SCHEMATIC SYMBOLS USED IN CIRCUIT DIAGRAMS

Where it is necessary or desirable to identify the electrodes or capacitors, the curved element represents the outside electrode (marked "outside foil," "kround," etc.) in fixed paper-and ceramic-dielectric capacitors, and the negative elcetrode in electrolytic capacitors.

In the modern symbol, the eurved line indicates the moving element (rotor plates) in variable and adjustable airor mica-dielectric capacitors.

In the case of swithes, jacks, etc., only the basic combinations are shown. Any combination of these symbols may be assembled as required, following the elementary forms shown.

THE RADIO AMATEUR'S HANDBOOK

By the HEADQUARTERS STAFF of the AMERICAN RADIO RELAY LEAGUE
WEST HARTFORD, CONN., U.S.A.

Thirty-seventh Edition

COPYRIGHT 1960 BY

THE AMERICAN RADIO RELAY LEAGUE, INC

Copyright secured under the Pan-American Convention

International Copyright secured

This work is Publication No. \mathbf{G} of The Radio Amateur's Library, published by the League. All rights reserved. No part of this work may be reproduced in any form except by written permission of the publisher. All rights of translation are reserved. Printed in U. S. A.

Quedan reservados todos los derechos

Library of Congress Catalog Card Number: 41-3345

Thirty-seventh Edition

$\$ 3.50$ in U.S. A proper
$\$ 4.00$ in U.S. Possessions and Canada $\$ 4.50$ elsewhere
Buckram Edition \$6.00 Everywhere

THERUMFORD PRESS
Concord, New Hampshire, U. S. A.

Foreword

In over thirty years of continuous publication The Ratio Amateur's Handlooli has become as much of an institution as amateur radio itsolf. Produced by the amateurs own organization, the American Radio Relay league, and written with the needs of the practical amateur constantly in mind, it has carned universal acreptance not only by amateurs but by all segments of the terhnical radio world. This wide dependence on the Ifambook is founded on its practical utility, its treatment of radio communication problems in terms of how-to-do-it rather than by abstract discussion.

Virtually continuous modification is a feature of the Ifandrook - always with the objective of presenting the somelest and beest aspects of current practice rather than the morely new and nowel. Its ammal revision, a major task of the headequiters group of the league, is participated in by skilled and experienced amateurs well acquainted with the practical problems in the art.

The IIandbook is printed in the format of the League's monthly magazine, Q心'T. This, together with extensive and useful catalog advertising by manufacturers producing equipment for the radio amateur and industry, makes it possible to distribute for a very modest charge a work which in volume of subject matter and profusion of illustration surpasses most available radio texts selling for several times its price.

The Iandbool: hats long been considered an indispensable part of the amateur's equipment. We earnestly hope that the present edition will succeed in bringing as much assistance and inspiration to amateurs and would-be amateurs as have its predecessors.

A. L. Budlong
(ieneral Manager, A.R.R.L.

West IIartford, Comn.

CONTRNTS

Circuit Symbols frontispiece
The Amateur's Code 8
Chapter 1 -Amateur Radio 9
2-Electrical Laws and Circuits 15
3-Vacuum-Tube Principles 60
4-Semiconductor Devices 80
5-High-Frequency Receivers 87
6 - High-Frequency Transmitters 145
7-Power Supplies 219
8-Keying and Break-In 244
9 -Speech Amplifiers and Modulators 256
10-Amplitude Modulation 284
11 -Suppressed-Carrier and Single-Sideband Techniques. 304
12 -Specialized Communication Systems 323
13-Transmission Lines 335
14-Antennas 355
15-Wave Propagation 389
16-V.H.F. Receivers 397
17-V.H.F. Transmitters 419
18-V.H.F. Antennas 448
19 - Mobile and Portable-Emergency Equipment. 460
20-Construction Practices 497
21 - Measurements 507
22 - Assembling a Station 539
$23-\mathrm{BCI}$ and TVI 546
24-Operating a Station 566
25 - Vacuum Tubes and Semiconductors V1
Catalog Section
Index

THE
 AMATEUR'S CODE

- ONE •

The Amateur is Gentlemanly... He never knowingly uses the air for his own amusement in such a way as to lessen the pleasure of others. He abides by the pledges given by the ARRL in his behalf to the public and the Government.

-TWO•

The Amateur is Loyal . . . He owes his amateur radio to the American Radio Relay League, and he offers it his unswerving loyalty.

- THREE•

The Amateur is Progressive... He keeps his station abreast of science. It is built well and efficiently. His operating practice is clean and regular.

- FOUR •

The Amateur is Friendly... Slow and patient sending when requested, friendly advice and counsel to the beginner, kindly assistance and cooperation for the broadcast listener; these are marks of the amateur spirit.

- FIVE •

The Amateur is Balanced... Radio is his hobby. He never allows it to interfere with any of the duties he owes to his home, his job, his school, or his community.

-SIX •

The Amateur is Patriotic . . . His knowledge and his station are always ready for the service of his country and his community.

- Paul M. Segal

CHAPTER 1

Amateur Radio

Amateur radio is a scientific hobby, a means of gaining personal skill in the fascinating art of electronics and an opportunity 10 communicate with fellow eitizens by private shortwave ratio. Sattered over the globe are over 250,000 amatrur ratio operators who perform a service defined in international law as one of "self-training, intercommunication and technia al investigations carriedonby . . . duly authorized persons interested in radio technique solely with a personal aim and without pecuniary interest."
from a humble beginning at the turn of the century, amateur radio has grown to become an established institution. 'Today the American followers of amateur radio number over 200,000, trained communicators from whose ranks will come the professional communications specialists and executives ol tomorrow just as many of today's radio leaders were first attrated to radio by their early interest in amateur radio communication. A powerful and prosperous organization now provides a bond between amatears and protects their interests; an internationally resperted manazine is published selely for their benefit. The military serviers saek the coopration of the amateur in developing commanications reserves. Amatedr radio supports a manafacturing industry which, by the very demands of amateurs for the latest and best equipment, is always up-tordate in its desigus and production merhigues - in itself a national asset. Amateurs have won the gratitude of the mation for their heroie performances in times of natural disaster; traditional amateur skills in cmergeney communiration are also the stand-ly systam for the mation's civil defonse. Amateur vidio is, indeod, amagnitiontly aseful institution.

Although as olt as the art of ratio itsolf, amatear radia did not always mong such prosige. Its lirst emhasiasts were private ritizens of as cexperimental turn of mime whase imaginations went wila when Mareoni first proved that messages acthally dould be sent hy wireless. They set about learning anough about the new seientific marvel to buik honemade spark transmitters. By 1912 there were mumerous Govermment and commereial stations, and hundreds of amateurs; regulation was needed, so laws, licenses and wavelength specifications appeared. There was then no amateur organization nor spokesman. The official viewpint toward amateurs was something like this:
"Amateurs? . . . Oh, yes. . . . Well, stick 'em on 200 meters and below; they'll never get out of their backeards with that,"

But as the years rolled on, amateurs found out how, and DN (distance) jumped from local to $\overline{3} 00$-mile and even oceasional 1000 -mile twoway rontacts. Because all long-distance messages had to be relayod, relaying developed into a fine art - an ability that was to prove invaluable when the (iovermment suddenly called hundreds of skilled amatenrs into war service in 1917. Meanwhile U. S. amateurs began to wonder if there were amateurs in other eomitries across the seas and if, some day, we might not span the Atlantic on 200 meters.

Most important of all, this period witnessed the birth of the American Radio Relay League, the amateur radio organization whose name was to be virtually syonymous with subsequent amateur progress and short-wate development. Concoived and formed by the famous inventor, the late Miram Perey Maxim, Alkla L was formally launched in early 1914 . It had just begun to exert its full foree in amateur activities when the [inited states declaned war in 1917, and by that atet soumted the knell for amateur radio for the next two and a half years. There were then over 6000 amatears. Over 4000 of them served in the armed forees during that war.

Today, few amateurs realize that World War 1 not only marked the close of the first phase of amateur development but came very

HIRAM PERCY MAXIM
President ARRL, 1914-1936

1-AMATEUR RADIO

near marking its end for all time. The fate of amatour radio was in the balance in the days immediately following the signing of the Armistice, The (iovernment, having had a taste of suprome authority over communications in wartime, was more than half inclined to keep it. The war had not been ended a month before Congress was considering legislation that would have made it impossible for the amateur radio of old ever to be resumed. ARRL's P'resident Maxim rushed to Washington, pleaded, argued, and the bill was defeated. But there was still no amateur radio; the war ban continued. Reprated representations to Washington met only with silence. The Jeague's offices had bocol chosed for a year and a half, its records stored away. Most of the former amateurs had gone into service; many of them would never come back. Would those returning be interested in such things as amateur radio? Mr. Maxim, determined to find out, called a meeting of the old Board of Directors. The situation was discouraging: amateur radio still banned by law, former members seatered, no organization, no membership, no funds. But those few determined men financed the publication of a notice to all the former amateurs that could be located, hired Kenneth I3. Warner as the Leagues first paid socretary, floated a bond issue among old League members to obtain moncy for immediate ruming 'xpenses, bought the magazine Qs'T' to be the league's official organ, started activities, and dunned ollieialdom until the wartime ban was lifted and amateur radio resumed again, on Oetober 1, 1919. There was a headlong rash by amateurs to get back on the air. Gangway for King spark! Manufacturers wore hard put to supply radio apparatus fast enough. Each night saw additiomal dozens of stations rashing out over the air. Interference? It was bedlam!

But it was an era of progress. Wartime needs had stimulated technical devolopment. Vacuum tubes were being used both for receiving and transmitting, Amateurs immediately adapted the new gear to 200 -meter work. langes promptly increased and it became possible to bridge the continent with but one intermediate relay.

- TRANSATLANTICS

As DX became 1000, then 1500 and then 2000 miles, amateurs began to dream of transathantio work. Could they got arross: In December, 1921, MRRL, sent abroad an expert amateur, l'aul F . Godley, 2ZE, with the hest receiving oquipment available. Tests were run, and thir!! American stations were heard in Burope. In 1922 another transatlantic test. was carried out and 315 American calls were logged by European amateurs and one French and two British stations were heard on this aide.

Everything now was centered on one objeclive: two-way amateur communication across
the Atlantic! It must be possible - but somehow it couldn't quite be done. More power? Many already were using the legal maximum. Better receivers? They had superheterodynes. Another wavelomgth? What about those undisturbed wavelength below 200 meters? The angineering world thought they were worthless - but they had said that about 200 metars. So, in 1922, tests between IIartford and boston were made on 130 meters with encouraging results. Early in 1923, AlR1R L-sponsored tests on wavelengths down to 90 meters wore sucorsslul. Raports indicated that as the wavelength droppod the resulls were better. Exaitement began to spread through amatour ranks.

Finally, in November, 1923, after some months of careful preparation, two-way amateur transatlantic communieation was aceomplished, when Schnell, 1MO, and Reinartz,
 worked for several hours with Deloy, 8:13, in France, with all three stations on 110 meters! Idditional stations dropped down to 100 meters and found that they, too, could easily work two-way across the Atlantic. The exodus from the 200 -meter region had started. The "short-wave" era had begun!

13y 1924 dozens of commorcial companios had rushed stations into the 100 -meter region. Chaos threatenod, until the first of a serios of national and international radio conferencess partitioned off various bands of frequencies for the different serviees. Although thought still centered around 100 meters, League officials at the first of these frequency-determining conferences, in 1924. wisely obtained amateur bands not only at 80 meters but at 40, 20, and even $\overline{5}$ moters.

Eighty meters proved so successful that "forty" was given a try, and (2SOs with Australia, New Zealand and South Africa soon became commonplace. Then how about 20 mo ters: 'This new band revoaled entirely unexpereded possibilities when 1XAM worked 6" C 's on the West Coast, direct, at high noon. The dream of amateur radio - daylight DX! was finally true.

PUBLIC SERVICE

Amateur radio is a grand and glorious hobby but this fact alone would hardly merit such wholehearted support as is given it by our Government at international conferences. There are other reasons. One of these is a thorough apprectation by the military and civil dofronse anthoritios of the value of the amateur as a sourec of skilled radio personnel in time of' war". Amother ansed is best deseribod an "public. servicr."

About 4000 amateurs had contributed their skill and ability in'17-'18. After the war it was only natural that cordial relations should prevail between the Army and Navy and the amateur. These relations strengthened in the next few yoars and, in gradual steps, grew into cooperative activities which resulted, in 1925, in

Public Service

the establishment of the Naval Communica－ tions Rescreo and the Army－Amateur Radio System（now the Military Affiliate Radio system）．In Worh War 11 thousamds of ama－ telurs in the Naval Reserve were called to ac－ tive duty，where they served with distinction， while many other thousands served in the Army，Air Forces，Coast Guard and Marime Corps．Altogether，more than 2．j，000）radio amatears serveal in the armed forces of the Conted States．Other thousands wore engaged in vital divilian electronie researeh，develop－ ment and manufacturing．They also organized and manned the War Emergoncy Radio Sorv－ ire，the communications seretion of（）Cl）．

The＂public－service＂record of the amateur is a brilliant tribute to his work．These ativi－ ties can be roughly divided into two classes， expeditions and emergencies．Amateur co－ operation with expeditions began in 1023 when a Jeague member，Don Mix，ITs，of Bristol， Comn．（now assistant techmical editor of QST＇）， aecompanied Mace Mitlan to the Aretie on the schooner howdoin with an amatour station． Amateurs in Canada and the［is．provided the home contacts．The suceess of this venture was so outstanding that othere explorers followed suit． During subsequent bars a total of perhatps two humdred voyages and expeditions wore assisted hy amatener radio，the several explorations of the Antaretic being perhaps the best known．

Since 1913 amatear radio has been the prin－ cipal．and in many eases the only，means of outside commanieation in soveral handred storm．flood and arthquakr emorgeneios in this country．The 19336 and 19137 eatorm states floods．the Southern Califormia flood and Lome lsand－New England hurrioume disastor in 1！338， the Florida－（inlf Coast hurrioanes of 1917．and the lafin flood divasters catled for the amaterers greatest emergence effort．In these disasters and many others－tomadors，stoet storms， forest fires，blizzards－amatours played a major role in the relief work and catmed wide rom－ memation for their wesurerfuluess in elfertines eommaniation where all other means had failed． During l938 ARRI，intugumated a new amer－ gener－preparednoss program，reqistering person－ nel and equipment in its Emergeney（orps and putting into effere a comprehensive program of cooperation with the Re⿻口卄（ Croses and in 1947 a National Emorgener Coordinator was appointed to full－time duty at latague headequarters．

The amateur＇s outstanding recond of organized prepatation for emorgence communications and performance umder fire has beren latedy respon－ sible for the decision of the lederal Govermment to set up special regulations and set aside spereial frequoncios for use by amateurs in providing auxiliary communcations for eivil defense pur－ poses in the event of war．C＇nder the banner， ＂Radio Amateur Civil limergeney Servier，＂ama－ teurs are setting up and manning community and area networks integrated with civil dofense func－ tions of the munieipal governments．Nhould a war eatuse the shut－down of routine amateur activi－
fies，the RAC＇Es will be immediately available in the national defense，mamed by amateurs highly skilled in emergency commumieation．

TECHNICAL DEVELOPMENTS

Throughout these many yours the amaten was careful not to slight experimental develop－ ment in the enthusiasm incident to interna－ tonal D．N．The experimenter was constantly at work on ever－higher freguencios．devising improved apparatus，and learning how to cram sererat stations where previously there Was room for only onc！In partieular，the ama－ teur pressed on to the development of the very high freguencies and his experienere with five meters is enperially representative of his in－ itiative and resoureofulness and his ability to make the most of what is at hand．In 1924，first amateur experiments in the vicinity of 56 Mr ． indicated that band to be practically worth－ less for DN．Nometheless．great＂short－haul＂ ativity eventually came about in the band and new gear was developed to meet its special problems．Begiming in 1934 a series of inves－ tigations by the brilliant experimenter，Ross Ihall（later Qs＂l＂s editor）．developed the theors of v．h．f．wave－bonting in the lower atmos－ phere and led amateurs to the attaimment of better distances：while oecasional manifesta－ tions of ionospheric propatgation，with still grater distances，gave the band uniquely or－ ratie performaner．By learl Harbor thousamds of amateurs were spending much of their time on this and the next higher band，many having worked hundreds of stations at distances up to soveral thonsand miles．＇Transeontinental i－ meter 1）N is not uncommon；during solar peaks， con the oceans have been bridged！It is a tribute to these indefatigable amateurs that today＇s eoncept of v．h．f．propatgation was de－ veloped largely through amateur researeh．

The amateur is constantly in the forefront of technical progress．His incessant euriosity，his bagerness tat tre any hing new，are two reasons． Anothor is that ever－growing amateur radio continually overerowds its frequency assign－ ments，spurring amateurs to the development and aloption of new teelmiques to permit the

A corner of the ARRL laboratory．
accommodation of more stations. For examples, amateurs turned from spark to c.w., designed more selective receivers, adopted crystal control and pure d.e. power supplies, lirom the ARRRL's own laborat ory in 1932 came James Lamb's "sin-gle-signal" superheterodyne - the world's most advanced high-frequency radiotelegraph receiver -and, in l! b3t, the "noise-silencer" circuit. Amaterarsare now turning to spereh "clippers" to reduce bandwidthe of phone transmissions and "single-sideland suppressed-earrior" systems as well as cren mone selectivity in rexeriving equipment for greator aficiency in apectram usc:

During World War H, thousands of skilled amateurs contributed their knowledge to the development of socret radio deviess, both in Government and private latoratories. biqually as important, the prowar technical progress by amateure provided the keystone for the development of modern military communications equipment. Perhaps more important today than individual contributions to the art is the mass eomprotion of the amateur body in Government projects such as propagation studies; each participating station is in reality a soparate fich laboratory from which reports aro made for corrclation and amalysis, An omstamding oxample was variod amatear partionpation in several activitios of the haternational Gerophesal Year prowam. ARRI, with Air Forer spmasoming, eondueted an intensive study of v.h.f. propagation thenomenal-D.N transmissions via littr-molerstoon methods such ats meteor and anmoral rofleretions, and tansedua-
 have opreated precision reroiving antemas and apparatus to help, tanck earth satellites via radio. For volunter astronomers searching visually forthe satedites, other amatems have manned networks to provide instant radio reports of sightings to a central ageney so that an orbit might be eomputed.

Emergency relief, expedition contact, experimental work and countless instances of other forms of public service - rendered, as they always have been and always will be, without hope or expectation of material reward - made amateur radio an integral part of our peacotime national life. The importance of amateur participation in the armed forces and in other aspects of mational defense have emphasized more strongly than ever that amateur radio is vital to our national existence

- THE AMERICAN RADIO RELAY LEAGUE

The ARRI, is today not only the spokesman for amateur radio in this country but it is the largest amateur organization in the world. It is strictly of, by and for amateurs, is noncommereial and has no stockholders. The members of the League are the owners of the ARRL and QST.
'The League is pledged to promote interest in two-way amateur communication and experimentation. It is interested in the relaying of

The operating room at WIAW.
messages by amateur ratio. It is concerned with the advancement of the radio art. It stands for the maintenance of fratornalism and a high standard of conduct. It represents the amateur in logislative matters.
(We of the League's principal purposes is to kי(a) amateur activities so well conducted that the amateur will rontinue to justify his existence. Amateur radio offers its followers countless pheasures and unending satisfaction. It atso calls for the shouddering of responsibilitios - the maintonance of high standards. a coopmative loyalty to the traditions of atastour rado, a dedication to its ideals and principles, so that the institution of ameateur radio may eontinur to operate "ia the pablic interest, "onvernisume and necessity."

The operating territory of ARlR L is divided into one dentian and fifteon U. S. divisions. The affairs of the League are managed by a Batard of Directons. One director is elected avery two yoars by the membership of each [־. S. division, and one by the Canadian membership. These directors then choose the president and vice-president, who are also mombers of the board. The seeretary and treasurer are also appointed by the boad. The directors, as representatives of the amateurs in their divisions, meet annually to cxamine current amateur problems and formulate Alilal, polices theren, The directors appoint a general manager to supervise the oproations of the league and its headeparters, and to carry out the policies and instructions of the Ebarel.
$A[R 1$ owns and publishes the monthly magazine, Q.ST. Acting as a balictin of the League's organized activities, Qs'T also serves as a medium for the exchange of ideas and fosters amateur spirit. Its terhnical articles are renowned. It has grown to be the "amatemers bible." as well as one of the foremost radio magazines in the work. Membership dues include a subscription to Q.ST T.

ARRL, maintains a mordel headguarters amatour station, known as the Hiram Perey Mavim Memorial Station, in Newington, Comin. Its call is $W^{*} 1.1 W$, the call held hy $\mathbf{M r}$. Maxim until his death and later transferred

The ARRL

to the League station by a special FCC action. Separate transmitters of maximum legal power on each amateur band have permitted the station to be heard regularly all over the world. More important, WiAW transmits on regular schedules bulletins of general interest to amateurs, conducts code practice as a training feature, and engages in two-way work on all popular bands with as many amateurs as time permits.

At the headquarters of the league in West Hartford, Comn., is a well-equipped laboratory to assist staff members in proparation of technical material for (SST and the Rodio Amatour's IIandhook, Among its other activities, the League maintains a Communications Department conerned with the operating ativities of League members. A large field organization is headed by a section Commamications Manager in earh of the League's sevent v -three sertions. There are appointments for gualified members in various fields, as outlined in Chapter 2t, Siperial artivitios and eontests promote operating skill. A sperial seetion is reserved each month in QST for amateur news from every section of the country.

AMATEUR LICENSING IN THE UNITED STATES

Pursuant to the law, FCC has issued detailed regulations for the amateur service.

A radio amateur is a duly anthorized person interested in radio technique solely with a personal aimand without peediaryinterest. Amateur operator lieenses are given to U. S, eitizens who pass an examination on operation and apparatus and on the provisions of law and regulations affecting amateurs, and who demonstrate ability to send and recoive code. There are four available ceasses of amaterer lirense - Novier, Technician, General (called" Conditional" if exam taken by mail), and Amateur lixtral Class. Kach has different requirements, the first two being the simplest and consequently conveving limited privileges as to frequencies available. lixams for Novice, Technician and Conditional classes are taken by mat under the supervision of a voluntere examiner. Station lieenses are granted only to lierensed operators and permit communication between such stations for amateur purposes. i.e., for personal nonommervial aims flowing from an interest in ralio technigue. An amateur station may not be used for material compensation of any sort nor for broadeasting. Narrow hats of frequencies atre allowated exelusively for use ber imateur stat ions. Transmissions may be on any frecuency within the assigned hands. All the frequencies may be used for c.w. telegraphy; some are availathle for radiotelephone, others for special forms of transmission such as teletype, facsimile, amateur television or radio control. The input to the final stage of anateur stations is limited to 1000 watts and on freguencies below it4 Mc. must be adequately filtered direct current. Emissions must be free from spurious radiations. The licensee must
provide for measurement of the transmitter frequency and establish a procedure for checking it regularly. A complete log of station operation must be maintained, with specified data. The station license also authorizes the holder to operate portable and mobile stations subject to further regulations. All radio lieensees are subject to penalties for violation of regulations.

Amateur licenses are issued entirely free of charge. They can be issued only to citizons but that is the only limitation, and they are given without regard to age or physical condition to anyone who sucerssfully eompletes the examination. When sou are able to copy code at the reguired sperel, have studiod basie tramsmitter theory and are familiar with the law and amateur regulations, you are realy to give serious thought to securing the Government amateur licenses which are issued you, after examinat tion by an lece congineer (or by a volunterer, depending on the liocuse (elass), through FCC at Washington. A complete up-to-the-minute discussion of lierose requirements, and study guides for those proparing for the examinations, are to be found in an ARRSL publication, The Radio Amaterr's Liremse $1 /$ amual, available from the Amoriean Radio Rolay league, Weat Hartford 7, Come, for 50é, postpaid.

LEARNING THE CODE

In starting to learn the code, you should consider it simply another means of conveying

A didah	N dahdit
B dahdididit	O dahdahdah
C dahdidahdit	P didahdahdit
D dahdidit	Q dahdahdidah
E dit	R didahdit
F dididahdit	S dididit
G dahdahdit	T dah
H didididit	U dididah
I didit	\checkmark didididah
J didahdahdah	W didahdah
K dahdidah	X dahdididah
L didahdidit	Y dahdidahdah
M dahdah	2 dahdahdidit
1 didahdahdahdah	6 dahdidididit
2 dididihdahdah	7 dahdahdididit
3 didididahdah	8 dahdahtahdidit
4 dididididah	9 dahdahdahdahdit
5 dididididit	0 dahdahdahathdah

Period: didahdidahdidah. Comma: dahdahdididahdah. (Question mark: dididahdahtlidit. Error:didididididididit. Doubledash:dahdidididah. Wait: didaldididit. End of message: didahdidahdit. Invitation to transmit: dahdidah. End of work: didididahdidah. Fraction bar: dahdididahdit.

Fig. 1-1--The Continental (International Morse) code.
information. The spoken word is one method, the printed page another, and typewriting and shorthand are additional examples. Learning the rode is as easy - or as difficult - as learning to type.

The important thing in beginning to study code is to think of it ats a language of sound, never as combinations of dots and dashes. It is "asy to "speak" code equivalents by using "dit" and "dah," so that A would be "ditlah" (the " t " is dropped in such combinations). The sound "di" should be staceato; a code character such as " 5 " should sound like a machinegun burst: dididididit! Stress each "rah" equally; they are underlined or italieized in this text because they should be slightly arcented and drawn out.

Take a few eharacters at a time. Learn them thoroughly in didah language before going on to new ones. If someone who is familiar with code "an be found to "send" to you, either by whistling or by means of a buzzer or code oscillator, entist his coopperation. Jearn the code by listening to it. Don't think about speed to start; the first requirement is to learn the eharacters to the point where you can recognize each of them without hesitation. Concentrate on any difficult letters. Jearning the code is not at atl hard; a simple booklet treating the subject in detail is another of the beginner publications available from the Jeague, and is cntitled, Learning the Radiotelegraph Coole, jod postpaid.

Code-practice tramsmissionsare sent by Wil. IW every evening at 21:30 EST (FI)ST May through ()etober). See (hapter 2t, "Code Proticiency."

- THE AMATEUR BANDS

Amateurs are assigned bands of frequencies at approximate hamonic intervals throughout the spectrum. Like assignments to all services, they are subject to modification to fit the changing pieture of world eommunications needs. Modifications of rules to provide for domest ic needs are also occasionally issued by $\mathrm{F}(\mathrm{C}$, and in that respeect each amateur should keep himself informed by WIAW bulletins, QST' reports, or by communication with ARRL IIq. concerning a specific point.

In the adjoining table is a summary of the I'. S. anateur bands on which operation is permitted as of our press date. Figures are megacycles. A0 means an mmodulated carrier, Al means c.w. telegraphy, A2 is tone-modulated r.w. telegraphy, As is amplitude-modulated phone, At is facsimile, A 5 is television, n.f.m. designates narrow-band frequency- or phase-modulated radiotelephony, f.m. means frequency modulation, phone (including n.f.m.) or telegraphy, and Fil is frequency-shift keving.

$\begin{gathered} 80 \\ \text { meters } \end{gathered}$	3.800-4.000	- A1
	$3.500-3.800$	- 11
	3.800-4.000	- A3 and n.f.m.
.10 m.	7.000-7.300	- Al
	7.000-7.200	- F 1
	7.200-7.300	- 13 and n.f.tı.
20 mm	14.000-14.350	$0-81$
	$14.0000-14.200$	O-1*1
	14.200-14.300	$0-\mathrm{A} 3$ and n.f.on.
	1-1.300-14.3.30)	O- F-1
15 m.	21.000 21.4.0)) - A1
	21.000-21.250	(1•1
	$21.250-21.450$	$0-13$ and n.f.m.
$10 \mathrm{m}$.	28.000-29.700	$0-\mathrm{A} 1$
	$28.30029 .700$	$0-43$ and n.f.m.
	$29.0000-24.7010$	()-f.11.
6 mm	-0) in	- A1, A2, A3, A4, n.f.m,
	51-.54 -	- An
	52.: 54	-f.11.
2 m .	$\left.\begin{array}{l}11+148 \\ 220-2.5\end{array}\right\}$	$\}-\underset{\substack{\text { f..t. }}}{\substack{14, A 1, A 2, A 3, A 4 . \\ \hline}}$
	$\left.\begin{array}{c}120-1501 \\ 1,215-1,300\end{array}\right\}$	$\begin{aligned} & \text { A1, A1, A2, A3, A4, A5, } \\ & \quad \text { f.in. } \end{aligned}$
	2.300-2.150	
	3,500-3,700	
	5, 6-70-5.625 $\}$	5 A6, A1, A2, A3, A4, A5,
	10,000-10,500)	(.1n.pulse
	$21.000-22.000$	
	11 abowe 30,000	
I Input juwer mast mot exered in watts. 2 Nop pulse prermitted in this hand.		
shared with the (iosermument Ratio Positioning		
sorviere, which has priorits.		

In addition, 11 and .13 on portions of 1.80(1-2.000), as follows:
 night.

Novice licensees may use the following frequencies, transmitters to be crystal-controlled and have a maximum power input of 75 watts.

$3.700-3.750$	A1	$21.100-21.250$	A1
$7.150-7.200$	A1	$145-147$	A1, A2,
			A3, f.m.

Technician licensees are permitted all amateur privileges in 50-54 Mc., 145147 Mc., and in the bands 220 Mc. and above.

Electrical Laws and Circuits

- ELECTRIC AND MAGNETIC FIELDS

When something ocours at one point in space because something else happened at another point, with no visible means he which the ""ause" can be related to the "effect," we sity the two events are connered by a field. In radio work, the fields with which wo are concormed are the electric and magnetic, and the combination of the two called the electromagnetic fiold.

I field hat two important properties, intensity (magnitude) and direction. The field exerts a force on an object immersed in it; this foree represents potential (ready-tu-be-tsed) chorgy, so the potential of the fied is a measure of the field intensity. The direction of the field is the direction in which the object on which the fore is exerted will tend to move.

An electrically charged objed in an eloctrie fied will be arted on by a forer that will tond to move it in a direction determined by the diredtion of the fiold. Similarly, a magnet in a magnetio fiedd will be subjed to a force. Jeveryone has ween demonstrations of magnetie fields with porket marnets, so intensity and direction are not hard (0) grasp

I "static" field is ome that noither moses nor (hanges in intensity. such a fiold can be set up by a stationary coertric charge (electrostatic field) m be a stationary magnot (magnetostatic field). But if either an olectric or mannetic field is moving in space or changing in intensity, the motion or change sets up the other kind of field. That is, a changing electrie field sots up a magnotio fiold, and a changing magnotio field genarates an coctric fiold. This interrelationship botwern magnetic and electrie fields makes possible such things as the electromagnet and the (rectric motor. It also makes possible the electromagnetic waves by which radio communication is carriod on, for such waves are simply traveling fields in which the energy is alternately handed bark and forth between the clertrio and maynetic ficlds.

Lines of Force

Although no ont knows what it is that momposes the field itself, it is usoful to invent a picture of it that will help in visualizing the fores and the way in which they art

A fiefd can he pietured as being made up of lines of force, or flux lines. "lhese are purely imaginary threads that show, by the direction in which they lie, the direction the whoert on

Which the force is exerted will move. The number of lines in a chosen cross section of the field is a measure of the intensit! of the forec. The number of limes por unit of area (square inch or square rentimetor) is cabled the flux density.

- ELECTRICITY AND THE ELECTRIC CURRENT

Everything physical is built up of atoms, particles so small that they camot the seen even through the most poworful midroseope. Wut the atom in turn comsists of soveral different kinds of still smaller partieles. One is the electron, essentially a small particle of electricity. The quantity or charge of electricity represented by the electron is, in fact, the smallent guantity of clectricity that can exist. The kind of clectricity associated with the electron is called negative.

An ordinary atom consists of a central core called the nucleus, around which one or more clectrons rireulate somewhat as the earth and other planets circulate aromed the sun. The nucleus has an clectric chatge of the kind of electricity called positive, the amoment of its charge being just exartly cqual to the sum of the negative charges on all the electrons associated with that nuelcus.
The important fact about these two "opposite" kinds of clectricity is that they are strongly attracted to cath other. . Nso, there is a strong force of ropulsion lotween two charges of the same kind. The prositive nucleus and the negative clectrons are attracted to each other, but two clectrons will be repelled from each other and so will two nurlei.
In a normal atom the pexitive chatge on the mucters is exactly bataneed by the negative Changes on the chertrons. However, it is possible for ana atom to hose one of ite elocedrons. When that happous the atom hase at little liss negative charge than it should - that is, it has a not pesitive charge. Such an atom is satid to be ionized, and in this case the atom is a positive ion. If an atom picks up an extra electron, as it sometimes does, it hats a mot mogave wharge and is called a negative ion. I provitive ion will attrad any stray dectron in the vicinity, indeding the extra one that may be attached to a narby negative ion. In this way it is possible for elections to travel from atom to atom. The morement of ions or relectrons constitutes the electric current.
'The amplitude of the "arrent (its intensity or magnitude) is detommed hey the rate at which

2-ELECTRICAL LAWS AND CIRCUITS

or ions of the same kind - moves past a point in a cirenit. Since the charge on a single clecetron or ion is extremely small, the number that must move as a group to form even a tiny current is almost inconceivahly large.

Conductors and Insulators

Atoms of some materials, notably metals and acids, will give up an electron readily, but atoms of other materials will not part with any of thoir electrons even when the elecetrie foree is extremely strong. Materials in which clectrons on ions ram be moved with relative case are called conductors, while these that refuse to permit surh movement are called nonconductors or insulators. The following list shows how some common materiats divide betweon the conductor and insulator elassifications:

Conductors	Insulcuturs
Metals	Dry Air
Carlon	Wood
Acids	Porcelain
	'Textiles
	Glass
	Rubber
	1 Resins

The electric fore or potential (called electromotive force, and abbreviated e.m.f.) that causes current flow may be developed in several ways. The action of certain chemiocal sobutions on dissimilar metaks sets up an (e.m.i.; such a combinsttion is called a cell, and a group of rells forms an elertric battery. The amount of current that such rells cenn "ury is limited, and in the course of cmrent flow one of the metals is caten away. The thount of clectriad energy that ran be taken from a batters romserfuently is mather small. Where a large amount of energy is neoded it is usually lurnishod by an electric generator, which develops its com.f. by a combination of magnetic and merhanical means.

In picturing current flow it is natural to think of a single, constant fore causing the electrons to move. When this is so, the electroms always move in the same direetion theough a path or circuit made up of conduetoss emmered togrether in a continuous chain. Such a courrent is cabled a direct current, abbeviated d.c. It is the type of current furnished by batteries and by certain tyos of generators. However, it is also poswible to have an e.m.f. that periodically reverses. With this kind of em. ${ }^{\text {f }}$. the current flows first in one dirertion through the circuit and then in the other. such an com.f. is called an alternating '.m.f., and the current is called an alternating current (abbreviated a.c.). The reversals (alternations) may occur at any rate from a few per serond up) to several billion per serond. Two reversals make a cycle; in one cyrle the force ats first in one direction, then in the other, and then returns to the first direction to begin the next evele. The number of reveles in one second is called the frequency of the atternating current.

Direct and Alternating Currents

The difference between direet current and alternating current is shown in Fig. 2-1. In these graphs the horizontal axis measures time, increasing toward the right away from the vertioal axis. The vertical axis represents the amplitude or strength of the current, increasing in cither the up or down direction away from the horizontal axis. If the graph is above the horizontal axis the current is flowing in one direction through the circuit (indieated by the + sign) and if it is below the horizontal axis the current is flowing in the reverse direction through the circuit (indicated by the - sign). Fig. 2-1.1 shows that, if we close the circuit - that is, make the path for the current complete - at the time indicated by . the current instantly takes the amplitude indicated by the height A. After that. the current continues at the same amplitude as time goes on. This is an ordinary dioct current.

In Fig. 2-113, the current starts flowing with the amplitude A at time X, continues at that amplitude until time \mathcal{I}^{-}and then instantly coases. After an interval $\% /$ the current again begins to flow and the same sort of start-ind-stop performane is repeated. This is an intermittent direret current. We could get it by altemately corsing and opening a switch in the circuit. It is a divet eurent because the direction of curent flow does not change; the graph is always on the + side of the horizontal axis.

In Fig. 2-1C the current starts at zero, increases in amplitude as time goes on until it reaches the amplitude A_{1} while flowing in the + direction, then derreases until it drons to zero amplitude once mone. At that time (X) the
(A)

(B)

(C)

Fig. 2-1 - Three types of current flow. A-direct current; B-intermittent direct currerit; C-alsernating current.

Frequency and Wavelength

direction of the current flow reverses; this is indirated by the fact that the next part of the graph is below the axis. As time goes on the amplitude increases, with the current now fowing in the dirertion, until it reaches amplitude A. Then the amplitude derreases until finally it drops to zero (I) and the direction reverses once more. This is an alternating current.

Waveforms

The type of alternating current shown in lig. 2-1 1 is known as a sine wave. The variations in mimy a.e. Wates are not so smooth, nor is onc half-rerle neressarily just like the preceding me in shape. Ilowever, these complex waves (:ロn bo shown to be the sum of two or more sine wates of frequencies that are exart integral (whole-number) multiples of some lower frequency. The lowest frequener is called the fundamental frepueney, and the higher frequencies (2 times, : fimes the fundamental frequency, and so on) are called harmonics.

Fig. 른 slows how a fundamental and a second harmonice (twice the fundamental) might add to form a complex wave simply by changing the relative amplitudes of the two waves, as well as the times at which they pass through zero amplitude, an infinite number of wavehalos catn be constructed from just a fundamental and second harmonic. Waves that are still more complex ean be constructed if more harmonies are used.

Electrical Units

The unit of electromotive foree is called the volt. An ordinary flashlight rell gromates :an e.m.f. of about 1.5 volts. The e.m.f. commonly supplied for domestie lighting and power is 115 volts, usually at.e. having a frequency of 60 cyedes per second. The voltages used in radio receiving and transmitting circuits range from a few volts (usually a.c.) for fitament heoting to as high as a fely thousand d.c. volts for the operation of power tubes.
'The flow of electric current is masured in amperes. One ampere is equivalent to the movement of many billions of electrons past a point in the cireuit in one serond. Currents in the nejghborhood of an ampere atre required for heating the filaments of small power tules. The direct currents used in amaterar radio equipment usually are not so large, and it is customany to measure such currents in milliamperes. (he milliampere is equal to one one-thousimdth of the ampere, of 1000 milliamperes equal ore ampere.

A "d.e. ampere" is a measure of a steady current, but the "a.e. ampere" must measure a current that is continually varying in amplitude and periodically reversing direction. To put the two on the same basis, an a.e. ampere is defined as the amount of eurent that will eause the same hoating effert (see later section) as one ampere of steady direct eurrent. For sine-wave a.c., this effective (or r.m.s.) value is equal to the maximum amplitude (A_{1} or A- in Fig. 2-1C) multiplied by 0.707 . The instantaneous value is the value

Fig. 2.2-A complex waveform. A fundamental (top) and second harmonic (center) added together, point by point at each instant, result in the waveform shown at the bottom. When the two components have the same polarity at a selected instant, the resultant is the simple sum of the two. When they have apposite polarities, the resultant is the difference; if the negative-polarity component is larger, the resultant is negative at that instant.
that the rurrent (or voltage) has at any selected instant in the eycle.

If all the instantancons values in a sine wave are aweraged wer a holf-cyele, the resulting figure is the average value, it is ecpual to $0.6: 36$ times the maximum amplitude. The average value is useful in commertion with rectifier systems, as deseribed in a later chapter.

frequency and WAVELENGTH

Frequency Spectrum

Frequeneies ranging from about 1 is to 15,000 cyoles per second are called audio frequencies, berallse the vibrations of air partides that our ears recogrize as sounds oceur at a similar rate. Audio frequences (abbreviated a.f.) are used to artuate loudspeakers and thus ereate sound waves.

Froquoncies alove about 15,000 cyoles are called radio freguencies (r.f.) beanse they are welul in radio transmission. Frequencies all the Way up to and beyond 10,000,000,000 eycles have been used for ratio purposes. It sadio froquencies the numbers berume sularge that it becomes comvenient to use a larger unit than the eycle. Two such units are the kilocycle, which is equal to 1000 revers and is abbreviated ke., and the megacycle, which is equal to $1,000,000$ cyeles or 1000 kilow yoles and is abbremated Mc.

The various radio frequencies are divided off into rlassifications for ready identification. These classiliations, listed below, ronstitute the frequency spectrum so far as it extends for radio purposes at the present time.

2-ELECTRICAL LAWS AND CIRCUITS

Frequency 10 to 30 kc . 30 to 300 kc . 300 to 3000 kc . 3 to 30 Mr . 30 to 300 Me . 300 to 3000 Ne . 3000 to $30,000 \mathrm{Me}$.

Clnssification Vary-low frequencies 1.ow frequencies Medinm frequencirs lligh frequencies Vory-high frequeneries I'It rahigh frequencies
superhigh freguencies

Abbreriation
s.l.f.
1.f.
m.f.
h.f.
r.h.f
u.h.f.
s.h.f.

Wavelength

Radio waves travel at the same speed ats light - : $300,000,000$ meters or about 186,000 miles a second in space. They ean be set up by a radiofrequency current flowing in a circuit, beranse the rapidly changing current sets up a magnetic field that changes in the same way, and the $\mathrm{v}^{\mathrm{w}} \mathrm{y}$ ing magnetic field in turn sets up a varying electrie ficld. And whenever this hapmens, the two fields move out ward at the speed of light.
suppose an r.f. current has a frequeney of $3,000,600$ rycles per second. The fields will go throurh romplate reversals (one cyole) in $1 / 3,000,000$) serond. In that same period of time the fields - that is, the wave - will move : $300,000,000 / 3,000,000$ moters, or 100 meters. By the time the wave has moved that distance
the next ceycle has begun and a new wave has started out. The first ware, in other words, covers a distance of 100 meters before the begimning of the next, and so on. This distance is the wavelength.

The longer the time of one evelle - that is, the lower the frequency - the greater the distanee ocoupied by earh wave and honer the longer the wavelength. The relationship between wavelength and frequency is shown by the formula

$$
\lambda=\frac{30,0,000}{f}
$$

where $\lambda=$ Wavelongth in moters
$f=$ lirequency in kilorycles
or

$$
\lambda=\frac{: 300}{f}
$$

where $\lambda=W_{\text {in }}$ velength in moters
$f=$ Frequency in megucyers
Example: The wavenuth forresponding to a frecurncy of 30.30 kiloryeles is

$$
\lambda=\frac{300,0 \mu(0)}{36.00}=8.2 .2 \text { meters }
$$

Resistance

Given two conductors of the same size and shape, but of different materials, the amount of current that will flow when a given e.m.f. is applied will be found to vary with what is catled the resistance of the material. The lower the resistance, the greater the eurrent for a given value of e.m.f.

Resistance is measured in ohms. I rirenit has a resistance of one ohm when an applied e.m.f. of one volt cathes a current of one ampere to flow. The resistivity of a material is the resistance, in ohms, of a cube of the material measuring one centimeter on each odge. (he of the best comductors is copper, and it is frequently convenient, in making resistane calleubations, to compare the resistance of the material under consideration with that of a copper conductor of the same size and shape. Table $2-1$ gives the ratio of the wsistivity of various conductors to that of copper.

The longer the path through which the current flows the higher the resistance of that eonductor. loor dived current and low-frequeney alternating

TABLE 2-I Relative Resistivity of Metals	
Wharial	Resisticits Compared to ionjper
Alumitumis (pure).	1.5
Brasis..........	3.57
Cadmium	5.20
((hromium	1.8:
(iapmer (hard-Irasa)	1 に
Copper (atheraled)	1.10
Iron (pure)	הום.
	113
Nickel	6.25108 .33
Phomphar Bronze	$\because 8$
Silver	0.91
'Tin	\therefore "
Yim".	3.31

ruments (up to a few thousand cerles per sefond) the resistance is incersely proportional to the cross-seretional area of the path the current must travel; that is, given two conductors of the same material and having the same length, but differing in cross-sertional area, the one with the latger area will have the fower resistance.

Resistance of Wires

The problem of detemmining the resistance of a round wire of giver diameter and length - or its oppowite, findinu a suitable size and length of wiee to supply a desimed amount of resistance ran be eatily solval with the help, of the copperwire table given in a later phapter. This table giver the resistamee in ohms per thousand feet, of each standard wire size.

Fxample: sumpose areintingeo of 3.5 oluns is neved and some No. 28 wire is on hand. The wire tahke in Chapter 20 shans that No. 2 K has a resistance of titi, 17 ohnes fer thousand feet. sinee the desired resistinnee is 3.5 ohms, the fength of wige rembired will twe

$$
\frac{3.5}{4 i t .17} \times 1060=52.80 \text { fert. }
$$

Or. sumper that the resistather of the wire in
 the length of wire remired for making the eonnertions totals $1+1$ fert. Then

$$
\frac{14}{1010} \times h=0.0 .3
$$

 ohans per thousalad feet. Rearratheing the formulat gives

$$
k=\frac{0.0 .5 \times 1000}{14}=33.57 \text { olams } 1000 \mathrm{ft}
$$

Peferemee to the wire table shows that No. 15 is the smatlest -ize having a re-istathere less than this salue.
When the wire is not copper, the resistance values given in the wire table shotald be multi-

Resistance

Types of resistors used in radio equipment. Those in the foreground with wire leads are carbon types, ranging in size from $1 / 2$ watt at the left to 2 watts at the right. The larger resistors use resistance wire wound on ceramic tubes; sizes shown range from 5 watts to 100 watts. Three are of the adjustable type, having a sliding contact on an exposed section of the resistance winding.

plied by the ratios given in Table $2-1$ to obtain the resistanee.

Fxample: If the wire in the first example were iron instead of conper the length repuired for 3.5 ohms would he

$$
\frac{3.5}{66.17 \times 5.65} \times 1000=9.35 \text { fect }
$$

Temperature Effects

The resistance of a conductor changes with its temperature. . Ithough it is seldom necessary to consider temperature in making resistance calculations for amateur work, it is well to know that the resistance of practically all motallic conductors increases with increasing temperature. Carbon, however, acts in the opposite way; its resistance decreases when its temperature rises. The temperature offect is important when it is neressary to maintain a constant resistance under all conditions. sureial materials that have little or no change in resistance over a wide temperature range are used in that rase.

Resistors

A "parkage" of resistanee made up into a single unit is called a resistor. Resistors having the same resistance value may be considerably different in size and construction. The fow of current through resistanee ratuses the condurtor to become hated; the higher the resistance and the larger the curent, the greater the amount of heat developed. Resistors intended for carrying large currents must be physically large so the heat can be radiated quickly to the survounding air. If the resistor dors not get rid of the heat quirkly it may reach a temperature that will cause it to, melt or burn.

Skin Effect

The resistance of a conductor is not the same for alternating current as it is for direct current. When the current is altermating there are internal effects that tend to force the current to flow mostly in the outer parts of the eonductor. 'This decreases the effective cross-sectional area of the conductor, with the result that the resistance increases.

Fior low atho frequencies the increase in resistance is unimportant, but at radio freguencies this skin effect is so great that practically all the current flow is confined within a few thousand hs of an inch of the conductor surface. The r.f. resistance is consequently many times the d.e. resistance, and increases with increasing frequency. In the r.f. range a conductor of thin tubing will have just as low resistance as a solid conductor of the same diameter, because material not close to the surface carries practically no current.

Conductance

The reciprocal of resistance (that is, $1 / R$) is called conductance. It is usually represented by the symbol (i. A circuit having lange condurtance has low resistance, and vire versa. In radio work the term is used chiefly in comection with vacuum-tube characteristies. The unit of eomductance is the mho. A resistance of one ohm has a conductance of one mho, a resistance of 1000 ohms has a comductance of 0.001 mho , and so on. A unit frequent! ${ }^{\text {y }}$ used in eomection with varuum tules is the micromho, or one-millionth of a mho. It is the conductance of a resistance of one megohm.

OHM'S LAW

The simplest form of electric circuit is a battery with a resistance commeted to its terminals, as shown by the symbols in Fig. 2-3. A complete circuit must have an unbroken path so current

Fig. 2-3-A simple circuit consisting of a battery and resistor.

can flow out of the battery, through the apparatus comnerted to it, and back into the battery. The circuit is broken, or open, if a connection is removed at any point. A switch is a device for making and breaking connections and thereby closing or opening the circuit, either allowing current to flow or preventing it from flowing.

2-ELECTRICAL LAWS AND CIRCUITS

TABLE 2-II Conversion Factors for Fractional and Multiple Units			
To change from	To	Dicide by	Maltiply br
Lnits	Mirro-mits Milli-units Kilo-maits Mega-mits.	$\begin{gathered} 1000 \\ 1,000,000 \end{gathered}$	$\begin{gathered} 1,000,000 \\ 1000 \end{gathered}$
Nicro-units	Milli-mnits I nit.	$\begin{gathered} 10000 \\ 1,600,000 \end{gathered}$	
Milli-mits	Niaro-units Inits	1000	1000
Kilo-mits	l 1 it Meral-mints	1/YM	1000
Nrea-lunits	Inits Kilo-anits		$\begin{gathered} 1,006,00 \% \\ 100 \% 1 \end{gathered}$

The values of eurrent, voltage and resistance in a circuit are by no means independent of eath other. 'The relationship, between them is known as Ohm's Law. It can he stated as follows: The current flowing in a cirenit is directly proportional to the applied e.m.f. and inversely proportional to the resistance. Expressed as an eguation, it is

$$
I \text { (amperes) }=\frac{E(\text { volts })}{R(\text { ohms })}
$$

The equation above gives the value of currout When the voltage and resistane are known. It may be tramposed so that each of the thre quantitios may be foumd when the other two are known:

$$
E^{\prime}=I R
$$

(that is, the voltage acting is equal to the current in amperes multiplied by the resistance in ohms) and

$$
R=\frac{E}{l}
$$

(or, the resistance of the cirmuit is equal to the applied voltage divided by the current).

Wll three forms of the equation are used almost constanty in radio work. It must be remembered that the quantities are in polle, ohms and amperes; other units camot be used in the equations without first being eonverted. For example, if the current is in mitliamperes it mast be dhanged to the eguivalent fraction of an ampere before the value can be substituted in the equations.

Table 2-II shows how to convert between the various units in eommon use. The prefies attached to the basic-mint name indieate the nature of the unit. These prefises are:

$$
\begin{aligned}
& \text { midro - one-millionth (abbreviated } \mu \text {) } \\
& \text { milli - one-thousandth (abbreviated } m \text {) } \\
& \text { kilo - one thousand (abbreviated } l \text {) } \\
& \text { mega - one million (abhreviated II) }
\end{aligned}
$$

For example, one mirrovolt is one-millionth of a volt, and one megohm is $1,000,000$ ohms. There are therefore $1,000,000$ mirrovolts in one volt, and 0,000001 megohm in one ohm.

The following eximples illustrate the use of Ohm's Law:

The current flowing in a resistance of 20,000 ohms is 150 milliamperes. What is the voltage? Since the voltare is to be found. the equation to use is $E=1 B$. Ihe curvent must first be convertod from milliamprese to amberes, and reference to the table shows that to do so it is neressary to divide by 1000. Therefore,

$$
E=\frac{150}{1000} \times 20,000=3000 \text { volts }
$$

When :t voltage of 850 is amplied to a circuit the current is mearured at 2.5 :mperes, What is the resistatere of the circuit? In this case $l d$ is the unhnown, so

$$
R=\frac{E}{I}=\frac{150}{2.5}=(60 \text { ohms }
$$

Co conversion was necessary beanse the volt ato and current were givenin volts and amperes.
How murh chorent will flow if eso volts is an pliced to a.som-ohnuresistor" since $/$ is unk nown

$$
I=\frac{E}{R}=\frac{250}{5000}=0.05 \text { anmpere }
$$

Milliamprere thits would be more eonvenient for the current, and 0.05 mong. $\times 1000=80$ milliamperes.

SERIES AND PARALLEL RESISTANCES

Very few actual rederic circuits are as simple as the illustration in the preceding sertion. Commomly, resistances are found commented in a

variety of ways. The two fundamental methods of connceting resistances are shown in Fig. 2-t, In the upper drawing, the current flows from the source of e.m.f. (in the direetion shown by the arrow, let us say) down through the first resistance, R_{1}, then through the second, R_{2}, and then back to the source. These resistors are connected in series. The current everywhere in the circuit has the same value.

In the lower drawing the current flows to the common comection point at the top of the two resistors and then divides, one part of it flowing through R_{1} and the other through K_{2}. It the lower comection point these two currents again combine; the total is the same as the current that flowed into the upper common connection. In this case the two resistors are connected in parallel.

Series and Parallel Resistance

Resistors in Series

When a circuit has a number of resistances connected in series, the total resistance of the circuit is the sum of the individual resistances. If these are numbered R_{1}, R_{2}, R_{3}, etr., then
$R($ total $)=R_{1}+R_{2}+R_{3}+R_{4}+$
where the dots indicate that as many resistors as neressary may be added.

Fixample: suppese that thrce resistors are "onnected to an wource of e.ma.f. as shown in frig. $2-5.1^{2} / e^{*}$ e.m.f. is 250 volts. K_{1} is 5000 ohmes, h'2 is 20,000 ohms, and K_{s} is sion) whens. The otal rosistance is thert

$$
\begin{gathered}
h^{2}=h_{1}+R_{2}+h_{3}=5000+30.000+80100 \\
=33.01000 t_{111}
\end{gathered}
$$

The current flowing in the ripenit is then

$$
I=\frac{E}{R}=\frac{3.50}{33,000}=0.007 .57 \text { a山! }=7.57 \mathrm{mat}
$$

(W'e nead not carry' calanations leyond three signifieant figures, and often two will suffice beruase the areturaty of measuremonts is splidom better than a few yer cont.)

Voltage Drop

Ohm's Law applies to amy part of a circuit as well as to the whole eircuit. Athough the eurrent is the same in all three of the resistances in the example, the total voltage divides among them. The voltage appearing across carh resistor (the voltage drop) (en be found from Ohm's linll.
is cabled E_{1}, that arress R_{2} is called E_{2}, and that
arroses $A^{\prime} 3$ is coblled Es, thern
$b_{1}=I h_{1}=0.007 .37 \times 5(\mu)=37.10$ volt.
$L_{2}=1 / K_{2}=0.007 .57 \times 20,000=181.4$ voll.
$E 3=I / i 3=0.007 .37 \times 8000=100,6$ voll -

The applind voltare must athal the sumb of the individtal votame dropu:

$$
\begin{gathered}
E=W_{1}+E_{2}+E_{2}=37.4+1.1 .4+10.15 \\
=244.9 \text { volts }
\end{gathered}
$$

The answer would have been more nearly exart if the current had been calealated to more derimal phares, but as explatined above a wry high order of acenray is not nemessary.
In problems such as this eonsiderable time and trouble ean be saved, when the current is small enourh to be expressed in milliamperes, if the

Fig. 2.5-An example of resistors in series. The solution of the circuit is worked out in the text.
resistance is expressed in kilohms rather than ohms. When resistance in kilohns is substituted directly in Ohm's Law the current will be in milliamperes if the e.m.f. is in volts.

Resistors in Parallel

In a circuit with resistances in parallel, the total resistance is less than that of the lowest value of resistance present. This is berause the
total current is always greater than the current in any individual resistor. The formula for finding the total resistance of resistances in parallel is

$$
R=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\frac{1}{R_{4}}+\cdots \cdot}
$$

where the dots again indicate that any number of resistors can be combined by the same method. For only two resistances in parallel (a very comnum (ase) the formula hecomes

$$
R=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

Example: If a now-ohm resistor is paralleled with one of 1200 ohmes, the total resistane is

$$
\begin{aligned}
R=\frac{l_{1} h_{2}}{h_{1}+h_{2}} & =\frac{.3(0) \times 12(0)}{.30(0)+12(M)}=\frac{(300,000}{1700} \\
& =353 \text { ohms }
\end{aligned}
$$

It is probably easier to solve practical problems by a different method than the "recipromal of reciporals" formula. suppose the three re-

Fig. 2-6-An example of resistors in parallel. The solution is worked out in the text.
sioturs of the previous example are comnerted in parallel ats shown in F'ig. 2-6. The same rem.f., 250 volts, is applied to all there of the resistors. The current in mach een be found from ohmes Latw as shown below, I_{1} being the current through R_{1}, I_{2} the eurrent thomgh R_{2} and I_{3} the enrent through R_{3}.

