsitivity of 20,000 ohms per volt, another commonly used value, means that the instrument is a momioroampere metor. The higher the resistanee of the voltmeter the more aceurate the masurement-

Fig. 21-2- Fiffeet of voltmeter resistance on aciurary of readings. It is asstmed that the d.er resistance of the screan circuit is constant at 100 hilohnos. 'The artatal current and voltage without the voltmeter commered are 1 ma, and 100 wolts. "The voltmeter readings will differ becanse the differont types of meters draw differ. ent amounts of eurrent through the lint-kilohm resistor.
in high-resistance cireuits, beratuse the current taken he the voltmeter may caluse the voltage to differ from its value with the voltmeter disconnerted. This is shown in Fig. 21-2.

The required multiplier resistance is found hy dividing the desired full-seale voltage loy the current, in amperes, reguired for full-scale deflection of the meter alone. Strietly, the internal resistance of the meter should be subtracted from the value so foumd, but this is seldom neressary (execept perhaps for very low ranges) because the moter resistance will be nogligibly small compared with the multiplier resistanere. In exeeption is when the instrument is already povided with an internal multiplier, in whieh case the multiplier resistance required to extend the range is

$$
R=R_{\mathrm{m}}(n-1)
$$

where R is the multiplier resistance, R_{m} is the total resistance of the instrument itself, and n is the factor by which the seale is to be multiplied. For example, if a 1000 -ohms-per-volt voltmeter having a calibrated range of $0-10$ volts is to be extended to 1000 volts, R_{m} is $1000 \times 10=$ 10,000 ohms, n is $1000 / 10=100$, and $R=$ $10,000(100-1)=990,000$ ohms.

If a milliammeter is to be used as a voltmeter, the value of series resistance can be found by Ohm's Jaw:

$$
R=\frac{1000 E}{l}
$$

where E is the desired full-scale voltage and l the full-scale reatling of the instrument in milliamperes.

The arcuracy of a voltmeter depends on the ealibration acerimaty of the instrument itself and the ate urary of the multiplere resistors. Precision wire-wound resistors are used in high-quality instruments, hat for most purposes stamdard 1/2of 1 -watt composition resistors will make an acreptable and cromonical substitute. Such resistors are supplied in toleratures of 5,10 or 20 per rent \pm the manked values. By oltataing matchad pairs from the dealeres stock, one of which is, for cexmple, 4 per rent low while the other is 4 per eront high, and using the patirs in patalled or series to ohtain the required value of resistance, good arcuracy (am be obtained at small eost. High-voltage multiphiars are preforably made up of several resistors in series; this not only raises the breakdown voltage but temels to average out errors in the individual resistors attributable to manulaturing tolerancos.

- MILLIAMMETERS AND AMMETERS

A microammeter or millitmmetor catn be used to measure currents larger than its full-seate poding by comerting a resistance shunt aross its terminals as shown in Jig. 21-1. This diverts part of the current through the shunt, and the total current is the sum of that through the shant and that through the metor. Knowing the meter resistance and the shant resistance, the relative curronts can easily be calculated.

The value of shunt resistance required for a given full-scale courent range is given by

$$
R=\frac{R_{m}}{n-1}
$$

where R is the shunt. R_{m} is the internal resistance of the meter, and n is the factor by which the original meter seale is to be multiplied. The internal resistance of a milliammoter is preforably Wetermined from the mandacturer's catalog, but if this information is not available it can be determined bev the mothod shown in Fig. 21-3. Do not use an ohmmeter to measure the internal rexistance of a milliammetrer; it may ruin the instrument.

Fig. 2/-3- Determining the internal resistance of a milhammeter or microimmeter. R_{1} is an adjustahle resistor having a maximmm value about twice that necessary for limiting the current to full seale with K_{2} discomected; adjusi it for exactly full-scale reading. Then connect R_{2} and adjust it for exaetly half-scale reading. The resistance of K_{2} is then equal to the internal resistance of the meter, and the resistor may be removed from the cirenit and medaned separately. Internal resistances vary from a frow ohms to several handred ohms, depending on the sensitivity of the instrument.

Homemade milliammeter shunts can be constructed from any of the various special kimds of resistance wire, or from ordinary copper wire if no resistane wire is avatable. The (opper Wire "lable in the data chapter gives the resistande per 1000 foet for various sizos of ropper wire. After computing the resistane required, determine the smallest wire size that will carry the full-scalle current (at 250) circular mils per ampere). Me:sure off cuough wire (pulled tight but not stretched) to provide the reguired resist-
 eurent to fow through the meter to make it read full seate without the shunt: romeerting the shunt should then give the correed reading on the new full-swalle range".

Ang rurventmeasuring instrument should have very low resistance compared with the resistance of the rircuit being measured; otherwise inserting the instrument will canse the current to differ from its value with the instrument cut of the cireuit. (This does not matter if the instrument is left permanently in the eireuit.)

Fif, 2l-4-Valtmeter method of measuring rurront. This nuthod permits using relatively large values of resistance in the shant, atandard values of fixed resistors
 times the shome resistance (or more) the orror in assuming that all the current llows through the shumt will not le of consequence in most praticeal applications.

However, the resstance of many cirenits in radio "quipment is quite high and the circuit operation is affereded litto, if at ith. lyy adding as much ats a fow hundred ohms in sories. In such cases the voltmeter method of measuring current, shown in Fig. 21-4, is frequatly conveniont. A voltmeter - or low-range milliammeter provided with a multiplier and operating as a voltmeter - having a full-scale voltage range of a few volts, is used to meanure the voltage drop aterose a eomparatively high resistance acting as a shunt. The formula above is used for finding the proper vatue of shunt resistance for a given sealo-multiplying factor, R_{m} in this case being the multiblior resistance.

D. C. Power

Power in direct-current direuits is determined by measuring the current and voltage. When these are known, the power is equal to the voltage in volts multiplied bev the current in amperes. If the current is measured with a milliammeter, the reading must be divided by 1000 to convert it to amperes.

- RESISTANCE MEASUREMENTS

Me:asuremont of der. resistance is based on metsuring the current through the resistance When a known voltage is applied, then using Ohm's Law. A simple cireuit is shown in Fig. 21-5.

 milliammeter. If the approximate remistanee is known the soltage can be selected to ranse the milliammeter, U. 1 , to road about half atale. If not, additional resist.
 the currenl to a salfe salue for the milliammeter. 'I he set-tul then measures the wotal rosintances and the value of R cat loc formd ly mblorating the kmown additional rosistance from the intal.

The int ratal resistanco of the ammeter or milliammetor, $/ 1 / A^{\prime}$, should be low compared with the resistance, R. being measured, since the voltage read he the voltmeter, l^{\prime}, is the voltage arross . $1 / 4$ and k in series. The instruments and the dee. voltage should the chosen so that the readings are in the upper half of the se:cte, if possible, since the perentage errer is less in this region.

An ohmmeter is an instrument ronsisting fumbamentally of a voltmoter (or milliammetor, depending on the circuit used) and a small dry battery as a source of d.c. voltage, calibrated so the value of :m unknown resistance can be read
(A)

(B)

(C)

Fip. 2l.6- Ohmmeter circuits. Values are discussed in the text.
directly from the seale. TYpieal ohmmeter eireuits are shown in Fig. 21-6. In the simplest trpe. shown in Fig. 21-6A. the meter and hattery are commeted in series with the unknown resistance. If a given deflection is ohtained with terminals $A-B$ shorted, insorting the resistanee to be measured will aduse the moter reading to decrease. When the resistanere of the voltmeter is known, the following formula ($:$ an bo applied.

$$
R=\frac{e R_{\mathrm{m}}}{E}-R_{\mathrm{m}}
$$

where R is the resistance under monatument. e is the voltage applied ($A-1 /$ shorted),
E is the voltmoter reading with R connerted, and
R_{10} is the resistance of the voltmeter.
The cireuit of Fig. 2l-6A is mot suited to measuring low values of resistane (below a hundred ohnus or so) with a high-resistance woltmeter. Fur such measurements the cirmait of lijg. 21-6i3 reth be used. The milliammeter should be at 0-1 mat instrument, and R_{1} should be equal to the battory voltage, e, multiphied by 1000. The unknown pesistance is

$$
R=\frac{I_{2} R_{\mathrm{m}}}{I_{1}-I_{2}}
$$

where R is the unknown.
R_{n} is the internal resistance of the milliammetor.
I_{1} is the rurrent in mat. with R diseonneeted from terminals $A-B$ and
I_{2} is the current in mat. with R connerted.
The formula is approximate, but the crror will be negligible if e is at least 3 voltes so that R_{1} is at least 3000 ohms.

A third rifent for measuring resistame is shown in Fig. 21-6(\%. In this rase a high-resistance voltmeter is used to metasure the voltage drop across a reference resistor, R_{2}, when the unknown resistor is comected so that current flows through it, R_{2} and the battery in series. By suitable choice of h_{2} (low values for low resisiather, high vatues for high-resistance unknowns) this cireuit will give equatly good results on all resistance values in the range from one ohm to several megohms. provided that the voltmeter resistance, $R_{\text {me }}$ is alwats vory high (i0) times or more) compared with the resistate of $R_{2} . ~ I$ 20,000 -ohms-per-volt instrument ($\overline{0} 0$ - mithp). 2 movement) is generally used. Assuming that the current through the voltmeter is negligible compared with the current through Rs, the formula for the unkaown is

$$
R=\frac{\rho R_{2}}{L_{i}}-R_{2}
$$

where R and R_{2} ate as shown in Fig. 2l-ti(',
e is the voltmeter reading with $A-B$ shorted, and
E is the voltmeter roading with R connereted.

The "zero adjuster," R_{1}, is used to set the
voltmeter reading exactly to full scale when the meter is calibrated in ohms. I 10,000 -ohm variable resistor is suitable with a $20,000-$ ohms-per-volt meter. The hattery voltage is usually 3 volts for ranges up to 100,000 ohms or so and 6 volts for higher ranges.

Combination Instruments

sinee the same basie instrument is used for measuring current, voltage and resistance, the three functions can readily be combined in one unit using a single meter. Various molels of the "VoMr" (volt-olm-milliammetor) are available commerrially, the less expensive ones using a 0-1 milliammeter. A simple rircuit based on such a meter is shown in Fig. 21-7. It has five curment

Fig. 2l-7-1 Diagram of the volt-ohm-milliammeter. R1-2000-ohm wire-wound variable.
$1 i_{2}-3000$ ohms, $1 / 2$ watt,
I_{3} - 10 -ma. shunt, 6.11 ohms (see text).
$\mathrm{R}_{4}-100-\mathrm{ma}$, shunt, 0.555 ohm (see text)
Rs - 1000 -ma. shumt, 0.055 ohm (see text).
$\mathrm{R}_{\mathrm{c}}-11000$-volt multiplier, 0.9 megohm. $1 / 2$ watt.
$R_{\text {- }}$ - 110 -volt multiplier, 90.001 ohms, $1 / 2$ watt.
R_{s} - lo-volt multinlier, 10,000 ohms, ${ }_{2}$ watt.
13-4.j-volt dry battery.
SiA - 13 - Opoint 2 -pole selector switch.
NI-0.1 milliammeter.
ranges, from I ma. to 1 ampere, three voltage rimges, 10 volts to 1000 volts, and two resistanco ranges. Fig. 21-8 shows the ohmmeter calibration; the low-ohms curve is for a meter having an internal resistance of 55 ohms and should bo calculated from the formula : above (Fig. 21-(i)3) for instruments of different resistance.

Ordinary carbon resistors can be used as voltmeter multipliers, comerting them in series or parallel to olbtain a given value. The 10-, 100and 1000-ma. shunts can be made of copper wire wound on small forms. The approximate lengths and sizes of the wire for the shunts are as follows: $R_{3} .9$ feet No. 38 enameled; $R_{4}, 5$ feet No. 30 chameled; $R_{5} .81 / 2$ feet No. 18.

It is possible to buy special VoMI scales to replate the $0-1$ scale for certain types of milliammeters. In such case the circuit reeommended for that scale should be used.

More expensive instruments use a $50-\mu \mathrm{mmp}$. meter in the VoM, with large scales for easy reading. such instruments frequently include a.e. scales as well, and in general are better purchased complete than made at home.

The VOMI, even a very simple one, is among the most useful instruments for the amateur. Besides eurrent and voltage measurements, it

Fig. 21-8-Calibration curve for the high- and lowresistance ranges of the volt-ohm-milliammeter.
(an be used for checking continuity in cireuits, for finding deferetive components before installa-tion-shorted condensers, open or otherwise defective resistors, et e. - shorts or opens in wiring, and many other cheres that, if applied during the construction of a piece of equipment, save much time and trouble. It is equally useful for servicing, when a eomponent fails during regular operation.

THE VACUUM-TUBE VOLTMETER

The usefulness of the vacuum-tube voltmeter (VTVM) is based on the fact that a vacoum tube (an amplify without taking power from the souree of voltage applied to its grid. It is therefore possihle to have a voltmeter of extremely high resist-
ance, and thus take negligible eurrent from the eircuit under measurement, without using a d.e. instrument of exceptional sensitivity.

While there are several possible eircuits, the one commonly used is shown in Fig. 21-9. A dual trione, l_{1}, is arranged so that, with no voltage appliad to the left-hand grid, equal currents flow through both sertions. linder this condition the two cathodes are at the same potential and no current flows through . $1 /$. The currents can be adjusted to balance bey potentiometer $R_{\text {Il }}$, which takes care of variations in the tube sections and in the values of cathode resistors R_{9} and R_{10}. When a voltage is applied to the left-hand grid the current through that tube section changes but the current through the other section remains unchanged, so the balanere is upset and the meter indicates. The sensitivity of the meter is regulated by R_{8}, which serves to adjust the calibration. R_{12}, common to the cathodes of both tube sections, is a ferd-bank resistor that stabilizes the system and makes the readings linear. R_{6} and C_{1} form a filter for any a.c. component that may be prosent, and R_{6} is balanced by R_{7} connected to the grid of the second tule seetion.

To stay well within the limear range of operation the seale is limited to 3 volts or less in the average commercial inst rument. Higher ranges are obtained be means of the voltage divider formed be R_{1} to R_{5}, inclusives. As many ranges as desired can be used. Common prartice is to use 1 megohm at R_{1}, and to make the sum of R_{2} to R_{5}, inclusive, 10 megohms, thus giving a total resistance of 11 megohms, constant for all voltage ranges.
For measuring a.c. voltages the rectifier cireuit shown at the bower left of lig. 21-9 is used. One secetion of the double diode, V_{2}, is a half-wave rectifier and the second half acts as a balancing devier, adjustable ber R_{1}, to eliminate contact potential efferts that would cause a constant d.e. voltage to appear at the V"TVM grid. When measuring a.e., R_{x} is usually set so that the r.m.s. a.e. calibration coineides with the d.e. ralibration. I separate resistor is frequently switehed in for the purpose.

Values to be used in the circuit depend consid-

Fig. 21.9 - Vacuum-tube voltmeter circuit.
$\mathrm{C}_{1}-0.002-$ to $0.005-\mu \mathrm{fd}$. mica.
$\mathrm{C}_{2}-0.01 \mu \mathrm{fll} .01000$ to 2000 volts, paper or mica.
$\mathbf{R}_{1}-1$ megohm, $1 / 2$ watt.
R_{1} to R_{s} inclusive - To give desired voltage ranges, totaling 10 megohnis.
$\mathrm{R}_{6}, \mathrm{li}_{7}-2$ to 3 megohms.
$\mathrm{R}_{3}-10,000$-ohm variable.
$\mathrm{R}_{\mathrm{a},} \mathrm{R}_{10}-2000$ to 3000 ohms.
R_{11} - 5000 . to 10,000 ohm potentiometer.
$\mathrm{R}_{12}-10,1000$ to 50,000 ohms.
$\mathrm{R}_{13}, \quad \mathrm{R}_{14}$ - App. 25.000 ohms. A $50,000-\mathrm{ohm}$ slider-type wire-wound can be used.
$\mathrm{R}_{15}-10$ megohrus.
$\mathrm{R}_{16}-3$ megohms.
K_{17} - 10 -megohm varialle.
\mathbf{M} - Microammeter, range from 0-200. $\mu \mathrm{amp}$. to 0-1 ma.
V_{1} - Dual triode, 6 SN ior 12 AU 7.
$\mathrm{V}_{2}-$ Dual diode, 6116 or $6 \mathrm{AL5}$.
crably on the supply voltage and the sensitivity of the meter, $1 /, R_{12}$, and $R_{13}-R_{14}$, should be adjusted so that the voltmeter circuit can be brought to balance, and to give full-scale defleetion on M with about 3 volts applied to the grid. The meter commertions cion be reversed to read voltages that are negative with respect to ground.
The VTVMI has the disadvantage that it requires a source of power for its operation, as compared with a regular d.e. instrument. Also, it is suscoptible to r.f. pirk-up when working around an operating transmitter, unless woll shielded and filtered. The fact that one of its terminals is grounded is also disatvantageous in some cases, sinee a.e. readings in particular may be inarrurate if an attempt is made to measure a circuit having looth sides "hot" with respert to ground. Nevertheless, the high resistance of the VTV.M more than compensates for these disadvantages, esperially siner in the majority of measurements they do not apply.

CALIBRATION

When extending the range of a d.e. instrument calibration usually is neerssary, although resistors for voltmeter multipliers often can be pur(hased to close-enough tolerances so that the new range will be accurately known. Iowever, in calibrating an instrument such as a VTVMa a known voltage must be available to provide a starting
point. Frush dry cells have an opern-rireuit terminal voltage of approximately 1.6 volts, and one or more of them may be connected in series to provide several calibration points on the low range. Cas regulator tubes in a power supply, such as the 0C3, 01)3, ete., also provide a stable sourer of voltage whose value is known within a fow per eont. (Onee a few such points are determined the voltmoter ranges may be axtended readily be adding multipliers or a voltage divider as appropriate.
Shunts for a milliammeter may be adjusted by first using the meter alone in series with a source of voltage and a resistor selected to limit the rurrent to full scalc. For example, a $0-1$ milliammeter may le comeeted in series with a dry eell and a 2000 -ohm variable resistor, the latter boing adjusted to allow exartly 1 milliampere to flow. Then the shunt is added across the moter and its resistance adjusted to reduce the meter reading by exactly the scale factor, n. If n is $\overline{5}$, the shunt would be adjusted to make the moter read 0.2 milliampere, so the full-scale current will be 5 mat. Using the new seake, the serond shunt is added to give the next range, the same proeedure being followed. This wan be carriod on for several ranges, but it is advisable to check the metor on the highest range against a separate meter used as a standard, sine the errors in this proeess tembl to ber cumulative.

Measurement of Frequency and Wavelength

ABSORPTION FREQUENCY METERS
The simplest possible frequence-merasuring devier is a resonant cireuit, tunable over the desired frequency range and having its tuning dial cealibrated in terms of frequency. It operates by extracting a small amount of energy from the oscillating circuit to be moasured, the frequency being detarmined by the tuning setting at which the rnergy absorption is maximum (Fig. 21-10).

Athough such an instrument is not rapable of

Fig. 21-10- Absorption frequenes meter and a typical application. 'The meter consints simply of a calibrated resonam cirenit I.C. When coupledt to an amplifier or oseillator the tobe plate current will rise when the frequency meter is tuned to resmance. A flashlight lamp may be connected in series at \to give a visual indication, but it deereases the selertivity of the instrmment and makes it necessary to use rather elose coupling to the sircuit being measured.
very high areumacy, berause the Q of the tuned circuit cannot be high enough to avoid uncertainty in the exact sotting and because any two coupled eircuits interact to some extent and change earh others' tuning, the absorption wavemeter or frequeney meter is nevertheless a highly useful instrument. It is compart. inexpensive, and requires no powar supply, There is no ambiguity in its indications, as is frefuently the case with the heterodyne-trpe inst ruments deseribed later.

When an absorption meter is used for chereing a transmiter, the plate current of the tube connerted to the rircuit being eherked ran provite the necessary resonance indication. When the frequency moter is loosely coupled to the tank eireuit the plate rurent will give : slight upward flicker as the moter is tuned through resonance. 'The areuracy is greatest when the loosest possible coupling is used.

A receiver oscillator may be cherked by tuning in a steady signal and heterodyning it to give a beat note as in ordinary e.w. reception. When the frequency meter is coupled to the oseillator coil and tuned through resoname the beat note will change. Again, the coupling should be made loose enough so that a justperceptible change in beat note is observed.

An approximate calibration for the wavemeter, adequate for most purpowes, may be obtained by comparison with a calibrated re-

MEASUREMENTS

eciver. The usual receiver dial calibration is sufficiently accurate. A simple oscillator circuit covering the same range as the frequency meter will be useful in ealibration. Set the reebiver to a given frequency, tune the oseillator to zero beat at the same frequence, and adjust the frequeney meter to resonance with the oscillator as deseribed above. This gives one calibration point. When a sufficient number of such points has been obtained a graph may be drawn to show frequency t's. dial settings on the frequency meter.

INDICATING WAVEMETERS

The plain absorption metor requires fairly close coupling to the oscillating circuit to affert the plate current of a tube sufliciently to give visual indication. The sensitivity of the instru-

Fig. 21-11-Circuit diagram of indicating wavemeter. With the meter plug removed, it can be used as a compact absorption meter of the ordinary type.
 C_{2}, $\mathrm{C}_{3}-0.001-\mathrm{\mu fd}$. dise ceramie.
J_{1} - Open-circuit jack.
HI - D.e. milhiammeler, 0-1 or less.
P_{1} - Pbhone plak.
Coil Data, \boldsymbol{L}_{1}

Freq. Kange	Turns	H'ire	Diameter	Turns/inch	Tup*
1.6-4.2 Mc.	134	32 enam.	$3{ }^{3} \mathrm{in}$.	Close-wound	32
3.6-10.5 Mr.	10	32 enam.	3.17.	('lose-wound	12
$7 \mathrm{x}-24.0 \mathrm{Mc}$.	10	24 tinued	1/2in.	32	14
17. K -52.0. Me .	15	20 tintued	12/2in.	16	5
$3 \mathrm{~s}-117 \mathrm{Mc}$.	4	20 timued	1/2in.	16	$11 / 3$

80 -270 Mc. Hairpin of No. 14 wire, $8 / 8 \mathrm{in}$. sparing, 2 inches long including eoil form pirs. Tapped $11 / 2 \mathrm{zm}$, from around end.

* Turns from ground end.

Coil forms are Amphenol $24 \cdot 5 \mathrm{H}, 3 \frac{3}{4}-\mathrm{in}$. dianeter.
ment can be increased, by adding a rectifier and d.e. microammeter or milliammeter, to the point where very loose coupling will suffice for a good reating. A typical circuit for this purpose is given in Fig. 21-11, and Figs. 21-12 and 21-1:3 show how such an instrument can be const ructed. For convenience in use, the tuned cireuit is mounted in a small motal box that can be held in one hand for close coupling to a circuit. The d.e. meter can be connerted or not as desired, sinee it is separate (it can also be mounted in a small box) so the instrument can be used either as a plain absorption meter or as an indicating-tye neter.

The reetifier is a crystal diode, tapped down on the tunedecircuit roil to avoid exeressive loading

Fig. 21.12 - A compact absorption wavemeter provided with a erystal rectilier and jack for an indicating meter. The meter ran be monmed in a separate box, if desired. "'lue dial is similar to that used on the grid-dip meter dessribed later in this inapter.
of the rircuit which would broaden the tuning. Tapping down also improves the sensitivity, by providing an approximate impedaure match betworn the tuned circuit and the crystal-cirruit load. By plugging a houlsot into the output jarek ('phones having 2000 ohms or greater resistance should be used for greatest sensitivity the wavemetur catn be used as a monitor for modulated transmissions.

It is of course possible to mount the d.e. meter in the same unit with the wavemeter proper, but this incroases the bulk and woight. The separate units have the alvantage, also, that a long line can le used to connere the two, since surh a line carrics only d.c., so the meter can be placed at a remote point to pick up r.f. while the indicator is placed at the spot wher adjustments are being made. This is frequently useful in antemna work, for example.

Where connection to an a.ce line is convenient, a VTVM can be used instead of the milliammeter or microammeter, and because of its high resistance will considerahly incrouse the sensitjvity and solectivity of the wavemeter.

In addition to the uses mentioned above, a moter of this type may be used for final adjust-

Fig. 21-13 - Inside the imdicating-type wavemeter. The tuning condruser sfould he mounted as close as possible to the coil sorket so the leads will be of negligible length. The low is $1^{5} \times 2,2 t / x+4$ inctus.
ment of neutralization in $1 \cdot f$. amplifiers. For this purpose it may be loosely coupled to the plate tank coil. Alternatively, L_{1} may be removed and the final-amplifier link output terminals conneeted to the coil socket. The latter method tends to ensure that the pick-up is from the final tank coil only.

LECHER WIRES

At very-high and uhtrahigh frequencies it is possible to determine frequency by actually measuring the length of the waves generated. The measurement is made by observing standing waves on a two-wire parallel tramsmission line or Lecher wires. Such a line shows pronounced resonance rffects, and it is possible to determine quite accurately the current loops (points of maximum current). The physical distance betwen two consecutive current loops is equal to one-half wavelength. Thus the wavelength can be read directly in meters (39.37 inches $=1$ meter; $0.39: 37$ inch $=1 \mathrm{~cm}$.), or in centimeters for the very-short wavelengths.

The Lecher-wire line should be at least a wavelength long - that is, 7 feet or more on 144 Mc . - and should be entirely air-insulated except where it is supported at the ends. It may be made of eopper tubing or of wires stretehed tightly. The spacing betwern wires should not exered about 2 per eent of the shortest wavelongth to be measured. The positions of the current loops are found by means of a "shorting bar," which is simply a metal strip or knife edge which can be slid along the line to vary its effective length.

Making Measurements

For measuring the frequency of a transmitter, a convenient and fairly sensitive indiator can be made by soldering the ends of a one-turn toop of wire, of about the same diametor as the transmitter tank coil, to a low-current flashlight bulb. The loop should be coupled to the tank coil to give a moderately bright glow. A coupling loop should be connerted to the ends of the Facher wires and brought near the tank eoil, as shown in Fig. 21-15. Then the shorting bar should be slid along the wires outward from the transmitter unt il the lamp gives a sharp dip in brightness. This point should be marked and the short-
ing har moved out until a second dip is obtained. The distane between the two points will be equal to half the wavelength. If the measurement is made in inches, the freguence will be

$$
F_{\mathrm{M}_{\mathrm{c}}}=\frac{5905}{\text { length (inches) }}
$$

If the length is measured in meters,

$$
F_{\mathrm{Mc} .}=\frac{150}{\text { length (meters) }}
$$

In checking a superregenerative receiver, the lacher wires may be similarly coupled to the receiver coil. In this case the resonance indication may be obtained by setting the receiver just to the point where the hiss is obtained, then as the bar is slid along the wires a spot will be found where the receiver goes out of oscillation. The distance bet ween two such spots is equal to a half-wavelength.

Fis. 21-1.5- \quad :oupling a lecher wire aystem to a transmitter tank coil. I'ypical standing-wave distribution is shown toy the dashed line. The diztance X leetween the position- of the shorting har at the current lompsequals one-half wavelength.

The shorting bar must be kept at right angles to the two wires. A sharp edge on the bar is desirable, sinee it not only helps make good contact but also definitely locates the point of contact.

Aerurate readings result when the loosest possible eoupling is used between the line and the tank coil. Careful measurement of the exart distance betwern two current loops also is essential.

HETERODYNE METHODS

Heterolyne methods of frequency measurement make use of a stable owillator generating either a known frequency or one that is variable over a known range. Measurement consists in comparing the unknown frequeney with the known frefuency of the oseillator, using an ordinary receriver for detecting both. This mothod is more wecorate than others, because frogueney

Fig. 21-1.1- One end of a typical leecher wire system. The wire is No. I6haresmidideopper antenna wire (hard-drawn), 'I'he thribuchlex are held in place by a 3ía \times-inch bolt throunh the anchor block, 'The other end of the line, which is connected to the piek-up loop, should be insulated.

Fip. 21-16-Cirenit for arystal-controlled frequency stamdard. Finlow surh as the 6Sh 7, GSH7, 6AL6, ete., are suitable.
(i) - E 0) $-\mu \mathrm{fll}$. variable.
$\left(i_{2}-1 . \overline{3}\right)-\mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{3}-\mathbf{0 . 1 0 0 2}-\mu \mathrm{ffl}$ misa.
(4 - 0.01- μ fid. paper.
$\mathrm{C}_{5}-22-\mu \mu \mathrm{fd}$. mica.
$R_{1}-0.47$ megohm, $1 / 2$ watt.
$\mathrm{H}_{2}-1000$ ohms, $1 / 2$ watt.
$\mathrm{H}_{3}-0.1$ megohm, $1 / 2$ watt.
$\mathrm{H}_{4}-0.15$ megohm, $1 / 2$ watt.
differences of less than a eyele ean be observed by aural (heat-note) mothods, and the oscillator can be calibrated to practically any degree of precision by comparison with standard frequenries transmitted from WWV and WWVII.

Care must be used in hetcrodyne frequencer measurement bereause in most cases harmonics are used and the measured frequency can be in error lyy a large factor if the wrong harmonie is picked. Also, a superheterodyne rereiver will give many spurious responses in the presence of a strong signal and harmonies, so these must be recognized and ignored in making measurements. In general, heturodyne mothods are most useful in measuring frequeney to a high degree of atcuracy after the frequeney is known approximately from other methods. The absorption wavemeter is useful for making the first approximation and thus diminating the possible gross errors.

Frequency Measurement with the Receiver

An ordinary receiver has the essential clements needed for frequency measurement. Its dial readings must be catibrated in terms of frequency, of course, before mo:asurements can be made. Manufactured reecivers are generally so calibrated; the accuracy of the calibration will vary with the receiver model, but if the receiver is well made and has good inherent stability, a bandspread dial calibration can be relied upon to within perhaps 0.2 per rent. For most acrurate measurement, maximum response in the receiver should be determined by means of a carrior-operated tuning indicator (such as an S-meter), the receiver beat oseillator being turned off. If the reeciver hats a erystal filter, it should be set in a fairly "sharp" position to increase the accuracy.

When checking the frequency of your own transmitter, the receiving antenma should be disconnected so the signal will not overload or "block" the receiver. Also, the r.f. gain should be redured as a further precation against overloading. If the receiver still blocks without
an :mtennat the frequency may be cherked by turning off the power amplifier and tuning in the oscillator alone. It is difficult to avoid booking under almost any eonditions with a regenerative receiver, and so this type is not very suitable for cheeking the frequency of ones own transmitter.

THE HETERODYNE FREQUENCY METER

The heterodyne frequency meter is an osillator with a precise frequency cadibation. The oseillator must be so devigned and constructed that it can be acourately calibrated and will retain its calibration over long prerods of time.

The oscillator used in the frequency meter must be very stable. Machanical eonsiderations are most important in its construction. No matter how good the instrument may be electrically, its accuracy cannot be depended upon if the meehanical construction is flimsy. Frequencer stability can be improved by avoiding the use of phenolie compounds and thermoplastics (bakelite, polystyreme. ete.) in the oseithator circuit, employing only high-grade ceramics instead. I'lug-in coils ordinarily are not aceeptable; instead, a solidly-built and firmby-mounted tuned circuit should be permanently installed. The oscillator patmel and chaswis should he as rigid as possible.
for amateur purposes the most useful type of motor is one rovering the amateur hands only. The V'ros deseribed in the chapter on transmitters are typical of the circuits and construc-

Fig 21-17-A compat frequeney standard and harmonic amplifier for generating either 100. or 1000 -ke. intervals throughont the spectrum to 150 Nc . It has a self-contained power supply using the transformer shown in the upper part of the photo. The output eontrol is at the upper leff, and the switch in the foregronnd is the harmonio-amplifier bandewitels. The dual erystal is between the bandswitela and output control. The toguld switeh at the lower left corner of the panel seleets either 1000 - or $100-\mathrm{kc}$. intervals.
tion sinee they are designed with the same considerations in mind - i.e., to be highly stable both elocetrically and morhanieally. Honer a good VFO°, if acrurately ralibrated in frequency, is also a good heturodyne frequency meter.

Cablibration must be done by eomparing the oscillator frequobry at various points in its range with signals of known freguener. The best method is to calibrate from a secondary frequeney stand-
ard, deseribed in the mext seetion, at intervals of, say, 100 ke , and fill in the calibration curve by interpolation. The oseillator usually works over the approximate range $1750-2000 \mathrm{ke}$., harmonies being used for the higher amateur hands. If the calibation is done on the highest hand - 28-32 $M \mathrm{c}$. - at intervals of 100 ke . it is equivalent to having calibration points at intervals of $100 / 16$ $=6.25 \mathrm{kc}$. on the fundamental-frequency range.

STANDARD FREQUENCIES AND TIME SIGNALS

Standard radio and audio frequencies are broadeast continuously from WWV, operated by the Contral Radio Propagation Laboratory, National Bureau of standards, Washington, 1). (. on the following frequeneies:
Frey., Mc.
2.5
5
10
15
20
25

Modulatims (c.p.s.)
1,440 or 600

1. 440 or 600

1, 440 or $\mathbf{6}(6)$
1, 4.40 or fOO
1,440 or 600
1,440 or $6(0)$
Similar broadeasts are given from WWVH, P'uunene, 'T.M., on the following frequeneios:

Freq., Mc.	Modulations (c.p.8.)
5	1,440 or 600
10	1,440 or 600
15	1,440 or 600

Transmissions are as given in the charts above, exept that the WWVII broadeast is interrupted for 4 minutes following each hour and half hour sud for priods of 40 minutes legiming at 0700 and 1900 universal time.

Time Signals

The 1 -c.p.s. motulation is at 5 -milliserond pulse at intervals of preerisely one serond, and is heard as a tick. Time intervals as transmitted are areurate to within 2 parts in 100 million +1 mieroserond. The tiek on the 59th second is omitted.

Accuracy

Transmitted frequencies are aceurate within 2 parts in 100 million.

Propagation Notices

During the amonomement intervals at 20 minutes after and 10 minutes before the hour, propagation notices applying to transmission pathe over the north delantie are transmited from WWV on 2.5, 5, 10, 15, 20, and 25 Mr. Theso notices, in telographic coole, consist of the letter N, W, or If followed by a number. The letter designations apply to propagation conditions as of the time of the broadeast, and have the following significance:

> W - Ionospheric disturhance in progress or exueted.
> U - Unstable conditions, hut conmuniegtion N - Nossible with high powr.
> porning.

The number designations apply to experted propagation eonditions during the subsequent 12 hours and have the following significance:

Digit	Furecast
1	Impossible
2	Fery Poor
3	Poor
4	Fair to Poor
5	Fair
6	Fair to Good
7	Crood
8	Very Good
9	Excellent

Pis. 21.18- (iircoit diauramt of the frequenes standard and harmonic amplifier.

(:3. $\mathrm{A}_{4}-0.1-\mu \mathrm{fd}$. paper, 400 volts.
(is-2.50- 0 fil. ceramic.

(is - $I(0)-\mu \mu f(d$. ceramic.

H_{1} - $4 . \overline{\mathrm{i}}$ megolim, $1 / 2$ watl.
R_{2} - $2 \cdot 2,0(0)$ ohms, $1 / 2$ watt
$R_{3}, R_{4}, R_{5}-0.1^{-}$megohm, $1 / 2$ walt.
$R_{B}-1.0$ ohms, $1 / 2$ watt.
$\mathrm{R}:$ - $\mathrm{B}(\mathrm{OO}$-odim potentiometer.
$1 \mathrm{R}_{\mathrm{s}}-4 \mathrm{~F}, 000$ ohms, 1 watt.
1R: 1000 ohms, I watt.
l_{1} - I-mh. r.f. choke (Vational 12 -.̄̃0).

I 2 - 2-mh r.f. choke (National k-00).
 lurina remoned)
I.t. 3 turns No. 16. $1 / 4$-imeh diam., $3 / 8$ inch long.

Cill - Gï-ma. siloninm rectitier.
J1-'lír jach.
 KH'Cz\therefore —S.p.sti. toggle switeh.
S_{2} - S.p.sit. tognle switch monnted on R_{7}.
S3- I-pole G-position selector switeh: shorting type (Centralal, $\geq 5(4)$).
T'p - Iower transformer, 1.00 volts, 2.5 ma.: 6.3 volts. 0.3 amp . (Werit l'-30.46).
 IJFS.

- THE SECONDARY FREQUENCY STANDARD

The secondary frequency standard is a highl. stable owillator generating a single frequener. usually 100 ke . It is nearly atways erystal-eontrolled, and inexpensive looke ervetals are available for the purpose. Since the harmonice are multiples of 100 ke . throughout the spectrum. some of them can be compatred directly with the standard frequencies transmitted by WWV. The edges of most amateur bands also are exact mułtiples of 100 ke ., so it becomes possible to determine the band edges very acourately. This is an important consideration in amateur frequency measurement, since the only regulatory
requiremonl is that in amateut transmission be inside the assigned band and not on a sperifie frequener.

Intervals of 100 ke are sometimes too close for aro curate identification of a given harmonice, so spereial crustals that oprrate at both 1000 and 100 ke are available. Intervals of 1000 ke. are sufficiontly far apart to avoid confusion: sine the average receriver rablibration is good rnough to provide positive identification. Onee the 1000 -ke. hirmonies are spotted, it is eatsy to count off the loo-kr. intervals from the known 1000 -kr. points.

Manufacturers of 100 -ker (rystals usually supple circuit information for their particular crostals. The rirouit givers in Fig. $21-16$ is representative, and will genorate usable harmonies up to 30 Ne. or so. The variable rondenser, C', provides a means for adjusting the frequency to exartly lookr. Harmonia output is takenfrom the eireuit through a small condenser, C_{5}. Thore are no parideular construetional points to bo observed in builaling surde a unit. Power for the tube heater and plate may be taken from the supply in the reeererer with which tho unit is to be used. The plate voltage is not critiral, but it is rerommended that it be taken from a VR-lis) regulator if the receiver is arquippere with onte.

Gufficiont signal strength usually will be secored if a wire is run betwern the output terminal ronnored to C_{5} and the antennat post on the reeorere. At the lower frequencies a motallia connertion maty not be nerossary.

Figs. 21-17 through 21-19 show a compatet standard, complete with powor supply, that will give ustable harmonias from both 100 and 1000 ke. up through the $1+4-$ Mr. bind. It uses it dual crestal, rither fundamental frequency being soleceted by a switeh, and the output of the oserillator is fed to a crustal-dionderectifier to increase the amplitude of the high-order harmonies. These harmonies are then implitied in the seeond tube, astage having hrotudly-tumed plate cireuits rentering in tho higher-irequency amatenr bands, switehed in or out as required. I athoule gain control is provided in the amplifier cirenit for regulating the output amplitude. The whole unit is construeted in a $5 \times 3 \times 4$ box of the type having its own chassis, the smatl sizo boing used so the unit can be spucered into limiterl sparee on the operating table. It ean be put on a larged whassis and box if chasired, siner the ronstrurtion is not reritical. suffiebont signal strength in the reeriver should be serured by connereting a short piece of wire to the output terminal, but on very high frequenerios it may be neressary to connect the wire to one antennat post on the redeiver.

Adjusting to Frequency

In either lig. 21-16 or 21-18 the frerfuency can be arljusted exactly to 100 ke . by making use of

Fig. 21.19-Below-chassin view of the frequeney standard. 'The 1 3.4.1 harmonic generator is at the upper left. The variable con. denser at the lontom is for adjustmont of the osidlator frequeney to exactly 100 he. At the upper ripht. monnted on the rear lip of the chassix, is the selenimm rectifier for the peower supply. The filter comdenser is just below it. Small resistors and enndensers are mrouped around the thbo sucket.
the IIWV transmissions tabulated in this daph ter. Solect the WWV frequenery that gives a goom signal at your location at the time of day most convenient. Tune it in with the receiver h.f.o. off and wait for the period duricg which the modulation is absent. Then switch on the $100-\mathrm{ke}$. oscillator and adjust its frequenes, bey moans of C_{1}, until its harmonic is in zero beat with WWV. The exact setting is easily found by observing the slow pulsation ian background mise as the harmonic comes close to zero beat, and adjusting to where the pulsation disatppears or occurs at a very slow rate. The pulsathons eat be oborved even more readily by switching on the receiver's b.f.e, after approximate zero beat has been serured, and observing the rise and fall in intensity (not fre(queney) of the beat tone. For beat results the IV WV signal and the signall from the $100-\mathrm{kr}$. ascillator should be about the same strength. It is advisable mot to try to set the loo-ke. oscillator when the WIWV signal in modulated. since it is difiecult to toll whether the harmonid is boing adjusted to zoro beat with the carrier or with one of the sidehands.

Frequency Checking

The secondary standard provides signals of known frecucney that cim be tuncel in on the station recesiver. Determination of the frequeney of a transmitter is then carried out hy the mothod doscribet earlior under "Freopueno Measurement with the Rereiver," using the ese points as positive identification of hand edges By using
the known loo-ke prints the recerver calibrat ion cim be corrected so that, by interpolation, the fregueney of a signal lying between the ealihration points can be determined with good aw"urary.

More Precise Methods

The methods described in this section are quite adequate for the primary purpose of amatenur frequeney measurements - that is, determining whether or not a transmitter is operating inside the limits of an amateur band, and the approximate frequeney inside the band. For measurement of an unknown frequeney to a high degree of aceuracy more advanced methods can be used. Aceurate signals at closer intervals ean be obtained be using a multivibrator in conjunction with the $100-\mathrm{ke}$. standard, and thus obtaining signals at intervals of, say, 10 ke . or some other integral divisor of 100 . Temperature control is frequently used on the $100-\mathrm{kr}$. ascillator to give a high order of stability (Collier, "What P'riore Precision":", Qs'T, september and October, 1952). Also, the secondary standard can be used in conjunction with a variable-frequence interpolation oscillator to fill in the standard intervals (Woodward, "A Lincar Beat-l'requency Oscillator for Frequency Measuremont," QST', Mas, 1951). An interpolation oscillator and standard can be combined in one instrument, one applieation of this type having been deseribed in (as'T) for May, 1949 (Grammer, "The Additive Frequency Mater").

Test Oscillators

For many measurements and tests, it is neressary to have a souree of signal at some desired frequency or range of frequeneios. Althugh there is a wide variety of test oscillators eapable of gencrating sueh signals, for most amateur work one or two simple types are quite adequate. A variahle-frequency oscillator covering as much as
possible of the r.f. spectrum, calibrated in frequeney, has many usefulaplications, For 'phone work, an autio sigmal source is equally valuable in testing and adjust ment of speerh amplifiers, modulators and associated audio cireuits and equipment. Both types can be built quite easily and at low cost.

THE GRID-DIP METER

The grid-dip meter is a simple varuum-tube oscillator to which a low-range millammetor or misroammeter has bern added to read the oseitlator grid current, i 0 - 1 milliammoter is sensitive enough in most cases. The grid-dip moter is so called because when the oscillator is coupled to a tuned circuit, the grid current will show : de"rease or "dip" when the oseillator is tumed through resonance with the unknown circuit. The reason for this is that the extermal circuit will absorb energy from the weillator when both are tuned to the same frequency; the loss of energy from the oscillator cireuit causes the feedback to decrease and this in turn is aroompaniod by a decrease in grid eurrent. The dip in grid current is quite sharp) when the cireuit to which the oscillator is coupled has reasomably high (Q.

The grid-dip moter is most useful when it covers a wide frequency range and is compartly constructed so that it can be coupled to circuits in hard-to-reach plares such as in a transmitter or recoriver chassis. It can thus be used to rheck tuning ranges and to find unwanted resonances of the type deseribed in the chapter on TVI. since it is its own sourere of r.f. energy it doess mot, like the absorption wavemeter, require the eireuit being whecked to be endrgized. In addition to resonance cherks, the grid-dip meter also cat be used as a signal souree for receiver adignnent and similar purposes and, as deseribed later in this chapter, is useful in measurement of indurtance and caparitane in the range of values used in r.f. eireuits

Figs. 21-20 to 21-22, inclusive, show a grid-dip moter of quite compart const ruction nsing plug-in roils to cover a continuous frequency range of 1600 kr . to 160 Mc ., and thus uscful in all amatour bends up through 14t Mr. as well as for Checking for resonanees in the low group of v.h.f. TV chamels, the most important from the standpoint of harmonic TVI, It is small and light, and ran he held and tunod with one hand sinere the

Fig. 21.20-A compart and lipht-weight grid-dip meter for one-hand operation, It is built in a $15 / \mathrm{K}$ 21 з $\times 4$-inch "(hammelelock" bovand usis six flug-in roits to cover the range $1000 \mathrm{ke}, \mathrm{to} 100$ We. The power supuly and milliammeter for reading prid current are in a separate unit.

F"is. 21.2l-Circonit diagram of the gridadip meter.
 C2- $100 \cdot \mu \mu \mathrm{fd}$. ceramic.
Co. Ca, CA - 0.00) - μ fll, dise eeramio.
(. 5 - (0.0) $-\mu$ ffl. diur ceramic.
$\mathrm{H}_{1}-22,000$ ohms, $1 / 2$ watt.

Cuil Data. $/ 4$					
Freq. Ranye	Turns	Wire	Diameter	Turns/inch	Tip ${ }^{*}$
$1.59-3.5 \mathrm{Mc}$.	139	32 caam.	3 f in.	Clorse-wnund	32
3 t5- 7 \& Me.	10	32 ¢!am.	${ }^{3} 1 \mathrm{in}$.	Close-wound	12
$755-175 \mathrm{Mc}$.	10	24 timmed	1/2 in.	32	14
$172-40 \mathrm{Mc}$.	15	20) timued	1/2in.	16	,
37 - $85 . \mathrm{Mc}$.	4	20 tinued	$1 / 2 \mathrm{im}$	1if	$11 / 3$

is -160 Mc . Hairy in of Co . 14 wire, $3 / 8$ ins. spacing. 2 inchers long including coilform pins. Tapped $11 / 2 \mathrm{in}$. from ground pInd.

* Turns from ground end.

Coil forms are Amizhenol $24-5 \mathrm{H}, 3 / 4-\mathrm{in}$. diameter.
dial extends slightly over the edges of the box so it can be operated with the thumb. The milliammoter is not contained in the oseillator itself hut can be mounted separately in any conveniont spot for viewing. lig. 21-2.3 shows the milliammotor mounted in a standard meter rase which also contains the power supply for the oseillator. The cable connereting the two units can be any desired length.

The oseillator circuit, shown in Fig. 21-21, is a groundedplate Hartley, with the eathole tap adjusted for maximum sonsitivity - that is, greatest change in grid current when tuning through resonamee with a coupled vircuit rather than maximum grid current. For satisfiactory oureation at the highest frequenes, the leads in the tuned direuit should be kept as short as possible, and the tuning condenser, r_{1}, is mounted so that its rotor and stator terminals are practically tourhing the corresponding pins on the eoil socket. The tube socket is mounted on a bracket made from aluminum and placed at an angle so that the tube ran be removed. The rathode comeretion betwern the tube sorket aded the coil socket is made of flat copporestrip to reduce its inductance as much as possible.

Coils for the two low-frequeney ranges are wound on the outsides of the forms in normal fashion, but with the exception of the highest range the remaining coils are longths of 13 d W Miniductor mounted inside the forms. A hairpinshaped eoil is used for the higheret range. As the coil forms are polystyrenc, which softens at relatively low temperatures, care must be used in soldering to the pins. It is helpful to drill a metal plate, a few inches square and 1 í 6 inch or so thick,

fig. 21-22- The wriddige oscillator is Buila on the 1 -ahaned portion of the box. Cis. Cat and Cifare gromila, to a soldering hug at the left of the sorket Wiren in the power and meter cable terminate al a l-point terminal strip, at the laft.
so the coil pins will fit sumgly; then if the plate is pressed firmly against the bettom of the form during soldering it will eonduet the heat awat from the polystyrene rapidly abugh to prewent softening, il the soldering operation is not prolonged.

I transparent dial cut from a piere of $1 / 8$-inch Jlexiglas (obtaimable at hobby stores) is used in preforenere to at solid dial so the calibmation can be pased on top of the box, where there is more room for lethering A hairline imbicator is seratehed on the dial, which is also provided with a stimulard small knoh, fastemed to it he smatl mathine sarews threaded in from the bottom.
The power supply shown in Fig. 21-2:3 uses a miniature power transformer with a soldium reetifer and a simple filter to give approximately 120 volts for the oscillator phate. The potentionwter shown in Fig. $21-21$ is for adjustment of plate voltage. In any grid-dip) meter the grid current will be different in different parts of the frequency range, with fixed plate voltage, so it is ordinarily arcessary to choose a phate voltage that will keep the reading on seate in the part of the range where the grial current is highest. This usuathy results in rather low grid current at some other part of the rame. With variable plate woltage this compromise is unnecessary
The inst rument may be ealibrated be listening to its output with a calibnated receiver. The calibration should be as aceurate as possible although "frequencer-metor accurare" is not rocuired in the appliations for which a gridedip) meter is useful.
The grid-thip meter maty be used as an indieat-ing-tyo atsorption wavemeter by shatting of the phate voltage and using the grid and cathode of the fube as a diode. Howewe, this tyer of cir-

Fig. 21-23- P'ower supols and milliammeter for tha arid-dio, meter are rontained in a meter case. The control on top is for varying the plate voltage to maintain the arid burrent in the proper region.
cuit is not as sensitive as the erstal-detector trpe shown carlier in this chapter, berease of the highresistance grid leak in series with the meter.

In using ther grid-dip moter for chereking the resomant frepurney of a areuit the coupling should be kept to the perint where the dip in grid curvent is just perepptible. This reduces interaction betwerol the two dirents to at minimum and gives the highest arruracy. With too-dose

ドig. 21-2. - Circuit diagram of the power supply for the grid-dip muter.

R_{1} - 1000 ohems. $1 / 2$ watt.
$\mathrm{K}_{2}-\mathrm{D} . \mathrm{I}$-mexolim potentionder.
 (Marit P-3016 or equivalent.)
(IR - 20-mat selenium rectifier
MA - $10-1$ d. 0 , milliammeter.
coupling the owcillator frequeney maty "pulled" bey the cireuit being chacked, in which ease different readings will be obtaned when resonane is approached from the high side as compared with approaching from the low side.

AUDIO-FREQUENCY OSCILLATORS

A usoful areessory for testing atudio-frerfueney amplifiers and modulators is an atode-frequeno signal generator or oseillator. Cherks for distortion, gain, and the ordinary troubles that oreur in such amplifiers do not require claborate equipment; in most casse, it single audio frequener will suffice. The chinf requirement is that the andio oscillator be able to generate a reasonably good sine wave.

Fige, 21-25 and 21-26 show a simple oscillator of a type entimely adequate for 'phone transmitter testing using the methods deseribed in the chapter on amplitude modulation. It gencrates a fixed frequeney of approximately 400

Fig. 2l-天: (iremit diagram of the simplo andion owillator.

$\mathrm{C}_{3}-0.03$ m「it., 601)-volt paper (
$R_{1}-1$ megohm, $1 / 2$ watt.
$R_{2}-10,1000$ ohms, $1 / 2$ watt.
R_{3} - $\mathbf{- N o w e o h m}$ potentionterer
$\mathrm{K}_{4}, \mathrm{~K}_{6}-1700$ „hms, $1 / 2$ watt.
$R_{6,} R_{7}-1_{6},(0) 0$ ohms, $1 / 2$ watt. J_{1} - A -prong chassis connector, male.
'I' - Interatage audion transformer ((tancor 1.1711).

cercos. and since it is provided with a step attonuater giving maximum outputs of approximately 1, 0.1 , and 0.01 wolts rims.s, as well as continuously-variable sutput control, it can be used as a sulstitute for any tere of microphome by proper ehoire of the high, medium, or low output.

The cireuit diagram is givon in lig. 21-25. One sertion of a double triodo is used as a Colpitts oseillator, with ('2, ('3 and the seromdary winding of $\%$ forming the tumed dircuit. (With the transformer spreified, the entire sorondary winding isused. The primary winding of T_{1} is comberted to the grid of the serond trioute suretion, which is used as a cathode follower. Variable out put from the unit is taken from the arm of a potentioneter, R_{3}, combered as the cathode-follower loath. The high output is taken divertly from R_{3}, while the two lower outputs are takern from a hadeler-type divider. $R_{4} R_{6}$ and $R_{5} R_{7}$. These perints are brought out to tipl jacks.

Molded paper condensers should be used at ("2 and ('z: cardhoarderased tubulars have been found to be unreliable in this cireuit.

The power requirements are quite low - the
 mat. and can be taken from any eonveniont somer of about 150 volts. The $6 s \times 7($ it heater reguires

Pis. 21.26 - A simple and inempensive audio meillator for use in ahecking phone transmitter operation. It genorates a good sine wave of fixed frequency and is provided with an attemator so that the output level ran be set at the broper salue for substituting for any type of mierophone.
0.6 amp . at 6.3 volts .

R.F. Measurements

The moasurement of fundamental quanditios such as eument, voltage and power at radio frequencies, and circuit coments surh as indurtane and capacitance, can be acomplished withequipment readily a vailable to or casily constructed by the amateur. Measurements of this trpe at ref. are ergually as useful in building. testing. and operating coquipment as their countorparts in d.e. eireuits.

R.F. CURRENT

R.f. current-measuring divires use a thermocouple in conjunction with an ordinary d.r. instrument. 'The thermocouple is made of two dissimilar metals which, when heated, generate a small d.e. voltage. The thermoeouple is beated by a resistance wire through which the ref. cur-
rent flows and since the de. voltage devoloped is proportional to the heating, which in turn is proportional to the power used by the heating element. the deflections of the d.e. instrument are propertional to power rather than to current. This ceuses the calibrated scale to be compressed at the low-ecurrent end and spread out at the highcurrent end. The usetul range of such an instrument is about 3 or 1 to 1 ; that is. an r.f. ammeter having a full-sate reading of 1 ampere can be read with satisfactory aceurary down to about 0.3 ampere one having a full sode of 5 amperes can lo read down to about 1.5 amperes, and so on. No single instrument can be made to hathde a wide range of currents. Neither can the r.f. :ammeter be shunted satisfactorily, as ean be done with d.e. instruments, beratuse even a very small
amount of reactanee in the shunt will cause the radings to be highly dependent on frequeney.

R.F. VOLTAGE

An r.f. voltmeter is a reefifier-type instrumment, in which the r.f. is converted to d.e., which is then measured with in d.e. milliammeter. The best type of rectifier for most applications is a crystal diode. such as the INBt and similar typer, because its capacitancer is so low as to have little effert on the behavior of the r.f. cireuit to which it is conmeted. The principal limitation of these rectiliers is their rather low value of safe inverse peak voltage. Viacum-tube diodes are considerably better in this respert, but their size, shunt eapacitanee, and the fact that power is required for heating the eathode constitute serious disadvantages in many applications. Typical cireuits for crystal-diode r.f. voltmeters are given in Fig. 21-27.

One of the prineipal uses for such voltmeters is as null indicators in r.f. bridges, as deseribed later in this chapter. Another useful application is in measurement of the voltage between the conductors of a coaxial line. to show when a transmitter is adjusted for optimum output. In either case the voltmeter impedance should be high compared with that of the cirenit under measurement, to avoid taking appreciable power. and the relationship between r.f. voltage and the reading of the d.e. instrument should be as linear as possi-

Fig. 21-27-IR.f. volmeter cireuits using a ersstal rectifier and d.e. microammeter or $0-1$ milliammeter. The eirenit at A is sintable for meanuring low voltagesup, to about 35 wolts maximum. IS is for measuring the voltage between the conductors of a coasial line. 'lhe total resistance of R_{2} attil K_{3} shomill le of the order of Z500 ohme, with the ratio of K_{2} to R_{3} chosen to apply not more than 10 volts to the crystal circuit, based on the ummodulated carrier power in the line. In both aircuits, R_{1} should be not less than 10,000 ohnss for a $0-1$ milliamsneter, and should be increased in proportion to the sensitivity of the meter (e.k., 20,100) ohms for a $0-500$ microammeter, 100,000 ohms for a $0-100$ microam. meter). (1 and (.2 should be $0.001 \mu \mathrm{fd}$, or more. In B , J_{1} and J_{2} represent coavial eommectors. 'I he voltmeter is preferably built in a shidded hox, the $2 \times 4 \times 4$ size being large enough to contain the whole instrument.
ble - that is, the d.e. indication should be directly proportional to the r.f. voltage at all points of the seale.

Fig. 21.28 — R.f. ammeter mometerl for rommeting into a coasial lime for meanaring power. A "2.inch" instrument will fit into a $2 \times 4 \times 1$ metal bon. The shont capacitance of an ammenre mounted in this way has a neqligible effeet on the acenrars at frequencies as high as 30 We. if the insirument has a hakelite case. Netale cased meters should be mounted on a bakelite panel which can in turn be motnted in a cut-out which clears the meter case by about $1 / 4$ ineh.

All rectifiers show a variation in resistance with applied voltage, the resistance being highest when the applied voltage is small. These variations can be fairly well "swamped out" be" using a high value of resistance in the dee cireuit of the reetifier. A resistance of at least 10,000 ohms is necessary for reasonably good linearity, and higher values are beneficial. Por this reason a fairly sensitive d.e. instrument should be used if possible, a $0-100$ microammetar, although at 0-1 milliammeter will serve quite woll in many eases. A VTVM is ideal for the purpose since its extremoly high input resistance exeeds anything that is practical with an ordinary microammetar. High resistame in the d.e. cirenit also raises the impedance of the r.f. voltmeter and reduces its power eonsumption.

The hasic voltmeter circuit is shown in lig. 21-27. A, and is simpty it half-wave reetifier with at moter and a resistor, R_{1}, for improving the linearity. The time constant of (${ }_{1} R_{1}$ should be latge compared with the period of the lowest radio frepurney to to measured - a condition that can casily be mot if K_{1} is 10,000 ohms and C_{1} is 0.001 $\mu \mathrm{fil}$. or more - so ('1 will stay charged near the peak value of the r.f. voltage. The radio-fregueney choke may be omitted if there is a low-resistane d.e. path through the rirenit being moisured. ('2 provides additional r.f. filtering for the d.e. cirenit

A pratical arrangement for measuring the r.f. voltage in at coaxial line from a tranemitter is shown at 13. I voltage dividor, $R_{2} R_{3}$, is conmeded arross the line, the resistane values being chosen so the inverse parak voltage rating of the rectifior is not excerded. This rating is in the vicinity of 50 volts, which limits the rim.s. voltage that may be applied to the erystal to a maximum of 35 volts. If the approximate power carried by the line is known, the voltage can casily be caleulated if the line is flat. A standing-wave ratio of 4 to 1 will cause the voltage to be twice the calculated value at a voltage loop, and 100 per cont morlulation also doubles the voltage. Since it is unlikely that the s.w.r. will exeed 4 to

Fis. 21-29-s.ct-up for meanuring induetance and capacitance with the grid-dip meter.

1 in a properly operated coas line, the safety fartor witl be adequate if the voltage divider is designed on the busis of applying one-fourth the rated value of voltage, or 8 to 10 volts, to the erystat. The total resistance in the divider should br about 100 times the line impedane so the power consumed by the voltmeter will not exered 1 per cent of the power in the line. Composition resistors should bre used, allowing 1 watt dissipattion in R_{2} (which usually dissipates practically all the voltaneter power) for each 100 watis in the line. The neeressary dissipation can be built up by using resistors in series.

In constructing such a voltmeter care must be used to prevent stray eoupling betwern the line and any bart of the voltmeter, and also betwern the voltage divider and the crestal reetifier circuit. Also, the resistor or resistors comprising R, should be kept away from grounded metal in order to reduce stray caparitanere.

Calibration

Calibration is not neeressary for purely comparative measuremonts. A calibration in actual voltage requires a known resistive load and an r.f. ammeter. The set-up is the same as for r.f. power measurement as described later, and the voltage calibration is ohtained by calculation from the known power and known load resistance, using Ohm's law - $E=\sqrt{ } \bar{P} R$. As many points as possible should be ohtained, by varying the power output of the transmitter, so that the linearity of the voltmeter can be whecked.

Different voltage ranges may be serured, with a fixed voltage divider, by changing the value of R_{1}. It is advisable to calibrate on the lowest range and then, with a fixed value of power in the line, increase R_{1} until the fesired seale fartor is olotained.

R.F. POWER

Measurement of ref. power requires a resistive load of known value and either an r.f. ammeter or a ealibrated r.f. voltmeter. The power is then either $I^{2} R$ or L^{2} / R, where R is the load resistance in olums.

The simblest method of obtaining a load of
known resistance is to use an antenna system with coax-coupled matehing circuit of the type described in the chapter on transmission lines. When the eircuit is adjusted, by means of an s.w.r. bridge, to bring the s.w.r. down to 1 to 1 the load is resistive and of the value for which the hridge was designed (52 or 75 ohms). Fig. 21-28 shows a conveniont way of mounting an r.f. ammoter for measuring current in a coaxial line. The instrument can be inserted in the line in phace of the s.w.r. bridge after the matehing has been completed, and the transmitter is then adjusted - without touching the matching circuit - for maximum current. The ammeter may be loft in the line during regular operation if desired, but it should be kept in mind that a mismateh such as might be caused by an aerident to the antenna systom may result in damage to the instrument sine under such conditions it is possible for the current to rearh several times its normal value.

An r.f. voltmater of the type deseribed in the preceding section also can be used for power measurement in a similar set-up. It has the advantage that, berause its scale is substantially limar, a much wider range of powers can be measured with a single instrument.

INDUCTANCE AND CAPACITANCE

The ability to measure the inductance of coils and the capacitance of condensers frequently saves time that might otherwise be spent in cut-and-try. A convenient instrument for this purpose is the grid-dip oseillator, described earlicr in this chapter.

Fig. 2/-30 - A convenient mounting, using linding. rost plates, for l. and C standards matle from commercial y-available parts. The condenser is a 100 - $\mu \mathrm{\mu f}$ f. silver mica unit, monnted so the lead length is as nearly zero as possille. The inductance standard, $5 \mu \mathrm{~h}$., in 17 turns of Xo. 3015 B \& W Minductor, 1 -inch diameter. 16 turns per incly.

For measuring inductance, the coil is connected to a condenser of known capacitance as shown at Λ in lig. 21-29. With the unknown coil conneeted to the stimatard condenser, the pick-up) loop is coupled to the eoil and the oseillator frequeney adjusted for the grid-eurrent dip, using the loosest coupling that gives a deturtable indication. The inductance is then given by the formula

$$
L_{\mu \mathrm{h} \cdot}=\frac{2 \cdot 5,330}{C_{\mu \mu \mathrm{fl} \cdot} \cdot f_{\mathrm{Mc} \cdot}{ }^{2}}
$$

Fig. 21-3. - 'The logarithmic f.s. meter is constructed on a small alamimum chanmel. 1 smatl copper plate betwern the two roils is used for reducing the interstage roupling to the point where the r.f. amplifier is nonregenerative.

conneeting a fairly large resistance in series with the milliammeter (or mieroammoter). Ahout 10,000 ohms is required for good linearity. This considerably reduces the sensitivity of the meter, but the lower sensitivity can be compensated for by making the pick-up anteman sufliciontly large.

A Sensitive Logarithmic F.S. Meter

For indicating the effere of antenma adjustments at a distant station, a logarithmie type of indicator is desirable in the field-strength meter since the meter readings with such in instrument are dirently proportional to decibels. Figs. 21-32 to 21-3t, inclusive, show a moter of this type. It makes use of the fact that the rectified d.e. output of a detector following a.v.e.-controlled r.f. stages tonds to be logarithmic with respert to the ref. voltage applied to the receiver.

As shown in Fig. 21-33, the circuit includes an r.f. amplifier, a detector, and a d.e. amplifier, using miniature battery tubers. The rectifed ref. voltage developed across R_{1} in the diode circuit of the 115 is applied through the ground eonnection to the grid of the I'It r.f. amplifier and thus controls its gain. The $11 / 2-w o l t$ " A " battery is not connected to ground but is allowed to "flosat," premitting the a.v.e. voltage to be effective on the grids.

In the unit shown in the photographs, slugtumed eroils arre used beremse of thoir small size

Fip. 2l-35-1 - Typical caliliration eurse of the logarithmic field-strength meter, 'We surve is sufficiently logarithmie, for practical purposes, between about 0.0 .5 and 0.45 ma. The way in wheh the reatings vary with applied signal, and not the absolute value of the signal, is the important point, and since thim will mot change significanty so long as the same circuit is used, the curve above may be used with any similar instrament.
and becaluse they eliminate the need for variable tuning eondensers. However, ordinary eondensertunced circuits can be substituted; the only roquirement is that the eireuits must be tunable to the frequener at which the antemat is boing adjusted. The only eritical point about the eomstruction of such a meter is to laty out the tumed circuits so that the r.f. amplifior is stable: otherwise, any convenient hyout may be usod.

With the values shown in Fig. 21-3:3 the nosignal plate eurrent should be very close to 0.5 milliampere. A less-sensitive d.e. instrument will reguire more " B " voltage. Whatewer the type of moter, the eurrent may be brought to exactly full seale, with no signal input, liy shunting it with a variahle resistor of suitable range, depending on the intermal resistanere.

Fig. $21-35$ is a typical calibration curve. The readings are approximately logarithmie over about 70 per eent of the scale, with a range of about 20 db . I'sed with a folded-dipole piek-up) antenna, the instrument is sensitive enough for use a few thousand foet away from a beam antema fod with a few hundred watts.

CHECKING STANDING WAVES

Standing waves on a transmission line can be measured if it is possible to measure the current at every point along the liter, or the voltage betwern the two eonductors at every point along the line. Rough eherks on paralle ieonductor lines ran be made by going along the line with an absorption wavemeter having a ${ }^{(r y s t a l}$ rectifier, taking (are to keep the pirk-up) coil (or pick-up antenna) at the same distance from the line at every measurement. With such a device the maximum milliammeter reading usually will indicate current bopps if a small pirk-up coil is used, and voltage loops if a short pick-up antemna is used.

An altermative indicator, also useful with parallel-conduetor lines, is a neon lamp. With moderate amounts of tramsmitter power, a lowwatage lamp will glow when the glass bulb is brought into rontart with one line wire. As the lamp is moved along the line, a change in brightness indicates standing waves. If the glow is substantially the same all along the line the s.w.r. can be considered to be low enough for practical purposes.

Standing-Wave Ratio Indicators

Simple indicators such as those just mentioned are useful for checking the presence of

for $V=0$
$R_{L}=\frac{R_{2}}{R_{b}} R_{S}$

Fig. 21-36-This fundamental bridge cirouit is the hasis for one type of devief for measuring standing-wase ratio.
standing waves along a transmission line but are not adequate for actual measurement of the standing-wave ratio. Also, it is frequently inconvenient, and sometimes impossible, to move a current or voltage indicator along a transmission line for the distance required in cherking standing waves.

An alternative method uses a bridge cirruit to measure the standing-wave ratio. Fig. 21-36 will serve to illustrate the basic principles. R_{1} and R_{2} are fixed resistors having known values, and R_{s} is a calibrated variable resistor. The unknown resistance to be measured, R_{L}, is connected in series with R_{s} to form a voltage divider across the source of voltage, E. The resistance of the voltmeter, V, should be very much larger than any of the four resistance "arms" of the bridge for maximum aceurary. From Ohm's law it is apparent that when R_{1} / R_{2} equals $R_{\mathrm{s}} / R_{\mathrm{L}}$ the voltage drops arross R_{1} and $R_{\text {s }}$ are equal (this is also true of the voltage drops across R_{2} and R_{1}) and there is no difference of potential between points C and D. Hence the voltmeter roading is zoro ("null") and the bridge is said to be "halanced." Under any other conditions the potentials at C and D arre not the same and the voltmeter reads the difference of potential.

The basis for sw.r. measurements with a bridge is the fact that the input impedance of a properly-terminated transmission line is a pure resistance equal to the line's characteristic impedance. If a matched line is connected as the unknown arm of an appropriate bridge circuit the bridge can be balanced in the usual way and the indieating instrument will show a null. IIowever, if the line is not properly terminated the voltage reflected back from the far end of the line will appear at the terminals of the brielge and will register on the voltmeter. The relationship between voltmeter reacling (in percentage of full scale) and standing-wave ratio is shown in Fig. 21-37. This curve applies only when the voltmeter impedance is extremely high - 20 times or more - compared with the impedance for which the bridge is designed.

While other bridge circuits can be used for s.w.r. measurement, the resistance bridge is
about the simplest and casiest to build. It lends itself well to construction for eoraxial lines and when so designed can be used for measurement of ofen-wire lines as shown later in this chapter.

Bridge Construction

The voltmeter used in sw.r. bridge circuits emphoys a crystal diode and is subject to the considerations described carlior in this chapter. In most cases, the bridge is used chindyy in the adjustment of an antenna matehing system or in the adjustment of a roas-roupled matehing network of the type described in the chapter on transmission lines. The object in such rases is to get the best possible matelh, as indicated by a null reading on the voltmeter, and not particularly to make accurate s.w.r. measurements. For this purpose the voltmeter requirements are not rigorous because it takes no curvent when the bridge is halanced, and a $0-1$ milliammeter with a few thousand ohms resistance in series will serve very well. The circuit of Fig. 21-38 and the construction of Fig. 21-39 are quite satisfactory for a bridge intended primarily for imperlance matching.

I principal point in the construction of an s.w.r. bridge is to avoid stray coupling betwern the resistors forming the bridge arms and between the arms and the voltmeter circuit. This (an be done by kerping the resistance arms separated and at right angles to each other, and by placing the crystal and its connerting leads so that the loop so formed is not in inductive relationship with any loons formed by the bridge arms. Shielding betwern the bridge arms and the reystal circuit is holpful in redueing surh couplings, although it is not always necessary. The two resistors forming the "ratio arms," R_{1} and

Fig. 21-37-Standing-wave ratio in terms of meter reading (relative to full scalc) after setting outgoing viltage to full scale. This graph is a plot of the formula

$$
S . I^{\prime} . R .=\frac{V o+V_{r}}{V o-V_{\mathrm{r}}}
$$

where V and $V^{\prime} r$ are the outgoing and reflected components, respectively, of the voltage on the transmission line.

Fig. 21-38-A simplo bridge eircuit useful for improl-ame-matehing in coavial lines.

IR, IR_{2} - $4 \bar{i}$-chom comporsitien, 1_{2} watt.
 -0mposition, 在 watt.
H_{4} - 1000 -ohm romprasition, $1 / 2$ watt.
I_{1}, J_{2} - Ciravial rombertor.
"The meter may tre a $0-1$ milliammeter or d.e. voltmeter of any tyon having a sensitivity of hool ohms per volt or greater, and a full-acale range of $\overline{5}$ (1) 10 volts. Negative side of meter commerts to kroumel.

Re, should have identical relationships with metal parts, to kerep the shont raparitances "gual, and also should have the same lead lengths so the indurtances will hatance. Ieauls should be kept as short as possible.

S. W.R. Measurement with a Bridge

For reasonably ancurate measurement of s.w.r. the bridge must not only be well eonstrueted, along the lines deseribed above, hut must have a voltmeter of very high impedance compared with the line impedance and must have provision

for measuring the voltage applied to the bridge as woll as the voltage developed botween the arms. This is so the applied voltage can be kept constant (hy regulating the transmitter output) both with and without the transmission line conneeced to the load terminals. If the input voltage is not maintained at a constant value the readings are unreliable. The same dec. instrument can be used for both voltage measurements, but separate rrystal rectifiers must be provided. Fig. 21-40 is the circuit of a hridge so equipped. Since the "input" voltmeter is simply used as a reference, its lincarity is not important, nor does its reading have to bear any definite relationship to that of the "bridge" voltmeter, except that its range has to be at least twice that of the later.

The resistance in the bridge voltmeter circuit should be of the order of 100 times the line impedanere to avoid voltmeter errors; that is, R_{4} plus the voltmeter resistance should be at least 50,000 ohms. This generally requires a sensitive d.e. instrument such as a $0-100$ microammeter, a 20,000 -ohms-jer volt voltmeter, or, better, a V'TVM.

Testing and Calibration

In a bridge intended for s.w.r. measurement rather than simple matching, the first cherk is to apply just enough r.f. voltage so that the bridge voltmeter reads full seale with the load terminals open. Measure the input voltage, then shortrireuit the load terminals and readjust the input to the same voltage. The bridge voltmeter should again register full scale. If it does not, the ratio arms, R_{1} and R_{2}, probably are not (xatetly equal. These two resistors should be carefully matehed, although their actual value is not eritical. This test should be made at the highest frequencer to be used. If a simitar test at a low frequeney shows better batanee, the probable rause is stray indurtance or caparitance in one arm not halaneed by equal stravs in the other.

Dfter the "short" and "open" readings have been equalized, the bridge should be ehereked for null balance with : "dummy" resistor equal to the line impedance conneeted to the load terminals. It is convenient to mount a half- or l-watt resistor of the proper value in a coas connector, kereping it centered in the connertor and using the minimum lead length. The bridge voltmeter should read zero at all frequencies. A reading above zero that remains constant at all frequencies indicates that the "dummy" resistor is

Fig. 2/-39 - An inexpensive bridge for matehing adjustments using the circuit of Fif. 21-38. It is hailt in a $15 / 8 \times 21 / 8 \times 1$-inch "(:hannel-loch" loox. The standard resistor, Ra, bridges the two coax comnectors. A pin jack is provided for connection to the d.c. meter: the meter nequtive call be connected to the case or a coax fitting.

Fig. 2/-40- Bridge eircuit for s.w.r. measurements. This circuit is intended for use with a d.e voltmeter, range \bar{i} io 10 volts, laving a resistance of 10,000 ohms per volt or greater.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}-0.005-\mu \mathrm{fo}$, dish coramio.
$\mathrm{K}_{1}, \mathrm{~K}_{2}-17$-ahm composition, $1 / 2$ or 1 watt.
$R_{3}-50$ - or $\overline{-5}$-ohm (depending on line impedanere) composition, $1 / 2$ or 1 watt.
$\mathrm{K}_{4}, \mathrm{H}_{5}-10,000$ ohtme, $1 / 2$ watt.
$\mathbf{J}_{1}, \mathrm{~J}_{2}$ - Comaxial eonncetors.
Meter eonncets to either "input" or "bridge" position as required.
not matched to R_{3}, while readings that vary with frequeney indicate stray reactive effects or stray eoupling letween parts of the bridge.

Where the operation is satisfactory on the two points just described, the null should be chereked with the dummy resistor connere el to the bridge through several different lengths of transmission line, to ensure that R_{3} actually matehes the line impedance. If the null is not complete in this test both the dummy resistor and R_{3} will have to be adjusted until a good mateh is obtained. With care, composition resistors can be filed down to raise the resistance, so it is best to start with re-

Fig. 2l-fl - 'Top and bottom views of s.w.r. Irrillee
 from flashing eopper and measures 3 inches long, $\mathrm{I}_{\text {it }}$ deep and $15 / 8$ wide, the width being selected to be just preat enough to permit comnerting a l-watt stamiard resistor, R_{3} to the coan fittings with sulstantially no
sistors somewhat low in value. With eath change in R_{3}, adjust the dummy resistor to give a good null when connected direetly to the bridge, then try it at the end of several different lengths of line, continuing until the null is satisfartory under all conditions of line length and frequenery. A discrepancy of a few per cent of the full-seale reading is tolerable.
With a high-impedanere voltmeter, the s.w.r. readings will closely approximate the theoretical curve of Fig. 21-35. The calibration can be cherked by using eomposition resistors as loads. Adjust the transmitter eotpling so that the bridge voltmeter reads full scale with the output torminals open, and then check the imput voltare. Commere various values of resistanco across the output terminals, making sure that the input voltage is readjusted to be the same in cach rase, and note the reading with the meter in the bridge position. The s.w.r. is given by

$$
\text { S.H:R. }=\frac{R_{1}}{R_{0}} \text { or } \frac{R_{0}}{R_{1_{0}}}
$$

where R_{0} is the line impedaner for whieh the bridge has been adjusted to null, and R_{L} is the resistane used as a lond. Uno the formula that plawes the larger of the two resistances in the numerator. If the readings do not correspomed cxactly for the same s.w.r. When appropriate resistors above and below the line imperanco for which the bridge is designed are usel, the current taken by the voltmeter is affereting the measurements.

I sing a 0-100 microammeter, a 20,000 -ohmsprovolt voltmeter on a $\overline{\mathrm{a}}$-volt or higher rangr, or a VT voltmeter, the difference between "up" and "down" s.w.r. measurements should be negligihe, provided the load resistors used for this test ran be meisured (at d.e.) with sufficient acourary. Values over 1000 ohms or so should not be used at the higher frequencies.

Iead length, A smath pieve of enpper whimels the laridge arms from tho ar!stal rectifiers. R_{1} and h_{2} aro womb mesrically placed with respeet lo R_{3} and are at rimht angles to it to reduce stray rompling. 'Ther positive side of the dir. meter conments to the feed-through busthings and the negative to the serew lnelow then.

Using the Bridge

The procedure is the same whether the bridge is used for matching or for s.w.r. measurement. Apply power with the load terminals cither open or shorted, and adjust the input until the bridgevoltmeter reads full scale. Because the bridge operates a very low power level it may be neerssary to couple it to a low-power driver stage rather than to the final amplifier. Alternatively, the plate voltage and excitation for the final amplifier may be reduced to the point where the power output is the order of a few watts. Then conneret the load and observe the voltmeter reading. For matehing, adjust the matehing network until the best possible null is obtained. For s.w.r. measurement, note the input voltage after adjusting for full-scale with the loul terminals open or shorted, then comeet the load and readjust the transmitter for the same input voltage. The bridge voltmeter then indicates the standingwave ratio.

Parallel-Conductor Lines

Bridge measurements made directly on parabl-lel-ronductor lines are frequently subjeet to considerable error because of "antema" currents flowing on such lines. These currents, which are either induced on the line by the field around the antema or coupled into the line from the transmitter by stray capacitance, are in the same phase in both line wires and hence do not batance out like the true transmission-line currents. They will nevertheless attuate the bridge voltmetor, (ausing an indication that has no relationship to the standing-wave ratio.

ドig. 21-42-C:irent for using coaxial s.w.r. bridge for measurements on parallel-conductor lines. Values of circuit components are identical with those nsed for the similar "antenna-conpler" circuit discussed in the ehapter on transmission lines.

The effect of "antenna" currents on s.w.r. measurements catn be largely overcome by using a coasial bridge and coupling it to the paralleleonductar line through a properly-designed impedance-matehing cirevia. A suitable circuit is given in Fig. 21-42. It closely resembles the common type of "antenna coupler," and in fact such a compler can be used for the purpose. In the balaneed tank circuit the "antemas" or paratled components on the line tend to balance out and so are not passed on to the s.w.r. bridge. It is essential that L_{1} be coupled to a "cold" point on L^{2} to minimize capacitive coupling, and also desirable that the center of L_{2} lo grounded to the chassis on which the rirenit is mounted.

Values should be such that $L_{2} C$ can be tuned to the operating freguency and that L_{1} provides sufficient coupling, as described in the trans-

Fig. 21-4.3 - The "t win-lamp" stamling-wave indicator mounted on 300 -olm 'Twithead. Scoteh tape is used for fastening.
mission-line chapter. The measurement procedure is as follows:

Connect a noninductive ($1 / 2-$ or 1 -watt earbon) resistor, having the same value as the characteristic impedance of the parallel-conductor line, to the "line" terminals. Apply r.f. to the bridge, adjust the taps on L_{2} (keeping them equidistant from the center), while varying the capacitance of (1 and C_{2}, until the bridge shows a null. After the null is obtained, do not touch any of the cirecuit adjustments. Next, short-circuit the "line" terminals and adjust the r.f. input until the bridge voltmeter reads full scale. Remove the shortcircuit and test resistor, and connect the regular transmission line. The bridge will then indicate the standing-wave ratio on the line.

The cirenit requires rematching, with the test resistor, whenever the frequency is changed approciably. It can, however, be used over a protion of an amateur band without readjustment, with negligible error.

The "Twin-Lamp"

A simple and inexpensive standing-wave indicator for $300-0 \mathrm{hm}$ line is shown in Fig. 21-43. It consists only of two flashlight lamps and a short piece of 300 -ohm line. When laid flat against the line to be checked, the eombination of inductive and capacitive coupling is such that outgoing power on the line causes the lamp nearest to the transmitter to light, while reflected power lights the lamp, nearest the load. The power input to the line should be adjusted to make the lamp nearest the transmitter light to full brilliance. If the line is properly matehed and the reflected power is very low, the lamp, toward the antenna will be dark. If the s.w.r. is high, the two lamps will glow with practically equal brilliance.

The length of the piece of 300 -ohm line needed in the twin-lamp will depend on the transmitter power and the operating frequency: A few inches will suffice with high power at high frequencies, while a foon or two may be needed with low power and at low frefuencies.

In constructing the twin-hamp, cut one wire in the exart renter of the piece and peel the ends back on either side jusi fir enough to provide leads to the flashlight lamps. Remove about 1 ,

Fig. $21-44$ - Viring diagram of the "twin-lanp" standing-wave indicator.
inch of insulation from one wire of the main transmission line at some convenient point. Ise the lowest-current flashlight bults or dial lamps averilable. Solder the tips of the bulbs together and connect them to the bare point in the transmission line, then solder the ends of the eut portion of the short piece to the shells of the bults. Figs. 21-43 and 21-4 should make the consituction clear.

Installing the twin-lamp on a line introduces a discontinuity in the line impedance which causes the sur. from the twin-lamp back to the trinsmitier to differ from the s.w.r. existing between the antenna and twin-lamp. For this reason it is desirable to remove it after s.w.r. checks have been made. It is convenient to mount the (win-tamp on a short, length of line fitted to a 300 -ohm plug at one end and a mating socket at the other, If similar plugs and sockets are used on the tamsmitter and regular transmission line, the whole test unit can he inselted and taken out at will.

The twin-lamp will respond to "antenna" currents on the transmission line in much the same way as the bridge circuits discussed earlier. There is therefore always a possibility of error in its indications, unless it has been determined by other means that "ant enna" curents are inconsequential compared with the true transmission-line current.

The Oscilloscope

The cathode-ray oscilloscope gives a visual representation of signals at both audio and radio frequencies and can therefore he used for many types of measurements that are not possible with instruments of the types discussed earlier in this chapter. In amateur work, one of the principal uses of the 'scope is for displaying an amplitudemodulated signal so a 'phone transmitter (an be adjusted for proper modulation and continuously monitored to keep the modulation percentage within proper limits. For this purpose a very simple circuit will suffice, and an oscilloscope designed expressly for this purpose is described in this section.
The versatility of the 'scope can be greatly increased by adding amplifiers and linear deflection circuits, but the design and adjustment of such cireuits tends to be complicated if optimum performance is to be serured, and is somewhat outside the field of this chapter. Sperial components are generally required. Oscilloscope kits for home assembly are avaitable from a number of suppliers, and since their cost compares very favorably with that of a home-built instrument of comparable design, they are recommended for serious consideration by those who have need for or are
interested in the wide range of measurements that is possible with a sully-equipped 'scope.

CATHODE-RAY TUBES

The heart of the oseilloseope is the cathoderay tube, at vacuum tube in which the electrons emitted from a hot cathode are first accelerated to give them eonsiderable velocity, then formed intu a beam, and finally allowed to strike a special translucent screen which funoresces, or gives off light at the point where the beam staikes. A beam of moving elect rons can he moved laterally, or deflected, by electric or mangetie fields, and since its weight and inertia are negligibly small, it can he made to follow instantly the variations in periodically-changing fields at both audio and radio frequencies.

The electrode arrangement that forms the electrons into a beam is called the electron gun. In the simple tube structure shown in lig. 2 $1-45$, the gun consists of the cathode, grid, and anodes Nos. 1 and 2 . The intensity of the electron beam is regulated by the grid in the same way an in an ordinary tube. Anode No. I is operated an a positive potential with respect

Fig. 214.5-Typical cointruction for a cathomeray tube of the electrostatio-dellection type.
to the rathode, thas accelerating the electrons that pass through the grid, and is provided with small apertures through which the electron stream passes. On emerging from the apertures the electrons are traveling in pratieally patalled straight-line paths. The electrostatic fields set up be the potentials on anode No. 1 and amode No. 2 form an electron lens system which makes the electron pathe eonverge or focus to a point at the fluoresent serem. The potential on anode No. 2 is usually fixed, While that on anode No. 1 is varied to bring the betm into focus. Anode No. 1 is, therefore, called the focusing electrode.

Fhectrostatic deflection, the type generably used in the smatler tubse, is produced by deflecting plates. Two sets of plates are placed at right angles to eawh other, ats indicated in loig. $21-45$. The fields are created loy :applying suitable voltages between the two plates of each pair. losually one plate of eath pair is comeneded to anode No. 2, to establish the polarities of the vertical :and horizontal fields with respert to the beam and to eich other.

Formation of Patterns

When periodically-varying voltares are : thplied to the two sets of deflecting plates, the path traved by whe fluoresernt spot forms a pattern that is stat ionary so long the the amplitude and phase relationships of the voltages remain unchanged. I ig. 2-1-46 shows how such patterns are formed. 'The horizontal sweep

voltage is assumed to have the "santooth" waveshate indicated. With no voltage applied to the vertical phates the trace simply sweeps from left to right aleons the sereen along the horizontal axis $X-I^{\prime \prime}$ matil the instimt $I /$ is reached, when it reverses dieedion and relums to the starting perint. The sinc-wave voltage applied to the vertian plates similarly would trace a line along the axis $Y-y^{\prime \prime}$ in the absence of :my doflecting volage on the horizontal phates. However, when both voltages are pres-
ent the position of the spot at any instant depends upon the voltages on both sets of plates at that instant. Thus at time B the horizontal voltage has moved the spot a short distance to the right and the vertical voltage hats similatry moved it upward, so that it reathes the actual position B^{\prime} on the sereen. The resulting trace is easily followed from the other indicated positions, whirh are taken at equal time intervals.

Types of Sweeps

A sawtooth swerp-voltage waveshape, such as is shown in Fig. $21-46$, is called a linear sweep, because the deffection in the horizontal direction is directly proportional to time. If the sweep were perlect the fly-back time, or time taken for the sipot to return from the end (H) to the heginning (I or A) of the horizontal trace, would be zero, so that the line $H I$ would be perpendicular to the axis $Y-Y^{\prime}$. Although the fly-back time cannot be made zero in practicable swerp-voltage generators it can be made quite small in conparison to the time of the desired trace $A H$, at least at most frequen(ies within the audio range. The line $/ I^{\prime} I^{\prime}$ is called the return trace; with a linear sweep it is fess brilliant than the patien, because the spot is moving much more rapidly during the fly-barek time than during the time of the main trabe.

The linear sweep shows the shape of the wave in the same way that it is usually represented graphically. If the period of the a.c. voltage applied to the vertical plates is considerably less than the time taken to sweep horizontally across the screen, several cyeles of the vertical or "signal" voltage will appear in the pat tern.

The shape of the pattern obtained, with a given signal waveshape on the vertical plates, ohviously will depend upon the shape of the horizontal sweer voltage. If the horizontal swerp is sinusoidal, the main and return sweeps eath occupse the same time and the spot moves fister horizontally in the conter of the pattern than it dres at the ends. When two sinusoidad voltages of the same frequence are applied to both sets of plates, the patien may be a straight line, an ellipse, or a circle, depending upon the amplitudes and phase relationships of the two voltages.

Por many amateur purposes a satisfactory horizontal sweep is simply a 60 -evele voltage of adjustable amplitude. In modulation monitoring (deseribed in the chapter on amplitude modulation) atudio-frequency voltage ean be taken from the modulator to supply the horizontal sweep. For examination of adio-frequency waveforms, the linear sweep is essential. Its frequency should be adjustable over the entire rimge of andio frequencies to be insperted on the ascilloscorme.

Lissajous Figures

When sinusoidal a.c. voltages are applied to the two sets of doflecting phates in the ascilloscope the resultant patitern depends on
the relative amplitudes, freguencies and phase of the two voltages. If the ratio betwern the IWo frequencies is constant and can be expressed in intergers a sat ionary pattern will be produred. 'This makes it possibhe to use the aseillonsope for

 the woltages applied to the two set e ef deflereting plates.
determining an unknown frequency, provided a variable frequence standard is available, or for determining calibration points for a variablefrequency oscillatom if a few known frequencies are available for comparison.

The stationary patterns obtained in this way are called Lissajous figures. Bximples of some of the simpler Lissajous figures are given in lig. 21-45. The frequence ratio is found by counting the number of loops :atong two adjatcent edges. Thus in the third figure from the top there are three loops along a horizontal

 tion, suitable for modulation measurementi and ment. torins. It is designed around the e3Bl'l cathonde rat tube and can lor mounted either in the transmitter itself or in a separate cahinet. (Built bv WIBIID and HIN(U.)
elge athd only one along the verticab, so the ration of the vertial frequence to the horizontal freguency is : 3 to 1 . Similarly, in the fifth figure from the top the: are four loopse along the horizontal edge and there along the verticabl adge. giving at ration of 1 to 3 . Assuming that the known freguency is applied to the horizontal plates, the unknown frequence is

$$
f_{2}=\frac{n_{2}}{n_{1}} f_{1}
$$

whare $f_{1}=$ known freguoney applied to horizontal platers,
$f_{2}=$ unknown frequeney applied to vertical plates,
$\mu_{1}=$ number" of $\mathrm{l}_{\text {oops a }}$ along a vertical endge, athd
$n_{2}=$ number of loopses along it horizental adge
In important application of Lis:ajous figures is in the ealibration of audio-frequencer signal generators. For very low frequencies the 60-vele power-line frequence is held aceurately enough to be used as a standard in most localities. The medium audio-frequeney range coun be covered by comparison with the 40 - and 600 -evele modulation on the WIVV transmissions. In osailloseope having both horizontal and vertical amplifiers is desirable, since it is convenient to have a means for adjusting the voltages applied to the deflection plates to secure a suitable pattern size. It is possible to cablibate over a $10-$ to-1 range, both upwards and downwards, from each of the latter frequencies and thus eover the abdio range useful for woice communatation.

A Simple Oscilloscope

Figs. $21-18$ through $21-50$ show the circuit and constructional detals of a simple 2 -inch oseitlosenge suitable for the r.f. metrurements deseribed in the chapter on amplitude modulation. The compact assembly, with everything sup-

Fip. 2l.fy - Wear view of the 2-inch oseillosenpe. The abt'l is arpmorted hy the strap at the ent of the shielid,
 floats. with short flexilole beads ruming to the torminal board.
ported by the $31 / 4$ by $51 / 4$-inch panel, makes it possible to mount it right in at transmitter unit, if desired. In such case the heater power and high voluage for the 2131 labe mat be taken from the transmitter power supply. The heater of the tube requires 6.3 volts at 0.6 ampere. The high voltage maty be anything between 500 and 1000 volts, the maximum current being about to0 microamperes.

Fig. $21-50$ is the cireuit diagram of the unit. Four controls are provided, for adjusting the focus and brightness and for centering the pat tern both borizontally and vertically. The horizontal and vertical signal input terminabs are isolated from the e.r.t. deflection plates for d.e. by blocking condensers C_{1} and C_{2}. These condensers should be rated to stand the maximum voltage applied

 according to the voltak a a alilahile.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{5}-\mathbf{0}, 01-\mu \mathrm{Cd} ., 10010$-volt rating.
C:3-10.5 $\mu \mathrm{fl}$. , 8100 walts.
$R_{1}, R_{2}-3-m e \underline{\text { golmm velume cobitrol. }}$
$\mathbf{R}_{3}, R_{4}-82,0(0) 0$ ohms. $1 / 2$ watt,

$k_{7}-0.75$ megohtu, | watt.

R_{9} - 0.1 megohm, 1 watt.
$R_{1 t}-0.27$ megohm, 1 watt.
to the tube plus the peak signal voltage. The signal voltage required for full deflection depends on the high voltage used, and for 500 -volt operation is 65 volts per inch horizontally and 40 volts per inch vertieably. At 1000 volts the corresponding figures are 130 volts per inch horizontally and 80 volts per inch verticatly.

As shown in liges. 21-48 and 21-49, the four control potentiometers are mounted in pairs each side of the c.r.t. fare on the panel. Quarter-inch brass rods support a small bakelite panel at the rear. l'ower comections are made by means of a

Fig. 21-51 - Supgested power supply for the 2-inch oscilloscope if power is not supplied by the transmitter. A 60 orycle sweep circuit is included.
C. -0.25 to $1 \mu \mathrm{fl}, 1000$ volts.
$R_{1}-0.5$-mepohm volume cont rol.
$\mathrm{S}_{1}, \mathrm{~S}_{2}$ - S.p.s.t. toggle.
I'i - Small replacement transforme'r, 250 to 350 volts earlh side cet.. current rating unimportant. The $2 \mathbf{2} 2$ rectifier filament is supplied by one-half of the 5 -volt rectifier winding. Filament secondary 6.3 volts, current required 0.6 amp.
$\Gamma_{2}-A u d i o$ transformer, I to 1 ratio suitable.
terminal strip, and double binding-post assemblies are used for the signal inputs. The brass rod supports are drilled and tapped at the ends, and at the front are assembled to the same holes that mount the bezel (Millen 800^{-2}) and the tube shield (Millen 800t2). The latter is used to proteat the tube from both low-frecuency ance and r.f. fields that art on the beam and distort the pattern.

Connections and use of an oseilloseope of this trpe for modulation eherking are described in the chapter on amplitude modulation. For the trapezoidal pattern some of the audio voltage from the modulator should be applied to the horizontal plates through a voltage divider ass described in that chapter. For continuous monitoring of modulation a (00-cyele sweep can be used on the horizontal plates. The 60 -cycle voltane (atn be obtaned through a small andio transformer from the power line, as indicated in Fig. 21-51, with a potentiometer for setting it to the proper value to give a pattern of the desired size.

The unit can of course be mounted in a standard utility box or cabinet, if desired, in which event it is convenient to include a power supply. A suitable diagram is given in Fig. 21-51. Any smath replacement transformer can be used since the power required is extremely small.

Assembling a

Station

An amatcur station is generally far better known by its signal and good operation than by it.s physical appearance. Good operating and a clean signal will buid a reputation faster than thousands of dollars invested in speriat equipment and an elaborate "shack," and it is this very fart that makes :mateur radio the democratic hobby that it is. However, most :masteurs take pride in the arrangement of thoir stations, in the same way that they are careful of the appearance and arrangement of anything else that is part of the houschold. An antemat installation is the only external indication of the amateur station, and the degree of neatness required is generally determined by the district where the amateur lives and the attitude of the neighbors. However, with the advent of all different kinds of television receiving antemnas, neighbors are in a much less favorable position to complain ahout the appearance of an amateur antenna ststem in the vicinity. TVI is something else, however!

The actual location inside the house of the "shack" - the room where the transmitter sud recoiver are located - depends. of course, on the free space available for amateur antivities. Fortunate indeed is the amateur with a separate room that he can devote to his amateur station, or the few who can have a special small buidding separate from the main house. However, most amateurs must share a room with other domestic activities, and amateur stations will be found tucked away in a comer of the living room, a bedroom, a large closet, or even under the kitchen stove! A spot in the cellar or the attic can almost be classed as a sepurate room, although it may lack the "finish" of a normal room.

Regardless of the location of the station, however, it should be designed for maximum operating convenience and safety. It is foolish to have the station arranged so that the throwing of several switches is required to go from "receive" to "transmit." just as it is silly to have the equipment arranged so that the operator is in an uncomfortable and cramped position during his operating hours. The reasons for building the station as safe as possible are obvious, if you are interested in spending a number of years with your hobby!

CONVENIENCE

The first consideration in any amateur station is the operating position, which includes the operator's table and chair and the pieces of equipment that are in constant use (the receiver, send-receive switch, and key or microphone). The table should be as large as possible, to allow sufficient room for the receiver or receivers, frequency-measuring equipment, monitoring equipment, control switches, and keys and mirrophones, with enough space left over for the logbook, a pad and pencil, and perhaps a large ash tray, suitable space should be included for radiogram blanks and a call book, if these arecssories are in frequent use. If the table is small. or the number of pieces of equipment is large, it is often necesstury to build a shelf or rack for the auxiliary equipment, or to momet it in some less convenient location in or under the table. If one has the facilities, a semicireular "console" can be built of wood. or a simpler solution is to use two small wooden cabinets to support a table top of wood or Masonite. Home-built tahles or consoles can be finished in any of the available oil statins, varnishes, paints or lacquers. Many operators use a large piece of plate glass over part of their table, since it furnishes a good writing surface and can cover miscellaneous charts and tables,

This compaet station is arranged for clean-cut c.w. operation, with no frills or extras. The homemade modern-style table provides adequate operating space. a cubbyhole for \log and Call Book, and drawers for QSL cards and spare parts. (H9NN, Des Plaines, III.)
profix lists. operating aids, calemdar, and similar arecresories.

If the major interesta never require frequent band changing, or frequency changing within a band, the transmitter can be located some distane from the operator, in a location where the meters can be observed from time to time (and the color of the tube plates noted!). If frequent band or frequency changes are a part of the usual operating procedure, the transmitter should be mounted close to the operator, either along one side or above the rereiver, su that the controls are easily acessible without the need for leaving the operating position.

Fig, 2\%-I - In a station assembled for mavimum ease in fremeney or hand danging, the transmitter should be lonaled mest to the operating position, ats shown above, (hn the operating table, the receiver is in front of the onerator and VIOO or erytal-switehing meillator on the laft. (Ille Ifo or ersytal aseillator could be part of the 1 ransmitter proper, but most operators seem to prefer a separate VFO.)
The frequency standard and other anxiliary equipment ran he monted on a shelf above the receiver. 'The oprating table can the an old deok, or a top supported by two suall womlen cabinets. The "send-receive" switeh is 10 the right of the telegraph keys - other switehes are on the transmitter or the individual anits.
"The above arranmement can be made to look cleaner by atranging all of the equipment on the table lehind a single pamel or a set of panels. In this case, provision must he made for getting liehind the ganel for servicing the tuits.

A compromise arrangement would place the VFO or crystal-switched oscillator at the eperating position and the tramsmitter in some conveniont lowation not adjament to the operatar, Sinco it is usually possible to operate over a portion of a band without retuning the tramsmitter stages, an operating position of this type is an advantave over one in which the operator must lave his position to make a change in frequencer.

Controls

The operator has an exellent chance to exercise his ingenuity in the location of the operating controls. The most important controls in the station are the receiver tuning dial and the send-receive switch. The receiver tuning dial should be lowated four to eight inches above the operating table, and if this requires monnting the receiver off the table, a small shelf or bracket will do the trick. With tha

One of the most convenient station arrambements is to luild a semic ircular operating table as shown heres. Ill operating controls are readils available. and enonsiderably more equipmont ran lio grouped aromm the operator than when an ordinary deok is usod. ($1 / 25 i d$, Ricertoh. N. J.)
single exception of the amateur whose work is aimost entirely in traffic of rag-chew nots, Which recuire little or no attention to the rereiver. it will be found that the operator's hand is on the receiver tuming dial most of the time. If the tming knob is too high or too low, the hand gets eramped after an extonded period of operating. hence the importance of a properly-located recoiver. The majority of (, w, operators tume with the left hathe, preferring to leave the right hand free for copying messuges aad hamaling the key, and so the receiver should be mounted where the knoh, (an be reached by the left hand. Phone op)erators aren't tied down this way, and the the rommmairatims receiver with fhe hand that is more convenient.

The hand key should be fastened securely to the table, in a line just outside the right shoulder and far enough back from the front edge of the table so that the elbow can rest on the table. A grod location for the semianto-

In this arrankement, the two rereivers (with separate lomelepeakers and her eranmitter IFO ars all within Casv reach of the operator, while the monitoring osallosoope on the lefi-hand transmiter rack wam be easily serm from the oprating mosition. ($1 / 7 / /$. . Bumber (itu: Ner.)
matie or "bug" key is right next to the hamb key, although some operators prefer to mount the automatic key in front of them on the left, so that the right forcarm rests on the table paralled to the front edge.

The best lowation for the mirrophone is directly in front of the operator. so that he donsait have to shout across the table into it. or run up the spoceh-implifier gain so high that all manner of external sounds are picked up. If the microphone is supported be a boom or bev a flexible "goose noek," it rath be placed in front of the operator without its base taking up valuable table spater.

In any amaterar station worthy of the name, it should be neressiay to throw no more than one switch to go from the "reerive" to the "transmit" condition. In 'phone stations, this switch shoulal be lomated where it can the easily reateded by the hamd that isn't on the receiver. In the calse of r.N. operation, this switeh is most conveniontly loceated to the right or left of the kerg, although some operators prefer to hawe it moment on the left-hand side of the oporating position :mal work it with the left hand while the right hand is on the kes. l:ithor location is satisfactory, of course. and the rhoive deponds upon personal proference. some operator: use a foot-controlled switch. which is a convenience hut doesn't allow tor much frecdom of position during long operating periods.

If the microphone is hathelheld during 'phone oper"ation. a "push-to-talk" switch on the microphone is convenient, but hamd-held miorophones tie up the use of one hand and

Fin. 22: - When litule =pace is a aibable for the amateur -tation, the expupment has to he spotted where it will lit. In the above arrankement, the transmitter. momblator and powor supplies (epparate units) are sandwidhed in alongaide the operating table and on a shelf above the table. The antemna thang unit is monnted ware the fied-through insulator- that hring the" antemat line inter the "Fhanch," and loudapraker and -mall powor supplise are monnted under the tahlo' 'llise opreating proition is cleans lomever, with the VFO. roceiver and hev- at table levol. Tlwe tuning kiol, of thi-
 werea't raised by the womben areh, atmel the "amil. reveina" switehin mometed on the right hand side of this aref, next to the hatil hey. Intereonmecting lead- dhould lor cabled along the back of the table amd table leges, to herp them inconapuous.

This illuatrates how roncealing all intereonmertines wires and ediminating gear mot neressary to enmmonication result- in an extremely neat station. $\mathrm{IF}^{\mathrm{F}} \mathrm{E} 3 \mathrm{~A}[\mathrm{~J}$, ll oodstork, (Ont.)
are not too desirable, althongh they are widely used in mobile and portable work.

The location of other switehes, surh as those nsed to control power suppies. filaments. 'phone/e.w. change-over and the like, is of no partimular importance, and they ean be located on the unit with whioh they are associated. This is not strictly trite in the case of the 'phone'c.w. 1)N man, who sometimes has need to change in a hurry from e.w. to 'phone. In this case, the change-over switeh should be at the operating table. although the artual change-over should be done by a relay controlled by the switch.

If a rotary beam is used the control of the beam should be convenient to the operator. The direction indieator, however, can be located anywhere within sight of the operator and does not have to be located on the operating table unless it is inchuled with the anntrol.

When several fixed beams we used, the selection of any one should be possible from the "prerating position, to minimize the time required to select the proper une. This generally means using a series of antemat relays or a stopping switch.

Frequency Spotting

In a station where a VFO is Hed, or where a sumber of crystals is available the operator should be able to turn on only the oveillator of his tramsmitter. so that he can spot arearately his location in the band with respect to other stations. This allows him to see if he has anything like a clear channel (if such a thing exists in the amateur bands!). or to see what his frequency is with respeet to another station. Such a provision can be part of the "send-receive" switch. Switches are : Ivailable with a center "off" pesition, " "hool. " position on one side. for turniug on the uscillator only, and a "lock" pusition on the other side for turning on the tramsmitter and antemat relass. If oacillator keying is used, the kev server the same pur-

Fig. 22-3 - Power circuits for a high-power station. A shows the outets for the receiver, monitoring ergaipment, spech amplifier and the like. The ontets shond be monnted ineonspicuotsly on the operating table. B shows the transmitter filament circuits and control-relay circuits, if the latter are used. Ci show; the plate-tranaformer primary circuits, controlled hy the power relay. A heavy-duty switch can be thed instead of the relay, in which case the antenna relay woulil be connected in circuit C.

If $11 \bar{j}$-wolt pilot lamps are used, they can he connected as shown. l ower-voltage lamps must he connected across muitable windings on transformers.

With "push-to-talk" operation, the "send-receive" switch can he a d.p.d.t. affair, with the second pole controlling the "on-off" circolit of the receiver.
pose, provided a "send-receive" switch is available to turn off the high-voltage supplies and prevent a signal going out on the air during adjustment of the oscillator frequency.

For 'phone operation, the telegraph key or an auxiliary switch can control the transmitter oscillator, and the "send-receive" switeh can then be wired into the control system so as to control the oscillator as well as the other circuits.

Comfort

Of prime importance is the comfort of the operator. If you find yourself getting tired after a short period of operating. examine your station to find what causes the fatigue. It may be that the chair is too soft or hasn't a straight back or is the wrong height for you. The key or receiver may be located so that you assume an uncomfortable position while using them. If you get sleepy fast, the ventilation may be at falult. (Or you maty need sleep!)

POWER CONNECTIONS AND CONTROL

Following a few simple rules in wiring your power supplies and control circuits will make it an easy job to change units in the station. If the station is planned in this way from the start, or if the rules are recalled when you are rebuilding, you will find it a simple matter to revise your station from time to time without a major rewiring job.

It is neater and safer to run a single pair of wires from the outlet over to the operiting table
or some central point, rather than to use a number of adapters at the wall outlet.

Interconnections

The wiring of any station will entail two or three common cireuits, as shown in lig. 22-3. The circuit for the receiver, monitoring equipment and the like, assuming it to be taken from a wall outlet, should be run from the wall to an ineonspicuous point on the operating table, where it terminates in a multiple ontlet large enough to handle the required number of plugs. A single switch between the wall outlet and the receptacle will then turn on all of this equipment at one time.

The second common circuit in the station is that supplying voltage to rectifier- and trans-mitter-tube filamente, bias supplies, and anything else that is not switehed on and off during transmit and receive periods. The coil power for control relays should also be obtained from this circuit. "lhe power for this circuit can come from a wall outlet or from the transmitter line, if a special one is used.

The third circuit is the one that furnishes power to the plate-supply transformers for the r.f. stages and for the modulator. (See chapter on Power Supplies for high-power considerattions. When it is opened, the transmitter is disabled except for the filaments, and the transmitter should be safe to work on. However, one always feels safer when working on the transmitter if he has turned off every power supply pertaining to the transmitter.

With these three circuits established, it becomes a simple matter to arrange the station for different conditions and with new muits. Anything on the operating table that runs all the time ties into the first circuit. Any new power supply or r.f. unit gets its filament power from the second circuit. Since the third circuit is controlled by the send-receive switch (or relay), any power-supply primary that is to be switched on and off for send and receive connects to circuit No. 3.

Break-In and Push-To-Talk

In c.w. operation, "break-in" is any system that allows the transmitting operator to hear the other station's signal during the "key-up" periods between rharacters and letters. "This allows the sending station to be "broken" by the receiving station at any time, to shorten calls, ask for "fills" in messages, and speed up operation in general. With present techniques, it requires the use of a separate receiving antenna and. with high power, some means for protecting the receiver from the transmitter when the key is "down." Several methods, applicable to high-power stations, are described in Chapter Fight. If the transmitter is low-powered (50 watts or so), no special equipment is required except the separate receiving antenna and a receiver that "recovers" fast. Where break-in operation is uset, there should be a switch on the operating table to turn off the plate supplies when adjusting the oscillator to a new frequency, although during all break-in work this switch will be closed.
"Push-to-talk" is an expression derived from the "push" switch on some microphones, and it means a 'phone station with a single control for all change-over functions. Strictly speaking. it should apply only to a station where this single send-receive switch must be held in place during transmission poriods, but any fast-acting switch will give practically the same effect. A control switch with a center "off" position, and one "hold" and one "lock" position, will give more flexibility than a straight "push" switch. The one switeh must control the antenna change-over relay, the transmitter power supplies, and the receiver "on-off" circuit. This latter is necessary to disable the receiver during transmit periods, to avoid acoustic feed-back.

Switches and Relays

It is dangerous to use an overloaded switch in the power circuits, After it has been used for some time, it may fail. leaving the power on the circuit even after the switch is thrown to the "off" position For this reason, large switches, or relays with adequate ratings, should be used to control the plate power. Relays are rated by coil voltages (for their control circuits) and by their contact current ratings.

When relays are used, the send-receive switch rloses the rircuit to their coils, thus closing the relay contacts. The relay contacts
are in the power circuit being controlled, and thus the switch handles only the relay-coil current.

SAFETY

Of prime importance in the layout of the station is the personal safety of the operator and of visitors, invited or otherwise, during normal operating practice. If there are small children in the house, cvery step must be taken to prevent their accidental contart with power leads of any voltage. A locked room is a fine idea, if it is possible, otherwise housing the transmitter and power supplies in metal cabinets is an exocllent, although expensive, solution, lacking a metal rabinet, a wooden cabinet or a wooden framework covered with wire sarem is the next-best solution. Many stations have the power supplies housed in metal cabinets in the operating room or in a closet or basement, and this cabinet or entry is kept locked - with the key out of reach of everyone but the operator. The power leads are run through conduit to the transmitter, using ignition cable for the high-voltage leads. If the power supplies and transmitter are in the same cabinet. a lock-twpe main switch for the incoming line power is a good preatation.

A simple substitute for a lock-type main switeh is an ordinary line plug with a short connecting wire between the two pins. By wiring a fomale receptacle in series with the main power line in the transmitter, the shorting plug will act as the main safety lock. When the plug is removed and hidden, it will be impossible to energize the transmitter, and a stranger or child isn't likely to spot or suspert the open receptacle.

An essential adjunct to any station is a shorting stick for discharging any high voltage to ground before any work or coil changing is done in the transmitter. Fven if interlocks and power-supply bleeders are used. the failure of

This example of a "console" shows how it is possille to find room for a receiver and multitiond kilowatt transmitter (plus power supplies and modulator), together with a wide variety of accessories including a T-inch 'TV' receiver, tape recorder and panoramic adapter. (IHROK; Vinston-Salem, N. ©.)
one or more of these emponents maty leave the transmitter in a dangerous romdition. The shorting stick is made be mounting a small metal hook, of wife or rod, on one cond of a dry stick or bakelite rod. A pioce of ignition rable or other well-insulated wire is then rum from the hook on the stiek to the chassis or common ground of the transmitter, and the stick is hung alongside the transmitter. Whenever the power is turned off in the transmitter to work on the rig, or to change coils, the shorting stiek is first used to touch the several high-voltage leads (tank condensor. filter condenser, tube plate connection. ete.) to insure that there is no high voltage at any of these points. This simple doviee has saved many a life. Lse it!

Fusing

A minor hazard in the amateur station is the possibility of fire through the failure of a component. If the failure is complete and the component is large, the house fuses will genrally how, However, it is unwise and ineonvenient to depend upon the house fuses to protect the lines running to the radio equipment, and every power supply should have its primary cirenit individually fused, at ahout 150 to 200 per cent of the maximum rating of the supply. ('ireuit breakers can be used instead of fuses if de-ired.

Wiring

(ontrol-cireuit wires rumning betweon the operating position and a transmittor in another part of the room should be hidden, if possible. This can be done by running the wires under the floor or behind the base moding, bringing the wires out to torminal boxes or regular wall fixtures. Such construction, however, is gencrally only possible in elaborate installations,
athl the aborage amaterur mast contern himsolf with trying to make the wires as ineotspicuous as posibhe. If soveral pairs of lads must be run from the oporating lable to the transmitter, as is gemorally the case, a single piore of rubber- or vingleovered multionductor cable will always look notater than sevcral pieces of rubber-rovered lamp cord.

The antenma wires always present a probldom, unlos coaxial-line feed is used. Opern-wire line from the point of entry of the antema line should always be arranged noblly, and it is generally best to support it at several points. Many operators prefier to mount thoir antennattuning assomblies right at the point of entry of the ferdline, together with an antemna changoover relay (if ond is usod), and then the link from the tuming assembly to the tramemitter can be made of inconsphedots roaxial line or Twin-lead. If the tramsmiter is mounted mar the point of "ntry of the line, it simplifies the problem of "What to do with the feeders"."

General

You can wher your station arrangement hy asking yourself the following quevitions. If all of your answers are an honest "Yos," your station will be one of which you can he proud.

1) Is your station safe, under normal operating conditions, both for the oparator and the visitor?
2) Is the operating position comfortable, even after several hours of operating.?
3) Do you throw not more than one switeh to go from "receive" to "transmit"?
4) Does it take only a short time to explain to another amateur how to work your station?
5) Do you show your station to visiting amateurs or laymen without apologizing for its appearance?

BCI and TVI

Livery amaterur has the obligation to make sure that the operation of his sation does not, beratue of any shortommings in equipment, ratuso interforenere with other radio serviers. It is unfortunately true that mush interferenere is directly the fault of broadeast and TV readiver construction. Xevertheless, the amateur (ath and should help to atheviate interference aven though the responsibility for it does not lie with him.
successul hamdling of interferenco mases requires winning the listeners wooperation. Here are at few pointers on how (o) go about it.

Clean House First

Tha firse stop obviously is to make sure that the tramemitter has no radiations outside the bands assigned for amateur use. The best check on this is your own . IX or TV receiver. It is ahays romvincing if you cin say - and demonstrate that rou da not interfere with reception in your own home.

Don't Hide Your Identity

Whenever you make equipment changes - or shift to a hitherto unused band or type of emission - that might be expected to change the interference situation, cherk with your neighbors. If no ome is experiencing interference, so much the better: it does no harm to keep the neighborhood aware of the fact that you are operating without bothoring anyone.

Should vou change location, announce vour presenere and conduct occasional tests on the air, requesting anyone whose reception is being spoiled to let you know about it so steps may be taken to eliminate the trouble.

Act Promptly

The average person will tolerate a limited amount of interference, but no one can be experced to put up with frequent and extended intarruptions to programs. The sooner you take steps to climinate the interference, the more agreeable the listener will be; the longer he has to wait for you, the less willing he will be to cooperate.

Present Your Story Tactfully

When you interfere, it is natural for the comphainant to assume that your transmitter is at fault. If sou are certain that the trouble is not calued bey harmonies or other spurious emissions: from your transmitter, explain to the listener that if it is simply the presence of your strong signat on his receiving antemat that eanses the diffieulty, and that some modifications will have to be made in the recoiver if he is to expere inter-ference-free reception.

Arrange for Tests

Most listeners are not very competent observers of the various aspects of interference. If at all possible, enlist the help of another amateur and have him operate your transmitter while you see what happens at the affected receiver. You can then determine for yourself where the trouble is nost likely to be.

Avoid Working on the Receiver

If your tests show that the fault has to be remedied in the receiver itself, to not offer to rork on the receiver. It is not your firult that the receiver design is defertive. Recommand that the work be done by a reliable serviceman, and offer to advise the latter as to the cause and cure if necessary.

In General

In this "public relations" phase of the problom a great deal depends on your own attitude. Most people will be willing to meet you half way, particularly when the interference is not of long standing, if you as a permon make a good impression. Your personal appearance is important. So is what you saty about the rereiver - no one takes kindly to hearing his possemsions derided. If you discuss vour interference problems on the air, do it in a construetive way one calculated to increase listener couperation, not destroy it.

Causes and Cure of BCI

Interference with A.M broadrasting usually fills into one or more rather well-defined categories. A knowledge of the general types of interference and the methods required to eliminate it will lead to a rapid appatisal of the situation and will avoid much cut-and-try in finding a cure.

Transmifter Defects

Out-of-band radiation is something that must be cured at the transmitter. Parasitie nscillations are a frequently unsuspected
source of such radiations, and no transmitter can be considered satisfactory until it has been thoroughly checked for but h low- and highfrequency parasitics. Very often parasities show up only as transients, eausing key clicks in e.w. transmittersand "splashes"or "burps" on modulation peaks in A M transmitters. Methods for detecting and eliminating parasitics are discussed in the tramsmitter ehapter.

In c.N. transmiters the sharp make and break that occurs with unfiltered keying canses
transients that, in theory, contain frequency components through the ent ire radiospect rum. Practically, they are often strong enough in the immodiate vicinity of the tramsmitter to cause serious interference to broadeast reception. Key clicks can be eliminated by the mothods detailed in the chapter on keying

A distinction must be made between clicks generated in the transmitter itself and thove set up by the mere opening and closing of the key eontacts when current is flowing. The latter are of the same nature as the clieks heard in a receiver when a wall switch is thrown to turn a light on or off, and may be more troublesome nearby than the elicks that actually go out on the signal, A filter for eliminating them usually has to be instathed as close tas possible to the key eomtarts.

Overmodulation in AM 'phone transmitters generates transients similar to key elicks. It can be prevented cither by using automatio systems for limiting the modulation to 100 per cent, or by continuously monitoring the modulation. Methods for both are deseribed in the chapter on amplitude modulation. In this connection, the torm "overmodulation" means any type of monlinear modulation that results from overloading or inadequate design. This can oceur even though the actual modulation percentage is lews that 100 .
$B C$ I is frequently made worse by radiation from the transmitter, power wiring, or the r.f. transmission line. This is because the signal causing the int erference. in such cases, is radiated from wiring that is nearer the broadcast receiver than the antenna itself. In such cases much depends on the mothod used to couple She transmiter to the antenna, a subject that is discussed in the ehapters on transmission lines and antennas. If it is at all possible the antemna itsolf should be placed so that it is not in close proximity to house wiring, telephone and power lines, and similar conductors.

Image and Oscillator-Harmonic Responses

Relatively few superhet broadeast receivers have any r.f. amplification preceding the mixer, so that the selectivity at the sigmal frequeney is not experially high. The result is that strong signals from near-ly transmitters, even though the transmitting frequeney is far removed from the broadrast band. pan foree themselves to the mixer grid. They will normally be eliminated by the i.f. seleetivity, except in cases where the transmitter frequency is the image of the broadrast signal to which the receiver is tuned, or when the transmitter frequency is so rolated to a harmonic of the broadeast receiver's local oscillator as to produce a beat at the intermediate frepuence:

These image and oscillator-harmonie responses tune in and out on the broadeast receiver dial just like a broadeast signal, exeept that in the case of hamonic response the tuning rate is more rapid. Since most receivers use an intermediate freguency in the neighbor-
hood of 450 kr ., the interference is a true image only when the amateur transmitting frequency is in the $1750-\mathrm{ke}$. band. Oscillator-harmonic responses oceur from 3.5- and 7-Mr. transmissions, and sometimes even from higher frequencies.

The prohlem is to redure the amplitude of the amateur signal in the front end of the b.c. receiver. If the recoiver uses an external antemata wavetrap at the recoiver antema terminals may help. It may also be helpful to reduce the length of the receiving antema - and particularly to avoid a length that might be near resonance at the transmitter frequence - or to change its direction with respect to the transmitting antemna. If the signal is boing picked up by the antemat it will disappear when the antenas is discomected. If it is still prosent under these circumstances the pick-up is in the set wiring or the power circuits. A line filter may be tried for the latter. l'ick-up on the set wiring can only be cured by installing some shielding around the r.f. eircuits. Copper window sereening cut and fitted to size will usuatly do the trick.

Since images and harmonic responses occur at definite frequemeies on the receiver dial, it is always possible to choose an operating frequeney that will not give such a response on top of the broadeast stations that are favored in the vicinity. While your signal may still be heard when the receiver is tuned of the local stations, it will at least not interfere with program reception.

Cross-Modulation

With phone transmitters, there are ocrasionably eases where the voice is heard whenever the browdenst receiver is tuned to a b.e station, but there is no interference when tuning between stations. This is cross-modulation, a result of reatification in one of the early stages of the rereiver. Reoeivers that are susceptible to this trouble usuably also get a similar type of interference from regular broadeasting if there is a strong locial b.e. station and the receiver is tuned to some other station.

The remedy for cross-modulation in the receiver is the same as for images and oscillatorharmonic responses - reduce the strength of the amateur signal at the receiver by means of a wave-trap, line filter, or shielding, as reguired. The trouble is not always in the receiver, however, since cross modulation can occur in any rectifying circuit-such as a poor contact in water or steam piping, gutter pipes, and other conductors in the strong field of the transmitting antenna.

Audio-Circuit Rectification

The most frequent cause of interference from operation at the higher frequencies is from rectification of a signal that by one means or another gets into the audio system of the receiver. In the milder cases an amplitudemodulated signal will be heard with reasonably good quality, but is not tunable - that is, it is present no matter what the frequency to
which the recoiver dial is set. An ummodulated carrier may have no observable effect in such cases beyond causing a lit tle hum. However, if the signal is very strong there will be a reduction of the audio output level of the receiver whenever the carrier is thrown on. This causes an annoying "jumping" of the program when the interfering signal is keved. With 'phone transmission the change in audio level is not so objectionable because it occurs at less frequent intervals. Also, ordinary rectification gives no audio out put from a frequene y-modulated signal, so the interforence can be made almost completely unnoticable if FM or PM is used instead of AMI.

Interference of this type is most prevalent in a.c.-d.c. receivers. The pick-up may oecur in the audio-circuit wiring or the interfering signal may get into the audio circuits by way of the line cord. Power-line piek-up can bo treat ed by means of line filters, but pick-up in the receiver wiring requires individual attention. Remedies that have been found suceessful are deseribed in the sections following.

CHECKING AND CURING BCI

When a case of broadcast interference comes to your attention, set a definite time to conduct tests and then prepare to do the job as (xpeditiously as possilble. As suggested before, get another amateur to operate your transmitter while you do the actual observing and testing at the listener's receiver. If you have a small broaldc:ast receiver of your own that does not show interference, take it with you to demonstrate to the listener that the trouble is not in your transmitter but in his receiver. The procedure out lined below will save time in getting at the source of the trouble and eliminating it.

1) Determine whether the interference is tunable or not. This will usually indicate the methods required for elimination of the troube, as it will show which of the general types of interference discussed above is present.
2) If the set has an external antenna, disconnect it and turn the volume eont rol up full. If the interference is no longer present, it is merely necessary to prevent the r.f. appearing on the antenna from entering the set. If wavetraps reduce the amplit ude of the interfering signal but do not eliminate it entirely, try a short piece of wire as a receiving antenna. Alternatively, the antema may be relocated. It should be placed as far as possible from the transmitting antenna, and should run at right angles to it to minimize coupling.
3) If the interference persists after the antenna is diseomeeted, cherek for r.f. on the power line by using a sensitive wavemeter such as that deseribed in the chapter on moasurements to probe along the a.c. cord that comects the set to the power source. (This test also should be made with receivers using built-in loops.) Checks should be made at the transmit ter frequency, and also at hamonic frequencies. If r.f. is detected in
the line, by-pass both sides of the a.c. line to ground with 0.00. 0 - μ fol coramic condensers at the point where the line cord enters the set. (A simple plug-and-socket adapter can be made up for this purpose.) If this does not completely eliminate the interference, try a line filter designed for the operating frequency.
4) If it is evident that the interference is being picked up on the receiver wiring, explain the situation to the owner and tell him that the exact cause cannot be determined without removing the rhassis from the cabinet, and that, in any event, the recoiver will have to be modified if the interference is to be eliminated. Recommend that the actual work be done by a radio serviceman. Offer to check into the cause yourself, if he will allow you to take the set to your shop (with the understanding that you will not make any changes in the receiver without his express permission) so the serviceman can be told what needs to be done.

Fip. 23.1 - 'T'wo methods of eliminating r.f. from the yrid of a combined detector/lirst -andio stage. At A. the value of the grid leak is reduced to 2 or 3 megohms, and a mica ly-pass condenser is alded. At B, both grid and cathode are by-passed.
5) In the event that the owner allows you to take the recciver, set it up near your transmitter and check to see if the amplitude of the interfering signal is changed by various set tings of the receiver volume eontrol. If it is, the r.f. is entering the set ahead of the volume control. If it is unaffected by the volume control, it is getting into the audio stages at a point following the volume cont wol.
6) Pin the source down, if it is ahead of the volume control, by removing one tube at a time until one is found that kills the interference when it is removed. In sets using seriesconnected filaments, this will be possible only if a tube of equal heater rating, and with all bat the heater pins clipped off, is substituted for the tuhe.
7) Determine which element (or elements) of the tube is pioking up the interference by touching each tube pin with a test lead about three feet long. The lead, acting as an antenna, will cause the interference to increase when it is placed on a tube pin that is contributing to the interference. Once the sensitive points have been determined, the trouble can be eliminated by shielding the leads connected to the tube element that is affected, and by shielding the tube itself. Grid leads are the principal offenders, especially the long leads that run
from a tube cap to a tuning condenser terminal.
8) If the piek-up is found to he in the audio system - as is the case in many sets, especially When the tramsmitter is operating at 28 Mc , or higher - it can be eliminated by one or another of the methods shown in liggs. 23-1 and

Fig. 2:3.2-1 sing a 25,0 000.ohim resitor to furm alow-pass filter with the tube rapacitance. The resiator must he mounted at the tube pin, betwen the grid and all other grid comnertions.

23-2. Fig. 23-1A is a method that has proved sucessful with many a.e-d.c. receivers. The value of the grid leak in the combined detector first-audio tube (usually a $12 s$ eg or its equivalent) is reduced to 2 or 3 megohms. The grid is then be-pased for r.f. with a 250 $\mu \mu \mathrm{d}$. mica condenser. Fig. 23-113 is a similar method. A third methos that has worked in a.e.-d.e. reecivers requies only that the heater of the detector first-atudio stage be by-passed to ground with a $0.001-\mu$ fid. condenser. The method shown in Fig. 2:3-2 uses a 75,000 -ohon $1 / 2$-wat resistor to form, with the tube caparitance, a low-pass filter. The resistor is connerted betwern the grid pin of the tube and all oher wires commected to the grid. In atl rasos. both sides of the ace. line should be be-passed to chassis with 0.001- to 0.01- ff f. condensers.

Wavetraps and A.C. Line Filters

A wavetrap eonsists of a parallel-tuned circuit that is connerded in series with the broad-

Fig. 23-3 - A -imple wavetran rironit. 1 and C mont resmatio at the frephency of the interfering signal. Suitahle constants are tahulated lefone.

Sand	C			1.	
3.5	$1101 \mu_{\mu} \mathrm{ld} 1$.			=3.3.1'	
$\stackrel{7}{7}$	(101) μ, μ [1].	0	(1)	=2゙. 1"	$I^{\prime \prime}$
11	D10 $\mu \mu \mathrm{fl}$ I.	3.5	11	* 18.1 l',	I',
21	3.5 u μ f.l.	2.2	12	"18.1"	1'',
24	$2.3 \mu \mathrm{fll}$.	1.3	$1)$	418.1"	1"

Cast andeman and the antemat post of the rerever. It should te de igned to resonate at the frequency of the interforing signal. The circuit of at simple trap is shown in Fig. 2:3-3. If interference results from operation in more than one amateur band several traps may be romeded in series, each tuned to the eenter of one of the
bands in which operation is contemplated. To adjust the wavetrap, have another licensed amateur operate the transmitter while you tune the trap, for maximum attenuation of the interference.

A common form of a.c. line filter is shown in Fig. 23-4. This type of filter will usually do some good it the signal is being picked up on the house wiring and transferred to the set by way of the line cord. The values used for the foils and enndensers are in general not eritical. The effectiveness of the filter will depend considerably on the ground connection used, and it may be neeresary totry grounding to several different possible ground eomections to secure

Pig. 2:3-1 - A.e. line filter for receivers. The values of C.1. Co and Coz are not genorally eritieal; (aparitaners from 11.001 to 11.01μ fil. ean the umed. L_{1} and l_{2} can be a 2 -inch winding of No. 18 enameled wire on a half-ind diamber form.
the best results. I filter of this type will usually not be very helpful if the signal is being pieked up on the line eord itself, which may be the rase when the transmiter is on v.h.f. In such a case it should be installed inside the receiver chassis and grounded to the chassis at the point where the line cord enters.

The tuned filter shown in Fig. 2:3-5 is often more effective than the untuned type when only one frequency needs to be eliminated. After installation, the condenser is simply adjusted to reduce the interference to the greatest possible extent. It is advisable to mount either type of filter in a small shield box, to prevent pick-up in the filter and to make it less conspicuous.

fig. 23-i - Kesonant filter for the a.e. line. A single eondenser tunes both L_{1} and $L_{a 2}$, which are unityempled, one wome on top of the wher. Cinstants for amateur hand- are tabulated below.

Hund	c	$1.1-1.2$
3.5	$1101 \text { - Ina }$	
7	$110 \mu_{\mu} / \mathrm{l}$).	
11	$100 \mu_{\mu} \mathrm{Cl}$.	12 1. Der. 18. $11 / 4^{\prime \prime}$ " lia $\times 2^{3} 3^{\prime \prime}$ longg
21	$50 \mu \mu \mathrm{fl}$.	
28	$25 \mu \mu \mathrm{Cl}$.	

D.c.e. wire is recommended for alis coils.

Interference with Television

Interference with the reception of labevision sigmats usually presemts a more diftioult prodidem than interforenere with . I.M hroadeasting. In BCI (ases the interterence almost always ean he attributed to defieient solectivity or spurious responses it the lac receriver. While similar deficioncies exist in maty deverison rowiores, it is also true that amateur frammitters gromate harmonics that fall inside many or all tulewision
(hammels, 'These spurious radiations cause interForeme that ordinarily camot be climinated bey anvining that mas be done al the receiver, so must be prevented at the transmitter itself.

The over-all situat ion is further eompliented hys the fate that television broadeasting is in there distinet bands, two in the v.h.li. region and one in the u.h.f.

V.H.F. Television

For the amateur who does most of his transmitting on frequencies bolow 30 Me the TV' hand of principal interest is the low v.h.f. band betwern St and 88 . Me. If harmonic radiation can be woduced to the pesint where no interferemere is catused to Chammels 2 to 6 , inclusive, it is almost rertain that any harmonic troubles with chamels ahove $17+$ Me, will disappear also.

The relationship between the v.h.f. television chanmels and harmonies of amateur bands from 14 through 28 Mc. is shown in Fig. 23-(j. Harmonies of the 7 - and 3.5-Mc. bands are not shown because they fall in every television channel. However, the harmonies above $5+$ Me. from these bands are of such high order that they are usually rather low in amplitude, although they may be strong enough to interfere if the television receiver is chite close to the amateur transmitter. Low-order harmonies - up to about the sixth are usually the most diflionlt to eliminate.

Of the amateur v.h.f. bands, onty 50 Mc . will have harmonics falling in a v.h.f. television channel (Chamels 11. 12 and 13). However, at transmitter for any amateur v.h.f. band may cause interference if it hats multiplier stages either tuned to or having harmonies in one or more of the v.h.f. T' ${ }^{\prime}$ chammels. The ref. energy on surh frequendies can be radiated directly from the transmitting cireuits or conpled be stray means to the transmitting antenua.

Frequency Effects

The degree to which tramsmitter harmonies or other undesired radiation actually in the TV channel must be suppressed depends principally on two fatetors, the strength of the TV signat on the chammel or chamacls affected, and the relationship botween the frequency of the spurious radiation and the frequencies of the 'TV picture and sound courriess within the chammel. If the TV signal is very strong, interference can lxe eliminated by
comparatively simple methods. However, if the 'l'l" signal is very woak, as in "fringe" areas where the reereived pieture is visibly degraded by the :4pperance of set moise or "snow" on the screoth, it maty he merossiry to go to extrome mesmares.
In either case the intensity of the interference clepends very greatle on the exact frequeney of the interfering signal. big. $2: 3-7$ shows the phacemont of the pieture and sound rarriers in the standard TV' channel. In ('hammel 2, for example, the pieture carrier frequency is 5 ot $+1.25=$ 55.25 Mr. and the sound earrier frequency is (io) $-0.25=59.75 \mathrm{Me}$. The serond harmonie of $28,010 \mathrm{kr}$. ($5 \mathrm{f},(020 \mathrm{ke}$. or $5(\mathrm{f} .02 \mathrm{Mr}$.) falls $5 \mathrm{fi} .02-$ $51=2.02 \mathrm{Mc}$, above the low edge of the chamed and is in the region marked "Severe" in Fig. 2:3-7. Wh the other hand, the seeond harmonic of $29,500 \mathrm{ke}$. $59,000 \mathrm{kc}$ or 59 Mc . $\mathrm{M} 59-54=5$ Me. from the low edge of the chamel and falls in ther region marked "Mild." Interference at this freguency has to be about Ioo times as strong as at $50,02() \mathrm{kr}$. to cause efferts of equal intensity.

Fig. 23.0- Relationship of amateurthand harmonics to v.h.f. 'I'V rhammeds. hand harmonies to v.h.f. Th fhambs.
llarmonis interference from transmithers operating below 30 Mc (is most likely io be sarions it the low echamel proug) (51 (1) 88 \lc.).

Fig. 23.7 - Incation of picture and sound carriers in a monothrome television channel, and relative intensity of interference as the location of the interfering signal within the channel is varied without changing its strength. The three regions are not actually sharply defined as shown in this drawing. but merge into one amother kradually.

Thus an operating frequeney that puts a harmonice near the picture earrier requires about 10 db . more harmonide suppression in order to avoid interference, ats compared with an operating frequence that puts the hamonie near the upper adge of the chammel.