> For convenience, the resistane will tre expressed in kilohns so the curront will bre in aillianureres.

$$
\begin{aligned}
& I_{1}=\frac{E}{R_{1}}=\frac{2.00}{5}=30 \mathrm{ma} \\
& I_{2}=\frac{E}{R_{2}}=\frac{2.00}{20}=1.2 .5 \mathrm{ma} \\
& I_{3}=\frac{E}{R_{3}}=\frac{2.50}{8}=31.25 \mathrm{ma}
\end{aligned}
$$

The total current is

$$
\begin{gathered}
I=I_{1}+I_{2}+I .3=50+12.5+31.25 \\
=\{3.7 .5 \text { ma. }
\end{gathered}
$$

The total resistance of the circuit is therefore

$$
R=\frac{E^{\prime}}{I}=\frac{2.50}{33.7 . i}=2.6 \mathrm{ati} \mathrm{kilohms}(=2460 \text { olums })
$$

Resistors in Series-Parallel

An actual eircuit may have resistanes both in paralles and in sories. To illustrate, we use the same three resistances again, but now connected as in Fig. $2-7$. The method of solving a ciscuit such as Fig. $2-7$ is as follows: Consider K2 and R_{3} in paratlel as though they formed a single resistor. Find their equivalent resistance. Then this resistanee in series with R_{1} forms a simple series circuit, as shown at the right in Fig. ${ }^{2}-7$.

Fig. 2-7-An example of resistors in series-parallel. The equivalent circuit is of the right. The solution is worked out in the text.

Example: The first = Top is tof find the entivalent resistanere of how abl Ras From the formalit for two roxistimers in patallol.

$$
\begin{aligned}
& R_{\text {m. }}= \frac{R_{2} R_{3}}{R_{2}+h_{3}}=\frac{20 \times 8}{201}+\frac{100}{2 n} \\
&=-5.71 \mathrm{hitoh} 41
\end{aligned}
$$

The total mesistanco in the cirmit is lan

$$
k=h+h_{1}=5+5.5 \mid \text { kilohms }
$$

$=10.71$ kilohus
The current is

$$
I=\frac{E}{h}=\frac{0.50}{10.71}=2.3 .3 \text { ma. }
$$

$\boldsymbol{E}_{1}=/ K_{1}=23.3 \times i=117$ volts
$\boldsymbol{E}_{2}=1 \mathrm{~K}_{\mathrm{com}}=23.3 \times 5.5 .71=133 \mathrm{volts}$
 thus ahereking the rabloulations so far, beretuse the sum of the wodtare drops muse mpat the
 and lis.

$$
\begin{aligned}
I_{2} & =\frac{E_{2}}{R_{2}}=\frac{1333}{20}=6.13 .5 \text { Inat. } \\
I_{3} & =\frac{E_{2}}{R_{3}}=\frac{133}{8}=16.6 ; \text { mat. } \\
\text { where } I_{2} & =\text { Curvent throunh } H_{2}
\end{aligned}
$$

$I_{3}=$ C'urrent throunh R's
The total is 23.2 .5 mat. which cheeks closely - mongh with 23.3 1uth. the enrrent throngh the whole citcuit.

POWER AND ENERGY

l'ower - the rate of doing work - is equal to voltage multiplied by current. The wit of clectrical pewer, called the watt, is equal to one volt multiplied be one ampere The equation for power therefore is

$$
I^{\prime}=E I
$$

Where $I^{\prime}=$ Power in watts
$E=$ Fim.f. in volts;
$I=$ Current in amperes
Common frational and multiple mits for power are the milliwatt, we one-thonsandth of a watt, and the kilowatt, or one thousamd watts.

Example: 'The plate voltage on a transmitting vacum tube is 2060 voles and the blate curvent is 350 milliamperes. (The "arrent mast the changed to amperes lefore minstitution in the formmata, and so is 0.35 :mpl) then

$$
P=E I=2000 \times 0.3 .5=700 \text { watts }
$$

By substituting the Ohm's Law equivalents for E and I, the following formulas are ohtained for power:

$$
\begin{aligned}
& I=\frac{E^{2}}{R} \\
& I^{\prime}=I^{2} R
\end{aligned}
$$

These formulas are useful in power calculations
when the rewistance and cither the current or voltage (but mot both are known.

 it is $2(K)$ volta:" Firom the "coplation

$$
I^{\prime}=\frac{k^{\prime \prime}}{h_{i}^{\prime}}=\frac{(2(2))^{2}}{4 h 6}=\frac{41,4 N \pi}{1(100)}=10 \text { watts }
$$

 through : 3 (M)-ohm resistor. Then

$$
\left.I^{2}=I^{2} h^{2}-(0.0)^{2}\right)^{2} \times 300=0.0001 \times 300
$$

$$
=0.12 \text { watt }
$$

Note that the eurrent was changed from milliamperes to anturres before substitution in the formula.
Eleretrical power in a resistance is turned into heat. The greater the power the more rapidly the heat is generated. Rexjstors for racho work are made in many sizes, the smallest being rated to "dissipate" (or carry salfoly) atout $1 / 4$ watt. The langest rexistons used in amateur equipment will dissipate about 100 watts.

Generalized Definition of Resistance

Filectrical power is not always turned into heat. The power used in ruming a motor, for example, is converted to mechanical motion. The power supplied to a radio transmitter is largely converted intoradio wates. Power applied to a londspeaker is rhanged into somad waves. latin in evory case of this kind the power is completely "used up" - it camot be recovored. Alsu, for proper operation of the deviee the power must be supphed at a definite ratio of voltage to current. Buth these features are chatarteristios of resistance, so it ram be said that any deviere that dissipates power has at definite value of "resistance." This coneret of rexistance as something that absorbs power at a definite voltage/current ratio is very useful, since it permits substituting a simple rexistance for the load or power-comsuming part of the devie receiving power, often with considerable simplifiation of calculations. Of course, every elect trical devie has some resistance of it own in the more nampow sense, so a part of the power supplied to it is dissipated in that pesistance and henee appears as heat even though the major part of the pumer may he comberted to another form.

Efficiency

In devires such as motors and vacuum tubes, the object is to obtain power in some wher form than hoat. Therome power wed in heating is comsidered to be a lose, beratise it is not the usefil power. The efficiency of a device is the useful power output (in its comverted form) divided hey the power input to the deviee. In a vacuum-tule tramsmitter, for example, the object is to combert puwer from a dere soure into ace power at some radio fregueney. The ratio of the e.f. power output to the d.e. input is the effie ieney of the tube. That is,

$$
E f f .=\frac{I_{\mathrm{o}}}{P_{\mathrm{i}}}
$$

Capacitance

```
where Eff. = Efficiency (as a decimal)
    \(P_{0}=\) Power output (watts)
    \(I_{i}=\) l'ower input (watts)
```

Example: If the d.e. input to the tube is 100 watts and the r.f. power output is 60 watts, the effieieney is

$$
E f f .=\frac{P_{0}}{P_{i}}=\frac{60}{100}=0.6
$$

Effieiency is usually expressed as a percentage; that is, it tells what per cent of the input power will be available as useful output. The eflieiency in the above example is $\mathbf{6} 0$ per cent.

Energy

In residences, the power company's bill is for electric energy, not for power. What you pay for is the work that electricity does for you, not the rate at which that work is done.

Electrical work is equal to power multiplied by time; the eommon unit is the watt-hour, which means that a power of one watt has been used for one hour. That is,

$$
W=P T
$$

where W = Energy in watt-hours
$P=$ Power in watts
$T=$ Time in hours
Other energy units are the kilowatt-hour and the watt-second. These units should be selfexplanatory.

Finergy units are seldom used in amateur practice, but it is olvious that a small amount of power used for a long time can eventually result in a "power" bill that is just as large as though a large amount of power had been used for a very short time.

Capacitance

Suppose two flat metal plates are phared elose to ewh other (but not touching) and are ronnocted to a battery through a switeh, as shown in Fig. 2-8. It the instant the switeh is relosed, clestrons will be attracted from the upper plate to the positive terminal of the battery, and the same number will be repelled into the lower mate from

the negative battery terminal. Enough olectrons move into one plate and out of the other to make the e.m.f. between them the same as the e.m.f. of the battery.

If the switeh is opened after the phates have ben charged in this way, the top plate is loft with a defiedeney of deetrons and the bottom plate with an exoess. The plates remain charged despite the fatet that the batery no longer is conneoted However, if a wire is tonehed betwern the two plates (short-circuiting them) the exerss electrons on the bettom plate will thew through the wire to the upper plate, thus restoring eleretrical mentality. The plates have then heen discharged.

The twoplates eonstitute ath clectrical capacitor, and from the diseussion above it should be elater that a capacitor possesses the property of storing clectricity. (The comerge arotally is stomed in the clectrice field betwera the platers.) It sholald als, to clear that during the time the rlobelons ane moving - that is, while the capabitor is lueing chatged of discharged - a coment is flowing in the circuit even though the rircuit is "broken" loy the gap between the capacitor plates. llow"ver, the current flows only during the time of Tharge and discharge, athe this fime is astathe very short. There cath la wo antimuons flow of direet charent "through" a (apparitor.
The charge or quantity of eloctricity that
can be placed on a capacitor is proportional to the supplied voltage and to the capacitance of the capaciter. The liuger the plate area and the smaller the sparing betwern the plate the greatere the ("ipateitance. The (apmatitane also deponds upon the kind of insulating material bet ween the plates: it is smallest with air insulation, but substitution of other insulating matarials for air may. increaser the caparitane many times. The ratio of the ceaparitane with some material other than air betwern the plates, to the rapacitance of the same rapatitar with air insulation, is ratled the specific inductive capacity or dielectric constant of that particular insulating materiab. The matterial itself is called a dielectric. The diolectrio. constants of a mumber of materials ammonly used as dielectries in rapareitors atre given in 'Table 2-HIL If a sheot of photographic glass is substituted for air between the phates of a rat pacitor, for "xample, the eapacitance will be increased 7.5 times.

TABLE 2.III
Dielectric Constants and Breakdown Voltages

Material	Dietectric Cimstant	l'uncture Johtuge*
Air	1.0	19.8-2.2.8
Asimar 1196	5.7	$2 \cdot 10$
Sakelite (paper-hase)	3.8-5.5	6.50-7.50
lsakrlite (misa-filled)	56	155-600)
firllulose acrtate	(1-8	3(0)-100)
P'iher	5-7.5	1.50-180
formica	1.0-1.9	4.51
(basi (window)	7.6.8	$200-2.50$
(;lass (photographic)	7.5	
(; lass (I'yrex)	1. $2-4.9$	335
lucite	2.5-3	480-500
Mira	2. $5-8$	
Via a (clear India)	6. 1-7.5	(000-1.50)
Dyatex	7.1	2.50
Praprer	$2.11-2.0$	1050
Polyethylene	2.3-2.4	1000
Polystyrene	$2.1-2.9$	$500-2.500$
Porcelain	6.2-7.5	10-100
Rublwer (Iard)	2-3.5	450
Steatite (low-loss)	4.4	150-315
Arellom	1.42 .6	-101-11111
Nioul (Iry oak)	$2.5-6.8$	

2-ELECTRICAL LAWS AND CIRCUITS

Unit

The fundamental unit of capacitance is the farad, but this unit is much too large for practieal work. Caparitance is usually measured in microfarads (albhreviated μ f.) or micromicrofarads ($\mu \mu \mathrm{f}$.). The microfarad is one-millionth

Fig. 2.9-A multiple-plate capacitor. Alternate plates are connected together.
of a fatul, and the micromicrofarad is one-mil-
 have more than two platers, the alternate plates being comberted together to form two sets as shown in lig. .2-9. This makes it possible to at tain a faity large caparitane in a small spane, situe several plates of smatler individual area can be starked to form the equivalent of a single large plate of the samb total area. Alsu, all plates, pacept the wo on the coms, are exposed to plates of the wher group on both sides, and wo are twice :s effertioe in increasing the capabiture.

The formula for caberatating caparitance in:

$$
C=0.2 \cdot 2 \frac{\pi \cdot 1}{d}(n-1)
$$

where ${ }^{*}=($ "aparitance in $\mu \mu$ f.
$K=$ Diclectric constant of material betwern plates
$A=$ Wrat of one side of ome plate in stuatre inches
$d=$ soparation of plate surfaces in inches
$u=$ Number of plates
If the pates in one group do not have the same area as the plato in the other, use the area of the smailer phat es.

The usefulans of a rabacitor in elertrical rircuits lios in the fact that it cam be chamgen with eleetrical concrgy at one time and then discharged at a later time. In orher words, it is an "electrical reservoir:"

Capacitors in Radio

The types of capacitors used in radio work differ considerahly in physical size, eonstruction, and capacitance. Some representative types are shown in the photograph. In variable "apacitors falmost always constructed with air for the dielectric) one set of plates is made movable with respect to the ather set so that the capatitance c:an be varied. Fixed catpacitors - that is, assemhies having at single, non-atdustable value of catpariance - also ran be made with metal phates and with air as the dieloctric, but usually are constructed from phates of metal foil with a thin solid or liguid diolectrice samdwiched in brtween, so that a relatively harge caparitanoe ram be serured in anmall unit. The solid dielectrics commonly used are miea, paper and sperial vemamios. In example of a liguid lielertric is mineral oil. The electrolytic calparitor uses allumi-num-foil phates with a semiliquid conducting chemisal compound betweon them: the artual diefoctrio is a very thin film of insulating material that forms on one set of plates throngh ceretrochemical action when a d.e. voltage is applied to the capabitom. The caparitance obtained with a given plate area in an ole drolvio caparitor is vory lange, compared with capacitors having other dielectrios, beraluse the film is so extromely thin-much less that any thiekness that is practicable with a solid dielertitic.

Voltage Breakdown

When a high voltage is applied to the plates of a capacitor, a comsiderathle forre is exerted on the electrons and nuelei of the dielertric. Becanse the diclectrie is an insulatom the cloce trons do not beeome detarhed from atoms tho way they do in comdurtors. However, if the force is great enough the dielertric will "break down"; usually it will puncture and may rhat (if it is solid) and permit current tu flow. The breakdown voltage depends upen the kind atud thickness of the dielectric, as shown in T'able -11I. It is not directly proportional to the thickness; that is, dombing the thickness denes not quite donble the breakdown voltage. If the diclectric is air on any other gas, breakdown is

Fixed and variable capacitors. The large unit at the left is a transmittingtype variable capacitor for r.f. tank circuits. To its right are other airdielectric voriables of different sizes ranging from the midget "air padder" to the medium-power tank capacitor at the top center. The cased capacitors in the top row are for power-supply filters, the cylindrical-can unit being an electrclytic and the rectangular one a paper-dielectric capacitor. Various types of mica, ceramic, and paperdielectric capacitcrs are in the foreground.

Capacitors

evidenced by a spark or are between the plates, but if the voltage is removed the are ceases and the eapacitor is ready for use arain. Breakdown will occur at a lower voltage between pointed or sharp-edged surfares than between rounded and polished surfares: ponsequently, the beakdown voltage between metal plates of given spacing in air can be increased by buffing the edges of the plates.

Since the dielertric must be thick to withstand high voltuges, and since the thicker the dielectric the smaller the capacitance for a wiven plate area, a high-voltage (apareitor must have more plate area than a low-voltage one of the same capacitance. Iligh-voltage high-capacitance apamitors are physically large.

- CAPACITORS IN SERIES AND PARALLEL

The terms "parallel" and "series" when used with reference to raparitors have the same circuit meaning as with resistances. When a number of caparitors are comerted in parallel, as in Fig. 2-10, the total cupacitance of the group is equal to the sum of the individual caparitanees, so
$C($ total $)=C_{1}+C_{2}+C_{3}+C_{4}+\cdots \ldots \ldots$.
Ilowever, if two or more capacitors are connected in series, as in the seeond drawing, the total capacitance is less than that of the smadlest eapacitor in the group. The rule for finding the raparitane of a number of seriesrouncoted raparitors is the same as that for finding the resistance of a number of parollelconnerted resistors. That is,
C (total) $=\frac{1}{\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}+\frac{1}{C_{4}}}+\cdots \cdots \cdots .$.
and, for only two gapacitors in series,

$$
C(\text { total })=\frac{C_{1} C_{2}}{C_{1}+C_{2}}
$$

The same units must be used throughout; that is, all raparitances must be expressed in either μ f. or $\mu \mu$.: both kinds of units cannot be used in the same equation.
(apmetitors are eomected in parallel to obstain a larger total capacitane than is available in one unit. The largest voltage that can be applied safely to a group of eapacitors in parallol is the voltare that rall be applied safely to the one having the lomest voltage rating.

When caparitors are rommerted in series, the applied voltage is divided up among them; the situation is much the same as when resistors are in series and there is a voltage drop aeross each. However, the voltage that appeats anoms each capacitor of a group conneeted in series is in inverse proportion to its capacitance, as

Fig. 2-10-Capac. itors in series and parallel.
compared with the capacitance of the whole group.

$$
\begin{aligned}
& \text { Example: Three capacitors having capaci- } \\
& \text { tances of } 1.2 \text { and } 1 \mu \mathrm{f} \text {. resmetivels, are con- } \\
& \text { nected in serios is shown in Fig. 2-11. The total } \\
& \text { capacitance is } \\
& C=\frac{1}{\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}}=\frac{1}{\frac{1}{1}+\frac{1}{2}+\frac{1}{4}}=\frac{1}{\frac{7}{4}}=\frac{4}{7} \\
& =0.571 \mu \mathrm{f} \text {. }
\end{aligned}
$$

The voltage across earh capacitor is broportional to the fofal caparitance divided hy the eat pacitance of the rapuetor in question, so the voltage across C_{1} is

$$
E_{1}=\frac{0.571}{1} \times 2000=11.12 \text { volts }
$$

Similarly. the voltages across C_{2} and C_{3} are

$$
\begin{aligned}
& E_{2}=\frac{0.571}{2} \times 2000=.371 \text { volts } \\
& E_{3}=\frac{0.571}{4} \times 2000=286 \text { volts }
\end{aligned}
$$

totaling approximately 2000 volts, the applied voltage.

Capacitors are frequently connected in series to enable the group to withstand a larger voltage (at the experse of decreased total capacitanee) than any individual capacitor is rated to stand. However, as shown by the previous example, the applied voltage does not divide equally among the capacitors (except when all the capacitances are the same) so care must be taken to see that the voltage rating of no capacitor in the group is exceeded.

Fig. 2-11-An example of capacitors connected in series. The solution to this arrangement is worked out in the text.

2 -ELECTRICAL LAWS AND CIRCUITS
 Inductance

It is posible to shew that the flow of current through a conductor is acompanied bey manetio efferes; a compass medelle bought near the conductor, for example, will be defleceted from it: nomal morth-suuth prition. The rursent, in other words, sets \quad ul a magnetic fied

The transtor of conergy to the matgedie fiold represents work done hy the somere of em. m . Power is reguired for doing work, and since power is capual to courent multiplied by voltage, them must he a voltage drop in the eirenit during the time in which energy is leing stored in the fiedel. This voltage "drop)" (which has mothing to do with the voltage drop in suy resistanere in the (ircuit) is the result of an opposing voltaro "indued" in the "iredit white the field is building ap to its final value. When the field beromes ronstant the induced e.m.f. or back e.m.f. disatpporbs, sine no lurther anorgy is being stomed.
since the induced a.m.f. upposes the e.m.f. of the sourere, it tends to prevent the eurrent from rising rapielly when the cirenit is closed. The amplitude of the indured c.m.f. is proportional to the rite at which the cument is changing and to a constant associated with the aremit itself, ralled the inductance of the circuit.

Inductanere depends on the physie:al chatraremisties of the conductor. If the eomductor is formed into a eoil, for example, its indurethere is increased. I roil of mathy turns will have mome inductane than one of few tums, if both coils are otherwise physirally similatr. Nso, if a coil is plated on th iron reme its induetthe will loe greater than it was without the magnetie core.

The polturity of :un induced c.m.f. is always surh ats to oppose any ehange in the curgent in the rievuit. This meats that when the current in the riment is incmesing, work is broing done atginst the indued erm.i. by storing onergy in the natgnetice fiedd. If the current in the cire uit tends to deremese, the stomed energy of the fied weturns to the cireuit, and thus sulets to the enorgy being
suppliod hy the souree of e.m.f. This temds to kerep) the eurrent flowing avon though the appliond ©.m.f. maty be derrotsing or be removed entirely.

The values of inductane used in radio equipment vary owe a wide remge. Inductance of soveral hentrs is required in power-supply direuits (sere chapter on Power supplies) and to whain such values of inductanee it is neressary to wee eoils of many turns womd on irom cores. In radio-frequency eirenits, the indurtaner values used will ho measured in millihenrys (a millihenry is ome one-thousamdth of a henry) at low frequencies, sud in microhenrys (one one-millionth of a henry) at medium frepuencies and higher. Dthough roils for radio frequencies may be wound on speciat iron cones (ordinary irom is not suitable most ref. coils made and used by amateurs are of the "air-fore" tyen that is, wound on an insulating support consisting of nommagetio material.
livery condurtor has inductance, even though the conductor is not formed into a cois. The inductance of a short length of alaight wire is small, hat it maty not be negligible beratuse if the rament through it changes its intensitys rapidy enough the induced voltage may he appreciable. This will be the ease in even a fow haches of wire when an atternating currept having afreguenes of the orter of 100 Me . or higher is flowing. However, at much lower frequencios the inductance of the sime wire could tre left out of any calculations becaluse the induced voltage would be negligitly small.

Calculating Inductance

The indurtane of armene coils may be calculated from the formula

$$
L(\mu h .)=\frac{0.2 a^{2} u^{2}}{3 u+3 b+10 c}
$$

Where $L^{2}=$ Indurtance in midrohemrys
$"=$ Iverage diameter of coil in inches
$b=$ length of winding in inches

$c=$ Radial depth of winding in inehes $n=$ Number of turns
The notation is explained in Fig 2-12. The

Fig. 2.12-Coil dimensions used in the inductance formula.

quantity loc may be neglerted if the coil only has one layer of wire.

Fxample: Issume a coil having 3.5 turns of No 30 d.s.e. wire on a fortu l. 5 inches in dianeter. Consulting the wire table, 3.5 turns of No. 30 d.s.e. will occupe 0.5 inch. Therefore. $a=1.5, b=0.5, u=3.5$, and

$$
L=\frac{\left(0.2 \times(1.5)^{2} \times(3.5)^{2}\right.}{(3 \times 1.5)+(9 \times 0.5)}=(51.2 .5 \mu \mathrm{~h} .
$$

To calculate the number of turns of a singhelayer roil for a requined value of inductance:

$$
N=\sqrt{\frac{0,2 n}{0.2 u^{2}} \times L}
$$

Fxatmple: Nuphose an induetanere of 10 microhemrys is regnired. The form on which the eoil is to be wound has a dianeter of one inchand is long crumgh to aceommordate a coil lengeth of $1 \frac{1}{4}$ inches, Then $a=1, b=1.2 \overline{\%}$, and $h=10$. substituting.

$$
\begin{aligned}
N & =\sqrt{\frac{(3 \times 1)+(9 \times 1.25)}{0.2 \times 12} \times 10} \\
& =\sqrt{\frac{14.25}{0.2} \times 10}=\sqrt{712.5} \\
& =26.6 \mathrm{turns} .
\end{aligned}
$$

A 27 -turn coil would the done enough to the retuired valte of indtetance, its practical work. since the coil will be 1.25 ineles long, the number of thrns per imela will be $27 / 1.25=21.6$. Consulting the wire table, we find that No. Is "nameled wire (or any suatlev siza) crat be asod. The proper indactance is obtained by winding the required number of turns on the form and then adjusting the spacing between the turns to make a uniformas-spared coil 1.25 inches long.

Inductance Charts

Most induetance formulas lose arourary when applied to smatl coils (such as are used in v.h.f. work and in low-pass filters built for reduring harmonic interfereme to television) beratuse the emoluctor thickness is no longer negligible in comparison with the size of the coil. Fig. 2 -IS shows the measured inductance of v.h.f. coils, and maty be used as a basis for rircuit design. Two rurves are given: curve A is for coils wound to an inside diameter of $1 / 2$ inch; curve B is for eoils of $3 / 4$-inch inside diameter. In both curves the wire size is No. 12, winding pitch 8 turns to the inch ($1 / 8 \mathrm{inch}$ renter-to-senter turn spateing). The indurtande values given include leads 1 e inch long.

The chats of Figs. 2-14 and 2-15 are useful for reppid determination of the indurtance of coils of the type commonly used in radio-frequeney cirruits in the range : $3-30 \mathrm{Mc}$. They are hased on the formula above, and are of sufficient accuracy for most practical work. Given the or il
length in inches, the curves show the multiplying factor to be applied to the inductance value given in the table below the curve for a coil of the same diameter and number of turns per inch.

Example: A coil 1 inch in diameter is $11 / 4$ inehes long and has 20 minns. Therefore it has 16 turns ner inch. and from the table under lig. $2-15$ it is found that the reference inductance for a coil of this diatucter and number of turns per inch is $16.8 \mu \mathrm{~h}$. From eurve B in the figure the multiplying factor is 0.3 J , so the induetance is

```
16.8 人 0.35 = 5.9 \muh.
```

The charts also can be used for finding suitable dimensions for a coil having a required value of inductance.
Example: A coil having an inductance of 12
$\mu \mathrm{~h}$. is reguired. It is to be wound on a form
havime a dianeter of 1 inch , the length a a ailable
for the winding being not more than 114 inches.
Fron Fig. $\mathbf{2}-15$, the maltiblying factor for a 1 -ineh
diameter coil (curve /s) hitving thu maximum
possible length of $11 / 4$ inches is 0.35 . Hence the
number of turns per inch thust be chosen for a
roference inductane of at least $12 / 0.35$, or $34 \% \mathrm{~h}$.
From the Table under Fig. $\mathcal{P}-1.5$ it is seen that 16
tharns per inch (referomere indurtance 16.8 mh.)
is ter small. T'sing 32 thens aro inclo. the multi-
blying factor is $12 / 48$, or 0.17 t , and from curve
Is this corresponds to a moil length of $3 / 4$ inch.
There will be $2 \&$ turns in this length, since the
winding "piteh" is 32 turns per ineh.

- IRON-CORE COILS

Permeability

Suppose that the coil in Fig. 2-16 is wound on an iron core having a cross-sectional area of 2 square inches. When a rertain current is sent through the coil it is found that there are 80,000 lines of force in the core. Since the area is 2 square inches, the flux density is 40,000 lines per square inch. Now suppose that the iron eore is removed and the same current is mantaned in the coil, and that the flux density without the iron core is found to be so lines per square inch. The ratio of the flux density with the given core

Fig. 2-13-Measured inductance of coils wound with No. 12 bare wire, 8 turns to the inch. The values include half-inch leads.

2-ELECTRICAL LAWS AND CIRCUITS

material to the flux density (with the same coil and same current) with an air core is called the permeability of the material. In this case the permeability of the iron is $40,000 / 50=800$. The inductance of the coil is increased 800 times be inserting the iron core since, ot ther things being equal, the inductance will be proportional to the magnetic flux through the coil.

The permeability of a magnetic material varies with the flux density. At low flux densities (or with an air core) increasing the current through the coil will rause a proportionate increase in flux, but at very high flux densities, incrasing the current may cause no appreciable change in the flox. When this is so, the iron is said to be saturated. Saturation causes a rapid decrease in permeability, because it decreases the ratio of

Fig. 2-14-Factor to be applied to the inductance of coils listed in the toble below, for coil lengths up to 5 inches.

Coil diamefer. luchrs	No. of furns pre in in	Indurlance i, μ h.
11/4	4	2.75
	6	f, 3
	8	11.2
	10	17.5
	16	42.5
11/2	4	3,9
	6	$\times 8$
	8	1.5 .6
	10	21.5
	14	163
$13 / 4$	4	5.2
	6	11.8
	8	21
	10	:3:3
	16	$8: 5$
2	4	6.6
	6	1.5
	8	20.5
	10	42
	16	108
21/2	4	10.2
	6	23
	8	41
	10	(6)
3	4	14
	6	31.5
	8	38
	10	89

flux lines to those obtainable with the same current and an air core. Obviously, the inductance of an iron-rore inductor is highly dependent upon the current flowing in the coil. In an air-core coil, the inductance is independent of surrent because air does mot saturate.

Iron eore coils such as the one sketched in

Fig. 2-15-Factor to be applied to the inductonce of coils listed in the table below, os o function of coil length. Use curve A for coils marked A, curve B for coils morked B.

$\begin{aligned} & \text { Coil diameter. } \\ & \text { Inches } \end{aligned}$	No. of furns per inch	Inductance in μh.
$\begin{aligned} & 1 / 2 \\ & (A) \end{aligned}$	4	0.18
	6	0.40
	8	0.72
	10	1.12
	16	2.9
	32	12
$\begin{aligned} & 5 / 8 \\ & (A) \end{aligned}$	4	0.28
	6	0.62
	8	1.1
	10	1.7
	16	4.4
	32	18
$\begin{aligned} & 3 / 4 \\ & (13) \end{aligned}$	4	0.6
	6	1.35)
	8	2.4
	10	3.8
	16	4.9
	32	40
1	4	1.0
(13)	G	2.3
	8	4.2
	10	(1.0)
	16	16.8
	32	68

Fig. 2-16 are used chicoly in power-supply equipment. They usuatly have direet current flowing through the winding, and the variation in inductance with current is usually undesirable. It may be overcome by keeping the flux density below

Fig. 2-16-Typical construction of on iron-core inductor. The smoll oir gop prevents mognetic soturotion of the iron ond thus mointoins the inductonce of high currents.

Inductance

the saturation point of the iron. This is done by opening the core so that there is a small "air gat," as indicated by the dashed lines. The magnetic "resistance" introduced by such a gap is so large - (ven though the gal, is only a small fraction of an inch - eompared with that of the iron that the gap, rather than the iron, controls the flux density: This reduces the inductaner, but makes it pratieally constant regardless of the value of the rument.

Eddy Currents and Hysteresis

When altemating current flows through a roil wound on an iron core an e.m.f. will be induced, as previously explained, and since iron is a conductor a current will flow in the eore. such (eurrents (ealled eddy currents) represent a wasto of power because they flow through the resistance of the iron and thus canse heating. Fiddycurrent losses can be reduced by laminating the core; that is, by cutting it into thin strins. These strips or laminations must be insulated from each other by painting them with some insulating material such as varnish or shellace.

There is also athother type of enorgy lose: the iron tends to resist any change in its magnetio state, so a rapilly-changing courent surh as a.ce. is forced contimatly to supply energy to the iron to overcome this, "inertia." Losser of this sort arr called hysteresis losides.

Edely-current and hysteresis losses in iron increase rapidy as the frequency of the alternating current is incroased. For this reason, ordihary iron eores ean be used only at power and audio frequencies - up to, sity, 15,000 eveles. Jiven so, a very good grade or iron or sted is necessary if the core is to perform well at the higher audio frequencies. Jron cores of this type are completely useless at radio freguencies.
For radio-frequency work, the losses in iron cores can be reduced to a satisfactory figure by grinding the iron into a powder and then mixing it with a "binder" of insulating material in such a way that the individual irom partieles are insulated from each other. By this means cores can be made that will function satisfactorily even through the v.h.f. range - that is, at frequencies up to perhaps 100 Mc . Secause a largo part of the magnetic path is through a nommagnetie material, the permeability of the irom is low compared with the values obtained at power-supply frequencies. The core is usually: in the form of a "slug" or eylinder which fits inside the insulating form on which the coil is wound. Despite the fact that, with this construction, the major portion of the magnetic path for the flux is in air, the slug is quite effertive in inereasing the coil inductance. By pushing the slug in and out of the roil the inductance can be varied over a considerable range.

- INDUCTANCES IN SERIES AND PARALLEL

When two or more inductors are comeneted in series (Fig. $2-1 \overline{\%}$, left) the total inductance is

Fig. 2-17-lnductances in series and parallel.

equal to the sum of the individual inductances, promiden the coils are sulficionlly separated so that no coil is in the magnetic firld of another. That is,

$$
L_{\text {total }}=L_{1}+L_{2}+L_{\mu_{3}}+L_{4}+\ldots \ldots
$$

If inductors are conneeted in parallel (Fig. 2-17, right), the total inductanee is

$$
L_{\text {total }}=\frac{1}{\frac{1}{L_{1}}+\frac{1}{L_{2}}+\frac{1}{L_{3}}+\frac{1}{L_{4}}+\ldots \ldots}
$$

and for two inductances in parallel,

$$
L=\frac{L_{1} L_{2}}{L_{1}+L_{2}}
$$

Thus the rules for combining inductances in series and parallel are the same as for resistances, if the coils are far mough apart so that (awh is unaffected by another's magnetie field. When this is not so the formulas given above camot be used.

- MUTUAL INDUCTANCE

If two roils are arranged with their axes on the same line, as shown in Fig. 2-18, a current sent through Coil 1 will cause a magnetie field which "ruts" Coil 2. Consequently, an e.m.f. will be induced in Coil 2 whenever the field strength is changing. This induced e.m.f. is similar to the e.m.f. of self-induction, but since it appears in the scombl coil because of current flowing in the first, it is a "mutual" efferet and results from the mutual inductance between the two coils.

If all the flux set up by one coil euts all the turns of the other coil the mutual indurtance has its maximum possible value. If only a small part of the flux set up by one coil cuts the turns of the other the mutual inductance is relatively small. Two coils having mutual inductance are said to be coupled.

The ratio of actual mutual inductance to the maximum possible value that could theoretically be obtained with two given eoils is called the coefficient of coupling between the coils. It is frefuently expressed as a pereontare. Coils that have nearly the maximum posible (coeflicient $=$ 1 or 100%) mutual imductance are said to he closely, or tightly, compled, but if the mutual indurtance is relatively small the coils are said to be loosely compled. The degree of eoupling

2-ELECTRICAL LAWS AND CIRCUITS

Fig. 2-18-Mutual inductance. When the switch, S, is closed current flows through coil No. 1 , setting up a mognetic field that induces on e.m.f. in the turns of coil No. 2.
depends upon the physical spacing hetween the coils and how ther are placed with respect to each other. Maximum coupling exists when they have a common axis and are as close together as possible (one wound over the other). The coupling is least when the coils are far apart or are phaced so their axes are at right angles.

The maximum possible eocficient of coupling is closely approarched only when the two moils are wound on a closed iron core. The cocofficiont with air-core coils may rum as high as 0.6 or 0.7 if one coil is wound over the other, but will be nuch less if the two coils are separated.

Time Constant

Capacitance and Resistance

Conmerting as souree of rem.f. to a calpusitor ratuses the expacitor to berome chatiged to the fall c.m.f. practically instantanoously, if there is mo resistanee in the eirenit. However, if the rirenit contains resistaner, as in Fig. 2-19. 1 , the resistance limits the curent flow sud an appereathle length of time is reguired for the e.m.f. Bretwort the caparitor plates to build up to the same valur as the e.m.f. of the sourer. During this "huildingup" poriod the enrent grahatly dereases from its initial value, beranse the increasing e.m.in. stored on the capacitor offire inemeasing opposition to the steady e.m.f. of the souree.

Fig. 2-19-Illustrating the time constant of on $R C$ circuit.
Theoretieally, the rharging process is never ratly finishorl, hat aventually the chatging current drops to a value that is smatlor that anything that eam be measured. The time constant of such a "irenit is the longth of time, in secomes, reguired for the voltage arerose the capacitor to rewh 6i3 per eont of the applied e.m. f . (this figure is chosen for mathematical reasons). The voltage atrose the capaluitor rises with time as shown by Fig. 2-20).

The formula for time constant is

$$
T=r R
$$

where $T=$ Time ronstant in seronds
$\boldsymbol{r}^{\prime}=$ Capacitanere in farads
$R=$ Resistaner in ohms
If $('$ is in microfarads and R in megohms, the time constant also is in seconds. Theser units. usually are more emberiont.

Fxample: The time ronstant of a $-\mu$. ca-
 resistor is

$$
T=C h=\because \times 0.2 .5=0.5 \text { second }
$$

If the applied e.m.f. is 1000 volts, the voltage betworn the raparitor plates will be 630 volts at the end of $1 / 2$ second.
If a charged cupacitor is discharged through a masisor, as indicated in Fig. 2-1913, the same time eonstant applies. If there were no resistance, the capacitor would diseharge instantly when st was closed. However, since h limits the current flow the caparitor voltage camot instantly go to zero, but it will derrease just as rapidly as the caparitor can rid itself of its charge through R. When the eapacitor is diseharging through a resistance, the time eonstant (ealeulated in the same way as above) is the time, in seconds, that it takes for the capacitor to lose 63 per cent of its voltage; that is, for the voltage to drop to 37 per cent of its initial value.

Example. Ms the raparion of the danoro above is charged to 1000 volts, if will diseharge to 370 volts in $1 / 2$ second through the $250,000-$ ohti resistor

Fig. 2-20-How the voltage across a capacitor rises, with time, when charged through a resistor. The lower curve shows the way in which the voltage decreases across the capacitor terminals on discharging through
the same resistor

Fig. 2-21-Time constant of an $L R$ circuit.

Inductance and Resistance

A comparable sithation exists when resistance and inductance are in serios. In F"ig. :2-? first consider 1 to have bo resistame and also assume that R is zero. Then closing x would tend to send a "urrent through the ciproit. However, the instantaneous transition from wo comront to a finite value, however small, represents a sory rapid change in rurvent, and a back rom.f. is developed by the self-inductance of L that is practically equal and opposite to the applied e.m.f. The result is that the intitial enrrent is very smail.
The back e.m.f. depends upon the change in current and would cense to offer opposition if the current did mot continue to increase. With no resistance in the rircuit (which wonld lead to an infinitely large current, be Ohm's Law) the current would increase forever, always growing just fast enough to kecp the e.m.f. of self-induetion equal to the applied e.m.f.

When resistance is in series, Ohmes Lath sets a limit to the value that the current ean reach. The batek e.m.f. generated in I, has only to cepual the difference between E : and the drop) across l, berause that difterence is the voltage aetually. auplied to 1 . This difference lecomos smatler :sis the eurrent approaches the finall Ohm's Latw value. Themerically, the bark e.m.f. never guite dis:uppears and so the current never quite reaches the Ohm's Law value, but practioally the difforence beeomes ummeasurable after a time. The time constant of an inductive cirenit is the time

Fig. 2-22-Voltage across capacitor terminals in a discharging $C R$ circuit, in terms of the initial charged voltage. To obtain time in seconds, multiply the factor $t, C R$ by the time constant of the sircuit.
in seromeds reguired for the eurrent to reath fis jer rent of its final values. The formulat is:

$$
T=\frac{I}{R}
$$

Where $T=$ Time constant in seconds
$l=$ Inductance in henrys
$h^{\prime}=$ Rexistanee in ohms
The resistance of the wire in a coil arts as though it were in series with the inductance.

Example: A coil having an inductance of 20 henrys and a rewistance of $1(H)$ ohms hats a time constiant of

$$
T=\frac{L}{h}=\frac{20}{100}=0.2 \text { secont }
$$

if there is no other resistance in the circuit. If a d.c. e.m.f. of 10 volts is applied to such a coil, the final current, by Ohm's Law, is

$$
I=\frac{E}{h}=\frac{10}{100}=0,1 \text { :เม! }
$$

The eurrent would rise from zero to 63 milliamberes in 0,2 socond after flosing the switeh.

An inductor camot be "diseharged" in the Same way as a capacitor, berause the magnotice field distupears as soon as rument flow ceases. Oprning si does not leawe the indurtor "eharged." The emergy stored in the magnetice fied instantly returns to the eimenit when $i t$ is opened. The rapid disapperatare of the fiold couses at very latrer voltage to be indured in the eoil-ordinatrily many times lauger than the voltage applifed, beotuse the intured voltage is proportional to the speed with which the fied Changes. The rommon result of opening the switch in a cireuit such as the one shown is that a spark or are forms at the switch contacts at the instant of opening. If the indurtance is lange and the curvent in the circuit is high, a great cleal of emerge is released in a very short period of time. It is not at all unusual for the switeh contacts to burn or melt undor such cireumstinces.

Time constants play an important part in numorous deviers, such as clectronic keys, timiner and cont rol circuits, and shaping of keving chatartoristies by vacum tubes. The time constants of cireuits are also important in such applications as atutomatio gain control and noise limiters. In neatly all such applications al capacitance-resistante ($\left({ }^{\prime} R\right)$ time constant is involved, and it is usually necessary to know the voltage across the eaparitor at some time interval larger or smaller than the atuat time constant of the circuit as given ly the formula above. Fig. $2,2 y$ rath be used for the solution of such problems, since the curve gives the voltage across the capatitor, in terms of perrentage of the initial charge, for bercentages between 5 and 100, at athy time after discharge begins.

[^0]
2-ELECTRICAL LAWS AND CIRCUITS
 Alternating Currents

PHASE

The term phase essentially means "time," or the time interval between the instant when one thing oceurs and the instant when a second related thing takes phare. The later event is satid to lag the cerlice, while the one that oreurs first is said to lead. In a.c. cirvuits the courent amplitude changes continuously, so the eonergt of phase or time beromes important. Phase can be moasured in the ordinary time units, surh as the serond, but there is a more eonsernient method: Since ench a.e. corle ocrupies exately the same amount of time as cory other eycle of the same frequener, we com use the cyede itself as the time unit. lowire the cyele as the time unit makes the specification or mexsurement of phase independent of the freguency of the current, so long as only one frefuemey is under consideration at at time. Whom two or more frequene ios are to be exnsidered, as in the case where harmonics are present, the phase measurements are made with respect to the lowest, or fumdimental, frequeners.

The time interval or "phase difierence" under consideration usually will be less than one cercle. Phise difference could be measumed in decimal parts of a cyale, but it is more compenient to divide the cerele into 36 ports or degrees. A phase degree is therefore $1 / 3 t i 0$ of a cele. The reason for this rhoiere is that with sine-wave alternating current the value of the current at any instant is proportional to the sine of the angle that corresponds to the number of degeres - that is. length of time - from the instant the cyele began. There is no actual "angle" assoriated with an altemating current. Fig. 2-2:3 should help make this method of measurement clear.

Fig. 2-23-An a.c. cycle is divided off into 360 degrees that are used as a measure of time or phase.

Measuring Phase

The phase difference betwen two curvents of the same frequener is the time or angle difference: hetwern corresponding parts of cyeles of the two currents. This is shown in Fir, 2-24. The curent lableled A leads the one marked $l b$ by to degrees, since A 's coveles hegin 45 degrees earlior in time. It is equally correct to say that B lags A by 45 degrees.

Fig. 2-24-When two waves of the same frequency start their cycles at slightly different times, the time difference or phase difference is measured in degrees. In this drawing wave B starts 45 degrees (one-eighth cycle) later than wave A, and so lags 45 degrees behind A.

Two important special cases are shown in Fig. 2-25. In the upper drawing B lags 90 degrees behind A; that is, its eycle begins just ancquarter eycle later than that of A. When one wave is passing through zero, the other is just at its maximum point.

In the lower drawing A and 13 are 180 degrees out of phase. In this case it does not matter which one is considered to lowd or lag. B is ahways positive while I is negative, and vice versat. The two waves are this combletely out of phase.
The waves snown in Figs. 2-2 1 and $2-25$ conld represent current, voltage, on both. A and B might be two currents in separate eirenits, or A might represent voltage and B current in the same cirenit. If A and 13 represent two currents in the same circuit (or two voltages in the stame cirenit) the total or resultant current (or voltare) also is a sine wave. beranse adding any momber of sine wave of the stame frequener always gives at sine wave also of the same fredurbey.

Phase in Resistive Circuits

When an altemating voltage is appliod to a resistance, the current flows exactly in step with the voltage. In other words, the voltage and current are in phase. This is true at any frequence if the resistanee is "pure" - that is, is free from the reartive efferts discussed in the next seretion. latactically, it is often difficult to ohtain a purcly

Fig. 2-25-Two important special cases of phase difference. In the upper drawing, the phase difference between A and B is 90 degrees; in the lower drawing the phase difference is 180 degrees.

Alternating Currents

resistive cireuit at radio frequencios, because the reactive effects become more pronouned as the frequency is increased.

In a purely resistive circuit, or for purely resistive parts of circuits, Ohm's Law is just as valid for a.c. of any frequency as it is for d.c.

- REACTANCE

Alternating Current in Capacitance

In lifg. 2-26: a simewave are. voltame having at maximum value of $l(k)$ volts is applied to at c:apacitor. In the promed 0.1, the applied veltame in(reases firm zero to 38 volts; at the and of this perion the capmetor is charged to that voltage. In interval $1 / 3$ the voltage increases to 71 volts; that is, $3: 3$ volts additional. In this interval at smallor quantity of charge has beron added than in 0.1, lereanse the voltage rise during interval A / B is smatler. Consequently the average current daring A B is smatleo that during (1.1. In the third interval, $B C$, the voltage rises from 31 to 92 volts, atm inerenes of 21 volts. 'this is less that the volture increate during . $1 / 3$, so the ritantity of electricity :ubled is less; in other words, the average current doring interval $B C^{\circ}$ is still smaller. In the fourth interval, (Cl), the voltage increases only 8 volts; the rhatge added is smaller than in iny preceding interval and therefore the current also is smaller,

13y dividing the first quarter eycle into at very large number of intervals it could be shown that the current charging the capacitor has the shape of a sine wave, just as the applied voltage does. The current is largest at the beginning of the rocle and beromes zero at the maximum value of the voltage, so there is a phase difference of ! 0 degress betworn the voltage and rurent. During the first quarter eyele the current is flowing in the

Fig. 2-26-Voltage and current phase relationships when an alternating voltage is applied to a capacitor.
normal direetion through the cirenit, sine the eat patitor is being charged. Hence the curvent is positive, as indicated by the dashed lime in Fig. $2-26$.

In the second quartor erole - that is, in the time from 1$)$ to I, the voltage applied to the (apacitor decreases. During this time the capacitor loses its charge. Applying the same reasoning, it is plain that the current is small in interval $D E^{\prime}$ and continues to increase during each suceceding interval. However, the current is flowing againsl the applied voltage berause the eapacitor is discharging into the circuit. Hence the current is
negotive during this quarter eycle.
The third and fourth quarter cycles repeat the events of the first and second, lespectively, with this difference - the polarity of the applied voltage has reversed, and the current chaniges to correspiond. In other words, an alturnateng current flows in the cireuit becanse of the alternate charging and diseharging of the rebabitance. ds shown by Fig. 2-26, the current starts its ey le 90 degrees hefore the voltage, so the current in a apacitor leads the applied voltawe he 90 degrees.

Capacitive Reactance

The quantity of chertric chatge that can be plawed on a capacitor is proportional to the app plied com.f. and the capmeitance. This amoment of charge moves back and forth in the cirenit one (uch cevele, and se the rate of movement of chatrg" - That is, the current - is proportional to voltage, capacitance and freguencer. If the efferets of capacitanee and frefuency are lamped logether, they form a quantity that plases a part similar to that of resistance in Ohm's Latw. This quathtity is called reactance, and the unit for it is the ohm, just as in the case of resistanece. The formula for it is

$$
X_{\mathrm{C}}=\frac{1}{2 \pi f f}
$$

where $X_{C}=$ Capacitive reactance in ohms

$$
\begin{aligned}
& f=\text { Frequency in eveles per second } \\
& C=\text { Capacitance in farads } \\
& \pi=3.14
\end{aligned}
$$

Although the unit of reactance is the ohm, there is no power dissipation in reabetance. The energy stored in the catpateitor in one quarter of the creld is simply returned to the circuit in the next.

The fundamental units (ryeles per scoond, farads) are too large for practieal use in radio circuits. Itowever, if the capmeitance is in miorofarads and the frequeney is in megacerles, the reactance will come out in ohms in the formulit.

Example: The reactance of a capacitor of 170 $\mu \mu \mathrm{f}$, ($0,000: 17 \mu \mathrm{f}$.) at a freruency of 71 io kc . (7.15 Mc .) is

$$
X=\frac{1}{2 \pi f C}=\frac{1}{6.28 \times 7.1 .5 \times 0.000 .47}=47.4 \mathrm{ohms}
$$

Inductive Reactance

When an alternating voltage is applied to at pure inductance (one with no resistance - all praclical inductors have resistince) the current is again 90 degrees out of phase with the applied voltage. However, in this case the current lags: of degrees hehind the voltage - the opposite of the capacitor current-voltage relationship.

The primary cause for this is the breche.m.f. generated in the inductance, and since the amplitude of the back e.m.f. is proportional to the rate at which the current changes, and this in turn is proportional to the frequence, the amplitude of the current is inversely proportional to the applicd frequency. Also, since the back e.m.l. is proportional to inductance for a given rate of cur-

2-ELECTRICAL LAWS AND CIRCUITS

went change, the curvat flow is insersely propertional to indurtamer for a given appliod voltage and freguenes. (Another way of stying this is that just enongh current llows io gromerate: an indured erm. l. that equals and appeses the appliod woltage.

The combined refere wi indurtane and fre-
 pressed in ohms, and the formala for it is

$$
\lambda_{10}=2 \pi / L_{1}
$$

where $\Gamma_{\text {L }}=$ Inductive reartance in ohms $f=$ Vrequence in cyoles per serond
$L=$ Inductance in herorys $\pi=3.14$
Examble: The reartanee of a cril having an indurtinere of 8 hemrse, at at frequency of 120 cyclis. in

$$
N_{1}=2 \pi f l=0.28 \times 120 \times 8=0,024 \text { ohms }
$$

Fig. 2-27 - Phase relationships between voltage and current when an alternating voltage is applied to an inductance.
In radio-frequency areuits the implutatere values usually are small ath the frequemion are latge. If the inductane is expresed in millihenres and the freguency in kilowedes, the eonversion factors for the two whits callerel, and the formula for reactance may be usod without first (oonverting to fundamental units. Similarly, no comversion is neerssaty if the inductane is in microhenrys and the frequeney is in megracres.

$$
\begin{aligned}
& \text { Fixample: 'The rewtance of a } 1.5 \text {-microhenry } \\
& \text { coil at a frequency of } 14 \mathrm{Mc} \text {, is } \\
& X_{1}=2 \pi f L_{1}=(3.28 \times 1.4 \times 1.5=1319 \text { olims }
\end{aligned}
$$

The re. istance of the wire of which the coil is wound has no offeet on the reactance, but simply arms as though it were a separate mosistor conneemen in series with the coil.

Ohm's Law for Reactance

Ohm's Law for an a.c. rirulit containing ouly reatanere is

$$
\begin{aligned}
& I=\frac{E}{\lambda} \\
& E=I X \\
& X=\frac{E}{I}
\end{aligned}
$$

Whore $E=$ fe.m.f. in wolt:

$I=$ curront in amperes
$N=$ Reactane in ohms

The reactance may be either inductive or capacitive.

> Jxamplo: If a "urrent of 2 ampores is flowing thromgh the eapacitor of the previans example
age drop atrons thi rounariter is

$$
E=I .5=2 \times 17.4=51.8 \text { volts }
$$

If 400 wolte at 120 ervelas is andied to the 8 henry inductor of the previens examble. the current through the coil will he.

$$
I=\frac{E}{N^{\prime}}=\frac{4(40}{6(129!}=0 .(\text { Hiti3 atmj), (66, } 3 \mathrm{ma.})
$$

Reactance Chart

The areompanying chart, Fig. 2-28. shows the
 and the reatatare of inductane from $0.1 \mu /$. Wh
 athd 100 megaceretes per socond. The approximate value of reactanee can be read from the ehart or where more exatet values are nereded, the ehat will sarve as at cheek on the order of magnitude of reatandes calculated from the formulats given athore and thus avoid "derimal-point errors".

Reactances in Series and Parallel

When reactances of the same kind are connered in series or parallel the resultant roatemer is that of the resultant inductance or capabitance. This leads to the same rules that are used when determining the resultant resistance when resistors are combined. That is, for surios reatomeres of the same kind the resultant reamenner is

$$
I_{1}=I_{1}+I_{2}+I_{4}
$$

and for reactatues of the same kind in parallol the resultant is

$$
X=\frac{1}{\frac{1}{X_{1}}+\frac{1}{X_{2}}+\frac{1}{X_{3}}+\frac{1}{X_{4}}}
$$

or for two in parallal.

$$
X=\frac{I_{1} X_{2}}{X_{1}+I_{2}}
$$

The situation is elifferent when reatetames of opposite kinds are combined. Since the rurrent in a rapacitanere loads the applied voltage by ato degrees and the romernt in an indureanee lages the applied voltage be ! 00 degrees, the voltages at the terminats of oppesite types of reatature are 180 degrees ont of phase in at series cireuil (in which the curernt has to be the same through all enso
 types are I80 degrees out of phatere in a patalled cirenit (in which the samme voltage is applied to all elements). The 180-tlegree phase relationship mesthe that the currents or voltages are of apmesite polarity, so in the serice circuit of Fig. 2-29. the voltage E_{L} a arosis the imduetive reartane X_{I}. is of opposite polatity to the voltage Bi_{c} at ross the rapacitive readance N_{c}. Thas if we call λ_{1} "positive" and Xr "negative" (a common ronsvantion) the applied voltage $E_{\text {ar }}$ is E_{1}, E_{i}. In

$$
\begin{aligned}
& \text { sit: } \mid 0 \\
& =I
\end{aligned}
$$

$=\lambda_{1}-M_{0}$

$$
\begin{aligned}
& \begin{array}{l}
\text { Ie and positive (indurtive) if } X_{L} \text { is smatler } \\
\text { than } I_{r} \text {, lout in every case is always larger than }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { arallel rireuit. the }
\end{aligned}
$$

2-ELECTRICAL LAWS AND CIRCUITS

magnetic field, energy is being returned to the rireuit from the raparitor's electric: field, and vice versa, This stored energy is responsible for the fact that the volages across reactances in series can be larger than the voltage applied to them.

In a resistance the flow of current causes heatHing and a power loss equal to $I^{\prime \prime} R$. The power in a reactance is equal to $I^{2} X$, but is not a "loss"; it is simply power that is transferred back and forth between the field and the circuit but not used up in hating anything. To distinguish this "nomdissipated" power from the power which is actually consumed, the unit of reactive power is called the volt-ampere-reactive, or var, instewd of the watt. Reactive power is sometimes called "wattless" power.

IMPEDANCE

When a diredit contains both rexistance and reademe the combined affer of the two is called impedance, symbolized by the letter Z. (Impedance is thus : more gencral term than either resistance of reatiture, and is frequently used evon for dircuits that have only resistance or reateance, athongh usuably with a qualification - such as "resistive impedance" for indieate that the eirenit has only resistance, for eximple.)

The rablance and resistance comprising an imperiance mat he comected either in serics or in parallel, as shown in Fig. 2-30. In these cireuits the reatemere is shown as a box to indicate that it mate be cither inductive or capaceitive. In the series cirenit the current is the sime in both elements, with (gencrally) different voltages appearing abross the resistance and reatance. In the parallel cirecuit the same voltage is applied to both clemonts, but different currents thow in the two branches.

Fig. 2-30-Series and parallel circuits containing resistance and reactance.

Sinee in a messtance the current is in phase with the applied voltage while in ar reactance it is ? 0 degrees out of phase with the voltage, the phase relationship, betwern current and voltage in the circuit as a whole mave benything between zero and (9t) degress, deperiding on the relative amounts of resistance and reatetance.

Series Circuits

When resistance and reatance are in series, the inpedame of the cireuit is

$$
Z=\sqrt{R^{2}+X^{2}}
$$

where $Z=$ impedaner in ohms
$R=$ resistance in ohms
$\dot{X}=$ rate tance in ohms.

The reactance may be either caparitive or inductive. If there ate two or more reactames in the circuit they mat be combined into a drandant by the rules previously given, betore sulstitution into the formula above: similarly for resistances.

The "spuare root of the sum of the sybares" rule for finding impedance in a serios circuit arises from the fare that the voltage drops across the resistance and reactance are 10 degrees out of phase, and so combine be the same rule that applies in finding the hypothenuse of a rightangled triangle when the hase and altitude are known.

Parallel Circuits

With resistance and reatance in parallel, as in Fig. 2-3013, the impolame is

$$
Z=\frac{K N}{\sqrt{R^{2}}+X^{2}}
$$

Where the symbols have the same meaning as for series circuits.

Just as in the case of series circuits. a bumbro of reactances in parallel should be combined to find the resultant reactance before substitution into the formula above; similarly for a number of resistances in paralled.

Equivalent Series and Parallel Circuits

The two cirruits shown in Fig. 3-30 are equivat kent if the same comrent flows when a given voltage of the sime fregueney is appliond, and if the phase angle between voliage and current is the same in both cases. It is in lact possible to "transform" any given seric's cireuit into an equivalent paratlel cirenit, and viore versa.

Transformations of this type often lead to simplification in the solution of romplicated eireuits. However, from the stamdpoint of practical work the usefulness of such tramsformations lies in the fact that the impedanere of a circuit mas be modified by the addition of eilher series or parallel elements, depending on which hatperss to be most convenient in the particular case. TYpical applications are considered later in comection with tuned rincuits and transmission lines.

Ohm's Lav for Impedance

Ohm's Law can be applied to cireuits eontaining impedance just ans readily as to circuits having resistance or reatance only. The formulas are

$$
\begin{aligned}
I & =\frac{E}{Z} \\
E & =I Z \\
Z & =\frac{E}{I}
\end{aligned}
$$

where $E=$ E.m.f. in volts
$I=$ Current in :mperes
$Z=\operatorname{lmpedance}$ in ohms
Fiog. e-ill shows a -imple ciretit romsisting of a resistane of 7.5 ohme and a rearetane of 100 ohms in serios. lirem the formula previously given, the impedance is
$Z=\sqrt{R^{2}+\bar{X}_{L}^{2}}=\sqrt{(75)^{2}+(100)^{2}}=125$ ohms.
If the applied voltage is 250 volts, then

$$
I=\frac{E^{\prime}}{Z}=\frac{2.50}{125}=2 \text { amperes }
$$

This current flows through both the resistance and reartanes, so the voltage drojes are

$$
\begin{aligned}
& E_{\mathrm{R}}=I K=2 \times 7.5=1.00 \text { velts } \\
& E_{\mathrm{XL}}=I X L=2 \times 100=200 \text { vnlts }
\end{aligned}
$$

The simple arithmetieal sum of these tiro drans. $3 . \ln$ volrs, 1 areater than the applied voltare becallse the two voltages are 00 degrers out of phase. Their actual resultant, when phase is taken into account. is $\sqrt{ }(1 \overline{50})^{2}+(2 \overline{0})^{2}=2.50$ volte.

Power Factor

In the circuit of lig. 2-31 an applied e.m.f. of 250 volts results in is eurrent of 2 amperes, giving an apparent power of $2 \overline{50}(0) 2=5(M)$ watts. However, only the resistance atetually consumes power. The power in the resistatue is

$$
I^{\prime}=I^{2} R=(2)^{2} \times 75=300 \mathrm{watts}
$$

The ratio of the power consumed to the apparent power is called the power factor of the circuit, and in this example the power factor would be $300 / 500=0.6$. Power factor is frequently exprossed as a perrentage; in this case, it woth be (6) per cent.

Fig. 2-31-Circuit used as on example for impedance calculations.
"Real" or dissipated power is measured in Watts; apparent power, to distinguish it from real power, is measured in volt-amperes (just like the "wattless" power in a reartance). It is simply the produed of volts and amperes and has no direct relationship to the power actually wied up or dissipated undess the power fartor of the circuit is known. The power factor of a purely
resistive circuit is 100 per cent or 1 , while the power fartor of a pure reartance is zero. In this illustration, the reactive power is

$$
\begin{aligned}
V A(\text { volt-amperes })=I^{2} X & =(2)^{2} \times 100 \\
& =400 \text { volt-amperes. }
\end{aligned}
$$

Reactance and Complex Waves

It was pointed out curlier in this chapter that a comples wave (a "nonsinusoidal" wave) can be resolved into a fundamental frequency and a series of hamonic frequencies. When surh a complex voltage wave is upplied to a circuit containing reactance, the current through the circuit will not have the same wave shape as the applied voltage. This is because the reactance of an inductor and mapacitor depend upon the applied frequency. For the second-harmonic eomponent of a complex wave, the reartance of the inductor is twice and the reactance of the caparitor onehalf their respertive values at the fundamental frequency; for the thid harmonic the inductor reactance is three times and the capacitor reactarne one-third, and so on. Thus the rircuit impedance is different for earh harmonic component.

Just what happens to the current wave shape depends upon the values of resistance and reartance involved and how the circuit is arranged. In a simple circuit with resistance and inductive reactance in serics, the amplitudes of the harmonie durents will be reduced because the inductive reatetance increases in proportion to frequencer. When capandance and resistance are in series, the hamonic eurrent is likely to be abcentuated because the eapacitive reactance bocomes lower as the frepuener is raised. When both indurtive and raparitive reartance are present the shape of the current wave can be altered in at variety of ways, depending upon the cirenit and the "constants," or the relative values of L, C, and R, selected.

This property of nonuniform behavior with respert to fundamental and harmonies is an extremely useful one. It is the basis of "filtering," or the suppression of undesired frequencies in favor of a single desired frequency or group of such frequencies.

Transformers

Two coils having mutual inductance constitute a transformer. The coil comected to the source of encrgy is called the primary eoil, and the other is called the secondary eoil.
The usefulness of the transformer lies in the fact that eleetrieal energy can be transferred from one cireuit to another without direct connection, and in the process can be readily changed from one voltage level to another. Thus, if a device to be operated requires, for example. 115 volts a.ce and only a $4+(0$-volt source is availiable, a transformer can be used to change the source voltage to that required. I transformer can be used only with ate., since no voltage will be in-
dured in the secondary if the magnetic field is not changing. If d.e is applied to the primary of a transformer, a voltage will be induced in the secondary only at the instant of closing or opening the primary circuit, since it is only at these times that the field is ehanging.

THE IRON-CORE TRANSFORMER

As shown in Fig. 2-32, the primary and secondary coils of a transformer may be wound on a core of magnet ic material. This increases the inductance of the eovils so that a relatively small number of turns may be used to induce a given value of voltage with a small current. A closed core (one

2-ELECTRICAL LAWS AND CIRCUITS

Fig. 2-32-The transformer. Power is transferred from the primary coil to the secondary by means of the magnetic field. The upper symbol at right indicates an iron-core transformer, the lower one an air-core transformer.
having a (ontinuous magnetic path) such as that shown in lig. 2-32 also tends to insure that practically all of the field set up be the current in the pimary coil will cut the turns of the secondary ail. However, the core introduces a power loss becaluse of hysteresis and eddy currents so this type of construction is practicable only at power and audio frequencies. The discussion in this section is comfined to transformers operating at such frequencies.

Voltage and Turns Ratio

For a given varying magnetic field, the voltage induced in a coil in the field will be proportional to the number of tums in the coil. If the two coils of a transformer are in the same field (which is the case when both are wound on the same closed core) it follows that the induced voltages will be proportional to the number of turns in (ath coil. In the primary the induced voltage is practically equal to, and opposes, the applied woltage, as deseribed carlier. Hence,

$$
F_{\mathrm{s}}=\frac{n_{\mathrm{s}}}{n_{\mathrm{p}}} \boldsymbol{E}_{\mathrm{p}}
$$

where $E_{\mathrm{B}}=$ Secondary voltage $E_{\mathrm{b}}=$ Primary applied voltage
$n_{n}=$ Number of turns on secondary
$n_{p}=$ Number of turns on primary
The ration n_{s} / u_{p}, is called the secondary-10-primary turns ratio of the trinsformer.

Lixample: A transformer has a primary of 400 turns and a secondary of $25(0)$ turns, and an e.m.f. of $11:$, volts is applied to the primary. The serondary sobtaze will lue

$$
\begin{aligned}
E_{5}=\frac{n_{\mathrm{s}}}{n_{\mathrm{D}}} E_{\mathrm{p}} & =\frac{2800}{400} \times 115=7 \times 115 \\
& =805 \mathrm{volts}
\end{aligned}
$$

Niso. if an e.mif. of 805 volts is applied to the 2800 -turn winding (which then becomes the primary) the output voltage from the 400 -turn winding will be 11 is volts.

Fither winding of a transformer can the used as the primary, providing the winding has enotugh turns (enough inductance) to induce a voltage equal to the applied voltage without requiring an exeessive current flow.

Effect of Secondary Current

The current that flows in the primary when mo curtent is taken from the secondary is called the magnetizing current of the transformer. In any propery-designed transfomer the primary inductance will be so large that the magnetizing
current will be quite small. The power consumed by the transformer when the secondary is "open" - that is, not delivering power - is only the amount necessary to supply the losses in the iron core and in the resistance of the wire with which the primary is wound.

When power is taken from the secondary winding, the secondary current sets up a magnetic field that opposes the field set up by the primary current. But if the induced voltalge in the primary is to equal the applied voltage, the original field must be maintained. Consequently, the primary must draw coough additional current to set up a field exactly equal and opposite to the field set up by the sceondary current.

In practical calculations on transfor mers it may be assumed that the entire primary current is caused by the secondary "load." This is justifiable because the magnctizing current should be very small in comparison with the primary "load" current at rated power output.

If the magnetic fields set up by the primary and secondary currents are to be equal, the primary current multiplied by the primary turns must equal the secondary current multiplied by the secondary turns. From this it follows that

$$
I_{\mathrm{p}}=\frac{n_{\mathrm{s}}}{n_{\mathrm{p}}} I_{\mathrm{s}}
$$

where $I_{\mathrm{p}}=$ Primary current
$I_{8}=$ Secondary purrent
$n_{p}=$ Number of turns on primary
$n_{s}=$ Number of turns on secondary
Example: Suppose that the secondary of the transformer in the previous example is delivering a current of 0.2 ampere to a load. Then the prinary current will be
$I_{\mathrm{p}}=\frac{n_{n}}{n_{\mathrm{p}}} I_{\mathrm{s}}=\frac{2800}{400} \times 0.2=7 \times 0.2=1.4 \mathrm{amp}$. Althongh bla socomary voltage is higher than the primary voltage, the secondary current is lower than the primary current, and by the same ratio.

Power Relationships; Efficiency

I transformer cannot create power; it can only transior it and change the e.m.f. Hence, the power taken from the secondary cannot exceed that taken by the primary from the source of applied e.m.f. There is always some power loss in the resistance of the roils and in the iron core, so in all practical awes the power taken from the source will exceed that taken from the secondary. Thus,

$$
P_{\mathrm{o}}=n P_{\mathrm{i}}
$$

where $P_{o}=$ Power output from secondary

$$
\begin{aligned}
I_{i} & =\text { l'ower input to primary } \\
n & =\text { Ifficieney factor }
\end{aligned}
$$

The efficiency, n, always is less than 1 . It is usually expreserd as a pereentage; if n is 0.6 i), for instamer, tho afficiency is 60 per cent.

Example: A transformer has an efficiency of 85^{\prime} ' at its full-load output of 150 watts. The power input to the primary at full secondary load will be

$$
P_{\mathrm{i}}=\frac{P_{0}}{n}=\frac{150}{0.85}=176.5 \text { wat ta }
$$

Transformers

A transformer is usually designed to have its highest efliciency at the powroutput for which it is rated. The efficiency decreases with either lower or higher ontputs. On the other hand, the losses in the transformer are relatively small at low output but increase as more power is taken. The amount of power that the transformer ean handle is determined by its own losses, because these heat the wire and core. There is a limit to the temperature rise that can be tolerated, becaluse too-high temperature rither will molt the wire or ause the insulation to break down. A transformor always can be oprotated at redued output, even though the efficienery is low, berause the atual loss also will be low under such conditions.

The full-load efficiency of small power transformers such as are used in radio receivers and transmitters usually lies between about 60 per eent and 90 per cent, depending upon the size and design.

Leakage Reactance

In a practical transformer not all of the magnetir flux is common to both windings, although in well-designed transformers the amount of flux that "cuts" one coil and not the other is only a small percentage of the total flux. This leakage flux rauses an e.m.f. of solf-induction; consequently, there are small amounts of leakage inductance associated with both windings of the transformer. Leakage inductance ants in exaretly the same way as an equivalent amount of ordinary inductance inserted in series with the eireuit.

Fig. 2-33- The equivalent circuit of a transformer includes the effects of leakage inductance and resistance of both primary and secondary windings. The resistance R_{r} is an equivalent resistance representing the core losses, which are essentially constant for any given applied voltage and frequency. Since these are comparatively small, their effect
may be neglected in many approximate calculations.
It has, therefore, a certain reactance, depending upon the amount of leakage induetance and the frequency. This reactance is called leakage reactance.

Curent flowing through the leakage reactance causes a voltage drop. This voltage drop increases with increasing current, henee it increases as more power is taken from the secondary. Thus, the greater the secondary current, the smaller the secondary terminal voltage becomes. The resistances of the transformer windings also catuse voltage drops when current is flowing; although these voltage drops are not in phase with those gaused by leakage reactance, together they result in a lower secondary voltage under load than is indicated by the turns ratio of the transfomer.

At power frequencies (60 cyeles) the voltage at the secondars, with a reasomably welledesigned trinsformer, should not drop more than about 10
per cent from open-eireuit conditions to full load. The drop in voltage may be considerably more than this in a transiormer operating at audio freguencies beanuse the leakage reactance increases direetly with the frequeney.

Impedance Ratio

In an ideal transfonm - one without losses or leakage reactance - the following relationship is true:

$$
Z_{10}=Z_{\mathrm{s}} N^{2}
$$

where $Z_{p}=$ Impedance looking into primary ter-

$$
\begin{aligned}
& \text { minals from source of power } \\
& Z_{s}=\text { Impedance of load comected to } \\
& \text { secondary } \\
& N=\text { Turns ratio, primary to secondary }
\end{aligned}
$$

That is, a load of any given impedance connerted to the socondary of the transformer will he transformed to a different value "looking into" the primary from the sourere of power. The impedance transformation is proportional to the square of the primary-to-secondary turns ratio.

Example: A transformer has a primary-tosecondary turns ratio of 0.6 (primary has $6 / 10$ as many turns as the secondary) and a load of 3000 ohms is conmected to the secondary. The impedance looking into the primary then will be

$$
\begin{gathered}
Z_{\mathrm{p}}=Z_{\mathrm{S}} N^{2}=3000 \times(0.6)^{2}=3000 \times 0.36 \\
=1050 \text { oltils }
\end{gathered}
$$

By choosing the proper turns ratio, the impedance of a fixed load can be transformed to any desired value, within practical limits. The transformed or "reflected" impedance has the same phase angle as the actual load impedance; thus if the load is a pure resistance the load presented by the mimary to the souree of power also will be a pure resistance.

The above relationship may be used in practienl work even though it is based on an "ideal" transformer. Aside from the normal design requirements of reasonably low internal loses and low leakage reartance, the only requirement is that the primary have enough indurtance to operate with low magnetizing current at the voltage applied to the primary.

The primary impedane of a transformer as it appears to the source of pouer - is determinod wholly by the load connected to the secondary and by the turns ratio. If the characteristies of the transformer have an appreciable effect on the impedance presented to the power souree, the transfomer is cither poorly designed or is not suited to the voltage and frequency at which it is bring used. Most trinsformers will operate guite well at voltages from slightly above to well below the design figure.

Impedance Matching

Many devices require a specific value of load resistance (or impedance) for optimum operation. The impedance of the actual load that is to dissipate the power may differ widely from this value, so a transformor is used to change the actual load into an impedance of the desired value. This is called impedance matching. From

2-ELECTRICAL LAWS AND CIRCUITS

the preceding,

$$
N=\sqrt{\frac{Z_{\mathrm{p}}}{Z_{\mathrm{s}}}}
$$

where $\lambda=$ Reduired turns ratio, primary to socondary
$Z_{1}=1$ bimatry impedane required
$Z_{3}=$ Impedane of load connected to secondary

Example: A vacuum-tube af. amplifier requires a load of 5000 ohms for optimum performatner, and is to be conneeted to a loudspeaker having an impedance of $\mathbf{1 0}$ ohms. The turys ratin, prin ary to serondary, required in the eoupling transformer is

$$
N=\sqrt{\frac{\overline{Z n}}{Z_{5}}}=\sqrt{\frac{\overline{3000}}{10}}=\sqrt{300}=23.1
$$

The primary therefore mast have 29.4 times as many thrns as the serondary.

Impedance matching means, in general, adjusting the load impedance - by means of a transformer or otherwise - to a desired value. Howerer, there is also another meaning. It is posible to show that any souree of power will holiver its maximum possible output when the imperelane of the load is equal to the internal imperdance of the sourere. The impedance of the source is said to be "matched" under this rondition. The efficieney is only 50 per cent in such a cise: just as murh power is ured up in the soure as is delivered to the load. Because of the poor etlicioncy, this type of impedance matching is limited to cases where only a small amount of power is available and heating from power loss in the souree is not important.

Transformer Construction

Transfomers usually are designed so that the magnetic path around the core is as short as posible. I shont magnetie path means that the transormer will operate with fewer turns, for a given applied voltage, than if the path were long.

Fig. 2-34-Two common types of transformer construction. Core pieces ore interleaved to provide a continuous magnelic path.

A shorl path atso holpi to reduce flux leakage and therofore minimizos leakage reactance.

Two core shapes are in common use, as shown in Fige. 2-34. In the shell type both windings are
placed on the imer lag, while in the eore type the primary and secondary windings may be placed on soparate lege, if desired. This is sometimes done when it is neressary to minimize caparitive efferets betwen the primary and seeondary, on when one of the windings must opcrate at very high voltage.

Core material for small tansformers is usually silieon steed, called "transfommer iron." 'The core is built up of laminations, insulated from mach other (by a thin roating of shemate, for example) to present the flow of eddy oumodets. The lamimations are interleabed at the ands to make the mangetio path as rontinuons as pessible and thes roduce flux leakive.
'The mumber' of torns reduired in the primary for a severn applied rem.f. is delermined be the size shape and type of come material nised, and the frequenes. The number of turns recuited is inversely proportional to the cross-sentionat area of the rome. As a rough indication. Windings of small power transormers fremuently have about six to eeight turns per woll on a corr of $1-$ syturer inch cross seetion and have a marnetio path 10 or 1:2 inches in length. A longer path or smatler cooss sertion requires more thrus per volt, and vire versa.

In most transformers the enils we wound in layers, with a thin sheet of treated-paper insulattion betwoen each layer. Thatker insulation is used between coils and betweon roik and core.

Autotransformers

The transformer pinciple sam be utilized with only one winding insteald of two, as shown in Fig. ㅇ-3n; the principles just disenssed apply

Fig. 2-35 - The autotransformer is based on the transformer principle, but uses only one winding. The line and load currents in the common winding (A) flow in opposite directions, so that the resultant current is the difference between them. The voltage across A is proportional to the turns ratio.
equally well. I me-winding transformer is called ill autotransformer. The current in the common section (1) of the winding is the difference betweon the line (primary) and the load (secondary) curments, since these currents are out of phase. Inence if the line and load ruments are mave equal the common section of the winding may be wound with comparatively small wire. This will be the case only when the pimary (line) and secondary (load) voltages are not wery different. The autotransformer is used chicefly for boosting or reducing the power-line voltare by relatively small amounts.

The Decibel

In most radio commmication the received signal is converted into sound. This being the case, it is useful to appraise signal strengthe in terms of relative loudness as registered by the ear. A peculiarity of the ear is that an increase or deerease in loudness is responsive to the ratio of the amounts of power involved, and is practically independent of absolute value of the power. For example, if a person estimates that the signal is "twice as loud" when the transmitter power is incrased from 10 watts to 40 watts, he will also cestimate that a 400 -watt signal is twier as loud as a 100 -watt sigmal. In other words, the human ear has a logarithmic response.

This fact is the basis for the use of the relative-power umit called the decibel (abbreviated db.) A change of one decibel in the power level is just detectable as a change in loudness under ideal conditions. The number of decibels corresponding to a given power ratio is given by the following formula:

$$
D b_{0}=10 \log \frac{P_{0}}{P_{1}}
$$

Common logathithas (hate io) atre ured.

Voltage and Current Ratios

Note that the deribel is based on power ratios. Voltage or current ratios can be used, but only when the imperdance is the stme for both values of voltuge, or current. The gain of an amplifier camot he expressed correctly in db. if it is based on the ratio of the ont put voltage to the input voltage unless both voltages are monsured across the same value of impedance. When the impedance at both points of measure ment is the same, the following formula may be used for voltare or current ratios:

$$
\begin{gathered}
\omega h_{0}=20 \log \frac{l_{2}}{I_{1}} \\
\text { or } 20 \log \frac{I_{2}}{I_{1}}
\end{gathered}
$$

Decibel Chart

The two formulas are shown graphically in Fig. 2-36 for ratios from 1 to 10 . Gains (increases) expressed in decibels may be added arithmetically; losses (elecreases) may be sub)tracted. A power decrease is indicated by prefixing the decibel figure with a minus sign. Thus +6 db , means that the power has been multiplied by 4 , while -6 db . means that the power has been divided by 4 .

Fig. 2-36-Decibel chart for power, valtage and current ratios for power ratios of $1: 1$ to 10:1. In determining decibels for current or voltage ratios the currents for voltages) being compared must be referred to the same value of impedance.

The chart may be used for other ratios by adding (or subtracting, if a loss) 10 db , each time the ratio scale is multiplied by 10 , for powor ratios; or ly adding (or subtracting) 20 db . ach time the scale is multiplied by 10 for voltage or cument ratios. For example, a power ratio of $2 . \overline{3}$ is 4 dl . (from the chart). A power ratio of 10 times 2.5 , or 25 , is 14 db . ($10+4$), and a power ratio of 100 times 2.5 , or 250 , is 24 dl$)$. $(20+4)$, A voltage or current ratio of 4 is 12 dh ., a voltage or current ratio of 40 is $32 \mathrm{dt} .(20+12)$, and : voltage or current ration of 400 is 52 d$)$. $(40+12)$.

Radio-Frequency Circuits

RESONANCE IN SERIES CIRCUITS

Fig. 2-37 shows a resistor, capacitor and itductor connected in series with a soure of alternating current, the frequency of which can be varied over a wide range. At some low frequency the capacitive reactance will be much larger than the resistance of R, and the inductive reactance will be small compared with either the reactance of C or the resistance of R. (R is assumed to be the same at all frequencies.) On the other hand, at some very high frequency the reactance of C will be very small and the reactance of L will be very large. In either of these cases the current will be
small, beramse the reatance is lange at either low or high frequencies.

Fig. 2.37-A series circuit containing L, C and R is "resonant" af the applied frequency when the reactance of C is equal to the reactance of L.

2-ELECTRICAL LAWS AND CIRCUITS

At some intermediate frequenery the reactances of (' and L will he equal and the voltage drops arross the coil and capacitor will he equal and 1s0 degreas out of phase. Therefore they cancel cach other completely and the current flow is determined wholly by the resistance, R. At that frequency the current has its largest possible value, assuming the soure voltage to be constant regardless of freguence. A series circuit in which the inductive and calnatitive reactances are equal is said to be resonant.

Although resonance is possible at any frequencr, it finds its most extensive application in redio-frequeney cireuits. The reactive effects assoriated witheven small indurtances and raparitances would place dratic limitations on ref. circuit operation if it were not pussible to "cancel them out' by supplying the right amount of reartance of the opposite kind - in other words, "tuning the circuit to resonance."

Resonant Frequency

The frequency at which a series circuit is resomant is that for which $X_{1}=X_{\text {c }}$. Sulstituting the formulas for inductive and caparitive reartance gives

$$
f=\frac{1}{2 \pi \backslash / L C^{\prime}}
$$

where $f=$ Frequency in cerles per second

$$
L_{0}=\text { Inductance in hemrys }
$$

$C^{\prime}=$ Capacitance in farads $\pi=3.11$

These units are inconveniently large for radiofrequency arruits. A formula using more appopiate units is

$$
f=\frac{10^{6}}{2 \pi \sqrt{1 / C^{2}}}
$$

where $f=$ Frequenery in kilocyres (ke.)
$I_{S}=$ loduetance in microhenrss $(\mu \mathrm{h}$.)
$C^{\prime}=$ Capacitance in micromicrofarads ($\mu \mu \mathrm{f}$.)
$\pi=3.14$
lixample: The resonant frequmey of a series rirenit contuining a $\bar{\sigma}-\mu \mathrm{h}$, inductor and a 35 ${ }_{\mu} \mathrm{f}$. caparitor is

$$
\begin{aligned}
& =\frac{10^{6}}{2 \pi \sqrt{L C}}=\frac{10^{6}}{6.28 \times \sqrt{5 \times 35}} \\
& =\frac{10^{6}}{6.28 \times 13.2}=\frac{10^{6}}{8.3}=12,0.00 \mathrm{kc} .
\end{aligned}
$$

The formula for resomant frequency is not aflected by the resistanee in the rircuit.

Resonance Curves

If at pht is drawn of the current flowing in the arenit of ligg. $2-37$ as the frequency is variod (the apmied voltage being eonstant) it wonld low like one of the curver in Fig, e-38. The shape of the resonance curve at frequencies near resonatue is determined by the ration of mactance to resistanere.

If the reateme of either the eonit or rapacitor i . of the same order of mannitude as the resistanere,

Fig. 2-38-Current in a series-resanant circuit with various values of series resistance. The values are arbitrary and wauld nat apply to all circuits, but represent a typical case. It is assumed that the reactances (at the resonant frequency) are 1000 ahms. Note that af frequencies more than plus or minus ten per cent away from the resanant frequency the current is substantially unaffected by the resistance in the circuit.
the eurent derrases rather slowly as the frequeney is moved in either direction away from resonance. Such a curve is said to be broad, On the other hand, if the reatance is considerably larger than the resistance the current decreases rapidly as the frequency moves away from resonance and the circuit is satid to be sharp. A sharp circuit will respond a great deal more readily to the resonant frequency than to frequencies quite elose to resonamere; a broad cirmit will respond ahmost equally well to a group or band of frequencies centering arond the resomant frectuencr.

Both typos of resomance murves are usefing. . shampermit gives grod selectivity - the ability to respond strongly (in terms of current amplitude) at one desired feequeney and diseriminate against others. A broad circuit is used when the apparatus must give about the same response over a band of frequencies rather than to a single frequeney alone.

Fig. 2-39-Current in series-resonant circuits hoving different Qs. In this graph the current at resonance is assumed to be the same in all cases. The lower the Q, the more slawly the current decreases as the applied frequency is moved away from resanance

Radio-Frequency Circuits

Most diagrams of resonant circuits show only inductance and capacitance; no resistance is indieated. Nevertheless, resistance is always present. At frequencies up to perhaps :30 Mr. this resistanee is mostly in the wire of the eoil. Wove this frequency energy loss in the capatitor (principatly in the solid dieleetric which must be used to form an insulating support for the eaparitor plates) becomes appreciable. This energy loss is equivalent to resistance. When maximum sharpness or selectivity is needed the objert of design is to reduce the inherent resistance to the Jowest possible value.

The value of the reactane of either the indurtor or capacitor at the resonamt frequence of a series-resonant circuit, divided by the resistance in the cireuit, is called the Q (fuality fartor) of the circuit, or

$$
Q=\frac{X}{R}
$$

where $Q=$ Quality factor
$X=$ Reactance of cither coil or condenser, in ohms
$R=$ Series resjetance in ohms
Example: The inductor and eapacitor in a series circuit each have a reactance of $3: 0$ ohms at the resonant frepuencs. The resistance is 5 ohms. Then the Q is

$$
Q=\frac{\lambda}{R}=\frac{3 \overline{5} 0}{\bar{i}}=70
$$

The effect of Q on the sharpness of resonance of a circuit is shown by the curves of Fig, '2-39. In these curves the freguency changer is shown in percentage above and bolow the resonant frequency. (Qs of $10,20,50$ and 100 are shown; these values cover much of the range commonly used in radio work.

Voltage Rise

When a voltage of the resonatht frequency is inserted in series in a resonant cireuit, the voltage that appears across either the inductor or eapacitor is eonsiderably higher than the applied voltage. The earrent in the circuit is limited only by the resistance and may have a relatively high value; however, the same rurrent flows through the high reartanes of the induetor and capacitor and callses latge voltage drons. The rat tio of the reartive voltage to the applied voltage is equal to the ratio of reactance to resistance. This ratio is also the Q of the cireuit. Therefore, the voltage areross cither the inductor or rapateiter is equal to Q times the voltage insurted in series with the eirruit.

Example: The inductive reartance of acircuit is 200 ohms, the eaparitive reareance is 200 ohtus, the resistanee is ohms, and the applimed voltage is 50 . The two reactanes cancel and there will be but 5 ohns of pure resistinne to limit the enrrent flow. Thus the enrrent will be $50 / 5$ or 10 amperes. The voltape deweloped across either the inductor or the camaritor will be equal to its reactance times the current, or $200 \times 10=2000$ volts. An alternate methorl: The Q of the circuit is $X / R=200 / 5=40$. The reactive voltage is equal to Q times the applied voltage, or $40 \times 50=2000$ volts.

- RESONANCE IN PARALLEL CIRCUITS

When a variable-frequency source of constant voltage is applied to a parallel circuit of the type shown in Fig. 2-10 there is a resonane effert similar to that in a series circuit. However, in this case the "line" eurrent (measured at the point indieated) is smallest at the frequency for which the inductive and capacitive reactamees are equal. At that frequency the current through L is exactly canceled be the out-of-phase current through C, so that only the current taken by is flows in the line. At frequencies befor resoname the eurent through L is larger than that through C, beeause the reactance of L is smatler and that of " higher at low frequencies; there is only partial cancellation of the two reactive currents and the line current therefore is larger than the current taken by R alone. At frequencies abore resonance the situation is reversed and more current flows through (C than through L, so the line current again increases. The current at resonance, being determined wholly by R, will tre small if R is large and large if R is small.

Fig, 2-40-Circuit illustrating parallel resonance.
The rexistance R shown in Fig. ?-40 is not neressarily an artual resistor. In most cases it will be an "equivalent" resistance that represents the energy loss in the eireuit. This loss can be inherent in the coil or capacitor, or may represent energy transferred to a load by means of the resonant circuit. (For example, the resonant circuit may be used for transferring power from a vacuum-tube amplifier to an antenna system.)

Parallel and series resonant circuits are quile alike in some respects. For instance, the circuits given at A and B in Fig. $2-41$ will behave identically, when an external voltage is applied, if (1) L and (${ }^{*}$ are the same in both cases; and (2) R_{p} multiplied by R, equals the square of the reactance (at resonanee) of either L or C^{\prime}. Whern these conditions are met the two circuits will have the

(B)

Fig. 2.41-Series and parallel equivalents when the two circuits are resonant. The series resistor, $R_{s,}$ in A can be replaced by an equivatent parallel resistor, R_{p}, in B, and vice versa.

2-ELECTRICAL LAWS AND CIRCUITS

same Qs. (These statements are approximate, but are quite accurate if the Q is 10 or more.) 'The cireuit at A is a series circuit if it is viewed from the "inside" - that is, going around the loop formed by L, C and R-so its Q ean be found from the ratio of X to R_{s}.

Thus a cireuit like that of Fig. 2-41A has an equivalent parallel impedance (at resonance) equal to R_{p}, the relationship between R_{s} and R_{p} being as explained above. Although l_{1}, is not an anctual resistor, to the soure of voltage the parallel-rewhant cireuit "looks like" a pure resistance of that value. It is "pure" resistance beranse the indurtive and capacitive currents are 180 degrees out of phase and are equal; thus there is now ratetive current in the line. In a practieal cireuit with a high-() eapacitor, at the resomant frequeney the parallel impedance is

$$
Z_{\mathrm{r}}=Q \mathrm{~N}
$$

where $Z_{r}=$ IResistive impedance at resonance
$Q=$ Quality factor of inductor
$X=$ Reactance (in ohms) of either the inductor or caparitor

$$
\begin{aligned}
& \text { Example: The baralled impedance of a circuit } \\
& \text { with a coll } Q \text { of } 50 \text { and having indurtive and ca- } \\
& \text { pacitive reactances of } 300 \text { ohns will be } \\
& \qquad Z_{8}=Q X=50 \times 300=15,000 \text { ohms. }
\end{aligned}
$$

At frequencies off resonance the imperance is nolonger purely resistive becanse the indurtive and capacitive currents are not equal. The offresonant impedance therefore is complex, and is lower thatn the resonant impedance for the rasoms pervously outlined.

The higher the (l of the cireuit, the higher the parallel impedane. Curves showing the variation of impedance (with fregueney) of a paralled direuit have just the same shape as the eurves showing the variation of current with frequency in a series circuit. Fig. '2-12 is a set of such curves.

Fig. 2-42-Relative impedance of parallel-resonant circuits with different Qs. These curves are similar to those in Fig. 2.42 for current in a series-resonant circuit. The effect of Q on impedance is most marked near the resonant frequency.

Parallel Resonance in Low-Q Circuits

The preceding diseussion is accurate only for Qs of 10 or more. When the Q is below 10 , resonance in a parallel circuit having resistance in
series with the coil, as in lig. 2-41.1, is not so easily defined. There is a set of values for L and C that will make the parallel impedance a pure resistance, but with these values the impedance does not have its maximum possible value. Inother set of values for L and C will make the parallel impedance a maximum, but this maximum :alue is not a pure resistance. Either condition eould be called "resonanee," so with low-() rircuits it is neressaty to distinguish botween maximum impedance and resistive impedance parallel resonature. The difference betweon these L and 6 values and the equal reactathere of a sorios-resomant circuit is appreciable when the () is in the vicinity of 5 , and becomes more marked with still lower () values.

Q of Loaded Circuits

In many applications of resonant circuits the only power lost is that dissipated in the resistance of the eireuit itself, At irequencies below 30 Me . most of this resistance is in the coil. Within limits, increasing the number of turns in the coil increases the reactance faster than it rases the resistance, so coils for cireuits in which the Q must be high may have reartances of 1000 ohms or more at the frefueney under considerattion.

Fig. 2-43-The equivalent circuit of a resonant circuit delivering power to a lood. The resistor R represents the load resistance. At B the load is lapped across part of L, which by transformer action is equivalent to using a higher load resistance acress the whole circuit.

However, when the rirmit delivers energy to a load (as in the ease of the resonant circuits used in transmitters) the chorgy consumed in the cireuit itself is usually negligible erompared with that consumed by the load. The equivalent of such a rimout is shown in Pig. 2-43. , where the parallel resistor represents the load to which power is delivered. If the powor diswipated in the load is at least ten times as great as the power lost in the inductor and eapacitor, the parallel impedance of the resomant circuit itsolf will be so high compared with the resistance of the load that for all practical purposes the impedance of the combined circuit is equal to the load resistance. [uder these conditions the (Q of a parallelresonant circuit loaded by a resistive impedance is

$$
Q=\frac{R}{\Lambda}
$$

Where $Q=$ Quality factor
$I=$ P'arallel load resistance (ohms)
$X=$ Reactance (ohms) of either the inductor or capacitor
Example: A resistive load of 3000 ohms is connected across a resonant cirenit in which the in-

Radio-Frequency Circuits

ductive and ratacitiver reatances are cach 2.50 ohns. The eirenit (Q^{2} is then

$$
u=\frac{R}{R^{*}}=\frac{3000}{2.50}=12
$$

The "rfiective" (! of a cireuit loaded by a parallel resistance becomes higher when the reartances are decreased. I circuit loaded with a redatively low resistance (a few thousand ohms) must have low-reactance olements (large rapacitance and small inductance) to have reasonably high o.

Impedance Transformation

In important application of the parallelresomant circuit is as an impedance-matehing dowied in the output rireuit of at vaceum-tube r.f. power amplifier. As deseribed in the section on varrum tuber, there is an optimum value of load revistance for each type of tube and set of operating conditions. Howeyer, the resistance of the load to which the tube is to deliver power usually. is considerably lower than the value required for proper tube operation. To transform the actual load resistance to the desired value the load may be tapped across part of the coil, as shown in Fig. "-1313. This is equivalent to conneeting a higher value of load resistanee across the whole dircuit, and is similar in principle to impedance transformation with an iron-core transformer. In high-frequency resonant cirenits the impedane ratio does not vary exactly as the square of the turns ratio, because all the magnetic the lines do not ent every turn of the coil. . desired refleeded impedatien usually must be obtained ber. experimental adjustment.
When the load resistance has a very low value (say below 100 ohms) it may be connected in series in the resmant circuit (as in lig. 2-31. , for example), in which ease it is transforned to :un cquivalent parallel impedance as previously deseribed. If the \& is at least 10, the erguivalent parallol impedance is

$$
Z_{\mathrm{r}}=\frac{x^{2}}{R}
$$

Where $Z_{r}=$ Resistive parallel impedance at resohanere
$X=$ Reactance (in ohms) of either the coil or capacitor
$R=$ Joatd resistance inserted in series
If the Q is lower than 10 the reactance will have fobe adjusted somewhat, for the reasons given in the diseussion of low-() cireuits, to obtain a resistive impedance of the desired value.

Reactance Values

The charts of ligs, $2-44$ and $2-45$ show reactance values of inductances and capacitances in the range commonly used in r.f. tuned circuits for the amateur bands. With the exception of the :5.j-1 Mr. band, limiting values for which are shown on the charts, the change in reactance over a band, for cither inductors or capacitors, is small enough so that a single eurve gives the reactance with sufficient areuracy for most practical purposes.

Fig. 2-44-Reactance chart for inductance values cammanly used in amateur bands fram 1.75 ta 220 Mc .

L/C Ratio

The formula for resomant frequeney of a cireuit shows that the same frequency alwass will be
 stant. Within this limitation, it is covelont that $/$.
 The relation between the two for a fixed froquency is called the L / C ratio. 1 high-C circuit

Fig. 2,45-Reactance chart far capacitance values cammanly used in amateur bands from 1.75 to 220 Mc .

2-ELECTRICAL LAWS AND CIRCUITS

is one that has more eapacitane than "normal" for the frequency; a low-C circuit one that has less than normal eaparitance. These terms depend to a considerable extent upon the particular application considered, and have no exact numerical meaning.

LC Constants

It is frequently convenime to use the numerical value of the $L C$ constant when a number of calenlations have to be made involving different $L / /^{\prime}$ ratios for the same frequenery. The constant for any frequency is given by the following equation:

$$
L C^{\prime}=\frac{2 \overline{2}, 330}{f^{2}}
$$

where $L=$ Inductance in mierohenres (μ h.)
$C^{\prime}=$ ('apacitance in micromicrofarads ($\mu \mu \mathrm{f}$.)
$f=$ lirequency in megacyeles
Example: Find the indtuctance reguired to resonate at 36.50 ke . (3.6 .5 Mc .) with capracit:tnces of $2.5,50,100$, and $500 \mu \mu$. The L. C comstant is

$$
\begin{aligned}
& L C=\frac{25,330}{(3.35)^{2}}=\frac{2.5,330}{13.35}=14000 \\
& \text { With } \quad 25 \mu \mu, L=1(90) / C^{\circ}=1000 / 25 \\
& =76 \mu \mathrm{~h} . \\
& 50 \mu \mu \mathrm{f}, L_{0}=19(\mathrm{~K}) /\left(^{\circ}=1900\right) /: 50 \\
& =38 \mu \mathrm{~h} \text {. } \\
& 100 \mu \mu \mathrm{f}, L=1900 / C^{\circ}=1900 / 100 \\
& =19 \mu \mathrm{~h} . \\
& 500 \mu \mu \mathrm{f} . L^{2}=19(4) / C^{\circ}=1000 / 500 \\
& =3.8 \text { uh. }
\end{aligned}
$$

COUPLED CIRCUITS

Energy Transfer and Loading

Two rimults are coupled when energy can be transferred from one to the other. The circuit delivering power is called the primary cireuit; the one receiving power is called the secondary cirruit. The power may be practically all dissipated in the secondary circuit itself (this is usually the case in receiver (ircuits) or the secondary may simply act as a medium through which the power is transferred to a load. In the latter case, the coupled cirenits may ant as a radio-frequency impedance-matehing devire. The matching can be arcomplished by adjusting the loading on the secondary and by varying the amount of coupling between the primary and secondary.

Coupling by a Common Circuit Element

One method of coupling hetween two resonant circuits is through a circuit element common to both. The three common variations of this type of coupling are shown in Pig. 2 -46; the circuit clement common to both circuits carries the subseript . $1 /$. At A and IS current circulating in L_{1} ' t flows through the common element, and the voltage developed across this clement causes current to flow in $L_{2} \mathrm{C}_{2}$. At C, ('M and ('2 form a capacitive voltage divider across $L_{1} C_{\mathbf{t}}$, and some of the voltage developed across $L_{1} C_{1}$ is applied across $L_{2} C_{2}$,

Fig, 2-46-Three methods of circuit coupling.
If both rireuits are resonant to the same frequenery as is usually the ease, the value of eoupling reactane required for maximum chergy transfir can be approximated by the following, based on $L_{1}=L_{12}, C_{1}=\left(2\right.$ and $Q_{1}=\left(Q_{2}\right.$:
(A) $L_{M}=L_{1} / Q_{1}:(B)\left(C_{1}=Q_{1} C_{1}:(C)\left(C_{1}=\right.\right.$ ($1 / Q_{1}$.

The coupling ean be increased hy increasing the above coupling elements in A and (C and decreasing the value in 13 . When the coupling is increased, the resultant bandwidth of the combination is inereased, and this prineiple is sometimes applied to "broad-hand" the rirenits in at tramsmitter or reeciver. When the coupling clements in A and (are derreased, or when the coupling cement in 13 is increased, the coupting between the eireuits is decreased bolow the crilical coupling value on which the abow approximations are based. Dass than eritical coupling will decrease the bandwidth and the energy transfer; the primeiple is often used in rereivers to improve the selertivity.

Inductive Coupling

Figs. 2-47 and $2-48$ show inductive coupling, or coupling by means of the mutual inductance between two coils. Circuits of this type resemble the iron-core transformer, but berause only a part of

Fig. 2.47-Single-tuned inductively coupled circuits.

Coupled Circuits

the mannetic flus lines set up by one coil cut the turns of the other coil, the simple relationships betweon turns ratio, voltage ratio and impedance ration in the iron-core transformer do not hold.

Two types of inductively-coupled circuits are shown in ligig. 2-47. Only one cireuit is resonant. The circuit at A is frequently used in receivers for coupling between amplifier tubes when the tuning of the circuit must be varied to respond to signals of different frequencies. Cirenit 13 is used pincipally in transmitters, for roupling a radiofrequency amplifier to a resistive load.

In these rircuits the coupling between the primary and secomdary coils usually is "tight" that is, the eocfficient of coupling between the erils is large. With very tight coupling either circuit oprates nearly as though the device to which the untuned coil is eomnected were simply tapmed arress a corresponding number of tums on the tumed-rimuit eoil, thus either circuit is approximately equivalent to lig. "-4.313.
l3y proper choide of the number of turns on the untuned coil, and by adjustment of the eoupling, the paralled impedane of the tured circuit may be adjusted to the value required for the proper operation of the deviee to which it is connerted. In any ease, the maximum energy transfer possible for a given coefficient of coupling is ohtained when the reantance of the untuned coil is equal to the resistance of its load.
The Q and parallel impedanee of the tuned circuit are reduced by coupling through an untuned eoil in much the same way as by the tapping arrangement shown in liig. "-atil3.

Coupled Resonant Circuits

When the primary and secondary cirenits are both thaned, as in lig. 2-1S, the resonamer effeets

(B)

Fig. 2-48-Inductively-coupled resonant circuits. Circuit A is used for high-resistance loads (load resistance much higher than the reactance of either I_{2} or C_{2} at the resonant frequency). Circuit 8 is suitable for low resistance loads (load resistance much lower than the reactance of either t_{2} or C_{2} at the resonant frequency).
in both cireuits make the opration somewhat more complieated than in the simpler circuits just, ronsidered. Imagine first that the two dircuits are not coupled and that each is independently tuned to the resmant frequeney. The impedane of each will he purely resistive. If the primary cireuit is comeded to a source of rif. energy of the resontht
frequency and the secondary is then loosely coupled to the primary, a current will flow in the sccondary circuit. In flowing through the re. sistane of the secondary circuit and any load that may be comected to it, the current causes a power loss. This power must come from the energy source through the primary circuit, and matnifests itself in the primary as an increase in the equivalent resistance in series with the primaty coil. Hence the (and parallel impedance of the primary eirenit are deereased by the coupled secondary. As the eoupling is made greater (without changing the tuning of either circuit) the coupled resistance becomes larger and the parallel impedane of the primary contimues to decrease. Ilso, as the eoupling is made tighter the amount of power transfored from the primary to the secondary will inerease to a maximum at one value of eoupling, called critical coupling, but then decretses if the coupling is tightened still more (still without changing the tuning).

Critical coupling is a function of the Q s of the two circuits. I higher coeflicient of compling is required to reach critical coupling when the (as are low ; if the ()s are high, as in receiving appliat tions, a coupling eneflicient of a few per cent may give eritieal couphing.

With loaded circuits such as are used in transmitters the (Q may be too low to give the desired power transfer even when the coils are coupled as tightly as the physical construction permits. In such case, increasing the Q of either circuit will be helpful, although it is generally better to increase the Q of the lower- Q circuit rather than the reverse. The () of the parallel-tumed primary (input) (irenit can be increased by decreasing the L/C ratio beeause, as shown in connection with lig. 2-4:3, this circuit is in effect loaded by a parallel resistance (effect of coupled-in resistance). In the parallel-tuned secondary circuit, Fig. $2-48.1$, the $(Q$ ean be increased, for a fixed value of load resistance, either by decreasing the $L_{/ C}$ ratio or by tapping the load down (see lig. 2-43). In the serinstumed seeondary cireuit, Fig. 2-4813, the Q may be increased by increasing the L. C ratio. There will generally be no difficulty in securing sufficient eoupling, with prateticable eoils, if the product of the Qs of the two tuned rireuits is 10 or more. A smaller product will suflice if the coil construction permits tight coupling.

Selectivity

In Fig. 2-17 only one circuit is tumed and the selectivity curve will he essentially that of a single resonamt cireuit. As stated, the effective Q depends upon the resistance connected to the untuned coil.

In Fig. 2-48, the selectivity is the same as that of a single tuned circuit having a Q equal to the produce of the Qs of the individual circuits - if the coupling is well below critical (this is not the condition for optimum power transfer discussed immediately above and both circuits are tuned to resonance. The (2s of the individual cirents:

2 -ELECTRICAL LAWS AND CIRCUITS

Fig. 2-49-Showing the effect on the output voltage from the secondary circuit of changing the coefficient of coupling between two resonant circuits independently tuned to the same frequercy, The voltage applied to the primary is held constant in amplitude while the frequency is varied, and the output voltage is measured across the secondary.
are afferted by the degree of coupling, because eath couples resistance into the other: the tighter the coupling, the Jower the individual Qs and therefore the lower the over-all selectivity.

If both eireuits are independently tuned to rewnance, the over-all selectivity will vary about as shown in Fig. 2-49 as the coupling is varied. With lonse coupling, A, the output voltage (ateos the secondary cireuit) is smatl and the solectivity is high. Is the compling is increased the secondary voltage also inereases until eritical coupling, B, is reached. At this point the output woltage at the resomant frequency is maximum but the selectivity is lower than with looser (coupling. It still tighter colupling, (", the output voltage at the resonant frequene deereases, but as the frequence is varied cither side of resonance it is found that there sue two "hamps" to the rurve, one on either side of resonture. With vers tight emopling, 1 , there is a further doreme in the output voltage at resonanee and the "humps" are farther away from the resonant frequency. Curves such as those at ℓ and $1 /$ are called flattopped bereanse the output voltage does not change nume over an apreciable hand of frequencies.

Note that the off-resonance humps have the same maximum value as the resonant output voltage at eritioal eotupling. These hamps are eansed hy the fact that at frequeneies off resmane the serombary cirenit is reartive and eouples ractance as well as resistaners inte the primary. The cou-
 lamprepresents a maw combliton of eritioal couHing :t :t frequeney to whidh the primary is tumed hey the aditional abuplatin reartane from the serond:iry.

Band-Pass Coupling

Over-coupled resouant circuits are useful where substantially uniform output is desired over a rontinuous band of frequencies, without readjustment of tuning. The width of the flat top of the resonance curve depends on the Q s of the two rireuits as well as the tightness of coupling; the frequency separation between the humps will increase, and the curve become more flat-topped, as the (ds are lowered.

Pand-pass operation alson is seromed by duning
the two eireuits to slightly different frequencies, which gives a denble-humped resonanee ruwe even with loose roupling. This is called stagger tuning. However, to secture adeguate power transfer over the frequeney band it is usually necessary to the tight coupling and experimentally adjust the circuits for the desired performane

Link Coupling

A modification of inductive coupling, called link coupling, is shown in Fig. c-efo. This gives the effect of inductive conpling between two coiks that have no mutual inductanee; the link is simply a means for providing the mutual induetance. The total mutual inductanee between two coils coupled by a link camot be made as great as if the coils themselves were complod. This is because the eoefficient of eompling between aircore coils is considerably less than 1 , and sinee there are two coupling points the over-all coupling

Fig. 2-50-Link coupling. The mutual inductances at both ends of the link are equivalent to mutual inductance between the tuned circuits, and serve the same purpose.
coeflicient is less than for any pair of roils. In patet iee this need not be disadvantageons berame the power transfer can be made great enough by making the tumed eireuits sufficient!y high-(). lank eoupling is eonvenient when ordinary inductive coupling wouk be impurdicable for ennstructionall reasons.
The link eoils usually have a smatl momber of turns compared with the resomant-airenit coik. The number of turns is not gratly important, because the coofficient of eoupling is relatively independent of the number of turns on cither coil; it is more important that both link roils shombl have about the same inductanere. The length of the link betwem the coils is not critical if it is very small compared with the wavelength, lat if the length is more than athout one-twentioth of a wave longth the liak operates more ate a tramsmission line than as at means for providing mutual induetanee. In such cease it should be treated by the methots deseribed in the ehapmer on Transmission Jines.

IMPEDANCE-MATCHING CIRCUITS

The coupling circuits disoussed in the preceding section have been based either on inductive coupling or on coupling through a common cireuit element between two resonant cireuits. These are not the only eircuits that mave used for transferring power from one device to another. There is, in fact, a wide varicty of such circuits available, all of them being chassified generally as impedance-matching networks, Several networks frequently used in amateur equipment are shown in Fig. 2-5.

Fig. 2-51-Impedance-matching networks adaptable to amateur work. (A) L network for transforming to a higher value of resistance. (B) L network for transforming to a lower resistance value. (C) Pi network. R_{1} is the larger of the two resistors; Q is defined as $R_{1} / X_{c 11}$. (D) Tapped tuned circuit used in some receiver applications. The impedance of the tuned circuit is transformed to a lower value, $R_{i n}$, by the capacitive divider.

The L Network

The I, network is the simplest possible im-pedance-matching circuit. It closely resembles an ordinary resonant circuit with the load resistance, R, Fig. 2-5 1 , either in series or parallel. The arrangement shown in Fig. 9-5ld is used when the desired impedance, R_{N}, is larger than the actual load resistanee, R, while lig. 2-5113 is used in the opposite case. The design equations for earh rase are given in the figure, in terms of the circuit reatances. The reactances may be converted to inductance and capacitance by means of the formulas previously given or taken directly from the charts of Figs. 2-44 and $2-45$.

When the impedance transformation ratio is large - that is, one of the two impedances is of the order of 100 times (or more) larger than the other - the operation of the circuit is exactly the same as previously discussed in connection with impedane transformation with a simple L C resonant eircuit.
The Q of an 1 , network is found in the sime way as for simple resonant circuits. That is, it is egtall to X_{1} / h^{\prime} or $R_{\text {L }} \lambda_{C}$ ig Fig. $9-51 A$, and to $I_{1} R_{1}$ or R / X_{1} in lig. $2-1 B$. The value of () is determined by the ratio of the impedances to be matched, and camoot be selerted independently. In the equations of Fig. $\mathrm{P}-\mathrm{y}$ l it is ats sumed that both R and $R_{\text {Ix }}$ are pure resistances.

The Pi Network

The pi network, shown in Fig. 2-51C, olfers more flexibility than the L since the operating Q may be chosen practically at will. The only limitation on the circuit values that may be used is that the reactance of the series arm, the inductor L in the figure, must not be greater than the square root of the product of the two values of resistive impedance to be matched. As the circuit is applied in amateur equipment, this limiting value
of reactance would represent a network with an undesirably low operating $($, and the cireuit valthes ordinarily used are well on the safe side of the limiting values.

In its prineipal application as a "tank" circuit mat ching a transmission line to a power amplifier tube, the load R_{2} will generally have a failly low value of resistance (up to a few hundred ohms) while R_{1}, the required load for the tuhe, will be of the order of a few thousand ohms. In such a case the Q of the circuit is defined as R_{1} / NC_{1}, so the choice of a value for the operat$\mathrm{ing}\left(\right.$) immediately sets the value of $X_{\text {f }}$ a and hence of C_{1}. The values of $X_{(\cdot 2}$ and X_{L} are then found from the equations given in the figure.

Graphical solutions of these equations for the most important practical cases are given in the chapter on tramsmitter dexign in the discussion of plate tank circuits. The L ind (values may be calculated from the reactances or read from the charts of Figs. 2-44 and $2-45$.

Tapped Tuned Circuit

The tapped tuned circuit of Fig. 2-51D is usioful in some receiver applieations, where it is desirable to use a high-impedance tuned circuit as a lower-impedance load. When the Q of the induetor has been determined, the capacitors can be selected to give the desired impedance transformation and the necessary resultant rapareitance to tume the cirruit to resonance.

- Fillters

. filter is an electrical rircuit configuration (network) designed to have sperifie charaderisties with resped to the trinsmission or attematation of various frequencies that may be applied to it. There are three general topes of filtors: lowpass, high-pass, and band-pass.

A low-pass filter is one that will permit all frequencies below a sperified one coblled the cut-off frequency to tre transmitted with litt io or no loss, but that will attemuate all froquencios above the cut-off frequener.

A high-pass filter similarty has a cat-off frequency, above which there is little or no loss in transmission, but below which there is considerable attenuation. Its behavior is the opposite of that of the low-pass filter.

A band-pass filfor is one that will transmit a seleced band of frequencies with substantially no loss, but that will attennate all frequmeies rither higher or fower than the desired band.

The pass band of a filer is the frequener specetrum that is transmited with little or mo loss. The transmission characteristio is not necessurily. perfectly uniform in the pass band, but the variations usually are small.

The stop band is the frequency region in which attenuation is desired. The attenuation may vary in the stop band, and in a simple filter usuatly is least near the cut-off frequeney, rising to high values at frequencies considerably removed from the cut-off frequency.
Filters are designed for a specific value of purdy resistive impedance (the terminating im-

2-ELECTRICAL LAWS AND CIRCUITS

Fig. 2-52 - Basic filter sections and design formulas. In the above formulas R is in ohms, C in farads, l in henrys, and f in cycles per second.

Impedance-Matching Circuits

pedance of the filter). When surd an impedame is comanefod to the output trminals of the filtor,
 has "sidntially the same value, throughout most of the pass bamd. Nimpla filters do mot give per-
 the imput impedane of a property-teminated filter reth la mate fairly ronstant, as wedl as chaser for the design values, were the pass band hesing m-derived filor somtions.
 the seope of this I/amembli, but it is mot diffienlt to build satishatory filtors from the rireuits and formulas given in fig. e-i2. Filtor ritcuits are built up from comentary sections as shown in the figure. These soctions rath be used alone or, if
 more rapped rate of rise of atternation with frequener bevond the eut-off frequeney) are required, several soctions ean be comureded in sories. In the low- and high-pass filtors, ferepre sonts the cut-olf frepurnery, the highost (for the low-pass) or the lowest (lor the high-pass) frequency trasmilted without attembation. In the band-pass filtor dosigns, f_{1} is the low-frequener cut-ofi and for the high-frecurbey rut-ofis. The units for L, C^{\prime}, R and f are homrss, farads, ohms and eveles por serond, wespectively.

All of the types shown are "unbalanerd" (one side groneded). For use in balanerd cireuits (e.g., BOO-ohm transmission line, or push-pull andio (rireuits), the series reademees should be adually divided between the two lags. Thas the balaned constant-k π-seretion low-pass filtor would uso two induetors of a value eqpial to $L_{\mathrm{k}} / 2$, while the balanced comstant-h π-section ligh-pass filter would use two capacitors ach equal to $2 \mathrm{or}_{\mathrm{k}}$

If several low- (or high-) pass soretions ame to le userl, it is atvisable to use m-derived end soretions on mither side of at constant-f eronter sertion, although an m-diorived eontor seetion can be used. The factor m dedermines the ratio of the cut-of frequener, fo, to a frequeney of high attenuation, f_{x}. Where only one m-derived sect t ion is used, at value of 0,6 is generally used for m, although a deviation of 10 or 15 per cent from this value is not too sorious in amatenr work. For at value of $m=0.6$, f_{∞} will $\mathrm{ln}_{\mathrm{n}} \cdot 1.25 \int_{\mathrm{c}}$ for the low-pass filter and 0,8 for for high-pass filter. other values dan be found from
$m=\sqrt{1-\left(\frac{f_{c}}{f_{x}}\right)^{2}}$ for the low-pass filter and
$m=\sqrt{1-\left(\frac{f_{s}}{f_{c}}\right)^{2}}$ for the high-patss filter.
The output sides of the filters shown should the terminated in a resistance equal to R, and there should be little or no rative component in the termination.