For a region of 100 ke . or wo rither side of the sound carrier there is another "Severe" region where at surious radiation will interfere with rereption of the sound program, and this region also should be avoided. In general, as signat of intensity equal to that of the picture carrier will not cause noticeable interferene if its frequency is in the "Mild" region shown in Fig. 2:3-7, but the same intensity in the "severe" region will utterly destroy the pioture

Interference Patterns

The visible effects of interference vary with the type and intensity of interference. Complete "harkout," where the pieture and sound disappear completely, leating the sereen dark, oceurs only when the transmiter and reeciver are guite alose together. Strong interferener ordinarily causes the piature to be broken up, laaing a jumble of light and dark lines, or turns the picture "negative" - the normally white parts of the picture turn black and the normally black parts turn white. "(rose-hatehing" - diagonal hars or lines in the picture - aceompanies the

 tween the pieture carrier and an interfering signal inside the 'I'S channel.
lattor, usually, and also reprevents the most common type of less-severe interference. The bars are the result of the beat between the harmonie frequeney and the pirture earrier frequencer. They are broad and relatively few in number if the ixat frequeney is comparatively low - near the picture carrier - and are numerous and very
fine if the beat frequeney is very high - toward the upper end of the channel. Typical crosshatching is shown in Fig. 2:3-8. If the frequency falls in the "Mild" region in Fig. 2:3-7 the crosshatching may be so fine as to be visible only on close inspection of the picture, in which case it may simply cause the apparent brighthess of the screen to change when the transmitter carrier is thrown on athd off.

Whether or not cross-hatehing is visible, on amplitude-mondulated trousmitter may rause

Fig. 23-9 - "Sound hars" or "modulation bars" areompanying amplitude modulation of an interfering signal. In this casce the interforing carrier is strong enough to destroy the ricture, but in milal cases the pieture is visible through the horizontal hars. Sound bars may atcompany modulation even though the ummodulated carrier gives mo visible cross-hatching.
"sound bars" in the picture. These look about as shown in Fig. 2:3-!. The? result from the variations in the intensity of the interfering signal when modulated. Ender most cirrumstances motulation hars will not orcur if the mateur transmitter is frequener- or phase-modulated. With these types of modulation the arose-hatehing will "wiggle" from side to side with the modulation.

Exeept in the more severe cases, there is soldom any offect on the sound reepption when interference shows in the pieture, unless the fraqueney is quite close to the sound carrier. In the latter event the sound may be interfered with even though the picture is clean.

Reference to Fig. 2:3-6 will show whether or not harmonies of the frequeney in use will fall in any television chammels that can be received in the lecality. It should be kept in mind that not only harmonies of the final freguency may interfere, but also harnomies of :uy frequencies that may be present in buffer or frequency-multiplier
stages. In the case of 144-Mr. transmitters, fro-quency-multiplying combinations that require a doubler or tripler stage to operate on a frequeney actually in a low-band v.h.f. channel in use in the loeality should be avoided.

Harmonic Suppression

Effertive harmonic suppression has three separate phases:

1) Reducing the amplitude of harmonics generated in the transmitter. This is a matter of circuit design and operating eonditions.
2) l'reventing striy radiation from the transmitter and from associated wiring. This requires adequate shielding and filtering of all circuits and leads from which radiation can take place.
3) Preventing harmonies from being fed into the ant emas.

It is impossible to build a transmitter that will not generate some harmonics, but it is obviously advantageous to reduce their strength, by arcuit design and ehoice of operating eonditions, by as large a factor as possible before attempting to prevent them from being radiated. Harmonic ratiation from the transmitter itself or from its associated wiring obviously will caluse interference just as reatily as radiation from the antenna, so measures taken to prevent harmonios from reaching the antenna will not reduce TVI if the transmitter itself is ratiating hatmonics, But oner it has been found that the transmitter itself is free from harmonic radiation, devices for preventing harmonies from reaching the antema can be expected to produce results.

- REDUCING HARMONIC GENERATION

Since reasonably-eflicient operation of r.f. power amplifiers always is accompanied by hatmonic generation, good judgment calls for operating all frerguenc v-multiplier stages at a very low power level-plate voltages not exceeding 250 or 300 . When the final output frequency is reached, it is desirable to use as few stages as possible in reaching the output power levol, and to use tubes that require a minimum of driving power.

Circuit Design and Layout

Ilarmonic currents of considerable amplitude flow in both the grid and plate cireuits of r.f. power amplifiers, but they will do relatively little harm if they can be effectively by-passed to the cathode of the tube. Fig. 23-10.d shows the pathe followed by harmonic eurrents in an amplitier circuit: because of the high reartance of the tank coil there is little harmonic current in it, so the harmonic currents simply flow through the tank condenser, the plate (or grid) bloeking condenser, and the tube capacitances. The lengths of the leads forming these paths is of great importance, since the inductance in this circuit will resonate with the tube caparitance at some frequency in the v.h.f. range (the tank and bloeking capaci-
tances usually are so large compared with the tube capbuitance that they have little effect on the resonat frequency). If such a resonatne happens to oreur at or near the same frequeney as one of the transmitter harmonies, the effert is just the same ats though a harmonie tank circuit

Fig. 23-10- (A) A v.h.f. resonant circuit is furmed by the tube capacitance and the leads throngh the tank and Wocking condensers. Regnlar tanh coils are not slown, since they have little effert on such resonances. (B) I sing low inductance condensers shemting the tule clements to lower the resonance point below the TV dhanmels. C:s and C_{6} nsually are 15 to $50 \mu \mathrm{fd}$. and cither of vacuum or tubalar construction.
had been deliberately introduced; the harmonic at that frequency will be tremendously increased in amplitude.
such resonances are unavoidable, but by keeping the path from plate to eathode and from grid to eathore as short as is physically possible, the resonant frequeney usually ean be raised alove 100 Me. in amplifiers of metium power. This puts it between the two groups of television ehamels.

In low-frequency transmitters where physi-cally-short return paths from plate or grid to eathode are difficult because of the shape and size of tubes and tank condensers, the arrangement shown in Fig. 2:3-1013 is frequently helpful. Condensers C_{5} and C_{6} should be of the vacuum or tubular type and should be mounted as elose as possible to the tube connections. They form resonant circuits in themselves with the tube capacitance, but generally at a sufficiently high frequency so that no harm is clone. At lower frequencies than this self-resonatnee, they effectively add to the tube eapacitanee and thus tune the inductance of the leads through the regular tank and bocking condensers to a eonsiderably lower frequency than the tube alone. The resonance therefore can be shifted to a frequency belou $5+\mathrm{Mc}$ and again is outside the TV range. This method is most useful at 3.5 and 7 Me . because it increases the tank eapacitance to the point where there may be very little tank eoil left, at the higher frequencies.

It is easier to place grid-eireuit v.h.f. resonanees where they will do no harm when the amplifier is link-coupled to the driver stage, since this generally permits shorter leads and more fivorable conditions for by-passing the harmonics than is
the case with capacitive coupling. I ink coupling also reduces the edupling betwen the driver and amplifier at hammonic frequencies, thas preventing driver harmonices from being amplified.

The inductance of leads from the tube to the tank condenser can be reduend mot only beg shortening but be using flat strip instead of wire eondactors. It is also better to use the chassis as the return from the blocking combenser to cathode, since a chassis path will have less induretanere tham almost any other form of enmertion.

The v.h.f. resoname perints in amplifier tamk eireuits can be found by eoupling a grid-dip meter covering the $\mathbf{5 0}-230 \mathrm{Me}$. range to the grid ath plate leads. If a resomane is found in or mear a TV chamed, methods such as those deseribed above shoud be used to move it well out of the TV range. 'The gridelip meter also should be nsed to cherek for v.h.f. resomamers in the tamk roils. because coils made for 14 Me and lodow usually will show such resonanees. In making the charek, diseomert the coil antirely from the transmitter and move the gridedip moter coil along it while exploring for a $\mathrm{lip}_{\mathrm{p}}$ in the ot-88 Me. hamb. If a resonamere falls in a TV ehammel that is in use in the locality, changing the number of turns will move it to a fregueney where it will not be troublesome.

In many r.f. amplifiers the cathote eomertion of the tube is below chassis while the plate (and sometimes the grid) enmection frequently is above. In such at case the blocking eondenser should be mounted below chassis. If the ground return is mate to the top, the ref. current has to flow over the top and either through the hole for the tube socket or else entirely over the chatsis surface before it rewhes the eithode. This comdition is highly undesirable not only beranse of v.h.f. resonances but because such chassis rurrents frequently cause instability in the amplifier.

Operating Conditions

Grid hias and grid current have an important effect on the harmonic content of the r.f. currents in both the grid and plate circuits. In general, harmonie output incretses as the grid hian and grid current are increased, but this is not needssarily true of at parficular hammonic. The third and higher harmonies, esperially, will go through fluctuations in amplitude as the grid current is increased, and sometimes at rather high value of grid eurrent will minimize one harmonic ats compared with a low value of grid current. This charateristic can be used to advantage where a particular hammonic is casing interferener, kecoping in mind that the operating conditions that minimize one harmonic may greatly increase another.

For equal operating conditions, there is little or no difference betwern single-ended and phsthpull amplifiers in respect to harmonic gencration. 1'ush-pull amplifiers are frequently troublr-makers on even harmonies beratuse with such amplifors the evon-hamonie voltages are in phase at the ends of the tank circuit and hence appear with equal amplitude across the whole tank eoil,
if the center of the enol is not grounded. Vonder such eireumstames the even harmonies eatl be romplad to the output cirouit through st aty caparitane betweon the tank and compling eoils. This dees not oremer in at singlo-emded amplifier if the coupling eoil is paterd at the cold end of the tank.

Harmonic Traps

If a harmonie in only one 'TV chamel is partieulaty bothersome - freguently the case when the tramsmitter operates on 28 Mte - a trap tumed to the hamonie frequency may be installed in the plate lead ass shown in Fig. 23-11. It the hamonice frequence the trap represents a bery high imperdaner and henere reduces the amplitude of the harmonic arment flowing through the tank eireuit. In the push-pull eirenit both traps have the same constants. The L ' ${ }^{\prime}$ ratio is not critieal but a high-(' circuit usuall! will have hast elfert on the performanere of the plate eireuit at the momal operating freguener.

Nine there is a considerable harmonic voltage aroses the trap, it may ruliate unlose the transmitter is well shielded. Traps should be plated so that there is no coupling between them and the amplifier tank cireuit.

A trap is a highly-solective devide and so is weful only over a smatl ratuge of treguencies. A

fir. 23-1 - Harmonie trans in an amplifier plate circuit. I and C should resonate at the frequency of the harmonic to be suppressed. C may be a $2 \overline{5}-\mathrm{to} 50$ - $\mu \mathrm{m} \mathrm{fu}$. midget, and L. Hinally consists of 3 to 6 turns about $1 / 2$ inch in diancter for Chanmels 2 through 6 . The inductance should low adjusted so that the trap resonates at about half capracity of C toefore being installed in the transmitter. It may be cheched with a grid-dip meter. When in place, it is adjusted for ininimum interference to the 'J'V pirture.
second- or third-harmonic trap on a 28-Mc. tank circuit usually will not be effective over more tham 50 ke . or so at the fundamental frequenev, depending on how sorions the interfarence is without the trap. Because they are critical of adjust-
ment, it is better to prevent TVI by other means, if possible, and usc traps only as a last resort.

PREVENTING RADIATION FROM THE TRANSMITTER

The extent to which interference will be caused by direct ratiation of spurious signals depends on the operating frequency, the transmitter power level, the strength of the television signal, and the distance between the transmitter and 'TV receiver. Transmitter radiation can be a very serious problem if the 'TV signal is weak, if the TV receiver and amateur transmitter are close togother, and if the transmitter is operated with high power.

Shielding

Direct radiation from the transmitter circuits and components sun be provented by proper shielding. To be effertive, a shield must comphetely enclose the circuits and parts and must have no openings that will permit r.f. energy to escitpe. Cufortunately, ordinary motal boxes and cabinets do not provide good shielding, sine suth opernings as louvers, lids, holes for running in connertions, and so on, allow far too much leakage.

A primary requisite for good shiclling is that all joints must make a good clectrical commertion along their entire length. I small slit or arack will let out a surprising amount of r .f. energy: so will ventilating louvers and large holes such as those used for mounting meters. (on the other hend, small holes do not impair the shielding vory greatly, and a limited number of ventilating holes may be used if they are small - not over $1 / 4$ inch in diameter. Also, wire sereen makes quite Wertive shichding if the wires make good ele trical romertion where they eross over, so the leakage through large openings ean be very much rodared hy covering such openings with soreening, well bonded to all edges of the opening.

 shiphled lead using dish reramic eromernser. "I'he (0.00)
 higher voltages, The leade are wrapered around the inner and onter conductors and soldered, so that the lead length is negligible. 'lhis photograpls is ahout four times actual size.

The intensity of r.f. fiedds about eoils, condensers, tubse and wiring decreases very rapidly with distince, so shiedding is more effective, from a practical standpoint, if the components and wiring are not too close to it. It is advisable to have a separation of several inches, if possible, between "hot" points in the circuit and the nearest shiclding.

For a given thickness of metal, the greater the conductivity the better the shielding. Copper is bost, with aluminum, brass and steel following in that order. However, if the thickness is adequate for structural purposes (over 0.02 inch) and the shield and a "hot" point in the circuit are not in close proximity, any of these metals will be satisfactory. (ireater separation should be used with steel shielding than with the other materials not only because it is considerably poorer as a shiehd but also because it will catase greater losses in near-hy circuits thath would copper or aluminum at the same distanco. Wire sereen used as a shield should also be kept at some distance from highvoltige or high-curent r.f. points, since there is considerably more leakage through the mesh that through solid metal.

Where two pieces of metal join, as in forming in corner, they should overlap at least a half inch and be fastoned together firmly with serews or bolts spaced at close-enough intervals to maintain firm contace all along the joint. The contact surfines should be flean before joining, and should be chereded oreasionally - esperially steed, which is amost eertain to rust after a period of time.

The leakage through a given size of aperture in shielding increases with freguency, so such points as good continuous contart. sereening of holes, and so on, berome even more important when the radiation to be suppressed is in the high band $17+216 \mathrm{Mc}$. - than in the low TV band. Hence 50 - and $1+4-M \mathrm{Me}$. transmitters, which in general will have frequener-multiplior harmonies of relatively high intensity in this region, require speciad

Fig. 23-13 - By-pasting the end of a high-voltage lead, 'I'lue end of the shield braid is soldered to a lug fastened to the chassis directly moderneath. The other terminal of the condenser is similarly bolted dirertly to tho shassis. When the by pase is used at a torminal commertion block the "hot" lead should be soldered dircetly to the terminal, if posibible, but in any event connerted to it Ly a very short lead.

Fig. 23-14 - Additional r.f. filtering of supply leads may be required in regions where the 'l' signal is very weak. The r.f. choke should be physically small, and may consist of a l-inch winding of No. 26 enameled wire on a $1 / 4$-inch form, close-wound. Manufactured single-layer chokes having an induct. ance of a few microhenrys also may be used.
attention in this respect if the possibility of interfering with a channel received locally exists.

Lead Treatment

IVven very good shielding can be made completely useless when connections are run from external power supplies and other equipment to the circuits inside the shield. Every conductor so introduced into the shielding forms a path for the escape of r.f., which is then radiated by the connecting wires. Hence a step that is essential in every case is to prevent harmonic currents from flowing on the leads leaving the shielded enclosure.

Harmonic currents always flow on the d.e. or a.c. leads connecting to the tube circuits. I very effective means of preventing such currents from being coupled into other wiring, and one that provides desirable by-passing as woll, is to use shielded wire for all such leads, matintaning the shielding from the point where the lead comects to the tube or r.f. circuit right through to the point where it is about to leave the chassis. The shield braid should be grounded to the chassis at both ends and at frequent intervals along the path.

Good by-passing of shielded leads also is cessential. Bearing in mind that the shield braid about the contuctor confines the harmonic currents to the inside of the shielded wire, the object of bypassing is to prevent their escape. Figs. 23-12 and 23-13 show the proper way to by-pass. The smalltype: $0.001-\mu \mathrm{fl}$. ceramic disk condenser, when mounted on the end of the shiolded wire as shown in Fig. 2:3-12, actually forms a series-resonant cireuit in the 54-88-Mc. range and thus reprosents practically a short-rircuit for low-band TV harmonics. The exposed wire to the connection terminal should be kept as short as is physically possible, to prevent any possible harmonic pickup exterior to the shidded wiring. Disk condensers of this capacitance are available in several voltage ratings up to 1600 volts. For higher voltages, the maximum caparitance available is approximately $500 \mu \mu \mathrm{fl}$., which is large enough for good by-passing of harmonics. Alternatively, mica contensers may be used as shown in Fig. 23-13, mounting the condenser flat against the chassis and grounding the end of the shield braid directly to chassis, keeping the exposed part as short as possible. Wither (0.001- ffl . or $47(0)-\mu \mu \mathrm{fd}$. ($500 \mu \mu \mathrm{fd}$.) condensers should be used. The larger rapacitance is series-resonant in Channel 2 and the smaller in Channel 6.

These by-passes are essential at the connectionblock terminals, and desirable at the tube ends of the leads also. Installed as shown with shielded
wiring, they have been found to be so effective that there is usually no need for further harmonie filtering. However, if a test shows that additional filtering is required, the arrangement shown in Fig. 2:3-14 may be used. Such an r.f. filter should be installed at the tube end of the shielded lead, and if more than one circuit is filtered care should be taken to keep the r.f. chokes separated from each other and so oriented as to minimize coupling between them. This is necessary for preventing harmonics present in one circuit from being eoupled into another.

In difficult cases involving Chammels 7 to $1: 3-$ i.e., close proximity between the transmitter and receiver, and a weak TV signal - additional leadfiltering measures may be needed to prevent radiation of interfering signals by 50 - and $1+4$-Mc. transmitters. A recommended method is shown in Fig. 2:3-15. It uses a shiekled lead by-passed

Fig. 23-15 - Additional leal filtering for harmonies or other spurious frequencies in the high v.h.f. TV band ($17.1-216 \mathrm{Mc}$).
(C - $0.001 \cdot \mu \mathrm{fd}$. disk ceramie.
C_{2} - $0.001-\mu \mathrm{fd}$. feed-through hy-pass ((rie Style 326). (For 500-2000-volt lead, sulnstitute Plasticon Glass mike, 1,SG-251, for (C_{2}.)
RFC - 14 inches No. 26 enamel close-wound on 3íg inch diam. form or resistor.
with a ceramic disk as deseribed above, with the addition of a low-inductance feed-through type condenser and a smatl r.f. choke, the condenser being used as a terminal for the external connection. For voltages above $f(0)$, a condenser of compart construction (as indieated in the caption) should be used, mounted so that there is a very minimum of exposed lead, inside the chassis, from the condenser to the conneation terminal.

As an alternative to the series-resonant bypassing described above, feed-through trpe condensers such as the Sprague "Iypass" type may
be used as terminals for external connections. The ideal method of installation is to mount them so they protrude through the chassis, with thorough bonding to the chassis all around the hole in which the condenser is mounted. The prineiple is illustrated in Fig. 23-16.

Fig. 2.3-16 - The best method of using the "llypass" type fed-throngh condenser. (iapacitances of 0.01 to $0.1 \mu \mathrm{fd}$. are satisfactory. Condensers of this type are useful for bigh-current circuits, such as lilament and $115-v o l t$ leads, as a sulnstitute for the r.f. choke slown in l゙ig. 23-14, in cases where additional lead filtering is needed.

Meters that are mounted in an r.f. unit should be enclosed in shichling covers, the connections being made with shielded wire with cach lead by-passed as deseribed above. The shicld braid should be grounded to the pancl or chassis immediately outside the meter shield, as indicated in Fig. 2:3-17. A by-pass may also be connected across the meter terminals, principally to prevent any fundamental curront that may be present from flowing through the meteritself. As an alternative to individual meter shielding the meters may be mounted entirely bohind the panel, and the panel holes needed for observation may be covered with wire screen that is carefully bonded to the panel all around the hole.

Care should be used in the selection of shielded wire for transmitter use. Not only should the insulation be conservatively rated for the d.e. volt-

Fig. 2.3-1\% - Meter shielding and by-passing. It is essential to shield the meter mounting hole since the meter will carry r.f. thrmugh it to be radiated. Suitable shields can be made from $21 / 2$ - or 3 -inch diameter shield cans of the type made for enclosing coils,
age in use, but the insulation should be of material that will not easily deteriorate in soldering. The r.f. characteristies of the wire are not esperially important, exeept that the attenuation of harmonic's in the wire itself will be greater if the insulating material has high losses at radio froquencies: in other words, wire intended for use at d.c. and low frequencies is preferable to cables designed expressly for carrying r.f. The attenuation also will increase with the length of the wire; in general, it is better to make the leads as long as circumstances permit rather than to follow the more usual practice of using no more lead than is antually necessary. Where the wiring erossos or runs parallel, the shiedds should be spot-soldered together and connected to the chassis. For high voltages, automobile ignition cable covered with shiolding braid is recommended.

Proper shielding of the transmiter requires that the r.f. cireuits be shiolded entirely from the external conmeting leads. A situation such as is shown in Fig. 23-18, where the leads in the r.f. chassis have been shielded and properly filtered

Fig. 23-18 - A metal cabinet can be an adequate shield, fout there will still the radiation if the leads inside can pich up r.f. fron the transmitting circuits.
but the ehassis is mounted in a large shied, simply invites the harmonie currents to travel over the ehassis and on out over the leads outside the chassis. The shielding about the r.f. eireuits should make complete eontact with the ehassis on which the parts are mounted.

Checking Transmitter Radiation

A cheek for transmitter radiation always should be made before attempting to use low-pass filters or other devices for preventing harmonies from reaching the antenna system. The only really satisfactory indicating instrument is a television receiver. In regions where the 'TV' signal is strong an indieating wavemeter such as one having a crystal or tube detector may be useful; if it is possible to get any indication at atl on harmonics either on supply leads or around the transmitter itself, the harmonics are probably strong enough to cause interference. However, the absence of
any such indication does not mean that harmonic interference will not be caused. If the terhnigues of shielding and lead filtering described in the

 monic radiation from the transmitter and leads. 'The matching circuit helps prevent harmonios in the output of the transmitter from flowing hack over the trans. mitter itself, which may oceur if the lampload is simply conmected to the ontput coil of the final amplitier. See transmission-line chapter for details of the matchimer circuit. 'luning must be adjustod by cut-and-try, as the bridge method described in the transmission-line chatoter will mot work with lamp loads berause of the change in resistance when the lamps are hot.
preceding sertion are followed, the harmonie intensity on any external leads should be far below what any such instruments can deteret.
Radiation checks should be made with the transmitter delivering full power into al dumm. antenna, such as an incandesernt lamp of suitable power rating, preferably installed inside the shiedded enclosure. If the dumme nust be axtermal, it is desirable to eommer it through a cosixmatehing eireuit such as is shown in Fig. 23-19. Shielding the dummy antemna cireuit is also desirable, although it is not always neressary.

Make the radiation test on all frequences that arre to be used in transmitting, and note whether or not interforence patterns show in the recodved pieture. (These tests must be made while a 'TV' signal is being received, since the beat patterns will not be formed if the TV pieture carrier is not. present.) If interference exists, its source can be detected by grasping the various extemal leads (he the insulation, not the live wire!) or bringing the hand near meter fares, louvers, and other possible points where harmonie energy might eseaper from the tranmitior. If any of these tests cause a change - mot necessarily an incratse - in the intensity of the interferenere, the presener of hatmonics at that point is indicated. The loeation of such "hot" spots usually will point the way" to the remedy. If the 'T' recoiver and the transmitter can be operated side-by-side, a length of wire comerted to one antema terminal on the rereiver can be used as a probe to go over the tramsmitter enclosure and external leads. This deviee will very quickly expose the spots from which serious leakage is taking plare.

Is a final test, conmect the transmitting antenna or its transmission line terminals to the outside of the transmitter shiedding. Interference crated when this test is applied indieates that weak currents are on the outside of the shield and ratl be conduated to the antema when the nommal antemat connertions are used. Currents of this nature represent interference that can be conducted over low-pass, filters, ete., and whieh therofore camot be climinated by such filters.

- PREVENTING HARMONICS FROM REACHING THE ANTENNA

The third and last step in reducing harmonie TVI is to kecp the spurious encrgy generated in or passed through the final stage from traveling over the tramsmission line to the antenma. It is seldom worthwhile even to attempt this until the radiation from the transmitter and its comereting leads has been reduced to the point where, with the transmitter delivering full power into a dummy antema, it has been determined by arthal testing with a tolevision rereiver that the radiation is below the level that can cause interference. If the dummy antema test shows mough radiation to be secon in a TV picture, it is a practical certainty that harmonics will be coupled to the antema syisem no matter what preventive mentures are taken.

In induetively-coupled output sustems, some hamonice energy will be transterred from the final amplifier through the mutual inductane between the tank coil and the output eoupling eoil. Harmonics of the output frequency transferred in this way can be greatly reduced by providing sufficiont selectivity betwon the fimal tank and the transmission line. I good deal of selectivity, amoming to 20 to 30 dt . reduction of the socend harmonic and much higher reduction of higher-order hamonies, is furnished be a matehing circuit of the type shown in Fig. 23-I! and deseribed in the ehapter on transmission lines. An "antemat coupler" is therefore a worthwhile addition to the tramsmitter.

Ln 50) and 14-Me. transmittors, particularly, hamonies not directly asociated with the outpht frequenty - such as those generated in low-froquency early stages of the tramsmitter - maty get coupled to the antema bey stray means. For example, a $14-$-Ma. transmitter might have an oscillator or freguency multiplier at 48 Mc ., followed by a tripler to $1 H^{\text {a }}$ Ma. Some of the 48-Mr. chergy will appear in the plate cireuit of the tripher, and if passed on to the grid of the final amplifior will apmear as a 48 - . Ice modulation on the 1H-Me, signal. This will camse a spurious signal at 192 Mr ., which is in the high Tr band, and the seleretivity of the tank eireuits may not bo sufficiont to prevont its being couphed to the antemat spurious signals of this type can be redured be using link coupling between the driver stage and final amplifior (and betweon earlion stages as well) in addition to the suppression afforded by using an antenna coupler.

Capacitive Coupling

Harmonios and other spurious signals transferred from the tank be stray capacitance are not suppresed bey an antenna coupler to the same extent ats those bramsterred by pure indurtive esupling. 'The upper drawing in Fige 2:3-20 shows tho link-oouphed system ase it might be used to couple into: paralled-romductor line. Intamurh as a coil is a sizable motallic object, there is capacitance between the final tank roil and its associated link coil, and botwern the antematank

 shown ledow, for v,h.f. harmonies.
eoil and its link. limery eoupled through these (apateitane travels over the link rireuit and the tramsmission line as though these were merely single conductors. The tuned circuite simply and as masses of motal and offer mo selectivity at all for eapacity-coupled energe. Although the artual caparitances are small, they offor a vory grood roupling medium for fiecuences in the v.h.f. range.

Caparitive coupling can be reduced by coupling to a "eold" point on the tank coil - the end connereded to ground or cathode in a single-roded stage. In push-pull rircuits having a split-stator condenser with the rotor grounded for r.f., all parts of the tank coil are "hot" at even harmonies, but the center of the coil is "cold" at the fundamental and old harmonies. If the renter of the tank roil, rather than the rotor of the tank condenser, is grounded through a be-pass rontenser the conter of the coil is "cold" at all frequeneios. but this arrangement is not vary desimble berades it causes the harmonic currents to flow through the coil rather than the tank comdenser and this increases the hamonic transfer bẹ pure inductive coupling.

With either single-ended or balaneed tank cireuits the coupling eoil should be grounded to the chassis he a short, direct commertion as shown in Fig. 23-21. If the coil feeds a balaned line or link,
it is proferable to ground its center, hut if it feeds a come line or link one side masy be grounded. Comaial output is much proferable to balanem output, because the harmonics have to stay insiole a properly installed coax systom and temil to be atternated by the eable before reathing the antennas compler.

At high frefuemeios - and possibly as low as 14 Me. - raparitive coupling can be greatly reduced be using a shiedded compling coil as shown in Fig. 2:3-22. The inner conductor of a kongth of coaxial cable is used to form a one-turn coupling coil. The outcor conduetor serves as an opern-eireuited shiedd around the turn, the shicld boing grounded to the chassis. The shiclding has no effect on the inductive coupling. Beremase this eonstruction is suitable only for one turn, the coil is not well adapted for use on the lower frequencios where many turns are reguired for good compling. Shicded eompling eoils having a larger mumber of turns atre available commercially. A shoded coil is particularly usoful with push-pall amplifiers when the suppression of acen hamomies is important.

A shieded compling coil or coaxial output will mot prevent stray eapacition eoupling to the anteman if harmonic curronts can flow over the outwide of the coan line. In Fig. 23-23, the arrangement at rither A or C will allow r.f. to flow over the outside of the cable to the antenna system. The proper way to use coaxial cable is to shield the transmitter completely, as shown at 13 , and make sure that the outer condurtor of the cable is a contiauation of the transmitter shielding. This

Fig. 23.22 - Shielded coupling coil construeted from coaxial cable. 'The smaller sizes of cable such as R(G.59/U are most ronvenient when the coil diameter is 3 inches or less, hecanse of greater flexibility. For larger coils RG:8/U or LRG-II/U ran le used.

Fig. 2.3-2I-Nethorls of roupling and grounding link circuits tor roduce capacitive cobuling lef ween the tank and link coils. Where the link is wound over one end of the tank roil the side toward the hot ent of the tank should lee groumbed, as shown at B.

prevents r.f. inside the transmitter from getting out he any path exerept the inside of the cable. IHarmonics flowing through a coas line can be stopped from reaching the antenna system by an antema coupler or bey a low-pass filter installed in the line.

(B)

(C)
(A)

(B)

(C)

Fig. 23-23 - Right (13) and wrong (A and C) ways to conneet a coaxial line to the transmitter. In either A or C, hamonic mergy conpled by atray capacitance to the outside of the calle will llow without himdrance to the antenna system. In 13 the energy camot leave the shichd and henee can flow ont only throush, not over, the cable.

Low-Pass Filters

A low-pass filter properly installed in a coaxial line, feeding either a matching circuit (antemna coupler) or feeding the antenna directly, will provide very great attenuation of harmonics. When the main transmission line is of the parallel-conductor type, the coas-coupled matehing-eircuit arangement is highly recommended as a means for using a com low-pass filter.

Fia. 2:3-24- In inexpensive low-pans filter usings silvermica postage-stamp condenserx. The box is a 2 by thy 6 aluminum chassis. Aluminum shields, bent and folded at the sides and bottom for fastening to the chassis, form shields between the filter seetions. "The diagonal arrangement of the shields provides oxtra roon for the coils and makes it easier to fit the shiclats in the box, since bending to exact dimensions is not essential. 'The fottom plate, made fron sheet aluminum, extends a half inch heyond the ends of the chassis and is provided with mounting holes in the extensions. It is held on the chassis with sheet-metal sorews.

A properly-designed low-pass filter will not introduer appreciable power loss at the fundamental frequency if the coaxial line in which it is inserted is terminated so that the s.w.r. is low. (The s.w.r. can easily be measured by means of a simple bridge as deseribed in the ehspoters on measurements and transmission lines.) Such a filter has the property of passing without loss all frequencies below its "cut-off" frequency, but simultameously has large attemation for all fregueneres alwove the reut-off frequency.

Low-pass filters of simple and inexpensive construction for use with transmitters operating bo low 30 Mc. are shown in Figs. 2:3-24 and 2:3-26. These abe designed to use micu condensers of readily-available caparoitance valuos, for combparthess and low cost. Both use the simme cireuit, Fig. 2:3-25, the only difference being in the L and C vabucs. Texhnieably, they are theresecetion filters having two full constant-h sections and two m-derived terminating half-sections, and their attenuation in the $54-88-$ Mc. range varies from over 50 to nearly $\bar{\sigma} 0$ db., depending

Fia. 2:3-25- Low-pats filter circuit for atternating harmonics in the ' T hands. J_{1} and J_{2} are chassis-type condial comectors, In the table below the letters refer to the following:
A- Constructod as in Fig, 23.2 1 , using 100- and :0$\mu \mu \mathrm{fd}$. $\mathbf{5}$ (o) volt silver mica mondensers in parallel for C. 2 and C3.
\mathbf{B} - Same as 1 hut with $\mathbf{7} 0$ - and $50-\mu \mu \mathrm{fd}$. silver mica condensers in parallel for C_{2} and C_{3}.
C - Constructed as in l'ig. $23-26$, using 100- and 50 $\mu \mu \mathrm{fl}$. mira mondensers, 1200-volt (ease-style CM. 4,5 in varallel for C_{2} and C_{3}.
I) and \mathbf{E} - Constrmeted with variable condensers, 500. io 1000-volt rating, adjusted to values given,

	A	13	(1)	E	
70	i2	-i	32	52	7	ohins
f.	36	35.5	41	40	40	31:.
f_{∞}	111	15	5.1	S0	510	Mr.
f	2.5 .5	2.5 .2	29	28.3	28.3	Mc.
f_{2}	32.	31.8	37.5	36.1	36.1	Mr.
Ci, Cid	50	40	50	46	32	$\mu \mu \mathrm{fd}$.
C.2, Cis	$1: 10$	1211	1.50	1.51	106	$\mu \mu \mathrm{fl}$.
L_{11}, L_{5}	51/2	6	4	5	61/2	turn**
$L_{2,1.4}$	8	111	\%	7	9) $1 / 2$	turnis*
1.3	9	13	8	$81 / 2$	$111 / 2$	turns*

* No. 12 or No. 14 nire, $1 / 2$ inch inside diameter, 8 turns per inch.
1 I G-turn coil with doser turn spacing to give the same induetance is shown in Figs, 23-21.
on the frequener and the particular set of values used. Above $17+\mathrm{Me}$. the theoretiral attenuation is better than 85 db., but will depend somewhat on internal resonant conditions assoriated principally with the lead lengthes to the rondensers. These leads should be kept as short as is physically possible.

The power that these filters can handle safely is determined by the voltage and current limitations of the misa rondensers. These limitations are such that the power caunarity is least at the highest frequence. The unit using postage-stamp silver micat condensers is capable of handling approximatoly so watts in the 28-Mc. band, when working into : properlymatehed line, but is good for about 150 watts at 21 Mr. and 300 wattes at 14 Mr. and lower frequencies. The unit with the larger mica rondensers (ase-type (M-45) will earry about 250 watts safely at 28 Mr ., this rating increasing to 500 watts at 21 Mc, and a kilowat at $1+$ Me, and lower. If there is an appreeriahle mismateh betwern either filter and the line into which it works, these ratings will be considerahly decreased. so in order to avoid condenser fature it is highly essential that the line on the output side of the filter be carefully matehed bey its load. This a an be done with an s.w.r. bridge, and the matching is ensy to control if the line from the filter terminates in a matrhing cireuit of the type deseribed in the chapter on tramsmission lines.

The power capacity of these filters can be increased considerably by substituting r.f. type

Fig. 23-26 - Inw-pass filter using case-type CM-45 condensers. The box is a 2 by 5 by 7 alumimum chassis. fitted with a bottom plate of similar construction to the one used in Fig. 23.24.

Figs. 23-27 - Inw-pass filter for use with 50-Mc. transmitterk and 52 -ohm line, It uses variatile air condensers adjusted to the proper capacitance values and is suited to powers up to a kilowatt.
fixed condensers (such as the Centrabah 850) serios) or variable air condensers, in whieh event the power capability will be such as to handle the maximum amateur power on any band. The construction can be modified to atecommodate either of the latter types of condenser, using a similar layout in a larger box.

Lsing condensers of standard tolerances, there should be little difficulty in getting proper filter operation, A grid-dip meter with an aceurate calibration should be used for adjustment of the coils. First, wire up the filter without L_{2} and L_{4}. Short-rircuit J_{1} at its inside end with a serewdriver or similar conductor, couple the grid-dip metere to L_{1} and adjust the inductane of L_{4}, by varying the furn spacing, until the circuit resonates at $f_{\text {so }}$ as given in the table. Do the same thing at the other end of the filter with L_{5}. Then couple the meter to the rircuit formed by L_{3}, C_{2} and C_{3}, and adjust L_{3} to resonate at the froquenery f_{1} th given by the table. Then remove L_{3}, install L_{2} and L_{4} and adjust L_{2} to make the circuit formed by L_{1}, L_{2}, C_{1} and C_{2} (without the short arross \dot{J}_{1}) resonate at f_{2} as given in the table. Do the same with L_{4} for the circuit formed by $^{-1} L_{44}, L_{5}, C_{3}$ and C_{4}. Then replare L_{33} and cherek with the grid-dip meter at any coil in the filter; a distinet resonance should be found at or very close to the cut-off frequency, f_{c}. The filter is then ready for use.

The filter constants suggested at D and F in Fig. 2:3-25 are bised on the optinum design for good impedane chamateristios - that is, with $m=0.6$ in the end sections - and a cut-off fre-
quency below the RFTMA standard i,f. for television receivers (sound carrier at 41.25 Me.; pieture earrier at 45.75 Mr.). This is to avoid possible harmonic interference from 21 Mc, and below to the receiver's intermediate amplifior. The ot her dexigns similarly cut off at 4 ME . or below, but m in these casos is nerossarily based on the capacitances available in standard fixed condensers.

Filters for 50- and 144-Mc. Transmitters

Since a low-pass filter must have a cut-off frequency above the frequeney on which the transmittor operates, a filter for a v.h.f. transmitter camot be dexigned for attentastion in all trlevision chamels. This is no handicap for v.h.f. work but means that the filter will not be effective when used with lower-frequency transmitters, unless it hapons that no TV channels in use in the locality fall inside the pass-band of the filter.

Fig. 23-27 shows a filter for 52-ohm cons suitable for a 50 - Me transmitter of any power up to the athorized limit. The rireut diagram is given in Fig. 2:3-28. If the values of indurtance

Figs, 2.3-28- (ircuit dianram of the low-pass filtors
 are for the so- Mo. filter. Darlitions are not used in ilue 114. Me, unit.
 to midille of tuning range (Johncen 501.15).

 set with rotor $1 / 4$ inch sut of stator (Buad MC. $905)$.

111 N1•: $38-\mu \mu \mathrm{fd}$, stamd-off by-pasis (birie Style :-II).
$50-\mathrm{Va} \cdot$ coil data:
L.1, I. 5 - $31 / 2$ turns $5 / 8$ imeh leng. 'J'of leands $3 / 4$ inch, bottom leads $1 / 4$ inch leng.
I.2, I.4 - $11 / 2$ turns $5 / 8$ inch long. Leads $1 / 2$ inch longe cach end.
L.3 - $51 / 2$ turns $7 / 8$ inch long. Leads 1 inch long cath.
 length measured betwen right-anghe heonds where teads bemin.
14-Me coil data:
 erifl.
 end.

All 1.1f. V1, emils No. 18 limmel, $1 / 4$-incla diam.,

$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Cfoasial fitting.
and catpacitanoe can be moasured (seo chapter on measurements) the components (an be presed and assembled without further :udjusiment. Nternatively, the grid-dip) moter method deseribed earlier may be used. The resonant frequencies are:

$L_{1}\left({ }^{\prime}{ }_{1}\left(J_{1}\right.\right.$ shorted)	-
$L_{5} \mathrm{C}^{\prime} \mathrm{C}_{4}\left(\mathrm{~J}_{2}\right.$, whorted)	. 5
$L_{33} \mathrm{C}_{2} \mathrm{C}_{3}{ }_{3}$ (L_{20} and L_{4} diswonnorted)	46
	5
$L_{4} L_{5} \mathrm{Cr}_{3} \mathrm{C}_{4}\left(L_{3}\right.$ diswonnereted)	

 (4 , are mounted with their two statom posts toWatd the ends of the filter. The two harger unitsare mounted it the center compartment with their rotor shatte toward the middle. The top leads from coils L_{1} and L_{5} are wrapped around the stator terminats of Col and (\% and the bottom leads fit directly into the comaialinput and output fittings. The outer rods of coils L_{2} and L_{4} are soldered to the comsial titting terminals, and their immer ends ate soldered to lugs supported on oneinch ceramier stand-6fl insulators. Leads from the stand-olls go through holes in the partitions to the bottom stator lugs on ('2 and ('3. La is solderent to the two upper lugs on these two caparitors, thus completing the filter cireuit. Ia and lengthes for the enils givern in the parts list are the total lengthe to be left when the winting is empleted, including the portions that will he used in soldering operations.
This filtor will give high attenuation in (hamnols $1-6$ and all the high-band ehammels, and thus will take care of most of the spurious signals generated in a mollo. tramsmitter.

A filter for low-power 14-Me, tramsmittors is shown in Fig. 2:3-2!, It is designed for maximum attontation in the $19(-215$ Ma region to suppress the spurious radiations in that range that froquently oreur with 1-4-Mc. transmitters, but aloo has good at tembation for atl frequene ies above
 in Fig. 2:-2x. If posible. sererall mits of the nearest stambard values available should be mesurured and thuse having valutes chasest to the optimum used, The induetane values are tow
 the filter should the adjusted he the following menthod:

First, mount L_{1} and (${ }_{1}$, short J_{1} temporarily at its immer torminals, and andjust L_{1} until the combination resonates at 200 Ma. as shown by griddip meter. Next. remove the shom from $/ /$ and commer L_{2} and C_{2}^{2} a aljusting L_{2} antil the circont

 . Tiljust L_{23} until the rimuit $L_{3} \mathrm{C}^{\prime} \mathrm{O}^{\prime} \mathrm{C}_{3}$ resonates at 112 Ne. Noxat, diseomed L_{23} and follow a similar proedurestarting from the other end with L_{5} and Ca. linally, reomeret all coils and a cherek at any point in the filtor should show resonamere at liou Me., the approximate cut-off frequenes.

The ease for the 14 - Me. filter is mate from flashing copper and is $1 \frac{1}{4}$ inches sequare $\mathrm{h}_{\mathrm{y}} \mathbf{7} 1 / 8$ inches bong. The matin portion of the case is cut from a single piece with the end tals folded down and soldered to the sides. Flanges ato folded over at the bottom, and a cover is made to slip over these.

Filter Installation

In order to give the harmonic attenuation of which it is capable, a low-pass filter must be installed in such a way that all the output of the damsmitter flows through it. If harmonic currents are permitted to tlow on the outside of the comHecting coaxial cables. they will simply flow over the filter and on up to the antemas, and the filtor does not have an opportunity to stop them. That is why it is so important to reduee the radiation from the tramsmitter and its leads to negligible proportions.

Pig. 23-30 shows the proper way to install :a filter between a shichled transmitter and a matehing circuit. Note that the coma, torather with the shields about the tramsmitter and filter, forms a continuous shied to keep all the r.f. inside. It is thus foreed to flow through the filter and the harmonics are attenuated. If there is no hamonie emerge loft after passing through the filter, shiolding from that point on is not neressary; consoquontly, the matehing cirenit or antenna couphor dens not need to be shiedded. However, the antenna-coupler chassis arrangemont shown in liik. 23-30 is desirable berause it will tend to prevent fundamontal-frequence enorgy from flowing from the matehing eireuit hack over the transmitere; this hedps eliminato feed-loack troubes in audio systems.

If the antema is driven though coaxial line the matehing cireuit shown in Fig. 23-30 may be omitted. In that case the line goes divertly from the filter to the antemat.

When a filter does not seem to give the harmonic attenuation of which it should be capable, the probable reason is that harmonis are be-passing it because of improper installation and inadequate transmitter shiclding. including lead filtering. However, ocrasionally there are cases where therircuits formed by the cables and the apparatus to which they ronneet become resonant at a harmonic froquency. This gratly increases
the harmonic output at that frequency. Such troubles ran be completaly overeome be subslinuting a slighly different cable length. The most aritioal longth is that comecting the tramsmitter to the filter. (Checking with a grid-dip metor at the final amplifior output coil usuallywill show whether an unfavorable resonanee of this type exists.

SUMMARY

The methods of hammenic elimination outlined in this chapter have bern proved bevond doubt to be effertive even under highly unfavorable conditions. It must he emphasized once more. however, that the problem must be solved one step) at a time, and the procedure must be in logical order. It camot be done properly without t wo items of simple epuipment: a grid-dip meter and wavemetor covering the TV bands, and a dummy antenna.

The proper procedure may be summarized as follows:

1) Take a critical look at the transmitter on the basis of the design considerations outlined under "Reducing Harmonic Generation".
2) Chrek all circuits, particularly those conneeted with the final amplifier, with the grid-dip moter to determine whether there are any resonances in the TV bands. If so, rearrange the circuits so the resonanos are moved out of the eritical frequency region.
3) Connect the transmitter to the dummy antemna and check with the wavemeter for the presence of harmonies on leads and around the transmitter enclosure. Seal off the weak spots in the shielding and filter the leads until the wavomoter shows no indication at any harmonie: frequency.
4) At this stage, chock for interference with a TV receiver. If there is interference, dotermine the cause by the mothods described previously and apply the recommended remedies until the interference disappears.
j) When the transmitter is completely clean on the dummy antenna, connect it to the regular antemna and check for interference on the TV reveiver. It the interference is mot bad, an antenna coupler or matehing circuit installed as previously. deseribed should clear it up. Alternatively, a lowpass filter may be used. If neither the antenna coupler nor filter makes any difference in the interforenee, the evidence is strong that the interforence, at least in part, is being caused by reediver overloating because of the strong funda-

Fig. 2.3-30 - The proper method of installing a low-pass tilter between the transmitter and antenna coupler or matehing circuit. If the antenna is fod through wat the matching cirenit may be onitted but the samm romatrurtion shomed be used heetween the transmitter and filter. The filter should be thorouglily shielded.
mental-frequency field about the TV antemat and receiver. (See later soction for identification of fundamental-freguence interference.) A coupler and, or filter, installed as deseribed above, will invariahly make a differenee in the intensity of the interference if the interferener is catased by transmitter harmonies alone.
6) If there is still interferener after installing the eoupler and/or filter, and the evidenee shows that it is prohably caused bey a harmonic, more attemmation is neoded. A more elaborate filter may be necessary. However, it is well at this stage to assume that part of the interference may he eatused by reeciver owerloading. and take steps to alleviate such a condition before trying highlyelaborate filters, traps, etce, on the transmitter.

HARMONICS BY RECTIFICATION

Even though the transmitter is completely free from harmonic output it is still possible for interference to oceur because of hamonies generated outside the transmitter. These result from rectification of fundamental-frequency currents induced in conductors in the vicinity of the transmitting antema. Rectification can take pace at any point where two conductors are in poor electrical contact, a condition that froquently exists in plumbing, downspouting, I3. cables crossing each other, and numerous other places in the ordinary residence. It also can orcur in any exposed vacuum tubes in the station, in power supplies, speech equipment, etc., that maty not be enclosed it the shielding about the r.f. circuits. Poor joints anywhere in the antemma system are expecially bad, and rectification also may take plare in the contares of antenna changeover relays. Another common cause is overlonding the front end of the communioations reediver when it is used with a separate antemas (which will radiate the hamonics generated in the first tube) for break-in.

Rectification of this sort will not only cause hitrmonic interference but also is frequently responsible for cross-modulation effects. It cin be detected in greater or less degree in most lorations, but fortunately the harmonies thus generated are not usually of high amplitude. Ilowever, they can cause considerable interference in the immediate vicinity in fringe areas, especially when operation is in the 28-Mc. band. The amplitude decreases rapidly with the order of the harmonic, the second and third being the worst. It is ordinarily found that even in cases where destructive interference results from 28-Mc. operation the interference is comparatively mild from 14 Mc ., and is negligible at still lower frequencies.

There is nothing that can be done at either the transmitter or receiver when rectification occurs. The remedy is to find the source and eliminate the poor contact either by separating the conductors or bonding them together. A crystal wavemeter (tuned to the fundamental frequency) is useful for hunting the source, by showing which conductors are carrying r.f. and, comparatively, how much.

Interference of this kind is frequently intermittent, since the rectification efficieney will vary with vibration, the weather, and so on. The possibility of corroded contacts in the TV rerojving antonnat should not be overlooked, esperially if it has heen up a year or more.

TV RECEIVER DEFICIENCIES

Front-End Overloading

When a television receiver is quite close to the transmitter, the intense r.f. signal from the transmitter's fundamental may overload one or more of the receiver circuits to produce spurious responses that ciuse interference.

If the overlond is moderate, the interference is of the same nature as harmonic interference; it is caused low harmonies generated in the early stages of the receiver and, since it occurs only on channels harmonically related to the transmitting frequency, is dificult to distinguish from harmonies actually radiated by the transmitter. In such cases additional harmonic suppression at the transmitter will do no good, but ayy means taken at the receiver to reduce the amateur fundamental strength fed to the first tube will effect an improvement. With more severe overloading interfarence also will oceur on chamnels not harmonically related to the transmitting frequency, so such cases are easily identified.

Cross-Modulation

Under some circumstances overloading will result in cross-modulation or mixing of the amateur signal and that from a lowal F.M or TV station. For example, a $14-$ Me. signal can mix with a 92-Mc. FM station to produre a heat at 78 Me . and cause interference in Chanmel 5, or with a TV station on Chamed 5 to cause interference in Chamel 3. Neither of the chamels interfered with is in harmonie relationship to 14 Me. Both signals have to be on the air for the interference to orcur, and eliminating either at the 'TV receiver will climinate the interference.

There are many rombinations of this type, depending on the band in use and the lowal frequeney assignments to FM and TV' stations. The interfering frequency is equal to the amateur fundamental frequency either added to or subtracted from the frequency of some local station. and when interference orcurs in a TV ehamel that is not harmonically related to the amateur transmitting frequency the possibilities in such frequency combination should be investigated.

I. F. Interference

Some TV receivers do not have sufficient selectivity to prevent strong signals in the intermedi-ate-frequency range from forcing their way through the front end and getting into the i.f. amplifier. The once-standard intermediate frequency of, roughly, 21 to 27 Mc ., is subject to interference from the fundamental-frequency output of transmitters operating in either the 21-
and 27-Me. bands. Tramemitters on 28 Me. sometimes will eatse this tepe of interference as well.

A form of i.f. interference peraliar to 50-Mr. opration near the low edge of the band occurs with some recoivers having the standard "\$1-Me." i.f., which has the sound carrier at 41.25 Me. and the picture carrier at 45.55 Me. A 50 -青e. signal that forees its way into the i.f. system of the receiver will cause a beat with the i.f. pieture carrier that falls on or near the i.f. sound carrier, even though the interfering signal is not actually in the nominal pass-band of the i.f. amplifier.

There is a type of i.f. interference unique to the 144- Me. band in localities where eertain u.h.f. TV ehamels are in operation, affecting only those TV recervers in which double-conversion type plug-in u.h.f. tuning strips are used. The design of these strips involves a first intermediate frequeney that varies with the TV chanel to be received and, depending on the particular strip design, this first i.f. may be in or close to the 14-Me, amateur band. Since there is comparatively little solectivity in the TV signalfrequence circuits ahearl of the first i.f., a signal from a $14-. \lambda($ e transmitter will "ride into" the i.f., even when the receiver is at a considerable distance from the fransmitter. The channels that can be affered by this type of i.f. interference are as follows:

> Recrivers with 21-1/c. secomul i.f.

Channels $14-18$, inc. Chammels 41-48, inc. Chamels 69-75, inc.

Recrivers with $41-1 / 1 c$.

 second i.f. Chanmels 20-25, inc. Chamels 51-58, inc. Chanuels 82 and 83.If the receiver is not close to the transmitter, a trap of the type shown in Fig. 2:3-3:3 will be offertive. Ilowever, if the separation is smatl the 14-Mc. signal will be picked up directly on the reeciver cireuits and the best solution is to readjust the strip oscillator so that the first i.f. is moved to a frequency not in the vicinity of the 14-Mc. hand. This has to be done by a competent technisian.
I.f. interference is easily identified since it occurs on all channeds - although sometimes the intensity varies from channel to chanmel - and the cross-hatch pastern it causes will rotate when the reeceiver's fine-tuning control is varied. When the interference is caused by a harmonic, owerloading, or cross modulation, the structure of the interference pattern does not change as the finetuning control is varied, although its intensity may change.

High-Pass Filters

In all the above cases the interference can be eliminated if the fundamental signal strength can be reduced to a level that the reeciver can handle. To aecomplish this with signals on bands below 30 Me., the most satisfactory device is a highpass filter having a cut-off frequencr between 30 and 50) Mc., installed at the tuner input terminals

Fig. 2.3.31- High-pass filters for installation at the 'T'V recerivar antenna terminals. I - balaneed filter for $\mathbf{3 0 \%}$. ohm line, 13 - for $\overline{-3}$ ohon coaxial line. Important: Do not use a direet ground on an a.c.ed.e, chassis, Ground through a 0.001-mfi, mica condenser.
of the receiver. Circuits that have proved effective are shown in ligs. 2:3-31 and 2:3-32. Fig. 2:3-32 has one more section than the filters of Fig. 2:3-31 and as a consequence has somewhat better cut-off characteristics. All the circuits given are designed to have little or no effect on the T ' signals but will attenuate all sigmals lower in frequency than about 40 Me. These filters preferably should be constructed in some sort of shiclding container, although shielding is not always necessary. The dashed lines in Fig. 2:3-32 show how individual filter coils can be shielded from each other. The condensers can be

Fig. 23-32-Another type of high-pass filter for 300. ohm line. The coils may be wound on $1 / 8$-inch diameter plastie knitting needles. Important: Wo not use a direet ground on an a.c.-d.e. chassis. Ground through a 0.001 ufd, mica condenser.
tubular ceramic units centered in holes in the partitions that separate the coils.
lligh-pass filters cannot be applied successfully in the case of $50-$ Me transmissions, because a filter having a sufficiently-sharp cut-off characteristic to give both good attenuation at 50-54 Me. and no attenuation above 54 Mc . cannot be built, practically. A high- Q wavetrap, tuned to the transmitting frequency, is about the only practical solution. A successful design, using quarter-wave sections of Twin-Lead, is shown in Fig. 2:3-33. These "suck-out" traps absorb energy at the frequency to be eliminated, when carefully tuned. The assembly should be slid along the $T V$ antenna lead-in until the most

Fig. 2:3-3.3-Absurption-1:pe wavetrap using seretions of 300 ohm line tuned to have andertricallength of $1 / 4$ wavelength at the transmitter freguenes. Apmoximate physieal longths (dimension 4) are thinches for 50 V (amd II inches for 141 Me., allowing for the loading effert of the capacitance at the open end, 'lwo traps are used in parallel, one on each side of the line to the receiver. Install close to refriver antenna terminals.

effertive position is found, and then fastemed in place with sootch Tape. An insulated tuning tool should be used for adjust ment of the condenser, since it is at a "hot" proint and will show considerable body-rapacity efforet.

High-pass filters are available commeremally at moderate prices. In this comnetion, it should be understood be all parties comernod that whild an amateur is reponsible for harmonic radiation from his tramsmittor, it is no part of his responsibility to pay for or install filters, wavet raps, ete., that maty be required at the rereiver to prevent interforence caused by his fondamental frequener: The set owner should be alvised to get in touch with the organization from which he purehased the recoiver or which serviers it, to make arrangements for proper installation. Proper installation usually reguires that the filter be installed right at the imput terminats of the r.f. tuner of the 'TV set and not merely at the antema terminals, which may be at a considerable distance from the tuncr. The gucstion of eost is one to be settled beotwern the set owner and the organization with which he deals. some of the larger manufacturers of TO reediers have instituted arrangemonts for eouperating with the set dealor in instaling high-pans filters at no eost to the rereiver owner. FC('-sponsored TVI Committers, now operating in mathe citias, have all the information necessary for effertuating surh arrangements.

If the fundamental signal is getting into the receiver by way of the line cord a line filter such as that shown in Fig. 2:3-4 may help. To lo most effertive it should be installed inside the receiver chassis at the point where the cord enters, making the gromud comeretions direrety to ehasisis at this
pint. It may not be so helpful if phaced botween the line plug and the wall soreket unkess the r.f. is artually pirked up on the honse wiring rather thath on the line cord it andf

Antenna Installation

Mamy tolevision recoivols will respond strongly to parallel eurvents on the recoiving tramsmission line. Isually, the transmission line pieks up a great deal more energy from a near-by transmitter that the television reeciving antenma itsolf, calusing parallel eurrents that should be, but are not, rejerted by the receiver's input cireuit. This situation em be improved by using shichded tramsmisson line - come or, in the babanced form, "twinas" - on the recciving installation. For best rosults the line should terminate in a roax fitting on the rereiver chassis, but if this is not prosible the shield should be grounded to the chassis right at the anterne terminals.

The use of shiclded transmission line for the receiver also will be holpful in reducing response ta harmonies actually being radiated from the transmitter or transmitting antemas. In most receiving installations the transmission line is very much longer than the antenna itself, and is conseguently far more exposed to the harmonie fiolds from the transmittor. Much of the hatmonie pick-up, therefore, is on the reaciving transmission line when the transmitter and roeover are quite elose together. Shicolded line, plus relocation of either the transmitting or receiving antemna to take alvantage of directive effects, often will result in reducing overlozting, as well as harmonic piek-up, to a level that does not intorfere with reception.

U.H.F. Television

Although u.h.f. Idevision is eomparatively new, experience so far intieates that hamonie TVI is far less troublesome in this band than in the v.h.f. TV bathd. Harmonices from transmitters operating below 30 Nr. are of such high order that they would normally be expected to be quite wat; in addition, the components, circuit conditions and construction of low-frequencer transmitters are such as to tend to prevent very strong harmonies from being generated in this region. However, this is not true of v.h.f. transmitters, particularly those working in the 14.-2le. and higher bands. Here the problem is quite similar
to the prohlem of the low v.h.f. TV band with respeet to transmitters operating below 30 Me.

There is one highly favorable fartor in u.h.f. TV that does not exist in the most of the v.h.f. TV band: If harmonios are radiated, it is possible to move the transmitter frequener sufliciently (within the amateur band being used) to avoid interfering with a channel that may be in use in the locality. By restrict ing operation to a portion of the band that will not result in harmonie interference, it is possible to avoid the neressity for taking extraordinary precautions to prevent harmonic radiation.

	${ }_{\text {TABLE }} \mathbf{2 3 .}$						
	$\underset{\substack{\text { Marmonic } \\ \text { til }}}{\text { a }}$				$\substack{\text { lammaric } \\ \text { scl }}$		
	${ }_{\text {sth }}$	14.0.14.4			4 th		${ }^{82}$
				420.3 Mc	${ }^{\text {2nd }}$		${ }_{71}^{7 \%}$
	${ }_{6}$ th						$\underset{\substack{78 \\ 77}}{77}$
			$\begin{aligned} & 80 \\ & 80 \\ & 80 \\ & 80 \end{aligned}$				(in ${ }_{\substack{80 \\ 81 \\ 82}}$

The frequence assigmment for u.h.f. tolovision consists of seventy 6-megacyele chamols (Nos. $1+$ to $8: 3$, inclusive) begiming at ta $^{-1}$ Mo. and ending at 890 Me. The harmonies from amateur bands above 50 Me. span the u.h.f. channels as shown in Table 2;3-I. Since the assignment plan ealls for a minimum separation of six chamels betwern any two stations in one locality, there is ample opportunity to choose a fundamental fro-
quency that will move a harmonic out of range of a lowal TV' frequenes.

The basic mothosk of preventing harmonic ratiation already hespribed will apply equally well in the u.h.f. 'TV region. However, there is comparatively little information as yot on the best types of components for these frequencies. It is anticipated also that modifications of the terehingues will be developed to give improved harmonic suppression as experience is acquired.

Color Television

It is probable that a number of stations will begin transmitting television programs in color during 195t, hut it is not experted that any very considerable number of recerivers cajable of color reproduction will be in use immediatele. 'The color TV system now proposed uses a subcarion frequeney spared 3.58 megaededes from the regular picture carrier (or $4.8: 3$ Me. from the low edge of the chamel) for transmitting the color infor-
mation. Harmonies which fall in the color subcarrior region caln be expected to cause break-up of color in the received pioture. This modifies the chart of Fig. 2:3-7 to introluce another "severe" region erontering around 1.8 Me. measured from the low-frequency odge of the channel. Hence with color telavision reception there is less opportunity to avoid harmonic interference by choice of operating frequency.

Construction Practices

TOOLS AND MATERIALS

While an easier, and perhaps a better, joh can be done with a greater variety of tools available, by taking a little thought and care it is possible to turn out a fine piese of equipment with only a few of the common hand tools. A list of tools which will be indispensable in the construction of radio equipment will be found on this page. With these tools it should be possible to perform any of the required operations in preparing

INDISPENSABLE TOOLS

Long-nose pliers, 6 -inch.
Diagonal cutting pliers, 6-inch.
Wire stripper.
Screwdriver, 6- to 7 -inch, $1 / 4$-inch blade.
Screwdriver, 4 -to 5 -ineh, $1 / 8$-inch blade.
Scratch awl or seriber for marking lines.
Combination square, 12 -inch, for laying out work.
Hand drill, $1 / 2$-inch chuck or larger, 2 -speed type preferable.
Eleetric soldering iron, 100 watts, $1 / 4-\mathrm{in}$, tip.
Hack saw, 12-inch blades,
Center punch for marking hole centers.
Hanmer, ball-peen, 1-lh. head.
Heavy knife.
Yardstiek or other straightedge.
Carpenter's brace with adjustable hole cutter or socket-hole punches (see text).
Large, coarse, flat file.
Large round or rat-tail file, $1 / 2$-inch diameter.
Three or four small and medium files-flat, round, half-round, triangular.
Drills, particularly $1 / 4$-inch and Nos. 18, 28, 33, 42 and $\overline{5} 0$.
Combination oil stone for sharpening tools.
Solder and soldering paste (noncorroding).
Medium-weight machine oil.

ADDITIONAL TOOLS

l kench vise, 4 -inch jaws.
'l'in shears, 10 -inch, for rutting thin sheet metal. Taper reamer, $1 / 2$-inch, for enlarging small holes.
Taper reamer, 1 -inch, for enlarging holes.
Countersink for brace.
Carpenter's plane. 8- to 12-inch, for woodworking.
Carpenter's saw, crosscut.
Motor-driven emery whed for grinding.
Long-shank serewdriver with screw-holding clis for tight places.
Set of "Spintite" socket wrenehes for hex nuts. Set of small. flat, open-end wrenches for hex nuts. Wood chisel, $1 / 2$-inch.
Cold chiset, $1 / 2$-ineh.
Wing dividers, 8 -inch, for seribing circles.
Set of maehine-screw taps and dies.
Dusting brush.
Soeket funches, esp. $1 / 8^{\prime \prime}$ and $11 / 4^{\prime \prime}$.
panels and metal chassis for assembly and wiring. It is an excerlent idea for the amateur who does constructional work to add to his supply of tools from time to time as finances permit.

Several of the pieces of light woodworking machinery, often sold in hardware stores and mail-order retail stores, are ideal for amateur radio work, especially the drill press, grinding head, band and circular saws, and joiner. Although not essential, they are desirable should you be in a position to acquire them.

Twist Drills

Twist drills are made of either high-speed sted or carbon steel. The Iatter type is more common and will usually be supplied unless sperific request is made for high-speed drills. The carbon drill will suffere for most ordinary equipment construction work and costs less than the high-speed type.

While twist drills are available in a number of sizes those listed in bold-faced type in Table 24-I will be most commonly used in construction of amateur equipment. It is usually desirable to purchase several of cach of the commonly-used sizes rather than a standard set, most of which will be used infreguently, if at all.

Care of Tools

The proper care of tools is not alone a matter of pride to a good workman. He also realizes the energy which may be saved and the ammorance which mave be afoded by the possession of a full kit of well-kept sharp-edged tools.

Drills should be sharpened at frequent intervals so that grinding is kept at a minimum each time. This makes it easier to maintain the rather critical surface angles required for best cutting with least wear. Occasional oilstoning of the rutting edges of a drill or reamer will extend the time between grindinge.

The soldering iron can be kept in good condition by keeping the tip well timed with solder and not allowing it to run at full voltage for long periods when it is not being used. After each period of use, the tip should be removed and cleaned of any scale which may have acrumulated. An oxidized tip may be cleaned by dipping it in sal ammoniac while
hot and then wiping it clean with a rag. If the tip becomes pitted it should be filed until smooth and bright, and then tinned imnediately hy dipping it in solder.

Useful Materials

Small stocks of various miscellaneous materials will be required in constructing radio apparatus, most of which are available from hardware or radio-supply stores. A representative list follows:

Sheet aluminum, 16 or 18 gauge for brackets and shielding.
$1 / 2 \times 1 / 2$-ineh aluminum angle stock.
$1 / 4$-inch diameter round brass or aluminum rod for shaft extensions.
Machine serews: Round-head and flat-head, with muts to fit. Most useful sizes: 4-36, 6-32 and 8-32, in lengths from $1 / 4$ inch to $11 / 2$ inches. (Nickel-plated iron will be found satisfactory except in strong r.f. fields, where brass should be used.)
Bakelite, lucite and polystyrene scraps.
Soldering lugs, panel bearings, rubber grommets, terminal-lug wiring strips, var-nished-cambrie insulating tubing.
Shiekded and unshielded wire.
l'imued hare wire, Nos. 22, 14 and 12.
Machine screws, nuts, washers, soldering lugs, etce, are most reasonably purrhased int quantities of : gross.

CHASSIS WORKING

With a few essential tools and proper procedure, it will be found that building radio gear on a metal chassis is no more of a chore than building with wood. and a more satisfactory job results. Aluminum is to be preferred to steed, not only because it is a superior shiclding material, but because it is much easier to work and to provide good chassis contacts.

The placing of components on the chassis is shown quite clearly in the photographe in this Handbool: Aside from certain essential dimensions, which usually are given in the text, exact duplication is not necessary.

Much trouble and energy can be saved by spending suflicient time in planning the job. When all details are worked out beforehand

Fig. 24.1 - Method of measuring the heights of condenser khafts, etc. If the square is adjustable, the end of the scale should be set flush with the face of the hearl.

TABLE 24-I			
Numbered Drill Sizes			
Number	$\underset{(\text { mils })}{\text { Diameter }}$	Will ('lear Screw	Drilled for Tapping Iron, Steel or Brass*
1	228.0	-	-
2	221.0	12-24	-
3	213.0	-	14-24
4	209.0	12-20	-
5	205.0	-	-
6	204.0	-	-
7	201.0	-	-
8	199.0	-	-
9	196.0	-	-
10	143.5	10-32	-
11	191.0	10-24	-
12	189.0	-	-
13	185.0	-	-
14	182.0	-	-
15	180.0	-	-
16	177.0	-	12-24
17	173.0	-	-
18	189.5	8-32	-
19	166.0	-	12-20
20	161.0	-	-
21	159.0	-	10-32
22	157.0	-	
23	154.0	-	-
24	152.0	-	-
25	149.5	-	10-24
26	147.0	-	-
27	144.0	-	-
28	140.0	6-32	-
29	138.0	-	8-32
30	128.5	-	-
31	120.0	-	-
32	116.0	-	-
33	113.0	4-36, 4-40	-
34	111.0	-	-
35	110.0	-	6-32
36	106.5	-	-
37	104.0	-	-
38	101.5	-	-
39	099.5	3-4N	-
40	1998.0	-	-
41	096.0	-	-
42	093.5	-	4-38, 4-40
43	089,0	2-50	-
44	086,0	-	-
45	082.0	-	3-48
46	081.0	-	-
47	078.5	-	-
48	076,0	-	-
49	183.0	-	2-56
50	070.0	-	-
51	067.0	-	-
. 22	063.5	-	-
S3	059.5	-	-
-4.	(1).5. $\mathrm{C}^{\text {c }}$	-	-
* Ese one size larger for tapping hakelite and hard ruhber.			

the actual construction is greatly simplified.
Cover the top of the chassis with a piece of wrapping paper or, preferably, cross-section paper, folding the edges down over the sides of the chassis and fastening with adhesive tape. Then assemble the parts to be mounted on top of the chassis and move them about until a satisfactory arrangement has been found, keeping in mind any parts which are to be mounted underneath, so that interferences in mounting may be avoided, Place condensers and other parts with shafts extending through the panel first, and arrange them so that the controls will
form the desired pattern on the panel. Be sure to line up the shafts squarely with the chassis front. Locate any partition shields and panel brackets next, and then the tube sockets and any other parts, marking the mounting-hole centers of each accurately on the paper. Watch out for condensers whose shafts are off center and do not line up with the mounting holes. Do not forget to mark the centers of socket holes and holes for leads under i.f. transformers. etc., as well as holes for wiring leads. The small holes for socket-mounting screws are best located and center-punched, using the socket itself as a template, after the main center hole has been cut.

By means of the square, lines indicating accurately the centers of shafts should be extended to the front of the chassis and marked on the panel at the chassis line, the panel being fastened on temporarily. The hole centers may then be punched in the chassis with the center punch. After drilling, the parts which require mounting underneath may be located and the mounting holes drilled, making sure by trial that no interferences exist with parts mounted on top. Mounting holes along the front edge

Fig. 24.2 - To cut rectangular holes in a chassis corner, holes may be filed out as shown in the shaded portion of IS, making it possible to start the hack-saw blade along the cutting lime. A shows how a single. ended handle nay be constructed for a hack -saw blade.
of the chassis should be transferred to the panel, by once again fastening the panel to the chassis and marking it from the rear.

Next, mount on the chassis the condensers and any other parts with shafts extending to the panel, and measure accurately the height of the center of each shaft above the chassis, as illustrated in Fig. 24-1. The horizontal displacement of shafts having already been marked on the chassis line on the panel, the vertical displacement can be measured from this line. The shaft centers may now be marked on the back of the panel, and the holes drilled. Holes for any other panel equipment coming above the chassis line may then be marked and drilled, and the remainder of the apparatus mounted. Iloles for terminals etc., in the rear edge of the chassis should be marked and drilled at the same time that they are done for the top.

Drilling and Cutting Holes

When drilling holes in metal with a hand drill it is important that the centers first be lorated with a center punch, so that the drill point will not "walk" away from the center when starting the hole. When the drill starts to break through, special care must be used. Often it is an advantage to shift a two-speed drill to low gear at this point. Holes more than $1 / 4$ inch in diameter may be started with a smaller drill and reamed out with the larger drill.

The chuck on the usual type of hand drill is limited to $1 / 4$-inch drills. Although it is rather tedious, the $1 / 4$-inch hole may be filed out to larger diameters with round files. Another method possible with limited tools is to drill a series of small holes with the hand drill along the inside of the diameter of the large hole, placing the holes as close together as possible. The center may then be knocked out with a cold chisel and the edges smoothed up with a file. Taper reamers which fit into the carpenter's brace will make the job easier. A large rattail file clamped in the brace makes a very good reamer for holes up to the diameter of the file, if the file is revolved counterclockwise.

For socket holes and other large round holes, an adjustable cutter designed for the purpose may be used in the brace. Occasional application of machine oil in the cutting groove will help. The cutter first should be tried out on a block of wood, to make sure that it is set for the correct diameter. The most convenient devier for cutting socket holes is the socket-hole punch. The best tepe is that which works by turning a take-up screw with a wronch.

Rectangular Holes

Square or rectangular holes may be cut out by making a row of small holes as previously described, but is more easily done by drilling a $1 / 2$-inch hole inside each corner, as illustrated in Fig. 24-2, and using these holes for starting and turning the hack saw. The sockethole punch and the square punches which are now available also may be of considerable assistance in cutting out large rectangular openings. The burrs or rough edges which usually result after drilling or cutting holes may be removed with a file, or sometimes more conveniently with a sharp knife or chisel. It is a good idea to keep an old wood chisel sharpened and available for this purpose. A burr reamer will also be useful.

CONSTRUCTION NOTES

If a control shaft must be extended or insulated, a flexible shaft coupling with adequate insulation should be used. Satisfactory support for the shaft extension can be provided by means of a metal panel bearing made for the purpose. Never use panel bearings of the nonmetal type unless the condenser shaft is grounded. The metal bearing should be connected to the chassis with a wire or grounding strip.

This prevents any possible danger of shock.
The use of fiber washers between ceramic insulation and metal brackets, screws or nuts will prevent the ceramic parts from'breaking.

Cutting and Bending Sheet Metal

If a sheet of metal is too large to be cut conveniently with a hack saw, it may be marked with scratches as deep as possible along the line of the cut on both sides of the sheet and then clamped in a vise and worked back and forth until the sheet breaks at the line. Do not carry the bending too far until the break begins to weaken; otherwise the edge of the sheet may become bent. A pair of iron bars or pieces of heavy angle stock, as long or longer than the width of the sheet, to hold it in the vise will make the job easier. "C"-clamps may be used to keep the bars from spreading at the ends. The rough edges may be smoothed up with a file or by placing a large piece of emery rloth or sandpaper on a flat surface and running the edge of the metal back and forth over the sheet.

Bends may be made similarly. The sheet should he scratched on both sides, but not so decply as to cause it to break.

Finishing Aluminum

Aluminum chassis, panels and parts may be given a sheen finish by treating them in a caustic bath. An enamelled container, such as a dishpan or infant's bathtub, should be used for the solution. Dissolve ordinary household lye in cold water in a proportion of $1 / 4$ to $1 / 2$ can of lye per gallon of water. The stronger solution will do the job more rapidly. Stir the solution with a stick of wood until the lye crystals are complete dissolved. Be very careful to avoid any skin contact with the solution. It is also harmful to elothing. Sufticient solution should be prepared to cover the piece completely. When the aluminum is immersed, a very pronounced bubbling takes place and ventilation should be provided to disperse the escaping gas. A half hour to two hours in the solution should be sufficient, depending upon the strength of the solution and the desired surface.

Remove the aluminum from the solution with sticks and rinse thoroughly in cold water while swabbing with a rag to remove the black deposit.

DECIMAL EQUIVALENTS OF FRACTIONS			
1/32.	.03125	17,32.	. 33125
1/16	.062:	$9 / 16$. 5625
3.32 .	.09375	19/32,	. 59375
1/8.	.125	5/8	. 625
5/32.	. 15 (i2.	21/32.	. 65625
3/16.	. 1875	11/1	. 687.
7/32.	.21875	23, 32.	. 71875
1/4	. 25	34	. 75
9/32.	.28125	25/32.	.7812.)
5/16.	. 3125	13/1	. 8125
11/32.	. 34375	27/32.	. 81375
3/8.	. 375	7/8	. 875
13, 32.	.40625	29/32.	. 90625
7/16.	.4375	15/1	. 9375
15/32.	. 46875	31/32.	. 96885
1/2...		1.	1.0

Then wipe off with a rag soaked in vinegar to remove any stubborn stains or fingerprints. (See May; 1950, QST for a method of coloring and anodizing aluminum.)

Soldering

The secret of good soldering is in allowing time for the joint, as well as the solder, to attain sufficient temperature. Enough heat should be applied so that the solder will melt when it comes in contact with the wires being joined, without touching the solder to the iron. Always use rosin-core solder, never arid-core. Except where absolutely necessary, solder should never be depended upon for the mechanical strength of the joint; the wire should be wrapped around the terminals or clamped with soldering terminals.

When soldering crustal diodes or carbon resistors in place, especially if the leads have been cut short and the resistor is of the small $1 / 2$-watt size, the resistor lead should be gripped with a pair of pliers up close to the resistor so that the heat will be conducted away from the resistor. Overheating of the resistor while soldering can cause a permanent resistance change of as much as 20 per cent. Also, mechanical stress will have a similar effect, so that a small resistor should be mounted so that there is no appreciable mechanical strain on the leads.

Trouble is sometimes experienced in soldering to the pins of coil-forms or male cable plugs. It helps first to tin the inside of the pins by applying soldering paste to the hole, and then flowing solder into the pin. Then immediately clear the solder from the hot pin by a whipping motion or by blowing through the pin from the inside of the form or plug. Before inserting the wire in the pin, file the nickel plate from the tip. After soldering, round the solder tip off with a file.

When soldering to sockets, it is a good idea to have the tube or coil form inserted to prevent solder running down into the socket prongs. It also helps to conduct the heat away when soldering to polystyrene sockets, which often soften under the heat of the iron.

Wiring

The wire used in connecting up amateur equipment should be selected considering both the maximum current it will be called upon to handle and the voltage its insulation must stand without breakdown. Also, from the consideration of TVI, the power wiring of all transmitters should be done with wire that has a braided shielding cover. Receiver and audio circuits may also require the use of shielded wire at some points for stability, or the elimination of hum.

No. 20 stranded wire is commonly used for most receiver wiring (except for the highfrequency circuits) where the current does not exceed 2 or 3 amperes. For higher-current heater circuits, No. 18 is aviilable. Wire with cellulose acetate insulation is good for voltages up to about 500 . For higher voltages, thermoplastic-insulated wire should be used. Inexpensive wire strippers that make the removal of insulation from hook-up

Fip, 24-3-Calle-stripping dimensions for Jones Type P-101 pluge, Smaller dimensions are for $1 / 4-\mathrm{in}$ (h) pluge, the larger dimensions for $1 / 2$-inch phage. As indicated in C, the remaining copper braid is wound with bare or tinned wire to make a snug lit in the sleeve of the plug.
wire an easy jol) are available on the market.
In cases where power leads have several bramehes in the chassis, it is convenient to use fiber-insulated tie points or "lug strips" as anchorages or junction points. Strips of this type the abso useful as insulated supports for resistors, r.f. chokes and eondensers. I ligh-voltage wiring should have exposed points held to at minimum, and those which eamot be avoided should be rendered as inturessible as possible to areidental contact or short-cirenit.

Where shiedded wire is called for and capacitance to ground is not a fitetor, Belden type 8885 shielded grid wire may be used. If capoleitance must be minimized, it may be necessary to use a piece of car-radio low-enparitance lead-in wire, or coaxial cable.

For wiring high-frequency eireuits, rigid wire is of ten used. Bare soft-drawn tinned wire, sizes 22 to 12 (depending on mechanical requirements), is suitable. Kinks cun be removed lyy stretching a piece 10 or 15 feet long and then cutting into short lengths that ean be handled eonveniently: R.f. wiring should be rum directly from point to print with a minimum of sharp bends and the

Fif, 24-4-Dinensions for stripping $1 / 2$-inch calle to fit Imphenol 'I'ype 83-1sI' (I'. -259) pling.

Fig. 29-5 - Methon of assembling $1 / 4$-inch calle, Am. pheool 'I'yme 83-1.4' ($11_{0}=259$) phag and adapter.
wire kept well spaced from the chassis or other grounded motal surfines. Where the wiring must pass through the chassis or a partition, a dearance hole should be cut and lined with a rubber grommet. In (ase insulation becomes nevessary, varnished cambibe tubing (spatghetti) can be slipped over the wire.

In transmitters where the peak voltage dors not expeed 2500 volts, the shiekfed grid wire mentioned above should be satisfactory for power cirruits. For higher voltages, Bedden type 8650 ti, [Birnbarel type 1820, or shielded ignition cable can be used. In the case of filament circuits carrwing heavy eurrent, it may be neressary to use No. 10 or 12 bare or enameled wire, slipped through spughetti, and then covered with eopper brad pulled tightly over the spabhetti. The chapter

Fig. 24-6-Stripping dimensions for Amphenol 82-830 and 8:-832 plag-in connectors. The longur exposed loratid is for the first type.

(C)

RIGHT

Fis, 24-7 - Methods of lacing cables. 'Ilie method shown at Ca is more secure, but takes more time than the method of IS. 'The latter is usually adequate for most almateur requirements.
on TVI shows the manner in which shielded wire should be applied. If the shielding is simply slid back over the insulation and solder flowed into the end of the braid, the braid usually will stay in place without the necessity for cutting it back or binding it in place. The brad should be burnished with sandpaper or a knife so that solder will take with a minimum of heat to protect the insulation underneath.
R.f. wiring in tratsmitters usually follows the method described above for receivers with due respeet to the voltages involved.

Power and control wining external to the transmitter chassis preferably should be of shielded wire bound into a eable. Fig. 21-7 shows the correct methods of lacing cables.

Coaxial Plug Connections

Considerable time and trouble can be saved in making cable connections to coaxial plugs by starting out with the correct stripping dimensions. Fig. $24-3$ shows how the end of the cable should be prepared for connecting to Jones Type P-101 plugs. After the exposed braid has been wound, it should be carefully tinned, applying no more heat than is necessary, to avoid melting the inner insulation. A small amount of solder also should be flowed into the sleeve of the plug. Then, when the cable is inserted in the sleeve, the comnection can be made secure by holding the iron against the sleeve until the solder inside melts. While joining the two, the plug may be
held by inserting it in a hole drilled in a board. Figs. 24-4, 24-5 and 24-6 show details of connections to different types of Amphenol plugs and adapters. In Fig. 24-4, it is casiest to cut through to the wire with a sharp knife at a distance of $13 / 16$ inch from the end of the wire and remove the insulation and shiekling in one piece. Then slice off a $1 / 16$-inch piece of polyethylene which may be slid back onto the wire.

After the braid in Fig. 24-5 has been frayed back, it will be necessary to file the braid down as much as possible to make it fit the plug.

COMPONENT VALUES

Values of composition resistors and small condensers (mica and ceramic) are specified throughout this IIandbook in terms of "preferred values." In the preferred-number system, all values represent (approximately) a constant-percentage increase over the next lower value. The base of the system is the number 10. Only two significant figures are used. Table $24-11$ shows the proferred values based on tolerance steps of 20,10 and 5 per cent. All other values are expressed by multiplying or dividing the base figures given in the table by the appropriate power of 10. (For example, resistor values of 33,000 ohms, 6800 ohms, and 150 ohms are obtained by multiplying the base figures by 1000,100 , and 10 , respectively.)
"Tolerance" means that a variation of plus or minus the percentage given is considered satisfact ory. For example, the actual resistance of a " 4700 -ohm" 20 -per-cent resistor can lie anywhere between 3700 and 5600 ohms, approximately. The permissible variation in the same resistance value with $\overline{5}$-per-cent tolerance

would be in the range from 4500 to 4900 ohms, approximately.

Only those values shown in the first eolumn of Table $24-11$ are avalable in 20 -procent tolerance. Additiomal values, as shown in the second columm, are available in 10 -pereront tolerance; still more values can be obtained in 5-per-cent tolerance.

In the component specifications in this IIandbook, it is to be understood that when no tolerance is speofied the largest toleranere avalable in that value will be satisfactory.

Values that do not fit into the preferrednumber system (such as $500,25,000$, etc.) easily can be substituted. It is obvious, for example, that a 5000 -ohm resistor falls well within the folerance range of the 4700 -ohm 20 -per-cent resistor used in the example above. It would not, however, be usable if the tolerance were specified as $\overline{5}$ per cent.

COLOR CODES

Standardized color codes are used to mark values on small components such as composition resistors and mica condensers, and to identify leads from transformers, etc. The resistor-condenser number color code is given in Table 24-111.

Fixed Condensers

The methods of marking "postage-stamp" mica condensers, molded paper condensers, and tubular ceramic condensers are shown in Fig. 21-8. Condensers made to Amerie:m Wior Standards or Joint Army-Navy specifications are marked with the $(i-d o t$ code shown at the top. Practically all surplus condensers are in this eategory. The 3 -dot RETMA code is used for condensirs having a rating of 50 volts and $\pm 20 \%$ tolerance only: other ratings and tolerances are covered by the 6 -dot RETMA code.

Examples: A condenser with a G-dot code has the following markings: Top row, left to right, hack, yellow, violet; hottom row, right to left. brown, silver, red. since the first color in the to, row is black (significant figure zero) this is the AWS code and the condenser has mica dicleetric. The significant figures are 4 and 7 , the decimal maltiplier 10 (brown, at right of second row), so the capacitance is $-170 \mu \mu \mathrm{fa}$. The tolerance is $\pm 10^{\prime}$ '. The final color, the characteristic, deals with temperatura cordficients and methods of testiny, and may le ignored.

I condenaser with a 3 -dot code has the following eolors, loft to right: brown. black, red. The significant figures are 1,0 (10) and the multinlier is 100 . The capacitame is therefore $1000 \mu \mu \mathrm{fd}$.

A conderiser with a b-det conde has the fotlowing markings: 'Top row, left to right, brown. black, blath; beettom row, right to left, black. gold, bhes. sinee the first color in the top row is neither black norsilver, this is the RE'PMA code. The significant figures are 1,0.0 (100) and the decimal multipler is 1 (black). The capacitance is therefore $100 \mu \mu \mathrm{fd}$. The gold dot shows that the tolerance is $\pm 5 \%$ and the blue dot indieates 600 -volt rating.

Ceramic Condensers

Conventional markings for ceramic con-
densers are shown in the lower drawing of Fig. 24-8. The colors have the meanings indicated in Table $24-\sqrt{1}$. In practice, dots may be used instead of the narrou bands indicated in Fig. 24-8.

Example: A ceramic pomdenser has the following markings: Broad hand, violet; narrow bands or dots, grecor, brown, black, grean. The wignifiestht figures are 5,1 (511 and the decimal multiplior is t, so the capacitaner is $51 \mu \mu \mathrm{f}$. The tenperature cofflicient is -7.50 parts per million per dagree ($\%$.. as given by the browd band, and the capacitance folerance is $\pm \overline{3} / 6$.

Fixed Composition Resistors

Composition resistors (including small wirewound units molded in cases identical with the composition type) are color-coded as shown in

RETMA 3 -dot 500 -volt,± 20; tolerance onlv

Fig. 24-8-Color coding of fixed mica, mohled paper, and tubular ceranic contensers. The color code for nica and mohled paper condensers is given in 'Table 24-111. T'alle 24-IV gives the color code for tubular ceramic condensers.

Fik. 24-4 - Color coding of fixed composition resistors. The color code is givell in 'Table 24-1II. The colored areas have the following significance:
A - First significant figure of resistance in ohms
B - Seeronl ignifigant figure.
(: - Herimal multiplier.

1) - Resistance tolerance in per cent. If no color is shown. the toldance is $\pm 20 \%$.

Fig. 24-9. Colored bands are used on resistors having axial leads; on radial-lead resistors the colors are placed as shown in the drawing. When bands are used for color coding the body color has no significance.
Examples: A resistor of the type shown in the
lower drawing of lig. 24-9 has the following
color bands: A. red; B, red; C. orange; D. no
color. The signifirant figures are 2,2 (22) and the
decimal multiplier is 1000 . The value of resist-
ance is therefore 22.0 KNO ohms and the tolerunre:
is $\pm 20^{\prime}$,
A risistor of the type shown in the upper draw-
ing has the following colors: boty (A), blue:
and (B), gray; dot, red: end (1)), gold. The
simnifirant figures are 6, 8 (68) and the derimal
multiphier is 100 , so the resistance is 6800 ohms.
The tolerance is $\pm 5 \%$.

Blue - plate lead.
Red - "13" + lead.
Creen-grid (or diode) lead.
Black - grid (or diode) return.
Note: If the secondary of the i.f.t. is centertapped, the second diode plate lead is green-

Cinlur	TABLE 24-III			
	Significant Fioure	t lyerimal Wultiplier	Tolerance (';)	Vollage Ratinif*
Black	0	1	-	-
13rown	1	10	1*	100
Red	2	100	2*	200
Orange	3	1000	3*	300
Yellow	4	10,000	4*	400
Green	5	100,000	${ }^{\text {* }}$	Ј¢
Blue	6	1,000,000	6*	6 60
Violet	7	10,000,000	7*	700
Gray	8	100,000,000	8*	800
White	91	1.000,000,000	9*	970
Gold	-	0.1	5	100\%
Silver	-	0.01	10	2000
No color				500
* Applies to condensers only.				

TABLE 24.IV Color Code for Ceramic Condensers					
Color	Significant Figure	Decimal Multiplier	Capacitance Tolerance		Temp. Coeff. p.p.m./dep. C.
			More than $10 \mu \mu \mathrm{fl}$. (in'c)	Less than $10 \mu \mu f d$. ($i \pi_{\mu} \mu \mathrm{f}$.)	
Black	0	1	± 20	2.0	0
Brown	1	10	± 1		-30
Red	2	100	± 2		-80
Orature	3	1000			- 150
Yellow	4				-2.0
Gireen	5		± 5	0.5	-3.30
Blue	6				-470
Violet	7				- 7.50
Ciray	8	001		0.25	30
White	9	0.1	± 10	1.0	500

and-black striped, and black is used for the center-tap lead.

A.F. Transformers

Blue - plate (finish) lead of primary.
Red - "13" + Iead this applies whether the primary is plain or center-tapped).
Brown - plate (start) lead on center-tapped primaries. (llue may be used for this lead it polarity is not important.)
Green - grid (finish) lead to secondary.
Blach - grid return (this applies whether the secondary is plain or center-tapped).
Yollow-grid (start) lead on center-tapped secondaries. (Cireen may be used for this lead if polarity is not important.)
Nowe: These markings apply also to line-togrid and tube-to-line transformers.

Loudspeaker Voice Coils

Green - finish
Black - start.

Loudspeaker Field Coils

Black an l Re l - start.
Yellow ant Rel - finish.
Slate and Re'l - tap) (if any).

Power Transformers

1) Primary Leads
. Black If tapped:

Common. Dlack Tap....... . Black and Yellow Striped Finish. Black and Red Striped
2) LIgh-Voltage l'late Winding. Red Center-Tap. . Red and Vellow Striped
3) Rectifier lilament Winding. Yellow Center-Tap. . Yellow and Blue Striped
4) Filament Winding No. $1 . \ldots$.......Green Center-Tap). Green and Yellow Siriped
5) Filament Wimding No. 2......... Brown Center-Tip. Brown and Yellow Striped
6) Filament Winding No. 3. Slate Center-Tap. . .Slate and Yellow Striped

Operating a Station

The enjorment of our hobly usually eomes from the operation of our station once we have finished its eonstruction. I pon the stution and its operation depend the communication records that are made.

An operator with a show, steady, cleam-cut method of sonding hats a hig advantage over the poor operitor. Good sending is partly a matter of practice but patience and judgment are just as important qualities of an operator as a good "fist." The technigue of speaking in eomecoted thoughts and phrases is equally important for the operator who uses voied.

- OPERATING COURTESY AND TOLERANCE

Normal operating interests in amatenr radio vary considerably: Some profer to rag-chew, others handle 1 raffie, others work I). , others conecontrate on working eertain areas, countries or states and still others got on for an orrasional contact only to check a new transmitter or antemu:.

Interference is one of the things we amateurs have to live with. Howerer, we can conduct our operating in a way dosigned to alleviate it as much as possible. Before putting the transmitter on the air, listen on your an' frequenc!. If you hear stations congaged in communication on that frequency, stand bey until wou are sure no interforence will be cansed by your operations, or shift to another frequency. No amatour or any group of amateurs has any exrlusive clam to any frequency in any band. Wo must work together, oach respecting the rights of others. Remember, those other chaps can canse you as much interference as yoh caluse them, somotimes moro! Where a VPo is used it is not neecesary to stick to a single operating frequency though it is well to have one or two proferred and alternate frequencies. It has become general operating procedure these days to work stations on or near your own frequeney. This practioe will automatically assist in reducing interference.

C.W. PROCEDURE

The best operators, both those using voice and c.w., ohserve certain operating procedures developed from experience and regarded as "standiard practice."

1) Calls. Calling stations may call efficiently by transmitting the call signal of the station called threc times, the lettors DE, followed by
one's own station call sent three times. (Short calls with frecquent "hreaks" to listen have proved to be the best method.) Rapeating the call of the station called four or five times and signing not more than two or three times has proved excellent practiere thus: Wobs Woble

CQ. The general-inquiry call (CQ) should be sent not more than five times without intersper:ing one's station identification. The length of repeated calls is carefully limited in intelligent amateur opreating. (CQ is not to be used when testing or when the sender is not expecting or looking for an answer. Never send a CQ "blind." Always be sure to listen on the transmitting froquency first.)

The directional CQ: 'lo reduce the number of useless answers and lossen QRM, every CQ call should be made informative when possible.
Examples: A C"nited States station looking for
any Hawaian amateur calls: CQ KHf C'Q
KH6 CQ KH6 DE W4IA W4A WHA K. A
Western station with tratlic for the East Coast
when looking for an internediate relay station
calls: CQ EAST COR EAST CQ EAST DE
WoIGW Wingw Wilgw K. A station with
messages for points in Massachusetts "alls: C?
MASE CQ MASS CQ MASS DE W7CZY'

Ilams who do not raise stations readily may find that their sonding is poor, thoir calls ill-timed or judgment in error. When conditions are right to bring in signals from the desired locality, you can call them. Reasonably short calls, with appropriate and brief breaks to listen, will raise stations with minimum time and trouble.
2) Answerin!! a Call: Call three times (or Iess); sond DE; sign three times (or less): after contact is cestablished decrease the use of the call signals of both stations to muse or twiese. When a station receives a call but does not receive the call letters of the station (alling, QRZ? may be used. It means "By whom am I boing called?" QR" should not be used in place of CQ.
3) Ending Sigmals amd Sign-Off: The proper use of $\overline{I R}, K, \vec{N} \bar{N}, \overrightarrow{N K}$ and CL ending sigmats is as follows:
$\overline{\mathrm{IR}}$ - Eind of transmission. Recommended after call to a sureifie station bofore eontact hats been established.

Example: W6. 1 BC W6.1BC W6ABC W6ABr* WGABC IDF: WOLMN WOLACN AR. Also at the end of transmission of a radiogram, immediatelyfollowing the signature, preceding identification.
K - Go ahead (any station). Recommended after $C Q$ and at the end of each transmission
during QSO when there is no objection to others breaking in.

Esample: CQ CQ CQ DE WIABC WIABC
K or W9XYZ DE WIABC K.
$\overline{\mathrm{KN}}$ - Go ahead (specific station), all others keep out. Recommended at the end of each transmission during a QSO, or attor a call, when calls from other stations are not desired and will not be answered.

SK - End of (2SO). Recommended before signing last transmission at end of a QSO.

Erample: ... $\overline{S K}$ W8LMN DE WölBCD.
Cl. - 1 am closing station. Recommonded when a station is going off the air, to indicate that it will not listen for any further calls.

4) Test siemuls to permit amother station to adjust recoiving equipmont maty comsist of a serios of V's with the call signal of the transmit ting station at frequent intervals. Romomber that a fost signal ean be a totally unwarrant ed canse of (QlRM, and always listen jirst to find a chear spot if possible.
5) Receipting for conversiation or traffic: Never sond acknowledgment until the transmission has been entirely received. " 12 " meats: ". 111 right, OR, I understand completel!!" Lise 12 onl! when all is reerived correctly.
(i) Repeats. When most of at trammission is lost, a call should be followed ber correct abbreviations to ask for repeats. When a fow words on the end of a transmission are lost, the lest word receivel correctly is given after ?.A.A, meaning "all after." When a few words at the begiming of a transmission are lost, ".113 for "all before" a stated word should be used. The quickest way to ask for a fill in the middle of a transmission is to send the last word received correctly, a fuestion mark, then the next word received eorrectly. Another way is to send "?l3N [word] and [word]."

Do not send words twice (QSZ) unless it is requested. Sond single. Do not fall into the bad habit of sending double without a refuest from follows you work. Don't way "(QRM" or "Qlen" " when you mean "QlRs." Don't C(unless there is definite reason for so doing. When sending CQ , use juilgment.

General Practices

When a station has recoiving troubse, the onerator asks the trammitting station to "QSV'." The letter " 1 "" is often used in place of a derimal point (e.g., "3R5 Me.") or the colon in time designation (e.g., "2la30 I'M"). A long dish is sometimes sent for "zero."

The law concerning superfluous signals should be noted. If you must test, disconnect the antenna system and use an equivalent "dummy" antemma. Send your call frequently when operating. Pick a time for adjusting the station apparatus when few stations will be bothered.

The up-to-date amateur station uses "break-
in." For bost results send at a modium spered. shend evenly with proper sparing. The stamdardtype telegraph key is best for all-round use. Regular daily practice periods, two or three periods a day, are best to acquire real familiarity and proficioney with cole.

No excuse can be made for "garbled" copy. Operators should copy what is sent and rofuse to acknowledge a whole transmission until every word has been reecived correctly: Gool operators do not !fuess. "swing" in a fist is not the mark of a good oprator. ["nusual words are sont twice, the word repeated following the transmission of ""?". If not sume, a good operator systematicatly asks for a fill or repeat. Sign sour call frequently, intorspersed with calls, and at the end of all tramsmissions.

On Good Sending

Assuming that an oprorator has learned sending property, and comes up with a precision "fist" - not fast, but cloan, steady, making wellformed rhothmical characters and spacing beautiful to listen to - he then becomes subject to outside pressures to his own possible detriment in evorreday oprating. He will want to "speed it up" breause the operator at the other end is going fister, and so he begins, unconsciously, to run his words together or develops a "swing."

Perhaps one of the easiest ways to get into bad halits is to do too much playing around with special keys. Too many operators spend only cough time with a straight key to acquire "passable" sending, then subjeet their newlydeveloped "fists" to the antirely different movemonts of bugs, side-swipers, electronic liers, or what-have-you. All too often, this results in the ruination of what may have lecome a very good "fist."

Think about your sending a little. Are you satisfied with it? You should not be - ever. Noboly's sending is perfect, and therefore ever!g opratior should continually strive for improvemont. Do you ever run letters together - like Q for MA, or P for AN゙ - especially when you are in a hurry? l'ractically everybody does at one time or another. Do you have a "swing'? Any recognizable "swing" is a deviation from perfertion. Strive to send like tape sending; copy a Wi.IW bulletin and try to send it with the same spacing using a local oscillator on a subsequent transmission.

Check your spaeing in characters, between chamaters and botween words occasionally by making a recording of your fist on an inked tape recortler. This will show up your faults as nothing else will. Practice the correction of faults.

USING A BREAK-IN SYSTEM

Break-in avoids unnecessarily long ealls, prevents QRR.I, gives more communication per hour of operating. Brief calls with frequent short, parses for reply can approach (but not equal) break-in efficiency.

A separate recciving antenna facilitates break-
in operation. It is only necessary with break-in to pause just a moment with the key up (or to cut the carrier momentarily and pause in a 'phone conversation) to listen for the other station. The slick when the carrier is cut off is as effective as the word "break."
C.w. telegraph break-in is usually simple to arrange. With break-in, ideas and messages to be transmitted can be pulled right through the holes in the GRMI. Snappy, efficient amateur work with break-in usually requires a separate receiving antenna and arrangement of the transmitter and reeeiver to eliminate the necessity for throwing switches between transmissions.

In calling, the transmitting operator sends the letters "BK" at frequent intervals during his eall so that stations hearing the call may know that break-in is in use and take advantage of the fact. He pauses at intervals during his call, to listen for a moment for a reply. If the station being called does not answer, the call can be continued.

With a tap of the key, the man on the recoiving end ean interrupt (if a word is missed). The other operator is constantly monitoring, awaiting just such directions. It is not necessary that you have perfect farilities to take advantage of break-in when the stations you work are break-inequipped. After any invitation to break is given (and at each pause) press your key - and contact can start immediately.

VOICE OPERATING

The use of proper procedure to get best results is just as important as in using code. In telegraphy words must be spelled out letter by letter. It is therefore but natural that abbreviations and shortcuts should have come into widespread use. In voice work, however, abbreviations are not necessary, and should have less importance in our operating procedure.

The letter " K " has beon agreed to in telographic practice so that the operator will not have to pound out the separate letters that sperl the words "go aheal." The voice operator can saty the words "go ahead" or "over," or "come" in please."

One laughs on c.w. by spelling out 111. (on 'phone use a laugh when one is called for. Be matural as you would with your family and friends.
The matter of reporting readability and strength is as important to 'phone operators as to those using code. With telegraph nomenclature, it is necessary to spell out words to describe signals or use the abbreviated signal reporting system (RST . . . see Chapter Twenty-Six). Using voice, we have the ability to "say it with words." "Readability four, Strength eight" is the best way to give a quantitative report. Reporting can be done so much more meaningfully with ordinary words: "You are weak but you are in the elear and I can understand you, so go ahead," or "Your signal is strong but you are buried under loeal interference." Why not say it with worls?

Voice-Operating Hints

1) Listen before calling.
2) Make short calls with breaks to listen. Avoid long CQs; do not answer any.
3) Use push-to-talk. Give essential data concisely in first transmission.
4) Make reports honest. Lse definitions of strength and readability for reference. Make your reports informative and useful. Honest reports and full word description of signals save amateur operators from FCC trouble.
5) Jimit transmission length, Two minutes or less will convey much information. When three or more stations converse in round tables, brevity is essential.
(b) Display sportsmanship and courtesy. lands are congested . . . make transmissions meaningful . . . give others a break.
6) Cherk transmitter adjustment . . . avoid AM overmodulation and splatter. Do not radiate when moving VFO frequency or checking NFM swing. Use receiver b, f.o, to cherek stability of signal. Complete testing bofore busy hours!
Voice Equivalents to Code Procedure

Voice
Go ahead; wer
Wait; stand by Okay
${\frac{5^{5}}{\text { AS }}, \text { QilX }}^{\text {Code }}$
Self-explanatory
Self-explanatory Receipt for a cor-rectly-transcribed message or for "solid" transmission with no missing portions

'Phone-Operating Practice

Efficient voice communication, like good e.w. communication, demands good operating. Adherence to certain points "on getting results", will go a long way toward improving our 'phoneband operating conditions.

Cse push-to-talk technique. Where possible arrange on-of switches or controls for fast back-and-forth exchanges that emulate the practicality of the wire telephone. This will help) reduce the length of transmissions and keep brother amateurs from calling you a "monologuist" - a guy who likes to hear himself talk!

Listen with care. Kerp noise and "backgrounds" out of your operating room to facilitate good listening. lit is natural to answer the strongest signal, but take time to listen and give some consideration to the best signals, regardless of strongth. livery amateur camot run a kilowatt, but there is no reason why every amateur cannot have a signal of good quality, and utilize uniform operating practiees to aid in the understandability and case of his own communications.

Interpose your call regularly and at frequent intervals. 'Ihree short calls are better than one
long one．In calling C＇Q，one＇s call should ecrtainly appear at least once for every five or six COs． Calls with frequent breaks to listen will save time and be most productive of results．In iden－ tifying，always transmit your own call last．Don＇t say＂This is W＂1ABC standing by for W2DEF＂； say＂W2I）rir＂，this is W1ABC，over．＂FCC regu－ lations show the call of the transmitting station sent last．

Include country prefix before call．It is not cor－ reet to say．＂91RIRX，this is 131 ）I．＂Correct and degal use is＂WOIRIRX，this is W1131）I．＂FCC regulations recquire proper use of calls；stations have been cited for failure to comply with this requirement．

Monitor your oun frequency．＇Ihis helps in tim－ ing calls and transmissions．Send when there is a chance of being copied successfully－not when you are merely＂more（QIRM．＂Timing transmis－ sions is an art to cultivate．

Keep modulation constant．By turning the gain ＂wide open＂you are subjecting anyone listening to the diversion of whatever noises are present in or near your operating room，to say nothing of the possibility of feed－back，echo due to poor acousties，and modulation exeesses due to sudden loud noises．Sprak near the microphone，and don＇t let your gaze wander all over the station causing sharply－varying input to your speech amplifier；at the same time，keep far enough from the microphone so your signal is not modulated by your breathing．Change distance or gain only as necessary to insure uniform transmitter per－ formane without overmodulation，splatter or distortion．

Make connected thoughts and phrases．Don＇t mix diseonnered subjects．Ask questions consistently． Pause and get answers．

IIave a pad of paper handy．It is convenient and desirable to jot down questions as they come in the eourse of diseussion in order not to miss any．It will help you to make intelligent to－the－ point replies．

Stere clear of inanities and soap－opera stuff．Our amateur radio and also our personal reputation as a serious communieations worker depend on us．

Aveid repetition．Don＇t repeat back what the other fellow has just said．Too often we hear a conversation like this：＂Okay on your new an－ temat there，okay on the trouble you＇re having with your receiver，okay on the company who just came in with some ice cream，okay ．．． lote．］．＂Just say you received everything OK． Don＇t try to prowe it．

Lise phonetics only as required．When elarifying genuinely doubtful expressions and in retting your call identified pesitively we suggest use of the ARRRL Phonetic List．Limit such use to really－neerssary clarification．

The speed of radiotclephone transmission（with perfect aceuracy）depends alnost entirely upon the skill of the two operators involved．One must learn to speak at a rate allowing perfect uneter－ standing as well as permitting the receiving operator to copy down the message text，if that is necessary．Because of the similarity of many

Finglish speech sounds，the use of alphabetical word lists has been found necessary．All voice－ operated stations should use a standard list as needed to identify call signals or unfamiliar expressions．

$A R R L$ Word List for Radiotelephony		
AD．${ }^{\text {a }}$	JOHIN	SUSAN
13AにはR	KLN	THOMAS
CHAlRLIE	LEWIS	UNION
1）．1才1］	MARI	VICloor
E』かい ${ }^{\text {al }}$	NANCY	WHLLIAM
FRAN゙K	OTTO	※－RAY
（ibolrcim	PETER	100¢NG
HHENIS	QLCEN	ZEBIRS
11． 1	Rolskirl	

Example：WIAW ．．W 1 AIAAM WILIIAM，

Round Tables．The round table has many ad－ vantages if run properly．It clears frequencies of interference，especially if all stations involved are on the same frequency，while the enjoyment value remains the same，if not greater．l3y use of push－to－talk，the conversation can be kept lively and interesting，giving each station operator ample opportunity to participate without wait－ ing overlong for his turn．

Round tables can become very unpopular if they are not condueted properly．The monologu－ ist，off on a long spiel about nothing in particular， cannot be interrupted；make ！our transmissions short and to the point．＂J3utting in＂is diseourteous and unsportsmanlike；don＇t enter a round table，or any contact between two other amateurs，unless you are invited．It is bad enough trying to understand voice through prevailing interference without the added difficulty of poor quality；check your tronsmitter adjustments frequently．In general， follow the precepts as hereinbefore outlined for the most enjoyment in round tables as well as any other form of radiotelephone eommunication．

WORKING DX

Most amateurs at one time or another make ＂working DN＂a major aim．As in every other phase of amateur work，there are right and wrong ways to go about getting best results in working forrign stations，and it is the intention of this section to outline a few of them．
The ham who has trouble raising DX stations readily may find that poor tramsmitter efficiency is not the reason．He may find that his sending is poor，or his ealls ill－timed，or his judgment in error．When conditions are right to bring in the 1） \mathbb{X} ，and the receiver sensitive enough to bring in several stations from the desired locality，the wav to work DX is to use the appropriate fre－ gucney and timing and call these stations，as against the common practice of calling＂ CQ 1）心＂。＂

The call（CQ DX means slightly different things to amateurs in different bands：
a）On v．h．f．，CQ DX is a general call ordi－ narily used only when the band is open，under
favorable＂skip＂conditions．For v．h．f．work such a call is used for looking for new states and countries，also for distances beyond the custom－ ary＂line－of－sight＂range on most v．h．f．hands．
b）CQ DX on our $\overline{7}-, 14$－and 28－Mc．Mands may be taken to mean＂General call to any for－ eign station．＂The term＂foreign station＂usually refers to any station in a foreign eontinent．（Ex－ perienced amateurs in the I．S．A．and Canada do mot use this call，hut ansuer such calls made by foreign stations．）

DX OPERATING CODE
 （For W／VE Amateurs）

Some amateurs interested in 1）X work have cansed ronsiderable comfusion and （QRM in their offorts to work JI sta－ tions．＇The points below，if observed by all W／XE amateurs，will go a long way towand making DX more enjoyable for averybody．

1．（all DN only after he malls（＇（2）， QRZZ＇，signs SK，or＇phome＂guivalents thereorf．

2．Do not（＇all a 1）X station：
a．On the frecquency of the station he is working deatil youta aro sutre the（as）is over．This is indicated by the ending signal SK on c．w． and any indiation that the operat－ tor is listening，on＂phome．
b．Because you hear somembe else calling him．
c．When he sigus $\overline{\mathrm{KN}}, \overline{\mathrm{Al}}$, （＇L．or ＇phone equivalents．
d．Exactly on his frequeney，
e．After he calls a dirertional（＇）， unlese of eourse you are in the right direction or area．
3．Kerep within freduency－band limits． Some 1）N stations operate outside．Per－ haps they cin got away with it，but you rammot．

4．Ohs：rve calling instructions of 1 ）X stations，＂10U＂mestns call ton ke．up from his frequency，＂15i）＂means 15 ke ． doun，cte．
5．（Give honest reports．Many foreign stations depend on W^{V} and Vid reports for adjusiment of station and equipment．

6．K゙ery your signal mem．K゙ey dicks， chipss，hum or splatter give you a bad reputation and may get you a citation from $\mathrm{HC}^{\circ} \mathrm{C}$ ．

7．Listen for and call the station you want．Calling（ C （）X is not the best as－ surance that the rare DX will reply．

8．When there are several W° or VE stations waiting to work a DX station， avoid asking him to＂listem for a friend．＂ let your friend take his chances with the rest．Also avoid engaging DN stations in rag－chews against their wishes
c）CQ INX used on 3.5 Mc ．under winter－night conditions may be used in this same manner．At other times，under average 3.5 －Mc．propagation conditions，the call may be used in domestic work when looking for new states or countries in one＇s own continent，usually applying to stations located over 1000 miles distant from you．

The way to work DX is not to use a CQ call at all（in our continent）．Instead，use your best tuning skill－and listen－and listen－and listen．You have to hear them before you can work them．Ilear the desired stations first；time your calls well．［Tse your utmost skill．A sensitive re－ ediver is often more important than the power input in working foreign stations．If you can hear stations in a particular country or area，chances are that you will be able to work someone there．

One of the most effective ways to work DX is to know the operating habits of the I）X stations sought．Doing too much transmitting on the DN bands is not the way to do this．Again，lisleninel is effective．Once you know the operating habits of the DS station you are after you will know when and where to call，and when to remain silent wating your chance．
some DN：stations uso the signals 11N，MH， IM and ML to indicate where they are tuning for replies The momings of these signals are as follows：

UMI－Will start to listen at high－frerbuency end of band and tune toward middle of band．
Illl－Will start to listen in the middle of the band and tune toward the high－frequency end．
Lad－Will start to listen at low－frequency end of hathd and thne toward middle of band．
ML，－Will start to listen in the middle of the band and tune toward the low－frequency end．

Erample：If the procedure will be to tune from the middle of the band to the high end，a CQ call qoes：CQ DE Gニ̈ßY M11K．

AIRIRL，has recommended some operating pro－ codures to 1）N stations aimed at controlling some of the thoughtess operating practices somotimes used by $W^{W} / \mathbb{V}^{\prime} E$ amateurs．A copy of these recommendations（Operating Aid No．5） can be obtained free of eharge from AIRRL Head－ quarters．

In any band，particularly at line－of－sight fre－ quencios，when directional antennas are used， the directional C（）such as CQ ${ }^{(15} 5, \mathrm{CQ}$ north， etc．，is the preferable type of call．Mature ama－ teurs agree that $C Q D \mathcal{X}$ is a wishful rather than a practical type of call for most stations in the North Americas looking for contacts in foreign countries．Ordinarily，it is a cause of unneces－ sary（QRM

Conditions in the transmission medium make all firld strengths from a given region more nearly equal at a distance，irrespective of power used．In general，the higher the frequency hand， the less important power considerations become． This accounts in part for the relative popularity of the 14 －and 28－Me．bands among amateurs who like to work DN．

KEEP AN ICCLRATE AND COMPLETE STATION LOG AT ALL TIMES! F.C.C. REQUIRES ITT.
A page from the oflicial ARIRI log is shown above, answering every Government requirement in respect to station records. Bound logs male up in accord with the above form can be obtained from Ileadquarters for a nominal sum or you can prepare your own, in which case we offer this form as a suggestion. The ARRL log has a special wire binding and lies perfectly flat on the table.

KEEPING AN AMATEUR STATION LOG

The FCC requires every amateur to keep a complete station operating record. It may also contain records of experimental tests and adjustment data. A stenographer's notelmok can be ruled with vertical lines in any form to suit the user. The Federal Communications Commission requirements are that a \log be maintained that shows (1) the date and time of each transmission, (2) all calls and transmissions made (whether two-way contacts resulted or not), (3) the input
power to the last stage of the transmitter, (4) the frequency band used, (5) the time of ending each QSO and the operator's identifying signature for responsibility for each session of operating. Messages may be written in the log or scparate records kept - but record must be made for one year as required by the FCC. For the convenience of amateur station operators ARIRL, stocks both logbooks and message blanks, and if one uses the official log he is sure to comply fully with the Government requirements if the precautions and suggestions included in the log are followed.

Message Handling

Amateur operators in the United States and a fow other countries enjoy a privilege not available to amateurs in most countries - that of handling third-party message traffic. In the early history of amateur radio in this conntry, some amateurs who were amoang the first to take alvantage of this privilege formed an extensive relay organization which became known as the American Radio Relay League.
'Thus, amateur message-handling has had a long and honorable history and, like most services, hats gone through many periods of development and change. Those amateurs who handled traflic in 1914 would hardly recognize it the way some of us do it today, just as equipment in those days was far different from that in use now. Progress has been made and new methods have been developed in step with advancement in communication techniques of all kinds. Am:teurs who handled a lot of traffic found that organized operating schedules were more effective than random relays, and as technigues advanced and messages increased in number, trunk lines were organized, spot frequencies began to be used. and there sprang into existence a numher of traffie nets in which many stations operated on the same frequency to effect wider cov-
erage in less time with fewer relays; but the old methods are still available to the amateur who handles only an occasional message.

Although message handling is as old an art as is amateur radio itself, there are many amateurs who do not know how to handle a message and have never done so. As each amateur grows older and gains experience in the amateur service, there is bound to come a time when he will be called upon to handle a written message, during a communications emergency, in casual contact with one of his many acquaintances on the air, or as a result of a request from a nonamateur friend. Regardless of the occasion, if it comes to you, you will want to rise to it! Considerable embarrassment is likely to be experienced by the amateur who finds he not only does not know the form in which the message should be prepared, but does not know what to do with the message once it has been filed or received in hisstation.

Traffic work need not be a complicated or time-consuming activity for the casual or occasional message-handler. Amateurs may participate in traffic work to whatever extent they wish, from an occasional message now and then to becoming a part of organized traffic systems.

This chapter explains some principles so the reader may know where to find out more about the subject and may exercise the message-handling privilege to best effect as the spirit and opportunity arise.

Responsibility

Amateurs who originate messages for transmission or who receive messages for relay or delivery should first consider that in doing so they are acecepting the responsibility of clearing the message from their station on its way to its destination in the shortest possible time. Fortseight hours after filing or reccipt is the generallyaccepted rule among traffic-handling amateurs, but it is obvious that if every amateur who relayed the message allowed it to remain in his station this long it might be a long time reaching its destination. Traffic should be relayed or delivered as quickly as possible.

Message Form

Once this responsibility is realized and accepted, handling the message becomes a matter of following generally-accepted standards of form and transmission. For this purpose, each message is divided into four parts: the preamble, the address, the text and the signature. Some of these parts themselves are subdivided. It is necessary in preparing the message for transmission and in actually transmitting it to know not only what each part is and what it is for, but to know in what order it should be transmitted, and to know the various procedure signals used with it when sent by c.w. If you are going to send a message, you may as well send it right.
Standardization is important! There is a great deal of room for expressing originality and individuality in amateur radio, but there are also times and places where such expression can only catuse confusion and inefficiency. Recognizing the need for standardization in message form and message transmitting procedures, ARRL, has long since recommended such standards, and most traffic-interested amatours have followed them. In general, these recommendations, and the various changes they have undergone from yoar to year, have been at the request of ama-

Here is an example of a plain-language message in correct ARRL form. The preamble is always sent as shown: number, station of origin, check, place of origin. time filed, date.
teurs participating in this activity, and they are completely outlined and explained in Operating an Amateur Radio Station, a copy of which is available upon recfuest or by use of the coupon at the end of this chapter.

Clearing a Message

Amateurs not experienced in message handling should depend on the experienced messagehandler to get a message through, if it is important; but the average amatour can enjoy operating with a message to be handed either through a local traffic net or by free-lancing. The latter may the accomplished by careful listening for an amateur station at desired points, directional CQs, use of the General Calling frequencies, or by making and keeping a schedule with another amateur for regular work between specified points. He may well aim at learning and enjoying through doing. The joy and accomplishment in thus developing one's operating skill to top perfection has a reward all its own.
The best way to clear a message is to put it into one of the many organized traffic networks, or to give it to a station who can do so. There are many amateurs who make the handling of traffic their principal operating activity, and many more still who participate in this activity to a greater or lesser extent. The result is a system of traffic nets which spreads to all corners of the United States and covers most U. S. possessions and Canada. Once a message gets into one of these nets, regardless of the net's size or coverage, it is systematically routed toward its destination in the shortest possible time.

If you decide to "take the bull by the horns" and put the message into a traffic net yourself (and more power to you if you do!), you will need to know something about how traffic nets operate, and the special Q signals and procedure they use to dispatch all traffic with a maximum of efficiency. Reference to net lists in QST' (usually in the November and January issues) will give y ou the frequency and operating time of the net in your section, or other net into which your message can go. listening for a fow minutes at the time and frequency indicated should acquaint you with chough fundamentals to enable you to report into the net and indicate your traffic. From that time on you follow the instruetions of the net control station, who will tell you when and to whom (and on what frequency, if different from the net frequency) to send your message, Since most nets use the special "(2N" signals, it is usually very helpful to have a list of these before you (list available from AIRIRL, IIq.).

Network Operation

About this time, you may find that you are enjoying this type of operating activity and want to know more about it, and to increase your proficiency. Many amateurs are happily "addicted" to traffic handling after only one or two bricf exposures to it. Most traffic nets are at present being conducted by c.w., since this mode of
communication seems to be more popular for record purposes - but this does not mean that high code speed is a necessary prerequisite to working in traffic networks. There are many nets organized specifically for the slow-spered amaterur, and most of the so-called "fast" nets are usually glad to slow down to accommodate slower (opertitors, especially those nets at state or section level.

The significant facet of net operation, however, is that cole speed alone does not make for efficiency - sometimes quite the contrary! A high-speed operator who does not know net prorerlure can "foul up" a net much more completely and more quickly than can a slow operator. It is a proven fact that a bunch of high-speed oprators who are not "savvy" in net operation ramot accomplish as much during a specified period as an equal number of slow operators who know net procedure. Don't let your code speed deter you from getting into traffice work. Given a little time, your speed will reach the point where you can compete with the best of them. concentrate first on learning net procedure, for most traffic nowadays is handled on nets.

Much traffic is also being handled on 'phone nowadays. This mode is exceptionally well suited to short-range traffic work and requires knowledge of phonetics and procedure peculiar to voice operation. Procedure is of paramount importance on 'phone, since the public may be listening. The major problem, of course, is QIRM.

Teamwork is the theme of net opration. The net which functions most efliciently is the net in which all partieipants are thoroughly familiar with the procedure used, and in which operators reftain from transmitting exept at the direction of the net control station, and do not occupy time with extrancous comments, even exchange of pleasantries. There is a time and place for everything. When a net is in session it should concentrate on handling traffic until all traffic is eleared. Before or after the net is the time for rag-chewing and discussion. Some details of net operation are included in Operating an Amateur Radio Station, mentioned carlier, but the whole story cannot be told. There is no substitute for actual participation.

The National Traffic System

To facilitate and speed the movement of message traffic, there is in existence an integrated national system by means of which originated traffic will normally reach its destination area the same day the message is originated. This system uses the local section net as a basis. Wach section net sends a representative to a "regional" net (normally covering a call area) and each "regional" net sends a representative to an "area" net (normally covering a time zone). After the area net has cleared all its traffic, its members then go back to their respective regional nets, where they clear traffic to the various section net representatives. By means of connoeting sohedules between the area nets, traffie can flow both ways so that traffie originated on the West Coast reaches the last Coast with a maximum of dispateh, and vice versa. In general local section nets function at 1900 , regional nets at 1945 , area nots at 2030 and the same or different regional personnel again at 2130 . Some section nets conduct a late session at 2200 to effect traflic delivery the same night. Local time is referred to in each case.

The NTS plan somewhat spreads traffic opportunity so that casual traffic may be reported into nets for efficient handling one or two nights per week, early or late; or the ardent traffic man can operate in both early and late groups and in bebetween to roll up impressive totals and speed traflic reliably to its destination. Old-time traffie men who profer a high degree of organization and teamwork have returned to the traffie game as a result of the now system. Beginners have shown more interest in becoming part of a system nationwide in scope, in which anyone ean participate. The National Traffie System has vast and intriguing possibilities as an amateur service. It is open to any amateur who wishes to participate.

The above is but the briefest résume of what is of necessity a rather complicated arrangement of nets and schedules. Complete details of the System and its operation are available to anyone interested. Just drop a line to ARRL Ileadquarters.

Emergency Communication

One of the most important ways in which the amateur serves the public, thus making his existence a national asset, is by his preparation for and his participation in communications emergencies. Every amateur, regardless of the extent of his normal operating activities, should give some thought to the possibility of his being the only means of communication should his eommunity be cut off from the outside world. It has happened many times, often in the most unlikely places; it has happened without warning, finding some amateurs totally unprepared; it can happen to you. Are you ready?

There are two principal ways in which any amateur can prepare himself for such an eventuality. One is to provide himself with equip-
ment capable of operating on any type of emergency power (i.e., either a.e. or d.c.), and equipment which can readily be transported to the scene of disaster. Molile equipment is especially desirable in most emergency situations.

Sueh equipment, regardless of its elaborateness or modernness, is of little use, however, if it is not used properly and at the right times; and so another way for an amateur to prepare himself for emergencies, by no means less intportant than the first, is to learn to operate ciflciently. There are many amateurs who feel that, they know how to operate efficiently who find themselves considerably handicapped at the crucial time by not knowing proper procedure, by being unable due to years of casual amateur
operation to adapt themselves to smappy, abbreviated transmissions, and by being unfamiliar with message form and routing procedures. It is dangerous to overrate yourability in this respect;it is far bet ter to assume that you have much to learn.
In general it can be said that there is more emergency equipment available than there are operators who know properly how to operate during emergency conditions, for such conditions require clipped, terse proeedure with conplete break-in on c.w. and fast push-to-talk on 'phone. The casual rag-chewing aspect of amateur radio, however enjoyable and worth-while in its place, must be forgotten at such times in favor of the business at hand. There is only one way to gain experinnee is this type of operation, and that is by practicing it. During an emergency is no time for prattice; it should be done beforehand, ats of forn as possible, on a regular besis.
This loads up to the necessity for emergeney organization and preparedmoss. AlRRI, has long recognized this neeresity and has provided for it. The Section Communications Manager (whose address appears on page ($;$ of any recent issue of QS'T') is empowered to appoint cortain (fualified anmateurs in his section for the purpose of coordinating emergency eommunication organization and preparedness in sperified areas or communtios. This appointere on known as and Fmergency Coumdinator for the city or town. One is
speeified for each community. For coordination and promotion at section level a Section Emergency Coördinator arranges for and recommends the appointments of various Fmergency Coordinators at activity points throughout the section. Emergency Coürdinators organize amateurs in their communities according to local needs for emergency communication facilities.
The community amateurs taking part in the local organization are members of the Amateur Radio Fmergency Corps (ARLC'). All :amateurs are invited to register in the AREC', whether they are able to play an active part in their local organization or only a supporting velde. Application blanks are availathe from your lid, sEC, SCAI or direct from ARRL, lleadguarters. In the event that imquiry reveals no limergence Coördinator appointed for your community, your SC:M would welcome a reommondation either from vourself or from a radio clab) of Which you are a member. Sy holding an amateur operator license, you have the responsibility both to your community and to amateur radio to uphold the traditions of the servied.

Among the League's publications is a booklet entitled Emergency Commanications. This booklet, while small in size, contains a woalth of information on ARLCC organization and functions and is invaluable to any amatour participating in emergency or civil defense work. It is free to

Before Emergency

PlREPARE yourself by providing a transmitter-receiver set-up together with an emergener power source upon which you can depend.

Testr both the dependability of your emergency equipment and your own operating ability in the anmal AlRR1, simulated Fimergeney Test and the several ammal on-the-atir contests, cosereally Fiodd bay.

REGGLTER your facilitics and your availability with your local ARLRL Emergoney Comdenator. If your commmity has no EC, contact your local civic and relidfagencies and explain to them what the Amateur Service offers the community in time of disaster.

In Emergency

LISTEN hefore you transmit. Never violate this principle.
REPORT at once to your Emargency Coordinator so that he will have up-to-theminute data on the facilities available to him. Work with local civic and rediof agoneies as the BC suggests, offer these ageneies your services directly in the absener of an ICC.
 whenever FCO "decdares" astate of communieations conergeney.

QlalRIR is the oflicial ARIRL, "land Nos." a distress call for emorgoney onde. It is for use only hy a station serking assistance.
 largely on rireuit disciplime. The estahbished Net Control station should be the suprene authority for priority and traffic routing.

CO-ODERATE with those we senve. Be ready to help, but stay off the air unless there is a specifie job to be done that you can handle more efficiently than amy other station.

COl'Y all bulletins from W'AW: During time of emergeney sperial bulletins will kerp you posted on the latest developmonts.

After Emergency

REPOIR'T to AIRIRL Ifeadquarters as soon as possible and as fully as possible so that the Amateur Service can receive full credit. Amateur Radio has won glowing public tribute in many major disasters since 1919. Maintain this record.

ARLEC members and should be in every amatrur's shack. Dropa line to the ARIRL, Communications Department if you want a copy, or use the coupon at the end of this chapter.

The Radio Amateur Civil Emergency Service

In order to be prepared for any evontuality, FCC and the Federal Civil Defense Administ ration (F(D).1), in collaboration with ARRL, have promulgated the Radio Amateur Civil limergenco Service. RACES is a temporary peacetime serviee, intended primarily to serve civil defense and to continue opration during any extreme national emergency, such as war. It shares rertain segments of frecpuencies with the regular Smaterur servier on a non-exclusive basis. Its regulations have been made a sub-part of the familiar amaturer rogulations; that is, the prosent regulations have berome sub-part A, the new IR. (Clis regulations being added as sub-part B. Copies of both parts are included in the latest erlition of the ARIRL Lirense Manual.

If erer! amateur participated, we would still he far short of the total operating personnel required properly to implement RA('LS'. S: the serviee which bears the responsibility for the suceresful implementation of this important new function, we face not only the task of installing (and in some cases building) the neressury equipment, hat also of the training of thousands
of additional people. This can and should be a function of the local unit of the Amateur Radio Emorgency Corps under its WC and his assistants, working in close collahoration with the local civil defense organization.

The first step in organizing IRACES locally is the appointment of a Radio Offieer by the local rivil defense director, possibly on the recommendation of his communieations officer. A comphete and detailed communieations plan must be apmoved sucressively by loc:al, state and FCDA regional directors, by the F(D)A Washington offier, and by Foc. Once this has been areomplishod, applications for station authorizations under this plan catn be summitted direct to FCC. Qs'f' will 'arry further information from time to time, and ARRL, will keep its fiehd ofliciats fully intormed by bulletins as the situation requires. I series of three articles in QS' for Maroh, April and May, 195:3, makes a usoful reforence and sets the stage for RACDS.

In the event of war, civil defense will plate great reliance on R.SClist for radio commanicat tions. R. ICles is an Amaterur Service. Its implementation is logically a function of the Amatedir Iadio Vmorgener Corps - an additional functice in peacetime, but probally an explusive function in wartime. Therefore, your hest opportunity to be of service will be to register with rour local BC, and to participate actively in the lowal AREC:/RACDEs program.

ARRL Operating Organization

Amatour oprration must have point and constructive purpose to win public resperet. Wach individual amatedur is the ambassador of the entire fraternity in his public melations and attitude toward his hobly. ARRRI, fiold organization adds point and purpose to amateur operating.

The Commanieations Department of the League is enneermed with the pratical operattion of stations in all branches of amateur artivity. Appointments or awards atre available for rag-chewer, tratfice enthusidst, 'phome operator, 1)X man and experimenter.

There are seventy-three . MRIRL seations in the League's fiold organization, which embraces the Fnited states, Canada amel retain othor territory. Oprotang affairs in each soction are supervisod by a Soction Commmications Manager dected by mombers in that seretion for a twoyear tern of office. Organization appointments are made by the sution matugers, eleetend as provided in the Rukes and Regulations of the Communications Inpartment, whid arrompany the League's Br-Laws and Articles of Asworiation. section communications manaugers' addressas for all sections are given in full in rach issue of QST. SCAIs weleome monthly artivity roports from all amateur stations in their juriseliction.

Whether your activity embraces 'phone or telegraphy, or both, there is a place for you in feague organization.

- LEADERSHIP POSTS

'To advance each trpe of station work and group interest in amateur radio, and to develop pratetical eommunications plans with the greatest suceess, appointmonts of leadors and organizers in particular singlo-interest fields are made by SCMs. Fach leadership posi is important. Each provides activitios and assistance for appointee groups and individual mombers atong the lines of natural interest. Nome posts further the permeral ability of amat urs to communicate efficiently at all times, by pointing ativity toward notworks and round tables, othors are amod sperifically at establishment of provisions for organizing the amsterur service as a stand-by eommaniations group to serve the publie in disaster, eivil defonse neod or emergeney of any sort. The S(:M appoints the following in arcordano with sertion needs and individual qualifications:

PAM 'Phone Aetivities Manaper, Organizes mefivities for OPSe and vober operaters in his section. l'romotes 'phane mots and reverats OfSs.
RM Ronto Manacer. Organizos and coürdinaters en traffer artivitios. sumervisen and promotes nets and recruits Ollis.
SEC Section Emergency Coördinator. Promotes and administers section emergency radio organization. LCC Emergency Cördinator. Organizes amateurs of a community or other area for emergency radio sersice; maintains liaison with officials and agencies served; also with other local communication farilitios.

- STATION APPOINTMENTS

AlRIRL's field organization has a place for every active amateur who has a station. The Communications Department organization exists to increase individual enjoyment and station effertiveness in amateur radio work, and we extend a cordial invitation to every amateur to participate fully in the activities and to apply to the SCM for one of the following station apppointments. ARRL Membership and the General Class license or VE equivalent is prerequisite to appointments, except OLS is available to Noviee/ Technician grades.
OPS Official'thone Station. Sets high voice operating standards and procedures, furthers 'phone nets and traffic.
ORS Official Relay Station. Traflic servier operates c.w. nets: noted for $15 \mathrm{w}, \mathrm{p}, \mathrm{m}$, and procedure ability. Official Bulletin Station. Transmits ARRL and $\mathrm{l}^{\circ} \mathrm{C} C \mathrm{C}$ bulletin information to amateurs.
OLS Official Experimental Station. Experimental operating, collects and reports $v . h . f,-1$, h.f.-s.h.f. propagation data, may engage in facsimile, TT, TV, etc., experiments working on 50 Mc . and/or ahove.
00 Official Observer. Sends coüperative notices to amateurs to assist in frequency observance, insures bigh-quality signals, and prevents FCC trouble.

Emblem Colors

Members wear the emblem with black-enamel background. A red background for an emblem will indicate that the wearer is SCM. SECs, HCs, RMs, PAMs may wear the emblem with green background. Olsservers and all station appointees are entitled to wear blue emblens.

SECTION NETS

Amateurs can add much experience and pleasure to their own amateur lives, and substance and accomplishment to the credit of all of amateur radio, when organized into effective interconnection of cities and towns.

The successful operation of a net depends a Iot on the Net Control Station. This station should be chosen carefully and be one that will not hesitate to enforce each and every net rule and set the example in his own operation.

A progressive net grows, obtaining new members both directly and through other net members. Bulletins may be issued at intervals to keep in direct contact with the members regarding
general net activity, to keep tab on net procedure, make suggestions for improvement, keep track of abtive members and weed out inactive ones.

A National Traffic System is sponsored by ARIRI, to facilitate the over-all expeditious relay and delivery of mossage traffice. The system recognizes the need for handling traffic beyond the section-level networks that have the popular support of both 'phone and c.w. groups (Ol's and (OISS) throughout the League's field organization. Araa and regional provisions for NTS are furthered bye Headquarters correspondence. The - IRIRL Net Directory, revised in Deermber each vear, includes the frequencies and times of opcration of the hundreds of different nets operating on amateur band frequencies.

Radio Club Affiliation

AIRIRL is pleased to grant affiliation to any amateur society having (1) at least $51 / \%$ of the voting club membership as full members of the League, and (2) at least 51% of society govern-ment-licensed radio amateurs. In high sehool radio clubs bearing the school name. the first above requirement is modified to require one full member, MRRI, in the club). Where a society has common aims and wishes to add strength to that of other club groups and st rengthen amateur radio by affiliation with the national amateur organization, a request addressed to the Communications Manager will bring the necessary forms and information to initiate the application for affiliation. Such clubs receive field-organization bulletins and sperial information at intervals for posting on elub bulletin boards or for relaty to their memberships. I travel plan providing commumications, terhmical and seceetarial contam from the Headquarters is worked out seasonally to give maximum benefits to as many as possible of the several hundred active affiliated radio clubs. Papers on club work, suggestions for organizing, for constitutions, for radio courses of study, etc., are available on request.

Club Training Aids

One section of the ARRL Communications Department handles the Training Aids Program. This program is a service to ARRL affiliated clubs. Material is aimed at education, trainingandentertainment of club members. Interesting quiz material is available.
Training Aids include such items as motionpieture films, film strips, slides, and lecture outlines. Also, code-proficiency training equipment such as recorders, tape transmitters and tapes will be loaned when such items are available.