Simple atudio filters cau be made with pow-dered-iron-core inductors and paper capanitors. Sharper cut-off charatteristics will be obtained with more sections. The values of the components can vary by $\pm 5 \%$ with little or no
reduction in performance. The mone sections there are to a filter the greater is the noed for accuracy in the values of the components. Highperformance atudio filters can be built with only two sections by winding the inductors on toroidial powdered-iron forms; threr sections are generally nereded for obtaining equivalent results when using other tyens of inductors.

Band-pass filters for single sidehand work (see later chapter) are often designed to oporate in the range 10 to 20 kc . Their attenuation requirements are such that usually at least a fivesertion filter is recpuired. The coils should be as high-() as possible, and misa is the most suitable raparitor dielectric.

Low-pass and high-pass filters for harmonic suppression and reeniveroverload prevention in the television frequencies range are usually made with solf-supporting roils and mica or ceramid caparitors, depending upon the power reguirements.

In any filtor, there should the no magnetie or capactive coupling between sections of the filter maless the design spereilically ealls for it. This reguirement makes it neressary to shield the coils from eath other in some applications, or to mount them at right angles to each other.

PIEZOELECTRIC CRYSTALS

A number of erystalline substances found in nature have the ability to transform medhanical strain into an cloctrical charge, and ries remat. This property is known as the piezoelectric effect. I small plate or bar cot in the proper way from a quartz ersatal and phaced botwern two conducting electrodes will be moedamically stratined When the electroden are emoneeded to a souree of voltage. Conversely, if the crystal is squerzed between two chertrodes a voltage will be developed botwen the elertrodes.

Piezoelectric crystals can be used to transform mechanical energy into clectrical energy, and vice versis. They are used in microphones and phonograph piek-ups, whore mechanical vibrations are transformed into altormating voltages of corrosponding frequencer. They are also used in headsets and loudspaikers, transforming olectrical enorgy into mechanical vibration. Crystals of Rochelle satts are used for thes purposes.

Crystal Resonators

Crystalline plates ako are mednaimal resonators that have natural frequencies of vilmation ranging from a fro thousund cereles to tons of megaryeles per second. The vibration frequency depends on the kind of arystal, the way the plate is cut from the natural ervstal, and on the dimensions of the plate. The thing that makes the crystal resonator valuable is that it has extremely high Q, ranging from $\overline{5}$ to 10 times the (Qs ohtainable with good L C resonant cireuits.

Analogies can be drawn between various mechanical properties of the crystal and the electrical characteristics of a tuned circuit. This leads to an "equivalent circuit" for the crystal.

2-ELECTRICAL LAWS AND CIRCUITS

The electrieal coupling to the arestal is through the holdor plates between which it is sandwiched; these plates form, with the erystal is the dielectrie, a small capacitor like any other capacitor constructed of two plates with a dielectric between. The erystal itsolf is equivalent to at seriesresonant rircuit, and together with the capacitance of the holder forms the equivalent circuit shown in Fig. 2-5:3. It frequencies of the order of tao ke., where crystals are widely used as resonators, the requivalent L maty be several henrys and

Fig. 2-53-Equivalent circuit of a crystal resonator. L, C and R are the electrica! equivalents of mechanical properties of the crystal; C_{h} is the capacitance of the holder plates with the crystal plate between them.

the equivalent (x only a fow humdredths of a micromicrofarad. Athough the equivalent R is of the order of a fow thousand ohms, the reactanee at resonamer is so high that the Q of the revstal likewiss is high.

A circuit of the type shown in Fig. e-5:3 has a series-resonant frequener, when viewed from the circuit teminals indieated by the arrowheads, determined hy L and 6 only. At this frequeney the circuit impedance is simply equal to h, providing the reartance of C_{1} is large compared with If (this is gencratly the ease). The riment also has a parallel-resonant frequency determined by L_{5} and the equivalent rapacitane of C and C_{a} in sories. Since this equivalent capacitance is smatler that (" alone, the parallel-resonamt freguenes is higher thath the series-resonant frequency. The separation between the two resonant

Fig. 2.54 - Reactance and resistance vs. frequency of a circuit of the type shown in Fig. 2-53. Actual values of reactance, resistance and the separation between the series- and parallel-resonant frequencies, f_{1}, and f_{2}, respectively, depend on the circuit constants.
frequencies depends on the ratio of ($\%$ to C, and when this matio is large (as in the case of a crystal resonator, where (h, will be a few $\mu \mu \mathrm{f}$. in the average case) the two frepuencios will be guite close together. A separation of a kibervele or loes at 455 ke . is typical of a quarto erystal.

Fig. 2-5. 4 shows how the resistance and reactance of surh a circuit vary as the applied frequeney is varied. The reartane passes through zero at both resomat freguemere, but the rexist. athe riser $t o$ a large value at paratlel resomatore, just as in any tumed cirouit.

Quart\% crostals may be used either as simple resonators for their selective properties or as the frequenes-oontrolling eloments in oscillators as described in later chapters. Ther sories-resonamt freguenery is the one principally used in the former case, while the more common forms of oscillator circuit use the parallel-resonant frequency.

Practical Circuit Details

COMBINED A.C. AND D.C.

Most radio circuits are built around varoum tubes, and it is the nature of these tubes to require direct curment (usually at a fairly high voltage) for their operation. They eonvert the direet entrent into an alternating eurrent (and sometimes tho reborse) at frequencios varsing from well down in the sudior range to well up in the superhigh range. The conversion process almost invariably requires that the direct and alternating currents mert somewhere in the rirmuit.

In this meoting, the a.ce. and d.e are artually, combined into a single current that "pulsates" (at the arc. frequency) about an average value equal to the direct eurrent. This is shown in Fig. -sin. It is comveniont to consider that the alternating current is superimposed on the direct farrent, so wo maty look upon the actual current as having two rompoments. one d.e. and the other a.c.

In an alternating eurrent the positive and negative alternations have the same average appli-
tude, so when the wave is superimposed on a dired current the latter is alternately inereased and derreased by the stume amount. There is thus no andrage change in the direet current. If a d.c. instrument is being used to read the cument, the reading wild be exartly the same whether or not the are. is superimposed.
llowever, there is artually more power in surh a combination current than there is in the direct current alone. This is because power varies as the square of the instantaneous value of the current, and when all the instantaneous squared values are averaged over a cyrle the total power is greater than the d.e. power alone. If the a.e. is a

Fig. 2-55-Pulsating d.c., composed of an alternating current or voltage superimposed on a steady direct current or voltage.

Fig. 2-56 -Illustrating series and parallel feed.
sine wave having a peak value just equal to the d.e., the power in the circuit is 1.5 times the d.e. power. An instrument whose readings are proportional to power will show such an increase.

Series and Parallel Feed

Fig. 2-56 shows in simplified form how d.e. and a.c. may be combined in a varumm-tube circuit. In this conse, it is assumed that the a.c. is at radio frequency, as sugrested by the coil-andrapacitor tuncil cireuit. It is also assumed that r.f. current can easily flow through the d.e. supply; that is, the impedance of the supply at radio frequencies is so small as to be negligible.

In the circuit at the left, the tube, tumed circuit, and d.e. sumbly all are commected in series. The direct current flows through the ref. coil to get to the tube: the r.f. current generated by the tube flows through the d.e. supply to get to the tumed rircuit. This is series feed. It works because the impedance of the d.e. supply at radiofrequencies is so low that it does not affere the flow of r.f. current, and beeause the d.e. fesistance of the coil is so low that it does not affect the flow of direct current.

In the circuit at the right the dired current does not flow through the rif. tumed circuit, but instead goss to the tube through a second coil, $R F^{\prime}($ (radio-frequency choke). Direct current camot flow through L because a blocking capacitance, C, is placed in the circuit to prevent it. (Without (', the d.e. supply would be shortcircuited by the low resistance of L.) On the other hand, the r.f. current generated by the tube "an casily flow through $($ ' to the tuned cireuit because the caparitance of 6 is intentionally chosen to have low reactance (compared with the imbedance of the tuned circuit) at the radio frequener. The s.f. current camot flow through the d.e. supply because the induetance of $R F F^{\circ}$ is intentionally made so lamge that it has a very high reactance at the radio frequency. The resistance of $R F^{\prime} C$, however, is too low to have an appreciable effect on the flow of direct current. The two currents are thus in parailel, hence the name parallel feed.
lither type of feed may be used for both a.f. and r.f. circuits. In parallel feed there is no d.c. voltage on the a.c. circuit, a desirable feature from the viewpoint of safety to the operator, because the voltages applied to tubes - particu-
larly transmitting tules - are dangerous. On the other hand, it is somewhat difficult to make an r.f. choke work well over a wide range of frequencies. Series feed is often preferred, therefore, beause it is relatively easy to keep the impedance between the a.c. eircuit and the tube low.

Bypassing

In the sernes-feed cireuit just diseussed, it was assumed that the d.e. supply had very low impedance at radio frequencies. This is not likoly to be true in a practical power supply, partly berause the normal physical separation betwern the supply and the rif. circuit would make it necessary to use rather long comecting wires os leads. It radio freguencies, even a few feet of wire can have fairly large reactance - too large to be considered a really "low-impedance" eonnertion.

An actual cirenit would be provided with a bypass capacitor, as shown in Fig, 2-57. Capacitor C is chosen to have low reactance at the operating frequency, and is installed right in the circuit where it can be wired to the other parts with quite short comecting wires. I lence the r.f. current will tend to flow through it rather than through the d.e. supply.

To be effective the reactane of the bypass capacitor should not be more that one-tenth of the impedance of the bypassed part of the cirenit. Very often the batter impedance is mot known, in which case it is desirable to use the lagest caparitance in the bypass that circumstances permit. To make dombly sure that r.f. curent will not flow through a nom-r.f. circuit such as a power supply, an r.f. choke may be commerted in the lead to the latter, as shown in Fig. 2-ī.
The same type of bypissing is used when audio frequencies are present in addition to r.f. Because the reatance of a capacitor changes with frequency, it is readily possible to choose a eapacitance that will represent a very low reactance at

Fig. 2-57-Typical use of a bypass capacitor in a series-feed circuit.

radio frequencies but that will have such high reactance at audio frequencios that it is practically an open circuit. A capacitance of $0.001 \mu \mathrm{f}$. is practically a short circuit for r.f., for example, but is almost an open circuit at audio frequencies. (The actual value of capacitance that is usable will be modified by the impedances concerned.) Bypass caparitors also are used in audio circuits to carry the audio frefuencies around a d.c. supply.

2-ELECTRICAL LAWS AND CIRCUITS

Distributed Capacitance and Inductance

In the discussions earlier in this chapter it was assumed that a capacitor has only raparitance and that an inductor has only inductanere. Infortunately, this is not strictly true. There is always a cortain amount of inductame in a conductor of any length, and a capacitor is hound to have a little inductance in addition to its intended rapawitance. Naso, there is always capactance between two eonductors or between parts of the same conductor, and thus there is appreciable caparitance between the turns of an inductanere eoil.

This distributed inductance in a capacitor and the distributed capacitance in an induetor have important practical afferts. Setually, every capacitor is a tumed circuit, resomant at the treGuency where its eaparitance and distributed indurtance have the same reactance. The same thing is true of a coil and its distributed capacitance. It frequencies well below these natural resonances, the capacitor will act like a nomal eapanitance and the coil will atet like a normal inductance. Near the natural resonant points, the coil and caparitor and like self-tuned cireuts. Ahove resonance, the capacitor acts like an inductor and the inductor acts like a capacitor. Thus there is a limit to the amonnt of capacitance that coll be used at a given frequeney. There is a similar limit to the indurtane that ean be used. It andio frequencies, capacitanes measured in mierofarads and inductances meatured in henres are patatiable. At low and medium radio frequencies, inductances of a fow milliherrys and capacitanese of a few thousand micromiorofartade are the largest practicable. It high radio frequences, usable inductance values drop to a few micohomys and capacitances to a few hundred micromicrofarads.

Distributed capacitance and inductance are important not only in r.f. tunced cireuits, hut in bypassing and choking as well. It will be appreriated that a bepass caparitor that actuadly acts like am inductance, of an ref, choke that acts like a low-reatane gapacitor, camot work as it is intended they should.

Grounds

Throughout this book there are frequent references to ground and ground potential. When a commertion is sated to be "grounded" it does not neressatrily moan that it actually goes to earth. What it means is that an actual earth comection to that point in the areuit should not disturb the operation of the circuit in any way. The term also is used to indicate a "common" point in the eircuit where power supplies and metallis supports: (such as a metal chassis) are electrically tied togother. It is groneral practioes for example, to "ground" the negative terminal ol a dice power supply, and to "ground" the filament or heater power supplies for vacuum tubes. Since the cathode of a vacuum tube is a junction point for grid and plate voltage supplies, and since the various circuits connected to the tube elements have at least one point connected to cathode,
these points also are "returned to ground." (iround is therefore a common reforence point in the radio circuit. "(iround potential" means that there is no "differenee of potential" - that is, no voltage - lutwoen the eireuit point and the earth.

Single-Ended and Balanced Circuits

With reference to ground, a circuit may he either single-ended (unbalanced) or balanced. In a single-ended circuit, one side of the circuit is connected to ground. In a balaneed rireuit, the electrical midpoint is comnected to ground, so that the circuit has two ends each at the same voltage "above" ground.
'Typical single-ended and balanced circuits are shown in lig. 2-58. R.f. circuits are shown in the upper row, while iron-core transformers (such

Fig. 2-58-Single-ended and balanced circuits.
as are used in power-supply and audio cireuits) are shown in the lower row. The r.f. circuits may be balanced either by comecting the center of the eoil to ground or by using a "balanced" or "split-stator" capacitor and connecting its rotor to ground. In the iron-core transformer, one or both windings may he tapped at the center of the winding to provide the ground eonnection.

Shielding

Two circuits that are physically near each other usually will be coupled to each other in some degree even though no compling is intended. The metallic parts of the two eircuits form a small capacitance through which energy can be transferred by means of the electric field. Aso, the magnetic field about the eoil or wiring of one circuit can couple that circuit to a second through the latter's coil and wiring. In many eases these umwanted couplings must be prevented if the cireuits are to work properly.

Capacitive coupling may readily be prevented by enclosing one or both of the circuits in grounded low-resistance metallic containers, called shields. The electric field from the circuit components does not penetrate the shield. A metallic plate, called a baffle shield, inserted between two components also may suffice to prevent electrostatic coupling between them. It should be large enough to make the components invisible to each other.

U.H.F. Circuits

Similar metallic shielding is used at radio frequencies to prevent magnetic eoupling. The shielding effect for magnetic fields increases with frequeney and with the conductivity and thickness of the shielding material.

A closed shield is required for good magnetic shielding; in some cases separate shields, one about each coil, may be required. The haffe shield is rather ineffective for magnetic shielding, although it will give partial shielding if placed at right angles to the axes of, and between, the coils to be shiclded from each other.

Shielding a coil reduces its inductance, because part of its field is canceled by the shied. Aso, there is always a small amount of resistance in the shield, and there is therefore an energy loss.

This loss raises the effective resistance of the eoil. The decrease in inductance and increatse in resistance lower the Q of the coil, but the reduction in inductance and () will he small if the sparing between the sides of the coil and the shicld is at least half the eovil diameter, and if the suacing at the ends of the coil is at least erual to the coil diameter. The higher the comductivity of the shield material, the less the effect on the inductance and Q. Copper is the best material, but ahminum is quite satisfatory.

Fon good magnetic shiclding at audio frequencies it is neressary to enclose the eoil in a container of high-permeability iron or sterel. In this ease the shield can be guite close to the coil without harming its performance.

U.H.F. Circuits

RESONANT LINES

In resonant circuits as employed at the lower frequeneries it is possible to consider each of the reactane components as a separate entity: The fact that an inductor has a certain amount of self-raparitance, as well as some resistance, while a capacitor also possesses a small selfinductance, can usually be disregarded.

At the very-high and ultrahigh frequencies it is not readily possible to separate these components. Also, the connecting leads, which at lower frequencies would serve merely to join the c:apitor and coil, now mas have more inductance than the coil itself. The required indurtance coil may be no more than a single turn of wire, get even this single turn maty have dimensions comparable to a wavelength at the operating frequener- Thus the energy in the field surrounding the "eoil" may in part be radiated. At a sufficiently high frequeney the loss by radiation may represent a major portion of the total energy in the circuit.

For these reasons it is common practice to utilize resomant sections of transmission line as tuned cireuits at frequencies above 100 Mc . or so. A quartor-wavelength line. or any odd multiple thereof, shorted at one end and open at the other exhibits large standing watves, as described in the sertion on transmission lines. When a voltage of the frequeney at which such a line is resomant is applied to the open end, the response is very similar to that of a parallel resonant cireuit The equivalent relationships are shown in Fig. 2-5) At frequencies off resonathe the line dis, h ays gualities eomparable with the induetive and eapacitive reactanes of a conventional tuned cireuit, so sotions of transmission line can be used in mueh the same maner as induetors and capacitors.

To minimize radiation loss the two conductors of a parallel-conductor line should not be more than about one-tenth wavelength apart, the spacing being measured between the conductor axes. On the other hand, the sparing should not be less than about wite the conductor diameter

Fig. 2-59-Equivolent coupling circuits for poroliel-line, cooxiol-line ond conventional resonont circuits.
beratue of "proximity effeet" which catuees eddy eurrents and an inerease in loss. Hiowe 300 Me, it is difficult to satisfy both these requirements simultaneously, and the radiation from an open line tends to become excessive, reducing the (Q. In surh ase the coaxial type of line is to be preferred, since it is inherently shelded.

Representative methods for adjusting coaxial lines to resonance are shown in lig. "-(6). At the left, a sliding shorting disk is used to reduce the effective length of the line by altering the position of the short-cireuit. In the center, the same offere is accomplished by using a telesooping tule in the end of the inner conductor to vary its length and thereby the effective length of the line. At the right, two possible methods of using parallelplate capacitors are illustrated. The arrangement with the loading capacitor at the open

Fig. 2-60-Methods of tuning coaxial resonant lines.

2 -ELECTRICAL LAWS AND CIRCUITS

end of the line has the greatest tuning effect per unit of eapacitance; the alternative method, which is equivalent to tapping the capacitor down on the line, has less effect on the Q of the circuit. Lines with rapacitive "loading" of the sort illustrated will he shorter, physically, than unfoaded lines rewonant at the same frequencr.

Two methods of tuning a parallel-conductor lines are shown in lig. 2-61. The sliding short-

Fig. 2-61 - Methods of funing parallel-fype resonant lines.
circuiting strap can be lightened by means of screws and muts to make good electrical contact. The parallel-phate eapawitor in the second drawing may be placed anywhere along the line, the tuning effect becoming less as the (aparitor is located nearer the shorted end of the line. Although a low-eapacitame variable (apateitor of ordinary ronstruction can be used, the rircular-plate type shown is symmetrieal and thus does not unbabance the line. It also has the further advantage that no insulating material is required.

waveguides

A waveguide is a condurting talo through which energy is transmited in the form of electromagnetic waves. The tube is not considered as carrying a current in the same sense that the wires of a two-conductor line do, but rather as a boundary which confines the waves to the enclosed space. Skin effect prevents any electromarnetic effects from being evident outside the guide. The energy is injected at one omd, either through capacitive or inductive couphing or by radiation, and is recerved at the other end. The wavergide then merely eonfines the onergy of the fields, which are propagated through it to the receiving end by means of refleetions against its inner walls.

Analysis of waveguide operation is based on the assumption that the guide material is a perfeet conductor of electricity. Trpical distributions of electric and magnetic fields in at rectangular guide are shown in Fig. "-(i2. It will be observed that the intensity of the electric ficld is greatest (as indicated by closer spacing of the lines of force) at the center along the x dimension, Fig. 2-62B, diminishing to zero at the end walls. The latter is a necessary condition, since the existence of any electric field parallel to the walls at the surfaee would cause an infinite rurent to flow in a perfect conductor. This represents an impossible situation.

Modes of Propagation

Fig. 2-(i2 represents a relatively simple distribution of the electric and magnetic fields. There is in general an infinite number of ways in which the fields ean arrange themselves in a guide so long as there is no upper limit to the frequency to be transmitted. Wach field configuration is called a mode. All modes may be separated into two general grotips. One group, designated T.M (transverse magnetic), has the magnetic field entirely transverse to the direction of propagation, but has a component of electric fied in that direction. The other type, designated $T E$ (transverse electric) has the cledtric field entirely transverse, but has a component of magnetic field in the direction of propagation. T. $1 /$ waves are sometimes called E waves, and $T E$ waves are sometimes called $I I$ waves, but the $7 M$ and $T E$ designations are preferred.

The particular mode of transmission is identified by the group letters followed by two subscript numerals; for example, Thion $T M_{1,1}$, etc. The number of possible modes increases with frequency for a given size of guide. There is only one possible mode (alled the dominant mode) for the lowest fiefuency that can be transmitted. The dominant mode is the one generally used in practical work.

Waveguide Dimensions

In the rectangular gute the eritieal dimension is x in Fig. 2-62; this dimension must ho more than one-half wavelength at the lowest frequency to be transmitted. In practiee, the ! dimension usually is made about equal to 1 権

Fig. 2.62-Field distribution in a rectangular waveguide. The $T E_{1, n}$ mode of propagation is depicted

Waveguides

to aroid the possibility of operation at other than the dominant mode.

Other cross-sectional shapes than the rectangle can be used, the most important being the riroular pipe. Much the same consideratons apply as in the rectangular case.

Wavelength formulas for rectangular and rircular grides are given in the following table. where x is the width of a rectangular guide and r is the radius of a circular guide. All figures are in terms of the tominant mode.

	Rectangular	('ircular
C 'ut-ofi warelongth	2.6	$3.41 r$
Jongest wavelenght tanc mitted with little attonnation.	- 1 - 6.6	$3.2 r$
Shortest wavelongth before mext mode liocomes jossible.	- $1.1 . x$	$2.8 r$

Cavity Resonators

Another kind of circuit particularly applicable at wavelengths of the order of entimeters is the cavity resonator, which may be looked upon as a section of a wavegule with the dimensions chosen so that waves of a given length can be mantainorl inside.

Typical shapes used for resonators are the colinder, the rectangular box and the sphere, as shown in lig. 2-6", The resomant frequeney depends upon the dimensions of the cavity and the monde of oscillation of the waves (compar-

SQUARE PRISM

CYLINDER

SPMERE
Fig. 2.63 - Forms of cavity resonotors.
athe to the tramsmission modes in a waveguide). For the lowest modes the resonant wavelengths are as follows:

('slinder	$2.61{ }^{2}$
Enuare trox	1.411
sphute.	2.28 r

The resonant wavelengths of the cylinder and square box are indejendent of the height when the height is less thatn a half wavelength. In other modos of owrillation the height must be at multiple of a half wavelength as measured inside the ravity. A eylindrical cavity can be tuned by a sliding shorting disk when operating in such it mode. Other tuning methods inelude placing adjustable tuning paddles or "slugs"
inside the cavity so that the standing-wave pattern of the electric and magnetic fields ean be varied

A form of cavity resonator in practical use is the re-entrant eylindrial type shown in lig. $2-64$. In construction it resembles a concentric line closed at both ends with capacitive loading at the top, but the actual mode of oscillation may differ considerably from that occurring in

CROSS-sECTIONAL VIEW

Fig. 2-64-Re-entrant cylindrical cavity resonator.
coanial lines. The resonant frequency of such a cavity depends upon the diameters of the two cylinders and the distance d between the ends of the inner and outer cylinders.

Compared with ordinary resonant circuits, cavity resonators have ext remely high (). A value of Q of the order of 1000 or more is readily obtainable, and Q values of several thousand can be seeured with good design and construetion.

Coupling to Waveguides and Cavity Resonators

Encroy may be introduced into or atsstracted from a waveguide or resonator by means of either the electric or magnetic fielti. The encrgy transfer frequently is through a coaxial line t wo methods for eoupling to which are shown in Fig. $2-6 \overline{5}$. The probe shown at 1 is simply a short extonsion of the inmer condurtor of the conxial line, so uriented that it is parallel to the electric lines of force. The loop shown at $I 3$ is arranged so that it encloses some of the magnetic lines of force. The point at which maximum compling will be secured depends upon the particular mode of propagation in the guide or cavity; the coupling will be maximum when the coupling device is in the most intense field.

Fig. 2-65 - Coupling to woveguides and resonotors.

Coupling can be varied by turning either the probe or loop through a 90 -degree angle. When the probe is perpendicular to the clestrie lines the coupling will be minimum; similarly, when the plane of the loop is parallel to the magnetic lines the coupling will have its least possible value.

Modulation, Heterodyning and Beats

Since one of the most widespread uses of radio frequemeies is the transmission of spereh and musire, it would be very rembenient if the andio spectrum to be trammitted eould simply be shifted (u) (o) some radio freguener, transmitted as radio waves, and shified batek down to the andio spertrum at the recobing point. Suppose the audio signal to be tramsmited by radio is a pure $1000-$ revelotere, and we wish to tramsmit it at I Ne. ($1,0010,000$ (erelas). One pessible way might be to
 thereber ohtaining a madio frempeney of $1,001,0(0)$ cecles. No simple method for doing suth at thing dirertly has ever beren devised, although the effeet is obtained and used in adranered communications worhicturs.

Achually, when two different frequencios are presont simaltaneonsly in an ordinary cireuit (sperifically, ome in which Ohm's Law holds) each behanes as though the other were not there. It is true that the total or resultant voltage (or current in the cirenit will be the sum of the instantaneous values of the fwo at every instant. This is becanse there can be only one value of current or voltage at anve single point in a cirenit at any instant. liges. 2-fiti. and 16 show two such froquencies, and C shows the resultant. The amplitude of the $1,000,000-$ evele current is not affeeted by the presence of the 1000 -cycle current, but meroly has its axis shifted hack and forth at the 1000) crole rate. Su attempt to transmit such a fombination as a radio wave would result simply in the tranmission of the $1,000,000$ - eyele froquener, sine the 1000 -evale frequency retains its identity :ss an andin frequeney and hence will mot be radiated.

There are deviess, however, which make it possible for whe frequeney to control the amplitude of the other. If, for example, a 1000 -cyrle tone is used to control a 1-Mre signal, the maximum r.f. output will be obtained when the 1000 -revele signal is at the poak of one alternation and the minimum will orour at the peak of the next alternation. The process is called amplitude modulation, and the effer is shown in Fig. 2-tifil). The resultant signal is now entirely at radio frequeney, but with its amplitude varying at the modulation rate (1000 eveles). Reeciving equipment adjusted to reereive the $1,000,000$-evele r.f. signal (ain reproduer these changes in amplitude, and thus tell what the audio signal is, through a proces called detection or demodulation.

It might be assumed that the only radio frefuenes present in such a signal is the original 1,000,000 (eveles, but such is mot the case. It will br fond that two new frequencies have appeared. These are the sum $(1,000,000+1000)$ and difference ($1,000,000$ - 1000$)$ of the two, and hence the radio frequencies appearing in the rifrout after modulation are $999,000,1,000,000$ and $1,001,000$ eveles.

When an audio frequency is used to control the amplitude of a radio frequency, the process

Fig. 2-66—Amplitude-vs.-fime and amplitude-vs.-frequency plots of various signals. (A) $11 / 2$ cycles of an audio signal, assumed to be 1000 c.p.s. in this example. (B) A radio-frequency signal, assumed to be 1 Mc . $1,000,000$ c.p.s.); 1500 cycles are completed during the same fime as the $11 / 2$ cycles in A, so they cannot be shown accurately. (C) The signals of A and B in the same circuit; each maintains its own identity. (D) The signals of A and B in a circuit where the amplitude of A can control the amplitude \boldsymbol{B}. The 1-Mc. signal is modulated by the 1000 -cycle signal.
E, F, G, and H show amplitude-vs.-frequency plots of the signals in A, B, C and D, respectively. Note the new frequencies in H, resulting from the modulation process.
is generally called "amplitude modulation," as mentioned, hut when a radio frequencer modulates another radio frequeney it is called heterodyning. Ilowever, the procoses are identical. A generall term for the sum and differemere frequencies generated during heterodyning or amplitude modulation is "beat frequencies," and a mor" sperific one is upper side frequency, for the sum frequency, and lower side frequency for the difference frequence.

In the simple example, the modulating signal was assumed to be a pure tone, but the modulating signal can just as well be a bund of frequencies making up speech or music. In this case, the side freduencios are grouped into what are called the upper sideband and the lower sideband. In any case, the frequeney that is modulated is called the carrier frequency.

Modulation, Heterodyning and Beats

In A, B, C and D of Fig. 2-fi6, the sketehes are obtained by plotting amplitude against time. However, it is equally helpful to be able to visualize the spectrum, or what a plot of amplitude $t s$. frequeney looks like, at any given instant of time. E, F, G and II of Fig. 2-66 show the signals of Fig. 2-66A, B, C and D on an amplitude-es.frequency basis. Any one frequency is, of course, represented by a vertical line. Fig. 2-66H shaws the side frequencies appearing as a result of the modulation proeess.

Amplitude modulation (a.m.) is not the only possible type nor is it the only one in use. Any signal property can be modulated. These proparties include frequency and phase as well as ampliturle, and methods are available for modulating all three. However, in every case the modulation process leads to the generation of a new set of radio frequencies symmetrically disposed about the original radio frequency (carrier freduency). The various types of modulation are treated in detail in later chapters.

CHAPTER 3

Vacuum-Tube Principles

CURRENT IN A VACUUM

The outstinding differene between the varum tabe and most other electrical deviess is that the electric current does not flow through a conductor but through empty spater - a vacuum. This is only possible when "free" electrons - that is, clectrons that are not attached to atoms - are somehow introduced into the vacuum. Firee electrons in an evaluated siace will be attracted to a positively charged objent within the same space, or will be repelled by a negatively charged object. The movement of the electrons under the attraction or repulsion of such charged objects constitutes the current in the vacuum.

The most practical way to introduce a sufficiently large number of electrons into the evachated space is by thermionic emission.

Thermionic Emission

If a thin wire or filament is heated to inrandescence in a vacuman, electrons noar the surface are given enough energy of motion to fly off into the surrounding sinate. The higher the temperature, the greater the number of electrons emitted. A more general name for the filament is cathode.

If the cathote is the only thing in the varuum, most of the emitted electrons stay in its immediate viciniter, forming a "cloud" about the (athode. The reison for this is that the elcetrons in the space, being nogative electricity, form a logative charge (space charge) in the region of the cathode. The space chare repels

Representative tube types. Transmitting tubes having up to 500 -watt capability are shown in the back row. The tube with the top cap in the middle row is a low-power transmitting type. Others are receiving tubes, with the exception of the one in the center foreground which is a v.h.f. transmitting type.
those electrons nearest the cathode, tending to make them fall back on it.

Now suppose a second conductor is introduced into the vacuum, but not conneeted to anything else inside the tube. If this second conductor is given a positive charge by connerting a source of e.m.f. between it and the

Fig. 3-1 - Conduction by thermionic emission in a vacuum tube. The A battery is used to heat the filament to a temperature that will cause it to emit electrons. The B battery makes the plate positive with respect to the filament, thereby causing the emitted electrons to be attracted to the plate. Electrons captured by the plate flow back through the B battery to the filament.
eathode, as indicated in Fig. 3-1, elertrons emitted by the cathode are attracted to the positively charged eonductor. An electric rurrent then flows through the circuit formed by the athote, the charged conductor, and the source of a.m.f. In Fig. 3 -1 this em.f. is supplied be a battery ("B" battery); a second battery ("A" battery) is atso indicated for heating the cathonde or filament to the proper operating temperature.

The positively charged eonductor is usially a metal plate or revinder (surrounding the (athode) and is called an anode or plate. likie the other working parts of a tube, it is a tube element or electrode. The tube shown in ligg. :3-1 is a two-element or two-electrode tube, one element being the rathode or filament and the other the anode or plate.

Since electrons are negative electricity, they will be attracted to the plate onlly when the plate is positive with respect to the cathode. If the plate is given a negative charge, the elcetrons will be repelled back to the athode and no current will flow. The varuum tube therefore can conduct omly in one divection.

Cathodes

Before electron emission can oreur, the eathode must be heated to a high temperature. llowever, it is not essential that the heating eur-

Rectification

Fig. 3-2 - Types of cathode construction. Directly heated cathodes or filaments are shown at A, B, and C. The inverted V filament is used in small receiving fubes, the M in both receiving and transmitting fubes. The spiral filament is a transmitting-tube type. The indirectly-heated cathodes at D and E show two types of heater construction, one a twisted loop and the other bunched heater wires. Both types tend to cancel the magnetic fields set up by the current through the heater.
rent flow through the actual material that does the emitting; the filament or heater aun be clectrically separate from the emitting cathode. such a cathode is called indirectly heated, while an cmitting filament is called directly heated. lig. : $3-2$ shows both types in the forms in which they are commonly used.

Much greater electron emission can be obtained, at relatively low temperatures, by using special cathode materials rather than pure metals. One of these is thoriated tungsten, or tumgsten in which thorium is dissolved. Still greater efficiency is arhieved in the oxide-coated cathode, a rathode in which rate-earth oxides form a coating over a metal base.
. Nthough the oxide-conted cathode has much the highest efficieney, it can be used successfully only in tubes that operate at rather low plate voltages. Its use is therefore confined to receiv-ing-type tubes and to the smaller varieties of transmitting tubes. The thoriated filament, on the other hand, will operate well in high-voltage tubes.

Plate Current

If there is only a small positive voltage on the plate, the number of electrons reaching it will be small beealuse the spare charge (which is negative) prevents those electrons nearest the cathode from being attracted to the pate. As the plate voltare is increased, the effect of the spure charge is increasingly overeome and the number of electrons attracted to the plate becomes larger. That is, the plate current increases with increasing plate voltage.

Fig. 3-3 shows a typical plot of plate current vs. plate voltage for a two-element tube or diode. A curve of this type can be obtained with the circuit shown, if the plate voltage is increased in small steps and a current reading taken (by means of the rurrent-indicating instrument - a milliammeter) at each voltage. The plate current is zero with no plate voltage and the curve rises until a saturation point is reached. This is where the positive charge on the plate has substantially overcome the space charge and
almost all the electrons are going to the plate. At higher voltages the phate current stays at practically the same value.

The plate voltage multiplied by the plate current is the power input to the tube. In a rircuit like that of Fig. 3-3 this power is all used in heating the plate. If the power input is large, the plate temperature mat. rise to a very high value the plate may become red or even white hot). The heat developed in the plate is radiated to the bulb of the tule, and in turn radiated by the bulb to the surrounding air.

RECTIFICATION

Since current can flow through a tube in only one direction, a diode can be used to change alternating current into direst current. It does this by permitting current to flow when the pate is positive with respent to the athode, but by shutting off current flow when the plate is negative.

Fig. 3-4 shows a representative circuit. Alternating voltage from the secondary of the transformer, T, is applied to the diode tube in series with a load resistor, R. The voltage varies as is usual with a.c., but carrent flows through the tube and R only when the plate is positive with respert to the cathode - that is, during the half-rycle when the upper end of the transformer winding is positive. During the negative half-cyrle there is simply a grap in the current flow. This rectified alternating current therefore is an intermittent direat current.

The load resistor, R, represents the artual circuit in which the rectified alternating current does work. All tubes work with a load of one type or another; in this respect a tube is much like a generator or transformer. A circuit that did not provide a load for the tube would be like a short-circuit across a transformer; to useful purpose would be accomplished and the only result would be the generation of heat in the transformer. So it is with vacoum tubes; they must cause power to be developed in a load in order to serve a useful purpose. Also, to be efficient most of the power must do useful work in the load and not be used in heating the plate of the tube. This means that most of the voltage should appear as a drop across the load rather than as a drop between the plate and cathode.

Fig. 3-3-The diode, or two-element tube, and a typical curve showing how the plate current depends upon the voltage applied to the plate.

With the diode ronmerted as shown in lig. 3-4, the polarity of the voltage drop across the load is such that the end of the load nearest the cathode is pesitive. If the rommections to the diode elements atre reversed, the direction of reetified rurrent flow also will be reversod through the foind.

Fig. 3-4-Rectificatian in a diade. Current flows anly when the plate is pasitive with respect ta the cathode, so that only half-cycles of current flaw thraugh the load resistar, R.

Vacuum-Tube Amplifiers

triodes

Grid Control

If a third element - ralled the control grid, or simply grid - is inserted between the cathode and phate as in Jige. :3-5, it com be used to control the effect of the space rebarge. If the grid is given a positive voltage with respect to the eathode, the positive charge will tend to neutralize the negative spare charge. The

Fig. 3-5-Canstructian of an elementary triode vacuum tube, showing the filament, grid (with an end view of the grid wires) and plate. The relative density of the space charge is indicated raughly by the dat density.
result is that, at any selected plate voltarge, more electrons will flow to the plate than if the grid wore not present. On the other hathd, if the grid is made negative with respert to the cathode the negative charge on the grid will audd to the space charge. This will reduce the number of clectrons that ram reth the phate at any selerted plate voltage.

The grikl is inserted in the tube to control the parace change and not to attract clewtrons to itsolf, so it is made in the form of a wire mosh or spirall, Electrons then can go through the open spaces in the grid to reath the plate.

Characteristic Curves

For any particular tulne, the offert of the grid voltage on the plate cerrrent ram loe shown by a set of characteristic curves. A typical sot of - meve is shown in Fig. 3-6, together with the circuit that is used for getthug them. For rath value of plate voltage, there is a value of megative grid voltage that will reduce the plate courrent to anoro; that is, there is

Fig. 3-6-Grid-voltage-vs.-plate-current curves at various fixed values af plate voltage (E_{1}) for a typical small triode. Characteristic curves of this type can be taken by varying the battery valtages in the circuit at the right.

Vacuum-Tube Amplifiers

either a resistane or an impedance. The term "impedance" is froquently used even when the lead is purely resistive.

Tube Characteristics

The physial emstruetion of a trinde determines the redative effectiveness of the grid and pate in contronling the mate eurent. If a very small chatme in the grial voltage has just as much effort on the plate courent as a very large ehange in pate voltage, the tube is satid fo have at high amplification factor. Amplifie: tion factor is commonly designated by the (irook ledter μ. In amplifieation fatorn of 20), for example, moans that if the grid voltage is changed by 1 volt, the effee on the plate current will be the sume as when the plate voltage is changed ly 20 volts. The amplifieation fartors
 tube is one with ath amplifieation fareon of perhaps sof or more: medium- μ thbes have smplification lactors in the appoximate range 8 to 30 , and low- μ tubes in the range below 7 or 8 .

It would be natural to think that a tube that hats a harge μ would be the best amplifier, hat wowata a high μ it is neressime to construct tho grid with mang turns of wire per inch, or in the form of a fine mosh. This leaves a relatively small ofen area for electeons to go through to reach the phate, so it is difiemble for plate to attract lange mombers of eloctrons. Quite al large rhamge in the phato voltage must he made to reflect a given change in plate emment. This Hosan: that the resistance of the platereathode math - that ic, the plate resistance - of the luln is high. sime this resistanco ants in series with the leate the amount of eurent that ran the male to flow through the lond is rolatively smatl. On the other hand, the plate resistance of al low- μ tube is er atacoly low.

The best all-atound indication of the offertive nese of the tulne as all implifior is its grid-plate transconductance - also called mutual conductance. This chaturtoristic takes acrount of both :umplianation factor and plate resistaneer, and therefore is at figure of morit for the thlo. Tramscondertanere is the rhange in plate entrent divided be the ehange ingrid whlage that ratuse the patacument chamge (the plate voltage being fixed at a desifed vahese). Sinere current divided by voltage is combluctance, transemeduetance is measured in the wit of eomductanes, the mho. l'ractieal values of transermductance aro very small, so the mierombe (one-millionth of a mho) is the commonly-used unit. Different types of tubes have transeonduetances ranging from a few humdred to sereral thensand. The higher the transeondurtanere the greater the possible amMification.

- AMPLIFICATION

The way in which a tube amplifies is best shown ly a type of graph called the dynamic characteristic. Nuch a graph, together with the
rircuit used for ohtaining it, is shown in Fig. 3-7. The curves arre taken with the plate-supply voltage fixed at the desired operating value. The difference betweon this circuit and the one shown in Fig. : 3 -6 is that in Fige, $3-\bar{z}$ al had resistamere is commeded in series with the plate of the tube. loig. : $;-7$ thus shows how the plate current will viry, with different grid! voltages, when the plate rarront is mathe to fow through a load and thas do usifinl work.

Fig. 3-7-Dynamic characteristics of a small triode with various lood resistances from 5000 to 100,000 ohms.
The several eurves in lifg. 3-7 are for various values of load resistance. When the resistance is small (as in the case of the 5000 -ohm load) the plate current changes rather rapidly with a given change in grid voltage. If the load resistane is high (as in the 100,0 (0) -ohm eurve), the change in plate current for the same grid-voltage change is relatively small; also, the curve temels to be straighter.

Fig. : $3-8$ is the same type of curve, but with the circuit arranged so that a source of altermating voltage (signal) is insorted between the grid and the grid hattery ("C" battery). The voltage of the grid battery is fixed at - 5 volts, and from the curve it is seen that the plate curront at this grid voltage is? milliamperes. This current flows When the load resistance is $\%, 000$ ohms, as indieated in the rireuit diagram. If there is no are. signal in the grid circuit, the voltage drop in the load resistor is $20,000 \times 0.002=100$ volts, leaving 200 volts betwern the plate and rathode.

When a sinc-wave signal having a peak value of 2 volts is applied in series with the hias voltage in the grid cireuit, the instantanoons voltage at the grid will swing to - -i volts at the instant the signal reaches its positive peak, and to -7 volts at the instant the signal reaches its negative pak. The maximum plate current will ocrur at the instant the grid voltage is - 3 volts. As shown by the graph, it will have a value of 2.65 milliamperes. The minimum plate curvent occurs at the instant the grid voltage is -7 volts, and has a value of 1.3 mat. It intermediate values of grid voltage, intermediate plate-current values will oreme.

The instantaneous voltage between the plate

3-VACUUM-TUBE PRINCIPLES

Fig. 3-8-Amplifier operation. When the plate current varies in respanse to the signal applied to the grid, a varying voltage drap appears across the load, R_{p}, as shown by the dashed curve, E_{f}. I_{1}, is the plate current.
and wathode of the tube also is shown on the graph. When the plate current is maximum, the instantaneous voltage drop in R_{p} is 50,000 $\times 0.002(05=132.5$ volts; when the plate collrent is minimum the instantaneous voltage (lrop in R_{1}, is $00,000 \times 0.00133=67.5$ volts. The actual woltage between plate and cathode is the difference between the plate-supply potential, 300 volts, and the voltage drop in the load resistance. The plate-to-cathode voltage is therefore 167.5 volts at maximum plate current and $23: 5$ volts at minimum plate eurrent.

This varying plate voltage is an a.c. voltage superimposed on the steady plate-cathode potential of 20) volts (as previously determined for no-signal conditions). The peak value of this a.e. output voltage is the difference between either the maximum or minimum plate-eathode voltage and the no-signal value of 200 volts. In the illustration this difference is $2: 32.5-200$ or $200-$ $167.0 ;$ that is, $: 3.5$ volts in either ease. Since the gid signal voltage has a peak value of 2 volts, the voltage-amplification ratio of the amplifier is :32.j 2 or 16.2 . That is, approximately 16 times as much voltage is ohtained from the plate circuit as is applied to the grid cirenit,

As shown by the drawings in Fig. 3-8, the alternating component of the plate voltage swings in the negative direction (with reference to the no-signal value of plate-cathode voltage) when the grid voltage swings in the positive direction, and vice versat. This means that the alternating component of plate voltage (that is, the amplified signal) is 180 degrees out of phase with the signal voltige on the grid.

Bias

The fixed negative grid voltage (called grid bias) in Fig. 3-8 serves a very useful purpose. One object of the type of amplification shown in this drawing is to obtain, from the plate eireuit, an alternating voltage that has the same waveshape as the signal voltage applied to the grid. To do so, an operating point on the straight part of the curve must be selerted. The curve must be straight in looth directions from the operating point at least far enough to acommonlate the maximum value of the signal applied to the grial. If the grid signal swing. the plate rurrent bate and forth wer a part of the curve that is not straight, as in Fig. B-9, the shape of the a.e. wave in the plate cireuit will not be the same as the shape of the grid-signal wave. In such a case the output wave shape will be distorted.

I seeond reanon for using negative grid bias in that any signal whose peak positive voltage does; not exeed the fixed negative voltage on the grid emmot caluse grid eurrent to fows. With mo cirrent flow there is bo power consumption, so the tube will amplify without taking any power from the signal somure. (However, if the positive peak of the signal does exced the nemative hias, current will flow in the grid circuit daring the time the grid is positive.)

Distortion of the output wave shape that results from working over a part of the curve that is not straight (that is, a nonlinear part of the curve) has the effect of transforming a sine-wave grid signal into a more complex wavelom. As explained in an earlier chapter, a complex wave ean be resolved into a fundamental and a series of harmonics. In other words, distortion from nonlinearity causes the generation of harmonice frequencies - frequencies that are not present in the signal applied to the grid. Ilarmonic distortion is undesirable in most amplifiens, although

Fig. 3-9- Harmonic distartion resulting from choice of an operating paint on the curved part af the tube characteristic. The lower half-cycle of plate current does not have the same shape as the upper half-cycle.

Amplifier Output Circuits

there are oceasions when hamonies are deliberately generated and used.

Amplifier Output Circuits

The useful output of a vacuum-tube amplifier is the allernatirg component of plate current or plate voltage. The d.c. voltage on the plate of the tube is essential for the tube's operation, but it almost invariably would cause difficulties if it were applied, along with the a.c. output voltage, to the load. The output circuits of vacuum tubes are therefore arranged so that the a.c. is transferred to the load but the d.e. is not.

Three types of coupling are in common use at audio frequencies. These are resistance coupling, impedance coupling, and transformer coupling. They are shown in Fig. 3-10. In all three cases the output is shown coupled to the grid circuit of a subsequent amplifier tube, but the same types of circuits can be used to couple to other devices then tubes.

In the resistance-coupled cireuit, the a.e. voltage developed across the plate resistor R_{p} (that is, the a.c. voltage between the plate and cathode of the tube) is applied to a second resistor, R_{p}, "hrough a coupling capacitor, (c. The capacitor "blocks off" the d.c. voltage on the plate of the first tube and prevents it from being applied to the grid of tube B. The latter tube has negative grid bias supplied by the battery shown. No current flows in the grid cireuit of tube B and there is therefore no d.c. voltage drop in R_{g}; in other words, the full voltage of the bias battery is tpplied to the grid of tube B.
The grid resistor, R_{g}, usually has a rather high value (0.5 to 2 megohms). The reactance of the coupling capacitor, C_{c}, must be low enough compared with the resistance of R_{g} so that the a.c. voltage drop in C_{c} is negligible at the lowest frequency to be amplified. If R_{g} is at least 0.5 megohm, a $0.1-\mu$. capacitor will be amply large for the usual range of audio frequencies.
so far as the alternating component of plate voltage is concerned, it will be realized that if the voltage drop in C_{o} is negligible then R_{p} and R_{g} are effectively in parallel (although they are quite separate so far as d.c. is concerned). The resultant parallel resistance of the two is therefore the actual load resistance for the tube. That is why R_{g} is made as high in resistance as possible; then it will have the least effect on the load represented by R_{p}.

The impedance-coupled circuit differs from that using resistance coupling only in the substitution of a high-inductance coil (usually several hundred henrys for audio frequencies) for the plate resistor. The advantage of using an inductance rather than a resistor is that its impedance is high for alternating currents, but its resistance is relatively low for d.c. It thas permits obtaining a high value of load impedance for a.c. without an excessive d.c. voltage drop that would use up a grod deal of the voltage from the plate supply.

The transformer-coupled amplifier uses a transformar with its primary connerted in the plate

Fig. 3-10-Three basic forms of coupling between vacuum-tube amplifiers.
circuit of the tube and its secondary connected to the load (in the circuit shown, a following amplifier). There is no direct connection between the two windings, so the plate voltage on tube A is isolated from the grid of tube B. The trans-former-coupled amplifier has the same advantage as the impedance-coupled circuit with respect to loss of d.e. voltage from the plate supply. Also, if the secondary has more turns than the primary, the output voltage will be "stepped up" in proportion to the turns ratio.
Resistance coupling is simple, inexpensive, and will give the same amount of amplification - or voltage gain - over a wide range of frequencies; it will give substantially the same amplification at any frequency in the audio range, for example. Impedance coupling will give somewhat more gain, with the same tube and same plate-supply voltage, than resistance coupling. However, it is not quite so good over a wide frequeney range; it tends to "peak," or give maximum gain, over a comparatively narrow hand of frequencies. With a good transformer the gain of a trans-former-coupled amplifier can be kept fairly constant over the audio-frequency range. On the

3 - VACUUM-TUBE PRINCIPLES

other hand, transformer coupling in voltage amplifiers (see below) is best suited to triodes having amplification factors of about 20 or less, for the reason that the primary inductance of a prawticable transformer camot be made larye enough to work well with a tube having high plate resistance.

An amplifier in which voltage gain is the primary consideration is called a voltage amplifier. Maximum voltage gain is secured when the load resistance or impedance is made as high as possible in comparison with the plate resistance of the tube. In such a case, the major portion of the voltage generated will appear arross the low and only a relatively small part will be "lost" in the plate resistance.

Voltage amplifiers belong to a group called Class A amplifiers. A Class A amplifier is ome operated so that the wave shape of the output voltage is the same as that of the signal voltage applied to the grid. If a class a amplifier is biased so that the grid is always negatioe, even with the largest signal to be handled by the grid, it is catled a Class A_{1} amplifier. Voltage amplifiers are always (lass A_{1} amplifiers, and their primary use is in driving a following (lass λ_{1} amplifier.

Power Amplifiers

The end result of any: amplification is that the amplified signal does some work. For example, an audio-frecucney amplifier usually drives a lemdspoaker that in tura produres sound waves. The greater the amome of atS. power supplied to the sipeaker, the louder the sound it will produce.

Fig. 3-11-An elementary power-amplifier circuit in which the power-consuming load is coupled to the plate circuit through an impedance-matching transformer.

Fig. 3-11 shows an elementary power-amplifier (ircuit. It is simply a transformer-coupled amplifier with the load comerted to the serondary. Although the lowd is shown as a resistor, it actually would be some deviee, such as a houdspeaker, that employs the power usefully. Every power tube requires a specific value of load resistance from plate to cathode, usually some thousands of ohms, for optimum operation. The resistance of the actual lowd is rarely the right value for "matching" this optimum load resistance, so the transiformer turns ratio is chosen to reflect the proper value of resistance into the primary. The turns ratio may be either step p-up, or step-down, depending on whether the actual load resistance is higher or lower than the load the tule wants.

The power-amplification ratio of an amplifier is the ratio of the power output obtained from the plate circuit to the power required from the ace. signal in the grid "irenit. There is nio power lost in the grid circuit of at (lass A_{1} amplifier, so surh an amplifier has an infinitely large power-amplification ratio. However, it is quite possible to operate a Class ! amplifier in surh a way that current flows in its grid circuit during at least part of the cocle. In wich a case power is used up in the grid circuit and the power amplification ratio is mot infinite. I tule operated in this fashion is known as a Class A_{2} amplifier. It is necessary to use a power amplifier to drive a (lass A_{2} amplifier, because a voltage amplifier camot deliver power without serious distortion of the wave shape.

Another term used in comection with power amplifiers is power sensitivity. In the case of a Class λ_{1} amplifier, it means the ratio of power output to the grid signal voltage that causes it. If grid current flows, the term usinally me:ns the ratio of plate pewer output to grid power input.

The a.e. power that is delivered to at low by an amplifier tule has to be paid for in pewer taken from the souree of plate voltage and current. In fart, there is alwass more power going into the phate cirevit of the tube than is coming out as useful output. The difference between the input and output power is used up in heating the plate of the tube, as explained previously. The ratio of useful power output to de. plate input is called the plate efficiency. The higher the plate efliciency, the greater the amount of power that ean be taken from a tube having a given plate-dissipation rating.

Parallel and Push-Pull

When it is neressary to obtain more power output than one tule is capable of giving, two or more similar tubes may be comnerted in parallel. In this case the similar elements in all tubess are comenected tugether. This methond is shown in Fig. 3-12 for a transformer-coupled amplifier. The power output is in proportion to the number of tubes used; the grid signad or exciting voltage required, however, is the same as for onc tube.
If the amplifier operates in such a way as to consume power in the grid circuit, the grid power required is in propertion to the number of tubes used.
An increase in power output also can be secured by comnecting two tubes in push-pull. In this rase the grids and plates of the two tubes are comnected to opposite ends of a balanced cireuit as shown in Fig. 3-12. At any instant the ends of the serondary winding of the input transformer, T_{1}, will be at opposite polarity with respert to the cathode connectiom, so the grid of one tube is swung positive at the same instant that the grid of the other is swung negative. Hence, in aly push-pull-eromected amplifier the voltages and currents of one tube are out of phase with those of the other tule.

Class B Amplifiers

Fig. 3-12-Paraliel and push-pull a.f. amplifier circuits.

In push-pull operation the even-harmonie (serond, fourth, etc.) distortion is balanced out in the plate circuit. This means that for the same power outpat the distortion will be less than with parallel operation.

The exciting voltage measured between the two grids must be twioe that required for one tute. If the grids consume power, the driving power for the push-pull amplifier is twice that taken by either tube alone.

Cascade Amplifiers

It is readily possible to take the output of one amplifier and apply it as a signal on the grid of a second amplifier, then take the second amplifier's output and apply it to athird, and so on. Each amplifier is called a stage, and stages used successively are satid to be in cascade.

Class B Amplifiers

Fig. :3-1:3 shows two tubes conneeted in a push-pull cireuit. If the grid bias is set at the point where (when no signal is applied) the plate current is just cut off, then a signal can canse plate current to llow in either tabe only when the signal voltage applied to that particulat tule is positive with respect to the cathode. Since in the halaned grid eireuit the signal voltages on the grids of the two tubes always have opposite polarities, plate current flows only in one tube at a time.

The graphs show the operation of such an amplifier. The phate current of tube B is drawn inverted to show that it flows in the oposite dirortion, through the primary of the output transformer, to the plate current of tube .4 . Thus each half of the output-transformer primary works alternately to induce a half-cerde of voltage in the secondary. In the secondiary of T_{2}, the original waveform is restored. This type of operation is called Class B amplification.

The Class 13 amplifier has considerably higher plate efficieney than the Class A amplifier. Fur-
thermore, the d.c. plate current of a Class B amplifier is proportional to the signal voltage on the grids, so the power input is small with small signals. The d.re plate power input to a Class A amplifier is the same whether the signal is large, small, or absent altogether; therefore the maximum d.e. plate input that can be applied to a Class it amplifier is equal to the rated plate dissio pation of the tube or tubes. Two tubes in a Class I3 amplifier can deliver approximately twelve times as much audiopower as the same two tubes in a Class A amplifier.

A Class I3 amplifier usoally is operated in such a way as to secure the maximum possible power output. This requires rather large values of phate current, and to ohtain them the signal voltage must completely overome the grid bias during at least part of the evele, so grid current flows and the grid circuit consumes power. While the power requirements are fairly low (as compared with the power output), the fart that the grids are positive doring only part of the evele means that the load on the preceding amplifier or driver stage varies in magnitude during the cycle; the effective load resistane is high when the grids are not drawing current and relatively low when they do take current. This must be allowed for when designing the driver.

Certain types of tubes have been designed specifieally for Class 13 service and can be operated without fixed or other form of grid bias (zero-bias tubes). The amplification furtor is so high that the plate current is small without signal. Beranse there is no fixed bias, the grids star't drawirg current immediately whenever a signal is applied, so the grid-edrent flow is continuous throughout the cyold. This makes the lond on the driver much more eonstant than is the case with tubes of lower μ biased to platecurrent cut-off.

Class IS amplifiers used at ratio frequencios are known as linear amplifiers because they are

Fig. 3-13-Class B amplifier operation.

3 -VACUUM-TUBE PRINCIPLES

adjusted to operate in such a way that the power output is proportional to the square of the r.f. exciting voltage. This permits amplification of a modulated r.f. signal without distortion. l'ushpull is not required in this type of operation; a single tube can be used cqually well.

Class AB Amplifiers

A Class AB amplifier is a push-pull amplifier with higher bias thath would be normal for pure Class A operation, but less than the cut-off bias required for class B. At low signal levels the tubes operate practically as (lass 1 amplifiers, and the plate current is the same with or without signal. It higher signal levels, the plate currest of one tube is cut off during part of the megative crele of the sigual applied to its grid, and the plate current of the other tube rises with the signal. The plate current for the whole amplifier also rises above the no-signal level when a large signal is applied.

In a properly designed (laws AB amplifier the distortion is as low as with a Class A stage, but the efficiency and power output are considerably higher than with pure ('lass I operattion. A (llass 1 B amplifier can be operated either with or without driving the grids into the positive region. I Class AB_{1} amplifier is one in which the grids are never positive with resperet to the rathorle; therefore, 110 driving power is required - only voltage. A Class AB_{2} amplifier is one that has grid-rurrent flow during part of the cyole if the applied signal is large; it takes a small amount of driving power. The (lass $A B_{2}$ amplifier will deliver somewhat more power (using the same tubes) but the Class. $1 B_{1}$ amplifier avoids the problem of designing a driver that will deliver power, without distortion, into a load of highly variahle resistance.

Operating Angle

Inspertion of Fig. 3-1:3 shows that either of the two tubes actually is working for onty hallf the a.ce eycle and idling during the other half. It is convenient to deseribe the amount of time during which plate current flows in terms of electrical degrees. In Jig. :3-1:3 each tube has "180-degrec" excitation, a half-revele being equal to 180 degrees. The mumber of degrees during which plate current flows is called the operating angle of the amplifier. From the deseriptions given above, it should be clear that a Chas it amplifier has 360-degree excitation, because phate current flows during the whole cyele. In a Class AI amplifier the oproting angle is between Iso and 360 degreas (in cath tube) depending on the particular operating conditions chosen. The greater the amount of negative grid bits, the smatler the operating angle beromes.

An operating angle of less than 180 degrees leads to a considerable amount of distortion, because there is no way for the tube to reproduce evon a half-ercle of the signad on its grid. Csing two tubes in push-pull, as in Fig. 3-13, would merely put tugether two distorted half-rerdes. An operating angle of less than 180 degrees
therefore cannot be used if distortionless output is wanted.

Class C Amplifiers

In power amplifiers operating at radio frequencios distortion of the r.f. wave form is relatively unimportant. For reasons deseribed dater in this chapter, an r.f. amplifier must be operated with tuned circuits, and the selertivity of such circuits "filters out" the r.f. harmonies resulting from distortion.

I radio-frequency power amplifier therefore can be used with an operating angle of loss than 180 degrees. This is called Class C operation. The advantage is that the plate efficiency is inareased, because the lass in the plate is propertimal, among other things, to the amount of time during which the plate current flows, and this time is reduced by decreasing the operating anglo.

Depending on the type of tube, the optimum load resistance for a Class (C amplifier ranges from about 1500 to 0000 ohms. It is usually sorured by using tuned-circuit arragements, of the type described in the chapter on circuit fundamentals, to transform the resistance of the actual load to the value required by the tube. The grid is driven well into the positive region, so that grid current flows and power is consumed in the grid circuit. The smaller the operating angle, the greater the driving voltage and the larger the grid driving power required to develop full output in the load resistance. The best compromise between driving power, pate efficiency, and power output usually results when the minimum plate voltage (at the peak of the driving eycle, when the phate current reathes its highest value) is just equal to the peak positive grid voltage. Under these conditions the operating angle is usually between 150 and 180 degrees and the phate efficiency lies in the range of 70 (10 so percent. While higher plate efficiencies are possible, attaning them requires excessive driving power and grid bias, together with higher plate voltage than is "normal" for the particular tube type.

With proper design and adjustment, a Class (• amplifier can be made to operate in such a way that the power input and output are proportional to the square of the applied plate voltage. This is an important comsideration when the amplifier is to be plate-modulated for radiotelephony, as deseribed in the chapter on amplitude modulation.

- FEEDBACK

It is possible to take a part of the amplified energy in the plate rircuit of an amplifier and insert it into the grid circuit. When this is done the amplifier is said to have feedback.

If the voltage that is inserted in the grid circuit is 180 degrees out of phase with the signal voltage acting on the grid, the feedback is called negative, or degenerative. On the other hand, if the voltage is fod back in phase with the grid signal, the feodback is called positive, or regenerative.

Negative Feedback

With negative feedback the voltage that is fed back opposes the signal voltage. This decreases the amplitude of the voltage acting between the grid and cathode and thus has the effect of reducing the voltage amplification. That is, a larger exciting voltage is required for obtaining the stme output voltage from the plate circuit.

The greater the amount of negative feedback (when properly applied) the more independent the amplification becomes of tube characteristics and circuit conditions. This tends to make the frequency-response characteristic of the amplifier flat - that is, the amplification tends to be the same at all frequencies within the range for which the amplifier is designed. Also, any distortion generated in the phate circuit of the tube tends to "buck itself out." . Implifiers with negative feedback are therefore comparatively free from harmonic distortion. These advantages are worth while if the amplifier otherwise has enough voltage gain for its intended use.

(A)

Fig. 3-14-Simfle circuits for producing feedback.
In the circuit shown at A in Fig. 3 - 14 resistor R_{c} is in series with the regular plate resistor, R_{p}, and thus is a part of the load for the tube. Therefore, part of the output voltage will appear across R_{r}. However, $\boldsymbol{R}_{\mathrm{c}}$ also is connected in series with the grid cireuit, and so the output voltage that appers across R_{c} is in series with the signal voltage. The output voltage across R_{e} opposes the sigmal voltage, so the actual a.c. voltage between the grid and cathode is equal to the difference between the two voltages.

The circuit shown at 13 in Fig. 3-14 can be used to give either negative or positive feedback. The secondary of a transformer is connected back into the grid eirruit to insert a desired amount of feredback voltage. Reversing the terminals of either transformer winding (but not both simultaneonsly) will reverse the phase.

Positive Feedback

P'ositive feedback increases the amplification because the feedback voltage adds to the original
signal voltage and the resulting larger voltage on the grid causes a larger output voltage. The amplification tends to be greatest at one frequency (which depends upon the particular circuit arrangement) and harmonic distortion is increased. If enough energy is fed back, a selfsustaining oscillation - in which energy at essentially one frequency is generated by the tule itself - will be set up. In such case ail the signal voltage on the grid can be supplied from the plate circuit; no external signal is needed because any small irregularity in the phate current - and there are always some such irregularities - will be amplified and thus give the oscillation an opportunity to build up. P'ositive feedback finds a major application in such "oscillators," and in addition is used for selective amplification at both audio and radio frequencies, the feedback being kept below the value that causes selfoscillation.

INTERELECTRODE CAPACITANCES

Each pair of elements in a tube forms a small capacitor, with each element acting is a capacitor "plate." There are three such capacitances in a triode - that between the grid and cathode, that between the grid and plate, and that hetween the plate and eathode. The caparitances are very small - only a few micromicrofarads at most - but they frequently have a very pronounced effect on the operation of an amplifier circuit.

Input Capacitance

It was explained previously that the a.c. grid voltage and a.c. plate voltage of an amplifier having a resistive lond are 180 degrees out of phase, using the cathode of the tube as a reference point. However, these two voltages are in phase going around the circuit from plate to grid as shown in Fig. 3-15. This means that their sum is arting between the grid and plate; that is, across the grid-plate capacitance of the tube.

As a result, a capacitive current flows around the eircuit, its amplitude being directly proportional to the sum of the a.c. grid and plate voltages and to the grid-plate rapacitance. The source of grid signal must furnish this amount of current, in addition to the colpuritive current that flows in the grid-cathode raparitance. Hence the signal source "sees" an effertive caparitance that is larger than the grid-cathode capacitance. This is known as the Miller Effect.

Fig. 3-15-The a.c. voltage appearing between the grid and plate of the amplifier is the sum of the signal voltage and the output voltage, as shown by this simplified circuit. Instantaneous polarities are indicated.

3-VACUUM-TUBE PRINCIPLES

The greater the voltage amplification the greater the effect ive input capacitance. The input capacitame of a resistance-coupled :mplifier is given by the formulia

$$
C_{\text {input }}=C_{\mathrm{kk}}+C_{\mathrm{kp}}(A+1)
$$

where $C_{k k}$ is the grid-w-cathode caparitance, $t_{k p}$ is the grid-to-plate calacitance, and A is the volt age amplification. The input cupareitance may be as murh as several humdred micromicrofarads when the voltage amplification is large, even though the interelectrode capacitances are quite small.

Output Capacitance

The prineipal component of the output capaciance of an amplifier is the actual phate-tocathode caparitance of the tube. The output (aparitance usually need not be considered in andio amplifiers, but becomes of importance at radio frequencies.

Tube Capacitance at R.F.

At radio frequenties the reatances of even very small interelectrode capacitances drop to very low values, A resistane-roupled amplifier gives very little amplification at r.f., for example, because the reactances of the interelectrode "rapacitors" are so low that they practically shortcircuit the input and output circuits and thus the tube is unable to amplify. This is overcome at radio frepuencies be using tuncd circuits for the grid and plate, making the tuln capaciances part of the tuning caparitances. In this way the circuite can have the high resistive impedances necessary for satisfactory amplification.

The srid-plate capacitance is important at radio frequencies bectuse its remetare, relatively low at r.f., offers a path over which chergy can be fed bark from the phate to the gride In practically every case the feed back is in the right phase and of sufficient :mplitude to cause self-ossillation, so the circuit becomes useless as an amplifier.
Special "nentradizing" circuits can be used to prevent icedback but they are, in general, not ton) satisfactory when used in radio receivers. They are, however, used in transmitters.

SCREEN-GRID TUBES

The grid-plate calpacitance can be reduced to a negligible value by inserting a second grid between the emotrol grid and the phate, as indicated in Piig. 3 -16. The second grid, called the screen grid, acts as an electrostatic shieh to prevent capmaitive eoupling between the control grida and plate. It is made in the form of a grid or coarse screen so that electrons can pass through it.
Because of the shielding artion of the sereen grid, the pesitively charged phate commot attract clectrons from the cathode as it does in at triode. In order to get electrons to the plate, it is neressary to apply a positive voltage (with respect to the eathode) to the screen. The sereen then attracts electrons much as does the plate in a trionde tube. In traveling toward the screen the electrons aequire such velocity that most of them

Fig. 3-16-Representative arrangement of elements in a screen-grid tetrade, with part of plate and screen cut away. This is "single-ended" canstructian with a button base, typical af miniature receiving tubes. Ta reduce capacitance between cantral grid and plate the leads fram these elements are braught aut at appasite sides; actual tubes prabably wauld have additianal shielding between these leads.
shoot between the sereen wires and then are attracted to the plate. A certain proportion do strike the sereon, however, with the result that some curwent also flows in the screan-grid circuit.

To be a goond shiedd, the sareen grid must be connected to the athode through a cireuit that hats low impedance at the frequeney being amplifiod. A hypuss retparitar from soren grid to rathorle, hatving a reactance of not more than a few hundrod ohms, is generally used.

A tube having a cathode, control grid, screen grid and phate (fone elements) is called a tetrode.

Pentodes

When an electron traveling at appreciable velocity through a tube strikes the plate it dislodges other electrons which "splash" from the plate into the interelement spare. This is called secondary emission. In a triode the negative grid repels the secombary electrons back into the plate and they canse no disturbance. ln the sereen-grid tube, however, the positively charged sereen attriats the secondary electrons, causing a reverse eurront to flow het weren sereen and plate.

To overome the efferts of secondary emission, a third grid, called the suppressor grid, may be inserted botworn the sereen and phate. 'rhis grid atets ats at shied betwern the sereeng grid and plate so the secondary aleretrons camot be attracted by the sereen grid. They are hence attracted back to the plate without appreciably obstructing the regular plate-e eurrent fow. A five-element tube of this typr is callod a pentode.

Although the screen grid in cither the tetrode or pentode gratly reduces the influence of the plate upon phate-current flow, the control grid still can control the plate current in essentially the sane way that it does in a triode. Consequently, the grid-plate transconductance (or mutual conductance) of a tetrode or pentode will be of the same order of value as in a triode of cor-

Screen-Grid Tubes

responding structure. On the other hand, since a change in plate voltage has very little effect on the phate-current flow, both the amplification factor and plate resistance of a pentode or tetrode are very high. In small receiving pentodes the amplification fatctor is of the order of 1000 or higher, while the plate resistance maty be from 0.5 to 1 or more megohms. Because of the high plate rexistance, the aetual voltage amplification possible with a pentode is very much less thatn the large amplifieation factor might indicate. I voltage gain in the vicinity of 50 to 200 is typieal of a pentode stage.

In practical screen-grid tubes the grid-plate capacitaner is only a small fration of a mieromicrofaral. This caparitance is too small to catase an appreciable increase in input caparitance as deseribed in the preceding sertion, so the input eaparitance of a sereen-grid tube is simply the sum of its grid-cathode capacitance and control-grid-to-sereen cataritance. The output catpacitance of a screen-grid tube is equal to the capacitance botween the plate and screen.

In addition to their applications ats radiofrequency amplifiors, pentodes or tetrodes also are used for adio-frequency power amplification. In tubes designed for this purpose the chief function of the sereen is to serve as an aceelerator of the eleetrons. so that large values of phate current (an be drawn at relatively low plate voltages. Such tubes have quite high power sensitivity compared with triodes of the same power output. although hammonic distortion is somewhat greater.

Beam Tubes

A beam tetrode is a four-element sereen-grid tube constructed in such a way that the clectrons are formed into concentrated beams on their way to the phate. Idditional design features woreome the effects of seeondary emission so that a suppressor grid is not needed. The "beam" ronstruction makes it possible to draw harge plate currents at relatively low plate voltages, and increases the power sensitivity.

For power amplification at both audio and radio frequeneies beam tetrodes hawe largely supplanted the non-beam twas berause largo power outputs ram be secured with very small amomets of grid driving power.

Variable- μ Tubes

The mutual conductance of a vacuam tube deereases when its grid biats is made more negattive, assuming that the other electrode voltages are hede constant. Since the muthal conductance controls the amount of amplification, it is possible to adjust the gain of the amplifier by adjusting the grid bias. This method of gain control is umversally used in radio-frequency amplifiers designed for receivers.

The ordinary type of tube has what is known as a sharp-cutoff characteristic. The mutual conductance decreases at a uniform rate as the negative bias is increased. The amount of signal voltage that such a tube ean handle without causing distortion is not sufficient to take care of
very strong signals. To overcome this, some tubes are mate with it variable- μ chanacteristic - that is, the amplification factor deereases with increasing grid bias. The variable- μ tube rath handle a much larger sigual than the sharp-cutoff tybe before the signal swings either beyond the zero grid-bias point or the plate-current cutoff point.

- INPUT AND OUTPUT IMPEDANCES

The input impedance of a varumm-tube amplifier is the imperdance "scen" by the signal souree when connected to the input terminals of the amplifier. In the types of amplifiers previously diseussed, the input impedance is the impedame measured between the grid and cathode of the tube with operating voltages applied. At audio frepuencies the input impedanee of a Class Λ_{1} amplifier is for all practical purposes the input caparitane of the stage. If the tube is driven into the grid-current region there is in addition a resistance component in the input imperlamee, the resistanore having an average value erpal to E^{2} / I^{\prime}, where E ' is the r.m.s. driving voltage and P^{\prime} is the power in watts consumed in the grid. The resistance usually will vary during the abe corede because grid current maty flow only during part of the cycle; also, the grid-voltage/grid-rurrent charateristic is seldom linear.

The output impedance of amplifiers of this type consists of the plate resistance of the tube shanted by the output capacitance.

At radios frequencies, when tuned cireuits aro employed, the input and ontput impedanes are usually pure resistances: any reative componemts are "tumed ont" in the process of adjusting the circuits to resoname at the operating frequency.

OTHER TYPES OF AMPLIFIERS

In the amplifier circuits so far discussed, the signal has been applied between the grid and cathode and the amplified output has been taken from the plate-fo-athode circuit. That is, the rathode has been the meeting point for the input and out put eircuits. However, it is possible to use any one of the three principal elements as the common point. This leads to two additional kinds of amplifiers, commonly called the grounded-grid amplifier (or grid-separation circuit) and the cathode follower.

These two circuits are shown in simplified form in Fig. :3-17. In both cireuits the resistor le represents the load into which the amplifier works; the arfual load may be resistanee-rapacitaneocoupled, transformer-coupled, may be a tuned cireuit if the amplifier operates at rudio frequencies, and so on. Nso, in both circuits the batterios that supply grid bias and plate power are assumed to have such negligible impedance that they do not enter into the operation of the circuits.

Grounded-Grid Amplifier

In the grounder-grid amplifier the input signal is applied between the cathode and grid, and the output is taken between the plate and grid. The

3 - VACUUM-TUBE PRINCIPLES

CATHODE FOLLOWER

Fig. 3-17-In the upper circuit, the grid is the junction point between the input and output circuits. In the lower drowing, the plate is the junction. In either case the output is developed in the load resistor, R, and may be coupled to a following amplifier by the usual methods.

An imporiant feature of the cathote follower is its low output impedance, which is given by the formula (neglecting interedectrode capabitaneres)

$$
Z_{\mathrm{out}}=\frac{r_{\mathrm{p}}}{1+\mu}
$$

where r_{p} is the tube plate resistance and μ is the anplification factor. Low output impedance is a valuable chatracteristic in an amplifior desigued to cover at wide band of frequencios. In addition. the input eapacitance is only a framtion of the grid-to-esthode capacitance of the tube, a feature of further benefit in at wide-hand amplifior. The cathode follower is useful as at step-down impudance transformer, since the input impedanee is high and the output impedance is low.

CATHODE CIRCUITS AND GRID BIAS

Most of the equipment used by amoterurs is powered by the a.ce. line. This includes the filaments or heaters of vacuum tubes. Although supplies for the plate (and sometimes the grid) are usually rectified and filtered to give pure d.c. - that is, direct current that is constant and without a superimposed ace. eomponent - the relatively large currents required by filaments and heaters usually make a rectifier-type d.e. supply imparticable.

Filament Hum

Alternating current is just as good as direcet rurrent from the heating stampoint, hat some of the a.c. voltage is likely to get on the grid and (ause a low-pitehed "it.c. hum" to be superimposed on the output.

Ilum troubles are worst with directly-heated cathodes or filaments, because with such cathodes there has to be a direct connection between the soure of heating power and the rest of the circuit. The hum can be minimized by either of the comnections shown in Fig. :3-18. In both cases the grid- and platc-return circuits are conneeted to the elloctrical midpoint (center tap) of the filatment supply. Thus, so far as the grid and plate are concerned, the voltage and current on one side of the filmment are babamed by an equal and opposite voltage and eurrent on the other side. The badance is never quite perfect, however, so filament-type tubes are never completely hum-

Cathode Follower

The rathode followor uses the plate of the tube the the common element. The input signal is atpplied between the grid and plate (assuming negligible impedance in the batteries) and the output is taken betwern eathode and plate. This carcuit is degenerative: in fiwe atl of the output voltage is ford batek into the input rirenit out of phase with the grid signal. The input signal therofore has to be larger that the output voltage: that is, the cathode follower gives a loss in voltage, although it gives the satme power gain as other circuits under equivalent onarating comditions.

Fig. 3-18-Filament center-tapping methods for use with directly heated tubes.

Cathode Circuits and Grid Bias

free. For this rason directly-heated filaments are employed for the most part in power tubes, where the amount of hum introduced is extremely small in comparison with the poweroutput level.

With indirectly heated cathodes the rhief problem is the magnetic field set up by the heater. Occasionally, also, there is leakage between the heater and cathode, allowing a small a.c. voltage to get to the grid. If hum appears, grounding one side of the heater supply usually will help to redure it, although sometimes better results are obtained if the heater supply is center-tapped and the center-tap groundel, as in Fig. 3-18.

Cathode Bias

In the simplified amplifier cireuits discussed in this chapter, grid bias has been supplied bey a battery. Ilowever, in equipment that operates from the power line cathode bias is very frequently used.

The eathode-hias method uses at resistor (cathode resistor) comocted in series with the eathode, as shown at R in lig. 3-19. The direction of platecurrent flow is such that the end of the resistor nearest the cathode is positive. The voltage drop

Fig. 3-19-Cathode biasing. R is tie cathode resistor and C is the cathode bypass capacitor.
across R therefore plares a negative voltage on the grid. This negative bias is obtaned from the steady d.e. plate current.

If the alternating component of phate current Hows through R when the tube is amplifying, the voltage drop caused by the a.c. will be degenerative (mote the similarity between this circuit and that of Fig. :3-14A). To prevent this the resistor is bypassed by a capacitor, (', that has very low reatance ompared with the resistance of R. Depending on the type of tube and the particular kind of operation, R may be betweom about 100 and 3000 ohms. For good hypassing at the low audio frequencies, 6 shoula be 10 to so microfarads (ebeetrolstio ceupanitors are used for this purpose). At radio frequeneics, cenpataners of about $1(0) \mu \mu \mathrm{F}$. to $0.1 \mu \mathrm{f}$. atre used; the smatl values are sufficient at very high frequencies and the largest at low and medium frequencies. In the riuge 3 to 30 megacyeles a capacitance of $0.01 \mu \mathrm{f}$, is satisfactory.

The value of cathode resistor for an amplifier having negligible de resistonce in its phate eirruit (transformer or impedance eompled) (ath easily be calculated from the known operating conditions of the tube. The proper grid bias and plate current always are specified by the manufacturer. Knowing these, the required resistance can be found by aply?ing Ohm's Iatw.

Fxample: It is found from tule tiablus that the tube to be used should have a negative grid bias of 8 volts and that at this bias the plate current will be 12 milliamperes ($0.01 \pm$ amp.). The required cathode resistance is then

$$
R=\frac{E}{I}=\frac{8}{0.012}=667 \text { ohms. }
$$

The nearest standard value, 680 ohme, would be close enough. The power used in the resistor is

$$
P=E I=8 \times 0.012=0.096 \mathrm{watt}
$$

A $1 / 4$-watt or $1 / 2$-watt resistor would have ample rating.
The current that flows through R is the total eathode current. In an ordinary triode amplifier this is the same as the plate current, but in it sereen-grid tube the cathode current is the sum of the phate and sereen currents. Hence these two currents must be added when valrulating the value of cathode resistor required for a sereengrid tube.

$$
\begin{aligned}
& \text { Example: A receiving wentode recpuires } 3 \text { volts } \\
& \text { negative bias. At this bias and the recommended } \\
& \text { plate and sereen voltages, its plate eurrent is } 9 \\
& \text { marand its sereen eurrent is } 2 \text { mas. The eathode } \\
& \text { current is therefore } 11 \text { mis. (} 0.011 \text { amp.). The } \\
& \text { reunired resistance is } \\
& \qquad R=\frac{E}{I}=\frac{3}{0.011}=27: \text { ohms. } \\
& \text { A } 270 \text {-ohn resistor would be satisfactory. The } \\
& \text { power in the resistor is } \\
& \qquad P=E I=3 \times 0.011=0.033 \text { watt. }
\end{aligned}
$$

The cathode-resistor mothod of biasing is solfregulating, because if the tube characteristics vary slightly from the published values (as they do in practice) the bias will increase if the plate current is slightly high, or decrease if it is slighty low. This tends to hold the plate current at the proper value.

Calculation of the cathode resistor for a ra-sistance-roupled amplifier is ordinarily not practieable by the method deseribed above, because the plate eurrent in such an amplifier is usually. much smaller thin the rated value given in the tube tables. However, representative data for the tubes commonly used ats resistance-coupled amplifiers are given in the chapter on audio amplificrs, including eathode-resistor values.

"Contact Potential" Bias

In the absence of any negative bias voltage on the grid of a tube, some of the electrons in the spare charge will have enough velocity to reach the grid. This causes a small current (of the order of microamperes) to fow in the external circuil between the grid and cathode. If the current is made to flow through a high resistance - a megohm or so - the resulting voltage drop in the resistor will give the grid a negative bias of the order of one volt. The bias so obtained is called eontact-potential hias.

Contact-potential bias can be used to advantage in circuits operating at low signal levels (less than one volt peak) since it eliminates the cath-ode-bias resistor and bypass gapacitor. It is principatly used in low-level resistancerouphed atadio

3 -VACUUM-TUBE PRINCIPLES

amplificrs. The bias resistor is connected directly botween grid and cathode, and must be isolated from the signal source by a blocking capacitor.

Screen Supply

In practical circuits using tetrodes and pentodes the voltage for the screen frequently is taken from the plate supply through a resistor. A topical circuit for an r.f. amplifier is shown in Fig. 3-20. Resistor R is the screen dropping resistor, and C is the screen bypass capacitor. In flowing through R, the sereen current causes a voltage drop in R that reduces the plate-supply voltage to the proper value for the screen. When the plate-supply voltage and the screen current are known, the value of R can be calculated from Ohm's Law.

Example: An r.f. receiving pentode has a rated sereen current of 2 milliamperes (0.002 amp.) at normal operating conditions. The rated sereen voltage is 100 volts, and the plate supply gives 250 volts. 1'o put 100 volts on the sereem, the drop across R must be equal to the difference between the plate-supply voltage and the sereen voltage; that is, $250-100=150$ volts. Then

$$
R=\frac{E}{I}=\frac{1.00}{0.002}=75,000 \text { ohms. }
$$

The power to be dissipated in the resistor is

Fig. 3-20-Screen-voltage supply for a pentode tube through a dropping resistor, R. The screen bypass capacitor, C, must have low enough reactance to bring the screen to ground potential for the frequency or frequencies being amplified.

$$
P=B T=150 \times 0.002=0.3 \text { watt }
$$

A $1 / 2$ - or 1 -watt resistor would be satisfactory.
The reatance of the sereen bypass capacitor, C, should be low compared with the screen-tocathode inmpeduce. For radio-frequency applications a capacitance in the vicinity of $0.01 \mu \mathrm{f}$. is amply large.

In some vacuum-tule circuits the screen voltage is oltanined from a voltage divider comnected across the plate supply. The design of voltage dividers is diseussed at length in Chapter 7 on Power Supplies.

Oscillators

It was mentioned earlien that if bhere is emough positive feredtack in an amplifier cirenit, selfsustaining osedibations will be set up. When an amplifier is arranged so that this condition exists it is called an oscillator.

Oscillations normally take place at only one frequency, and a desired frequency of oscillation can be obtained by using a resonant circuit tuned to that frequency. For example, in Fig. :3-2l. 1 the cireuit $L C$ is tuned to the desired frequency of oscillation. The eathode of the tube is connected to a tap on coil L and the grid and plate are comected to opposite ends of the tuned circuit. When an r.f. carrent flows in the tuned cincuit there is a voltage drop arross I that in(reases progressively along the turns. Thus the point at which the tap is connected will be at an intermediate potential with respert to the two ends of the coil. The amplified current in the plate circuit, which flows through the bottom section of L, is in phase with the current already fowing in the circuit and thus in the proper relationship for positive feedhark.

The amount of feedback depends on the position of the tap. If the tap is too near the grid end the voltage drop between grid and cathode is too small to give enough feedback to sustain oscillation, and if it is too near the plate end the impedanee betwern the cathode and plate is too small to permit good amplification. Maximum feedback usually is obtained when the tap is smmewhere near the center of the eoil.

The eircuit of Fig. 3-2l. is paratlel-fed, (i, being the blocking capacitor. The value of (c, is not eritical so long as its reactance is low (not more than a few hundred ohms) at the operating frequency.

Capacitor C_{g} is the grid capacitor. It and R_{g} (the grid leak) are used for the purpose of ob-

Fig. 3-21 - Basic oscillator circuits. Feedback voltage is obtained by tapping the grid and cathode across a portion of the funed circuit. In the Martley circuit the tap is on the coil, but in the Colfitts circuit the voltage is obtained from the drop across a capacitor.

Oscillators

taining grid bias for the tube. In most oscillator cireuits the tube generates its own biats. During the part of the cyole when the grid is positive with respest to the eathode, it attracts nemetrons. These elections camot flow through L back to the eathode because C_{k} "blooks" direct earrent. They therefore have to flow or "leak" through R_{g} to cathode, and in doing so cause a voltuge drop in R_{k} that places a negative bias on the grid. The amount of hias so developed is equal to the grid current multiplied by the resistinne of R_{k} (Ohm's Law). The vatue of grid-leak resistaner required depends upon the kind of tube used and the purpose for which the oscillator is intended. Values range all the way from a few thousand to several hundred thousand ohms. The canacitance of r_{k} should be large enough to have low reactance (a few hundred ohms) at the operating frequency.

The circuit shown at 13 in Fig. 3-21 uses the voltage drops across two caparitors in series in the tuned circuit to supply the feedhark. Other than this, the operation is the same as just deseribed. The feedback can be varied by varying the ratio of the reactances of C_{1} and C_{2} (that is, by varying the ratio of their capacitances).

Another type of oscillator, called the tunedplate tuned-grid circuit, is shown in Fig. 3-22.

Fig. 3-22-The funed-plate funed-grid oscillator.
Resonant circuits tuned approximately to the same frequency are connected between grid and cathode and between plate and cathode. The two coils, L_{1} and L_{2}, are not magnetically coupled. The feedback is through the grid-plate capacitance of the tube, and will be in the right phase to be positive when the plate circuit, $r_{2} L_{2}$, is tuned to a slightly higher frequency than the grid circuit, $L_{1} C_{1}$. The amount of feedbark can be adjusted by varying the tuning of either circuit. The frequency of oscillation is determined by the tuned circuit that has the higher Q. The grid leak and grid capacitor have the same functions as in the other circuits. In this case it is convenient to use series feed for the plate circuit, so C_{b} is a bypass capacitor to guide the r.f. current around the plate supply.

There are many oscillator circuits (examples of others will be found in later rhapters) but the Dasic feature of all of them is that there is positive feedback in the proper amplitude and phase to sustain oscillation.

Oscillator Operating Characteristics

When an oscillator is delivering power to a load, the adjustment for proper feedback will depend on how heavily the oscillator is loaded - that is, how much power is being taken from
the circuit. If the feedback is not large enough grid excitation too small - a small increase in load may tend to throw the circuit out of oscillation. On the other hand, too much feedback will make the grid current excessively high, with the result that the power loss in the grid cirenit becomes larger than neressary. Since the oscillator itself supplies this grid power, excessive feothack lowers the over-all efficiency because whatever power is used in the grid circuit is not available as useful output.

One of the most important considerations in oscillator design is frequency stability. The principal factors that cause a change in frequency are (1) temperature, (2) plate voltage, (3) loading, (4) merhanical variations of circuit elements. Temperature changes will cause vacuum-tube elements to expand or contract slightly, thus causing variations in the interelectrode caparitances. Since these are unavoidahly part of the tuned circuit, the frequency will change correspoulingly. Temperature changes in the coil or the tuning capacitor will alter the inductance or capacitance slightly, again causing a shift in the resonant frequency. These effects are relatively slow in operation, and the frequency change caused by them is called drift.

A change in phate voltage usually will cause the frequency to change a small amount, an effect ralled dynamic instability. Dynamie instability can be reduced hy using a tuned cireuit of high effective Q. The energy taken from the circuit to supply grid losses, as well as energy supplied to a load, represent an increase in the effective resistance of the tuned girenit and thus lower its (). For highest stability, therefore, the coupling between the tuned circuit and the tube and load must be kept as loose as possible. Preferably, the oscillator should not he required to deliver power to an external circuit, and a high value of grid leak resistance should be used since this helps to raise the tube grid and plate resistances as seen by the tuned circuit. Ioose coupling e:m be effected in a variety of ways - one, for example, is hy "tapping down" on the tank for the connections to the grid and plate. This is done in the "series-tumed" Colpitts aireuit widely used in variable-frequency oseillators for amateur transmitters and deseribed in a later chapter. Alternatively, the L / C ratio may be made as small as possible while sustaining stable oscillation (high C) with the grid and plate connected to the ends of the circuit as shown in Figs. 3-21 and 3-22, Using relatively high plate voltage and low plate current also is desirable.

In general, dynamie stability will be at maximum when the feedback is adjusted to the least value that permits reliable oseillation. The use of at tube having a high value of transconductance is desirable, since the higher the transconductance the looser the permissible coupling to the tuned cirenit and the smaller the feedback required.

Load variations act in much the same way as plate-voltage variations. A temperature change in the load may also result in drift.

Mechanical variations, usually caused by

3-VACUUM-TUBE PRINCIPLES

vibration, cause changes in inductance and/ or canacitance that in turn cause the frequency t, "woblle" in step with the vibration.

Mothods of minimizing frequency variations int oscillators are taken up in detail in later chapters.

Ground Point

In the oscillator circuits shown in Figs. 3-21 and $3-22$ the cathode is comerted to ground. It is not actually essential that the radiofrequency circuit should be grounded at the (:athode; in fart, there are many times when an r.f. ground on some other point in the "irevit is desirable. The r.f. ground can be phaced at any point so long as proper provisions are mide for feeding the supply voltages to the tulne elements.

Fig. 3-2?3 shows the Hartley circuit with the plate end of the circuit grounded. No r.f. choke is needed in the plate cirenit berause the plate already is at gromen potential and there is no r.f. to choke off All that is necessary is a beys eaparitor, $C_{\text {bo }}$ across the pate suphly. Dired

Fig. 3-23-Showing how the plate may be grounded for r.f. in a typical oscillator circuit (Martley).
current flows to the cathode through the lower part of the tuned-circuit coil, L. An advantage of such a circuit is that the frame of the tuning camacitor ram be grounded.

Tubes having indireetly hoated cathodes are more easily adaptable to circuits grounded at other points than the cathode than are tubes having directly heated filaments. With the latter tubes sperial precautions have to be taken to prevent the filament from heing bypassed to ground by the caparitance of the filamont-heating transformer.

Clipping Circuits

Vicuma thixs are reatily adaptable to other types of operation them ordinary (without sub)stantial distortion) amplification and the genera-

Fig. 3-24-Series and shunt diode clippers. Typicaloperafion is shown af the right.

SHUNT
tion of single-fregueney oseillations. Of particular interest is the clipper or limiter circuit, because of its sceveral applications in receiving and other equipment.

Diode Clipper Circuits

Basie diode clipper circuits are shown in Fig. 3-24. In the series 1 ppe a positive d.e. bias voltage is applied to the plate of the diode so it is normally conducting. When a signal is applied the current through the diode will change proportionately during the time the signal voltage is positive at the diode plate and for that part of the negative half of the signal during which the instantancous voltige does not excerd the bias. When the negative signal voltage exoreds the positive bias the resultant voltage at the diode
plate is nogative and there is no eonduction. Thus part of the megative half erole is clipped ats shown in the drawing at the right. The level at which elipping oecurs depends on the biats voltage, and the proportion of signal clipping dopends on the signal strength in relation to the bias voltage. If the peak sighal voltage is below the bias level there is no elipping and the output wave shape is the same as the input wave shape, as shown in the lower sketch. The output voltage results from the current flow through the load resistor R.

In the shunt-type diode clipper negative bias is applied to the plate so the diode is normally nonconducting. In this case the signal voltage is fed through the series resistor l to the output circuit (which must have high impedance compared with the resistance of R). When the negitive half of the signal voltage exceeds the bias voltage the diode conducts, and because of the voltage drop in R when current flows the output voltage is reduced. By proper choiee of R in relittionship to the load on the output cireuit the clipping can be made equivalent to that given by the series circuit. There is no elipping when the peak signal voltage is below the bias level.

Two diode eirenits can be combined so that both the negative and positive praks of the signal are clipped.

Triode Clippers

The cireuit shown at A in Fig. 3-25 is capable of clipping both negative and positive signal peaks. (On positive peaks its operation is similar to the shunt diode olipper, the clipping taking place when the positive peak of the signal voltage

Clipping Circuits

fig. 3-25-Triode clippers. A-Single triode, using shunt-lype diode clipping in the grid circuit for the positive peak and plate-current cut-off clipping for the negative peak. B-Cathode-coupled clipper, using plate-current cut-off clipping for both positive and negative peaks.

is large enough to drive the grid positive. The positiverelipped signal is amplified by the tube as ar resistamee-coupled amplifier. Segative parak rlipping oecurs when the negative patak of the signal voltage exereds the fixed grid bias and thus ents off the plate current in the output cirenit.

In the cathode-eoupled elipper shown at B in Fig. 3-25 V_{1} is at cathode follower with its output cirruit direetly commected to the cathode of V_{2}, which is at groundod-grid amplifier. The tubes are biased by the voltage drop across R_{1}, which cobries the d.e. plate currents of both tubes. When the uegative peak of the signal voltage ex-
ceeds the d.e. voltage across R_{1} elipping oceurs in V_{1}, and when the positive peak exeeeds the same value of voltage les plate eurrent is cut off. (The bias developed in h_{1} tends to be constant because the plate current of one tube increases when the plate current of the other derreases.) Thas the cireuit elips both positive and ungative peaks. The clipping is symmetrical, providing the d.e. voltage drop in R is small enough so that the oqcrating conditions of the two tubes are substantially the same. For sigmal voltages below the elipping level the eirenit operates as a nomand amplifier with low distortion.

U.H.F. and Microwave Tubes

At ultrahigh frequencies, interelectrode cat pacitaners and the inductance of internal leads determine the highest possible frequency to which at vacuum tube can be tuned. The tube usually will not oscillate up to this limit, however, hecanse of dicheetrie losses, transit time and other efferts. In low-frequency operation, the actuad time of flight of electrons between the cathode and the anode is negligible in relation to the duration of the evele. At 1000 ke, for example. transit time of 0.001 microsecond, which is typical of conventional tubes, is only $1 / \mathrm{IOOO}$ oycle. But at 100 Me, this same transit time represents $1 / 10$ of a cyale, and a full wele at 1000 Mc. These limiting factors cstablish about 3000 Mc. as the upper frequency limit for negative-grid tubes.

With most tubes of conventional design, the upper limit of useful operation is around 150 Me . Foo higher frequencies tubes of sperial const ruction are required. Whout the only means available for reducing interelectrode capacitanees is to reduce the physical size of the elements, which is practical only in tubes which do not have to handle appreciable power. However, it is possible to reduce the internal lad inductanee very mattoriatly by minimizing the lead length and by using two or more labds in parablel from an clectrodes.

In some types the electrodes are provided with up to five separate leads which may be emmerted in patablel extemally. In domble-loul typer the plate and grid dements are supported by heary single wire which run entirely through the envoloper, providing terminabls at rither and of the
bulb. With linear tank cireuits the bads berome a part of the line and have dist ributed rather that lumped const:nts.

In "lighthouse" tubes or disk-scal tubes, the plate, grid and cathode are assembled in parallel

Fig. 3-26-Sectional view of the "lighthouse" tube's construction. Close electrode spacing reduces transit time while the disk electrode connections reduce lead inductance.
planes, as shown in Fig. 3-26, instead of enaxially. The disk-seal terminals pratically eliminate lead inductance.

Velocity Modulation

In eonventional tube operation the potential on the grid tends to reduce the electron veloeits during the more negative hatf of the evele, while on the other half erele the positive potaniab on the grid serves to ancelerate the eloetrons. Thus the alectrons tend to separate inta groups, those leaving the eathode during the nogative had'arelo laing eolle etively slowed down, while those

3-VACUUM-TUBE PRINCIPLES

leaving on the positive half are aceelerated. After passing into the grid-plate space only a part of the eheetron stream follows the original form of the oseillation ryrle, the remainder traveling to the phate at difforing veloeities. Since these exmtribute nothing to the power output at the operating frequency, the efficiency is reduced in dired propertion to the vandiation in velocits, the output reaching a value of zero when the transit time apmoteders a hati-e yole.

This offoret is turned to advantage in velocitymodulated tubes in that the imput signal voltare on the grid is used to change the velocity of the clectrons in a constant-enrent electron beam, rather than to vary the intensity of a constantvelority current flow as is the method in ordinary tubes.

The velodity modulation prindiple maty he used it : 6 number of wass, leading to several tube desigus. The mation tuthe of this trpe is the "klystron."

The Klystron

In the klystron tule the electrons cmitted be the cothode pass through :m chertrice field (stathlished by two grids in a ravity resonator cabled the buncher. The high-frequency eleetric field betwen the grids is parablel to the electron streatm. This fiold aberofriters the elertrons at one moment and retards them at another, in areord:bne with the variations of the r.f. voltatge ap)plied. The resulting velority-modulated beam travels through a field-free "drift spare," where the slower-moving electrons are grabluably overtaken by the faster ones. The eleetrons emerging from the patir of grids tharefore are separated into groups or "humehed" along the direction of motion. The volocity-momblated fertron stream then goes to : catcher ravity where it again passers through two paralld grite, and the r.f. curvent arated by the bumelang of the elec-

Fig. 3-27-Circuit diagram of the klystron oscillator, showing the feed-back loop coupling the frequency-controlling cavities.
tron beam induees an r.f. voltage between the grids. The cateher cavity is made resonant at the frequenes of the valodity-modulated adectron beam, so that an oscillating fiold is set up within it hey the passage of the clectron bunches through the grid :tperture.

If a feed loak loop is provided betwon the two catvities, as shown in Fig, 3-27, oscillations will oceur. The resomant frequency depends on the electrode voltages and on the shater of the cavities, and maty be adjusted bey varying the supply voltage and altering the dimensions of the matritios. Athough the bunched beam current is rich in harmonics the output wave form is remarkably pure beatuse the high () of the eateher "avity suppresses the unwanted harmonies.

Magnetrons

A magnetron is fundamentally : diode with erlindrical clectrodes placed in an aniform masnetic field, with the lines of magnetio foree parablel to the axes of the elements. The simple erlindrical magnetron consists of at cathode surrounded by a concentric cylindrical anode. In the more efli-

Fig. 3-28-Conventional magnetrons, with equivalent schematic symbols at the right. A, simple cylindrical magnetron. B, split-anode negative-resistance magnetron.
cient split-anode matgnetron the eylinder is divided lengthwise.
Manmeron oseillators are operated in two difforent wass. l'led triably the direnits are similar. the difference being in the relation betwern oldtron transit time and the frequency of osedlation.
In the negative-resistame or dyatron type of magnetron oseillator, the clement dimensions and anode voltage are surh that the transit time is short compared with the period of the oseilation frequenes. Eilectrons emitted from the aithodes are driven tenward both hatves of the amode. If the potentials of the two halves are unequal, the effect of the magnetie fied is such that the matjority of the electrons travel to the half of the anode that is at the lower potential. That is, it decrease in the potential of either half of the anode results in an increase in the electron current flowing to that half. The magnetron consequently exhibits negativer-resistaner wharacteristios. X'gative-resistance magnotron oscillators are useful between 100 and 1000 Me. Dinder the best operating conditions cofficiencoses of 20 to 25 per cent may be obtaimed.

U.H.F. and Microwave Tubes

In the transit-time mangetron the frequeney is dotermined primatrily by the tube dimensions and by the electric and magnetic field intensitics riather than be the tuning of the tank riveruits. The intonsity of the magnotio field is adjusted so that, under statice conditions, clectrons leabing the cathode move in curved pathe which just fatil to rach the anode. All olectrons are therofore deflered bask to the cathorle. and the anode current is zero. An alternating voltage applied hetween the two halves of the anode will canse the

Fig. 3-29-Split-anode magnetron with integral resonont anode cavity for use ot u.h.f.
potentials of these halves to vary about their average positive values. If the period (time required for one eycele of the afternating voltage is made equal to the time required for an electron to make one complete rotation in the magnetic field, the a.c. component of the anote voltage reverses direction twire with each dectron rotation. some electrons will lose energy to the electric fiek, with the result that they are unable to reach the cathode and emontine to rotate about it. Meanwhile ot her electoms gain encrgy from the field and are
assembly is a solid block of eoppor which assists in hat dissipation. At extremely high frequenrides operation is improved bes subdividing the anode structure into \& to 16 or more segments, the resomant cabvities for earh anode being couphed to the common cathode region by slots of critical dimunions.

The efficioncy of multisegment magnetrons reathes 65 or 70 per cent. Sloted-anode mabnetrons with four segments function up to 30,000 Me. (1 cm.), delivering up to 100 watts at efficiencies greater than 50 per eent. Using larger multiples of anodes and higher-order modes, performance can be attained at 0.2 em .

Traveling-Wave Tubes

(iains as high as $2: 3 \mathrm{~d}$). over a bandwitth of 800 Ne. at a center frequency of 3600 Me . have beren obtained through the use of a travelingwave amplifier tube shown sehematicably in ligg. 3-30. An electromagnetic wave travels down the helix, and an electron beam is shot through the helix parallel to its axis, and in the clivertion of propargation of the wave. When the electron velocity is about the same as the wave velocity in the absence of the electrons, turning on the (electron beam cables a power gatin for wave prop)agation in the direction of the electron motion.

The portions of Fig. 3-30 marked "input" and

Fig. 3-30-Schematic draw-
ing of a traveling-wave amplifier tube.

returned to the eathode. Since those elertrons that lose comergy remain in the interelectrode space longer than those that gatin energy, the not effeet is atrinsfer of energy from the electrons to the clectric fiold. This energy wan be used to sustain oscillations in a resonant transmission line connected betweren the two halves of the anode.

Split-anode magnetrons for u.h.f. are constructed with a cavity resonator built into the tube structure, as illustrated in Fig. 3-2!. The
"output" are waveguite sections to which the ends of the helix are coupled. In practice two electromatgetic foeusing eoils are used, one forming ab lens at the clectron gun end. and the other a solenoid ruming the length of the helix.

The outstanding features of the traveling-watve amplifier tube are its wreat handwith and large power gatin. However, the officience is rather low. Typical power output is of the order of 200 milliwatts.

CHAPTER 4

Semiconductor Devices

Certain materials whose resistivity is not high enough to classify them as good insulators, but is still high compared with the resistivity of common metals, are known as semiconductors. These materials, of which germanium and silicon are examples, have an atomic structure that normally is associated with insulators. However, when small amounts of impurities are int roduced during the manufacture of germanium or silieon revistals, it is possible for free electrons to exist and to move through the erystals under the influance of an electric field. It is also possible for some of the atoms to be deficient in an electron, and these electron defieiencies or holes can move from atom to atom when urged to do so by an applied electric fore. (The movement of a hole is actually the movement of an electron, the electron becoming detached from one atom, making a hole in that atom, in order to move into an existing hole in another atom.) The holes can be considered to be equivalent to particles carrving a positive electric charge, while the electrons of course have negative charges. Holes and eleetrons are called charge carriers in semiconductors.

Electron and Hole Conduction

Material which condurts by virtue of a deficiency in electrons - that is, by hole conduction - is called p-type material. In n-type material, which has an exeess of electrons, the conduction is termed "electronic." If a piece of p-type material is joined to a piece of n-type material as at A in Fig. $4-1$ and a voltage is applied to the pair as at 13 , current will flow across the boundary or junction between the two (and also in the external eircuit) when the battery has the polarity indieated. Electrons, indicated by the minus symbol, are attracted across the junction from the n material through the p material to the positive terminal of the battery, and holes, indicated by the phas symbol, are attrated in the opposite direction arross the junction by the negative potential of the battery. Thus current flows through the circuit by means of
electrons moving one way and holes the other.
If the battery polarity is reversed, as at C, the exeess aloetrons in the n material are artracted away from the junction and the holes in the p material are attracted by the negative potential of the battery away from the jumetion. This leaves the jumetion region without any eurrent carriers, consequently there is no conduction.

In other words, a junction of p- and n-type materials constitutes a rectifier. It differs from the tube diode rectifier in that there is a measurable, although comparatively very small, reverse current. The reverse current results from the presence of some carriers of the type opposite to those which principally characterize the material. The principal ones are called majority carriers, while the lesser onos are minority carriers.

The provess by which the carriers cross the junction is cssentially diffusion, and takes place comparatively slowly. This, toget her with the fact that the junction forms a caparitor with the two plates separated by proctioally zero spacing and hence has relatively high capacitance, places a limit on the upper frequency at which semiconductor devices of this construction will operate, as compared with vacuam tubes. Also, the number of excess electrons and holes in the material depends upon temperature, and since the conductivity in turn depends on the number of excess holes and electrons, the device is more temperature sensitive than is a vacum tube.

Capacitance may be reduced by making the contact area very small. This is done by means of a point contact, a tiny p-type region being formed under the contact point during mannfacture when n-type material is used for the main body of the device.

SEMICONDUCTOR DIODES

Jiondes of the point-contant type are used for many of the same purposes for which tube diodes are used. The construction of such a diode is

Fig. 4-1-A p-n junction (A) and its behavior when conducting (B) and noncondueting (C).

Semiconductor Diodes

Fig. 4-2-Construction of a germanium-point-contact diode. In the circuit symbol for a contact rectifier the arrow points in the direction of minimum resistance measured by the conventional method-that is, going from the positive ter.ninal of the voltage source through the rectifier to the negative terminal of tiee source. The arrow thus corresponds to the plate and the bar to the cathode of a tube diode.
shown in Fig. 4-2. Germanium and silicon are the most widely used materials, the latter primcipalty in the wh.f. region.

As compared with the tube diode for r.f. anplications, the cristal diode has the advantages of very small size, very low interelectrode eaparitaner (of the order of $1 \mu \mu \mathrm{i}$. or las and requires no heater or filament power.

Characteristic Curves

The germanium erystal diode is characterized of relatively large corrent flow with small applied voltages in the "furwad" direction, and small, athough finite, "urrent fow in the reverse or "back" direction for much larger applied voltages. A typical characteristic curve is shown in Fig. 4-3. The dyamic resintance in either the forwand or back dirention is determined by the change in current that ocelurs, at any given point on the curve, when the applied voltage is changed by a small amount. The forward resistance shows some variation in the region of very small applied voltages, but the curve is for the most part quite straght, indicating fairly constant dyamere resistaner. For smabl applied voltages, the forward resistanere is of the order of 200 ohms in most such diodes. The batek resistaner shows eonsiderable vartation, depending on the partioular voltage chosen for the measurement. It maty run from a few humdred thousand ohms to over at megohm. In applieations such ats meter reatifiers for r.i. indionting instruments (r.f. voltmelars, wavemeter indicators, and so on) where the load resistance maty be small and the applied voltage of the order of several volts, the resistances vary with the value of the applied voltare and are consiterably lower.

Junction Diodes

Junction-type diodes made of germanium or silicon are employed primipally as power rectifiers, in applipations simila to those where selenium roctifiers are used, Depenting on the design of the paticular diode, they are capable of rectifying currents up to soveral hundred milliamperes. The safe inverse peak voltage of a junction is relatively low, so an appropriate number of reetifiers must be eonnected in series to opreato safoly on a given ate. input voltage.

Ratings

Crustal diodes are rated primarily in terms of maximum safe inverse voltage and maximum average rectified current. Invorse voltage is a voltage applied in the direction opposite to that which causes maximum entrent flow. The average current is that which would be read by a d.c. meter comnected in the current path.

It is also customary to sperify standards of performanee with resperet to forvard and back current. A minimum value of forward current is usually sperified for one volt applied. The voltage at which the maximmm tolorable bask earrent is sperefifed varies with the type of diode.

Fig. 4.3-Typical point contact germanium diode characteristic curve. Because the back current is much smaller than the forward current, a different scale is used for back voltage and current.

Zener Diodes

The "rener diode" is a sperial type of silieon jumetion dionde that hats a chanateristic similar to that shown in Fig. \&-4. The shap brak from non-conductane to eomductance is called tho Zenor Kneer: at applied voltages greater than this breakdown point. the voltage drop across the diode is essentially constant over at wide range of currents. The substantially constant voltage

Fig. 4-4-Typical characteristic of a zener diode. In this example, the voltage drop is substantially constant at 30 volts in the (normally) reverse direction. Compare with Fig. 4-3. A diode with this characteristic would be called a
"30-volt zener diode."

4-SEMICONDUCTOR DEVICES

drop over a wide range of currents allows this semiconductor deviere to be used as a constant voltage referener or control clement, in a mamer somewhat similar to the gascous voltage-regulat or tubr. Voltages for zener dioter ation range from a lew volts to several hunderd and powor ratings run from a fration of a watt to jo watts.

Zaner diodes can be connerted in series to atvantage: the temperature corfficiont is improved over that of a single diode of equivadent rating and the power-handing catpability is inereased.

Two zener diotes comented in opposition, Fig. + - , form a simple and highly effective elipper.

Voltage.Variable Capacitors

Voltuge-variable capacitors are p-11 junction diodes that behave as caparitors of reasomathle Q (35 or more) up to 30 Mc. and higher. They are useful in many applications bocause the actual capacitance value is dependent upon the d.c. bias voltage that is applied. In a typieal capacitor

Fig. 4-5-Full-wave clipping action with two zener diodes in opposition. The output level would be at a peak-to-peak voltage of twice the zener rating of a single diode. R_{1} should have a resistance value sufficient to limit the current to the zener diode rating.
the (apatcitance can he varied over a 10 -to-l range with a hias change from 0 to -100 volts. The current demand on the bias supply is on the order of a few microamperes.

Typimal appliations include remote control of tunced rircuits, automatic frequeney control of recoiver local oscillators, abd simple frequeney modulators for communications and for sweeptuning upplications.

Transistors

liig. f-i shows a "sindwich" mate from two layers of p-type semiconductor material with at thin layer of otype between. There are in - ffect t wo phen junction diodes back to back. If at positive hias is applied to the p-trope material at the left, current will How through the lefthand junction, the holes moving to the right and the dertrons from the n-type material moving to the left. Some of the holes moving into the n-type material will combine with the electrons there and be neutalized, hut some of them also will travel to the region of the righthand junction.

If the p-h combination at the right is biased negatively, as shown, there would normally be no current flow in this cirenit (see Fig. $\operatorname{til}($) Ilowerer, there are now additional holes available at the junction to travel to point B and electrons can travel toward point A, so a courent fan flow even though this section of the sandwich considered alone is hiased to prevent comduction. Most of the current is bet ween , 1 and B and does not llow out through the eommon connection to the n-type material in the samdwieh.

Fig. 4.6-The basic arrangement of a transistor. This represents a junction-type p-n-p unit.

A semiconductor combination of this type is called a transistor, and the there sertimis are known as the emitter, base and collector, re-
spertively. The amplitude of the collector current depends principally upon the amplitude of the emitter current; that is, the collector current is controlled be the emitter current.

Power Amplification

Because the collector is biased in the back direction the eollector-to-base resistance is high, On the other hand, the emitter and collector currents are substantially equal, so the power in the collector circuit is larger than the power in the emitter circuit $I^{2}=I^{2} l$, so the powers are proportional to the respertive resistances, if the current is the same). In practical tramsistors emitter resistance is of the order of a fow humdred ohms while the collertor resistanere is hundreds or thousands of times higher, so power gains of 20 to .40 db . or even more atre possible.

Types

The thamsistor may be either of the pointcontact or junction tyje, as shown in lig. $4-7$. Aso, the atsembly of p^{-}and n-type materials may be revened; that is, n-type material may be used instead of p-type for the emitter and collector, and p-type insteal of n-tipe for the base. The type shown in lïg. $1-1 ;$ is a p-n-p transistor, while the opposite is the n-p-n.

Point-Contact Transistors

The print-eontart ransistor shown at the loft in IVig. $4-7$, hats two "rat whiskers" phaced very dosed tugether on the sumber of a germatnium wafer, Habally n-type material. Small p-type areas are formed under cach point during manufacture. This type of eonstruction results in guite low intereledrode capacitances, with the result that some point-contibet transistors have been used at frequencies up to the v.h.f. region.

Transistor Characteristics

POINT-CONTACT TYPE

The point-contact transistor is primeipally of historical interest, since it is now superseded by the junction trep. It is difficult to manufature, since the two contart points must be extremely close together if good chatacteristics are to be soeured, particularly for high-frequency work.

Junction Transistors

The junction transistor, the essential construction of which is shown at the center in Fig. 4- $\overline{7}$, has higher eapacitanees and higher powerhandling capacity thatn the point-contabet type. The "electrode" areas and thickness of the intermediate layer have an important effeet on the uppor frequence limit. Ordinary jumetion transistors mity have cut-off frequencios (see next seretion) up to 20 Me. or so. The types used for audio and low radio frequencies usually have cutoff frequencies ranging from $5(0)$ to 1000 ke.

The uppor frequency limit is extended considcrably in the drift transistor. This type has a particular form of distribution of impurities in the base material resulting in the ereation of an internal cheretrie field that aceelerates the carriers auross the junction. Typical drift transistors have cut-off frectuencies of the order of 100 MI .

Another type of transistor usoful in high-frequency work is the surface barrier transistor, using plated emitter and rollector electrotes on a wafer of n-type material, as shown at the right in Fig. 4-7 above, Surface barrier transistors will operate at frequencies up to (60 or 75 Me. as amplifiers and oscillators.

TRANSISTOR CHARACTERISTICS

An important characteristic of a transistor is its current amplification factor, usually designated by the symbol α. This is the ration of the change in collector current to a small change in emitter current, measured in the common-hase circuit deseribed later, and is comparable with the voltage amplification fartor (μ) of a vacuam tube. The current amplification factor is almost, but not quite, 1 in a junction transistor. It is largor than 1 in the point-contact type, values in the neighborhood of 2 being typical.

The α cut-off frequency is the frequency at which the current amplification drops 3 dh. below its low-frequency vabue. Cut-off frequencies range from 500 ke . to frequencies in the $v . h . f$.

region. The cut-off frequency indicates in a gencral way the froquency spread over which the transistor is useful.