All Training Aids materials are loaned free (except for shipping charges) to ARRI, affiliated clubs. Numerous groups use this ARIRI, service to good advantage. If your club is affiliated but has not yet taken advantage of this service, you are missing a good chance to add the available features to your meeting programs and general club activities. Watch elub bulletins and QST or write the ARRL Communications IDepartment for full details.
requirements for operating under knockabout conditions afield.
ARRL contest activities are diversified to appeal to all operating interests, and will be found announced in detail in issues of QST' preceding the different events.

AWARDS

The I.eague-sponsored operating aetivities heretofore mentioned have useful objectives and provide much enjoyment for members of the fraternity. Achievement in amateur radio is recognized hy various certificates offered through the League and detailed below.

WAS Award

W.AS means "Worked All States." This award is available regardless of affiliation or nonaffiliation with any organization. Here are the rules to follow in applying for WAS:

1) Two-way communication must be established on the amateur bands with cach of the states; any and all amateur

hands may be used. A card from the Distriet of Columbia mave be submitted in lieu of one from Maryland.
2) ('ontacts with all states must be made from the same location. Within a given community one location may he dofined as from plares no two of which are more than 25 miles aprart.
3) Contacts may be made over any period of years, and may have been made any number of years apo, provided only that all contacts are from the same location.
4) QSL cards, or other writtern communications from stations worked confirming the neecssary two-way contacts, must be submitted by the applicant to ARRI. headfuarters.
5) Sufficient postage must be sent with the confirmations to finance their return. No correspondence will be returned unless sufficient postage is furnished.
6) The WAS a ward is available to all amateurs.
7) Address all applications and confirmations to the (communications Department, ARRL, 38 La Salle Road, West llartford, Conn.

DX Century Club Award

Here are the rules under which the DX Century Club Award will be issued to amateurs who have worked and confirmed contact with 100 countries in the postwar period. If you worked fewer than 100 countries before the war and have since worked and confirmed a sufficient number to make the 100 mark, the DXCC is still available to you under the rules detailed on page 74 of June, 1946, QST.

1) The Century Club Award Certificute for ronfirmed contacts with 100 or more countrics is available to all anateurs everywhere in the world.
2) Confirmations must bo submitted direct to ARRI, headquarters for all countries claimed. Claims for a tutal of 100 countrics must be included with first application. Confirmation from forcign contest $\log s$ nay be requested in the case of the ARRL International DX Compotition only, sulbject to the following conditions:
a) Sufficient confirmations if other types must be submitted so that these, plus the DX Contest confirmations, will total 100. In every case, Contest confirmations must not be requested for any countries from which the applicant has regular confirmations. That is, contest confirmations will be granted only in the case of countries from which applicants have no regular confirmations.
b) Look up the contest results as published in QsT to see if your man is listed in the foreign scores. If he isn't, he did not send in a \log and no confirmation is possible.
c) Give year of contest, date and time of QSO.
d) In future DN Contests do not renuest confirnations until after the final results have been published, wsually in one of the carly fall issues. Requests before this time nust be ignored.
3) The ARRL Countries List, printed periodically in QST, will be used in determining what constitutes a "country." The Miscellaneous Data chapter of this JIandbook contains the Postwar Countries List.
4) Confirmations must he accompanied by a list of claimed countries and stations to aid in checking and for future reference.
j) Confirmations from additiona! countrics may be submitted for credit each time ten additional confimations are available. Endorsements for affixing to certificates and showing the new confirmed total (110, 120, 130. ete.) will be awarded as additional credits are granted. ARIRI, INX Competition lugs from forcign stations may be utilized for these endorsements, subjeet to conditions stated under (2).
(b) All contacts must be made with amateur stations working in the anthorized amateur bands or with uther stations lieensed to work amateurs.
5) In cases of countriss where amateurs are !icensed in the normal manner, credit may be clamed only for stations using regular government-assigned eall hetters. No eredit may be clanned for contacts with stations in any countries in which amateurs have been temporarily closed down by special government edict where amateur licenses were formerly issued in the normal manner.
6) All stations contacted must be "land stations" contaets with ships, anchored or otherwise, and aireraft. cannot be counted.
(9) All stations must be contacted from the same call area, where such arcas cxist, or from the same country in canes where there are no call areas. One exception is altowed to this rule: where a station is moved from one call area to another, or from one country to anothor, all contacts must te made from within a radius of 150 miles of the initial location.
7) Contacts may be made over any period of sears from November 15,1945 , provided only that all contacts be mude under the provisions of Rule 9, and by the same station licensee; contacts may have been made minder different call letters in the same area (or country'), if the licensee for all was the same.
8) All confirmations must be subnitted exactly as reecived from the stations worked, Any altered or forged confirmations submitted for CC credit will ressult in disqualification of the applicant. The elipibility of any DXCC applicant who was ever barred from IJ.SCC to reapply, and the conditions for such application, shall be deternined by the Awards Committee. Any holder of the Century Club Award submitting forged or altered confirmations must forfeit his right to be considered for further endorsements.
9) OPERATING E'TIHCS: Fair play and good sportsmanship in operating are recuired of all amateurs working toward the DX Century Club Award. In the event of specific objections relative to contimued poor operating ethics an individual may be dischalified from the DXCC by action of the ARRL Awards Committee.
10) Sufficient postage for the return of confirmations must be forwarded with the application. In order to insure the safe return of large batehes of confirmations, it is suggested that enough postage be sent to make possible their return by first-class mail, recistered.
11) Decisions of the ARIRL Awards Committee regard-
ing interpretation of the rules as here printed of later atmended shall be final.
i.i) Address all applications and confirmations to the ('ommmications Department, ARRL, 38 La salle Robil. West IIartford 7, Comn.

WAC Award

The International Amateur Radio Union issu's WAC (Worked All Continents) certificates to all members of member-societies who submit proof of two-way communication with at least one station on each continent. Foreign amateurs submit their proof direct to member-societies of the IARU. Others may make application to ARIRL, headquarters society of the Union. A c.w. and a telephony certificate are available. Also, sperial endorsements will be plared on certificates upon receipt of request accompanied by proof of having worked all continents on the 3.5- or 50-Mc. hands.

Code Proficiency Award

Many hams can follow the general idea of a contact "hy car" but when pressed to "write" it down" they "muff" the eopy. The (iode Proficiency Award invites every amateur 10 prove himself as a proficient operator, and sits up a system of awards for step-hy-step gains in copying proficiency. It enables every amateur to chack his code proficiency, to better that proficiency, and to receive a certification of his reeeiving speed.

This program is a whale of a lot of fun. The League will give a cortificate to any licensed radio amateur who demonstrates that he can (ropy perfectly, for at kast one minute, plainlanguage Contimental code at 10, 15, 20, 25, 30 or

35 words per minute, as transmitted during special monthly transmissions from WIAW and W6owl.

Is part of the ARIRL Code Proficieney program ${ }^{\prime \prime} 1 \mathrm{~A} I \mathrm{~W}$ transmits plain-language practioce material each evening at speeds from 5 to 35 w.p.m. All amateurs are invited to use these transmissions to increase their code-ropying ablility. Non-amateurs are invited to utilize the lower speeds, $5,71 / 2$ and $10 \mathrm{w} . \mathrm{p} . \mathrm{m}$., which are transmitted for the henefit of persons studying the code in preparation for the amateur license
examination. Refer to any issue of QST for details of the practiee schedule.

Rag Chewers Club

The Rag Chewers Club is designed to encourage friendly contacts and discourage the "hello-good-by" type of QSO. Its purpose is to bond together operators interested in honest-togoodness rag-chewing over the air. Membership certificates aro available.

How To (iet in: (1) Chew the rag with a member of the elub for at least a solid half hour. This does not mean a half hour spent in trying to get a message over through bad QRII or QRSN, bit a solid half hour of conversation or message handling. (2) Report the conversation by card to The Rag Chewers Club, ARIRL, Communications Department, West IIartford, Comn., and ask the member station you talk with to do the same. When both reports are received you will be sent a membership certifigate entitling you to all the privileges of a Rag Chewer.

How To Stay in: (1) Be a conversationalist on the air instead of one of those tongue-tied infants who don't know any words except "cuagn" or "cul," or "QRU" or "nil." Talk to the fellows you work with and get to know them. (2) Operate your station in accordance with the radio laws and ARRL practice. (3) Observe rules of courtesy on the air (4) Sign " RCC" after each call so that others may know you can talk as well as call.

A. 1 Operator Club

The A-1 Operator Club should include in its ranks every good operator. To become a member, one must be nominated by at least two operators who already belong. Ceneral keying or voice technique, procedure, copsing ability, judgment and courtesy all count in rating candidates under the club rules detailed at length in Operating an Amateur Rudio Station. Aim to make yourself a fine operator, and one of these days you may be pleasantly surprised by an invitation to belong to the A-1 Operator Club, whieh marries a worth-while certificate in its own right.

Brass Pounders League

Every individual reporting more than a specified minimum in official monthly traffic totals is
given an honor place in the QST listing known as the Brass Pounders League and a certificate to rerognize his performance is furvished by the SCM.

The value to amateurs in operator training, and the utility of amateur message handling to the members of the fraternity itself as well as to the general public, make message-handling work of prime importance to the fraternity: Fun, enjorment, and the feeling of having done something really worth while for one's fellows is accentuated by pride in message files, records, and letters from those served.

Old Timers Club

The Old rimers Club is open to anyone who holds an amateur call at the present time, and who held an amateur license (operator or station) 20-or-more years ago. Lapses in activity during the intervening years are permitted.

If you can qualify as an "Old Timer," send us a brief chronology of your ham career, being sure to indicate the date of your first amateur license, and your present call. If the evidence submitted proves you eligible for the OTC, you will be added to the roster and will receive a membership certificate.

INVITATION

Amateur radio is capable of giving enjoyment, self-training, social and organization benefits in proportion to what the individual amateur puts into his hobby. All amateurs are invited to become ARRL members, to work toward awards, and to accept the challenge and invitation of fered in field-organization appointments. Drop a line to ARRL Headquarters for the booklet Operating an Amateur Radio Station, which has detailed information on the field-organization appointments and awards. Aceept today the invitation to take full part in all League activities and organization work.

534

- Operating an Amateur Radio Station coversthe details of practical amateur operating. In it you will find information on Operating Practices, Emergency Communication, ARRL Op. erating Activities and Awards, the ARRL Field Organization, Handling Messages, Network Organization، "Q" Signals and Abbreviations used in amateur operating, important extracts from the FCC Regulations, and other helpful material. It's a handy reference that will serve to answer many of the questions concerning operating that arise during your activities on the air.

Emergency Communications is the "bible" of the Amateur Radio Emergency Corps. Within its eight pages are contained the funda. mentals of emergency communication which every amateur interested in public service work should know, including a complete diagrammatical plan adaptable for use in any community, explanation of the role of the American Red Cross and FCC's regulations concerning amateur operation in emergencies. The Radio Amateur Civil Emergency Service (RACES) comes in for special consideration, including a complete table of RACES frequencies on the front cover. If you don't already have an up-to-date copy of this manual, we suggest you to-date copy of this manual, we sug
take steps to obtain one immediately.

> The two publications described above may be obtained without charge by any Handbook reader. Either or both will be sent upon request.

AMERICAN RADIO RELAY LEAGUE 38 La Salle Road
West Martford 7, Connecticut, U. S. A.

Please send me, without charge, the following:
OPERATING AN AMATEUR RADIO STATION EMERGENCY COMMUNICATIONS

Name (Please Print)
Address

THE DECIBEL

In most radio communication the reccived signal is converted into sound. This being the case, it is useful to appraise signal strengths in terms of relative loudness as registered by the ear. A peculiarity of the ear is that an increase

ur decrease in loudness is responsive to the io of the amounts of power involved, and is "tically independent of absolute value of the \therefore For example, if a person estimates that
t al is "t wice as loud" when the trams11 power is increased from 10 watts to 4 ats, he will also estimate that a 100-watt .as twice as loud as a 100 -watt signal. In ner words, the human ear has a logarithmir response.

This fact is the basis for the use of the relative-power unit called the decibel. A change of one decibel (ahbreviated db.) in the power level is just detectathe as a change in loudness under ideal conditions. The power ratio and decibels are related by the following formula:

$$
D b .=10 \log \frac{P_{2}}{P_{1}}
$$

Common logarithms (base 10) are used.
Note that the decibel is hased on poner ratios. Voltage or current ratios can he used, but only when the impedunce is the same for both values of vollage, or curront. The gain of an amplifier cannot be expressed corvectly in dh. if it is based on the ratio of the output voltage to the input voltage unless both voltagos ate measured across the same value of impedance. When the impedance at hoth points of measurement is the same, the following formula may be used for voltage or curvent ratios:

$$
\begin{gathered}
D b .=20 \log \frac{V_{2}}{I_{1}} \\
\text { or } 20 \log \frac{I_{2}}{I_{1}}
\end{gathered}
$$

The two formulas are shown graphically in the acrompanying chart for ratios from 1 to 10.

Gains (increases) expressed in decibels may be added arithmetically; losses (decreases) may be subtracted. A power decrease is indicated by prefixing the decibel figure with a minus sign. Thus +6 db . means that the power has been multiplied by 4 , while -6 db . means that the power has been divided by 4. The chart may be used for other ratios by adding (or subtracting, if a loss) 10 (lb. each time the ratio seale is multiplied by 10, for power ratios; or hy adding (or subtracting) 20 db . each time the sate is multiplied by 10 for voltage or current ratios.

VOLTAGE DECAY IN RC CIRCUITS

The areompanying chart enables calculation of the instantancous voltage aeross the termi-

nals of a condenser discharging .through a resistance. The voltage is given in terms of percentage of the voltage to which the condenser is initially charged. To obtain the voltage-decay time in seconds, multiply the factor ($l / C R$) by the time constant of the re-sistor-condenser circuit.

Example: A $0.01-\mu \mathrm{fd}$. condenser is charged to 150 volts and then allowed to discharge through a 0.1 -megohm resistor. How long will it take the voltage to fall to 10 volts? In percentage, $10 / 150=6.7 \%$. From the chart, the factor corresponding to $6.7 / 6$ is 2.7 . The time constant of the circuit is equal to $C R=0.01 \times 0.1=0.001$. The time is therefore $2.7 \times 0.001=0.0027$ second, or 2.7 milliseconds.

Example: An RC circuit is desired in which the voltage will fall to 50% of the initial value in 0.1 second. From the chart, $t^{\prime} C R=0.7$ at the 50%-voltage point. Therefore $C R=t / 0.7=0.1^{\prime} 0.7=1.43$. Any combination of resistance and capacitance whose product (R in megohms and C in microfarads) is equal to 1.43 can be used; for example, C could he $1 \mu \mathrm{fl}$. and $R 1.43$ megohms.

STANDARD METAL GAUGES			
Gauge No.	$\begin{gathered} \text { American } \\ \text { or B. \& } S .1 \\ \hline \end{gathered}$	U. S. Standard ${ }^{2}$	Birmingham or Slubs ${ }^{3}$
1	. 2893	. 28125	. 300
2	. 2576	. 265625	. 284
3	. 2934	. 25	. 259
4	. 2043	. 234375	. 238
5	. 1819	.21875	.220
6	.1020	. 203125	.203
7	. 1443	. 1875	. 180
8	. 1285	. 171875	. 165
9	.1144	.13625	. 148
10	. 1019	.140625	. 134
11	. 03074	. 123	.120
12	. 08081	.104375	.109
13	. 07196	. 09375	. 065
14	. 06.408	. 078125	.083
15	.0.5707	.070312.5	.072
16	.0.0882	. 06.25	.06\%
17	. 04526	.0.0625	. 0.88
18	. 04030	. 05	. 019
19	.03589	.04:375	.012
20	. 03196	. 0375	.035
21	. 02846	. 034375	.032
22	.02535	. 03125	. 028
23	. 022057	. 028125	.025
24	. 02010	.025	. 022
25	. 01790	. 021875	. 020
20	. 01591	. 01875	. 018
27	. 01420	. 0171875	. 016
28	. 01264	.015625	. 01.4
29	. 01126	. 0140025	. 013
30	. 01003	. 0125	. 012
31	. 0088928	. 0109375	. 010
32	. 0070.50	. 01015605	. 009
33	.007080	. 0001375	. 008
34	.0063350	.00859375	.007
:35	,0005615	. 0078125	. 00.5
36	. 0058000	. 00703125	(0) ${ }^{\text {P }}$
37	. 004155	.0066 10626	
38	. 0033963	. 00065	
34	.003.3.31	
40	. 00314.5	
${ }^{1}$ Used for alumimum, copper, brass and nonferrous alloy sheets, wire and rods. ${ }^{2}$ Used for iron, steel, niekel and ferrous alloy sheets, wire and rods. ${ }^{3}$ Used for seamless tubes; also by some minufueturers for copper and brass.			

GREEK ALPHABET					
Greek Leller	Greok Name	English Equivalent	Cirrek Leller	Girech lame	English R'quivalent
A a	Alpha	a	$\mathrm{N} \nu$	Nu	n
B β	Beta	b)	$\Xi \xi$	Xi	\mathbf{x}
I γ	Camma	g	0)	Omicron	б
$\Delta \delta$	Delta	d	II π	Pi	p
E ϵ	Epsilon	e	1 ρ	Rho	p
Z ζ	Zetar	Z	$\mathbf{\Sigma} \sigma$	Sigma	3
II η	Eta	e	T τ	Tau	t
$\theta \theta$	Theta	th	$\Upsilon \cup$	Upsilon	u
I 6	Iota	i	Ф ϕ	Phi	ph
K к	Ǩıppa	k	$\mathrm{X} \chi$	Chi	ch
$\wedge \lambda$	Lambda	1	$\Psi \psi$	Psi	ps
M μ	Mu	m	$\Omega \omega$	Omega	$\overline{0}$

Gauve No. B. \& S.	Diam. in Mils ${ }^{1}$	$\begin{gathered} \text { C'ircular } \\ \text { Mil } \\ \text { Area } \end{gathered}$	Turns per Linear Inch ${ }^{2}$				Turns per Square Inch ${ }^{2}$			Feet per Lb.		$\begin{gathered} \text { Ohms } \\ \text { per } \\ 1000 \mathrm{ft} . \\ 25^{\circ} \mathrm{C} . \end{gathered}$	('urrent Carrying (rapacity ${ }^{3}$ at 700 (... M. per Amp.	Diam. in mm.	Nearest British S.IV.G. No.
			Enamel	S.S.C.	$\begin{aligned} & \text { D.S.C. } \\ & \text { or } \\ & \text { S.C.C. } \end{aligned}$	D.C.C.	S.C.C.	Enamel S.C.C.	D.C.C.	Bare	D.C.C.				
1	289.3	83690	-	-	-	-	-	-	-	3.947	-	. 1264	119.6	7.348	1
2	257.6	86330	-	-	-	-	-	-	-	4.977	-	. 1593	94.8	6.544	3
3	229.4	52640	-	-	-	-	-	-	-	6.276	-	. 2009	75.2	5.827	4
4	204.3	41740	-	-	-	-	-	-	-	7.914	-	. 25.33	59.6	5. 189	5
5	181.9	331100	-	-	-	-	-	-	-	9.980	-	. 3195	47.3	-1.621	7
6	162.0	26:50	-	-	-	-	-	-	-	12.58	-	. 4028	37.5	4.115	8
7	144.3	20820	-	-	-	-	-	-	-	15.87	-	. 5080	29.7	3, 66i\%	9
8	128.5	116510	7.6	-	7.4	7.1	-	-	-	20.01	19.6	. 640.5	23.6	3.264	10
9	114.4	13090)	8.6	-	8.2	7.8	-	-	-	25.23	24.6	. 8077	18.7	2.906	11
10	101.9	10380	9.6	-	9.3	8.9	87.5	84.8	80.0	31.82	30.9	1.018	14.8	2.588	12
11	90.74	8:34	10.7	-	10.3	9.8	110	105	97.5	40.12	38.8	1.284	11.8	2.305	13
12	80.81	6530	12.0	-	11.5	10.9	136	131	121	50.50	48.9	1.619	9.33	2.053	14
13	71.96	5178	13.5	-	12.8	12.0	170	162	150	6:3.80	61.5	2.042	7.40	1.828	15
14	64.18	4119	15.0	-	14.2	13.8	211	1!18	183	80. 14	77.3	2.575	5.37	1.6288	16
15	57.07	$32: 7$	16.8	-	15.8	14.7	262	250	22.3	101.4	97.3	3.247	4.65	1.450	17
16	50.82	2583	18.9	18.9	17.9	16.4	321	306	271	127.9	119	4.094	3.69	1.291	18
17	45.26	2048	21.2	21.2	19.9	18.1	397	372	329	161.3	150	5.163	2.43	1.150	18
18	40.30	1624	23.6	23.6	22.0	19.8	493	45.4	399	203.4	188	6.510	2.32	1.024	19
19	35.8!	1288	26.4	26.4	24.4	21.8	592	553	479	256.5	237	8.210	1.84	. 9116	20
20	31.96	1022	29.4	29.4	27.0	23.8	775	725	625	323.4	298	10.35	1.46	. 8118	21
21	28.46	810.1	33.1	32.7	29.8	26.0	940	895	75.4	407.8	370	13.05	1.16	. 7230	22
22	25.35	642.4	37.0	36.5	34.1	30.0	1150	1070	910	514.2	461	16.46	. 918	. 6438	23
23	22.57	509.5	41.3	40.6	37.6	31.6	1400	1300	1080	648.4	584	20.76	. 728	. 5733	24
24	20.10	404.0	46.3	45.3	41.5	35.6	1700	1570	1260	817.7	745	26.17	. 577	. 5106	25
25	17.90	320.4	51.7	50.4	45.6	38.6	2060	1910	1510	1031	903	33.00	${ }_{4} 4.58$. 4547	26
26	15.94	254.1	58.0	55.6	50.2	41.8	2500	2300	1750	1300	1118	41.62	. 363	. 40.49	27
27	14.20	201.5	64.9	61.5	55.0	45.0	3030	2780	20:0	1639	1422	52.48	. 288	. 3600	29
28	12.64	159.8	72.7	68.6	60.2	48.5	3670	33:0	2310	2067	1759	66.17	. 228	. 3211	30
29	11.26	126.7	81.6	74.8	65.4	51.8	4.300	3900	2700	21607	2207	83.44	. 181	. 2859	31
30	10.03	100.5	90.5	83.3	71.5	55.5	5040	$46 \mathrm{if0}$	3020	3287	2.381	105.2	. 144	. 2516	33
31	8.928	79.70	101	92.0	77.5	59.2	5920	5280	-	4145	2768	132.7	. 114	. 2268	34
32	7.950	63.21	113	101	83.6	62.6	7060	6250	-	5227	$31: 37$	167.3	. 090	. 2019	36
33	7.080	50.13	127	110	90.3	66.3	8120	7360	-	6.91	4697	211.0	. 072	. 1798	37
34	6.305	39.75	143	120	97.0	70.0	9600	8310	-	8310	6168	296.0	. 057	.1601	38
35	5,615	31.52	158	132	104	73.5	10900	8700	-	10480	67.37	335.0	. 045	.1426	38-39
36	5.000	25.00	175	143	111	77.0	12200	10700	-	13210	7837	423.0	. 036	. 1270	39-40
37	4.453	19.83	198	154	118	80.3	-	-	-	16660	9309	533.4	. 028	.1131	41
38	3.965	15.72	224	166	126	83.6	-	-	-	21010	10666	678.6	. 022	. 1007	42
39	3.531	12.47	248	181	133	86.6	-	-	-	26500	11907	848.1	. 018	. 0897	43
40	3.145	9.88	282	194	140	89.7	-	-	-	33410	14222	1069	. 014	. 0799	44

2 The figures given are approximate only, since the thickness of the insulation varies with different manufacturers.
$\mathbf{3} \mathbf{7 0 0}$ circular mils per amperc is a satisfactory design figure for small transformers, but values from 500 to $1000 \mathrm{C} . \mathbf{M}$. are commonly used. For 1000 C.M./amp. divide the circular mil area (third column) by 1000 ; for 500 C.M./anp. divide circular mil area by 500 .

- FILTERS

The filter sections shown on the facing page can be used alone or, if greater attenuation and sharper cut-off are required, several sections can be connected in series. In the low- and high-pass filters, f_{c} represents the cut-off frequency, the highest (for the low-pass) or the lowest (for the high-pass) frequency transmitted without attenuation. In the bandpassfilter designs, f_{1} is the low-frequency cut-off and f_{2} the high-frequency cut-off. The units for L, C, R and f are henrys, farads, ohms and cycles, respectively.

All of the types shown are for use in an unbalanced line (one side grounded), and thus they are suitable for use in coaxial line or any other unbalanced circuit. To transform them for use in balanced lines (e.g., 300 -ohm transmission line, or push-pull audio circuits), the series reactances should be equally divided between the two legs. Thus the balanced con-stant- $\pi \pi$-section low-pass filter would use two inductances of a value equal to $L_{\mathrm{k}} / 2$, while the balanced constant- k-section high-pass filter would use two condensers of a value equal to $2 C_{\mathrm{k}}$.

If several low- (or high-) pass sections are to be used, it is advisable to use m-derived end sections on either side of a constant- k section, although an m-derived center section can be used. The fartor m relates the ratio of the cutoff frequency and f_{∞}, a frequency of high attenuation. Where only one m-derived section is used, a value of 0.6 is generally used for m, although a deviation of 10 or 15 per cent from this value is not too serious in amateur work. For a value of $m=0.6, f$ will be 1.25 fife for the low-pass filter and $0.8 f_{\mathrm{c}}$ for the high-pass filter. Other values can be found from
$m=\sqrt{1-\left(\frac{f_{\mathrm{c}}}{f_{\infty}}\right)^{2}}$ for the low-pass filter and $m=\sqrt{1-\left(\frac{f_{\infty}}{f_{c}}\right)^{2}}$ for the high-pass filter

The filters shown should be terminated in at resistance $=R$, and there shouh be lit tle or no reactive component in the termination.

Simple audio filters can be made with pow-dered-iron-core chokes and paper condensers. Sharper cut-off characteristics will be obtained with more sections. The values of the components can vary by $\pm 5 \%$ with little or no reduction in performance. The more sections there are to a filter the greater is the need for accuracy in the values of the components. High-performance audio filters can be built with only two sections by winding the inductances on toroidial powdered-iron forms - it generally takes three sections to obtain the same results when using other inductances.

Sideband filters are usually designed to operate in the range 10 to 20 kc . Their attenuation requirements are sueh that usually at
least a five-section filter is required. The coils should be as high- Q as possible, and mica condensers are the most suitable capacitors.

Low-pass and high-pass filters for harmonic suppression and receiver-overload prevention in the television frequencies range are usually made with sclf-supporting coils and mica or cer:amic condensers, depending upon the power requirements.

In any filter, there should be no magnetic or capacity coupling between sections of the filter unless the design specifically calls for it. This requirement makes it necessary to shield the coils from each other in some applications, or to mount them at right angles to each other.

Further information on filter design can be found in the following articles:
Bennett, "Audio Filters for Eliminating QRM," QST, July, 1949.
Berry, "Filter Design for the Single-Sidehand Transmitter," QST, June, 1949.
Buchheim, "Low-Pass Audio Filters," (QSTT, July, 1948.
Grammer, "Pointers on Harmonie Reduction," QST', April, 1949; "lligh-l'ass Filters for TVI Reduction," QST', May, 1949.
Mann, "An Inexpensive Sideband l'ilter," QST', March, 1949.
Rand, "The Little Shugger," Qs'T', lebbuary, 1949.
smith, "Premodulation Speerh Clipping and Filtering," QS'T, February, 1946; "More on Spereh Clipping," (QST, Mareh, 1947.

- TUNED-CIRCUIT RESPONSE

The graph below gives the response and phase angle of a high-() paralled-tmed eireuit.

Circuit Q is equal to

$$
2 \pi f R C \text { or } \frac{h}{2 \pi f L}
$$

where L and C are the inductance and capacitance at the resonant frequency, f, and R is the parallel resistance across the circuit. The curves above become more accurate as the circuit Q is higher, but the error is not especially great for values as low as $Q=10$.

In the above formulas K is in ohms, C in farads, L in henrys, and f in eycles per second.

INDUCTIVE AND CAPACITIVE REACTANCE VS. FREQUENCY CHART

FREQUENCY

By use of the chart ahove, the approximate reactance of anv capatitance from $1.0 \mu \mu \mathrm{fil}$. to 10 pfl. at any frequency from 100 cyctes to 100 megacyoles, or the reactance of any inductance fromt $0.1 \mu \mathrm{~h}$. to 1.0 henry, can be read direetly. Intermediate values can be estimated ib, interpolation. In making interpolations, remember that the rate of change between lines is logarithmic. I'se the frequeney or reactance scales as a puide in catimating intermediate values on the eapacitance or inductance seales.
'This chart also can be nsad to find the approximate resonance frequencios of LC: combinations, or the frequeney to which a given coil-and-eondenser combination will tune. First locate the regpertive slanting lines for the capacitance and indurtance. The point where they intersect, i.f., where the reactances are equal, is the resonant freguency (projected downward and read on the frequency scalc).

ELECTRICAL CONDUCTIVITY OF METALS

$\begin{array}{cc}\text { Relative } & \text { Temp. Coef. }{ }^{2} \\ \text { Conductivity }{ }^{1} \text { of Resistance }\end{array}$

Aluminum (2S; pure)	59	0.0049
Aluminum (alloys):		
Soft-anncaled.	45-50	
IIcat-treated.	30-45	
Brass.	28	0.002-0.007
Cadmium.	19	
Chromium.	5%	
Climax.	1.8:3	
Cobalt.	16.3	
Constantin.	3.24	0.00002
Copper (hard drawn).	89.5	0.004
Copper (annealed).	100	
E'verdur.	6	
German Silver (18\%)	5.3	0.00019
Ciold.	65	
Iron (pure).	17.7	0.006
Iron (cast).	2-12	
Iron (wrought).	11.4	

[^8]

PILOT-LAMP DATA																	
$\begin{gathered} \text { Lamp } \\ \text { No. } \end{gathered}$	Bead Color	Base (Mininture)	Bull, Type	RATING		$\begin{gathered} \text { Lamp } \\ \text { No. } \end{gathered}$	Bead Color	Base (Miniature)	$\begin{aligned} & \text { Bulb } \\ & \text { Type } \end{aligned}$	RATING							
				Volts	Amp.					Volts	Amp.						
40	Brown	sirew	T-31/4	6-8	0.15	49A3	White	Bayonet	T-31/4	2.1	0.12						
40A ${ }^{1}$	Brown	Bayonet	T-31/4	6-8	0.15	50	White	Screw	G-31/2	6-8	0.2						
41	White	Sirew	T-314	2.5	0.5	512	White	Bayonet	G-31/2	6-8	0.2						
42	Green	Screw	T-31/4	3.2	**	-	White	Screw	(1-41/2	6-8	0.4						
43	White	Bayonet	T-31/4	2.5	0.5	55	White	Bayonet	(i-41/2	6-8	0.4						
44	Blue	Bayonet	T-31/4	6-8	0.25	2925	White	screw	T-31/4	2.9	0.17						
45	*	Bayonet	「-314	3.2	**	292A ${ }^{\text {s }}$	White	Bayonet	T-31/4	2.9	0.17						
46^{2}	Hlue	S'rew	T-31/4	6-8	(1.25)	1455	Brown	Serew	G-5	18.0	0.25						
472	Brown	Bayonet	T-31/4	6-9	(t.15)	1455A	Brown	Buyonet	G-5	18.0	0.25						
48	l'ink	Screw	T-31/4	2.0	0.06												
49^{3}	Pink	Bayonet	T-31/4	2.0	0.06	${ }^{1} 40 \mathrm{~A}$ and 47 are interehangeable. ${ }^{2}$ llave frosted ludb. ${ }^{3} 49$ and 49 A are interchangeable. 4 leplace with No. 48. 6 I'se in 2.5 -volt sets where regular bulb burns out too frequently.											
4	White	Srrew	T-31/4	2.1	0.12												
* White in G.E. and Sylvania; green in National Enion, Raytheon and Tung-Sol. ** (0.35 in G.E. and Sylvania; 0.5 in National Union, Raytheon and Tung-Sol.																	

MINIDUCTOR DATA

The chart and table below, furnished through courtesy of Barker d Williamson, can be used to determine the approximate inductance of coils made of Miniductor material. The curves show the percentage of the total inductance (given in the right-hand column of the table) of the coil as supplied, when cut to various lengths.

MINIDUCTOR SPECIFICATIONS				
Catalog Number	Diam. (Inches)	Turns Per Inch	Approx. Length (Inches)	Approx. Inductance (μ h.)
3001	1/2	4	2	0.4
3002	1/2	8	2	0.96
3003	1/2	16	2	3.2
3004	1/2	32	2	13.7
3005	5/8	4	2	0.56
3006	5/8	8	2	1.4
3007	$8 / 8$	16	2	4.9
3008	5/8	32	2	19.2
3009	$8 / 4$	4	3	0.94
3010	8/4	8	3	2.9
3011	$8 / 4$	16	3	10.9
3012	$8 / 4$	32	3	42.5
3013	1	4	3	1.9
3014	1	8	3	4.8
3015	1	16	3	19.9
3016	1	32	3	73.0

INDUCTANCE OF SMALL COILS

Most inductance formulas lose accuracy when applied to the small coils used in v.h.f. work and in low-pass filters built for reducing harmonic interference to television, because the conductor thickness is no longer negligible in comparison with the size of the coil. The accompanying chart shows the measured inductance of typical coils used for these purposes, and may be used as a basis for circuit design. Two curves are given: curve A is for coils wound to an inside diameter of $1 / 2$ inch; curve B is for coils of $3 / 4$-inch inside diameter. In both curves the wire size is No. 12, winding pitch 8 turns to the inch ($1 / 8$ inch center-to-center turn spacing). The inductance values given include leads $1 / 2$ inch long.

[^9]
Vacuum Tubes and Semiconductors

For the convenience of the designer, the re-coiving-type tubes listed in this chapter aro grouped by filament voltages and construction types (glass, metal, miniature, cete.). For example, all 6.3 -volt metal tubes are listed in Trable I, all lock-in base tubes are in Tablo IIl, all miniatures are in Table XI, and so nit.

Transmitting tubes are divided into triodes and totrodes-pentodes, then listed acoording to rated plate dissipation. This permits direct comparison of ratings of tubers in the same power classification.

For quick referenee, all tubes are listed in numerieal-alphabetical order in the index beginning on the following page.

Tube Ratings

Vacuum tubes are designed to be operated within definite maximum (and minimum) ratings. These ratings are the maximum safe operating voltages and currents for the electrodes, based on inherent limiting factors such as permissible cathode temperature, emission, and power dissipation in electrodes.

In the transmitting-tube tables, maximum ratings for eleetrode voltage, current and dissipation are given separately from the typical operating conditions for the recommended classes of operation. In the receiving-tube tables, because of space limitations, ratings and operating data are combined. Where only one set of operating conditions appears, the positive clectrode voltages shown (plate, sereron,
etc.) are, in general, atso the maximum rated voltages for those electrodes.

For certain air-cooled transmitting tubers, there are two sets of maximum values, one designated as CCs (Continuous Commereial service) ratings, the other ICAS (Intermittent Commercial and Amateur Service) ratings. Continuous Commercial Service is defined as that type of service in which long tube life and reliability of performance under continuous operating conditions are the prime consideration. Intermittent Commercial and Amateur service is defined to include the many applications where the transmitter design factors of minimum size, light weight, and maximum power output are more important than long tube life. IC.As ratings are considerably higher than CCS ratings. They permit the handling of greater power, and although such use involves some sacrifice in tube life, the period over which tubes will continue to give satisfactory performance in intermittent service can be ext remely long.

Typical Operating Conditions

The typical operating eonditions given for transmitting tubes represent, in general, maximum ICAS ratings where such ratings have been given by the manufacturer. They do not represent the only possible method of operation of a particular tube type. Other values of phate voltage, plate current, grid bias, et e., may be used so long as the maximum ratings for a particular voltage or current are not exeecded.

INDEX TO TUBE TABLES

INDEX TO VACUUM-TUBE TYPES

For convenience in locating data on sperific tube typer the index below lists all tulnes in numerical-alphabrtical order, thowing the page number where individual tulnes may be foumd in the dassifiededata section (pages V14-V63) and the identifying base-diamram momber in the basediagram spetion (mages Viv-V13).

mivpe	Proge rase
	V15 7a\%
$6 \mathrm{~N} / 7$.	$\checkmark 15$ 80
$0^{12} 4$	Y29 71)k
615	$\checkmark 19$ fil
\%TGGM	$Y 17$ 6\%
$6{ }^{6} 7$	11575
$6^{11} 8$	129
$61 / 3$	$1{ }^{1} 29.318$
61.4 CT	V12 416
61.5	1196
$61.6 G T$	$\checkmark 17$ 7AC
6178	V17 718
	Y29 9aF
6 V 3	V12 9131)
6 V 4	1429 M
6 V 5 CT	Y176AO
${ }^{60} 686$	
${ }_{6} \times 7 \mathrm{C}$.	V17 7 V
6 V 8	$\because 29$ 9aH
6W4C:	V42 40
6W5:	V42 6 s
6WfigT	V17 7AC
$6{ }^{6} 76$	V17 7R
6.4.	V42 7(1F
6×5	V42 6 S
6. 6 C	$\underline{17}$ 7AL
6×8 6)	V29 9AK
645	-12 6 J
616 C	v17 7AC
677 G	V17 813
623	V42 46
	V43 511
625	V42 6 k
627 G	V17813
62 Y 5 G	V42 64
7 A 4	Y17 5.4C
7 A 5	v17 6aA
$7 \mathrm{A6}$	V17 7AJ
7 A 7	$\underline{17} 8 \mathrm{yv}$
7 A 8	4178
$7 \mathrm{Al37}$	V26 8130
7 Al 7	v18 8V
7 AF 7	vis xac
7Ad7	vis 8 V
$7 \mathrm{Al17}$	Vis 8 V
7AJ7	V18 $\mathrm{yV}^{\text {d }}$
$7 \mathrm{AR7}$	V18 5
$7 \mathrm{Al}^{4}$	Y38 5AJ
7134	v18 5AO
7135	v13 6AE
7136	v18 xW
7137	vis sv
	Y18 8.
7131	V3x 5AN
7 C 4	V26 4AiI
7 (\%)	V18 6AA
7 C 6	vis sw
7 C 7	V18 85
7 P 1	v38 6.AZ
7117	18 8AR
$711{ }^{\text {7 }}$	V38 12C
715	V26 813N
$7 \mathrm{E6}$	V18 8w
71.7	WX 8AE
7 WP	V3 11N
717	V1x 8AC
7 FB	vis sibl
$7{ }^{\text {ci }} 7$	vis sy
718	7is 813 V
76114	$\because 381 \%$
	vis 5
$7 \mathrm{J7}$	V18 8AR
7J1P1	vis 114
$7 \mathrm{Jl}{ }^{\text {¢ }}$	visk 141;
$7 \mathrm{n7}$	F18 813F
71.7	V18 8V
$7 \mathrm{M17}$	Vis (21)
7ハ7.	V18 rac
7 NP	V3s 14.
7 (27	V1s sala
7 (11)	v3s 121)
7127	V1s 8.1F
$7 \mathrm{R1}{ }^{\prime}$	$138121)$
	V18 81HL
717	vin st
7 TP	V38 12C
7×7.	Vis 8V
$7 \mathrm{YP1}$	-3s 14A
7W7	V1s 813J
$7 \mathrm{WP4}$	v38 14N
7. 6	$12 \mathrm{7AJ}$
7×7	V14 833\%
724	1425A13
$7 \% 4$	vis 5A is
8 AP 4	v9\% 1211
813 P ¢	V39 14
gapt	Y39 6.1
914.5	v29 71)(2
9HW6	ve! 9aM
90194.	(30 + AF^{5}
9JP1	-39 x13R
10	V25 41)
10	V4i 41
10 HP 4	4391217
101.P4	v39 121)
$10 \mathrm{HP}{ }^{\text {P }}$	-39120
1011P4	V39 14
10 KP	-39 120
10sp'4	$\checkmark 3912 \mathrm{C}$
101	146 +1)
11/12	$125+\mathrm{F}$
12.4	v30 9.6
12 A 5	${ }_{23} 7 \mathrm{~F}$
1246	v23 7ac
12 A 7	V23 7K
1247	-42 3 h
12 ABGT	V23 8A

	Paur lorse	7＇／1／1e	f＇ite lsase	Tupe	I＇rife Brase	Type	Frue lrase	Tupe	Page hase
1\％＋0，	Paur 3inse	V70．．	（1）35	viryo．	137 taj	Wrisoti．	Yis 2l	8225	$1+3+1$
（1）：100	V00 21	－70A	－60 $3 \times$	vR10\％	Y3I taj	－6030	$\because 6$ 1ty． 4	Z66．	162
［1F，+6	V53 1．1g． 57	V704	（i） 36	1 l 150	137 4．AJ	※心13	$\bigcirc 06$ Frls， 9	$Z 1360$	［50 $21 ?$
（1135．	V50 319	$\checkmark 70{ }^{\circ}$	15036	＂rs2	126＋1）	－（1）	$\because 258.4$	Z13120．	$150+1{ }^{\text {V }}$
1 If．j0	（4）21）	1701）	V5136	$\cdots 1274$	$\checkmark 51$ T－413	－	V18 5．		
U［5］	V48 21）	－1275	V37 4AJ	VII91．	V．7－	ざ1．N。	V26 813Z		

SEMICONDUCTORS

Type	Tace	Type	Page	Tupe	Page	Type	Page	Tupe	Payc
1 ご．34	． 165	105	．V65	1.73	.65	CK709．	165	\＄11752	$\sqrt{64}$
$1 \times 34 \mathrm{~A}$	－ 6 ¢5	1 Nist	$\checkmark 65$	1×74	165	（＇R707．	165	（） 50	Vit
1×35	1／5．5	1． 156	Y65	1×75	V65	CK70x．	165	（0＇51	V64
1 No3\％	165	1	V65	2.	164	（＇K710．	165	PT：A	V61
$1 \times 3 \mathrm{~A}$	Y65	1 $\mathrm{N} 5 \overline{7}$	प65	213	V64	CK716．	$\stackrel{64}{ }$	PT＇2S	V15
1 N39．	165	1×5	165	2 C	164	（16721．	V64	121734	164
1×10	165	IN5s．A	V6ら	211	V64	（K622	V64	1212517．	V64
1 N． 1	165	1×80	165	2 r	V64	$(15$	V65	RIP250．	Hi
1×42	Y6．5	1	V65	20	V64	（i5）	V65	1212521．	164
1×43	－ 635	1×63	16.5	2	Cif	（：51）	V65	1R1）2525．	864
1×14	Y65	1×64	V65	${ }^{2}$ N゙32	V64	（951）	V65	12R－14	Y61
1×45	V65	1.165	165	20．33	V64	（15）	V65	RR－20	V64
1×46	465	1 ± 66	V65	2×34	164	（：50	V65	RR－21	V64
$1 \mathrm{~N}+7$	V65	$1 \$ 67$	165	2 N 3	V64	（17	185	RR－34	Vt
［5＋8	$V 65$	1 N65	V65	2N36	V64	（111	V64	T＇21A	Y64
1 N51	165	1×69	$\checkmark 65$	2×37	V4	（111A	164	TA－16113	V1
1×52	V60	1×70	165	2N3x	V6	M16x9	164	11P01	Vtis
1 $\times 54$	V65	｜N71	V65	A1698．	「64	M1725	V64	－-24	Vt
IN54A	Vfis	1N72	165	（＇K705	$\checkmark 65$	M1729．	V64	－－23	V\％

VACUUM－TUBE BASE DIAGRAMS

The diagrams on the following pages siow standard socket eomections corresponding to the base designations
 throughout．I＇rminal designations are at follows：

$\mathbf{A}=$ Anode		$\\|=$ Ileater	$P^{\prime} \quad=\quad$ Plate（inote）	Ref $=$ Replestor
	1）＝Dellecting Plate	IC＝Internal Con．	$\mathrm{P}_{1}=$ Siarter－inode	$5=$ shell
	$\mathrm{F}^{*}=$ F＇ilament	IS $=$［nternal Shield	P＇bF $=$ Beam I＇lates	＇1＇A $=$＇${ }^{\text {Parget }}$
$13 \mathrm{~S}=13 \mathrm{ase}$ sleeve	$\mathrm{FE}=$ Focas Lilect．	$\mathrm{K}=$ Cathode	RC $=$ Rav．Control	U＝Init
C＝Exi．（a）ating	$\mathrm{C}=\mathrm{C} \cdot \mathrm{ri}$	$\mathrm{SC}=\mathrm{Vo}_{0}$ Conncetion	Filectrode	C Cas－Type ${ }^{\text {a }}$

Generally when the Xo．I pin of a metaltype tube in Tahlel．with the exception of all trionles．is almonn connerted to the shell，tha No．I fin in the glas（G）or（ $\left.{ }^{\prime}\right]^{\prime}$ ）equivalent is connected to an internal shield．

R．E．T．M．A．TUBE BASE DIAGRAMS

Botom view a are shown．＇lorminal designations on sockets are shown above．

$3 G$

$4 A D$

480

2D

3N

4AF

4AQ

4BR

2N

3 T

4AH

$2 T$

4AA

4AJ

4BB

4 C

22

$4 A B$

4AM

$3 C$

4AC

4AP

48 J

4 CB

TUBE BASE DIAGRAMS

Buhtom views are shomm. 'Torminal designations on sochets are given on page V5.

TUBE BASE DIAGRAMS

Bottom views are shown. 'Terminal designations on sorkets are given on page V 5 .

6 H

$6 J$

$6 K$

6 L

6 M

60

TUBE BASE DIAGRAMS

			7AJ		
7AS				7AW	
	78	7 BA	$7 B 8$	$7 B C$	7BD
			7BJ		
			760		
		7C		7CB	

TUBE BASE DIAGRAMS

			ブU		
	7CX				
	70J	70K	700		
	8AV		8AX		

TUBE BASE DIAGRAMS

Bothon views art shown. Therminal designations on sockets are given on page 15.

8BU

(4) (5)

8DG
(4) (3) (3)
(4) (5) (3) (3)

8G
(4):
(6) (7) (4)

8EL

8N

8F

80

8 P
(3)

8 H

$8 K$
(3) (3) (3)
8 L

8 Q

8R

8 U

8V
(3) (3) (3)
$8 w$

83

TUBE BASE DIAGRAMS

				9AZ	
			9R		$9 T$
					11 A
		11 F	1) M		
	12 E				
			$B 1$		

TUBE BASE DIAGRAMS

TUBE BASE DIAGRAMS

Hottom views are shown. 'Pirminal designations on sockets are given on page V5.
 For "G" and "GT" tubes not listed (not having metal counterparts), see Tables II, VII, VIII and IX

Type	Name	Sockel Connec. lions	Fil. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plote Supply Volis	Grid Bios	$\begin{aligned} & \text { Screen } \\ & \text { Volls } \end{aligned}$	Screen Current Ma.	Plote Current Mo.	Plote Resistance Ohms	Tronsconductance Micromhos	Amp. Foctor	$\begin{aligned} & \text { Lood } \\ & \text { Resistance } \\ & \text { Ohms } \end{aligned}$	Power Output Watts	Type
			Volis	Amp.	1 n	Out	PloleGrid												
6 A8	Pentogrid Converter	8 A	6.3	0.3	Osc. Grid leak = 50000!!			Converter	250	- 3.0	100	2.7	3.5	Anode-grid (No. 2) 250 volts max. thru 20,000 ohms					6A8
$\begin{aligned} & 6 A B 7 \\ & 1853 \end{aligned}$	Remote Cut-off Pentode	8 N	6.3	0.45	8	5	0.015	Closs-A Amp.	300	- 3.0	200	3.2	12.5	700000	5000	3500	-	-	$\begin{aligned} & 6 A B 7 \\ & 1853 \end{aligned}$
$\begin{aligned} & 6 A C 7 \\ & 1852 \\ & \hline \end{aligned}$	Sharp Cut-off Pentode	8 N	6.3	0.45	11	5	0.015	Class-A Amp.	300	160*	150	2.5	10	1000000	9000	6750	-	-	$\begin{aligned} & 6 A C 7 \\ & 1852 \end{aligned}$
- 6AG7	Power Pentode	8 Y	6.3	0.65	13	7.5	0.06	Closs-A, Amp.	300	-3.0	150	$7 / 9$	30/30.5	130000	11000		10000	3.0	6AG7
6 AJ7	Sharp Cut-off Pentode	8 N	6.3	0.45				Class-A Amp.	300	160°	300	2.5	10	1000000	9000	-		3.0	6AJ7
6 6AK7	Pentode Power Amp.	8 Y	6.3	0.65	13	7.5	0.06	Closs-A Amp.	300	-3	150	7	30	130000	11000	-	10000	3.0	6AK7
688	Duplex-Diode Pentode	8 E	6.3	0.3	6	9	0.005	Closs-A Amp.	250	-3.0	125	2.3	9.0	850000	1125	730			688
$6 \mathrm{C5}$	Triode	60	6.3	0.3	3	11	2	Class-A Amp.	250	$\begin{array}{r} -8.0 \\ -17.0 \\ -\quad 1.3 \end{array}$		$\underline{\underline{-}}$	8.0	-10000	2000	20			6 C 5
$6 F 5$	High $-\mu$ Triodo	5M	6.3	0.3	5.5	4	2.3	Bias Defector Class-A Amp.	250		-		Plate current adiusted ta 0.2 ma , with no signol						
$6 F 6$	Pentode Power Amplifier	75	6.3	0.7	6.5	13	0.2	Class-A, Pent. ${ }^{\text {S }}$	$\begin{aligned} & 250 \\ & 315 \\ & 250 \end{aligned}$	$\begin{array}{r} -16.5 \\ -22.0 \\ -20.0 \end{array}$	$\begin{aligned} & 250 \\ & 315 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 36 \\ & 42 \end{aligned}$	$\begin{aligned} & 80000 \\ & 75000 \end{aligned}$	$\begin{array}{r} 2500 \\ 2650 \\ \hline \end{array}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 7000 \\ & 7000 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 5.0 \\ & \hline \end{aligned}$	6 F6
								Class-AB Amp ${ }^{6}$					34.	2600	2600	6.8	4000	0.85	
								Class-AB: Amp Class-ABz Amp. ${ }^{6}$	$\begin{array}{r} 375 \\ 375 \\ \hline \end{array}$	$\begin{array}{r} 340 * \\ -26.0 \\ \hline \end{array}$	$\begin{aligned} & 250 \\ & 250 \end{aligned}$	$\begin{gathered} 8 / 18 \\ 5 / 19.5 \end{gathered}$	$\begin{aligned} & 54 / 77 \\ & 34 / 82 \end{aligned}$	Power outpul for 2 fubes at stated load, plate-to-plate			$\begin{aligned} & 10000{ }^{8} \\ & 100008 \end{aligned}$	$\begin{aligned} & 19.0 \\ & 18.5 \end{aligned}$	
								Closs-AB: Amp. ${ }^{16}$	$\begin{array}{r} 350 \\ 350 \end{array}$	$\begin{gathered} 730 * \\ -38 \end{gathered}$	-	-	$\begin{aligned} & 50 / 61 \\ & 48 / 92 \end{aligned}$	-	-		$\begin{gathered} 10000 \\ 6000 \end{gathered}$	13	
$6 \mathrm{H}_{6}$	Twin Diode	70	6.3	0.3	-			Rectifier	Max. a.c. volfage per plate $=150$ r.m.s. Max. output current 8.0 ma. d.c.										6H6
6.5	Triode	60	6.3	0.3	3.4	3.6	3.4	Class-A Amp.	250	-8.0	-		9	7700	2600	20	d.	-	6 J 5
6.7	Sharp Cut-ofi Penlode	7 R	6.3	0.3	7	12	0.005	R.F. Amp.	250	- 3.0	100	0.5	2.0	1.5 meg.	1225	1500		-	6.7
$6 \mathrm{K7}$	Variable- Pentade	7R						Bias Detector R.F. Amp.	250	-4.3 -3.0	100	Cathode current 0.43 ma .			1650	- 990	0.5 meg .		
			6.3	0.3	7	12	0.005	Mixer	250	- -10.0	100	2.6	10.5	600000	Oscillator peok volts $=7.0$				$6 \mathrm{K7}$
6 K 8	Triode-Hoxodo	8K	6.3	0.3			-	Converior	250	-3.0	100	6	2.5	Triode Plote (No. 2) 100 volls, 3.8 ma .					6 K 8
616	Beam Power Amplifier	7AC	6.3	0.9	10	12	0.4	Single Tube Closs A_{1}	$\begin{aligned} & 250 \\ & 300 \end{aligned}$	$\begin{aligned} & 170^{\circ} \\ & 220^{\circ} \end{aligned}$	$\begin{aligned} & 250 \\ & 200 \end{aligned}$	$\begin{aligned} & 5.4 / 7.2 \\ & 3.0 / 4.6 \\ & \hline \end{aligned}$	$\begin{gathered} 75 / 78 \\ 51 / 54.5 \end{gathered}$	-	-	-	$\begin{aligned} & 2500 \\ & 4500 \end{aligned}$	6.5	616
								Single Tube Class AI	$\begin{array}{r} 250 \\ 350 \end{array}$	$\begin{array}{r} -14.0 \\ -18.0 \\ \hline \end{array}$	$\begin{aligned} & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 5.0 / 7.3 \\ & 2.5 / 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 72 / 79 \\ & 54 / 66 \end{aligned}$	$\begin{aligned} & 22500 \\ & \mathbf{3 3 0 0 0} \end{aligned}$	$\begin{aligned} & 6000 \\ & 5200 \end{aligned}$		$\begin{aligned} & 2500 \\ & 4200 \end{aligned}$	$\begin{gathered} 6.5 \\ 10.8 \end{gathered}$	
								P.P. Class $A,{ }^{6}$	270	125°	270	11/17	134/145	-			$5000{ }^{8}$	18.5	
								P.P. Closs $A_{1}{ }^{6}$	$\begin{array}{r} 250 \\ 270 \end{array}$	$\begin{array}{r} -16.0 \\ -17.5 \end{array}$	$\begin{aligned} & 250 \\ & 270 \end{aligned}$	$\begin{aligned} & 10 / 16 \\ & 11 / 17 \end{aligned}$	$\begin{aligned} & 120 / 140 \\ & 134 / 155 \end{aligned}$	$\begin{array}{r} 24500 \\ 23500 \end{array}$	$\begin{aligned} & 5500 \\ & 5700 \end{aligned}$	—	$\begin{aligned} & 50008 \\ & 5000^{8} \end{aligned}$	$\begin{aligned} & 14.5 \\ & 17.5 \end{aligned}$	
								P.P. Class $A B_{1}{ }^{5}$	360	$250{ }^{\circ}$	270	5/17	88/100	Power output for 2 tubes. Load plate-to-plate			9000 \%	24.5	
								P.P. Closs $A B_{1}{ }^{8}$	360	-22.5	270	5/15	88/132				$6600{ }^{\text {8 }}$	26.5	
								P.P. Closs AB_{2} :	$\begin{array}{r} 360 \\ 360 \end{array}$	$\begin{array}{r} -18.0 \\ -22.5 \end{array}$	$\begin{array}{r} 225 \\ 270 \end{array}$	$\begin{gathered} 3.5 / 11 \\ 5 / 16 \end{gathered}$	$\begin{aligned} & 78 / 142 \\ & 88 / 205 \end{aligned}$				$\begin{aligned} & 60000^{8} \\ & 3800^{8} \end{aligned}$	$\begin{aligned} & 31.0 \\ & 47.0 \end{aligned}$	
617	Pentagrid Mixer Amplifier	71	6.3	0.3	—			R.F. Amp.	250	- 3.0	100	5.5	$\begin{array}{r} 5.3 \\ \hline 3.3 \\ \hline \end{array}$	800000	1100		$3800{ }^{8}$		617
								Mixer	250	-6.0	150	8.3		Over 1 meg.	Oscillotar-grid (No.3) voltage $=-15$				
6 N7	Twin Triode	8 B	6.3	0.8				Class-B Amp.	300	0	-	-	35/70	.	,		8000	10.0	6N7
607	Duplex-Diode Triode	7 V	6.3	0.3	5	3.8	1.4	Triode Amp.	250	-3.0		-	1.1	58000	1200	70			607
687	Duplex-Diode Triode	7 V	6.3	0.3	4.8	3.8	2.4	Triode Amp.	250	-9.0		-	9.5	8500	1900	16	10000	0.28	6R7
657	Remote Cut-off Pentode	7R	6.3	0.15	6.5	10.5	0.005	Closs-A Amp.	250	-3.0	100	2.0	8.5	1000000	1750	-	-	-	657
6SA7	Pentogrid Converler	8R2	6.3	0.3		-		Converter	250	0^{3}	100	8.0	3.4	800000	Grid No. 1 resistor 20000 ohms				65 A7
6SB7Y	Penlagrid Converlep	8R	6.3	0.3	9.6	9.2		Converter	100	-1	100	10.2	3.6	500000					6SB7Y
								Converter	250	- 1	100	10	3.8	1000000	950				
					Osc. Section in 88-108 Mc. Serv.				250	22000	12000^{9}	12.6/12.5	6.8/6.5						
$65 C 7$	Twin-Triode	85	6.3	0.3	-	-	-	Closs-A Amp.	250	- 2.0	-	,	2.0	53000	1325	70		-	6SC7

TABLE I-METAL RECEIVING TUBES - Continued

Trpe	Name	Secket Connec tions	Fil. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volis	Grid Bias	Screen Volts	Screen Current Ma.	Plate Current Ma.	Plate Resistance Ohms	Transconductonce Micromhos	Amp. Factor	LoadResislanceOhms	Power Output Watts	Type
			Volts	Amp.	In	Out	PlateGrid												
6SF5	Highi- μ Triode	6AB	6.3	0.3	4	3.6	2.4	Class-A Amp.	250	-2.0	-	-	0.9	66000	1500	100	-	-	6SF5
6.57	Diode Variable μ Pentode	7 AZ	6.3	0.3	5.5	6	0.004	Class-A Amp.	250	-1.0	100	3.3	12.4	700000	2050				65F7
6567	Semivariable.ر Pentode	8BK	6.3	0.3	8.5	7	0.003	H.F. Amp.	250	- 2.5	150	3.4	9.2	Over 1 meg.	4000	—	-	-	65G7
CSM7	Sharp Cut-off Pentode	8BK	6.3	0.3	8.5	7	0.003	Class-A Amp.	250	-1.0	150	4.1	10.8	900000	4900	-			6547
$6587{ }^{1}$	Shatp Cut-off Pentode	8 N	6:3	0.3	6	7	0.005	Class-A Amp.	250	-3.0	100	0.8	3	1500000	1650	2500			6SJ7
CSK7	Variable- μ Pentode	8N	6.3	0.3	6	7	0.003	Class-A Amp.	250	- 3.0	100	2.4	9.2	800000	2000	1600			$65 K 7$
6507	Duplex-Diode Triode	80	6.3	0.3	3.2	3.0	1.6	Class-A Amp.	250	-2.0		-	0.8	91000	1100	100			6507
6587	Duplex-Diode Triode	80	6.3	0.3	3.6	2.8	2.40	Class-A Amp.	250	-9.0			9.5	8500	1900	16			6SR7
6557	Variable- μ Pentode	8 N	6.3	0.15	5.5	7.0	0.004	Class-A Amp.	250	-3.0	100	2.0	9.0	1000000	1850				6557
6517	Duplex-Diode Triode	80	6.3	0.15	2.8	3	1.50	Class-A Amp.	250	-9.0			9.5	8500	1900	16			6ST7
esv7	Diode R.F. Pentode	7AZ	6.3	0.3	6.5	6	0.004	Class-A Amp.	250	-1	150	2.8	7.5	800000	3400			-	6SV7
6527	Duplex-Diode Triode	80	6.3	0.15	2.6	2.8	1.10	Class-A Amp.	250	- 3			1.0	58000	1200	70			6527
617	Duplex-Diode Triode	7 V	6.3	0.15	1.8	3.1	1.70	Class-A Amp.	250	- 3.0	-		1.2	62000	1050	65			617
6V6	Beam Power Amplifier	7 AC	6.3	0.45	2.0	7.5	0.7	Class-A, Amp. ${ }^{3}$	250	-12.5	250	4.5/7.0	45/47	52000	4100	218	5000	4.5	6V6
								Class-AB1 Amp. ${ }^{6}$	250	-15.0	250	5/13	70/79	60000	3750	-	$10000^{\text {8 }}$	10.0	
									285	-19.0	285	4/13.5	70/92	65000	3600		$8000{ }^{\text {8 }}$	14.0	
1611	Pentode Power Amplifier	75	6.3	0.7				Audio Amp.		Characteristics same as 6F6									1611
1612	Pentagrid Amplifier	71	6.3	0.3	7.5	11	0.001	Class-A Amp.	250	- 3.0	100	6.5	5.3	600000	1100	880	-	-	1612
1620	Sharp Cut-off Pentode	7R	6.3	0.3		-	\longrightarrow	Class-A Amp.	Characteristics same as 617										1620
					-			Class-AB2 Amp. ${ }^{\text {b }}$	300	-30.0	300	6.5/13	38/69	-		-	$4000{ }^{8}$	5.0	1621
1621	Power Amplifier Penlode	75	0.3	0.7	-			Class-A1 Amp. ${ }^{1}$	330	500*		-	55/59	-	\cdots	-	$5000{ }^{\text {8 }}$	2.0	
1622	Beam Power Amplifier	7 AC	6.3	0.9	-			Class-A, Amp.	300	-20.0	250	4/10.5	86/125	\cdots	-	\longrightarrow	4000	10.0	1622
1851	Television Amp. Pentode	7 R	6.3	0.45	11.5	5.2	0.02	Class-A Amp.	300	-2.0	150	2.5	10	750000	9000	6750	-	-	1851
5693	Sharp Cut-off Pentode	8 N	6.3	0.3	5.3	6.2	0.005	Class-A Amp.	250	-3	100	0.85	3.0	1000000	1650	\longrightarrow	-	-	5693
5961	Pentagrid Converler	8R	6.3	0.3	Osc. Grid 20K Ω			Converter	250	- 2	100	8.5	3.5	1000000	Conversion Gm=450				5961
6137	Remote Cul-off Pentode	8 N	6.3	0.3	5.0 T	6.5	0.003	Class-A, Amp.	250	- 3	100	2.6	9.2	800000	2000	-	-	-	6137
\# Cathode resistor-ohms.		${ }^{1}$ Screen tied to plate. 2 For 6SA7GT use base diagram 8AD.					Grid bias-2 volts if separate oscillator excitation is used. "Also Type "6SJ7Y."						${ }^{5}$ Values are for single fube. ${ }^{6}$ Values are for two tubes in push-pull.				Max.-signal value. Plate-to-plate value. ' Ose grid leak-Scrn res.		

TABLE II-6.3-VOLT GLASS TUBES WITH OCTAL BASES
(For "G" and "GT".Type Tubes Nol Listed Here, See Equivalent Type in Table I; Characteristics and Connections Will Be Identical)

Type	Name	Sockel Connections	Fil. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	Screen Volis	Screen Current Mo.	Plote Current Ma.	Plate Resistance Ohms	Transcanductance Micromhos	Amp. Factor	LoadResistanceOhms	Power Output Watts	Type
			Volls	Amp.	In	Out	PlateGrid												
2122	Diode	Fig. 37	6.3	0.75	2.2		-	U.h.f. Detector	Average cathode Ma. $=5$; Output volts $=50$ d.c.; Load resistance $=10000$.										2822
$2 \mathrm{C22}$	Triode	4AM	6.3	0.3	2.2	0.7	3.60	Closs-A Amp.	300	-10.5			11	6600	3000	20		-	$2 \mathrm{C22}$
CASGT	Triode Power Amplifier	6 T	6.3	1.0				Class-A Amp. ${ }^{\text {d }}$	250	-45.0			60	800		4.2	2500	3.75	6A5G
					-	-	-	P.P. Class AB ${ }^{\text {s }}$	325	-68.0			80	-	5250	-	$3000{ }^{6}$	15.0	
								P.P. Class $A B{ }^{\text {s }}$	325	850*			80	\longrightarrow			$5000{ }^{6}$	10.0	
		TAU	6.3	0.5			-	Class-A Amp.	250	0	Input		5.0	40000	1800	72	8000	3.5	6AB6G
6AB6G	Direct-Coupled Amplifier	7AU	6.3	0.5				Class-A Amp.	250	0	Output		34						
	High- μ Power-Amplifier	60	6.3	0.4	-	-		P.P. Class ${ }^{\text {B }}$	250	0			5.0	36700	3400	125	$10000{ }^{\circ}$	8.0	6AC5GT
Cucct	Triode	60	6.3	0.4				Dyn.-Coupled	250				32				7000	3.7	
		TAU	6.3	1.1				Class-A Amp.	180	0	Input		7.0	-	3000	54	4000	3.8	6AC6G
SACEG	Direct-Coupled Amplifier	JAU	6.3	1.1					180	0	Output		45						
CADSG	High- μ Triode	60	6.3	0.3	4.1	3.9	3.3	Closs-A Amp.	250	-2.0		-	0.9	-	1500	100	-	\longrightarrow	6AD5G
GADCG ${ }^{10}$	Electron-Ray Tube	74 G	6.3	0.15		--1	\cdots	Indicator	100		0 for $90^{\circ} ; \mathbf{- 2 3}$ for $135^{\circ} ; 45$ for 0°. Target current 1.5 ma . for 0°.								6AD6G

IABLE II－O．S－VULI GLASS IUBES WIIH OCIAL BASES－Continued

Type	Nome	Socket Connec－ tions	Fil．or Heoter		Capacitance $\mu \mu \mathrm{fd}$ ．			Use	Plote Supply Volts	Grid Bias	Screen Volts	Screen Current Ma．	Plote Current Mo．	Plate Resistance Ohms	Transcon－ ductance Micromhos	Amp． Factor		Power Output Wolts	Type
			Valts	Amp．	In	Out	Plate－ Grid												
		8 AY	6.3	0.85				Triode Amp．	250	－25．0			4.0	19000	325	6.0			6AD7G
6AD7G	Triode－Pentode	8 AY	6.3	0.85				Pentode Amp．	250	－16．5	250	6.5	34	80000	2500		7000	3.2	
6AE5G ${ }^{10}$	Triode Amplifier	60	6.3	0.3				Closs－A Amp．	95	－15．0			7.0	3500	1200	4.2			6AE5G
6AE6G	Single－Grid Twin－Plate Triode	7 AH	6.3	0.15			－	Plate No． 1 Plate No． 2	$\begin{array}{r} 250 \\ 250 \\ \hline \end{array}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	一二	二ー	$\begin{aligned} & 6.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 25000 \\ & 35000 \end{aligned}$	$\begin{array}{r} 1000 \\ 950 \end{array}$	$\begin{aligned} & 25 \\ & 33 \end{aligned}$	\square		6AE6G
6AE7GT ${ }^{10}$	Twin－Input Triade	7AX	6.3	0.5		－	\cdots	Driver Amplifier	250	－13．5			5.0	9300	1500	14			6AE7GT
6AF5G	Triode	60	6.3	0.3				Class－A Amplifier	180	-18.0			7.0		1500	7.4			6AF5G
6 6AF7G	Twin Electron Ray	8AG	6.3	0.3				Indicotor Tube											6AF7 G
6AG6G ${ }^{10}$	Power－Amplifier Pentode	75	6.3	1.25				Class－A Amplifier	250	-6.0	250	6.0	32		10000	－	8500	3.75	6AG6G
6AH4GT	Triode	8EL	6.3	0.75	7.5	3.2	4.2	Class－A Amplifier	250	－23			30	1780	4500	8			6AH4GT
6AH5G	Beam Power Amplifier	6AP	6.3	0.9				Class－A Amplifier	350	－18	250	－		33000	5200		4200	10.8	6AH5G
6AH7GT	Twin Triode	8BE	6.3	0.3				Converter \＆Amp．	250	－ 9.0			121	6600	2400	16			6AH7GT
6AL6G	Beam Power Amplifier	6AM	6.3	0.9				Class－A Amplifier	250	－14．0	250	5.0	72	22500	6000		2500	6.5	6AL6G
6AL7GT	Electron－Ray Tube	8 CH	6.3	0.15	－		－	Indicator	Outer edge of any of the three illuminated areas displaced $1 / 16 \mathrm{in}$ ． min ．outward with +5 valts to its electrode．Similar inward disp．with -5 valts．No pottern with -6 volts grid．										6AL7GT
6AG7GT	Duplex Diode Triode	8CK	6.3	0.3	2.3	1.5	2.8	Class－A Amplifier	250				2.3	44000	1600	70			6AO7GT
6AR6	Seam Power Amp．	6 BO	6.3	1.2	11	7	0.55	Class－A Amplifier	250	－22．5	250	5	77	21000	5400	95	－		6AR6
6AR7GT	Duo－Diade Remate Pentade	7DE	6.3	0.3	5.5	7.5	． 003	Class－A Amplifier	250	－ 2	100	1.8	7.0	1200000	2500		－		6ARTGT
6AS7G	Low－Mu Twin Triode	8BD	6.3	2.5				D．C．Amplifier	135	250＊			125	280	7500	2.1			
6AS76	Low－Mu Twin Triode							Class－A1 Amp．P．P．	250	2500＊			100／106	280	225．		6000－	13	6ASTG
6AU5GT	Beam Pentade	6CK	6.3	1.25	11.3	7	0.5	Horz．Def．Amp．	$450{ }^{11}$	－5011		\longrightarrow	10011	Peok pos．plote pulse $=5000$ volts．					6AUSGT
6AV5GT	Beam Pentade	6CK	6.3	1.2				Horz．Def．Amp．	50011	－5011	17511		10011	Peak pos．plate pulse $=4500$ volts．					6AV5GT
6AW7 GT	Twin Triode	8CO	6.3	0.3				Class－A Amplifier	100	0	－	－	1.4	－	1200	80	－		6AWTGT
684G	Triade Power Amplifier	55	6.3	1.0				Power Amplifier	Characteristics same as Type 6A3－Table IV								\cdots	－	684G
6B6G	Duplex－Diode High $-\mu$ Triode	7 V	6.3	0.3	1.7	3.8	1.7	Detector－Amplifler	Characteristics same as Type 75－Table IV							－			6B6G
68D5GT	Beam Pentade	6CK	6.3	0.9				Horz．Def．Amp．	32511		32511		10011	Peak pos．plote pulse $=4000$ volis．					68D5GT
6BL7GT	Double Triede	8BD	6.3	1.5	4.4	1.1	4	Closs－A Amp．	250	－9		－	40^{1}	20001	7000	14			6BL7GT
6806GT	Beam Pentode	6AM	6.3	1.2				Deflection Amp．	55011		150		100：1	Peak pos．plate pulse $=4000$ volts．					6806GT
68G6G	Beam Power Amplifier	5BT	6.3	0.9	11	6.5	0.5	Deflection Amp．	70011	－5011	350		10011	Peak pos．plate pulse $=\mathbf{6 0 0 0}$ volts．					68G6G
68×76T	Twin Triade	8BD	6.3	1.5	4.4	1.1	4.2	Class－A Amplifier	250	390＊			42	1300	7600	10			68X7GT
6 688G	Twin Triode	8 G	6.3	0.3				Amp．I Section	250	－ 4.5			3.1	26000	1450	38	－	－	${ }_{6 C 8 G}$
6CD6G	Beam Pentode	5BT	6.3	2.5	26	10	1.0	Horx．Def．Amp．	70011	－5011	17511		17011	Peak pos．plate pulse $=6000$ volis．					6CD6G
608G	Penlogrid Convertar	8 A	6.3	0.15				Converter	250	－ 3.0	100	Cothode current 13．0 Ma．			A node grid（No．2）Volts $=250^{3}$				6DEG
6E8G10	Triode－Hexode Converter	80	6.3	0.3				Converier	250	－2．0	Triode Plate 150 valts								6E8G
6F8G	Twin Triode	8 G	6.3	0.6				Amplifier	250	－ 8.0	－		91	7700	2600	20			6F8G
		75	6.3	0.15			－	Class－A Amplifier	180	-9.0	180	2.5	15	175000	2300	400	10000	1.1	
6G6G	Pentode Power Amplifier	75	6.3	0.15			－	Class－A Amplifier ${ }^{2}$	180	－12．0		－		4750	2000	9.5	12000	0.25	6G6G
6H4GT	Diodo Rectifier	5AF	6.3	0.15				Defector	100		－	－	4.0	－	－	－	\cdots	－	6H4GT
6 648	Duo－Diode High－μ Pentode	8 E	6.3	0.3	－		－	Class－A Amplifier	250	－ 2.0	100	\square	8.5	650000	2400	－	\mid－		6H8G
$6{ }^{618 G}{ }^{10}$	Triode Heplode	8 H	6.3	0.3			－	Converler	250	-3.0	100	2.8	1.2	Anode－grid（No．2） 250 volts max．${ }^{3} 5$ mo．					$6 \mathrm{6BG}$
6K5GT10	High－μ Triode	5 U	6.3	0.3	2.4	3.6	2.0	Closs－A Amplifier	250	－ 3.0			1.1	50000	1400	70	$1-1$		6K5GT
6K6GT	Pentode Power Amplifier	75	6.3	0.4	－	－		Class－A Amplifier	Chorocteristics same as Type 41－Table IV										6K6GT
6659	Triode Amplifior	60	6.3	0.15	2.8	5.0	2.8	Class－A Amplifier	250	-9.0	－	－	8.0		1900	17	－		615G
6M6G ${ }^{10}$	Power Amplifier Pentode	75	6.3	1.2	－			Closs－A Amplifier	250	－ 6.0	250	4.0	36		9500		7000	4.4	6M6G
6 M7G	Pentode Ampllifer	7 R	6.3	0.3				R．F．Amplifier	250	－ 2.5	125	2.8	10.5	900000	3400		－		6M7G
6MBGT	Diode Triode Pentade	8 AU	6.3	0.6	－			Triode Amplifier	100				0.5	91000	1100	－	－		
SMEGT	Diode Triode Pentade	OAU	6.3	0.6				Pentodo Amplifier	100	－ 3.0	100	－	8.5	200000	1900				6M8GT
6N6G ${ }^{10}$	Direct－Coupled Amplifier	7AU	6.3	0.8	－	．		Power Amplifier		Characteristics same as Type 685－Toble IV									6N6G
6P5GT10	Triode Amplifier	60	6.3	0.3	3.4	5.5	2.6	Class－A Amplifier	250	－13．5	－	－	5.0	9500	1450	13.8	－		6P5GT

TABLE II-6.3-VOLT GLASS TUBES WITH OCTAL BASES-Continued

Type	Name	Sockef Connecfions	Fil. or Heater		Copacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	ScreenVolis	Screen Current Mo.	Plate Current Mo.	Plate Resistonce Ohms	Transconductance Micromhos	Amp. factor	LoodResistanceOhms	Power Outpul Watts	Type
			Volts	Amp.	In	Out	Plate. Grid												
6P7G ${ }^{10}$	Triode-Pentode	7 CK	6.3	0.3				Closs-A Amplifer	Characteristics same as 6F7-Table IV										6P7G
6P8G	Triode-Hexode Converter	8K	6.3	0.8				Converter	250	-2.0	75	1.4	1.5	Triode Plate 100 v. 2.2 mo .					6P8G
6R6G	Pentode Amplifer	64W	6.3					Class-A Amplifier	250	-3.0			1.2		1050	65		-	606G
656GT	Remote Cut-off Pentode	SAK	6.3	0.45		1	0.007	Class-A Amplifier	250	- 3.0	100	1.7	7.0		1450	1160			6R6G
658GT	Triple Diode Triode	8CB	6.3	0.3	1.2	5	2	R.F. Amplifier Class-A Amplifier	250	$\begin{aligned} & -2.0 \\ & \hline-2.0 \end{aligned}$	100	3.0	13	350000	4000	100			6S6GT
65D7GT	Medium Cut-off Pentode	8 M	6.3	0.3	9	7.5	. 0035	R.F. Amplifier	250	-2.0	100	1.9	6.0	1000000	3600	100			6S8GT
6SE7GT	Sharp Cut-off Pentode	8N	6.3	0.3	8	7.5	. 005	R.F. Amplifier	250	-1.5	100	1.5	4.5	1100000	3400	3750	-		6SE7GT
6SH7L.	Penlode R.f. Amp.	8BK	6.3	0.3				Closs-A Amplifier	250	- 1.0	150	4.1	10.8	900000	4900				6SH7L
6517 GT	Twin Triode	8BD	6.3	0.3			-	Class-A Amplifier	250	- 2.0			2.3 !	44000	1600	70			6517 GT
$\begin{aligned} & \text { 65N7 GT } \\ & \text { 6SN7 GTA } \end{aligned}$	Twin Triode	8BD	6.3	0.6	-	-	-	Class-A Amplifier	250	-8.0	-	-	$9.0{ }^{1}$	7700	2600	20	-	\cdots	$\begin{aligned} & \text { 6SN7GT } \\ & \text { SSN7GTA } \end{aligned}$
65U7GTY	Twin Triodo	8BD	6.3	0.3				Closs-A-Amplifier	250	- 2.0	-	-	2.3	44000	1600	70	-		65U7GTY
6T6GM ${ }^{\text {SU }}$	Amplifier	62	6.3	0.45			-	Closs-A Amplifer	250	-1.0	100	2.0	10	1000000	5500				6T6GM
6U6GT	Beam Power Amplifier	7AC	6.3	0.75				Closs-A Amplifier	200	-14.0	135	3.0	56	20000	6200	-	3000	5.5	6U6GT
6V5GT	Beam Power Amplifier	6AO	6.3		9.0	10	. 0007	Class-A Amplifier	Characteristics some as Type 6D6-Table III										6U7G
$6 V^{6} \mathrm{Cl}^{10}$	Duplex Diode-Triode	7 V	6.3	0.3	2	3.5	1.7	Closs-A Amplifier	Choracteristics some os Type 85-Table III										6V5GT
6W6GT	Beom Power Amplifer	7AC	6.3	1.25				Class-A Amplifier											6V7G
6W7G	Pentode Def. Amplifier	7 R	6.3	0.15	5	8.5	. 007	Class-A Amplifier	250	- 3.0	100	2.0	0.5	1500000	1225	1850		3.3	6W6GT
6X6G	Eleciron-Ray Tube	7 AL	6.3	0.3				Indicotor Tube	250	0 v for $300^{\circ}, 2 \mathrm{mo}$, 8 v for $0^{\circ} .0 \mathrm{mo}$. Vane grid 125 v .									6X6G
$\frac{6 Y 6 G}{6 Y 7 G}$	Beam Power Amplifier	7AC	6.3	1.25	15	8	0.7	Class-A Amplifier	135	-13.5	135	3.0	60.0	9300	7000		2000	3.6	6Y6G
6 Y7G ${ }^{10}$	Twin Triode Amplifer	8 B	6.3	0.3				Closs-B Amplifier	Choracteristics same as Type 79-Table IV										6Y7G
627 G	Twin Triode Amplifier	8B	6.3	0.3	-	-		Class-B Amplifer	180	0		-	8.4	-			12000	4.2	6276
717 A	5harp Cut-off Pentode		6.3						135	0			6.0			-	9000	2.5	
1223	Shorp Cut-off Pentode	7R	6.3	0.3				Class-A Amplifier	120	-2.0	120	2.5	7.5	390000	4000			-7	717A
1635	Twin Triode Amplifier	8 B	6.3	0.6			-	Class-B Amplifer	Characteristics same os 6C6-Table IV										1223
5691	Hi-Mu Twin Triade	8BD	6.3	0.6	$\begin{aligned} & 2.47 \\ & 2.7^{7} \end{aligned}$	$\begin{aligned} & 2.37 \\ & 2.7^{7} \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	Class-A Amp.	250	$\rightarrow 2$	-		2.31	44000	1600	70	-	-	5691
5692	Medium-Mu Twin Triode	8BD	6.3	0.6	$\begin{aligned} & 2.3 \\ & 2.6^{9} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.78 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.3 \end{aligned}$	Closs-A Amp.	250	-9			6.5	9100	2200	18	-	- 5	5692
5694	Twin Triode	8C5	6.3	0.8		-	-	Closs-A Amplifier	300	- 6			7.0	11000	3200	35	-	-	5694
5881	Beom Pawer Amp.	7 AC	6.3	0.9			-	Audio Amplifier					acteristics	ame as 616,	Table 1				5881
6080	Low-Mu Twin Triode	8BD	6.3	2.5	6.4	2.2	8.4	D.C. Amplifier	135	250*	-		125	280	7000	2	-	-	6080
7000	Low-Noise Amplifer	7 R	6.3	0.3	-	-	-	Closs-A Amplifier				Characteristics same os Type 6 J 7 -Table 1							7000
* Cathode resistor-ohms. ${ }^{1}$ Par plate.		${ }^{2}$ Screen tied to plote. ${ }^{3}$ Through 20,000-ohm dropping resistor.						- Values are for single rube. ${ }^{5}$ Values ore for two lubes in push-pull.				${ }^{6}$ Plate-to-plote value. No. 1 triode.			${ }^{8}$ No. 2 triode. ${ }^{9}$ Peak o.f. volts G-G.		${ }^{10}$ Discontinued. ${ }^{11}$ Mox, value.		

Type	Nome	Socket Connertions	Heater		Capacitonce $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	Screen Volis	5 creen Current Ma.	Plate Current Mo.	Plate Resistonce Ohms	Tronsconductonce Micromhos	Amp. Factor		Power Outpul Watts	Type
			Valts	Amp.	In	Out	PlateGrid												
7 74	Triode Amplifer	5AC	7.0	0.32	3.4	3	4	Class-A Amplifer	250	-8.0	-	-	9.0	7700	2600	20			7 A 4
7 7as	Beam Power Amplifier	6AA	7.0	0.75	13	7.2	0.44	Closs-A, Amplifer	125	- 9.0	125	3.2/8	37.5/40	17000	6100	-	2700	1.9	7 A 5
7 A6	Twin Dlode	7AJ	7.0	0.16		-	-	Rectifier			Max. A	.C. volts	er plate-	50. Mox. O	lput current-	- 10 mo			7 AG
747	Remote Cut-off Pentode.	8 V	7.0	0.32	6	7	. 005	Class-A Amplifior	250	-3.0	100	2.0	8.6	800000	2000	1600	1 -	-	7 A 7
7A8	Mulligrid Coriverter	8 U	7.0	0.16	7.5	9.0	0.15	Converter	250	-3.0	100	3.1	3.0	50000	Anode	-grid 25	50 volts max		748

TABLE III-7-VOLT LOCK-IN-BASE TUBES-Continued

Type	Name	Socket Conneclions	Healer		Capacitonce $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bios	ScreenVolts	Screen Current Ma.	Plate Current Ma.	$\begin{gathered} \text { Plate } \\ \text { Resistonce } \\ \text { Ohms } \end{gathered}$	Transconductance Micromhos	Amp. Factor	LoadResistanceOhms	Power Output Watls	Type
			Volts	Amp.	In	Out	PlateGrid												
7AD7	Peniode	8 V	6.3	0.6	11.5	7.5	0.03	Class-A ${ }_{1}$ Amp.	300	68*	150	7.0	28.0	300000	9500	-			7 AD7
TAF7	Twin Triode	BAC	6.3	0.3	2.2	1.6	2.3	Class-A Amp.	250	-10			9.0	7600	2100	16			7AF7
TAG7	Sharp Cut-aft Pentode	8 V	7.0	0.16	7.0	6.0	0.005	Class-A, Amp.	250	250*	250	2.0	6.0	750000	4200				7AG7
7AH7	Pentode Amplifier	8 V	6.3	0.15	7.0	6.5	0.005	Class-A Amplifier	250	250*	250	1.9	6.8	1000000	3300				7AH7
7 AJ7	Sharp Cut-off Pentade	8 V	6.3	0.3	6.0	6.5	0.007	Class-A1 Amp.	250	-3	100	0.7	2.2	1 Mag.	1575				7AJ7
									100	-1	100	1.8	5.5	400000	2275				
7 7K7	Sharp Cut-off Pentode	8 V	6.3	0.8	12	9.5	4	Class-A, Amp.	150	0	90	21	40	11500	5500			+	$7 \mathrm{AK7}$
784	Hlgho μ Triode	5AC	7.0	0.32	3.6	3.4	1.6	Class-A Amplifer	250	-2.0			0.9	66000	1500	100			$7 \mathrm{B4}$
785	Pentode Power Amplifier	6AE	7.0	0.43	3.2	3.2	1.6	Class-A, Amplifier	250	-18.0	250	5.5/10	32/33	68000	2300		7600	3.4	785
786	Duo-Diode Triode	8W	7.0	0.32	3.0	2.4	1.6	Class-A Amplifier	250	- 2.0			1.0	91000	1100	100			786
787	Remale Cut-off Pendode	8 V	7.0	0.16	5	7	. 005	Class-A Amplifier	250	-3.0	100	2.0	8.5	700000	1700	1200			787
788	Pentagrid Converter	8 X	7.0	0.32	10.0	9.0	0.2	Converler	250	-3.0	100	2.7	3.5	360000	Anade-grid 250 volts max. ${ }^{1}$				788
$7 \mathrm{C5}$	Tetrade Power Amplifier	6AA	7.0	0.48	9.5	9.0	0.4	Class-A, Amplifier	250	-12.5	250	4.5/7	45/47	52000	4100	,	5000	4.5	$7 \mathrm{C5}$
7C6	Duo-Diode Triode	8w	7.0	0.16	2.4	3	1.4	Closs-A Amplifier	250	-1.0			1.3	100000	1000	100			$7 \mathrm{C6}$
$7 \mathrm{C7}$	Penlode Amplifier	OV	7.0	0.16	5.5	6.5	. 007	Class-A Amplifior	250	-3.0	100	0.5	2.0	2 meg.	1300				$7 \mathrm{C7}$
$7{ }^{7} 7$	Triode-Hexode Converler	8AR	7.0	0.48				Converter	250	-3.0	Triode Plate (No. 3) $150 \mathrm{v}$.3.5 mo .								707
7E6	Duo-Diade Triode	8W	7.0	0.32			-	Class-A Amplifier	250	- 9.0		-	9.5	8500	\| 1900	16			7 Fb
$7 E 7$	Duo-Diode Pentode	8AE	7.0	0.32	4.6	4.6	. 005	Class-A Amplifer	250	-3.0	100	1.6	7.5	700000	1300			-	$7 E 7$
757	Twin Triode	8AC	7.0	0.32				Class-A Amplifler ${ }^{2}$	250	-2.0		-	2.3	44000	1600	70			757
758	Twin Triode	88W	6.3	0.30	2.8	1.4	1.2	R.F. Amplifier	250	- 2.5	-		10.0	10400	5000				7 F 8
								R.F. Ampliner	180	-1.0			12.0	8500	7000				
$\begin{aligned} & 767 / \\ & 1232 \\ & \hline \end{aligned}$	Sharp Cut-off Pentode	8 V	7.0	0.48	9	7	. 007	Class-A Amplifer	250	- 2.0	100	2.0	6.0	800000	4500	-	-	-	$\begin{aligned} & 7 G 7 / \\ & 1232 \end{aligned}$
$\begin{aligned} & 768 / \\ & 1206 \end{aligned}$	Dual Tetrode	8BV	6.3	0.30	3.4	2.6	0.15	R.F. Amplifier ${ }^{2}$	250	- 2.5	100	0.8	4.5	225000	2100	-	-	-	$\begin{aligned} & 7 G 8 / \\ & 1206 \end{aligned}$
$7 \mathrm{H7}$	Semi-Variable-4 Pentode	8 V	7.0	0.32	8	7	. 007	R.F. Amplifler	250	- 2.5	150	2.5	9.0	1000000	3500				7H7
7 77	Triode-Heptode Converler	8AR	7.0	0.32			-	Converter	250	-3.0	100	2.9	1.3	Triode Plate 250 v. Max. ${ }^{\text {d }}$					$7 \mathrm{J7}$
$7 \mathrm{K7}$	Duo-Diode High $-\mu$ Triade	8BF	7.0	0.32	-			Class-A Amplifier	250	-2.0			2.3	44000	1600	70		-	7K7
717	Sharp Cut-off Pentode	8 V	7.0	0.32	8	6.5	. 01	Class-A Amplifer	250	- 1.5	100	1.5	4.5	100000	3100	Cathode Resistor 250 ohms			717
7N7	Twin Triade	8AC	7.0	0.6	$\begin{aligned} & 3.4^{3} \\ & 2.94 \end{aligned}$	$\begin{aligned} & \hline 2.03 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 3.03 \\ & 3.0^{4} \end{aligned}$	Class-A Amplifer ${ }^{2}$	250	-8.0	-	-	9.0	7700	2600	20	-	-	7N7
707	Pentagrid Converter	8AL	7.0	0.32		-		Converter	250	0	100	8.0	3.4	800000	Grid No. 1 resistor 20000 ohms				. 707
787	Duo-Diode Pentode	8AE	7.0	0.32	5.6	5.3	. 004	Class-A Amplifier	250	-1.0	100	1.7	5.7	1000000	3200	\|	20000 oh		. 787
757	Triode Hexode Converter	8BL	7.0	0.32		$\overline{7}$		Converier	250	- 2.0	100	2.2	1.7	2000000	Triode Plate 250 v. Max. ${ }^{1}$				757
717	Pentode Amplifer	8 V	7.0	0.32	8	7	. 005	Class-A Amplifer	250	- 1.0	150	4.1	10.8	900000	4900	,	V. Max.	-	$7 \mathrm{T7}$
$7 \mathrm{7W7}$	Shorp Cut-off Pentode	8 V	7.0	0.48	9.5	6.5	. 004	Class-A Amplifier	300	160*	150	3.9	10	300000	5800	-			$7 \mathrm{V7}$
7W7	Sharp Cut-off Pentode	8 BJ	7.0	0.48	9.5	7.0	. 0025	Class-A Amplifer	300	-2.2	150	3.9	10	300000	5800	-	-	\cdots	7W7
7×7	Duo-Diode Triode	88Z	6.3	0.3	-		-	Class-A Amplifer	250	- 1.0		-	1.9	67000	1500	100		\longrightarrow	7×7
1231	Pentode Amplifier	8 V	6.3	0.45	8.5	6.5	. 015	Class-A Amplifier	300	200*	150	2.5	10	700000	5500	3850			1231
1273	Nonmicrophonic Pentode	8 V	7.0	0.32	6.0	6.5	. 007	Class-A1 Amplifier	$\begin{aligned} & 250 \\ & 100 \end{aligned}$	$\begin{array}{r} -3.0 \\ -1.0 \\ \hline \end{array}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 5.7 \end{aligned}$	$\begin{array}{r} 1000000 \\ 400000 \end{array}$	$\begin{aligned} & 1575 \\ & 2275 \end{aligned}$				1273
5679	Twin Diade	7CX	6.3	0.15				V.T.V.M. Reclifier	Same as 7A6										5679
XXL	Triode Oscillator	5AC	7.0	0.32	-		-	Oscillator	250	- 8.0	-	-	8.0	-	2300	20	-	-	XXL

* Cathode resislor-ohms.

1 Applied through 20000-ohm dropping resisior:

[^10]${ }^{2}$ Triode No. 1.

- Triode No. 2.

TABLE IV-6.3-VOLT GLASS RECEIVING TUBES

TABLE IV-6.3-VOLT GLASS RECEIVING TUBES—Continued

Type	Name	8ast	Socket Connections	Fil. or Healer		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	$\begin{aligned} & \text { Scroen } \\ & \text { Volts } \end{aligned}$	Screen Current Ma.	Plate Current Ma.	PlateResistanceOhms	Transconductance Micromhos	Amp. Factor	$\begin{array}{\|c\|} \text { Load } \\ \text { Resistonce } \\ \text { Ohms } \end{array}$	Power Outpus Wafls	Type
				Volis	Amp.	In	Out	PlateGrid												
1221	Pentode R.F. Amplifier	S.	$6 F$	6.3	0.3		-	-	Class-A Amp.	Special non-microphonic. Characteristics same as 6C6										1221
8001	Sharp Cut-off Pentode	M.	$6 F$	6.3	0.3				Class-A Amp.	Characteristics same as 6C6										1603
5×7	Eeam Power Amplifier	0.	7AC	6.3	0.45	9.5	7.5	0.7	Class-A Amp.	315	-13	225	2.2	34	77000	3750	-	8500	5.5	5871
7700	Sharp Cut-off Pentode	S.	$6 F$	6.3	0.3		-		Class-A Amp.	Charocteristics same as 6C6										7700
* Cathode bias resistor-ohms. 4 Discontinued.			I Current to input plate (P_{1}). ${ }^{2}$ Grids Nos. 2 and 3 connected to piate. ${ }^{3}$ Low noise, nonmicrophonic tubes.						${ }^{4} G_{2}$ tied 10 plate. ${ }^{5} \boldsymbol{G}_{1}$ tied to \boldsymbol{G}_{3}. 6 Osc. grid leok ohms.		I Screen dropping resistor ohms. ${ }^{2}$ Grid No. 2, screen; grid No. 3, suppressor. ${ }^{9}$ Values for single fube.					${ }^{10}$ Values for two tubes in push-pull. ${ }^{11}$ Plate-lo-plate value. i2 No signal value.				

TABLE V-2.5-VOLT RECEIVING TUBES

Trpe	Name	Base	Socket Connections	Fil. or Healar		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	$\begin{aligned} & \text { Screen } \\ & \text { Volts } \end{aligned}$	Screen Currenl Ma.	Plate Current Ma.	Plate Resistance Ohms	Transconduciance Micromhos	Amp. Factor	$\begin{gathered} \text { Lood } \\ \text { Resistance } \\ \text { Ohms } \end{gathered}$	Power Oulput Watts	Type
				Volis	Amp.	In	Oul	Plate. Grid												
25/45	Duodiode	M.	50	2.5	1.35	-			Delector	Al 50 d.c. Volts per plole, cathode ma, $=80$										25/45
243	Triode Power Amplifier	M.	4D	2.5	2.5	7.5	5.5	16.5	Class-A Amp.	Characteristics same as Type 6A3, Table IV										2 A 3
Sas	Pentode Power Amplifier	M.	68	2.5	1.75				Class-A Amp.	Characteristics same as Type 42, Table IV										2A5
2A6	Duplex-Diode Triode	S.	$6 G$	2.5	0.8	1.7	3.8	1.7	Class-A Amp.	Characteristics same as Type 75, Table IV										$2 A 6$
RAD	Pentagrid Converter	S.	7 C	2.5	0.8	-		$\underline{\square}$	Converter	Characteristics same as Type 6A7, Table IV										2A7
236	Direct-Coupled Amplifier	M.	71	2.5	2.25				Amplifier	250	-24.0		-	40.0	5150	3500	18.0	5000	4.0	286
287	Duplex-Diode Pentode	5.	70	2.5	0.8	3.5	9.5	. 007	Pentode Amp.	Characteristics same as Type 687-Table IV										287
\% 5	Eloctron-Ray Tube	S.	6R	2.5	0.8				Indicalor Tube	Characteristics same as Type 6E5-Table IV										2 E 5
FGS	Electron-Ray Tube	S.	6R	2.5	0.8		-	-	Indicator Tube	Characleristics same as 6U5/6G5-Table IV										2G5
24-A	Tetrode R.F. Amplifior	M.	$5 E$	2.5	1.75	5.3	10.5	. 007	Screen-Grid R.F. Amplifier	250	- 3.0	90	1.7	4.0	600000	1050	630	-	-	24.A
									Bias Detactor	250	- 5.0	20/45	Plate, current adiusted to 0.1 ma . with no signal							
		M	3 A	2.5	175	3.1	2.3	3.3	Class-A Amp.	250	-21.0		\cdots	5.2	9250	975	9.0		-	27
27	Triode Detector-Amplifier	M.	SA	. 5	1.75	3.1	2.3		Bias Datector	250	-30.0		Plate current adjusted to 0.2 mo . with no signal							
35/31	Remote Cut-off Penlode	M.	3E	2.5	1.75	5.3	10.5	. 007	Screen-Grid R.F. Amplifior	250	- 3.0	90	2.5	6.5	400000	1050	420	-	-	35/51
45	Triode Power Amplifier	M.	4D	2.5	1.5	4	3	7	Class-A Amp.	275	-56.0	-		36.0	1700	2050	3.5	4600	2.00	45
		M.	5C	2.5	1.75				Class-A Amp. ${ }^{2}$	250	-33.0			22.0	2380	2350	5.6	6400	1.25	46
46	Dual-Gria Power Amp.	M.	SC	2.5	1.75				Class-B Amp. ${ }^{3}$	400	0			12	Power output for 2 tubes			5800	20.0	
47	Pentode Power Amplifier	M.	5B	2.5	1.75	8.6	13	1.2	Class-A Amp.	250	-16.5	250	6.0	31.0	60000	2500	150	7000	2.7	47
53	Twin Triode Amplifier	M.	78	2.5	2.0	-			Class-B Amp.	Characteristics same as Type 6A6, Table IV										53
55	Duplex-Diode Triode	S.	6 G	2.5	1.0	1.5	4.3	1.5	Class-A Amp.	Characteristics same as Type 85, Table IV										55
56	Triode Amplifier, Detector	S.	5 A	2.5	1.0	3.2	2.4	3.2	Class.A Amp.	Characteristies same as Type 76, Table IV										56
57	Sharp Cut-off Pentode	S.	$6 F$	2.5	1.0				R.F. Amplifier	250	- 3.0	100	0.5	2.0	1500000	1225	1500	-	-	57
58	Remote Cut-off Pentode	5.	$6 F$	2.5	1.0	4.7	6.3	. 007	Screen-Grid R.F. Amplifier	250	- 3.0	100	2.0	8.2	800000	1600	1280	\cdots	-	58
		M.	7 A	2.5	2.0				Class-A Triode ${ }^{1}$	250	-28.0	-	-	26.0	2300	2600	6.0	5000	1.25	59
59	Pentode Power Amplifier	M.	7 A	2.5	2.0				Class-A Pentode ${ }^{\text {5 }}$	250	-18.0	250	9.0	35.0	40000	2500	100	6000	3.0	
56004	Twin Triode	M.	7B	2.5	2.0			-	Class-A Amp. ${ }^{\text {b }}$	300	-6	-	-	6.0	13000	2450	32			5608A
EK15	Triode Power Amplifier	M.	4D1	2.5	1.75				Characteristics same as Type 46 with Class-B connections											RK15
EK16	Triode Power Amplifier	M.	SA	2.5	2.0				Characteristics same as Type 59 with Class-A triode connections											RK16
K<17	Pontode Power Amplifier	M.	5 F	2.5	2.0		-	-	Characteristics same as Type 2A5											RK17

1 Grid connection to cap; no connection to No. 3 pin.
2 Grid No. 2 tied to plate.
${ }^{3}$ Grids Nos. 1 and 2 tied logether.
Grids Nos. 2 and 3 connecled to plate.
${ }_{5}{ }^{5}$ Grid No. 2, screen; grid No, 3, suppressor.
Valves each section.

TABLE VI-2,0-VOLT BATTERY RECEIVING TUBES

table VII-2.0-VOLT battery tubes with octal bases

Type	Name	Socket Connec. fions	Filament		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bios	$\begin{aligned} & \text { Screen } \\ & \text { Volts } \end{aligned}$	Screen Current Ma.	Plate Current Ma.	Plate Resistonce Ohms	Transconductance Micromhos	Amp. Factor	load Resistance Ohms	Power Oulput Wotis	Type
			Volts	Arpp.	In	Out	PloleGrid												
1976	Heptode	72	2.0	0.06	10	14	0.26	Converter	Characteristics same as Type IC6-Table VI										1676
105GP	Variable. μ Pentode	5 F	2.0	0.06	5	11	. 007	R.F. Amplifier	Characteristics same as Type 1A4P-Table VI										105GP
105GT	Variable- μ Tetrade	5R	2.0	0.06			-	R.F. Amplifier	180	- 3.0	67.5	0.7	2.2	600000	650				105GT
1076	Penlagrid Converter	72	2.0	0.06	10.5	9.0	0.25	Converter	Choracteristics same as Type 1A6-Table VI										1076
1E5GP	Pentode Amplifier	5 Y	2.0	0.06	5	11	. 007	R.F. Amplifier	Characteristics same as Type 1B4-Table VI										1E5GP
1E7G	Double Pentode Power Amp.	8C	2.0	0.24			--	Class-A Amplifier	135	- 7.5	135	2.01	6.51	220000	1600	350	24000	0.65	1E7G
1F5G	Pentode Power Amplifer	$6 \times$	2.0	0.12			-	Class-A Amplifier	Characteristics same os Type 1F4-Table VI										1F5G
1F7G ${ }^{\text {2 }}$	Duplex-Diode Pentode	7 AD	2.0	0.06	3.8	9.5	0.01	Detector-Amplifier	Characteristics same as Type IF6-Table VI										1F7G
1G5G	Pentode Power Amplifier	$6 \times$	2.0	0.12				Class-A Amplifer	135	-13.5	135	2.5	8.7	160000	1550	250	9000	0.55	1G5G
1H4G	Triode Amplifier	55	2.0	0.06				Detector-Amplifer	Characteristics same as Type 30-Table VI										1H4G
1H6G	Duplex-Diode Triode	7AA	2.0	0.06	1.6	1.9	3.6	Delector-Amplifier	Characteristics same as Type 185-Table VI										1H6G
1J5G \#	Pentode Power Amplifier	$6 \times$	2.0	0.12				Class-A Amplifier	135	-16.5	135	2.0	7.0	$\underline{\square}$	950	100	13500	0.45	115 G
1J6GT	Twin Triode	7 AB	2.0	0.24				Class-B Amplifier	Characteristics some as Type 19-Table VI										$1 J 6 G$
4A6G	Twin Triode	8.	2.0	0.12				Class-A, 1 section	90	-1.5		-	1.1	26600	750	20			4A6G
446 G	Twin Triode	6.	4.0	0.06				Class-B, 2 sections	90	-1.5			$10.8{ }^{3}$				8000	1.0	

= Discontinued.

- Total current for both sections; no signal.

IMDLE villーI.J-vレLi flbmivivi omilini ivuly
Se also Table X for Spacial 1.4-vali Tubes

Type	Name	Base	Sockel Connections	Filament		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volis	Grid Bias	Screen Volts	Screen Current Ma.	Plate Current Ma.	Plate Resistance Ohms	Transconductance Micromhos	Amp. Factor	LoadResistanceOhms	$\begin{aligned} & \text { Power } \\ & \text { Output } \\ & \text { M-watfs } \end{aligned}$	Type.
				Volts	Amp.	In	Out	Plate. Grid												
1A5GT	Pentode Power Amplifier	0.	6X	1.4	0.05		-	-	Class-A1 Amp.	90	-4.5	90	0.8	4.0	300000	850	240	25000	115	1A5GT
IATGT	Pentagrid Converter	0.	72	1.4	0.05	Osc. Grid leak 200000:?			Converter	90	0	45	0.7	0.6	600000	250	Anode-grid volis 90		-	IATGT
1485	Pentode R.F. Amplifier	1.	5BF	1.2	0.05	2.8	4.2	0.25	R.F. Amplifer	90 150	0 -1.5	90 150	0.8 2.0	3.5	275000 125000	1100	-	-	-	14 BS
1B7GT	Heptode	0.	72	1.4	0.1				Converter	90	0	45	1.3	1.5	350000	Grid No. 1 resistor 200,000 ohms				IB7GT
188GT	Diode Triode Pentode	O.	8AW	1.4	0.1	-	-	-	Triode Amplifier Pentode Amp.	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{gathered} 0 \\ -6.0 \end{gathered}$	90	1.4	$\begin{aligned} & 0.15 \\ & 6.3 \end{aligned}$	240000	$\begin{array}{r} 275 \\ 1150 \end{array}$	-	14000	210	188GT
IC5GT	Pentode Power Amplifer	0.	6X	1.4	0.1				Class-A1 Amp.	90	-7.5	90	1.6	7.5	115000	1550	165	8000	240	1C5GT
108GT	Diode Triode Penlode	0.	8AJ	1.4	0.1	-	-	-	Triode Amp. Pentode Amp.	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{gathered} 0 \\ -9.0 \\ \hline \end{gathered}$	90	1.0	$\begin{aligned} & 1.1 \\ & 5.0 \end{aligned}$	$\begin{array}{r} 43500 \\ 200000 \end{array}$	$\begin{aligned} & 575 \\ & 925 \end{aligned}$	25		—	1D8GT
1E4G	Triode Amplifer	0.	55	1.4	0.05	2.4	6	2.40	Class-A Amp.	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{gathered} 0 \\ -3.0 \\ \hline \end{gathered}$	-	-	$\begin{aligned} & 4.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 11000 \\ & 17000 \end{aligned}$	$\begin{array}{r} 1325 \\ 825 \end{array}$	$\begin{aligned} & 14.5 \\ & 14 \end{aligned}$	-	-	IE4G
1G4GT	Triode Amplifier	0.	55	1.4	0.05	2.2	3.4	2.80	Class-A Amp.	90	-6.0			2.3	10700	825	8.8	-	-	IG4GT
IGGGT	Twin Triode	0.	7 AB	1.4	0.1				Class-A Amp.	90	0	-		1.0	45000	675	30			1G6GT
									Class-8 Amp.	90	0			1/7	2440000	\|rs input per 275		12000	67	
1H5GT	Diode High- μ Triode	0.	52	1.4	0.05	1.1	6	1.00	Class-A Amp.	90	0			0.14	240000	275	65			IH5GT
ILA4	Penlode Power Amplifier	L.	5AD	1.4	0.05				Class-A Amp.	90			Cho	acteristic	s same as 1	A5GT				ILA4
ILA6	Penlagrid Converter	L.	7AK	1.4	0.05	Osc. Grid leok 200000!			Converter	90	0	45	0.6	0.55	750000	250	Anode	Grid Volts	90	ILA6
1184	Penlode Power Amplifier	1.	5AD	1.4	0.05	-	-		Class-A Amp.	90	-9	90	1.0	5.0	200000	925		12000	200	1184
ILB6	Heptode Converler	L.	8AX	1.4	0.05				Converter	90	0	67.5	2.2	0.4		Gid No. 4-67	7.5 v.. ${ }^{\text {N }}$	vo. 5-0 v.		1LB6
ILC5	Remote Cut-off Pentode	1.	7AO	1.4	0.05	3.2	7	. 007	R.F. Amplifer	90	0	45	0.2	1.15	1500000	775			-	1165
1LC6	Penlagrid Converter	1.	7 AK	1.4	0.05	Osc. Grid leak 200000			Converter	90	0	351	0.7	0.75	650000	275	Anode Grid Volts 45			ILC6
1 LO5	Diode Pentode	L.	6AX	1.4	0.05	3.2	6	0.18	Class-A Amp.	90	0	45	0.1	0.6	950000	600	-	-		1LD5
1LE3	Triode Amplifer	L.	4AA	1.4	0.05	1.7	3	1.70	Class-A Amp.	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{array}{r} 0 \\ -3 \end{array}$	-	-	$\begin{aligned} & 4.5 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 11200 \\ & 19000 \end{aligned}$	$\begin{array}{r} 1300 \\ 760 \end{array}$	14.5	-	-	ILE3
1LF3	Triode	1.	4AA	1.4	0.05	1.7	3	1.7	Class-A Amp.	90	-3			1.4		760	14.5			11.3
ILG5	Penlode R.F. Amp.	L.	7AO	1.4	0.05				Class-A Amp.	90	0	45	0.4	1.7	1000000	800				ILG5
ILH4	Diode High μ Triode	L.	5AG	1.4	0.05	1.1	6	1.00	Class-A Amp.	90	0			0.15	240000	275	65			1 LH 4
INS	Remole Cut-off Peniode	1.	7AO	1.4	0.05	3.4	8	. 007	Class-A Amp.	90	0	90	0.3	1.2	1500000	750		-	\square	ILN5
INSGT	Remote Cul-off Pentode	0.	5 Y	1.4	0.05	3	10	. 007	Class-A Amp.	90	0	90	0.3	1.2	1500000	750	1160	\cdots		TINSGT
IN6G \#	Diode-Power-Pentode	0.	7AM	1.4	0.05			-	Class-A Amp.	90	-4.5	90	0.6	3.1	300000	800		25000	100	INGG
1 P5GT	Pentode	0.	5 Y	1.4	0.05	3	10	. 007	R.F. Amplifier	90	0	90	0.7	2.3	800000	800	640			IP5GT
105GT	Tetrode Power Amplifler	O.	6AF	1.4	0.1	-	-	-	Class-A Amp.	$\begin{aligned} & 85 \\ & 90 \end{aligned}$	$\begin{aligned} & -5.0 \\ & -4.5 \end{aligned}$	$\begin{aligned} & 85 \\ & 90 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 7.2 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 70000 \\ & 75000 \end{aligned}$	$\begin{aligned} & 1950 \\ & 2100 \end{aligned}$	-	$\begin{aligned} & 9000 \\ & 8000 \\ & \hline \end{aligned}$	$\begin{aligned} & 250 \\ & 270 \end{aligned}$	1Q5GT
1R4/1294	U.h.f. Diode	1.	4AH	1.4	0.15	-	\square	-	Rectiffer	Max. r.m.s. voltage per plate-30					Max. d.c. output current-340 $\mu \mathrm{a}$.					1R4/1294
15AGGT	Medium Cut-off Pentode	0.	6CA	1.4	0.05	5.2	8.6	0.01	R.F. Amplifier	90	0	67.5	0.68	2.45	800000	970		-		15A6GT
				1.4	0.05	3.2	3	0.25	Class-A Amp.	90	0	67.5	0.38	1.45	700000	665		\longrightarrow	-	15B6GT
[SB6GT	Diode Penlode	0.	6 CB	1.4	0.05	3.2	3	0.25	R.C. Amplifier	90	0	90	Screen resistor 5 mag., grid 10 meg.					1 meg.	110^{2}	ISE6GT
1T5GT	Beam Power Amplifier	0.	6AF	1.4	0.05	4.8	8	0.50	Class-A Amp.	90	-6.0	90	1.4	6.5	-	1150	-	14000	170	1T5GT
387/1291	U.h.f. Twin Triode	1.	7BE	2.83	0.11	1.4	2.6	2.6	Class-A Amp.	90	0		-	5.2	11350	1850	21	\square		387/1291.
1293	U.h.f. Triode	1.	4AA	1.4	0.11	1.7	3.0	1.7	Class-A Amp.	90	0	-	-	4.7	10750	1300	14	\cdots	-	1293
306/1299	U.h.f. Tetrode	L.	6BB	$2.8{ }^{\text {3 }}$	0.11	7.5	6.5	0.30	Class-A Amp.	135	-6	90	0.7	5.7	-	2200		13000	500	306/1299
$3 E 6$	R.F. Pentode	L.	7CJ	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.10 \\ & 0.05 \end{aligned}$	5.5	7.5	0.007	Class-A Amp.	90	0	90	1.3	3.8	300000	2100	-	-	-	$3 E 6$
RK42	Triode Ampliffer	5.	40	1.5	0.6			-	Class-A Amp.	Characlerisfics same as Type 30-Table VI										RK42
RK43	Twin Triode Amplifier	5.	6 C	1.5	0.12			-	Class-A Amp.	135	-3	-	,	4.5	14500	900	131	1 -	-	RK43
Discontinued. 1 Th		ugh	es rester	r.	v	e	st be	eost	10 volts lower	osc	or an		: Voltage gain.		${ }^{3}$ Center-tap filament permits 1.4 -volt operation.					

table ix -high-voltage heater tubes

Trpe	Name	Base	Socket Connections	Heater		Capacitance μ ufd.			Use	Plate Supply Volts	Grid Bias	Screen Volts	Screen Curren 1 Ma.	Plate Current Mo.	Plate Resistance Ohms	Transcanductance Micromhos	Amp. Factor	Load Resistance Ohms	Power Output Watts	Typa	
				Volls	Amp.	In	Out	PlateGrid													
$2 \mathrm{CS2}$	High- μ Twin Triode	0.	8BD	12.6	0.3	2.3	0.75	2.7	Class-A Amp.	250	-2			1.3		1900	100			$2 \mathrm{C52}$	
12A5 ${ }^{8}$	Pentode Pawer Amplifer	M.	7F	$\begin{array}{r} 12.6 \\ 6.3 \end{array}$	$\begin{aligned} & 0.3 \\ & 0.6 \end{aligned}$	9.0	9.0	0.3	Class-A A_{1} Amp. ${ }^{\text {a }}$	$\begin{aligned} & 100 \\ & 180 \end{aligned}$	$\begin{aligned} & -15 \\ & -25 \end{aligned}$	$\begin{aligned} & 100 \\ & 180 \end{aligned}$	$\begin{aligned} & 3 / 6.5 \\ & 8 / 14 \end{aligned}$	$\begin{array}{\|l\|} \hline 17 / 19 \\ 45 / 48 \\ \hline \end{array}$	$\begin{aligned} & 50000 \\ & 35000 \end{aligned}$	$\begin{aligned} & 1700 \\ & 2400 \end{aligned}$		$\begin{aligned} & 4500 \\ & 3300 \end{aligned}$	$\begin{array}{l\|l\|} \hline 0.8 \\ 3.4 \\ \hline \end{array}$	12 A 5	
1246	Beam Power Amplifier	0.	7AC	12.6	0.15			-	Class-A Amp.	250	-12.5	250	3.5	30	70000	3000		7500	3.4	12 A 6	
32 A	Rectifier-Amplifier	M.	7 K	12.6	0.3				Class-A Amp.	135	-13.5	135	2.5	9.0	102000	975	100	13500	0.55	$12 A 7$	
32ABGT	Heptode	0.	84	12.6	0.15	9.5	12	0.26	Converter	Characteristics same as 6A8-Table 1										12ABGT	
B2AH7GT	Twin Triode	0.	88 E	12.6	0.15	Each Triode Sect.			Class-A Amp.	180	-6.5			7.6	8400	1900	16			12AH7G ${ }^{\text {T }}$	
12\% ${ }^{\text {cm }}$	Diode Triode	0.	6Y	12.6	0.15	-	-		Class-A Amp.	250	- 2.0			0.9	91000	1100	100			1286M	
12.8 ML	Pentode Amplifier	0.	8 V	12.6	0.15	-			Class-A Amp.	250	- 3.0	100	2.6	9.2	800000	2000				12 B 7 ML	
128sGT ${ }^{8}$	Triade-Pentade	0.	87	12.6	0.3	Triode Section Pentade Sectian			Class-A Amp. Class-A Amp.	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & =1 \\ & =3 \end{aligned}$	100	2	0.6	$\begin{array}{r} 73000 \\ 170000 \end{array}$	$\begin{aligned} & 1500 \\ & 2100 \end{aligned}$	$\begin{aligned} & 110 \\ & 360 \end{aligned}$	二		12B8GT	
$32 \mathrm{C8}$	Duplex-Diade Pentade	0.	8 E	12.6	0.15	6	$9]$. 005	Class-A Amp.	Characteristics stame as 688-Table 1										$12 \mathrm{C8}$	
12E5GT	Triade Amplifier	0.	60	12.6	0.15	3.4	5.5	2.60	Class-A Amp.	250	-13.5			50	-	1450	13.8	-		12E5GT	
12F5GT	Triade Ampliñer	0.	5M	12.6	0.15	1.9	3.4	2.40	Class-A Amp.	Choracteristics same as 65F5-Table 1										12F5GT	
12G7G	Duplex-Diade Triade	0.	7 V	12.6	0.15			-	Class-A Amp.	250	- 3.0		,	- 1	\| 58000		1200	70	-		12G7G
1246	Twin Diode	0.	70	12.6	0.15				Rectifier	Characteristies same as $6 \mathbf{H 6}$-Table I										12H6	
12 S GT	Triode Amplifier	0.	60	12.6	0.15	3.4	3.6	3.40	Class-A Amp.	Characteristics same as 6.J5-Table I										12 J 5 GT	
1217GT	Sharp Cut off Pentade	0.	7R	12.6	0.15	4.2	5.0	3.8	Class-A Amp.	Characteristics same as 6J7-Tablel										$12 \mathrm{J7GT}$	
12K7GT	Remate Cut-off Pentode	0.	7R	12.6	0.15	4.6	12	005	R.F. Amplifier	Characteristics same as 6KT-Tablel										12K7GT	
32 EB	Triade Hexode Canverter	0.	8K	12.6	0.15				Converter	Characteristics same as 6K8-Table 1										12 K 8	
1218GT	Twin Pentode	0.	8BU	12.6	0.15	5	6	0.70	Class-A Amp.	180	-9.0\|	180	2.8	13.0	1600001	12150	-	10000	1.0	12L8GT	
1297GT	Duplex-Diade Triode	0.	7 V	12.6	0.15	2.2	5	1.60	Class-A Amp.	Characteristics same as 607 -Table 1										1207 GT	
12519T	Triple-Diode Triade	0.	8CB	12.6	0.15	2.0	3.8	1.2	Class-A Amp.	250	- 2.0		-	0.9	\| 91000	1100	100	-	-	1258 GT	
$125 A 7$	Heptade	0.	8R	12.6	0.15	9.5	12	0.13	Converter	Characteristics same as 65A7-Table 1										125A7	
325 C 7	Twin Triode	0.	85	12.6	0.15	2.2	3.0	2.0	Class-A Amp.	Characteristics same as 65 CT -Tablel										$125 C 7$	
12575	High- μ Triade	0.	6AB	12.6	0.15	4	3.6	2.40	Class-A Amp.	Characteristics same as 65F5-Table I										1255	
12587	Diade Variable- μ Pentade	0.	7 AZ	12.6	0.15	5.5	6.0	. 004	Closs-A Amp.	Characteristics same as 65F7-Tablel										125F7	
325G7	Medium Cut-aff Penlode	0.	8BK	12.6	0.15	8.5	7.0	. 003	Class-A Amp.	Characteristics same as 65G7-Table I										12567	
32547	Sharp Cut-aff Pentode	0.	8BK	12.6	0.15	8.5	7.0	. 003	H-F Amplifier	Characteristics same as 65H7-Tablel										12547	
125.7	Sharp Cut-aff Pentade	0.	8 N	12.6	0.15	\square			Class-A Amp.	Characteristics same as 65 17-Table I										12517	
$3 \mathrm{BSK7}$	Remate Cut-off Pentade	0.	8 N	12.6	0.15	6.0	7.0	. 003	R.F. Amplifier	Characteristies same as 6SK7-Table I										$125 \mathrm{K7}$	
32517 GT	Twin Triade	0.	$8 B 0$	12.6	0.15		-	-	Class-A Amp.	Characteristics same as 65L7 GT-Table II										12SL7GT	
I2SNYGT	Twin Triade	0.	8BD	12.6	0.3				Class-A Amp.	Characteristics same as 6SN7 GT-Tabe II										12SN7GT	
32507	Duplex-Diode Triade	0.	80	12.6	0.15	3.2	3.0	1.60	Class-A Amp.	Characteristics same as 6SQ7-Table I										12507	
12587	Duplex-Diode Triode	0.	80	12.6	0.15	3.6	2.8	2.40	Class-A Amp.	Characteristics same as 6R7-Tablel										125R7	
325W7	Duplex-Diade Triade	0.	80	12.6	0.15	3.0	2.8	2.4	Class-A, Amp.	250	-9		-	9.5	8500	1900	16	-		125W7	
325x7	Twin Triode	0.	88 D	12.6	0.3	3.0	0.8	3.6	Class-A1 Amp. ${ }^{5}$	250	-8	-	-	9	7700	2600	20	-		125x7	
12577	Heptode Canverter	0.	8R	12.6	0.15	Osc.-Grid leak 20000 ohms			Canverter	250	- 2	100	8.5	3.5	1000000	450	-	-		$125 \mathrm{Y7}$	
12V6GT	Beam Pentade	0.	7 AC	12.6	0.225	9	7.5	0.7	Class-A Amp.	315	-13	225	2.2/6	34/35	80000	3750	-	8500	5.5	12V6GT	
14 A 4	Triade Amplifier	L.	5AC	14	0.16	3.4	3.0	4.00	Class-A Amp.	Characteristics same as 744-Table Ill										1444	
14A5	Beam Power Amplifier	L.	6AA	14	0.16		-	-	Class-A, Amp.	250	-12.5	250	3.5/5.5	30/32	70000	3000	-	7500	2.8	14A5	
$\begin{aligned} & \overline{34077} \\ & 12877 \end{aligned}$	Remate Cuf-off Pentode	L.	8 V	14	0.16	6.0	7.0	. 005	Class-A Amp.	250	- 3.0	100	2.6	9.2	800000	2000	-	\square		$\begin{aligned} & 14 A 7 / \\ & 12 B 7 \end{aligned}$	
34AF7	Twin Triade	L.	8AC	14	0.16	2.2	1.6	2.30	Class-A Amp.	250	-10			9	7600	2100	16			14 AFF	
$4{ }^{4}$	Duplex-Diode Triade	L.	8 W	14	0.16		-	-	Class-A Amp.	Characteristies sdme as 7B6-Table III										1486	
348	Pentagrid Converter	L.	$8 \times$	14	0.16	$\mathrm{lc} 2-4 \mathrm{Ma}$.			Converter	Characteristics same as 788-Table III										1488	
14C5	Beam Power Amplifier	L.	6AA	14	0.24		-	-	Class-A Amp.	Choracteristics same as 6V6-Table I										14 C 5	
$34 \square$	R.F. Pentade	L.	8 V	14	0.16	6.0	6.5	. 007	Class-A Amp.	250	$-3.0 \mid$	100	0.7	2.2	1000000	1575	-	-	-	$14 \mathrm{C7}$	
Worldradio Hisioy																					

TABLE IX－HIGH－VOLTAGE HEATER TUBES—Continued

Type	Name	Base	SockelConnec－tions	Heator		Capacilance $\mu \mu \mathrm{fd}$ ．			Use		Grid Bias	Sereen Volts	Screen Current Ma．	Plate Current Ma．		Transcon－ duclance Micromhos	Amp． Factor	$\begin{array}{\|c} \text { Load } \\ \text { Resistance } \\ \text { Ohms } \end{array}$	$\begin{aligned} & \text { Power } \\ & \text { Oulput } \\ & \text { Wotts } \end{aligned}$	Type
				Volts	Amp．	In	Out	$\begin{array}{\|c} \text { Plate- } \\ \text { Grid } \end{array}$												
14E6	Duplex－Diode Triode	1.	8w	14	0.16				Class－A Amp．	Charoctaristics some as 7E6－Toble III										14E6
$14 E 7$	Duplex－Diode Penlode	1.	8AE	14	0.16	4.6	5.3	． 005	Class－A Amp．	Characteristics same as 7E7－Toble III										$14 E 7$
1477	Twin Triode	1.	8AC	14	0.16				Class－A Amp．	Charocteristics same as 7F7－Toble III										$14 \mathrm{F7}$
14 FB	Twin Triode	L．	8BW	12.6	0.15	2.8	1.4	1.2	Closs－A1 Amp．	Characteristics some as 7F8										14F8
$14 \mathrm{H7}$	Semi－Variable－μ Pentode	L．	8V	14	0.16	8.0	7.0	． 007	Class－A Amp．	250	－ 2.5	150	3.5	9.5	800000	3800		－		1447
1417	Triode－Hexode Converter	L．	8BL	14	0.16	$\mid \mathrm{pt}=5 \mathrm{Ma}$ ．			Convertar	Characteristics same as 7J7－Table III										$14 \mathrm{J7}$
14N7	Twin Triode	1.	8AC	14	0.32				Class－A Amp．	Characteristics same as 7N7－Toble III										14N7
1497	Heplode Penlagrid Converter	1.	8AL	14	0.16	－	\square	—	Converier	Charocteristics same os 707－Table III										1407
14R7	Duplex－Diode Pentade	L．	8 AE	14	0.16	5.6	5.3	． 004	Class－A Amp．	Characteristics same as 7R7－Table II！										14R7
1457	Triode Heptode	1.	8BL	14	0.16	$1 \mathrm{pt}=5 \mathrm{Ma}$ ．			Converter	250	－ 2.0	100	3	1.8	1250000	525	\rightarrow			1457
$14 \mathrm{V7}$	H．f．Pentode	1.	8 V	14	0.24		－		Class－A Amp．	300	－ 2.0	150	3.9	9.6	300000	5800				14V7
14W7	Pentode	L.	8BJ	14	0.24	Rk $=160$ ohms			Class－A Amp．	300	-2.2	150	3.9	10	300000	5800				14W7
14×7	Twin Diode Triade	L．	882	12.6	0.15				Class－A Amp．	250	－ 1			1.9		1500	100	－		14×7
18	Pentode	M．	68	14	0.30				Class－A Amp．	Characleristics same as 6F6G										18
198C6G	Beam Power Amp．	0.	5BT	18.9	0.3	11	6.5	0.65	Deflection Amp．	400	Peak surge $E_{P}=4000 \mathrm{~V}$ ．Peak surge $\mathrm{E}_{\mathrm{G}}=-100 \mathrm{~V} . \mathrm{I}_{\mathrm{G} 2}=6 \mathrm{ma} . \mathrm{I}_{\mathrm{P}}=70 \mathrm{ma}$ ．									19BG6G
20J8GM	Triode Heptode Converter	0.	8H	20	0.15				Convertor	250	-3.0	100	3.4	1.5	Triode Plate（No．6） 100 v． 1.5 ma ．					20J8GM
2147	Triode Hexode Converter	1.	8AR	21	0.16	－	－	－	Converter	$\begin{aligned} & 250 \\ & 150 \end{aligned}$	$\begin{aligned} & =3.0 \\ & =3.0 \end{aligned}$	${ }^{100}$	$\text { lode } 2.8$	$\begin{aligned} & 1.3 \\ & 3.5 \end{aligned}$	一一	$\begin{array}{r} 275 \\ 1900 \end{array}$	$\text { 一 } 32$			2147
25 A6	Pentode Power Amplifier	0.	75	25	0.3	8.5	12.5	0.20	Class－A Amp．	135	－20．0	135	8	37	35000	2450	85	4000	2.0	25A6
$25 A 7 \mathrm{GT}$	Rectifier Power Pentode	0.	8 F	25	0.3				Class－A Amp．	100	－15．0	100	4	20.5	50000	1800	90	4500	0.77	25A7GT
25AC5GT	Triode Power Amplifier	0.	60	25	0.3					110	＋15．0	－		45		3800	58	2000	2.0	25AC5GT
25ACsGT	Triode Power Amplifer	0.	60	25	0.3				Class－A Amp．	165	Used in dynomic－coupled circuit with 6AF5G driver							3500	3.3	2SACSGT
25AVSGT	Beam Pentode	0.	6CK	25	0.3				Horz．Def．Amp．	$250{ }^{9}$	-50^{9}	$175{ }^{9}$		$10{ }^{9}$	Peak pos．plate pulse $=4500$ volis．					25AV5GT
$2585{ }^{\circ}$	Direct－Coupled Triodes	s．	60	25	0.3				Class－A Amp．	110	0	110	7	45	11400	2200	25	2000	2.0	25B5
$2586 G^{8}$	Pentode Power Amplifer	0.	75	25	0.3			－	Class－A Amp．	95	－15．0	95	4	45	－	4000	－	2000	1.75	2586G
25B8GT ${ }^{\text {8 }}$	Triode Pentode	0.	8 T	25	0.15				Class－A Amp．		Characteristics same as 1288GT									25B8GT
25806GT	Beam Pentode	0.	GAM	25	0.3				Deflection Amp．	250	47＊	150	2.1	45	－	5500	－	－		25BC6GT
$25 C 6 G^{8}$	Beam Power Amplifier	0.	7 AC	25	0.3				Class－A！Amp．	135	－13．5	135	3．5／11．5	58／60	9300	7000	－	2000	3.6	$25 C 6 G$
25CD6G	Beam Pentode	0.	58T	25	0.6	26	10	1.0	Deflection Amp．	500	Peak Pos，Pulse $=6000$ volits． $\mathrm{EG}^{2}=170.1 \mathrm{I}_{\mathrm{p}}=92 \mathrm{ma}$ ． $\mathrm{IG}^{2}=15.5 \mathrm{ma}$ ．									25CD6G
25D8GT	Diode Triode Pentode	0.	8AF	25	0.15				Triode Amp．	100	-1.0			0.5	91000	1100	100			2508GT
2SDAG	Diode Triode Pentode	O．	8 8f	25	0.15				Pentode Amp．	100	-3.0	100	2.7	8.5	200000	1900		－		
	Beam Power Amplifier	0.	7AC	25	0.3	16	13.5	0.30	Class－A，Amp．	110	-8.0	110	3．5／10．5	45／48	10000	8000	80	2000	2.2	2516
25N668	Direct－Coupled Triodes	0.	7W	25	0.3				Class－A Amp．	110	0	110	7	45	11400	2200	25	2000	2.0	25N6G
26A7GT	Twin Beam－Power Audio Amplifier	0.	88 U	26.5	0.6	Each Unit Push－Pull			Class－A Amp．	26.5	－ 4.5	26.5	2／5．5	20／20．5	2500	5500		1500	0.2	2647 GT
2647 GT									Class－AB Amp．${ }^{3}$	26.5	-7.0	26.5	2／8．5	19／30				2500 ：	0.5	
32 l 7 GT	Diode－Beam Tetrode	0.	82	32.5	0.3	－			Class－A Amp．	110	-7.5	110	3	40	15000	6000		2500	1.5	32L7GT
3545	Beam Power Amplifier	1.	6AA	35	0.15				Class－A1 Amp．	110	-7.5	110	3／7	40／41	14000	5800	－	2500	1.5	35A5
35L6GT	Beam Power Amplifier	0.	7 AC	35	0.15	13	9.5	0.80	Class－A1 Amp．	110	-7.5	110	3／7	40／41	13800	5800	－	2500	1.5	35L6GT
43	Pentode Power Amplifier	M．	6B	25	0.3	8.5	12.5	0.20	Class－A Amp．	95	－15．0	95	4.0	20.0	45005	2000	90	4500	0.90	43
485	Tetrode Power Amplifier	M．	6A	30	0.4				Class－A Amp．	96	－19．0	96	9.0	52.0	\cdots	3800		1500	2.0	48
50A5	Beam Power Amplifier	L．	6AA	50	0.15				Class－A，Amp．	110	－ 7.5	110	4／11	49／50	10000	8200		2000	2.2	50A5
SOCBGT	Beam Power Amplifier	0.	7AC	50	0.15			－	Class－A1 Amp．	135	－13．5	135	3．5／11．5	58／60	9300	7000	ーー	2000	3.6	50C6GT
SOL6GT	Beam Power Amplifer	0.	$7 A C$	50	0.15				Class－A Amp．	110	-7.5	110	4／11	49／50		8200	82	2000	2.2	50l6GT
70A7GT	Diode－Beam Tetrode	0.	8AB ${ }^{\text {a }}$	70	0.15				Class－A Amp．	110	-7.5	110	3.0	40	－	5800	80	2500	1.5	70A7GT
7017 GT	Diode－Beam Tatrode	0.	8AA	70	0.15				Class－A！Amp．	110	-7.5	110	3／6	40／43	15000	7500		2000	1.8	70L7GT
$\begin{aligned} & 117 \mathrm{LGT} / \\ & 117 \mathrm{M} 7 \mathrm{GT} \end{aligned}$	Rectifier－Amplifor	0.	BAO	117	0.09	－	－	－	Class－A Amp．	105	－ 5.2	105	4／5．5	43	17000	5300	－	4000	0.85	$\begin{aligned} & 117 \mathrm{LTGT} / \\ & 117 \mathrm{M} 7 \mathrm{GT} \end{aligned}$
117N7GT	Reclifier－Amplifier	－	8AV	117	0.09		\square	－	Class－A Amp．	100	-6.0	100	5.0	51	16000	7000	－	3000	1.2	117N7GT

table ix-high-voltage heater tubes-Continued

table X-special receiving tubes

Type	Name	Base	Sockel Connec tions	Fil. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	Screen Volts	Screen Curreni Ma.	Plate Current Ma.	Plate Resistance Ohms	Transconduclance Micromhos	Amp. Factar		Power Oulput Watts	Type
				Volts	Amp.	In	Out	PlateGrid												
00-A ${ }^{1}$	Triode Detector	M.	4D	5.0	0.25	3.2	2.0	8.50	Grid-Leak Det.	45	\cdots	-		1.5	30000	666	20	-	-	00.A
$01-A$?	Triode Detector Amplifier	M.	4D	5.0	0.25				Class-A Amp.	135	-9.0	-		3.0	10000	800	8.0			01.A
3A8GT	Diode Triode Pentode	0.	8 A5	1.4	0.1	2.6	4.2	2.0	Class.A Triode	90	0	-		0.15	240000	275	65		-	
3A8	Drode Triode Pentode			2.8	0.05	3.0	10.0	0.012	Class-A Pentode	90	0	90	0.3	1.2	600000	750		-		3A8GT
385GT	Beam Power Amplifier	O.	7AP	$\begin{aligned} & 1.4 \\ & 2.8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.05 \\ & \hline \end{aligned}$	-	-	\square	Class-A Amp.	67.5	-7.0	67.5	$\begin{aligned} & 0.6 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.7 \end{aligned}$	100000	$\begin{aligned} & 1650 \\ & 1500 \end{aligned}$	-	5000	$\begin{gathered} 0.2 \\ 0.18 \end{gathered}$	385GT
3C5GT	Power Outpul Pentode	0.	7AO	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.05 \end{aligned}$	-	\square	-	Class-A Amp.	90	- 9.0	90	1.4	6.0	-	$\begin{aligned} & 1550 \\ & 1450 \end{aligned}$	-	$\begin{array}{r} 8000 \\ 10000 \end{array}$	$\left\lvert\, \begin{aligned} & 0.24 \\ & 0.26 \end{aligned}\right.$	3C5GT
$3 \mathrm{C6}$	Twin Triode	1.	7BW	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.05 \end{aligned}$			-	Class-A Amp.	90	0	-	-	4.5	11200	1300	14.5	-	-	3C6
31E4	Power Amplifler Pentode	1.	6BA	2.8	0.05			-	Class-A Amp.	90	-9.0	90	1.8	9.0	110000	1600		6000	0.30	3154
31F4	Beam Pentode	1.	68B	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.05 \end{aligned}$	-	-	-	Class-A Amp.	90	- 4.5	90	$\begin{aligned} & 1.3 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 75000 \\ & 80000 \end{aligned}$	$\begin{aligned} & 2200 \\ & 2000 \end{aligned}$	-	$\begin{aligned} & 8000 \\ & 7000 \end{aligned}$	$\begin{aligned} & 0.27 \\ & 0.23 \end{aligned}$	3LF4
3QSGT	Beam Power Amplifier	0.	7AO	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.05 \end{aligned}$	Parallal Filaments Series Filaments			Class-A Amp.	90	- 4.5	90	$\begin{aligned} & 1.3 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.5 \end{aligned}$	-	$\begin{aligned} & 2100 \\ & 1800 \end{aligned}$	-	8000	$\begin{aligned} & 0.27 \\ & 0.25 \end{aligned}$	305GT
4A6G	Twin Triode Amplifler	O.	81	4.0	0.06	Triodes Parallel			Class-A Amp.	90	- 1.5			2.2	13300	1500	20			
4 Cb	Twin Triode Amplinor	O.		2.0	0.12	Both Sections			Class-B Amp.	90	0		-	4.6	-			8000	1.0	4A6G
654	Acorn Triode	A.	7BR	6.3	0.225	2.0	0.6	1.90	Class-A Amp.	80	150*		-	13.0	2900	5800	17	\square		6 F4
614	U.H.F. Triode	A.	7BR	6.3	0:225	1.8	0.5	1.6	Class-A, Amp.	80	150*	\square	$\underline{\square}$	9.5	4400	6400	28	\cdots		614
	Triode Power Amplifier	M.	4D	7.5	1.25	4.0	3.0	7.00	Class-A Amp.	425	-39.0	\square	\longrightarrow	18.0	5000	1600	8.0	10200	1.6	10
11/12'	Triode Detector Amplifier	M.	4F/4D	1.1	0.25				Class-A Amp.	135	-10.5	-	-	3.0	15000	440	6.6		-	11/12
20^{2}	Triode Power Amplifier	S.	40	3.3	0.132	2.0	2.3	4.10	Class-A Amp.	135	-22.5	-		6.5	6300	525	3.3	6500	0.11	20
22 '	Tetrode R.F. Amplifier	M.	4K	3.3	0.132	3.5	10	0.02	Class-A Amp.	135	- 1.5	67.5	1.3	3.7	325000	500	160	650	0.1	22
26	Triode Amplifier	M.	4D	1.5	1.05	2.8	2.5	8.10	Class-A Amp.	180	-14.5	-	-	6.2	7300	1150	8.3	-	-	26