Lach of the three elements in the transistor has a resistance associated with it. The emitter and coltector rosistancos were disoussed carlier. There is also a certain amount of resist anee assoriated with the hase, a value of a few humdred to 1000 ohms being typiral of the base resistance.

The values of all three resistances vary with the tye of tramsistor and the operating voltages. The collector resistance, in particular, is sensitive to operating conditions.

Characteristic Curves

The operating characteristies of transistors ean be shown be a series of charateristic curves. One such set of curves is shown in Fig. 4-8. It

Fig. 4-8-A typical collector-current vs. collector-voltage characteristic of a junction-type transistor, for various emitter-current values. The circuit shows the setup for taking such measurements. Since the emitter resistance is low, a current-limiting resistor, R, is connecled in series with the source of current. The emitter current can be set at - desired value by adjustment of this resistance.
shows the collector current is. collector voltage for a number of fixed values of emitter current. Practically, the collector eurrent depends almost entirely on the emitter current and is independent of the collector voltage. The separation between curves representing equal steps of emitter current is quite uniform, indicating that almost distortionless output an be obtained over the useful operating range of the transistor.

Another type of curve is shown in Fig. 4-9, together with the eircuit used for obtaining it. This also shows collector current vs. collector voltage, but for a number of different values of base current. In this case the emitter element is used as the common point in the circuit. The eollector current is not independent of collector voltage with this type of conncetion, indicating

4-SEMICONDUCTOR DEVICES

that the output resistance of the device is fairly low. The base aurront also is quite low, whith

Fig. 4-9-Collector current vs. collector voltage for various values of base current, for a junction-type transistor. The values are determined by means of the circuit shown.
mems that the resistance of the base-mitter circuit is morlerately high with this mothod of combertion. This may be contrasted with the high values of emither current shown in lig. t-8.

Ratings

The prineipal rathase appliod to transistors are matximum collector dissipation, mavimum collector voltage, maximum collector cursent, and maximum emitter curdent. The voltage and current ratings are selfexplanatory.

The collector dissipation is the power, usuably expresered in milliwatts, that ceth safoly he dissipated by the transistor as heat. With some types of transistors provision is made for transorving heat rapidly through the container, and such mits usuatly mogure instatlation on a hat "sink," or monnting that (am athomb hat.

The amomat of andistomed out put power that can le obtitined depends on the collector voltage, the collector curmot being particalls indemendant ol the voltage in a given transistor. Inereasime the eolleretor volatge extemes the ramge of linear operation, hat mast not bre carriod legond the foint where cither the voltage or dissipation rattings are exceeded.

TRANSISTOR AMPLIFIERS

Amplifier cirruits used with transistors fall into one of three typer, known as the groundedbase, grounded-emitter, and grounded-collector cireuits. There are shown in Fig. $4-10$ in elementary form. The three circuits correspond approximately to the gromaded-grid, grounded-a thode and cathoderollower circuits, respectively, used with vactum tulues.

The important trinsistor parameters in these vircuits are the short-circuit current transfer ratio, the cut-off frequency, atod the input and output impedances. The short-circuit current trinsier ration is the ration of a small change in output current to the whange in input current that riuses it, the ontput circuit leing shortcirented. The cot-ofif fregumery is the freducney at which the amplification dererases by 3 dh. from its value at some fredueney well below that at which frequency offerts begin to assume importance. The input and outpat impedances are, posperetively, the imperdance which at signal source working into the transistor wonld see, and the internal oufput impedance of the transistor
(eorresponding to the plate resistance of a vacuum tube, for example).

Grounded-Base Circuit

The input cireuit of a grounded-base amplifier must be designed for low impedance. since the emitter-to-bise resistance is of the order of $25 / I_{0}$ ohms, where I_{e} is the emitter current in milliamperes. The optimum output load impedance, $R_{\text {L }}$, may range from a few thousand ohms to 100,000 , depending upon the requirements.

The current transfor ratio is α and the cut-off frequenery is as defined previously.

In this circuit the phase of the output (colleetor) eurrent is the same as that of the input (emitter) current. The parts of these currents that flow through the base resistance are likewise in phase, so the circuit tends to be regencrative and will oseillate if the current amplification factor is wreater than 1. A junction tramsistor is stable in this eireuit since α is less than 1 , but a pointerontact tramsistor will oscillate.

Grounded-Emitter Circuit

The grounded-emitter cireuit shown in Fig. 4-10 eorrerponds to the ordinary groumded-cathode vacuum-tube amplifier. As indicated by the curves of Fig. 4-9, the base current is smatl and the input impedance is therefore farly highseveral thousand ohms in the average case. The collector resistane is some tens of thousands of olms, depending on the signal sourre impedance. The current transfer ratio in the common-emitter circuit is cr(1ual to

$$
\frac{\alpha}{1-\alpha}
$$

Since α is dose to 1 (0.98 or higher heing representative), the short-rircuit current gath in the grounded-emitter rirenit may be 50 or more. The cut-off frequency is equill to the a cut-off frequeney multiplied by $(1-\alpha)$, and therefore is relatively low. (For example, a transistor with in α cut-off of 1000 ke . and $\alpha=0.98$ would have a eut-off frequency of $1000 \times 0.02=20$ ke. in the grounded-emitter eirenit.)

Within its frequence limitations, the groundedemitter cireuit gives the highest power gain of the threes.

In this eircuit the phase of the output (eollector) eurrent is opposite to that of the input (hase) eurrent so such feedback as occurs through the small emitter resistance is negative and the amplifier is stathle with either junction or pointcontact transistors.

Grounded-Collector Circuit

Like the vaconm-tuise cathode follower, the grounded-eollertor transistor amplifier has high imput impedance and low output impedance. The hatter is approximately equal to the impedame of the signal imput soure multiplied by ($1-\alpha$). The input resistane depends on the load rexistance, being approximately equal to the land resistance divided by $(1-\alpha)$. The fact that imput resistance is directly related to the load

Transistor Circuits

resistance is a disodvantage of this type of amplitier if the load is one whose resistance or impedtance varies with frequency.

The curent transfer ratio with this circuit is

$$
\frac{1}{1-\alpha}
$$

and the eut-off froquency is the same as in the grounded-emitter cireuit. The output and input currents are in phase.

Practical Circuit Details

The transistor is essentiatly a low-voltage device, so the use of a battery power sumply rather than a roctified-a.c. supply is quite comb mon. 【sually, it is more convenient to employ a single battery as a power source in prefarence to the two-hattery arrangements shown in Fig. $+1-10$, so most circuits are designed for singlehattery operation. Provision must he included, therefore, for obtaining proper biasing voltage for the emitter-hase circuit from the battery that supplies the power in the collector circuit.

Fig. 4-10-8asic transistor amplifier circuits. $R L$, the load resistance, may be an actual resistor or the primary of a transformer. The input signal may be supplied from a transformer secondary or by resistancecapacitance coupling. In any cose it is to be understood that a d.c. path must exist between the base and emifter.

P-n-p transistors are shown in these circuits. If $n-p-n$ types are used the battery polarities must be reversed.

Coupling arrangements for introducing the input signal into the cireuit and for taking out the amplified signal are similar to those used with vacuum tabes. However, the actual component values will in general be quite different from those used with tubes. This is becuuse the impedances associated with the input and output circuits of transistors may differ widely from the comparable impedances in tube circuits. Also, d.e. voltage drops in resistances may require more careful attention with transistors beatuse of the much lower voltage available from the ordinary hattery power source. Battery economy heromes an important factor in circuit design, both with respect to voltage required and to overall current drain. A bias voltage divider, for example, easily may use more prower than the transistor with which it is associated.

Typical single-hattery grounded-emitter cir-

Fig. 4-11-Practical grounded-emitter circuits using transformer and resistance coupling. A combination of either also can be used-e.g., resistance-coupled input and transformer-coupled output. Tuned transformers may be used for r.f. and i.f. circuits.

With small transistors used for low-level amplification the input impedance will be of the order of 1000 ohms and the input circuit should be designed for an impedance step-down, if necessary. This can be done by appropriate choice of turns ratio for T_{1} or, in the case of funed circuits, by tapping the base down on the tuned secondary circuit. In the resistance-coupled circuit \boldsymbol{R}_{2} should be large compared with the input impedance, values of the order of 10,000 ohms being used.

In low-level circuits R_{1} will be of the order of 1000 ohms. R_{3} should be chosen to bias the transistor to the desired no-signal collector current; its value depends on R_{1} and R_{2} (see text).
cuits are shown in Fig. 4-11. R_{1}, in series with the emitter, is for the purpose of "swamping out" the resistance of the emitter-hase diode; this swamping helps to stabilize the emitter current. The resistance of R_{1} should be large compared with that of the emitter-base diode, which, as stated earlier, is approximately equal to 25 divided by the emitter current in ma.

Since the current in R_{1} flows in such a direction as to bias the emitter negatively with respert to the base (a p-n-p transistor is assumed), a haseemitter bias slighty greater than the drop in R_{1} must be supplied. The proper aperating point is athieved through adjustment of voltage divider $R_{2} R_{3}$, the constants of which are chosen to give the desired value of collector current at the nosignal operating point.

In the transformer-coupled circuit, input signad eurrents flow through R_{1} and R_{2}, and there would be a loss of signal power at the base-mitter diode if these resistors were not hypassed by C_{1} and $(5$. The eapacitors should have low reactance compared with the resistances across which they are connected. In the resistance-coupled diredit R_{2}
has the dual function of acting as part of the bias voltage divider and as part of the load rosistance for the signal-input source. Also, as sern by the signal souree, R_{3} is in parallel with R_{2} and thes beromes pate of the input load resistathere. C 3 must therefore have low readenne eompared with the net resistance of the parallel combination of R_{2}, h_{3} and the base-to-emitter resistance of the transistor. The reactane of (4 will depend on the impedance of the load into which the circuit dolivers output.

The output load resistance in the transformercoupled rase will be the artual load as reflected at the primary of the transformer, and its proper value will be determined hy the transistor characteristies and the type of operation (Class A, 13, etr.). The value of R_{t} in the resistane-coupled (ase is ustally surh as to permit the maximum a.ce. voltage swing in the collertor circuit without undue distortion, sime (lass A operation is usual with this tyre of amplifier.

Bias Stabilization

Transistor currents are rathor sensitive to temperature variations, and so the operating point tends to shift as the transistor heats. The shift in operating point unfortumately is in such a direction as to increase the heating, leating to "thermal rumaray" and possible destruction of the transistor. The heat developed depends on the amount of power dissipated in the tramsistor, so it is obviously advantageons in this respere to operate with as little internal dissipation as possible: i.e., the d.e. input should be kept to the lowest value that will pormit the type of operation desired, and in any event should never excered the rated value for the particular transintor used.

A contributing factor to the shift in operating point is the rollector-to-base leakage current (usually designated $I_{\text {cu }}$) - that is, the current that flows from collector to base with the emitter connection open. This current, which is highly temperature sensitive, has the effect of increasing the emitter current liy ath amount murh larger than $f_{c o}$ itself, thus stifting the operating point in such a way as to increase the eotlector current. This effect is reduced to the extent that $I_{\text {co }}$ call be made to flow out of the base terminal rather than through the haseomitter diode. In the rircuits of Fig. 4-11, hias stabilization is improved by making the resistame of A_{1} as large as possible and both $h h^{2}$ and h_{3} as small as possible, consistent with other considerations such as gain and hattery eronomy.

- TRANSISTOR OSCILLATORS

Since more power is availathe from the output circuit than is neressary for its generation in the input eirouit, it is possible to use some of the output power to supply the input circuit and thus sustain self-oscillation. Represontative oseillator circuits are shown in Fig. 4-12. Their resembance to the similarly-named varuum-tube circuits is evident.

Fig. 4-12-Typical transistor oscillator circuits. Component values are discussed in the text.

The upper froquency limit for oscillation is principally a function of the cut-off frequency of the transistor used, and oseillation will cease at the frequency at which there is insufficient amplification to supply the energy required to overcome rircuit losses. Tramsistor oseillators usually will operate up to, and sometimes well beyond, the α rut-off frequency of the particular tramsistor used.

The appoximate oscillation frequency is that of the tuned circuit, $L_{1} C_{1} . R_{1}, R_{2}$ and R_{3} have the same functions as in the amplifier rireuits given in Fig. f-11. Capacitors (2 and C_{3} are bypass or blorking raparitors and should have low reartance compared with the resistances with which they are assoriated.

Feedhack in these circuits is adjusted in the same way as with tube oscillators. In the liartley circuit it is dependent on the position of the tap on the tank roil; in the tickler circuit, on the number of turns in L_{2} and degree of coupling between L_{1} and L_{2} : and in the Colpitts circuit, on the ratio of the tank gataritance betwen base and emitter to the tank capacitance between collector and emitter.

CHAPTER 5

High-Frequency Receivers

A good receiver in the amateur station makes the difference betweon mediore rontacts and solid (25)s, and its importance eannot be woremphasized. In the hess prowded v.h.f. hands. sensitivity (the ability to bring in weak signals) is the most important factor in a reepiver. In the more rowded amateur bands, good sensitivity must be combined with selectivity (the ability to distinguish between signals sparated by only a small frequency difference). To reacive Weak signals, the receiver must furnish enough amplification to amplify the minute signal power delivered hy the antema up to a useful amount of power that will operate a loudspeaker or sot of headphones. Before the amplified simal ran operate the speaker or phones, it must be ronverted to atudio-frequeney power by the process of detection. The sequence of amplifiotion is nut too important - some of the amplification can take bare (and usually does) before deteotion, and some can be used after deteretion.

There are major differenes between reeoivers for phone reception and for code reception. An am, phone signal has side bands that make the signal take up about for 8 ke . in the hand, and the audio quality of the received signal is impaired if the bandwidth is less than half of this. A rode signal oreupios only a few humdred eyeles at the most, and consequently the bandwidth of a code receiver can be small. 1 single-sideband phone signal takes up 3 to + ke., and the audio quality can be impaired if the handwidth is much less thou 3 ke . although the intelligibility will hold up down to around '2 ke. In any case, if the bandwidth of the reeniver is more than nec-
essary, signals adjacent to the desired one can be hourd, ind the selectivity of the receiver is loss than maximum. The detection process delivers diredty the audio frocuencies present as modulation on an a.m. phome signal. There is no modulation on a code signal, and it is necessary to int roduen a second radio frequency, differing from the signal frequeney by a suitable audio frequener, into the detector circuit to produce an audible beat. The frequener difference, and henee the beat note, is generaily made on the order of 500 to 1000 evoles, since these tones are within the range of optimum response of both the ear and the headset. There is no carier frequener present in ans.s.b. signal, and this fromoney must be furnishod at the receiver before the atudio ean be rerovered. The same soure that is used in code reception cam be utilized for the purnose. If the sonder of the locally gemorated radio frequeney is a separate oscillator, the system is known ats heterodyne reception; if the detector is made to useillate and produce the frequeney, it is known as an autodyne detector. Modern superheterodye receivers generally use a separate oseilator (beat oscillator) to supply tho loeatly generated frequency. Summing up the differences, phone reprivers can't use as murh seleetivity ats code recefivers, and code and s.s.b, receivers reguire some kind of locatly generated frequenery to give a readable signal. liroadeast receivers cain regeive only a.m. phone signals because no beat ose illator is included. Communications receivers include beat oscillators and often some means for varving the selertivity. With high selectivity they often have a slow tuning rate.

Receiver Characteristics

Sensitivity

In commercial circles "sensitivity" is defined ats the strength of the signal (in microvolts) at the input of the receiver that is reguired to produce a sperefied audio power output at the speaker or headphomes. This is a satisfactory definition for broadeast and commmonations rereivers opmating below about 20 Ne., where atmosphoric and man-made electrical noises normally mask any moise generated by the recoiver itsolf.

Inother commereial moasure of sensitivity defines it as the signal at the input of the reeeiver required to give a signal-plus-moise output some stated ratio (gemerally 10 dth.) above the noise output of the receiver. This is a more useful semsitivity measure for the amateur, since it indicates how well a weak signal will ho heard and
is not merely a mosure of the over-all amplifisttion of the receiver. Inowever, it is not an absolute mothod, berause the bandwidth of the recoiver plays a large part in the result.

The random motion of the molecnles in the antonata and rereiver dircuits genorates small vollages callend thermal-agitation noise voltages. Thermal-agitation moise is independent of fro(fuency and is proportional to the (alsolute) temperature, the rewistance romponent of the imperdanere across which the thermal agitation is produced, and the bandwidth. Noise is generaterd in varoum tubes loy random irregularities in the cursht flow within them; it is convenient to expross this shot-effect noise as an ergivalent rosistane in the grid rirenit of a moist-frer tulne. Phis equivalent noise resistance is the resistance

5-HIGH-FREQUENCY RECEIVERS

(at romm demperature) that plated in the prid circoit of a moise-frere tube will produce platecircuit noise equal to that of the atomal tube. The equivalent noise resistane of a vacum tube in"reases with froguencer.

An ideal receriver would generate no noise in its tubes and circuits, and the minimum detectable signal would be limited only hy the themal noise in the antemat. In a prateical receiver, the limit is determined by how well the amplified antemna noise overrides the other noise in the piate cerenit of the input stage. (It is ansumed that the first stage in any good receiver will be the determining fartor: the noise contributions of subsequent stages should be insignificant by eomparison.) At fremeneles bolow 20 or 30 Mr. the site noise (atmospheric and minn-made noise) is generally the limiting factor.

The degree to which a practioal receiver approwhes the guiet ideal reeceiver of the same hamdwidth is given by the noise figure of the rectiver. Noise figure is elefined as the ratio of the signal-tornoise power ratio of the ideal remeder to the signal-to-moise pewer ration of the adetual reeriver output. Since the noise figure is a ratio, it is usually given in decibels; it mus around is to 10 (ll), for at good communications receiver below 30 Mr. . Athomgh noise figures of 2 to 1 dt . ceth be oltabined, they are of litthe or no usi below 30 Me . exeph in extromely quiet locations or when a vory smatl antemat is insed. The noise figure of a reroiver is not modifiod ly changes in bandwidth.

Selectivity

Solertivity is the ability of a receiver to dismbiminate against signals of frequencies diflering from that of the desired signal. The over-all selectivity will depend upon the seleclivity of the individual tuned circuits and the number of sueh circuits.

The seloctivity of a receiver is shown graphically by drawing a curve that gives the ratio of signal strength required at various frequencins off resoname to the signal strength at resomanee, to give constant onfput. A resonance curve of this type is shown in lig. 5-1. The bandwidth is the width of the resonance curve (in eveles or kilocyedes) of a receriver at a sperified ratio; in Fig. $5-1$, the bandwidthe are indieated for ration of response of 2 and 10 (" 0 (ll). (lown" and "20 (th. (lown").

Fig. 5-1 - Typical selectivity curve of a modern superheterodyne receiver. Relative response is plotted against deviations above and below the resonance frequency. The scale at the left is in terms of voltage ratios, the corresponding decibel steps are shown at the right.

The bandwidth at 6 db. down must he suffieient to pass the signal and its sidehands if faithful reproduction of the signal is desired. However, in the crowded amatem bands, it is gemarally advisatble to sacriliee fidelity for intelligibility. The ability to rejeet adjacent-chanmel sigmals depends upon the skirt selectivity of the reeciver, which is determined by the bandwidth at high attemation. In a recoiver with good skirt selectivity, the ratio of the $(\mathrm{i}-\mathrm{d}$). bimdwidth to the ($\mathrm{j}(\mathrm{-d} \mathrm{~d}$). handwidth will be about 0.25 for code and 0.5 for phone. The minimum nsable bandwidth at 6 d db. down is about 150 cyedes for code reception and about 2000 cycles for phone.

Stability

The stability of a receiver is its ability to "stay put" on a sigmal under varying conditions of gain-control setting, temperature, supplyvoltage ehanges and mechanieal shoek and distortion. The term "unstable" is also applied to a receiver that braks intoosedation or a regenerative condition with some settings of its controls that are not specifiadly intended to control such a condition.

Detection and Detectors

Detertion is the process of reoovering the monhalation from a signal (see "Modulation, Heterodyning and Beats"). Any deviee that is "nomlincar" (i.c., whose output is not exactly proportional to its input) will ate ats a detector. It rath be usal as a deterton if am impedance for the desired modulation frequency is ronnerted in the output circuit.

Detector sensitivity is the ratio of desired detertor output to the input. Detector linotarity is a mousare of the ability of the detactor to
reproduce the exant fin mi the madalation on the incoming signal. The resistane or innpedance of the detector is the resistane on impedance it presents to the aircuits it is romnected to. The input resistance is imperant in reoriver design, sime if it is relatively low it muths that the detertor will consume power, and this power must be furnished by the prereding stage. The signal-handling (atpability means the ability to aceept signals of a sperified amplitude without overloading or distortion.

Detection and Detectors

Diode Detectors

The simplest detector for a.m, is the dionle. A galent, silicon or germanium crystal is an imperfect form of diode (a snall current can pass in the reverse direction), and the principle of detection in a crystal is similar to that in a varcum-tube diode.

Circuits for both half-wave and full-wave diodes are given in Fig. -2-2. The simplified half-wave rircuit at $5-2.1$ ineludes the r.f. tuned circuit, $L_{2} C_{1}$, a coupling coil, L_{1}, from which the r.f. energy is fed to $L_{2} C_{1}$, and the diode, I, with its load resistance, R_{1}, and bypass rapacitor, C_{2}. The flow of rectified r.f. current (auses a d.c. voltage to develop arross the terminals of R_{1}. The - and + signs show the polarity of the voltage. The variation in amplitude of the r.f. signal with modulation rauses eorresponding variations in the value of the d.e, voltage across R_{1}. In audio work the load resistor, R_{1}, is usually 0.1 megohm or

Fig. 5-2-Simplified and practical diade detectar circuits. A, the elementary half-wave diade detector; B, a practical circuit, with r.f. filtering and audia autput caupling; C, fullwave diade detector, with output coupling indicated. The circuit, $L_{2} C_{1}$, is tuned to the signal frequency; typical values for C_{2} and R_{1} in A and C are $250 \mu \mu f$, and 250,000 ohms, respectively; in B, C_{2} and C_{3} are $100 \mu \mu f$. each; $R_{1}, 50,000$ ohms; and $R_{2}, 250,000$ ohms. C_{4} is $0.1 \mu \mathrm{f}$, and R_{3} may be 0.5 to 1 megohm.
higher, so that a fairly large voltage will develop from a small rectified-rurrent flow.
The progress of the signal through the detertor or reetifier is shown in Fig. 5-3. . 1 typical modulated signal as it exists in the tuned

Fig. 5-3-Diagrams shawing the defectian pracess.
eireuit is shown at .1 . When this signal is applied to the rectitier tubre, current will flow only during the part of the r.f. eycle when the phate is positive with respect to the eathode, so that the output of the rectifier consists of half-eyeles of r.f. These current pulses flow in the load eircuit comprised of R_{1} and r_{2}, the resistance of R_{1} and the capacity of C_{2} being so proportioned that ('2 charges to the peak value of the rectified voltage on each pulse and retains enough charge between pulses so that the voltage across R_{1} is smoothed out, as shown in C. ('2 thus acts as a filter for the radio-frequency eomponent of the output of the rectifier, leaving a d.c. component that varies in the same way as the modulation on the original signal. When this varying d.e. voltage is applied to a following amplifier through a coupling capacitor (C_{4}^{\prime} in Fig. 5-2), only the maintions in voltage are transforred, so that the final output signal is a.c., ats shown in I).

In the eircuit at $5-2 B, R_{1}$ and C_{2} have been divided for the purpose of providing a more effective filter for r.f. It is important to prevent the appearance of any r.f. voltage in the output of the detector, beause it may anse overloading of a suceeeding amplifier tube. The audiofrequency variations ean be tramsferred to another erreuit through a coupling capacitor, C_{4}, to a load resistor, R_{3}, which usually is a "potentiometer" so that the audio volume can be adjusted to a desired level.

Coupling to the potentiometer (volume control) through a rapacitor also avoids any flow of d.e, through the eontrol. The flow of d.e. through a high-resistance volume control oftern tends to make the control noisy (seratehy) after a short while.

The full-wave dionle circuit at i-2e differs

5-HIGH-FREQUENCY RECEIVERS

in operation from the half-wave circuit only in that hoth halves of the r.f. eycle are utilized. The full-wave circuit has the advantage that 1.f. filtering is maser than in the half-wave cireuit. As a result, less attemuation of the higher audio freguencies will be obtamed for any giver dogree of r.f. filtering.

The reactance of C_{2} must be small eompared to the resistance of R_{1} at the radio frequency being rectifiod, but at audio frequencies must be relatively large compared to R_{1}. If the capacity of (2 is too large, response at the higher audio frequencies will be lowered.
Compared with other detectors, the sensitivity of the diode is low, normally ruming around 0.8 in audio work. Since the diode consumes power, the Q of the tuned circuit is reduced, bringing about a reduction in selertivity. The loading effect of the diode is close to one-half the load resistance. The detector linearity is good, and the signal-handing capability is high.

Plate Detectors

The phate detector is armanged so that rectifieation of the r.f. signal takes place in the plate circuit of the tube. Sufficient negative hias is ap-

Fig. 5-4-Circuits for plate detection. A, triode; B, pentode. The input circuit, $L_{2} C_{1}$, is tuned to the signal frequency. Typical values for the other components are:
Com-
ponenf
Circuit A
Circuit B
$\mathrm{C}_{2} 0.5 \mu \mathrm{f}$. or larger.
$\mathrm{C}_{3} 0.001$ to $0.002 \mu \mathrm{f}$.
$C_{1} \quad 0.1 \mu \mathrm{f}$.
C_{5}
$R_{1} 25,000$ to 150,000 ohms. 10,000 to 20,000 ohms.
R2 50,000 to 100,000 ohms. 100,000 to 250,000 ohms. R_{3}
R_{1}
RFC 2.5 mh .
Plate voltages from 100 to 250 volts may be used. Effective screen voltage in B should be about 30 volts.
plied to the grid to bring the plate current nearly to the cut-off point, so that application of a signal to the grid circuit causes an increase in average plate current. The average plate current follows the changes in signal in a fashion similar to the rectified current in a diode detector.
Circuits for triodes and pentodes are given in Fig. i)- (. ('3 is the plate hypas capacitor, and, with $R F C$, prevents r.f. from apparing in the output. The cathode resistor, R_{1}, provides the operating grid bias, and ('2 is a brpass for both radio and audio frequencies. R_{2} is the plate load resistance and C_{4} is the output coupling capacitor. In the pentode rireuit at $13, R_{3}$ and R_{4} form a voltage divider to supply the proper sercen potential (about 30 volts), and C_{5} is a bypass rapacitor. C'2 and ('s must have low reartance for both radio and audio frequencies.

In general, transformer coupling from the phate circuit of a plate detector is not satisfartory, bocause the plate impedance of any tube is very high when the bias is nom the platecurrent cut-off point. Impedance coupling may be used in place of the resistance coupling shown in Fig. $\overline{\text { i }}$-t. I sually 100 henrys or more inductance is required.

The plate detector is more sensitive than the diode because there is some amplifying action in the tube. It will handle large signals, but is not so tolerant in this resperet as the diode. Linearity, with the self-hiased circuits shown, is good. Ip to the overload point the deter tor takes no power from the tuned cireuit, and so does not affert its Q and selectivity.

Infinite-Impedance Detector

The rircuit of Fig. i-: combines the high signal-handling capabilities of the diode detertor with low distortion and, like the plate detector, does not load the tumed rircuit it connerts to. The circuit resembles that of the plate detector, exerpt that the load resistance, R_{1}, is comerted botween rathonde and ground and thus is common to both grid and plate circuits, giving negative feedback for the audio froctumens. The eathode resistor is bepassed for r.f. but not for audio, while the phate circuit is hepassed to

Fig. 5-5-The infinite-impedance detector. The input circuit, $L_{2} \mathrm{C}_{1}$, is tuned to the signal frequency. Typical values for the other components are:

$\mathrm{C}_{2}-250 \mu \mu \mathrm{f}$.	$\mathrm{R}_{1}-0.15$ megohm.
$\mathrm{C}_{3}-0.5 \mu \mathrm{f}$.	$\mathrm{R}_{2}-25,000$ ohms.
$\mathrm{C}_{4}-0.1 \mu \mathrm{f}$.	$\mathrm{R}_{3}-0.25$-megohm volume control.

A tube having a medium amplification factor (about 20) should be used. Plate voltage should be 250 volts.

Detectors

ground for both audio and radio frequencies. An r.f. filter ratn be ronneded betwern the athode and C, to climinate any r.f. that might otherwise appear in the output.

The plate current is very low at no sigmal, increasing with signal as in the case of the plate detertor. 'The voltage droparerss h_{1} comsequently increases with signal. I Seanse of this and the large initial drop across R_{1}, the grid usually cannot be driven positive by the signal, and no grid current can be drawn.

Product Detector

The product detector cireuits of Fig. 5-6 are useful in s.s.b. and code reception because thes mininize intermodulation at the detector. lin Fig. 5-6A, two triodes are used as cathode followers, for the signal and for the h.f.o., working into a common cat hode resistor (1000 ohms). The third triode also shares this rathode resistor and eonsequently the same signals, but it hats an andio load in its plate eircuit and it operates at a higher grid bias (by virtue of the 2700 -ohm resistor in its cathode eirenit). The signals and the b.f.o, mix in this third triode. If the b.f.o. is turned off, a modulated signal ruming through the sighal eathode follower should yield little or no :undio output from the detector, up to the overload point of the signal cathode follower. Turning on the b, f.o. brings in modulation, becatuse now the detector output is the product of the two signals. The plates of the eathode followers are grounded and filtered for the i.f. and the $4700-\mu \mu \mathrm{f}$, eapacitor from phate to gronnd in the output triode furnishes a bypass at the i.f. The b.f.o. voltage should be about 2 r.m.s., and the signal shonded not exered alout 0.3 volts r.m.s.

The cireuit in lig. 5-6I3 is a simplifiention requiring one less triode. Its primeiple of operation is substantially the same except that the additional bias for the output tube is derived from rectified b.f.o. voltage across the 100,000 -ohm
resistor. More elaborate r.f. filtering is shown in the phate of the output tube ($2-\mathrm{mh}$. choke and the $220-\mu \mu \mathrm{f}$. capacitors), and the degree of plate filtering in either circuit will depend upon the frequencies involved. At low intermediate frequencies, more elaborate filtering is required.

REGENERATIVE DETECTORS

By providing controllable r.f. feedback (regencration) in a triode or pentode detector circuit, the incoming signal can be amplified many times, thereby greatly increasing the sensitivity of the detertor. Regeneration also increases the effective Q of the circuit and thus the selectivity. The grid-lak type of detector is most suitable for the purpose.

The grid-leak detector is a combination diode rectifier and zudio-frequency amplifier. In the circuit of Pig. 5-7. , the grid corresponds to the diode plate and the rectifying action is exactly the same as in a diode. The d.c. voltage from rectified-current flow through the grid leak, r_{1}, biases the grid negatively, and the audiofrequency variations in voltage across R_{1} are amplified through the tube as in a normal a.f. amplifier. In the plate cirenit, l_{2} is the plate load resistanere and C_{3} and $R F^{\prime} C^{\prime}$ a filter to climinate r.f. in the output eireuit.

A grid-leak detector has considerahly greater sensitivity than a diode. The sensitivity is further increased by using a screen-grid tube insteal of a triode. The opreation is equivalent to that of the trioke circuit. The sereen bypass apateitor should have low reactance for both radio and audio frequatacies.

The circuit in Fig. $5-7 \mathrm{l} 3$ is regenerative, the fredback being obtained by feeding some signal from the plate cireuit back to the grid be inductive coupling. The amount of regeneration must be controllable, becaus maximum regencrative amplification is secured at the eritical point where the cireuit is just about to oscillate. The eritical

(A)

Fig, 5-7-(A) Triode grid-leak detector combines diode detection with triode amplification. Although shown here with resistive plate load, R_{2}, an audio choke coil or transformer could be used.
(B) Feeding some signal from the plate circuit back to the grid makes the circuit regenerative. When feedback is sufficient, the circuit will oscillate. Feedback is controlled here by varying reactance at C_{5}; with fixed capacitor at that point regeneration could be controlled by varying plate voltage or coupling between L_{2} and L_{3}.

point in turn depends upon rirenit conditions, which mas vary with the frequeney to which the detertor is tumed. An oscillating detector can be detuned slightly from an incoming c.w. signal to give autodyne reception.
The circuit of Fig. 5-7 B^{2} uses at variable bypass (atpacitor, ('s, in the plate cirenit to control regeneration. When the caparitance is small the tube does not regenerate, but as it inereases toward maximum its reartance becomes smatler until there is sufficient fordback to eanse oscillation. If L_{2} and L_{3} are womed end-to-end in the sime direction, the plate comnection is to the outside of the plate or "tiekler" coil, L,3, when the grid connection is to the outside end of L_{2}.

Dlhough the regenerative grid-leak detector is more sensitive than any other type, its many disadvantages commend it for use only in the simplest receivers. The linearity is rather poor, and the signal-handling rapability is limited. The signal-handling eapability can be improved by reducing R_{1} to 0.1 mogohm, but the sensitivity will be decreased. The degree of antenna coupling is often critical.

Tuning

For c.w. recoption, the regeneration control is alvanced until the detector breaks into a "hiss," which indicates that the detector is oscillating. Further advancing the regeneration control will result in a slight decrease in the hiss.

The proper adjustment of the regenemation control for hest rereption of code signals is where the detertor just starts to oscillate. Then coth signals catn be tuned in and will give at tone with eath signal depernling on the setting of the tuning control. An the receiver is funed through a signal the tone first will be heard as a very high pitch, then will go down through "zero brat" and rise again on the other side, finally disappearing at a very high pitch. This behavior
is shown in Fig. 5-8. A low-pitehed beat-note cannot be ohtained from a strong signal becalles the dutector "pulls in" or "blocks"; that is, the signal forees the detector to osillate at the signal frocurener, "ven though the circuit may not be tuned exactly to the signal. It usually can be eorreded by advancing the regeneration control until the leat-note is heard again, or bey reducing the imput signal.

The point just after the detector starts oscillating is the most sensitive wondition for code reception. Further advancing the regeneration control makes the receiver less prone to blocking, but also less sensitive to weak signals.

If the detector is in the oseillating condition and a phone signal is tuned in, a steady audible beat-noto will result. While it is possible to listen to phome if the reroiver can be tuned to exact zero beat, it is more satisfactory to reduce the regeneration to the point just before the receiver gees into oscillation. This is also the most sensitive operating point.

Single-sidehand phone signals can be received with a regenerative detector by advancing the regencration control to the print used for code reception and tuning earefully across the s.s.b. signal. The tuning will be very critical, however, and the operator must be prepared to just "creep" arross the signal. A strong signal will pull the detector and make reception impossible, so either the regeneration must be advanced far enough to prevent this condition, or the signal must be reduced by using loose antenna coupling.

Fig. 5.8-As the tuning dial of a receiver is turned past a code signal, the beat-note varies from a high tone down through 'zero beat" (no audible frequency difference) and back up to a high tone, as shown at A, B and C. The curve is a graphical representation of the action. The beat exists past 8000 or 10,000 cycles but usually is not heard because of the limitations of the audio system.

Band Spreading

Tuning and Band-Changing Methods

Band-Changing

The resontut rireuits that are tuned to the frequency of the incoming signal constitute a spectial problem in the design of amateur roceivers, since the amateur frequency assignments consist of groups or bands of frequencies at widely-spared intervals. The same coil and thang rapuritor camot be used for, say, it Me. to 3.5 M ., because of the impracticable maxi-mum-to-minimum capacity ratio required, and also berause the tuning would be excessively eritical with such a large freduency range. It is necessary, therefore, to provide a means for changing the eireuit constants for various frequency bands. Is a matter of eonvenience the same tuning rapacitor usually is retained, but new coils are inserted in the cireuit for each band.

One method of changing inductances is to use a switch having an appopriate number of eontacts, which rommeets the desired roil and disomnerts the others. The unused eoils are sometimes short-cireuited by the switch, to avoid the prossibility of undesirable self-resonames in the unused coils. This is not neressary if the eoils are separated from rach other by several roil diamoters, or are mounted at right anglos to each other.

Inother method is to use coils wound on forms with contacts (usually pins) that ram be plugged in and removed from a socket. These plug-in coils are advantageous when space in a multiband receiver is at a premium. Thes are ako very useful when considerahle experimental work is involved, hecause they are easier to work on than coils clustered around a switeh.

Bandspreading

The tuning range of a given coil and variable caparitor will depend upon the inductane of the coil and the change in tuning caparity. For case of tuning, it is desirable to adjust the tuning range so that partically the whole dial scale is oceupied by the band in use. This is called bandspreading. Because of the varying widths of the bands, special tuning methods must be devised to give the correct maximumminimum capacity ratio on each band. several of these methods are shown in Fig. i-9.
(A)

(B)

Fig. 5-9—Essentials of the three basic bandspread tuning systems.
(c)

In A, a small bandspread capacitor, C_{1} (15to $2 \pi-\mu \mu$ f. maximum capacity), is used in par-
allel with a calpacitor, (s, which is usually large enough (100 to $140 \mu \mu \mathrm{f}$.) to (rover a 2 -to-l frequency range. "The setting of (2 will determine the minimum celpatitaner of the circuit, and the maximum capacity for bandspread tuning will be the maximum caparity of ch $_{1}$ plus the setting of ('2. The induetance of the coil can be adjusted so that the maximumminimum ratio will give adequate handspread. It is almost impossible, because of the nonhamonie redation of the various band limits, to get full bandspead on all bands with the same pair of calpacitors. Co is varionsly called the band-setting or main-tuning capacitor. It must be reset each time the band is changed.

The method shown at 13 makes use of catpacitors in serios. The toming capacitor, f mather he at maximum capacitance of $100 \mu \mu \mathrm{f}$. or more. The minimum caparitance is determined principally by the sotting of ("3. which usially has low catpardtance, and the maximmm (apacitance by the setting of ('s, which is of the order of 25 to $50 \mu \mu \mathrm{f}$. This mothod is capable of close adjustment to practicallyanydesireddegreoblbandsprad. bither C'2 and C_{3} must be adjusted for carh band or separate prodjusted eapacitors must be switehed in.
The circuit at C also gives romplete spread on each band. Ci, the bandepread capacitor, may- have any comvenient value: $50 \mu \mu \mathrm{f}$, is sat isfactory. C_{2} maty he used for continuons frequency coverage ("reneral coverage") and as a bandsetting capacitor. The effective maximum-minimum capacitance ratio depends upon (C_{2} and the point at which C_{1} is tapped on the coil. The nearer the tap to the bottom of the coil, the greater the bandspread, and vide versia. For a given coil and tap, the bandspread will be greater if C_{2} is set at higher capmeitance. Comay he comnerted permanently across the individual inductor and preset, if desired. This requires a separate capacitor for each band, but eliminatee the neessity for resetting ('2 cach time.

Ganged Tuning

The loning eatpacitors of the soveril r.f. circuits may be coupled together mechanically and operated by a single eontrol. However, this operating convenience involves more romplicated construction, both electrically amd mechanically. It becomes necessary to make the various circuits track - that is, tune to the same frequency at each setting of the tuming control.

True tracking ean be obtained only when the inductance, thang rapacitors, and cirmit inductances and minimum and maximum capacities are identical in all "ganged" stages. A small trimmer or padding rapacitor may b_{x} commected across the coil, so that variations in minimum eapacity can be eompensated. The fundamental circuit is shown in Fig. i-10, where C_{1} is the trimmer and C_{2} the tuning capacitor. The use of the trimmer needssurily increases the

5-HIGH-FREQUENCY RECEIVERS

minimum cireuit caparity, but it is a necessity for satisfactory tracking. Midget capacitors having maximum capacities of 15 to $30 \mu \mu$ f. are commonly used.

Fig. 5-10-Showing the use of o trimmer copocitor to set the minimum circuit copacity in order to obtoin true trocking for gong-tuning.

The same methods are applied to bandspread circuits that must he tracked. The circuits are identical with those of Fig, E-9. If both generaleoverage and bandsporad tuning are to be available, an additional trimmer capacitor must be connerted arross the eoil in each circuit shown. If only amateur-hand tuning is desired, however, then ('3 in Fig. 5-9B, and (C_{2} in Fig. $\mathrm{F}-3 \mathrm{C}$ (, serve as trimmers.

The coil inductance can be adjusted by starting with a larger number of turns than
necessary and removing a turn or fraction of a thm at a time until the cireuits track satisfatorily. An alternative mothod, provided the inductane is reasomably elose to the correct value initially, is to make the eoil so that the last turn is variable with resporet to the whole coil.

Another method for trimming the inchetame is to use an adjustable bass (or copper) or powdered-iron core. The brass eore ants like a single shorted thrn, and the inductance of the roil is derreased as the brass core, or "slug," is moved into the roil. The powdered-iron core has the opposite effect, and incrersess the inductance as it is moved into the eoil. The (Q of the enil is not atfected materially by the use of the brass shag, provided the brass slug hats a clean surface or is silverplated. The use of the powdered-iron core will raise the ($)$ of a coil, provided the iron is suitable for the frequency in use. Cood pow-dered-iron rores can be obtained for use up to about 50 Mc .

The Superheterodyne

For many years (until about 1032) practically the only type of receiver to be found in amatelor stations consisted of a regenerative detertor and one or more stages of audio amplification. Receivers of this type can be made quite sensitive but strong signals block them easily and, in our present crowded bands, they are seldom used exerpt in emergemeins. They have been replaced by superheterodyne receivers, generally called "superhets."

The Superheterodyne Principle

In at superheterodyne receiver, the frequency of the intoming signal is heterodyned to a new radio frequency, the intermediate frequency (abhreviated "if.f."), then amplified, and finally cletereted. 'The frequency is changed by modulating the output of a tumable oscillator (the high-frequency, or local, oscillator by the incoming signal in a mixer or converter stage (first detector) to produce a side frequency equal to the intermodiate frequency. The other side frequency is rejoceted by selective cireuits. The andiofrequency sigual is whtained at the second detector. Code signals are mado audible by autodyne or heterodyne reception at the second detector.

As a mumerial example, assume that an intermediate frequency of tha ke. is chosen and that the ineoming signal is at 7000 kc . Then the high-frequeney oscillator frequeney nay be set to 7 ang ke, in order that one side frequency (745 mimus 7000) will be 45 k ke. The high-frequeney osidiator could akso be set to 65 sis ke. and give the same difference frequency. To protuce an audible code signal at the second detector of, say, 1000 rycles, the autodyning or heterodyning oscillator would be set to either 454 or 4 tid ke.

The frequency-conversion process permits
r.f. amplification at a relatively low frequency, the i.f. High selectivity and gain can be obtained at this frequeney, and this solectivity and gain are constant. The separate oncillators can be designed for good stablility and, since they are working at frequencies monsiderably removed from the signal frequencies (berentage-wise), they are not normally" "pulled" by the incoming signal.

Images

Each h.f. uscilator frequency will cause i.f. response at two signal frequencies, one higher and one lower than the oscillator frequency. If the oscillator is sot to 7 tian ke , to tume to a $7000-\mathrm{kc}$, signal, for example, the receiver can respond also to a signal on 7910 ke., which likewise gives a finke. beat. The undewired signal is called the image. It can canse umeressarly interference if it isn't eliminated.

The madio-frequency rircuits of the receiver (thowe used before the signal is heterodyned to the i.f.) Bomally are tmed to the desired signal, so that the selectivity of the circuits reduces or eliminates the response to the image signal. The ratio of the receiver voltage output from the desired signal to that from the image is called the signal-to-image ratio, or image ratio.

The image ratio depends upon the selectivity of the r.f. tuncd dircuits preeding the mixer tube. Also, the higher the intermediate frogueney, the higher the image ratio, since ratising the i.f. incerases the frequency separation betweon the signal and the image and places the latter further away from the resonance peak of the signal-frequency imput rircuits. Most receiver designs represent a compromise betweoll eronomy (few l.f. stages) and image rejection (large number of r.f. stages).

Frequency Converters

Other Spurious Responses

In addition to images, other signals to which the recoiver is mot ostensibly tumed may be heatd. Harmonies of the high-frequeney ossillator may beat with signals far removed from the desired frequency to produce output at the intermediate frequency; such spurious responses con be reduced by adequate selectivity before the mixer stage, and by using sufficient shielding to prevent signal pirk-up by any means other than the antema. When a strong signal is received, the harmonies generated by rectification in the second detertor may, by stray coupling, be introluced into the r.f. or mixer circuit and converted to the intermediate frequency, to go through the receiver in the same way as an ordinary signal. These "birdies" appear as a heterodyne beat on the desired signal, and are prineipally bothersome when the frequency of the incoming signal is not greatly different from the intermediate frequency. The cure is proper circuit isolation and shielding.

Harmonies of the beat oscillator also may be converted in similar fashion and amplified through the receiver; these responses ran be reduced by shielding the beat oscillator and operating it at a low power level.

The Double Superheterodyne

It high and very-high frequencies it is difficult to secure an adequate image ratio when the intermediate frequency is of the order of $4 \pi 5 \mathrm{kr}$. To reduce image response the signal frequently is converted first to a rather high (1500,5000 , or even $10,000 \mathrm{kc}$.) intermediate frequency, and then-sometimes after further amplification - reconverted to a lower i.f. where higher adjacent-chamel selectivity can be obtained. Such a receiver is called a double superheterodyne.

FREQUENCY CONVERTERS

A circuit tuned to the intermediate frequeney is placed in the plate circuit of the mixer, to ofler a high impedance load for the i.f. voltage that is developed. The signal- and oseillator-frequeney voltages appearing in the plate cirenit are rejertad by the selectivity of this cireuit. The i.f. Imed circuit should have low impedance for these frequencies, at condition easily mot if thes do not approach the intermediate freguency.

The conversion efficiency of the mixer is the ratio of i.f. output voltage from the plate circuit to r.f. signal voltage applied to the grid. High conversion efficiency is desirable. The mixer tube noise also should be low if a gond signal-to-noise ratio is wanted, particularly if the mixer is the first tube in the recoiver.

A change in oscillator frequency eused by tuning of the miver grid circuit is called pulling. l'ulling should be minimized, because the stability of the whole receiver depends ritically upon the stability of the h.f. oscillator. Pulling decreases with separation of the signal and h.f.oscillator frequencies, being less with high in-
termediate frequencies. Another type of pulling is camsed by regulation in the power supply. Strong signals cause the voltage to change, which in turn shifts the oseillator frequency.

Circuits

If the first detertor and high-frequency oscillator are separate tubes, the first detector is called a "mixer." If the two are combined in one envelope (as is often done for reasons of economy or efficiency), the first detector is called a "converter." In either case the function is the same.

Typical mixer circuits are shown in Fig. $\bar{j}-11$. The variations are chiefly in the way in which the oscillator voltage is introduced. In $2-11 \mathrm{~A}$, a pentode functions as a plate detector; the oscillator voltage is raparity-coupled to the grid of the tube through (2 . Inductive coupling may be used instead. The conversion gain and

Fig. 5-11-Typical circuits for separately excited mixers. Grid injection of a pentode mixer is shown of A, cathode injection at B, and separate excitation of a pentagrid converter is given in C. Typical values for C will be found in Table 5-I-the values below are for the pentode mixer of A and B.
$C_{1}-10$ to $50 \mu \mu \mathrm{f}$.
$\mathrm{C}_{2}-5$ to $10 \mu \mu \mathrm{f}$.
$C_{3}, C_{4}, C_{5}-0.001 \mu \mathrm{f}$.
$\mathrm{R}_{2}-1.0$ megohm.
$R_{3}-0.47$ megohm.
$R_{4}-1500$ ohms.
$\mathrm{R}_{1}-6800$ ohms.
Positive supply voltage can be 250 volts with a $6 \mathrm{AC7}$ or 6AH6, 150 with a 6AK5.

5 －HIGH－FREQUENCY RECEIVERS

iuput solectivity generally are good，so long as the sum of the two voltages（signal and oseillat tor）impressed on the mixer grid does not exceed the grid bias．It is desirable formake the oscillator voltage as high as prsible without exceeding this limitation．The oserillator power required is negligible．If the signal frequency is only 5 or 10 times the i．f．，it may be difficult to develop enough oscilator voltage at the grid（because of the solectivity of the tunced imput（ereuit）．However， the circuit is a sensitive one and makes a good mixer，particularly with high－transconductance tubes like the 6．ACt，6AkS or bits pontode seretion）．Triode tubes ram be used as mixens in grib－injeetion direnits，but they are commomy used only at 50 Me，and higher，where mixer noise may berome a significant factor．The triode mixer has the lowest inherent nowe，the pentode is next．and the multigrid converter tubse are the moisiest．
The circuit in F＇ig，i）－1113 shows rathode in－ jection at the mixer．Operation is similar to the grid－injection case，and the same comsiderations aply．

It is difficult to aroid＂pullingr＂in a triode or pentode mixer，and a pentagrid mixer tuhe provides much better isolation．A typical cir－ ruit is shown in lig．o－llC，and tubes like the （indi，filits or tillity are commonly used．The oscillator voltage is introduced through an＂in－ jection＂grid．Mesisurmont of the reetified coment flowing in R_{2} is used as a check for proper aseilatom－voltage amplitude．Tuning of the signal－grid ciralut asm have little affert on the wablaton frequency berame the injertion grid is isolated from the signal grid by a sereen grid that is at r．f．ground potential．The pentagrid mixer is much moisier than a triode or pentode mixer，but its isolating characteristios make it a very usoful device．

Many reocivers use pentarid converters，and two typical rircuits are shown in Fig，\％－12． The eireuit shown in lig．o－1？$\$ ，which is suitahle for the 6 に＂ x ，is lor a＂triode－hexode＂converter． A triode oweilator tube is monnted in the same envelope with a hexode，and the control grid of the ascillator port ion is romereted internally to an injeretion gride in the hexomle．The isolation botwern oscillator and eonverter tube is reason－ ably good，and very little pulling results，exopot on signal frequencies that are quite large com－ pared with the i．f．

The pentagrid－enverter direnit shom in Fir．

Fig．5－12－Typical circuits for triode－hexade（A）and pentagrid（B）converters．Values for R_{1}, R_{2} and R_{3} can be found in Table $5-1$ ；others are given below．
$\mathrm{C}_{1}-47 \mu \mu \mathrm{f}$ ．

$$
\begin{aligned}
& C_{3}-0.01 \mu \mathrm{f} . \\
& R_{4}-1000 \text { ohms. }
\end{aligned}
$$

$\mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{5}-0.001 \mu \mathrm{f}$ ，
o－ 1213 can be used with a tube like the 6S．17， 6sil37 ${ }^{\prime}$ ， 613.17 or 613 F 6 ．（ieneratly the only rare neressary is to adjust the foednatek of the ose illat tor eirenit to give the proper oseillator ref．volt－ age．This condition is cherked by measuring the d．c．current flowing in grid resistor $R 2$ ．

I more stable receiver gencrally results，par－ ticularly at the higher frequencies，when sepa－ rate tubes are used for the mixer and oscillator， Practically the same number of circuit com－ ponents is required whether or not a combi－ nation tube is used，so that there is very little difference to be realized from the cost standpoint．

Typiral cireuit constants for converter tubes are given in Table 5－I．The grid leak referred to is the oscillator grid leak or injection－grid return，R ，of Figs． $5-11 \mathrm{C}$ and $5-12$.

The effectiveness of converter tubes of the type just deseribed beeomes less as the signal fre－ queney is increased．some oseillator voltage will

TABLE 5－I								
Circuit and Operating Values for Converter Tubes								
Plate voltage $=250$		Screen voltage $=100$ ，or through specified resistor from 250 volts						
		Sitreekattel			Sebirate fivertation			
T＇ube	Cinthorle Resistor	S．ren Rasistor	Cirid Ineali	Grid Ciurront	Giuthorde Resistor	circen Rexistor	Grid leak	（irid Cilrrent
013.47^{1}.	1	12．006）	2－2000	0.3 .5 ma．	08	15，000	9？， 01011	10.3 .5 ma ．
6 $13 \mathrm{~F} \mathrm{O}^{1}$ ．	$1)$	－2．9．010）	2－2，00）	0.8	1．50	$2 \cdot 0001$	$2 \cdot 2,010$	0.5
6K8 ${ }^{\text {c }}$	2119	$\because \mathrm{Z}$－（\％）	15，01010	11，15－0．2	－	－	－	－
心	11	18.0001	－2． 6110	$0 . \mathrm{B}$	150	18,000	\cdots	0.5
6ミ159	0	1－1，0010	2－2600	0.35	68	15，010	22.000	0.35
${ }^{1}$ Minature t	Oretal hase	，metal．						

High-frequency Oscillator

be coupled to the signal grid through "spacecharge" coupling, an elfert that incerases with fropuency. If there is relatively little frequency difference botween oscillator and signal, as for example a $1+$ or 28-Mc. signal and an i.f. of 4.55 ke., this voltage can beome considerable because the selectivity of the signal circuit will be matble to rejeet it. If the signal grid is not returned directly to ground, but instead is returned through a rosistor or part of an a.v.e. system, ronsiclorable bias ean be developed which will cut down the gain. For this reason, and to reduce image rosponse, the i.f. following the first converter of a receiver should be not less than or or 10 per cent of the signal frequency, for best results.

Transistors in Mixers

Typical transistor circuitry for a mixer operating at frequrncios helow 20 Me. is shown in Fig. :-13. The loced oseillator curment is injected in the cmittor circuit low imductive coupling to $L_{1}: L_{1}$ should have low readtace at the oscillator frobuences. The imput from the r.f. amplifier should lx at low impedance. ohtained by inductive coupling or t:ppling down on the tumed circuit. 'The output transformer T_{1} has the collector conneretion tapped down on the indurtance to maintain a high () in the tuned cireuit.

Fig. 5-1 3--Typical transistor mixer circuit.
L_{1}-Low-impedance inductive coupling to oscillator.
T_{1}-Transistor i.f. tronsformer. Primary impedance of 100,000 ohms, secondary impedance of 1700 ohms, unloaded $Q=100$, loaded $Q=35$.

Audio Converters

Converter circuits of the type shown in Fig. 5-12 can he used to advantage in the reception of code and single-sideband suppressed-carrier signals, by introducing the local oscillator on the No. 1 grid, the signal on the No. 3 grid, and working the tube into an audio load. Its operation ean be visualized as heterodyning the incoming signal into the audio range. The use of such circuits for audio conversion has been limited to selective i.f. amplifiers operating below 500 kc , and usually below 100 ke. An ordinary a.m. signal cannot be rocoived on such a detector unless the tuning is adjusted to make the local oseillator zero-beat with the ineoming earrier.
Nine the beat oseillator modulates the electron
stream completely, a large beat-oscillator component exists in the plate circuit. To prevent overloud of the following audio amplifier stages, an adequate i.f. filter must be used in the output of the converter.

The "produet detertor" of Fig. 5-6 is also a converter circuit, and the statements above for audio converters apply to the product detector.

- THE HIGH.FREQUENCY OSCILLATOR

Atability of the reowiver is dependent chicfly upon the stalility of the h.f. (aseillator, and particular care should be given this part of the recoiver. The frequency of oweillation should be insensitive to mechanical shock and changes in voltage and loading. Thermal effects (slow change in frequency beratuse of tube or circuit heating) should be minimized. They can be reduced by using ceramir instead of bakelite insulation in the r.f. circuits, a large cabinet relative to the chassis ($(10$ provide for good radiation of developed heat), minimizing the number of high-wattage resistors in the receiver and putting them in the separate power supply, and not monnting the wrillator roils and tuning raparitor too close to a tubre. Propping up the hid of a receiver will often reduce drift by lowering the terminal temperature of the unit.
sonsitivity to vibration and shock can be minimized by using good mechanteal support for coils and thaing ciaparitors, theayy chassis, and by mot hathging any of the oscillator-circuit components on long leads. Tin-points should be used to avoid long leads. Siff short leads are excellent berause they can't be mado to vibrate.
smooth tuning is agreat convenience to the operator, and can be obtained by taking pains with the mounting of the dial and tuning catparitors. They should have good aligmment and no bark-lash. If the capacitors are mounted off the chasssis on pests instead of brackets, it is atmost impossithle to avoid some back-lash unless the posts have extri-wide bases. The apparitors shond to selected with good wiping contarts to the rotor, since with age the rotor eontarts can be a source of erratic tuning. All joints in the oseillator tuning circuit should be "arefully soldered, because a loose connection or "rosia joint" can develop trouble that is somotimes hard to locate. The chassis and panel materials should be heavy and rigid enough so that pressure on the tuming dial will not cause torsion and a shift in the frequency.

In addition, the oscillator must be capable of furnishing sufficient r.f. voltage and power for the particular mixer circuit chosen, at all frequencies within the range of the receiver, and its hamonic output should be as low as possible to reduce the possibility of spurious responses.

The oscillator plate power should be as low as is consistent with adequate output. Low plate power will reduce tube heating and thereby lower the frequency drift. The oscillator and miser circuits should be well isolated, pref-

5 - HIGH-FREQUENCY RECEIVERS

Fig. 5-14-High-frequency oscillator circuits. A, pentode grounded-plate oscillator; B, triode grounded-plote oscillotor; C, triode oscillator with tickler circuit. Coupling to the mixer may be taken from points X and Y. In A and B, coupling from Y will reduce pulling effects, but gives less voltage than from X; this type is best adapted to mixer circuits with small oscillator-voltage requirements. Typical values for components are as follows:

Circuit A	Circuif B	Circuif C
$C_{1}-100 \mu \mu \mathrm{f}$.	$100 \mu \mu \mathrm{f}$.	$100 \mu \mu \mathrm{f}$.
$\mathrm{C}_{2}-0.01 \mu \mathrm{f}$.	$0.01 \mu \mathrm{f}$.	$0.01 \mu \mathrm{f}$.
$\mathrm{C}_{3}-0.01 \mu \mathrm{f}$.		
$\mathrm{R}_{1}-47,000$ ohms.	47,000 ohms.	47,000 ohms.
$\mathrm{R}_{2}-47,000$ ohms.	10,000 to	10,000 to
	25,000 ohms.	25,000 ohms.

The plate-supply voltage should be 250 volts. In circuits B and $C_{1} R_{2}$ is used to drop the supply voltage to $100-150$ volts; it may be omitted if voltage is obtained from a voltage divider in the power supply.
erably by shielding, since coupling other than by the intended means may result in pulling.
If the h.f.-oscillator frequency is affected by changes in plate voltage, a voltage-regulated plate supply (Vla tube) cath be used.

Circuits

Several oscillator circuits are shown in Fig. 5-14. Cireuits A and 13 will give about the same results, and require only one coil. However, in those two circuits the cathode is above ground potential for r.f., which often is a cause of hum modulation of the oscillator output at 14 Mc. and higher frequencies when a.c.-heated-cathode tubes are used. The circuit of Fig. 5-1.4C reduces hum becouse the cathode is grounded. It is simple to adjust, and it is also the best cireuit to use with filament-type tubes. With filament-type tubes, the other two circuits would require r.f. chokes to kerp the filament above r.f. ground.
besides the use of a fairly high C / L ratio in the tuned circuit, it is necessary to adjust the feedtarek to obtain optimum results. Too mach

feedback may cause "squegging" of the oscillator and the gencration of several frequencies simultancously; too lit tle foredtatek will cause the output to be low. In the tapped-coil circuits (A, 3), the feedback is increased by moving the tap toward the gride end of the coil. In C, more ferelbatek is ohtained be increasing the number of turns on L_{2} or moving L_{2} closer to L_{1}.

The Intermediate-Frequency Amplifier

One major advantage of the superhet is that high gain and selectivity can be obtained by using a good i.f. amplifier. This can be a onestage affair in simple receivers, or two or three stages in the more elaborate sets.

Choice of Frequency

The selection of an intermediate frequency is a compromise between conflicting factors. The lower the i.f. the higher the selectivity and gain, but a low i.f. brings the image nearer the desired signal and hence decreases the image ratio. A low i.f. also increases pulling of the ascillator frequency. On the other hamd, a high i.f. is benefieial to both image ratio and pulling, but the gain is lowered and selectivity is harder to obtain by simple means.

An i.f. of the order of 455 kr . gives gond selectivity and is satisfactory from the standpoint of image ratio and oscillator pulling at frequencios up to 7 Mc . The image ratio is poor at 14 Mr . when the mixer is comerted to the antema, but adequate when there is a tuned r.f. amplifior between antenna and mixer. It 28 Mc. and on the very high frequencies, the image ratio is very poor unless several r.f. stages are used. Above 14 Me., pulling is likely to be bad without very loose coupling between mixer and oscillator.

With an i.f. of about 1600 ke ., satisfactory image ratios can be secured on 14,21 and 28 Mc. with one r.f. stage of good design. For frequencies of 28 Mr. and higher, a "ommon solution is to use as double superheterodye, choosing one high i.f. for image reduction (5 and 10 Mc . are frequently used) and a lower one for gain

I.F. Amplifiers

and selectivity.
In choosing an i.f. it is wise to avoid frequencies on which there is considerable artivity by the various radio services, since such signals may be picked up directly on the i.f. wiring. Shifting the i.f, or better shielding are the solutions to this interference problem.

Fidelity; Sideband Cutting

Modulation of a carrier causes the generation of sidehand frequencies numerically equal to the carrier frequency plus and minus the highest modulation frequency present. If the receiver is to give a faithful reproduction of modulation that contains, for instance, audio frequencies up to 5000 cycles, it must at least be capable of amplifying equally all frequencies contained in a band extending from 5000 cycles above or helow the carrier frequency. In a superheterodyne, where all carrier frequencies are changed to the fixed intermediate frequency, the i.f. implification must be uniform over a band 5 kc . wide, when the carrier is set at one edge. If the carrier is set in the center, a $10-\mathrm{ke}$. hand is required. The signal-frequency circuits usually do not have enough over-all selectivity to affert materially the "adjacentchannel" selectivity; so that only the i.f.-amplifier selectivity need be considered.

If the selectivity is too great to permit uniform amplification over the band of frequencies occupied by the modulated signal, some of the sidelands are "cut." While sideband cutting reduces fidelity, it is frequently preferable to sacrifice naturalness of reproduction in favor of communications effectiveness.

The selectivity of an i.f. amplifier, and hence the tembency to cut sidebands, increases with the mumber of amplifier stages and also is greater the lower the intermediate frequency. From the standpoint of rommunication, sidehand cutting is never serious with two-stage amplifiers at frequencies as low as 4io ke. A two-stage i.f. amplifier at 85 or 100 kc . will be sharp enough to cut some of the higher-frequency sidebands, if good transformers are used. IIowever, the cutting is not at all serious, and the gain in selectivity is worthwhile in crowded amateur bands.

Circuits

I.f. amplifiers usually consist of one or two stages. At 455 ke . two stages generally give all the gain usable, and also give suitable selectivity
for phone reception.
A typical circuit arrangement is shown in Fig. 5-15. A second stage would simply duplicate the circuit of the first. The i.f. amplifier practically always uses a remote cut-off pentode-type tube operated as a Class A :mplifier. For maximum selectivity, double-tunced transformers are used for interstage coupling, although simgle-tuned circuits or trunsformers with untuned primaries can be used for coupling, with a consequent loss in selectivity. All other things being equal, the solectivity of an i.f. amplifior is proportional to the number of tuned circuits in it.

In Fig. 5-15, the gain of the stage is reduced by introducing a negative voltage to the lead marked "AGC" or a positive voltage to R_{1} at the point marked "manual gain control." In either case, the voltage increases the bias on the tube and reduces the mutual conductance and hence the gain. When two or more stages are used, these voltages are generally obtained from common sources. The decoupling resistor, R_{3}, helps to prevent unwanted interstage coupling. C_{2} and K_{4} are part of the automatic gaincontrol circuit (described later); if no a.g.c. is used, the lower end of the i.f-transformer secondary is connected to chassis.

Tubes for I.F. Amplifiers

Variable- μ (remote (ut-off) pentodes are almost invariably used in i.f. amplifier stages, since grid-hias gain control is practically always applied to the i.f. amplifier. Tubes with high plate resistance will have least effect on the selectivity of the amplifier, and those with high mutual conductance will give greatest gain. The choice of i.f. tubes normally has no effect on the signal-to-noise ratio, since this is determined by the preceding mixer and r.f. amplifier.
Typical values of cathode and sereen resistors for common tubes are given in Table 5-II. The 6K7, 6SL7 7 and 6BJ6 are recommended for i.f. work because they have desirable remote cutoff characteristics. The indicated screen resistors drop the plate voltage to the correct sereen voltage, as R_{2} in Fig. 5-15.

When two or more stages are used the high gain may tend to cause instability and oscillation, so that good shiclding, bypassing, and careful circuit arrangement to prevent strav coupling between input and output circuits are necessary.

When single-ended tubes are used, the plate and grid leads should be well separated. With these tubes it is advisable to mount the screen

Fig. 5-15-Typical intermediate-frequency amplifier circuit for a superheterodyne receiver. Representative values for components are as follows: $\mathrm{C}_{1}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}-0.02 \mu \mathrm{f}$. af 455 kc . $0.01 \mu \mathrm{f}$. at 1600 kc . and higher. $\mathrm{C}_{2}-0.01 \mu \mathrm{f}$.
$\mathbf{R}_{1}, \mathbf{R}_{2}$-See Table 5-II.
$R_{3}, R_{5}-1500$ ohms.
R_{4} - 0.1 megohm.

		TAB	5-II	
	athod	and S	reen-Drop	
	istors	or R.F	or I.F. Am	fiers
Tube	$\begin{aligned} & \text { Plute } \\ & \text { Volls } \end{aligned}$	Screen bolts	C'uthode Resistor R_{1}	ajcrefn Resistor R_{2}
6.107	300		160	132,000
(iAlfi ${ }^{2}$	300	150	1100	62.000
(0.AK5 ${ }^{2}$	180	120	$2(1)$	27,000
$6 \mathrm{Al}^{16} 6^{2}$	250	150	(is	33,000
6BA6 ${ }^{\text {\% }}$	250	100	${ }_{6} 8$	33,000
$\mathrm{fBBH}^{\text {d }} \mathrm{f}^{2}$	250)	150	100	33,000
6BJ $6^{2 *}$	2.50	100	82	47,000
6137/62*	200	150	180	20.000
6C136	$2(1)$	1.51	181	56,000
6.S37 ${ }^{\text {\% }}$	250	125	68	27.000
(9SH7 ${ }^{\text {a }}$	250	150	15	39,000
68571	250	100	820	180,000
$6 \mathrm{SK}^{\text {- }}$ - ${ }^{\text {a }}$	250	100	270	56,000
1 ()etal hase, metal. 2 Miniaturetulio * Remote cutooff tyin.				

bypass aribacitor diredty on the bottom of the socket, croswise botween the plate and grid pins, to provide additional shielding. If a paper rapacitor is used, the outside foil should be grounded to the chassis.

I.F. Transformers

The tuned circuits of i.f. amplifiers are built up as transformer units consisting of a metal shicld eontainer in whith the eoits atm tuning capatiturs are mounted. Both aireore and powdered iron-ene miversal-wound eoils are used, the latter having somewhat higher (os and hence greater selectivity and gain. In universal windings the coil is wound in livers with each turn traversing the length of the coil, batck and forth, rather than heing wound perpendieular to the axis as in ordinary single-haver coils. In a straight multilaver wishling, a fairly large caparitance can exist botween layers. I niversal winding, with its "erise-crossed" turns, tends to reduce distributed-rapacity offerts.

For tuning, air-diedectric thanig apacitors atre preierable to mica compression types beramse their capacity is practically unaffer ted by changen in temperature and humidits. Iron-more transformers mas be tuned hy varying the inductande (permeability tuning), in which rase stability comparable to that of variable air-rabacitor funing rath le obtamod low use of high-stability fixed misa or ceramic eatromers. sum stability is of great imporathec, sine a cirenit whose frequeney "drifts" with time eventually will be tumed to a different freguency than the other ciranits, theroby reducing the gain and selectivity of the amplifier. Typicali.i.-transfomer const ruction is shown in Fig. i-16.

The nomal interstage i.f. transformor is lowsely coupled, to givergond solaretivity romsistent with aldopuate gain. A so-cabled diode transformer is similar, but the compling is tighter, to give suffeient transter when working into the finite load presented by a dinde detertor. I'sing a diode transformor in place of ant intorstage frinsformer would result in loss of selectivity;
using an interstage transformer to couple to the diode would result in loss of gain.
besides the type of i.f. transformer shown in Fig. 5 -16, sperial units to give desired solertivity characteristies are available. For highor-than-ordinary adjacent-chamel selectivity tripletuned transformers, with a third tuned rimuit inserted hetween the input and output windings. are sometimes used. The energy is transform from the input to the output windings via this tertiary winding, thus adding its solectivity to the over-all selertivity of the transformer.

A method of varsing the selectivity is to vary the eoupling between primary and secomata, overcoupling being used to broaden the solectivity eurve. Special cirenits using single thmed eireuits, coupled in any of several different ways, are used in some advaned repoivers.

Fig. 5-16-Representative i.f.-transformer construction. Coils are supported on insulating tubing or (in the airtuned type) on wax-impregnated wooden dowels. The shield in the air-tuned transformer prevents capacity coupling between the tuning capacitors. In the permea-bility-tuned transformer the cores consist of finely-divided iron particles supported in an insulating binder, formed into cylindrical "plugs." The tuning capacitance is fixed, and the inductances of the coils are varied by moving the iron plugs in and out.

Selectivity

The wer-all selertivity of the r.f. amplifier will depend on the frequency and the number of stages. The following figures are indiative of the bandwidths to be experted with goodquality transformers in amplifiers so emstructed as to keep regeneration at at minimum:

Intermediate Frequency	Bandridth in Kilorycles		
	6 (d).	$\left.2^{6}\right) \mathrm{db}$.	40 db .
	down	dourn	dourn
One stage, 30 kc . (iron core).	2.0	3.0	4.2
One stage, ${ }^{\text {a }}$, 5 kc , (air core).	8.7	17.8	32.3
One stage, 4.johe. (iroucorr).	4.3	10.3	20.4
Twostages , tije ke. (iron core)	2.4	6.4	10.8
Twostages, 1600kc.	11.0	16.6	27.4

Transistcr I. F. Amplifier

A typaral circuit for a two-stage transistor i.f. amplifier is shown in Fig. $\bar{j}-17$. Constants are given for a tion-ke amplifior. but the samu gen-

Second Detectors

Fig. 5-17-Typical circuit for a twostage transistor i.f. amplifier. At high frequencies a neutralizing capacitor may be required, as mentioned in the text.

T_{1}-Transistor input i.f. transformer. Primary impedance $=$ 100,000 ohms, secondary impedance $=1700$ ohms, unloaded $Q=100$, loaded $Q=35$.
T_{2}-Transistor interstage i.f. transformer. Primary impedance $=4600$ ohms, secondary impedance
(ral circuitry applies to an amplifier at any freguency within the operating range of the transistors. When higher frequencies are used, it may be neressary to neutralize the amplifier to a void overall oweillation; this is done by connerting a small variable capacitor of a few $\mu \mu$ from base to base of the transistors.

Automatie gain rontrol is oltained by using the developed d.c. at the 1 | 20 |
| :---: | s diode deteretor to modify the emitter bias current on the first stage. Is the bias current changes, the input and ontput immedaners change, and the vesultant imperdance mismatehes causes a reduction in grain. Such a.g.e. assumes. of course, that the amplifier is set up, initially in at matched rondition.

$=1700$ ohms, unloaded $Q=39$, loaded $Q=$ 35.

T3-Transistor oulput i.f. transformer. Primary impedance $=30,000$ ohms, secondary impedance $=1000$ ohms, unloaded $Q=100$, loaded $Q=35$.

- THE SECOND DETECTOR AND BEAT OSCILLATOR

Detector Circuits

The second detector of a superheterodyne rereiver performs the same function as the detector in the simple receiver, hut usually operates at a higher input level becanse of the relatively great amplification ahead of it. Therefore, the ahility to handle large signals without distortion is preferable to high sensitivity. Ilate detection is used to some extent, but the diode detertor is most popular. It is especially adapted to furnishing automatic gain or volume control. The basic circuits have been described, although in many

Fig. 5-18-Delayed automatic gain-control circuits using a twin diode (A) and a dual-diode triode. The circuits are essentially the same and differ only in the method of biasing the o.g.c. rectifier. The a.g.c. control voltage is applied to the controlled stages as in (C). For these circuits typical values are:
$C_{1}, C_{3,}, C_{4}-100 \mu \mu \mathrm{f}$.
$C_{2}, C_{5}, C_{i}, C_{s}-0.01 \mu \mathrm{f}$.
$\mathrm{C}_{6}-5-\mu \mathrm{f}$. ele etrolytic.
$R_{1}, R_{9,}, R_{10}-0.1$ megohm.
$R_{2}-0.47$ megohm.
$\mathrm{R}_{3}-2$ megohms.
R_{1} - 0.47 megohm.
$\mathrm{R}_{5}, \mathrm{R}_{6}$-Voltage divider to give 2 to 10 volts bias at 1 to 2 ma . drain.
R_{7} - 0.5 -megohm volume control.
Rs-Correct bias resistor for triode section of dualdiode triode.

5-HIGH-FREQUENCY RECEIVERS

cases the diode elements are incorporated in a multipurpose tube that contains an amplifier serlion in addition to the diode.
Audiu-ronverter cirruits and product detectors are often used for code or s.s.b. detectors.

The Beat Oscillator

Any standard oscillator circuit may be used for the beat oscillator required for heterodyne recoption. Special beat-oscillator transformers are available, usuatly consisting of a tapped coil with adjustable tuning; these are most conveniently used with the circuits shown in Fig. i-14.A and 13, with the output taken from Y. A variahle capacitor of about $2 \overline{\mathrm{~T}}-\mu \mu \mathrm{f}$. capacitance can be connected between cathode and ground to provide fine adjustment of the frequency. The beat wisillator usually is coupled to the seconddetector thmed circuit through a fixed eapacitor of a few $\mu \mu$ f.

The beat oscillator should be well shielded, to provent coupling to any part of the receiver exerpt the second detector and to prevent its hammonics from getting into the front end and being amplified along with desired signals. The b. f. .1. prower should be as low as is consistent with sufficient audio-frequency output on the strongest signals. However, if the beat-oscillator output is too low, strong signals will not give a proportionately strong audio signal. Contrary to some opinion, a weak b.f.o. is never an advantage.

AUTOMATIC GAIN CONTROL

Automatic regulation of the gain of the receiver in inverse proportion to the signal strength is an operating convenience in phone reception, since it tends to keep the output level of the receiver constant regardless of input-signal strength. The average rectified d.c. voltage, develniped by the received signal across a resistance in a detector circuit, is used to vary the hias on the r.f. and i.f. amplifier tubes. Since this voltage is proportional to the average amplitude of the signal, the gain is redued as the signal strength Iecomes greater. The control will be more complete and the output more constant as tho mumber of stages to which the a.g.c. bias is (up) licet is increased. Control of at least two stages is advisalbe.

Circuits

Although some rereivers cherive the a.g.c. voltage from the diode detector, the usual practice is to use a sefatate a.g.c. rectifier. Typical cinchits anco shown in Figs. 5-18A and 5-183. The two reetificrs can be combined in one tube, as in the 6166 and $6 A 1$ as). In Fig. $5-18 \mathrm{~A} V_{b}$ is the diode delector; tho signal is developed across $R_{1} R_{2}$ and coupled to the audio stages through ('3. (${ }_{1}, R_{1}$ and 'ez are included for r.f. filtering, to prevent a large r.f. component being coupled to the andio circuits. The a.g.e. rectifien, V_{2}, is coupled to the last i.f. transformer through (${ }_{4}$, and most of the rectified voltage is developed arross $R_{3} . V_{2}$ does not rectify on weak signals, however; the fixed
bias at R_{5} must be exceeded before rectification can take place. The developed negative a.g.e. bias is fed to the controlled stages through R_{4}.

The cireuit of Fig. 5-18B is similar, except that a dual-diode triode tube is used. Since this has only one common cathode, the circuitry is slightly different but the prineiple is the same. The triode stage serves as the first audio stage, and its bits is developed in the rathode circuit aceross R s. This same hias is appliod to the a.g.e. rectifier by returning its load resistor, R_{3}, to ground. To avoid placing this bias on the detector, V_{1}, its load resistor $R_{1} R_{2}$ is returned to cathode, thus avoiding any bias on the detector and permitting it to respond to watak signals.

The doveloped negative a.g.c. bias is applied to the controlled stages through their grid circuits, as shown in Fig. 5-18C. (${ }^{7}-R_{9}$ and (' $8 R_{10}$ serve as filters to avoid common coupling and possible fecdhatek and oseillator. The a.g.c. is disabled by closing switeh S_{1}.

The a.g.e. rectifier bias in Fig. 5-18B is set by the bias required for proper operation of V_{3}. If less hias for the a.g.c. rectifier is required, R_{3} can be tapped up on R_{8} instead of heing returned to chassis ground. In Fig. 5-18A, proper choice of bias at R_{5} depends upon the over-all gain of the receiver and the number of controlled stages. In general, the hias at R_{5} will be made higher for receivers with more gain and more stages.

Time Constant

The time constant of the resistor-capacitor combinations in the a.g.c. circuit is an important part of the system. It must be long enough so that the modulation on the signal is completely filtered from the d.c. output, leaving only an average d.c. component which follows the relatively slow carrier variations with fading. . $\mathrm{tudio-}$ frequency variations in the a.g.e. voltage applied to the amplifier grids would reduce the percentage of modulation on the incoming signal. But the time constant must not be too long or the a.g.e. will be mable to follow rapid fading. The capacitance and resistance values indianted in Fig. 5-18 will give a time constant that is satisfactory for average reception.

C. W. and S.S.B.

A.t.e. can le used for rew. and s.s.b. reception but the vireuit is usually more complicated. The a.g.c. voltage must be derived from a rectifier that is isolated from the beat-frequency oseilhator (otherwise the rectified lo.f.o. voltage will reduce the recoiver gain even with no signal coming through). This is done by using it separate a.g.e. chamnel comnerted to an i.f. amplifier stage ahead of the second detector (and b.f.o.) or by rectifying the audio ontput of the detector. If the selectivity ahead of the a.v.e. reetifier isn't good, strong adjacont-chanmel signals maty develop a.g.e. voltages that will reduce the receiver gain while listening to wak signals. When clear chamels are available, however, e.w, and s.s.b. a.g.e. will hold the receiver output constant over

Fig. 5-19—Audio "hang" a.g.c. system. Resistors are $1 / 2$-watt unless specified otherwise. R_{1}-Normal audio volume control in receiver. $\mathrm{T}_{1}-1: 3$ step-up audio transformer (Stancor A- 53 or equiv.)
The hang time can be adjusted by changing the value of the recovery diode load resistor (4.7 megohms shown here). The a.g.c. line in the receiver must have no d.c. return to ground and the receiver should have good skirt selectivity for maximum effectiveness of the system.
a wide range of signal inputs. A.g.c. systems designed to work on these signals should have fast-attack and slow-decay characteristics to work satisfactorily, and often a selection of time constants is made available.

The a.g.e. (ircuit shown in Fig. 5-19 is ap)plicable to many receivers without too much modification. Audio from the receiver is amplified in $V_{1 A}$ and rectificd in $V_{2 B}$. The resultant voltage is applied to the a.g.e. line through $V_{2 c}$. The capacitor Cl charges quiekly and will remain charged until discharged by \dot{V}_{13}. This will oecur some time after the sigmal has disappeared, berause the audio was strpmed up through T_{1} and rectified in $V_{2 A}$, and the resultant used to charge f_{2}. This voltage holds V_{13} cut off for an
appreciable time, until C_{2} discharges through the 4.7 -megohm resistor. The threshold of compression is set by adjusting the bias on the diodes (changing the value of the $3.3 \mathrm{~F}^{-}$or 100 K resistors). There can be no d.c. return to ground from the a.g.c. line, because ('1 must be discharged only by V_{13}. Fiven a v.t.v.m. across the a.g.e. line will be too low a resistance, and the operation of the system must be observed by the action of the S meter.

Oecasionally a strong noise pulse may cause the a.g.c. to hang until C_{2} diseharges, hut most of the time the gain should return very rapidly to that set by the signal. A.s.c. of this type is very helpful in handling netted s.s.b. signals of widely varying strengths.

Noise Reduction

Types of Noise

In addition to tube and circuit noise, much of the noise interference experienced in reception of high-frequency signals is caused by domestic or industrial electrical equipment and by automobile ignition systems. The interference is of two types in its efferts. The first is the "hiss" type, consisting of overtapping pulses similar in nature to the receiver noise. It is largely redured by high selectivity in the receiver, especially for code reception. The second is the "pistol-shot" or "machine gun" type, consisting of separated impulses of high amplitude. The "hiss" type of interference usually is catused by commutator sparking in d.e. and series-wound itc. motors, while the "shot" type results from separated spark discharges (a.c. power leaks, switch and key clicks, ignition sparks, and the like).

The only known approach to reducing tube and circuit noise is through better "front-end" design and through more over-all selectivity.

Impulse Noise

Impulse noise, becurse of the short duration of the pulses compared with the time between them, must have high amplitude to contain much average energy. Hence, noise of this type strong enough to cause much interfer-
ence generally has an instantaneous amplitude mueh higher than that of the signal being received. The general principles of deviees intended to reduce such noise is to allow the desired signal to pass through the receiver unaffected, but to make the receiver inoperative for amplitudes greater than that of the signal. The greater the amplitude of the pulse compared with its time of duration, the more successful the noise reduction.

Another approach is to "silence" (render inoperative) the receiver during the short duration time of any individual pulse. The listener will not hear the "hole" because of its short duration, and very effective noise reduction is obtained. Such devices are called "silencers" rather than "limiters."

In passing through selective receiver eircuits, the time duration of the impulses is increased, because of the Q of the circuits. Thus the more selectivity ahead of the noise-reducing device, the more diflicult it becomes to secure good pulse-type noise suppression.

Audio Limiting

A considerable degree of noise reduction in code rereption can be accomplished by am-plitude-limiting arrangements applied to the audio-output circuit of a receiver. Such limiters

5-HIGH-FREQUENCY RECEIVERS

also maintain the signal output nearly comstant during fiding. These ontput-limiter systems are simple, and adaptable to most recoivers. llowever, they eamot prevent noise peaks from overlouling previous stages.

- SECOND-DETECTOR NOISE LIMITER CIRCUITS

Nost audio limiting cirruits are based on one of two principles. In a serios limiting cirenit, a normally conducting element (or elemonts) is comeneted in the rirenit in series and operated in sude a manner that it heromes nom-enductive above a given signal level. Ia a shunt limiting circuit, a non-eonducting rement is connected in shant across the circuit and operated so that it heromes conductive above a given signal level, thas short-circuiting the signal and preventing its boing transmitued to the remainder of the amplifior. The usual condueting clement will be a forward-biased diode, and the usaal mon-conducting clement will be a batck-biased rliode. In many applications the value of bias is ent manually be the operator: usually the Clipping lavel will be set at about 5) to 10 volts.

A full-wave clipping circuit that operates at a low leore (approximately te volt) is shown in Fig. is-20. Each diode is biated by its own contact potential. developed aross the $\because .2-m$ moghm rosistors. The .001-ml, caparitors berome charged to close to this value of contant potential. A nogative-going signal in exeess of the has will

Fig. 5-20-Full-wave shunt limiter using contact-potentialbiased diodes. A low-level limiter ($1 / 2$ volt), this circuil finds greatest usefulness following a product detector.
$\mathrm{C}_{1}, \mathrm{C}_{2}-$ Part of low-pass filter with cutoff below i.f.
${ }^{\text {RFC }} \mathrm{C}_{1}$-Part of low-pass filter; see C_{1}.
T_{1}-Center-tapped heater transformer.
be shorted to gromen by the upper diode: a posi-tive-going signal will be comdurted bey the lower diode. The eondurting resistatare of the diondes is small her comparison with the $2 \cdot 0.000$ ohms in sories with the eirenit, and little if any of the -xeresive signal will appar arotos the l-megohm volume control. In ordor that the clipping does bot berome cexessive and eanse distortion, the input signal must he held down by a gain control alhead of the deteretor. This circuit finds geme applation following a low-leved detextor.

To minimize hum in the reveiver ontent, it is desirable to ground the remer tap of the heater tramshomer, as shown, instead of the more common pratetice of returning one side of the howater mernit to chassis.

Serond-detertor noise-limiting circuits that automatically adjust themselves to the rerecined carrier level are shown in Fig. 5 -2lo. In eithor airenit. r_{1} is the usual diode second detector, $R_{1} R_{2}$ is the diode load resistor, and C_{1} is an r.f. hapass. A negative voltage proportional to the carrier lowel is developed arross rase and this 2 veltage catmot change rapidly becatuse R_{3} and 6 are both large. In the cirentit at A, diode V^{2} ate as a comductor for the andiosignal up to the poim Where its anole is megative with respere to the cathore. Soise peaks that exered the maximmm marier-modulation level will drive the anod negative instantanoonsly, and daring this time the diode does not conduct. The long time eont stant of $\mathrm{c}_{2} R_{3}$ prevents any rapid chamge of the referene voltage. In the areatit at 13 , the diedu I_{2} is ina tive until its cathode voltage exereds its: anode voltage, This rondition will obtain under noise praks and when it does, the dionle I'2 shortcireuits the signal and no voltage is passed on to the audio amplifier. Diode rectifiers sueb as the Gllt and bALse ean be usod for these types of noisa limiters. Neither cirentit is usful for $\begin{gathered}\text { c.w. or }\end{gathered}$ s.s.l. reception, but they are both quite effective

Fig. 5-21-Self-adjusting series (A) and shunt (B) noise limiters. The functions of V_{1} and V_{2} can be combined in one tube like the 6H6 or 6AL5.
$C_{1}-100 \mu \mu \mathrm{~F}$.
$\mathrm{C}_{21}, \mathrm{C}_{3}-0.05 \mu \mathrm{f}$.
$R_{1}-0.27$ meg. in $A_{i} 47,000$ ohms in B
$R_{2}-0.27$ meg. in $A_{;} 0.15$ meg. in B.
$R_{3}-1.0$ megohm.
$R_{4}-0.82$ megohm.
R.: 6800 ohms.

Fig. 5-22—Practical circuit diagram of an i.f. noise silencer. For best results the silencer should be used ahead of the high-selectivity portion of the receiver.
T_{1}-Interstage i.f. fransformer
for atm. phome work. The series rircuit (A) is slightly better than the shunt circuit.

I.f. NOISE SILENCER

The i.f. noise sileneer cirent shown in Fig. \%-2e is designed to be used in a receriver as far along from the antema stage as possible but ahead of the high-selertivity sertion of the reeriver. Noise palses are amplified and reenified, and the resulting negative-going d.e. pulses are used to cut off an amplifier stage during the palse. A manaal "threshold" control is set by the operator to at level that only promits rectification of the noise pulses that rise alowe the patak amplitude of the desired signal. The elamp diode. Va, short eirruits the positive-going pulse "overshoots." Running the iblidit controlted i.f. amplifier at low sereen voltage makes it possible for the No. 3 grid (pin 7) to cut off the stage at a lower voltage than if the sereen were operated at the morenommal 100 volts but it also redueres the available gain through the stage.

It is neressary to avoid i.f. feedbect around the biblog stage, and the closer RPe', can be to solfresonant at the i.f. the better will be the filtering. The filtering cannot be improved by increasing the values of the $150-\mu \mu$ l. caparitors bereause this will tend to "streteh" the palsises and reduce the signal strength when the sileneer is operative.

SIGNAL-STRENGTH AND TUNING INDICATORS

The simplest tuning indicator is a milliammeter

T_{2} —Diode i.f. fransformer.
 $R_{1}-33,000$ to 68,000 ohms, depending upon gain up to this stage.
 RFC_{1}-R.f. choke, preferably self-resonant at i.f.

commeted in the d.c. plate lead of an a.g.e.controlled r.f. or i.f. stage. Sinee the plate current is reduced as the a.g.e. voltage beromes higher with a stronger signal, the plate current is a measure of the sigmal strength. The meter can have at 0-1. 0-2 or (0-5 mat. movemont, and it should be shunted by a 2 g-ohm rheostat which is used to sut the no-signal reading to full satate on the meter. If a "forward-reading" meter is desired, the meter can be mounted upside down.

Two other s-meter circuits are shown in lig. 5-2:3. The system at A uses a milliammeter in a bridge circuit, artanged so that the metor readings inerease with the a.v.e. voltage and signal strength. The moter reads approximately in a linear deribel seale and will not be "erowded."

To aljust the system in Fig. 5-23: , pull the tube out of its socket or otherwise break the cathode circuit so that no plate current flows, and adjust the value of resist or R_{1} whorss the moter until the seale reading is maximum. The value of resistance reduired will depend on the intornal resistance of the meter, and must be determined by trial and error (the current is approximately 2.5 mat.). Then replace the tuhe. allow it to warm up. turn the a.g.e. switch to "off" so the grid is shorted to ground, and adjust the 3000 -ohm varialble resistor for zere meter current. When the i.g.e. is "on," the metor will follow the signal variations up to the point where the voltage is high enough to rat off the meter tube's plate current. With a ti.5: or oscialit this will occur in the neighorhool of 15 volts, a high-amplitude signal.
The circuit of lig. $\overline{3}-2313$ requires no additional tules. The resistor R_{2} is the normal rathode

Fig. 5-23-Tuning indicator or S-meter circuits for superheterodyne receivers.
MA-0-1 or $0-2$ milliammeter. $R_{1}-R_{4}$-See text.
resistor of ath a.g.c.-controlled i.f. stage: its (athode resistor should be returned to chassis and not to the manual gain control. The sum of R_{3} plus R_{4} should equal the normal cathote resistor for the andio amplifier, and they should be proportioned so that the arm of R_{3} can piek off a voltage equal to the normal cathode voltage for the i.f. stage. In some "ases it may be neerssary to interchange the positions of R_{3} and R_{4} in the eirenit.

The zero-sot control R_{3} should be set for no reading of the meter with no incoming signal, and the 1500 -ohm sensitivity rontrol should be sot for a full meter reading with the i.f. tube removed from its socket.

Noither of these S-meter cireuits can be "pinned", and only severe misadjustment of the zero-set control can injure the meter.

HEADPHONES AND LOUDSPEAKERS

There are two hasic typers of headphones in ammon use, the magnetic and the erystal. A matgatio hoadphone uses a small electromagnet that attracts and releases a steel diaphragm in acomdane with the eleetrieal output of the radio receiver; this is similar to the "reeciver" portion of the household telephone. A crystal headphone
uses the piemoneretric properties of a pair of Rochelle-salt or other erystals to vibrate a diatphragm in accordanee with the electrical output of the radio reereiver. Magnetic headphones can he used in rimuits where d.e. is flowing, such as the plate cirenit of a vacum tube, provided the eurrent is not too heary to be carrid ly the wire in the coils: the limit is usually a fow milliamperes. Crystal headphones can be used only on a.e. (at steady d.e. voltage will damage the erystal unit), and conseduontly must be coupled to a tube through a doviec, such as a capacitor or transformer, that isolates the el.c. but pases the a.e. Most modern recerivers have a.ce. coupling to the headphones and henee cither type of headphone can be used, but it is wise to look first at the circuit diagram in the instruetion book and make sure that the headphone jatk is commeded to the seromudary of the output transomer, as is usually the "ase.

In gencral, "rystal headphones will have considerably wider and "flatter" audio response than will magnotic headphones (oxecpt those of the "hi-fi" type that soll at premium prices). The late of wide response in the magnetic hedphones is sometimes an advantage in code recoption, sinere the desired signal cam be set on the peak athe be given a loost in volume over the undesired signals at slightly different fregurneies.

Crystal headphones are available only in highimpedance values around 50,000 ohms or so, while magnetic headphomes run around 10,000 to 20,000 ohms, atthough they ratn be obtained in values as low at 15 ohms. L'sually the impedance of a headphone set is unimportant because there is more that rough power available from the radio receiver, but in marginal cases it is possible to improve the acoustie output through a better match of hoadphone to output impedance. When headphome sets are connected in series or in parallel they must be of similar impedance levels or one sat will "hog" most of the power.
loud spoakers are practically always of the low-impedance permanent-fied dyamie variety, and the loudspaker output comenetions of a receiver cam eomert direethe to the voice coil of the loudspeaker, some receivers also provide a "500-ohmontput" for eomeretion to a long line to a remote londspoaker. A londspeaker requires monnting in at suitable enthente if full lowfreguency respense is to be obtained.

Improving Receiver Selectivity

- INTERMEDIATE-FREQUENCY AMPLIFIERS

As mentioned "atrlier in this chateter, one of the big advantages of the superheterodyne recerver is the improved selectivity that is possible, This selectivity is obtaned in the i.f. amplifier, where the lower frequency allows more selortivity per stage than at the higher signal frequency. For phone reception, the limit to useful selecetivity in the i.f. amplifier is the point

Where so many of the sidolnambs aro ent that intelligibility is lost, although it is possibla to remove completely one full set of side bands without impairing the quality at all. Maximum receiver solectivity in phone reception requires good stability in both trammitter and receiver, so that they will both remain "in thene" during the transmission. The limit to useful selectivity in eode work is around 100 or 200 cyleles for hathdekey spoeds, but this mueh solertivity roquires good stability in both transmitter and

Selectivity

receiver, and a slow receiver tuning rate for ease of operation.

Single-Signal Effect

In heterolyne e.w. reception with a superheterodyne receiver, the beat oscillator is set to give a suitable audio-frequency beat note when the incoming signal is converted to the intermediate frequency. For example, the beat oseillator may be set to 456 kc . (the i.f. being 455 ke .) to give a 1000 -cycle beat note. Now, if an interfering signal appears at 457 ke ., or if the receiver is tumed to heterodyne the ineoming signal to 457 kr ., it will also be heterodyned by the beat oscillator to produce a $1000-$ cyele beat. Hence every signal can be tuned in at two places that will give a 1000 -eycle beat (or any other low audio frequency). This audiofrequency image effect can be reduced if the i.f. selectivity is such that the incoming signal, when heterodyned to 457 kc ., is attenuated to a very low level.

When this is done, tuning through a given signal will show a strong response at the desired beat note on one side of zero beat only, instead of the two beat notes on either side of zero beat characteristic of less-selective reception, hence the name: single-signal reception.

The necessary selectivity is not obtained with nonregenerative amplifiers using ordinary tuned circuits unless a low i.f. or a large number of circuits is used.

Regeneration

Regeneration can be used to give a singlesignal effect, particularly when the i.f. is 45% ke. or lower. The resonance curve of an i.f. stage at critical regencration (just below the oscillating point) is extremely sharp, a bandwidth of 1 ke . at 10 times down and 5 kc . at 100 times down being obtainable in one stage. The audio-frequency image of a given signal thus ean be reduced by a factor of nearly 100 for a 1000 -cycle beat note (image 2000 eycles from resonance).

Regeneration is easily introduced into an i.f. amplifier by providing a small amount of capacity coupling between grid and plate. Bringing a short length of wire, connected to the grid, into the vicinity of the plate lead usually will suffice. The fredtack may be controlld by the regular cathode-resistor gain control. When the i.f. is regenerative, it is preferable to operate the tube at reduced gain (high bias) and depend on regeneration to bring up the signal strength. This prevents overloading and increases selectivity.

The higher selertivity with regeneration reduces the over-all response to noise penerated in the earlier stages of the receiver, just as dues high selectivity produced by other means, and therefore improves the sigual-to-noise ratio. I Iowever, the regenerative gain varies with signal strength, being less on strong signals.

Crystal-Filters; Phasing

Prolably the simplest means for obtaining high selectivity is by the use of a piezoelectric

Fig. 5-24 - Typical response curve of a crystal filter. The notch can be moved to the other side of the response peak by adjustment of the "phasing" control. With the above curve, setting the b.f.o. at 454 kc . would give good singlesignal c.w. reception.
quartz crystal as a selective filter in the i.f. amplifier. Compared to a good tuned cirevit, the () of such a crystal is extremely high. The erystal is ground resonant at the i.f. and used as a selective eoupler between i.f. stages.

Fig. 5-24 gives a typical erystal-filter resonance curve. For single-signal reception, the audio-frequency image can be reduced by 50 db , or more. Besides practically eliminating the a.f. image, the high selectivity of the crystal filter provides good diserimination against adjacent signals and also redures the noise.

Two erystal-filter eircuits are shown in Fig. $5-25$. The circuit at A (or a variation) is found in many of the current commumications receivcrs. The erystal is connected in one side of a brilge circuit, and a phasing eapacitor, C_{1}, is comected in the other. When C_{1} is set to balance the erystal-holder capacitance, the resonance curve of the filter is practically symmetrical; the erystal acts as a series-resonant circuit of very high Q and allows signals over a narrow band of frequencies to pass through to the following tube. More or less caparitance at C_{1} introduces the "rejection notch" of Fig. $5-24$ (at 453.7 kc . as (drawn). The (Q of the load eireuit for the filter is adjusted by the setting of R_{1}, which in turn varies the handwidth of the filter from "sharp" to a bandwidth suitable for phone reception. Some of the components of this filter are special and not generally availahle to amateurs.

The "band-pass" erystal filter at B uses two erystals separated slightly in frequeney to give a band-pass charastoristic to the filter. If the frequencies are only a few hundred cyeles apart, the characteristic is an excellent one for c.w.

5 -HIGH-FREQUENCY RECEIVERS

Fig. 5-25-A variable-selectivity crystal filter (A) and a band-pass crystal filter (B).
reception. With crystals ahont ! ke, apart, a good phone characterist is is ohtained.

Additional I.F. Selectivity

Many commerial communications reveivers do not have sufficient selertivity for amateur use, and their performance can be improved hy additional i.f. selectivity, One mothod is to loosely couple a BC-45:3 aireraft receiver (war surphus, tuning range 19010550 ke) to the tail cond of the fo5-ke, i.f. amplifior in the communications receiver and use the resultant output of the 13C-453. The aireraft receiver uses an 85 -ke i.f. amplifier that is sharp for voice work 6.5 ke , wideat -60 db . - and it helps considerably in separating phone signals and in barking up erustals filters for improved ew. reception.

If a 13C-453 is not available, one can still enjoy the benefits of improved selectivity. It is only necessary to heterolyne to a lower frepueney the 45 -kc. signal existing in the receiver i.f. amplifier and then rectify it after passing it through the sh:up low-fregurncy amplifier. The J. W. Miller Company offers $50-\mathrm{ke}$. tramsformers for this application.

RADIO-FREQUENCY AMPLIFIERS

While selectivity to reduce audio-frequency images can be built into the i.f. amplifier, discrimination against radio-frequency images can only be obtained in circuits ahead of the first detector. These tuned circuits and their associated vacuum tubes are called radio-frequency amplifiers. For top performanee of a communications receiver on frequencies above 7 Mc ., it is mandatory that it have a stage of r.f. amplifieration, for image rejection and a good noise figure (mixers are noisier than amplifiers).

Receivers with an i.f. of 4 ins ke. can be expected to have some r.f. image response at a signal frequency of 14 Mc . and higher if only one stage of r.f. amplification is used. (Regen-
eration in the r.f. amplifier will reduce image response, but regeneration usually requires frequent readjustment when tuning across a band.) With two stages of r.f. amplification and an i.f. of 4iji ke., no inages should be apparent at 14 Me., but they will show up on 28 Me. and higher. Three stages or more of r.f. amplification, with an i.f. of fins ke, will reduce the images at 28 Mc., but it really takes four or more stages to do a good joh. A common solution at 28 Mc . is to use a "double-ronversion" superheterodyne, with one stage of r.f. amplification and a first i.f. of 1600 ke . or higher. A normal receiver with an i.f. of 455 ke can be converted to a double conversion by connecting a "converter" ahoad of the receiver.

For hest solectivity, r.f. amplifiers should use high-Q circuits and tubes with high input and output resistance. Variable- μ pentodes are practically always used, although triodes (neutralized or otherwise connected so that they won't oscillate) are often used on the higher frequencies berause they introduce less noise. Pentodes are better where maximum image rejection is desired, because they have less loading effect on the tuned eircuits.

Transistor R. F. Amplifier

A typical r.f, amplifier cirenit using a 2N370 transistor is shown in lige. 5 -2b. Sinee it is desirable to maintain a reasonable () in the tuned circuits, to redure r.f. image response, the base and collector are both tapped down on their tuned direnits. An alternative mothod, using lowimperdance inductive coupling, is shown in Fig. 5-26B: this method is sometimes easier to adjust than the tals illustrated in loig. $5-26 \mathrm{~A}$. The tuned

Fig. 5-26-Transistor r.f. amplifier circuit. The low-impedance connections to the base and collector can be (A) taps on the inductors or (B) low-impedance coupling links. $L_{1} C_{1}, L_{2} C_{2}$-Resonant at signal frequency.

Feedback

 oproting frequency, and they shoud be mounted or shiedded to eliminate inductive coupling beI wern mach other.

FEEDBACK

Poodback giving rise to regeneration and oscillation can ocrar in a single stage or it may apmear as an over-all foedback through several stages that are on the same frequency. To avoid feredbutck in a single stage, the output must be isolated from the input in every way possible, with the varoum tube furnishing the only cotpling between the two circuits. An oscillation can he obtained in an r.f. or i.f. stage if there is any undue capacitive or inductive coupling betwern output and input circuits, if there is too high an impedanee betwern rathode and ground or sereen and ground, or if there is any appreciable impedance through which the grid and plate currents can flow in common. This means good shiclding of eoils and tuning caparitors in r.f. and i.f. circuits, the use of good bypass capacitors (mical or ceramic at r.f., paper or ceramie at i.f.), and returning all hepass eaparitors (grid, cathode, plate and sereen) for a given stage with short leads to one spot on the chassis. If singro--ended tuhes are used, the screen or cathode bypass capacitor should be mounted across the soneket, to serve as a shield between grid and plate pins. Less care is required as the frequency is lowered, but in high-impedance circuits, it is somotimes necessary to shield grid and plate leads and to be careful not to run them close tongother.

To atvoid over-all feedback in a multistage amplifier, attention must be paid to avoid rumning any part of the output circuit back near the input cireuit without first filtering it carefully. Since the signal-carrying parts of the circuit (the "hot" grid and plate leads) can't be filtered, tho bost design for any multistage amplifier is a straight line, to keep the output as far away from the input as possible. For example, an r.f. amplifier might rum along a chassis in a straight lince, rum into a mixer where the frequency is changed, and then the i.f. amplifier could be run bark parallel to the r.f. amplifier, provided there Was a very large frequency difference bet ween the r.f. and the i.f. amplifiers. However, to avoid any possible coupling, it would be better to rum the i.f. amplifier off at right angles to the r.f.amplifier line, just to be on the safe side. Good shiclding is important in preventing over-ill oscillation in high-gatin-per-stage amplifiers, but it becomes less important when the stage gain drops to a low value. In a high-gain amplifier, the power leads (including the heater circuit) are common to all stages, and they can provide the over-all coupling if they aren't properly filtered. Good bypassing and the use of series isolating resistors will generally eliminate any possibility of coupling through the power leads. R.f. chokes, instead of resistors, are used in the heater leads where necessary.

CROSS-MODULATION

Since a one- or two-stage r.f. amplifier will have a bandwidth measured in hundreds of ke . at 14 Mc . or higher, strong signals will be amplified through the r.f. amplifier even though it is not tuned exactly to them. If these signals are strong enough, their amplified magnitude may be measurable in volts after passing through several r .f. stages. If an undesired signal is strong enough aftor amplification in the r.f. stages to shift the operating point of a tube (by driving the grid into the positive region), the undesired signal will modulate the desired signal. This effert is callecl cross-modulation, and is often encountered in receivers with several r.f. stages working at high gain. It shows up as a superimposed modulation on the signal being listened to, and often the effect is that a signal can be tuned in at several points. It can be reduced or eliminated by greater selectivity in the antenna and r.f. stages (difficult to obtain), the use of variable- μ tubes in the r.f. amplifier, reduced gain in the r.f. amplifier, or reduced antenna input to the receiver. The 6BJI6, 613.A6 and GDC6 are recommended for r.f. amplifiers where cross-modulation may be a prohlem.

A receiver designed for minimum cross-modulation will use as little gain as possible ahead of the high-selectivity stages, to hold strong unwanted signals below the overload point.

Gain Control

To avoid cross-modulation and other overload effects in the mixer and r.f. stages, the gain of the r.f. stages is usually made adjustable. This is accomplished by using variatble- μ tubes and varying the d.e. grid bias, cither in the grid or eathode circuit. If the gain control is automatic, as in the case of a.g.e., the bias is controlled in the grid circuit. Manual control of r.f. gain is generally done in the cathode rircuit. A typical r.f. amplifier stage with the two types of gain control is shown in schematic form in Fig. 5-27.

Tracking

In a receiver with no r.f. stage, it is no incon-

Fig. 5-27-Typical radio-frequency amplifier circuit for a superheterodyne receiver. Representative values for components are as follows:
C_{1} to $C_{4}-0.01 \mu$ f. below $15 \mathrm{Mc}, 0.001 \mu$ f. at 30 Mc . $\mathbf{R}_{1}, \mathrm{R}_{2}$-See Table 5-ll.
$R_{3}-1800$ ohms.

5-HIGH-FREQUENCY RECEIVERS

Fig. 5-28 - A proctical squelch circuit for cutting off the receiver output when no signol is present.
venience to adjust the high-frequency oscillator fund the mixer circuit independently, because the mixer tuning is broad and requires little attention over an smateur band. I Iowever, when r.f. stages are addod ahead of the mixer, the r.f. stages and mixer will require retuning over an entire amateur band. Hence most receivers with one or more r.f. stages gang all of the tuning controls to give a single-tuning-eontrol receiver. Obviously there must exist a constant difference in frequency (the i.f.) between the ossillator and the mixer $/ \mathrm{r}$.f. cireuits, and when this condition is achieved the circuits are said to track.

In amateur-band receivers, tracking is simplified by choosing a bandspread circuit that gives practieally straight-line-frequency tuning (equal frequency change for each dial division), and then adjusting the oscillator and mixer tumed circuits so that both cover the same total number of kilocycles. For example, if the i.f. is $45 \% \mathrm{ke}$, and the mixer circuit tunes from 7000 to 7300 ke. between two given points on the
dial, then the oscillator must tume from 745 s to 775.5 kc . between the same two dial readings. With the bandspread arrangement of Fig i--9.A, the tuning will be prantioally straight-line-frequency if (2 (bindset) is 4 times or more the maximum eapacity of C_{1} (handspread), as is usually the case for strictly amateur-band coverage. ('t should be of the straight-line-capacity type (semicircular plates).

Squelch Circuits

An audio squeleh circuit is one that cuts off the receiver output when no signal is coming through the receiver. It is useful in mohile or net work where the no-signal receiver noise may be as loud as the signal, causing undue operator fatigue during no-signal periods.

A practical squelch circuit is shown in Fig. 5-28, When the a.g.e. voltage is low or zero, the 65.17 draws plate current. Voltage drop across the 47,000 -ohm resistor in its phate circuit cuts off the 6.5 and no recoiver signal or noise is passed. When the a.g.e, voltage rises to the cut-off value of the 6sid7, the pentode no longer draws current and the bias on the 6.5 is now only the operating bias, furnished by the 1000 -ohm eathode resistor. The triode now functions as an ordinary amplifier and passes signals. By varying the sereen voltage on the 6 s.d7 through R_{1}, the pentode's cut-off bias can be vaided, so that the relation between a.g.c. voltage and signal cut-off point of the amplifier is adjustable.
Connections to the receiver eonsist of two a.f. lines (shielded), the a.g.e. lead, and chassis ground. The squelch cireuit is normally inserted between detector output and the audio volume control of the receiver. Since the circuit is used in the low-level audio point, its plate supply must be free from a.e. or objectionable hum will be introdueed.

Improving Receiver Sensitivity

The sensitivity (signal-to-noise ratio) of a receiver on the higher frequencies above 20 Mc . is demendent upon the hand width of the receiver and the noise contributed by the "front end" of the receiver. Neglecting the fact that image rejection may be poor, a receiver with no r.f. stage is generally satisfactory, from a sensitivity point, in the 3.5 - and 7 -Mc, bands. However, as the frequency is increased and the atmospherie noise becomes less, the advantage of a good "front end" becomes apparent. Hence at 14 Mc. and higher it is worth while to use at least one stage of r.f. amplification ahead of the first detector for best sensitivity as well as image rejection. The multigrid converter tubes have very poor noise figures, and even the best pentodes and triodes are three or four times noisier when used as mixers than they are when used as amplifiers.

If the purpose of an r.f. amplifier is to improve
the receiver noise figure at 14 Mc. and higher, a high- g_{m} pentode or triode should be used. Among the pentodes, the best tubes are the $6.1 \mathrm{C} 7,6.155$ and the $6 \times(17$, in the order named. The 6AK5 takes the lead around 30 Mc . The (6.J.t, 6J6, and trioke-rommected 6.155 are the best of the triodes. For best noise figure, the antenna circuit should be coupled a little heavier than optimum. This eamot give best selectivity in the antenna circuit, so it is futile to try to maximize sensitivity and solectivity in this circuit.

When a receiver is satisfactory in every respect (stability and selectivity) except sensitivity on $1+$ through 30 Me., the best solution for the amateur is to add a preamplifier, a stage of r.f. amplifieation designed expressly to improve the sensitivity. If image rejection is lacking in the receiver, some selectivity should be built into the preamplifier (it is then called a preselector). If, however, the receiver operation is poor on the

Tuning a Receiver

higher frequencies but is satisfactory on the lower ones, a "converter" is the best solution.
some commereial receivers that appear to lack sensitivity on the higher frequencies ean be improved simply by tighter coupling to the antenna. This can be accomplished by changing the antema feed line to the right value (as determined from the receiver instruction book) or by using a simple matching device as described bater in this chapter. Overoupling the input circuit will often improve sensitivity but it will, of course, always reduce the image-rejection conribution of the antemat cirenit.

Regeneration

Regeneration in the r.f. stage of a receiver (where only one stage exists) will often improve the sensitivity beranse the greater gain it provides serves to mask more completely the firstdetector noise, and it also provides a measure of automatie matching to the antenna through tighter coupling. Ilowever, accurate ganging becomes a problem, becuuse of the increased selectivity of the regencrative r.f. stage, and the receiver almost invariably becomes a two-handed-
tuning deviee. Regeneration should not be overlooked as an expedient, however, and amateurs have used it with considerable success. High- g_{m} tubes are the best as regenerative amplifiers, and the feedback should not be controlled by changing the oproating voltages (which should be the same as for the tube used in a high-gain amplifier) but by changing the loading or the feedbaek coupling. This is a tricky process and another reason why regeneration is not too widely used.

Gain Control

In a reeeiver front end designed for best signal-to-noise ratio, it is advantageons in the reception of weak signals to eliminate the gain control from the first r.f. stage and allow it to run "wide open" all of the time. If the first stage is controlled along with the i.f. (and other r.f. stages, if any), the signal-to-noise ratio of the receiver will suffer. As the gain is reduced, the $g_{m 1}$ of the first tube is reduced, and its noise figure beromes higher. A good receiver might well have two gain controls, one for the first radio-frequeney stage and another for the i.f. and other r.f. stages.

Tuning a Receiver

C.W. Reception

For making code signals audible, the beat oscillator should be set to a frequency slightly different from the intermediate frequency. To adjust the beat-oseillator freguency, first tune in a moderately weak but steady carrier with the beat oseillator turned off. Adjust the receiver tuning for maximum signal strength, as indicated by maximum hiss. Then turn on the beat oscillator and adjust its frequency (leaving the receiver tuning unchanged) to give a suitable beat note. The beat oscillator need not subsequently be touched, except for occasional checking to make certain the frequency has not drifted from the initial setting. The b.f.o. may be set on either the high- or low-frequeney side of zero beat.

The best receiver condition for the recoption of coole signals will have the first r.f. stage running at maximum gain, the following r.f., mixer and i.f. stages operating with just enough gain to maintain the signal-to-noise ratio, and the audio gain set to give comfortable headphone or speraker volume. The audio volume should be controlled hy the audio gain control, not the i.f. gain control. Under the above conditions, the selectivity of the receiver is being used to best advantage, and eross-modulation is minimized. It prechudes the use of a receiver in which the gains of the r.f. and i.f. stages are controlled simultaneously.

Tuning with the Crystal Filter

If the receiver is equipped with a crystal filter the tuning instructions in the preceding paragraph still apply, but more care must be used
both in the initial adjustment of the beat oscillator and in tuning. The beat oscillator is set as described above, but with the erystal filter set at its sharpest position, if variable selectivity is available. The initial adjustment should be made with the phasing control in an intermediate position. Once adjusted, the beat oscillator should be left set and the receiver tuned to the other side of zero beat (audio-frequency image) on the same signal to give a beat note of the same tone. This beat will be considarably weaker than the first, and may be "phased out" almost eompletely by careful adjustment of the phasing control. This is the adjustment for normal operation; it will be found that one side of zero beat has practically disappeared, leaving maximum response on the other.

In interfering signal having a beat note differing from that of the af. image can be similarly phased out, provided its frequency is not too near the desired signal.