TABLE X－SPECIAL RECEIVING TUBES－Continued

Type	Name	Base	Socket Connec－ tions	Fil．or Heater		Capacitance $\mu \mu \mathrm{fd}$ ．			Use	Plate Supply Vols	Grid Bias	$\begin{gathered} \text { Screen } \\ \text { Valts } \end{gathered}$	Screen Current Ma．	Plate Current Ma．	$\begin{array}{\|c} \text { Plate } \\ \text { Resistance } \\ \text { Ohms } \end{array}$	Transcon－ ductance Micromhas	Amp． Factor		Power Output Watis	Type
				Volts	Amp．	In	Out	Plate． Grid												
$40{ }^{7}$	Triode Vollage Amplifier	M ．	4D	5.0	0.25	2.8	2.2	2.00	Class－A Amp．	180	－ 3.0			0.2	150000	200	30			40
50	Triode Power Amplifier	M．	4D	7.5	1.25	4.2	3.4	7.10	Class－A Amp．	450	－84．0	ー－		55.0	1800	2100	3.8	4350	4.6	50
71.4	Triode Power Amplifier	M ．	4D	5.0	0.25	3.2	2.9	7.50	Class－A Amp．	180	－43．0	ーー		20.0	1750	1700	3.0	4800	0.79	71.4
$990{ }^{7}$	Triode Detector Amplifier	5.	4D	3.3	0.063	2.5	2.5	3.30	Class－A Amp．	90	－ 4.5	ーー	一ー	2.5	15500	425	6.6	一一		99
112A ${ }^{7}$	Triode Detector Amplifier	M．	40	5.0	0.25	－	－		Closs－A Amp．	180	－13．5	－		7.7	470	18	8.5			12A
$\begin{aligned} & 182 \mathrm{~B} / \\ & 482 \mathrm{~B} \end{aligned}$	Triode Amplifier	M．	40	5.0	1.25	－			Class－A Amp．	250	－35．0	－	－	18.0	－	1500	5．0	－		482 B
183／483 ${ }^{7}$	Power Triode	M ．	4D	5.0	1.25			－	Class－A Amp．	250	－60．0			25.0	18000	1800	3.2	4500	2.0	183／483
4857	Triode	S．	5A	3.0	1.3		－		Closs－A Amp．	180	-9.0	－	－	6.0	9300	1350	12.5			485
864	Triode Amplifer	5.	40	1.1	0.25				Class－A Amp．	90	－ 4.5			2.9	13500	610	8.2	－		64
954	Pentode Delector， Amplifier	A．	5BB	6.3	0.15	3.4	3.0	0.007	Class－A Amp． Bios Detectar	250	-3.0 -6.0	100	0.7	Plate curre	1.5 meg ．	usted 100 0.1	ma，with	no signal		954
										250	－ 7.0			6.3	11400	2200	25			955
955	Triode Detector， Amplifier，Oscillator	A．	5BC	6.3	0.15	1.0	0.6	1.40	Class－A Amp．	90	－ 2.5			2.5	14700	1700	25			
956	Variable－μ Pentode	A．	5BB	6.3	0.15	3.4	3.0	0.007	Class－A Amp．	250	-3.0	100	2.7	6.7	700000	1800	1440			956
956	R	A．	SBB	6.3	0.15	3.4	3.0	0.007	Mixer	250	－ 10.0	100				Oscillator pe	ak volts	－7 min．		
957	Triode Detector， Amplifier，Oscillatar	A．	5BD	1.25	0.05	0.3	0.7	1.20	Closs－A Amp．	135	－ 5.0	－	－	2.0	20800	650	13.5	－		957
$\begin{aligned} & 958 \\ & 958-A \end{aligned}$	Triode A．F．Amplifier， Oscillator	A．	5BD	1.25	0.1	0.6	0.8	2.60	Class－A Amp．	135	-7.5	\square	－	3.0	10000	1200	12	\longrightarrow		$\begin{aligned} & 958 \\ & 958 . A \end{aligned}$
959	Penlode Delectar， Amplifier	A．	5BE	1.25	0.05	1.8	2.5	0.015	Closs－A Amp．	145	－ 3.0	67.5	0.4	1.7	800000	600	480			959
7E5／1201	U．h．f．Triode	L．	8BN	6.3	0.15	3.6	2.8	1.50	Class－A Amp．	180	－ 3		－	5.5	12000		36			7E5／1201
7C4／1203	U．h．f．Diode	L．	4AH	6.3	0.15				Rectifier	Max．r．m．s．voltage－ 150					Max．d．c．output current－8 ma．					7C4／1203
$\begin{aligned} & 7 A B 7 / \\ & 1204 \end{aligned}$	Sharp Cut－off Pentode	L．	8BO	6.3	0.15	3.5	4.0	0.06	Closs－A Amp．	250	－ 2	100	0.6	1.75	800000	1200	－	－		$\begin{aligned} & 7 \mathrm{AB7} \\ & 1204 \end{aligned}$
1276	Triode Power Amplifier	M．	4D	4.5	1.14				Class－A Amp．					Characteristics similar to 6A3						1276
1609	Pentode Amplifier	S．	5 B	1.1	0.25				Class－A Amp．	135	－ 1.5	67.5	0.65	2.5	400500	725	300			1609
5731	Acorn Triode	A．	5BC	6.3	0.15	1.0	0.4	1.3	Closs－A Amp．	250	-7			6.3	11400	2200	25			5731
5768	U．h．f．＂Rocket＂Triode	N．	Fig． 36	6.3	0.4	1.2	0.01	1.3	$\begin{aligned} & 1000-3000-\text { Mc. } \\ & \text { Amplifier } \end{aligned}$	250	－ 1		－	9.3	－	4500	85			5768
6173	U．h．f．＇Pencil＂Diode	N．	Fig． 67	6.3	0.135	Plofe to K－1．1			Rectifier Pe			Peak inverse－375 Volls．Peak Ip－50 Ma．Max．d．c．output－5．5 Ma．								6173
9004	U．h．f．Diode	A．	4BJ	6.3	0.15				Detector			Max．a．c．Voltage－ 117 ．Max．d．c．output current－5 ma．								9004
9005	U．h．f．Diode	A．	5BG	3.6	0.165				Defector											EF－50
EF－50	Sharp Cut－off Pentode	1.	${ }^{9} \mathrm{C}$	6.3	0.3	8	5	0.007	I．F．－R．F．Amp．	250	150＊									EF－50
$\begin{aligned} & \text { GL-2C44 } \\ & \text { GL.464A } \end{aligned}$	U．h．f．Triode	0.	Fig． 17	6.3	0.75	－		－	Class－A Amp． and Modulator	250	100＊			25.0	－	7000	－	－		$\begin{aligned} & \text { GL-2C44 } \\ & \text { GL.464A } \end{aligned}$
$\begin{aligned} & \text { GL-446A } \\ & \text { GL-446B } \end{aligned}$	U．h．f．Triade	0.	Fig． 19	6.3	0.75			\square	Oscillator，Amp． or Converter	250	200＊			15.0	－	4500	45	－		$\begin{aligned} & \text { GL-446A } \\ & \text { GL-446B } \end{aligned}$
$\begin{aligned} & 559 \\ & \text { GL. } 559 \end{aligned}$	U．h．f．Diode	0.	Fig． 18	6.3	0.75		－	－	Detecior or trans． line switch	5.0	－			24.0	－	－	－	－		$\begin{aligned} & 559 \\ & \mathrm{GL} .559 \end{aligned}$
NU－2C35	Sperial Hi－Mu Triode	0.	Fig． 38	6.3	0.3	5.2	2.3	0.62	Shunt Voltoge Regulator	8000	－200			5.0	525000	950	500			NU．2C35
VT52	Triode	M．	4D	7.0	1.18	5.0	3.0	7.7	Class－A Amp．	220	－43．5			29.0	1650	2300	3.8	380	1.0	VTS2
$\overline{\times 6030}$	Diode	1.	Fig． 4	3.0	0.6				Noise Diode	90				4.0	－		－			$\times 6030$
XXB	Twin－Triode Frequency Converter	L．	Fig． 9	$\begin{aligned} & 2.8 / \\ & 1.4 \\ & 3.2 .3 / \\ & 1.6 \end{aligned}$	$\begin{aligned} & 0.05 / \\ & 0.10 \end{aligned}$				Converler ${ }^{2}$	901	$\begin{array}{r} 0 \\ -\quad 3 \end{array}$			$\begin{aligned} & 4.5^{4} \\ & 4.5^{5} \\ & 1.4^{4} \\ & 1.4^{5} \end{aligned}$	$\begin{gathered} 11200 \\ 11200^{5} \\ 1900: \\ 1900 s \end{gathered}$	4 $1300{ }^{4}$ 1300^{5} 4 760^{4} 5 760^{5}	$\begin{aligned} & 14.5{ }^{1} \\ & 14.5 \end{aligned}$	${ }^{1}$		XXB
XXFM	Twin－Diode Triode	L．	8 BZ	6.3	0.3				Closs－A Amp．	$\begin{aligned} & 250 \\ & 100 \end{aligned}$	-1			$\begin{aligned} & 1.9 \\ & 1.2 \\ & \hline \end{aligned}$	$\begin{array}{r} 6700 \\ 85000 \\ \hline \end{array}$	$\begin{aligned} & 1500 \\ & 1000 \end{aligned}$	$\begin{array}{r} 100 \\ 85 \\ \hline \end{array}$			XXFM
＊Cothode resistor－ahms．		1 Both sections． 3 Section No． 2 recommended for h．f．a．							${ }^{3}$ Dry battery operotion． \＆Section Na． 1.		3 Section No． 2. 6 Same as X99．Type V99 is same，but socket connections are 4E．								${ }^{7}$ Discantinued．	

TABLE XI-MINIATURE RECEIVING TUBES—Other miniature types in Tables XIII and XV

Type	Name	Brse	Socket Connec. tions	Fil. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	Sereen Volts	Screen Current Ma.	Plate Curren! Ma.	PlateResistanceOhms	Transconductance Micromhos	Amp. Factor	Load Resisfance Ohms	Power Outpul Watts	Protolype
				Volts	Amp.	In	Out	PlateGrid												
$1 A_{3}$	H. F. Diode	B.	5AP	1.4	0.15	-	-	-	Delector F.M. Discrim.	Max. a.c. voltage per plate-117. Max. output current-0.5 ma.										-
1AB6'	Pentagrid Converter	B.	7DH	1.4	0.025	7.6	8.4	0.36	Converler	-	-	-	-	-		-			-	-
IACS	Pentagrid Converler	B.	70H	1.4	0.05	7.5	8.4	0.36	Converter	\square				-			-	-	$\underline{\square}$	
1AE4	Sharp Cut-off Pentode	B.	6AR	1.25	0.1	3.6	4.4	0.008	Class-A, Amp.	90	0	90	1.2	3.5	500000	1550				
1AF4	Pentode	B.	6AR	1.4	0.025	3.8	7.6	. 008	Class-A1 Amp.	90	0	90	0.5	1.65	1800000	950		-		\square
1 AF5	Diode Pentode	B.	6AU	1.4	0.025				Class-A, Amp.	90	0	90	0.4	1.1	2000000	600		-		
IAH5	Diode A.F. Penlode	B.	7DJ	1.4	0.025	2.1	2.9	0.3	Class-A Amp.	85			0.015	0.05	1000000	-	62	-	-	-
$1 \mathrm{C3}$	Triode	B.	5CF	1.4	0.05	0.9	4.2	1.8	Class-A Amp.	90	-3	-	-	1.4	19000	760	14.5	-		1LE3
1 E3	U.h.f. Triode	B.	98G	1.25	0.22	1.25	0.75	1.5	Class-A Amp.	150	-3.5	-		20		3500	14	-		
114	Sharp Cut-off Pentode	B.	6AR	1.4	0.05	3.6	7.5	. 008	Class-A Amp.	90	0	90	2.0	4.5	350000	1025				1N5GT
116	Pentagrid Converter	B.	7DC	1.4	0.05	7.5	12	0.3	Converter	90	0	45	0.6	0.5	650000	300				ILAG
1R5	Pentagrid Converter	B.	7AT	1.4	0.05				Convertor	90	0	67.5	3.0	1.7	500000	300	Grid No. 1100000 ohms			IATGT
154	Penlagrid Power Amp.	8.	7 AV	1.4	0.1	-			Class-A Amp.	90	7.0	67.5	1.4	7.4	100000	1575		8000	0.270	1Q5GT
155	Diode Pentode	B.	6AU	1.4	0.05			-	Class-A Amp.	67.5	0	67.5	0.4	1.6	600000	625				
155	Diode Pentode	©.	6AU	1.4	0.05				R-Coupled Amp.	90	0	90	Screen resistor 3 meg., grid 10 meg.					1 meg.	0.050	
IT4	Variable- μ Pentode	B.	6AR	1.4	0.05	3.6	7.5	0.01	Class-A Amp.	90	0	67.5	1.4	3.5	500000	900	-			1P5GT
104	5harp Cut-olf Pentode	B.	GAR	1.4	0.05	3.6	7.5	0.01	Closs-A Amp.	90	0	90	0.5	1.6	1500000	900				IN5GT
105	Diode Pentode	B.	6BW	1.4	0.05				Class-A Amp.	67.5	0	67.5	0.4	1.6	600000	625				
106	Pentagrid Converter	B.	70C	1.4	0.025	8	12	0.4	Converter	90	0	45	0.55	0.55	600000	275				
1W4	Power Amplifier Pentode	B.	5BZ	1.4	0.05	3.6	7	0.1	Class-A Amp.	90	-9	90	1	5	300000	925		12000	0.2	1284
2 C 51	Twin Triode	B.	8CJ	6.3	0.3	2.2	1.0	1.3	Class-A Amp.	150	- 2	-		$8.2{ }^{1}$	-	5500	35		-	$7 \mathrm{F8}$
2E30	Beam Power Pentode	B.	760	6.0	0.7	10	4.5	0.5	Class-A, Single	250	450*	250	7.4 =	$44{ }^{2}$	63000	3700	40^{3}	4500	4.5	
									Class-A, Amp. ${ }^{3}$	250	225*	250	$14.8{ }^{2}$	$88{ }^{2}$	-		80\%	$9000{ }^{\circ}$	9	-
									Class-AB1 Amp. ${ }^{3}$	250	-25	250	13.5 -	80^{2}			$48{ }^{5}$	$8000{ }^{\circ}$	12.5	
									Class-AB2 Amp. ${ }^{3}$	250	-30	250	20:	$120{ }^{2}$	-		40^{5}	$3800{ }^{5}$	17	
3 A 4	Power Amplifier Pentode	B.	78B	$\begin{array}{r} 1.4 \\ 2.8 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.2 \\ \hline 0.1 \\ \hline \end{array}$	4.8	4.2	0.34	Class-At Amp.	$\begin{array}{r} 135 \\ 150 \\ \hline \end{array}$	$\begin{aligned} & -7.5 \\ & -8.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.6 \\ & 2.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 14.9^{2} \\ & 14.1^{2} \\ & \hline \end{aligned}$	$\begin{array}{r} 90000 \\ 100000 \\ \hline \end{array}$	1900	-	8000	$\begin{aligned} & 0.6 \\ & 0.7 \end{aligned}$	-
3 A5	H.F. Twin Triode	B.	7BC	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.11 \end{aligned}$	0.9	1.0	3.20	Closs-A Amp.	90	- 2.5	-	-	3.7	8300	1800	15	-	-	-
$3 \mathrm{C4}$	Power Pentode	B.	6BX	1.4	0.05	4.9	4.4	0.3	Class-A Amp.	85	-5.2	85	5.0	1.1	125000	1350	-	13000	0.2	
3E5	Power Amplifier Pentode	B.	6BX	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{gathered} 0.05 \\ .025 \end{gathered}$				Class-A1 Amp.	90	- 8	90	1.5	5.5	120000	1100	-	8000	. 175	-
		B.	7BA	1.4	0.1	Parall	lel Filo	omenis	Class-A Am	90	4.5	90	2.1	9.5	100000	2150		10000	0.27	305GT
304	Power Amplifler Pentode	B.	7BA	2.8	0.05	Serie	s Filam	ments	Class-A Am	90	- 4.5	9	1.7	7.7	120000	2000		10000	0.24	3QSGT
354	Power Amplifier Pentode	B.	7BA	1.4	0.1	Parall	lel Fila	aments	ass-A Am	90	-7.0	67.5	1.4	7.4	100000	1575			0.27	
354	Power Amplifier Pentode	B.		2.8	0.05	Serie	Filam	ments	ass-A Amp	90	-7.0	67.5	1.1	6.1	100000	1425		8000	0.235	3Q5GT
		B.	6 BX	1.4	0.1	Parall	Iel Fila	aments	Class-A Amp.	90	- 4.5	90	2.1	9.5	100000	2150		10000	0.27	
3 V 4	Power Amplifier Pentode	B.	6 BX	2.8	0.05	Serie	es Filam	ments	Class-A Amp.	90	-4.5	90	1.7	7.7	120000	2000		10000	0.24	3QSGT
6AB4	U.h.f. Triode	B.	5CE	6.3	0.15	2.2	0.5	1.5	Class-A Amp.	250	200*	-	-	10	10900	5500	60	-	-	Single unit 12AT7
		B.	9AT			4.6	4.7	0.2	Triode	100	-2	-	-	4	-	1350	18	-		
6 688	Triode-Peniode	B.	9AT	6.3	0.3				Pentode	200	-7.7	200	3.3	17.5	150000	3400		11000	1.4	
6AD8	Dual Diode Pentode	B.	9 T	6.3	0.3	4.0	4.6	0.002	Class-A Amp.	250	-2	85	2.3	6.7	1000000	1100				-
6AE8	Triode Hexode	B.	90	6.3	0.3				Freg. Converter	-	-		-	-	-	-	-			6 K 8
6AF4	U.h.f. Triode	B.	7DK	6.3	0.225	2.2	-0.45	1.9	Class-A, Amp.	80	150*	\cdots	0.410	16	2270	6600	15	-	-	6x
	U.h.F. Triode			6.3	0.225				Osc. at 950 Mc .	100	10000s2	-	0.410	22	-	-	-	-	-	
6AG5	Sharp Cut-off Pentode	B.	7BD	6.3	0.3	-	-	-	Class-A Amp.	$\begin{aligned} & 250 \\ & 100 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 200^{*} \\ 100^{*} \end{array}$	$\begin{aligned} & 150 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 8000000 \\ & 300000 \end{aligned}$	$\begin{aligned} & 5000 \\ & 4750 \end{aligned}$	-	三-	-	6SH7GT
6 AH6	Sharp Cut-off Pentode	B.	7CC	6.3	0.45	10	2	0.03	Pentode Amp.	300	160*	150	2.5	10	500000	9000		-		
	Shoip Cun-or Pomodo		\%ce	6.3	0.45		2		Tainde A mn ${ }^{\text {1 }}$		1/N\%	\cdots	-	195	3/8m	11 mm	4 A	-		6AC7

Mmble AI-mivimiuke keciving IUBES-Confinued

table XI - miniature receiving tubes - Continued

Type	Name	Base	Socket Connections	Fil. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bios	Screen Volts	Screen Current Ma.	Plate Current Ma.	$\begin{gathered} \text { Plate } \\ \text { Resistonce } \\ \text { Ohms } \end{gathered}$	Tronsconductance Micromhos	Amp. Factor 4	$\begin{gathered} \text { Load } \\ \text { Resistonce } \\ \text { Ohms } \end{gathered}$	Power Oupput Watts	Prolotype
				Volts	Amp.	In	Out	Plate. Grid												
6BM5	Power Pentode	B.	700	6.3	0.45	8	5.5	0.5	Class-A Amp.	250	-6	250	3	30	60000	7000	-	7000	3.5	-
GBN6	Gated-beam Disc.	B.	7DF	6.3	0.3	4.2	3.3	. 004	FM Disc.	80	- 1.3	60	5	0.23	-	-		68000		-
6BN7	Dual Triode	B.	Fig. 41	6.3	0.75	5.5	1.67	37	Class-A Amp. ${ }^{7}$	250	-15		-	24	2200	5500	12			-
						1.4	$0.3{ }^{\text {² }}$	$0.7{ }^{3}$	Class-A1 Amp. ${ }^{\text {8 }}$	120	- 1	-	-	5	14000	2000	28	-	-	
6BQ7	Double Triode	B.	9AJ	6.3	0.4	2.55	1.3	1.15	Class-A Amp. ${ }^{\text {I }}$	150	220*	-	-	9.0	5800	6000	35		-	
6 BQ 7 A	Dual Triode	B.	9AJ	6.3	0.4			1.15	Class-A Amp. ${ }^{11}$	150	220**	-		9	6100	6400	39	-	-	$6 \mathrm{Ba7}$
6BR7	5harp Cut-off Pentode	B.	9 BC	6.3	0.15	4.25	4.0	0.01	Class-A Amp.	250	- 3	100	0.6	2.1	2500000	1250	-	-	-	6.57
6BT6	Duodiade Triode	B.	7BT	6.3	0.03				Closs-A, Amp.	250	- 3	-	-	1	58000	1200	70	--	--	
6866	Duodiode Triode	B.	7 BT	6.3	0.3		-		Class-A Amp.	250	-9	--	-	9.5	8500	1900	16	10000	0.3	-
68 V 7	Duadiode Pentode	B.	9 BU	6.3	0.8	11.5	9.5	0.5	Class-A Amp.	250	-5	250	6	38	100000	1000	-	8000	4.0	--
				6.3	0.45	-		-		315	-13	225	6	35	77000	3750	-	8500	5.5	--
6BW6	Beom Pentode	B.	9AM	6.3	0.45				Closs ${ }^{\text {A, Amp. }}$	250	-12.5	250	7	47	52000	4100	-	5000	4.5	
6BX6	R.F. Penlode	B.	$9 A 0$	6.3	0.3	7.2	3.4	0.007	Class-A Amp.	170	- 2	170	2.5	10	400000	7200	-	-	-	-
6 BY 7	R.F. Pentode	B.	9AO	6.3	0.3	7.2	3.7	0.007	Class-A Amp.	250	- 2	100	2.5	10	500000	6000	-	-	-	-
6BZ7	U.h.f. Twin Tric de	B.	9AJ	6.3	0.4	2.85	2.27	1.15	Clase-A Amp.11	150	220*			10	5600	6800	38	-	-	6807
SC4	Triode Amplifier	B.	6BG	6.3	0.15	1.8	1.3	1.60	Class-A, Amp.	250	-8.5		-	10.5	7700	2200	17	-	-	6 J 5 GT
SCB6	Shorp Cut-off Pentode	B.	7CM	6.3	0.3	6.3	1.9	0.02	Class-A, Amp.	200	180*	150	2.8	9.5	600000	6200	-	-	一-	-
SCF6	Sharp Cut-aff Pentode	B.	7CM	6.3	0.3	6.3	1.9	0.02	Class-A, Amp.	200	180**	150	2.8	9.5	600000	6200	-	-	- -	-
SCGS	Remote Cut-off Pentode	B.	7BK	6.3	0.3	5	5	0.008	Class-A, Amp.	250	- 8	150	2.3	9.0	720000	2000		-	-	-
6CH6	R.F. Pentode	B.	9BA	6.3	0.75	14	5	0.25	Class-A Amp.	250	-4.5	250	6	40	50000	11000	-	-	-	
SCJS	Audio Pentode	B.	9AS	6.3	1.05	14.7	6.0	0.8	Class-A Amp.	250	-38.5	250	2.4	32	15000	4600	-	-	-	-
6CK6	R.F. Pentode	B.	9AR	6.3	0.71	11.2	6.6	0.1	Class-A Amp.	250	- 5.5	250	5	36	130000	10000		-	-	
6 CLO	Power Pentode	B.	Fig. 68	6.3	0.65	11	5.5	0.12	Class-A, Amp.	250	-3	150	7/7.2	30/31	15000	11000		7500	2.8	6AG7
6CS6	Heplode	B.	7 CH	6.3	0.3	5.5	7.5	0.05	Sync. Separatar	Grid 22 current $=\mathbf{1 . 1} \mathbf{M a}$.										-
									Grounded.Grid	150	200*	-	-	15.0	4500	\| 12000	55	-	-	
6.54	U.h.f. Grounded-Grid R.F. Amplifier	B.	7B0	6.3	0.4	5.5	0.24	4.0	Class-A Amp.	100	100*			10.0	5000	11000	55		-	
6.6	Twin Triode	B.	7BF	6.3	0.45	2.2	0.4	1.6	Class-A: Amp. Mixer, Oscillalor	100	50*	-	-	8.5	7100	5300	38	-	-	-
6M5	Power Amplifier Pentode	B.	9N	6.3	0.71	10	6.2	1	Class-A, Amp.	250	170*	250	5.2	36	40000	10000	-	7000	3.9	
6N4	U.h.f. Triode Amplifier	B.	7CA	6.3	0.2	3.0	1.6	1.10	Class-A Amp.	180	-3.5			12	-	6000	32	- -	-	-
6N8	Duodiode Pentode	B.	97	6.3	0.3	4	4.6	002	Class-A, Amp.	250	- 2	85		1	1600000	2200		-		-
6 Ca	Grnd. -Grid Triode	B.	95	6.3	0.48	5.4	. 06	3.4	Class-A, Amp.	250	-1.5	-	-	15	-	12000	80			-
6R4	U.h.f. Triode	B.	9 R	6.3	0.2	1.7	0.5	1.5	Class-A Amp.	150	- 2			30		5500	16	-	-	-
6R8	Triple Diode Triode	B.	9 E	6.3	0.45	1.5	1.1	2.4	Class-A Amp.	250	-9	-		9.5	8500	1900	16	10000	0.3	-
654	Triode	B.	9AC	6.3	0.6				Class-A, Amp.	250	~ 8			26	3600	4500	16	-	-	- -
674	Triode	B.	70K	6.3	0.225	2.4	0.45	1.8	Closs-A Amp.	80	150	- -	-	18	-	7000	13	-	--	-
6 68	Triple-Diode Triode	B.	9 E	6.3	0.45	1.5	1.1	2.4	Closs-A Amp.	250	- 3		-	1.0	5800	1200	70	-	-	-
608	Triode	B.	9AE	6.3	0.45	2.5	1.0	1.8	Class-A, Amp.	150	56*			18	5000	8500	40	-		
	Pentode					5.0	2.6	0.01	Closs-A, Amp.	250	68*	110	3.5	10	400000	5200		-	-	
6V8	Triple-Diode Triode	B.	9AH	6.3	0.45	-	- -		$\begin{array}{\|l} \hline \text { Closs-A: Amp. } \\ \hline \text { Diode } \\ \hline \end{array}$	100	-1	-		0.8	54000	1300	70	-	-	
										250	- 3	-	1 -	1.0	58000	1200	70	1 -		--
										Mox. diode 2 and 3 Ma. $=10$ eoch. Mox. diode 1 Mo. $=1.0$										
6×8	Medium Mu Triode	B.	9AK	6.3	0.45	2.6	1.0	1.4	Triode Osc.	150	2700:	- -	1-	13	-] -	-	-		-
	Sharp Cut-off Pentode					4.5	1.2	0.008	Pentode Mix.	150	- 3.5	150	1.1	4.6	-000	1600	-	7000		
$9 \mathrm{MM5}$	Power Pentode	B.	700	9.5	0.3	8	5.5	0.5	Closs-A Amp.	250	-6	250	3	30	60000	- 7000	420	7000	3.5	
9BW6	Beam Pentode	B.	9 AM	9.45	0.3	-	-	-	Closs.A Amp.	315	-13	225	2.2	34	77000	3750	-	8500	5.5	6BW6

TABLE XI-MINIATURE RECEIVING TUBES-Continued

table xi-miniature receiving tubes-Continued

\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Type} \& \multirow[b]{2}{*}{Name} \& \multirow[b]{2}{*}{Base} \& \multirow[t]{2}{*}{Socket Connections} \& \multicolumn{2}{|l|}{Fil. or Meater} \& \multicolumn{3}{|l|}{Copacitance $\mu \mu \mathrm{fl}$.} \& \multirow[b]{2}{*}{Use} \& \multirow[t]{2}{*}{Plote Supply Volts} \& \multirow[t]{2}{*}{Grid Bios} \& \multirow[t]{2}{*}{Screen Volts} \& \multirow[t]{2}{*}{Screen Current Ma.} \& \multirow[t]{2}{*}{Plate Current Mo.} \& \multirow[t]{2}{*}{Plote Resistonce Ohms} \& \multirow[t]{2}{*}{Transconductance Micromhos} \& \multirow[t]{2}{*}{Amp. Factor 4} \& \multirow[t]{2}{*}{Lood Resistonce Ohms} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& \text { Power } \\
& \text { Output } \\
& \text { Watts }
\end{aligned}
$$} \& \multirow[b]{2}{*}{Prototype}

\hline \& \& \& \& Volts \& Amp. \& In \& Out \& Plate. Grid \& \& \& \& \& \& \& \& \& \& \& \&

\hline 1956 \& Twin Triode \& B. \& 7BF \& 18.9 \& 0.15 \& 2.0 \& 0.4 \& 1.5 \& Closs. A_{1} Amp. \& 100 \& 50* \& - \& \& $8.5{ }^{1}$ \& 7100 \& 5300 \& 38 \& - \& \& -

\hline 1918 \& Triple-Diode Triode \& B. \& 9 E \& 18.9 \& 0.15 \& 1.5 \& 1.1 \& 2.4 \& Closs-A Amp. \& 250 \& -3 \& \& \& 1.0 \& 5800 \& 1200 \& 70 \& - \& \&

\hline 19V8 \& Triple-Diade Triode \& B. \& 9 AH \& 18.9 \& 0.15 \& \& \& \& \multicolumn{11}{|c|}{Chorocteristics same as 6V8} \&

\hline \& \& \& \& \& \& \& \& \& Triode Osc. \& 150 \& \multicolumn{3}{|c|}{2700 2 gridleok} \& 13 \& \multicolumn{5}{|c|}{3.6 Mo. grid current} \&

\hline 19X8 \& Triode Pentode \& B. \& 9AK \& 18.9 \& 0.15 \& 4.3 \& 0.7 \& 0.09 \& Pentode Mixer \& 150 \& - 3.5 \& 150 \& 1.8 \& 6.2 \& - \& 2100 \& \& - \& - \&

\hline 21 A6 \& R,F. Pentode \& B. \& $9 \mathrm{A5}$ \& 21.5 \& 0.3 \& 14.3 \& 6.5 \& 0.4 \& Horizontal Time Bose \& 180
180 \& $$
\begin{array}{r}
-23 \\
0
\end{array}
$$ \& 180
180 \& 3

29 \& $$
\begin{array}{r}
45 \\
430
\end{array}
$$ \& - \& 6500 \& - \& - \& \& -

\hline 25BK5 \& Beam Power Amp. \& B. \& 9 Ba \& 25 \& 0.3 \& 13 \& 5.0 \& 0.6 \& Class-A Amp. \& 250 \& - 5.0 \& 250 \& 35/10 \& 35/37 \& 100000 \& 8500 \& \& 6500 \& 3.5 \&

\hline 2646 \& Remote Cut-off Pentode \& B. \& 78K \& 26.5 \& 0.07 \& 6.0 \& 5.0 \& . 0035 \& Closs-A Amp. \& 250 \& 125* \& 100 \& 4 \& 10.5 \& 1000000 \& 4000 \& \& \longrightarrow \& - \&

\hline 268K6 \& Duodiode Triode \& B. \& 7BT \& 26.5 \& 0.07 \& \& \& \& Closs-A, Amp. \& \multicolumn{10}{|c|}{50me os 6BK6} \&

\hline 26.6 \& Duplex-Diode Triode \& 8. \& 781 \& 26.5 \& 0.07 \& 1.8 \& 1.4 \& 2 \& Class-A Amp. \& 250 \& 9 \& \& - \& 9.5 \& 8500 \& 1900 \& 16 \& \& \&

\hline 26CG6 \& Semi-Remote Cut-off Pentode \& B. \& 7BK \& 26.5 \& 0.07 \& 5.0 \& 5.0 \& 0.008 \& Closs-A, Amp. \& 250 \& -8 \& 150 \& 2.3 \& 9.0 \& 720000 \& 2000 \& \& \& - \&

\hline 2606 \& Penlogrid Convewter \& B. \& 7CH \& 26.5 \& 0.07 \& \multicolumn{3}{|l|}{Osc. Grid 20000Ω} \& Converter \& 250 \& 1.5 \& 100 \& 7.8 \& 3.0 \& 1000000 \& 475 \& - \& \& - \&

\hline 3585 \& Beam Power Amplifier \& B. \& 782 \& 35 \& 0.15 \& 11 \& 6.5 \& 0.4 \& Closs-A, Amp. \& 110 \& -7.5 \& 110 \& 7 \& 41. \& - \& 5800 \& 40 \& 2500 \& 1.5 \& 3516GT

\hline 35 C 5 \& Beam Power Amplifier \& B. \& 7cv \& 35 \& 0.15 \& 12 \& 6.2 \& 0.57 \& Closs-A, Amp. \& 110 \& - 7.5 \& 110 \& 317 \& $40 / 41$ \& \& 5800 \& \& 2500 \& 1.5 \&

\hline 5085 \& Beam Power Amplifier \& B. \& 7Bz \& 50 \& 0.15 \& 13 \& 6.5 \& 0.50 \& Closs-A Amp. \& 110 \& -7.5 \& 110 \& 4.0 \& 49.0 \& 14000 \& 7500 \& - \& 3000 \& 1.9 \& 50L6GT

\hline 50C5 \& Beom Power Amplifier \& B. \& 7 CV \& 50 \& 0.15 \& \& \& - \& Closs-A Amp. \& 110 \& -7.5 \& 110 \& $4 / 8.5$ \& 49/50 \& 10000 \& 7500 \& \& 2500 \& 1.9 \& -

\hline 5590 \& Pentode \& B. \& 780 \& 6.3 \& 0.15 \& 3.4 \& 2.9 \& 0.01 \& Closs-A, Amp. \& 90 \& 820 \& 90 \& 1.4 \& 3.9 \& 300000 \& 2000 \& \& \& - \&

\hline 5591 \& R.F. Pentode \& B. \& 780 \& 6.3 \& 0.15 \& 3.9 \& 2.85 \& 0.01 \& Closs-A Amp. \& 180 \& 200* \& 120 \& 2.4 \& 1.7 \& 690000 \& 5100 \& 3500 \& \& \& -

\hline 5608 \& Sharp Cut-off Pentode \& B. \& 7BD \& 6.3 \& 1.75 \& 4 \& 2.9 \& 0.02 \& Closs-A Amp. \& 120 \& -12 \& 120 \& 2.5 \& 7.5 \& 340000 \& 5000 \& \& - \& - \& -

\hline 5610 \& Triode \& B. \& 6CG \& 6.3 \& 0.15 \& \& \& - \& Closs-A Amp. \& 90 \& - 1.5 \& - \& - \& 17 \& 3500 \& 4000 \& 14 \& - \& - \& -

\hline 5654 \& Shorp Cut-off Pentode \& 8. \& 78D \& 6.3 \& 0.175 \& 4 \& 2.9 \& 0.02 \& Closs-A1 Amp. \& 120 \& 200* \& 120 \& 2.5 \& 7.5 \& 340000 \& 5000 \& - \& - \& - \& -

\hline 5656 \& Dauble Tetrode \& B. \& 9 F \& 6.3 \& 0.4 \& 3.6 \& 1.5 \& 0.06 \& Closs-A, Amp. ${ }^{11}$ \& 150 \& 2 \& 120 \& 2.7 \& 15 \& 60000 \& 5800 \& \& - \& - \& -

\hline 5670 \& Duol Triode \& B. \& 8CJ \& 6.3 \& 0.35 \& 2.2 \& 1.0 \& 1.3 \& Closs-A Amp. \& 150 \& 240* \& \& \& 8.2 \& - \& 5500 \& 35 \& - \& $\underline{-}$ \& 758

\hline 5686 \& Power Pentode \& 8. \& Fig. 29 \& 6.3 \& 0.35 \& 6.4 \& 4.0 \& 0.11 \& Closs-A Amp. \& 250 \& -12.5 \& 250 \& 5 \& 27 \& - \& 3100 \& - \& 9000 \& 2.7 \& -

\hline \multirow[b]{2}{*}{5687} \& \multirow[b]{2}{*}{Duol Iriode} \& \multirow[t]{2}{*}{B.} \& \multirow[t]{2}{*}{9 H} \& 12.6 \& 0.45 \& \multirow[t]{2}{*}{4} \& \multirow[t]{2}{*}{0.45} \& \multirow[t]{2}{*}{3.1} \& \multirow[t]{2}{*}{Closs-A Amp.} \& 250 \& \multirow[t]{2}{*}{$$
\begin{array}{r}
-12.5 \\
-\quad 2 \\
\hline
\end{array}
$$} \& \& - \& 16 \& 4000 \& 4100 \& 16.5 \& - \& \& \multirow[b]{2}{*}{\square}

\hline \& \& \& \& 6.3 \& 0.9 \& \& \& \& \& 120 \& \& \& - \& 34 \& 2000 \& 10000 \& 20 \& - \& - \&

\hline 5722 \& Naise Generoting Diode \& B. \& 5CB \& 2/5.5 \& 1.6 \& - \& 1.5 \& \& Noise Generotor \& 200 \& - \& - \& - \& 35 \& - \& - \& - \& - \& - \& -

\hline 5725 \& Semi-Remote Cut-off Pentode \& B. \& 7 CM \& 6.3 \& . 175 \& - \& \& \& Closs-A, Amp. \& 120 \& -2 \& 120 \& 3.5 \& 5.2 \& - \& 3200 \& \square \& - \& - \& -

\hline 5726 \& Twin Diode \& B. \& 6BT \& 6.3 \& 0.3 \& \& 3.2 \& \& Rectifier \& \multicolumn{10}{|c|}{Moximum o.c. voltoge per plote $=117$; Moximum d.c. Mo. per plote} \& -

\hline 5749 \& Remote Cut-off Pentode \& B. \& 78K \& 6.3 \& 0.30 \& 5.5 \& 5.0 \& . 0035 \& Closs-A Amp. \& 250 \& 68 \& 100 \& 4.2 \& 11 \& 1 Meg. \& 4400 \& - \& $1-$ \& \square \& -

\hline 5750 \& Pentagrid Converter \& B. \& 7CH \& 6.3 \& 0.30 \& \multicolumn{3}{|l|}{Osc. Grid 20000!} \& Converter \& 250 \& -1.5 \& 100 \& 7.5 \& 2.6 \& 1 Meg. \& 475 \& 0.511 \& - \& - \& -

\hline 5751 \& Duol Triode \& B. \& 9 A \& 12.6 \& . 175 \& \& \& \& Closs-A Amp. \& 250 \& - 3 \& - \& - \& 1.1 \& 58000 \& 1200 \& 70 \& - \& - \& 12517 GT

\hline 5755 \& Double Triode \& B. \& $9 J$ \& 12.6
6.3 \& 0.18 \& - \& \& \& D.C. Amp. \& 310 \& 150K* \& - \& - \& 0.15 \& 140000 \& 500 \& 70 \& 900000 \& - \& ——

\hline 5812 \& Beom Pentade \& B. \& 700 \& 6.3 \& 0.65 \& 9 \& 7.4 \& $\overline{0.2}$ \& Closs-A, Ámp. \& 250 \& -23 \& 250 \& 1.8 \& 40 \& 55000 \& 4100 \& \& \& \&

\hline 5814 \& Duol Triode \& B. \& 9A \& 6.3

12.6 \& | 0.35 |
| :--- |
| .175 | \& 1.6 \& 0.5 \& 1.5 \& Closs-A Amp. \& 250 \& - 8.5 \& - \& - \& 10.5 \& 6250 \& 2200 \& 19.5 \& - \& - \& 125N7GT

\hline $$
\begin{aligned}
& 5842 \\
& 417 A
\end{aligned}
$$ \& Triode \& 8. \& 9 V \& 6.3 \& 0.3 \& 9.0 \& 0.48 \& 1.8 \& Closs-A Amp. \& 150 \& 62* \& - \& - \& 26 \& 1800 \& 24000 \& 43 \& - \& - \& -

\hline $5 \overline{844}$ \& Twin Triode \& B. \& 7BF \& 6.3 \& 0.3 \& 2.4 \& 0.5 \& 2.7 \& \multirow[t]{2}{*}{Closs-A Amp. Noise Generotor} \& 100 \& 470* \& - \& - \& 4.8 \& 7950 \& 3400 \& 27 \& - \& \& 616

\hline 5845 \& Double Triode \& B. \& 5CA \& 4.3 \& 0.435 \& \& \& \& \& 300 \& \multicolumn{7}{|c|}{(Pioles tied together)} \& 600000 \& - \& -

\hline 5847 \& Sharp Cut off Pentode \& B. \& 9 X \& 6.3 \& 0.3 \& 7.1 \& 2.9 \& 0.04 \& Closs-A, Amp. \& 160 \& -8.5 \& 160 \& 4.5 \& 二- \& - \& 12500 \& \& - \& \&

\hline 5879 \& Shorp Cut-off Pentode \& B. \& 9AD \& 6.3 \& 0.15 \& 2.7 \& 2.4 \& 0.11 \& Closs-A Amp. \& 250 \& - 3 \& 100 \& 0.4 \& 1.8 \& 2 Meg . \& 1000 \& \square \& \& \square \& -

\hline 5910 \& 5horp Cut-off Pentode \& B. \& 6AR \& 1.4 \& 0.05 \& 3.6 \& 7.5 \& 0.008 \& Closs-A, Amp. \& 90 \& 0 \& 90 \& 0.45 \& - \& 1.5 Meg . \& 900 \& - \& - \& - \& -

\hline 5915 \& Dual Control Sharp Cut-off Meptode \& B. \& 7CH \& 6.3 \& 0.3 \& 7.2 \& 8.6 \& 0.3 \& 5witch \& 30 \& - 5.5 \& 75 \& 8.25 \& 6 \& - \& - \& - \& - \& - \& -

\hline
\end{tabular}

TABLE XI-MINIATURE RECEIVING TUBES-Continued

TABLE XII-SUB-MINIATURE TUBES

Type	Name	Base	Socket Connections	FIl. or Heater		Capacitonce $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bios	Screen Volts	Screen Current Mo.	Plote Current Mo.	PlateResisfonceOhms	Transconducfance Meremhos	Amp. Factar	LoadResisfanceOhms	PowerOutputWatts	Type
				Volts	Amp.	In	Out	$\begin{aligned} & \text { Plote- } \\ & \text { Grid } \end{aligned}$												
1AC5	Power Pentode	8.	Fig. 14	1.25	0.04	-	-	-	Class-A1 Amp.	67.5	-4.5	67.5	0.4	2.0	150000	750	-	25000	0.05	
1AD4	Pentode	3	2	1.25	0.1	4.5	4.5	0.01	Closs-A1 Amp.	45	0	45	0.8	3.0	500000	2000	-			IAD4
IAD5	Sharp Cut-off Pentode	Bs.	Fig. 16	1.25	0.04	1.8	2.8	0.01	Class-At Amp.	67.5	0	67.5	0.75	1.85	700000	735				IADS
TAES	Haptode	1	2	1.25	0.06	4.9	2.1	4.0	Mixer	45	0	45	2.0	0.9	200000	200	-			IAES
Jan4	R.F. Pentode	1	2	1.25	0.04	3.5	4.5	0.01	Closs-A Amp.	67.5	0	67.5	0.2	0.75	2000000	750				IAH4
1aJ5	Diade Pentode	1	2	1.25	0.04	1.7	2.4	0.1	Class-A: Amp.	45	0	45	0.3	1.0	300000	425	-			lajs
1 CB	Heplode	-	\longrightarrow	1.25	0.04	6.5	4.0	0.25	Converter	30	0	30	0.75	0.32	300000	100				IC8
103	Triode	1	2	1.25	0.3	1.0	1.0	2.6	Class-A Amp.	90	-5			12.5	-	3400	8.7			1 D3
JE8	Penlogrid Converter	88.	Fig. 27	1.25	0.04	6			Converter	67.5	0	67.5	1.5	1.0	-	150			\longrightarrow	$1 \mathrm{E8}$
196	Diade Pentade	Bs.	8 CO	1.25	0.04	1.8	4.2	0.085	Class-A Amp.	67.5	0	67.5	0.4	1.6	400000	600				106
156	Diode Pentode	Bs.	8DA	1.25	0.04				Detactor Amp.	67.5	0	67.5	0.4	1.6	400000	600				156
176	Diode-Pentode	Bs.	Fig. 28	1.25	0.04		-		Class-A1 Amp.	67.5	0	67.5	0.4	1.6	400000	600		-		176
IV5	Audio Pentode	1	2	1.25	0.04		-		Class-A Amp.	67.5	-4.5	67.5	0.4	2.0	150000	750		25000	0.05	IV5
									Pentode	45	0	45	0.15	0.4	1000000	200				
IV6	Triode Pentode	1	2	1.25	0.04	-			Triode Osc.	45			Ose. grid ev	urrent $=1$	$12 \mu \mathrm{mmp}$. th	hrough 1 Meg	. gridle			1 V 6
1W5	Sharp Cut-ofi Pentode	1	2	1.25	0.04	2.3	3.5	0.01	Class-A1 Amp.	67.5	0	67.5	0.75	1.85	700000	735		1 -	-	1W5
$2 \mathrm{S5}$	Twin Triode	1	2	1.2 2.4	0.26	0.8	0.8	1.2	Class-A Amp.	90	-1	-	-	2.6	18700	1150	21.5	-	-	285
$2 \mathrm{E31}$	R.F. Pentode	2	2	1.25	0.05				Closs-A Amp.	22.5	0	22.5	0.3	0.4	-	500		-	-	2 E 31
2 E 32	R.f. Pentode	1	2	1.25	0.05				Class-A Amp.	22.5	0	22.5	0.3	0.4	350000	500	-	-	-	$2 E 32$
2E35	Audio Pentade	1	2	1.25	0.03				Class-A Amp.	22.5	0	22.5	0.07	0.27	-	385			0.0012	2 E 35
										22.5	0	22.5	0.07	0.27	220000	385		150000	0.0012	
$2 E 36$	Audio Pentade	1	2	1.25	0.03				Class-A1 Amp.	45	-1.25	45	0.11	0.45	250000	500	--	100000	0.00	$2 E 36$
$2 E 41$	Diade Pentode	1	2	1.25	0.03	-	-		Defector Amp.	22.5	0	22.5	0.12	0.35	-	-	-	-	\cdots	$2 E 41$
$2 \mathrm{E42}$	Diode Pentade	1	2	1.25	0.03				Delector Amp.	22.5	0	22.5	0.12	0.35	250000	375		1 meg.	-	$2 E 42$
$2 \mathrm{G21}$	Triade Heplode	1	- 2	1.25	0.05	-	-		Converter	22.5	-	22.5	0.2	0.3	-	75		-		$2 \mathrm{G21}$
2G22	Converter	1	2	1.25	0.05				Converter	22.5	0	22.5	0.3	0.2	500000	60		-	-	2G22
6AD4	Triode	8s.	2	6.3	0.15	2.8	3.2	1.31	Class-A Amp.	100	820*	-		1.4	26000	2700	70		-	6AD4
6AZ5	Dual Diode	-	2	6.3	0.15				Rectifier		Max. a.e	v. valts-	150. Peok	inverse	volts-420.	Peak Ma.-24	24. Av.	Ma. $=4.0$		6AZ5
6BA5	Pentode	1	2	6.3	0.15	4.0	6.5	0.19	Class-A1 Amp.	100	270*	100	1.25	4.8	150000	3300	--	-	-	6845
6857	Dual Triode	85.	8DG	6.3	0.3	2.0	1.6	1.5	R.F. Amp.	100	100*			8.0	7000	4800	35	$\underline{\square}$	-	6BF7
68G7	Dual Triode	88.	8DG	6.3	0.3	2.0	1.6	1.5	R.F. Amp.	100	100*		-	8.0	7000	4800	35	-		68G7
6 64	Triode	1	2	6.3	0.15	2.4	0.8	2.4	Class A Amp.	200	680*	-	-	11.5	4650	3450	16	-	-	6 K 4
1247	Diode	1	2	0.7	0.065				R.F. Prabe			Max.a.	c. volts-	$300 \mathrm{r} . \mathrm{m} . \mathrm{s}$.	D.C.	plate current	-0.4 M	Ma.		1247
CK 501	Pentode Voltoge Amplifier	- ${ }^{1}$	2	1.25	0.033	-	-		Class-A Amp.	30	0	30	0.06	0.3	1000000	325	-		-	CK501
CKsor	Pentode Volroge Amplitier	-							Class-A Amp.	45	-1.25	45	0.055	0.28	1500000	300				CKSO1
CK502	Pentode Output Amplifier	- ${ }^{1}$	2	1.25	0.033				Class-A Amp.	30	0	30	0.13	0.55	500000	400	\square	60000	0.003	CK502
CK503	Pentode Output Amplifier	-1	2	1.25	0.033		-		Class-A Amp.	30	0	30	0.33	1.5	150000	600		20000	0.006	CK 503
CK504	Pentode Output Amplifier	-1	2	1.25	0.033				Class-A Amp.	30	-1.25	30	0.09	0.4	500000	350		60000	0.003	CK 504
CK505	Pentade Voltoge Amplifier	-1	2	0.625	0.03	-			Class ${ }^{\text {A A Amp. }}$	30	0	30	0.07	0.17	1100000	140				CK505
CKS	Pemlade Volnoge Amplilier									45	-1.25	45	0.08	0.2	2000000	150				CKsos
CK506	Pentode Output Amplifier	-1	2	1.25	0.05				Class-A, Amp.	45	-4.5	45	0.4	1.25	120000	500	-	30000	0.025	CK506
CK507	Pentode Output Amplifier	-1	2	1.25	0.05		-		Closs-A A mp.	45	-2.5	45	0.21	0.6	360000	500		50000	0.010	CK507
CK509	Triode Voltage Amplifier	-1	*	0.625	0.03				Class-A Amp.	45	0	-	-	0.15	150000	160	16	1000000	-	CK509
CX510	Dual Space-Charge Tetrode	-1	2	0.625	0.05				Class-A Amp.	45	0	0.2	$200 \mu \alpha$	$60 \mu \alpha$	500000	65	32.5	-	\cdots	CK510
CK512	Low Microphonic Pentade	1	2	0.625	0.02			-	Voltage Amp.	22.5	0	22.5	0.04	0.125	-	160	-	-	—	CK412
CKSISBX	Triode Voltage Amplifier	-1	2	0.625	0.03		-	-	Closs-A Amp.	45	0	\cdots	-	0.15	-	160	24	1000000	-	CK5158X
CK520AX	Audio Pentode	1	2	0.625	0.05		-	-	Class-A1 Amp.	45	-2.5	45	0.07	0.24		180	\cdots	-	0.0045	CK520AX
CK521AX	Audia Pentode	1		1.25	0.05				Class-A1 Amp.	22.5	-3	22.5	0.22	0.8	-	400	-	-	0.006	CK521AX

TAble XII-SUB-MINIATURE TUBES-Continued

Type	Name	Base	Socket Conneclions	Fil. or Heater		Capacitonce $\mu \mu \mathrm{fd}$.			Use	PloteSupplyVolts	Grid Bias	$\begin{aligned} & \text { Screen } \\ & \text { Volts } \end{aligned}$	Screen Current Ma.	Plate Current Mo.	Plate Resistance Ohms	Transconductance Micromhos	Amp. Factor	LoadResistanceOhms	Power Output Wats:	Type
				Volts	Amp.	In	Out	Plate- Grid												
CK522AX	Audio Pentode	1	2	1.25	0.02	\cdots			Closs-A Amp.	22.5	0	22.5	0.08	0.3		450			0.0012	CK522AX
CK523AX	Pentode Outpul Amp.	1		1.25	0.03				Closs-A Amp.	22.5	-1.2	22.5	0.075	0.3		360			0.0025	CK523AX
CK524AX	Pentode Outpul Amp.	1		1.25	0.03				Class-A Amp.	15	-1.75	15	0.125	0.45		300			0.0022	CK524AX
CK525AX	Pentode Output Amp.	1	-	1.25	0.2	\longrightarrow			Class-A Amp.	22.5	-1.2	22.5	0.06	0.25		325			0.0022	CK525AX
CK526AX	Pentode Outpul Amp.	1		1.25	0.2			-	Class-A Amp.	22.5	-1.5	22.5	0.12	0.45		400			0.004	CK526AX
CK527AX	Pentode Outpul Amp.	1		1.25	0.015				Class-A Amp.	22.5	0	22.5	0.025	0.1		75			0.0007	CK527AX
CK529AX	Shielded Output Pentode	1		1.25	0.02				Closs-A Amp.	15	-1.5	15	0.05	0.2		275			0.0012	CKS29AX
CKS51AXA	Diode Pentode	1	8	1.25	0.03				Detector-Amp.	22.5	0	22.5	0.04	0.17		235				CK551AXA
CK553AXA	R.F. Pentade	1	2	1.25	0.05				Closs-A Amp.	22.5	0	22.5	0.13	0.42		550				CK533AXA
CK556AX	U.h.f. Triode	1	2	1.25	0.125				R.F. Oscillator	135	-5	-		4.0		1600				CK556AX
CK568AX	U.h.f. Triade	1	2	1.25	0.07				R.F. Oscillator	135	-6			1.9	-	650				CKS68AX
CK569AX	R.F. Pentode	1	2	1.25	0.05				Class-A Amp.	67.5	0	67.5	0.48	1.8		1100				CK569AX
CK605CX	Shapp Cut-off Pentode	1		6.3	0.2				Class-A Amp.	120	-2	120	2.5	7.5		5000				CK605CX
CK606BX	Single Diode	1	2	6.3	0.15				Detecior	150 о.c.				9.0 d.c	\square					CK606BX
CK609CX	U.h.f. Triode	1	2	6.3	0.2				500-Mc. Osc.	120	-2			9.0		5000			0.75	CK608CX
CK619CX	HI-Mu Triode	1	2	6.3	0.2				Class-A1 Amp.	250	-2			4.0		4000				CK619CX
CK824CX	Sharp Cut-off Pentode	1		6.3	0.2				Closs-A Amp.	120	-2	120	3.5	5.2	-	3000				CK624CX
CK650AX	Sharp Cut-off Pentade	1	2	6.3	0.2				Class-A1 Amp.	120	-2	120	2.5	7.5	-	5000				CK650AX
CK5672	Pentode Output Amp.	1		1.25	0.05				Closs-A Amp.	67.5	-6.25	67.5	1.0	2.75		625	-	-	0.06	CK5672
HY113 HY123	Triode Amplifier	- ${ }^{1}$	5K	1.4	0.07	-	\cdots	-	Class-A Amp.	45	-4.5	-	\square	0.4	25000	250	6.3	40000	0.0065	$\begin{aligned} & \text { HY113 } \\ & \text { HY123 } \end{aligned}$
HY115 HY145	Pentode Voltoge Amplifier	- ${ }^{1}$	5K	1.4	0.07	-	-	-	Closs-A Amp.	$\begin{aligned} & 45 \\ & 90 \\ & \hline \end{aligned}$	$\begin{array}{r} -1.5 \\ -1.5 \end{array}$	$\begin{array}{r} 22.5 \\ 45 \\ \hline \end{array}$	$\begin{aligned} & 0.008 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.03 \\ & 0.48 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 5200000 \\ 1300000 \\ \hline \end{array}$	$\begin{array}{r} 58 \\ 270 \end{array}$	$\begin{array}{r} 300 \\ 370 \end{array}$	\square		HY115 HY145
HY125 HY155	Pentode Power Amptifier	- 1	5K	1.4	0.07	-			Closs-A. Amp.	$\begin{aligned} & 45 \\ & 90 \end{aligned}$	$\begin{aligned} & -3.0 \\ & -7.5 \end{aligned}$	$\begin{aligned} & 45 \\ & 90 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 2.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 825000 \\ & 420000 \end{aligned}$	$\begin{aligned} & 310 \\ & 450 \end{aligned}$	$\begin{aligned} & 255 \\ & 190 \end{aligned}$	$\begin{array}{\|l\|} \hline 50000 \\ 28000 \end{array}$	$\begin{aligned} & 0.0115 \\ & 0.09 \end{aligned}$	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|} \hline \text { HY125 } \end{array}$
M54	Tetrode Power Amplifier	1	${ }^{2}$	0.625	0.04				Class-A Amp.	30	0	30	0.06	0.5	130000	200	26	35000	0.005	M54
M64	Tetrode Voltoge Amplifier	+	2	0.625	0.02				Closs-A Amp.	30	0			0.03	200000	110	25		-	M64
M74	Telrode Voltoge Amplifier	1	2	0.625	0.02				Closs-A Amp.	30	0	7.0	0.01	0.02	500000	125	70			M74
RK61	Gas Triode	1	2	1.4	0.05				Radio Control	45				1.5	-	-		-		RK61
$\begin{aligned} & \text { SD917A } \\ & 5637 \\ & \hline \end{aligned}$	Triode	1	2	6.3	0.15	2.6	0.7	1.4	Class-A1 Amp.	100	820 *	-	-	1.4	26000	2700	70	-	-	$\begin{aligned} & \text { SD917A } \\ & 5637 \end{aligned}$
$\begin{aligned} & \text { SD828A } \\ & 5638 \end{aligned}$	Audio Pentode	1	2	6.3	0.15	4.0	3.0	0.22	Class.AI Amp.	100	270*	100	1.25	4.8	150000	3300	-	-	-	$\begin{aligned} & \text { SD828A } \\ & \text { S638 } \end{aligned}$
$\begin{aligned} & \text { 5D828E } \\ & 5634 \\ & \hline \end{aligned}$	Shorp Cul-off Pentode	4	-	6.3	0.15	4.4	2.8	0.01	Class-A, Amp.	100	150*	100	2.5	6.5	240000	3500	-	—		$\begin{aligned} & \text { SD828E } \\ & 5634 \end{aligned}$
$\begin{aligned} & \text { SN944 } \\ & 5633 \\ & \hline \end{aligned}$	Remote Cut-alf Pentode	4	-	6.3	0.15	4.0	2.8	0.01	Class-A, Amp.	100	150*	100	2.8	7.0	200000	3400	-	\square	-	$\begin{aligned} & \hline \mathrm{SN} 944 \\ & \hline 5633 \end{aligned}$
SN946	Diode	1	2	6.3	0.15	1.8			Rectifier	150	-			9.0	-	-		-		SN946
$\begin{aligned} & \text { SN947D } \\ & 5640 \\ & \hline \end{aligned}$	Audio Beam Pentode	1	2	6.3	0.45	-	-	-	Closs-A ${ }_{1}$ Amp.	100	-9	100	2.2	31.0	15000	5000	-	3000	1.25	$\begin{aligned} & \text { SN947C } \\ & \mathbf{S 6 4 0} \end{aligned}$
SN948C	Voltage Regulaior	1	-	$\bar{\square}$	\square				Regralator				perating	voltoge $=9$	95; Max. cur	Prent $=25 \mathrm{Mc}$				SN948 ${ }^{\text {C }}$
SN953D	Power Pentode	1	-	6.3	0.15	9.5	3.8	0.2	Closs-A Amp.	150	100*	100	4/7.5	21/20	50000	9000	-	9000	1.0	SN953D
$\begin{aligned} & \text { 5N954 } \\ & 5641 \end{aligned}$	Half-Wave Rectifier	$\stackrel{1}{1}$	2	6.3	0.45	-	-	-	Rectifier	300	\square	-	-	45.0	-	\square	-	\cdots	-	$\begin{array}{\|l\|} \hline \text { SN954 } \\ \text { S641 } \end{array}$
SN9558	Dual Triode	1	2	6.3	0.45	2.8	1.0	1.3	Class-A Amp. ${ }^{\text {b }}$	100	100*		-	5.5	8000	4250	34			SN955B
$\begin{aligned} & \text { SN956B } \\ & 5642 \end{aligned}$	H.V. Half-Wave Rectifier		-	1.25	0.14	-	-	-	H.V. Rectifier			Inverse	V. $=1000$	Max. A	Average Ip =	2 Mo . Peak	$1 p=23$	Ma.		
$\begin{aligned} & \text { SN957A } \\ & 5645 \\ & \hline \end{aligned}$	Triode	1	2	6.3	0.15	2.0	1.0	1.8	Class-A: Amp.	100	560*	-	-	5.0	7400	2700	20	\square	-	$\begin{aligned} & \text { SN957A } \\ & 5645 \end{aligned}$
SN1006	Triode	1	2	6.3	0.15				Class-A, Amp.	100	$820{ }^{*}$		-	1.4	29000	2400	70			5N1006
SN1007B	Mixer	4	-	6.3	0.15	5.0	2.8	0.003	Mixer	100	150*	100	5.0	4.0	230000	900	-	-		5N10078

table XII-SUb-miniature tubes-Continued

TABLE XIII-CONTROL AND REGULATOR TUBES

Type	Name	Base	Sockel Connec. lions	Cathode	Fil. or Heater		Use	Peak Anode Volloge	Max. Anode Ma.	Minimum Supply Vollage	Operaling Voltage	Operating Ma.	Grid Resistor	Tube Voltage Drop	Type
					Volls	Amp.									
$\begin{aligned} & \hline 0 A 2 \\ & 6073 \end{aligned}$	Voltage Regulator	7 -pin B.	5BO	Cold	-	-	Voltage Regulotor	\square	-	185	150	5-30	-	-	OA2
OA5	Gas Pentode	7 -pin B.	Fig. 33	Cold			Relay or Trigger		Plate-750 V., Screen-90 V., Grid +3 V., Pulse-85 V.						0 O5
$\begin{aligned} & \hline 0 B 2 \\ & 6074 \end{aligned}$	Voltage Regulator	7-pin B.	580	Cold	-	-	Voltage Regulator	-	-	133	108	5-30	-	-	OB2
$\begin{aligned} & \hline \text { OA4G } \\ & 1267 \\ & \hline \end{aligned}$	Gas Triode Starter-A nede Type	6-pin 0.	$\begin{aligned} & 4 V \\ & 4 V \\ & \hline \end{aligned}$	Cold	-	-	Cold-Cathode Starler-Anode Relay Tube	With 105-120-volt a.c. anode supply, peak starter-anode a.c. voltage is $\mathbf{7 0}$, peak r.f. valtage 55. Peak d.c. $\mathrm{ma}=100$. Average d.c. $\mathrm{ma}=25$.							$\begin{aligned} & \text { OA4G } \\ & 1267 \end{aligned}$
OG3	Vollage Regulator	7-pin B.	58O	Cold	-	-	Voltage Regulator	-	-	125	85	1-6	-	-	OG3
1847	Voltage Regulator	$7-$ pin B.			-	-	Voltage Regulator	-	-	225	82	1-2		-	1847
1621	Gas Triode	6 -pin 0.	4V	Cold	-	-	Relay Tube	125-145	25	66^{6}		-		73	$1 \mathrm{C21}$
							Voliage Regulator		$0.1{ }^{\circ}$	180 ${ }^{\text {a }}$				55	
2A4G	Gas Triode Grid Type	7 -pin 0.	55	Fil.	2.5	2.5	Control Tube	200	100	-	-		-	15	2A4G
695G	Gas Triode Grid Type	8-pin 0.	60	Hir.	6.3	0.6	Swoep Circuit Oscillator	300	300		-	1.0	0.1-10 ${ }^{7}$	19	605G
$2 \mathrm{B4}$		5-pin M.	5A	Hir.	2.5	1.4				-					284
$2 \mathrm{C4}$	Gas Triode	7-pin B.	5AS	Fil.	2.5	0.65	Control Tube	Plate valts $=350$; Grid valts $=-50$; Avg. Ma. $=5$; Peak Ma. $=20$; Voltage drop $=16$.							2C4
2021	Gas Tetrode	7 -pin B.	7BN	Htr.	6.3	0.6	Grid-Controlled Rectifier	650	500	-	650	100	0.1-10 ${ }^{\text {7 }}$	8	2021
							Relay Tube	400	-	-	-	-	$1.0{ }^{7}$		
3 C 23	Gas and Mercury Vapor Grid Type	4-pin M.	3G	Fil.	2.5	7.0	Grid-Controlled Rectifier	1000	6000	\square	500 100	1500 1500	-4.5 ${ }^{8}$	15	3 C 23
6D4	Gas Triode	7-pin B.	5AY	Htr.	6.3	0.25	Control Tube	Plate volis $=350$; Grid volts $=-\mathbf{S O}$; Avg. Ma. $=25$; Peak Ma. $=100$; Voltage drop = 16.							
17	Mercury Vapor Triode	4-pin M.	3G	Fil.	2.5	5.0	Grid-Controlled Reclifier	$7500{ }^{\circ}$	2000	-	-	500	200-3000	-	17
18								2500		-5^{3}	1000	250	-	10-24	
874	Voltage Regulotor	4-pin M.	45		-	-	Voltage Regulator	-	-	125	90	10-50	-		874
876	Current Regulator	Mogul		-	-	-	Current Regulator	-	-	-	40-60	1.7	-		876
884	Gas Triode Grid Type	6 -pin 0.	60	Hr.	6.3	0.6	Sweep Circuit Oscillator	300	300			2	25000	-	884
							Grid-Controlled Rectifier	350	300	-	-	75	25000	-	
885	Gas Triade Grid Type	5 -pin s.	5A	Hfr.	2.5	1.4	Same as Type 884	Characteristics same as Type 884							885
886	Current Regulator	Mogul					Current Regulator	-	-	-	40-60	2.05	-	-	886
967	Mercury Vapor Triode	4-pin M.	3 G	Fil.	2.5	5.0	Grid-Controlled Rectifior	2500	500	-53	-	-	m	10-24	987
991	Voltage Regulator	Bayonet	-		-	-	Voltoge Regulator	-	50	87	55-60	2.0		10-24	991
1265	Voltage Regulator	6 -pin 0.	4AJ	Cold	-		Volloge Regulator	\square	-	130	90	5-30	-	-	1265
1266	Voltage Regulator	6-pin 0.	4AJ	Cold	-	-	Voltage Regulator	$\underline{-}$	-		70	5-40	-	-	1266
1267	Gas Triode	6-pin 0 .	4 V	Cold			Relay Tube	650 Characteristics same as OA4G							1267
2050	Gas Tetrode	$8-$ pin 0.	8BA	Hir.	6.3	0.6	Grid-Contralled Reclifior								2050
2051	Gas Tetrode	$8-p$ in 0.	8BA	Hir.	6.3	0.6	Grid-Controlled Rectifier	350	375			75	0.1-10 ${ }^{7}$	14	2051
$\begin{aligned} & \hline 2523 \mathrm{NI} / \\ & 128 \mathrm{AS} \\ & \hline \end{aligned}$	Gas Triode Grid Type	5-pin M.	5A	Htr.	2.5	1.75	Relay Tube	400	300	-	-	1.0	$300{ }^{7}$	13	$\begin{aligned} & 2523 \mathrm{NI} / \\ & 128 \mathrm{AS} \end{aligned}$
5651	Voltage Regulator	7 -pin B.	580	Cold			Voltage Regulator	115	-	115	87	1.5-3.5	-	-	5651
5663	Tetrede Thyratron	7-pin B	7 CE	Hir.	6.3	0.15	Contral and Relay	Max. peok inv. volts $=500$; Peak Ma. $=100$; Avg. Mo. $=20$.							5663
5727	Gas Tetrode	7 -pin B.	7BN	Hir.	6.3	0.6	Grid-Contralled Reclifier	650	500	-	650	100	0.18	8	$\frac{5663}{5727}$
5823	Gas Triode	7-pin B.	4CK	Cold			Relay or Trigger	Max. peak inv. volts $=200$; Peok Mo. $=100$; Avg. Ma. $=25$.							5823
5890	Remole Cut-off Pentode Regulator	-	12J	Hir.	6.3	0.6	Shunt Regulator		$E G_{1}=-60$ volts; $E G_{2}=200$ volts; $E_{3}=5500$ volts. $E \mathrm{P}=30000$ volts; $\mathrm{IG}_{2}=\mathbf{=} \mathrm{Ma}$.; Ip Max. $=0.5 \mathrm{Ma}$.						5890
5962	Voltage Regulatar	$7-\mathrm{pin}$ B.	2AG	Cold	-	-	Voltage Regulator	-		730	700	5/5510	.	\square	5962
6140	Voltage Regulator	9-pin B.	98 Y	Cold	-	-	Voltage Regulator	-		160	100	4-6		-	6140
6141	Voltoge Regulator	$9-$ pin B.	9 BZ	Cold	-		Voltage Regulotor	-	-	165	100	5-40		-	6141
KY21	Gas Triade Grid Type	4 -pin M.	-	Fil.	2.5	10.0	Grid-Controlled Rectiffer		-		3000	500		-	KY21
RK61	Thyrotron	-?		Fil.	1.4	0.05	Radio-Controlled Reloy	45	1.5	30		0.5-1.5	$3{ }^{7}$	30	RK61
RK62	Gas Triode Grid Type	4-pin S.	4D	Fil.	1.4	0.05	Relay Tube	45	1.5		30-45	0.1-1.5	-	15	RK62
RM208	Permotron	4-pin M.		Fil.	2.5	5.0	Controlled Rectifier ${ }^{1}$	75002	1000		-	0.1	-	15	RM208

TABLE XIII-CONTROL AND REGULATOR TUBES—Continued

Type	Name	Base	Socket Connections	Cathode	Fil. or Heater		Use	Poak Anode Voltage	Max. Anode Me.	Minimum Supply Voltage	Operating Valtage	Operating Ma.	Grid Resistor	TubeVoltageDrop	Type
					Volts	Amps.									
RM209	Permatron	4-pin M.		Fil.	5.0	10.0	Controlled Rectifer ${ }^{1}$	$750{ }^{2}$	5000	-			-	15	RM209
OA3/VR75	Voltage Regulator	6 -pin 0.	4AJ	Cold			Voltage Regulator	-	\cdots	105	75	5-40		-	OA3/VR75
OB3/VR90	Voltage Regulator	6-pin 0.	4AJ	Cold			Voltage Regulator			125	90	5-40		-	OB3/VR90
OC3/VR105	Vottage Regulator	6-pin 0.	4AJ	Cold			Voltage Regulator	-	-	135	105	5-40		-	OC3/VR105
OD3/VR150	Voltage Regulator	6 -pin 0.	4AJ	Cold			Voltage Regulator	-		185	150	5-40		-	OD3/VR150
KY866	Mercury Vapor Triode	4-pin M.	Fig. 8	Fil.	2.5	5,0	Grid-Conlrolled Rectifier	10000	1000	0-150				-	KY866
${ }^{1}$ Far use as grid-controlled rectifier or with external magnetic control. RM-208 has characteristics of 866, RM-209 of 872. \# Discontinued.					- When under control peak inverse rating is reduced to $\mathbf{2 5 0 0}$.			${ }^{3}$ At 1000 anode volts. ${ }^{4}$ Grid tied to plate.		${ }^{5}$ Peak inverse vollage. ${ }^{6}$ Grid.		${ }^{2}$ Megohms. ${ }^{8}$ Grid valtage.	${ }^{9}$ No base. Yinned wire leads. ${ }^{10}$ Values in μ amperes.		

table xiv-cathode-ray tubes and kinescopes

Typ*	Name	Sacket Connec: tions	Heater		Use	Size	Anode No. 2 Voltage	Anode No. 1 Voltage	$\begin{aligned} & \text { Cut-Of } \\ & \text { Grid } \\ & \text { Voltage } \end{aligned}$	Grid No. 2 Voltage	IonTrap Ma.	Max. Input Voltage :	Focus Coil Ma.	Deflection Sensitivily ${ }^{8}$		Anode No. 3 Voltage	Pattern Color	Type
			Volts	Amp.										$\mathrm{D}_{1} \mathrm{D}_{2}$	$D_{3} D_{4}$			
2AP17.11	Electrostatic Cathode-Ray	118	6.3	0.6	Oseillograph Tolevision	2"	1000 500	250	-60 -30			660		$\begin{aligned} & 0.11 \\ & 0.22 \end{aligned}$	$\begin{aligned} & 0.13 \\ & 0.26 \end{aligned}$	-	Green	2AP1-11
20p1.11	Electrostatic Cathode-Ray	12E	6.3	0.6	Oscillograph	2"	2000	300/560	-135	-	-	500		270^{3}	1742	-	Green	28P1-11
							1000	150/280	-67.5	\square	\longrightarrow	500		1353	87^{3}	-		
3AP1/ $906-\mathrm{P}^{1}$. 4-5.11 ${ }^{7}$	Electrostatic Cathode-Ray	7 AN	2.5	2.1	Oscillograph	3"'	1500	430	- 50			550		0.22	0.23	\ldots	Green Blue White	$\begin{aligned} & 3 A P 1 / \\ & 906 . P_{1} \\ & 4.5 .11 \end{aligned}$
							1000	285	- 33	-	-			0.33	0.35			
							600	170	- 20	-	-			0.55	0.58			
$\begin{aligned} & \text { 3BP1. } \end{aligned}$	Electrostatic Cathode-Ray	14A	6.3	0.6	Oscillograph	$3 \prime$	2000	575	- 60	-	-	550	\longrightarrow	0.13	0.17	-	Green	$\begin{aligned} & 38 P 1= \\ & 4.11 \end{aligned}$
							1500	430	- 45					0.17	0.23			
30P 1	Electrostatic Cathode-Ray	Fig. 49	6.3	0.6	Oscillograph	3"	2000	575	- 60			550	—	2003	1483	-	Green	3DP 1
							1500	430	- 40					1503	1113	$\underline{-}$		
$\begin{aligned} & \text { 3EP1/ } \\ & 1806 .-P 1 \end{aligned}$	Electrostatic Cathode-Ray	11A	6.3	0.6	Oscillograph Television		2000	575	-60	-		550	—	0.115	0.154		Green	$\begin{aligned} & \text { 3EP1/ } \\ & 1806 . P 1 \end{aligned}$
							1500	430	- 45	$\underline{-}$				0.153	0.205			
3FP7-A	Electrostatic Cathode-Ray	148	6.3	0.6	Oscillograph	3"	4000	400/690	- 90	2000		-		2123	1533			3FP7-A
$\begin{aligned} & \text { 3GP1: } \\ & 4.5 .11 \end{aligned}$	Electrostatic Cothode-Ray	114	6.3	0.6	Oscillograph	3"	1500	350	- 50	-	-	550	-	0.21	0.24	-	While Green Blue	$\begin{aligned} & 3 G P 11 \\ & 4.5 .11 \end{aligned}$
							1000	234	- 33					0.32	0.36			
$\begin{aligned} & \text { 3JP 1- } \\ & 2-4-7-11 \end{aligned}$	Electrostatic Cothode-Ray	14B	6.3	0.6	Oscillograph	$3^{\prime \prime}$	2000	575	- 60	—		550	-	0.13	0.17	4000	Green Blue White	$\begin{aligned} & 3 \mathrm{JPP1} \\ & 2-4-7-11 \end{aligned}$
							1500	430	-45					0.17	0.23	3000		
3KPI-11	Electrostatic Cathode-Ray	11 M	6.3	0.6	Oscillograph	$3^{\prime \prime}$	1000	300	-45	1000		500		683	136	\cdots	Green	3KP1-11
							2000	600	- 90	2000				523	1048			
3MP1	Electrostatic Cathode-Ray	Fig. 2	6.3	0.6	Oscillograph	$3^{\prime \prime}$	1000	200/350	- 68			-		190^{3}	180^{3}	-	Green	3MP1
3RPI	Electrostatic Cathode-Ray	12E	6.3	0.6	Oscillograph	3"	1000	165/310	-67.5	-		-		73/993	52/70 ${ }^{3}$	-	Green	3RP 1
							2000	330/620	-135	-		-		146/198	104/1403	\cdots		
3SP1.7	Electrostatic Cathode-Ray	12 E	6.3	0.6	Oscillograph	$3^{\prime \prime}$	2000	330/620	-58/-135								Green	35P1
$\begin{aligned} & \text { 5ABPI. } \\ & 7.11 \end{aligned}$	Electrostatic Cathode-Ray	148	6.3	0.6	Oscillograph	5"	2000	400/690	$-52 /-87$	-	-	-	-	26/36 ${ }^{3}$	18/243	4000	-	$\begin{aligned} & \text { 5ABP 1. } \\ & 7-11 \end{aligned}$
$\begin{aligned} & \text { 5AP1/ } \\ & 1805-P 1 \end{aligned}$	Electrosfatic Picture Tube	11A	6.3	0.6	Oscillagraph Television	5"	2000	575	- 35	-	-	500		0.17	0.21	-	Green White	$\begin{aligned} & 5 A P 1 / \\ & 1805 . P 1 \\ & 5 A P 4 / \\ & 1805 .{ }^{2} 4 \end{aligned}$
$\begin{aligned} & 5 A P 4 / \\ & 1805 \cdot \mathrm{P} 4 \end{aligned}$							1500	430	- 27					0.23	0.28	-		
$\begin{aligned} & \hline 58 P 1 / \\ & 1802-\mathrm{P} 1- \\ & 2-4.5-11 \end{aligned}$	Electrostatic Picture Tube	11A	6.3	0.6	Oscillograph	5"	2000	450	- 40			500	-	0.3	0.33	\longrightarrow	Green White Blue	$\begin{aligned} & 58 P 1 / \\ & 1802-P 1- \\ & 2-4-5-11 \end{aligned}$
							1500	337	- 30	-	-			0.4	0.45			

Type	Name	Socket Connec. tions	Heater		Use	Size	Anode No. 2 Voltage	Anode No. 1 Voltage	Cut-Off Grid Voliage	Grid No. 2 Voltage	lon- Trap Ma.	Max. Input Voltage	Focus Coil Mo.	Deflection Sensitivity ${ }^{*}$		Anode No. 3 Voltage	Pattern Color	Type
			Volts	Amps.										$\mathrm{D}_{1} \mathrm{D}_{2}$	$\mathrm{D}_{3} \mathrm{D}_{4}$			
$\begin{aligned} & \text { 5CP 1- } \\ & 2-4.5 .7 . \\ & 11 \end{aligned}$	Electrostatic Calhode-Ray	148	6.3	0.6	Oscillograph Television	5"	2000	575	- 60		-	550		0.28	0.32	4000	White Green Blue	$\begin{aligned} & 5 C P 1- \\ & 2-4-5-7.11 \end{aligned}$
							1500	430	-45					0.37	0.43	3000		
							2000	575	- 60					0.36	0.41	2000		
$\begin{aligned} & \text { 5FP1. } \\ & 2-4-11-14 \end{aligned}$	Electromagnetic Cathode-Ray	5 AN	6.3	0.6	Oscillograph Television	5"	7000	250	-45		-			-	-		Green White Blue	$\begin{aligned} & \text { SFP 1- } \\ & 2-4-11-14 \end{aligned}$
							4000	250	- 45				-	-	-			
5HP1 5HP4 ${ }^{3}$	Wectrostotic Cathode-Ray	11A	6.3	0.6	Oscillograph	5"	2000	425	- 40	—		500	—	0.3	0.33	-	Green White	$\begin{aligned} & 5 \mathrm{HP} 1 \\ & 5 \mathrm{HP4} \end{aligned}$
							1500	310	- 30					0.4	0.44	-		
$\begin{aligned} & \text { 5.JP1. } \\ & 2-4.5 .11 \end{aligned}$	Electrostatic Colhode-Ray	I1E	6.3	0.6	Oscillagraph	5"	2000	520	- 75	-		500	-	0.25	0.28	4000	White Green Blue	
							1500	390	- 56					0.33	0.37	3000		
$\begin{aligned} & \text { 5LPI. } \\ & 2.4 .5 .11 \end{aligned}$	Electrosfatic Cathode-Ray	11F	6.3	0.6	Oscillograph Television	5"	2000	500	- 60			500		0.25	0.28	4000	Whito Green Blue	
							1500	375	-45	-				0.33	0.37	3000		
							1000	250	- 30	-				0.49	0.56	2000		
$\begin{aligned} & \text { 5MP1. } \\ & 4.5 .11 \end{aligned}$	Electrostatic Cathode-Ray	7 AN	2.5	2.1	Oscillograph	5"	1500	375	- 50			660		0.39	0.42	—	White Green Blue	${ }^{5 \mathrm{MP1}} 4 .$
							1000	250	- 33	-	-		-	0.58	0.64			
$\begin{aligned} & \text { 5RP1- } \\ & 2.4 .7 .11 \end{aligned}$	Electrostatic Cathode-Ray	14F	6.3	0.6	Oscillograph	5"	3000	-	- 90	-	-	1200	-	0.12	0.12	15000	Green White Blue	$\begin{aligned} & \text { 5RP1- } \\ & 2-4-7-11 \end{aligned}$
							2000	575	- 60	-			-	0.18	0.18	10000		
5TP4	Projection Kinescope	12C	6.3	0.6	Television	5"	27000	4900	-70	200	-	-	\cdots	-	-	-	White	5TP4
$\begin{aligned} & \text { 5UP1. } \\ & 7.11 \end{aligned}$	Electrostatic Cathode-Ray	12E	6.3	0.6	Oscillograph	5"	2500	640	- 90	-		500		$38.5{ }^{3}$	77^{3}		Green Yel- low Blue	$\begin{aligned} & \text { SUP } . \\ & 7.11 . \end{aligned}$
							2500	340	- 90			500		28^{8}	56^{3}			
							1000	320	- 45	-		500		313	62^{3}	-		
							1000	170	-45	-	-	500		23^{3}	46			
5WP11	Transcriber Kinescope	12C	6.3	0.6	Television	5"	27000	5400	-42/-98	200				-		-	Blue	5WP11
SWP 15	Flying-Spot Cathode-Ray	12C	6.3	0.6	Vid.Sig. Gen.	5"	20000	$\begin{aligned} & 3000 / \\ & 3800 \end{aligned}$	-42/-98	200	-	-	-	--	-	-	Blue Green	5WP15
52P16	Flying-Spot Cathode-Ray	Fig. 46	6.3	0.6	Vid. Sig. Gen.	5'	20000	4700	- 70	200				-	-		--	5ZP16
7 AP4	Electromagnetic Picture Tube	5AJ	2.5	2.1	Television	$7^{\prime \prime}$	3500	1000	-67.5	-				\cdots	-		White	7AP4
$\begin{aligned} & \text { 7BP: } \\ & 2.4 .7 .11 \end{aligned}$	Electromagnetic Cathode-Ray	5AN	6.3	0.6	Oscillograph Television	7"	7000	250	-45	-			-	-	-		White Green Blue	$\left\lvert\, \begin{aligned} & 7 B P 1 . \\ & 2.4-7.11 \end{aligned}\right.$
							4000	250	- 45									
$\begin{aligned} & 7 C P 1 / 5 \\ & 1811 .-\mathrm{P} 1 \end{aligned}$	Electromagnetic Cathode-Ray	6AZ	6.3	0.6	Oscillograph	$7 \prime$	7000 4000	1470 840	-45	250			—	-	-	-	Green	$\begin{aligned} & 7 \mathrm{CP} 1 / \\ & 1811-\mathrm{P} 1 \end{aligned}$
$7 \mathrm{DP4}$	Kinescape	12C	6.3	0.6	Television	7"	40000	8480	-45 -45	250	-				-	-	White	7DP4
7EP4	Electrostatic Cathode-Ray	IIN	6.3	0.6	Television	7'1	2500	650	- 60					110^{3}	953		While	$7 E P 4$
7GP4 ${ }^{5}$	Electrostatic Kinescope *	Fig. 47	6.3	0.6	Television	7'1	3000	1200	-84	3000			-	$123{ }^{3}$	$102{ }^{3}$	-	White	7GP4
7 JP 1	Electrostatic Cathode-Roy	146	6.3	0.6	Oscillograph	$7 \prime \prime$	2000	800	- 56	-		-		62/82 ${ }^{3}$	50/683		Green	7JP1
							4000	1600	-112	-			-	124/1643	100/136	-		
$7 \mathrm{JP4}$	Electrastatic Kinescope	14G	6.3	0.6	Television	$7{ }^{\prime \prime}$	6000	2400	-168					2463	$204{ }^{3}$		White	7JP4
$7 \mathrm{MP7}$	Electromagnetic Cathode-Ray	12D	6.3	0.6	Oscillograph Radar	7'		7000	-27/-63	250		-	85	-	-		Gr'nish Yellow	$7 \mathrm{MP7}$
							-	4000	-27/-63	250			62					
7NP4	Projection Kinescope	14N	6.6	0.62	Television	71	75000	$\begin{aligned} & 16000 / \\ & 18000 \end{aligned}$	-155	400/600	-	\cdots	-	-	-	-	White	7NP4
7094	Electramagnetic Kinescope	120	6.3	0.6	Monitor	$7{ }^{\prime \prime}$	-	$\begin{aligned} & 912 / \\ & 1360 \end{aligned}$	-67.5	250	-	-	-	-	-	6000	White	70P4
$7 \mathrm{PP4}$	Flectromagnetic Picture Tube /Aonitor Kinescope	120	$\begin{aligned} & 6.3 \\ & 6.3 \end{aligned}$	$\begin{aligned} & 0.6 \\ & \hline 0.6 \end{aligned}$	Television	$7{ }^{7 \prime \prime}$	-	9000	-27/-63	250	-	\cdots	120	-	-	-	White	$7 \mathrm{RP4}$
7TP4	E!ectrostatic Cothode-Ray				Television		10000	$\begin{aligned} & 1040 / \\ & 1400 \end{aligned}$	-22/-52	200	0/8 ${ }^{\text {8 }}$			-	-		While	7TP4
7 VPI		14A	6.3	0.6	Oscillograph	$7 \prime$	3000	$\begin{aligned} & 800 / \\ & 1200 \end{aligned}$	- 84	-	-	-	-	93/1233	$75 / 102{ }^{3}$	-	Green	7VP1
7WP4	Preizction Kinescope	14N	6.6	0.62	Television	7'1 75000		8000	-155	400/600	-	-	-	-	-	-	White	7WP4

TABLE XIV-CATHODE-RAY TUBES AND KINESCOPES-Continued

Type	Name	Sockef Connections	Heater		Use	Size	Anode No. 2 Voltage	Anode No. 1 Voltage	Cut-Off Grid Voltage	Grid No. 2 Voltoge	Ion- Trap Ma.	Max. Input Volloge ${ }^{1}$	Focus Coil Mo.	Deflection Sensitivity		Anode No. 3 Voltage	Pattern Color	Type
			Votrs	Amps.										$\mathrm{D}_{1} \mathrm{D}_{2}$	$\mathrm{D}_{3} \mathrm{D}_{4}$			
8AP4	Eleciromagnetic Picture Tube	12H	6.3	0.6	Television	$8{ }^{\prime \prime}$		7000	-27/-63	-	45^{8}	-	115	-	-	-	White	8AP4
$88 P 4$	Electrostatic Picture Tube	14G	6.3	0.6	Television	$8{ }^{\prime \prime}$		2400	-72/-168	6000				146/1983	124/168 ${ }^{3}$		White	8BP4
							7000	1425	$\frac{-72 /-168}{-40}$	6000								
$\begin{aligned} & \text { 9AP4/ } \\ & \text { 1804-P4 } \end{aligned}$	Electromagnetic Kinescope	6AL	2.5	2.1	Television	$9 \times$	7000	1425	-40 -38	250	-	-	-	-	-	-	White	$\begin{aligned} & \text { 9AP4/ } \\ & 1804-\mathrm{P4} \end{aligned}$
$9 \mathrm{CP4}$	Electromagnetic Kinescope	4AF	2.5	2.1	Television	919	7000		-110	-	-	-	-		-	-	White	9 CP 4
	Electrostatic-Magnetic Cathode-Ray	8BR	2.5	2.1	Oscillograph	$9 \prime$	5000	1570 785	-90 -45	-	-	3000	-	0.136 0.272		-	Green	$\begin{aligned} & \text { 9JP I/ } \\ & 1809 . \mathrm{P} 1 \end{aligned}$
108P4	Mognetic Kinescope	120	6.3	0.6	Television	$10^{\prime \prime}$		9000	- 45	250							White	108P4
10EP4	Magnetic-Focus Cathode-Ray	12D	6.3	0.6	Television	$10^{1 / 2^{\prime \prime}}$		8000	- 45	250		-			\cdots	-	White	10EP4
10FP4	Electromagnetic Picture Tube	120	6.3	0.6	Television	$10^{\prime \prime}$		9000	-27/-63	250							White	10FP4
$10 \mathrm{HP4}$	Electrostatic Cathode-Ray	146	6.3	0.6	Television	10"		5000	-60/-140	1800				1303	100		While	10HP4
$10 \mathrm{KP7}$	Magnelic Cathode-Roy	120	6.3	0.6	Oscillograph	$10^{\prime \prime}$		9000	-27/-63	250								$10 \mathrm{KP7}$
105P4	Monitor Kinescope	12C	6.3	0.6	Television	10'	14000	$\begin{aligned} & 1640 / \\ & 2225 \end{aligned}$	-18/-48	200	-		-	-	—	-	White	105P4
$\begin{aligned} & \text { 12AP4/ } \\ & 1803 \cdot P 4 \end{aligned}$	Electromagnetic Picture Tube	6AL	2.5	2.1	Television	12"	7000 6000	1460	-75	250	25	-	10	-	-	-	White	$\begin{array}{l\|l\|} \hline 12 A P 4 / \\ 1803-P 4 \end{array}$
12CP4 ${ }^{7}$	Electromagnetic Piclure Tube	4AF	2.5	2.1	Television	12"	7000	-	-110	-	25		10	-		-	White	12CP4
120P4-7	Eleciromagnetic Cathode-Ray	SAN	6.3	0.6	Television	12"	7000 4000	250	-45 -45			-	-				White	12DP4
12KP4-A	Eleclromagnelic Picture Tube	Fig. 35	6.3	0.6	Television	12"		11000	-27/-63	250	-						White	12KP4-A
12LP4 ${ }^{\text {P }}$	Electromagnetic Kinescope	12D	6.3	0.6	Television	$12^{\prime \prime}$		11000	-27/-63	250	-			-	-		White	12LP4
$12 \mathrm{PP4}$	Electromagnetic Picture Tube	Fig. 35	6.3	0.6	Television	12"		10000	-27/-63	250	80		135				White	120P4
$12 \mathrm{PP4}$	Electromagnelic Picture Tube	12D	6.3	0.6	Television	12"		10000	-27/-63	250	52^{5}		135			-	White	12RP4
125P7	Electromagnetic Cathode-Roy	120	6.3	0.6	Oscillograph	12"	\longrightarrow	10000	-27/-63	250	-	-	107				Grinish Yellow	$125 P 7$
12TP4	Electromagnetic Picture Tube	120	6.3	0.6	Television	$12^{\prime \prime}$		11000	-27/-63	250	120	-	110	-			White	12TP4
12 UP4	Electromagnetic Piclure Tube	12D	6.3	0.6	Television	12"	-	11000	-27/-63	250	-	-	110		-	-	White	12 UP4
$148 P 4$	Electromagnetic Piclure Tube	Fig. 35	6.3	0.6	Television	$14^{\prime \prime}$		11000	-27/-63	250	120		110				White	148P4
$14 \mathrm{CP4}$	Electromagnefic Picture Tube	12D	6.3	0.6	Television	14"		12000	-33/-77	250	$32 \cdot$	-	105			-	White	14CP4
14DP4	Electromagnetic Picture Tube	120	6.3	0.6	Television	$14^{\prime \prime}$	-	11000	-27/-63	250	120		100			-	White	14DP4
$14 E P 4$	Electromagnetic Picfure Tube	120	6.3	0.6	Television	14"	-	12000	-33/-77	-	110	-	110	-		-	White	14EP4
14GP4	Electrostalic-Magnetic Kinescope	Fig. 42	6.3	0.6	Television	$14^{\prime \prime}$		12000	-33/-77	300						29402	White	14GP4
$14 \mathrm{HP4}$	Electrostatic-Magnetic Kinescope	Fig. 43	6.3	0.6	Television	$14^{\prime \prime}$	12000	-48/264	-33/-77	300	70		-	-	-	-	White	14HP4
15 P4 4	Electromagnetic Cathode-Ray	12D	6.3	0.6	Television	15"		8000	-45	250	-					-	White	15AP4
$15 \mathrm{CP4}$	Electramagnetic Picfure Tube	Fig. 35	6.3	0.6	Television	15"		9000	-45	250	109	-	115	-			White	$15 \mathrm{CP4}$
15DP4 ${ }^{7}$	Eleclromagnetic Picture Tube	120	6.3	0.6	Television	15"		13000	-27/-63	250	105		146	-			While	15DP4
16ADP4	Electromagnetic Cathode.Ray	Fig. 69	6.3	0.6	Oscillograph	16"	-	12000	-27/-63	250	-	-	-			-	Gr'nishYellow	16ADP4
16 AP4	Electromagnelic Piclure Tube	Fig. 35	6.3	0.6	Television	$16^{\prime \prime}$		12000	-33/-77	300	-	-	-	-	-	-	While	16AP4
16CP4	Electromagnetic Picture Tube	Fig. 35	6.3	0.6	Television	$16^{\prime \prime}$		12000	-27/-63	250	120		110		-	$\underline{\square}$	White	16CP4
16EP4A	Electromagnetic Piclure Tube	120	6.3	0.6	Television	$16^{\prime \prime}$		12000	-33/-77	300			105	-	-	-	While	16EP4A
16FP4	Electromagnetic Piclure Tube	Fig. 35	6.3	0.6	Television	$16^{\prime \prime}$		13000	-27/-63	250	105	-	146	\cdots		-	White	16 FP 4
16GP4	Electromagnetic Piclure Tube	120	6.3	0.6	Television	$16^{\prime \prime}$		12000	-33/-77	300	23 \%		100	-		-	White	16GP4
$16 \mathrm{GP48}$	Electromagnetic Piclure Tube	120	6.3	0.6	Television	$16^{\prime \prime}$	-	12000	-33/-77	300	$35{ }^{5}$	-	100	-	-	-	White	16GP48
16GP4C	Electromagnetic Picture Tube	120	6.3	0.6	Television	$16^{\prime \prime}$	-	12000	-33/-77	300	45.		100		-	-	White	16GP4C
$16 \mathrm{HP4}$	Electromognetic Piclure Tube	Fig. 35	6.3	0.6	Television	$16^{\prime \prime}$		12000	-33/-77	300	120		110			-	White	16HP4
16JP4	Electromagnefic Piciure Tube	12D	6.3	0.6	Television	$16^{\prime \prime}$	-	11000	-27/-63	250	120	-	115	-	-	-	While	16JP4
$16 \mathrm{KP4}$	Electromagnetic Piclure Tube	12D	6.3	0.6	Television	$16^{\prime \prime}$	-	14000	-33/-77	300	30^{8}	-	90	-	-	-	While	$16 \mathrm{KP4}$

World Radio Hisiory

TABLE XIV-CATHODE-RAY TUBES AND KINESCOPES-Continued

Type	Name	Socket Connecfions	Heoter		Use	Size	Anode No. 2 Voltoge	Anode No. 1 Volfage	Cut-Off Grid Vollage	Grid No. 2 Voltoge	IonTrap Ma.		Focus Coil Ma.	Deflection Sensifivity ${ }^{\text {s }}$		Anode No. 3 Voltoge	Pattern Color	Type
			Volts	Amps.										$\mathrm{D}_{1} \mathrm{D}_{2}$	$\mathrm{D}_{3} \mathrm{D}_{4}$			
$16 \mathrm{LP4}$	Electromagnetic Piclure Tube	Fig. 35	6.3	0.6	Television	$16^{\prime \prime}$		12000	-33/-77	300	120		110	-	-	-	White	161P4
$16 \mathrm{MP4}$	Electromagnetic Kinescope	12D	6.3	0.6	Television	$16^{\prime \prime}$		12000	-33/-77	300	120		110				White	$16 \mathrm{MP4}$
16RP4	Electromagnetic Picture Tube	12D	6.3	0.6	Television	$16^{\prime \prime}$		12000	-33/-77	300	120		100			-	White	16RP4
16SP4A	Electromagnetic Piclure Tube	12D	6.3	0.6	Television	$16^{\prime \prime}$	-	12000	-33/-77	300	120	ーー	110			-	White	16SP4A
16TP4	Electromagnetic Piclure Tube	Fig. 35	6.3	0.6	Television	$16^{\prime \prime}$		12000	-33/-77	300	45^{3}		115				White	16TP4
16UP4	Electromagnetic Picture Tube	12D	6.3	0.6	Television	$16^{\prime \prime}$		12000	-27/-63	300	$23{ }^{3}$		100			-	White	16UP4
16VP4	Electromagnetic Kinescope	12D	6.3	0.6	Television	16"		12000	-27/-63	250	120		110				White	16VP4
16WP4A	Electromagnetic Piclure Tube	12D	6.3	0.6	Television	$16^{\prime \prime}$	-	12000	-27/-63	250	120	--	110				White	16WP4A
16ZP4	Eleciromagnetic Piclure Tube	12D	6.3	0.6	Television	$16^{\prime \prime}$		12000	-33/-77	300	120		110				White	16ZP4
17 AP4	Electromognetic Picfure Tube	120	6.3	0.6	Television	17"	\cdots	12000	-33/-77	300	75	-	100	\cdots	-	-	White	17AP4
17BP4A	Electromagnetic Kinescope	Fig. 45	6.3	0.6	Talevision	17"	-	14000	-33/-77	300	50^{3}	-	99				White	17BP4A
$17 \mathrm{BP4B}$	Electromagnetic Picture Tube	12D	6.3	0.6	Television	17"	-	12000	-33/-77	300	$35{ }^{8}$		100				White	$17 \mathrm{BP48}$
$17 \mathrm{CP4}$	Electromagnetic Picture Tube	120	6.3	0.6	Television	17"	\longrightarrow	14000	-33/-77	300	50^{8}		104				White	$17 \mathrm{CP4}$
17FP4	Electrostatic-Magnelic Kinescope	Fig. 42	6.3	0.6	Television	17'1	16000	$\begin{aligned} & 3100 / \\ & 4100 \end{aligned}$	-33/-77	300	40^{3}						White	17FP4
$17 \mathrm{GP4}$	Electrostatic-Magnetic Kinescope	Fig. 43	6.3	0.6	Television	$17^{\prime \prime}$	-	14000	-33/-77	300	40^{8}	-	-	-	-	3620^{2}	White	$17 \mathrm{GP4}$
17HP4	Electrostatic-Magnetic Kinescope	Fig. 42	6.3	0.6	Television	17"	14000	0-350	-33/-77	300	85		-				White	17HP4
17JP4	Electromagnetic Kinescope	Fig. 45	6.3	0.6	Television	17"	-	16000	-33/-77	300	45	-	-		-		White	$17 \mathrm{JP4}$
$17 \mathrm{KP4}$	Electrostatic-Magnetic Kinescope	Fig. 45	6.3	0.6	Television	$17^{\prime \prime}$		12000	-33/-77	300	0/8	\cdots	-	\cdots	\cdots		White	$17 \mathrm{KP4}$
17184	Electrostatic-Magnetic Kinescope	Fig. 42	6.3	0.6	Television	17"	-	16000	-33/-77	300	50	-	-				White	171P4
17 OP4	Eleciromagnetic Kinescope	12D	6.3	0.6	Television	17"	--	12000	-33/-77	300	35.		100				White	170P4
17RP4	Electrostatic-Magnetic Kinescope	Fig. 66	6.3	0.6	Television	17"	14000	0	-33/-77	300	35^{8}		-				White	17RP4
17584	Electrostatic-Magnetic	12D	6.3	0.6	Television	$17^{\prime \prime}$	-	13000	-33/-66	250	120						White	17SP4
$17 \mathrm{YP4}$	Electromagnelic Kinescope	Fig. 45	6.3	0.6	Television	17"		12000	-33/-77	300	$35{ }^{3}$		92				White	17YP4
19 AP4	Electromagnelic Picture Tube	Fig. 35	6.3	0.6	Television	$16^{\prime \prime}$		13000	-27/-63	250	105		146				White	19AP4
19AP4A	Eleciromagnetic Picture Tube	12D	6.3	0.6	Television	$16^{\prime \prime}$		12000	-33/-77	300	75		140				White	19AP4A
190P4A	Electromagnelic Piciure Tube	12D	6.3	0.6	Television	19"1	\cdots	13000	-26/-63	250	105	-	146				White	19DP4A
19EP4	Electromagnelic Picture Tube	Fig. 35	6.3	0.6	Television	$19^{\prime \prime}$		13000	-26/-63	250	105	-	146				White	19EP4
$19 \mathrm{FP4}$	Electromagnetic Piciure Tube	Fig. 35	6.3	0.6	Television	$16^{\prime \prime}$		13000	-27/-68	250	100	-	100/130			-	White	19FP4
$19 \mathrm{GP4}$	Electromagnatic Piclure Tube	120	6.3	0.6	Television	$19^{\prime \prime}$		13000	-27/-63	250	105		110/130				White	19GP4
$19 \mathrm{JP4}$	Electromagnetic Kinescope	12D	6.3	0.6	Television	$19^{\prime \prime}$		12000	-33/-77	300	75		95		-		White	19JP4
208P4	Electromagnetic Cathode-Ray	120	6.3	0.6	Television	$20^{\prime \prime}$		15000	-45	250							White	208P4
20.14	Eleciromagnelic Picture Tube	Fig. 44	6.3	0.6	Television	20"		12000	-33/-77	300	75		95				White	20 CP 4
20CP4A	Electromagnetic Kinescope	Fig. 44	6.3	0.6	Television	$20^{\prime \prime}$		12000	-33/-77	300	75		95				White	20CP4A
20DP4	Electromagnetic Kinescope	Fig. 44	6.3	0.6	Television	$20^{\prime \prime}$		12000	-33/-77	300	75		95				White	200P4
20FP4	Electrostatic-Magnetic Kinescope	Fig. 66	6.3	0.6	Television	$20^{\prime \prime}$	12000	$\begin{aligned} & 2300 / \\ & 3100 \end{aligned}$	-33/-77	300	75		-	\square		-	White	20FP4
20GP4	Electrostatic-Magnetic Kinescope	Fig. 42	6.3	0.6	Television	20"	-	16000	-33/-77	300	40^{8}					4270^{2}	White	20GP4
20HP4	Elecirostatic-Magnelic Kinescope	Fig. 66	6.3	0.6	Television	$20^{\prime \prime}$	14000	-56/310	-33/-77	300	85	-	-	-	-		White	20HP4
20 JP4	Elecirostatic-Magnelic Kinescope	Fig. 45	6.3	0.6	Television	20"		12000	-33/-77	300	$0 / 8{ }^{3}$		-			-	White	20JP4
20194	Electrostatic-Magnelic Kinescope	Fig. 43	6.3	0.6	Television	20"	14000	0	-33/-77	300	35^{8}		-		-		White	20LP4
$20 \mathrm{MP4}$	Electrastatic-Magnetic Kinescope	Fig. 42	6.3	0.6	Television	20"	\square	16000	-33/-77	300	50^{8}	\square	-	\cdots	-		White	20MP4
21 AP4	Electromagnelic Kinescope	Fig. 44	6.3	0.6	Television	21"		16000	-33/-77	300	50^{8}		110			-	White	21 AP4
21EP4A	Electromagnetic Kinescope	Fig. 44	6.3	0.6	Telovision	21"		12000	-33/-77	300	70		95				White	21EP4A
21FP4A	Electrestatic-Magnetic Kinescope	Fig. 43	6.3	0.6	Television	$21^{\prime \prime}$	14000	± 200	-33/-77	300	40^{8}					\cdots	White	21FP4A
21KP4A	Electrostatic-Magnetic Kinescope	Fig. 45	6.3	0.6	Television	$21^{\prime \prime}$		12000	-33/-77	300	50						White	21KP4A
$21 \mathrm{MP4}$	Electrostatic-Magnetic Kinescope	Fig. 43	6.3	0.6	Television	$21^{\prime \prime}$		16000	-33/-77	300	50^{8}	-		-	-	-	White	21MP4
22AP4	Electromagnelic Picture Tube	Fig. 35	6.3	0.6	Television	22"		14000	-33/-77	300	35^{8}		117		-	-	White	22AP4

table xiv-Cathode-ray tubes and kinescopes-Continued

Typ*	Nome	Socket Connec tions	Heater		Use	Size	Anode No. 2 Voltoge	Anode No. 1 Voltage	Cut-Off Grid Voltage	Grid No. 2 Voltage	lon. Trap Mo.	Mox. Input Voltage ${ }^{1}$	Focus Coil Mo.	Deflection Sensilivity ${ }^{\text {: }}$		Anode No. 3 Voltoge	Paftern Color	Type
			Volts	Amp.										$\mathrm{D}_{1} \mathrm{D}_{2}$	$\mathrm{D}_{3} \mathrm{D}_{4}$			
24AP4A	Electromognetic Picture Tube	12D	6.3	0.6	Television	24"	-	12000	-33/-77	300	$32{ }^{8}$		97		-		White	24AP4A
24BP4	Electrostatic-Magnetic Kinescope	Fig. 43	6.3	0.6	Television	24"	14000	-56/310	-33/-77	300	85						White	248P4
27 AP4	Electrostatic-Mognelic Kinescope	Fig. 43	6.3	0.6	Television	27"1	15000	-60/300	-33/-77	300	85	\cdots					White	27 AP4
27EP4	Electromognetic Picture Tube	120	6.3	0.6	Television	27"	-	14000	-33/-77	300	85	-	110		-		White	27EP4
30BP4	Electromagnetic Picture Tube	120	6.3	0.6	Television	30'	--	12000	-33/-77	300	75		95				White	308P4
$902{ }^{7}$	Electrostatic Cathode-Ray	Fig. 1	6.3	c. 6	Oscillograph	$2^{\prime \prime}$	600	150	- 60			350		0.19	0.22		Green	902
$903{ }^{3}$	Electromagnetic Cathode-Ray	6AL	2.5	2.1	Oscillograph	$9{ }^{\prime \prime}$	7000	1360	-120	250					-		Green	903
904	Electrostatic-Magnetic Cathode-Ray	Fig. 3	2.5	2.1	Oscillograph	5"	4600	970	- 75	250	-	4000		0.09		-	Green	904
9057	Electrostotic Cathode-Ray	Fig. 6	2.5	2.1	Oscillograph	5"	2000	450	- 35		-	1000	-	0.19	0.23		Green	905
907	Electrostotic Cothode-Ray	Fig. 6	2.5	2.1	Oscillograph	5"	Characteristics same os Type 905										Blue	907
9087	Electrostatic Cathode-Ray	7 AN	2.5	2.1	Oscillograph	$3^{\prime \prime}$	Characteristics some as Type 3AP1/906P1							-	-		Blue	908
908.A		7CE	2.5	2.1		$3^{\prime \prime}$	1500	430	- 50	- -		500		0.223	0.233			
908.A	Electrostatic Cathode-Ray	7 CE	2.5	2.1	Oscillograph	3	1000	287	- 33	-		500	$\underline{\square}$	0.334	0.348		Blue	908.A
9093	Electrostatic Cathode.Ray	Fig. 6	2.5	2.1	Oscillograph	5"	Characleristics same as Type 905							-			Blue	909
910^{8}	Electrostatic Cathode-Ray	7 AN	2.5	2.1	Oscillograph	$3^{\prime \prime}$	Characteristics same as Type 3AP1/906P1								-	\cdots	Blue	910
9115	Electrostatic Cathode-Ray	7 AN	2.5	2.1	Oscillograph	$3^{\prime \prime}$	Characteristics same as Type 3AP 1/900P I								$\underline{-}$	一一	Green	911
912	Electrostotic Cothode-Ray	Fig. 8	2.5	2.1	Oscillograph	5"	10000	2000	- 66	250		7000		0.041	0.051	-	Green	912
913	Electrostatic Cathode-Ray	Fig. 1	6.3	0.6	Oscillograph	$1{ }^{\prime \prime}$	500	100	- 65	-		250	-	0.07	0.10		Green	913
9147	Electrostatic Cathode-Ray	Fig. 12	2.5	2.1	Oscillograph	$9{ }^{\prime \prime}$	7000	1450	- 50	250		3000	-	0.073	0.093		Green	914
$1800{ }^{8}$	Electromognetic Kinescope	6A1	2.5	2.1	Television	$9{ }^{\prime \prime}$	6000	1250	- 75	250		-					Yellow	1800
$1801{ }^{3}$	Electromagnetic Kinescope	Fig. 13	2.5	2.1	Television	$5^{\prime \prime}$	3000	450	- 35			-					Yellow	1801
1816P4.A	Electromagnetic Kinescope	Fig. 65	6.3	0.6	Monitor	10'1		9000	- 63	250				-	-	-	Whive	1816P4.A
2001	Electrostatic Cathode-Ray	4AA	6.3	0.6	Oscillograph	$1 \prime$	Characleristics essentially same as 913											2001
2002	Electrostatic Cathode-Ray	Fig. 1	6.3	0.6	Oscillograph	$2{ }^{\prime \prime}$	600	120		-	-	-	-	0.16	0.17	-	Green	2002
2005	Electrostatic Cathode-Ray	Fig. 14	2.5	2.1	Television	5"	2000	1000	- 35	200	-			0.5	0.56	-		2005
24-XH	Electrostatic Cothode-Ray	Fig. 1	6.3	0.6	Oscilloscope	2"	800	120	- 60		-	-	-	0.14	0.16		Blue	24-XH

TABLE XV-RECTIFIERS-RECEIVING AND TRANSMITTING
See olso Toble XIII-Control and Regulotor Tubes

Type No.	Nome	Base	Sockel Connec. tions	Cathode	Fil. or Heater		Max.A.C.VoltagePer Plate	D.C. Outpul Current Ma.	Mox. Inverse Peak Voltage	Peak Plate Curren Ma.	Type
					Volts	Amp.					
BA	Full-Wave Rectifier	4-pin M.	4J	Cold			350	350	Tube dr	P 80 v .	G
BH	Full-Wave Rectifier	4-pin M.	4J	Cold			350	125	Tube drop	p 90 v .	G
BR	Half-Wave Rectifier	4-pin M.	4H	Cold			300	50	Tube drop	60 v .	G
CE-220	Half-Wove Rectifer	4-pin M.	4P	Fil.	2.5	3.0		20	20000	100	HV
OY4	Half-Wave Rectifier	$5-\mathrm{pin} 0$.	48U	Cold	Connect Pins 7 and 8		95	75	300	500	G
OZ4	Full-Wave Rectifier	5-pin 0.	4R	Cold			350	30-75	1250	200	G
1	Half-Wove Rectifler	4-pin S.	4G	Hir.	6.3	0.3	350	50	1000	400	MV
14×2	Holf-Wove Rectifier	9-pin 8.	9 Y	Fil.	1.4	0.65	20000	1.0	25000	11	HV
1-V	Holf-Wave Rectifier	4-pin S.	4G	Htr.	6.3	0.3	350	50			HV
IV2	Holf-Wove Rectifier	9-pin B.	9 U	Fil.	. 625	0.3		0.5	7500	10	HV
1B3GT/8016	Half-Wave Rectifier	6-pin 0.	3 C	Fil.	1.25	0.2		2.0	4000	17	HV
1848	Half-Wove Reclifier	7-pin 8.	-	Cold			800	6	2700	50	G
1×2	Half-Wave Rectifier	9-pin B.	9 Y	Fil.	1.25	0.2	-	1	15000	10	HV
1×24	Half-Wave Rectifier	9-pin B.	9 Y	Fil.	1.25	0.2		1.1	20000	11	HV
1×28	Fly-Back Rectifier	9-pin B .	9 Y	Fil.	1.25	0.2	-	0.5	22000	45	HV
1Y2	Half-Wove Rectifier	4-pin M.	4P	Fil.	1.5	0.29		2	50000	10	HV
122	Half-Wave Rectifier	7-pin B.	7 CB	Fil.	1.5	0.3	7800	2	20000	10	HV
2825	Half-Wave Rectifier	7-pin B.	3 T	Fil.	1.4	0.11	1000	1.5		9	HV
2V3G	Helf-Wave Rectifier	6-pin 0.	$4 Y$	Fil.	2.5	5.0		2.0	16500	12	HV
2W3	Half-Wave Rectifier	5-pin 0.	4X	Fil.	2.5	1.5	350	55	\square		HV
2×2/87910	Half-Wave Rectifier	4-pin S.	4AB	Hit.	2.5	1.75	4500	7.5	-	-	HV
2X2-A	Half-Wave Rectifier	4-pin S.	4AB	Same as $2 \times 2 / 879$ but will withstand severe shock \& vibration							HV
2 Y 2	Holf-Wave Rectifier	4-pin M.	4AB	Fil.	2.5	1.75	4400	5.0			HV
272/G84	Half-Wave Rectifier	4-pin M.	48	Fil.	2.5	1.5	350	50			HV
3824	Half-Wave Rectifier	4-pin M.	T-4A	Fil.	$\begin{aligned} & 5.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 60 \\ & 30 \end{aligned}$	$\begin{aligned} & 20000 \\ & 20000 \end{aligned}$	$\begin{aligned} & 300 \\ & 150 \end{aligned}$	HV
3825	Half-Wave Rectifier	4-pin M.	4P	Fil.	2.5	5.0	\cdots	500	4500	2000	G
$3 \mathrm{B26}$	Half-Wove Rectifler	8-pin 0.	Fig. 31	Hir.	2.5	4.75		20	15000	8000	HV
DR-3B27	Half-Wave Rectifier	4-pin M.	4P	Fil.	2.5	5.0	3000	250	8500	1000	HV
3828	Half-Wove Rectifier	4-pin-M	4P	Fil.	2.5	5.0	1700	500	5000	2000	
		4-pin.m	4	F.	2.5	5.0	3500	250	10000	1000	G
5AX4GT	Full-Wave Rectifier	5-pin 0.	51	Fil.	5	2.5	$\begin{aligned} & 350^{1} \\ & 500^{7} \end{aligned}$	175	1400	525	HV
5 5AZ4	Full-Wave Rectifier	5-pin 0.	51	Fis.	5.0	2.0		Same as Type 80			HV
5R4GY	Full-Wave Rectifier	5-pin 0.	51	Fil.	5.0	2.0	$\begin{aligned} & 900^{1} \\ & 950 \end{aligned}$	$\begin{aligned} & 1504 \\ & 175 \end{aligned}$	2800	650	HV
514	Full-Wave Rectifier	5-pin 0.	57	Fil.	5.0	3.0	450	250	1250	800	HV
5U4G	Full-Wave Rectifier	8-pin O.	51	Fil.	5.0	3.0		Same as Type 573			HV
5V4G	Full-Wave Rectifler	8 -pin 0.	51	Hir.	5.0	2.0		Same as Type 83V			HV
5W4	Full-Wave Rectifier	5-pin 0.	51	Fil.	5.0	1.5	350	110	1000	-	HV
5×3	Full-Wave Rectifier	4-pin M.	4 C	Fil.	5.0	2.0	1275	30		-	HV
5X4G	Full-Wove Rectifier	8-pin 0.	50	Fil.	5.0	3.0		Same os 573			HV
5 Y 3 G	Full-Wove Rectifler	5-pin 0.	51	Fil.	5.0	2.0		Same as Type 80			HV
5Y3WGT	Full-Wove Rectifier	5-pin 0.	51	Fil.	5.0	2.0	375	120	1550	375	HV
584G	Full-Wave Rectifier	8 -pin 0.	50	Fil.	5.0	2.0		Same as Type 80			HV
573	Full-Wave-Rectifer	4-pin M.	$4 C$	Fil.	5.0	3.0	500	250	1400	-	HV
574	Full-Wove Recliffer	5-pin 0.	51	Hirs.	5.0	2.0	400	125	1100	2-20	HV
6AU4GT	Damper Diode	6-pin 0.	4CG	Hir.	6.3	1.8	-	175	4500	1050	HV
6AX4GT	Damper Diode	6-pin 0.	4CG	Hir.	6.3	1.2		125	4000	600	HV
6AX5GT	Full-Wave Rectifier	6-pin 0.	65	Hir.	6.3	1.2	450	125	1250	375	HV
6AX6G	Full-Wave Rectifier	7 -pin 0.	70	Hir.	6.3	2.5	350	250	1250	600	HV
6BY5G	Full-Wave Reclifier	7-pin 0.	6CN	Hir.	6.3	1.6	3754	175	1400	525	HV
6 U 3	Damper Diode	9-pin 8.	98M	Hir.	6.3	0.9	-	180	4000	400	HV
6U4GT	Half-Wave Rectifier	5-pin 0.	4CG	Hir.	6.3	1.2		138	1375	660	HV
6 V 3	Half-Wave Rectifier	9-pin B.	98D	Hir.	6.3	1.75	350	125	6000	600	HV
6 V 4	Full-Wave Rectifier	9-pin B.	9M	Hir.	6.3	0.6	350	90	-	-	HV
*W4GT	Damper Service	6-pin 0.	4CG	Hir.	6.3	1.2	-	125	2000	600	HV
	Half-Wave Rectifier						350	125	1250	600	
6W5G	Full-Wave Rectifier	6-pin 0.	65	Hir.	6.3	0.9	350	100	1250	350	HV
$\begin{aligned} & 6 \times 4 \\ & 6 \times 5 \end{aligned}$	Full-Wave Rectifier	$\begin{aligned} & 7-\text { pin } \mathrm{B} \\ & 6-\text { pin } 0 . \end{aligned}$	$\begin{aligned} & 7 \mathrm{CF} \\ & 65 \\ & \hline \end{aligned}$	Hir.	6.3	0.6	$\begin{aligned} & 325 \\ & 450^{7} \end{aligned}$	70	1250	210	HV
6 6Y36	Half-Wave Rectifier	5-pin O.	4AC	Hir.	6.3	0.7	5000	7.5	-	-	HV
OY5 ${ }^{10}$	Full-Wave Rectifier	6-pin S.	61	Hir.	6.3	0.8	350	50			HV
673	Half-Wave Reclifier	4-pin M.	4G	Fil.	6.3	0.3	350	50	-	-	HV
$675{ }^{10}$	Full-Wave Rectifler	6-pin 5 .	6K	Htr.	6.3	0.6	230	60	-	-	HV
6ZY5G	Full-Wave Rectifler	6-pin 0.	65	Hir.	6.3	0.3	350	35	1000	150	HV
7X6	Full-Wave Rectifier	8-pin O.	7AJ	Hir.	6.3	1.2	235	150	700	430	HV
7Y4	Full-Wave Rectifer	$8-\mathrm{pin} \mathrm{L}$.	5AB	Htr.	6.3	0.5	350	60	-	-	HV
724	Full-Wove Rectifier	8-pin L.	5AB	Hir.	6.3	0.9	$\begin{aligned} & 4501 \\ & 3254 \end{aligned}$	100	1250	300	HV
1247	Rectifler-Pentode	7-pin S.	$7 K$	Hir.	12.6	0.3	125	30	-	-	HV

See also Table XIII-Control and Regulator Tubes

Type No.	Name	Base	Socket Connections	Cathode	Fil. or Heater		Max. A.C. Voltage Per Plate	D.C. Output Current Ma.	Max. Inverse Peak Volfage		Type
					Volts	Amp.					
12AX4GT	Damper Diode	6-pin 0.	4CG	Hir.	12.6	0.6	-	125	4000	600	HV
12×4	Full-Wave Rectifier	7 -pin B.	5BS	Hir.	12.6	0.3	$\begin{aligned} & 650 \\ & 900 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & 1250 \\ & 1250 \end{aligned}$	$\begin{aligned} & 210 \\ & 210 \end{aligned}$	HV
1273	Holf-Wave Rectifier	4-pin S.	4G	Her.	12.6	0.3	250	60			HV
1275	Voltage Doubler	$7-\mathrm{pin}$ M.	71	Hir.	12.6	0.3	225	60			HV
14 Y 4	Full-Wave Rectifier	8 -pin L.	5AB	Htr.	12.6	0.3	$\begin{array}{r} 4501 \\ 325 \\ \hline \end{array}$	70	1250	210	HV
1423	Half-Wove Reclifier	4-pin 5.	4G	Hir.	12.6	0.3	250	60		-	HV
1723	Damper Diode	9-pin B.	9CB	Hir.	17	0.3		150	4500	450	HV
19×3	Damper Diadé	$9-\mathrm{pin} \mathrm{B}$.	9BM	Hir.	19	0.3	-	180	4500	400	HV
$19 \mathrm{Y3}$	Holf-Wave Rectifier	9-pin B.	9BM	Hir.	19	0.3		180	700		HV
25A7 G ${ }^{10}$	Rectifier-Pentode	8-pin 0.	8 F	Htr.	25	0.3	125	75			HV
25W4GT	Half-Wave Rectifier	6-pin O.	4CG	Hir.	25	0.3	350	125	1250	600	HV
$25 \times 6 \mathrm{GT}$	Voltage Doubler	7-pin 0.	70	Hir.	25	0.15	125	60		-	HV
25Y4GT	Holf-Wave Rectifier	6-pin 0.	5AA	Hir.	25	0.15	125	75			HV
25×5^{111}	Voltage Doubler	6-pin 5 .	6E	Hir.	25	0.3	250	85		-	HV
2573	Half-Wave Rectifier	4-pins.	4G	Her.	25	0.3	250	50	-		HV
2524	Half-Wave Rectifier	6-pin 0 .	5AA	Hir.	25	0.3	125	125		-	HV
2575	Rectifier-Doubler	6-pin S.	6 E	Hir.	25	0.3	125	100		500	HV
2625W	Full-Wave Rectifier	9-pin B.	9BS	Hir.	26.5	0.2	$\begin{aligned} & 325 \\ & 450^{7} \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$	1250	300	HV
2526	Rectifier-Doubler	7-pin 0.	70	Hir.	25	0.3	125	100		500	HV
2825	Full-Wave Rectifier	8-pin L.	5AB	Hir.	28	0.24	$\begin{aligned} & 4507 \\ & 3254 \end{aligned}$	100	-	300	HV
32 LGGT	Rectifier-Tetrode	8-pin 0.	82	Hir.	32.5	0.3	125	60	-		HV
35W4	Half-Wave Reclifier	7-pin B.	580	Hir.	352	0.15	125	100^{8}	330	600	HV
$35 Y 4$	Half-Wave Rectifier	$8-\mathrm{pin} 0$.	5AL	Hir.	35 ?	0.15	235	$\begin{gathered} 60 \\ 100 \text { 8 } \end{gathered}$	700	600	HV
3573	Half-Wave Reclifier	8-pin L.	42	Hir.	35	0.15	$250{ }^{3}$	100	700	600	HV
35Z4GT	Half-Wave Rectifier	6-pin 0 .	5AA	Hir.	35	0.15	250	100	700	600	HV
3575G	Half-Wave Rectifier	6-pin 0.	6AD	Hir.	35 :	0.15	125	$\begin{gathered} 60 \\ 100 \end{gathered}$	-	-	HV
3526G	Voltage Doubler	6-pin 0.	70	Hir.	35	0.3	125	110		500	HV
4075GT	Half-Wave Rectifier	6-pin 0.	6AD	Hir.	402	0.15	125	$\begin{gathered} 60 \\ 100 \end{gathered}$	-	-	HV
4573	Half-Wave Rectifier	7 -pin 8.	5AM	Htr.	45	0.075	117	65	350	390	HV
4525GT	Half-Wave Rectifier	6-pin 0.	6AD	Hir.	45 :	0.15	125	$\begin{gathered} 60 \\ 100^{8} \end{gathered}$	-	-	HV
50AX6G	Full-Wave Rectifier	7 -pin 0.	70	Hir.	50	0.3	350	250	1250	600	HV
50×6	Voltage Doubler	8 -pin L.	7 AJ	Hr .	50	0.15	117	75	700	450	HV
50Y6GT	Full-Wave Rectifier	7-pin 0.	70	Her.	50	0.15	125	85			HV
SOY7GT	Voltage Doubler	8 -pin L.	8 AN	Hir.	50^{2}	0.15	117	65	700		HV
50Z6G	Voltage Doubler	7-pin O.	70	Hir.	50	0.3	125	150	-	-	HV
$5027 \mathrm{G}^{10}$	Volioge Doubler	8 -pin 0.	BAN	Hir.	50	0.15	117	65			HV
7047 GT	Rectifier-Telrode	8 -pin 0.	8AB	Hir.	70	0.15	125 5	60	-	-	HV
70L7GT	Rectifier-Tetrode	$8-\mathrm{pin} 0$.	8AA	Hir.	70	0.15	117	70	-	350	HV
72	Half-Wave Rectifier	4-pin M.	4P	Fil.	2.5	3.0		30	20000	150	HV
73	Half-Wove Rectifier	8-pin 0 .	4Y	Fil.	2.5	4.5		20	13000	3000	HV
80	Full-Wave Rectifier	4-pin M.	4 C	Fil,	5.0	2.0	$\begin{aligned} & 350^{3} \\ & 500^{7} \end{aligned}$	$\begin{aligned} & 125 \\ & 125 \end{aligned}$	1400	375	HV
81	Half-Wave Rectifier	4-pin M.	48	Fil.	7.5	1.25	700	85		-	HV
82	Full-Wave Rectifier	4-pin M.	4 C	Fil.	2.5	3.0	500	125	1400	400	MV
83	Full-Wave Rectifier	4-pin M.	4 C	Fil.	5.0	3.0	500	250	1400	800	MV
83-V	Full-Wave Reclifier	4-pin M.	4AD	Hir.	5,0	2.0	400	200	1100	\square	HV
$84 / 6 \mathrm{Z4}$	Full-Wave Rectifier	$5-\mathrm{pin} \overline{\mathrm{S}}$.	5D	Hir,	6.3	0.5	350	60	1000		HV
$11717 \mathrm{GT} /$ $117 \mathrm{M} / \mathrm{GT}$	Rectifier-Tetrode	8 -pin 0.	8 AO	Hir.	117	0.09	117	75	-	-	HV
117N7GT	Rectifier-Tetrode	8 -pin 0.	8AV	Hir.	117	0.09	117	75	350	450	HV
117P7GT	Rectifier-Tetrode	8 -pin 0.	8AV	Hir.	117	0.09	117	75	350	450	HV
11723	Half-Wave Rectifier	7-pin 8 .	4BR	Hir.	117	0.04	117	90	330		HV
11724GT	Half-Wave Reclifier	6-pin O.	5AA	Hir.	117	0.04	117	90	350	-	HV
11726GT	Voltage Doubler	7-pin 0.	70	Hir.	117	0.075	235	60	700	360	HV
217-A ${ }^{10}$	Half-Wave Rectifier	4-pin J.	4AT	Fil.	10	3.25		-	3500	600	HV
217.C	Half-Wave Rectifier	4-pin J.	4AT	Fil.	10	3.25	-	-	7500	600	HV
2225	Half-Wave Reclifier	4-pin M.	4P	Fil.	2.5	5.0	-	250	10000	1000	MV
249-8	Half-Wave Rectifier	4-pin M.	Fig. 53	Fil.	2.5	7.5	3180	375	10000	1500	MV
HK253	Half-Wave Rectifier	4-pin J.	4AT	Fil.	5.0	10		350	10000	1500	HV
$\begin{aligned} & 705 A \\ & \text { RK-705A } \end{aligned}$	Half-Wave Rectifler	4-pin W.	T-3AA	Fil.	$\begin{aligned} & 2.5^{\circ} \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	-	$\begin{array}{r} 50 \\ 100 \\ \hline \end{array}$	$\begin{aligned} & 35000 \\ & 35000 \end{aligned}$	$\begin{array}{r} 375 \\ 750 \\ \hline \end{array}$	HV
816	Half-Wave Rectifier	4-pins.	4P	Fil.	2.5	2.0	2200	125	7500	500	MV
836	Half-Wave Rectifler	4-pin M.	4 P	Hir.	2.5	5.0	-	-	5000	1000	HV
866A/866	Half-Wave Rectifler	4-pin M.	4P	Fil.	2.5	5.0	3500	250	10000	1000	MV
8668	Half-Wave Rectifier	4-pin M.	4 P	Fil.	5.0	5.0	-	-	8500	1000	MV
866 Jr .	Half-Wave Rectifier	4-pin M.	48	Fil.	2.5	2.5	1250	$250{ }^{\prime}$	-	-	MV

TABLE XV-RECTIFIERS—RECEIVING AND TRANSMITTING-Continued See also Table XIll-Contral and Regulator Tubes

Type No.	Name	Base	Sacket Connec. tions	Cathode	Fil. or Heatol		Max. A.C. Voltage Per Plate		Max. Inverse Peak Voltage	PeakPlateCurrentMa.	Type
					Volts	Amp.					
HY866 Jp.	Half -Wave Reclifer	4-pin M.	4 P	Fil.	2.5	2.5	1750	2502	5000		MV
RK866	Half-Wave Reclifer	4-pin M.	4 P	Fil.	2.5	5.0	3500	250	10000	1000	MV
87110	Half-Wave Rectifer	4-pin M.	$4 P$	Fil.	2.5	2.0	1750	250	5000	500	MV
878	Half-Wave Reclifer	4-pin M.	4 P	Fil.	2.5	5.0	7100	5	20000		HV
879	Half-Wave Rectifier	4-pin 5.	4P	Fil.	2.5	1.75	2650	7.5	7500	100	HV
872A/872	Half-Wave Rectifer	4 -pin J.	4AT	FII.	5.0	7.5		1250	10000	5000	MV
$\begin{aligned} & 975 A \\ & 575 A \\ & \hline \end{aligned}$	Half-Wave Rectifler	4-pin J.	4AT	Fil.	5.0	10.0	-	1500	15000	6000	MV
$\begin{aligned} & \overline{O Z 4 A /} \\ & 1003 \end{aligned}$	Full-Wove Rectifler	5-pin 0.	4R	Cold	-	-	-	110	880	-	G
$\begin{aligned} & 1005 / \\ & \text { CK } 1005 \end{aligned}$	Full-Wave Rectifler	8-pin 0.	540	Fil.	6.3	0.1	-	70	450	210	G
1006/ CK 1006	Full-Wave Rectifler	4-pin M.	4 C	Fil.	1.75	2.25	\longrightarrow	200	1600	-	G
CK 1007	Full-Wave Rectifier	8-pin 0.	T.96	Fil.	1.0	1.2		110	980		6
CK1009/BA	Full-Wave Rectifler	4-pin M.		Cold				350	1000	\cdots	G
1274	Full-Wave Rectifier	6-pin O.	65	Hir.	6.3	0.6	Same as $7 \mathrm{Y4}$				HV
1275	Full-Wave Rectifier	4-pin M.	4 C	Fil.	5.0	1.75	Same as 523				HV
1616	Half-Wave Rectifer	4-pin M.	4 P	Fil.	2.5	5.0		130	6000	800	HV
$\begin{aligned} & 1641 / \\ & \text { RK60 } \end{aligned}$	Full-Wave Rectifler	4-pin M.	T-4AG	Fil.	5.0	3.0	-	50	4500		HV
								250	2500	-	
1654	Half-Wave Rectifer	7-pin B.	2 Z	Fil.	1.4	0.05	2500	1	7000	6	HV
5517	Half-Wave Reclifier	7-pin B.	5BU	Cold	-	\cdots	1200	6		50	G
5690	Half-Wove Rectifier	8-pin 0.	Fig. 74	Htr.	6.3	2.4	350	1254	1120	750	HV
					12.6	1.2	350	1507	1120	750	
5825	Half-Wave Reclifier	4-pin M.	48	Fil.	1.6	1.25	-	2	60000	40	HV
5993	Full-Wave Rectifier	9-pin B.	Fig. 71	Hit.	6.3	0.8	\square		1250	230	HV
6063/6×4	Full-Wave Rectifier	7-pin B.	5BS	Her.	6.3	0.6	3254	70	-	-	HV
		7-pin B.					$450{ }^{7}$	70	-		
6157	Half-Wave Rectifier	9-pin B.	Fig. 72	Htr.	6.3	0.8	500	75		-	HV
							350	125	-		
8008	Half-Wave Rectifier	4-pin ${ }^{\text {8 }}$	Fig. 11	Fii.	5.0	7.5		1250	10000	5000	MV
80134	Half-Wave Rectifier	4-pin M.	4 P	Fil.	2.5	5.0	\cdots	20	40000	150	HV
8016	Half-Wave Rectifier	6-pin 0.	4AC	Fil.	1.25	0.2	-	2.0	10000	7.5	HV
8020	Half-Wave Rectifler	4-pin M.	48	Fil.	5.0	5.5	10000	100	40000	750	HV
					5.8	6.5	12500	100	40000	750	
RK19	Full-Wave Rectifier	4-pin M.	4AT	Htr.	7.5	2.5	1250	2004	3500	600	HV
RK21	Half-Wave Rectifier	4-pin M.	48	Hir.	2.5	4.0	1250	2004	3500	600	HV
RK22	Full-Wave Rectifler	4-pin M.	T.4AG	Hir.	2.5	8.0	1250	2004	3500	600	HV
RX21A	Holf-Wove Rectifiep	5-pin M.	-	Fil.	2.5	10.0	-	750	11000	-	MV

1 With input choke of af least 20 henpys.
2 Topped for pilot lamps.
3 Per pair with choke input.

- Condenser input.

Condenser input.
series resistop maximistonce in series win plate; withou series resisiop, maximum r.m.s. plate rating is 117 volis.

S Same as 872A/872 except for heavy-duty push-fype base. Filament connected to pins 2 and 3, plate to top cap.
Choke input.
8 Without panel lamp.
9 Using only one-half of flament.
${ }^{10}$ Discontinued.

TABLE XVI-TRIODE TRANSMITTING TUBES

Type	Max. Plate Dissipation Watls	Cathode		Max.PlofeVoltage	Max. Plate Current Ma.	Max. D.C. Grid Current Ma.	Amp. Factor	Interalectrode Capacitonces ($\mu \mu \mathrm{fd}$.)			Mox. Freq. Mc. Full Ratings	Base	Socket Connec. tions	Trpical Operation	Plate Volfage	Grid Voltoge	Plate Current Ma.	D.C.GridCurrentMa.	Approx. Grid Driving Power Watts	```Class B P-to-P Load Res. Ohms```	Approx. Oulput Power Watis
		Volts	Amp.					Grid 10 Fil.	Grid to Plate	Plote to Fil.											
958-A	0.6	1.25	0.1	135	7	1.0	12	0.6	2.6	0.8	500	A.	5BD	Class-C Amp.-Oscillatar	135	- 20	7	1.0	0.035		0.6
387 \%	-	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.11 \end{aligned}$	180	25	-	20	1.4	2.6	2.6	125	0.	7 AP	Class-C Amp. (Telegraphy)	180	0	25		0.035		2.8
RK24	1.5	2.0	0.12	180	20	6.0	8.0	3.5	5.5	3.0	125	5.	4D	Class-C Amp.-Oscillator	180	- 45	16.5	6.0	0.5		2.0
6.66^{2}	1.5	6.3	0.45	300	30	16	32	2.2	1.6	0.4	250	8.	7 BF	Class-C Amp. (Telegraphy) ${ }^{2}$	150	- 10	30	16	0.35		3.5
9002	1.6	6.3	0.15	250	8	2.0	25	1.2	1.4	1.1	250	B.	71 M	Class-C Amp.-Oscillator	180	- 35	7	1.5			3.5
955	1.6	6.3	0.15	180	8	2.0	25	1.0	1.4	0.6	250	A.	5BC	Class-C Amp.-Oscillator	180	- 35	7	1.5		-	0.5
HYIIAB	1.8	1.4	0.155	180	12	3.0	13	1.0	1.3	1.0	300	0.	2 T	Class-C Amp.-Oscillator	180	- 30	12	2.0	0.2	-	$1.4{ }^{3}$
									1.3	1.0	300	O.	27	Class-C Amp. (Telephony)	180	- 35	12	2.5	0.3	-	$1.4{ }^{\text {a }}$
3 A5 2	2.0	$\begin{aligned} & 1.4 \\ & 2.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.11 \\ & \hline \end{aligned}$	150	30	5.0	15	0.9	3.2	1.0	40	B.	7BC	Class-C Amp.-Oscillator ${ }^{2}$	150	- 35	30	5.0	0.2		2.2
6F4	2.0	6.3	0.225	150	20	8.0	17	2.0	1.9	0.6	500	A.	7BR	Class-C Amp.-Oscillator	150	$\begin{gathered} -15 \\ 550^{*} \\ 2000^{* *} \end{gathered}$	20	7.5	0.2	-	1.3
HY24	2.0	2.0	0.13	180	20	4.5	9.3	2.7	5.4	2.3	60	5.	40	Class-C Amp. (Telegrophy)	180	- 45	20	4.5	0.2	-	2.7
RK331,2	2.5	2.0	0.12	250	20	6.0	10.5	3-2	3-2	2.5	60	5.	T-7DA	Class-C Amp. (Telephony)	180	-45	20	4.5	0.3		2.5
$12 \mathrm{AU7}{ }^{2}$	$2.75{ }^{\text {b }}$	6.3	0.3	350	$12{ }^{5}$	$3.5{ }^{5}$	18	1.5	1.5	0.5	54	5.	9A	Class-C Amp.-Oscillator ${ }^{2}$	250	-60 -100	20	6.0	0.54	$=$	3.5
6 6, 4	3.0	6.3	0.2	180	12		32	3.1	2.35	0.55	500	B.	7CA	Class-C Amp.-Oscillator	180	-100	24	7		-	6.0
6026	3.0	6.3	0.2	150	30	10	24	2.2	1.3	0.38	400	N.	-	Class-C Oscillator-400 Mc.	135	1300 \ldots	20	9.5		\square	1.25
HY6J5GTX	3.5	6.3	0.3	330	20	4.0	20	4.2	3.8	5.0	60	O.	60	Class-C Amp.-Oscillator	330	- 30	20	2.0	0.2	-	3.5
2C22/7193	3.5	6.3	0.3	500										Class-C Amp. (Telephony)	250	- 30	20	2.5	0.3		2.5
HY615 HY-E1148	3.5	6.3	0.175	300	20	4.0	20	2.2	3.6 1.6	0.7 1.2	300	0.	4AM	Class-C Amp. (Telegraphy)	300	- 35	20	2.0	-- 0.4	-	4.0^{3}
														Class-C Amp. (Telephony)	300	- 35	20	3.0	0.8	-	$3.5{ }^{3}$
GL-4468	3.75	6.3	0.75	400	20	-	45	2.2	1.6	0.02	500	0.	Fig. 19	Class-C Amp.-Oscillator	250	-	-	-	-	-	-
$\begin{aligned} & \text { GL-2C44 } \\ & \text { GL-464A } \end{aligned}$	5.0	6.3	0.75	500	40	-	-	2.7	2.0	0.1	500	0.	Fig. 17	Class-C Amp.-Oscillator	250	-	-	-	-	-	
6 64	5.0	6.3	0.15	350	25	8.0	18	1.8	1.6	1.3	54	B.	6 BG	Class-C Amp.-Oscillator	300	- 27	25	7.0			
1626	5.0	12.6	0.25	250	25	8.0	5.0	3.2	4.4	3.4	30	0.	60	Class-C Amp.-Oscillator	250	- 27	25	5.0	0.35		5.5
$\begin{array}{r} 2 \mathrm{2C21/} \\ \mathrm{RKO}^{2} \\ \hline \end{array}$	5.0	6.3	0.6	250	40	12	-	1.6	1.6	2.0	-	5.	T-7DA	Class-C Amp.-Oscillator ${ }^{2}$	250	- 60	40	12	1.0	-	7.0
2 C36	5	6.3	0.4	1500	-	-	25	1.4	2.4	0.36	1200	N.	Fig. 36	Plate-Pulsed 1000.Mc. Osc.	$1000{ }^{5}$	0	$900{ }^{3}$	-	-	$\underline{-}$	
$\begin{aligned} & \hline 2037 \\ & 5766 \\ & 5767 \end{aligned}$	5	6.3	0.4	350	-	-	25	1.4	1.85	0.02	3300	N.	Fig. 36	1000-Mc. C.W. Oscillatar	150	3000 **	15	3.6	-	-	2003 0.5
5764	5	6.3	0.4	$1500{ }^{3}$	11.5	-	25	1.4	1.85	0.02	3300	N.	Fig. 36	Plate-Pulsed 3300-Mc. Osc.	$1000{ }^{\text {a }}$	0	1300 :				$200{ }^{5}$
5765	5	6.3	0.4	350	-		25	1.3	2.1	0.03	2900	N.	Fig. 36	$1900-\mathrm{Mc}$. C.W. Oscillator	180	10000 **	25		-		$\frac{200}{0.225}$
5794 665	5	6.0	0.16	165	30			-	-	- 0	-	N.	Fig. 36	Fixed Tuned Oscillator Approximately 1680 Mc .	85/108	,0000	25	-	-		0.225
5675	5.5	6.3	0.135	165 350	30	8	20	2.3	1.3	0.09	3000	N.	Fig. 36	Grounded.Grid Osc.	120	- 8	25	4	-	-	0.05
6N7 :	5.58	6.3	0.8	350	$30{ }^{6}$	$5.0{ }^{6}$	35		-	-	10	0.	88	Class-C Amp. Oscillator ${ }^{2,11}$	350	-100	60	10			14.5
5876	6.25	6.3	0.135	300	25	-	56	2.5	1.4	0.035	1700	N.	Fig. 36	Grounded-Grid Oscillator	250	- 2	23	3	-	-	0.75
$2 \mathrm{C40}$	6.5	6.3	0.75	500	25		36	2.1	1.3	0.05	500	0.	Fig. 19	Frequency Multiplier	300	- 70	17.3	7		-	2.0
5556	7.0	4.5	1.1	350	40	10	8.5	4.0	8.3	3.0	6	M.	4 D	Class-C Amp. (Telegraphy)	350	$-\quad 5$ -80	30	0.3	0.25	-	$\frac{0.075}{6}$
														Class-C Amp. (Telephony	300	-100	30	2	0.3		4
5893	8.0	6.0	0.33	400	40	13	27	2.5	1.75	0.07	1000	-	Fig. 36	Class-C Amp. (Telegraphy)	350	- 33	35	13	2.4	-	6.5
													Fig. 36	Class-C Amp. (Telephonr)	300	-45	30	12	2.0		6.5

TABLE XVI-TRIODE TRANSMITTING TUBES—Continued

Type	Max. Plate Dissipation Walts	Cathode			MaxPlate Current Ma.	Mox. D.C. Grid Current Ma.	Amp. Factor	InterelectrodeCapacitances $\left(\mu \mu \mathrm{fl}_{.}\right)$			Max. Freq. Mc. Full Rotings	Base	Sackel Connec: tions	Typical Operation	Plate Voltage	Grid Voltage	Plate Current Mo.		Approx. Grid Driving Power Watts	$\begin{gathered} \text { Close B } \\ \text { P-to-P } \\ \text { Load Res. } \\ \text { Ohms } \end{gathered}$	Approx. Outpul Walts
		Volts	Amp.					Grid lo Fil.	Grid to Plate	$\begin{gathered} \text { Plate } \\ \text { to } \\ \text { fil. } \end{gathered}$											
$2 \mathrm{C43}$	12	6.3	0.9	500	40	-	48	2.9	1.7	0.05	1250	0.	Fig. 19	Closs-C Amp.-Oscillator	470	-	38.	-	-	-	97
2C26A	10	6.3	1.10				16.3	2.6	2.8	1.1	250	0.	488		-		-	-			-
$\begin{aligned} & \text { 2C34/ } \\ & \text { RK34 } \end{aligned}$	10	6.3	0.8	300	80	20	13	3.4	2.4	0.5	250	M.	T.70C	Class-C Amp. Oscillator ${ }^{2}$	300	- 36	80	20	1.8	-	16
	14	4.5	1.6	400	50	10	7.2	5.2	4.8	3.3	6	M	40	Class-C Amp.-Oscillator	400	-112	45	10	1.5	-	10
2050	14	4.5	1.6	400	50	10	7.2	5.2		3.3		m.	40	Class-C Amp. (Telephony)	350	-144	35	10	1.7		7.1
		7.0	1.18	450	60	15	8.0	6.0	8.9	3.0	-	M.	4D	Class-C Amp.-Oscillator	450	-100	65	15	3.2		19
2 C 25	15	7.0	1.18	450	60	15	8.0	6.0	8.9	3.0	-	M.	4D	Class-C Amp. (Telephony)	350	-100	50	12	2.2		12
			1.25	450	65	15	8	4.1	7.0	3.0	8	M.	4D	Class-C Amp.-Oscillator	450	-100	65	15	3.2	-	19
Ior	15	7.5	1.25	450	65	15	8	4.1	7.0	3.0	8	M.	40	Class-C Amp. (Telephony)	350	-100	50	12	2.2		12
843	15	2.5	2.5	450	40	7.5	7.7	4.0	4.5	4.0	6	M.	5A	Class-C Amp.-Oscillator	450	-140	30	5.0	1.0		7.5
843					40	7.5	7.7	4.0	4.5	4.0	6	M.	SA	Closs-C Amp. (Telephony)	350	-150	30	7.0	1.6	-	5.0
RK592	15	6.3	1.0	500	90	25	25	5.0	9.0	1.0		M .	T-4D	Class-C Amp.-Oscillator	500	-60	90	14	1.3	-	32
														Class-C Amp. (Telegraphy)	450	-140	90	20	5.2		26
HY75A	15	6.3	2.6	450	90	25	9.6	1.8	2.6	1.0	175	O.	21	Class-C Amp. (Telephony)	400	-140	90	20	5.2	-	21
HY75	15	6.3	2.5	450	80	20	10	1.8	3.8	1.0	60	0.	2 T	Class-C Amp.-Oscillator	450	- 50	80	12	-	\square	$21{ }^{3}$
HY75	15	6.3	2.5	450	80	20	10	1.8	3.8	1.0	60	O.	21	Closs-C Amp. (Telephony)	450	- 60	80	12	-	-	16^{3}
														Class-C Amp. (Telegraphy)	450	-115	55	15	3.3	-	13
16021	15	7.5	1.25	450	60	15	8.0	4.0	7.0	3.0	6	M.	4D	Class-C Amp. (Telephony)	350	-135	45	15	3.5		8.0
														Class-B Amp. Audio ${ }^{\text {] }}$	425	- 50	110^{8}	$260{ }^{9}$	$2.5{ }^{3}$	8000	25
			1.25	450	60									Class-C Amp. (Telegrophy)	450	- 34	50	15	1.8	-	15
841	15	7.5	1.25	450	60	20	30	4.0	7.0	3.0	6	m.	40	Closs-C Amp. (Telephony)	350	-47	50	15	2.0		11
														Class-C Amp. (Telegraphy)	450	-100	65	15	3.2	-	19
101 RK10 1	15	7.5	1.25	450	65	15	8.0	3.0	8.0	4.0		M.	40	Class-C Amp. (Telephony)	350	-100	50	12	2.2	-	12
											60			Class-B Audio ${ }^{\text { }}$	425	- 50	$55{ }^{3}$	130^{9}	$2.5{ }^{8}$	8000	25
RK100:	15	6.3	0.9	150	250	100	40	23	19	3.0	-	M.	T-68	Closs-C Oscillator	110	-	80	8.0	7	-	3.5
RK100.	15	6.3	0.9	150	250	100	40	23	19	3.0	-	m.	1-68	Class-C Amplifier	110	-	185	40	2.1	-	12
TUF-20	20	6.3	2.75	750	75	20	10	1.8	3.6	0.095	250	0.	2T	Class-C Amp.-Oscillator	750	-150	75	20	1.5/2.5	-	40
														Class-C Amp. (Telegraphy)	425	- 90	95	20	3.0	-	27
1608	20	2.5	2.5	425	95	25	20	8.5	9.0	3.0	45	M.	4D	Class-C Amp. (Telephony)	350	-80	85	20	3.0	-	18
														Class-B Amp. Audio ${ }^{\text {a }}$	425	- 15	$190{ }^{8}$	130 *	$2.2{ }^{8}$	4800	50
310	20	7.5	1.25	600	70	15	8.0	4.0	7.0	2.2	6	M.	40	Class-C Amp. (Telegraphy)	600	-150	65	15	4.0	-	25
310	20	7.5	1.25	600		1	6.0	4.0	7.0	2.2		M.		Class-C Amp. (Telephony)	500	-190	55	15	4.5		18
703.4	20	1.2	4/4.5	350	75	12	8	0.9	1.1	0.6	1400	N.	-	Closs-C Amplifier	350	-120	75	12	-	-	2/2.5
														Class-C Amp. (Telegraphy)	600	-150	65	15	4.0	-	25
801-A/801	20	7.5	1.25	600	70	15	8.0	4.5	6.0	1.5	60	M.	4D	Closs-C Amp. (Telephony)	500	-190	55	15	4.5	-	18
														Closs-B Amp. Audio ${ }^{7}$	600	- 75	130	$320{ }^{9}$	$3.0{ }^{8}$	10000	45
HY801.A	20	7.5	1.25	600	70	15	8.0	4.5	6.0	1.5	60	M.	40	Class-C Amp. (Telegraphy)	600	-200	70	15	4.0	-	30
HY801.A	20	7.5	1.25	600	70	15	8.0	4.5	6.0	1.5	60	M.	40	Class-C Amp. (Telephony)	500	-200	60	15	4.5	-	22
	20	7.5	1.75	750	85	25	20							Class-C Amp. (Telegraphy)	750	-85	85	18	3.6	-	44
T20	20	7.5	1.75	750	85	25	20	4.9	5.1	0.7	60	M.	36	Class-C Amp. (Telephony)	750	-140	70	15	3.6	-	38
														Class-C Amp. (Telegraphy)	750	- 40	85	28	3.75	-	44
TZ20	20	7.5	1.75	750	85	30	62	5.3	5.0	0.6	60	M.	3G	Class-C Amp. (Telephony)	750	-100	70	23	4.8	-	38
														Closs.B Amp. Audio ${ }^{\text {T }}$	800	0	40/136	160 \%	$1.8{ }^{8}$	12000	70
15E	20	5.5	4.2	-	-	-	25	1.4	1.15	0.3	600	N.	T-4AF	Class-C Amp. (Telegrophy)			Characle	eristies sim	milar to 2		

TABLE XVI-TRIODE TRANSMITTING TUBES-Continued

Type	Max. Plate Dissipation Watts	Cathode		Mox. Plate Volfage	Max.PlateCurrentMa.	Max. D.C. Grid Current Ma.	Amp. Faclor	$\begin{gathered} \text { Interelectrode } \\ \text { Capacitances (} \mu \mu \mathrm{fd} .) \end{gathered}$			Max. Freq. Mc. Full Ratings	Base	Sockel Connections	Typical Operation	Plate Voltage	Grid Voltage	Plate Current Ma.	$\begin{array}{\|c} \text { D.C. } \\ \text { Gurrent } \\ \text { Ma. } \end{array}$	Approx. Grid Driving Power Watts	$\begin{gathered} \text { Class B } \\ \text { P+lo-P } \\ \text { CoadRes. } \\ \text { Ohms } \end{gathered}$	Approx. Output Power Watts
		Volts	Amp.					Grid to Fil.	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plate } \end{aligned}$	Plate to Fil.											
$\begin{aligned} & \text { 3-25A3 } \\ & 25 T \end{aligned}$	25	6.3	3.0	2000	75	25	24	2.7	1.5	0.3	60	M.	3 G	Class-C Amp.-Oscillator	2000	-130	63	18	4.0	-	100
															1500	-95	67	13	2.2	-	75
															1000	- 70	72	9	1.3		47
														Class-B Amp. Audio ${ }^{\text {a }}$	2000	- 80	16/80	270:	$0.7{ }^{8}$	55500	110
$\begin{aligned} & \text { 3-25D3 } \\ & \text { 3C24 } \\ & \text { 24G } \end{aligned}$	25	6.3	3.0	2000	75	25	23	$\begin{aligned} & 2.0 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.3 \end{aligned}$	150	s.	2D	Class-C Amp.-Oscillator	2000	-170	63	17	4.5		100
															1500	-110	67	15	3.1		75
															1000	-80	72	15	2.6	$\underline{\square}$	47
3 C 28	25	6.3	3.0	2000										Class-C Amp.-Oscillotor	2000	-85	16/80	290	$1.1{ }^{\text {1 }}$	55500	110
3 C 34	25	6.3	3.0	2000	$\frac{75}{75}$	25	23	2.1	1.8	$\frac{0.1}{0.4}$	100 60	5.	Fig. 56		Choracteristics same as 3C24						
	25	6.3	3.0	2000	75	25	23	2.5	1.7	0.4	60	5.	3G	Class.C Amp.-Oscillator	Characteristics some as 3C24						
RK11				750	105	35	20	7.0	7.0	0.9	60	M.	3G	Class C Amp. (Telegrophy)	750	-120	105	21	3.2	-	55
RK12	25	6.3	3.0	750	105	40	100				60			Class-C Amp. (Telephony)	600 750	-120	105	24	3.7	-	38
								7.0	7.0	0.9		M.	3G	Class-C Amp. (Telephony)	600	-100	85	27	5.2	-	35
HK24	25	6.3	3.0	2000	75	30	25	2.5	1.7	0.4	60	5.	3G	Class-C Amp. (Telegraphy)	2000	-140	56	18	4.0	-	90
														Class-C Amp. (Telephony)	1500	-145	50	25	5.5	-	60
HY25	25	7.5	2.25	800	75	25	55	4.2	4.6	1.0	60	M.	36	Class-C Amp. (Telegraphy)	750	- 45	75	15	2.0	-	42
8025	30	6.3	1.92											Class-C Amp. (Telephony)	700	-45	75	17	5.0	-	39
	20			1000	65		18	2.7	2.8	0.35	500	M.	4AO	Class-C Amp. (Grid. Mod.)	1000	-135	50	4	3.5	-	20
	30				80	$\begin{aligned} & 20 \\ & 20 \end{aligned}$								Class-C Amp. (Telephony)	800	- 105	40	10.5	1.4	-	22
														Class-C Amp. (Telegraphy)	1000	- 90	50	14	1.6	-	35
HY302 ${ }^{\text {1 }}$	$30 *$	6.3	2.25	850	90	25	87	6.0	4.9	1.0	60	M.	4 BO	Class-C Amp.-Oscillatar	850	-75	90	25	2.5	-	58
														Class-C Amp. (Telephony)	700	-75	90	25	3.5	-	47
HY12312²	30	$\begin{array}{r} 6.3 \\ 12.6 \end{array}$	$\begin{aligned} & 3.5 \\ & 1.7 \end{aligned}$	500	150	30	45	5.0	5.5	1.9	60	M.	T.4D	Class-C Amp. (Telegraphy)	500	- 45	150	25	2.5	-	56
316A														Class-C Amp. (Telephony)	400	-100	150	30	3.5		45
VT-191	30	2.0	3.65	450	80	12	6.5	1.2	1.6	0.8	500	N.	-	Class-C Amp. (Tolegrophy)	450		80	12	-	-	7.5
809	30	6.3	2.5		125									Class-C Amp. (Telephony)	400	-	80	12		-	6.5
				1000		-	50	5.7	6.7	0.9	60	M.	36	Class-C Amp. (Telegraphy)	1000	-75	100	25	3.8	-	75
														Closs-C Amp. (Telephony)	750	- 60	100	32	4.3	-	55
1623	30													Class-B Amp. Audio?	1000	- 9	40/200	155.	$2.7{ }^{8}$	11600	145
		6.3	2.5	1000	100	25	20	5.7	6.7	0.9	60	M.	3G	Class-C Amp.-Oscillator	1000	- 90	100	20	3.1	-	75
														Class-C Amp. (Telephony)	750	-125	100	20	4.0		55
53A	35	5.0	12.5	15000		-	35	3.6	1.9					Class-B Amp. Audio	1000	-40	30/200	230	$4.2{ }^{8}$	12000	145
RK301	35	7.5	3.25	1250	80	25	15	2.6	2.9	0.4	--	N.	1.48	Oscillator af 300 Mc .	Approximately 50 watts oulput						
800	35								2.5	2.75	60	M.	2D	Class.C Amp. (Telaphony)	1000	-200	80	15	4.5		85
		7.5	3.25	1250	80	25	15	2.75	2.5	2.75	60	M.	2D	Class-C Amp. (Telegraphy)	1250	-175	70	15	4.0	-	65
														Class-C Amp. (Telephony)	1000	-200	70	15	4.0		50
														Class-B Amp. Audio	1250	- 70	30/130	$300{ }^{9}$	3.4 .	21000	106
16281	40	3.5	3.25	1000	60	15	23							Class-C Amp.-Oscillator	1000	-65	50	15	1.7	ーー	35
						15	23	2.0	2.0	0.4	500	N.	T-4BB	Closs-C Amp. (Telephony)	800	-100	40	11	1.6	--	22
														Grid-Modulated Amp.	1000	-120	50	3.5	5.0	-	20
8012	40	6.3	2.0	1000	80	20	18	2.7	2.8	0.35				Class-C Amp.-Oscillotar	1000	-90	50	14	1.6	-	35
CL-8012-A							18	2.7	2.5	0.4	500	N.	T-48B	Class-C Amo. (Telephony)	800	-105	40	10.5	1.4	-	22
														Grid-Modulated Amp.	1000	-135	50	4.0	3.5		20
RK18 1	40	7.5	3.0	1250	100	40	18	6.0	4.8	1.8	60	M.	3G	Closs-C Amp. (Telegraphy)	1250	-160	100	12	2.8	-	95
														Class-C Amp. (Telephony)	1000	-160	80	13	3.1	-	64

TABLE XVI-TRIODE TRANSMITTING TUBES-Continued

7 yp	Max. Plate Disisipation Watts	Cathode		Max. PlateVoltage		Max.D.C.GridCorrentMa.	Amp. Factor	$\begin{gathered} \text { Interelectrode } \\ \text { Capacitances (} \mu \mu \mathrm{fd} .) \end{gathered}$			Max. Freq. Mc. Full Ratings	Base	5ockel Connections	Typical Operation	$\begin{array}{\|c} \text { Plate } \\ \text { Voliage } \end{array}$	Grid Voltage	Plate Current Ma.	$\begin{gathered} \text { D.C. } \\ \text { Grid } \\ \text { Current } \\ \text { Mo. } \end{gathered}$	Approx. Grid Driving Power Walts	$\begin{gathered} \text { Class B } \\ \text { P-to-P } \\ \text { Coad Res. } \\ \text { Ohms } \end{gathered}$	Approx. Outpul Power WoHs
		Volts	Amp.					$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { fil. } \end{gathered}$	Grid 10 Plote	$\begin{gathered} \text { Plate } \\ \text { to } \\ \text { Fil. } \end{gathered}$											
														Class-C Amp. (Telegraphy)	1250	-80	100	30	3.0		90
RK31	40	7.5	3.0	1250	100	35	170	7.0	1.0	2.0	30	M.	3 G	Class-C Amp. (Telephony)	1000	-80	100	28	3.5	-	70
HY40:	40	7.5	2.25	1000	125	25	25	6.1	5.6	1.0	60	M.	3 G	Class.C Amp. (Telegrophy)	1000	- 90	125	20	5.0	-	94
														Class-C Amp. (Telephony)	850	- 90	125	25	5.0	-	82
														Grid-Modulated Amp.	1000		125			-	20
HY40Z ${ }^{\text {! }}$	40	7.5	2.6	1000	125	30	80	6.2	6.3	0.8	60	M.	3G	Class-C Amp. (Telegraphy)	1000	-27	125	25	5.0		94
														Class-C Amp. (Telephony)	850	- 30	100	30	7.0	-	82
														Grid.Modulated Amp.	1000		60				20
														Class-C Amp. Oseillator	1500	-140	150	28	9.0	-	158
140	40	7.5	2.5	1500	150	40	25	4.5	4.8	0.8	60	M.	3G	Class-C Amp. (Telephony)	1250	-115	115	20	5.25	-	104
TZ40	40	7.5	2.5	1500	150	45	62	4.8	5.0	0.8	60	M.	36	Class-C Amp.-Oseitlator	1500	- 90	150	38	10	-	165
														Class-C Amp. (Telaphony)	1250	-100	125	30	7.5	-	116
														Class-B Amp. Audio ${ }^{\text {] }}$	1500	- 9	$250{ }^{\text {8 }}$	285 .	$6.0{ }^{8}$	12000	250
HY57	40	6.3	2.25	850	110	25	50	4.9	5.1	1.7	60	M.	3G	Class-C Amp. (Telegraphy)	850	- 48	110	15	2.5	-	70
														Class-C Amp. (Telephony)	700	- 45	90	17	5.0	-	47
														Grid-Modulaled Amp.	850		70		-	-	20
7561	40	7.5	2.0	850	110	25	8.0	3.0	7.0	2.7	-	M.	4D	Class-C Amplifior	850	-	110	25	-	-	[-
													4D	Class-C Amplifier	750	-180	110	18	7.0	-	55
8301	40	10	2.15	750	110	18	8.0	4.9	9.9	2.2	15	M.	40	Grid-Modulated Àmp.	1000	-200	50	2.0	3.0	-	15
$\begin{aligned} & \hline 3-50 A 4 \\ & 35 \mathrm{~T} 4 \\ & 3-50 \mathrm{~A} 4 \\ & 35 \mathrm{TG} \\ & \hline \end{aligned}$	50	5.0	4.0	2000	150	50	39	$\begin{aligned} & 4.1 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	M.M.	$\begin{aligned} & \text { 3G } \\ & \text { 2D } \end{aligned}$	Class-C Amp. (Telegraphy)	2000	-135	125	45	13	-	200
														Class-C Amp. (Telephony)	1500	-150	90	40	11	-	105
														Class-B Amp. Audio ${ }^{\text {- }}$	2000	- 40	4/167	255 .	4.08	27500	235
8010-R	50	6.3	2.4	1350	150	20	30	2.3	1.5	0.07	350	N.	-	Class-C Amplifier	-	-	-		-	-	-
														Class-C Amp. (Telegraphy)	1250	-225	100	14	4.8		90
RK32 ${ }^{1}$	50	7.5	3.25	1250	100	25	11	2.5	3.4	0.7	100	M.	20	Class.C Amp. (Telephony)	1000	-310	100	21	8.7	-	70
RK351	50	7.5	4.0	1500	125	20	9.0	3.5	2.7	0.4	60	M.	2D	Class-C Amp. (Telegraphy)	1500	-250	115	15	5.0	-	120
														Class-C Amp. (Telaphony)	1250	-250	100	14	4.6	-	93
														Grid-Modulated Amp.	1500	-180	37		2.0	-	25
RK37	50	7.5	4.0	1500	125	35	28	3.5	3.2	0.2	60	M.	2D	Closs-C Amp. (Telegraphy)	1500	-130	115	30	7.0	-	122
														Class-C Amp. (Telephony)	1250	-150	100	23	5.6	-	90
														Grid-Modulated Amp.	1500	- 50	50		2.4	-	26
$\begin{aligned} & 3-50 G 2 \\ & \text { UH50 } \end{aligned}$	50	7.5	3.25	1250	125	25	10.6	2.2	2.6	0.3	60	M.	2D	Closs-C Amp. (Telegraphy)	1250	-225	125	20	7.5	-	115
														Class-C Amp. (Telephony)	1250	-325	125	20	10	-	115
														Grid-Modulated Amp.	1250	-200	60	2.0	3.0	-	25
UH51 ${ }^{1}$	50	5.0	6.5	2000	175	25	10.6	2.2	2.3	0.3	60	M.	20	Class-C Amp. (Telegraphy)	2000	-500	150	20	15	-	225
														Class-C Amp. (Telephony)	1500	-400	165	20	15	-	200
														Grid-Modulated Amp.	1500	-400	85	2.0	8.0	-	65
HK54	50	5.0	5.0	3000	150	30	27	1.9	1.9	0.2	100	M.	2 D	Class-C Amp. (Telegraphy)	3000	-290	100	25	10	-	250
														Class-C Amp. (Telephony)	2500	-250	100	20	8.0	-	210
														Class-B Amp. Audio ${ }^{7}$	2500	-85	20/150	$360{ }^{\text {9 }}$	5.0	40000	275
HK154 ${ }^{\text {d }}$	50	5.0	6.5	1500										Class-C Amp. (Telegraphy)	1500	-590	167	20	15	-	200
					175	30	6.7	4.3	5.9	1.1	60	M.	2D	Closs-C Amp. (Telephony)	1250	-460	170	20	12	-	162
														Grid-Modulated Amp.	1500	-450	52		5.0		28
						40	25	4.7	4.6	1.0	60	M		Class-C Amp.-Oseillator	2000	-150	125	25	6.0	-	200
HK158	50	12.6	2.5	2000	200	40	25	4.7	4.6	1.0	60	M.	20	Class-C Amp. (Telephony)	2000	-140	105	25	5.0	-	170
														Class-C Amp. (Telegraphy)	1250	-200	100	-	-	-	85
3048	50	7.5	3.25	1250	100	25	11	2.0	2.5	0.7	100	m.	20	Class-C Amp. (Telephony)	1000	-180	100	-	-	-	65

TABLE XVI-TRIODE TRANSMITTING TUBES-Confinued

Typo	Max. Plate Dissipation Watts	Cathode		Max. Plate Voltage	Max.Plate Curreni Ma.	Max.D.C.GridCurrentMa.	Amp. Factor	Interelectrode Capacilances ($\mu \mu \mathrm{fd}$.)			Max. Freq. Mc. Full Ratings	Base	Sockel Connections	Typical Operation	Plate Voltage	Grid Voltage	Plate Current Ma.		Approx. Grid Driving Power Walts	Class B P-to-P Lood Res. Ohms	Approx. Oulput Power Watts
		Volts	Amp.					Grid to Fil.	Grid to Plate	Plate Io Fil.											
356A	50	5.0	5.0	1500	120	35	50	2.25	2.75	1.0	60	N.	T-48D	Class-C Amp. (Telegraphy)	1500	-60	100	\square	-		100
														Class-C Amp. (Telephony)	1250	-100	100	35	-		85
808	50	7.5	4.0	1500	150	35	47	5.3	2.8	0.15	30	M.	2D	Class-C Amp. (Telegraphy)	1500	-200	125	30	9.5		140
														Class-C Amp. (Telephony)	1250	-225	100	32	10.5		105
														Class-B Amp. Audio ${ }^{\text {I }}$	1500	- 25	30/190	$220{ }^{\circ}$	$4.8{ }^{\text {8 }}$	18300	185
834	50	7.5	3.1	1250	100	20	10.5	2.2	2.6	0.6	100	M.	2D	Class-C Amp. (Telegraphy)	1250	-225	90	15	4.5	\square	75
														Class-C Amp. (Telephony)	1000	-310	90	17.5	6.5		58
841A1	50	10	2.0	1250	150	30	14.6	3.5	9.0	2.5		M.	3 G	Class-C Amplifier	-				-		85
8415W	50	10	2.0	1000	150	30	14.6		9.0			M.	3 C	Class-C Amplifier		-			$\underline{-}$		
T55	55	7.5	3.0	1500	150	40	20	5.0	3.9	1.2	60	M.	3 G	Class-C Amp. (Telegraphy)	1500	-170	150	18	6.0		170
TSS	5			1500										Class-C Amp. (Telephony)	1500	-195	125	15	5.0		145
811	55	6.3	4.0	1500	150	50	160	5.5	5.5	0.6	60	M.	3 G	Class-C Amp. (Telegraphy)	1500	-113	150	35	8.0	-	170
														Class-C Amp. (Telephony)	1250	-125	125	50	11		120
														Class-B Amp. Audio ${ }^{\text {a }}$	1500	- 9	20/200	150\%	$3.0{ }^{8}$	17600	220
812	55	6.3	4.0	1500	150	35	29	5.3	5.3	0.8	60	M.	36	Class-C Amp. (Telegrophy)	1500	-175	150	25	6.5		170
														Class-C Amp. (Telephony)	1250	-125	125	25	6.0	-	120
														Class-8 Amp. Audio ${ }^{\text {\% }}$	1500	-45	50/200	232.	$4.7{ }^{8}$	18000	220
RK51	60	7.5	3.75	1500	150	40	20	6.0	6.0	2.5	60	M.	$3 G$	Class-C Amp. (Telegraphy)	1500	-250	150	31	10	-	170
														Class-C Amp. (Telephony)	1250	-200	105	17	4.5		96
														Grid-Modulated Amp.	1500	-130	60	0.4	2.3	-	128
RK52	60	7.5	3.75	1500	130	50	170	6.6	12	2.2	60	M.	3G	Class-C Amp. (Telegrophy)	1500	-120	130	40	7.0		135
														Class-C Amp. (Telephony)	1250	-120	115	47	8.5		102
														Class-B Amp. Audio ${ }^{7}$. 1250	0	40/300	180\%	$7.5{ }^{8}$	10000	250
T-60	60	10	2.5	1600	150	50	20	5.5	5.2	2.5	60	M.	2D	Class-C Amp.-Oscillator	1500	-150	150	50	9.0		100
826	55	7.5	4.0	1000	140	40	31	3.0	2.9	1.1	250	N.	780	Class-C Amp.-Oscillator	1000	- 70	130	35	5.8	-	90
														Class-C Amp. (Telephony)	1000	-160	95	40	11.5		70
														Grid-Modulated Amp.	1000	-125	65	9.5	8.2	\longrightarrow	25
$\begin{aligned} & 830 \mathrm{~B} \\ & 930 \mathrm{~B} \end{aligned}$	60	10	2.0	1000	150	30	25	5.0	11	1.8	15	M.	36	Class-C Amp.-Oscillator	1000	-110	140	30	7.0	-	90
														Class-C Amp. (Telephony)	800	-150	95	20	5.0	-	50
														Class-B Amp. Audio ${ }^{7}$	1000	- 35	20/280	$270{ }^{9}$	$6.0{ }^{8}$	7600	175
811 -A	65	6.3	4.0	1500	175	50	160	5.9	5.6	0.7	60	M.	3G	Class-C Amp. (Telegraphy)	1500	-70	173	40	7.1	\square	200
														Closs-C Amp. (Telephony)	1250	-120	140	45	10.0		135
														Class-B Amp. Audio ${ }^{\text {? }}$	1500	- 4.5	32/313	170^{9}	$4.4{ }^{8}$	12400	340
812-A	65	6.3	4.0	1500	175	35	29	5.4	5.5	0.77	60	M.	36	Class-C Amp. (Telegraphy)	1500	-120	173	30	6.5	\square	190
														Class-C Amp. (Telephony)	1250	-115	140	35	7.6	-	130
														Class-B Audio ${ }^{\text {] }}$	1500	- 48	28/310	270 ${ }^{\text {a }}$	5.0	13200	340
HYSIA: HYSIB:	65	$10^{7.5}$	$\begin{aligned} & 3.5 \\ & 2.25 \end{aligned}$	1000	175									Class-C Amp. (Telegraphy)	1000	-75	175	20	7.5	\square	131
						25	25	6.5	7.0	1.1	60	M.	3G	Class-C Amp. (Telephony)	1000	-67.5	130	15	7.5		104
														Grid-Modulaled Amp.	1000		100				33
														Class-C Amp. (Telegraphy)	1000	-22.5	175	35	10		131
HYSIZ	65	7.5	3.5	1000	175	35	85	7.9	7.2	0.9	60	M.	480	Class-C Amp. (Telephony)	1000	-30	150	35	10	-	104
														Grid-Modulaled Amp.	1000	-	100			-	33
														Class-C Amp. (Telegraphy)	1500	-106	175	60	12		200
5514	65	7.5	3.0	1500	175	60	145	7.8	7.9	1.0	60	M.	480	Class-C Amp. (Telephony)	1250	-84	142	60	10		135
														Class-B Audio	1500	-4.5	$350{ }^{3}$	$88{ }^{8}$	6.5^{8}	10500	400

TABLE XVI-TRIODE TRANSMITTING TUBES - Continued

Type	Max. Plate Dissipation Watis	Cathade		Mox. Plate Voltage		Max. D.C. Grid Current Mo.	Amp. Factor	$\begin{aligned} & \text { Interelectrode } \\ & \text { Capacitances (} \mu \mu \mathrm{fd} . \text {) } \end{aligned}$			Max. Freq. Mc. Full Rofings	Base	5ocket Connec. tions	Typical Operation	Plate Voltage	$\underset{\text { Grid }}{\text { Goltage }}$	Plate Current Ma.	$\begin{gathered} \text { D.C. } \\ \text { Grid } \\ \text { Current } \\ \text { Ma. } \end{gathered}$	Approx. Grid Driving Power Watts	$\begin{gathered} \text { Class B } \\ \text { P.to-P } \\ \text { Lood Res. } \\ \text { Ohms } \end{gathered}$	Approx Outpul Power Walts
		Valts	Amp.					$\begin{gathered} \text { Grid } \\ \text { ta } \\ \text { fil. } \end{gathered}$	$\begin{aligned} & \text { Grid } \\ & \text { lo } \\ & \text { Plate } \end{aligned}$	$\begin{gathered} \text { Plote } \\ \text { to } \\ \text { Fil. } \end{gathered}$											
														Class-C Amp. (Telegraphy)	1500	-170	150	30	7.0		170
UH35	70	5.0	4.0	1500	150	35	30	1.4	1.6	0.2	60	M.	3G	Closs-C Amp. (Telephony)	1500	-120	100	30	5.0		120
V70	70	10	2.5	1500	140							J.	3N	Class-C Amp. (Telegraphy)	1500	-215	130	6.0	3.0		140
V70B	70	10	2.5	1500	140	25	14	5.0	9.0	2.3	-	M.	3 G	Class-C Amp. (Telephony)	1250	-250	130	6.0	3.0		120
V70A		10	2.5	1500	140	20	25			2.0	-	J.	3 N	Class-C Amp. (Telegraphy)	1000	- 110	140	30	7.0	-	90
V70C	70	10	2.5	1500	140	20	25	5.0	9.5	2.0	-	M.	3 G	Class-C Amp. (Telephony)	800	- 150	95	20	5.0		50
$50{ }^{1}$	75	5.0	6.0	3000	100	30	12	2.0	2.0	0.4	\sim	M.	2 D	Class-C Amplifier	3000	-600	100	25			250
3.75 A3	75	5.0	6.25	3000	225	40	20	2.7	2.3	0.3	40	M.	2 D	Class-C Amp. (Telegraphy)	2000	-200	150	32	10	-	225
75 TH									2.3	0.3				Class.B Amp. Audio	2000	- 90	50/225	350*	3 *	19300	300
3.75 A2													20	Class-C Amp. (Telegraphy)	2000	- 300	150	21	8	-	225
						35	12	2.6	2.4	0.4				Class-B Amp. Audio	2000	-160	50/250	535*	5 .	18000	350
HF-60	75	10	2.5	1600	160		28	5.4	5.2	1.5	30	M.	2 D	Class-C Amp. (Telegraphy)	1600	-190	158	12	3.5		200
						-								Class-C Amp. (Telephony)	1250	-190	113	8	2.5		110
														Class-B Amp. Audio	1600	- 75	50/248	310^{9}	3.0	13800	262
28.60	75	10	2.5	1600	160	40	80	6.1	5.8	1.85	30	M	2D	Class-C Amp. (Telegraphy)	1500	- 95	158	31	6.0	-	190
														Closs-B Amp. Audio :	1500	- 9	30/305	208	12.5	11200	320
111H	75	10	2.5	1500	160	30	23	5.0	4.6	2.9	30	M.	2 D	Class-C Amp. (Telegraphy)	1500	-200	150	18	6.0		170
														Class-C Amp. (Telephony)	1250	-250	110	21	8.0	-	105
														Class-B Amp. Audio :	1750	- 62	40/270	324*	9.0	16000	350
HF75	75	10	3.25	2000	120	-	12.5	-	2.0	\cdots	75	M.	2D	Class-C Oscillator-Amp.	2000	-	120	-	-	-	150
	75	7.5	4.15	2000	175	60	20	3.35	1.5	0.7	60	M.	2D	Class-C Amp.-Oscillator	2000	-175	150	37	12.7	\cdots	225
TW75	75	7.5	4.15	2000	175	60	20	3.35	1.5	0.7	60	m.	20	Class-C Amp. (Telephony)	2000	-260	125	32	13.2		198
$\begin{aligned} & \text { T- } 100 \\ & \text { HF } 100 \end{aligned}$	75	10	2.5	1500	150	30	23	4.0	4.5	2.6	30	M.	20	Class-C Amp. (Telegraphy)	1500	-200	150	18	6.0		170
														Class-C Amp. (Telephony)	1250	-250	110	21	8.0	-	105
														Grid-Modulated Amp.	1500	-280	72	1.5	6.0		42
														Class-B Amp. Audio:	1750	- 62	40/270	324 *	$9.0{ }^{8}$	16000	350
UE. 100	75	10	2.5	1750	150	30	23	3.5	4.5	1.4	30	M.	2 D	Class-C Amp. (Telegraphy)	1500	-200	150	18	6.0		170
														Class-C Amp. (Telephony)	1250	-250	120	21	8.0	-	105
														Class-B Audio:	1750	-62	$540{ }^{8}$		9.0	16000	350
28120	75	10	2.0	1250	160	40	90	5.3	5.2	3.2	30	J.	$4 E$	Class-C Amp. (Telegraphy)	1250	-135	160	23	5.5	-	145
														Class-C Amp. (Telephony)	1000	-150	120	21	5.0	-	95
														Grid-Modulated Amp.	1250	-	95	8.0	1.5	\square	45
														Class-B Amp. Audio ?	1500	- 9	60/296	196.	$5.0{ }^{8}$	11200	300
3278	75	10.5	10.6	--	-	-	30	3.4	2.45	0.3	-	N.	T.4AD	-	-	-	-		-	-	-
	85	10	3.25	1250	150	50	12.5	6.5	13	4.0	6	J.	4 E	Class-C Amp. (Telegraphy)	1250	-175	150	-	-	-	130
242A	85	10												Class-C Amp. (Telephony)	1000	-160	150	50			100
284D	85	10	3,25	1250	150	100	4.8	6.0	8.3	5.6		J.	4E	Class-C Amp. (Telegraphy)	1250	-500	150		-	-	125
											-			Class-C Amp. (Telephony)	1000	-450	150	50	-	-	100
														Class-B Amp. Audio ${ }^{\text {l }}$	1250	-250	30/200		-	11200	140
812-H	85	6.3	4.0	1750	200	45		5.3	5.3	0.8	30	M.	3 G	Class-C Amp. (Telegraphy)	1750	-175	170	26	6.5	-	225
															1250	-125	125	25	5.0	-	116
							-							Class-C Amp. (Telephony)	1500	-125	165	21	6.0	\cdots	180
															1250	-125	125	25	6.0	-	120
														Class-8 Amp. Audio?	1500	- 46	42/200	-	-	18000	225

table XVI-Triode transmitting tubes-Continued

TABLE XVI-TRIODE TRANSMITTING TUBES-Continued

Type	Mox. Plate Dissipation Watts	Cathode		Max. Vollage		Max.D.C.GridCurrentMa.	Amp. Factor	$\begin{gathered} \text { Interelectrode } \\ \text { Capocitances (} \mu \mu \mathrm{fd} . \text {) } \end{gathered}$			Max. Freq. Mc. Full Ratings	Base	Socket Connections	Typical Operation	Plate Voliage	Grid Volloge	Plale Current Mo.	D.C. Grid Current Ma.	Approx. Grid Driving Power Watts	$\begin{gathered} \text { Class B } \\ \text { P-to-P } \\ \text { Logd Res. } \\ \text { Ohms } \end{gathered}$	Approx. Outpui Watts
		Volts	Amp.					$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Fil. } \end{gathered}$	Grid 10 Plote	$\begin{gathered} \text { Plate } \\ \text { to } \\ \text { Fil. } \end{gathered}$											
242C	100	10	3.25	1250	150	50	12.5	6.1	13.0	4.7	6	J.	$4 E$	Class-C Amp. (Telegraphy)	1250	-175	150	-	-	-	130
														Class-C Amp. (Telephony)	1000	-160	150	50		-	100
														Class-B Amp. (Audio) ${ }^{7}$	1250	- 80	25/150	-	258	7600	200
$\begin{aligned} & 261 \mathrm{~A} \\ & 361 \mathrm{~A} \end{aligned}$	100	10	3.25	1250	150	50	12	6.5	9.0	4.0	30	J.	4E	Class-C Amp. (Telegraphy)	1250	-175	125				100
														Class-C Amp. (Telephony)	1000	-160	150	50			100
														Class-B Amp. (Audio) ${ }^{\text {? }}$	1250	- 90	20/150	-	25^{8}	7200	200
$\begin{aligned} & 276 A \\ & 376 A \end{aligned}$	100	10	3.0	1250	125	50	12	6.0	9.0	4.0	30	J.	4E	Class-C Amp. (Telegrophy)	1250	-175	125			-	100
														Class-C Amp. (Telephony)	1000	-160	125	50	-	-	85
														Class-B Amp. (Audio) ${ }^{7}$	1250	-90	20/125	-	25^{8}	9000	175
2848	100	10	3.25	1250	150	100	5.0	4.2	7.4	5.3		J.	3N	Class-C Amp. (Telegraphy)	1250	-500	150		-	-	125
											-			Class-C Amp. (Telephony)	1000	-430	150	50		-	100
														Closs-B Amp. (Audio) ${ }^{\text { }}$	1250	-245	15/150		10^{8}	7200	200
2954	100	10	3.25	1250	175	50	25	6.5	14.5	5.5		J.	4E	Class-C Amp. (Telegraphy)	1250	-125	150		-	-	125
											-			Class-C Amp. (Telephony)	1000	-125	150	50		$\underline{-0}$	100
														Class-B Amp. (Audio) ${ }^{\text { }}$	1250	- 40	12/160		20^{8}	9000	250
$\begin{array}{r} 538 \\ 938 \end{array}$	100	10	3.25	1250	175	70		6.5	8.0	5.0	30	J.	4E	Class-C Amp. (Telegraphy)	1250	-90	150	30	6.0	-	130
							-							Class-C Amp. (Telephony)	1000	-135	150	60	16	-	100
														Class-8 Amp. (Audio)	1250	0	148/320	$200{ }^{9}$	7.5^{3}	9000	260
852	100	10	3.25	3000	150	40	12	1.9	2.6	1.0	30	M.	2D	Class-C Amp. (Telegraphy)	3000	-600	85	15	12		165
														Class-C Amp. (Telephony)	2000	-500	67	30	23		75
														Class-B Amp. (Audio) ${ }^{\text {] }}$	3000	-250	14/160	780^{9}	3.58	10250	320
564812	100	6.3	1.1	1000	100	50	100	8.75	1.95	0.035	2500			Class-C Amp. (Telegraphy)	1000	- 50	50	18	4		30
5648	100	6.3	1.1	1000	100	so	100	6.75	1.95	0.035	2500	N.		Class-C Amp. (Telephony)	600	- 25	55	22	6		20
8003	100	10	3.25	1500	250	50	12	5.8	11.7	3.4	30	J.	3 N	Class-C Amp.-Oscillator	1350	-180	245	35	11		250
														Class-C Amp. (Telephony)	1100	-260	200	40	15		167
														Class-B Amp. (Audio) ${ }^{\text {] }}$	1350	-100	40/490	$480{ }^{\circ}$	$10.5{ }^{8}$	6000	460
$\begin{aligned} & 3 \times 100 \mathrm{~A} 11 \\ & 2 \mathrm{C} 39 \\ & \hline \end{aligned}$	100	6.3	1.1	1000	60	40	100	6.5	1.95	0.03	500	N.		"Grid Isolation" Circuit	600	- 35	60	40	5.0	-	20
2C39A	100	6.3	1.0	1000	80	50	100	6.5	1.95	. 035	500	N.		Class-C Amplifler	800	- 20	80	32	6		27
2CS9A	100	6.3	1.0	1000	80	so	100	6.5	1.95	. 035	500	N.	-	Closs-C Amp. (Telephony)	600	- 16	75	40	6		18
$311 . \mathrm{CH}$	125	10	3.25	1750	200	50	12	5.5	8.0	4.5	30	J.	Fig. 57	Class-C Amp. (Telegraphy)	1750	-200	200	20	4.5	-	260
														Class-C Amp. (Telephony)	1250	-200	166	8	3.5	-	148
														Class-B (Audio) ${ }^{\text {] }}$	1500	-110	$400{ }^{8}$		-	8200	400
3 cm	125	6.3	2.0	1000	150	70	40	4.9	2.4	0.05	500	0.	Fig. 30	Class-C Amp.-Oscillator	1000	-200	150	70		-	65
4 CO	125	5	7.5	4000	-	-	29	3.2	3,0	0.4	60	J.	Fig. 56	Class-C Amp.-Oscillator	-	-	-	-	18	-	480
$\begin{aligned} & \text { F-123-A } \\ & \text { DR-123C } \end{aligned}$	125	10	4.0	2000	300	75	14.5	6.5	8.5	3.3		J.	Fig. 26	Class-C Amp. (Telegraphy)	1500	-250	250	30	11	-	300
											-			Class-C Amp. (Telephony)	1500	-290	160	25	10	-	200
														Class-B Amp. (Audio) ${ }^{\text {] }}$	2000	-130	20/175	2179	3.48	13800	522
RK57/805	125	10	3.25	1500	210	70		6.5	8.0	5.0				Class-C Amp. (Telegraphy)	1500	-105	200	40	8.5	-	215
							-				30	d.	3N	Class-C Amp. (Telephony)	1250	-160	160	60	16	-	140
														Class-B Amp. (Audio) ${ }^{\text {I }}$	1500	- 16	84/400	2803	7.0^{8}	8200	370
T125	125	10	4.5	2500	250		25							Class-C Amp. (Telegraphy)	2500	-200	240	31	11	-	475
T125	125	10	4.5	2500	250	60	25	6.3	6.0	1.3	60	J.	2N	Closs-C Amp. (Telephony)	2000	-215	200	28	10	-	320
PF130	125	10	3.25	1250	210	\square	12.5	5.5	9.0	3.5	20	J.	-	Class-C Amp.-Oselilator	1250	-250	200	10	3.5	-	170
M150	125	10	3.25	1500	210	-	12.5	5.5	7.2	1.9	30	J.	-	Class-C Amp. Oscillator	1500	-300	200	10	4	-	220
AF175	125	10	4.0	2000	250	-	18	4.8	6.3	2.7	25	J.	T.3AC	Class-C Amp.-Oscillotor	2000	-250	200	23	9	-	320

table XVI-TRIODE TRANSMItting tUBES-Continued

Type	Max. Plale Dissipotion Wafts	Cathode		Max. Plafe Voltage	Max. Plate Curtent Ma.	Max.D.C.GridCurrentMa.	Amp. Factor	Interelectrode Capacitances ($\mu \mu \mathrm{fd}$.)			Max. Freq. Mc. Full Ratings	Base	Socke Connertions	Typical Operation	Plate Voltage	Grid Voltage	Plate Current Ma.		Approx. Grid Driving Power Watts	$\begin{gathered} \text { Class } 8 \\ \text { P-fo-P } \\ \text { Load Res. } \\ \text { Ohms } \end{gathered}$	Approx. Outpul Power Waths
		Voits	Amp.					$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Fil. } \end{gathered}$	Grid to Plate	$\begin{gathered} \text { Plate } \\ \text { to } \\ \text { Fil. } \end{gathered}$											
GL146	125	10	3.25	1500	200	60	75	7.2	9.2	3.9	15	J.	T-4BG	Class-C Amp.-Oscillator	1250	-150	180	30	\longrightarrow	-	150
														Class-C Amp. (Telephony)	1000	-200	160	40			100
														Class-B Amp. (Audio) ${ }^{\text {7 }}$	1250	0	34/320			8400	250
GL152	125	10	3.25	1500	200	60	25	7.0	8.8	4.0	15	J.	T-4BG	Class-C Amp.-Oscillator	1250	-150	180	30		-	150
														Class-C Amp. (Telephony)	1000	-200	160	30	-	-	100
														Class-8 Amp. (Audio) ${ }^{\text {a }}$	1250	- 40	16/320			8400	250
805	125	10	3.25	1500	210	70	40/60	8.5	6.5	10.5	30	J.	3N	Class-C Amp. (Telegraphy)	1500	-105	200	40	8.5		215
														Class-C Amp. (Telephony)	1250	-160	160	60	16	-	140
														Class-B Amp. (Audio) ${ }^{\text {7 }}$	1500	-16	84/400	280 ${ }^{\circ}$	7.0^{8}	8200	370
$\begin{aligned} & \text { AX9900/ } \\ & 586612 \end{aligned}$	135	6.3	5.4	2500	200	40	25	5.8	5.5	0.1	150	N.	Fig. 5	Class-C Amp. (Telegraphy)	2500	-200	200	40	16		390
														Class-C Amp. (Telephony)	2000	-225	127	40	16		204
														Class-8 (Audio) ${ }^{\text {? }}$	2500	-90	80/330	$350{ }^{9}$	14^{8}	15680	560
$\begin{aligned} & 3 \times 150 A 3 \\ & 3 \mathrm{C} 37 \end{aligned}$	150	6.3	2.5	1000	-	-	23	4.2	3.5	0.6	500	N.		-	-		-	-	-	-	-
$150 \mathrm{~T}^{1}$	150	5.0	10	3000	200	50	13	3.0	3.5	0.5	-	J.	2N	Class-C Amp. (Telegraphy)	3000	-600	200	35		-	450
$3.150 \mathrm{A3}$	150	5/10	12.51	3000	450	85	20	5.7	4.5	0.8	40	J.	4BC	Class-C Amp. (Telography)	3000	-300	250	70	27	-	600
152TH														Class-8 Amp. (Audia) ${ }^{\text { }}$	3000	-150	67/335	430	$3.0{ }^{8}$	20300	700
$\begin{aligned} & 3.150 A 2 \\ & 152 \mathrm{TL} \end{aligned}$			6.25				12	4.5	4.4	0.7			4BC	Closs-C Amp. (Telegraphy)	3000	-400	250	40	20	-	600
														Class-8 Amp. (Audio) ${ }^{\text {i }}$	3000	-260	65/335	675^{9}	$3.0{ }^{8}$	20400	700
TW150	150	10	4.1	3000	200	60		3.9	2.0	0.8	-		2N	Class-C Amp.-Oscillator	3000	-170	200	45	17	-	470
							35				-	J.		Class-C Amp. (Telephony)	3000	-260	165	40	17	\square	400
HK252-L	150	5/10	13/6.5	3000	500	75	10	7.0	5.0	0.4	125	N.	4BC	Class-C Amp.-Oscillator	3000	-400	250	30	15	-	610
												N.		Class-C Amp. (Telephony)	2500	-350	250	35	16	\cdots	500
$\begin{aligned} & \text { DR200 } \\ & \text { HF200 } \\ & \text { HV18 } \end{aligned}$	150	10-11	3.4	2500	200	50	18	5.2	5.8	1.2	20	J.	2N	Class-C Amp. (Telography)	2500	-300	200	18	8.0		380
														Class-C Amp. (Telephony)	2000	-350	160	20	9.0	-	250
														Class-8 Amp. (Audio) ${ }^{7}$	2500	-130	60/360	$460{ }^{9}$	$8.0{ }^{8}$	16000	600
HD203A	150	10	4.0	2000	250	60	25	-	12	-	15	J.	3N	Class-C Amplifier	-	-	-	-	-	,	375
HF250	150	10.5	4.0	2500	200	-	18	\square	5.8	-	20	J.	2N	Class.C Amp.-Oscillotor	2500	-	200			-	375
$\begin{aligned} & \text { HK354 } \\ & \text { HK354C } \end{aligned}$	150	5.0	10	4000	300	50	14	4.5	3.8	1.1	30	J.	2N	Class.C Amp. (Telegraphy)	4000	-690	245	50	48	\square	830
														Class-C Amp. (Telephony)	3000	-550	210	50	35	-	525
														Grid-Modulated Amp.	3000	-400	78	3.0	12	-	85
														Class-B Amp. (Audio) ${ }^{7}$	3000	-205	65/313	$630{ }^{9}$	20^{8}	22000	665
HK354D	150	5.0	10	4000	300	55	22	4.5	3.8	1.1	30	J.	2N	Class-C Amp. (Telegraphy)	3500	-490	240	50	38	-	690
HK3S40	150	3.0	10	4000	300	5	22	4.5	3.8	1.1	30	J.	2 N	Class-C Amp. (Telephony)	3500	-425	210	55	36		525
HK354E	150	5.0	10	4000	300	60	35	4.5	3.8	1.1	30	J.	2N	Class C Amp. (Telegrophy)	3500	-448	240	60	45	-	690
													2 N	Class-C Amp. (Telephony)	3000	-437	210	60	45		525
HK354F	150	5.0	10	4000	300	75	50	4.5	3.8	1.1	30	J.	2N	Class-C Amp. (Telegraphy)	3500	-368	250	75	50	-	720
HK3S4F												J.		Class-C Amp. (Telephony)	3000	-312	210	75	45	-	525
UE-468	150	10	4.05	2500	200	60	18	8. 8	7.0	1.25	30	J.	Fig. 57	Class-C Amp. (Telegrophy)	2500	-300	200	18	8.0	-	380
														Class-C Amp. (Telephony)	2000	-350	160	20	9.0	-	250
														Closs-B (Audio) ${ }^{7}$	2500	-130	$320{ }^{\text {8 }}$	410^{9}	2.5	16000	500
$\begin{aligned} & 810 \\ & 16271 \end{aligned}$	175	$\begin{aligned} & 10 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$	2500	300	75	36	8.7	4.8	12	30	J.	2N	Class-C Amp. (Telegraphy)	2500	-180	300	60	19	\square	575
														Class-C Amp. (Telephony)	2000	-350	250	70	35	-	380
														Grid-Modulated Amp.	2250	-140	100	2.0	4.0		75
														Class-B Amp. (Audio) ${ }^{7}$	2250	- 60	70/450	$380{ }^{\circ}$	13^{8}	11600	725

TABLE XVI-TRIODE TRANSMITTING TUBES—Continued

Type	Max. Plate Dissipation Wafts	Cathode		Max. Plate Voltage		Max.D.C.GridCurrentMa.	Amp. Factor	IntereieciredeCapacitances ($\mu \mu \mathrm{fd}$.)			Max. Freq. Mc. Full Ratings	Base	SocketConnec-fions	Typical Operation	Plate Volitge	Grid Vollage	Plate Current Ma.		Approx. Grid Driving Power Wotls	$\begin{gathered} \text { Class } 8 \\ \text { P-lo-P } \\ \text { Load Res. } \\ \text { Ohms } \end{gathered}$	Approx. Output Power Watts
		Volts	Amp.					$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Fil. } \end{gathered}$	$\begin{aligned} & \text { Grid } \\ & \text { lo } \\ & \text { Plate } \end{aligned}$	Plate to Fil.											
8000	175	10	4.5	2500	300	45	16.5	5.0	6.4	3.3	30	s.	2N	Class-C Amp.-Oscillator	2500	-240	300	40	18	-	575
														Class-C Amp. (Telephony)	2000	-370	250	37	20		380
														Grid-Modulaled Amp.	2250	-265	100	0	2.5		75
														Class-B Amp. (Audio) ${ }^{\text {7 }}$	2250	-130	65/450	5609	7.98	12000	725
Gl-SC24	160	10	5.2	1750	107	-	8	5.6	8.8	3.3	-	N.	Fig. 26	Class-A Amp. (Audio)	1500	-155	107			8200 s	55
										3.3		N.	Fig. 26	Class-AB1 Amp. (Audio) ${ }^{\text {] }}$	1750	-200	$320{ }^{\text {8 }}$	3909		8000	240
$\begin{aligned} & \text { RK63 } \\ & \text { RK63A } \end{aligned}$	200	$\begin{aligned} & 5.0 \\ & 6.3 \end{aligned}$	$\begin{aligned} & 10 \\ & 14 \end{aligned}$	3000	250	60	37	2.7	3.3	1.1		J.	2N	Class-C Amp. (Telegraphy)	3000	-200	233	45	17		525
											-			Class-C Amp. (Telephony)	2500	-200	205	50	19	-	405
														Grid-Modulaled Amp.	3000	-250	100	7.0	12.5	-	100
T200	200	10	5.75	2500	350	80	16	9.5	7.9	1.6	30	J.	2N	Class-C Amp. (Telegraphy)	2500	-280	350	54	25		685
														Class-C Amp. (Telephony)	2000	-280	300	54	23		460
F-127-A	200	10	4.0	3000	325	70	38	13	4	13		J.	Fig. 26	Class-C Amp. (Telegraphy)	3000	-250	250	47	18		600
											-			Class-C Amp. (Telephony)	2500	-300	200	58	25.2	-	420
														Class-8 Amp. (Audio)'	2800	- 75	20/400	$175{ }^{9}$	6.65^{8}	16600	820
$\begin{aligned} & 522 \\ & 8225 \end{aligned}$	200	10	4.0	2500	300	60	30	8.5	13.5	2.1	$\begin{aligned} & 20 \\ & 30 \end{aligned}$	J.	$\begin{aligned} & \mathbf{3 N} \\ & \mathbf{2 N} \end{aligned}$	Class-C Amp. (Telegraphy)	2500	-190	300	51	17°	-	600
														Class-C Amp. (Telaphony)	2000	- 75	250	43	13.7	-	405
														Class-B Amp. (Audio)'	3000	- 80	$450{ }^{8}$	362^{9}	8.0^{8}	16000	1000
4 C32	200	10	4.5	3000	300	60	30	5.5	5.8	1.1	60	J.	2N	Class-C Amp.-Os cillator	2000	-165	275	20	10	-	400
													2N	Class-C Amp. (Telephony)	2000	-200	250	20	15	-	375
$\begin{aligned} & \text { Ct-592 } \\ & 3-200 \mathrm{~A} 3 \end{aligned}$	200	10	5.0	3500	250	50	25	3.6	3.3	0.29	150	N.	Fig. 52	Class-C Amp. (Telegraphy)	3000	-220	222	25	11	\square	466
														Class-C Amp. (Telephony)	2500	-300	200	35	19		375
														Class-B (Audio) ${ }^{1}$	2000	- 50	120/500	520^{9}	25^{3}	8500	600
$\begin{aligned} & 4 C 34 \\ & H F 300 \end{aligned}$	200	11-12	4.0	3000	275	60	23	6.0	6.5	1.4	$\begin{aligned} & 60 \\ & 20 \end{aligned}$	J.	2N	Class-C Amp. (Telegraphy)	3000	-400	250	28	16	-	600
														Class-C Amp. (Tolophony)	2000	-300	250	36	17	-	385
														Class-8 Amp. (Audio) ${ }^{7}$	3000	-115	60/360	$450{ }^{\circ}$	13^{8}	20000	780
T814 HV12	200	10	4.0	2500	200	60	12	8.5	12.8	1.7	30	d	3 N	Class-C Amp. (Telography)	2500	-240	300	30	10	-	575
														Class -C Amp. (Telephony)	2000	-370	300	40	20		485
														Class-8 Amp. (Audio) ${ }^{\text {7 }}$	2000	-160	50/275	$350{ }^{9}$	$7.0{ }^{8}$	14400	400
T822 HV27	200	10	4.0	2500	300	60	27	8.5	13.5	2.1	30	J.	3N	Class-C Amp. (Telegrophy)	2500	-175	300	50	15	-	585
														Class-C Amp. (Telophony)	2000	-195	250	45	15	-	400
T-300	200	11	6.0	3000	300									Class-C Amp. (Telegraphy)	3000	-400	250	28	20	-	600
						-	23	6.0	7.0	1.4	-	-	-	Class-C Amp. (Telophony)	2000	-300	250	36	17		385
														Closs-E (Audio) ${ }^{\text {7 }}$	2500	-100	60/450	-	7.5^{8}	-	750
805	225	5.0	10	3300	300	50	12.6	6.1	4.2	1.1	30	J.	2N	Class-C Amp. (Telegraphy)	3300	-600	300	40	34	-	780
														Class-C Amp. (Telephony)	3000	-670	195	27	24	-	460
														Class-B Amp. (Audio) ${ }^{7}$	3300	-240	80/475	$930{ }^{9}$	358	16000	1120
$\begin{aligned} & 3-250 A 4 \\ & 250 \mathrm{TH} \end{aligned}$	250	5.0	10.5	4000	350	100	37	5.0	2.9	0.7	40	J.	2N	Class-C Amp. (Telography)	2000	- 120	350	100	34	$\underline{-}$	500
														Class-C Amp. (Telephony)	3000	-210	330	75	42	-	750
														Grid-Modulated Amp.	3000	-160	125	4.5	20	-	125
														Class-8 Amp. (Audio)'	3000	- 65	100/560	460°	24^{8}	12250	1150
$\begin{aligned} & 3-250 A 2 \\ & 250 \mathrm{TL} \end{aligned}$	250	5.0	10.5	4000	350	50	14							Class-C Amp. (Telography)	3000	-350	335	45	29	-	750
								3.7	3.1	0.7	40	J.	2N	Class-C Amp. (Telephony)	3000	-350	335	45	29	-	750
								3.3				J.		Grid-Modulated Amp.	3000	-450	125	2.0	15	\square	125
														Class-8 Amp. (Audio) ${ }^{\text {] }}$	3000	-175	100/500	840°	17^{8}	13000	1000

TABLE XVI-TRIODE TRANSMITTing TUBES-Continued

Type	Max. Plafe Dissipalion Watts	Cathode		Max. Plofe Voliage		Mox. D.C. Grid Current Ma.	Amp. Factor	InterelectrodeCapacitances ($\mu \mu \mathrm{fd}$.)			Max. Freq. Mc. Full Ratings	8ase	5ockel Connecfions	Typieal Operation	Plate Voltage	Grid Voltage	Plate Current Ma.		Approx. Grid Driving Power Wotfs	$\begin{gathered} \text { Class B } \\ \text { P-ta-P } \\ \text { Lood Res. } \\ \text { Ohms } \end{gathered}$	Approx. Outpul Power Wotts
		Volts	Amp.					Grid to Fil.	Grid to Plate	$\begin{gathered} \text { Plole } \\ \text { to } \\ \text { fil. } \\ \hline \end{gathered}$											
CL859	250	10	9.6	2000	400	100	20	11	17.6	5.0	15	J.	T-48G	Class-C Amp.-Oscillator	2000	-200	400	17	6.0	-	620
														Class-C Amp. (Telephony)	1500	-240	400	23	9.0	-	450
														Class-B Amp. (Avdio) ${ }^{\text {a }}$	2000	-100	30/660	400*	$4.0{ }^{8}$	6880	900
C1169	250	10	9.6	2000	400	100	85	11.5	19	4.7	15	J.	T-48G	Class-C Amp.-Oscillator	2000	-100	400	42	10	-	620
														Class-C Amp. (Telephony)	1500	-100	400	45	10		450
														Class-B Amp. (Audio) ${ }^{\text { }}$	2000	- 18	30/660	220 ${ }^{\circ}$	6.08	7000	900
$\begin{aligned} & 204 A \\ & 304 A \end{aligned}$	250	11	3.85	2500	275	80	23	12.5	15	2.3	3	N.	T-1A	Class-C Amp. (Telegrophy)	2500	-200	250	30	15		450
														Class-C Amp. (Toiephony)	2000	-250	250	35	20	\cdots	350
														Class-B Amp. (Avdio) ${ }^{7}$	3000	-100	80/372	500.	$18{ }^{\circ}$	20000	700
3088	250	14	4.0	2250	325	75	8.0	13.6	17.4	9.3	1.5	N.	T-2A	Class-C Amp. (Telegrophy)	1750	-345	300	-	-	-	350
															1500	-300	300				300
														Class-8 Amp. (Audio) ${ }^{\text {F }}$	1750	-215	30/300		35^{8}	5200	575
HK454H	250	5.0	11	5000	375	85	30	4.6	3.4	1.4	100	J.	2N	Class-C Amp. (Telegrophy)	3500	-275	270	60	28		760
MK454-1	250	5.0	11	5000	375	60	12	4.6	3.4	1.4	100	J.	2N	Class-C Amp. (Tolephony)	3500	-450	270	45	30	-	760
5867 AX. 9901	250	5.25	14.1	-	-	-	25	7.0	5.3	0.15	100	-	-	Class-C Amplifier	3000	-400	363	80	-	-	950
$\begin{aligned} & 212 E \\ & 2418 \\ & 312 E \end{aligned}$	275	14	4.0	3000	350	75	16	14.9	18.8	8.6	1.5	N.	$\begin{aligned} & \text { T-2A } \\ & T-2 A A \end{aligned}$	Class-C Amp. (Telogrophy)	3500	-275	270	60	28	-	760
														Class-C Amp. (Telephony)	3500	-450	270	45	30	-	760
														Class-8 Amp. (Audio) ${ }^{\text { }}$	2000	-105	40/300	-	50\%	8000	650
$300{ }^{1}$	300	8.0	11.5	3500	350	75	16	4.0	4.0	0.6	-	J.	2N	Class-C Amp. (Telegraphy)	2000	-225	300		-	-	400
HK304-L	300	5/10	26/13	3000	1000	150	10	12	9.0	0.8		N.	4BC	Class-C Amp. (Telephony)	1500	-200	300	75			300
527	300	5.5	135.0	-	-	-	38	19.0	12.0	1.4	200	N.	T-4B	Oscillator at 200 Mc .	Approximataly 250 watts output						
HK654	300	7.5	15	4000	600	100	22	6.2	5.5	1.5	20	J.	2N	Class-C Amp. (Telegraphy)	2000	-380	500	75	57		720
														Class-C Amp. (Telaphony)	2000	-365	450	110	70	-	655
														Grid-Modulated Amp.	3500	-210	150	15	15		210
	300	5/10	25/12.5	3000	900	170	20	13.5	10.2	0.7	40	N.	4BC	Class-C Amplifier	1500	-125	667	115	25		700
304 TH						170	20	13.5	10.2	0.7	40	N.	48 C	Class-B Amp. (Audio) ${ }^{\text {] }}$	3000	-150	134/667	420 \%	6.0^{8}	10200	1400
$\begin{aligned} & 3-300 A 2 \\ & 304 \mathrm{TL} \end{aligned}$						150	12	8.5	9.1	0.6	40	N.	48 C	Closs-C Amplifor	1500	-250	665	90	33	-	700
														Class-8 Amp. (Audio) ${ }^{\text {] }}$	3000	-260	130/667	650 ${ }^{\text {\% }}$	6.0 \%	10200	1400
				3300	500	100	35	12.3	6.3	8.5	30	N.	T-1AB	Class-C Amp. (Telegraphy)	2000	-200	475	65	25	-	740
333 A	350	10	10	3300	500	100	35	12.3	6.3	8.5	30	N.	T-1AB	Class-C Amp. (Telephony)	2500	-300	335	75	30	-	635
270A	350	10	4.0	3000	375	75	16	18	21	2.0	7.5	N.	T-1A	Closs-C Amp. (Telegraphy)	3000	-375	350	-	\cdots	\square	700
														Class-C Amp. (Tolephony)	2250	-300	300	80	-	\longrightarrow	450
							19	17	33.5	3.0	3	N.	T-1A	Closs-C Amp. (Telegraphy)	2500	-250	300	20	8.0	-	560
8491	400	11	5.0	2500	350	125	19	17	33.5	3.0	3	N.	T-1A	Class-C Amp. (Talephony)	2000	-300	300	30	14	-	425
431		11	10	3500	350	75	14.5	3.8	4.0	1.4	-	N.	T-1AA	Class-C Amp. (Talography)	3500	-400	275	40	30	-	590
	400	11	10	3500	350	75	14.5	3.8	4.0	1.4		N.	T-1AA	Class-C Amp. (Telephony)	3000	-500	200	60	50		360
- Cathode resistor in ohms. ** Grid resistor ohms.						1 Discontinued. 2 Twin triode. Values, except interelement copacities, are for both sections in push-pull. ${ }^{3}$ Output af 112 Mc.								4 Grid-leak resistor in ohms. ${ }^{3}$ Peak valves. - Per section. 7 Yalues are for two tubes in push-pull.			${ }^{5}$ Max. signal value. - Poak o.l. grid-to-grid volts. ${ }^{10}$ For single tube. ${ }^{11}$ Class-8 data in Table 1. ${ }^{11}$ Forced-air ceoling.				

table XVII-tetrode and pentode transmitting tubes

Type	Max. Plate Dissipalion Waths	Cathode		Mox. Plate Vollage	Max. Screen Volt--ge	Max. Screen Dissipalion Wafts	InterelectrodeCopacitances ($\mu \mu \mathrm{fd}$.			Max. Freq. Mc. Full Ratings	Base	Socket Con-nections	Typicol Operation	Plale Volf. oge	Screen Vollage	Sup-pressor Pressor -ge	Grid Voltage	Plote Current Ma.	Screen Current Mo.	Grid Current Ma.	Screen Resistor Ohms	Approx. Grid Driving Power WaHs	Class B P-to-P Load Res. Ohms	
		Volts	Amp.				$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Fil. } \end{gathered}$	Grid to Plote	$\begin{aligned} & \text { Plote } \\ & \text { 10 } \\ & \text { Fii. } \end{aligned}$															
$3 \mathrm{A4}$	2.0	$\begin{aligned} & \hline 1.4 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.1 \end{aligned}$	150	135	0.9	4.8	0.2	4.2	10	B.	78B	Closs-C Amp. (Telegrophy)	150	135	0	- 26	18.3	6.5	0.13	2300	-	-	1.2
3D6	4.5	$\begin{aligned} & 2.8 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 0.11 \\ & 0.22 \end{aligned}$	180	135	0.9	7.5	0.3	5.5	50	L.	68B	Closs-C Amp. (Telegrophy)	150	135	-	-20	23	6.0	1.0	-	0.25	-	1.4
384	3.0	$\begin{aligned} & 2.5 \\ & 1.25 \end{aligned}$	$\begin{aligned} & 0.165 \\ & 0.33 \end{aligned}$	150	135	\square	4.6	0.16	7.6	100	B.	7CY	Class-C Amp.	150	135	-	-75	25	-	-	-	-	-	1.25
													Class-C Amp. (Telegraphy)	200	100		-22.5	20	4.0	2.0		0.1		3.0
HY63 ${ }^{1}$	3.0	1.25	0.225	200	100	0.6	8.0	0.1	8.0	60	0.	T-8DB	Class.C Amp. (Telephony)	180	100		- 35	15	3.0	2.0		0.2		2.0
6AKG	3.5	6.3	0.15	375	250	1.0	3.6	0.12	4.2	54	B.	78K	Class-C Amp. (Telogrophy)	375	250		-100	15	4.0	3.0	-			4.0
546	5.0	$\begin{aligned} & 2.5 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.46 \\ & 0.23 \end{aligned}$	150	150	2	8.5	0.15	9.5	100	B.	9 L	Class-C Amp.	150	150	0	- 24	40	11	1.2	-	-	-	3.1
5618	5.0	$\begin{aligned} & 6.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 0.23 \\ & 0.46 \end{aligned}$	300	125	2.0	7.0	0.24	5.0	80	B.	7 CU	Class -C Amp. (Talegrophy)	300	75	0	-45	25	7.0	1.5	32000	0.3		5.4
RK64 ${ }^{\text {1 }}$	6.0	6.3		400	100	3.0	10	0.4	9.0	60	M.	5AW	Class-C Amp. (Telegraphy)	400	100	30	- 30	35	10	3.0		0.18		10
RK64	6.0	6.3	0.5	400	100	3.0	10	0.4	9.0	60	M.	SAW	Class-C Amp. (Telephony)	300		30	- 30	26	8.0	4.0	30000	0.2	-	6.0
1610	6.0	2.5	1.75	400	200	2.0	8.6	1.2	13	20	M .	T.5CA	Closs-C Amp. (Telegrophy)	400	150		- 50	22.5	7.0	1.5		0.1		5.0
5686	7.5	6.3	0.35	250	250	3.0	6.4	0.11	4.0	160	B.	Fig. 29		250	250	-	-50	40	10.5	2.0		0.15		6.5
												Fig. 29	Class-C Amp. (Telegraphy)	250	180		- 30	30	6.5	2.0		0.10		5.0
6AQ5	8.0	6.3	0.45	350	250	2.0	7.6	0.35	6.0	54	8.	782	Class-C Amp. (Telegraphy)	350	250		-100	47	7.0	5.0		$\underline{\square}$		11
6V6GT	8.0	6.3	0.45	350	250	2.0	9.5	0.7	7.5	10	0.	7AC	Class-C Amp. (Telegraphy)	350	250		-100	47	7.0	5.0				11
6AG7	9.0	6.3	0.65	375	250	1.5	13	0.06	7.5	10	0.	8Y	Class-C Amp. (Telegraphy)	375	250		-75	30	9.0	5.0				7.5
													Class-C Amp. (Telegraphy)	400	300		- 40	62	12	1.6		0.1		12.5
RK56	8.0	0.3	0.55	300	300	4.5	10	0.2	9.0	60	M.	SAW	Class-C Amp. (Telephony)	250	200	5	-40	50	10	1.6	2800	0.28		8.5
$\begin{aligned} & \text { RK23 }{ }^{2} \\ & \text { RK25 } \\ & \text { RK258 } \end{aligned}$	10	$\begin{aligned} & 2.5 \\ & 6.3 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 0.9 \end{aligned}$	500	250	8	10	0.2	10		M.	68M	Class-C Amp. (Telegraphy)	500	200	45	-90	55	38	4.0		0.5		22
													Closs-C Amp. (Telephony)	400	150	0	-90	43	30	6.0	8300	0.8	-	13.5
													Suppressor-Modulated Amp.	500	200	-45	-90	31	39	4.0		0.5	-	6.0
1613	10	6.3	0.7	350	275	2.5	8.5	0.5	11.5	45	0.	75	Class-C Amp. (Tolography)	350	200		-35	50.	10	3.5	20000	0.22		9
1613	10	6.3	0.7	350	275	2.5	8.5	0.5	11.5	45	0.	75	Class-C Amp. (Telephony)	275	200		- 35	42	10	2.8	10000	0.16		6.0
2 E 30	10	6.0	0.7	250	250	2.5		0.5		160			Class-C Amp. (Telegraphy)	250	200		- 50	50	10	2.5	-	0.2		7.5
2 E 30	10	6.0	0.7	250	250	2.5	10	0.5	4.5	160	B.	760	Class-AB2 Amp. (Audio) ${ }^{\text {a }}$	250	250		- 30	40/120	4/20	$2.3{ }^{7}$	878	0.2	3800	17
5812	10	6.0	0.65	300	250	2.5	9.0	0.2	7.4	165	B.	7CQ	Class-C Amp. (Telegraphy)	300	200		- 45	55	3.0	0.75	-	1.5		7.0
	10				200	1.0				50	B.	Fig. 73	Class-C Amp. (Telegraphy)	300	150		-50	63	8.0	2.0		0.3		8.8
6216	10	0.3	1.2	300	200	1.0	12.3	0.37	6.7	50	B.	Fig. 73	Class-C Amp.-Doubler	300			- 75	50	6.0	1.0	25000	0.6		4.0
$\begin{aligned} & 837 \\ & \text { RK44 } 1 \end{aligned}$	12	12.6	0.7	500	300	8	16	0.2	10	20	M.	6BM	Class-C Amp. (Telegrophy)	500	200	40	- 70	80	15	4.0	20000	0.4	-	28
													Class-C Amp. (Telephony)	400	140	40	-40	45	20	5.0	13000	0.3		11
													Suppressor-Modulated Amp.	500	-	-65	- 20	30	23	3.5	14000	0.1		5.0
$\begin{aligned} & 5763 \\ & 6062 \end{aligned}$	12	6.0	0.75	300	250	2	9.5	0.3	4.5	175	8.	9K	Class-C Amp. (Telegraphy)	300	230	0	-60	50	5.0	3.0	-	0.35		8.0
													Doubler to 175 Mc.	300	250	0	-75	40	4.0	1.0	12500	0.6		3.6
$6 F 6$ 6F6G	12.5	6.3	0.7	400	275	3.0	6.5	0.2	13	10	O.	7AC	Class-C Amp. (Telography)	400	275		-100	50	11	5.0	-	-		14
							8.0	0.5	6.5				Class-C Amp. (Telephony)	275	200		- 35	42	10	2.8	-	0.16		6.0
802	13	6.3	0.9	600	250	6.0	12	0.15	8.5	30	M.	68M	Class-C Amp. (Telegraphy)	600	250	40	-120	55	16	2.4	22000	0.30		23
													Closs-C Amp. (Telephony)	500	245	40	- 40	40	15	1.5	16300	0.10		12
													Suppressor-Modulated Amp.	600	250	-45	-100	30	24	5.0	14500	0.6		6.3
$2 E 24$	13.5	6.35	0.65	500	200	2.3	8.5	0.11	6.5	125	0.	7CL	Class-C Amp. (Telephony)	400	180	-	-45	50	8.0	2.5	27500	0.15	-	13.5
				500	200	2.3								500	180	\square	- 45	54	8.0	2.5	40000	0.16	-	18.0
				600	200	2.5							Class-C Amp. (Telegraphy)	400	200	-	-45	75	10.0	3.0	20000	0.19	$\underline{-}$	20
				600	200	2.5								600	195	\square	- 50	66	10	3.0	40500	0.21	-	27

TABLE XVII-TETRODE AND PENTODE TRANSMITTING TUBES-Continued

Type	Max. Plate Dissipation Watls	Cothode		Max. Plate Volf. 0ge	Max. Screen Voltage	Max. Screen Dissi. pation Wolls	InterelectrodeCapocitonces ($\mu \mu \mathrm{fd}$) $)$			Mox. Freq. Mc. Full Ratings	Base	Socket Con-neclions	Typical Operation	Ploto Volt. age	Screen Volfage		Grid Vollage	Plate Current Ma.	Screen Current Mo.	Grid Current Ma.	Sereen Resistor Ohms	Apprex. Grid Driving Power Watts	Class B P-to-P Load Res. Ohms	Approx. Output Wotls
		Volts	Amp.				$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Fil. } \end{aligned}$	Grid to Plate	$\begin{array}{\|c\|} \hline \text { Plaie } \\ \text { to } \\ \text { fil. } \end{array}$															
$2 E 26$	13.5	6.3	0.8	600	200	2.5	13	0.2	7.0	125	O.	7CK	Class-C Amp. (Telography)	600	185		-45	66	10	3.0	41500	0.17		27
													Class-C Amp. (Telephany)	500	180		- 50	54	9.0	2.5	35500	0.15		18
				500	200	2.3							Class-AB2 Amp. (Audia) ${ }^{\text {b }}$	500	125		- 15	22/150	327		60^{8}	0.367	8000	54
HYoV6-	13	6.3	0.5	350	225	25			9.5	60		7AC	Class-C Amp. (Telegraphy)	300	200		- 45	60	7.5	2.5	-	0.3		12
	13	6.3	0.5	350	225	2.5	9.5	0.7	9.5	60	-.	7 AC	Class-C Amp. (Telephony)	250	200		-45	60	6.0	2.0	15000	0.4		10
HY60	15	6.3	0.5	425	225								Class-C Amp. (Talography)	425	200		-62.5	60	8.5	3.0		0.3	-	18
HY60	15	6.3	0.5	425	225	2.5	10	0.2	8.5	60	m.	5AW	Class-C Amp. (Telephony)	325	200		- 45	60	7.0	2.5		0.2		14
HY65 1	15	6.3	0.85	450	250		9.1					T.8D8	Class-C Amp.-Oseillator	450	250	-	-45	75	15	3.0	\cdots	0.5	-	24
HYOS	15	6.3	0.85	450	250	4.0	9.1	0.18	7.2	60	0.	T.808	Class-C Amp. (Telephony)	350	200		-45	63	12	3.0		0.5		16
2E25	15	6.0	0.8	450	250	4.0	8.5	0.15	6.7	125	o.	5BJ	Class-C Amp.-Oscillator	450	250		- 45	75	15	3.0	\longrightarrow	0.4		24
													Class-C Amp. (Telephony)	400	200		- 45	60	12	3.0		0.4		16
													Closs-AB2 Amp. (Audio) ${ }^{\text {b }}$	450	250		- 30	44/150	10/40	3.0	1428	0.97	6000	40
306 A	15	2.75	2.0	300	300	6.0	13	0.35	13		M.	T.5CB	Class-C Amp. (Telephony)	300	180		- 50	36	15	3.0	8000		-	7.0
307 A	15												Class-C Amp. (Telography)	500	250	0	- 35	60	13	1.4	20000			20
RK-75	15	5.5	1.0	500	250	6.0	15	0.55	12		M.	T.SC	Suppressor-Moduloted Amp.	500	200	-50	- 35	40	20	1.5	14000			6.0
832 :	15	6.3	1.6	500	250	5.0	7.5	0.05	3.8	200		78P	Closs-C Amp. (Telography)	500	200		-65	72	14	2.6	21000	0.18		26
-32	15	12.6	0.8	500	250	5.0	7.5	0.05	3.8	200	N.	78	Class-C Amp. (Telephony)	425	200		-60	52	16	2.4	14000	0.15		16
832A ${ }^{\text {a }}$	15	6.3	1.6	750	250	5.0	7.5	0.05	3.8	200	N.	7BP	Class-C Amp. (Telography)	750	200		-65	48	15	2.8	36500	0.19		26
-32a	15			750	250	5.0	7.5	0.05	3.8	200	N.	78	Closs-C Amp. (Telephony)	600	200		-65	36	16	. 2.6	25000	0.16		17
8441	15	2.5	2.5	500	180	3.0	9.5	0.15	7.5	-	M.	5AW	Class-C Amp. (Telography)	500	175		-125	25		5.0	-		-	9.0
-4	15	2.5	2.5	500	180	3.0	9.5	0.15	7.5	-	m.	Saw	Closs-C Amp. (Telephony)	500	150		-100	20		-	-			4.0
865	15	7.5	2.0	750	175	. 0	8.5	0.1	8.0	15	M.	T-4C	Closs-C Amp. (Tolography)	750	125		-80	40	-	5.5	\cdots	1.0	-	16
6s	15	7.5	2.0	750	175	.	0.5	0.1	-. 0	1	m.	1-4C	Class-C Amp. (Tolephony)	500	125		-120	40		9.0		2.5		10
1619	15	2.5	2.0	400	300	3.5	10.5	0.35	12.5	45	0.	T9H	Class-C Amp. (Telegraphy)	400	300		- 55	75	10.5	5.0	9500	0.36	-	19.5
													Class-C Amp. (Tolephony)	325	285		- 50	62	7.5	2.8	5000	0.18		13
													Class-AB2 Amp. (Audio) ${ }^{\text {b }}$	400	300	0	-16.5	75/150	6.5/11.5		778	0.47	6000	36
5316	15	6.0	0.7	600	250	5.0	8.5	0.12	6.5	80	-	7CL	Closs-C Amp. (Telography)	600	250		-60	75	15	5.0		0.5		32
													Closs-C Amp. (Telephony)	475	250		-90	63	10	4.0	22500	0.5	-	22
													Class-AB3 (Audio) ${ }^{\text {(}}$	600	25		- 25	36/140	1/24	41	80^{8}	0.16	10500	67
AX. 9905 :	16	6.3	0.68	400	250	5	8.5	0.05	3.3	186	0.	Fig. 34	Closs-C Amplifier	400	250		- 80	80	6	3.5		0.39		20.8
														250	175		-70	80	6.5	4.2		0.26		16.9
254A	20	5.0	3.25	750	175	5.0	4.6	0.1	9.4		M.	T-4C	Closs-C Amplifier	750	175		-90	60						25
616	21	6.3	0.9	400	300	3.5	10	0.4	12	10	0.	7AC	Class-C Amp.-Oscillator	400	300		-125	100	12	5.0	-	-	-	28
6L6G							11.5	0.9	9.5				Closs-C Amp. (Telephony)	325	250		-70	65	-	9.0	-	0.8		11
6L6GX	21	6.3	0.9	500	300	3.5	11	1.5	7.0	-	0.	7 AC	Class-C Amp. (Telegraphy)	500	250		- 50	90	9.0	2.0		0.25		30
GL6GX			0.9	500	300	3.5	1	1.5	7.0	-	O.	IAC	Closs-C Amp. (Telephony)	325	225		-45	90	9.0	3.0		0.25		20
HY6L6. GTX	21	6.3	0.9	500	300	3.5	11	0.5	7.0	60	0.	7 AC	Class-C Amp.-Oscillator	500	250		- 50	90	9.0	2.0	$\underline{16000}$	0.5	-	30
GTX		6.3	0.9	500		3.5	1		7.0	S	0.	TAC	Class-C Amp. (Telephony)	400	225		-45	90	9.0	3.0	16000	0.8		20
T21	21	6.3	0.9	400	300	3.5	13	0.7	12	30	M.	6A	Cless-C Amp. (Telegraphy)	400	250		-50	95	8.0	3.0	-	0.2	-	25
12	21	6.3	0.9	400	300	3.5	13	0.7	12	30	m.	6A	Closs-C Amp. (Telophony)	350	200		- 45	65	17	5.0		0.35	-	14
RK49	21	6.3	0.9	400	300	3.5	11.5	1.4	10.6	-	M.	6A	Class-C Amp. (Telegraphy)	400	250		- 50	95	8.0	3.0	$\bar{\square}$	0.2		25
													Closs-C Amp. (Telophony)	300	200		- 45	60	15	5.0	6700	0.34		12
5881	23	6.3	0.9	400	300	3					0.	7AC	Class-C Amplifier	Same as 616										
1614	25	6.3	0.9	450	300	3.5	10	0.4	12.5	80	0.	7 AC	Closs-C Amp. (Telegraphy)	450	250		-45	100	8	2.0	12500	0.15		31
													Class-C Amp. (Telophony)	375	250	-	- 50	93	7.0	2.0	10000	0.15	-	24.5
													Class-AB, Amp. (Audio) ${ }^{6}$	530	340		- 36	60/160	207		72:		7200	50
	25	2.5	2.4	600	300	3.5	13	0.2	10	30	M.	saw	Class-C Amp. (Tolegraphy)	600	300	-	-90	93	10	3.0	\cdots	0.38	-	36
RK39	25	6.3	0.9	600	300	3.5	13	0.2	10	30	M.	saw	Class-C Amp. (Telephony)	475	250	-	- 50	85	9.0	2.5	25000	0.2	\cdots	26

table XVII-tetrode and peniode transmitting tubes-Continued

Type	Max. Plate Dissipation Watts	Cothode		Mox. Plote Voltoge	Mox. Screen Voltage	Mox. Screen Dissipalion Watts	InlerelectrodeCopacitances ($\mu \mu \mathrm{fd}$.)			Max. Freq. Mc. Full Rotings	Base	Socket Con-nections	Typicol Operation	Plate Valt. age	$\begin{aligned} & \text { Seraen } \\ & \text { Volt- } \\ & \text { age } \end{aligned}$	Suppressor Volt oge	Gid Voliage	Piote Current Ma.	Screen Current Mo.	Grid Current Ma.	Screen Resistor Ohms	Approx. Grid Driving Power Watts	Closs B P-to-P Lood Res. Ohms	Approx. Oulput Power Wafts
		Volts	Amp.				$\begin{gathered} \hline \text { Grid } \\ \text { to } \\ \text { Fil. } \end{gathered}$	Grid to Plate	$\begin{gathered} \hline \text { Plate } \\ \text { to } \\ \text { Fil. } \end{gathered}$															
HYO1	25	6.3	0.9	600	300	3.5	11	0.2	7.0	60	M.	SAW	Cless-C Amp. (Telegraphy)	600	250		- 50	85	9.0	4.0	39000	0.4		40
													Class-C Amp. (Telephony)	475	250		- 50	100	9.0	3.5	25000	0.2		27
													Class-AB2 Amp. (Audio) ${ }^{\text {a }}$	600	300		- 30	2007	10^{1}			$0.1{ }^{7}$		80
8153	25	$\begin{array}{r} 12.6 \\ 6.3 \end{array}$	$\begin{aligned} & 0.8 \\ & 1.6 \end{aligned}$	500	200	4.0	13.3	0.2	8.5	125	0.	8BY	Closs-C Amp.-Oscillator	500	200		- 45	150	17	2.5	-	0.13		56
													Closs-C Amp. (Telephony)	400	175		- 45	150	15	3.0		0.16		45
													Closs-AB2 Amp. (Audio) ${ }^{3}$	500	125		- 15	22/150	$32{ }^{7}$	-	60^{8}	$0.36{ }^{7}$	8000	54
2548	25	7.5	3.25	750	150	5.0	11.2	0.085	5.4	-	M.	T-4C	Class-C Amplifier	750	150		-135	75						30
1624	25	2.5	2.0	600	300	3.5	11	0.25	7.5	60	M.	T-5DC	Class-C Amp. (Telegraphy)	600	300		-60	90	10	5.0	30000	0.43	-	35
													Class-C Amp. (Telephony)	500	275	-	-50	75	9.0	3.3	25000	0.25		24
													Class-AB2 Amp. (Audio)"	600	300		- 25	42/180	5/15	1068		1.27	7500	72
$3 \mathrm{D} \times 3$	25	6.3	3.0	1500	200	-		-	\cdots	250	5.	Fig. 40	Class-C Amp. (Telegraphy)	1000	200		-155	75	-	2.8		0.57		50
$\begin{aligned} & 6146 \\ & 6159 \end{aligned}$	25	$\begin{array}{\|r} 6.3 \\ 26.5 \end{array}$	$\begin{aligned} & 1.25 \\ & 0.3 \end{aligned}$	750	250	3.0	13.5	0.22	9.0	60	M.	7CK	Class-C Amp. (C. W. 15 Mc .)	750	160		-85	120	14.7	3.0	\square	0.3		69
													Class-C Amp. (C.W. 175 Mc.)	400	200		- 54	150	9	1.8	$\underline{-}$	3.0		35
													Class-C Amp. (Telephony)	600	150		-85	112.5	12	3.0	\cdots	0.3		52
													Class-AB2 Amp. (Audio) ${ }^{6}$	750	165		- 45	35/240	0.6/21	$101{ }^{8}$		0.07	8000	130
3E22 ${ }^{3}$	30	12.6	0.8	560	225	6.0	14			200			Class-C Amp. (Telegraphy) ${ }^{3}$	600	200		- 55	160	20	7.0	20000	0.45		72
3E22*	30	6.3	1.6	560	225	6.0	14	0.22	8.5	200	0.	8BY	Class-C Amp. (Telephony) ${ }^{3}$	560	200		- 50	160	20	6.5	18000	0.4		67
RK66	30	6.3	1.5	600	300	3.5	12	0.25	10.5	60	M.	T.5C	Closs-C Amp.-Oscillotor	600	300		- 60	90	11	5.0		0.5		40
RK66	30	6.3	1.5	600		3.5	12	0.25	10.5	60	M.	T-SC	Class-C Amp. (Telephony)	500			-50	75	8.0	3.2	25000	0.23	-	25
$\begin{aligned} & 807 \\ & 807 \mathrm{~W} \\ & 5933 \\ & 1625 \end{aligned}$	30	6.3	0.9	750	300	3.5	11	0.2	7.0	60	M.		Class-CAmp. (Telegraphy)	750	250		-45	100	6	3.5	85000	0.22		50
													Closs-C Amp. (Telephony)	600	275		- 90	100	6.5	4.0	50000	0.4	-	42.5
		12.6	0.45										Closs-AB2 Amp. (Audio) ${ }^{\text {s }}$	750	300		- 32	60/240	5/10	$92{ }^{8}$	-	$0.2{ }^{7}$	6950	120
													Closs-E Amp. (Audio) ${ }^{11}$	750	-		0	15/240		$555{ }^{8}$		5.37	6650	120
$2 \mathrm{E22}$	30	6.3	1.5	750	250	10	13	0.2	8.0		M.	5J	Class-C Amp.-Oscillator	500	250	22.5	-60	100	16	6.0	15000	0.55	-	34
										-			Class-C Amp.-Osciliotor	750	250	22.5	-60	100	16	6.0	30000	0.55	\cdots	53
													Suppressor-Modulaled Amp.	750	250	-90	-65	55	29	6.5	17000	0.6		16.5
3023	35	6.3	3.0	-	-	-							Class-C Amp. (Telegraphy)	1500	375	-	-300	110	22	15	$\underline{-}$	4.5		130
T8-35	35	6.3	3.0	-	-	-	6.5	0.2	1.8	250	M.	Fig. 54	Class-C Amp. (Telephony)	1000	300		-200	85	14	10	-	2.0		60
AX9903^{3} 5894A	40	$\begin{gathered} 6.3 \\ 12.6 \end{gathered}$	$\begin{aligned} & 1.8 \\ & 0.9 \end{aligned}$	600	250	7	6.7	0.08	2.1	150	N.	Fig. 10	Class-C Amp. (Telegraphy)	600	250		- 80	200	16	2	-	0.2	-	80
													Class-C Amp. (Telephony)	600	250	-	-100	200	24	8	-	1.2	-	85
$\begin{aligned} & \text { RK201 } \\ & \text { RK20A } \\ & \text { RK461 } \end{aligned}$	40	$\begin{array}{r} 7.5 \\ 7.5 \\ 12.6 \end{array}$	$\begin{aligned} & 3.0 \\ & 3.25 \\ & 2.5 \end{aligned}$	1250	300	15	14	0.01	12		M.	T-5C	Class-C Amp. (Telegrophy)	1250	300	45	-100	92	36	11.5	-	1.6		84
													Closs-C Amp. (Telephony)	1000	300	0	-100	75	30	10	23000	1.3		52
										-			Suppressor- Moduloted Amp.	1250	300	-45	-100	48	44	11.5	-	1.5		21
													Grid Modulated Amp.	1250	300	45	-142	40	7.0	1.8	-	1.5		20
HY69	40	6.3	1.5	600	300	5.0	15.4	0.23	6.5	60	M.	T-5D	Class-C Amp.-Oscillator	600	250		- 60	100	12.5	4.0	30000	0.25		42
													Class-C Amp. (Telephony)	600	250		- 60	100	12.5	5.0	30000	0.35		42
													Modulated Doubler	600	200		-300	90	11.5	6.0	35000	2.8		27
													Class-AB2 Amp. (Audio) ${ }^{\text {s }}$	600	300		- 35	200 ?	187	5.07	-	$0.3{ }^{7}$	-	80
8291,3	40	$\begin{gathered} 6.3 \\ 12.6 \end{gathered}$	$\begin{aligned} & 2.25 \\ & 1.12 \end{aligned}$	500	225	6	14.5	0.1	7.0	200	N.	7BP	Class-C Amp. (Telegraphy)	500	200		- 45	240	32	12	9300	0.7	-	83
													Class-C Amp. (Telephony)	425	200	-	-60	212	35	11	6400	0.8		63
													Grid-Modulatad Amp.	500	200		- 38	120	10	2.0	-	0.5	-	23
829A1, ${ }^{\text {a }}$	40	$\begin{array}{r} 6,3 \\ 12.6 \end{array}$	$\begin{aligned} & 2.25 \\ & 1.12 \end{aligned}$	750	240	7.0	14.4	0.1	7.0	200	N.		Class-C Amp.-Oscillotor	750	200	-	- 55	160	30	12	18300	0.8	-	87
												7BP	Closs-C Amp. (Telephony)	600	200		- 70	150	30	12	13300	0.9		70
													Grid-Modulated Amp.	750	200	-	- 55	80	5.0	0	$\underline{\square}$	0.7	-	24
													Class-C Amp. (Telegrophy)	500	200	-	-45	240	32	12	9300	0.7	-	83
$\begin{aligned} & 82983 \\ & 35293 \end{aligned}$	40	$\begin{array}{r} 12.6 \\ 6.3 \end{array}$	$\begin{aligned} & 1.125 \\ & 2.25 \end{aligned}$	750	240	7	14.5	0.12	7.0	200	N.	7BP	Class-C Amp. (Telephony)	425	200		-60	212	35	11	6400	0.8		63
													Closs-B Amp. (Audio) ${ }^{6}$	500	200		-18	27/230	-	56^{8}	-	0.39	4800	76

table XVII-tetrode and pentode transmitting tubes-Continued

Type	Max. Plate Dissipation Watis	Cathoda		Max. Plate Valfage	Max. Scraen Vali- age	Max. Screen Dissipation Woths	InterelectrodeCapacitances ($\mu \mu \mathrm{fd}$.			Max. Freq. Mc. Full Ratings	Base	Sockel Con-nections	Typical Operation	Plate Voltog*	Screen Voll--ge	Suppressor Volfoge	Grid Voltag	Plate Currenl Ma.	Screen Current Ma.	Grid Current Ma.	Screen Resisfor Ohms	Approx. Grid Driving Power Watts	Clas: B P-to-P Load Res. Ohms	Approx. Oulput Watts
		Volts	Amp.				Grid 10 Fil.	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plote } \end{aligned}$	Plate to Fil.															
HY 1269	40	$\begin{array}{r} 6.3 \\ 12.6 \end{array}$	$\begin{aligned} & 3.5 \\ & 1.75 \end{aligned}$	750	300	5.0	16.0	0.25	7.5	6	M.	T-5DB	Class-C Amp.-Oscillator	750	300		- 70	120	15	4	-	0.25		63
													Class-C Amp. (Telephony)	600	250		- 70	100	12.5	5	35000	0.5		42
													Grid-Modulated Amp.	750	300			80	-	-				20
													Class-AB2 Amp. (Audio) ${ }^{6}$	600	300		-35	2007				0.3		80
3024	45	6.3	3.0	2000	400	10	6.5	0.2	2.4	125				2000	375		-300	90	20	10		4.0	-	140
3024	45	6.3	3.0	2000	400	10	6.5	0.2	2.4	125	L.	T-9]	Class-C Amp.-Oscillator	1500	375		-300	90	22	10		4.0		105
715-8	50	26/28	-		-	-		-				-	Class-C Amp. (Telegraphy)	1500	300			125	\square					\square
5562	45	6,3	3.0	2000	400	8		0.2		120			Class-C Amp. (Telegraphy)	1500	375		-300	116	21	12		3.6		135
5562	45	6.3	3.0	2000	400	8	6.5	0.2	1.8	120	M.	Fig. 54	Class-C Amp. (Telephony)	1000	300		-200	85	14	10		2.0		60
HK-57	50	5	5	3000	500	25	7.29	0.05	3.13	200	N.	Fig. 64	Class-C Amp. (Tolegraphy)	2000	450	+30	-145	110	2	1		0.15		166
													Closs-C Amp. (Telephony)	2000	450	+30	-145	88	2	1.5		0.2		135
													Suppressor-Modulated Amp.	2000	450	-190	-240	80	14	2.5	110000	0.6		90
SK47	50	10	3.25	1250	300	10	13	0.12	10		M.	T-50	Class-C Amp. (Telegraphy)	1250	300		-70	138	14	7.0		1.0		120
										-			Class-C Amp. (Talephony)	900	300		-150	120	17.5	6.0		1.4		87
													Grid-Modulated Amp.	1250	300		-30	60	2.0	0.9		4.0		25
312A	50	10	2.8	1250	500	20	15.5	0.15	12.3		M.	T-6C	Closs-C Amp. (Telography)	1250	300	20	-55	100	36	5.5		0.7		90
													Class-C Amp. (Telephony)	1000	-	40	- 40	95	35	7.0	22000	1.0		65
													Suppressor-Modulated Amp.	1250		-85	-50	50	42	5.0	22000	0.55		23
804	50	7.5	3.0	1500	300	15	16	0.01	14.5	15	M.	T-5C	Class-C Amp. (Telegraphy)	1500	300	45	-100	100	35	7.0	34000	1.95		110
													Closs-C Amp. (Telephony)	1250	250	50	-90	75	20	6.0	50000	0.75		65
													Grid-Modulated Amp.	1500	300	45	-130	50	13.5	3.7		1.3		28
													Suppressor-Modulated Amp.	1500	300	-50	-115	50	32	7.0		0.95		28
$\frac{4 \mathrm{D} 22}{4 \mathrm{D} 32}$	50			750	350	14	28	0.27	13	60	N.		Class-C Amp. (Telegraphy)	750	300		-100	240	26	12		1.5		135
		12.6	$\begin{aligned} & 0.8 \\ & 1.6 \end{aligned}$									Fig. 50		600	300		-100	215	30	10	-	1.25		100
		6.3	3.75									Fig. 51	Class-C Amp. (Telephony)	600	-		-100	220	28	10	10000	1.25	-	100
														550		-	-100	175	17	6	15000	0.6		70
													Class-AB? Amp. (Audio) ${ }^{\text {b }}$	600	250		- 25	100/365	26^{7}	70^{8}		0.457	3000	125
305A	60	10	3.1	1000	200	6	10.5	0.14	5.4		M.	T-4CE	Class-C Amp. (Telegraphy)	1000	200		-200	125	-	\cdots		-		85
305A	60	10	3.1	1000	200	6	10.5	0.14	5.4	-	m.	7-4CE	Class-C Amp. (Telephony)	800	200	-	-270	125				-	-	70
HY67	65	$\begin{array}{r} 6.3 \\ 12.6 \end{array}$	$\begin{aligned} & 4.5 \\ & 2.25 \end{aligned}$	1250	300	10		0.19	14.5		M.	T-5DB	Class-C Amp. (Telegraphy)	1250	300	-	-80	175	22.5	10		1.5	\cdots	152
										-			Closs-C Amp. (Telephony)	1000	300		-150	145	17.5	14	-	2.0	-	101
													Grid-Modulated Amp.	1250	300			78				-		32.5
814	65	10	3.25	1500	300	10	13.5	0.1	13.5	30	M.	T-5D	Class-C Amp. (Telegraphy)	1500	300		-90	150	24	10	50000	1.5		160
													Class-C Amp. (Telephony)	1250	300		-150	145	20	10	48000	3.2		130
													Grid-Modulated Amp.	1500	250		-120	60	3.0	2.5		4.2		35
4-65A	65	6.0	3.5	3000	400	10	8.0	0.08	2.1	160°	N.	Fig. 48	Class-C Amp. (Telegraphy)	3000	250		- 90	115	20	10		1.7		280
				2500	400								Closs-C Amp. (Telephony)	2500	250		-150	108	16	8	-	1.9	-	225
				3000	600								Class-B Linear Amp.	2500	500	-	-100	20/230	0/35	6^{10}	-	$1.8{ }^{10}$	-	3257
				3000	600								Class-AB2 Amp. (Audio) ${ }^{6}$	1800	250		- 35	50/220	0/25	1808	$\underline{\square}$	$2.2{ }^{7}$	20000	270
282A	70	10	3.0	1000	250	5	12.2	0.2	6.8	-	M.	T-4C	Class-C Amp. (Telegraphy)	1000	150		-160	100	-	\square	\cdots	-	-	33
													Class-C Amp. (Tolephony)	750	150	$\underline{\square}$	-180	100		50				50
$\begin{aligned} & \text { 4E27/ } \\ & 8001 \end{aligned}$	75	5.0	7.5	4000	750	30	12	0.06	6.5	75	J.	78M	Class-C Amp. (Telegraphy)	2000	500	60	-200	150	11	6	136000	1.4		230
													Class-C Amp. (Telephony)	1800	400	60	-130	135	11	8	125000	1.7	\square	178
													Suppressor-Modulated Amp.	2000	500	-300	-130	55	27	3.0	-	0.4	-	35

TABLE XVII-TETRODE AND PENTODE TRANSMITTING TUBES - Continued

Type	Max. Plate Dissipation Watts	Cathode		Mox. Plate Volt -ge	Max. Sereen Volt. ag*	Mox. Screen Dissipation Watts	InferalectrodeCapacitances ($\mu \mu \mathrm{fd}$.)			Max. Fraq. Me. Fuli Ratings	Base	Socket Con-nections	Typical Oparation	Plote Valt. oge	Sereen Volf: -ge	$\begin{aligned} & \text { Sup. } \\ & \text { pressor } \\ & \text { Voll- } \\ & \text { age } \end{aligned}$	Grid Voltoge	Plale Current Ma.	Screen Current Mo.	$\begin{array}{\|c} \text { Grid } \\ \text { Current } \\ \text { Ma. } \end{array}$	Screen Resisfor Ohms	'Approx. Grid Driving Power Watts	Class 8 P-10.P Laed Res. Ohms	
		Volts	Amp.				$\begin{aligned} & \text { Grid } \\ & \text { to } \end{aligned}$ Fil.	$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Plote } \end{gathered}$	Plate to Fit.															
$\begin{aligned} & \text { HK257 } \\ & \text { HK2378 } \end{aligned}$	75	5.0	7.5	4000	750	25	13.8	0.04	6.7	$\begin{array}{r} 75 \\ 120 \end{array}$	J.	78M	Class-C Amp. (Telegraphy)	2000	500	60	-200	150	11	6.0	\square	1.4		230
													Class-C Amp. (Telephony)	1800	400	60	-130	135	11	8.0	-	1.7		178
													Suppressor-Modulated Amp.	2000	500	-300	-130	55	27	3.0		0.4		35
828	80	10	3.25	2000	750	23	13.5	0.05	14.5	30	M.	5J	Class-C Amp. (Telegraphy)	1500	400	75	-100	180	28	12	40000	2.2	-	200
													Class-C Amp. (Telephony)	1250	400	75	-140	160	28	12	30000	2.7		150
													Grid-Modulated Amp.	1500	400	75	-150	80	4.0	1.3	\longrightarrow	1.3		41
													Closs-AB, Amp. (Audio) ${ }^{\text {b }}$	2000	750	60	-120	50/270	2/60	240		0	18500	385
RK28	100	10	5.0	2000	400	35	15	0.02	15		J.	5J	Class-C Amp. (Telegraphy)	2000	400	45	-100	150	55	13	21000	2.0		210
													Class-C Amp. (Telephony)	1500	400	45	-100	135	52	13	21000	2.0		155
										-			Suppressor- Modulated Amp.	2000	400	-45	-100	85	65	13	-	1.8		60
													Grid-Modulated Amplifier	2000	400	45	-140	80	20	4.0	-	0.9		75
$\begin{aligned} & \text { RK48 } \\ & \text { RK48A } \end{aligned}$	100	10	5.0	2000	400	22	17	0.13	13		J.	T.50	Class-C Amp. (Telegraphy)	2000	400		-100	180	40	6.5		1.0		250
										-			Closs-C Amp. (Telephony)	1500	400		-100	148	50	6.5	22000	1.0		165
													Grid-Maduloted Amplifier	1500	400		-145	77	10	1.5	-	1.6		40
850	100	10	3.25	1250	175	10	17	0.25	25	15	J.	T-38	Class-C Amp. (Telegraphy)	1250	175		-150	160	-	35		10		130
													Class-C Amp. (Telephony)	1000	140	\square	-100	125		40		10		65
													Grid-Modulated Amplifier	1250	175	-	- 13	110						40
											M	T.4CB	Class-C Amp. Oscillator	3000	300		-150	85	25	15		7.0		165
860	100	10	3.25	3000	500	10	7.75	0.08	7.5	30	m.	T.4C8	Class.C Amp. (Telephony)	2000	220		-200	85	25	38	100000	17	-	105
813	125	10	5.0	2250	400	22	16.3	0.2	14	30	J.	5BA	Class.C Amp. (Telegraphy)	2250	400	0	-155	220	40	15	46000	4.0		375
													Class-C Amp. (Telephony)	2000	350	0	-175	200	40	16	41000	4.3		300
													Grid-Modulated Amplifier	2250	400	0	-110	85	2.5		-	-	-	75
													Class-B Amp. (Audio) ${ }^{5}$	2500	750	0	- 95	35/360	1.2/55			0.35	17000	650
$\begin{aligned} & 4.125 A \\ & 4021 \\ & 6155 \end{aligned}$	125	5.0	6.2	3000	400	20	10.3	0.03	3.0	120	N.	5BK	Class.C Amp. (Tolegraphy)	3000	350		-150	167	30	9		2.5		375
													Class-C Amp. (Telaphony)	2500	350	-	-210	152		9	-	3.3		300
													Class-AB: Amp. (Audio) ${ }^{\text {c }}$	2500	350	-	- 43	93/260	0/6	178	\square	1.0	22200	400
$\begin{aligned} & \text { 4E27A// } \\ & \mathbf{5 . 1 2 5 B} \end{aligned}$	125	5.0	7.5	4000	750	20	10.5	0.08	4.7	75	J.	7 BM	Closs-C Amp. (Telegraphy)	3000	500	60	-200	167	5	6	-	1.6		375
														1500	500	60	-130	200	11	8		1.6	\square	215
														1000	750	0	-170	160	21	3	-	0.6		115
RK28A	125	10	5.0	2000	400	35	15	0.02	15	-	J.	5J	Class-C Amp. (Telegraphy)	2000	400	45	-100	170	60	10	-	1.6	-	250
													Class-C Amp. (Telography)	1500	400	45	-100	135	54	10	18500	1.6	-	150
													Grid-Modulated Amp.	2000	400	45	- 55	80	18	2.0	-	0.5		60
													Suppressor.Modulated Amp.	2000		-45	-115	90	52	11.5	30000	1.5		60
803	123	10	5.0	2000	600	30	17.5	0.15	29	20	J.	5J	Class-C Amp. (Telography)	2000	500	40	-90	160	45	12		2.0		210
													Class-C Amp. (Telephony)	1600	400	100	-80	150	45	25	27000	5.0	-	155
													Suppressor-Modulated Amp.	2000	-	-110	-100	80	48	15	35000	2.5		53
													Grid-Modulated Amplifier	2000	600	40	- 80	80	20	4.0	-	2.0	-	53
$\begin{aligned} & \text { 4X. } \\ & 150 A, \end{aligned}$	150	6.0	2.0	1000	300	15	16.1	0.02	4.7	500	N.	T.9J		1000	250		- 80	200	39	7		0.69		148
													Class-C Amp. (Telegraphy)	750	250		- 80	200	37	6.5		0.63	-	110
														600	250	-	- 75	200	35	6		0.52		85
$\begin{aligned} & \hline \times \mathrm{XX} \\ & 150 \mathrm{c} \end{aligned}$	150	2.5	6.25	1250	300	15	16.1	0.02	4.7	165	N.	-	Class.C Amp. (Telegraphy)	1250	250		- 90	200	20	11	-	1.2	-	195
													Class-C Amp. (Telegraphy)	3000	400	-	-290	200	27	7	-	2.6	-	450
PE340/	150	5.0	7.5	4000	400	-	11.6	0.06	4.35	120	N.	58K	Closs-C Amp. (Tolephony)	2500	400	-	-425	180	27	9	[4	-	350
4023°													Class AB: Audio ${ }^{\text {a }}$	2500	400	-	-95	2847	77		\cdots	1.87	19100	460

table XVII-tetrode and pentode transmitting tubes-Continued

Type	Max. Plate Dissi- polion Walts	Cathode		Max. Plale Voltoge	Max. Screen Voltoge	Max. Screen Dissipation Watts	$\begin{gathered} \text { Interelectrode } \\ \text { Copacitonces }(\mu \mu \mathrm{fd} .) \end{gathered}$			Max. Freq. Mc. Full Rating:	Bose	Socket Contions	Typical Operation	Plate Voltage	$\begin{gathered} \text { Screen } \\ \text { Volt- } \\ \text { oge } \end{gathered}$		Grid Voltage	$\begin{aligned} & \text { Plole } \\ & \text { Currenil } \\ & \text { Mo. } \end{aligned}$	Screen Curren 1 Mo.	$\underset{\text { Curid }}{\text { Grid }}$ Mo.	Screen Resistor Ohms	Approx. Grid Driving Power Watts	$\begin{gathered} \text { Class B } \\ \text { P-to-P } \\ \text { Lood } \\ \text { Res. } \\ \text { Ohms } \end{gathered}$	Approx.OutpuiPowerWotts							
		Volts	Amp.				$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Fil. } \end{aligned}$	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plate } \end{aligned}$	Plate to Fil.																						
AT-340	150	5	7.0	4000	400		9.04	0.19	4.16	120	J.	5BK	Closs-C Amp.-OsciHator	3000	400		-500	165	75			2.4									
RK65	215	5.0	14	3000	500	35	10.5	0.24	4.75	60	J.	T-3BC	Class-C Amp. (Telegraphy)	3000	400		-100	240	70	24		6.0		510							
													Class-C Amp. (Telephony)	2500			-150	200	70	22	30000	6.3		380							
4-250A 5022 8156	250	5.0	14.5	4000	600	35	12.7	0.06	4.5	75	N.	sвк	Closs-C Amp. (Telegraphy)	3000	500		-180.	330	60	10		2.6		800							
													Class-C Amp. (Telephony)	3000	400		-310	225	30	9		3.2		510							
													Closs-AB2 (Audio) ${ }^{\text {b }}$	1500	300		- 48	100/485	0/34	1928		4.78	5400	428							
$\frac{5024}{4 .}$	250	5.0	14.1	4000	350	50	12.7	0.06	4.5	85	N.	5BK	Closs-C Amp. (Telegrophy)	Same os 4-250A										$\begin{aligned} & \text { GL- } \\ & 5 D 24 \end{aligned}$							
4004^{3}	400	5.0	14.5	4000	600	35	12.5	0.12	4.7	110	N.	5BK	Closs-C Teleg. or Telephony	4000	300		-170	270	22.5	10		10		720							
861	400	11	10	3500	750	35	14.5	0.1	10.5	20	N.	T.	Class-C Amp. (Telegraphy)	3500	500	-	-250	300	40	40		30		700							
		1 Discontinued. 2 Triode connection-screen grid tied to plate. ${ }^{3}$ Dual tube. Values for both sections, in push-pull. Interelectrode copocitonces, however, ore for each section.									4 Terminals 3 and 6 must be connocled togethor. ${ }^{5}$ Filament limited to intermittent operation. - Values are for two tubes in push-pull. - Max.-signal value.						${ }^{8}$ Peak grid-lo-grid a.f. volts. ${ }^{9}$ Forced-air cooling required. ${ }^{10}$ Average value. ${ }^{11}$ Two tubes triode connected, \mathbf{G}_{2} to \mathbf{G}_{1} through 20 K s?. Inpul to \mathbf{G}_{2}.														
											375																				

Type	Freq. Range-Mc.	Cothode		$\begin{aligned} & \text { Bose } \\ & \text { Connec- } \\ & \text { tions } \end{aligned}$	Typical Operotion	Beam Volts	$\begin{aligned} & \text { Beom } \\ & \text { Mo. } \\ & \text { (Max.) } \end{aligned}$	$\begin{aligned} & \text { Beam } \\ & \text { Wolts } \\ & \text { (Max.) } \end{aligned}$	ControlElectrode Volts	Reflector Volis	Cathode Ma.	R.F. Driving Power Wofts :	Output Wats
		Volts	Amp.										
2K22	4240-4910	6.3	0.44		Reflex Oscillator	300				$-120 /-180$	-	Wots	0.75-0.115
$\begin{aligned} & 2 k 25 / \\ & 723 A . B \end{aligned}$	8702-9548	6.3	0.44	Fig. 60	Reflex Oscillator	300	32	-	-	-130/-185	25	-	0.033
$\underline{2 K 26}$	6250-7060	6.3	0.50	Fig. 60	Reflex Oscillotor	300	25					-	0.033
$2 \mathrm{K28}$ 3	1200-3750	6.3	0.65	Fig. 61	Reflex Osciliator	3007	45			$-65 /-120$ $-155 /-290$		-	0.120
2K29	3400-3960	6.3	0.44		Reflex Oscillotor	300	45	-	300	$-155 /-290$ $-75 /-180$	30	-	0.140
2 K 33	23500-24500	6.3	0.65	Fig. 62	Reflex Oscillator	$1800{ }^{7}$		\square		-75/-180		\square	0.85-0.106
2K34	2730-3330	6.3	1.6	Fig. 58	Oscillotor-Buffer*	1900	150	450	-45	-80/-220	75		0.04
2 K 35	2730-3330	6.3	1.6	Fig. 58	Coscade Amplifier*	1500	150	450	-45		75	-	10-14
$2 \times 39{ }^{3}$	7500-10300	6.3	1.3	Fig. 59	Reflex Oscillotor*	1000	60	75			75	0.005	5
2 K 41	2660-3310	6.3	1.3	Fig. 59	Reflex Oscillator*	1000	60	75	+24	-680 -510	30	-	0.46
$2 \mathrm{~K} 42{ }^{3}$	3300-4200	6.3	1.3	Fig. 59	Reflex Oscillator*	1000	60	75	+24	-510	60	-	0.75
$2 \mathrm{~K} 43{ }^{3}$	4200-5700	6.3	1.3	Fig. 59	Reflex Oscillator*	1000	60	75	0	-650	45	-	0.75
$2 \mathrm{~K} 44^{3}$	5700-7500	6.3	1.3	Fig. 59	Reflex Oscillator*	1000	60	75	0	-320	40	-	08
$\underline{2 K 45}$	8500-9660	6.3	0.762	-	Reflex Oscillator	300			0	-700	43	-	0.9
2K46	$\begin{aligned} & 2730-33301 \\ & 8190-10000^{2} \end{aligned}$	6.3	1.3	Fig. 58	Frequency Multiplier*	1500	60			-95/-145	-	-	0.02-0.032
	250-2801						60	60	-90	-	30	0.01/0.07	0.01-0.07
2×47	2250-3360 ${ }^{2}$	6.3	1.3	Fig. 58	Frequency Multiplier *	1000	60	60	-35	-	50	3.5	0.15
2K48	6900-10850	6.3	0.515		Reflex Oscillotor	1250							
2 K 56	3840.4460	6.3	5.0	Fig. 60	Reflex Oscillator	300	25	-		$-175 /-300$ $-85 /-150$	-	\square	0.025
$3 \mathrm{K21}^{3}$	2300-2725	6.3	1.6	Fig. 58	Oscillator-Amplifier*	2000	$\underline{150}$	450		-85/-150	125	-3	0.090
$3 \mathrm{K22}{ }^{3}$	3320-4000	6.3	1.6	Fig. 58	Oscillator-Amplifier *	2000	150	450	0	-	125	1-3	10-20
$3 \mathrm{~K} 23{ }^{\text {\% }}$	950-1150	6.3	1.6	Fig. 59	Reflex Oscillotor*	1000	90	80	0	-300	125 70	1-3	10-20
$3 \mathrm{~K} 27{ }^{3}$	750-960	6.3	1.6	Fig. 59	Reflex Oscillator*	1000	90	80		-300	70	\square	1-2
$\begin{aligned} & 3 K 30 \\ & (4110 R)^{3} \end{aligned}$	2700-3300	6.3	1.6	Fig. 58	Oscillotor-Amplifier *	2000	150	450	0	-300	70	\square	1-2
	1250-6000		-		Reflex Oscillotor	350			$\begin{array}{r} 0 \\ +\quad 1 \\ \hline \end{array}$	$0 /-400$	$\begin{array}{r} 125 \\ 25 \end{array}$		10-20

TABLE XVIII—KLYSTRONS—Continued

Type	Freq. Range-Mc.	Cothode		BaseConnec-tions	Typicol Operotion	Beam Volts	Boera Ma. (Mox.	Bubit Watts (Mox.)	Eunlral- Electrode Volts	Reflector Volts	Cothode Mo.	R.F. Driving Power Waffs	Output Wotts
		Volts	Amp.										
68M6	550-3000	-			Reflex Oscillator	350		(Mox.)	+1	0/-600	20		
707B ${ }^{\text {3 }}$	1200-3750	6.3	0.65	Fig. 61	Reflex Oscillator	$300{ }^{7}$	45	-	300	-155/-290	30	-	0.140
SD1103	1250-6000	-	-		Reflex Oscillator	350			$+10$	0/-400	25		0.140
SD1104	550-3000	-	-		Reflex Oscillator	350	-		$+10$	0/-600	22	-	-
OK 140	29700-33520	6.3	0.65		Reflex Oscillotor	2250	-	-	-20/-250	-50/-200		-	0.01-0.02
QK159	2950-3275	6.3	0.65	Fig. 63	Reflex Oscillotor	300	45		300	$-100 /-175$	20	-	0.01-0.02
QK226	37100-42600	6.3	0.65		Reflex Oscillator	2500			-20/-200	-50/-200	-		0.005
OK227	41700-50000	6.3	0.65		Reflex Oscillotor	3000	-	-	-20/-200	-50/-200	-		0.005
OK229	27270-30000	6.3	0.65		Reflex Oscillator	2250		\square	-20/-250	-50/-200		-	0.01-0.02
OK290	29700-33520	6.3	0.65	-	Reflex Oscillator	2250	-	-	-20/-250	-50/-200	-	\cdots	0.01-0.02
OK291	33520-36250	6.3	0.65		Reflex Oscillator	2250			-20/-250	-50/-200	-		. $0005-.018$
QK292	35100-39700	6.3	0.65	-	Reflex Oscillator	2500	-	-	-20/-200	-50/-200	-	-	. $005-.01$
OK293	37100-42600	6.3	0.65		Roflex Oseiliator	2500	-	-	-20/-200	-50/-200	$\underline{-}$. 005
OK294	41700-50000	6.3	0.65		Reflex Oscillotor	3000			-20/-200	-50/-200	\ldots	\square	. 005
OK295	50000-60000	6.3	0.65	-	Reflex Oscillator ${ }^{8}$	3500	$\underline{\square}$	-	-20/-200	-50/-200			. 005
OK306	18000-22000	6.3	0.65		Reflex Oscillator	1800			-20/-100	-80/-220	-	-	.01-.04
RK726C	2700-2960	6.3	0.44	\square	Reflex Oscillator	300	-	-	-	-75/-135	-	-	0.085-0.1
RK5721	3500-12000	6.3	0.58		Reflex Oscillator	1000	-	-	+4/+18	-60/-625	\cdots		0.10 .125
RK5976	6250-7460	6.3	0.44	-	Reflex Oscillotor	300	-			-78/-158	-	-	0.85-0.11
RK5981	1245-1460	6.3	0.455	-	Reflex Oseillator	225	-	-	-	-30/-330			0.0.04-0.1
RK6043	2950-3275	6.3	0.65	-	Reflex Oscillator	300		-	$+300$	-100/-175	-	-	0.15-0.175
RK6115	5100-5900	6.3	0.44	-	Reflex Oscillotor	300	\square	-	-	-115/-175	-	-	0.07-0.1
2-668	21900-26100		\cdots	-	Reflex Oscillator*	1700	-	15	\square	-1700/-2300			0.02
5836	$1250-6000$ $550-3000$	\square	$\underline{\square}$		Reflex Oseillator	350	-	-	$+10$	0/-400	25	-	0.02
$\underline{5837}$	550-3000	-	-	-	Reflex Oscillator	350	-	-	$+10$	0/-600	22	$\underline{\square}$	\square

2 input frequency.
2 Output frequency.
1'Tuner required.

- At max. ratings.
\$ Has demountoble tuning cavity.
Cathode current specified on each tube.

[^11]TABLE XIX-CAVITY MAGNETRONS

Typ*	Closs	Band ar Range Mc.	Heater		Maximum Ratings					Typical Operation				Peak Pwr. Output KW.
			Volts	Amps.	Anode KV.	Anode Amps.	Duty Cycle	Input Watts	Anode KV.	Anade Amps.	Field Gauss	$\begin{aligned} & \text { Pulse } \\ & \text { Hec. } \end{aligned}$	P.P.S.	
RK2J22	1	3267-3333	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	2250	1.0	1000	265
RK2J23	1	3071-3100	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	2400	1.0	1000	275
RK2J24	1	3047-3071	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	2400	1.0	1000	275
RK2J25	1	3019-3047	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	2400	1.0	1000	275
RK2J26	1	2992-3019	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	2400	1.0	1000	275
RK2J27	1	2965-2992	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	2400	1.0	1000	275
RK2J28	1	2939-2965	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	2400	1.0	1000	275
RK2J29	1	2914-2939	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	2400	1.0	1000	275
RK2J30	1	2860-2900	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	1900	1.0	1000	285
RK2J31	1	2820-2860	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	1900	1.0	1000	285
RK2 J32	1	2780-2820	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	1900	1.0	1000	285
RK2J33	1	2740-2780	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	1900	1.0	1000	285
RK2J34	1	2700-2740	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	1900	1.0	1000	285
RK2J36	1	9003-9168	6.3	1.3	13.5	12.0	. 002	200	11.5	10.0	2500	1.0	1000	15.0
RK2J38	1	3249-3263	6.3	1.25	6.0	8.0	. 012	200	4.9	3.0	Pkg.	1.0	2000	5.0
RK2J39	1	3267-3333	6.3	1.25	6.0	8.0	. 002	200	5.4	5.0	Pkg.	1.0	2000	8.7
2 J 42	1	9345-9405	6.3	0.5	5.7	6.5	. 001	-	-		4800	2.5		14
2J42A	1	9345-9405	6.3	0.5	8.0	7.0	. 001				6500	2.5	-	35
RK2J48	1	9310-9320	6.3	1.0	16.0	16.0	. 002	230	12.0	12.0	4850	1.0	1000	50.0
RK2J49	1	9000-9160	6.3	1.0	16.0	16.0	. 0012	180	12.0	12.0	5400	1.0	1000	58.0
RK2J50	1	8740-8890	6.3	1.0	16.0	16.0	. 0012	180	12.0	12.0	5400	1.0	1000	58.0
RK2J51	2	8500-9600	6.3	1.1	16	16	. 0012	230	15	14	Pkg.	1.0	1000	45
RK2J54	2	3123-3259	6.3	1.5	14.0	15.0	. 002	250	11.6	12.5	1400	1.0	2000	45.0
RK2J55	1	9345-9405	6.3	1.0	16.0	16.0	. 001	180	12.8	12.0	Pkg.	1.0	1000	50.0
RK2J56	1	9215-9275	6.3	1.0	16.0	16.0	. 001	180	12.8	12.0	Pkg.	1.0	1000	50.0
RK2J58	2	2992-3100	6.3	1.5	22.0	15.0	. 002	600	10.5	12.5	1450	1.0	2000	50.0
RK2J61A	2	3000-3100	6.3	1.5	15.0	15.0	. 002	250	10.7	12.5	1300	1.0	2000	35.0
RK2J62A	2	2914-3010	6.3	1.5	15.0	15.0	. 002	250	10.2	12.5	1300	1.0	2000	35.0
RK2J66	$\stackrel{\square}{2}$	2845-2905	6.3	1.5	20.0	25.0	. 001	400	18.0	25.0	1700	1.0	1000	150
RK2J67	2	2795-2855	6.3	1.5	20.0	25.0	. 001	400	18.0	25.0	1700	1.0	1000	150
RK2J68	2	2745-2805	6.3	1.5	20.0	25.0	. 001	400	18.0	25.0	1700	1.0	1000	150
RK2J69	2	2695-2755	6.3	1.5	20.0	25.0	. 001	400	18.0	25.0	1700	1.0	1000	150
RK2J70	1	3030-3110	6.3	1.25	7.5	15	. 002	200	7	8	Pkg.	0.5	1000	20
RK2J71	1	3190-3201	6.3	1.25	5.5	8	. 002	100	5	5	Pkg.	1.0	2000	6
$3 \mathrm{J31}$	1	23744-24224	6.0	1.9	15.0	14.0	. 0005				7600	1.0		54
RK4J31	1	2860-2900	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2700	1.0	400	900
RK4J32	1	2820-2860	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2700	1.0	400	900
RK4J33	1	2780-2820	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2700	1.0	400	900
RK4J34	1	2740-2780	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2700	1.0	400	900
RK4J35	1	2700-2740	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2700	1.0	400	900
RK4J36	1	3650-3700	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2500	1.0	400	750
RK4J37	1	3600-3650	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2500	1.0	400	750
RK4J38	1	3550-3600	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2500	1.0	400	750
RK4J39	1	3500-3550	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2500	1.0	400	750
RK4J40	1	3450-3500	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2500	1.0	400	750
RK4J41	1	3400-3450	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2500	1.0	400	750
RK4J43	1	2992-3019	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2700	1.0	400	900
RK4J44	1	2965-2992	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2700	1.0	400	900
4150	1	9345-9405	13.6	3.5	23.0	27.5	. 004			-	6300	0.5		300
4152	1	9345-9405	12.6	1.9	16.0	15.0	. 002			$\underline{\square}$	5000	6.0	-	120
RK4J53	1	2793-2813	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2700	1.0	400	900
RK4J54	1	6875-6775	12.6	3.75	25.0	35.0	. 001	650	17.5	30.0	Pkg.	1.0	1000	200
RK4J55	1	6775-6675	12.6	3.75	25.0	35.0	. 001	650	17.5	30.0	Pkg.	1.0	1000	200
RK4J56	1	6675-6575	12.6	3.75	25.0	35.0	. 001	650	17.5	30.0	Pkg.	1.0	1000	200
RK4J57	1	6575-6475	12.6	3.75	25.0	35.0	. 001	650	17.5	30.0	Pkg.	1.0	1000	200
RK4J58	1	6475-6375	12.6	3.75	25.0	35.0	. 001	650	17.5	30.0	Pkg.	1.0	1000	200
EK4J59	1	6375-6275	12.6	3.75	25.0	35.0	. 001	650	17.5	30.0	Pkg.	1.0	1000	200
4578	1	9003-9168	13.6	3.5	23.0	27.5	. 004				6300	0.5		300
RK5J26	${ }^{2}$	1220-1350	23.5	2.2	31.0	60.0	. 002	1800	27.5	46.0	1400	4.0	225	400
RK725A	1	9345-9405	6.3	1.0	16.0	16.0	. 001	180	12.0	12.0	5400	1.0	1000	50.0
RK730A	1	9345-9405	6.3	1.1	16.0	16.0	. 001	180	13.0	12.0	5400	1.0	1000	40.0
RK5586	2	2700-2900	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2700	1.0	400	900
RK5609	4	2425-2475	6.3	3.8	1.7	0.15	CW	200	1.5	0.15	Pkg.		-	0.125
RK5657	2	2900-3100	16.0	3.4	32.5	70.0	. 001	1300	32.5	70.0	2700	1.0	500	800
RK5982	1	9335-9415	6.3	3.2	15.5	14.5	. 001	225	15.5	13.4	Pkg.	4.5	200	75.5
QK174C	3	1990-2110	4.0	3.1	2.2	0.18	-	198	1.85	0.15	Pkg.		-	0.07
OK312	1	2425-2475	8.5	3.2	7.0	2.5	CW	3600	5.1	0.56	Pkg.	cw.	cw.	1.5

TABLE XX-TRANSISTORS

No.	Type	Maximum Ratings					Characteristics				Use	Typical Operation								
		Collector			Eminter		Current Amp. Factor	$\begin{aligned} & \text { Coll. } \\ & \text { R. } \\ & \text { K } 2 . \end{aligned}$	Emiffer R. 0	$\begin{gathered} \text { Base } \\ \text { R. } \\ \$ 2 \end{gathered}$		Collector Ma.	Collector Volts	Emitter Ma.	Input Resistance Ohms	Output Load R. Ohms	Power Gain Db.	Noise Figure Db.	BaseMa.	PowerOutputM. Watts
		Diss. M. Watts	Ma.	Volts	Diss. M. Watts	Ma.														
2A	Pl.-Cont.	120	8	50	\longrightarrow	-	2				General	-	- 10	1.0	800	15K	20			
28	Pt.-Cont.	120	8	50		-	2			-	General	-	-10	1.0	800	15K				
2 C	Pt. -Cont.	100	8	50			2			-	Switching	4.0	0/-2	3.0	-		-			
20	Pt.-Cont.	100	8	50			2			-	General	1.0	-15	0	-		-		\square	
2E	Pt. Cont.	100	8	50		-	2	-		-	General	1.0	-15	0	500	10K	20			
2F	Pl. Cont.	120	8	100			2			-	Switching	5.0	0/-1.2	3.0	-	,		-		
2G	Pt.Cont.	120	8	100	-		2			-	Switching	5.0	0/-1.2	3.0	-					
2N32	Pt. Cont.	50	8	40		3	2.2	-			Pulse or Switching		-25	0.5	400	31 K	21		-	
2 N 33	Pt. Cont.	30	7	8.5		0.8	-	-		-	Oscillator 50 Mc .	3.3	-8	0.3	-		-		-	1.0
2N34	Jct. PNP	50	8	25	-	8.0	0.98			-	General	10	-6	1.0	-		40	\square	0.25	
2N35	Jat. NPN	50	8	25	-	8.0	0.98			-	General	10	6	1.0			40		0.25	
2N36	Jct. PNP	50	8	20		-	45			-	General		- 6.0	1.0	1000	30K	40	-	0.01	
2N37	Jet. PNP	50	8	20			30	-		-	General		- 6.0	1.0	1000	30 K	36	-	0.02	-
2N38	Jct. PNP	50	8	20		-	15	-	-	-	General	-	-6.0	1.0	1000	30k	32	-	0.05	$\underline{-}$
A1698	Pl..Cont.	120	15	100	-	15.0		-		200	Switching		-	-	--			-	-	
CK716	Pi. -Cont.	100	4	40	-	10.0	2.5	-	-	-	General	1.5	-10	0.5	250	15K	18	45		3.0
CK721	Jet.-PNP	30	5	20		5.0	40			-	General	2.0	- 3	-		1250	38	22	0.3	2.8
CK722	Jct. PNP	30	5	20	-	5.0	12	-		-	General	0.5	-1.5	-		-	30	22	0.2	
G-11	Pt. Cont.	100	7	30		3.0	2.2		-	200	Amp. Oscillator	-	-	-	475	20K	17	57		
G-11A	Pt.-Cont.	100	7	30		3.0	2.2	-	-	500	Switching		-15	1.0	800	20K	-	-	-	
M1689	Pt.-Cont.	80	40	50	-	40.0		-	-	-	Switching	-		1.0	800	10k				
M1725	Pt. Cont.	200	20	50		15.0	2.1	-	-	115	Audio and Carrier	4.0	- 5	1.5	195	8 K	18	48		4.5
M1729	Pt.-Cont.	200	20	50	-	15.0	2.5	-	-	75	Audio and Carrier	$5 / 7$	-30	1/2	190	15K	20/18	54		50.0
M1752	Jct. PNP	50	5	50		5.0	0.98		$\underline{\square}$	240	General	-	-	1	25	13K	,	-	-	
OC50	Pl.-Cont.	120	25	30	25		-	-	-	-	Amp. Oscillator		-5	1.5	155	6800	-	43	-	
OC51	Pl. Cont.	120	15	100		15	2.5			-	Switching	1.6	-40	0	350	26K	-			
PT-2A	Pt.-Cont.	100	10	40		5	1.5	10	300	500	Audio Amplifier		-30	1.0	300	20K	19	57	-	-
PT-2S	Pt, Cont.	100	10	40		5	2.0	-	-	500	Switching	-	-30	1.0	-	-	-	-	-	
R1734	Pt.-Cont.	120	-	-	一	-	-	\square		-	Switching		-	1.	-	-	-		-	\square
RD2517	Jct. NPN	50	5	30	-	-	0.93	100	35	500	Audio and R.F.		4.5	1.0	-	4500	32	22	-	1.9
RD2520	Jet. NPN	50.	5	40	-	-	0.95	500	35	100	Audio and R.F.	-	4.5	1.0	-	4500	34	22	-	2.0
RD2521	Jct. NPN	50	10	40	-	10.0	0.975	300	30	100	Amp. Oscillator	-	4.5	1.0	-	-	37	22	-	2.0
RD2525	Jet. NPN	25	5	25	-		125	200	35	500	Amp. Oscillator		4.5	-	-	4500	42	22		1.9
RR.14	Jct. PNP	50	5	25	-		25	700	30	270	Audio Amplifier	0.5	- 1.5		-	-	36	22	-	
RR-20	Jet. PNP	50	5	25	-	-	40	700	30	270	Audio Amplifier	0.5	-1.5	-	-	-	40	22	-	
RR-21	Jet. PNP	50	5	25	-	-	25	-	-	-	Audio Amplifier	3.0	-15.0	\cdots	-	5000		2	-	20
RR-34	Jet. PNP	30	5	20	-	-	10	500	30	270	Audio Amplifier	0.5	-1.5	1.0	-	30K	30	-	-	2
T-21A	Pl.-Cont.	50	5	30	20	5	0.95	500	50	500	General	1.0	-4.5	1.0	500	30K	38	25	-	
TA-161B	Pt.-Cont.	140	-	-	-	-	2	-	-	120	General	3.0	-20	1.5	300	15K	22	55	-	50.0
TP-01	Pl.-Cont.	100		35	-		2	-	-	\cdots	General	-	-22.5	0.3/0.8	400	10K	18	-		
X-22	Jet. NPN	50	5	40	-		0.90	-	-	-	Audio Switching		4.5	1.0	35	-	-	-		-
X-23	Jct. NPN	50	5	40	-	-	0.95	\square	-	-	Audio Switching	-	4.5	1.0	35	-	-	-	-	-

V65

table XXI - GERMANIUM CRYSTAL DIODES

Type	Use	Max. Inverse Volts	Peak Rectif'd Ma.	Mox. Surge Mo.	Max. Reverse μ-Amp.	Mox. Average Ma.	Typ*	Use	Mox. Inverse Volts	Peak Rectif'd Ma.	Max. Surge Mo.	Mox. Reverse μ-Amp.	Max. Average Ma.
$\begin{aligned} & \text { IN34 } \\ & \text { iN34A } \end{aligned}$	General	60	150	500	50 @ 10 V . 800 @ 50 V	40	$\begin{aligned} & \text { 1N58 } \\ & \text { IN58A } \end{aligned}$	$\begin{aligned} & 100-\text { Volt } \\ & \text { Diode } \end{aligned}$	100	150	500	800 @ 100 V.	40
IN35	1	50	60	100	10 (a) 10 V	22.5		Vid. Det.	25	150	500.	30 @ 1.5	50
$\begin{aligned} & \text { IN38 } \\ & \text { iN38A } \end{aligned}$	$\begin{aligned} & \text { 100-Volt } \\ & \text { Diode } \end{aligned}$	100	150	500	$\begin{aligned} & 6 @ 3 V . \\ & 625 @ 100 V . \end{aligned}$	40	IN61	Diode	130	150	500	300 @ 100 V	40
IN39	$\begin{aligned} & \text { 200-Volt } \\ & \text { Diode } \end{aligned}$	200	150	500	$\begin{aligned} & 200 @ 100 \mathrm{~V} . \\ & 800 @ 200 \mathrm{v} . \end{aligned}$	40	$\begin{aligned} & \text { IN63 } \\ & \text { G5E } \end{aligned}$	Generol	125	150	400	50 @ 50 V	50
1N40 ${ }^{2}$	Varistor	25	60	100	50@10V.	22.5	$\begin{aligned} & \text { IN641 } \\ & \text { G5F3 } \end{aligned}$	Vid. Det.	20	-	-	-	-
1N412	Varistor	25	60	100	50@10V.	22.5	$\begin{aligned} & \text { IN65 } \\ & \mathbf{G 5 G} \mathbf{B}^{3} \end{aligned}$	Hi Back Resistance	85	150	400	200 @ 50 V.	50
iN42*	Varistor	50	60	100	$\begin{aligned} & 6 @ 3 \text { V. } \\ & 625 @ 100 v . \end{aligned}$	22.5	1N662	General	60	150	500	800 @ 50 V.	50
IN43	Varistor	604	125	500	850 @ 50 V.	40	1N67	Hi Back Resisiance	80	100	500	50 (1) 50 V .	35
1N44	Voristor	1154	100	400	1000 (a) 50 V .	40	1N68	Restorer	100	100	500	625@100V.	35
IN45	Varistor	754	100	400	$410 @ 50 \mathrm{~V}$	40	IN69	General	75	125	400	850 @ 50 V.	40
IN46	Varistor	60^{4}	125	500	1500@50 V.	40	IN70	Generol	125	90	350	410 @ 50 V.	30
IN47	Varistar	1154	90	350	410 @ 50 V.	30	IN7 1^{2}	Varistor	504	200	1000	300 @ 30 V.	60
$\begin{aligned} & \text { IN48 } \\ & \text { G5: } \end{aligned}$	Generol	85	150	400	833 @ 50 V.	50	$\begin{aligned} & \text { IN72 } \\ & \text { G73 } \end{aligned}$	U.H.F.	2	75	-	-	25
$\begin{aligned} & \text { IN51 } \\ & \text { G5C } \end{aligned}$	Generol	50	100	300	1667 @ 50 V	25	IN732	Quad	75	60	100	50 @ 10 V	22.5
IN52	General	85	150	400	$150 @ 50 \mathrm{~V}$.	50	1N74 ${ }^{\text {2 }}$	Quad	75	60	100	\cdots	22.5
							IN75	General	125	150	400	50 @ 50 V	50
$\begin{aligned} & \text { IN54 } \\ & \text { iN54A } \end{aligned}$	Hi Bock Resistance	35	150	500	10 @ 10 V	40	CK705	General	60	150	500	$800 @ 50 \mathrm{~V}$.	50
1N55	150-Volt	150	150	500	$300 @ 100 \mathrm{v} \text {. }$	40	CK706	Vid. Det. ${ }^{1}$	40	125	300	-	35
INS5A							CK707	Restorer	80	100	500	100 @ 50 V .	35
$\begin{aligned} & \text { IN56 } \\ & \text { iN56A } \end{aligned}$	Hi-Conduction	40	200	1000	300 @ 30 V.	50	CK708	Restorer	100	100	500	625 (a) 100 V	35
IN57	Diode	80	150	500	500 @ 75 V.	40	CK7 10	U.H.F. Mix.	5	75	-	500 @ 2 V .	25

Ratings given are for individual diodes. Average life is over 10,000 hours. Ambient temperature range for all types- $-50^{\circ} \mathrm{C}$. to $+75^{\circ} \mathrm{C}$. Average shunt capacitance $-0.8 \mu \mu \mathrm{fd}$. Units with A suffix are glass types.
${ }^{1}$ Matehed dual diode. 2 Unit has four matehed diodes.
${ }^{3}$ G.E. designation
4 Min. reverse volts for zero dynamic resistance.
table XXII - miniature selenium rectifiers

Monufocturer	Type Number	Max. A.C. Volfs	Peok Inverse Valls	Peak Current Ma.	Max. R.M.S. Mo.	Max. D.C. Oulput Ma.	Rectifier Service
Faderol Telephone and Radio Corporation	40203200	117	380	-	-	50	Holf-Wave
"	$\begin{aligned} & 402 \mathrm{D} 2788 \\ & 402 \mathrm{~A} \end{aligned}$	117	380	900	220	75	Half-Wave
*	$\begin{aligned} & \text { 403D2625 } \\ & \text { 403D2625A } \end{aligned}$	117	380	1200	325	100	Half-Wave
*	40203151	18	-	-	-	100	Half-Wave
${ }^{\prime \prime}$	402D3239A	160	-	-	-	75	Doubler
"	403D3240A	160	-	-	-	100	Doubler
General Electric Co.	6RS5GH2	117	380	650	163	65	Half-Wave
-	6RS5GH I	117	380	750	187	75	Half-Wave
Radio Recepfor Company, Ine.	5 LI	117	380	-	-	75	Half-Wave
-*	5 MI	117	380	-	-	100	Holf-Wave
\#Circular plates-discontinued.							

Jhe

 Catalog Section

 Catalog Section}$$
\vec{~} \dot{3}
$$

In the following pages is a catalog
file of products of the principal manufacturers and the principal distributors who serve the radio field: industrial, commercial, amateur. All firms whose advertising has been accepted for this section have met The American Radio Relay League's rigid standards for established integrity; their products and engineering methods have received the League's approval.

31st EDITION 1954

INDEX OF ADVERTISERS

CATALOG SECTION
 The Radia Amateuri Handbook

Advance Electric \& Relay Co. 159
Allied Radio Corp 52-57
American Electronics Co 108
American Lava Corp. 124
American Phenolic Corp 38,139
American Radio Relay League, In 129-132
American Television \& Radio Co 116
Amperex Electronic Corp 175
Ashe Radio Co., Walter 109
Barker \& Williamson, Inc. 97-99
Belden Manufacturing Co 134
Bliley Electric Co. 96
Brill Co., W. D 168
Bud Radio, Ine. 58-61
Burstein-Applebee Co. 149
Cameradio Co., Inc. 156
Candler System Co. 64
Cannon Electric Co. 14.5
Cardwell Mfg. Corp., The Allen D 180
Centralab 62,63
Cinema Engineering Co. 177
Collins Radio Co 74-78
Cornell-Dubilier Electric Corp 154
Dale Electronic Distributors 114.115
Eitel-McCullough, Inc. 100,101
Electric Soldering Iron Co., Inc. 102
Electronic Instrument Co., Inc. 143
Electrons, Inc. 118
Electro-Voice, Inc 135
Erie Resistor Corp. 127
Fort Orange Radio Distributing Co., Inc. 112, 113
Freed Transformer Co. 82
Gates Radio Co. 45
General Electric Co 79-81,95
General Radio Co.. 141
Hallicrafters Co., The 8-23
Hammarlund Mfg. Co., Ine. 88-91
Harrison Radio Corp 153
Harvey Radio Co., Inc. 103-105
Heath Co., The 34-44
Heminway \& Bartlett Mfg. 72
Henry Radio Stores. 162-165
Hudson Radio \& Television Corp 126
Hydro-Aire, Inc 94
Hy-Lite Antennae, Inc. 155
Illinois Condenser Co. 147
Instructograph Co. 140
Page Page
International Rectifier Corp 148
International Resistance Co. 84-87
Johnson Co., E. F. 46-5
Knights Co., The James 161
Lampkin Laboratories, Inc 119
LaPointe Electronics 120
Macmillan Co., The 176
Mallory \& Co., Inc., P. R. 83
Master Mobile Mounts, Inc. 179
McElroy Manufacturing Co. 65-73
Measurements Corp. 133
Merif Transformer Corp 167
Millen Manufacturing Co., Inc., The Jas. 24-32
Multi-Products Co. 144
National Company, Inc. 3-7
National Schools 171
Newark Electric Co. 25
Ohmite Manufacturing Co. 151
Par-Metal Products Corp. 110,111
Precise Measurements Co. 173
Precision Apparatus Co., Inc. 122
Price Electric Corp 174
Radio Corporation of America 92,93
Radio Shack Corp., The 123
Shure Brothers, Inc. 152
Shurite Meters 66
Sprague Products Co 157
Superior Instruments Co. 69
Supreme, Inc. 158
Terminal Radio Corp 121
Times Facsimile Corp 42
Triplett Electrical Instrument Co., Inc 136
Turner Co., The 146
United Transformer Co. 137
Van Nostrand Co., D., Inc 178
Valpey Crystal Corp. 50
Vibroplex Co., Inc. 160
Woterman Products Co., Inc. 106,107
Wile, Eugene G. 170
Wincharger Corp. 33
Wind Turbine Co. 128
World Rodio Loborotories, Inc 117

You'll notice that Jur parts catalog in this edition of the handbook is not as extensive as in previous years. The reason is that we're hard at work designing new and exciting additions to our components line.

The components you will find on the following pages are so popular any changes in design would be "gilding the lily".

NG-88

\$129.95*

THE ALL NEW

Uolld Noster

¿Bis Features
No Comparable
Receiver Can Offer!

No other receiver at anywhere near the low price offers you these eight "high-priced" features: (1) Calibrated bandspread for 80,40 , 20,15 and 11 meter bands (large 6 " indirectly-lighted lucite scales). (2) Delayed A.V.C. (3) Higher sensitivity. (4) New miniature tubes used exclusively. (5) Antenna trimmer. (6) Better selectivity. (7) An extra tube (total of eight plus rect.). (8) More compact.

Other wanted features include: Range of 540 kcs . to 40 mcs . in 4 bands. Tuned R.F. stage. Two I.F.
stages, 2 audio stages with phono input and 2-position tone control. Built-in-speaker. Separate high frequency oscillator. Sensitivity control. Series valve noise limiter. Headphone jack. Standby-receive switch.

CONTROLS: Ant. trimmer, main tuning, bandspread, sensitivity, receivestandby, band selector, ANL-OFF, tone, AM-CW, pitch, vol.-A.C. OFF.
TUBE COMPLEMENT: 6BA6, r.f.; 6BE6, mixer; 6C4, h.f. osc.; 6BD6, 1st i.f.; 6BD6, 2nd i.f.; 6AL5, 2nd det., AGC, ANL: 12AX7, 1st aud. and c.w. osc.; 6AQ5, aud. output; $5 \mathrm{Y} 3 / \mathrm{GT}$ rect.

SW-54
 \$59.95*

тне Mighty Midget

Top No uce und Stumlluy Rerchicor
COVERAGE: Fintire frequency rang from 640 kc . to 30 mic . in 4 bunds. Voce, music or code.
FEATURES: Sensitive and selective superhet circuit, using new rainature tubes, Slide rule general coverage dial with police, forsign, amateur and ship bands clearly marked, C'nique plastac badopreail dial is adjustable to assare logging accuracy wet entire range. Built-in speaker and power supply. CONTROLS: Main tuning and Bandspread. On-Off and Volume. Keceve-Sandby, Bandswitch, AM-CW. Speaker. Phones. TUBE COMPLEMENT: $12 B E 6$, corverter; 12BA6. CW ose. IF hmp: $12 A V 6,2 n d$ det., lst ud., AVC: 60CB. audio output; $35 Z 5$, rectifier.
SIZE: $11^{\prime \prime}$ wide, $7^{\prime \prime}$ high, $7^{\prime \prime}$ deep.

HRO- Skity $\quad \mathbf{5 3 3 . 5 0}$ * (lew spester)

Greatest Tuning Range

and Best Sensitivity of

Any Commercial Receiver!

COVERAGE: $50-430 \mathrm{kr} .180 \mathrm{kr}-35 \mathrm{me}$. And $50-54 \mathrm{mc}$. Voice, (IV. NFX (with athater).
 with one rames in view at at tillle, 3 I.F. stage at tan; hes.

 switahing in dome athonationlly when coil an is phoged
 of 1 mus. or twotior at f dh. -ig. monse. Selentisity varialle

 fran. "ontrol. Whmination dimmer control. Acerssory socket

for Selert-O-Dect. Simooth gray finish (table and rack).
CONTROLS: Batalswith Oacillator, Tonm, tht. Trinamer, Dimmer, dYt, Lamitur, AF Gain, ('alilration. ('W0

 BFO; Ols2, wolt reg. 414 Onc. Fil. Cur. IReg.

NC-183D

$\mathbf{\$ 3 8 3 . 5 0}{ }^{*}$ (loun peoteres)

'Highest Price'Features Yet Almost 1120 Less! COVERAGE: Contimums from 540 kes , to al mes. phus 48

FEATURES: Two thacd R.F: stames. Dhal comacrion on is
 dat reowers renge in five banda. Bandantenc diab calibrated for anatour 810. 10, 20. 15, 11 - 10 and fineter bands. Bund-

 cessory sorhet for XFM adatpet or other unt, such as crystal ablihrator.
CONTROLS: CWO. Nwiteh, (WO pitch, Tone. AF Gain, Main Thmage Damedsprod, Ame l'rimer, Bandowitch, sendReceive Phome-Radio, selectivits. Phasing, Limiter, RF Gam-

 andio output: 1-(01se, voltage reg.: $1-5 \mathrm{~S} 4 \mathrm{G}$. rect.

NC-125

$\mathbf{\$ 1 9 9 . 9 5 *}$ (eos spatioct)

The Only Receiver With the Famous Select-O-Ject Circuit - Y't Moderately Priced!
COVERAGE: 3 tin kes , to 3.5 mm . in 4 hands. Voier or CW.

CONTROLS: Main 'laning, Bandapmad, Froty. (NO.I) Boost
 Gain. Torme Trimant, Batumwiteb, RF Gath.

 aud-('WO. EVGG'T aud. output. (01)3 vik-1.50 volt. reg., 5 YBG rect.

COIL FORMS

XR-50. These mica-filled bakeite coll forms may be wound as desired to trovide a permeability tuned coil, The form winding length is $11 / 16^{\prime \prime}$ and the form winding diameter is $1 / 2$ inch. The iron slug is $3 / x^{\prime \prime}$ dia. by $1 / 2$ " long.
XR-51. same bat with brass stug.
High-grade ceramic coic forms coníorming to TAN specifccitions. May be wount as desired to provide a perme-ability-uraed ceil, Extra lugs provided,

XR-6C Crooved for $\$ 26$ wire with iror s'uy.
XR-6] Srosved fos HDC wire with brass slus.
2F-6*: Not grocvec, winaing length $11 / 4 "$ with iron slug.
XR-63 Not grooved. winding length $11 / 4$ " with brass slug.

XR-7C Grooved for \#1! wire with iron slug.
XR-71 Grooved for \#19 wire with brass slug.
XR-72 Not grooved, winding length $1^{\prime \prime}$ with iron slug.
XR- ${ }^{-3} 3$ Not grooven, winding leagth $1^{\prime \prime}$ with brase slug.

COUPINGS

TX-1. Leakage path $1^{\prime \prime}$.

TX.9. This xmatl insulaterf fle $\begin{gathered}\text { athle }\end{gathered}$ couphing provides high elentrical efliciency when used ta isolate "irenits. Insulation is stobtite. $15 / \mathrm{m}^{\prime \prime}$ diam. Fits $1 / 4$ " shaft.

TX-10. A very compact insulated aroupling feee from hateklash. Insilabun is ratnvas bakelite. 1-1/1ti" dam. fits $1 / 4^{\prime \prime}$ shafl.

TX-19. A steatite insulated the abibe compling for $1 / 4^{\prime \prime}$ shafts. Consureat tively rated at 5000 volts peak. 10, ameter 1 " ". length 1 ". langh ami flashover voltage can be incruatsod by turning collars outhoard.

TX-23. A deluxe insulated flexibhy coupling dosigned for coupling $1, "$ shafts. Wilt hamtle a maximum radial misalignment of $1 / 1$ bi" alsos 2 degreens maximumangular misaligment.

TX-10

SAFETY GRID AND PLATE CAPS

SPP-9. Ceramic insulation. Fits 9/16" diameter.
SPP-3. Ceramic insulation. Fits :/4" diameter. National Safety Grid ant Plate Cals hatve a ceramic body which offers protection agatinst accidental contact with high voltage raps on tubes.

GRID AND PLATE GRIPS

Type 12, for $9 / 16^{\prime \prime}$ Caps.
Type 24, for $\%$ " Caps.
Type 8, for $1 / 4^{\prime \prime}$ Caps.
National Grid and Plate Grips provide a sereure and positive contaet with the tube cap and yet are released easily by a slight pressure on the ear.

COMPONENTS

PRECISION-WOUND R.F. CHOKES

 ing provisions. The K-100 employs pigtail leats; the R-1000 hats pigeail leads and at remowable stand-off insulator; the K-I 0 O. siami-afi insulator: the k-100.ST hats at di-it threaded stud

R-300

R-3005

R-3005T

> R-300 R-300U R-300S R-300ST

 movable stamd-atf ifscuittor at ont end. The K-ibolos hats a
 The K-i300ST has a di-3'3 thretaded stul at eveh ent. Indure

DIALS, MECHANISMS AND KNOBS

HRS-2

HRS (qray or biack) The HIRS series knobs are a popular easy to grip knoh. They are molded of high quality plastic and have $18{ }^{\prime \prime}$ dia. chrome wated bevel skirts fit $1 / 4^{\prime \prime}$ shafts available in the following scales:

HRS-1	ON-OFF	through 30°
HRS-2	$5-0-5$	through 180°
HRS-3	$0-10$	through 300°
HRS-4	SingRe etched line	
HRS-5	$0-10$	through 180°

HR (gray or black) An HRS type knob without the chrome plated skirt but with a white dot for spotting relative control settings.

CAPTIVE NUTS

National Captive Nuts of stainless steel may bet pressed into aluminum and certain types oi brass sheet metal to provide integral flush. mounted tapped holes in a wide variety of sizes. Dour hasic types have been designed for metal thicknesses of 1/16", 3/32", $1 / \mathbf{k}^{\prime \prime}, 3 / 16^{\prime \prime}$ and $1 / 4^{\prime \prime}$.

R-33

R-33. Tha $\mathbb{R - i 3} 3$ series chohes are $2-$

 art womtud on it 5^{\prime} " long form and range in datheter up to $5 / 10^{\prime \prime \prime}$ masimum.

 high pmoser tramsmitter stiges upratell in the so metar

HRT-M. This smaller version of the IIR'T - now available in choice of gray or black - is $1-7 / 16^{\prime \prime}$ in diameter.
AM Dial. The original "Velvet Vernier" mechanism in a metal skirted dial $3^{\prime \prime}$ in dia. ratio 5 to 1 . It is available with $2,3,4,5$ or 6 scale and fits $1 / 4 "$ shaft. Mechanisms also available separately.
N Dial. The four-inch N and AD Dials have engine divided and die stamped seales respectively. The N Dial has a decimal vernier; the AD Dial employs a pointer. The planctary drive has a ratio of 5 to 1 , and is contained within the body of the dial. 2, 3, 4, 5 or black scale. Fits $1 / 4$ " shaft. Specify scale.

HRM KNOB. This straight knurl brass satin chrame finished knoh with arrowhead fits $1 / 4$ " shant. See catalose for description.

everyone a necessity today!

1. Full precision gear drive for main and band spread tuning.
2. Six position Band Width Control (selectivity) from 250 cycles to 10 kc.
3. 10 watt inverse feed back and push-pull audio output.
4. Exhalted B.F.O. for tops in single side band recep tion.
5. Buffer amplifier in B.F.O. circuit.
6. Antenna trimmer.
7. Amplified and delayed A.V.C.
8. Local oscillator circuits individually femperature compenscited for each band.
9. Built-in 100 kc calibration crystal.
iO. Second conversion oscillators crystal controlled.
10. A.V.C. operates for CW reception.
11. Inertia tuning (\ddagger ly wheels both dials).
12. Fuli frequency coverage from 535 kc to 33.3 Mc .
13. Calibrated electrical bandspread $160,80,40,20$, 15, 11 and 10 meters.
? 5. Logging scales on each tuning shaft.
14. Dial locks on each tuning shaft.
15. Tuning dial indicators resettable from front panel for maximum calibration accuracy.
16. Auxiliary $A C$ sockel on rear of chassis.
17. Illuminated band-in-use indicator.
18. Illuminated S meter.
19. Dual S meter calibration S units and microvolts.
20. Auxiliary power socket plus 6 amps at 6.3 volts and 10 ma at 150 volts for accessories.
21. Standard $8^{34^{\prime \prime}}$ by $19^{\prime \prime}$ panel for rack mounting if desired.
22. 50 kc i.f output jack via cathode follower for feletype converter, oscilliscopes, etc.
23. Five position response control (tone control).
24. Two r-f stages.
25. 17 tubes plus voltage regulator, current regulators and rectifier.

FRONT PANEL CONTROL

Main tuning.
Bandspread.
Band Selector 6 positions.
Volume: $0-10$ and $A C /$ off.
Band width in kc: $10,5,2 \frac{1}{2}, 11 / 4, .5$ and .250
Pitch: (B.F.O.) +5-0-5.

Response: Bass Boost, High Fidelity, Normal, Communications.
Antenna trimmer 50.0.5.
Sensitivity 0.10 .

FRONT PANEL TOGGLE SWITCH

Noise limiter on/off.
A.V.C. on/off.

Calibrator on/off.
Receiver standby.
C.W.-AM-SSSC (single side band suppressed carrier).

CHASSIS REAR

Speaker terminals $3.2 / 8 / 500 \cdot 600$ ohms.
Antenna terminals 52-600 ohms.
AC Accessory socket 117 volts af 250 watts.
Power socket-Octal for external power supply to receiver, such as batteries, and in addition this socket supplies 6.3 volts at 600 ma and 150 dc at 10 ma for future accessories.
Audio Input-phono jack.
Fuse holder for AC power circuit.

FREQUENCY RANGE (Main tuning dial)

Band 1-535 to 1710 kc .
Band 2-1690 to 3080 kc .
Band 3-2980 to 5570 kc .
Band 4-5370 to $10,000 \mathrm{kc}$.
Band 5-9.8 to 18.3 Mc .
Band 6-17.8 to 33.3 Mc.

SENSITIVITY

Bands 2-6-1 microvalt for $1 / 2$ watt output. 1 microvolt for 10 db signal to noise ratio.
Band 1 - 10 microvolts for $1 / 2$ watt output.

IMAGE REJECTION

Not less than 80 db on frequencies lower than 20 Mc .
Not less than 60 db on frequencies from 20 to 30 Mc .

SPURIOUS RESPONSES (IF and oscillator tweets)

Not less than 80 db except at 1700 kc where it is not less than 50 db .
BAND WIDTH (Selectivity)

Position	6 db (nose)	60 db (skirts)
10 kc	10 kc	21 kc
5 kc	5 kc	15 kc
2.5 kc	2.5 kc	7.5 kc
1.25 kc	1.25 kc	3.75 kc
.500 kc	500 cps	1.50 kc
.250 kc	250 cps	850 cps

hallicrafters

 model HT-20

 model HT-20
 AM-CW transmitfer

This Hallicrafters 100 watt AM-CW Transmitter is the modern successor to the HT-9 known throughout the world for reliability, ruggedness, flexibility and lowest cost for maximum dependable watts per dollars.

Performance: T.V.I. suppressed-completely shielded and filtered rf compartment plus built-in low-pass 52 ohm coaxial line output filter provides 90 db or greater suppression of all frequencies higher than 40 Mc. 100 watt AM phone output.

Frequency Coverage: Continuous coverage from 1.79 to 30 Mc .

Components: Heavy duty commercial type
power and modulation transformers. All parts rated for commercial service conditions.

Controls: Full band switching. No plug-in coils-choice of 10 crystals-all controls on front panel.

Tubes: Seven rf and audio tubes plus 5 rectifiers.

Physical Data: Cabinet size-20 inches long, $121 / 2$ inches high, $171 / 4$ inches deeppanel size for rack mounting-19×101/2 inches. Shipping wt. 130 lbs. For 105-1 25 V. 60 cycle.

Model HT-20 Transmitter . . . $\$ 44950$

Here, from Ha'licraffers world-famous short wave laboratories, is a superb communications receiver - the SX-73, proud successor to so many famous top-quality Hallicrafiers receivers. Absolutely without equal in its combination of ruggedness, sensitivity, stability, selectivity, resettability, and image and i-f rejection. Based on an original design developed by Ha'licrafters for the armed forces :or universal use all over the world, this new receiver will surpass all others in versatility, dependability, performance and value.

Performance: Continuous frequency coverage 540 kc to 54.0 Mc . Two r-f, two i-f stages. Dual conversion above 7 Mc ; second beat oscillator is crystal controlled. Choice of six pretuned crystal controlled channels in range 1.5 to 30 Mc . Single tuning knob turns main and bandspread dials (6 to 1 ratio between the two); 50 to 1 tuning ratio. Resettability accurate to within 30 cycles per megacycle. Selectivity variable 14.5 kc to 300 cycles at 6 do down. Sensitivity less than 2 microvolts for .5 watts output. Signal to noise ratio 10 db for 2 mv inbul. Image rejection 80 to 120 db . If rejection not less than

60 db . AVC circuit will hald up to one volt without overload. Series type noise limiter. Carrier level meter. Audio response plus or minus $11 / 2 \mathrm{db}$ from 300 to 3500 cycles.

Controls: Tuning knob with dial lock; Band Selector $540-1350 \mathrm{kc}, 135-3.45 \mathrm{Mc} ., 3.45-7.00 \mathrm{Mc}$., 7.00-14.4 Mc., 14.4-29-7 Mc., 29-7-54.0 Mc; r-f Gain and AC on/off BFO Pitch, Xtal Phasing, 6-pos. Xtal Selectivity, 6-pos. Xtal fixed-frequency channel selector, a-f Gain, Xtal tuning Vernier; Rec./Standby, BFO, AVC, and ANL switches; BFO injection contral and carrier meter adj. on rear.
Physical Data: iwo-tone gray steel cabinet with satin chrome trim. Piano hinge top. Size 20 in . wide, 11 in. high, $181 / 2$ in. deep.

External Connections: Antenna Input 50 to 200 ohms throughout tuning range. Output 600 and 50 ohms. For $50 / 60$ cycle current at $75,105,117,130$, $190,210,234$, or 260 volts.
17 tubes plus voltage regulator, current regulator and rectifier.

[^12]

hallicrafters model SX-62 all-wave high fidelity

The world's finest receiver for the All-Wave listener. Unequalled in coverage and performance on all wave bands-Standard 3roadeast, Short-Wave or FM. Continucus coverage from 540 kc to 109 Mc . Having basically the same chassis as a fine communications receiver, the SX- 62 provides communica-tions-receiver performance in simplified form. A siagle tuning control covers the wide-vision dia'. Only one band lights up at a time-you always know just where you are tuning. In addition a 500 k cerystal calibration oscillator is built in, enabling you to adjust the dial pointer to show the exact frequency being tuned at any time.

Performance: Continuous AM reception 540 kc to 109 Mc ; FM band 27.109 Mc . Temperature compensated, voltage regulated. Two RF, three IF stages: dual IF channels (455 kc and 10.7 Mc . Audio flat 50-15,000 cycles; 10 watt push-pull output.
Controls: Band Selector 540-1620 kc. 1.62-4.9 Mc, 4.9.15 Mc, 15.32 Mc, 27.56 Mc, 54-109 Mc; Receive/Standby, Calibration Osc. On/Off, Noise

Limiter, Tuning, AF Gain, Phono/FM/AM/CW, sixposition Selectivity, four-position Tone, RF Gain, Calibration Reset.
Physical Data: Satin black steei sabinet with satin chrome trim. Top opens on piano hinge. Cabinet $20^{\prime \prime}$ wide by $10 \frac{1}{4^{\prime \prime}}$ high by $16^{\prime \prime}$ deep.
External Connections: Doublet or single wire antenna. 500 and 5000 -ohm outputs. Phone jack. Phonograpt input jack. Socket for external power and Remote control connections. 105-125 V. 50/60 cycle AC line.
14 Tubes plus Voltage Regulator and Rectifier: Two 6AG5 RF Amps., 7F8 Conv., 6S<7 IF Amp., SSG7 IF Amp., 6SG7 IF Amp., 6SG7 FM Limiter and AM Det., 6H6 FM Det., 6J5 BFO, 6H6 ANL, 6SL7 AF Amp., two 6V6 Push-Pull Output, 6C4 Calibration Osc., VR-150 Regulator, 5U4G Rectifier.
Universal Model SX-62U: Same as above only for 115/250 volts, $25 / 60$ cycle AC.
Model SX-62 or SX-62U \$34995

From the Hams at Hallicrafters to Hams everywhere comes this top-performing receiver in the medium price class. Extra sersitivity, selectivity, anc stability, definitely superior image rejection with double superteterodyne circu ${ }^{\dagger}$, plus built-in Narrow Band FM reception. Extra wide dials for main and bandspread tuning. Surpasses in ham performance many receivers priced considerably higher.
Performance: Continucus AM reception from 538 kc to 34 Mc , and 46 to 56 Mc . Built-in limiter and balanced detector stages for hiss-free NBFM reception. Double conversion (2075 and 455 kc i-f channels) gives image rejection of better than 150 to 1 at 28 Mc . Temperature compensated, voltage regulated. One r-f, two conversion, and 3 i-f stages yield nigh gain for sensitivity of .7 microvolts with 50 milliwatts oltput. Audio peaked for communications frequencies, with 3 wett output.
Controls: Band Selector 538-1650 kc, 1600-4800 kc, 4.5-13.5 Mc, 2.5-34 Mc, 46-56 Mc. Separate main and Bandspread tuning controls; bandspread dial calibrated for $80,40,20,15,10$, and 5 Meter

Bands. BFO Pitch 3-position Selectivity, Crystal Phasing, Tone, a-f Gain and r-f Gain controls. ANL, BFO, and Receive/Send switches. "S" Meter adjustment on rear.
Physical Data: Satin black steel cabinet with chrome trim. Piano hinge top. Size $18 \frac{1}{2} 2^{\prime \prime}$ wide by 878" high by $12^{\prime \prime}$ deep. Ship. wt. 33 lbs.

External Connections: Use doublet or singe wire antenna. 500 and 3.2 ohm outputs for separate speaker. Phone jack. Socket for external power supply. Connections for remote control. For 105-125 vol's $50 / 60$ cycle AC.

11 Tubes plus Voltage Regulator and Rectifier: 6BA6 r-f Amp., 6C4 Osc., 6AU6 Mixer, 6BE6 2nd Conv., three 6SK7 i-f Amps., 6H6 ANL and delayed AVC, 6SC7 BFO and a-f Amp., 6AL5 Det., 6K6GT Output, VR-T 50 Reg., and 5Y3GT Rect.

Universal Model SX71U: Same as above only for 115/250 volts, $25 / 60$ cycle AC.
Model SX71 or SX7iU
\$24995

hallicrafters model S-76 double superhet

Double conversion receiver, double superhet with 50 kc second i-f and 4 -inch " S " Meter.
Performance: Continuous coverage 538-1580 kc and 1.72-32 Mc. Double conversion eliminates images. 50 kc second i-f gives excellent "skirt" selectivity with "nose" selectivity variable from 5.6 kc down to 500 cycles. Temperature compensated, voltage regulated. One r-f, two conversion, and two i-f stages. $21 / 2$ watts output.
Controls: Band Selector 538-1580 kc, 1.72-49 Mc, 4.6-13 Mc, 12-32 Mc; Separate Main and Bandspread tuning; bandspread calibrated for 80,40 , 20, 15, 11,10 meters; five-position Selectivity with phono switch built in; BFO Pitch; full-range Tone; AVC, BFO, ANL, Rec./Standby switches. "S" Meter adjustment on rear.

Physical Data: Satin black steel cabinet with plastichrome skirts. Piano hinge top. Size $181 / 2^{\prime \prime}$ wide, $87 / 8^{\prime \prime}$ high, $9^{1 / 1 / 2^{\prime \prime}}$ deep. Ship. wt. appr. 46 lbs . External Connections: Use doublet or single wire antenna. 500 or 3-2 ohm outputs. Phone jack. Phono input jack. Connections for external power and remote control. Mounting holes provided for coax connector. For $105-125$ volts $50 / 60$ cycle AC.
9 Tubes plus Regulator and Rectifier: 6CB6 r-f Amp., 6AU6 1 st Conv., 6C4 Osc., 6BA6 1 st i-f, 6BE6 2nd Conv., 6BAG 2nd i-f, 6AL5 Det., ANL, 6SC7 BFO, 6K6GT Output, VR-150 Reg., 5Y3GT Rect.

Model S76-AC \$19995

hallicrafters model S-40B ham favorite

Superior performance. Complete with PM speaker.
Performance: AM reception 540 kc to 43 Mc . Temperature compensated oscillator. One RF and two IF stages. Audio response to 10,000 cycles.
Controls: Band Switch 540-1700 kc, 1700-5300 $\mathrm{kc}, 5.3-15.7 \mathrm{Mc}, 15.7-43.0 \mathrm{Mc}$. Main tuning in Mc ; bandspread dial has arbitrary scale. AF and RF Gain controls; AVC, BFO, and Noise Limiter switches; three-position Tone, BFO Pitch, and Receive/Standby controls.
Physical Data: Satin black steel cabinet. Size $18 \frac{1}{2^{\prime \prime}}$ wide by $87 / \mathbf{m}^{\prime \prime}$ tigh by $91 / 2^{\prime \prime}$ deep. Ship. wt. 32 lbs.

External Connections: Doublet or single wire antenna. Phone jack. S-40 uses 105-125 V. 50/60 cycles AC only. S-77A uses 105-125 V. DC or 50/60 cycle AC.
7 Tubes plus Rectifier: (in S-40B) 6SG7 RF Amp., 6SA7 Conv., two 6SK7 IF Amps., 6HS ANL and AVC, 6SL7 BFO and Det., 6K6GT Output, 5Y3GT Rectifier.
Model S-40B $\$ 12995$
Model S-77A \$12995

hallicrafters

model S-53A top performance - small size

Unquestionably the finest small communications receiver built. Several steps better than the S-38C but not as good as the S-40B. Complete in itself, with built-in PM speaker.
Performance: Coverage $540-1600 \mathrm{kc}, 2.6-31 \mathrm{Mc}$ plus 48-54.5 Mc. Two stages IF amplification.
Controls: Main tuning in Mc; separate bandspread dial with logging scale plus Mc calibration for 48-54.5 Mc band; Receive/Standby switch; Band switch 540-1630 kc; $2.5-6.3 \mathrm{Mc}, 6.3-16 \mathrm{Mc}$, 14.31 Mc, and 48-54.5 MC; AM/CW; RF Gain, Noise Limiter, AF Gain, iwo-position Tone;

Speaker/Phones switch on rear. Illuminated dial. Physical Data: Satin black steel cabinet with chrome trim. Top opens on piano hinge. Size $127 / /^{\prime \prime}$ wide by $7^{\prime \prime}$ high by $73 / 4^{\prime \prime}$ deep. Ship. wt. 19 lbs. External Connections: Doublet or single wire antenna. Phone tip jacks. Phonograph input jack. 105-125 V. 50/60 cycle AC line.
7 Tubes plus Rectifier: 6C4 Osc., 6BA6 Mixer, two 6BA6 IF Amps., 6 H6 Det., AVC and ANL, 6SC7 BFO and AF Amp., 6K6GT Output, 5Y3GT Rectifier.
Mode S-53A $\$ 9995$

hallicrafters

model R-46 communications speaker

Matching 10" PM speaker for use with Hallicrafters Communications receiver $5 \times-71,5 X-73,5 X-62$, or S-76. 80 to 5,000 cycle range. Matching transformer with $500 / 600$-ohm input. Speaker voice coil Impedance, 3.2 ohms.

Black steel cabinet matches SX-71 and other Hallicrafters cabinets. Cloth covered metal grill. $15^{\prime \prime} \times 107 / 8^{\prime \prime} \times 10 \% 8^{\prime \prime}$ deep. Ship. wt. 17 lbs .
Modei R-46 Speaker \$2495

hallicrafters

famous S-38Cbiggest buy in SW

The lowest priced communications receiver on the market . . . with many features found in much higher priced sets. Standard Brocdcast plus tinree Short-Wave bands. Built-in PM speaker.

Performance: Continuous AM reception 540 kc to 32 Mc. Maximum sensitivity and selectivity from expertly engineered chassis.

Contrcis: Main tuning in Mc; separâe electrical bandspread dia! with arbitrary scale; Spsaker/ Phones, AM/CW switches; Sand Switch 54)-1550 kc, 1.65-5 M=, 5-14.5 Mc, 13.5-32 Mc; AF Gain, Receive/Stand'Sy.
Physicai Datc: Steel cabinet in gray hammer-
tone finish. Size $127 / 8^{\prime \prime}$ wide by $7^{\prime \prime}$ high by $73 / 4^{\prime \prime}$ deep. Ship. wt. 14 lbs .
External Connections: Doublet or single wire antenna. Phone tip jacks. 105-125 V. DC or 50/60 cycle AC.

4 Tubes plus Rectifier: 12SA7 Conv., 12SK7 IF Amp. and BFO, 12SQ7 Det. and AVC, 50L6GT Outbut, 3525GT Rectifier.

220 -Volt Line Cord: Available separately. Works for AC or DC.
Model S-38C $\$ \mathbf{5 9 5}$
Line Cord for 220 V. Operation . . . \$200

hallicrafters

model ST-83
 finest hi-fi FM-AM
 tuner

This AM/FM Super-Fidelity unit carries the UL seal of approval and meets the F.C.C. specifications on oscillator radiation. Phono inputs, built-in pre-amp., accessory inputs for TV, tape recorders, etc. Dual outputs; medium and low impedance, tone controls; bass 12 db , treble 12 db .

Accessory power sockets dual at 200 watt 117 volts each. Tubes 6CB6 FM r-f amplifier, 12AT7 FM osc. converter, 6CD6 AM r-f amplifier, 6BE6 AM osc. converter, 6BA6 lst i-f amplifier 10.7 Mc ,

6BA6 2nd i-f amplifier 455 kc and 10.7 Mc , 6BA6 3rd i-f amplifier, 6AL5 FM detector, 6AV6 AM detector and phono pre-amplifier, 6C4 cathode follower, 12AU7 audio tone control amplifier, 6AX5 rectifier.

Black steel with silver finish trim and chrome lite base. $14^{\prime \prime} \times 17^{1} 2^{\prime \prime} \times 9^{1 / 2^{\prime \prime}}$ deep. Ship. wt. 18 lbs . Ten tubes plus rectifier.

For 105/125 V. 50/60 cycle AC . . \$12995

hallicrafters

model A-84 widest range hi-fi amplifier

The perfect mate for any $A M / F M$ tuner. Exclusive output transformer giving widest range ever produced. Frequency range, 10 to 100,000 cycles per second at 10 watts (with perfect uniformity) and harmonic distortion of less than 0.25% at 10 watt level. Power output of 15 watts maximum.

Mineral oil impregnated coupling condensers, power supply input condenser oil filled.

Chrome lite chassis base. $131_{2}{ }^{\prime \prime} \times 7^{46} 8^{\prime \prime} \times 131 / 2^{\prime \prime}$ deep. Ship. wt. 26 lbs. All five tubes triode.

For 105/125 V. 50/60 cycle AC . .
$\$ 9950$

The Littlefone series of equipment are FM two-way radio telephone units operating at $25-50 \mathrm{Mc}$ or $144-174 \mathrm{Mc}$. Both the receiver and transmitter are crystal controlled and a total of 22 sub-miniature fubes are used. The complete portable model with antenna and telephone hand-set weighs only fourteen pounds and will operate for more than eight hours on the self-contained rechargeable storage batteries. Models for AC power line and $6 / 12$ volts

litflefone - portable radio-telephone

DC operation employ the same r-f chassis as the portable units but an audio power output stage is added to drive the loud speaker. Adjustable squelch controls are available on all models. Power outputs 2 watts on $25-50 \mathrm{Mc}$ and 1 watt on 144-174 Mc. Lower powered wet and dry battery models also available.
Hand Carry from $\$ \mathbf{\$ 2 4 9 5}$ to $\$ 17.12$ F. E.T. plus $\$ 21.93$ F. E.T

Central Station . . . Same performance and specifications as Hand Carry unit. Audio-amplifier, providing one watt of audio for loud speaker. AC operated with power consumption of 35 watts.

Plugs in any AC outlet of 117 V . Hallicrafters S.81 receivers may be used as extra stationary stations.
Central Station $\$ 48500$

hallicrafters finest SW and broadcast portable made

The Hallicrafters "World-Wide," Model TW.1000, the finest short-wave and broadcast portable radio made. Superior Standard Broadcast covers 5351620 kc plus seven other bands covering 1.7-3.9, 3.8-8.2, 9.2-10.4, $11.4-12.4,14.6-15.7$ and 17.318.3 Mcs, plus special marine weather band.

Sleek metal trim on smart leatherette cabinet. Full-view, easy to tune, overseas dial-a Hallicrafiers exclusive. World-Wide short-wave radio map tells you what's on the air. Red indicator for easy
band identification. Four way tone control.
Three antennas for maximum performance-built-in loop, 64" telescope "whip" antenna, and removable "Skyrider" that fastens to car, railroad or airplane windows-lets the "World-Wide" play anywhere. Simplified controls include Dynamic Turret Tuner for accurate band selection. Five tubes plus rectifier. 105-125 V. AC or DC or battery.
\$14995
Model TW-1000

21

hallicrafters the plants

Hallicrafters plants, four of ther:, are the most modern in the entire field of elecironics. Here skilled craftsmen on modern asseric! lines produce the Hailicrafters equepment that is known for highest quality in 80 ceuntriss - 'ies is frst choice of 33 governments - that is by injosds the overwheiming choice of ail of our own armed services. And, incsi exasting test of all, Hailierafters is the choice of the most critical expert in the world - the Amerisan ham operator.

hallicrafters

the people

Companies are only as good as the people that work for them. Hallicrafters has, for years, been fortunate in the people that have made the com. pany great, and have kept it that way. One thing makes them unusual - they bring an aftitude and an interest to their jabs that other men reserve for their hobties. Hallicrafters men are hams at heart - and most of them are hams by license. Here's what Bill Hailigan, Senior, says about his job:
"The rantio ham market," expounds Bill Halligan, "today is the most challenging and the most thrill. ing in all radio. The ham is never fooled by expen. sive cabinets - he wants every nickel's worth of
 Executive Vice President

performance in the chassis. And he wants the absolute latest in circuit design. In working with him and pioneering equipment for him, we feel we are building a background for future developments."

22

Have you seen if?
 hallicrafters

a new dimension in picture realism-
 a new height in viewing enjoyment!

Here is television only Hallicrafters could produce. Over twenty years of dealing with the most exacting of high frequency electronics have provided the experience, the know-how, the precision manufacturing techniques it took to produce these sets. And, just as no manufacturer can match this Hallicrafters heritage of experienceno manufacturer can match this Hallicrafters TV picture.

In short, these television sets are exactly like what they are-Hallicrafters equipment. If you are thinking of a television set -or know anyone that is-remember Hallicrafters. There is a difference that you can see-a superiority that is the envy of the industry.

hallicrafters

World's Leading Exclusive Mannfacturer of Commm,nications and High Fiddlity Equipment. Radio and Teletision

4401 West Fifth Avenue, Chicago 24, Illinois
Hallicrafters Ltd., 51 Camden Street, Toronto, Canada

JAME \mathbb{S} MILLTEN MALDEN•MASSACHUSETTS

90921

ONE INCH

INSTRUMENTATION OSCILLOSCOPE

Miniofurized, pockoged ponel mounting cothade roy ascilloscope designed for use in instrumentation in place of the conventional "pointer type" moving coil meters uses the 1" ICP 1 fube. Ponel beze matches in size ond type the stondord $2^{\prime \prime}$ square meters. Magnitude, phase displocement, wove shape, etc. ore canstontly visible on scope screen. No. 90901 , less tube

INSTRUMENT DIAL

The No. 10030 is an extremely sturdy instrument type indicator. Contral shatt has 1 ta 1 ratio. Veeder type counter is direct reading in 99 revolutions and vernier scale permits readings to 1 port in 100 of a single revalution. Has buill-in dial lack and $1 / /^{\prime \prime}$ drive shaft coupling. May be used with multi revalution transnitter contrals, etc., or through gear reduction mechonism for contral of fractional revalution capocitors, etc., in receivers or labarotary instruments.

GRID DIP METER

The No. 9065 I MILLEN GRID DIP METER is compoct ond completelv self contained. The AC power supply is of the "tronsformer" type. The drum dial has seven colibrated uniform length scales from 1.7 MC to 300 MC with generous over lops plus on orbitrary scole for use with special application induetars. Internal terminal strip permits battery operation for ontenno measurement.
No. 90651 , with tube
Additional Inductors for Lower Frequencies No. $46702-925$ ta 2000 KC No. 48703-500 ta 1050 KC No. 48704-325 to 600 KC No. 46705-220 to 350 KC

LABORATORY SYNCHROSCOPES

The 5" labaratory synchroscopes are availoble with and without delector-videa strips.
Model P. A-2, with fubes Model P. 4E-2, with fubes.

MINIATURE SYNCHROSCOPE

The compoct design of the No. 90952 , measuring anly $71_{2 \prime \prime}^{2 \prime} \times 5 \frac{12^{\prime \prime} \times 13^{\prime \prime} \text {, and weigtring only } 17, ~}{17}$ lbs., mokes available for the first time a truly DESIGNED FOR APPLICATION "field sorvice" Synchroscope.
No. 90952 , with qubes

CATHODE RAY OSCILLOSCOPES

The No. 90902 , No. 90903 and No. 90905 Ruch Ponet Oscilloscopes, for two, three ond five inch ubes, respectively, ore inexpensive bosic units campriving pawer supply, brillioncy and center ing controls, sofety feotures, inaqnetic shielding, swithbes, etc. As o transmitter monitar, no add tional equipment or uccessories ore required. The well known tropezaidal monitaring potterns ore secured by feeding madulated carrier valtoge from a pickup loop directly to vertical plates o the cothode ray tube and audia modulating valf. oge ta harizontal plates. By the addition of such units as sweeps, pulse generators, amplifiers, servo sweeps, etc., oll of which can be canveniently and neatly canstructed an companion ock panels, the original bosic 'scope unit may be expanded to serve any canceivable industrial ar laboratory application.
No. 90902, less tubes
No. 90903 , less lubes
No. 90905 , less tubes
'SCOPE AMPLIFIER - SWEEP UNIT
Vertical and horizontal amplifier along with hard tube, saw tooth sweep generator. Complete with power supply mounted on a stondard $51 / 4^{\prime \prime}$ rock ponel
No. 90921 , with rubes

REGULATED POWER SUPPLIES

A campoct, uncosed, regulated pawer supply, either for toble use in the lobaratory or for in c pratation as an integral part af larger equip. merits. R

Madel 90201, less tubes

JAMESMMIULEN M A L DEN
 M A S S

2101

STANDING WAVE RATIO BRIDGE

The Millen S.W.R. bridge provides easy and inexpensive measurement of stonding wove ratio on antennos using co-ax coble. As ossembled the bridge is set up for 52 ohm line. A colibrated 75 ohm resistar is mounted inside the case for substifution in the circuit when 75 ohm line is used. No. 90671

PHASE-SHIFT NETWORK

A complete and laboratory oligned poir of phase shiff networks in a single compact $2^{\prime \prime} \times 1^{17} 4^{\prime \prime} \times 4^{2}$ cose with characteristics so as to provide a phase shift between the two networks of $90^{\circ}, 1.3^{\circ}$ over a frequency range of 225 cycles to 2750 cycles. This unit is equally well adapted far use in either single sidebond transmitting or receiving equipment. When used in a suitably designed transmitter it is possible to obtain o 40 db suppression of the unwanted sideband. The No. 75012 precision odjusted phase-shift network makes passible the building of single sideband equipment without the necessity af complicated laborotory equipment for network adiustment. No. 75012

R9'er MATCHING PREAMPLIFIER

 The Millen 92101 is an eiectranic impedance matching device and a broad-band preamplifier combined into a single unit, desiqned primarily for operation on 8 and 10 meters. Coils for 20 meter band also available.
SO WATT EXCITER-TRANSMITTER

 Modern design includes feotures ond shielding for TVI reduction, bandswithing for 4-7-14-21-28 megacycle bonds, circuit metering. Canservatively rated for use either as a pransmitter or exciler for high power PA stages. 5763 oscillator-buffer- multiplier and 6146 power amplifier. Rack mounted. No. 9080I, less fubes.
VARIABLE FREQUENCY OSCILLATOR

The No. 90711 is a complete transmitter control unit with 6SK7 temperature-compensated, electron coupled ascillator of exceptional stability ond low drift, a 6SK7 broad-band buffer or frequency doubler, a 6 A67 tuned amplifier which tracks with the oscillator funing, and a requlated nower upply. Oulpul sufficient to drive on 807 is available on 160,80 and 40 meters and reduced output is available on 20 meters. Since the output is isolated from the ovillator by two stages, zero trequency shitt occurs when the oupput laad is varied from open circuit to short circuit. The antire unit is unusually solidly built so thot no frequency shift occurs due to vibration. The keying is tlean and free from all annoying chirp, quick drift, jump, and simitor difficulties often encountered in keyina variabie frequency oscillators. No. 90711 , with lubes

HIGH VOLTAGE POWER SUPPLY

the Na. 9028। high valtuge pawer supply has a d.e. output of 700 volts, with maximum current of 235 ma . In addition, o.c. filament power of 6.3 volts at a amperes is also ovailable so that this pawer supply is on ideat unit for use with flansmitters, such as the Millen No. 90801 , os well as general laboratory purposes. The power supply uses two No, 816 rectifiess. The panel is stondard $83 /^{\prime \prime} \times 19^{\prime \prime}$ rack mounting. No. 90281 , less tube,

HIGH FREQUENCY RF AMPLIFIER

 A physically small unit capable of o power output of 70 to 85 watts on 'phone or 87 to 110 watts on C.W on $20,15,11,10,6$ or 2 meter amateur bands. Provision is made for quick band shift by means of the new No. 48000 series VHF plug-in coils. The No. 9081 unit uses either on 829-B or $3 E 29$.No. 90811 with 10 meter band coits, less tube.

RF POWER AMPLIFIER

This 500 watt amplifier nav be used as the bosis of a high pawer amateur transmitter. The No. 90881 RF power amolifier is wired for use with the popular " $812 A^{\prime \prime}$ type 0 ."I lar imaye us. The amplifier is of unusually surdy mengical construetion, on a $10 / 2$ relay rack parel. Plua-in in. ductors are furnished for operotion on 10, 20, 40 or 80 metel omateur bands, The standard Millen No. 90801 exciter unit is an ideal driver for the new No. 90881 RF power amplifier.
Na .90881 , with one sel of coils, but less ubes

90281

NAME S M IUC芭 MALDEN M MASSACHUSETTS

PANEL DIALS

The No. 10035 illuminated panel dial has 12 10 1 rotio, size, $8^{1 / 2} \times x^{\prime} 6^{1 / 2}$. Small No. 10039 hos 8 to 1 ratio, vize, $4^{\prime \prime} \times 31 / 4^{\prime \prime}$. Both ore of compact mechanical design, easy to mount and have totolly self-contained mechanism, thus eliminating back of panal interfarence. Provision for mounting and marking auxiliary controls, such as switches, potentiometers, etc., provided on the No. 10035 Standurd finish, either size, flat block art metal. No. 10039
No. 10035

WORM DRIVE UNIT

Cost oluminum frame may be ponel or base mounted. Spring looded split gears to minimize bosk losh.
Standard ratio 161 . Also in 481 on reques? No. 10000 -(stote ratio)

DIALS AND KNOBS

Just a few of the many stock types of small diols and knobs are illustroted herewith. 10007 is $13 / 8^{\prime \prime}$ diameter, 10009 is $21 / 2^{\prime \prime}$ ond 10008 is $31 / 2^{\prime \prime}$
No. 10002
No. 10007
No. 10008
No. 10009
No. ${ }^{1} 0015$
No. 10018
No. 10021
No. 10065

RIGHT ANGLE DRIVE

Extremely compoct, with provisions for many meth. od, of mounting. Id cil for oprrating potentiom* od, switche., ric., tiat must ber locule.d, for thors leods, in remote parts of chassis. No. 10012

HIGH VOLTAGE INSULATED

SHAFT EXTENSION

No. 10061 shat! locks and the No. 39023 insulated high voltage potentiometer extension mountings ore ovoloble os anale integroted unit-the No. 39024 . The proper shoft length is independent of the panel thickness. The standord shof has pro vision for screw diver odiustment. Speciol shaft ariangemen's cre avolable for industrial applica. tions. Exiension shat and insulated coupling are molded os o single unit to provide accurocy of olignment ond ease of instollotion,
No. 3902?, non lecking type
No. 39024 , locking lype

SHAFT LOCKS

oddition to the orioinal No. 10060 and No. T(O6) DESIGNED FOR APPLICATION" shaft locks wa con olvo furnis' such voriations as the No. 10062 and No. ploin I A hoff' volume control, condenser, etc ploin "plain to shoft losked" type. Eosy to moun in ploce of ""gular mounting nut.
No. 10060 .
No. 10061
No. 10062

TRANSMISSION LINE PLUG
Aninexpensive, compoct, and efficient polystyrene unit for Use with the 200 ohin ribbon tupe polyNo trame transmi ion line. Fits into atandard millon No. 3310 \& (crysiol) socket. Pin spasing 1/2 diameter. 095
No. 37412

DIAL LOCK
Compoct, eosy to mount, positive in oction, does not alter dial setting in operation! Rotation of knob " A " depresses finger " B " and " C " without imparting any rotary motion to Dial. Single hole mounted. No. 10050

JAMES OMMLEN MALDEN. MASSACHUSETTS

TUBE SOCKETS

DESIGNED FOR APPLICATION

MODERN SOCKETS for MODERN TUBES! Long Flashover path to chassis permits use with transmitting tubes, 866 rectifiers, etc. Lang leakage path between contacts. Contacts are type praven by hundreds of millions already in government, commercial and broadcast service, to be extremely dependable. Sackets may be mounted either with or without metal flange. Mounts in standard size chassis hole. All types have barrier between conlocts and chassis. All but octal and crystal sackets also have barriers between individual canfacts in addition
The No. 33888 shield is for use with the 33008 octal socket. By its use, the elestrastatic isalation of the grid and plate circuits of single-ended metal fubes can be increased to secure greater stability and gain.

The 33087 pube clamp is easy to use, easy to install, effective in function. Available in special sizes for all types of pubes. Single hole mounting. Spring steel, cadmium ploted

Covity Socket Contact Dises, 33446 are for use with the "Lighthouse" ultra high frequency tube. This set consists of three different size unhardened beryllium copper multifinger contast discs. Heat reating instructions forwarded with each kit for hordening ofter spinning or farming to frequency requirements.

Voltac̣e regulator dual contact bayonet socket, 33991 black phenalic insulatian and 33992 with low loss high leakage mica filled phenolic insulation.
No. 33004
No 33005
No. 33006
No. 33007
No. 33008
No. 33888
No. 33087
No. 33002
No. 33102
No. 33202
No. 33302
No. 33446 *
No. 33991
No. 33992
*For set of 3. Single dises $\$ 0.00$ eoch.

FLEXIBLE COUPLINGS

The No. 39000 series of Millen "Designed for Ap plication" flexible coupling units include, in addition to improved versians of the canventionol types, also such exclusive ariginal designs as the No. 39001 insulated universal joint and the No. 39006 "slideaction' coupling (in both steotite and bakelite insulation)
The No. 39006 "slide-action" coupling permits longitudinal shaft motion, eccentric shaft mation and out-af-line operation, as well os angulor drive without bocklosh.
The No. 39005 is similar to the No. 39001 , but is not insulated and i, designed for opplications where relativel, high forque is required. The steotite insulated No, 39001 hos a special onti-bosklosh pivot and sacket grip feature. All of the obove illustrated units are for $14^{\prime \prime}$ shaft and are stond ard production type units. The No. 39016 incorporates features which hove long been desired in o flexible coupling. Na Bock Losh-Higher Flexibility-Higher Breakdown Valtage—Smaller Diameter-Shorter length-Higher Alignment Accuracy—Higher Resistance to Mechonicnl Shock-Solid Insuloting Borrier Diophrogm-Molded as a Single Unit.
No. 39001
No. 39002
No. 39003
No. 39005
No. 39006
No. 39016

JAMES M MILLEN MALDEN •MASSACHUSET TS

04000 and 11000 SERIES transmitting condensers

A new member of the "Designed for Application" series of transmitting variable air capacitors is the 04000 series with peak vollage ratings of 3000,6000 , and 9000 volts. Right angle drive, 1-1 ratio. Adjustable drive shaft angle for either vertical or sloping panels. Sturdy construction, thick, roundedged, polished aluminum plates with $13 / 4$ radius. Constant impedance, heavy current multiple finger rotor contactor of new de sign. Avoilable in all normal capocities.
The 11000 series has 161 ratio center drive and fixed angle drive shaft.

Code	Volts	Capacily	Price
11035	3000	35	$\$$
11050	3000	50	
11070	3000	70	
04050	6000	50	
04060	9000	60	
04100	6000	90	
04200	3000	205	

12000 and 16000 SERIES TRANSMITTING CONDENSERS

Rigid heavy channeled aluminum end plates Isolantite insulation, polished or plain edges. One piece rotor contact spring and connection lug. Compact, easy to mount with connector lugs in convenient locations. Same plate sizes as 11000 series above.
The 16000 series has some plate sizes as 04000 series. Also has constant impedance, heavy current, multiple finger rotor conloctor of new design. Both 12000 and 16000 series available in single and double sections and many copacities and plate spacing.

THE 28000-29000 SERIES VARIABLE AIR CAPAC!TORS

"Designed for Application," double bearings, steatite end plates, cosmium or silver plated bross plates. Single or double section $.022^{\prime \prime \prime}$ or $.066^{\prime \prime}$ air gap. End plate size: $1916^{\prime \prime} \times 1116^{\prime \prime}$. Rotor plate radius: $3 / 4^{\prime \prime}$ Shoft lock, rear shaft extension, special mount ing brackets, etc., to meet your requirements. The 28000 series has semi-circular rotor plate shape. The 29000 series has approximately straight frequency line rotor plate shape. Prices quoted on request. Many stock sizes.

NEUTRALIZING CAPACITOR

Designed originally for use in our own No. 90881 Power Amplifier, the No. 15011 disc neutralizing capacitor has such unique features as rigid channel frame, horizontal or vertical mounting, fine thread over-size lead screw with stop to prevent shorting and rotor lock. Heavy rounded-edged polished oluminum plates are $2^{\prime \prime}$ diameter. Glazed Steatite insulation.
No. 15011

THRU-BUSHING

Efficient, compact, easy to use and neat appearing. Fits $1 / 4^{\prime \prime}$ hele in chassis. Held in place with o drop of solder or a "nick" from - crimbing tool.

No. 32150.

JAMES OMMLEN MALDEN M MASSACHUSETTS

TRANSMITTING TANK COILS

A fulf tine-oll popular wolloges for all bands. Send for speciol cotalog sheet.

TUNABLE COIL FORM

Standard octal base of law loss mica-filled bakelite, polystyrene $1 / 2^{\prime \prime}$ diameter coil form, heavy aluminum shield, iron luning slug of high frequency type, suitable for use up to 35 mc . Adjusting screw protrudes through center hole of standard octal socket.
No. 74001, with iron core.
$\$$
No. 74002, less iron core.

RF CHOKES

Many have copied, few have equalled, and none have surpassed the genuine original design Millen Designed for Application series of midget RF Chokes. The more popular styles now in constant production are illustrated herewith. Special styles and variations to meet unusual requirements quickly furnished.
Figures 1 and 4 illustrote special types of RF chokes availoble on order. The popular 34300 and 34200 series ore shown in figures 2 ond 3 respectively. General Specifications: $2.5 \mathrm{mH}, 250 \mathrm{~mA}$ for types $34100,34101,34102,34103$, 34104 , and $1 \mathrm{mH}, 300 \mathrm{~mA}$ for types 34105 , $34106,34107,34108,34109$.

No. 34100
$\$$
No. 34101
No. 34102
No. 34103
No. 34104

MIDGET COIL FORMS

Made af low loss mica filled brown bakelite. Guide funnel makes for easy threading of leads through pins.
No. 45000
No. 45004
No. 45005

OCTAL BASE AND SHIELD

Low loss phenolic bose with octal socket plug ond oluminum shield cun $1 \frac{1 / 16}{} \times 17 / 8 \times 3^{15 / 16}$.
No. 74400 .

I.f. TRANSFORMERS

The Millen "Designed for Application" line of I.F. transformers includes air condenser tuned, and permeability tuned types for all applications. Standard stock units are for 456,1600 and 5000 kc .B.F.O.also available.

PERMEABILITY TUNED CERAMIC FORMS
In addition to the populor shielded plug-in permeability tuned forms, 74000 series, the 69040 series of ceramic permecbility tuned unshielded forms are available os stondard stock items. Winding diameters and lengths of winding spoce are ${ }^{13}{ }_{32} \times{ }^{7} 32$ for $69041-2$; $1 / 4 \times 3 / 1 /$ for 69043-7-8; $1 / 2 \times 1$ 16 for 69045-6; $3 / 16 \times 3,16$ for 69044.
No. 69041 -(Copper Slug)
No. 69042 - (Iron Core)
No. 69043 - (Iron Core).
No. 69044 -(Copper Slug) No. 69045-(Copper Slua)
No. 69046-(Iron Core).
No. 69047-(Copper \$lug) No. 69048-(Iron Core)

JAME
 \mathbb{S}
 MMUEN MASSACHUSETTS

CERAMIC PLATE OR GRID CAPS

Soldering lug and contact one-piece. Lug ears annealed and solder dipped to facilitate easy combination "mechanical plus soldered" connestion of cable
No. 36001 - 916
No. 36002 3/8'
No. 36004 - $1 / 4^{\prime}$

SNAP LOCK PLATE CAP

For Mobile, Industrial and other applications where fighter than normal grip with multiple finger 360 low resistance contact is require. Contact self.locking when cap is pressed into position. Insulated snap button at top releases contact grip for easy remoral without damage to lube
No. 36011916
No. 36012 3/8'

SAFETY TERMINAl!

Combination high voltage terminal and thrubushing Tapered contact pin fits firmly into conical socket providing large area, low resistance connection. Pin is swivel mounted in cap to prevent twisting of lead wire.
No. 37001 , Black or Red
No. 37501 , Low loss.

TERMINAL STRIP

A sturdy four-terminal strip of molded black Textolite. Barriers between contacts. "Non turning' studs, threaded 832 each end.
No. 37104
POSTS, PLATES and PLUGS
Designed for Application! Compact, easy to use. Made in black and red regular bakelite as well as low lass brown mica filled bakelite of steatite for R.F. uses. Posts hove captive head.
No. 37202 Plates (pr.)
No. 37212 Plugs.
No. 37222 Posts (pr.)
STEATITE TERMINAL STRIPS
Terminal and lug are one piece. Lugs are Navy turret type and are free floating so as not to strain steatite during wide lemperature variations. Easy to mount with series of round holes for integral chassis bushings.
No. 37302
No. 37303
No. 37304
No. 37305
No. 37306

CATHODE RAY TUBE SHIELDS

For man, vear, we have specialized in the design and manwacture of magnetic metal shield of nicoloi and mumetal for cathode ray tubas in our own compute- "equipment, a, well a, for applicaton, ot ali cthror principal complete equipment manufacturer, Stock : pi l a, will ap dial design fo cu tonier 's-'fintion arno..pt available. No. 80045-Nicoloi for 58 ? 1
No. 80055 -Nicolai for 5CP 1
No. 80043 - Nicolai for $3^{" ~ P u b e ~}$
No. 80042 -Nicola for $2^{\prime \prime}$ rube
BEZELS FOR
CATHODE RAY TUBES
Standard types ore of satin finish black plastic. $5^{\prime \prime}$ size has neoprene support cushion and green lucite filter. $3^{\prime \prime}$ and $2^{\prime \prime}$ sizes have integral cushioning. No. 8. $375-5$
Nc. 80073 -
No. $80375-$
No. 80071
Word Radio मisioiy

7 37306

17
37304

MINIITUHIZEID CDMID ONENTS

DESICNED for APPISCATION mbiaturized rompor nerns developed fior nse in our own cquipment such at the
 Mams of thear part-are similar in most details crempl size with their equitalonts in our standard rommonemb parts gromp and in cerlath devieres where complete miniathrization is mot paramonot, a combination of standard and mimatore compoments maty mosih! he usel to adsantage. For monsenience, we have alas limed on this pater the ex tremety small sized coil forms from our standard ratalonere. Adlitional miniatare and suminiature comenoments are in procme of dwotrland will lwe anmoned shorly

CODE

A006

A007
A012
A018

DESCRIPTION

NET PRICE
Motches stondord knobs in style. Elack plostic with bross insert. For $1 / 2^{\prime \prime}$ sholt. Overoll height $1 / 2^{\prime \prime}$. Diometer $\%$ ".

CODE
DESCRIPTION
NET PRICE
A019 Similar to A018, but witho t flange.
A061 Shoft lock for $1 / \mathbf{1 0}^{\prime \prime}$ diometer shoft. $1 / 4^{\prime \prime}-32$ bushing. Nickle ploted brass.
A066 Shoft bearing for $1 / 3^{\prime \prime}$ diometer shofts. Nickle plated bross. Fits "\$4" diameter hal?.
EOO1 Steatite stondoff or tie-วoint integro mounting eyelet .205 overall diameter. Box of five.
1300-500 Iron core RF choke 500 uh.
J300-1000 lron core RF choke 1000 uh.
1300-2500 Iron core RF choie $21 / 2 \mathrm{mh}$.
M003 Solid coupling for $1 / 3^{\prime \prime}$ diomeier shoff. Nickle plated bross.
M006 Universal joint styla flexible coupling. Soring finger, Steorite insulation. Nickle mloted bross for $1 / 4^{\prime \prime}$ diometer shafts.
M008 Insuloted coupling, with nickle ploted bross inserts o: $1 / 0^{\prime \prime}$ diometer sha'ts.
M023 Insulated shof: extension for mounting sub miniature potentiometer with $1 / 0^{\prime \prime}$ dianeter s.rofts ond $1 / 4^{\prime \prime}-32$ bushing.
69043 Sleotite coil forn. Adiustoble core. Iov funed. Topped $4-40$ hole in cose for mounting. Winding spoce $1 / 4$ " diameter $\times 13 / z^{\prime \prime}$ length.
69044 Steatite coil form. Adjustable brass core. Bottom tuned. Mounting by No. 10.32 bross bose. Winding spoce .187 diometer by $3 / 16^{\prime \prime}$ length

Midget Absorption Frequency Meters

Many amateurs and experimenters do not realize that one of the most useful "tools" of the commercial transmitter designer is a series of very small absorption type frequency meters. These handy instruments can be poked into small shield compartments, coil cans, corners of chassis, etc., to check harmonics; parasitics; oscillator-doubler, etc., tank funing; and a host of other such applications. Quickly enables the design engineer to find out what is really "going on" in a circuit.

Types 90605 thru 90609 are extremely smoll and designed primarily for engineering laboratory use where they
will be handled with reasonable care. The most useful combination being the group of four under code No. 90600 and covering the total range of from 3.0 to 140 megacycles. When purchased in sets of four under code No. 90600 a convenient carrying and starage case is included. Series 90601 are slightly larger and very much more rugged. They are further protected by a contour fitting transparent polystyrene case to proiect against damage and dirt. This latter series is designed primarily for field use and are not quite as convenient for laboratory use as the 90605 thru 90608 types. All types have dials directly calibrated in frequency.

Code	Description	Net Price
90604	Range 16010210 mc .	\$
90605	Range 3.0 to 10 nc .	
90606	Range 9.0 to 23 mc ,	
90607	Range 23 to 60 mc .	
90608	Range 50 to 140 mc .	
90609	Range 130 to 170 mc .	
90610	Range 105 to 150 mc .	
90619	Range 350 to 1000 kc .-Neon Indicator	
90620	Range 150 to 350 kc .-Neon Indicator	
90625	Range 2106 mc . - Neon Indicator	
90626 90600	Range 5.5 to 15 me . - Neon Indicator Complete set of 9.9605 thru 90608, in case	
90600 90601	Complete set Field type Frequency Meters in metal carrying case	

SEATTLE
V. Jensen

2616 Second Avenue
INDIANAPOLIS
V. MocNabb

915 Westfield Blvd,

DISTRICT SALES OFFICES

SAN FRANCISCO
Maulthrop \& Hunter 160 Tenth Street CHICAGO CHICAGO
G. G.Ryan
549 W. Washington Blvd,

BOSTON

Harry Gerber
Harry Gerber
739 Boylston Stree

DALLAS

 Jack Yount1431 Pleosant Drive LOS ANGELES W, Bert Knigh W. Bert Knight

KANSAS CITY
J. O. Schmilz

GREENSBORO. N. C
Atcheson है Adoms
P.O. Box 2158

MINNEAPOLIS
Merrill Franklin Co.
338 E. Fronklin Ave

CANADA
H. R. Groy 46 Donforth Rd.

Toronio
EXPORT
Technical Equipmeni Co, Main \& Milton Sts. Rohway, N. J.

MFG. CO., INC.
AND FACTORY

Triangular cross-section transmission towers for rotary beam support . . . for insulated vertical radiators . . . for special, complex arrays of rhombics or curtain antennas ... or any tower problem you have, you'll have the best results with Wincharger.

300	440 ft.	$28^{\prime} \mathrm{sin}$.	50 ft.	30 lbs.	50,000
150	320 ft.	$18^{3} \mathrm{i}$ in.	40 ft.	15 lbs.	10,000
101	220 ft.	$14^{3 / 6 \mathrm{in} .}$	35 ft.	10.1 lbs.	5.000
78	150 ft.	$14^{3 / 8 \mathrm{in} .}$	35 ft.	7.8 lbs.	5.000
$42-47$	125 ft.	13^{1} in in.	30 ft.	4.7 lbs.	3.000

[^13]Whatever you need-simple andena support towers or heavier towers for complex transmitting arrays-Wincharger Towers can do the best job for you.

Sutemport
Tower d
A. Five and 10-ft. Roof Mount Towersfor amateur and TV antennas. Using mast and simple guying can elevate antenna nearly 40^{\prime}

B. Lightweight Towers has hinged base. In 10^{\prime} sections. With simple guying will support 4-bay stack at 40^{\prime}.
C. Self-Supporting. Slender, attractive design -no guys. Will support antenna with maximum wind thrust of 100 pounds. Cement base.

Heathkit IMPEDANCE BRIDGE KIT

$\$ 599^{50}$ SHIPPING WT.

IS LBS.

Features

- Simpson 100-0-100 microampere meter.
- Completely AC operated.
- Built-in phase shift generator and amplifier.
- Battery type tubes, no warm-up required.
- Newly designed two section CRL dial.
- Single knob D, Q, and DQ functions.
- Special impedance matching transformer.
- New modern cabinet styling.
- $1 / 2 \%$ precision resistors and silver mico condensers.

Another new, outstanding instrument design so typically characteristic of Heathk it operation in producing high quality instrument kits at the lawest possible price. A new, improved model Impedance Bridge kit featuring modern cabinet styling, with slanted panel for convenience of operation and interpereation of scales at a $\$ 10.00$ price reduction over the preceding model. Built-in adjustable phasc shift oscillator and amplitier with all tubes of the battery operated type completely climinates warm-up time. The instrument is entirely AC line oncrated. No bothersome batery replacements.
The Heahhit Il3-2 Impedance Bridge Kit actually represents four instruments in one compact unic. The Wheatstone Bridge for resistance measurements, the Capacity Comparison liridge for capacity measurements, Maxwell Bridge for low Q. and Hay Bridge for high Q inductance measurements. Read Q. D, DQ all on one dial therehy eliminating possible confusion due to the incorfect dial reference or adjustment. Only one set of instrument ecerminals nec-
essary for any measurement function. Panel provisions provided for external generator use

A newly designed two section CRL dial provides ten separate "units" switch setrings with an accuracy of 5%. Fractions of units are read on a continuously variable calibrated wire-wound control. A special minimum capacity, shielded, halanced impedance matching transformer between the generator and the bridge. The correct impedance match is automatically switch selected to provide constant load operation of the generator circuit. The instrument uses $1 / 2 \%$ precision resistors and condensers in all mensurement circuits.

The new Heathkit 13-2 provides ourstanding design features not found in any other kit instrument. The single low price includes the power supply. generator, and amplifier stages. No need to purchase separate instrument accessories in order to obtain the type of operation desired.

Heathkit AUDIO WATTMETER KIT

MODEL AW-1
$\$ 2950$
SHIPPING WT.
6 LBS.
A new Heathkit design for the audio engineer, serious hi fi enthusiast, recording studio, or broadcast station; the Heathkit Audio Wanmerer Kit. This specialized instrument instantly indicates the output level of the equipment under test without tequiring the use of external load resistors. All readings are taken directly from the calibrated scales of a $41 / 2^{\prime \prime}$ 200 microampere Simpson meter.
The Heathkir Audio Watmeter features five full scale power measurement ranges from 5 milliwates up to 50 watts w ith db ranges of -15 db to +48 db . The instrument has a power measurement rating of 25 watts continuous and 50 watts maximum for intermittent operation. Non-inductive resistance load impedances of 4 , 8, 16, and 600 ohms are provided through a panel impedance selector switch. Frequency effect is negligible from 10 cycles to 250 kc. A conventional VTVM circuit urilizes a 12 AU 7 twin triode tube. The meter bridge circuit uses four germanium diodes for good linearity, With the Heathkir AW-I desired information can be obtained instandy and conveniently without bothecing with the irksome setups and calculations usually required, Useful for power curve measurements, frequency response checks. monitoring indicator, etc. Convenient calibration ditectly from 110 vole $A C$ line source. This new instrument will help to supply the answers to your audio operating or power output problems.

Heathkit
 LABORATORY GENERATOR KIT

MODELIG-I

SHIP. WT. 16 LBS.
 addition to instruments, the Heathkit Laboratory Generator. Specifically
designed for Alexibility of operation, arcuracy and versatility beyond the performance level provided by the conventional service type gencrator. Frequency coverage of the Colpitts oscillator is 150 kc to 30 mc in five convenient ranges with provisions for internal or external modulation up to 50%, and . 1 vole RF output throughour the frequency range. Panel mounted 200 microampere Simpson meter for RF "set reference level" to provide relative indication of RF output. Individually shielded oscillator and sbielded variable and step attenuator provide flexible control of RE output.

The circuit features a 6 AFf high frequency oscillator, a GNVS amplifier with grid modulation, 12,407400 cycle oscillator and modulator, OB2 voltage regulator tube, and a selenium rectifice tor the transformer operated power supply. The smart professional instrument apprarance and over-all flexibility of aperation will prove a decided asset to any industrial or educational laboratory. The Heathkir Labotarory Generator sets a new level of operdion, far superior to any instrument in this price classification.
check these Features
N New SUPI CR tube
\checkmark Re-trace blanking
\checkmark Valtage regulation
\checkmark Extended band width
F Peak-ta-peak calibrating provisions
\checkmark Gaod square wave respanse

- Astigmatism cantral

New heavy duty shielded pawer transformer

Heathazt OSCILLOSCOPE

 KITMODEL O.9

SHIPPING
WT. 28 LBS

HORIZONTAL ABPLI.
FIER - Newr input se
lecor switch provides choice of heri-
zoat.al mirut. 60 crele sweep inpur, Ine sync, internal sync. and externa zoand anput. cathode ray rube diameter. New blazaing amplitier for complete" retrace blunking and new rhasing control
POWER SIJPPLY - New high volage power upply and filtering cis curf for really fine fraitline focusing. New hedyy duty now er transformer wirh aderyute operaring reserve. Volt. ere regulated upply for both wertical and horizontal ampliters for absolurly ronk stcony traces and complete freedom from bounce and jutrer due en line varime cins.
The acid tex of any walloscope operation is the abllisy to reproduce high frequency square waves and the new Heathkit O. E_{1} will faithfully reproduce square waves up to 500 t.c. The is the ideal all around, gencral purpose nocilloseope for educational and industril- use, radio and TV serv-

Announcing she latest addition to a brilliant ecries of Heathkit Dxcilloscoper, the new Mhedel O.9. Thic outs.andme instrument incorporntes all
 ourstandang perfurmance. This new scope featurcs a brand new (mis yur-
 lugh intensty and freedorn from hataion. The $5^{\prime \prime}$ e R tube is twe standard saze for design and induseral lahoratories, develupment enginecrs,
and sertice men. The only size 《 k fube oftermg a wide range of fypes. colors, phomphors, and persisecnce. The answer to good oscallomerper per formance hes in improsed base design and operating characestetes, and VIRTH AL AMPIIIIFR - New expended band wideh vertical anmplifier
 512 db at ite. Three step vertual inpus artenuator, quality ceramic variable cupurars tur proper input compensation, provivions for callbrared I rult peak-to-peak reference, wath calibrated screen for direct
reading of TV pulses.

0

NO. 342
$\$ 350$ SHIP. WT

PROBE KIT
Oscilloscope investigation of high Erequency.
higit impedance, or broad bandu idth circuits or countered in television work requires the use of a law capacity probe to prewent loss of pain. disturtion. or falke service informatiun.
Feathket LOW CAPACITY a variable capacitor to provide the necessary New prote sysing aich brighr polished alu. minum houstog and polystyreme probe ends.

NO. 337.8
$\$ 350$
SHIP. WT. I LB.

Heathkit

 SCOPE DEMODULATOR PROBE KITIn applications such rouble shootin aligning TV. RF: IF, ance video stages. the frequenty ranges enc inanered require demodulation of sugnals beit ie escilloscope presentution. The newly-stitet Hearhkit Demodula. tor Probe in polifised aluminum housing will fulfil: this function and readily prove irs value as tnoncilloweipe service accensory. De-
tailed assmbly sheet movoded, including instructions for frobe apcration.

Fteathkit
 VOLTAGE CALIBRATOR KIT

The Heathkit Voleage Calibra tor provides a convenient merhof of making peak-to-peak volt age measurements with an oscilloscope by establishing a relationship on a comparison basis between the amplizude of an unk nown wave shape and the known output of the volage calibrator. Ptak-to-peak voliage values are read directly on the calibrated pane: scales. To offset line voltage supply irregularities, the instrument features a voltage regulator rube.
Wish the Heathkit Voltage Calilirator, it is possible tos meavure all

MODEL VC-2 $\$ 1150$
SHIPPING WT. 4 LB5. types of complex wave forms within a voltuge range of .01 to 100 volts poak-to-pesk. A convenient "signal" peoration on the pancl switch by-passes the calibrator completely and the sig. nal is applied to the oscilloscope input thereby climinasing the necessity for transferring test leads.

\#eathkit ELECTRONIC SWITCH KIT

The basic function of the Heathkit $\$.2$ Electronic Suritch Kit is to permit simulanerus oscilloscone wbservation of ino separate traces which can be cither sepa. ated or sup whal ruds. A spical karne would be eit servation of a signal as it appears at ber fer input aill a porve as aquare we ene:zior over the raciee of suichion fre
 querkies often proviling the necers.afy wave form response informition withuut

Cuntinuously variable switching rates in three ranges from less than 10 cps to in three ranges from ese tran torsps for each inpur channcl arrl a positioning concal inpur five tube isansformer ojeraced circuit utitizes two 6Sj7, two 65N $\%$ and one 6×5 tubes. Buy this kir and en oy incirased versatility of operation from your oscilloscope.

MODEL S-2

HEATH COMPANY • Benton Harbor 26, Mich.

Heathbit VACUUM TUBE VOLTMETER KIT
 MODEL V-6 $\$ 2450$

SHIPPING WT. 6 LBS

Features

New $1 \frac{1}{2}$ volt full scale low range 1,500 volt upper limit DC range

- Increased accuracy through 50% greater scale coverage

Whigh impedance 11 megohm input

- Center scale zero adjust

1 Polarity reversal switch
/ 1% precision resistors
Clearly marked $d b$ scales

The heauriful Heathkit Model V-6 VTVM, the world's largest selling kit instrument now offers many outstanding new features in addition to retaining all of the refinenemts developed and proven in the production of over 100.000 VTVM's. This is the basic measuring instrument for every branch of electronics. Easily merts all requiremenss for accuracy stability, sensitivity. convenience of runges, meter readability. and modern styling. It will accurarely measure DC voltages, $A C$ voltages, ofters tremendous whmeter range coverage, and a complete db scale for a toral of 35 meter ranges

New 11'z volt full scale low range provides well over 21 " of scale lengeh per volt. Upper DC scale limit 1.500 volts. DC ranges $0-1.5,5,15,50,150,500,1,500$ voles full scale. AC ranges 0.1 .5, ,
$5,15,50,150,500,1,500(1,000$ voles maximum). Seven ohm-
meter ranges from . 1 ohm to 1,000 megohms. For addel convenience a DC polariry reversing swith and a center scale zero adjustment for FM alignment.

The smartly styled. compact, sturdy. formed aluminum cabinet is finished in an atractive gray cfackle exterior. The beautiful twocolor, durable, intra-red. baked enamel panel further wats to the over-all professional appearance.

Top quality components used throughout. If precision resistors - silver contact range and selector switches - selenium rectither transformer operated power supply: Individual calibration on both AC and DC for maximum accuracy. Dlk scale printed in red for easy identification, all orher scales a sharp, crisp black for casy reading. A varicty of accessory probes shown on this page still add further to over-all instrument usefulness.

\#eathkit 30,000 voit dC PROBE KIT

For TV service work or any similar application where the measurement of high DC voltage is required, the Heathkit Model, 36 High Voltage Probe k it wil prove invaluable. A precision sleel cation factor of 100 on the DC ranges of the Heathkit 11 megohm. VTVA. The entire hit includes precision restis. ror, two-solor plastic probe tip connector spring. test lead, phone plug pinel connector, and complete assembly instructions.

Coser
No. 336
\$4. 0
SHIP. WT.
2 LBS.

No. 338-B

9550

SHIP. WT. 2 LBS.

\#eathkit peak-to-peak PROBE KIT

Now tead peak-repeak voltages on tine DC sciles of the lleathkis II megohm VTVM. Readines can be directly made fram the VTVM seale wathout involsed calculations. Measupements over the frequency range of 5 kc to 5
mac . Wise thin probe to extend the usefulncess of pour VTry in in to extend the und TV service work The Peak-ro-Pcalk Probe kit features the new polithed aluminum housing with two-color pulviryene probe ends. Detailed assemhly sheer meluding instructions for probe operation.

Heathkeit RF PROBE KIT

The Heathkit RF Probe used in conjunction with any 11 megohn VTVM will permit RF measurements up ew 250 mc . $\pm 100_{\%}^{\circ}$ A useful, conlennent accessory tar those occusions when RF
me:suremerns are devired. The R1: probe body measurements are desired. The RI probe body aluminum probe body fcaruring two-color polyaluminum probe body featuring two-color poly-
seyrenc probe ends and 3 low capacity flexible styrene srobe ends and a low capaciry flexible
shielded tese lead. The kit is complue with all necessary material and a detailed asembly shee as well as instructions for probe operation.

No. 309-B
$\$ 350$
SHIP. WT. 2 LBS

Heathkit ac vacuum tube VOLTMETER KIT MODEL AV-2
 $\$ 2950$
 SHIPPING WT.
 5 LBS.
 The new Hearhkit AC VTVM thar makes possible those sensitive $A C$ measutements required by laboratories, audio enthusi asts, and experimenters. Especi-

 ally useful for hum investiga tion. sensitive null detection phono pick-up output measurements, making frequency response runs, gain measurements, ripple voltage checks, etc. Low level measurements are easy to make because of the complete voltage coverage of the instrument and the one knob operation.

The large 200 microampere Simpson meter has clearly marked and easy to read meter scales. Ten voltage ranges covering from .01 rms full scalc to 300 volts rms full scale, with frequency response $\pm 1 \mathrm{db}$ from 20 cycles to 50,000 cycles. Instrument input impedance 1 megohm, ten db ranges from -52 db ro +52 db . For stability and good linearity characteristics the meter bridge circuit features 4 germanium diodes. Attractive instrument styling, a companjon piece for the popular Heathkit VTVM and the new AW'-1 Audio Watmeter.

HEATH COMPANY - Benton Harbor 26, Mich.

check these 马eatures

The most important Heathki: announcement of the year, the new 20,000 ohms per volt Heathkit Multimeter. Model MM-1. The universal service measuring inserument, accurate, sensitive, portable, and completely independent of AC line supply. Particularly designed for service use incorporating many desirable features for the convenience of the service man. Full 20,000 ohms per volt sensitivity on DC ranges - 5,000 ohms fer volt sensitivity on $A C$-polarity reversal switch, no bothersone transferring of test leads- 18 precision multiplier resistors - large $4 \frac{1}{2} 2^{\prime \prime}$ recessed non-glare 50 microampre Simpson meter - conveniently slanted control pancl - recessed saffety type batana jacks - standard universally available batteries.-rugged practical sized cabinet with plastic carrying handle, and a total of 35 calibrated meter ranges.

RANGES

Voltage ranges selected entirely for service cenvenience. For exampie $11 / 2$ volt full scale low range for measuring portable radio filament voltages, bias volt.iges, etc., 150 volt full scale range for AC-DC service work, 500 volt full scale range for conventional transformer operated power supply systems. Complete voluge ranges $A C$ and DC, $0-1.5-5-50-150-500-$ $1,500-5,000$ voles. DC current ranges, 0-150 microamperes15 milliamperes- 150 milliamperes- 500 milliamperes- 15 amperes. Resistance measurements from .2 ohms to 20 meg-
ohnis $\times 1 \times 1,000 \times 11,000$.
DB coverage fron: -10 db
to +65 db .

CONSTRUCTION

Entirely new design permits assembly, mounting and wiring of precision resistors on a ring-switch assembly unit. The majo: portion of instrument wiring is completed before mounting the ring-swith assembly to the panel. No cal bration procedure is required, all precision resistors readily accessible in event of replacement.

CABINET

Strikingly modern cabiner styling featuring two piece construction, durable black Bakelite cabiner, with easy to read panel designations. Cabinet size $51 / 2^{\prime \prime}$ wide $\times 4^{\prime \prime}$ deep $\times 71,2^{\prime \prime}$ high. Good cabiner physical stability wher operated in verticul position.

The Heathkit MM-I represents a terrfic instrument value for a high quality 20.000 ohms per volt unit using all 1% deposited carbon type precision resistors. Here is quality, performance, functional design, and attractive appearance, all combined in one low priced package.

Heathkit BATTERY TESTER KIT

MODEL BT-I

The limathkit Battery Tester measures all types of dry batteries between $1 \frac{1,2}{}$ volts and 150 volts under actual ood conditions. Readings are made dizec:ly on a three color Good-Weak-Replace scale. Operation is extremely simple and mercly requires that the test leads be connected to the battery under test. Only one control to a.ljust in addition to a pancl switch for " A " or "B" battery rypes. The Heathkit Battery Tester features compact assembly, accurate meter movement, and a thee deck wirevound control. all mountel in a portable rugged plastic cabinet. Checks portable radio batteries, hearing aid batteries, lantern buteries, etc.

Heathkit HANDITESTER KIT

MODEL M-I $\$ 7 \longdiv { 4 } 5 0$
SHIPPING WT. 3 LBS .

The lleathkit Model M-1 Handiteste readily fulfilis major requirements for a compract, port ahle volt ohm milliammeter. Despite its com pact size, the Handitester is packed with every desirable feature requires in an insteument o this type. AC or DC volage ranges foll scale. $0.10-30-30$)- $1.000-5.000$ volts. Two ohmmeter ranges, $0-3,000$ and $0-300$, (dio. Two DC surtent measurement ranges, 0 -to milli amperes and $0-100$ millamperes. The instru ment uses a Simpson 400 microampere meter movenuent, which is shunted with resistors to provide a uniform 1 milliampere load on both AC and DC ranges. Special type, easily accessible. battery mounting bracker - 1 Có deposited carben type precision resistors-hearing aid type ohms adust control. The Handitester is rasily assumbled from complete instrucrions and pictorial diagrams. Necessary test leads are an. -luded in the price of this popular kit-

New Tieathket 12 Volt BATTERY ELIMINATOR KIT

CHECK THESE

Features
Either 6 or 12 volt operation
Continuously variable voltage output
\checkmark Constant ammeter and voltmeter monitoring
MODEL BEG $\$ 33^{10}$

SHIPPING WT.
18 LBS.
\checkmark Automatic overload relay - selfresetting

- Iwo $10,000 \mathrm{mf}$ condensers

New 18 disc split type heavy duty rectifier unit

Fuse protection

Here is the new Heathkit Battery Eliminator necessary for modern, up-to-date operation of your service shop. The Heathkit Model BE--' furnishes either 6 voles or 12 volts output which can be selected at the flick of a panel switch. Use the BE-4 to service the new 12 volt car radios in addition to the conventional 6 volt radios.

This new Battery Eliminator provides wo continuously variable output ranges, $0-8$ volts I)C at 10 amperes continuously, or 15 amperes maximum intermittent; $0-16$ volts DC at 5 amperes continuously or 7.5 amperes maximum intermittent. The output voltage is clean and well filtered as the circuit uses two 10,000 nat condensers. The continuously variable voltage output feature is a definite aid in determining the starting point of vibrators, the voltage operating range of oscillator circuits. etc. Panel mounted meters constantly monitor voltage and cur-
rene output and will quickly indicate the presence of a major circuit fault in the equipment under: rest. The power trans. former primary winding is fuse protected and for additional safety an automatic relay of the selt-resetting type is incorporated in the DC output circuit. The heavy duty rectifier is a split type 18 plate magnesium copper sulfide unit used cither as a full wave rectifier or voltage doubler according to the position of the panel range switch.

Here is the dedal battery eliminator for all of jour service problems and as an adelitional feature, it can also be used as a battery charger. Another new application for the Heathkit Battery Eliminator is a variable source of DC filament supply in audio development and research. More than adequate variable voltage and current range for normal applications.

Heathkit VIBRATOR TESTER KIT

Your repair time is valuable. and Service use of the Hemhkit Vibrates Tester wall save you many hours of work. This ester will instantly toll you the condition of the vibrator being checked. Checks vibrators lure proper starting and the easy to read meter indicates quality of output on a large bad- Good scale. The Heathkit YT-1 checks both interrupter and self rectifier types of vihmotoss. live different sockets for clicking hundreds of vibrator types.
The Henthkir Vibrator Tester operates from any burecery eliminator capable of delevering continuously variable voltage from 4 to 6 volts DC it 4 amperes. The new Heathkit Model BEE- $\{$ Battery Eliminator would be an ideal source of supply'.

NEW Feathkit VARIABLE ISOLATION TRANSFORMER KIT

The new Heathkit Isolation Trans-

 former k it provides line isolation for AC-DC ratios (not an auto transformer). thereby eliminating shock hazard, hum problems. alignment dif. ficultics. etc. The output voltage is variable from 90 to 130 voles AC and is constantly monitored by a pine mounted $A C$ vole meter. Use it to increase $A C$. supply voltage in order to induce breakdown of faulty complements in circuits thereby saving service time. Use it also to simulate var ing line voltage 6 monitions and to deermine the line voltage level at which oscillator circuits cease functioning. particularly in threc-way portable radios. Rated at 100 watts continuous operation and up to 200 watts maximum intermittent operation. A useful radio and TV tent operationservice tool.
voltage

Heathkit

BINDING POST
Binding post kit now available so that standardization of all instrument conactors is possible. This new. five -way binding post will accommodate an allig.t. tor clip, habana plug. test lead pin, spade hue or hook up wire. Sold in units of 20) binding post assemblies. Each assemincludes binding went, flat and shouttiber washers, solder lug. and nut. pieces in all. Kit $362, \$ 4.00$.

Heathkit

TECHNICAL

APPLICATION BULLETINS

An exclusive lleathkit service. Tech. nical application bulletins prepared by recognized instrument authorities outlining various combinations able now with to four -page illusrated bulletin and an attraction flexible later af bind ar. Only $\$ 2.0$ (No cod on this tern, please.)

HeATH COMPANY • Benton Harbor 26, Mich.

снеск тнеse Features

\checkmark INCREDUCTOR conirollable inductor weep
\checkmark TV and IF sweep deviation $12-30 \mathrm{mc}$
W $4 \mathrm{mc}-220 \mathrm{mc}$ continuous frequency coverage

- Oscillator operation entirely on fundamentals
Output in excess of 100,000 mierovolts
- Automatic amplitude circuit
\checkmark Voltage regulation
\checkmark simplified operation

NEW Fieathtoct
 TV ALIGNMENT GENERATOR KIT

MODEL TS-3
5445°
SHIPPING WEIGHT
18 POUNDS

$\frac{1}{6}$

lutor coil is clectrically varied with an AC control current, and the inductance variaton is achicwed by a change in the magnetic sate of the core on which the oscillator coils are wound. This bstern provides a sweep deviation of not less than 12 mc on all TV frequencics. and up to a maximum of 30 me on TV IF ficquentics. The high RF output kevel throuthout the instrument frequency range ovecomes the moxt common complaint of the ohder type sweep generstors. A new, automatic amplitude control circuat maintuins the output level hat to ± 2 dh throughout the instrument range. Fur convenience of operation a low impedance () ohom output is u ci

Oreration of the instrument has been simplitied through the reduction of pand comerols and separate panci terminals provide for external synchronization if desired. The circuit uses a voltage regulator tube to ma.ntain stable instrument operation. A built-in varisble oscillator m.rker further adds to flexibility of instrument operation. Provisions are also made for the use of an external markir. such as your service type signal generator, if desired. Use the Heathis TS-3 for rapid, accurate TV aligament work, and let it help you solve those time consuming, irlsome problems so frequently encountered.

Proudly announcing an entirely new adyanced model TV and FM Sweep Generator, the Heathkit Model TS-3. This new design provides features and combinations of functions not tosund in any other service share inctrument Eivery design con .ideration has been given to the requirements of the TV sersice man to pros ite a flenitle, virinhle swerp source with more than aderuute RI outfut and complete frequency coserage throughout the 'I'V' and FAt spectrum.

The frequency range of the TS 3 is from $-\frac{\mathrm{ms}}{\mathrm{m}}$ to -20 mc in four swith selected ranges. All frequency ranges ate arerlapping for complete coverage. A particulaty important fe ture of the instrument is that the acillator uperates entirely on fundamentats, thereby providing complete freedom from sparicus oscillution and parasitics normalls encountered in beat frequency rope uscillators. This circuity .Issures a much higher total R1 ou put level and simplifies attenuation problems.

The new TS- 3 features an entirely new principle of sweer operation. Swecp action is entifcly clectronic with row rowing parts or dectromedranical devices so cummonly used. The heart of the
sweep system is a newh-deseloped INCR BDLCTOR controllable inductor. With this system, the value of inductance of each oscil-

MODEL SG-8

$\$ 1950$

SHIPPING WEIGHT 8 POUNDS

Annourcing the new Heathkit Model SG. 8 service type Signal Generator, incorporating many design features not usually found in an instrument in this price ranye. The RF outpur is from 160 kc to 100 mc in five ranges, all on fundamentals. with useful harmonics up to 200 mc . The RF output level is in excess of 100.0100 microvoles threughout the frequency range.

The oscillator circuit consists of a $12 \mathrm{AT}^{7}$ twin triode tube. One half is used as a Colpits oscillator, and the orlher half as a cathode follower output which acts as a buffer between the oscillator and external load. This cirsuity climinntes oscillator frequency shift usually caused by exsernal circuit loading.

All coils are factory wound and adiusted. heresy completely eliminating the need for calibration and the use of addition.1 calibrating equipment. The stable low impedance output features a step and variable atenuator fur complete control of R1: Jevel. A 6C-1́ triode icts as a 400 cycle sine wase oscillator and a pancl switching system permits a choice of either external or internal moduhation.

The transformer operated circuit is ensy to assemble, requires no calibration, and incets every service requirement for an adjustable level variable frequenc: signal source, either modulated or un-modulated.

new Heathkit BAR GENERATOR KIT

MODEL BG-I \$1450.

SHIPPING WEIGHT 6 POUNDS
The Heathkit BG-I Bar Gencr: ator represents another welcome addtiton to the fast growing line of papular Heathkits. The station transmitted test pattern is rapidly disappearing. and the bas generator is the logical answer to the TV service man's problem in obraining quich, accurate udjustment information withous waiting for test parterns.

The Heathkit BG-1 produces a series of horizontal or vertical bars on a TV screen. Since these bats , tre equally spaced, they will quickly indicate picture linearity of the receiver under test. Panel switch provides "stand-by pustitun" - "horizontal position" "vertical position." The oscillator unit utilizes a 12 $A^{\prime} 7$ '7 twin triode for the R1F oscillator and video carrier frequencies. A neon relaxation oscillator provide: low frequency for vertical linearity tests. The ingtument will nose only produce bur patterns but will also provide an indication ot horizortal and vertical sync circuit stability, as well as overall picture size.

Instrument operation is extremely simple, and merely requires connection to the TV receiver antenna ferminal. The unir is rransformer operated for saf:ty when used in conjunction with universal or transformerless ispe TV circuits.

new Hieartheit TUBE CHECKER KIT

MODEL TC.2 $\$ 2950$

SHIP. WT. 12 LBS
CHECK THESE new Features

Simplified harness wiring
- Improved, smooth, anti-backlash roll chart action
W Optional roll chart illumination
- Individual element switches
\checkmark Portable or counter style cabinet
\checkmark Spare blank socket
\checkmark Contact type pilot light test socket
- Simplified test set-up procedure
\sim Line odiust control

/ $412^{\prime \prime}$ three-color meter

The new Model TC-2 Heathkir Tube Checker features many circuit improvements, simplificd wiring, new roll chart drive and illumination of roll chart. The instrument is primarily designed for the convenience of the radio and TV service man and will check the operating quality of tubes commonly encountered in this eype of work. Test set-up procedure is simplified, rapid, and fexible. Panel sockets accommodate 4, 5, 6, and pin tubes, octal and loctal, 7 and 9 pin miniatures, 5 pin Hetron and a blank secket for new tuhes. Buite-in neon short indicator, individual three-position lever switch for each tube elemerat, spring return test switch, 14 filament voltage ranges, and line set control to compensate for supply voltage variations, all represent importane design features of the TC.? Results of tube tests are read directly from a large 412" Simpson three-color meter, calibrated in terms of Bad-?-Good. Information that your customer can readily understand. Checks emission, shorted elements, open clements, and continuity

The use of closer tolerance resistors in critical circuits assures correct test information and climinates the possibility of inaccurate test interpretation. Improvement has been made in the mechanical roll chart drive system, com. pletely eliminating dizgonal running, erratic operation, and backlash. The thumb wheel gear driven action is smooth, nositive, and free running. As an additional feature, the roll chart is illuminated tor easier reading. particularly when the tube checker is used on radio or TV home service calls.

W'iring procecture has been simplified through the extended use of multicable, color coded wires, providing a harness type installarion berween tube sockers and lever switches. This procedure insures standard assembly and imparts that "factory buile" appearance to instrument construction. Completely detailed information is furnished in the new step-by-step construction manual, regarding the set-up procedure for resting of new or unlisted tube types. No delay necessary for release of factory dara.

The new Heathkit Tube Checker will prove irs value in building service prestige through usefulness - simplitied operation - attractive professional appearance. Don't overlook the fact that the kit price represents a savings of $\$ 40.00$ to $\$ 50.00$ over the price of a comparable commercially built instrument. At this low price, no service man need be without the advantages otfered by the Heathinit Tube Checker.

Nem

 HEATHKIT PORTABLE TUBE CHECKER KITMODEL TC-2P
\$3450.
SHIP. WT. 14 L8S.

The portable model is sup.
pleal with a strikingly at
Tractue tuo-tone cabinet finished in rich maroon, proxy. lin impregnated, fabric covering with a contrasting gray on the inside cover. Detachable cover. brass-plated harduare, sturdy plastic handle help to impart a truly professional appearance to the instrument.
PORTABLE TIBE CHECKER CABINET as described ahove will fit all carlicr Hearhkit TC. 1 Tube Checkers

Feathkit iv picture tube
TESTADAPTER
The Heashkit TV picture Tube Test Adapter used with the HeathNo. 355 for emission, shors cec and di Ship. Wr. $\$ 450$ rermine pircure ruthe quality. Con 1 lb . sisses of standard 12 pin IV tube
socket, four fect of cabic, octal sochet connector. and data sheet.

Heathkit POWER SUPPLY KIT

MODELPS-2
\$3350
SHIPPING WT 17 185.

The Heathkit I.aboratory Power Supply fearures continuously variable, regulated, voleage output with good stability under wide load vatiations. A 41 " Simpson plastic enclosed panel mounted meter provider ascurate meter output infornation of voluge or current. All panel terminals completely isolated from the cabinet. Separate 6.3 vole $A C$ supply at 4 amperes for filament requirements. Ripple component exceptionally' low, stand-by switch provided to climinate warm-up time of the five tube circuit.

LABORATORYAND

 SERVICESHOP
BOOKLETS

Manning Your Service Business' by John I. Frye and Frablishing the Industriat Elcuronics laboratory hy Louis B. Garner, Jr., are hooklets available to Heath. fit customers at no charge. These bioklets. writeen by nationally recoge nized authorimes. oulline the various requirements and considerations for equblishing your own service busi. ners or for serting up an induserial clectronics laboratory. Full atention is given to various details that are frequendy overlooked when projects of this nature are undemation. Just write in to the Heath Company requesting your free copy; of attach a themo to your next order.

HEATH COMPANY•Benton Harbor 26, Mich.

check these Pearures

Ircactaze visual-Ausal SIGNAL TRACER

Visual and aural signal trasing

- Two channel input

High RF sensitivity
Unique noise locater circuif

- Calibrated wattmetor

W Substitution test speaker
\checkmark Utility amplifier
\checkmark RF, audio probes and test leads included

SHIPPING WEIGHT
JOPOUNDS

An entirely new type of signal tracer incorporating a combination of features not found in any other instrunment. Designed ex. pressly for athe radio and TV service man, particularly for the servicing of AM, FM, and TV circuits. Here in a five tube, transformer operated instrument ate all of the useful functions so necessary for speedy. accurate isolation of service difficulty:
This new signal eracer features a special high gain RF input channel. used in conjunction with a newly-designed wide frequency range demolulator probe. High RF sensitivity permits signal tracing at the receiver menna input. A sceparate low eain channel tracing at the receiver antenna input. A separate low gain channe and probe avalable for audio circuit exploration.
nels are constantly monitored hy an elerron ray beam indicator. so that visual as wedl as aural signal indications may be observed The instrument can also be used for comparative estimation of gain per stage.
A decidedly unusual feature is a noise localizer circuit in conjunction with the audio probe. With this system, a DC potentinl is applied to a suspected circuit component and the action of the
coltage in the component can be seen as well as heard. Invaluable for ferreting out noisy or intermitent condensers, noisy resistors. controls, coils. IF and power transformcrs. cte. A puilt-in calihrated wattmeter circuit is very useful for a wick preliminury check of the total wattage consumption of the equipment under test. Separate panel terminals provide external use of the speaker or outpur transfurmer for substitution purposes Saves valuable service time by eliminating the necessity for speaker rembval on every service job. The terminals also permit the utilization of other shop equipment, such as your oscilloscope or VTVM. The T-3 Signal Tracer can he used as a high gain amplitier for checking tuners, record changers, microphones, phono crystuls, etc.
Don't overlook the interesting service possibilities provided through the use of this new instrument and let it work for you by saving time and moner. The kit is supplied complete with all tubes, circuit components, demodulator probe, audio probe, and additional test leads.

\#cathkit
 DECADE RESISTANCE KIT

MODEL DR-1 The Decade Resistance Kit provides $\$ 1950$ individual switch selection of resistance values wing twenty 1% sistancers providinz: a choice of 1 resishors providinz a choice of 1
to 99,999 ohms in 1 ohm sreps. SHIP. WT. to Ceramic wafer witches, silver4 LBS. plated contacts, smooth. positive detent action, baked enamel pancl, and handsome. polished birch cabinet.

Freathkit DECADE CONDENSER KIT

The Heathkit Decade Condenser Kit MODEL DC-1 feaxures silver mica. precision condensers with a rated accuracy of \pm 1%. Capacity values are arranged in three decades from 100 mmf to 1111 mf in steps of 100 mmf . Ceramic wafer switches with silver-plated contacts and smooth detent action. Uses1650 SHIP WT ful in laboratory work, for circuit development.

Heathkit RESISTANCE SUBSTITUTION BOX KIT

MODEL RS-I The Heathkit Resistance Sub

 vidual switch selection of any one of 36 RTMA 1 watt10 re standard value resistors. SHIP. WT. 2 L85. ranging from 1; ohms to 10 meghoms. Many applications in circuit development work, and also in radio and TV service work. Ideal for experimentally determining resistance values and for quickly altering circuit operating characteristics. Entire unit housed in attractive Bakelite cabinet, featuring the new universal type Heathkit binding posis to simplify citcuir connections.

Heathkit CONDENSER CHECKER KIT

MODELC-3 \$1950.

SHIPPING WT. 8 POUNDS

Use the Heathkit C-3 Condenser Checker to quickily and accurately measure those unknown condenset and resistor values. All readings are taken directly from the cilit ated panel scales without requiring any ir wived calculation. Capacity measurements in four ranges from .00001 mf to $1,000 \mathrm{mf}$. Checks paper, nica. ceramic, and electrolytic condensers. A power factor control is available for accurate indication of electrolytic condenser measurements. A leakage rest switch with switch selection of tive polarizing voltages, 25 voles to 150 woles DC. will indicate condenser operating quality under actual load condition. The spring return leakage test switch automatically discharges the condenser under test and eliminates shock hazard to the operator.

Resistance measurements can be made in the range from 100 ohms to 5 megohms. Here again all values ate read directly on the calibrated scale. lncreased circuit sensitivity coupled with an electron beam null indicator increases overall instrument usefulness.
For safety of operation the circuit is entirely transformer operated and the instrument is housed in the attractive, newly-styled Heathkit cabinet, featuring rounded corners, and drawn aluminum panel. The outstanding low kit price for this surprisingly accurate instrument includes necessary test leads. Good service shop operation requires the use of this specialized instrument, designed for the express purpose of determining unknown condenser values and operating characteristics.

HEATH COMPANY•Benton Harbor 26, Mich.

Freathezt AMATEUR TRANSMITTER KIT

CHECK THESE

new
 Featured

Single knob band switching
\checkmark Pre-wound coils
MODEL AT-1
52950
SHIPPING WEIGHT
16 POUNDS

Metered operation
52 ohm coaxial output
Crystal or VFO excitation
Built-in power supply
W Rugged, clean construction

Here is the latest Hearbkit addition to the ham radio field. the AT-1 Transmiter Kit, incorporating many desirable design features at the lowest prossible dollar-per-wates price. Pancl nounted crystal socket, stand by switch, key click filter, AC line filtering, good shiclding. etc. VFO or crystal excitation-up to 35 wats input. Buile-in power supply provides 425 voles at 100 ma .
This kit fatures pre-wound coils, single knob band switching, 52 ohm coaxial output, plug in chassis provisions for V1:O or modulator and rugged clean construttion. Frequency range $80,40,20$,
4. 11. and 10 me:ers. Tube line-up GAG7 oscillator-multiplier 6L. 6 amplifier-doubler. SU' G recestier. Physical dimensions 8 !. s" high x x g. wide $x 7$ deep

This amazingly low hit price includes all circuit components, tules. cabinet, punched chassic, and detailed conseruction manual. The ideal kit for the novice just breaking into han radio, It can be used later on as a stand-by rig or an all band exciter for higher powered eransmitter.

naw Heathkit ANTENNA COUPLER KIT

New. Heathkit Antenna Coupler, specially designed for the Heathkit AT.1 Transmiterer. The Antenna Couplor can be used with any 52 ohm conxial inpats filter with cut-off frequency of pass filter with cut-off trequency of approximately ${ }^{36}$ me - ne section cator - rugged. compact construction rransmiterer type variable condenser, and hiph 0 coil are all outstanding features. The AC- 1 has both inductance and capaciry tuning for maximum operating versaeility. Dimensions $8!8^{\circ}$ wide $\times 438^{\prime \prime}$
 high $x 4^{7} s^{\prime \prime}$ deep.
$5 \longdiv { 5 0 } \underset { 3 \text { SHIP.WT } } { }$

\#eathkit

COMMUNICATIONS RECEIVER KIT

MODEL AR.2

Here is the new receiver kit you have repeatedly asked for the Heathkit Communications Receiver. The perfect companion piece for the AT-1 Transmitter kit. Many outstandingly desirable features have been incorporated in the design of the AR-2; such . 15 , electrical bandspread for logging and tuning convenience - high gain ininiature tubes - If transformers for high sensitivity and good signal to noise ratio separate RF gain control with optional automatic volume control or manual volume control, in mdition to the conventional audio gain control. Noise limiter - stand-by switch - stable BFOO oscillator circuit -headphone jack - transformer operation, etc., all contribute to a high performance standird
Frequency coverage is continuous from 535 kc to 35 mc in four ranges. For added convenience, various ham bands have been separately identified in respect to their relative placenent on the slide rule tuning scale. A chassis mounted, 5!?" PM speaker is included with this kit. Tube line up $12 \mathrm{BE} G$ mixer nasillator, 12 BA 6 IF amplificr, 12 AVG detector AVC audio, 12 BAG BFO oscillator, 12 AG beam power ourput, tector AVC audio, $12 B A G$ BFO oscillator, $12 A G$
SY $3 G T$ rectificr. RECEIVER CABINET
Proxplin impregnated, fabric covered, plywood cabinct with aluminum panel designed expressly for the AR-2 Receiver. Part 91-10, shipping

Heathkit ANTENNA IMPEDANCE METER

t'se the Heathkit Antenna Impedance Meter for measuring antenna impedance for line matching purposes - adjustment of beam antennas-phone monrow, erc. march determine antenna resistance at tesonance, marth transmission line for minimum Sli. germanium diode, 100 micro. gernanium diode, 100 micro.
ampere Simpson meter. Dial ampere Simpson meter. Dial
caltrated from 0.500 ohms. Shiclded aluminum cabiner. \vec{y}^{\prime} long $\times 22_{2}$ wide $\times 3!+\prime$ decp.

SHIP. WT, 3 LBS.

IMPROVED Feathkit

 GRID DIP METER KIT \$1950.MODEL GD.IB The invaluable instrument for service men. hams, and experimenters. Useful in TV service work for alignment of traps. filters, IF stuges, peaking compensation networks, cit. Locates spurious oscillation. provides if for neurndization of power in transmiter stages. use it for neutralization, locating parasitics, correcting TVI, mersuring C, L, and Q of compo. nents, and determining RIF circuit resonant frequencies, Wirh oscillator energized. useful for finding resonant frequency of tuned circuits W 'ith the oscillator not energized, the instrument acts as an absorption wave meter. Variable meter sensitivity control, head phone jack, 500 microampere Simpson meter. Continuous frequency coverage from 2 mc to 250 mc . Ere-wound coil kit and rack, new three prong coil mount. ing. GAFA high frequency trionde.

Two additional plug-in coils are available and provide continuous extension of how frequency coverage down to 355 kc . Didl correlation cutves included Shipping weight 1 b., kit $341, \$ 3.00$.

HEATH COMPANY•Benton Harbor 26, Mich.

снесктнеse 马eatures
\checkmark First papular priced Q Meter
\checkmark Reads Q directly an calibrated scale
\checkmark Osciliatar supplies RF frequencies of 150 kc ta 18 mc
\checkmark Calibrate capacitar with range of 40 mmf ta 450 mmf with vernier of $\pm 3 \mathrm{mmf}$
\checkmark Measures 0 af candensers, $R F$ resistance, and distributed capacity of cails
\checkmark Many applicatians in design and develapment wark
\checkmark Useful in TV service wark far check ing defectian yakes, cails, chakes, etc.

Another outstanding example of successful Heathkit enginecring eftort in producing a Mctur Kit within the prite range of TV service men, shaoks. faboratories, and experimenters. This Q Aleter meers RF design requiremenes tor rapid. sceurate measurement of capouey, inductance. and Q,to the operating frequeney and alt indications of walue can be tead directly on the metere calabrated seales. Oscillater section supplies RFF fre-
culuencics of 150 be to 18 mc . Calibrate capacior with range of 111 mmt to .150 mmf , with vernier of $\pm 3 \mathrm{mmf}$ fartiularly usctul in TV service work for checking peaking coiks, wave traps shokes. deffection coils, width and lincarity coils, etc. At this low kit price rescarcha laboratory facilities are within the range of service shops, schools, and experimenters.

Feathkit INTERMODULATION ANALYZER KIT

The fleathkit la-l is an extemely versatile instrument specifically designed

 for mosuring the aceree of inter-action berween two signals in any portion of an audio chain. It is prinurily intended for making test of audio amplifiers, but anay be used in other applications, such us checking microphones, records, recording equipment phonogr ph pick-ups. and lond-speakers. High and low test frecuency sounce, imermadulation unit, power supply, and AC vacuum tule volt metar all in one complete instrument. Per cent intermedulation is and 1 . I retion of dow to high trequency casily set up. With this instrument the pertormance level of present equipment. or newly developed equipment can be eassly and accuratedy checked. At this low price, you can now ennoy the bencties of inkermudulation aralysis for accurate audio interpretation.

\#eathkit AUDIO GENERATOR KIT

\#eathkit AUDIO OSCILLATOR KIT

Sine er square wave coverage from 20 to $20,60$.$) cycles in three ranges at a control.$ hable output level up to 10 voles. Low distortion, 1% precisior resistors in multiphicr tircuits, high level ourput across env tire frequency range, exc., rentily qualifs this instrument for audio experimentation and development warti. Special circuit design consideration farures thermistor op cration for good conerol of linearitg.

Feathkit

 SQUARE WAVE GENERATOR KIT

HEATH COMPANY - Benton Harbor 26, Mich.

CHECK THESE

NEW
 Features

- Plays all record sizes, all speeds
- Newly developed ceramic cartridge

Automatic shut-off for both changer and amplifier

- Acoustically correct cabinet enclosure
\checkmark Modern attractive styling
Two 6" PM matched speakers
Wompensated volume control
Easy to assemble

An entirely new introduction to quality record peproduction, a simple to operate. compact, table tep model wirt nonce of the specinlized custom installation problems usually associated with high fideliey systems. Two matelned, synchronized speakers monnted in in acoustically correct enclosure reproducic all of the music on the record Musical reproduction with the unigue sensation of beine sursenulded by a hale of glorious sumad. This spectacular characterisuic is Fossible only becousc of the diffused nom ditectionnal properctien of the mathed dual speukers. The He.athkie Du, Dt m, mese listening to thre recorted music athrilling new experience through naturally clar, life-like reproduction of seund at all levels throughour the tonat spyem. The performance level is wasty superier to that of the ordinary phonograph or conselve selling for many, mane times the price of the I) uall.
Record Changer phitys ill sizes-all speceds-automatic shut off for changer and ampliter after the lust record is mayeal. A wide tonal

Fathe ceramac cartrage features an ingenjeus turn-unde :win sap. phire sthlus for tip or 8 recorts without turning the carridge. Simplifed. casy to assemble. four tule amplitier teatures compensated wolune comerol and separame wone control. Proxw in impereg. nated fubric covered cabiner supplied complerely arsenbled. Y'ou build only the amplitier from step by step constructers. No speciat iacel tronds or knowledge required as full recognition has hec pecial. (1) the fute that many purchasers of this his enjioy fend hen puiven production oll at purcly nometecthticall has's, and rhe consiruction manual has been simplifiged to the paint where evon dive complete nowise can successfully construce the Heathki: Dual. The price of the Heathkit Dual includes cahinet. ——Reord Changer, two (6)" PM speakers. tuhes, and atl cirsuit component required for amblifier construction.

HEATH COMPANY - Benton Harbor 26, Mich.

HEATH COMPANY•Benton Harbor 26, Mich.

Two Gates 10,000 watt transmitters installed at Press Wireless, Inc. Hicksville, -. I., N. Y., one of the world's foremost companies in international communicctions.

When it comes to handling reams of press copy, commercial messages and facsimile on an around the clock basis-more and more, engineers are agreed that the rugged, straightforward, easy to service and depend able Gates high powered transmitters are the answer.

Date line-Bangkok, Thailand, Egypt, Norway, Dakar, Alaska, San Salvador, Korea, New York, or you name it - the best guess is - copy via Gates-made international siort wave transmitters. Any Gates office will glady participate in your planning. Overseas customers will also find a Gates representative close at hand.

GATES

GATES RADIO COMPANY

Manufacturine Engineers Since 1922
QUINCY, ILLINOIS . . U.S.A

INTERNATIONAL-13 Eant 40ih St., New York City (Cahle ... ARLAB)

```
51 Eant 42nd St.
New York City
Warner Bldg.
Washington, D.C.
2700 lolk Avenue
Houston, Tesas
```

7501 Sunset Rlvd. tos Angeles, Calif.

13th \& Spring Sts. Atlanta, Georgia

Canadian Marconi Co.
Montreal. Canala

VIKING II TRANSMITTER KIT

VIKING VFO KIT

MATCHBOX ANTENNA COUPLER

LOW PASS FILTER

SIGNAL SENTRY
S.W.R. BRIDGE

WASECA

MINNESOTA

6 BAND VIKING MOBILE TR ANSMITTER

Power packed mobile kit designed especially for advanced amateurs who demand peak serformance. Rated at 60 watts maximum PA input, the Viking Mobile Transmitter feapures instant bandswitching ($75,40,20,15,11$, and 10 meters) and gang*tuning for maximum operating convenience. 100% AM modulation engineered for communications audio pass band. Adjustable, single control coupling system simplifies loading. Ganged coupling circuits for each band are pre-funed for efficient antenna matching. Separale PA trimmer permits unusually large frequency excursions without antenna lading cail adjustments. RF section, 6BH6 oscillator, 6AO5 buffer doubler and 807 power amplifier. Powerful PP 807 modulator, operates well within ratings and is designed for extra audio punch necessary for solid mobile communications. 6 BH 6 speech amplifier and 6 BH 6 driver has sufficient gain for either high impedence or carbon microphone.
Unique RF bias system protects RF fubes and modulators and eliminates power-wasting cathode resistor bias. Special "Tune, Receive, Transmit" switch enables "non-swish" VFO tuning and receiver muting. Other controls: Audio Gain, PA Exitation, Meter Switch, Crystal selector and filament On-Off
Unit may be wired for either δ or 12 volts. Designed for maximum efficiency using power supplies delivering 300 volis (30 watts PA input) to 000 volts (60 watts PA input) at 200 MA, the Viking Mobile is furnished in kit form with all parts, punched chassis, hardware and connectors. Step by step instructions completely illustrated for simplified assembly by the experienced amateur. Complete control wiring specifications and antenna suggestions included. Dimensions $6^{7} 10^{\circ} \times 7$ his " $\times 10^{5} 16^{\prime \prime}$. Weight 16 lbs. Less tubes, crystals, microphone and power supply.
Cat. No.
Amateur Net
$\mathbf{9 4 0 . 1 4 1}$ Viking Mobile Tronsmitter Kit
240-141 Vikina Mobile Tronsmitter Kit
$\$ 99.50$

VIKING MOBILE VFO

A diminutive voriable frequency oscillator desioned specifically for mobile use, the Viking Mobile VFO measures only $4^{\prime \prime} \times 4 \frac{1}{1}$ " $x 5^{\text {" }}$. Double bearing ceramic insulated funing capacitor...ceramic air dielectric trimmers . . . ceramic switches . . ceramic coil form and heavy aluminum cabinet minimize freauency shift due to road shock and vibration. Splat colpitts oscillator, compensated for an extremely wide range of ambient tempera. tures, is voltage regulated. Separate amplifier-multiplier stage, operating essentially class A, provides isolation for constant oscillator looding.
Edge lighted lucite dial with vernier tuning designed for maximum visibility and accurate reset; VFO is calibroted for $75,40,20,15,11$ and 10 meter bands. Oupput 3.5 to 4 mc for 75 meter band and 7.05 to 7.45 for $40,20,15$ and 10.10 .5 mc . output also available for straight doubling to 15 meters. Tube lineup, 6 BH 6 oscillator, 6 BH 6 buffer-multiplier and OA2 regulator. Adequate output will drive any straight pentode crystal stage Cables and connectors for use with Viking Mabile supplied; easily adapied for use with virtually any mobile transmitter. Complete kit includes all parts, hardware and assembly and operating instructions. Weight approximately 3 lbs.
Cat No.
Amateur Ne
$\mathbf{\$ 4 0 . 1 5 9}$ Viking Mobile `'FO Kit, less tubes.
$\$ 89.45$
44.95
240-152-2 Viking Mobile VFO wired and lested, less iubes

"JOHNSON BI-NET"

Sully Automatic
Dual Band Antenna Resonator
Patents Pending
Dual mobile antenna loading network for 10 and 20 meters. Mounts in center of standard mobile whip antenna for completely automatic band change while in motion. No relays or mechanical control required. Consists of two adjustable silver plated inductors and ceramic insulated fixed capacitor enclosed in a streamlined plastic housino. $3 / \mathrm{s}^{\prime \prime} \times 24$ female threac's for antenna mounting. Size, $4^{7} /$ is $^{\prime \prime}$ high, $5^{3 / 1 s^{\prime}}$ lona, $23 / 8^{\prime \prime}$ wide. Weight, 1402.

Cat No
250.29.
Amateur Ne
$\$ 10.95$

DYNAMOTOR POWER SUPPLIES

Supplies plate voltages far all stages of JOHNSON VIKING MOBILE and VFO; PA input approximately 50 watts. Base contains cantactor, fuses, filter and 50 watt adjustable dropping resistor. Supplied with connectors for Viking Mobile. Completely wired and assembled. Dimensions $6!6^{\prime \prime} \times 71 / 4^{\prime \prime} \times 71 / 8^{\prime \prime}$. Rated 500 volts, 200 ma. intermittent Weight $13^{3 / 4}$ lbs.
Cat. No.
Amateur Ne
839-102 Dynamotor Power Supply 6 voli primary.
$\$ 89.50$
\$39-104 Dynamotor Power Supply 12 voli primary.
92.50

DYNAMOTOR BASE KITS

Complete kit with all parts as above less dynamotor. Supplied with receptacles and pluas for Viking Mobile power and control cables.
Cat. No.
Amateur Ne
239-101 6 volt base kit.
$\$ 16.50$
939.103 12 volt base ki
17.40

IMPROVED ROTOMATIC ANTENNA ROTATOR

Designed for rigorous service, the Johnson Rotomatic Rotator supports beam antennas weighing un to 175 pounds even under heavy icing conditions or high wind loading Rotales $1^{1 / 4}$ RPM fult 360° either direction-over-all gear reduction, 1200 to 1 Heavily chrome plated RF slip rings provide smooth, noise free operation and low contact resistance. Auxiliary slip rings provided for antenna switching relay contral. Rotator housing is cast aluminum; with '解steel rotating table. Unit hinged to tifl 90° for antenna adjustments; can be rotated in tilted position. Complete assembly includes at tractive desk top controt box with selsyn indicatar. AIlmuth bearings continuously presented on illuminoted dial. Controls include reversible ratation switch, power switch, and antenna relay switch. Weight 76 pounds.

ROTOMAIIC ROTATOR AND DIRECTION INDICATOR

BI-NET ANTENNA RESONATOR

224 SECOND AVENUE SOUTHWEST

SPEED-X KEYS, PRACTICE SETS, BUZZERS

Standard Semi-Automatic Keys

Improved model, heavy sleel base, rubber eet. Chrome plated vibrator and hardware. Ten adjustments, lowest and highest speeds. Cirtuit closing switch. Adjustable paddles.
$114-5001 / 8^{\circ}$, contacts; black wrinkle. $\$ 13.50$ $114.5011 /{ }^{10}$ contacts, polished chrome. 19.20 114.501L Lefthanded. 21.00

New Special Semi-Automatic Key

Combines best features of former amateur and professional models. Heavy cast metal base, $614^{\circ} \times 3^{\circ} \times 1 / 2$, finished in black wrinkle enamel. Vibrator same as on deluxe key easy action and speed adiustment from lowes to highest speeds. Hardware and vibrator heavily chrome plated. $1 / \mathrm{K}^{\circ}$. coin silver con. tacts. Lock nuts. Rubber mounting feet. Circuit tacts. Lork nuts.
closing 5 witch.
114-520 Sp. Model, Semi-Automatic. . $\$ 11.50$

Heavy Duty Keys

Chrome plated key arm. $1 / 4^{\circ}$ coin silver contacts. Navy knob.
114.320 Black wrinkle enomel bose.. $\$ 3.60$ 114-321 Polished chrome plated base $\quad 5.10$

Standard Keys

High quality, low cost. Provision for plug. ging in semi-automotic key. $1 / 8^{\circ}$ coin silver contacts.
114-310 Black wrinkle, less switch. . \$ 3.00 114-310S Black wrinkle, with switth. 3.25 114.311 Chrome plared, less switch. $\quad 4.90$ 114-311S Chrome ploted, with switch $\quad 5.15$ 114-316 Brass wrinkle, less switch.... 3.00

Molded Base Keys

Black phenolic bose. $1 / 8^{\circ}$ coin silver contacts. Metal ports nickel plated.
114-301 Less 5 witch.
$\$ 1.95$

Practice Keys

For beginners. $1 / 8^{"}$ coin silver contacts. 114-300 Maldedbrownphenolicbase. \$1.85

Practice Set

Constant frequency buzzer \& key mounted on $4^{\prime} \times 6^{\prime \prime}$ phenolic base.
114-450 Code practice set.
$\$ 3.95$

Constant Frequency Buzzer

Fully adjustable, holds frequency. Uses 2 dry cells or "C" battery.
114-400 Constantírequencybuzzer. $\quad \$ 1.50$

Telegraph Sounder

Formeriy manufactured by the Signal Electric Company, Menominee, Michigan, this improved telegraph sounder is designed for instant response. Brass sounder gives clear resonont tone-steel bar frome with black enamel finish. Bross bridge and adjustment serews, with instrument lacauer finish-block lacquered steel sounder plate. Instrument mounted on mahogany finished wood base, mounted on mahogany finished woad
Net weight 2 lbs ., shipping weight 3 lbs .
114-112 Signal No. 112-S (4 ohms resistance) 114-113 Signol No. 113 -S (20 ohms resistance)

Telegraph Key M100

Another outstanding signal key, now monufactured by E. F. Johnson, this professional relegrapher's key is equipped with circuit closing switch. Base, binding posts ond switch lever are brass with instrument lacauer finish. Polished nickel plated key lever. Platinor confacts $.072^{\circ}$ diameter. Net Weight 1 lb .
114-100-3 Signal No. M-100

HI-Q AIR WOUND HAM INDUCTORS

Swinging link inductors for amoteur bands 160 thru 6 meters; 150, 500 and 1000 watt sizes. Two inductance values for each band permit choice of oppropriate L / C rotio dictated by amplifier plate voltage and plate cuprent. Polystrene insulation, Steatite bases and heavier wire sizes insure highest efficiency. HCS - Inductors match high voltage, low current tubes. LCS-Inductors match low voitage, high current tubes

Swinging Link Coils

1000 Wotr	Max.	Net	500 Walt		Net			
Type No.	Cap.*	Price	Type No.	Cop.*	Price	Type No.	$\begin{aligned} & \text { Max. } \\ & \text { Cap.* } \end{aligned}$	Price
	99	\$7.50	500HCS160	100	\$3.75	150HCS160	102	\$3.30
1000 HCS80	146	7.50	500LCS160	148	3.75	150LCS160	151	3.30
1000LCS80	73	6.70	500LCS80	45	3.45	150HCS80	51	3.00
1000HCS40	24	6.05	500 HCS 40	97	3.45	$150 \mathrm{LS80}$	68	3.00
1000 LS 40	55	6.05	500 LCS 40	57	3.15	150HCS40	28	2.70
1000HCS20	19	5.55	500 HCS 90	5	3.15	150LCS40	57	2.70
1000LCS20	26	5.55	500LCS20	25	2.70	150 HCS 20	21	2.40
1000H/LCS1 4	19	5.90	500H/LCS14	37	2.70	$150 \mathrm{LCS20}$	32	2.40
1000H/LCS10	18	4.90	$500 \mathrm{H} /$ LCS 10	19	2.25	$150 \mathrm{H} / \mathrm{LCS} 14$	19	2.10
			$500 \mathrm{H} / \mathrm{LCS} 6$		2.10	150H/LCS10	19	1.95
			$500 \mathrm{H} /$ LCS6	18	2.10	150H/LCS6	16	1.95

*Maximum capacity required for resonance at the low frequency end of band.

Jack Bar Assemblies

| Watts |
| :--- | :--- |
| 150 |
| 150 JBS..................... Net Price |
| 90 |

500 500JBS $\$.90$
1000 1000JBS
1.80

Rotary Inductor
Type No. 229-201 (not illustrared) Variable pitch winding of No. 14 tinned copper wire. Maximum inductance 10 micrahenries. Form ond end plates Steatife, roller contact. Overall size: $21 / 2^{\prime \prime}$ wide $\times 41 / 2^{\prime \prime}$ long $\times 3^{\prime \prime}$ high. Net Price 8.85

Swinging Link Arm Assemblies 150/500SLA for 150/500 Woll Induciors. 1000SLA For 1000 Woil
"Plug-In" Swinging Links Type No.
150/500SL12

No. Turns Ne $150 / 500$ SL 5 150/500SL? 1000SL10 1000 SL 5 1000 SL?

FARADAY SHIELD

Cat. No. Description Net Price
$\mathbf{9 3 8 - 3 0 3} 150 / 500$ watt swinging link shield,
hood and lead assembly $\$ 8.60$
238-304 Same as above, for 1000 walts. $\mathbf{9 . 7 5}$

Cat. No.
Description
Ne1 Price
238-301 $105 / 500$ watt link shield only. 1.45 238-302 1000 watt link shield only... 1.60 Metallic plated screen on polystyrene discs.

CAPACITORS, INDUCTORS, SOCKETS, INSULATORS, PLUGS AND JACKS, KNOBS AND DIALS, AND PILOT LIGHTS

WASECA
 MINNESOTA

VARIABLE CAPACITORS
 Porlial Listing

This is a partial listing of the large JOHNSON line of quality capacitors. Several types are not shown, likewise many additianal sizes are available in most types. All types employ steatite not shown, likewise many additianal sitag is 100x final numerals in cataloy numbers (except Type N).-L" dimension is overall length less shalt extension.

TYPES C and D

Sturdy, rigid construction at low cost! Aluminum plates.051"thick, rounded edges. Panel space Type C, $5 \frac{1}{2}$ " wide $\times 53 / \mathrm{g}^{\prime \prime}$ high, Type D, $41 / 4^{*}$ wide and $4^{\prime \prime}$ high,

Type C-Single Section

TYPES E and F

Rugoed compact units for low and medium power transmitters. Aluminum plates .032 thick, rounded odoes. Stainless steel shafts. Panel space, Type E, $25 /$ / $^{\prime \prime}$ square, Type F, $21 /$ /r $^{\circ}$ square.

TYPE M MINIATURE

Smallest ever built, yet tops in performance. Ideal for VHF, miniafure test equipment, etc. Pane space $5 / \mathrm{B}^{\prime} \times 3 / 4^{\prime \prime}$. Air gap .017. Mounts in $1 / 4^{\prime \prime}$ hole.

Single Capacity			
Net			
Trpe No. Max. Min.	Price		
SM11	5.0	1.5	.95
$9 M 11$	8.7	1.8	1.00
$15 M 11$	14.9	2.3	1.15
20M11	19.6	2.7	1.30

	Differential		Net	Buttarily			
Type No.	Max.	Min.	Price	Type No.	Max	Min.	Price
6 MA11	5.0	1.5	1.40	$3 \mathrm{MB11}$	3.1	1.5	1.35
$9 \mathrm{MA11}$	8.7	1.8	1.55	$5 \mathrm{MB11}$	5.1	1.8	1.50
15 MA 11	14.2	2.3	1.75	$9 \mathrm{MB11}$	8.0	2.8	1.70
19MA11	19.6	2.7	2.00	$11 \mathrm{MB11}$	10.8	2.7	1.90

TYPE L

Ceramic soldered -no evelets or rivets to loosen. All brass, soldered construction. "Bright alloy" plated. Ideal for rough service. Panel space 13/8 square. Air gap .030". In addition to those
listed, also available in Differential types.

	Single End Plate			
Trpe No.	Max.	Min.	Plates	Price
10L15.	11	2.8	3	1.85
25 L15.	27	3.5	7	1.95
50L15.	51	4.6	13	2.15
75L15.	75	5.7	19	2.35

Single End Plate

100L15........ $99 \quad 6.8 \quad 21 \quad 3.60$

Dual Section

Cap. per Seci. No. Net Max. Min. Plates Price
Type No.
25LD15
50LD15
100LD15. $\begin{array}{llll}27 & 3.5 & 7 & 3.90\end{array}$ $\begin{array}{lllll}\text { 100LD15 } & 69 & 6.8 & 25 & 5.05\end{array}$

Butterily				
10LB15.	10.5	2.8	5	2.90
25LB15	26	4.3	12	9.50
50LB15	51	6.8	23	9.90

TYPE R CAPACITOR

JOHNSON version of a highly popular standardized capacitor widely used in compact portable and mobile equipment. End plates are of extra heavy nickel-plated brass, Steatite insulating bars. All soldered and riveted construction.

TYPE N

Small mounting space requirements, extremely high voltage rating and fine odjustment make these neulralizing copacitors ideal.

	Capacity		
Type No.	Mox.	Min	
N195 ...	11.0	1.1	
N250.	10.6	1.4	

$\begin{array}{llllll}\text { N250.......... } & 10.6 & 1.4 & .250 & 6.75\end{array}$
N375....

TYPE G

Extremely popular as neutralizing capacitors for mediumand lownowerstages. Also widelyused for grid and plote tuning at high frequencies.

Type N	Cop. per Sect.			Nef
	Max.	Min.	Spacing	- Price
$13 \mathrm{G45}$	13	4.7	.125	2.75
6G70.	5.7	3.5	.225"	3.00
$12 \mathrm{G70}$	12	6	. 2295°	3.50

\square

CAPACITORS, INDUCTORS, SOCKETS, INSULATORS, PLUGS AND JACKS, KNOBS AND DIALS, AND PILOT LIGHTS

WASECA

MINNESOTA

TUBE SOCKETS

Highost Quality Sockets for Every Application
Net Price
193-906 Industrial bayonet, Steatite, silver plated beryllium copper contacts. Base is 4 pin super iumbo. Iension springs in shell.
93.909 Med
123-209 Medium 4 pin bayanet, white alazed porcelain base, metal shelt, heavy phosphor bronze side wiping contacts. $2^{13} 3_{6}$ " Dia.
123-8095B Same as 209 but with Steotite base and beryllium copper contacts.
123-210 Same as 209 except confoct to shell spocing not as great. $2^{1}{ }_{2}{ }^{\circ}$ Dia.
123-211 Standard 50 watt type. Similar to -209 but double filament contacts. $3^{3}{ }^{3 / 8}$ Dia
183-211SB Same as -211 but with Steatite base and beryllium copper contacts.
$184-812$ Steatite socket for RCA833 or 833A. $51 \%^{\circ}$ plate leads.
$183-216$ Giant 5 pin Bayonel. For tubes such as 803 , RK28. 3^{3} : Dia
$193-216 \mathrm{SB}$ Some as -216 bui with Steatite base and beryllium copper contacts
 filaments.
$124-215$ For 250 watt tubes such as $204 \mathrm{~A}, 849$, etc. The plate terminal has a solety cup which prevents accidental dislodgement.

Wafer Types

Steatile top and sides olazed. Brass contacts with steel springs cadmium plated
198 -937 Giant 7 pin Steatite waler. For transmitting tubes such as HK857 and RCA813. With ${ }^{3}$ " diam, ventilating hole in base.
192-247 7 pin Steatite for tubes such as 826 . Ftched aluminum shield.
192-944 4 pin Steatite. Super jumbo bose tubes such as 8008
22-244 4 pin Searie. Super wh bosetd
192-101 7 pin Steatite wafer with shield, retainer springs and provision for mounting button mica by-pass capacitors. Desiuned for VHF use with fubes such as 839
199-975 Giant 5 pin Steatite water sockel for 4-125A, RK48 tubes. Ventilation holes in 1.31
199.9177 Nol Price
199.8177 pin small. $\quad \$ 59 \quad 182.9255 \mathrm{pin}$ $129-9244$ pin........... 39 192-926 6 pin.

Net Price
$\$.48$ 128-897 7 pinmedium
Not Price

Miniature Sockets

180-967 all ceramic, 7 pin $120-877 \mathrm{~B}$ with shield base, 7 pin

JAN Miniature Sockets

Top mounting, saddle type sockets per JAN spec. S-28A
$180-1777$ Pin.
120-199 9 Pin
$\$.33$

Miniature Shields For Sockel

133-278-6 $1^{3}{ }^{3}$ "High, N.P. Brass. 177,277. \$. 15 133-978-7 133° High, N.P. Brass. 177,277. . 19 133-978-8 $21 / 4^{*}$ "High, N.P. Brass. 177,277. . 92 133-278-9 $11 / 2^{\circ}$ High, N.P. Brass. 199. . 22 133-278-10 $1{ }^{13} / /_{0}{ }^{\circ}$ High, N.P. Brass. . 199. . 24 79 133-278-11 $2 \frac{1}{6} 6^{\circ}$ High, N.P. Brass. ...199. . 29

PLUGS AND JACKS

Banana Spring Type

Accurately furned from brass, with milled nuts and tinned terminals. Nickel plated Nickel-silver springs. Beryllium copper springs and other platinus available in production quantities. Low contact resistance, high current capacity.
-75 series plugs fit - 74 series jacks, $\mathbf{- 7 7}$ series plugs fit -76 iack. -7451 and -7452 hove molded phenolic heads.

JACKS	
	NelPrice
108-74 1/4-28 $\times 17 / 8$ thread.	\$.10
108.7451 $1 / 628 \times 1 / 2$ thread, red.	20
108-7459 $1 / 4.28 \times 1 / 2$ thread, black 20
108.76 ${ }^{3} 8-24 \times 15$ to thread	. 26
PLUGS	
108.75 6-32 \times 3/8 thread.	. 11
108-75A 6-32 $\times{ }^{3}{ }_{4}$ thread.	. 18
108-75BB ${ }^{3} \times 1{ }^{3} 8$ handle, black	. 28
108-75BR 3/8 $\times 13 / 4$ handle, red.	. 28
108-75C 6-32 \times 5/6 screw.	. 11
108.77 10-32 $\times 5 / 8$ thread.	. 24
108-77A $10-32 \times 3 / 4$ screw.	. 27
108.77BB 5/8 $\times 13 / 4$ handle, black	. 39
08-77BR 5/8 $\times 13 / 6$ hon	39

Tip Jacks and Plugs

PLASTIC HEAD TIP JACKS

Attractively colored strong Plaskon heads, accurately threaded $1 / 4.32$ with milled hex nut and insulating washers for $3 / 6$ hole.
Cot.Na. Color Net Price
 $\$.14$
 150-592. 105-594. 105-520. 105-527. 105 -598. 105.530 Ivory.

Molded Tip Jacks

Heavy duty type. Nickel plated brass, body molded into phenolic head k^{-40} thread, and insulating washers for "/8 hole No. 105-418... Red.
$\$.98$ No. 105-419. Red.

All Metal Tip Jack

Nickel plated brass, '10 hex head 3/4-32 thread, with insulating washers for $5 / 8$ hole. 105-1 similar but headless, no nut or washers, far mounting in $1 / 6-32$ tapped panel hole. No. 105-41.7... \$.14 No. 105-1..... \$. 10

Solderless Tip Plugs
No. 105-15 ${ }^{13} 16$ prono.
$\$.16$
No. 105-415 is prong
.15

NYLON TIP JACKS

Patents Pending

Completely insulated jack, body molded from low-loss Nylon. Threaded $1 / 4-32$, jack mounts with single nut. Overall dimensions; diameter $3 / 夕^{\prime \prime}$, length 290°. Available with beryllium copper contacts. B.C. Cont.

Cat. No. 105-609-1 105-603-1 105-604-1 105-605-1
Color NetPrice

B.C. Cont

Colar
Net Price Cat. No.

105-606-1

 105-607-1 105-608-1 105-609-1 105-610-1

ALLIED

your complefe supply source for

amateur station equipment

$\xrightarrow{\sim}$ industrial electronic supplies

EVERYTHING IN STOCK FOR IMMEDIATE DELIVERY

Depend on allied-your one reliable source of supply-to bring you all the products of each of the dependable manufacturers represented in the Handbook. We carry the most complete stocks of Amateur station supplies-and, of course, we can supply all the components you'll need to build any circuit described in this or in any other publication.

You can always depend on allied to give you every buying advantage: money-
saving values, complete lines of top-grade equipment, fast shipment from stock, easiest terms, unbeatable trade-ins, and 15 -day trial on communications receivers. Have all these buying advantages, plus friendly day-in, day-out help from our staff of old-time Hams.

Whether you're buying electronic equipment for your station or for your work in industry, it pays to be "equipped by allied."

268-Page ALLIED Buying Guide

Write for your FREE copy. It's your complefe guide not only to all of the station supplies you want, but to everything in industrial electronic equipment, special tubes, test instruments, recording and high fidelity audio equipment, parts com-ponents-all mithe lowest, money- soving pricus. Get and use the ALLIED Catalog.

KEEP IT HANDY

100 N. Western Ave.
Chicago 80, Illinois

ALIIED

your complete supply source for

AMATEUR \& INDUSTRIAL TUBES

allied maintains in constant stock for immediate shipment the largest distributor inventory of rCA special-purpose tubes for Amateur, industrial, broadcast, governmental and other uses. Phone, wire or write-we ship from stock to you within hours after we receive your order. Save time, effort and money-order all your rca tubes from allied-your complete and dependable electronic supply source.

AMATEUR \& INDUSTRIAL TUBES TEST INSTRUMENTS \& PARTS

RCA TEST INSTRUMENTS
Order your rca lab measurement instruments from our extensive stock. We can supply promptly all rCA test apparatus, including the following:
WO-88A 5" Oscilloscope........ $\$ 159.50$
WR-89A Marker Generator................... . . 242.50
WR-59C TV Sweep Generator............... . . 274.50
WR-49A RF Signal Generator................. 59.50
WV-77A Junior Voll Ohmyst*. 47.50
WV-97A Senior Volt Ohmyst** 67.50
WV-87A Master Volt Ohmyst*................ 112.50
*T.M. Reg. Prices subject to change

We are also leading suppliers of RCA parts, TV components, speakers and batteries. Simplify and speed your purchases-send us your orders for all RCA equipment-get quick, expert shipment from our complete stocks of Amateur and Industrial equipment.

268-Page ALLIED Buying Guide

> Write for your FREE copy. If's your complete guide not only to oll of the station supplies you want, but to everything in industrial electronic equipment, speciol tubes, test instruments, recording and high fidelity audio equipment, parts com. ponenis-all of the lowest, money-soving prices. Get and use the ALLIED Cotalog.

KEEP IT HANDY

ALLIED RADIO

100 N. Western Ave. Chicago 80, Illinois

hallicratters

HT-20 Iransmitter $\$ 449.50$
Order your hallicrafters Communications Receivers and Transmitters from allied. For detailed descriptions, see our Catalog. When you select your hallicrafters at allied, you get every buying ad-vantage-complete selection-quick delivery from stock-easiest terms -15-day trial-expert, dependable service from our staff of experienced Amateurs. Choose hallicrafters -world-famous for precision communications performance-and order your hallicrafters from Allied.

We can supply all Hallicrofters "Lifllefone" equipment, as well as High Fidelity sompaneats...

268-Page ALILD Buying Guide

Write for your FREE copy. It's your complete guide to everything in Amateur and Industrial electronic supplies. Lists everything you needincludes full selection of equipment described above. Be sure to get and use your 268-page ALLIED Catalog.

SX-88 Receiver
$\$ 499.95$

ALL HALLICRAFTERS MODELS IM STOCK FOR IMMEDIATE SHIPMENT...

Look to Allied for quick, expert service from stock on all hallicrafters equipment. We can supply all of the following models from our complete stocks:

Prices subject to change

KEEPIT HANDY
ALLIED RADIO
100 N. Western Ave.
Chicago 80, Illinois

your complete supply source for

AMATEUR \& INDUSTRIAL "Sealed-in-Steel" TRANSFORMERS

WORLD'S TOUGHEST TRANSFORMERS

IN STOCK FOR IMMEDIATE SHIPMENT

We supply the complete line of famous Chicago "Sealed-in-Steel" Transformers-units designed to fit today's amateur circuits . . . units to meet all miL-T-27 specifications for military requirements-units for a wide range of industrial applications. Whatever your transformer needs, there's nothing tougher, nothing truer-to-ratings, nothing better than Chicago "Sealed-in-Steel" units. We have them in stock for immediate shipment. Order from your allied Catalog for prompt, expert delivery on all types.

268 -Page ALLIED Buying Guide

Write for your FREE copy. It's your complete guide to everything in Amateur and Industrial electronic supplies. Lists everything you needincludes full selection of equipment described above. Be sure to get and use your 268-page ALLIED Catalog.

KEEP IT HANDY.

ALLIED RADIO

100 N. Western Ave. Chicago 80, Illinois

ALL TYPES IN STOCK

 FOR IMMEDIATE SHIPMENTSubminiatures
Reliable Subminiatures
Reliable Miniatures
Rugged
Crystal Diodes
Transistors
Radiation Counter
Rectifiers
Thyrafrons
Voltage Reg.
X-mitting
Magnetrons
Klystrons

Look to allied for quick shipment from stock of all types of Raytheon specialpurpose electron tubes. We specialize in supplying raytheon tubes for Amateur, industrial, broadcast, research and other applications. To save time and moneyphone, wire or write us-and we'll have your raytheon tubes on the way to you in just hours. Order your raytheon spe-cial-purpose tubes-fill all your electronic needs at Allied - the one complete supply source on which you can always depend for quick, expert service.

268-Page ALIIED Buying Guide

Write for your FREE copy. If's your complete guide to everything in Amateur and Industrial electronic supplies. Lists everything you needincludes full selection of equipment described above. Be sure to get and use your 268-page ALLIED Catalog.

KEEP IT HANDY

ALLIED RADLO
100 N. Western Ave.
Chicago 80, Illinois

your complete supply source for

 HARVEY-WELLS \#/w

 HARVEY-WELLS \#/w}

Order your HARVEY-WELLS equipment from ALLIED. Get quick, expert shipment straight from stock. And toke advantage of our eosiest-pay terms and 15-day trial offer.

268 -Page ALLIED Buying Guide

Write for your FREE copy. It's your complete guide to everything in Amoteur and Industrial electronic supplies. Lists everything you needincludes full selection of equipment described above. Be sure to get and use your 268-page ALIIED Cotolog.

COMPACT, LOW-PRICED tRANSMITTERS

Fig. A. Bandmaster Deluxe. A complete 50 -watt phone-CW transmitter with instant bandswitching 80 through 2 meters (8 bands). Includes new crystal-oscillator-vfo switching circuit. Tubes: 6AQ5 osc., 6AQ5 mult., 807 final. Speech amplifier for crystal mike uses 2-6AU6, 1-12AU7 phase inv., 2-6L6 mod. Requires APS-50 or DPS-50 power supply below. Size, $8 \times 12 \times 8^{\prime \prime}$. Complete with tubes, less crystal and mike. Shpg. wt., 20 lbs . 97 SX 792. Bandmaster DeLuxe Transmitter. $\$ 137.50$
Bandmaster Senior Transmitter. 50 -watt phone-CW as above, but for use with single-but ton carbon microphone. Shpg. wt. 20 lbs . 97 5x 791. Bandmaster Senior Transmitter............... $\$ 111.50$
Fig. B. Bandmaster VfO. Covers $80 / 75.40,20,15,11 / 10$ meters. Requires: 6.3 v at $0.65 \mathrm{amp} ., 300 \mathrm{v}$. at 30 ma . Sloping front panel; slide-rule dial. Uses 6AG7 and OB2 reg. $9 \times 111 / 2 \times 4^{\prime \prime}$. Wt., 9 lbs. $985 \times$ 043. Bandmaster VFO . $\$ 47.50$
APS-50 AC Power Pack. For use with above transmitters. Delivers 425 v . at 275 ma ., and 6.3 v . at 4 amps. With $2-5 \mathrm{U} 4 \mathrm{G}$ rect. For 110 v. A.C. $50-60$ cyeles. $11 \times 67 / 8 \times 83 / 4^{\prime \prime}$. Shpg. wt., 27 lbs. 97 SX 698. APS-50 AC Power Pack $\$ 39.50$
DPS-50-6 Dynomotor. For portable operation of above x-mitters, from 6 volt storage battery. Output: 300 v . at 250 ma . $101 / 8 \times 51 / 4$ $\times 57 / 8^{\prime \prime}$. Shpg. wt., 16 lbs.
97 S 697. DPS-50-6 Dynamotor.
. $\$ 87.50$
DP5-50-12 Dynomotor. For use with any 12 volt storage battery. Delivers 400 v . DC at 250 ma. Shpg. wt., 16 lbs.
98 SX 776. DPS-50-12 Dynamotor.
.$\$ 54.50$

Prices subject to change

KEEP IT HANDY

ALLIED RADIO
100 N. Western Ave. Chicago 80, llinois

DE LUXE RELAY RACKS

These relay racks are made of 16 gauge steel with皮" panel supports. The panel mounting supports are recessed so that no edges of the panel will be exposed.

The front and back of the top, the two sides and the door are well louvered to provide adequate ventilation. Snap catches are positioned on the door. A streamlined appearance is achieved by the use of rounded corners and red-lined chrome trim. The relay rack is shipped knocked down and complete with all necessary hardware for assembly. All standard 19" panels will fit these racks.
A SPECIAL FEATURE IS THE USE OF FOUR STURDY SUPPORTS ON THE BOTTOM SO THAT CASTERS CAN BE FASTENED DIRECTLY TOTHE BASE, THERE BY ACHIEVING READY MOBILITY. Bud RC- 7756 casters will fit this unit. Casters are not included in price of cabinet. These relsy racks are supplied in either black or grey wrinkle or grey hammertone finish. The overall width is $22^{\prime \prime}$ and the depth is $171^{\prime \prime}$ on all sizes listed.

Catalog	Overall	Panel	Shipping
No.	Height	Space	Wt.
CR-1774	421/10"	363,4"	90 lbs .
CR-1771	$47^{\text {\% }} 1 \mathrm{~m}^{\prime \prime}$	$42^{\prime \prime}$	100 lbs .
CR-1772	$66^{3}{ }^{\prime \prime} 6^{\prime \prime \prime}$	$61^{\prime \prime \prime}$	135 lbs .
CR-1773	$82^{3} 16^{\prime \prime}$	$77^{\prime \prime}$	155 lbs.

ADD-a-RACK SERIES

It has always been necessary to buy special racks without louvers on one side to obtain a maximum of panel space with a minimum of floor space. Now, you no longer need to buy a whole new cabinet when you want additional panel space. Through our new and exclusive Add-a-Rack series, BUD not only offers additional racks at a lower cost, but adrovides you with a sturdier, better provides you wi
looking assembly.

The illustration at top shows two Add-a-Rack cabinets assembled together. The illustration below shows the unique and ingenious method of adding a unit to your present equipment. Instead of buying an entire new outfit, you purchase only four parts: (1) a door (2) a top (3) a bottom and (4) an Add-a-Rack couplingunit. The right (or left) hand side of your present relay rack is removed and replaced by the Add-a-Rack coupling-unit; next, a top and bottom is fastened into place, and the side taken from the first rack is fastened onto the second rack which has been added. first rack is fastened onto the second rack which has been added. properly and efficiently coupled together. In the same simple way, more racks can be added at any time and every one will be in a CONTINUOUS ONEPIECE assembly.
This series is available in two ways. (1) a double unit consisting of two racks and the Add-a-Rack coupling unit, (2) Add-a-Rack unit, consisting of a door, a tap, a bottom and an Add a. Rack coupling-unit. These unita are furnished with all necessary assembling and panel mounting
 hardwure. Choice of finish same as racks above.

Add-a-Rack	Used to	Shipping
Unit	Add-a-Rack to	Weight
AR-1778	CR-1774	70 lbs.
AR-1775	CR-1771	75 lbs
AR-1776	CR-1772	100 lbs.
AR-1777	CR-1773	127 lbs.

Complete unit consisting of the knocked-down parts necessary for two relay racks coupled together
CR-1779 two coupled relay racks same size as CR-1774
CR-1780 two coupled relay racks same size as CR-1771
CR-1786 two coupled relay racks same size as CR-1772
CR-1799 two coupled relay racks same size as CR-1773
Bud RC-7756 Casters will fit this unit. Casters are not included in price of cabinet.

SUPER DE LUXE RACKS (2 door)

This new Relay Rack is made of 16 gauge steel with $1 / \mathbf{g}^{\prime \prime}$ panel supports. The construction is similar to the series of Bud de luxe Relay Racks shown above. The panel mounting supports are recessed, so that no edges of the panel will be exposed, and they are also adjustable from front to back at various stopping points. This enables you to utilize the space in front and behind the panel to any degree. When placed as far back as the knockouts provide, the panel is $6^{\prime \prime}$ from the front of the Rack
These Racks have both front and rear doors; the rear door to cover any of the equipment behind the panel, providing easy access. The front door provides a means of concealing dials, knobs, etc., that may be in the front of the panel.

These relay racks also have the exclusive Bud feature of supports on the bottom, so that the casters may be fixed directly to the base. AVAILABLE IN BLACK OR GREY WRINKLE OR LIGHT GREY HAMMERTONE FINISH AT NO EXTRA CHARGE.
Catalog No.
CR-2174
CR-2171
CR-2172
CR-2173 82 ${ }^{\text {sí }}{ }^{\prime \prime \prime}$

Panel
Space
$368 /^{\prime \prime}$
$42^{\prime \prime}$
$611^{\prime \prime}$
$77^{\prime \prime}$

Shipping
Wt .
110 lbs.
122 lbs.
165 lbs.
190 lbs.

DE LUXE CABINET RACKS

These cabinet racks have rounded corners and attractive red-lined chrome trim. There is a recessed, hinged door on the top with a snap catch. These racks are made of heavy gauge steel and are of sturdy construction. The five large sizes have a hinged rear door, while the small sizes have a welded panel in the rear. Adequate ventilation is assured by mean of louvered sides and a two inch opening in the bottom of the back extends the entire width. "NO-SCRATCH" EXTENDED METAL FEET ARE EM BOSSED ON THE BOTTOM TO MINIMIZE MARRING OF A TABLE TOP. Racks are furnished in either black or grey wrinkle or grey hammertone finish. Depth $143 / 4^{\prime \prime}$, width $22^{\prime \prime}$. Will fit standard 19" panels.

Catalog	Overall	Panel	Shipping
No.	Height	Space	Wt.
CR-1741	$10^{\circ}{ }^{\text {\% }}$ " ${ }^{\prime \prime}$	$83 / 4{ }^{\prime \prime}$	29 lbs.
CR-1743	$12^{\text {¹ }} 16^{\prime \prime}$	$101{ }^{\prime \prime}$	31 lbs .
CR-1742	$14^{1 / 4 \prime \prime}$	12 M "	32 lbs .
CR-1739	$15^{1 / 316^{\prime \prime}}$	$14^{\prime \prime}$	36 lbs .
CR-1743	$19^{5} 1 \mathrm{lr}^{\prime \prime}$,	171/2"	40 lbs.
CR-1727	$22^{131180}{ }^{\prime \prime}$	$21^{\prime \prime}$	45 lbs .
CR-1744	$28^{3}{ }^{\text {fr,", }}$	$26^{1 / 17}$	50 lbs .
CR-1728	$33^{9,15 \prime \prime}$	$311{ }^{\prime \prime \prime}$	55 lbs .
CR-1745	$36^{1,31618}$	$35^{\prime \prime}$	60 lbs .

STANDARD RELAY RACK PANELS

Catalog	
No.	Height
PS-1250	$13 / 4{ }^{\prime \prime}$
PS-1251	$31 /{ }^{\prime \prime}$
PS-1252	$51 / 4$
PS-1253	$7^{\prime \prime}$
PS-1254	$83 / 4{ }^{\prime \prime}$
PS-1255	101/2"
PS. 1256	121/4"
PS-1257	$14^{\prime \prime}$
PS-1258	153/4"
PS-1259	$171 /{ }^{\prime \prime}$
PS-1260	191*"
PS-1261	$21^{\prime \prime}$

Made of Steel or Aluminum. Steel Panels are made of high grade steel /a" thick. Aluminum Panels are made of $1 / 6^{\prime \prime}$ thick Aluminum. All Panels are 19" wide. Furnished in either black or grey wrinkle or grey hammertone. Aluminum panels ${ }_{3}$, thick may be had if desired at 60% increase in cost over "/ ${ }^{\prime \prime}$ ".

ALUMINUM	
Catalog	
No.	Height
PA-1101	$11 / 4$ "
PA-1102	$31 /{ }^{\prime \prime}$
PA-1103	$51 / 4{ }^{\prime \prime}$
PA-1104	$7{ }^{\prime \prime}$
PA-1105	$83 / 411$
PA-1106	$101 /{ }^{\prime \prime}$
PA-1107	121 /1"
PA-1108	$14^{\prime \prime}$
PA-1109	153/4"
PA-1110	171/2"
PA-1111	191/4"
PA-1112	$21^{\prime \prime}$

STEEL CHASSIS BASES

These chassis are made from one piece of steel, all corners are reinforced and spot welded. The four sides are folded on bottom for additional strength - this also per mits a bottom plate to be attached if desired. Furnished in either Black Wrinkle or Electro-Zine plated.

Black Wrinkle	Zinc Plated				
Cat. No.	Cat. No.	Depth	Width	Height	Gauge
CBB-628	CB-629	$5^{\prime \prime \prime}$	$7^{\prime \prime \prime}$	$2^{\prime \prime \prime}$	22
CB-790	CB-1192	$7^{\prime \prime}$	$9^{\prime \prime}$	$2^{\prime \prime}$	22
CB-650	CB-774	$8^{\prime \prime}$	$17^{\prime \prime}$	$2^{\prime \prime}$	20
CB-636	CB-637	$10^{\prime \prime}$	$17^{\prime \prime}$	$3^{\prime \prime}$	20
CBB658	CB-771	$11^{\prime \prime}$	$17^{\prime \prime}$	$3^{\prime \prime}$	18
CB-660*	CB-773	$13^{\prime \prime}$	$17^{\prime \prime}$	$3^{\prime \prime}$	18
CB-642*	CB-643	$13^{\prime \prime}$	$17^{\prime \prime}$	$4^{\prime \prime}$	18

* Indicates chassis which are punched to accommodate Chassis Mounting Brackets.

For additional sizes consult Bud Catalog

ALUMINUM CHASSIS

The construction and design of these chassis is exactly the same as our steel chassis. The aluminum chassis are welded on government approved spot welders that are the same as used in the welding of aluminum airplane parts. As a result, you can depend on BUD Aluminum Chassis to do a perfect job. Etched Aluminum finish. The gauges in table below are aluminum gauges.

Cat. No.	Depth	Width	Height	Gauge
AC-430	$4^{\prime \prime}$	$6^{\prime \prime}$	$3^{\prime \prime}$	18
AC-402	$5^{\prime \prime}$	$7^{\prime \prime}$	$2^{\prime \prime \prime}$	18
AC-423	$7^{\prime \prime}$	$17^{\prime \prime}$	$3^{\prime \prime}$	16
AC-425	$8^{\prime \prime}$	$17^{\prime \prime}$	$2^{\prime \prime}$	16
AC-420	$13^{\prime \prime \prime}$	$17^{\prime \prime}$	$3^{\prime \prime}$	14
AC-426	$111^{\prime \prime}$	$17^{\prime \prime}$	$2^{\prime \prime}$	14
AC-416	$10^{\prime \prime}$	$17^{\prime \prime}$	16	
	For additional sizes consult Bud Catalog			

INSTRUMENT AND RECEIVER CABINETS

Each cabinet has an evenly recessed hinged cover with convenient finger lift. The panel on front of cabinet is readily attached with self-tapping screws. Louvers provide ample ventilation. These Cabinets are finished in black wrinkle only.

Height
Height
$7^{\prime \prime}$
$7^{\prime \prime}$
$7^{\prime \prime}$
$7^{\prime \prime}$
$8^{\prime \prime}$
$9^{\prime \prime}$
Width
$8^{\prime \prime}$
$10^{\prime \prime}$
$12^{\prime \prime}$
$14^{\prime \prime}$
$16^{\prime \prime}$
$15^{\prime \prime}$
Depth
$8^{\prime \prime}$
$8^{\prime \prime}$
$8^{\prime \prime}$
$8^{\prime \prime}$
$8^{\prime \prime}$
$11^{\prime \prime}$

METAL UTILITY CABINETS

A large number of sizes available makes this line useful for all types of electronic equipment. These cabinets have two removable panels for easy accessibility and are finished in black wrinkle finish only. Those units prefixed by CU are made from steel, those prefixed by $A U$ are made from high grade sheet aluminum.

Cat. No.	Depth	Width	Height
CU.883	2"	$4{ }^{\prime \prime}$	$4^{\prime \prime}$
CU-728	3"	5"'	$4^{\prime \prime}$
CU-729	4"	5 ${ }^{\prime \prime}$	$6^{\prime \prime}$
CU-1098	6"	$6^{\prime \prime}$	$6^{\prime \prime}$
CU-1099	5"	$6^{\prime \prime}$	$9^{\prime \prime}$
CU-879	7"	$8^{\prime \prime}$	$10^{\prime \prime}$
CU-1124	$6^{\prime \prime}$	$7^{\prime \prime}$	12",
CU-880	8"'	$10^{\prime \prime}$	$10^{\prime \prime}$
CU. 881	$8^{\prime \prime}$	11",	$12^{\prime \prime}$
CU-882	$7^{\prime \prime}$	9',	15"'
AU-1083	$2 \prime \prime$	$4^{\prime \prime}$	$4^{\prime \prime}$
AU-1028	3'"	$5{ }^{\prime \prime \prime}$	4"'
AU-1029	4"	5"	$6^{\prime \prime}$
AU-1039	$6{ }^{\prime \prime}$	$6^{\prime \prime}$	$6^{\prime \prime}$
AU-1040	5'	$6^{\prime \prime}$	$9^{\prime \prime}$

NEW BUD FILTERS TO REDUCE OR ELIMINATE TELEVISION INTERFERENCE

The sources of television interference are most often short wave broadcasting stations, amateur radio transmitting stations, diathermy equipment, X-ray equipment, automotive ignition noises or similar sources. The basic problem of eliminating this inter ference is that of rejection of the signals received from these sources.

LF-601
LOW PASS
FILTER

Interference to television receiver reception caused by transmissions from an amateur station can be caused by harmonics or by shock from the transmitter. The shock from the transmitter fundamental can be cured at the television receiver with a Bud HF-600 high pass filter. Harmonics can be greatly reduced or eliminated at the transmitter by use of a Bud LF-601 low pass filter.

The LF-601 high attenuation low pass filter has the following characteristics:

- Minimum attenuation of 85 decibels on all frequencies above 54 megacycles and a minimum of 93 decibels above 70 megacycles. - Maximum rejection is adjustable from 55 to 90 megacycles. This tunable feature provides two slots at least 100 decibels down. The cut-off frequency is 42 megacycles. The unit will easily handle a full kilowatt modulated on a reasonably fat line. The insertion loss is less than one DB. Since the design of this filter provides an adjustable feature, the unit can be used with either 52 ohm or 72 ohm coax - Each inductance is in an individually shielded compartment • All capacitors used are variable •Size $12^{\prime \prime} \times 21 / 2^{\prime \prime}$ $\times 21 / 4^{\prime \prime}$.

HF-600 HIGH PASS FILTER

The HF-600 high pass filter has a cut off frequency at 42 megacycles, thus this filter rejects signals from 0 to 42 megacycles. It is within this range that the majority of signals causing interference are received, Since there is no attenuation above 42 megacycles. picture strength or quality is not affected. This unit 1s easily installed and complete installation instructions are included. The filter is housed in an attractive aluminum case $31 / 4{ }^{\prime \prime}$ $\times 21 / 8^{\prime \prime} \times 11 / 8^{\prime \prime}$

NEW PANEL CHASSIS

This new series of Panel Mounting Chassis is for professional type installations primarily. These units are constructed from . 062 aluminum with an etched finish. The holes on the front flange are suitable for mounting to a Rack, and are dimensioned to fit standard panel notchings.

Cat. No.
CB-1370
$\stackrel{C B}{C B} 1371$
CB. 1372
CB-1373
CB-1374
CB-1375
CB-1376
CB-1377
Width
$19^{\prime \prime}$

MINIBOXES

There are thousands of uses in the fields of radio and electronics for these new boxes. They are made from heavy gauge aluminum. The design of the box permits installation of more components than would be possible in the conventionally designed box of the same size. It is ventionally designed box of the same size. It is
of two piece construction, each half forming three sides. The flange type construction assures adequate shielding Available in etched aluminum finish and gray hammerloid finish.

Catalog Numbers

Etched
CU-2105 CU-3000
CU-2108
CU-2111 CU-3005 CU-3008 CU-3011
CU-3015
Length
$23 / /^{\prime \prime}$
$5^{\prime \prime}$
$7^{\prime \prime}$
$12^{\prime \prime}$
$4^{\prime \prime}$
Width
$2^{1 / 8^{\prime \prime}}$
$4^{\prime \prime}$
$5^{\prime \prime}$
$7^{\prime \prime}$
$2^{\prime \prime}$

Height
$15 / /^{\prime \prime}$
$3^{\prime \prime}$
$3^{\prime \prime}$
$4^{\prime \prime}$
$23 / 4^{\prime \prime}$
For additional sizes consult Bud Catalog

TYPE DUAL MIDGET CONDENSERS These Midget Condensers were designed to meet the rigid requirements in design of efficient high fre quency electronic devices and precision laboratory equipment. The large front and rear bearings provide for smooth retation. They feature a retor wiping contact placed at center of the rotor assembly to assure maximum efficiency at high frequencies. Opposed rotor conatruction assures perfect counterbalance and provides even torque at any position of rotation. Steatite insulation eliminates closed inducticn loop in frame. All metal parts cadmium plated.

> PER SECTION

Catalog	Max.	Min.	No. of	Air	Distance Behind
Number	Cap.	Cap.	Plates	Gap,	Panel
CE-2032	35	6	7	$.030^{\prime \prime}$	$31 / 32^{\prime \prime \prime}$
CE-2033	50	7	9	$.030^{\prime \prime}$	$311^{\prime \prime}$
CE-2035	100	9	18	$.030^{\prime \prime}$	$43 / 32^{\prime \prime}$
CE-2036	150	10	27	$.030^{\prime \prime}$	$5316^{\prime \prime}$
CE-2041	50	8	15	$.060^{\prime \prime}$	$423 / 32^{\prime \prime}$
	For additional sizes consult Bud Catalog				

'CE"' MIDGET CONDENSERS

SINGLE SECTION DOUBLE BEARING

These Midget Condensers were designed to meet the rigid requirements in design of efficient high frequency electronic devices and precision laboratory equipment. Brass rotor and stator plate stacks are assembled into permanent units by long if electro-soldering, which assures End-plates of Steatite insulate the mounting bushings and angles from the rotor and stator assembles. The large front and rear bearings provide for smooth rotation. Special cadmium plated. Rotor noise-free tuning. All metal parts are cadmium plated. Rotor plates semi-circular shaped. Provision for
either panel or base mounting.

Catalog	Max. Cap.	Min. Cap.	Air	No. of	Over- all
Number	MMFD.	MMFD.	Gap,	Plates	
CE-2000	15	${ }^{\text {M }}$ -	.030"	Plates	Length $21 / 4$
CE-2001	35 50	6	.030'"	7	$23^{3} 3^{2}$
CE-2002	50 75	7	.030'1	9	$2^{77} 7^{72}$
CE-2004	75 100	8	.030"'	14	$3^{5} 517$
CE-2005	100 150	9 10	.030'"	18	$311^{\circ \prime \prime}$
CE-2008	300	15	.030"	27 52	$3^{13}{ }^{13} 5^{\prime \prime}{ }^{\prime \prime \prime}$
For additional sizes consult Bud Catalog					518

TINY MITE TUNING CONDENSER SINGLE SECTION

This series of condensers has been designed for applications where space or weight are limiting lactors and for tuning of high frequency circuits. Rigid construction, close fitting bearing positive rotor contact and Steatite insulation are the outstanding features. Cadmium plated, soldered, brass plates and rods insure high frequency efficiency.

	Max.	Min.		No.
Catalog	Cap.	Cap.	Air	No.
LC-1640	MMF_{8} (MMFD	Gap,	Plates
LC-1644	50	${ }_{6} .5$. $017{ }^{\text {01" }}$	3
LC-1646	100	9	. 017 ",	19
LC-1652*	50	8	.017'	37
LC-1654	15	5.5	.073"	35
LC-1655*	25	9	.073"	127

For additionals.

THREE-GANG TINY MITE CONDENSERS
Hams, Radio Constructors and Experimenters can find many uses for these compact, three-gang condensers. Designed particularly for high and receivers covering the Amateur, Television and F.M. bands Well constructed with soldered brass plates and and F.M. bands. Rotor shaft extended 1 "" at rear. Height 15 ceramic brackets. Length behind panel $33 / x^{\prime \prime}$. Mounting holes $23 / 16^{\prime \prime \prime}$ apart.

Catalog
Number
LC-1845
LC-1846
LC-1847

MIDGET CONDENSERS

Small size, sturdy construction and high mechanical and electrical efficiency are the outstanding features. Insulation used is Steatite. Rotor and Stator plates are brass and are electro-soldered to their respective rods. All metal parts are cadmium plated. These condensers have both front and rear bearings and are furnished in either mid-line type plates (straight line wave length), or semi-circular plates (straight line capacity.)

SEMI-CIRCULAR TYPE-DOUBLE BEARING

Catalog	Cap. in MMF.	Air	Number	
Number	Max.	Min.	Gap,	Plates
MC-1850	15	3	$.024^{\prime \prime}$	3
MC-1853	50	5	$.024^{\prime \prime}$	7
MC-1855	100	7	$.024^{\prime \prime \prime}$	14
MC-1863	50	7	$.060^{\prime \prime}$	15
MC-1865	100	12	$.060^{\prime \prime}$	31
MC-1867	50	10	$.095^{\prime \prime}$	23
	For additional sizes consult Bud Catalog			

BUD IINY MITE DUAL CONDENSERS

The construction of these units is similar to the regular Tiny Mite Tuning Condensers. The two end pieces are held together firmly with three -rods. A separate round plate is soldered on rotor rod
to shield the two stator sections. Large surface front and rear sleeve
bearings, provide smooth rotation. bearings, provide smooth rotation.

Catalog	CAP. PER Max.	SECTION Min.			
Number	Max. MMFD.	$\begin{aligned} & \text { Min. } \\ & \text { MFD. } \end{aligned}$	Air Gap	Per Section	all Length
LC-1659	8	2.5	.017,	3	Length
LC-1660	15	3	.017",	5	${ }_{2}{ }^{1} 16^{16}{ }^{\prime \prime}$
LC-1662	50	6	.017"'	9 19	$2^{211}{ }^{11}{ }^{\prime \prime}$
LC. 1663	100	9	. $017 \prime \prime$	37	$4{ }^{101}$
LC-1664	10	4	.037"	7	$25^{4}{ }^{\text {a }}$
LC-1665	15	5	.037"	11	$2^{15}{ }^{\text {min }}$
LC-1666	25	5.5	.037'	17	37/1"
LC-1667	35	6	.037'	$2)$	$4^{\prime \prime}$

NEUTRALIZING AND HIGH FREQUENCY TUNING CONDENSERS

This line of condensers will fill every neutralizing and high frequency tuning requirement that mod ern circuits pose. The two-pillar construction makes this unit unusually sturdy and eliminates any possibility of capacity variation due to vibration. The movable plate is adjusted by means of the threaded shaft to which it is attached, and it is permanently locked in any thread is taken position by the lock-nut provided. Any loose operation. All up by a special nut and locked to give amooth rounded edges. Steatite insulation aluminum or brass. Plates have Catalog Plate is used.

Number NC-1000
 NC-1001
 NC-1002

Plate
Diameter
$1^{27 / 32^{\prime \prime}}$
$213 / 16^{\prime \prime}$
$43 / \prime^{\prime \prime}$

MMFD. Capacity	
Max.	Min.
11	1
24	2
27	6

IRON CORE R. F. CHOKES

The efficiency of any circuit requiring an R, F choke will be definitely improved by utilizing one of these chokea with a finely divided molded metallic core. The improved " Q ". possible with this construction results from the D. C. resistance of these chokes being from 40 to 50° less for a given in ductance than for regular air-core types. Thus, siderably less, yet the choking action is equally as good. Winding are made with silk-covered enameled wire terminated on conven ient soldering lugs, and the chokes are mounted in small square shield cans measuring $13 / 8^{\prime \prime} \times 13 / s^{\prime \prime} \times 17 / s^{\prime \prime}$ are

Catalog
Number
CH-1277
CH-1278
$\mathrm{CH}-1279$
$\mathrm{CH}-1280$
CH-1280
CH-1281
CH-1282
CH-1283
CH-1284
CH-1285
CH-1286
CH-1287
Shield Can Only
Also available Pie wound and Lattice wound Ceramic Coil

3.10 BUD Products for high quality and
 best results

75-WATT TRANSMITTER COILS

These coils are distinguished by their rigid construction, attractive appearance and conserva tive power rating. The polystyrene mounting base keeps the coil a safe distance from the chassis it also permits easy coil removal without dis turbing the winding. All coils are air-wound and mount in 5 prong tube sockets.

OEP and OCP Coils are designed for use in circuits using Pentode tubes with high output capacity such as 6L6, 807, etc
OEL coils have fixed end link and are not tapped.
OCL have fixed center link with main winding center tapped.
OLS have adjustable center link, main winding center tapped
OES have adjustable end link and are not tapped.
OES have adjustable end have adjustable end link and are not tapped.
OCP have adjustable center link main winding center tapped.

Catalog No. Fixed End Link	Catalog No. Fixed Center Link	Cat. No. Adjustable Center Link	Cat. No. Adjustable End Link	Band		Capacity*	
		OLS-160		160	Meter	100	MMFD
			OES-160	160	Meter	86	MMFD
OEL-80	OCL 80	OLS 80	OES-80	80	Meter	75	MMFD
OEL-40	OCL-40	OLS-40	OES-40	40	Meter	52	MMFD
OEL-20	OCL-20	OLS- 20	OES-20	20	Meter	40	MMFD
OEL-15	OCL-15	OLS-15	OES-15	15	Meter	30	MMFD
OEL-10	OCL-10	OLS-10	OES-10	10	Meter		MMFD
OEL-6	OCL- 6				Meter	17	MMFD
		OCP-10	OEP-10	10	Meter		MMFD
		OCP- 20	OEP-20	20	Meter	50	MMFD
AM-8673	Coil Base	only					

AM-8673 Coil Base only

ADJUSTABLE LINK TRANSMITTER COILS

Listed are two types of Coils. CL type of coil has an adjustable CENTER link. ES type of coil has an adjustable END link. The CL and ES can be used where fixed links are specified. No additional cost is involved and more efficient coupling is assured because of this special adjustable link, an exclusive BUD feature.
150 WATT RATING

Catalog No.
Center Link Adjustable RCL-160 RCL-80 RCL-40 RCL-40
RCL- 20
RCL- 20
RCL-I5
RCL-I
RCL-10 RCL-I0
AM-1932

Catalog No

 End link RESUStable RES-80 RES-80 RES-40 RES- 20RES-15

Band 80 Meters 80 Meters 40 Meters 20 Meters
 15 Meters 10 Meters

 ase for RCL and RES Coils$$
\begin{gathered}
\text { Capacity* } \\
110 \text { MMFD }
\end{gathered}
$$ 68 MMFD 36 MMFD 27 MMFD 27 MMFD 27 MMFD Also available in 500 W and KW sizes

VARIABLE LINK TRANSMITTER COILS

The most effective method of varying the loading of an R.F.Stage is by the use of a variable link to the plate tank. a feature incorporated in all Bud Variable Link Coils. The Link winding is connected to the jack bar into which the coils are plugged, and this link may be used with any of the coils regardless of the band being worked. The link winding is so arranged that it may be readily controlled from the panel by readily controlled from the panel by 500 WATT COILS

g			Length Mounting	Mounting Hole
Number	Band	Capacity*	Strip Dim.	Dim.
VLS-160	160 Meter	85 MMFD	$51 / 2$	5
VLS-80	80 M	70 MMFD	51	$5^{\prime \prime}$
VLS-40	40 M	36 MMFD	51	$5^{\prime \prime}$
VLS- 20	20 M	28 MMFD	51	5"'
VLS-15	15 M	25 MMFD	51	5"
VLS-10	10 M	25 MMFD	$51 / 2$	$5^{\prime \prime}$
Also avaliable in 150 W and KW sizes				
*Denotes required	e plus circu esonate coil	us tank plu w frequenc	ut coupli of band.	city

SHIELDED COIL-LINK

These links are made to fit RLS, VLS, and MLS series of coils. This link will prevent capacity coupling between the tank coil and the link and will reduce TVI by greatly attenuating harmonics. the links can be used on co-ax or balanced lines.

Catalog No.
Description
AM-1300 Used with RLS coils (I50 W AM-1302 Used with MLS coils (Kilowatt)

ADD-A-LINK

When the circuit that you are using requires a different number of turrs on the coil link than is furnished with the standard coil, the links listed below can be used to replace the standard link.

Cat. No.	Used With	No. of Turns
AM-1303	RLS	31/2
AM-1304	RLS	$41 / 2$
AM-1305	RLS	$51 / 2$
AM-1307	VLS	$31 / 2$
AM-1308	VLS	$41 / 2$
- AM-1309	VLS	$51 / 2$
6 AM-1310	VLS	$61 / 2$
61 AM-1311	MLS	$31 / 2$
AM-1312	MLS	$41 / 2$
AM-1313	MLS	$51 / 2$
AM-1314	MLS	$61 / 2$

CODE PRACTICE OSCILLATOR AND MONITOR CPO-128

The BUD Codemaster is a real money saver. No longer do you have to consider your code practice oscillator useless after you have learned the code. A flip of the switch and you have a good CW monitor. This is a really versatile instrument.

It has a $4^{\prime \prime}$ built-in permanent magnetic dynamic speaker and will operate up to twenty earphones.

A volume control and pitch control permit adjustments to suit individual requirements. Any number of keys can be connected in parallel to the oscillator for group practice.
This unit will operate on 110 volts A.C. or D.C. An external speaker may be plugged in without the use of an out put transformer. All controls are placed on the front of the unit and all jacks are in the rear. The unit is $6 \frac{1}{2 \prime \prime}$ high, $51 / 2^{\prime \prime}$ wide and $31 / 2^{\prime \prime}$ deep. It is finished in Grey Hammertone enamel with red lettering.

MODEL CPO-130

This unit is similar to the CPO-128. The difference is that the $4^{\prime \prime}$ speaker is not in cluded. The monitor feature, however, is included. A phone jack is provided for the output and as many as 20 pairs of phones and keys can be operated at one time for class-room operation. This model will also operate a permanent magnetic dynamic speaker. Size is $51 / 2^{\prime \prime}$ wide, $41 / 2^{\prime \prime}$ high. $31 / 2^{\prime \prime}$ deep.

GIMIX GX-79

The BUD Gimix is a multipurpose unit requiring no batteries or power supply. It is calibrated for use on the 10. I 5, 20, 40 and 80 meter amateur bands. No additional coils are needed as the one coil does the work on all bunds. It can be used as a Wave-Meter, a Monitor, a Field Strength Indicator, a Carrier Shift Indicator and a sensitive Neutralizing Instrument. Operating instructions supplied with each unit.

FREQUENCY CALIBRATOR FCC-90 To comply with federal regulations. some means of accurately checking transmitter frequency must be ava:1ahle at every "ham" station. The BUD FCC. 90 consists of a 100 kc . crystal oscillator that is Completely Self-Powered. It will give 100 kc . check points on all bands up to 30 megacycles. This enables the operator to determine exact band edges. No extra wiring is required to install this unit. Plug the FCC-90 into a 110 volt receptacle, connect the pick-uplead to the antenna binding post of the receiver and the unit is ready for operation. An ON-OFF switch and a STANDBY switch are provided.

FOR SALEI I Tese and 100,001 other

(1) COHTROLS - 10 mect your service reguirements, Youll find a lype and mondel for , ill poppular ratios. IV sets. plusother clectronic gear.	Model B16 Radiohm ? Miniature	Twin and dual con. centric Radiohras	Model B Blue Shaf \dagger Radiohms	
- hendralio of varintions panible. Fnginecred to give por widest ilcaloni ity for .ll types of replications.		1400 Series Standard Rotary, Phenolic Insulation	2500 Series Standard Rotary. Steatite Insulation	Small General Purpose and Tone
PCH-4 TV Attenuator	Dual Speaker Switch	Complete Switch Kits	CAPACITORS - the world's greatert line of ceramic c.pantors. For jobs that demend the hest in guranterd IV. ANHALscriking.	
TV HI-VO-KAPS -			Feed.Thru HI-KAPS	Miniature Feed-Thru HI.KAPS
		- offring you a new, prosed was to reduce extrat parts, time, cerorn and costs-a Ccturalab "firss."	Ceramic Min-Kaps ${ }^{3}$	Miniature Resistor and Resistor-Capocitor Units
Pentode Couplates ${ }^{(1)}$	Filplate ${ }^{\dagger}$ (by-pass and filter application)		Special Plates	Audet ${ }^{-1}$ (oudio-detector plate)

Centralab quality electronic components

H ERE'S a perfect check list to determinc your electronic needs. And there are hundreds of variations available to you. Whether you need single items or dozens - no other single manufacturer can offer you such a wide choice of standard fastest-forservicing parts. That's why Centralab is the industry's No. 1 electronic component source . . . and keeps your distributor supplied with the latest developments in the fast-changing clectronic field.

You know CRI. parts are your best value because each is backed by a written guarantee. That means they're safest-for-servicing too. And you'll agree that's mighty important for building consistent customer satisfaction.

So when you need parts, look for the familiar blue and white CRL package - the product inside is the result of more than 30 years of electronic experience. This experience will continue to pioncer many more profitbuilding "firsts" for you! trrade Marrs

Centralab

A Division of Globe-Union Inc.
 Milwaukee 1, Wisconsin

In Canada, 804 Mf. Pleasant Rd. Toronto 12, Ont.

THIS VALUABLE BOOK all about code
 FREE

Itere"s your chance to learn code quichly and casily . . . in get maximum speed and proticiency in code . . . risht in your own home. 'Ihe 12-YEAR RECORI) of the CANDIERK SYS'IEM in training beginners to develop and apply their talents to top speed and efficirocy is sound preof of what the CANDLER SYSTEA offers yous.

OPERATORS

Are you hroping for a nire promotion . . . a higuer salary . . . as an cworl Operator? 'Thern, now is the time to improve your sperd
 Of (IIIDPIONS shows yon how to improve your cole technigure - inerrase your soped - develon your shill to the highest point - rliminatr neronns tension - and pave the way to a topbrachet position as and expert Oprator.

HERES WHAT WORLDCHAMPIONTEDMdELROY SAYS ABOUT THE FAMOUS CANDLER SYSTEM

"Hy shill and speed are the result of the exclusive, scirntifie tratining Waltor Candler qave me. Jractice is necessary, but without proper training to develop Coneentration, Comordina. tion and a keen lerceptive Sense, prartice is of hittle value. One is likely to practice the wrong way."
MeEIroy is the Official Champion Radio Operator. 75.2 W.I'M. at Asheville Code Tournament.

LEARN CODE THE QUICK, EASY WAY

Think of the thrills and weitement yon ran have commonieat ing liv cosle with prople all over the world . . . when your lwecone at gomel Armatetur Oprator. Or. yon may hase yome siphos mat ont lecoming a hiphlyopaid, exprrt Commereial jparator. In pither
 code sending and rearening and the principhes of fast, efficient operating with the world-famons CAVI)LER SYSTVMM.

INCREASE SPEED and SKILL

 THE CANDLER WAYBerides exprorirnce shu mast have special training to devalop
 Operabor. The (A VI)LKR SYETEM offers you that iraining in an eany, thorough and intrrosting way. It is the outstanding method that has developed thousands of first-rilass operators even Champions - from ordinary operators. 'Ihares is a romerse to meret your requirenmenta, ami your budget, in the CiANIDLER SlSTH:M.

> FIND OUT HOW THE CANDLER SYSTEM CAN HELP YOU. SEND NAME AND ADDRESS ON COUPON OR POSTCARD FOR FREE COPY OF CANDLER BOOK OF FACTS.

GANDER SYSTEM CO, P.O. Box 928, Dept. 32, Denver 1, Colorado, U. S. A.

SPECIAL COURSES FOR BEGINNERS \& OPERATORS

The SCIENTIFIC CODE COURSE, especially designed for the beginner. Teaches the basic principles of code operotion scientifically.

The HIGH SPEED TELEGRAPHING COURSE, intended for the operator who wishes cade speed and skill to become a goad operator or a better one faster.

The HIGH SPEED TYPEWRITING COURSE, designed for those who desire typewriting proficiency and speed. Especially designed for copying messages and prass with typewriter.

64

We are presenting in the following pages a complete system of high-speed automatic Morse telegraph and radio telegraph operation. This system is capable of operating under conditions that would make impossible the use of ordinary five-unit printing telegraph systems. We are quite sure that the many thousands of friends we have made during the past 25 years will be pleased to know of our licensing agreement with the well-known Creed \& Company, Ltd. of London, England, which makes possible the production here in Littleton, Massachusetts of much of the equipment described in the following pages. As one communications man to the many in the field who will see these pages, be assured that McEIroy equipment is built for a minimum of 20 years of uninterrupted service. That is the way we build all of our equipment. We welcome your inquiries and shall be pleased to send complete technical manuals upon request.

We call your attention to the page devoted to our latest development - Type " S " Telephone Carrier.

Mcelroy Manufacturing Corporation

The McElroy-Creed Morse Keyboard Perforator MC-9W is the heart of this completely automatic high-speed Morse system. This system is sometimes called the Wheatstone code system. The Wheatstone code perforator shown here is the answer to the hope we have had and many other communications people have had (especially the United States Government departments) for a Wheatstone code tape perforator that could be depended upon to do a job without the necessity for having a complete machine shop and highly skilled mechanical en-
gineers to adiust the perforator and keep it in operation. The McElroy-Creed MC9 W gives you dependable operation at all times.

I remember as an operator for R.C.A., we had one of these in our Boston office. It required practically no maintenance whatever during the more than two years that I watched the thing work. The unit is complete as shown . . . no silencing cover is required; no special power supply necessary. We are building these units here in Littleton and can make shipment out of stock.

Meliroy

Recorder RAPC

At the receiving end, the incoming Morse dots and dashes are fed into the Mablay RAPC (Recorder-Amplifier-Puller-Combination). This quality ink recorler provides maintenance-free, dependable reception under conditions where not even a good operator could get the signal through the hash.

The normal speed of this Morse highspeed system is about 1.50 words per minute. At this speed none of the equipment is overworked, and this . . . at a sperd on circuits where no one would dream of attempting to use ordinary printing telegraph systems. The inked slip may be either transeribed by operators or may be used for monitoring the circuit. This cannot be done with five unit systems.

The RAPC Ink Recorder, as produced on certain Government contracts, is equipped with an automatic tape feed mechanism, whieh starts the tape puller instantareously with the first incoming dots and dashes, and stops the tape puller

The RPC Recorder is designed for those instailations where the ink reecrding and tape pulling mechanisms can be remotely located from the amplifier. With its recording and pulling apparatus identical to the McElroy RAPC Recorcer, the RPC offers dependable high-speed recording. This unit may be connected to the amplifier section of the RAPC whose sharply peaked output is of sufficient magnitude to drive up to four ink recorders reliably.

This is the McElroy-Creed Morse Leperforator MC-7W. lncoming Morse dots and dashes are fed into this referorator at speeds up to 150 words per minute with the $\mathrm{MC}-7 \mathrm{~F}$ producing perforated slip identical to that produced on the MC-3W perforator. This is simultaneous with the ink recording whicn makes it so easy to monitor the circuit. We will be tooled-up and producing these units carly in 1954 at which time delivery car be made from stock.

McElroy-Creed Morse Relay Model MC-27

The McElroy-Creed high-speed Relay MC-27 (shown with cover removed) accepts Morse characters from any standard communications receiver and delivers these code signals to the Morse Reperforator.

MELROY

McElroy-Greed Morse Tape Printer Model Mc-IT

We believe this equipment th the the most dependable unit of printing telegraph apparatus we have ever seen in a lifetime of communicatiors experience. Everyone in the Communicetions field understands only too well the high cost of maintenance and replacenient parts on ordinary printing telegraph: systems. The MC-1T Morse Tape Printer is so deprendable that we old-timers always refer til the unit as the "iron-horse". They just to
not fail! The perforated slif from the Morse Reperforator is fed int? the Morse Tape Printer at speeds up to 100 words prer minute. Upon recepft of this coded sip, the MC-1T Tape Printer teansiates these signals in the form of Ruman charatters on the slip. There you have a somMetely automatic, high-sjeed, dependable telegraph system with all of the advantages that Morse code possesses over other means of code commurication.

McELROY MANUFACTURING CORPORATION

> McElroy-Creed Morse Page Printer Model MC-IP

This unit is of the same basic design as the Morse Tape Printer shown above except that provision is made for two additional Morse signals thereby allowing for line feed and carriage return. Because the greatest value in our Morse system lies in its almost total absence of maintenance, we are somewhat partial to the Tape Printer MC-1T where a guy doesn't even need a screwdriver to insure operation year after year. Pasting up slip however, can be most time consuming, and for Central Office use, the Morse Page I'rinter has a very definite application.

Morse Package MP-1A, shown here, employs our standard three butto: perforator. Its sinaticity of operation will warrant its continued production for those applications where either traffic conditions are light or personnel are not keyboard conscious. The MP-1A keying head is identical in every respect to the McElroy ADK and also provides for high-speed relay and voltage keying with built-in keyirg tone for noritoring. The MP-1A recorder section has the same basic trouble-f:ee design as all our recording equipment. The fape pulling mechanism provides for a speed range of from 7 to 100 words per minute, or any other specified 7 to 1 ratio.

Meliroy

Mcelipoy

THE

 Collins 8R-1 CRYSTAL CALIBRATORPlugs into a completely wired socket on the 75A-2 or 75A-3 chassis. A set of contacts on the noise limiter-calibrate switch turn the 8R-1 crystal calibrator on and off. When harmonics of the 100 kc crystal have been checked against WWV, an accurate crystal check-point is available every 100 kc throughout the receiver's range. Use of the 8R-1 crystal calibrator in conjunction with the receiver's accurately calibrated linear dial permits interpolation to a fraction of a kilocycle. Net domestic price $\$ 25.00$.

THE

 148C-1 NBFM ADAPTER

Plugs into a completely wired socket on the 75A-2 or 75A-3 chassis and is controlled by the CW-AM-FM switch on the front panel. Use of the 148C-1 adapter gives true discrimator reception of NBFM signals. Net domestic price $\$ 22.50$.

35C-2 LOW-PASS RF FILTER Although designed as

 an accessory for the $32 \mathrm{~V}-3$ and as standard equipment in the KW-1, coaxial fittings make the $35 \mathrm{C}-2$ readily adaptable to any amateur transmitter having 52 ohm output. It has an insertion loss of only 0.25 db at frequencies below 30 mc , but its three individually shielded filter sections provide about 75 db attenuation at television frequencies. Net domestic price $\$ 40.00$.

COTHNS

kw-1 for maximum OPERATING CONVENIENCE AND POWER

The Collins KW' 1 runs a cool 1000 watts but tunes as easily as a $32 \mathrm{~N}^{-3}$. It operates on phone or CW^{\prime} in the $1(0), 80,40,20,15,11$, and 10 meter bands. A single control on the front panel bandswitches the entire transmitter. All RF tuning controls except the final amplifier are ganged. To tune the $K W^{-}-1$, just pick your band, set the built-in VFO to the desired spot, and adjust the final amplifier tuning and loading. That's all there is to it!
The KW-1 design effectively reduces spurious radiation to a very low value, particularly at television frequencies. A metal box inside the main cabinet completely shields the RF section. A large number of tuned circuits at the operating frequency reduce harmonic output from the exciter. The final amplifier pi-L network, deveroped by Collins, provides an effective TVI filter in the RF output circuit. To this is added the 75 dt television-frequency attenuation of the built-in $35 \mathrm{C}-2$ low pass filter. The final amplifier is tuned by a variable vacuum capacitor which provides a very short, low inpedance path from the final amplifier plate circuit to ground at television frequencies.
The KW'-1's reputation for getting through the QRM is due not only to its high power but also to its audio clipper followed by low-level and high-level low-pass filters which permit a high average percentage of modulation without splatter.

KW-1 FEATURES:

1000 watts input on phone or CW (500 watts on 160); covers $160,80,40,20,15,11$, and 10 meter bands: 52 ohm coaxial RF output: frequency control by means of the highly stable Collins $70 \mathrm{E}-14$ oscillator: high impedance input for crystal or dynamic microphone; overload relay, fuses and high voltage are gaps for circuit

The transmitter and all pouer supplies are contained in one attrative cabinet.
protection: operates from 115/230 volts 50/60 cycle single phase grounded neutral: completely self-contained in attractive netal cabinet $66_{6} 1 / 2^{\prime \prime} \times 28^{\prime \prime} \times 18^{\prime \prime}$: controls include bandswitching, Frequency selector, final amplifier tuning, final ampliticr loading, filament switch, filament voltage adjustment, plate switch, overload reset switch, overload relay adjustment, send-standby-calibrate switch, emission selector switch, tuneoperate switch, meter switch, power amplifier excitation control, modulator bias control, audi, driver bias control, clipping level, audio gain control, dial zero set. Net domestic price \$3, 550.00

As can be seen in the block diagram, the Collins 75A-3 double conversion superheterodyne receiver, with its crystal-controlled front-end and highly stable low frequency VFO, is like a high frequency crystalcontrolled converter working into a very stable low frequency receiver. The high stability and 3.1 kc bandwidth of the $75 \mathrm{~A}-3$ make it ideal for AM or single sideband - and an 800 cycle mechanical filter is available as an optional accessory for CW.

All coils are permeability tuned and have a straightline frequency characteristic allowing linear dial calibration. Only the band in use is visible on the slide rule dial. On the vernier dial each division represents one kc except on the 10 and 11 meter bands, where ench dial division represents two kc. This accurate calibration is made possible by the highly stable oscillators in the 75A-3.

The $75 \mathrm{~A}-3$ covers the $160,80,40,20,15,11$, and 10 meter amateur bands. Sensitivity on all bands is 2.5 my or better for a 10 db signal-to-noise ratio. Image rejection is at least 50 db . AVC is applied to RF as well as IF stages. Separate noise limiters are included for phone and CW. The S-meter is calibrated from 1 to 9 in steps of approximately 6 db , and for 20,40 and 60 db over $S 9 . S 9$ corresponds to a signal input of 100 microvolts. Antenna input impedance is 50 to 150
ohms, balanced or unbalanced. A phone jack and 4 ohm and 500 ohm audio output terminals are provided. Sockets and front-panel controls are included for the 8 R-1 100 kc crystal calibrator and $148 \mathrm{C}-1$ NBFM adapter which are available as optional accessories. The following controls are on the $75 \mathrm{~A}-3$ front panel: tuning, zero set, bandswitch, RF gain, audio gain, BFO pitch, CW limiter, antenna trimmer, crystal selectivity, crystal phasing, mechanical filter selector, CW-AM-FM switch, noise limiter-calibrate switch, on-off-standby switch. The 75A-3 operates from a 115 volt $50 / 60$ cycle ac power source. Cabinet dimensions are: 21-1/8" wide, $12-1 / 2^{\prime \prime}$ high, and $13-1 / 16^{\prime \prime}$ deep. The $19^{\prime \prime}$ panel fits a standard relay rack. The $75 \mathrm{~A}-3$ weighs approximately 50 pounds.

Net domestic prices:
75A-3 receiter complete uith 3 kc mechanical filter: $\$ 530.00$
10-inch speaker in matching cabinet: $\$ 20.00$
8R-I crystal calibrator: $\$ 25.00$
148C-I NBFM adapter: $\$ 22.50$
F455B-08. . .800 cycle mecbanical filter: $\$ 55.00$
F455B-31...3.1 kc mechanical filter: $\$ 55.00$
F455B-60...6.0 ke mechanical filter: $\$ 55.00$

With the mechanical filter adapter shown here it takes only a few seconds to convert your 75A-1 receiver to include the Collins mechanical filter. Just remove the first 500 kc IF tube and plug in the adapter. That's all there is to it. Either a 1400 cycle $C W^{\prime}$ filter or a 3.1 kc phone filter is permanently installed in each adapter.
Type 353C-1t plug-in adapter, complete with 1400 cycle filter, for 75A-l: $\$ 75.00$
Type 353C-3l plug-in adapter, complete with 3.1 kc filter for 75A-1: \$75.00.

MECHANICAL FILTER CONVERSION KIT FOR

The 75A-2 mechanical filter conversion kit will enable you to convert your 75A-2 to include two mechanical filters. A front-panel switch selects the desired filter. A Fí55B-31 3.1 kc phone filter is included with each kit and a F $655 \mathrm{~B}-08800$ cycle CW filter may be added at any time. You can install the complete kit in one evening or, if you prefer, your distributor will make arrangements for you to return your 75A-2 to Collins. The factory will make minor repairs and completely realign your 75A-2 in addition to installing the conversion kit.

75A-2 conversion kit complete with F455B-31 3.1 kc mechanical filter $\mathbf{\$ 8 0 . 0 0}$.

Factory installation of $75 \mathrm{~A}-2$ conversion kit including F455B-31 mechanical filter, minor repairs, and complete realignment of the $75 \mathrm{~A}-2 ;$ F.O.B. Cedar Rapids $\$ 105.00$.

The mechanical filter is a resonant mechanical device in the receiver's i.f. strip. Unlike the crystal filter, the mechanical filter remains in the circuit at all times. As shown here, it consists of three general sections: an input transducer, a mechanically resonant section consisting of a number of metal disks, and an output transducer. A 455 kc . electrical signal applied to the input terminals is converted into a 455 kc . me-

Collins 75A-2

F455B-08 800 cycle mechanical filter (plug-in) for 75A-3's and modified 75A-2's $\$ 55.00$.
F455A.31 3.1 kc mechanical filter (solder terminals) $\$ 55.00$.
F455A-08 800 cycle mechanical filter (solder terminals) $\$ 55.00$.
chanical vibration at the input transducer by means of magnetostriction. This mechanical vibration travels through the resonant mechanical section to the output transducer, and is converted, by magnetostriction, to a 455 kc . electrical signal which appears at the output terminals. There is no mechanical motion except for the imperceptible vibration of the metal disks. The mechanical filter requires no adjustment.

AIRCRAFT

Course Indicator

618S 14i-Channel HF Transceiver

51V Glideslope Recciver

Approach Horizon

180L Automatic Antenna Tuner

17M3(0)-Channed VHF Transmitter

INDUSTRIAL COMPONENTS

Mechanical Filter

Autotune

Oscillator

COMMUNICATIONS .AND BROADCAST

Collins 30K-5 2-Channel
Communications Transmitter

300.J 250 Wat Broadcast
Transmitter
$21 \mathrm{~F} / 21 \mathrm{M}$
5,000 W/att 10,000
Watt Broadcast
Transmitters

In requesting information ôn any Collins product, please specify equipment type number.

For Engineering Excellence in Radio Equipment, it's

COLLINS RADIO COMPANY, Cedar Rapids, lowa
2700 W. Olive Avenue BURBANK

At Electronics Park, near Syracuse, N. Y., General Electric maintains headquarters for electronic research and development. From radio to radar, from computers to semi-conductors, potential uses of the electron are explored unceasingly by an army of scientists and engineers in this modern plant.

An Entire Family of G-E PRECISION EQUIPMENT

for Laboratory, Industrial, and High Quality Test Applications

Power Supply ST-9A - 1)ual regulated power supply gives electronic overload protection plas builtin modulator.

YPD-2 - General laboratory purposes. Accurate and dependable.
Oscilloscope ST-2B - Has direct coupled amplifier. ST-2A - General purpose use.
Germanium Diode Checker ST-12A - Checks static characteristics of diodes.
Sweep Generator ST-4A - Completely electronic . . . no moving parts. Sweep Marker Generator ST-SA - Crystal referenced calibrator from 10 mc to 300 mc .
IV Channel Sweep Generator ST-11A - Speeds production line testing. Binary Scaler 45N-1A4-For general counting applications.

- For full information call your nearest G-E Test Equipment 1)istributor or write: General Electric Company, Section 564, Electronics Park, Syoucuse, Neu' York.

GENERAL ELECTRIC

FOR MILITARY, COMMERCIAL OR AMATEUR APPLICATION

YOU CAN BUILD IT BETTER with a FREED TRANSFORMER YOU CAN TEST IT BETTER with a FREED INSTRUMENT

TRANSFORWERS - REAGTORS - FILTERS				PRECHSION TEST INSTRUMENTS			
	Miniature	$(\infty$	Toroidal Inductors		No. 1030 Low Frequency " Q indicator		No. 1040 Vacuum Tube Voltmeter
	Miniature Toroidal Inductors	$+\sqrt{9 G}$	Military Pulse		No. 1020B Megohmmeter		No. 1010A Comparison Bridge
	High Fidelity		$\begin{gathered} \text { Power } \\ \text { Transformers } \end{gathered}$		No. 1210 Null Detector \& Vacuum Tube Voltmeter		$\begin{aligned} & \text { No. } 1140 \mathrm{~A} \\ & \text { Null } \\ & \text { Detector } \end{aligned}$
	Precision Filters		Slug Tuned Components		No. 1150 Universal Bridge		No. 1110A Incrementa Bridge
	Freedseal Treatment - ANE-19 Specs.		Pulse Modulators	مice	No. 1410 Harmonic Distortion Meter	\%	Decace Inductors

COMPLETE CATALOG

REQUEST

FREED TRANSFORMER CO., INC.
SETS THE STANDARD FOR PERFORMANCE
1728 Weirfield 5t., Brookiyn (Ridgewoodi 27, N. Y.

CAPACITORS

FP (fabricated phater) and ollaner ary elocetrolitiona
 errathir trimumers. dise crraniors

CONTROLS

Mideatrolle single and dial concerntrie rarthondeontrals, wire nound renitral
MERCURY BATTERIES
leforally seited for tramsinlor rircuit antid comport jubore subplic.

POWER RHEOSTATS

2.5 แ

RECTIFIERS

Magorsinte reaplomrabide and wlenian remetilier Atachs. rectifier poucr Aululiors

RESISTORS

Fiwal and adjumathe vitroons entaniel typers

SWITCHES

Cirmit sele-etor and
"ILambated" Awitelare, jache and flack
VAR/ABLE
INDUCTANCE
TUNERS
VIBRATORS
Vibrators anif Vibraparh (8) monor aupplits

Make Sure... Make It MaLLORY

You can count on hallory Apponai l'recision Pronducta for long. trouble - frer preformanor. Ther arre haved be year- of shilled do-igh and manufarturing experionce.

Matlory al-o ofliors you a walth of helpfinl. up-to-date
 Call on your Mallory di-tributor whrmerer you need parts or information. He is ready lo sorve you.

MALLLORY

SERVING INDUSTRY WITH THESE PRODUCTS:
Electromechanical - Resistors, Switches, Television Tuners, Vibrators Electrochemical - Capacitors, Rectifiers, Mercury Batteries Metallurgical - Contacts, Special Metals, Welding Materials

WHEREVER THE CIRCUIT SAYS -M-

ADVANCED TYPE BT RESISTORS

Type 8 It insulated Composstion Rosistorn-meof JAN-R-11 Specificotions of $1 / 3,1 / 2,1$ and 2 wolts. Small size BTB specially designed for miniature 2 watt requirements. Type Br's are suited to tolovision and similar exacting circuits. Extremely low oporoting lemperature. Excellont power dissipotion. 10 ohms to 22 megohms in RMA ranges. (Fully described in Cotolog RDCS.)

TYPE Q VOLUME CONTROLS

"\$s" diamefor and $1 / 4$ " long bushing suit the Q Control to the smallest chassis, yel it hondles big-sef requirements with case. Knob Master Flxed Shoft is stonderd and fis mosi push-en knobs withovi alferation. 15 Interchangeable Fixed Shafts provide adopiability to "specials"Accommodates Type 76 Switch. 86 plain and topped Q Controls give wide coveroge of AM, FAA and TV needs.
(Putly dewaribed in Catalog RDCI.)

2-WATT WIRE WOUND CONTROLS

The wopt dependoble wing reend obvitrch for power requirements up to 2 colle. Typ W has $1 / 4^{"}$ full rosid athaft $3^{\prime \prime}$ tong from eetird toce. TYpG WK hos knob Monter Shof tol Wiving to tenuried and fotiod knobs, buiting le \%" long, and shof $3 "$ long from meunting foce. Eoth fyper have $11 / 4$ " sliometar end occommodote TYpe w Switchos-Rocistioncen values: 2 ohnes to 10,000 ohme. (Fully deacribed in Coialog ROCI]

WHEREVER THE CIRCUIT SAYS -W-

CLOSE TOLERANCE DEPOSITED CARBON PRECISTORS

 Ablerenctic stotiouty ind scosery. Purn orrutation

 pue mpheritent st preshlem wice =fitndi.
 ithd etcirnity hot stasmer |ec oplase coeth (tan) Earellent thequent sharuzterision,

HICH FREQUENCY RESISTORS trie Mr Eniutereer dev ined ter freauminen atient theee of comesitignal revipterk 2 butt
 fre b bilde 6 ts ateolle crowi form Nouget ifhlibureinher of lap ndutioco anc faperily. Trhe MFM's, ore menotere 14 watt anfl for
 Hots
|Fily itestrited in Eblolbe EF-1.|

HIGH VOLTAGE RESISTORS

Tym MY' ment hich reititonce ond pewn
 Benstanct ceeting in helicol turns on cricmic woo pisvithe a conduetime pon of tore - finctive lerath: 2 -attr lo 90 votm. Verats of teranal Mrbes TYpe Hixk, meel requirtmente for anell, Heti remen will with owiol lends $3^{\prime \prime}$ \& $6^{\prime \prime}$ cenvrection lientled with Tyee Nive exeepo for urined

SPECIAL CONTRQLS

ThriCl A rati neowly cenconeled tollid thet benis lem ofd bight wi volume is to. weant $d=$ nothe ofed depth and torlilgence even ot etirent inrel furomatically mennlam evefer holdere al all fredutnilet if tive evelic ipection of ey listenitg level simple inalsiliotian
TYE OJ 3 a lotr cont, casily installed TV etrewalor tey petmily ready od unsmest of canel tupy of triath. Ifilly beveribed = Cbtolog D(1)

SEALED VOLTMETER MULTIPLIERS

Dependable multipliers for use under the most severe humidity conditions. Type MF Resistors consist of a number of IRC Precisions interconnected and hermetically sealed in a glazed ceramic tube. Compact, rugged, stable, fully moisture-proof and easy to install. Maximum current: 1.0 M.A.i 0.5 megohms to 6 megohms.
(Fully described in Catalog RD-2.)

MICROSTAK SELENIUM DIODES

TYPE GA Diodes are IRC engineered for use in low current ciscuits where very high back resistance and low forword resistance are required. They are small size, hermetically sealed, and ideal for circuit applications up to 1 megacycle.
IRC VARISTORS are non-linear resistors. They ore voltage sensitive and provide sharp varia. tion of resistance with applied voltage.
(Fully described ir: Catalogs RDC11 and RSR-3.)

INSULATED CHOKES

Ideal for TV and similar circuits. Wide range of size and characteristic combinations permit accurate specification to individual requirements. Types CLA and CL-I Chokes are fully insulated in molded phenolic housings-protected from high humidity, abrasion, physical damage or shorting to chassis.
(Completely described in Catalog RDC7.)

OTHER IRC PRODUCTS

IRC manufactures a wide line of resistors, controls and related electronic components for equipment manufacturers, service rechnicians and amateurs.
In addition to the products described on these pages, IRC also furnishes -
BORON-CARBON PRECISTORS - MOLDED BORON-CARBON PRECISTORS - INDUSTRIAL CONTROLS - 4 WATT TV CONTROLS • FLAT TYPE POWER WIRE WOUNDS • FEED. THRU TERMINALS.

SEND FOR LITERATURE

4 For full information on any IRC product visit your local IRC Distributor or write for the Catalog Bulletin in which you are interested.

INTERNATIONAL RESISTANCE COMPANY

401 N. Broad Street
In Canada: International Resistonco Co.. Lid., Toronto, Licenseo

For those who apporeciate PROFESSIONAL STANDARDS

$58-600-1 X$

HG. $140-x$

Communications Receivers for finest Performance

The "SP-600-JX"

The "SP-600-JX", a masterpiece of receiver design, is a 20 tube dual conversion superheterodyne covering the range of 540 Kc to 54 Mc in 6 bands. Operation on any of 6 crystal-controlled fixed frequency channels is immediately available. The power supply is an integral part of this worldfamous receiver.

The "SP-600" represents today's ultimate in receiver performance. Stability is .001 to .01 percent, image rejection is 80 db to 120 db down, and spurious responses are at least 100 db down. Sensitivity is 1 microvolt CW and 2 microvolts AM. Selectivity for the 3 calibrated crystal and 3 noncrystal ranges is from 200 cycles to 13 Kc .

The "HQ-140-X"

The "HQ-140-X" was designed to give years of reliable, quality performance. Its many out-standing features are evidence that it was built for those who appreciate professional standards. Extremely accurate frequency setting is achieved because of its carefully calibrated bandspread dial. The Hammarlund patented 455 Kc crystal filter and phasing network makes possible bandwidth changes without the slightest detuning. The separate oscillator (6 C 4) and mixer (6BE6) contribute to the high degree of oscillator stability.

Low-loss tube sockets, ceramic bandswitches, temperature compensating capacitors, zero temperature coefficient ceramic trimmers, and a bimetallic compensating plate, all keep frequency drift to less than 0.01%, from the lowest frequency $(540 \mathrm{Kc}$) to the highest (31 Mc).

WANT TO KNOW MORE ABOUT HAMMARLUND RECEIVERS?

Write immediately to have your name placed on our Receiver mailing list.

SIGNALING \& CONTROL EQUIPMENT

for dependable operations!

Economical Systems of Modern Design

SELECTIVE CALLING OR SIGNALING

Hammarlund Selective Calling equipment, added to 2 -way radio systems used to control large fleets of vehicles, or distant fixed stations, add privacy, speed, safety, quietness and convenience to day-in-day-out operations. By the push of a button the dispatcher within 0.8 of a second selects the individual station or group of stations he wants to contact. If the operator of the car or station being called doesn't answer, an indicator lamp remains lighted to show he was called.

REMOTE SUPERVISORY CONTROLS

The Hammarlund "Multi-Gate" Remote Supervisory and Control System is engineered to provide highly efficient, fully reliable operational controls of important remote equipment such as used by refineries, pipelines, utilities, railroads, civil defense and other commercial, as well as military groups. This equipment makes possible the operation of many distant functions immediately and positively from one or more master stations.

POINT TO POINT SIGNALING

The Hammarlund Standard Duplex Signaling Unit consists of a tone generator and receiver designed to operate over wire lines, telephone or power line carrier, and radio or microwave communications circuits for signaling, dialing, slow speed telemetering. supervisory controls or other information. Transmitters and receivers are available for 36 frequency channels between 2000 and 6475 cps .
The above are examples of the many types of signaling and control units and systems, designed and manufactured by Hammarlund, and now in use by groups requiring remote operations and continuous indication of operating conditions.

Write for detailed information on equipment to fulfill your requirements.

Push-Button Solective Calling

When Your Design Considerations are Qritical-Put in

Reliable Component

The "MAC"

The "MAC" provides the low minimum capacity essential for use as a trimmer in the VHF range. It was engineered to achieve the smallest dimensions practical to meet the requirements of a miniaturized component. Its silicone treated steatite base is only $3 / 4^{\prime \prime} \times 5 / 8^{\prime \prime}$.

Rotor and stator are soldered assemblies and are of brass, nickel plated. Capacities range from 1.4 to 19.6 mmf .

The "BFC"

The "BFC" "butterfly" type capacitor has very low minimum capacity, low inductance and isolated rotor for use in VHF applications as a series capacitor with no rotor contact. Brass rotors and stators are soldered and nickel-plated. The contact wiper is heavily silver-plated beryllium-copper.

Capacities range from 3.4 to 40.1 mmf .

The "APC"

The "APC" trimmer capacitor originated by Hammarlund over twenty years ago is still widely recognized as the standard capacitor of its type.

Its use is indicated in all classes of equipment where a compact, high quality air dielectric trimmer is required. It was designed to resist effects of temperature, moisture and vibration.

Capacities range from 3.0 to 140 mmf .

The "MAPC"

The "MAPC" capacitor is a scaled-down version of the popular "APC" with everything reduced except the quality and performance characteristics.

Lower minimum capacities and low inductance make the "MAPC" suitable for VHF use. Capacities range from 2.3 to 100 mmf .

The "MC"

The "MC" is a versatile single section tuning capacitor designed to give a choice of mountings, connections and capacity characteristics. "MC-S" capacitors have a straight line capacity characteristic. "MC-M" units have offset plates resulting in a "Midline" characteristic which more equally spaces frequencies. Capacities range from 5.5 to 320 mmf .

with Beam Power

For that modern, high-efficiency, low-cost transmitter, always design around RCA Beam Power Tubes

Beam power tubes-an original RCA de-velopment-enable you to design and build high-efficiency rigs at less cost. Because of the low power required to drive beam power tubes, you can operate your transmitter with low-power-level exciters-minimize your TVI problems. With beam power tubes, you get peak performance with fewer stages - which makes for easier band switching - fewer tubes, and fewer components.

Put the advantages of beam power to work for you when you design. Specify

RCA. There's an RCA Beam Power Tube for every input up to 1000 watts-and every frequency up to 225 Mc . For additional data on RCA beam power types see Table 17 in Chapter 27 of this Handbook.
rCa ham tips. Written by radio amateurs for radio amateurs, this up-to-the-minute publication is jam-full of how-to-make-it articles. as well as non-constructional articles
 on TVI. Free from your RCA Tube Distributor. Or write RCA, Commercial Engineering, Section AllM, Harrison, N. J.

1000 wans and more, CW 675 wams phone
(Full inpul up to 75 Mc) High-power "Rnal." A 2526 drives in. A poir of 810's modulates it. Moximum plate voltage is 4000 volis fer CW and 3200 volts for phone.

500wans CW; 375 wansphono (Full input up to 120 Mc) Two 4-125A/4021's rake I KW on CW, 750 wolts on phone. One 2526 drives a palr. Two 81 l-A's modulote tham. Maximum ploto voltase is 3000 v for CW , 2500v for phone.

9OwaHs CW; 67.5 wans phone (Full input up to 60 Me Reduced inpul up to $\mathbf{1 7 5} \mathrm{Mc})$ Circuit versatitity of this tube is matehod by fow other types. Excellon for 2-meter work-handiss 48 woits input on phono af 150 Mc . In a class $A \mathrm{~B}_{\mathrm{I}}$ modulator, two 6146 's con deliver up to 120 wath.

time for you to

get busy with TRANSISTORS

Every HAM and Radio Hobbyist should know about Transistors. The Time to investigate is NOW!

From now on the use of Transistors is going to spread rapidly. Their advantages in simplifying design are unique. Their potential applications are endless.
Whenever you think of vacuum tubes, from now on you should consider the possibility of substituting Transistors. True, the characteristics of the Transistor do not lend themselves to direct replacement of tubes in existing circuitry, each new application must be designed around the Transistor. What makes the Transistor so overwhelmingly worth while is its small size and light weight, long life and low cost. In addition, the Transistor's versatility of function opens up a broad new fleld of applications never before possible.
Free Literature is now available from Hydre-Aire, giving guidance on how to use Point-contact Transistors in certain HAM applications: and also how to build a miniaturized home broadcast receiving set using Transistors supplied by Hydro-Aire. Write now *

BL'RBANK, CALIF.
Subsidiary of Cranc Co.

Bliley Crystals FOR 23 YEARS TOP AMATEUR CHOICE ...

On crystals supplied to the toler. ance abowe, the nameplate frequency is calibrated $0=.002 \%$ in factory test equipment. The drift is less than .0002\% per \mathbb{C}.

Bliley TYPE CCO-2A

This famous packaged oscillator unit was designed and engineered to utilize the many advan. tages of crystal control on 2-6.10-11 meters. With the CCO.2A, output is ohtained directly on 6-10.11 meters; oper. ation on 2 meters requires only a triplerstage. Specified for 10 meters and 11 meters is the Bliley type AX2. For 6 meter operation, use Bliley type AX3. On 2 meters, select an AX 3 crystal which will triple to the desired transmitting frequency.

PRICE: $\$ 11.95$ (Less Tube and Crystal)

You will find these famous Bliley amateur products described in Bulletin 44-A-now avalable at your favorite distributor of amateur equipment.

B.W PRODUCTS o the YEAR

Radio Transmitter Model 5100

- OUTPUT-100 watts phone, 125 watts CW.
- OPERATION-VFO or 80 meter crystal. VFO is built-in accurately calibrated, highly stable.
- COVERAGE-80-40-20-15-11-10 Meter bands.
- R-F AMPLIFIER-Pi-net wark tank circuit for matching impedances from 40 to 125 ohms.
- Television interference suppressed.

This B\&W transmitter has been designed for the most discriminating operator. It is built for consistent, dependable service, and a high quality signal output, be it tele. phone or telegraph. Though highly compact, its layout is straight-forward with all components easily accessible. The heavy gauge steel cabinet
is finished in a pleasing shade of blue-gray Hammertone. The richly finished front panel clearly indicates all switch and knob designations. Weighing only 83 lbs ., $211 / 2^{\prime \prime}$ wide $x 151 / \mathbf{q}^{\prime \prime}$ high $\times 151 / 8^{\prime \prime}$ deep, this B\&W Transmitter is an attractive piece of equipment that will catch the eye of the most critical amateur.

Grid Dip Meter

This indispensable measuring irstrument enables you to get the most out al your equipment. Its amazing performance will save you time in initial transmitter tuning, neutralizing, antenna loadimg, and dozens of oxher jobs. lixtremely versatile, it car be used as a sensitive grid dip merer, a signal generator, an absorption wave meter, or as a signal monitor from 1.75 to 260 mc . The calibrated color coded dial is divided in 5 bands matching each of the 5 coils supplied.

1-KW Multi-Band Balun

This deluxe unit provides selection of an appropriate Balun by the twist of a selector knob when the operator desires to change operation from one band to another. It may be used with any one of five separate half wave folded dipoles or any multi-band ancenna system whose feedline reflects a constant impedance of 300 ohms. Intended for indoor use, within easy reach from the operating position, its design provides for operation within the amateur bands $80 \cdot 40-20-15$ and 10 meters. Impedance characteristics are 75 ohms unbalanced input to 300 ohms balanced output.

1-KW Single Band Beam Balun

These $1 \cdot \mathrm{KW}$ Baluns are ideal for use with beam antennas. employing the popular "T" matching section. Available in models for eithet 30,15 , or 10 meter operation. the input of each Balun is designed to match a 75 ohm unbalanced feed line system while the output, in a combination connection with a "T" section, mathes 100 ohms. The metal case is weathesproof and fitted with a roaxial input connector and ceranic teedithru output terminals.

1-KW Single Band Balun

These I-KW Baluns are designed for half-wave folded dipole antennas. Input characteristics are 75 ohms unbalanced to atl output of 300 ohms balanced. They are available in five models for operation at either $80-40-20-15$ or 10 meters. Il loused in sturdy, weatherproof llammertone metal cases, all are equipped with coaxial input ennmectors and ceramic feedtha output dromitals.

R-F Power Meter

This handy instrument is indispensable for measuring the output power of transmitters, and as a dummy load in tune up procedures when no radia. tion is desired. The large, fantype, power output scale is in valuable for indicating the final performance of your equipment. Power rating is 125 watts inter mittent, 100 watts continuous. Max. SWR is I.S:I, Models for 52 or 75 ohm input impedance ate available for 0 to 40 me or 15 tu 100 mc .

SIENALING \& CONTROL EIUPNMENT

fore dependable operations!

Economical Systems of Modern Design

SELECTIVE CALLING OR SIGNALING

Hammarlund Selective Calling equipment, added to 2 -way radio systems used to control large fleets of vehicles, or distant fixed stations, add privacy, speed, safety, quietness and convenience to day-in-day-out operations. By the push of a button the dispatcher within 0.8 of a second selects the individual station or group of stations he wants to contact. If the operator of the car or station being called doesn't answer, an indicator lamp remains lighted to show he was called.

REMOTE SUPERVISORY CONTROLS

The Hammarlund "Multi-Gate" Remote Supervisory and Control System is engineered to provide highly efficient, fully reliable operational controls of important remote equipment such as used by refineries, pipelines, utilities, railroads, civil defense and other commercial, as well as military groups. This equipment makes possible the operation of many distant functions immediately and positively from one or more master stations.

POINT TO POINT SIGNALING

The Hammarlund Standard Duplex Signaling Unit consists of a tone generator and receiver designed to operate over wire lines, telephone or power line carrier, and radio or microwave communications circuits for signaling, dialing, slow speed telemetering, supervisory controls or other information. Transmitters and receivers are available for 36 frequency channels between 2000 and 6475 cps .
The above are examples of the many types of signaling and control units and systems, designed and manufactured by Hammarlund, and now in use by groups requiring remote operations and continuous indication of operating conditions.
Write for detailed information on equipment to fulfill your requirements.

Push-Button Selective Calling

Whan Your Design
 Considerations are Critical-Put in

Reliable Component:

The "MAC"

The "MAC" provides the low minimum capacity essential for use as a trimmer in the VHF range. It was engineered to achieve the smallest dimensions practical to meet the requirements of a miniaturized component. Its silicone treated steatite base is only $3 / 4^{\prime \prime} \times 5 / 8^{\prime \prime}$.

Rotor and stator are soldered assemblies and are of brass, nickel plated. Capacities range from 1.4 to 19.6 mmf .

The "BFC"

The "BFC" "butterfly" type capacitor has very low minimum capacity, low inductance and isolated rotor for use in VHF applications as a series capacitor with no rotor contact. Brass rotors and stators are soldered and nickel-plated. The contact wiper is heavily silver-plated beryllium-copper.

Capacities range from 3.4 to 40.1 mmf .

The "APC"

The "APC" trimmer capacitor originated by Hammarlund over twenty years ago is still widely recognized as the standard capacitor of its type.

Its use is indicated in all classes of equipment where a compact, high quality air dielectric trimmer is required. It was designed to resist effects of temperature, moisture and vibration.

Capacities range from 3.0 to 140 mmf .

The "MAPC"

The "MAPC" capacitor is a scaled-down version of the popular "APC" with everything reduced except the quality and performance characteristics.

Lower minimum capacities and low inductance make the "MAPC" suitable for VHF use. Capacities range from 2.3 to 100 mmf .

The "MC"

The "MC" is a versatile single section tuning capacitor designed to give a choice of mountings, connections and capacity characteristics. "MC-S" capacitors have a straight line capacity characteristic. "MC-M" units have offset plates resulting in a "Midline" characteristic which more equally spaces frequencies. Capacities range from 5.5 to 320 mmf .

HAMMARLUND CAPACITORS

for Your Equipment

The "RMC"

The "RMC" was designed specifically for applications requiring an "MC" type tuning capacitor with very rigid construction, such as mobile operation. Its sturdy frame consists of heavy gauge aluminum end panels held together by three aluminum tie rods.

It has a brass sleeve front bearing and a single ball thrust rear bearing for smooth tuning and a high degree of resetability. Capacities range from 7.3 to 327 mmf .

The "VU"

A uniquely designed UHF tuning capacitor using completely original concepts. With it, conventional "lumped constant" circuits, rather than tuned cavity techniques, can be efficiently used up to 500 Mc. Capacitor sections are in series to eliminate rotor wiper and the design utilizes Pyrex balls to form precision bearings and to completely isolate the rotor.

The vacuum tube and inductor can be mounted adjacent to and on opposite sides of the capacitor to minimize circuit inductance. Capacities range from 3.35 to 45 mmf .

The "HF" Series

The "HF" is a single section tuning capacitor employing "APC" rotor and stator design. Extra-long sleeve bearing and positive contact nickel-plated phosphor-bronze wiper make this unit ideally suited to high frequency applications. Also available as a dual "HFD". Capacities range from 2.8 to 142 mmf .

Write
today
for our
latest
Capacitor Catalog

with Beam Power

For that modern, high-efficiency, low-cost transmitter, always design around RCA Beam Power Tubes

Beam power tubes-an original RCA de-velopment-enable you to design and build high-efficiency rigs at less cost. Because of the low power required to drive beam power tubes, you can operate your transmitter with low-power-level exciters-minimize your TVI problems. With beam power tubes, you get peak performance with fewer stages -which makes for easier band switch-ing-fewer tubes, and fewer components.

Put the advantages of beam power to work for you when you design. Specify

RCA. There's an RCA Beam Power Tube for every input up to 1000 watts-and every frequency up to 225 Mc . For additional data on RCA beam power types see Table 17 in Chapter 27 of this Handbook.

RCA HAM TIPS. Written by radio amateurs for radio amateurs, this up-to-the-minute publication is jam-full of how-to-make-it articles, as well as non-constructional articles
 on TVI. Free from your RCA Tube Distributor. Or write RCA, Commercial Engineering, Section Allm, Harrison, N. J.

RADIO CORPORATION OF AMERICA

1000 wans and more, cW 675 wams phone
(Full inpul up to 75 Mc) High-power "find." A 2526 drives it. A pair of Blo's modulates it. Moximum plate voltoge is 4030 volts for CW and 3200 volts for phone.

500wans CW; 375 wamsphone
(Full input up to 120 Mc) Two 4-125A/4D21's take I KW on CW, 750 wats on phone. One 2526 drives a poir. Iwo 811 -A's modulote them. Moximum plate voltoge is 3080v for CW, 2500v for phone.

90 wams CW, 67.5 wans phono (Full input up 1060 Mc
Reduced input up to 175 Mc)
Cirevil versatility of this tube is matehed by few other trpes. Excellem for 2-meter work-handles 48 wott input on phone of 150 Mc . In a class $A B_{s}$ madulator, iwo 6146 's con doliver up to 120 wotts.

time for you to

 get busy with
TRANSISTORS

Every HAM and Radio Hobbyist should know about Transistors. The Time to investigate is NOW!

From now on the use of Transistors is going to spread rapidly. Their advantages in simplifying design are unique. Their potential applications are endless.
Whenever you think of vacuum tubes, from now on you should consider the possibility of substituting Transistors. True, the characteristics of the Transistor do not lend themselves to direct replacement of tubes in existing circuitry, each new application must be designed around the Transistor. What makes the Transistor so overwhelmingly worth while is its small size and light weight, long life and low cost. In addition, the Trensistor's versatility of function opens up a broad new field of applications never before possible.
Free Literature is now available from Hydre-Aire, giving guidance on how to use Point-contact Transistors in certain HAM applications; and also how to build a miniaturized home broadcast receiving set using Transistors sup. plied by Hydro-Aire. Write now *

Actual size

BURBANK, CALIF,
Subsidiary of Crane Co.

Specially designed third overtone crystal produced for the Bliey CCO-2A oscilla. tor. On crystals supplied to the tolerance above, the nameplate frequency is calibrated to $\pm .003 \%$ in factory test equipment. The drift is lessthan $.0002 \%$ per ${ }^{\circ} \mathrm{C}$.

On crystals supplied to the tolerance above, the nameplate fre. quency is calibrated to $=.002 \%$ in factory test equipment. The drift is less than .0002\% per C.

Bliley Orystals FOR 23 YEARS TOP AMATEUR CHOICE...

This famous packaged oscillator unit was designed and engineered to utilize the many advantages of crystal control on 2.6.10.11 meters. With the CCO-2A, output is obtained directly. on 6.10-11 meters; operation on 2 meters requires onlya triplerstage.

Specified for 10 meters and 11 meters is the Bliley type AX2. For 6 meter operation, use Bliley type AX3. On 2 meters, select an AX3 crystal which will triple to the desired transmitting frequency.

PRICE: $\$ 11.95$ (Less Tube and Crystal)

You will find these famous Bliley amateur products described in Bulletin 4 - A - now avalable at your favorite distributor of amateur equipment.

B.W PRODUCTS of the YEAR

Radio Transmitter Model 5100

- OUTPUT-_ 100 wafts phone, 125 watts CW.
- OPERATION-VFO or 80 mefer crystal. VFO is built-in accurately colibrated, highly stable.

COVERAGE-80-40-20-15. 11-10 Meter bands.

- R-F AMPLIFIER-PI-network tank circuit for mafching impedonces from 40 to 125 ohms.
- Television interference suppressed.

This B\&W transmitter has been designed for the most discriminating operator. It is built for consistent, dependable service, and a high quality signal output, be it telephone or telegraph. Though highly compact, its layout is straight-forward with all components easily accessible. The heavy gauge steel cabinet
is finished in a pleasing shade of blue-gray Hammertone. The richly finished front panel clearly indicates all switch and knob designations. Weighing only 83 lbs., $211 / 2^{\prime \prime}$ wide $\times 151 / 4^{\prime \prime}$ high $\times 151 / 8^{\prime \prime}$ deep, this B\&W Transmitter is an attractive piece of equipment that will catch the eye of the most critical amateur.

1-KW Multi-Band Balun

Grid Dip Meter

This indispensable measuring instrument enables you to get the most out of your equipment. Its amazing performance will save you time in initial transmitter tuning, neutralizing, antenna loading, and dozens of other johs Extremely versatile. it can be used as a sensitive grid dip meter, a signal generator, an absorption wave meter, or as a signal monitor from 1.75 to 26.0 mc . The calibrated color coded dial is divided in 5 bands matching each of the 5 coils supplied.

This deluxe unit provides selection of an appropriate Balun by the twist of a selector knob when the opetator desires to change operation from one band to another. It may be used with any one of five separate half wave folded dipoles or any multi-band antenna system whose feedline reflects a constant impedance of 300 ohms . Intended for indoor use, within easy reach from the operating position, its design provides for operation within the amateur bands 80-40-20-15 and 10 meters. Impedance characteristics are 75 ohms unbalanced input to 300 ohms balanced output.

1-KW Single Band Beam Balun

These 1-KW Baluns are ideal for use with beam antennas emploring the popular ''T". matching section. Availsble in models for either 20. 15, or 10 meter operation, the input of each Balun is designed to match a 75 ohm unbalanced feed line system while the output, in a combination connection with a "T" section, matches 100 ohms. The metal case is weatherproof and fitted with a coaxial input connector and reranic leedthril output ternimals.

1-KW Single Band Balun

These 1-KW Baluns are designed for half-wave folded dipole antennas. Input characteristics are 75 ohms unbalanced to an output of 300 ohms balanced. They are available in five models for operation at either $80-40-20-15$ or 10 meters. Housed in sturdy, weatherproof Hammertone metal cases, all are equipped with coaxial input connectors and ceranic feedthan outpui termintals.

R-F Power Meter

This handy instrument is indispensable for measuring the output power of transmitters, and as a dummy load in tune up procedures when no radiation is desired. The large, fantype, power output scale is invaluable for indicating the final performance of your equipment. Power rating is 125 watts intermittent. 100 watts continuous. Max. SW'R is $1.5: 1$. Models for 52 or 75 ohm input impedance ate wailable for 0 to 40 mc or 35 to 100 mic.

B\&W PARTS and

> Heavy Duty Butterfly Variable Capacitors

13 \& W heavy duty butterfly variable capacitors with coils integrally mounted pave the way for increased efficiency in singleended and push-pull circuits. Better L. C. ratios at high frequencies, with heam power tubes as well as a host of other desirable features, are a reality with these husky units. These include: compact assembly, shorter tuned circuit leads, shorter R. F. paths and optional built-in neutralizing condensers.

B\&W Low Pass Filters are highly effective in attenuating harmonics causing TVI. Attenuation is 85 db or more thru the TV band; insertion loss less than .25 db thru the pass band to 30 mc . They can easily handle more than 1 KW of r-f power. Consisting of four " K " sections plus two " M " derived end sections, these filters are constructed of heavy gauge copper, employ the highest grade electrical Teflon insulation, in a compact, screw-assembled case.

These accessories permit compact assemblies with companion units such as capacitors, jack bars, plug-in coils, and links. Two groups are available, one for open wire plug-in swinging links, and another for laraday Shielded links. Assemblies include a jack bar, arm and hinge, link (open wire or shielded), and either a metal bottom plate or capacitor mounting bracket. Individual parts may be purchased.

Audio Oscillator
Freq. Range: 30 to 30,000 cycles. Freq. Response: Better than +1 DiB. 30 to 15,000 cycles with 500 ohm load.
Stability: Better than 1%

Bases and Mounting Assemblies Mounting Assemblies

Freq. Range: Fundamentals from 30 to 15,000 cycles. Measures harmonics to is,000 cycles. Sensitirity: 3 volts minimum input required.

Frequency Meter

Freq. Ramge: 0 to 30,000 cycles. Sensiticity: 0.25 volts minimum input required.
W"ate lorm: Any form with peak ratios less than 8:1.

EQUIPMENT

Having 25% of the frontal area of the Heavy Duty Type, these split-stator variable capacitors are ideal for medium power triode or tetrode stage plate circuits and many other applications. Heavy rounded edge plates permit ratings up to 2500 volts dc unmodulated and 1500 volts dc in modulated final amplifier circuits. Design provides peak efficiency and more power in less space.

This compact, versatile unit is in keeping with modern trends toward miniaturization. Operated with either crystal or VFO, it serves as an exciter for a high powered rig or as a low powered transmitter with a full 30 watt of output on the amateur bands including 80-40-20-15-11 and 10 meters. It avoids the most laborious and time consuming part of the job during construction of a new transmitter.

Provides an efficient watertight insulated connector for center-feed antenna systems using coaxial cable for feed lines.

Light in weight, it will withstand pulling strains up to 500 lbs.

B \& W Rotary Coils are available for all medium and high power requirements of pi-network, final circuits, and antenna coupling and loading units. 500 -watt units are supplied with inductances of 1.6 , $6.2,15$, and 72 micro-henries, 1000 -watt types with 60 or 96 micro-henries.

Junior Butterfly Variable Capacitors

CC 50
Coaxial Connector

INSTRUMENTS

Sine Wave Clipper

Does the work of a square wave generator costing many times more. Speeds accurate circuit analysis.

Linear Detector

Provides R-F detectionand audio bridging circuits. It is an invaluable accessory for distortion meters lacking these features.

VARIABLE VACUUM CAPACITORS

VVC60-20
VVC2-60-20
VVC4-60-20

VACUUM CAPACITORS

VC6-20	VC25-20
VC6-32	VC25-32
VC12-20	VC50-20
VC12-32	VC50-32

2C39A

This small, rugged triode is designed for use as a power amplifier, oscillator or frequency multiplier to frequencies above 2500 mc . It is particularly suitable for compact fixed or mobile equipment.

4-125A

The radial-beam power tetrode that made transmitting screen-grid tubes popular. This tube will take a plate input of 500 watts for CW or 380 wates for fone. Driving power is less than two watts. A pair of these tetrodes make an ideal high power fone or CW final for the amateur.

4-250A

A pair of these radial-beam power tetrodes will easily handle a kilowatt for fone. In CW' service, one tube will take a kilowatt input. Driving power is only two to three watts per tube. As modulators a pair will deliver as much as 750 watts audio with simple resistance coupled driver stages.

FINGER STOCK

Preformed Contact Finger Stock is a useful electrical "weather strip" around accesses to equipment cabinets as well as providing good circuit continuity between adjustable components. It is ideally designed for making connections to coaxially conetructed and external anode tubes.

4X150A

This small external anode radial-beam power tetrode operates efficiently at all frequencies into the UHF range with a driving power of only a few watts. Its small size and ruggedness make it ideal for compact equipment such as mobile.

4E27A

With simple circuits and less than two watts driving power this radial-beam power pentode gives dependable operation and high output. It is capable of an easy 500 watts input in Class-C service - or when suppressor modulated will deliver 75 watts output at carrier conditions.

2507

A tried, proven and continually improved 250 watt triode. The ideal triode for one KW CW input. Will handle 825 watts input on fone. With plate voltage as low as 1500 volts in Class-B audio service a pair will modulate a KW RF stage.

KLYSTRONS

Fimac six kilowatt kly. strons, $3 \mathrm{~K} 20,000 \mathrm{~L}$ (A, F,K), and 15 kilowatt klystrons, $3 \mathrm{~K} 50,000 \mathrm{~L}(\mathrm{~A}, \mathrm{~F}, \mathrm{~K})$, are outstanding for high power CW and TV at UHF. Only three tubes of either series are required to span the entire UHF.TV spectrum. Externally tuned circuitry and ceramic envelopes are among other features.

4W20,000A

In pulse service and TV operation the Fimac 4W20, 000 d is the only time-proved tetrode in its power class. Its rugged construction includes a ceramic envelope that minimizes losses and increases operational life. In VHF.TV operation, it gives 25 kw peak sync power output with only 500 watts drive.

VVC60-20

This is but one type in the Eimac line of variable and fixed vacuum capacitors for plate tank circuits. It is variable over a range of 10 mmfd to 60 mmfd. Maximum rf voltage is 20 kv at 40 amperes.

- Write for 28-page booklet, "Care and Feeding of Power Tetrodes." Available free upon request.

Eimac maintains an Amateurs' Service Bureau for amateur radio operators. Free information may be obtained by writing. Available for engineering consultation and information is the Eimac Application Engineering department.

ESICO
 INDUSTRIAL SOLDERING IRONS

are the result of 25 years of specializing in the manufacture of high quality electric soldering irons and they are used today in a great majority of the country's electrical, radio and electronic plants.

No. 61

A lightweight $\{21 / 2$ ounce), low cost unit for pin-paint accuracy in the most delicate soldering operations. Element construction is of same type used in ESICO industrial irons. Handle temperature is never higher than bady temperoture, Diometer of handle $3 / 4^{\prime \prime}$. Tips ovailable in 3 shopes: type B-1/4" dio., pyramid point; type A- $1 / 3^{\prime \prime}$ dio., straight pencil point; type C-- $1 / /^{\prime \prime}$ dia., bent 90 degrees, with pencil.like point. Regulorly wound to 25 watts at $105-120$ volts. Moy be obtoined in higher wattoges at no extracost when purchosed in quantities. point, Regulorly wound to 25 watts ot

No. 61A

The \#6I A iron is very similor to the "61 except that the cose enclosing the element is slightly longer. Where on iron which can be held as a pencil is required, it is possible to have this iron in wattages as high as 75 watts for fost soldering of moderate size ports. The iron, as illustrated, is $1 / 2$ actual size.

No. 62B

This iron is availoble in 100 watts for either $105 / 120$ volts or $220 / 240$ volts. It is iritended for 100 watt capacity work, but where a small diometer case is required in order to get to the connections to be soldered. The iron is extremely light, and due to speciol construction has an extremely low handle temperoture. Iron, as illustroted, is $1 / 3$ acfual size.

No. 38

This is the iron thot is so widely used in the large radio plants ond, in many instantes, is used in a 150 watt capacity, though the standord wotrage of the iron is 100 watts. It is recammended that 150 watts be used only where there is fairly continuous soldering The iron is of a type in which the element con be easily replaced by lossening a knurled nut of the bock of the case, and after lead wires are loosened, by pulling out the old element and inserting the new one in a few minutes. The iron is ruggedly constructed ond requires a minimum of attention and is completely serviceable within one's own plant. This iron is fast becoming the most popular iron in use in the electronic industry. The iron, as illustrated, is $1 / 3$ octual size.

Temperature Control Stand

A practical, time and money saving device which accurotely regulates and mointains soldering iron temperoture between jobs. Lengthens iron life by reducing tip oxidotion and omalgomation of tip with solder which increases with over-heoting. When ploced on stand, iron rests in a copper crodle which conducts heot of iron and actuates o bimetal to open or close o switch. Temperature is easily regulated by an adiusting slide at bottom of stand. As iron is removed from stond, full current is instantly supplied. Stem rest is odiustable to accommodate various lengths af irons. Stand is a heavy gray iron casting-stays firmly fixed without being fastened.

Solder Pots

Designed to meet rigorous produclion requirements, ESICO solder pots are made from high quality gray iron costings. They are fitted with heater plate type elements which can be easily and quickly reploced. Elements wound from highest quality nickel chrome resistance wire. Elements of the three pots are interchangeable for greater economy and flexitility.

ELECTRIC SOLDERING IRON CO., INC., Deep River, Conn., U.S.A.

102

HARYEY

 ALWAYS HAS IT...IN STOCR For IMMEDIATE DELIVERY
chicago TRANSFORMERS

Designed for Modern Circuit Applications: Amateur Communications,
Broadcast, IV, \& Audio

FILAMENT TRANSFORMERS

Primary: $115 / 230$ volts, 50/60 cycles.
Chicago filament iransformers are rated to provide voltages and currents for heating a wide range of receiving and transmitting tubes. All units are S-type mountings (see illustration above). Those with secondaries rated at less than 5 amps. have solder-lug terminals, those over 6 amps . have screw-type terminals. Units marked * have ceramicinsulated secondary terminals, especially suited for high voltage rectifier supply.

Catalog No.	Secondary Volts Amps.		Insulation volts RMS	Net Price
F. 25	2.5 CT	5.25	3500	\$ 6.33
F-210*	2.5 CT	10.	5000	9.09
8-210H*	2.5 CT	10.	9000	10.65
F-215H*	2.5 CT	15.	9000	12.75
F-54	5.0 CT	4.0	2500	6.51
F-58	5.0 CT	10	2500	8.70
F.510H*	5.0 CT	10.	10000	13.50
F. 516	5.0 CT	20.	2500	13.11
F-520H8*	5.0 CT	20.	10000	16.95
F-530	5.0 CT	30	2500	16.95
F-615	6.3 CT	1.5	2500	3.75
F-63	63 Cl	3.	2500	3.25
F-65	6.3 CT	5.5	2500	7.65
F-610	6.3 CT	10.	2500	9.78
F. 75	7.5 CT	5.0	2500	7.35
F-712	75 Cl	12.	2500	12.75
F-725	7.5 CT	25	2500	16.95
F-104	10. CI	4.0	2500	7.80
F. 106	10. CT	6.5	2500	10.77
F-1010	10. CT	10	2500	12.75
F-1110	11. CT	10.	2500	12.30

Anywhere in The World ORDER BY MAIL DIRECT FROM HARVEY

Wrife for full detalls and accessory lists fa:
NOTE: In view of the ropidly changing market canditions, all prices shown ore subiect to change without natice and ore Net, F. O. B., New Yark Cily.

PLATE TRANSFORMERS

Primary: $115 / 230$ volts, $50 / 60$ cycles.
Chicago plate transtormers, as well as the filter reactors, are conservatively designed. They are amply insulated, and built to withstand the most rugged service. Temperature rise is very moderate under both CCS and ICAS conditions.

Catalog Max. Pri. No. VA	Secondary A-C Load Volts a	D-C Volts after filter	$\begin{gathered} D-C \\ C C S \end{gathered}$	Ma. ICAS	Mtg. Type	Net Price
$\begin{array}{ll}\text { P-45 } & 185\end{array}$	$\begin{aligned} & 675-0.675 \\ & 575-0.573 \\ & \hline \end{aligned}$	$\begin{array}{r} 400 \\ 500 \\ \hline \end{array}$	250	325	S	\$ 14.10
P-67 250	$\begin{aligned} & 900-0-900 \\ & 735-0-735 \end{aligned}$	$\begin{array}{r} 750 \\ 600 \\ \hline \end{array}$	250	325	S	16.80
P-107 310	$\begin{gathered} 1150-0-1150 \\ 870-0-870 \end{gathered}$	$\begin{array}{r} 1000 \\ 750 \\ \hline \end{array}$	250	350	FS	41.70
P-1240 360	$\begin{gathered} 1425-0-1425^{*} \\ 600-0-600 \end{gathered}$	$\begin{array}{r} 1250 \\ 400 \\ \hline \end{array}$	$\begin{aligned} & 150 \\ & 200 \end{aligned}$	$\begin{aligned} & 200 \\ & 260 \\ & \hline \end{aligned}$	S	23.70
P-1512 550	$\begin{aligned} & 1710-0-1710 \\ & 1430-0-1430 \end{aligned}$	$\begin{aligned} & 1500 \\ & 1250 \end{aligned}$	300	425	FS	47.70
P-2520 915	$\begin{aligned} & 28200-2820 \\ & 2260-0-2250 \\ & \hline \end{aligned}$	$\begin{aligned} & 2500 \\ & 2000 \\ & \hline \end{aligned}$	300	425	FS	71.70
P-2126 160G	$\begin{aligned} & 2900-02900 \\ & 23200-2320 \end{aligned}$	$\begin{aligned} & 2600 \\ & 2100 \end{aligned}$	500	700	FS	89.70
P-3025 1850	$\begin{aligned} & 3450-0-3450 \\ & 285002850 \\ & \hline \end{aligned}$	$\begin{array}{r} 3000 \\ 2500 \\ \hline \end{array}$	500	700	FS	119.70
-4353 3050	$\begin{aligned} & 4600-0-4600 \\ & 4 C 50-0-4050 \\ & 3400-0-3400 \end{aligned}$	$\begin{aligned} & 4000 \\ & 3500 \\ & 3000 \end{aligned}$	600	800	FS	161.70

* Both secondaries miay be rectified simultaneously

FILTER REACTORS

Catalog No.	inductance in Hearies	Max. O-C Ma.	$\begin{gathered} \text { D-C } \\ \text { Resistance. } \\ \text { Ohms } \end{gathered}$	Insulation Volts RMS	Mtg. Type	Net Price
R-67	6	700	35	10,000	FS	\$33.90
R-105	10	500	40	9,000	FS	34.50
R-65	6	500	35	9,000	FS	27.48
R-103	10	300	40	7,500	SX	16.95
R-63	6	300	35	7.500	SX	14.34

Write for FREE CATALOG Contains full details on Chicago equipment line

104

NOVICES, AMATEURS, ENGINEERS,

 and
EXPERIMENTERS

 Across the Nation
RELY UPON

harveyfor all their ELECTRONIC and COMMUNICATION REQUIREMENTS!

Because Harvey's stocks are so large and so complete, almost anything you can name in electronics, can be shipped within minutes of your letter, wire, or phone call. And you can depend upon Harvey that what you receive is exactly as ordered, and that it will function and perform to your complete satisfaction.

Harvey has been the reliable headquarters for hams, experimenters, professionals, commercial and industrial engineers for over 25 years. And the experience gained over these years is always at work for you. Six active amateurs are in Harvey's employ, plus a staff of well informed, trained experts who stand ready to assist you in the selection of parts and equipment, and in troubleshooting your problems. Every possible field is covered, including radio communications and broadcasting, TV, audio, recording, and industrial electronics.

Remember, you are always welcome at Harvey's. So, when in New York, make it a point to come in and say, "Hello".

DULSESCCOPE

Investigations of complex waves take great strides forward when either a Waterman SAR or LAB PULSESCOPE is employed Their compactness, portability and precision have established a new high in pulse measurement instruments for all electronie work. Each PULSESCOPE has internally generated markers which are synchronized with the sweep with the basic difference tha the sweep in the LAB PULSESCOPE initiates the markers while in the SAR PULSESCOPE it is the crystal controtled markers whict initiate the sweep. Power supply requirements of 50 to 1000 c.p.s. at 115 Volts permits operation almost anywhere.

The SAR PUTSBSCOPF, model S-q-A is characterized by a pulse rise time of 0.035 microseconds thru a videco amplifier with a sensitivity of 0.5 Volts p to p/inch. A vertical delay of 0.55 microseconds is optional. A and s swerps covering a continuous range from 1.2 to 12.000 microseconds are augmented by R swerps, which in turn are variable from 2.4 to 24 microseconds. A directly calibrated dial permits IR sweep delay readings from i3 to 10,000 microseconds.

The LAB PULSESCOPE, model S-5-A, has equivalent rise time of 0.035 nieroseconds, a fixed 0.55 microseconds vertica delay and 0.1 Volts p to $p / i n c h$ sensitivity, so arranged as to assure portrayal of leading edges on displayed signals A precision calibrated voltage is provided as well as ar optional sweep expansion of 10 to 1 . A built-in triggen genelator voltage is available for synchronizing any asso ciated test equipment.

WATERMAN RAYONIC CATHODE RAY TUBE DEVELOPMENTS

Since the introduction of the Waterman RAYONIC 3MPI for miniaturized oscilloscopes, scientists in our laboratories hate diligently searched for more perfect answers to present day cathode ray tube proibems. Such research led to the introduction of the revolutionary new 3SP and $3 X P$ type cathode ray tubes. These tubes were designed with multi-trace oscilloscopy in mind. Every avenue of practical design was explored to produce whes with bright. sharp traces and high deflection sensitivity at medium anode potentials.

TUBE	PHYSICAL DATA			TYPICAL VOLTAGES				DEFLECTION FACTOR V/IN.		MAX. VOLTS		
	Face	Length	Base	Anode $=3$	Anode $=2$	Anode $\because 1$	Grid $=1$	D1 1002	D3 to 04	Anode $=3$	Anode $: 2$	
		10 inches	Medium Dihepial 12 Pin	3000	1500	30010515	$-22.510-67.5$	12710173	9410128	4000	' 2000	
3JP	3 inch Round			4000	2000	40010690	-30 10-90	17010230	12510170			
3 MP	3 inch Round	8 inches	Smoll Duodecal 12 Pin		1000	20010350	0 10-68	14010190	13010180	2500		
					2000	40010700	0 1o - I26	28010380	260 to 360			
		9.12 inches	Smoll Duodecal 12 Pin		1000	16510310	$-28.510-67.5$	731099	52 to 70	2750		
3 SP	$\begin{aligned} & 11 / 2 \times 3 \\ & \text { inches } \end{aligned}$				2000	330 to 620	-58 to -135	146 to 198	104 to 140			
$3 \times P$	$\begin{aligned} & 11 / 2 \times 3 \\ & \text { inches } \end{aligned}$	8.88 inches	Lectal		2000	400 to 690	-22.5 to -67.5	681092	25 to 35		2750	

Write for your complimentary subscription of "POCKETSCOOP" - OFFICIAL WATERMAN PUBLICATION

POCKEITSOPE

 The Pocket Oscilloscope by

 The Pocket Oscilloscope by}

...light... compact ... accurate ... portable

The HIlill, WIDE and TWIN pockETSCOPF心 have become the "triple therent" of the uscilloseope industry. Their small size, light weight and incredible performanere has skyrocketed this leam of truly portable instmoments into unjaralleded prominence. Feach oscelloseope fieatures I) ${ }^{\circ}$ coupled amplifiers in both its remical and horizontal char-
 vertical sersitivity of 10 milliwolt ams/inch, and a freduence response within -2 db from I)C to 200 KC . while the What:
 quency response within -2 db from I)(10700 KC and : sensitivity of 50 millivolls $\mathrm{rms} / \mathrm{inch}$.

 amplifiers, controls, but a common swepp gencrator. All these are condowed with many idnenteal characteristiess, Their sweep gencrators can be operated as triggered or repetitive over a frequency range from in. (ercles to 50 K (\%, with synchoonzation polarity optionio. Revurn traces ame blanked and provisions are made for 1 odulating the intersity in cach cathode ray tube
Laboratory quality has not been sacrified in order to aceomplish portability and ruggedness. Investigate the many

The INDUSTRIA. POCKETSOP POCKETSCOPE mose S-11-A. has becombe Amerna mose popelar 1)(couple l osillonowpe because of its mall size. hath "estghe. and unique thexibility. This compate instrument how identicat wortical and horizontal anplifiers which pernir the obscrataion of bow frequency repertitise phenomena, While simultanesunty climibating umtererable trace bonnce Fand amplitior sembinity is 0.1 Vole rms/aull. The frecturent revponse are latewhe idencocal. Within-2 th trom 1)((1) 200 KC
Discurer for fourself the amazing uthey of this may work-horse of indubrial clectronic.

RAKSCOPE

S-12-B

Hhe S-I2-K RAKSCOPI is a rack monmed. ANifat version er the fimous
 the additano of a Erigeted berep and a spectal calhbruting circuit for rapid freyuctuy comparisoms. The entire escillowape is haile wo ocepy but seven inches "ien mounted in a standard relay rach.
becatse proviswon are moke tor applying input signals from the rear. as well as the frome the S.12. It is the steal (ombination, bstoms monitor and truable-shomeng ascillosenpe. Lavestigate the mulaple applications of this inserument as an integral patt of pour own rack mosumed apparates.

WATERLAI PRODUCIS CO., INC.

PHILADELPHIA 25, PENNA., U.S.A. CAble address, poketscope, phila.

Ceatn CODE 2 and
 SATISFIED USERS PRAISE AMECO METHODS:
 "Resfired yuthr coulr comese a wrek auo and call com, 10 11.1 . 14 . at. paty wilh erave. Nille beromin! handicapped I hate finumel as tremothdoms sativfartion wilh yellir best, bar noume:
 - A.M. Carter, Pelham, Ga.

Praswed the FC(C' Mas hatey! I'm sickled pink- Hownis io the AMECO Cude and Throry ", whent!

- Jayce Edelsan, K2CFF,

Lawrence, N,Y
' Tesarnedt menr Vorice rionde Course "rerond time!' Veper thoumh rode

 hat ploased with mil mourpas anid mifind to firither muself in this ield!'"

- K.A. Yingling, WN3VDM, Waynesbara, Pa.
'Hare lemoned the Ifr. Pourse in tmazimutime! If:strrific! Am now eady for the seuiur ("ourse!"'
- P. Signarelli, KN6CHR ,

Shermon Oaks, Calif.

AMrecen ELECTRONICS CO.
"RADIO AMATEUR OUESTION \& ANSWER I.ICENSE GUIDE"" A "must" for anyon", premaring for the Noviere Technician. Conditional or Gemeral Class exams. This power-packed book comatins approximately 200 ghestions and answers-mostly of the multiple choice tym similat to the ones get and keep everything given in the Novice Course except that you get 22 recordings(alphabelthrough 18 W.P.M.), plus typical FCC type code exams for General class and 2nd class commercial felegraph licenses. All this for only. $\mathbf{\$ 1 2 . 9 5}$

No. 3-Complete Radio Theory Course. A complefe, simplified home sludy theory course in radio covering the Novice, Technician, Conditional and General classes all under one cover - with nearly four hundred typical FCC type questions to prepare you for license exam. No technical background required. You also get, FREE, one year of consultation and a guide to setting up your own Ham station. All for the amazing low price of.
$\$ 6.95$

No. 4-Advanced Code Course. Prepares Novice operators for the amateur general class and second class commercial license tests. Contains 12 resordings (8 through 18 W.P.M.) PLUS the complete code book-PLUS iypical FCC code examinations for general and commercial tests. ALL for only.. $\$ 6.95$

Miven on FCCC exams.
And . Alare are two typical FCC type exatms that can be used as excollent checks before taking the act tat exam dside from these tspical exams. the rest of the questions atre grompert atcording to subject matter, making study casim. This brok is worth mans. many times its low mice ofsos

FREE LITERATURE AVAILABLE
Sold al leading distribul. rs everynhere or urite to,

Amateur . . . Novice . . . School Insiructor . . . Industrial Engineer

Yes, that's what they all say about the new Walter Ashe Catalog ... source book and buying reference for everything in Radio, Television and Electronic equipment, including items appearing in the APRL Handbook.

What's more, our central location assures fast
delivery. You get what you want, when you want it and at the right price. Add to this our long experience, competent personnel and reputation for service and satisfaction and you have a combination that we honestly believe you won't find duplicated elsewhere.

Try us and see for yourself.

> Psalter Chbe RADIO CO. 1125 PINE ST. • ST. LOUS 1, MO.

- $=-$ FREE CATALOG! Send for your copy today. $=$ =
WALTER ASHE RADIO COMPANY

RAH-54
1125 Pine St., St. Louis 1, Missouri

Send new FREE 1954 Catalog.

Name

Address

City

DR號 $=$ PANELS

DESK PANEL CABINET RACKS

（For Standard $19^{\prime \prime}$ Rack Ponels） $211 / 2^{\prime \prime}$ Long $\times 15^{\prime \prime}$ Deep Streamlined design．Vertical front corners are rounded and trimmed with mouldings．Fiancls fit ithes recrsy and momithe holes tre driled min le．Haed with any chassis nu＂ （0） $1.3^{\prime \prime} \times 17^{\prime \prime}$ ．Finished in black risple e＂tamel．

hinged stel CAbinets

 （Deluxe Type）I Tas ronnded front corners．New type formed top door hinged at back wilh large olsoning for fal ished mouldings．mestern handle at top and bottonn opseling at rear for leads．Finished in grey ripple enamel．Prices do not tnclude chassis．

hinged steel cabinets

（Rounded Corner Type）
IExcellent for monitors．oscilla－ tors，＂te．These cabillets are similar in tesign to Dadelixe ypre with hithges at bark for access to incorior．Rear operning Slate srey ripule fittish．Prices do not include chassis．
do

or Chastis	Net Price
$7 \times 7 \times 2^{\prime \prime}$	$\$ 3.60$
$7 \times 9 \times 2^{\prime \prime}$	3.90
$7 \times 13 \times 2^{\prime \prime}$	5.07
$10 \times 14 \times 3^{\prime \prime}$	7.89
$10 \times 17 \times 3^{\prime \prime}$	9.30

SLOPING FRONT CABINETS

Arlaptable as instrument eases for sturdios．laboratorits，ete rop corner rohmend and trimmed what chrombe monding．Siategrey rind to front pallel，and remosed ass a to front pallel，and rentoved with openings for wontieqions．Prices do not include chassis．

Cat．No．	Overall Dimension： H．L．D．	For Chassis	Net Price
SFr－500．	8x 8x $8^{\prime \prime}$	$7 \times 7 \times 2^{\prime \prime}$	\＄3．84
SF－501	$8 \times 10 \times 8{ }^{\prime \prime}$	7x 9x2＂	4.26
SF－502	$8 \times 14 \times 8{ }^{\prime \prime}$	$7 \times 13 \times 2^{\prime \prime}$	4.59
SF－503	$9 \times 18 \times 8^{\prime \prime}$	$7 \times 17 \times 3^{\prime \prime}$	6.60
SF－504	12x18×12 ${ }^{\prime \prime}$	$10 \times 17 \times 3^{\prime \prime}$	8.40

TABLE TYPE RELAY RACKS

These racks are designed for table molllt thg．in brice of heavy dity floor units． holos drilfed on universal centers．Fimished in black ripple and shipped knocked down．＂to fit $10^{\prime \prime}$ wide rack vancls．
$\begin{array}{llllll} & & & \text { Panel } & \text { Net } \\ \text { Cat．No．} & \text { H．，} & \text { W，} & \text { D．，} & \begin{array}{c}\text { Space，} \\ \text { Price }\end{array} \\ \text { TR－} 2520 & 25^{\prime \prime} & 21^{\prime \prime} & 12^{\prime \prime} & 21 \times 19^{\prime \prime} & \$ 6.60 \\ \text { TR－320 } & 32^{\prime \prime} & 21^{\prime \prime} & 12^{\prime \prime} & 28 \times 19^{\prime \prime} & 8.25\end{array}$
$H_{-} L . D$
$8 \times 8 \times 8^{\prime \prime}$
$8 \times 10 \times 8^{\prime \prime}$
$8 \times 10 \times 8^{\prime \prime}$
$9 \times 18 \times 8^{\prime \prime}$

u
PAR－METAL PRODUCTS CORPORATION
Export Dept．：
These bases are stamped from one piece of cold rolled sterel．Han 4 molid sides with welded corners．sothont vide additional reinforcement，and are

drilled for bottom blates．
（＂hassis aremate from No． 20 pange steel except those marked （＊）which are stimmed from $1 / 16^{\prime \prime}$ witect．

Cat． No．	Cat． No．			Cat． No．	Cat． No．		
Black Ripple	Zine Plated	Size	Net Price	Blach Ripple	Zinc Plated	Size	Net Price
B－4500	C－4500	51／2x ${ }^{1} 2 \times 11 / 3^{\prime \prime}$	\＄0．78	3－4525	C－4525	10x12\％${ }^{\prime \prime}$	\＄1．50
B－4507	C－4507	$5 \times 7 \times{ }^{\prime \prime \prime}$	． 78	B－4524	C－4524	10x143 ${ }^{\prime \prime}$	1.59
B－4508	C－4508	$5 \times 10 \times 3^{\prime \prime}$	1.08	B－4528	C－4528	10x17x2＂＇	1.59
B－4509	C－4509	$6 \times 14 \times 3^{\prime \prime}$	1.26	B－4529	C－4529	10x17x ${ }^{\prime \prime}$	2.04
B－4510	C－4510	71 7x ${ }^{\prime \prime}$	． 90	B－4526	C－4526	10¢17x $3^{\prime \prime}$	1.65
B－4511	C． 4511	$7 \times 9 \times 2$＂，	1.08	B－4527	C－4527	10x23x3＇＂	2.04
B－4512	C－4512	7x1122＇	1.11	B－4533＊	C－4533＊	11417x2＂	2.25
B． 4513	C－4513	741342＇，	1.20	B－4534＊	C－4534＊	11417x ${ }^{\prime \prime}$	246
B－4514	C－4514	711543＂	1.44	B－4516	C－4516	12x17x2＂	1.71
B－4518	C－4518	411783＇，	1.29	B－4517	C－4517	1241743＂	204
B．4515	C． 4515	7x17x $3^{\prime \prime}$	1.56	B－4530	C－4530	12x17x ${ }^{\prime \prime}$	225
B． 4502	C． 4502	$8 \times 12 \times 3^{\prime \prime}$	1.11	8．4535＊	C－4535＊	13x17x2＇，	2.46
B． 4531	C． 4531	$8 \times 17 \times 2$＂	1.44	B－4536＊	C－4536＊	13x173 ${ }^{\prime \prime}$	285
B－4332	C－4532	8．17431	1.56	B－4537＊	C－4537＊	$13 \times 174^{\prime \prime}$	3.25

DOOR PANELS
（Grille or Solid）
Grille Type Illustrated
 Which are＂dilibphed with piallo hillig＇s， from fop to allow suace for chassis at hottom．Regular chassis bracketw maty be used．Finish：－Black Rjable or G Grey kibule．

SOLID		SOLID or GRILLE		GRILLE	
Cat． No．	Net Price	Panel Size	$\begin{aligned} & \text { Door } \\ & \text { Size } \end{aligned}$	Cat． No．	Net Price
P，C－670	\＄4．20	$8{ }^{3}{ }^{\prime \prime}$	4 $1 / 5 \times 15 \%$	P，C－680	\＄5．40
P，C－671	4.50	$10^{1}{ }^{\prime \prime \prime}$	$6 \times 15 \times 1$＂	P，G－681	5.85
P＇G－672	4.95	1214＂	7 S $6 \times 15{ }^{\prime \prime}$	P，C－682	6.45

BLANK STEEL CHASSIS BASES

TVI Suppressed 100 Watter - Model HT20 Here's the transmitter you've been waiting for! Continuous coverage from 1.7 Mc to 30 Mc . Full band switching, no more plugin coils; choice of 10 crysta!s. Shielded, filtered r-f compartments plus low-pass 52 ohm co-axial line output filter assures at least 90 db suppression of all harmonics above 40 Mc . Only $\$ 449.50$

Model S-40B-Covers Broadcast Band $540-1700 \mathrm{kc}$ and three short-wave bands. 1.7-43 Mc. One r-f, two i-f stages. Electrical bandspread tuning. Switches for automatic noise limiter. code reception and three-position tone control. CW pitch control. Built-in PM speaker. 115 V, A.C. Only \$129.95

4 Matched Speaker, Model R46-The perfect speaker for SW. Includes transformer of $500 / 600$-ohm input. Voice coil impedance 3.2 ohms. $10^{\prime \prime}$ cone. Black finish, $15^{\prime \prime} \times 107 / 8^{\prime \prime}$ x 107/8" deep. Only $\$ 24.95$

* He can help you pick the right gear, On the air for over a quarter of a century is your guarantee that Uncla Dave knows the Ham and his needs from a practical standpoint,

Sooner or later you'll want

amateur radio equipment

KW-1 TRANSMITTER - This kilowatt rig operates on phone or CW in the $160,80,40,20,15,11$, and 10 meter bands but tunes as easily as a $32 \mathrm{~V}-3$. Just pick your band, set the built-in VFO to the desired spo-, and adjust the final amplifier for 1000 watts input. That's all there is to it! The KW-1 design reduces spurious radiation to a very low value, particularly at television frequencies.
KW-1 Transmitter. Net Domestic Price \$3,850.00

35C-2 LOW-PASS RF FILTER - Although designed as an accessory for the $32 \mathrm{~V}-3$ and as standard equipment in the KW-1, coaxial fittings make the 35C-2 readily adaptable to any amateur transmitter having 52 ohm output. It has an insertion loss of only 0.25 db at frequencies below 30 mc , but its three individually shielded filter sections provide about 75 db attenuation at television frequencies.

35C-2 Low-Pass RF Filter. Net Domestic Price . . \$40.00

75A-3 RECEIVER - The 75A-3 is a double conversion superheterodyne designed for top performance in the $160,80,40,20,15,11$, and 10 meter amateur bands. A crystal controlled high frequency oscil'ator and highly stable low frequency VFO permit accurate calibration of two kilocycles per dial division on 10 and 11 meters and one kilocycle per dial division on all other bands. The Collins mechanical filter gives the 75A-3 the most nearly optimum selectivity Ever achieved in a communications receiver.

75A-3 Receiver lincludes 3 kc Mechanical

Filter). Net Domestic Price $\$ \mathbf{5 3 0 . 0 0}$

by Bill Cummings, wirmg
When I heard the first stories about Single Sideband transmission, I found it hard to believe the "miracle" promises. Imagine 10 watts on SSB performing better than 1 KW on regular AM!

The stories seemed to be backed by good authority, so we decided to go into it all the way here at Dale. During years of working the Ham circuit, I've tried all the new gimmicks, so I don't startle easily . . . but SSB gave me the same kind of excitement I experienced when I first became a Ham. Here's an example of what happened:
On one occasion, I caught a signal from a KW transmitter in New Mex. ico on AM. He said he would switeh ripht over to SSB on his 10 -watter using the same antenna. There was a sharp improvement in readability, and I copied hint with the greatest ease. I've worked the whole route from the Wl's through the W0's with my own 10 -watter.

Amazing? No, it's just SSB. The only amazing thing about it is you can buy that hind of performance for a small fraction of the price of AM gear.

Actually, no AM set can "match" the job SSIB does in cutting through QRM in the noisy 75 meter band. SSB takes less space on the spectrum, knifes through sharply, and permits higher selectivity in your receiver. The Dale ad adjoining this column tells you more about specific advantages and the best kind of equipment for SSB operation.

If you'd like to cherk those big claims for SSB, how about a simple test? Write me and we'll arrange a schedule so you can hear for yourself. I'll send you tuning instructions too. Send along any questions - l'll be glad to answer them. Just drop me a note c/o Dale Electronic Distributors Inc. in New Haven.

Write ta Bill Cummings at Dale far trade-in allawances and easy terms.

hallicrafters NENDI

MODEL SX-88 RECEIVER $\$ 499.95$
Hallicrafters' finest receiver for amateur use, with highest degree of usable selectivity. Full coverage in six hands, from 535 kc to 33.3 Mc . Double conversion superhet over entire frequency ranqe. Two tuned r-f stages on bands 266, one on broadcast. IF's 2075 ke and 50 ke (bands 1-6), 1550 ke and 50 kc (band 2). AM, CW, SSSC signals. Sersitivity on bands 1-6: 1 microvolt for $1 / 2 \mathrm{w}$ output. 1 microvolt for 10 db signal-to-noise ratio. Band 6: 10 microvolts for $1 / 2 \mathrm{w}$ output. Image rejection not less than 80 db on frequencies lower than 20 Mc and not less than 60 db from 20-30 Mc. Seventeen tubes plus voltage regulator, ballast tube, and rectifier.

10 kc	
5	kc
2.5	kc
1.25	kc
.500	kc
.250 kc	

SELECTIVITY
$6 \mathrm{db}=10 \mathrm{kc}$
$6 \mathrm{db}=5 \mathrm{kc}$
$6 \mathrm{db}=2.5 \mathrm{kc}$
$6 \mathrm{db}=1.25 \mathrm{kc}$
$6 \mathrm{db}=500 \mathrm{cps}$
$6 \mathrm{db}=250 \mathrm{cps}$
$60 \mathrm{db}-30 \mathrm{kc}$
$60 \mathrm{db}=15 \mathrm{kc}$
$60 \mathrm{db}=7.5 \mathrm{kc}$
$60 \mathrm{db}=3.75 \mathrm{kc}$
$60 \mathrm{db}=1.50 \mathrm{kc}$
$60 \mathrm{db}-850 \mathrm{cps}$

hallicraffers

\$249.95
MODEL SX-71 RECEIVER $560-1600$ ke broadcast plus four bands covering 1650 kc 34 Mc and 46 - 56 Mc . Intermediate bands 1 and 2: 455 kc ; bands 3, 4, 5: 2075 Mc and 455 kc. Double conversion superhet circuit. Eleven tubes plus rectifier and regulator.

MODEL S-76 RECEIVER

$\$ 199.95$
Standard broadeast plus three bands covering $1720 \mathrm{kc}-34 \mathrm{Mc}$. Duuble conversion superbet ovar entire range. Intermediate frequencies: 1650 kc and 50 kc . Nine tubes plus rectifier and voltage regulator.

SELECTIVITY

1: (Broad)	$6 \mathrm{db}-5 \mathrm{kc}$	$60 \mathrm{db}-15 \mathrm{kc}$
2:	$6 \mathrm{db}-3 \mathrm{kc}$	$60 \mathrm{db}-12 \mathrm{kc}$
3:	$6 \mathrm{db}-2 \mathrm{kc}$	$60 \mathrm{db}-10 \mathrm{kc}$
4:	$6 \mathrm{db}-1.3 \mathrm{kc}$	$60 \mathrm{db}-7 \mathrm{kc}$
5: (5harp)	$6 \mathrm{db}-.5 \mathrm{kc}$	$60 \mathrm{db}-5 \mathrm{kc}$

lead with Single Sidbeand b

Advantages of Single Sideband Transmission

Here are some reasons why SSB offers an exciting new kind of performance at a fraction of AM cost:

1. With Single Sideband, your final amplifier tubes can provide a 9 db gain, or a power increase of 8 times over conventional double sideband AM.
2. Your final amplifier delivers TALK POWER, not wasteful carrier.
3. No high power modulator and modulator power supply required.
4. The newer selective receivers and receiving adapters will pass only one sideband - in this case half of your sideband power is wasted with double sideband.
5. SSB eliminates the heterodyning carriers that plague the overcrowded phone bands.
6. Less spectrum space occupied by phone signals using SSB.
7. Take full advantage of SSB technique by switching sidebands 10 avoid QRM.
8. Round-table operation of two independent QSOs on the same suppressed carrier frequency using opposite sidebands.
9. Distortion due to selective fading eliminated.
10. Harmonic TVI virtually eliminated through the use of linear amplifiers.

COLLINS

MODEL 75A-3 RECEIVER

with built-in mechanical filter
The nearly flat top and sharp cutoff at the sides of the selectivity curve of the 3 kc Mechanical Filter permit all AM signals to he tuned so as to accept the carrier and either one of the sidebands at will, while other sideband is rejected.

Alternatively, loth AM and SSSC signals may be received with carrier supplied by the BFO ; and the ideal selectivity curve of the Mechanical Filter permit: full advantage to be taken of the benefits of local carrier reinsertion.

75A-3 receiver		\$ 530.00
Matching speaker		20.00
32V3 transmitter		775.00
KW-1 transmitter		3,850.00
70E8A-VFO		97.50
$35 C 2$ lo-pass filter		40.00
COLLINS	ECHANICAL FILTERS	
F-455B-31	3.1 KC plug in	55.00
F-455B-08	800 cycle plug in	55.00
F-455A-31	3.1 KC solder term	55.00
F-455A-08	800 cycle solder term	55.00

CENTRAL ELECTRONICS

$\$ 249.50$
MODEL 20A MULTIPHASE SSB EXCITER
Also rack-mounted in grey or black $\$ 7.50$ additional 20 peak walts output - SSB, A11, PM, CW. Bandswitched $160-10$ meters. Magic eye carrier null and modulation peak indicator. New! Carrier level control: Scparate knob inserts any amount of carrier without disturbing carrier suppression adjustments. New! Calibrate circuit: Simply talk yourself exactly on frequency as you set VFO. Nete! Calibrate level control: Adjusts signal strength to suit band conditions. New! Phone patch input jack: Inserting phone plug disconnects speaker. PLUS all the timeproven features of popular Mordel 10A.
Available soon! Madel V-10 all-band VFO for model 10A. 20A, or your present rig

MODEL IOA
MULTIPHASE EXCITER $\$ 159.50$

10 watts peak output - SSB, AM, PM, CW'. Multiband operation 10.160 meters. Reduced barnonic TVI. Voice operated break-in. CW break-in. Switchable single sideband, with o- without carrier. Double sideband AM. Narrow band phase modulation.

SIDEBAND

SLICER

$\$ 74.50$

LOWER
SOOEBND SLOEBND

WITH SIDE BAND SLICER

An adapter that will improve any receiver. Utilizes the phase shift principle to provide selectable single sideband reception of SSB, AM. PM and CH signals. Reduces the unwanted sideband an average of 40 db , a power ratio of $10000-1$ or approximately 6 to 8 S-units on the average receiver. Improves SSB and CW reception, since the noiso bandwidth is cut in half. May be used to eheck the sideband rejection of SSB signals. Simple connection to any receiver.
by every less $D 1 B$ is Best;

everybody

 AUTO RADIO VIBRATORS Frae Ceramic Sack Spacers Designed for Use in Standard Vibrator.
Operated Auto Radio Per with Precision Construction, But. Built ing Ceramic Stack Spacers for Longer lasting life. Sackers for in Vibrator Design experience meat, and Manutevelap-
 DICTATE

> with
 VIBRATOR PACKS NEW FREE for changing low voltage D.C. to high vallage D.C.

Pay Only 10\% Cash Down

 18 Months to Pay on Major EquipmentNow it is easier than ever to buy from WRL. Pay as little as 10% down and the balance in 18 months. No red tape - we handle our own financing. We will give you a generous trade-in allowance on your present equipment. We have over 600 reconditioned used items - with new factory guarantee. Send for free list. You will profit most when you deal with WRL - THE WORLD'S MOST PERSONALIZED RAIIIO SUPPLY HOUSE and THE WORLD'S LARGEST DISTRIBUTOR OF AMATEUR RADIO TRANSMITTING EQUIPMENT.
Leo I. Meyerson, WøGFQ C.U. on 10-20.40 \& 75 Meters

The NTW MODEL 404 Complete ems sminting

 GLOBE SCOUT
"It Is A Pleasure To Do Business With WRL',

Dear leo:
1 placed my Globe King in operation several months ago ard am MORE than pleased with the results. For rugged dependability, on oulstanding signal, and walt.per-dollar value, I do not believe it can be beat, Although I live, fiterally, in a forest of TV anfennas, I hove never received a complains.

GEORGE FAIRBANKS, WIFWX Seymour, Connecticut

NEW TVI MODEL 400 C GLOBE KING XMTR TVI SCREENED CABINET NOW STANDARD EQUIPMENT

$\$ 495.00$ kIt FORM Cash Down \$515.00 WIRED

Warld Radio Laboratories, Inc. 744 West Broodway
Council Bluffs, lown
Pleose send me:
\square Now log 8ook 25c
\square Free Cololog
\square Rodio Mop 25e
[] Glabe Scout Into
\square Globe King Info
[] Globe Chompion Info
\square Used Equipment List

Nome
Address
City

KIT FORM
WIRED 12 monthly payments of $\$ 8.95 \quad \$ 89.95 \quad \$ 99.95$

LATEST TRIUMPH OF THE WRL ENGINEERING STAFF Complete bandswitching 160 thru 10 M transmitter with combination pi-network antenna tuner which will work into any onfenna. Three-stage modulator allows 100% modulation of final. Has complete power supply. XMTR housed in new special grey TVI screened cabinet. Ideal XMTR for the novice or experienced ham.

REFERENCE MAP

"EL" XENON GAS-FILLED TUBES

RECTIFIERS

whay LAMPKIN METERS

 are the PERFECT PAIR forMobile-Service Measurements

- LOWEST COST . . . for multiple channels. No additional crystals needed for added frequencies.
- VERSATILE . . . measure unlimited number of channels.
- PORTABLE . . . weigh less than 14 pounds apiece.
- LAMPKIN REPUTATION . . . over 60% of sales are repeat orders ... satisfaction guaranteed or your money refunded.

LAMPKIN 205 FM MODULATION METER

FREQUENCY RANGE-continuous 25 mc . to 200 mc . No coils to change. Rough and vernier tuning control. MEETS FCC SPECS-reads peak voice deviation directly, 0-25 kc., positive or negative. No charts or tables. ACCURATE-within 10% at full scale. FIELD STRENGTH METER—reads relative transmitter output. PROTECTED-Panel components recessed behind edges of the case. PORTABLE -just a 2 -finger load.

LAMPKIN 105-B MICROMETER FREQUENCY METER

FREQUENCY RANGE-continuous 100 kc . to 175 mc. No extra crystals needed. MEETS FCC SPECS -Accuracy guaranteed better than 0.0025%. CALIBRATION-Calibration Table for each meter. Charts show percentage transmitter off frequency from FCC assignment. DIAL-4 ${ }^{\prime \prime}$ circular dial with 8000 dial divisions spread over 42 feet. TEMPERATURE COMPENSATION-crystal thermometer on panel, automatically indicates dial checkpoint for any temperature. SIGNAL GENERATORhighly accurate CW source for mobile-receiver final alignment.

Lampkin meters are used by many municipalities . . . including New York, Chicago, and Los Angeles-by agencies of 37 states-by the service organizations of most two-way radio manufacturers-and by hundreds of independent mobile-service engineers. They are guaranteed to please you, too, or your money will be refunded.

For price and complete technical information, mail coupon today!

LAMPKIN LABORATORIES INC.

Bradenton, Florida

Measurements Division

LAMPKIN LABORATORIES, INC.
Bradenton, Florida
With no obligation to me, please send information and prices on Lampkin meters.

Name
Address
City Zone \qquad State. \qquad

VED-DX control console

engineered for instantoneous
clockwise ond counterclockwise oction, hos unique fingertip action contral which operates with convenient downward pressure. The deor, easy-to-read dial features a logging scole for eosier repeof positioning.

product of the research and development laboratories of La Porinte electronics inc., rockville, conn.

Design Engineers! Printed Circuits
 Reduce Costs and bulk

Circuitron Inc. - specialists in the manufacture of the finest printed circuits - offers you the advantages of competent engineering . . . advanced manufacturing methods . . . and extensive, new production focilities. Engineers, consult Circuitron today!

[^14]

"HAMS" in Industry and in the Shack...

depend or
 IPRTECCITSYION

ELECTRONIC TEST INSTRUMENTS...because...

... they recognize that there is no compromise, no guesswork, behind the design and workmanship of a "PRECISION"-built instrument . .
... they have seen the "insides" of the equipment, which reveals the infinite and painstaking care given to "Precision Individualized Production".
... they have learned, over the past twenty years - in the shack, on the production line, at the service bench - that they can always look to "PRECISION" Test Equipment, as the standard of performance, accuracy and value.

SERIES EV-20
True Zero-Center VTVM and Multi-Range Test Set with Direct Peak Reading High-Frequency Scales

Ranges to:
1200 V., 2000 Megs., 12 Amps., + 63 DB Net Price \qquad RF.10A Hi.Freq. Probe (Accessory) Net Price

SERIES 40 Compact, Wide-Range AC-DC CIRCUIT TESTER
$1000!$ /V. Sensitivity
31 Self-Contained Ranges to: 6000 V., 600 MA., 5 Megs., +70 DB Ideal general-purpose, compact Test Set....... $3^{3 / 4 "} \times 61 / 4^{\prime \prime} \times 21 / 2^{\prime \prime}$ Net Price........ $\$ 26.95$

SERIES 85
Laboratory Type
AC-DC CIRCUIT TESTER
(20,000!?/V. DC)
34 Self.Contained Ranges to: 6000 V., 60 Megs., 12 Amps., 770 DB A wide range, high-sensitivity. Test Set, engineered for modern electronic circuit maintenance... Size $51 / 2^{\prime \prime} \times 71 / 9^{\prime \prime} \times 3^{\prime \prime}$

Net Price........ $\$ 39.95$

SERIES ES-500A
High Sensitivity, Wide-Range 5' OSCILLOSCOPE
Push-Pull V. and H. Amplifiers Net Price $\$ 173.70$

SERIES SP-5 - TEST PROBE SET Engineered for use with ES.500A. Net Price $\$ \mathbf{\$ 2 3 . 5 0}$

> PRECISION TEST EQUIPMENT Standard of Ahourccy...

PRECISION APPARATUS CO., INC.
92-27 Horoce Harding Boulevard, Elmhurst 11, New York
Export Division: 458 Broadway. New York I3. U.S.A. Cables-Morhanex In Canada: Atlas Radig. Corpaidtd 560 King Street. W. Toronto 2B

NOVICE AMATEUR ENGINEER
 -

Write today for your FREE copy of this great new book that gives you complete details, pictures, and lowest prices on:

Amateur Radio
Antennas
Audio Amplifiers
Audio Furniture
Batteries
Books
Capacitors
Chassis, Racks,
and Panels
Chokes
Clips
Connectors
Counter tubes
Crystals
Dials and Knobs
Electric Tools
Fuses
Hand Tools
Headphones
Hi -Ft Speakers
Inducionces
Insulation
Insulators
Intercoms
Loud Speakers
Microphones
Music Systems
Noise Filters
P. A. Equipment

Phon Needles Phone Pickups Pilot Lights Plugs and Jacks Power Supplies Radio Hardware Radio Sets Radio Tuners Receiving Tubes Record Changers Rectifiers Relays
Resistors
Sockets
Soldering Equipment Special-purpose Tubes Switches
Tape, Wire, Discs
Tape Recorders Telegraph Keys Terminals
Test Equipment Transformers
Turntables
TV Replacements
TV sets
Vibrators
Voltage Controls Wire
EASY TIME-PAY TERMS!

YOU NEED THIS

NEW SX-88 DUAL CONVERSION RECEIVER

 IHallicrafters. Highest dopere of usathe variable maleotivity connomerially abailable. Cowars 535 ho has 33.3 we in o hametm, (ialilirated aleetrical band-mpraad. Built-in l(m) hro erymal oneillator provides marker simnals. Thou tirst IJ" is

 15 ontput jach siat rathorle follower for telety fre romserter.

 antennal peaking control. Audio output rated at 10 watts
 whins Andio respore: 20 io 10.1000 eveles, Harmomic dis cortion i - huld to low values hy au inserse fered bach cir.

 operation on "wernal power supply or batlorios. J.ess

 Shpere wi. 8.3 llos
98FO25. NET.
499.95

Model R-46. Matching aperther fort alow. 98F002. NET

In Stock for Immediate Delivery

NEW DELUXE MODEL SX. 73 ALL WAVE RECEIVER 987019 Insw wleaher. Wi. 75 lis. $98 f 002$ IIndel R-16. $10^{\prime \prime}$ spraher for allover.

Wit. 30 lhan. 24.95
MODEL S-76 DUAL-CONVERSION RECEIVER

 Wi. 30 lbo.

Nif 24.95
MODEL S-40B RECEIVER (540 kc to 43 mc)
$98 f 003$ Shpg. W t. 3.3 lim..................................... 129.95 MODEL S-77A AC-DC RECEIVER

Virt 129.95
$98 F 004$ Shing. Wi. 33 lim
MODEL S.38C LOW COST ALL WAVE RECEIVER 98F005 Silipk. Wit. 14 IIM. .

HALLICRAFTERS HIGH FIDELITY EQUIPMENY
MODEL ST-83 AM-FM TUNER
$98 F 020$ Shpg. W't. 18 Ihan.
Net 129.95
MODEL A-84 AMPLIFIER
$98 F 021$ Shiok. Wit, 26 lis.
Net 99.50

Order from Department H8.4
Prices subiect to change
FOB-Include shipping charges and insurance

Send for NEW...FREE CATALOG No. 56 Latest Releoses in Ampotour, High Fidelity,TV and Industrial Equipment.

Hand withthe 20 TRANSMITTER

 98F022. NET. 449.50

ELECTRIC COMPANY
223 W. Madison Street - Chicago 6, Illinois

"We ham's favorite supplier"...
 Hudsen

 Elecironic and Sound Equipment!\star HAM GEAR and Supplies.

* SOUND STUDIOS. See! Hear! Compare! The world's finest High-Fidelity and

Visit our High-Fidelity and P.A. Sound Studios when in New York!
the GREAT NEW 1954
 IUDSON

MASTER catalog

Everything in Electronics at your fingertips in this greatest of all Hudson Catalogs. Over 1000 pages of the 19test in Radio, IV and Industrial Electronics, High Fidelity and PA Sound Equipment PLUS JAN Type Electronic Components.

Engineers, Purchasing Managers, Qualified Executives . . You NEED our Great New Catalog in your daily worksend in your request today, on your company letterhead, for your FREE coPY. Dept. AR-4

HAMS! HOBBYISTS! EXPERIMENTERS! Keep up with the newest and best in Ham Gear, Electronic Equipment and Accessories. Send card with YOUR NAME and ADDRESS to receive latest HUDSON releases: Bargain Supplements, Special Offerings - a GOLDWINE of Money-Saving Values for YOU! Dept. AR-4

Complete Stacks of RCA Tubes, Batteries. Parts, Test Equipment . . . Always On Hand for Prompt Delivery!

ELECTRONIC \& SOUMD EQUIPMENT

48 WIST 48th ST.
New York 36, N. Y. Circle 6.4060
212 FULTON ST.
New York 7, N. Y

NEWARK BRANCH Iust Opered!
35 William Street Nowork 2, N. J. MArket 4-5151

126

.EADING DISTRIBUTORS CARRY A COMPLETE STOCK OF ALL ERIE ELECTRONIC COMPONENTS

COMPLETE ANTENNA SYSTEMS for Amafeur, Commercial and Milifary Uses

TRYLON BEAM ROTATOR*: A heavy-duty rotator that easily handles single- or two-band arrays weighing up to 200 pounds. Accommodates two coax, ribbon, or open-wire lines, without switching, through separate low-leakage couplings. Continuous, reversible rotation of $3 / 4$ RPM. Heavy-duty $1 / 25$ h.p. motor, geared 2400 to 1 , produces a torque of 500 inch-pounds-more than enough to furn a heavily ise-loden beam. Hardened worm ond spur gears positively lock array in ony position and prevent backlash during high winds. Cross-ribbed chassis of aluminum olloy supports motor ond gear train in permanently aligned Oilite bearings. Rotating spider supported by self-centering conicol thrust bearing.
Fingerfip remote control and indication of all rotator functions provided in the Trylon Anten-A-Cotor control box. Selsyn-controlled hoirline pointer occurately indicates beam position on indirectly-lighted transporent compass dial. 115 -volt, 60 -cycle power supplied to rotator through weatherproof cable from Anten-A-Cator.

TRYLON TILT-MOUNT: Constructed of heavy gauge steel, hotdip galvanized, with stainless steel bearing pins, the Trylan Tilt-Mount permits the Trylon Rotator and Beam Antenna to betilted downward for easy servising or adiustment of oll parts from the side of the supporting fower.

Write for prices ond descriptive booklet

* Mfg- under Patent 2,583,747 assigned to

TRYLON 2-BAND ROTARY BEAM: This highly directional, high-gain ontenno covers any two bands between 12 and 50 mc . Each orray is available with either 3 or 4 elements consisting of odiustoble telescoping aluminum tubes, plus odiustoble stubs ond " \boldsymbol{T} " motches. This allows precise odiustment for moximum radiation efficiency in each band and insures an impedance match for all transmissionlines.
Telescoping elements are constructed of 3S.H18 aluminum alloy with thick walls to prevent sagging and whipping during high winds. Sturdy cross-ribbed oluminum booms are furnished with stand-off insulators, top guys, and other hardware. Shipped knocked down with boom drilled and topped for use with the Trylon Beam Rotator or other he avy-duty rototors.
Telescoping oluminum elements, Adjusto-Stub element tuners, odiustoble " T " matches, booms, etc., ore ovailable separately for those wishing to construct their own deluxe rotary beoms.

Write for prices and descriptive booklet

TRYLON STEEL LADDER TOWERS: All types, all sizes-from low-cost TV receiving antenna masts and towers for amoteur rotary beams to vertical radiators for commercial AM transmifters. Complete selection of "heovyweight" towers for FM-TV tronsmitters ond extended microwove installations with rigid sway and twist limits. All Trylon towers are hot-dip galvonized offer fabrication for moximum weather protection and long life.

Typical Towers Illustrated at Right

Fig. 1
Series No.- 650 Mox. height-80 ft, Foce width- 6.5 in . Wt. per $10-\mathrm{ft} . \mathrm{sec}$. 22 lbs.
Use-Most for TV Amoteur, portoble, ond wite-type antemos.

Fig. 2
Series No. 2400 Mox. Height- 280 ft . Foce width-243/8 in. WI, per $10-\mathrm{ft}$. sec.112 lbs.
Use-Tower for Trylon Rotary Beam, AM Broadcost, and Microwave ontennos.

Fig. 3
Series No.-6000 Mox. Height- 800 ft Foce width- 60 in. Wt. per $10 . \mathrm{ft}$. sec. 653 lbs .
Use-TV Broadcasting and Curtain antennos for Internotional Broodeasting.

Outline your ontenno support requirements for o prompt quatation and desariptive literoture from the acknowledged leoder in this field for over 20 years.

\mathcal{J}he Americail Radio Reiay League, through its publications in the feld of amateur radio, is acknowledged as the leading contributor to this fascinating art. The whole picture of amateur radio, from basic fundamentals through the most complex phases of this appealing hobbs, is covered in the League library. The newcomer who succumbs to the first nibbles of the radio bug can lind his "gateway" to amateur radio in such introductory booklets as Ilowe to Become a Radio Amatear, Learming the Radiotelegraph Code, and the License Mamat. Other League publications. especially that all-time radio best seller, The Radio Amateur's Handbonk, are storchouses of information for everyboly interested in clectronics and radio communication. Supplies such as log books, world map, calculators, message blanks and binders are specially designed for the needs of active operating amatcurs.

Whether novice or old-time amateur. student or engineer. League publications will help you to keep abreast of the times in the ever-expanding field of clectronics. Most of the publications described in the following pages are handled by your radio dealer. If you camot obtain them locally, they may be ordered direct from Leaguc Headquarters.

The American Radio Relay League, Inc.

Internationally recognized, universally consulted. The all-purpose whane of radio. l'ached witl information uselili (1) the amatear and professional alihe. Written in a clear, concise manner, contains humdreds of photos. diagrams. tharts and tables. §3 L... 1. §3.50 U.S. I'oss. and Canala, st elsenchere

Ouich and accurate atherers with ARRL lishtning Calculators! Type A for problems involving
 Greguency mductancre capatity.
T'ype is for resistance. volage. current and power. El.25 each postpaid anywhere.

No need to let your copics of $Q S T$ rest in a dianrdesed pile. A QST hinder will heep them neat atul orderly. Learh holds a onte-yest dibe. 82.50 (mailahbe in U.S. and Possessians only).

The radio amateur's handbook
..

Tells what amateur ratio is and how to get started in this fascinating hobby. Special emphasis is given to the needs of the Novice licensec. with three complete simple amateur stations featured.
50c ecerywhere

Active amateurs need these supplies: ARRL Loghook, 50 U.S.A., boc elsewhere. Minifor, 30e U.S.A. 35d elsewhere. Radiogram blanks, 3.5 per pad postpaid. Messaye delivery cards, le each stamped, 2e each unstamped.
Members stationery, 100 sheets 81.2, 2.50 sheets 81.50 , 500 sheets $\$ 2.50$ postpaid.

If you build equipment and operate an amateur radio station, you'll find this a miphty valuable book in your shach and work. shop. Nore than 200 practical ideas phes a surphus conversion. section.

HINTS KINRS for the fiedic Amelcur

American Radio Relay League

Administrative Headquarters: West Hartford, Connecticut, U. S. A. 19

American Rado Reiay League, Wiest Hartiord. (ionn., U. S. A.

Being genuincly interested in Amateur Radio, I hereby apply for membership in the American Radio Relay League, and enclose $\$ 4.00^{*}$ in payment of one year's dues, $\$ 2.00$ of which is for a subseription to (SST for the same period. |Subscription to OST alone cannot be entered for one year for $\$ 2.00$, since membership and subscription are inseparable. | Please begin my subscription with the issuc.

The call of my station is
The clats of my operators license is

I betong to the following radio societies \qquad

> Sond my (ertilicate of Membership \square or Membership (and \square (Indicate which) w the address below:

Name \qquad
please be sure fo indicate if obove.

[^15]
MEASUREMENTS CORPORATION

Throughout the world, Measurements' reputation for accuracy and reliability is your guarantee of satisfactory service.

STANDARD SIGNAL GEMERATOR MODEL 65-B

freouency rance
$75 \mathrm{kc}-30 \mathrm{Mc}$.

mOdULATION

STANEARD SIGNAL GEMERATOR MODEL 78 rabouencr bange \qquad

STANDARD SIGNAI GEMERATOR MODEL 78-FM

treaulincr bange	output range	moovlation
$86 \mathrm{Mc}_{6} \mathbf{1 0 8}$ Mc.	$\begin{aligned} & 1 \text { to } 100,000 \\ & \text { microvolts } \end{aligned}$	Devialion 0.300 Kc .2 range FM 400.8200 cyrles Esternol mod to 15 Kc

STANDARD SIGNAL GENERATOR MODEL 80

STANDARD SIGMAL GENERATOR MODEL 82

frequency range	OUtput rance	moollation
	01 microvall io	

STANDARD SIGNAL GENERATOR MODEI 84

requescyange	OUTPuI fange	moollation
300 M	0110100.000	AM. 0 to $30 \%, 400,1000$, or 250

STANDARD SIGNAL GENERATOR MODEL SA-TV

freouency mange	ouiput range	moovation
$330 \mathrm{Mc}, 101000 \mathrm{Mc}$.	Conlinuouly voriable O.1 microvolit vol 0 0 voll	

SIAMDARD SIGNAL GENERATOR MODEL 90

ang.	ouipui ramge	Latio
20	avol to	Continuousty variable, a 10 100\% 5 Sinusidal modulation 30 cycles

PULSE GEMERATOR MODEL 79-R
trequency range
60 10 100,000 eycles

PuLSC WIOTH

gUTPUT

SOUARE WAVE GENERATOR MODEL 71

treouency range	weve shape	OUTPUT
Hy vorioble ooo cyles	Rise lime less than 0.2 microseconds wilh	attenuator $75,50,25,15$, 5 peat vols fixed and 0 to volts continuo

VACUUM TURF VOLTMETERS

MODEL 02		
yoliage mange	FREQUENCY RANGE	IMPUL IMPEOANCE
$0.1 .0-3,0.30$ and 0.100 volt: $A C$ or $D C$	$30 \text { cycles to }$ over 150 Mc .	Approximately 7 mmfd .
MODEL O7		
voltage range	EREOUENCY RANGE	INPUT IMPEDAYCE
.0005 to 300 volts peok-lo-peok	5 to 100.000 sine-wa cycles per second	1 megohm shunted by 30 mmfd .

U. H. F TIFLD STRENGTH METER MODEL 58

freoulecr tange	input voitrge range
15 Mc . 10 l ISOMc.	I to 100.000 micro semi.logarithmic ou

INTER ODULAIION METER MODEL 31

mitimooviation Racale	frequencies crcles	analyer hatut voltiges
0.5\% to 30%		F.all cole -anges of 3.10, 30 volis mms

MEGACYCIE METER MODEL 59

freouencr range	freouenctaccuaty	modjation
2.2 Mc . 10400 Mc .	Within $\pm 2 \%$	

CRYSTAL CALIBRATCRS

freouency range	freouency accuract	harmamic rance
250 kc .1000 Mc	0.001\%	.25 Mc O.cillatar: .25 .450 Mc .
MODEL 111-B		
freouency basce	frequency accurat	HRemonlc range
Mc.	0.001\%	

134

What do you want in a MICROPHONE? Check the features and characteristics for which E-V

 microphones have become favorites in every forformance take your choice, and know you carch-engineering. Here that is guaranteed by E-V research-enginectophone line. are 9 models of today
950 CARDAX

High level cardioid crystol micraphone with dual freqrency response for high-fldelity sound pick-cp or for extra crispness of speech. Overcomes faedback and bechgroved noise Wide bochgroved noise. Wide range respanse, "On-Ofral. list, \$42.50

MERCURY

Madel 611 Dynamic and Madel 911 Crystol. Smart deign. Rugged ond dependable. Response 50-8000 cps. H gh output lovel. Omni-directional. rit able hood. "On-Of" witch. Available in high or low impedonces list from $\$ 25.50$ to $\$ 37.50$

Volt-Ohm-Mil-Ammeters

POCKET SIZE Model 666-R

ABSORPTION

 FREQUENCY METERModel 3256
A band-switching, tuned absorption type frequency meter that covers five amateur bands. Has Germanium crystal and a DC Mill:ammeter indicator tor greater sensitivity. Direct colibration on panel - no coils to change. Switching permits instantaneous band change. Audio jack provides for monitoring of phone signals -another new teafure. Calibrintion is in Megacycles in following bands: is in Megacycles in following bands:
 movable and other coils may be substituted for special bands. Usetul for checking: Fundamental trequency of oscillating circuits; Presence, order and relative amplitude of harmorics; Parasitic oscillations, etc. Size: '71/2" $\times 21 /{ }^{\prime \prime} \times 21 / 4 "$. Metal case with gray eneamel tinish blacktrim.

A COMPLETE LINE OF METERS

Triplett panel and portable meters are available in more than 26 case stvles - round, square and fan $2^{\prime \prime}$ to $7^{\prime \prime}$ aizes. Included are voltmeters, ammeters, milliammeters, millivoltmoters, microammeters, thermo-amraeters, DB meters, VU meters and electrodynamometer type instruments

Address oll inquiries to Dept. Q-53

For your AC and DC Voltage, Direct Current and Resistance analyses to 3 Megohms. Enclosed selector switch of molded construction keeps dirt out. Retains contact alignment permanentiy. Unit Construction All Resistors, shunts, rectifier and batteries housed in aier and batteries housed in a molded base integral with the swit ch. Eliminates
chance forshorts. Direct connections. No cabling. All precision film or wire-wound resistors, mounted in their own compartment-assures greater accuracy. $3^{\prime \prime}$ RED•DOT Lifetime Guaranteed instrument. Red and black markings on a white background. Easy to read background. Easy to read
scale. Precalibrated rectiscale. Precalibrated recti-
tier unit. Self-contained
 batteries
RANGES: AC.DC Volts: 0-10-50-250-1000-5000, 1000 Ohms Volt; Direct Current: $0-10-100 \mathrm{Ma}$. 0-1 Amp.; Resistance: 0-300-300,000 Ohms, 3 Meg . Black molded case, completely insulated, $3.10^{\prime \prime} \times$ $57 / 8^{\prime \prime} \times 21 / 16^{\prime \prime}$. White panel markings.

Model 666-HH VOLT-OHM-MILLIAMMETER

A complete miniature laboratory for DC-AC Voltage, Direct Current and Resistance analyses. The answer to V-O-Ma. requirements of radio servicemen, amateurs, industrial engineers, etc. Greater scale readability on the $3^{\prime \prime}$ RED.DOT Lifetime guaranteed instrument with red and black scale markings. Simplified switching.
RANGES: AC-DC Volts: 0-10-50-250-1000-5000, 1000 Ohm Volt; DC Ma: $0-10-100-500$; OHMS: 0-2000-400,000. Self-contained plug-in batteries, Black molded case, completely insulated, $3 \% 10^{\prime \prime}$ $\times 57 / 9^{\prime \prime} \times 21 / 16^{\prime \prime}$. Panel with white markings.

FOR THE MAN WHO TAKES PRIDE IN HIS WORK

triplett electrical instrument company - bluffton, ohio, u.s. A.

COMPONENTS FOR EVERV APPILCATION

RF CONNECTORS

Amphenor. RF connectors are unsurpassed for mechanical design and electrical efficiency. They provide low-loss continuity in critical R F circuits with little or no impedance change or increase in standing wave ratio.
Amphenor, RF connectors are available in Types BNC, BN, HN, LC, N, C and the popular 83 series, including plugs, jacks, receptacles and adapters. All ampienol R F connectors meet or surpass rigid government specifications.

"S" Sockets and "CP" Plugs mate with each other and feature the amphenol retainer ring design - mount without screws or rivets on panel or chassis. They are compact in size and are ruggedly built for troublefree service. Available in black bakelite or mica-filled bakelite. "S" type sockets are also available in amphenol Steatite and in a variety of sizes with the number of contacts ranging from 4 to 11. Supplied with retainer rings for chassis mounting. Plugs and sockets are also available with plates and caps.

STEATITE TRANSMITTING
TYPE TUBE SOCKETS
Designed for use where other, less rugged, sockets camnot do the job. Made of low-loss amphenol Steatite. they feature the "clover leaf" contacts that provide four full lines of provide four full lines of
contacts. Barriers provide contacts. Barriets provide
long creepage paths that prevent arcing and flashover. Available in various sizes with 4, 5, 6, 7 and δ contacts.

Miniature
7 and 9 PIN SOCKETS

Amphenol has a complete line of miniature 7 and 9 pin sockets for every application. Materials inplucation, Materials bakelite, micaclude black bakelite, mica-
filled bakelite. Steatite or A.urienol's own EthylonA. Zip-in sockets are molded of Ethylon-A, a resilient dielectric, and need no mounting plate or retainer ring,

MICROPHONE CONNECTORS

Amphenol manufactures an extensive line of connectors to fit practically all makes of microphones. The 75MC1F Microphone connectors, illustrated above, function as either male or female fitting, include jacks, plugs. receptacles, adapters and switches. The 80 Series, single and double contact, connectors are designed for shielded cables. Obtainable in any combination of male or female cable connectors or as chassis units. The 91 Series includes both three and four contact connectors, polarized to prevent incorrect insertion. They are procurable as plugs, cable jacks and chassis receptacles in any combination of male or female types.

"MIP" SOCKETS
The world's strongest socket! The plated steel mounting plate is molded right into the solid bakelite body, cannot come loose or vibrate. Two holes in each contact provide wiring and anchoring points for resistors, condensers, chokes, etc. Available in black bakelite or mica-filled bakelite in a wide variety of contact arrangements. "MIP" sockets are also available for 8 pin Octal and Loktal tubes. The "MIP" sockets are unequalled in either strength or versatility.

Qualily

COAX and TWINAX CABLE

Amphenol cables are produced in strict conformity to the rigid military specifications. Constant checks and inspections are made to assure the best in mechanical and electrical construction.
Most of the RF cables in the amphenol line have top grade polyethylene dielectric for low-loss, flexibility and mechanical stability. For high temperature applications, cables are also available with other types of dielectric. quality television antennas. For VHF, the famous INLINE (Reissue Pat. No. 23,273) design is available in either single bay or stacked array. amphenol UHF antennas include BO-TY, Corner Reflector, Rhombic and Yagi types. The Stacked-V model will receive VHF, UHF or both.
Antennas are available for extended distances reception of either VHF or UHF. Stacking for greater db gain may be done with the INLINE, BO-TY, Corner Reflector and Yagi.

The materials used in all Amphenol antennas are the very finest available. Sturdy aluminum and steel with non-rusting finishes insure likenew appearance on the rooftop. All amphenol antennas feature stay-up construction-and perform well for many years.

Learn Code the EASY Way

Beginners, Amateurs and Experts alike recommend the INSTRUCTOGRAPH, to learn code and increase speed.

Learning the INSTRUCTOGRAPH way will give you a decided advantage in qualifying for Amateur or Commercial examinations, and to increase your words per minute to the standard of an expert. The Government uses a machine in giving examinations.

Motor with adjustable speed and spacing of characters on tapes permit a speed range of from 3 to 40 words per minute. A large variety of tapes are available - elementary, words, messages, plain language and coded groups. Also an "Airways" series for those interested in Aviation.

MAY BE PURCHASED OR RENTED

The INSTRUCTOGRAPH is made in several models to suit your purse and all may be purchased on convenient monthly payments if desired. These machines may also be rented on very reasonable terms and if when renting should you decide to buy the equipment the first three months rental may be applied in full on the purchase price.

ACQUIRING THE CODE

It is a well-known fact that practice and practice alone constitutes ninety per cent of the entire effort necessary to "Acquire the Code." or, in other words, learn telegraphy either wire or wireless. The Instructograph supplies this ninety per cent. It takes the place of an expert operator in teaching the student. It will send slowly at first, and gradually faster and faster, until one is just naturally copying the fastest sending without conscious effort.

BOOK OF INSTRUCTIONS

Other than the practice afforded by the Instructograph, all that is required is well directed practice instruction, and that is just what the Instructograph's "Book of Instructions" does. It supplies the remaining ten per cent necessary to acquire the code. It directs one how to practice to the best advantage, and how to take advantage of the few "short cuts" known to experienced operators, that so materially assists in acquiring the code in the quickest possible time. Therefore, the Instructograph, the tapes, and the book of instructions is everything needed to acquire the code as well as it is possible to acquire it.

MACHINES FOR RENT OR SALE

ACCOMPLISHES THESE PURPOSES:

FIRST: It teaches you to receive telegraph symbols, words and messages.

SECOND: It teaches you to send perfectly.
THIRD: It increases your speed of sending and receiving after you have learned the code.

With the Instructograph it is not necessary to impose on your friends. It is always ready and waiting for you. You are also free from Q.R.M. experienced in listening through your receiver. This machine is just as valuable to the licensed amateur for increasing his speed as to the beginner who wishes to obtain his amateur license.

Postal Card wili bring fuil particulars

THE INSTRUCTOGRAPH CO.

The new DURATRAK coating is one of the most important improvementa in VARIACS; another step in the con indens proxtz of development which makes the VALIAE the trist voltage contral avalaole

ALL "V" TYPEVARIACS have New Duratrak construction for Increased Performance

Even Longer Life
The new DURATRAK brushtrack coating eliminates all brush track oxidization problems which formerly might become critical under severe conditions of operation.

DURATRAK construction adds these features to increase the utility of VARIACS:
Long Life - insures a life as long as that of fixed-ratio power transformers

1dmutance Metfris Consial Wiements क्ष Decade ©upantort
Decade fnduriors is Decode Rescintar \& Disturtion Aeters
Prequeney Metorn th Friquency slardard. मि Geiter Cownters

Noise Moters \& Vall Drtector: \& Precrsian Capacitors

U-H-F Mcasuring Equiprnens \& b-T boltmeters if Wace Arslyzers \& Polorigropes

TOP HAT RETAINERS

An improved clamp that holds electron tubes, relays, capacitors and pluggable components in position.

e

POSITIVE LOCKING ACTION

Made in a variety of sizes to fit almost any type tube.

Recommended for use in Army, Navy and Air Force electronic equipment.

EASY TO APPLY...INSTANTLY RELEASED

POSITIVE-Component even when inverted
will not loosen under the most severe shock or vibration. RESILIENT - Positive retention is achieved with minimum rigidity or strain on component. ACCESSIBLE - Clamp fits on top of component and can be fastened or released easily without tools. CORROSION RESISTANT-Hat and Posts are stainless steel. All materials and finishes comply with Armed Forces Specifications. VERSATILE - Top Hat Retainers may be applied to practically any tube or plug-in component.

WRITE TODAY FOR FREE CATALOG TIMES FACSIMILE
 1523 L Street, N. W.
 Washingtón 5, D. C.

142

MOBILE

 PORTABLE FIXED
for the Amateur Operator . . . the most complete transmitter-exciter and receiver combination at popular amateur prices.

RECEIVER

- 6 BANDS
(1) BC \& 160 (2) $80 \& 75$
(3) 40 (4) 30 (5) 15 (6) 10
- HIGH SENSITIVITY \& SELECTIVITY
- AUTOMATIC NOISE LIMITER
- DUAL CONVERSION
- BEAT FREQ. OSCILLATOR
- AVAILABLE FOR 6 OR 12 VOLTS

TRANS-CITER

- 7 BANDS
$160,80,40,20,15,11,10$
- TRANSMITTER OR EXCITER
- AM-NBFM-CW
- 500 A A.F. OUTPUT
- VFO OR CRYSTAL
- 6 OR 12 VOLT OPERATION

FOR COMPLETE INFORMATION SEE YOUR DISTRIBUTOR.

144

－Highest Quality－Greatest Variety－meet every need in radio，sound，TV and related fields－Standard on leading microphones

For microphone and related uses． 3 313：contact only Plug shown 03－12 Alalable in on haw shapes．Incert $1^{\prime \prime}$ wide．Tinc aiky shell，satin chrome timish．Molded phonolic insert．Lateh loch coupling method

cANNON plugs

For atadio．instrament and related ases． 1 to 4 contacts $15 a$ max．Re－ centacle wown X－3－14．Available in 5 havic shapes．Inest Dia．．625＂，Zinc alloy shell，hright nickel finish．Molded phenolic insert．Courling held by con－ bact friction．

X SERIES	For alldio．insufument unce 3－15a contacts only Xi．－3－11．Avalable in 1－ losert dia．．62s＂．／inc bright nichel and sation volded phenolic insert coupling meihod．
o．inctrument and related 4 contacts $15 a$ man．Pluy －3－11．Avalable in + basic nsert Di．a．． 2 2s＂．Jime or hright nichel finish．Molded mert．Acme thread coupline	UA SERIES

For andio．TV and instrument uses． 2 to x contacts 30 max．Plue shown Pa－C（i－11．Awalatle in 16 hasic shapes． Inert Dia，1＂．Zinc or sted shells， satin chrome finisis．Molded phenolic insert．Iath bech coupling method．

XK SERIES

For atudio．instrument and related Hes． 1 to 4 contacts $15 a$ man．Plug shown Xh－3－11．Aatable in + hasic ahapes．Insert Dia，．h2s＂．Zime or steel wells，hright nichel finish．Molded menolic insert．Acome thead coupling nut．

Similar to XK Series but weather－ proofed by addition of a rubber hush－ ing，special paching ring within the coupling nut and rubber scaling wash－ ers on the retaining screw．Plug shown XKW＇－3－12．Avalable in 4 basic shancs．

XKW SERIES

XKW－81 SERIES

For coaxial cahle applications．One Standard Cannon type＂R＂conxial contat only．The cora carries one 10： contant lor No． 1613 \＆S wire．Shells． coupling ring and mounting blanges are sume a NKW Series．Plag shown is スKW－131－11．

For hermeticalls waled instruments． indicators mimature siteches．etc． （6） 12 contacts 5_{a} in three shell simes． Shell is cold rolied vece Inserts（min． dia．．294＂）are vitreous material and Silcan silicone rubber．Basonct lock．

U SERIES

Fior vorage batteries．engine starters and other high current uses．2－600a contacts．I contact to accommodate Vo．K． 10 or 12 wire for signal or shater relay circuits．Volded rubber shell．Coupling maintained by contact Hiction．Plug shown is GH－3－21CFS．

The utimate atdia quich discommet （1）R．T．V．A．Spece 3－15 a contacts onls．Plug shawn C＇A－ミ－11．Available inl^{7} basic Shapes．Insert Diat． $750^{\prime \prime}$ ． fine or weel shelds，satin chrome fin－ ish，Insulationt phenotic with rabber s＂al．latch leck couplang method．

The receptacle SK－N－32S（shown） and mating plag sk－\プ－？IC－＇2＂are standard equipment bor the recorder contrectors wed bo Ielephone（om－ pathes an suharibers voice recolder．

All connectors shown are stock items for Cannon Franchised Distributors．All other Cannon Plugs may be purchased from these same distributors by arrangement between the distributor and the customer．For further detail，request RJC Bulletin from factory． dela，requcsi RJC Bultin from factory．

D SERIES

G8 SERIES

TUIRNER MICROPIIOWMS

IN THE SPOTLIGHT FOR HAMS

TCRNER Model 80 Crystal (center) A compact convenient microphone for increased rig efficiency. Excellent response to voice, 80 to 7000 cps. High quality Bimorph moisture sealed crestal, mechanical and shock proofed. Solidiy built of die-sast zine overlaid with beautiful satin chrome plate. $7-\mathrm{ft}$. attached, single conductor. shielded cable. Shown with Turner C-4 Stand. Standard $\mathrm{s}_{8}{ }^{\prime}-27$ thread.
Model 80
$\$ 15.95$
C-4 Matching Stand
5.75

TIRNER Model AD.I 95D Dynamic (right) Newest Turner microphone. Superior sound characteristics make it ideal for amateur work. Maximum sensitivity to votce assured with Alnico V Magnets and moving coils. And this graceful beauty sells for less. Frequency response, 70 to $10,000 \mathrm{cps}$. Level, -58 db ; standard ${ }^{-} y "-27$ coupler, 20
ft. removable cable set: high impedance wired single ended (single conductor shielded cable) ; 51 , 200 or $50(1$ onms wired for balanced line (two conduetor shielded cable).
ADA 95D Dynamic
$\$ 35.00$
ADA S95D, with slide switch 38.50
TURNER 90 Carbon Mobile Microphone (left) The answer to mobile amatenr operations. Adds real eye appeal-gives superior sound performance - snlidly built for lasting use. Choice of heavy siut: push-to-talk switch, on-off relay circuit switch. or onoff relay switch. Equipped w:th 2 or 4 conductor cable, regular or Koiled Kord (5-ft. extencled). Supplied with hook for hanging and bracket for wall or dashboard mounting. Response, 200 to 400% cps; level, -42 db; 200 ohms nominal DC resistance.
Standard Model SR90R with 4 conductor
unshielded Koiled Kord
S26.50

The TURNER Company

93117 th Street, N.E., Cedar Rapids, lowa

IN CANADA:
EXPORT:

THERE'S AN
MIN@IS ELECTROLYTIC CAPACITOR OF Tince Tested Zuality

FOR EVERY ELECTRONIC APPLICATION

Seventeen years of successtul production experience, making millions of quality capacitors, has created thls complete, outstanding Ine.

This antinerriry and menafaciuring experence fibs enabled LLINOIS CONDLNSER COMPANY to meet every demand lor new capactior typer, whether for peace or delense applications, with compenents of excestional value and dependability.
Illustroted are tul ofew of the many capacilor types now manufactured DithLINOIS CONDENSER There is a guoratierd ILLINOIS COn

 Te.ted Quality

IHT

$\begin{array}{ll}\text { IHC } & \text { PE } \\ \text { UMT }\end{array}$

UMS

UMP

UMC

147

INTERMATIONAL RECTFIER COEPEATIOM

EL SEGUNDO califormia

IRADIO A TV STACKS

Half wave, full wave and voltage doubler units with input ratings of 25 to 165 volts AC. DC output current from 65 milliamperes to 1200 milliamperes. High quality selenium universal replacement Rectifiers for radio and TV sets. Also useful for amateur and experimental applications. Can be used in voltage multiplier circuits directly from line supply to provide a DC voltage output of any multiple of the input voltage. Universal mounting.
 \title{
SELENIUM RECTIIIERS
 \title{
SELENIUM RECTIIIERS SELENIUM \& GERMANIUM DIODES SELENIUM \& GERMANIUM DIODES SELENIUM PHOTOCEILS
} SELENIUM PHOTOCEILS
}

HBADSTER NNID CONVEIRTEIE TVIDES

These minature selenium Rectufer unats are uleal for replacement in TV Boosters. IXIF Converters and Record Plaver Amplifiers. Small compact Provided with pagtal leads for easy wirmg into crowded spares Ababable in hatf wate unats with ace induts of 1 rom 130 to 165 volts and DC current output of 20 to 501 miltampares thene units are very useful for expermental devices. expectally if the load curremt is 50 millitumperes or lew

Designed with forrule tormanals for Gutek insertion into standard 30 -ammere fuse dios Recommended for use in hagh ontage power supples where iong life and extreme redability are of prime manotance $D C$ outbut from 1.010 volts at 5 mhllamperes to $: 3500$ volts at is millamperes

INHISTHESL. ANID IPADUEIR TVIPES

Tyman uses include heils duty mating. general burpose power subphes cathothe protection. battery chargers and latmoratory
 at 13 amperes dwathale in hatf wate denter tap and single phave frodge units

SELENICM DIADEN

Deagned for stable operation in an ambrent lemperature

When connected drectly to the actuating device or the amplatier. current of the order of (ax) microamperes per fumen will tow at an extarnal resstance of 160 ohms. Avalable in unmounted and mounted units. is different cell sizes with average output at 10 (oot-cambles Illummation of from 75 to 750 microamperes.

Available
from your
Favorite Jobber

INTERNATIONAL RECTIFIER

$\begin{array}{lllllllllll}C & O & R & P & R & \text { a } & \text { I } & 0 & N\end{array}$

YOU'LL FIND IT HERE CATALOG NO. 541
 ...EVERYTHING OF THE VERY LATEST IN ELECTRONICS . . . EVERYTHING ON DOWN TO THE LITTLE THINGS USUALLY TOO TROUBLESOME FOR OTHERS TO LIST AND STOCK.

WRITE US
IF YOU DO NOT HAVE IT!

YOU WILL GET

PROMPT, SPEEDY SERVICE

You will save time - takes only minutes, at times most convenient to you, to order by mail the items and quantities you alone decide on :. . no waiting for salesmen . . . no breaking into your busy hours . . . no pressure to sell you more than your needs . . . A "One Stop" source for your every need.

You will sove money - B-A Volume sales permit big buying at savings passed on to you. Every page lists many special, big, moneysaving values made possible only by huge $B-A$ special purchases. Net prices are shown so you can see at a glance what each item costs you.

Because of always adequate stocks and the B-A "Know-How" acquired in 25 years' experience in the mail order Electronic distribution field. The location of Kansas City, a foremost transportation "hub", ... in the exact "Center of America" ... days closer to Everywhere . . . is more reason why you will get faster delivery from B-A.

VALPEY Quartz Crystals are famous for accuracy!

Since 1931, Valpoy Crystals have earned and maintained a foremost reputation in aiding amafeur and professional electronic engineers in experimentation and development. A portion of the line of crystals is shown here.

COMPACT—HERMETICALLY SEALED

Type VR6, hermetically sealed in compact metal case, has 1500 to 75000 Kc . frequency range. For mobile or fixed stations, VHF and experimentcl work.
Vertical mount for . $486^{\prime \prime}$ spacing special crystal socket. Jan type HC6.

FOR FREQUENCY STANDARDS

Type XLIOO, with a frequency of 100 Kc ., is used extensively in frequency standards. Mounts in $3 / 4$ " spacing crystal socket or the standard 5-prong socket. Compact and dependable.

FAVORITE OF AMATEURS

Type CM5. Frequency range 1500 to 30000 Kc .; used extensively for marine, police and other mobile or fixed stations. Fits Valpey Xtalector for instant, accurate frequency shift; fixed air gap, vertical mount, standard . $486^{\prime \prime}$ spacing socket or standard octal socket.

AUTHORIZED FOR BROADCAST USE

Type CBC-O Used widely by broadcast, fixed stations and frequency standards. Frequency range 60 to 10000 Kc . Available with 6, 8, or 10 volt ovel plus-minus $1 / 2$ degree C. temperature stability. Micrometeradjustable air-gap. Mounts in standard 5 -prong socket.

SINGLE OR DUAL CRYSTALS

Type VD5 Frequency range 1000 to 6000 Kc . Single or dual crystals, popular for marine, aircraft and police applications, Mounts in special 3-prong socket.

For additionai details on these or other types write:

HIGH ACCURACY

Type DFS Features separate 100 and 1000 Kc . crystals in one compact mounting, with accuracy plus or minus. 005% over range of minus $10^{\circ} \mathrm{C}$ to plus $60^{\circ} \mathrm{C}$ when used in recommended circuits. This is a Valpey development for secondary standards and receiver calibration.

FOR FIXED OR MOBILE TRANSMITTER. RECEIVERS

Type VDO Frequency range 1000 to 10000 Kc . Used for railroad and bus communications, fixed or mobile units. Single or dual crystals with 6 volt over plus-minus $1 / 2$ degree temperature stability. Mounts in standard 5-prong socket.

Where Dependability counts - 151 Use OH MITE!

RHEOSTATS

Insure permanently smooth, close control. All-ceromic vitreous anamled: $25,50,75,100,150,225,300$, 500,750 , and 1000 -wall sizes.

"BROWN DEVIL" RESISTORS

Sturdy, wire-waund, vitreous-enam. eld resistors for vallage dropping, bios units, bleeders, etc. In 5, 10, and 20 -wall sizes, values from 0.4 to 100,000 ohms.

''LITTLE DEVIL' RESISTORS

Tiny, molded, composition resistorseach marked with resistance and wattage: $-1 / 2,1$, and 2 -wall sizes, $\pm 10 \%$ or $\pm 5 \%$ fol. 10 Ohms to 22 megohms.

FIXED RESISTORS

Resistance wire is locked in pace and protected by v treous oenomel. Stock sizes $-25,50,100,160$, and 200 walls; voles 1 to 250,000 ohms.

ADJUSTABLE RESISTORS

Vitreous enameled. Quickly af fusilable to the value needed. Adjustable lugs con be attached for multi-lop resistors and voltage dividers. Sizes 10 to 200 walks, to 100,000 ohms.

R. f. CHOKFS

Singledayer-wound on law power factor cores, with moislure-proaf coating. Seven stork sizes, 3 to 520 me. Two units rated 600 mo , others 1000 mo.

TAP SWITCHES

Compact, high-eurrent rotary selectors far atc use. All ceramic. Self. cleaning silver-to-silver contacts. Ratod of $10,15,25,50$, and 100 amperes.

PRECISION RESISTORS

Three types available: vitreous-enom. sled, vocuum-impregnoted, or glass. sealed. Tolerance $\pm 1 \%$, in $1 / 2$ and 1 -wot sizes, from 0.1 to $2,000,000$ ohms.

DUMMY ANTENNA

These rugged, vitreous-enameled units ore procticolly nonreactive within their recommended frequency range. In 100 and 250 -wat sizes, 52 to 600 ohms, $\pm 5 \%$.

Write for Stock Catalog

No. 24

OHMITE MANUFACTURING COMPANY
3608 W. Howard St., Skokie, III., (Suburb af Chicago)

SHURE MICROPHONES

In the Shack . . .
This sturdy Controlled Reluctance unit is designed to handle the most severe requirements of amateur broadcasting, paging, and dispatching systems. It provides high speech intelligibility, makes your messages instantly understood. The "Dispatcher" hos a 2-conductor shielded cable, and is wired to operote both microphone and relay circuits. Firm downward pressure on the grip-bar locks the switch. The "Dispotcher" is immune to severe conditions of heat and humidity. Output is 52.5 db below one volt per microbar. High impedance. Furnished with 7 -foot cable.

In the Car . . .

A high-quolity carbon microphone specially designed for mobile equipment. Used throughout the world for Ham, Police, Fire, and Transportation Services-more thon oll other mokes combined! Rugged, dependable unit with clear, crisp voice response and high output. Fits snugly into polm of hand. Heovy duty switch for push-to-talk performance. Furnished with bracket for wall mounting, plus coiled-cord cable. Output level: 5 db below 1 volt for 100 microbar speech signol. 70 ta 80 ohms impedance.

Model	Coble	Switch Aprongement	List Price
101 C	Siandord Colled Cord 11 retracted; 5^{\prime} exiended	Two Wire Reloy	\$27.50
101E	Tinsel Colled Cord $11^{\prime \prime}$ retrocled. 5^{\prime} extended with Amohenol MC4M Connector	Swith normolly open. (No micropheneswitch)	\$32.50
102C	Siondard Coiled Cord $11^{\prime \prime}$ retrocted, 5' extended		\$27.50
1025	Tinsel Coiled Cord 11"retracted, 5^{\prime} extended with spade lugs	Microphone switch normolly open.	\$30.00
103	Siandard Coiled Cord 11 retracted; 5 ' extended with Ambhenol MC4M Connector	Two Wire Relay Swith normolly open. (No mierophone switch)	\$29.00

Microbar $=$ one dyne per sq. cm .

SHURE BROTHERS, Inc. * Microphones and Acoustic Devices
 225 West Huron Street, Chicogo 10, Illinois
 - Coble Address: ShUREMICRO

152

CORNELL-DUBILIER ELECTRIC CORPORATION

Garadon

154

1121 PENN AVE. 1121 PENN 22, PA. PIttSBURGH 22
 NEW LOCATION

We are now in our own new, air conditioned four story building with three times as much space as we had formerly. Greatly expanded stocks give you a wider choice of selections of the latest and best in electronic parts and equipment for use in Amateur, Broadcast, Industrial, Research and Educational applications. For your conrenience we now have air conditioned High Fidelity Audio and Amateur demonstration rooms. Drive-in customers will find it easier to park here. For faster service mail or phone your orders to Cameradio.

SINCE 1919

156

CAMERADIO CO.

1121 PENN AVENUE
PITTSBURGH 22 , PA.

SUPREME

"Supreme by Comparison"

MULTI-METERS

The Supreme Model 54.3 (lofi) and Morfel 542 (right) wolt-ohm-milliammeters have become real companions to mathonance men everywhere. Both instrments are the same size lapprox. $6 \times 3 \times 2$ inches) and are atailable in either the moulded " 3 " style case (illustrated) or the metallie type case with leather handle and meter protector shiedd (Style " 11 "). Mordel 54.3 hat 4 funclions and 12 ranges and the Vodel 542 hats 6 funclions and 24 ranges.

Model 5438	$\$ 24.60$	Model 5428	$\$ 27.70$
Model 543 M	$\$ 28.30$	Model 542 M	$\$ 32.10$
Test Leads	$\$ 1.40$	Test Leads	$\$ 1.40$

MINIMETERS

About the size of a cigatette park. these fine little multi-range, single fumetion instruments hawe found their way into a lot of shirt and vest pockets of electrical troubleshooters. Convenient size and durable construction for portabilite. Built with highest quality materials and workmatnship, for dependabilits. ()nantity production for al budget price. Madel $4+0$ Ohmmeter omly $\$ 12.90$ eomplete with te: 1 leads. Other functions amailable from $\$ 10.6 .5$ to $\$ 1+. .50$.

PANEL METERS

L wading manufacturers of edectrical and electronic devices select supreme meters for use in their products because they are quality built and dependable. Supreme meters are supplied for end equipment uses in at variely of sizes athd designs " "ustomed" 10 meen the neded for sperial sales, dials and (ase appearance. A sketch or drawing of your meter neets will bring yom a prompt quedation and delivery solhedule from

ADVANC: R=LATS
 FOR EVERY APPLICATION

DM2C
(Formerly 304BF)

PVIA
(Formerly 961C)

AH2C
(Formerly 1000)

OE2B
(Formerly 750A)

AM2C
(Formerly K1504RF)

PCIC
(Formerly 953B)

SVIC
(Formerly 1200)

MG2C
(Formerly K1504)

(Formerly 964B)

COMMUNICATIONS

AIRCRAFT

ELECTRONICS

INDUSTRIAL \qquad
Whatever your relay requirements may be, and whatever you need in the way of specialized facilities, ADVANCE is equipped to help you.
Here are capable personnel and modern machines of a specialized organization with a 37 -year record of successful operation.
Here are unexcelled facilities for the development and production of precision relays for general industry.

TYPE	USE	CONTACTS		COILS	DIMENSIONS		
DM	Time Delay	10 Amps	DPDT	$\begin{aligned} & \text { 6-12-24-110-220 A.C. } \\ & 6 \cdot 12 \cdot 24-48 . \\ & 110-220 \text { D.C. } \end{aligned}$	15/8	25/8	$33 / 4$
PV	Power Transfer	30 Amps	SPDT	1 to 440 VAC 1 to 220 VDC	15/8	2	3
AH	Antenna	$1 / 2 \mathrm{KW}$	3PDT	1 to 440 VAC 1 to 220 VDC	17/16	15/8	$23 / 4$
OE	Overload	10 Amps	DPDT	1 to 440 VAC 1 to 220 VDC	23/8	$23 / 4$	41/4
AM	Antenna	$1 / 4 \mathrm{KW}$	DPDT	1 to 220 VAC 1 to 150 VDC	11/4	15/16	17/8
PC	Power Transfer	10 Amps	4PDT	1 to 440 VAC 1 to 220 VDC	1\%6	15/8	25/8
AT	Antenna	1 KW	DPDT	1 to 440 VAC 1 to 220 VDC	111/16	$23 / 4$	315/16
LE	Latching	10 Amps	DPDT	Adjustable 250 MA to 500 MA	23/8	21/2	35/8
SV	Sensitive	1 Amp	SPDT	$\begin{aligned} & 1 \text { to } 40,000 \\ & \text { OHMS } \end{aligned}$	11/2	2	29/16
MG	Miniature	11/2 Amps	3 3PDT	$\begin{aligned} & 1 \text { to } 220 \mathrm{VAC} \\ & 1 \text { to } 150 \mathrm{VDC} \end{aligned}$	15/8	11/4	113/16
PC	Power Transfer	10 Amps	4PDT	$\begin{aligned} & 1 \text { to } 440 \mathrm{VAC} \\ & 1 \text { to } 220 \mathrm{VDC} \end{aligned}$	1\%16	15/8	25/8
CB	Coaxial	8/10 KW	SPDT	1 to 440 VAC 1 to 220 VDC	31/16	17/16	3\%16

Illustrated are a few typical examples of the ADVANCE relay line. The complete line includes sensitive, midget, midget telephone, keying, instrument, time delay, overload, transmission line, hermetically sealed and ceramic insulated types and variations.
For accurate circuit behavior... lower unit cost... increased efficiency...and uniformly high quality relays specify ADVANCE.

Write for new, descriptive Catalog containing detailed information about ADVANCE Relays and facilities.

ADVANCE ELECTRIC AND RELAY COMPANY
2435 North naom street, burbank, CAlIFornia
Sales Representatives in Principal Cities of U. S. and Canada

"When you deal with Bob Henry I want you to be entirely satisfied, get the lowest wholesale price, the quickest service, the best trade-in and the best time sale plan financed by me with the least red tape and the lowest carrying charges. I want everything to be entirely satisfactory. It will pay to contact me by mail, phone, or telegraph about any equipment.
"I want you to say, 'You can bet on Bob Henry for the best.'"

 31 Reasons why hailicretters sx88
IS HAM NEWS AT BOB HENRY'S:

1. Heavy gauge steel welded chassis for mechanical stability.
2. Full precision gear drive for main and band spread tuning.
3. Six position Band Width Control (selectivity) from 250 cycles to 10 kc.
4. 10 watt inverse feed back and pushpull audio output.
5. Exhalted B.F.O. for tops in single side band reception.
6. Buffer amplifier in B.F.O. circuit.
7. Antenna trimmer.
8. Amplified and delayed A.V.C.
9. Built-in 100 kc calibration crystal.
10. Second conversion oscillators crystal controlled.
11. Inertia tuning (fly wheels both dials).
12. Full frequency coverage from 535 kc to 33 mc .
13. Calibrated electrical band spread $160,80,40,20,15,11$, and 10 meters.
14. Logging scales on each tuning shaft.
15. Dial locks on each tuning shaft.
16. Tuning dial indicators resettable from front panel for maximum ealibration accuracy.
17. Auxiliary A.C. socket on rear of chassis.
18. Illuminated band-in-use indicator.
19. Illuminated S meter.
20. Dual S meter calibration S units and microvolts.
21. Auxiliary power socket plus .6 amps at 6.3 volts and 10 ma at 150 volts for accessories.
22. Standard $834^{\prime \prime}$ by $19^{\prime \prime}$ panel for rack mounting if desired.
23. 50 kc i.f. output jack via cathode follower for teletype converter, etc.
24. Five position response control (tone control).
25. Two r.f. stages (Bands II to VI).
26. 17 tubes plus voltage regulator, ballast tube and rectifier.
27. Automatic noise limiter circuit.
28. Phono Jack.
29. Audio output transformer for 3.2, 8, $500 / 600$ ohm loads.
30. Fuse for overload protection.
31. Auxiliary sensitivity control permits monitoring of local transmissions in standby position.

PRICE $\$ 499.50$ SUBJECT TO CHANGE WITHOUT NOTICE.

BOB HENRY SAYS-"I offer you the lowrst prices, the casiest terms, top trade-ins, my personal attention to your satisfaction. Get my offer before you buy."

 THE NEW " C OM MUNICATOR"

the New ơMSED "SUPER-CEIVER"

MOBILE RECEIVER

 NoIsle Claplolk rirant. Tuning eve metering on all stages including transmittor antemai cirenit (indicates max, transmitter output). No (external meter required. Transmitter employs 8 me. arstals for stahility. Modulator can lo used for l'. L. sustem, for remergence and (D) work. $\$ 209.50$ Inclading Federal Exase Tan (less mierophone and erystal). For deluxe model with scueleh add $\$ 20.00$.

THE

"SUPER 6"

A Six 13and Amateur Converter covers the amateur 10, 11, 15, 20, to and 75 meter phone hands with lots of handspread. Also covers (6 me. (19 moter) nighttime and 15 me . (19 meter) davtime short Wave broadeast bands, therefore ideal for ISC reception in remote arcas where standard broadcast reception is poor. Very high sensitivity on an 8 ft . whip antemna. Low drift, noise factor, and image response. Net $\$ \mathbf{5 2 . 5 0}$.

BOB HENRY SAYS—

"I offer you the lowest prices, the cusiest terms, top tradr-ins, my personal attention to your satisfaction. Get my offer before you buy."

The Super-ebiver combination consists of three clements: IIF tuning head, which may be a super-six or other standard. cood quality converter, a control box and the all-important Model 3041 unit. the heart of the combination. The latter is actually a crystal controlled, superheterolyne receiver with input cirenits fixed-tuned to the output frequency used for the average converter. (1430 kc for super Six.) six quency used for the averake convertar. (10-1 $1-15-2(0-10-75)$ when used with "Super six."
"Finger-tip control" with remote control head 2 " high to match Super six converter.
COMPACT: Model 3041 unit is $678^{\prime \prime}$ wide, $63 / 4^{\prime \prime}$ decp and $51 / 6^{\prime \prime}$ high. (Control heral is -"' $^{\prime}$ wide. $312^{\prime \prime}$ deep, $2^{\prime \prime}$ high.

Convertible (dual) 6-12 volt pack. $\$ 119.50$ Inciuding Federal Excise l'ax. (Price does not include super six converter.)

THE

 "COMMANDER"

35-50 watl MULTI-BAND TRANSMITTER

FREQUENCY RANGE: 1.7 to 54 Nc. continmous.

TUBES: R.f. - 6AG7, 6146. A.f. - 12AT7, 2-6AG.i's
POWER REQUIREMENTS: 300 volts d.c. at $200-295$ mat (phone) and 6.3 volts a.c. or d.c. at 3.15 amp. 35 watts input on phone, 50 watts on c. w.
MODOLATOR: Class Alse beam tetrodes and integral high level speech elipping (requires no adjustument) permit heavy modulation without splatter.
MICROPIIONF INPUT: Any standard carbon or par type high impedance dynamic or crystal. No optional model or preamp required for crystal mike.
ANTENNA FEED : All conventional feed lines including COAX, RLIR13ON, and OPEN LINE, or DIRECT TO MARCONI ANTENNA. SIZFe Very compact: $53 / 8^{\prime \prime}$ high by $81 / 8^{\prime \prime}$ wide by $71 / 8^{\prime \prime}$ deep. Suitable for under dash mounting.
(Completely wired and tested, with all tubes, and including two high-Q final tank coils which cover 10-11, 15, 20, 40, 75, and 80 meters. Final coils for other frequencies are available separately.) Model $\$ 3016$ - Net $\$ 124.50$

RADIO COMPANY, bob henry Offers:

32V-3 VFO TRANSMITITER

A bandwitehing, gang-tuned amatear transmitter. Rated at bial watts input on ('W, 120) watts phone, this litte receiversize rig has the kiek of a kangerow, and its exeellent audio provides extraordinarily gool readatility. The $32=-3$ covers the s0, $41,20, i \bar{i}, 11$ and 10 meter ham bands. It is thoroughly filtered and strieded to minimize the possibility of TVI.

I'rice $\$ 775.00$

KW-1 TRANSMITTER

Einginered for maximam power allowed by your heense. Its imput is a full lown watts on phone or (Wh: The entire transmitter, including power suphly, is in one attractive cabinet. Complete bandswitehng of the exciter, drive and power amplifier by a single eontrol on the front panel. It covers all bands from 10 through 16 . TVI redurtion is aceomplished by well engincered shieding and filtering. It's as pasy to handle as a 32150.

Price $\mathbf{\$ 3 8 5 0 . 0 0}$

BOB HENRY SAYS-

"I offer you the lowest prices,
the easiest terms, top trade-ins, my personal attention to your satisfaction.
Get my offer before you buy."

Shurite

POPULAR WITH HAMS BECAUSE THEY'RE ...

THEY'RE TODAY'S BEST VALUE

Ask for Catalog Sheet F-56(SH), latest revision

Flybacks: Universal replacement with complete installation data.
Exact replacement for the "big 10 " *where necessary.
*RCA-Zenith-Motorola-Admıral-etc.

Transformers: Complete coverage of the replacement market.

IF-RF Coils: A complete line constantly expanding to meet current and future needs.

Merit Replacement Data: \#405 TV "Repl" Guide-\#3 Auto Radio replacement guide-\#10 comparative transformer part nos. - \#14 comparative coil part nos.

- Listed in John Rider's Tek-File and Howard Sams' Counter Facts and Photo Facts-Tape Marked* to help you.
*originated by Merit

THE NEW MODEL 770-A

The FIRST Pocket-Sized VOLT-OHM MILLIAMETER USING THE NEW "FULL-VIEW" METER

Yes, although our new FUll-VIEW D'Arsonval type meter occupies exactly the some space used by the older standard 21/2" Meters, it provides 71% more scale area. As a result, all calibrations are printed in large easy-to-read type and for the first time it is now possible to obtain measurements instead of approximations on a popular priced pocket-sized V.O.M.

Features

\star Compact—measures $31 / 8^{\prime \prime} \times 57 / 8^{\prime \prime} \times 21 / 4^{\prime \prime}$
\star Uses "Full View" 2\% accurate, 850 Microampere D'Arsonval type meter
\star Housed in round-cornered, molded case
\star Beautiful black etched panel. Depressed letters filled with permanent white, insures long-life even with constant use.

SPECIFICATIONS

6 A.C. VOLTAGE RANGE5:
$0-15 / 30 / 150 / 300 / 1500 / 3000$ Volts

6 D.C. VOLTAGE RANGES: $0-7.5 / 15 / 75 / 150 / 750 / 1500$ Volts

2 RESISTANT RANGES: 0-10,000 Ohms 0-1 Megohm

3 D.C. CURRENT RANGES: 0-15/150 Ma. 0-1.5 Amps.

3 DECIBEL RANGES
-6 db to +18 db
+34 db to +58 db
+14 db to +38 db

The Model 770-A comes complete with self-contained batteries, test leads and all operating instructions.

SUPERIOR INSTRUMENTS CO.

Dept. HB-54 * 2435-41 WHITE PLAINS ROAD * NEW YORK 67r N.Y. JOBBER DOES NOT HANDLE OUR LINE PLEASE SEND YOUR ORDER DIRECT TO US

COMPLETE OUTFITTERS for the HAM . . .

COMMUNICATIONS

AND

ELECTRONIC ENGINEERS

EUGENE G. WILE
 218-220 South 11th Street
 Philadelphia 7, Pa.
 Kingsley 5-8370

Distributors of
Nationally Advertised Lines of RADIO, TELEVISION and ELECTRONIC Parts

ADVANGE! Raise your earning power-learn RADIO-TELEVISION-ELECTRONICS by SHOP-METHOD

 HOME TRANNNG
GOOD JOBS AWAIT THE TRAINED RADIO-TV TECHNICIAN

There is a place for $y o u$ in the great Radio-TelevisionElectronics industry when you are trained as National Schools will train you at home!

Trained technicians are in growing demand at good pay -in manufacturing, broadcasting, television, communications, radar, research laboratories, home Radio-TV service, and other branches of the field. National Schools Master Shop-Method Home Training, with newly added lessons and equipment, trains you in your spare time, right in your own home, for these fascinating opportunities. OUR METHOD IS PROVED BY THE SUCCESS OF NATIONAL SCHOOLS TRAINED MEN, ALL OVER THE WORLD, SINCE 1905.

EARN WHILE YOU LEARN

Many National students pay for all or part of their training with spare time earnings. We'll show you how you can do the same! Early in your training. you receive "Sparetime Work" Lessons which will enable you to earn extra

LEARN BY DOING You receive and keep all the modern equipment shown above, including tubes and valuable, professional quality Multitester. No extra

National Schools Training is All-Embracing National Schools prepares you for your choice of many job opportunities. Thousands of home, portable, and auto radios are being sold daily-more than ever before. Television is sweeping the country, too. Co-axial cables are now bringing Television to more cities, towns, and farms every day! National Schools' complete training program qualifies you in all fields. Read this partial list of opportunities for trained technicians:

Business of Your Own - Broodeasting
Radio Manufacturing, Sales, Service . Telecasting
Television Manufacturing, Sales, Service
Laboratories: Insfallation, Maintenance of Electranic Equipment Electrolysis, Call Systems
Garages: Auto Radio Sales, Service
Sound Systems and Telephone Companies, Engineering Firms
Theatre Sound Systems, Police Radio
And scores of other good jobs in many related fields.

TELEVISION TRAINING

You get a complete series of up-to-theminute lessons covering all phases of repairing, servicing and construction. The same lessontexts used by resident students in our modern and complete Television broadcast studios, laboratories and classrooms!
 !
 Send loday for

National Schools' new,

illustrated Book of Oppor-

This
course
also offered
in Spanish
and Portuguese.

APPROVED FOR VETERANS AND
 NON-VETERANS
 Check coupon below

Both Resident and Home Stwdy Courses Offered!

NATIONAL SCHOOLS

LOS ANGEIES 37, CALIFORNIA - ESTAGAISHED 1905

FIND OUT NOW-MAIL COUPON TODAY!

NATIONAL SCHOOLS, Dept.R-1S-123 4000 South Figueraa Street Los Angeles 37, California

Mail in envelope 1 or praste on

Send free Radio-TV Electronics book and Free sample lesson. I understand ro salesman will call on me.
NAME AGE ADDRESS
CITY
ZONE __STATE
\square Check here if released from service less thon 4 years ago.
\square Check here if interested in Resident School Training at los Angeles.

FUNGUS-PROOF

NYLON Lacing Cords and Flat Braided Tapes meet Army, Nayy and Civilian "Specs"

Lacing Cord or Tying Twine

Intensive research in the laboratories of The Heminway \& Bartlett Mfg. Co. has resulted in the development of fungus-proof Nylon Lacing Cords (also known as Tying Twines) and Flat Braided Tapes. These new products are especially important to you because of their special synthetic resin coating which resists the growth of mold and micro-organisms - factors most often responsible for the deterioration of old-type linen and cotton lacing cords and tapes and the subsequent corrosion and failure of electronic equipment.

Heminway \& Bartlett's new, special-finish Nylon Lacing Cords and Flat Braided Tapes are much faster and easier to lace. They have high abrasion resistance . . . low moisture absorption. They retain the desirable malleability of wax and yet have a melting point of over $190^{\circ} \mathrm{F}$. In addition, they are non-toxic to humans.

Heminway \& Bartlett's Nylon Lacing Cords and Flat Braided Tapes are sold through leading distributors throughout the U.S. If your regular distributor does not have them in stock, write us for the name of the nearest distributor who carries them.

HEMINWAY \& BARTLETT

[^16]
PRECISE MEASUREMENTS COMPANY

942 KINGS HIGHWAY

HIGH VOLTAGE POWER SUPPLIES

A precision, well canstructed high valtoge supply for television, meter testing and calibration, electrostatic painting, breakdown tests, nuclear physics and wherever high potentiols of low currents are needed. Oupput is well filtered direct current. Adjustoble by means of a contral an the front panel. Available with or without meter. Input voltoge is 115 v., 80 cycles.

Madel
6000
6000-A With Meter
6005
6005-A With Meter
6010
6010-A With Meter
6015
6015 -A With Meter
6025
6025-A With Meter

Maximum Valtage
2,500
2,500
5,000
5,000
10,000
10,000
15,000
15,000
25,000
25,000

Price
60.00
$\$ 60.00$
80.00
75.00
95.00
85.00
105.00
95.00
115.00
115.00
115.00
155.00

Alsa available with twa meters (as illustrated) thus current and valtoge can be read simultaneausly. Perfect far breakdawn and leakage measurements. Current limiter circuifs pratect meter an sharts. Price $\$ 35$ additional. Specify $50 \mu \mathrm{omps}, 100 \mu \mathrm{mps}$ or 1 mil meter. Same delivery time.
Regulated Power Supplies. Any madel can be had with built-in regulation circuits. Output remains within 5% aver mast af the range. Same delivery time. Claser regulatian an special arder.

TRANSPARENT CIRCUIT STAMPS

Pravide clear sharp impressians af all the mast used radia and electrical circuit symbals. Saves cansiderable drawing and drafting time and pravides a neater laoking oppearance. Used by leading manufacturers and labarataries. Stamps ore crystal clear ond easily lined up by laoking right thraugh them. Available in two popular sizes. May be purchased separately or in complete set. When ardering, specify stamp number and size.
Size A CIRCUIT STAMP SET
Sire A Individual Circuit Stamps
Sire B CIRCUIT STAMP SET
Stze B Individual Circuit Stomps
(12 stomps) each
(12 stamps)
ecch
$\$ 8.50$
10.85

INSTRUMENTS BUILT TO SPECIFICATIONS, Precise Measurements Company equipment is used by leading industrial concerns, research laboratories, government and serious amateurs everywhere. Your Local Distributor will be glad to show you our products.

FOR ECONOMY and DEPENDABILLTY. . .
 ORDER HUSKY RELAYS!

For quality, efficiency and reliability - select the relay you need from Price Electric's complete line. A few of the many types available appear on this page. A more complete listing and description is available in our Relay Reference Folder, which will be sent free upon request.

HUSKY relays consistently meet the most exacting specifications and perform their required functions under the most adverse conditions.

Serles 5724-1HS
(AN 3304-1)
(MILL-R-6106) CONTACTS: 4 from C, raterl 3 Amps at 115 Volts AC. non-inductire. VOLTAG: 26.5 Volts DC. ALSO AVAILABLE AS

MIDGET, Saries 1050 CONTACTS: D.P.D.T., rated 2 Amps at 11.5 Volts AC, non-inductive, COIL VOLTAGE: 3 to 24 Volts DC.
MAXIMUM COIL RE: MAXIMUM COIL RE:-
SISTANCE: 8500 S1ST.
AVAILABLE
MEAILABLE
SERMED

ories 8200, High Curren CONTACTS: 4 PNO. Elther one or two contacte rated up to $1: 50$ amp at 28 -D.C. Balance rated at 25 amp 11.5 COII. VOLTAGE; 6 to 48 V.D.C.
COHI. VOLTAG
SHOCK: 70 G G 30 at 10 to 500 CPS SIVE: $31 / 4^{\prime \prime} \mathrm{L}^{2} 2.1 / 16^{\prime \prime} \mathrm{W}^{x}$ $2.9 / 16{ }^{\prime \prime} \mathrm{H}^{\prime}$ ohms,

SYNCHRONOUS TIME DELAY Serles 40 So
CONTACTS: S.P.N,O. to D.P.D.T. rated 10 Amps at 115 COIL vOLTACE 115 vele AC or 230 Volts, 60 . 60 AC. INE INTERVALS (FIXED) : TIME INTERVALS

AVAILABLE HERMETICALLY
 SEALEO

TYPE 6351 CO-AXIAL
CONTACTS: SPDT rated at lary SPNO. (RP load). Auxillary SPNO-SPNC rated at 2
amps at 115 V.A.C. COIL VOLTAGE: AC- 115 Volts.

MINIATURE TELEPHONE TYPE

OPERATING VOLTAGES, 6 to 48 roles DC OPERATING YOLTAGES: 6 to 48 rolts DC.
MAXIMUM COIL RESISTANCE: 5000

CONTACT CAPACITY: Standard contacts are rated at 3 amps 115 volts AC or 24 volts DC. non-inductive.

CONTACT COMBINATIONS: Up to 6 Form A, or 4 Form C (total of 12 springs). available mermetically sealeo

HIGM SMOCK RELAY, Serlos 4650

CONTACTS: 4 PDT rated 5 amperes at 125 V.A.C. non-inductive

RELAY

REFERENCE FOLDER A handy guide to Husky relays, contalning photographs and specifi. cations of 42 types. Helps you find the type relay sou need in Just a ew seconds. Address re quest to Dept. ARS4.

$75 N$	$120 C$	200 C
75 NB	120 CB	200 CB
90 NB	120 N	200 N
100 C	120 NB	200 NB
100 CB	150 N	230 N
100 N	150 NB	240 C
100 NB	153 C	240 N
HIGH VOLTAGE RECTIFIERS		

AVT-13 AVT-14 IGNITRONS

$5551 / 652$ 5552/651 5553/655		$\begin{aligned} & 5554 / 679 \\ & 5555 / 653 \mathrm{~B} \end{aligned}$
MAGNETRONS		
$2 J 48$	$4 J 47$	$4 J 58$
2155	$4 J 52$	4159
$2 J 56$	$4 J 57$	7254
MERCURY RECTIFIERS		
249B	575A	868AX
249C	673	889 B
2558	8578	872A
2668	866 A	8008
PENTODES		
828		93/AX-9909

Secondary Emission Pentode EFP60
Subminiature Pentodes
6007/5913 8008/5911
TETRODES
$A X 4.125 A / 6155 \quad 5895 / A X .9905$ 4X150A 6075/AX-9907 $A \times 4-250 A / 6156$ 6076/AX-9907R $807 \quad 6097 / A X-9908$ 813

\author{

7
78

}
TWIN TETRODES
$\begin{array}{ll}5894 / A X-9903 & 6360 \\ 6252 / A X-9910 & 832 A\end{array}$

THYRATRONS
Hydrogen
$4 C 35$
$5 C 22$

2D21
Mercury
$\begin{array}{ll}\text { FG17/1701/987/ } & 5559 \\ 5557 & 5869 / A G R-9950 \\ \text { GG105/AX105 } & 5870 / \text { AGR-995 }\end{array}$
678

Xenon		
3828	4B32 568	5685/C6J
TRIODES		
HF125	473	889A
HF 200	498	889RA
207	501 R	891
211	502	8918
212 F	502R	892
$212 F$	504 R	$892 R$
$232 C$	508/6246	3246 893A
242 C	750 TL	893 AR
HF250	805	HF-3000
2507 H	810	ZB3200
25071	8334	$5604 *$
251A	834	5619
279A	838	5658
284D	845	5668
HF300	849	5667
311 CH	8494	5736
342 A	849H	5771
343 A	851	5920
343 AA	858	8002
4507H	859	8002 R
450 TL 880		
3×2500	OA3 58	5868/AX-9902
3X2500F3 5923/AX-9904		
EC55/5861 5924/AX-9904R		
HF201A/488 6077/AX-9906		
$5866 / A X .9900 \quad 6078 / A X-9906 R$$5867 /$ X-9901		

VC6/20	VC50/32
VC6/32	VC100/20
VC12/20	VC100A/20
VC12/32	VC100/32
VC25/20	VC100A/32
VC25/32	VC250/20
VC50/20	

Hundreds of Helpful Illustrations

Original photographs, especially made for this book, show you what appears on the screen when there is a defective picture tube, diathermy interference and dozens of other causes of imperfect pictures. Scores of scope parterns aid you in signal tracing and analysis of circuit petformance. Hundreds of large, clear schematics, many from the major manufacturers, show you every detail of circuit arrangement.

A Complete Master Trouble Index

makes it easy for you to locate the source of trouble quickly. li's in the form of a handy chart listing the various hums. sound distortions, streaks, bars. focus defects and 100 other trouble symptoms in sound and piccure together with the possible causes of each and the page on which servicing in. structions are given. $\$ 5.50$

- simple signal trocing procedures
- how to improve reception in the fringe areas
- how to use the oscilloscope ond other test equipment
- how to trouble-shoot keyed A.G.C. ond synchroguide circuits
- how to olign I.F. stoges
- and many tricks for diagnosing troubles in minimum time

MATTHEW MANDL is author of the "Tele. vision Servicing Clinic" in Radio-Electronics and of regular articles on the technical and servicing problems of radio and relevision in ocher leading trade magazines; rechnical and engineering consultant: former operator of a radio station and owner of his own servicing business.

reliable books for Radiomen

Radio and TV Mathematics

by Bernhard Fischer. "By far the best book for preparation for FCC exams," writes one radioman. "A book for the place of honot beside its natural partner, the slide-rule," says Radio Electrontcs Here are step-by-srep solutions for every question requiring mathematics in the FCC study guide, as well as hundreds of orher circuit problems in radio, TV and industrial electronics. Whatever YOUR problem. whether to correct the power factor of a motor, or to find the impedance and lengrh of a matching stub berween a TV antenna and its transmission line. of any of hundreds of orher problems, here is your solution.

TV and FM Antenna Guide

by E. M. Noll and M Mandl. A basic course on antenna theory combined with a complete handbook on all types of antennas. including all commercial models, high-gan antennas for fringe areas, antennas for special locations and for the new UHF allocations. Shows you all rechniques for getting the most out of the antenna system. Based on extensive testing done by the authors.
$\$ 5.25$

Television for Radiomen

by Eduard M Noll. "By the time you are through with this book, you"ll have a GOOD foundation in TV." writes a radio and TV engineer, "You'll discover that the author has treated a much written-about subject in a refreshingly original manner." Written by a man nationally known for his many helpful articles on TV operation and servicing, this book explains very fully and clearly the principles of transmission and the construction, function and operating principles of every circuit and element in TV reception. You'll acquire the fundamental knowl. principes
edge you MUST have to qualify for the many good jobs waiting for you in television.

An Introduction to Practical Radio

by D. J. Tucker. One of the best 'fundamentals" books ever published. widely praised by authorities. "The chapter on Kirchoff's laws is a model," writes the reviewer in Elertronics. ${ }^{2}$ also goes further into the use of vectors for solving a-c circuit problems-a must for today ${ }^{\circ}$ radio rechnicians."
roday 5
$\$ 5.00$

for high quality audio
... where
performance counts
... use Cínema's best

Instantaneous control, whether in the laboratory or in the speech input console, must be dependable. Use the attenuators backed by 18 years experience. Write for catalogue 18AB today.

New material on:

IV Tuners

Keyed AGC systems
DC Video Amplifiers Cascode Amplifiers
45-mc Video I.F. systems
New illustrations, new diagrams, new whole chapters on UHF and COLOR TELEVISION!

TELEVISION SIMPLIFIED

by Milton S. Kiver is now in its 4th revised, reset and enlarged edition. No other book has received such wide acclaim in the television field. Basic principles are explained in language free of involved theory or mathematics, from the analysis of circuits and operating fundamentals of V.H.F.-U.H.F., TV and F-M, to the repairing of television sets and the explanation of an actual troubleshooting system.

Let these other KIVER books help you with special problems
TELEVISION \& FM RECEIVER SERVICING by MILTon s. KIVER 3rd ed. $\$ 4.20$
The most famous servicing book on the market today, now up-to-date and one third larger than before. Includes all practical information on troubleshooting, antennas, installations, alignment, testing, patterns, circuits and servicing.

FM SIMPLIFIED by Milton s. KIVER 2nd edition
$\$ 6.50$
"To bridge the gap between AM and FM techniques, it explains fully and in simple language the theory of FM propogation and FM receiver and transmitter circuits including detailed descriptions of circuits in commercial FM receivers and methods of servicing them."-Radio Electronics

UHF SIMPLIFIED by MILTON S. KIVER

Starting out from the principles of ordinary radio circuits, this book proceeds step-by-step to a thorough understanding of U.H.F. radio and equipment that is clear, easy to remember and apply.

MODULATION THEORY by HAROLD s. black 363 pp.

$\$ 8.75$
The very latest of the extensive series to come out of the Bell Telephone Laboratories designed to give both students and engineers a broad knowledge of all systems. It covers sampling, multiplexing and statistical properties of noise and message material.

THE RADIO MANUAL - 4th edition

by G. E. STERLING and R. E. Monroe
890 pp.
$\$ 12.00$
This giant volume covers the entire field of radio-from elementary electrical and radio theory to the most advanced applications in AM, FM, TV, Marine Radio, Navigational Aids, Emergency Services and the State, Federal and International laws. More than 800 illustrations, photographs and schematic drawings cover every type of modern equipment.

MICROWAVE THEORY AND TECHNIQUES

by HERBERT J. REICH and others.
From an introductory treatment of vector methods, static and dynamic electromagnetic fields to an up-to-date coverage of the entire microwave field, this heavily illustrated volume thoroughly covers principles, problems, experiments and references.

New Standards in Performance

Increase your QSO and DX quotas with ...

- Requires limile or no funing

Air Spaced Coil Windings

- Coils instantly interchangeable - Weather sealed . . . lightweight

20 Meter 40 Meter 75 Meter

Antenna Coils

Amateur's Net 369

COUNTS

MOUNT SPECIFICATIONS

MODEL	[All lypet are tapped for ${ }^{1}$ i" $^{\prime \prime}$ stoal Fitinn on Antenno Ind. Shippline Weight Approx. itb.,				Price
126 or 1265*					
$126 x^{\circ}$ or $126 x^{\circ}$	Body Mount-Haovy Outy-Straight Spring-Swivel Bas*				9.40
132 or $132 C$	Body Mount-Double Japered-Snring Swivel Bare....				8.75
132x or 132xC	Body Mount-Heary Duly-Double Tapered-Spring Swivel Bose.				9.85
1325s* or 132555°	Body Maunt-Special Stainless.................................				12.95
$132 \times 55^{\circ}$ or $132 \times 55 C^{*}$	Body Mount-HD. Special Stainloss				14.95
138	Bumper Mount-Straight Spring (same as 140 with straight spring)				6.55
138 x	Bumper Mount-Heavy Duty-Straight Spring (rame as 140 with H.D. Straight 5 wing)				7.65
140					6.55
140 x	Bumper Mount-Double Topered SprinBumper Mount-Heary Duty-Double				7.65
1405s					9.65
140×55	Bumper Mount-Special Stoinless.......				10.95
142	Eumper Mount-Less Spring, with Insulators for Direct mounting by Series 100 Ant. or 92 Ext, and 106 Antennos. \qquad				
	- Coan Type X -Heory Duty	SS-Special Stainless XC-Meary Duty Coox	$\begin{array}{r} \mathrm{XSS}-\mathrm{He} \\ \mathrm{xSSC}-\mathrm{Heory} \\ \hline \end{array}$		oinlem Coox

TWO METER COAX ANTENNAS

No. 214 -MASTER DE LUXE - a superior new, reggedlyconsfucled, vericaly polarized antenno with frequency tive, highly polished chiome finish enhances appeorance of any vehicle. Furnished with oppor. 10^{\prime} of 72 ahm Coa Coble. MOUNTING TYPES. Type 1 -Side Mount with brociers fulaighed - NET. \$15.95. Type 2- MASTER MOUNT (No. 132 X or 140 X]. Mounrs sold separotely. Com plete antenna: $\$ 17.45$. Mounting adjusts to 17
No. 613 -NEW IMPROVED MASTER VHF ROOF TOP ANTENNA. This new high petformonce ontenna leafures on impraved lype positive lock coaxial connector be. Signed lor police, fire, tasi cobs and omoteurs using 140
AC 10165 MC Slainless steel wire with threaded filteng Eosily changed withour disurbing wountheoded filteng. 10' coax cable... Nel $\$ 4.95$.

Master moeite hy "o"-ab Antenna. For top olfaround performonce, complete your rig with o precision Master Hy " Q ". This center loaded antenna cames with choice of one coil . . 20, 40 or 75 meter. Fiss any Moster Mount or $3 /{ }^{-\prime \prime}$ SAE Threod. Shipping wt. 3 lbs. Gose Mount 132 X Het $\$ 13.95$ \$ 6.85 PIANE ANE MODEL 300 ANTENNA. The MASTER. Phane is o "drooping" type ground plone plus lown almost perfect ciecle a ow ongle of radiotion lor an type of verticol thiough threaded fiting at battom and 72 ohm coax medium or low powered ronmitters hom 140.162 MC Shupping W i, 2 $1 / 2$ lbs. Ner $\$ 12.95$

MODEL GP-4 DROOPING TYPE GROUNO PLANE ANIENNA. For 2-meter operolion. has our "drooping"
 side of buiding. Sturdy construetion: special alloys used 1 b bolts and marion and weaher. Ceramic insulator. 1 lb .
Master Mabile Maunts, Inc.
P.O. BOX 1817 . LOS ANGELES 36. CALIFORNIA WAREHOUSE ANO SHIPPING ADDRESS: 1306 BOND SIREET

CARDWELL CAPACITORS

Whether it be
PRECISION VARIABLES
.. . Such as this temperature-compensated unit which make possible the famous frequency meters $B C-221, T S-173 / U R$, and TS-174/U.

HIGH-POWER TRANSMITTING UNITS

Like this 1 -inch air gap 100 mmfd . unit with speciol electrostatic shields and corona cups to minimize losses at peak voltages up to 20 KV .

MEDIUM-POWER TRANSMITTING UNITS

Designed for efficient high-frequency use in services ranging from "ham" rigs to TV transmitters.

COMPACT LOW-POWER "TRIM-AIRS"

For years the favorites of designers, experimenters, ond hams because of their extreme adaptability to indivi. dual needs.

CARDWELL MAKES THE FINEST

Based on more than 35 years experience in development and production of the components required to do a special job well, Cardwell continues to manufacture high quality air-dielectric capacitors to fill almost every need. In addition to the units shown above, plug-in fixed air capacitors, disc-type neutralizers, insulated shaft couplings and other variable capacitors are available as described in Catalog 50 A

Specify

 CARDWELL QUALITY PRODUCTS

 CARDWELL QUALITY PRODUCTS}
Ask us about our Printed Circuif

 facillifies, UHF TV converfers, TV IF sprips and UHF TV funers.THE ALLEN D. CARDWELL MFG. CO. PLAINVILLE, CONN.

WRITE FOR OUR DETAILED CATALOG NO. 5OA

	Page	page
Impedance Ratios	39,311	Amateur Bands . 13-14
Impedance, Resistive at Resonance	43.44	Amateur Radio Emergency Corps 528
Index, Modulation	285	Amateur Operator and Station Licenses. . . . 17
inductance Calculation	27	Amateur Regulations. $13-14$
Inductance Measurement	473	Amateur's Code, The . 8
Inductive Reactance	33	American Itadio Relay League:
Input Capacitance, Tube	62	lleadquarters . 12-13
LC Constant	44	Hiram Percy Maxim Memorial Station.... 12,
Lecher Wires	464	530-531
Lissajous Figures, Frequ	482-483	Joining the League 533
Low-Pass lilter	540, 541	Ampere.... 17
L/R Time Constant	30	Amplification . 54,5 55-61, 69
Modulation Impeda	257.269	Amplification Factor. ${ }_{\text {¢ }}^{5}$
Modulation Index	285	Amplified A.V.C. 91
Modulation Percentage. . -	266	Amplifier Classifications . 58 -60
Modulation Transformers, Turns	257	Amplifier, Linear . 294
Multiplier, Meter	460	Amplifier, Speech . 239-244
Ohm's Law (A.C.)	19.34,35	Amplifiers (see basic classifications, e.g., "Re-
Output Condenser for Modulated Amplifier		ceivers," "Transmitters," "Radiotelep
		ony," and "V.11.F.")
Parasitic Element Spacing.		Amplifiers, Class A, B, C 58 - 60,294 Amulitude Curent . . 15
Power		Amplitude, Current. ${ }_{\text {and }}^{\text {15-16 }}$
Power-Supply Output Voltage	213	Angle of Radiation . 330 , 331
Power-Supply Transformer Voltage	213	Anode. ${ }^{\text {a }}$, 52
	,44, 540	Antenna Construction $353-360$
(2-Section Transformer	.316-317	Antenma Couplers. 1171118 -18, 321-329
Quarter-Wave Phasing Seetion Leugth	. 348	Antenma for 80 and 40 Meters. 156
RC' Time Constant	29	Antenna Input lmpedance............... 316
Reactance.	34	Antenna Length . . . $332-334,337,341,343,414-416$
Regulation	208	Antema Masts . $353-355$
Resistance Measured	460	Antemas, Mobile . $45.28-456$
Resonance		Antemas, Receiving 352 -353
Rhombic Antenna	345	Antenna Switching. 353
Ripple	211	Antenmas for Restricted Space 3388 -340
Screen-Dropping Resistor	66	
Series, Parallel and Series-Parallel Capaci-		Antennas for 160 Meters . $342.343^{\text {a }}$
Series, Parallel and Series-Tarallel Inductances 28		Antinode. 30 . 309
		Antistatic Powder . 43.45
Series, Parallel and Series-1'arallel		Array . 345
		Arrays in Combination 353
Shunts, Meter	458	Assembling a station . $4885-490$
Standing-Wave Ratio	310,478	Atmospheric Bending 72.75 -75, 364
Surge Impedance	3107, 314	Atoms.. 16
Time Constant, $C R, L / R$ Transformer Current.	$\begin{array}{r} 29,30 \\ . \quad 38 \end{array}$	Autio-Amplifier Classifications 5 5-60 60
Transformer Efficiency		Audio-Circuit Rectification 492-493
Transformer Turns, Primary	213	Audio Frequencies . ${ }^{\text {A }}$. ${ }^{\text {A }}$
Transformer Voltage	38	Audio Harmonics, Suppression of 258
Trinsformer Volt-Ampere Rating		Audio Image . ${ }^{208}$
Transmission-Line Length.	314	Audio Limiting . 92.98
Transmission-Line Output Impedan	-311	
Turns Ratio	38, 257	Audio Power . 26.
Voltage Decay Time	. 537	Auroral Rellection $\begin{array}{r} \cdot \\ .75, \\ 269 \\ \hline 363 \end{array}$
Voltage Dividers	214-215	Autodyne Reception $86,80$
Voltage-Dropping Series Resistor	$\begin{aligned} & 214 \\ & 2108 \end{aligned}$	Automatic Volume Control90-91
Voltage Regulation. Voltage-Regulator Liniting Res	$\begin{aligned} & 208 \\ & 215 \end{aligned}$	Autotransformer . 40
Voltage-Regulator Limiting Resis Waveguide Dimensions		Average-Current Value 17
Waveguide Dimensions Wavelength		Awards. 531-533
Wavelength-Frequency Conversion		"13"Battery . ${ }^{\text {Br }}$ 52
		Br-Cut Crystals . 131
		Back-E.M.F. 26
Text		Back Resistance . 69
		Backwave. 2 . 29.9
"A" Battery	52	Baffle shields . 50
"A"-Frame Mast	354	Balanced Circuit. 50
A-1 Operators Club	53:3	Batanced Modulator291-292
A.C.	6, 31-40	Balun . 320 , 374-375, 414
A.C.-D.C. Converter	, 2:55	
A.C. Line lilters	494	I3andpass Filters . 540,541
ANI (see "Amplitude Modulation")		Bathads, Amateur . 14
ARIRL Emblem Colors	530	Bandspreading . 82 -83
ARIRL Operating Organization	529-533	Bandwidth. 77
AT-Cut Crystals	131	Bandwidth, Antenna....................... 331
Absorption Frequency Meters	462-463	Base, Transistor............. 69
Absorption of Radio Waves		Basic Radio Propagation Predictions 362
"Acorn" Tubes.	426-427	13attery.................................. ${ }^{\text {a }} 16$
Additive Frequency Meter	462	Bazooka. 320, 374-375
Air-Insulated Lines	312	BCI . $491-494$
Alignment, Receiver	102-103	13eam Antennas. 337 -338, 343-352
Alternating Current	6, 32-40	l3eam Tetrodes. 63
Alternations		Beat Frequencies. 51
Aluminum Finishing	515	Beat Note . 76
Amateur Band Operating Characteris	70,361-	Beat Oscillator. ${ }^{\text {a }}$, 90
	364, 421	Bending, Tropospheric $72-75$

	page		page
Bent Antennas	-343	Clicks, Keying	29, 231-233
Bias	140, 230, 258	Clipping-lilter Circuit	247-249
Bias, Cathode	65	Clipping, Speech	245-249
Bias Modulati	271-273	Closed Stub	317
Bias Supplies	217-219	Club Affiliation	530
"Birdies"	84,103	Coaxial Antennas	419
Bleeder	208, 211	Coaxial-Electrode Tubes	
Blocked-Grid Keying	229	Coaxial-Line Circuits	421-422
Blocking Condeuser	48, 153	Coaxial-Line Matching Section	351-352
Body Capacity	81	Coaxial llug Connections	516-517
Booms, Rotary Beam	357-360	Coaxial Transmission Lines	312,313-314
Brass Pounders League	533	Code (Continental) and Code Practice	13-14
Breakdown Voltage	25	Code l'roficiency Certiticate	532
Break-In 229-230, 236-234	297, 521-524	Coefficient of Coupling	, 46
Bridge IRectifiers	206	Coefficient, Temperatare	19
Bridge-Type Standing-Wave Indicators	476-481	Coil (see "Inductance")	
Broadband Antemnas	420	Cold-Cathode Rectifiers	206
Broadcast Interference, Elimination of	493-494	Collinear Arrays	345-346
Broadside Arrays	345, 347	Color Codes, RTMA	518-519
Buffer Amplifier	129, 268	Colpitts Circuit	67, 132-133
Buffer Condenser	2-5-226	Combined A.C. and	48-50
"Buncher"	- 427	Combination Arrays	$35:$
Buttertly Circuits	423	Compact Antennas	342-343
Button, Microphone	238	Complex Waves	17,37
Buzzer Code-Practice	14	Component Values	517
By-Pass Condenser	49, 153	Compression, Speech Amplifier	244-245
By-Passing 49	153, 500-501	Concentric-Line Matching Section	351-35:
"C" 13attery	55	Concentric Transmission Line	
C' (Capacitance)		Condenser	3
(R R and $1 / / R$ Time Constants	29-31,537	Condenser-Input Filter	209-210
Cable Lacing.	- 517	Condensers:	
Canadian Director		Bandspread	82
Capacitance and Condensers	23-26	13 uffer	225-226
Capacitance:		13 y -Pass	49, 153
Distributed		Ceramie	518
Feed-Back	62	Electrolytic	25
Inductance, and lirequeney Charts	542,543	rilter	209-212
Interlectrode	61, 62, 145	fixed	25, 501, 518
Measurement	473-474	Main-Tuning	
Specific Induct	23	Neutralizing.	
Tube Input.	61-62	Padding.	
Tube Output	63	Trimmer	83
Capacitance-Resistance Time Constant		Variable	4-25
Capacitive Coupling 45 ,	143, 50)2-503	Conductance	
Reactance	32-3:3	Conductance, Mutual	
Carbon Mierophone	238	Conductivity	5, 16, 542
Carrier	51,265	Conductor Size, Antemas	333
Carrier Suppression	291-292	Conductors.	
Cascade Amplifiers	58	Cone Antennas	
Cascode R.1. Amplifier	366	Constant, Time	-31,91
"Catcher".	427428	Constants, LC	44
Cathode	52-5:3	Constant-Voltage Transformers	221-222
Cathode-l3ias Calculation		Construction, Antenna	353-360
Cathode-Ray Oscilloscopes	481-484	Construction Practice	512-519
Catwhisker.........	${ }^{69}$	Continental Code	13-14
Cavity lesonators	424-426	Control Circuits, station	486-487
Cell	16	Control Grid	
Center-Fed Antenna	334-337	Controlled Carrier	
Center Loading	454	Conversion Efficiency	
Center-Tap, Filament	6.4	Converters, I). (--A.C.	225
Center-Tap Full-Wave Rectifier	205-206	Converters, Audio	
Center-Tap Keving	230-231	Converters, Frequency	83-84, 99
Center-Tap Modulation	276-277	Converters, V.II.F... 36	378, 440-444
Channel	265	Copper-Wire Table	539
Characteristic Curves	54-55	Cores	26, 27-28, 213
Characteristic Impedance	312, 31-4	Corner Reflector Antenna	419
Characteristics, Crystals	131	Combterpoise	
Characteristics, Dynamic		Conntries List, AlRIRL	
Characteristics of Amateur Bands	70, 361	Conpled Circuits	44-47
Characteristics of Radio Waves	70-72	Couplers, Antenna 117	-118, 321-329
Charges, Electrical	15,16	Coupling.	
Chassis Layout	513-514	Coupling:	
Chirp, Keying.	.133-134, 229	Antenna to Receiver. 81	, 321-322,384
Choke:		Amplifier-Ontput	136-138
Coil	26,210	Antenna to Transmitter	322-327
Filter	210	Capacitive 45	, 143, 502-50:3
Radio-Frequency	48, 153	Choke	
Swinging		Circuits	44-47,57
Choke-Coupled Modulation	270-271	Close.	
Choke-Input Pilter	210-212	Coefficient or	29,45
Circuit Tracking	83, 98	Condenser	
Clapp Oscillator	133	Critical	
Class A Amplitiers		Impedance	
Class AB Amplifiers		Inductive	45, 142
Class B Amplifiers.	59-60	Interstage	141-144
Class B Modulators	257-261	Link $47,142,323$	-324, 325-326
Class C Amplifiers.	60	Loose	

Screen Dropuing Resistor 66
screen-Grid Koying 230
Screen-Grid Modulation141
\&crean-Grid Tubes66
Second Detector 37
Secondary Emission 62
Secondary Frequency Standard 529
Section Emergency Coobrdinator530
selective Pading 74
electivity Contro 95
Selenium Reetifiers 20, - 65
self-Controlled Oscillators 129
Self-Oscillation -97
semiconductors 8-69
Sensitivity, Receiver 70-77,98-99Series Capacitances . $5-\boldsymbol{2} 6$
 26,28
series Inductines.1-20
series1-42
Servicing Superhet Receivers 103sheet Metal Cutting and Bending515
shields. 50
shied Llectrostatic$36: 3-36-1$
horting stick3
Shot Noise60
Sideband Interference 265, 268 51,265
ivnal Generators
78
Signal-to-Inage Ratio$2: 34$
ignal Monitoring3-94
Signal-st rength scate 3
ilencers, Noise17, 31-37
Single-Ended Cireuits 50
Amplification297-304
Trankion16
Single-signal Reception 95
Skin Effect 19
sip Zone. 3
Sky Wave$8: 3$
moothing Choke 212
Soldering. 515
Suace Wave43:3-4:34
Special-Type Tules.23
Spectrum, Frequency2:3!)-244
speech Clipping and Filtering 245-246

	page		page
TV Receiver Deficiencies	508	Station Locations, V.II.F.	4
"Twin-Lamp" Standing-Wave Indicator	480-481	Superregenerative Receiver.	8
Twin-Lead	312-313	Transmitter Design	385
Ultra-High-Frequencies:		V.11.F. Receiver Design	65-368
"Butterfly" Circuits.	423	VFO	129
Cavity Resonators	423-426	Vibrator Power Supplies	25-227
Klystrons	427-428	Virtual Height	
Lighthouse" Tubes 366, 3	427-430	Voice-Controlled Break-In	
Lumped-Constant Circuits	422-423	Voice Operating	22-523
Magnetrons	428424	Volt	17
Megatrons	427	Volt-An	37
Tank Circuits	421-424	Volt-Ampere Rating	213
Techniques	429-432	Voltage Amplification	56,240
Transmission-Line Tanks	422	Voltage Amplifier.	
Traveling-Wave Tubes	429	Voltage Breakdown	5
Tubes	426-429	Voltage Decay	537
Velocity Modulation	427	Voltage Dividers	14-215
Wave Guides . .	42:3-426	Voltage Distribution, Anten	333, 336
Unbalance in Amplifiers	148	Voltage Drop	21,214
Unbalance in Transmission Lines	320-3:1	Voltage l'eed for Antennas	334
Universal Antenna Coupler	328-329	Voltage Gain	57, 240
Untuned Transmission Lines	311	Voltage Loop	309
Upward Modulation	266-267	Voltage-Amplifuation Ratio	56
"V" Antennts	343-344	Voltage-Multiplier Circuits	19-220
V'R Tubes	215	Voltage Node	309
Vacuum Tubes and Semiconductors		Voltage Ratio, Transformer	
(Index to Tables)		Yoltage Regulation	208
Vacuum-Tube I'rinciples	52-(i8	Voltage, Ripple	208-209
Variable Condenser	24-25	Voltage Rise	42
Variable-Frequency Oseillators:		Voltage-Regulator Interfere	
Audio-I.F	470-471	Voltage-stabilized P'ower supplies	215-217
VFOs	132-135	Voltmeters.	460-463
Variable-m Tubes		Yolume Compression	244-245
Variable Selectivity	94-98	W1aW	12,531
Velocity Factor	314-315	WAC Certificates	
Velocity Microphone	$2: 39$	WAS Award	
Velocit-Modulated Tubes	427	Watt.	
Velocity Modulation.	427	Watt-Hour	
Velocity of Radio Waves	18,70-71	Watt-Second	
Vertical Amplifiers.	4×2	Wiave Angle	73, 333
Vertical Angle of Radiatio	3:30	Wave-Envelope l'attern	266
Vertical Antennas.	340-34:3	Wive liront	71
Vertical Polarization of Radio		Wave, Ground	73
		Wave Guides	42:3-420
Antenna Systems.412-420	, 452-456	Wave Propagatio	.72-75
Constructional:		Wave, Sine.	7,31-37
Receivers:		Wave, sky	.72-75
Crystal-Controlled Converter for 432	Mc. 382	Waveform	
Crystal-Controlled Converters for		Wavelength	
144 and 220 Mc .	369)-374	Wavelength-Frequency Convers	
Low-Noise Preamplifier for 144 Mc .	. 379 (-380	Wavelength P'erformance.	70
Receivers for 420 Mc...	.380-3883	Wavelengths, Amateur	14
R.F. Amplifiers for 420 Me .	. $381-3 \times 2$	Waves, Complex. . .	37
Simple Converter for 50 and 144 Mc	. $3770-378$	Waves, Distorted	36
V.H.F. IBaluns.374-375	Waves, Electronagi	15
2 -Meter Mohile Converter	443-444	Wavetraps	498-499
Transmitters:		Wheel Static	434-435
50-144 Mc. Band-Changing Crystal-		Wide-Band Antenn	420
Controlled Mobile Transmitter	447-450	Wire Table	539
144-Mc. Driver-Amplifier	. 392 -396	Wiring Diagrams, symbols for	
420-Mc. Transmitters.	409-411	Wiring, Station....	490
Complete Transmitter for 144 Throug		Wiring, Transmitter	515-517
Mc.	$.3840-302$	Word Lists for Accurate Trausmission	523
Transmitter-Ex-iter for 220 Mr.	$407-408$	Working DX	523-524
Final Amplifier for 50,28 and 21 Mc - HF Juns V.OO	$\begin{gathered} 396-399 \\ 399-401 \end{gathered}$	Working Voltage, Condenser	- 212
Transmitter-Exriters for 50 and 144	$399-401$	Workshop Practice	512-519
Transmitter-Ex+iters for 50 and 144	$\begin{aligned} & \operatorname{Mr}, \\ & 4(02-405 \end{aligned}$	WWV schedules.	. 466
100-Watt R.F. Amplifier for 50 and		X (Reactance)	-32-34
Mc. .	.405-406	"l"'-Matching Transformer	319-320
Propayati	$36{ }^{2}$	\% (Impedance)	34-36
Rereiver Considerations	. 310.5	\%ero Beat	2

[^0]: 1 Where it is necessary or desirable to identify the electrodes, the curved element represents the outside electrode (marked "outside foil," "ground," etc.) in fixed paper- and ceramic-dielectric condensers, and the negatite electrode in electrolytic condensers.
 2 In the modern symbol, the curved line indicates the moving element (rotor plates) in variable and adjustable airor mica-dielectric condensers.

 In the case of switches, jacks, relays, ete., only the hasic combinations are shown. Any combination of these symbola may be assembled as reguired, following the elementary forms shown.

[^1]: Example: Threc condensers having capacitances of 1.2 and $4 \mu \mathrm{fd}$., respectively, are con-

[^2]: Fig. 6-14-Cirenit diagram of the complete transmittor. Dotted lines in J_{8} indicate jumpers in plug used for normal operation.
 (1. Ci- $2: 20-\mu \mu \mathrm{fd}$. mica.
 (2-3-30- $\mu \mu \mathrm{fd}$ ceramic trimmer, comprission type.
 ($3-10.002-\mu \mathrm{fl}$. mica.
 ($\mathrm{A}_{4}-100-\mu \mu \mathrm{fd}$. mica.
 ($:=0.002-\mu \mathrm{fd}$. mica.

 ($\mathrm{s}-0,001-\mu \mathrm{fd}$. mica, 1200 volts, catse type (C$]-45$.
 Cig - 235- $\mu \mu \mathrm{fd}$. variable, 0.02 t-inch spacing (Bud tym IC.-1859).
 Cio - $140-\mu \mu \mathrm{fd}$. variable, 0.024 -inch spacing (Bud ivpe M(-1856).
 Cil to C:27, inclusive $-0.001-\mu \mathrm{fd}$. disk ceramic, ${ }^{3} \mathrm{x}$-inch diam., 600 volts.
 (:2x - $170-\mu \mu \mathrm{fd}$. mica, 1200 volts, case type C V. 1.7
 $\mathrm{C}_{2 n}$ - I Mal 8 - $\mu \mathrm{fd}$. eleetrolytic, 451 volts.
 $\mathrm{C} 30, \mathrm{C}_{31}-10-\mu \mathrm{fd}$. electrolytic, 1.01 volts.
 $K_{1}-0.1$ megohm, $1 / 2$ watt.
 $\mathrm{R}_{2}, \mathrm{R}_{3}-2 \overline{2}, 000$ ohms, 1 watt.
 $R_{4}-5000$ ohms, $1 / 2$ watt.
 $R_{5}-100$ ohms, $1 / 2$ watt.
 $H_{0}-263$ ohms (270), $1 / 2$ watt.
 $\mathrm{K}_{7}-5.55$ ohms (560), $1 / 2$ watt.
 Rs - 25 ohms (2^{-}), $1 / 2$ watt.
 $R_{9}-4700$ ohms, 1 watt.
 $\beta_{10}-0.1$ mexohm, 1 watt.
 $R_{11}, R_{12}-20,000$ ohms, 10 watts
 $1 k_{13}-0.5$ megohm, $1 / 2$ watt.

[^3]: * Measured values with coil unshielded.

[^4]: ${ }^{1}$ For a description of a woll-shielded oseillator, see $S_{m i t!}$, "A Solution to the Keyed-l゙\&O Problem," QNT, Fehruary 19 30.

[^5]: ${ }^{2}$ For a more complete discussion of this effect, see Carter, "Reducing Key Clicks," QST, March, 1949.

[^6]: 1 Voltage across next－stage grid resistor at grid－current point．
 ${ }^{1}$ At 5 voles r．m．s．output．
 －Cothode－resistor values are for phase－inverter zervice．

[^7]: Mobile Power Considerations
 Since the ear storage battery is a low-volatge source, this means that the current drawn from the battery for even a moderate amount of power will be large. Therefore, it is important that the resistance of the 6 -volt eireuit be held to a minimum by the use of heavy conductors, no longer than neressary, and good solid connections. A heavy-duty relay should be used in the line between the battery and the plate-power unit. An ordinary toggle switeh, located in any convenient position,

[^8]: ${ }^{1}$ At $20^{\circ} \mathrm{C}$., based on copper as $100 .{ }^{2}$ Per ${ }^{\circ} \mathrm{C}$. at $20^{\circ} \mathrm{C}$.

[^9]: Measured inductance of coils wound with No. 12 bare wire, 8 turns to the inch. The values include half-inch leads. Where smaller inductance values are required, they should be obtained experimentally by adjusting to the proper resonance frequency with the specified capacitance. Coils of larger inductance can be wound from the common formulas.

[^10]: 2 Each section.

[^11]: $7 \mathbf{C 2}$ and $\mathbf{G 3}$ voltage.

 - Two tubes to cover range

[^12]: Model SX.73-Use R-46 Speaker

[^13]: -Tower steel onls-weight of guvs, insulators, etc. not included. flasulation for greater power available at slight extra cost.

[^14]: ROCKVILLE, CONNECTICUT A subsidiary of LaPointe Electronics Inc.

[^15]: * $\$ 4.00$ in the Luited States and Possessions.
 $\$ 4.25, \mathrm{U} . \mathrm{S}$. funds, in Canada.
 $\$ 5.00$. L'. S. funds, in all other countries.

[^16]: The Heminway \& Bartlett Mfg. Co., 500 Fifth Ave., New York 36, N.Y. Sales Offices: Chicago, Philadelphia, Boston, St. Louis, Cincipnati, San Francisco, Los Angeles, Charlotte, N.C., Gloversville, N. Y.
 Foreign Agent: Turner, Halsey Co., Inc., 40 Worth Street, New York, N.Y. Cable Address: THECOTEX