Depending upon the filter design, maximum selectivity may cause the dots and dashes to lengthen out so that they seem to "rin together." It must be emphasized that, to realize the benefits of the crystal filter in reducing interference, it is necessary to do all tuning with it in the circuit. Its high selectivity often makes it diffieult to find the desired station quickly, if the filter is switched in only when interference is present.

A.M. Phone Reception

In reception of a.m. phone signals, the normal procedure is to set the r.f. and i.f. gain at maximum, switch on the a.g.c., and use the audio gain

5-HIGH-FREQUENCY RECEIVERS

control for setting the volume. This insures maximum effectiveness of the a.g.e. system in compensating for fidding and mantaining fonstant audio output on either strong or weak signals. On oreasion a strong signal close to the frequency of a woaker dexired station may take eontrol of the a.g.e., in which case the weaker station may disapparar because of the reduced gain. In this. case better reepption may result if the a.g.e. is switched off, using the manual r.f. gain eontrol to sot the gain at a point that prevents "blocking" by the stronger signal.

When receriving an atm. signal on a frequency within 5 to 20 kc . from : single-sideband signal it may also be nerexsary to switeh off the a.g.e. and risort to the use of manual gain control, maless the reveiver has cxorldent skirt selectivity. No ordinary a,ge eireuit can handle the syllabie loursts of anepgy from the sideband station, but there are sercial crenits that will.

A erystal filter will holp roduer interference in phone reception. Athough the high selectivity cuts sidebands and reduces the ablio output at the higher audio frequencies, it is possible to use quite high selectivity without destroying intelligibility. As in code reception, it is advisable to do all tuning with the filter in the circuit. Variableselectivity filters permit a choice of selectivity to suit interference comditions.

An undesired currier close in frequency to a desired "arier will heterodyne with it to produed a beat note equal to the frequeney differense. Such a heterodyme ran be reduced by adjusturent of the phasing eontrol in the erystal filter.

A tone rontrol often will be of help ian redueing the efferes of high-pite hed hetcronteness sideband
splattor and noise, bye cutting off the higher audio frequencies. This. like sideband cut ting with high selectivity circuits, reduces maturalues.

Spurious Responses

Spurious responses can be recognized without a great deal of difficulty. Often it is possible to identify an image by the nature of the transmitting station, if the frequeney assignments applying to the frequencey to which the recoiver is tuned are known. llowever, an image also can be recognized by its behavior with tunimg. If the signal causes a heterodyne beat note with the desired signal and is actually on the same frequener, the beat note will not change as the receiver is tumed through the signal: but if the interfering signal is an image, the beat will vary in pitch as the receiver is tuned. The beat oscillator in the remiver must be turned off for this test. ['sing a crystal filter with the beat oscilator on, an imatge will peak on the side of zero beat urposite that on which desired signals peak.

Harmonic reaponse rath be recognized by the "tuning rate," or movement of the tuning dial required to give a sperified change in beat mote. signals getting into the i.f. via high-frequeney oscilator harmonios tume more rapidly (less dial movement throngh a given change in beat note than do signals recoived be normal means.

Harmonios of the beat asailator cam be recgrazed by the tuning rate of the beat-ascillator piteh eontrol. A smatler movement of the eontrol will suffice for a given chatuge in beat mote than that heressary with legitimate signats. In poorlyshielded recoivers it is often prssible to lind b, f.o. hamonics below 2 Mr., but they should be very woak at higher frequeners.

Alignment and Servicing of Superheterodyne Receivers

I.F. Alignment

A culibmated signal gempator or test useillator is a usefulderior for aligmment of an i.f. amplifier. some means for measuring the output of the re-
 meter, its indications will serve. Lacking an simeter, a high-resistaner voltmererora vacuumtube voltmeter can be comerted aross the sere-ond-detector load resistor, if the serond deteetor is a diode. Alternatively, if the signal generator is a modulated type, an ace. volmetro can be comeded actoss the primary of the tramsormer feoding the speaker, or from the plate of the last audio amplifier through it $1.1-\mathrm{pf}$. Blorking a: pacitor to the reeciver chatsis. Latcking an and voltmeter, the audio output (an be judged by ear, although this method is not as arrurate as the others. If the tuning moter is used as an indication, the a.g.e. of the rereiver should he turned on, but any other indication requires that it be turned off. lacking a test oscillator, a steady signal tumed through the input of the receiver (if the joh is one of just tourhing up the i.f.
amplifier) will be suitable. However, with the oscillator and tuning an amplifior for the first time, one's only recourse is to try to peak the i.f. transfommers on "noisc," a difficult task if the tansformers are badly off resonamere as thes are apt to be. It would be much better to haywife together a simple owillator for test purposes.

Initial aligmont of a new i.f. amplifior is as follows: The test owillator is sut to the comeret frequency, and its output is coupled through a capaciter to the grid of the last i.f. amplifior tale. The trimmer eapations of the trinasformer foding the second detertor are then adjusted for maximum output. as shown hy the indieating deviere being used. The oseillator output lead is then elipped on to the grid of the next-to-the-last i.f. amplifier tube, and the serond-from-ther-lasi transformor trimmer adjustments are paked for maximum output. This process is continued, working baek from the second delector, until atl of the i.f. transformers have bern aligned. It will be neressary to reduce the output of the test oscillator :ts more of the i.f. amplifier is brought

Alignment and Servicing

into use. It is desirable in all cases to use the minimum signal that will give usoful output readinges. The i.f. tamsformer in the plate circuit of the mixer is aligned with the signal introduced to the grid of the mixer. Since the tuned circuit feeding the mixer grid maty have a very low impedaner at the i.f., it may be neersary to boost the test gonerator output or to discomnect the thmed direnit temporarily from the mixer grid.

If the i.f. amplifior has a erystal filter, the filter should first be swite ched out and the alignment carried out as above, setting the test oscillator as cluscly as possible to the erystal frequency. When this is comploted, the erystal should be switched in and the oseillator frequency varied hack and forth over a small range either side of the errstal frequency to find the exact frequence, as indicated by a sharp rise in output. Lataving the test oscillator set on the erystal peak, the i.f. trimmers should be realigned for maximum output. The necossary readjustment should be small. The oseillator frequencer should be cherked frequently to make sure it has not drifted from the erystal peak.

I modulated signal is not of much value for aligning a rrystal-filter i.f. amplifier, sinee the high solectivity cuts sidebamds and the results may be inacrurate il the audio output is used as the tuning indication. Lacking the a.v.c. tuning moter, the transformers may be conveniently aligued by ear, using a weak ummodulated signal adjusted to the erystal peak. Switeh on the heat oseillator, adjust to a suitable tone, and align the i.f. transformers for maximum :udio output.

In amplifier that is only slighty out of alignmont, as a result of nommal drift or aging, can be roaligned by using any steady signal, such as a loral hroadeast station, instead of the test weillator. Ome's 100-ke, stamdard makes an excellont signal source for "touching up" an i.f. amplifier. Allow the receiver to warm up thoroughly, tune in the signal, and trim the i.f. for maximum output.

If vou bought your rereiver instead of making it, be sure to road the instruction book carefully bofore attempting to realign the receiver. Most instruetion books ineluda aligmment details, and any little spectial tricks that are peculiar to the receiver will also the deseribed in detail.

R.F. Alignment

The objective in aligning the r.f. cireuits of a gang-tuned reoriver is to seeure adequate tracking over each tuning range. The adjustment may be carried out with a tost oscillator of suitable frequency range, with harmonics from your 100-ke. standard or other known oseillater, or reven on noise or such signals ats may be heard. litest sot the tuming dial at the high-frequency rond of the range in mise. Then set the test uscijlator to the frequenes indicated by the recoiver dial. The test-oscillator output may be comnected to the antemma tominals of the receiver for this test. Aeljust the ascillator trimmer capacitor
in the receiver to give maximum response on the test-oseillator signal, then roset the receiver dial to the low-froqueney ond of the range. Set the test-oseillator frequency near the frequency indicated be the receiver dial and tune the test oseillator until its signal is hard in the receiver. If the frequeney of the signal as indicated by the test-oseillator calibration is higher than that indieated by the recoiver dial, more inductance (or more capacity in the tracking eapacitor) is meded in the receiver oscillator circuit ; if the fregueney is lower, less inductance (less tracking (apacity) is required in the receiver oscillator: Most commercial receivers provide some means for varying the inductance of the coils or the eapacity of the tracking capacitor, to permit aligning the receiver tuning with the dial calibration. Not the test oscillator to the frequeney indirated by the receiver dial, and then adjust the tracking capacity or inductance of the recoiver oscillator coil to ohtain maximum response. . Viter making this adjustment, recherk the high-froqueney end of the seale as previously deseribed. It may be necessary to go back and forth between the ends of the range several times before the proper combination of inductance and caparity is secured. In many cases, better over-all trateking will result if frequencies near but not actually at the ends of the tuning range are selected, instead of taking the extreme dial settings.

After the oscillator range is properly adjusted, set the receiver and test oscillator to the highfrequeney end of the range. Adjust the mixer trimmer "apacitor for maximum hiss or signal, then the ref. trimmers. IReset the tuning dial and test oseillator to the low-frequeney end of the range, and repeat; if the cireuits are properys. designed, mo change in trimmer settings should he needsary. If it is neressary to increase the trimmer caparity in any cirenit, more inductaneo is nocded: conversely, if less capacity resonaters the cirenit, las induetance is required.

Tracking soldom is perfeet throughout a tuning range, so that a cheek of aligmment at intermediate points in the range may show it to be slightly off. Nomally the gain variation will be small, however, and it will suffice to bring the cirenits into line at both ends of the range. If most reception is in a particular part of the range, such as an amatour bam, the circuits may he aligned for maximum performance in that region, even thengh the conds of the frequener range ats a whole maye be slightly out of aligmment.

Oscillation in R.F. or I.F. Amplifiers

Oscillation in high-frequeney amplifier and miver circuits shows up as squeals or "birdies" as the tuning is varied, or beomplete lack of audible output if the oseiliation is strong enough to rause the a.g.e. sstom to reduce the receiver gain drastically. ()willation cam be caused by poor eomections in the common ground circuits. Inadequate or defective bypass eapacitors in cathode, plate and screen-grid circuits also can cause such oscillation. A metal tube with an ungrounded shell may cause trouble. Improper

5-HIGH-FREQUENCY RECEIVERS

screen-grid voltage, resulting from a shorted or too-low serern-grid serios resistor, also may be responsible for such instability.

Oscillation in the i.f. circuits is independent of high-frequency tuning, and is indicated by
a continuous squeal that appears when the gain is advanced with the c.w. beat oscillator on. It can result from defects in i.f.-amplifier circuits. Indequate sereen or phate bepass capacitaner is a common cause of such oscillation.

Improving the Performance of Receivers

Frequently amateurs unjustly criticize a recover's porfomance when actually part of the trouble lies with the operator, in his lack of knowledge abont the receiver's operation or in his inability to recognize a readily eurable fault. The best example of this is a complaint about "lack of sedectivity" when the redelver contains an i.f. erystal filter and the operator hasn't bothered to learn how to use it properly. "Lack of sensitivity" may be nothing more than poor aligmment of the r.f. and miser tuming. The cures for these two complaints are obvious, and the details are treated both in this chapter and in the rereiver instruetion book.

However, many complants about selectivity, sonsitivity, and other points are justified. In‘aproneme, and most second-hand, receivers cannot be experted to measure up to the performanere staudards of some of the current and toppricod regeivers. Nevertheloss, many amateurs overlook the possibility of improving the performane of these "bargains" (they may or may not be bargains) by a few simple additions or modifications. From time to time articles in OST deseribe improvements for specifie receiv(ers, and it may repay the owner of a newlyacquired second-hand receiver to examine past issurs and see if an applicable article was pultlishod. The annual index in each Derember issue is a help in this respect.

Where wo applicable artiele can le found, a fow gencral principles can to laid down. It the complaint is the inatility to separate stations, Inetter i.f. (and occasionally andio) selectivity is indeated. The answer is not to be found in Inther handepreal thning of the dial as is sometimes erroncously concluded. For cole reerption the addition of a " Q DIultiplier" to the i.f. amplifior is a simple and efferetive attark; a Q Multiplier is at its best in the region 100 to ! 00 ke., :und highor than this its effeetiveness drops off. The Selectoject is a sellective audio hevico besed on similar primeiples. For phone remetion tha addition of a \& Multiplier will Lolp to rejoet an intorfering earrier, and the use of a BC"-453 as a "(e5-er" will add adjacentchammel selectivity.

With the addition of more i.f. selectivity, it may be found that the receiver's tuning rate (number of ke . tumed per dial revolution) is too high, and eonsebuemtly the tuning with good i.f. solectivity becomes too rritical. If this is the
 mechanism may be added to make the tuming
rate more favorable. These drives are sold by the larger supply houses and ean usually lave added to the reeriver if a suitable mounting bracket is made from sheot metal. If there is apready some backlash in the dial meehanism, the addition of the planetary drive will magnify its effere, so it is neressary to minimize the barklash before at tempting to improve the tuning rate. While this is not possible in all cases, it should be investigated from every angle before giving up. Raplacing a small tming knob with a larger one will add to ease of tuning: in many cases after doing so it will then be desirable or neessary to raise the receiver higher above the table.

If the receiver apporars to lack the ability to bring in the weak signals, particularly on the higher-frequeney bands, the performane wan often be improved by the addition of an antemat coupler (deseribed chsewhere in this ehapter): it will always be improved by the addition of a preselector (also described alsewhere in this chapter).
If the receiver shortcoming is inadequate r.f. selectivity, as indicated by r.f. "images" on the higher-frequency bands, a simple antemat coupher will often add sufficiont selertivity to cure the trouble. However, if the images are severe, it is likely that a preselector will be required, prefcrably of the regencrative type. The preselector will also add to the ability of the receiver to dretert weak signals at $1+\mathrm{Mr}$. and higher.

In many of the inexpensive receivers the frequency ealibration of the dial is not very abeurate. The receiver's usefulness for determining band limits will be greatly improved by the addition of a loo-ke. erystad-controlled frequency standard. These units can be built or purchased fomplete at very reasonable prices, and no amatteur station worthy of the name should the without one.
Some recoivers that show a considerable frefuency drift as they are warming up (an be improved by the simple expedient of furnishing more ventilation, ly propping up the lid or by drilling extra ventilation holes. In many cases the warm-up drift can be cut in half.

Receivers that show frequency changes with line-voltage or gain-control variations can be greatly improved by the addition of regulated voltage on the oseillators (high-frepueney and b.f.o.) and the sereen of the miser cube. There is usually room in any rereiver for the addition of a VIR tube of the right rating.

SimpleX Super The "SimpleX Super" Three-Tube Receiver

The name of this receiver derives from "simple", " X " for erystal (filter), and "super" for sumerheterolyne: hener a "simple crystal-filter superheterodyne." For about fifty dollars and a fow nights at the workbench this little receiver will allow you to copy practically any c.w. or s.s.b. signal in the 40 - or 80 -meter band that a much more exponsive receiver might drag in. By the flip of a switeh you can tune to 5 Mc. for W'V.

This 3-tube receiver will permit the singlesignal reception of code signals. Single-sideband phone can the handled with no difficulty at all. With the b.f.o. turned off for the reception of a.m. signals, a threshold effect shows up that prevents digging all the way down for the weak ones, but one can still copy plenty of a.m. signals. Since the receiver uses only three tubes, it doosn't have the more-than-rnough gain of a big receiver, and its performanere won't te very impressive on a poor (short or low) antema. However, if the transmitting antenna is also used for receiving, you will find yourself backing down on the volume control to save your cars.

Raferring to the circuit diagram in Fig. 5-30, the recoiver is a superheterodyne with an intermediate frequency of 1700 ke . With the h.f. oseillator tuming 5.2 to 5.7 Mc ., the 3.5 - or the $7-\mathrm{Mc}$. amateur bands can be tuned merely by retuning the input rireuit, L_{1} (${ }_{1}$. Since (${ }_{1}$ is large enough to hit the two bands without a coil change, the band-changing process consists of turning C_{1} to the low- or high-capacitanee end of its range. To copy WWV at 5 Me, the oscillator must be tumed to 3.3 Me., and this is done by switching in an additional caparitor arross the oscillator circuit.

If you are disappointed because the receiver doesn't tune the 21-Mr: band, remember that the "under- $\$ 100$ " receivers don't cither. Sure, the dials show 2l Mc., but try to use the receivers to hold a signal for any length of time! The SimpleX Super, with a ervstal-controlled converter betwern it and the antema, will hande 15 meters like 80 .

Selectivity at the i.f. is obtained through the
use of a single erystal. Athough not as sharp as the usual 455-ke. crystal filter, it is sharp enough to provide a fair degree of single-signal c.w. reception and yet broad enough for good copy of an s.s.b. phone signal.

In the detector stage, the pentode section of a 6U8A is used as a grid-leak detertor, and the triode section serves as the b.f.o. Stray eoupling at the soeket and in the tule provides adequate injection. Audio amplification is obtaned from the two triode sections of a $6 \mathrm{C}(\mathrm{ia}$. The primary of a small output transformer, T_{1}, serves as the coupling for high-impordance he:udphone output, and a smatl loudspeaker or low-impedtace headphones can be connected at the output winding of the transformer. Although the audio power output is less than a watt, it is sufficiont to drive a loudspeaker adequately in a small guiet room.

The power supply uses a large ehoke and two $40-\mu \mathrm{f}$, capacitors, and the very slight hum that can be detected in the headphones with the volume full on is stray a.c. pieked up by the detector grid; it dorsn't come from inadequate filtering of the power supply. (The hum can only be heard with no antenna on: under normal operation the incoming noise will mask the slight hum.)

A switeh at the input of the receiver is included so that the remiver can be used to listen to one's own transmitter without too severe blocking. Using the b.f.o. switeh to eut in the WWV padder was done (instrad of by the more logical S_{1}) to keep the input short-rimeniting leads short.

An $8 \times 12 \times$ 3-ineh aluminum chassis takes all of the parts without erowding, and the loc:ation of the components can be sern in the photographs. The $71 / 4 \times 13$-inch aluminum pancl (1/16-inch thick) is held to the ehassis by the b.f.o. capacitor mounting screws, the phone jark, the dial drive and the two rotary switches. The tuning rapacitor C_{2} is mounted on a small aluminum bracket made from an extra strip of the pancl material ; before the bracket is finally fastened to the chassis the eapacitor and bracket should be used to locate the dial hole on the panel. When

Fig. 5-29-The SimpleX Super receiver uses three dual fubes and a crystal filter ta caver the 80 - and 40 -meter bands, and it can tune ta 5 Mc . far capying WWV. The dial scale is made from white paper held to the panel by red Scatch lape; the painter is a slice of the tape.

Fig. 5-30-Circuit diagram of the SimpleX Super receiver. Unless otherwise indicated, capacitances are in $\mu \mu \mathrm{f}$.,
resistances are in ohms, resistors are $1 / 2$ watt. Polarity shown on electrolytic capacitcrs; fixed capacitcrs $330 \mu \mu \mathrm{f}$. or less are silver mica or NPO ceramic. Nonelectrolytic fixed capacitors over 0.025μ f. are 400 -volt molded tubulars.

Fixed capacitors 0.001 through 0.025 are ceramic.
$\mathrm{C}_{1}-140-\mu \mu \mathrm{f}$. midget variable (Hammarlund APC.140-B).
$\mathrm{C}_{2}-15-\mu \mu \mathrm{f}$. midget variable (Hammarlund HF-15).
$\mathrm{C}_{3}-15-\mu \mu \mathrm{f}$. trimmer (Hammarlund MAPC-15-B).
$\mathrm{C}_{4}, \mathrm{C}_{6}-3-30-\mu \mu \mathrm{f}$. mica compression trimmer.
C_{5}-Dual 40- $\mathrm{\mu f}$. 450-volt electrolytic (Mallory TCD-78 or equiv.).
J_{1}, J_{3}-Phono jack.
J_{2}-Open-circuit headphone jack.
L_{1}, L_{2}-See Fig. 5-35
$\mathrm{L}_{3}, \mathrm{~L}_{4}-105-200-\mu \mathrm{h}$. slug.tuned (North Hills 120-H coil mounted in North Hills S. 120 shield con)
L_{5}-36-64- $\mu \mathrm{h}$. slug-tuned (North Hills 120-F coil mounted in North Hills S-1 20 shield can).
L_{6}-16-hy. 50 -ma. filter choke (Knight 62-G-137 or equiv.).
$R_{1}-1 / 2$ megohm volume control, audio taper, with switch RFC 1 , RFC 2 -2.5-mh. r.f. choke (Waters C1155).
S_{1}-1-pole 12 -position (2 used) rotary ceramic switch (Centralab PA-2001).
S_{2}-2-pole 6 -position (4 used) rotary ceramic switch (Centralab PA-2003).
$S_{3}-S . p . s . t$ switch, part of R_{1}.
T_{1} - 10,000-ohms-to-voice-coil output transformer (Stancor A. 3822 or equiv.).
$\mathrm{T}_{2}-480 \mathrm{v}$. c.t. at $40 \mathrm{ma}, 5 \mathrm{v}$. at 2 amp ., 6.3 v . at 2 amp . (Knight 62.G.034 or equiv.)
$Y_{1}-1700$-kc. crystal in FT-243 holder (E. B. Lewis or equiv.).
(All radio stores do not handle the above components. For prices and names of dealers write to North Hills Electric Co., 402 Sagamore Ave., Mineola, N. Y.; Knight is handled by Allied Radio, 100 N. Western Ave., Chicago 80, III. Waters Mfg. Inc., Boston Post Rd., Wayland, Mass.; E. B. Lewis, 11 Bragg St., E. Hartford, Conn.)

SimpleX Super

$6 t$.

$8 t$.
21 t.

Fig. 5.31-Details of the coil construction. Each one is made from B \& W 3016 Miniductor stock, which is wound 32 t.p.i. and 1 -inch diameter. The separation between coils in L_{1} is 7 furns; the separation between coils L_{2} is 1 turn. It is important that the coils be connected as indicated. The Miniductor stock can be cut into the required lengths by pushing in a turn, cutting it inside the coil and then pushing the newly cut ends through to outside the coil. Once outside, it is easy to peel away the wire with the help of long-nose pliers. When sufficient turns have been removed, the support bars can be cut with a fine saw.
drilling the hole for the dial drive, measure the dimension instead of 1 sing the template provided with the National K dial. It pays to take care in monnting the thang caparitor and the dial, sine e a smooth thming drive is an essential in any recevor. To facelitate thning, a National HR'T knob was nevd instond of the puny knob furnisherd with the K dial. The other knohs are gray National MR and MR-1.

Tie points are used liberally throughout the reociver, as junctions for components and interromere ting wires. The coils L_{1} and L_{2} ate mounted on tic points, using short leats. If the leads from Le are too long, the roil will be "floppy" and the
 coils L_{1} and L_{2} are constructed and comenertord. The leads from ('t and ('2 are brought through the chassis in insulating grommets. The 3- to :30-
 dered to the tie points that support the coil.

The reerever is wired with shelded wire for many of the leads. in an effort to minimize hum in the andio and feredthough aromel the erystal filter. The shedded leads are marked in Fig. $\overline{5}-30$ where feasible; the simple rule to follow is to shield all $13+$ loads along with those shown shichded in lige j-30. lior easy of witing, these shiedded leads shoud be installed first or at least carly in the construction. As the wiring progresses, a neat-looking unit ran be ohtained by dressing the leads and components in parallel lines or at right angles. Dee and a.e. leads ran be turked out of the way along the edges of the chassis, while r.f. leads should be as direct as is reasonable.

If this is your first reeciver or construction job, there are several pit falls to be aboided. When installing a tube sorket, first give a little thought to where the grid amd pate leads will run, and orient the soeket so that these leads will be direct and not aross ower the socket.

Another thing to look ont for is the wellmeaning store elork who sells you stranded wire for making the commetions throughout the reariver. The only stranded wire in this readiver is in the leads from the transformers, filter capacitor and filter choke, and in the shielded wire, and all this only berause there was no choice. Where stranded wire is used, be very caroful to avoid wild strands that stray over to an adjacent soeket terminal and short-eireuit a part of the cirenit without your knowing it. No. 20 or 22 insulated
solid timed copper wire should be used for connections wherever no shichling is used. Long bare leads from resistors or capacitors should be covered with insulating tubing unless they go to chassis grounds.

The final bugaboo is, of course, a poorlysoldered commertion. If this is your first venture, by all means practicer soldering before you start to wire this reeciver. Read an article or two on how to solder, or get a friend to show you hew and to (riticize your first attempts. A good soldering iron is an essential: there have been instances of : first venture having been "soldered" with an irow that would just barely molt the solder: the iron was incapable of hating the solder and work to the point where the solder would flow properly.
There is no need to worry about the dial scale when the receiver is first built, because the reeever has to be chereded. The scale is a sheet of white paper held in plawe by red or black Scoteh tape. The dial pointer is a sliee of the same tape.

When the wiring has been completed and checked one more against the eireuit diagram, plug in the tubes and the line cord and turn on the receiver through S_{3}. The tube heaters and rectifier filament should light up and nothing should start to smoke or get hot. If you have a voltmeter you should measure about 250 volts on the $13+$ line.

With headphones plugged in the recoiver, you should be able to hear a little hum when the volume control is advaneed all the way. If you can't hear any hum, touching a serewdriver to l'in'2 should produce hum and a loud click. This shows that the detertor and andio amplifier are working.
The next step is to tune L_{3}, L_{4} and L_{5} to 1700 ke., the erestal frequency. If you have or cam borrow at signal gemerator, put 1700 -ke. r.f. in at the grid of the 6U8A mixar and peak L_{3} and L_{4}. Latcking a signal generator, you may be lucky enough to find a strong signal be tuning around with ''2, but it isn't likely. Your best bet is to tune a broadeast receiver to around 1245 ke.; if the receiver has a $455-k$ e. i.f. the oscillator will then be on 1700 ke . Don't depend upon the calibration of the broadeast receiver; make your own by checking known stations. The oscillator of the broadeast receiver will furnish a steady (possibly hum-modulated) carriar that can be picked up by running a wire temporarily from the grid of the 6U8A miser to a point near the chassis of the

Fig. 5-32-Top view of the SimpleX Super, The tube between the two variable capacitars is the mixer-oscillator 6U8A; the 6CG7 audio amplifier is at the far right. The flexible insulated coupling between main tuning dial and the tuning capacitor is a Millen 39016.
b.c. receiver. Adjust L_{5} until rou get a beat with the 1700 -ke. signal, and then poak L_{3} and L_{4}. If the signal gets too lond, reduce the signal by moving the wire away from the bee. receiver. Now slowly swing the signal frequency beek and forth with the b, f.o. turned off: you should find a spot where the noise rushes up cuickly and then drops off. This is the ervstal frequeney, and L_{3} and L_{4} should be praked again on this frequency if you were a little off the first time.

An antenna connected to the receiver should now permit the reception of signals. With ('1 nearly unmeshed, you will be in the region of the 7-Mr. hand, and with (il almost completely meshed, you will be near 3.5 Mr. Do your tuning with the compression trimmer in the oscillator eircuit, until you find a known frequency (it can be your own transmitter). Let's say your transmitter has a crystal at 3725 kc . Sot Co at half (:upacitance and tume with ('6 until you hear your transmitter. You shouldn't need any antema on the receiver for this test. Once you have the setting for the trimmer, put the antenna on the rereiver and look around for other known signals,

(CHU, the Canadian standard-frequency station at 7335 kc ., is a good marker.) With luek you should just be able to cover the 80 -meter band; if you can get one end but not the other, a minor readjustment of the trimmer is indieated.
Once you have acquainted yourself with the 80 -and 40-meter bands, and appreciate that you have to peak up the input cireuit (${ }^{\prime} 1$) fairly often as you tune aross the bands, wou are ready to trim up the crystal filter. Rum the volume fairly high, so that youl (:an hear moise from the promerly peaked input circoit, and turn ('s until the noise takes on a higher-piteled characteristie. (The b,for stage is originally set up with ('s at mideaparitance and L_{5} adjusted for lowestpitched noise.) Now tune in at code signal with (${ }_{2}$ and swing back and forth through it. "One side" of the signal should be louder than the other. Tune to the weak sile with a beat note of around 800 cyeles and then auljust ('4 for minimum signal. After a few attempts, juggling (${ }_{3}, C_{4}, L_{3}$ and L_{4}, you should get a condition where the single-signal c.w. effert is quite applarent.

All that remains is to install the dial seale and calibrate it. A $100-\mathrm{ke}$. ossillator is ideal for this job; lacking one or the ability. to borrow one, you will have to rely on other signals. If your crestal filter is 1700 ke . exactly, the 80 - and 40 -meter calibrations will coincide as they do on the scale shown in Fig. 5 - 33 ; if not, the calibration marks will be offset on the two bands.

If you find that you can't get WWV at 5 Me . with the $150-\mu \mu$ f. caparitor switched in, substitute a $130-\mu \mu$ f. mical in parallel with a $30-\mu \mu \mathrm{f}$. trimmer, and adjust so that WWV falls on scale.

As you acquaint yourself with the operation of the reeeiver, you will notice that tuning (') will have a slight effeet on the tuming of the signal. In other words, tming (c) "pulls" the oscillator slightly. To remedy this would have made the receiver more complicated, and the simple solution is merely to first peak (1 on noise and then tune with (${ }^{2}$.

You will find this to be a practical receiver in every way for the c.w. (or s.s.b.) operator. The tuning rate is always the same on 80 or 40 , or 15 with a converter, and 21-Me. s.s.b. signals tune as easily as those on 3.9 Mc . The warm-up drift is negligible, and the oscillator is surprisingly insensitive to voltage changes. Whether or not the oseillator is insensitive to shock and vilration will depend upon the eare with which the components are anchored to their respective tie points.

Fig. 5-33-Shielded wire, used for most of the d.c. and 60-cycle leads, lends to the clean appearance underneath the chassis. The switch at the left shorts the input of the receiver, and the adjacent switch handles the b.f.o. and the padding capacitor for WWV.

The phono jack at the top left is for the antenna; the other phono jack is for low-impedance audio output. The headphone jack (lower right) is for high-impedance audio output.

The 2X4+1 Superheterodyne

The receiver shown in Figs. 5-31, 5-37 and i-38 is a two-land four-tube (2 N 4) receiver with a transistor $(+1)$ 100-ke. frequency standarel. Other features include the ability to tune to 5 Mr., for the reception of WWV, and a chat(erstal filter for single-sideband and single-signal cew. reception. Tuning the 40 - and 80 -meter amatrur bands with good stability and solectivity, the receiver can be used on other bands by the addition of erystal-controlled converters ahead of it.

Relorming to the aircuit in Fig. $5-35$, the pentode sertion of a de8-A is used as a mixer, with the triode portion of the same tube serving as the oselllator. The i.f. is 1700 ke . and the oseilator tumes 5.2 to 5.7 Me.; tuning the input cirenit to the 80 -meter hand brings in 80 -meter signals, and all that is required to hear 40 meter signals is to swing the imput tuning. ('1, to the low-repuritaner end of its range. Although, e.g., a $\overline{7} .05-\mathrm{Mc} \cdot(5.35+1 . \overline{6})$ and a $3.65-\mathrm{Ma} \cdot(\overline{5} .35-$ $1 . \overline{6}$) sigmal will appear at the same setting of the tuning dial, the two signals camot be received simultancous? beranse the double-tumed cirenit, ('ia L_{2} and ("1s L_{3}, between antenna and mixer grid provides the neeresary rejection. To provide optimum coupling in both ranges, the coupling capacitance is changed by a switch, S_{1}, actuated by the shat of (ty. Thus the coupling change takes phare automatically as the caparitor is tuned to the desired band. To make the two dir-
euits track over the entire range, a 3 - to $30-\mu \mu \mathrm{f}$ trimmer is provided to compensate for the input capacitance of the mixar. For WWV reception, raparitance ('6 is added to the oscillator cireuit to bring its frequene? to 3.3 Mt .

The mixer is followed by the dual erystal filter at 1700 kc . and a stage of i.f. amplification. I.f. gain is manually controlled by a variable bias control in the cathode cirenit of the (iBA i if. amplifier stage. A trionle sertion of a $6 \mathrm{C}\left(\mathrm{i} / \mathrm{T}, \mathrm{V}_{2 \mathrm{~A}}\right.$, serves as a grid-leak detertor, and the other sortion is used as the b.f.o. A two-stage audio amplifier follows, providing high-impedance output for heradphones or low-impedaner output for a loudspraker. The audio power is suffigient to give more than enough high-impedance headphone volume and quite adecuate loudspeaker volume in a quict room.

The power supply includes a OC:3 to supply regulated 105 volts for the two osellators and the screen of the mixer.
The transistor 100-ke. calibration oscillator uses for its power source the 8 volts developed across the athode resistor of $\mathrm{F}_{3 \mathrm{~B}}$. Switch S_{3} turns the oscillator on and off and also adds the (apacitance to the oscillator cirenit that permits WWV reception. The four positions of S_{3} are ofr - ww (only) - cal (oseillator only) netr. Although the loo-ke. standard is not essential to the operation of the receiver, its inclusion will be found to be guite valuable.

Fig. 5.34 - The $2 \times 4+1$ superheterodyne is a four-tube receiver with 7 -tube performance. It tunes the 80 and 40 meter amateur bands, and provision is included for receiving WWV on 5 Mc . A built-in crystal oscillator provides $100 . \mathrm{kc}$. frequency markers throughout the bands. Black knob on the left-hand side controls the calibration oscillator and the WWV reception.

Fig. 5-35-Circuit diagram of the $2 \times 4+1$ super-heterodyne. Unless indicated otherwise, decimal capacitances are in $\mu \mathrm{f}$. , other capacitances in $\mu \mu \mathrm{f}$. , resistors are $1 / 2$ watt.
C_{1}-Dual variable, $140 \mu \mu \mathrm{f}$. per section (Hammarlund MCD-1 40-M).
$\mathrm{C}_{2}, \mathrm{C}_{3}-480-\mu \mu \mathrm{f}$. mica compression trimmer (ArcoElmenco 466).
$\mathrm{C}_{1}-5-\mu \mu \mathrm{f}$, variable (Hammarlund MAC-5).
$\mathrm{C}_{5}-100-\mu \mu \mathrm{f}$. midget variable (Hammarlund HF-100).
$\mathrm{C}_{6}-240 \mu \mu \mathrm{f}, \pm 5^{\prime}$, mica in paralle! with $30-\mu \mu \mathrm{f}$. mica compression trimmer.
$\mathrm{C}_{i}-35-\mu \mu \mathrm{f}$, midget variable (Hammariund HF-35).
$\mathrm{C}_{s}-5-\mu \mu \mathrm{f}$. midget variable (Hammarlund HF-15 with 3 plates removed).
C. $-3 \mu \mu \mathrm{f}$. approx. Insulated wires twisted together for 3 turns.

J.-Phono jack.

$L_{1}-19$ turns No. 24, part of L_{2} stock, $1 / 16$ inch from L_{2}.
$L_{2}, L_{3}-43$ turns No. 24, 3/4-inch diam, 32 t.p.i. (B\&W 3012 or Illumitronic 632).
$L_{1}-7$ turns No. 24, part of L_{5} stock, $1 / 32$ inch from L_{5}.
L. - -17 turns No. 24, $3 / 4$-inch diam., 32 t.p.i. (B\&W 3012 or Illumitronic 6321.
$\mathrm{L}_{6}, \mathrm{~L}_{\mathbf{i}}-64$ to $105 \mu \mathrm{~h}$, adjustable (North Hills 120-G in North Hills S-1 20 shield can).
Ls -36 to 64μ h., adiustable (North Hills 120-F in North Hills S-120 shield can).
$\mathrm{L}_{9}-15$-henry, 75 -ma. filter choke (Stancor C-1002).
$\mathrm{RFC}_{1}, \mathrm{RFC}_{2}-2.2 \mathrm{mh}$., self resonant of 1.6 Mc . (Waters
$\mathrm{RFC}_{3}-10 \mathrm{mh}$, (National R-50-1)
S_{1}-Homemade cam switch mounted on C_{1}. See text.
S_{1}-Homemade cam switch mounted on C_{1}. See tex.
$S_{2}-2$-pole 3 -position rotary switch (Centralab 1472).
S:3-pole 6-postion (4 used) miniature ceramic switch (Centralab PA-3 with Centralab PA-301 index, $21 / 2$ inches used).
T1-3-watt, 8000 to 3.2 ohms, output transformer (Stancor A-3329).
$\mathrm{To}-650 \mathrm{v}, \mathrm{c}, \mathrm{t}$. at $55 \mathrm{mo}, 5 \mathrm{v}, 6.3 \mathrm{v}$. at 2 amp . (Stancor PC.8407).
$Y_{1}, Y_{2}-1700$-kc. crystals, FT-243 holders, surplus.

Fig. 5-36-The cam-operated switch, S_{1}, is made from the contacts and insulators taken from an open-circuit phone jack (Mallory 703) and mounted on an aluminum bracket. The cem, mounted on the shaft of C_{1}, is made by grinding one side of a small insulated knob (Johnson 116-214-1). Switch is open during minimum-capacitance half of capacitor range. Bracket is made from a $11 / 4 \times$ $31 / 2$-inch strip of aluminum; the shelf is $3 / 4$-inch deep.

Construction

The receiver is built on an $8 \times 12 \times 3$-inch aluminum chassis. A panel can be made from 1 16-inch thick sheot almminem or from a standard $83 / 4$-inch ratek panel. While the rack panel will be more substantial, it roally isn't neressary, and the 1 in-inch stock will be adequate. The pranel is held to the chassis by the b.f.o. capanitor, Ce, the lime/befo. switch, se, the dial, and an extra pair of 6 -32 surpews.

It is worth while to mount the tuming caparitor, P- $\overline{-}$ as aremately as possible with resperet to the National ICN dial. For minimum backlash and maximum strongth, ("7 is mounted on a threesided aluminum housing that is securcly fastened to the chassis on three sides by $3 / 8$-ineh lips. A good thexible insulated roupling should be used betwern dial and rapacitor shaft - a Millen :30006 is shown in the photograph.

The location of most of the major components rath be dotermined by reference to the photographs. The inductors $L_{1} L_{2}, L_{3}$ and $L_{4} L_{5}$ are supported by sultable tie strips, as are the two $480-\mu \mu$, miea compression trimmors. Co and \boldsymbol{C}_{3}, in the erystal filter cirevit and the pair of :3:30- $\mu \mu \mathrm{f}$. caparitors in the b.f.o. Lilas should be wired so that the outside ends go to antema and grid, and $L_{4} L_{5}$ should be wired with ontside conds to phato and grid.

Details of the only unusual construction, the cam-operated switch S_{1}, arre shown in Fig. ij-3f. Note that the assoriated .006- and .01-mi. conpling capacitors are mounted above the chassis: a clearaner hole with a mbler grommet is providerd in the chassis for the common la bat bark to L_{2} and L_{3}.

Sincer the rotor of ('1 must not make contant with the pancl, a large elearance hole must be provided for the shaft bushing, and a pair
of extruded fiber washers used to insulate the bushing from the panel. A brass serew or bayonet lug should be set into the chassis at the shiched partition between the two stators of C_{1}, and the shield soldered to this chassis comertion. The 3 - to $30-\mu \mu \mathrm{f}$, compression trimmer aronss (1a can be soldered betweon rotor and shied partition.

Many of the commections are made with shielded leads, to minimizo hum and chances for fordback or fordthrough, The shielded leads are indieated in Fig. 5-35. The load from the antenna jack is run in R(i-58/L' conxial cable, as is the short lead from ('s to a $330-\mu \mu$ f. wapacitor. Heater leads to the tubes are made of shiolded wire.

Alignment

The alignment proerdure can be simplified if a short-wate receiver or a signal generator can be borrowed. Larking these, a grid-dip meter can bo used to provide a signal source and to check the resonames of the tuned cirenits. If the $100-\mathrm{ke}$. oscillator can be cherked on another receiver, it can be used to aligh the reediver. A broadeast receiver will tell if the loo-ke. oseillator is fumetioning - it should be possible to identify several of the oseillator's harmonics at 100 -ke. intervals in the broadeast band, by the reduction in noise at those points.

The audio amplifier of the receiver can be cherked by turning on the rereiver and listening to the hoadphones as the audio gain control is advanced. When it is full clockwise a low-pitched hum should be just audible in the headphones. A further check can be made be bringing a finger near the arm of the audiog gain control - the hum should increase.

If a means is available for chocking the frequener of the b.f.o., it should be turned on at S_{2} and set on or about 1700 ke . by moans of the shag in L_{8}. I Oo this with (" set at half sale. If a broadrast receiver is the only moasuring equipmont you have, a $1700-k e$, sigual can be derived from it by timing the receiver to 12.45 kc ., which puts its oscillator on 1700 ke . if the standard t50-ke. i.f. is usod. A wire from aromal the receiver to the $2 . N+1$ should provide suffieient signal. Feeding a lion-ke. signal inte the detertor hy laying the source wire near the grid of the 6l3:N (i.f. gain arm at ground), it should be possible to peak L_{i} for maximum signal and, as the signal frequency is changed slightly, a change in piteh of the whistle should be heard. With no incoming signal, at slight rushing noise should be heard in the heat-phones when the b, f.o is switehed on by S., If this rushing noise is just barely discernibio increase the capacitanere at f'g by adding a fow more twists.

If the oscillator $V_{1 B}$ is operating, a voltmeter connected across the 4700 -ohm 1 -watt resistor in its plate lead should show an increase in voltage When the stator of $C^{\prime} 5$ or C^{\prime} ' is shorted to ground momentarily with a serewdriver or other conductor. Comeret the + lead of the voltmeter to the side of the resistor rumning to +10 j and the - connertion to the . $001-\mu$ if, side. If the oseillator

5-HIGH-FREQUENCY RECEIVERS

doesn't work, it may be bereuse the out side turns of L_{4} and L_{5} are not connereted to plate and grid respectively. With the b.i.o. on and $C^{\prime} 1$ almost fully moshed, set the tuning capacitor ("a at about 90 per cent full caparitance. Kun (ss to full capacitance and slowly reduce capacitanere. At one point you should hear a loud signal, the second harmonic of the b.f.o. at 3100 ke . If the b.foo is rasomably flose to frequency, turning on the calibration oscillator should give a waker signal nearby (on the main tuning dial). Tune ('7 to a higher frequency (loss capacitance) and you should hear another weaker signal, the 35th harmonic of the owillator (3500 ke .). Peak ('a for maximum signal and loave it. Run ('z back to about 90 pre eent full raparitance and then slowly reduce eaparitanoer at r 's until the 35 th harmonic of the oscillator is again heard. If a : 3500 -ke. signal is available the adjustment can be made in a more straightforward manner.

Once the oscillator trimmer ('s has been set to give the proper tuming ratuge of the oscillator circuit (5.2 to 5.7 Me.), the mext problem is that of adjusting the erystal filter circuit. With a eapacitance bridge, or a grid-dip) moter and an induetance, are set the two cipacitors (C_{2} and (${ }_{3}$ at the same capacitance (near maximum compression)
before soldering them in the receiver. The actual value of capacitanee isn't important. Lacking these instruments, fighten the eapacitors to full comprossion and then loosen their sorews by $3 / 4$ tum, Tume in a signal - it can be from the 100-ke. oscillator or any other steady source and peak L_{6} for maximum response. Tune off the signal until it disappears and set the pitch control, (ch, to a point where the background noise is reasomably high-pitahed. This is casy to dotermine because at the lowest-pitehed point there will br an increase in hum: make the lowestpitehed point the center of the knols salale by adjustment of L_{8}. and then set the piteh control to one end of its mange. Tune back to the signal and "rock" the tuning, "o, as you change the adjustment of L_{6}. Look for a condition that gives considerably more response on one side of zero beat than on the other. It is a good idea to buy several extra $1700-\mathrm{ke}$. rystals and try them in different eombinations. Small changes in the sotting of ('2 or ("s will haw an effert on the selectivity characteristic, but bear in mind that a change in ('es or C_{3}^{\prime} most be compensated for by a readjustment of L_{6}. With a little pationce it should he possible to obtain a marked difference in the output strength on the two sides of zroo beat. This will

Fig. 5-37-Top view of the $2 \times 4+1$ receiver. The dual capacitor at the left tunes the receiver input; a homemake cam switch on its shaft changes the coupling between the two bands. The main tuning capacitor, rear center, is mounted on a three-sided aluminum bracket for maximum stability. The tube to the left of the bracket is the 6U8-A mixer-oscillator stage, and the 68A6 i.f. stage is in front of the main tuning capacitor. The remaining tubes in shields are the 6CG7 detector/b.f.o. and the audio 6CG7 (near panel). Metal can plugged in socket above antenna jack houses $100-\mathrm{kc}$. calibrating crystal.

2X4+1 Superhet

"flip over" to the other side if the piteh control is set at the other end of its range.

The remaining alignment job consists of bringing the input circuits into resonance on both bands. With a signal tuned in at 40 meters, "rock" C_{1} back and forth to see if there are two (close-together) points where the signal praks. If there are, adjust the $3-30-\mu \mu$ f. trimmer across L_{2} until only one peak is found. Cheek on 80 meters in a similar fashion. If for any reason it is found that the two-peak condition can be eliminated on only one band at a time, it indicates an abnormal amount of antenna reaetance, and a compromise adjustment will have to be made.

In operation, the receiver input control, C_{1}, should be set for maximum volume on the incoming signal or noise. The i,f. gain should be run at close to maximum on all but the loudest signals, and the audio gain control should be set for comfortable headphone or speaker volume. If an antenna changeover relay is used, it may be possible to monitor your own transmitter by detuning the input eircuit to another band; this ability will depend upon the transmitter power and field in the vieinity of the receiver.

Frequency Standard

No trouble should be encountered with the 100 -ke. oscillator if care is exercised in handling the transistor. When soldering its leads in place, hold the lead with a pair of pliers; the metal of the pliers will absorb heat and prevent injury to the transistor.

To tune the receiver to WWV, set C_{7} to mid scale, set S_{3} at the WWV position, peak C_{1} on noise and slowly tune with C_{6}. On a busy day a wide variety of signals will be heard in this region; look for one with steady tone modulation and time ticks. If it can't be found within the range of C_{6}, set C_{7} near one end of its range and try again. An alternate method is to discomect the antenna, establish the position on the tuning dial $\left(C_{7}\right)$ of several 100 -ke. harmonies, conneet the antenna and investigate each one of these frequencies. Depending upon one's geographieal location, there will be times when WWV eannot the heard on 5 Mc ., so don't be discouraged by failure on the first try. Once WWV has been located with good strength, the 50th harmonie of the 100 -ke. crystal can be brought to zero beat with WWV by adjustment of C_{4}.

Fig. 5-38 - The input inductors $L_{1} L_{2}$ are supported by a terminal strip on the side of the chassis (upper right), and L_{3} is supported nearby by a terminal strip mounted on the chassis. The coils are at right angles to minimize inductive coupling. The oscillator inductors, $t_{4} t_{5}$, are also supported by a terminal strip (top center). A mica compression trimmer to the left of the oscillator inductors is used to center WWV on the tuning dial; the pair of
compression trimmers below L_{3} are in the crystal filter circuit.

5 - HIGH-FREQUENCY RECEIVERS

A Selective Converter for 80 and 40 Meters

Many inexpensive "communications" receivers are lacking in selerivity and bundspread. The 80- and fo-moter perlormane of sumberemer rath be improved cousiderahly by using iblomat of it the converter shown in Figs. $5-39$: n, 7 - -11 . This converter is not intended to be usad athead of a broudeast receiver except for phone reception, beatuse the BC set hats no b.f.o. or manmal gatin eontrol, and both of these features are necessury for good e.w. reapuion. The eonvarter can be built for lews than sen . and that rest can be ent

Fig. 5-39-Used ahead of a small receiver that tunes to 1700 kc ., this converter will add tuning ease and selectivity on the 80 - and 40-meter bands. The input capocitor is the dual section unit at the upper left-hand corner. The rrystal and the funing slug for L_{6} are near the center at the foreground edge.
atppereably if the power can be "horrowed" from another sourere.

The converter uses the toming priariple emplowed in the two-band superluterodynes deseribed carlior in this sertion. A double-tumed input eirenit with large capauitors covers both 80 and to meters without switching, and the oseilhator tunes from 5.2 to 5.7 Me. Conseruently with an i.f. of 1700 kc . the tuning range of the converter is 3.5 to 4.0 Ne, and 0.9 to 7.4 Me. Which band is being heard will depend upen the setting of the ingut circuit laning ($_{1} C_{1}$ in Fig. 5 -40). The comberter output is amplified in the receiver, which must of conrse be sot to 1700 ko.
 is used in sorters with the oumbut ammertion. A smat powersupply is shown with the converter, athd sone expense ram be oliminated if 300 volts d.e. at 15 mat. and 6.3 volts atere at 0.45 ampere is availathe from an ("xist ing supply.

Construction

The unit is built on : $7 \times 11 \times 2$-inch atuminum chassis. The front promel is mate from a 6×7-inch piewe of abluminum. The power supply is mounted to the reate of the ehassis and the converter components are in the center and fromt. The lavout shown in the bottom view should he followed, at least for the placement of L_{1}, L_{2}, L_{3} and L_{4}.

The input and oscillator coils are mate from a single length of $B \& W$ Miniductor stock, No.
 noted.
$\mathrm{C}_{1}-365-\mu \mu \mathrm{f}$. dual variable, t.r.f. type.
$\mathrm{C}_{2}-3-30-\mu \mu \mathrm{f}$. trimmer. Millen 20015). as below.

A Selective Converter

3016. ('ount off 31 turns of the coil stork and bend the 32 m turn in towated the axis of the coil. (n the wire at this peint and then nuwind the :32md turn from the support bars. Csing at hatsaw binde, courfully cut the polystyrene support bats athd sopatrate the 31 -turn enoil from the originat stock. Next. count off ! turns from the 3l-turn woil and rut the wire at the ! th tum. At the ent unwind at hatl turn from cateh coil, and abso unwind at half turn at the outside ends. This will leave two coils on the same support bars, with hatf-turn leads at their ends. One coil has 21 turns and the other has 8 turns, and there are scparated by the space of one turn. These coils are L_{4} and L_{5}.

The input coils L_{1} and L_{2} are made up in the same matmor. Standard hakelite tie points are used to monnt the coils. Two f-terminal tie points atre needed for $L_{1} L_{2}$ and $L_{4} L_{5}$, and a onos terminal unit is required for L_{3}. The plate lowd inductanor L_{6} is a $10 \overline{0}-200 \mu \mathrm{~h}$. variable-inductance roil (North Hills 120H). The eoupling eoil L_{i} is tis turns of No. 32 comam. sertmble-wound adjewent to L_{6}. If the constructor should have difficulty in obtatitug No. 32 wire, any size small enough to allow to turns on the eoil form can be substituted.

The input captucitor, C_{1}, is a 2 -gang t.r.f. variathle, 365 $\mu \mu \mathrm{f}$. per section. As both the stators and rotor must be insulated from the chassis, extruded fiber washers should be used with the serews that hold the mit to the chassis. The pathel shat holle should be made large enough to reat the rotor shate.

A National type (0 dial assembly is used to tune (${ }^{3}$. One word of adviee when drilling the holes for the dial assembly : the template furnished with the unit is in error on the 2 -ineh dimension (it is slightly short) so use a ruler to measure the hole spacing.

In wiring the unit, it is important that the output loard from the arystal socket be rum in shielded wire. A phono jack is mounted on the hame of the chatsis, and a piece of shiedded lead comuerts from the jatek to the erystal socket forminal. The leats from the stators of r_{1} and ('3 are insulated from the chassis ly means of rubber grommets.

Testing and Adjustment

A length of shielded wire is used to comnect the converter to the receiver: the inner eonductor of the wire is comnerted to one antematerminal; the shield is comereted to the other terminal and grounded to the receiver chassis, The use of shiedded wire hedps to prevent piekup of unwanted 1700 -ke. signals. Thurn on the converter and reesiver and allow them to warm up. Tune the receiver to the $5.2-\mathrm{Me}$. region and listem for the oscillator of the converter. The b.f.o. in the receiver should be turned on. Tune around antil the oseillator is heard. Once you spot it, thate C_{3} to maximum eapacitance and the reveiver to ats close to 5.2 Mc ats you can. Adjust the oscillator trimmer caparitor, C_{2}, until you hear the oscillattor signal. P'ut vour receiving intenna on the converter, set the receiver to 1700 ke., and tune the input calparitor, (${ }_{1}$, to ne:tr maximum catnacitinnes. At one point vou'll hesur the butkgromed moise come up. This is the 80 -meter tuning. The point near minimum rapateitance - where the noise is loudest - is the 40 -meter tuning.

With the imput tuming set to 80 moters, furn on vour transmitter and tune in the signal. By_{o} spotting vour crystal-controlled frequence you'd have one sure calibration point for the dial. I? listening in the evening when the band is crowded you should be able to find the band edges.

You'll find by experimenting that there is one point at or near 1700 ke . On your receiver where the background noise is the loudest. het the rereiver to this point and adjust the shag on L_{6} for maximum noise or signal. When you have the recerver tumad exarlly to the frecquencer of the crestal in the converter, vou'll find that you have quite a bit of selectivity. Tune in ate w. signal and tune slowly through zero beat. You should notice that on onfe side of zero leat the signal is strong, and on the other side sou won't hear the signal or it will he very weak (if it isn't, offeset the b.f.o. a bit). This is singlawignal ($\cdot w$. reoroption.

When listening to phone signals, it maty be foumd that the use of the quartz erystah destroys some of the matumathess of the voire signat. If this is the case, the arystal should le mpluged and replaced by a 10 or or 20 -unf. catpacitor.

Fig. 5-41-Bottom view of the converter showing placement of parts. The cail at the lower left is L_{3}, and the input coil, $L_{1} L_{2}$, is just to the right of L_{3}. The oscillator coil $L_{1} L_{5}$, is of the left near the center. The output coil, L_{f}, is near the top center.

Fig. 5-42-This view of the "bonus" converter shows all of the components projecting above the chassis. At the left on the front is the r.f. control and next to it is the mixer tuning. At the far right is the a.c. switch. The tube at the left is the r.f. amplifier, and the crystal is between the transformer and the mixer tube. Screw adjustment to the right of the mixer tube sets the slug of L_{5}.

The "Bonus" 21-Mc. Converter

The cure for most of the high-frequency ills of many receivers is the installation of a good crys-tal-controlled converter between the antenna and the receiver. The converter shown in Figs. 5-42 and 5-43, while intended primarily for 21-Mc. operation, gives a bonus of $28-\mathrm{Mc}$. reception without any additional parts or switching. This is accomplished by using signal circuits that tune more than the $21-$ to $30-\mathrm{Mc}$. range and using a crestal-controlled oscillator at 25 Mc . Using the converter ahead of a receiver, the 15 -meter band, 21.0 to 21.45 Mc ., will be found from 4.0 to 3.55 on the receiver. The receiver tumes "backwards." The 10 -meter band tunes 3.0 to 4.7 Mc . on the receiver.

Referring to Fig. 5-44, the ronverter consists of three stages, but it uses only two tubes. An r.f. stage amplifies the ineoming signals, and an oscillator provides a steady signal that, in a mixer stare, heterodynes the incoming signal to the difference frequency mentioned above. If the input and output circuits of the r.f. stage aren't tumed to 21 Me. the 2l-Me. signals can't be amplified to the full capability of the stage. However, the 21-Mc. tuned circuits aren't too sharp, so a single-setting will usually suffice for most of the 21-Me. band, and all of the tuning will normally be done at the receiver alone. The 47,000 -ohm resistor across ("2 was used to make the associated circuit a bit broader.

The selenium-rectifier power supply is quite adequate for the job and makes the converter a self-sufficient unit, although the power may be "borrowed" from the receiver if it is telt that the selenium supply is an unnecessary expense.

In the crystal-controlled oscillator portion, a capacitive divider (C_{3} and (${ }_{4}$) provides a tap on the tank circuit so that the oseillator is loaded very lightly. If you didn't tap down on the tuned circuit the overtone arystal, Y_{1}, might show lower-frequency energy as well, or it might not oscillate at all.

The size of the chassis shown in Figs. 5-42 and $5-43$ is $2 \times 5 \times 7$ inches. However, any chassis large enough to arcommodate the parts can be used. Most of the construction is simple but there are a few places where certain preautions should be taken, and these will be treated in detail.

Study the photographs, particularly the bottom view, to see how the coils and tube socket are mounted. Notice the shield that cuts across the $6 \mathrm{AK5}$ sooket. The purpose of the shicld is to minimize the coupling between the grid and plate circuits of the r.f. stage, to avoid oscillation. A serap of roofing copper was cut to $31 / 2$ by 2 inches for the shield. Brass, or any other metal that can be soldered, could be sulstituted. The shield and socket should be mounted so that the shield bisects the socket between l'ins 4 and 5 . There is a $1 / 4$-inch lip on the shield which is used to mount it to the chassis top. The metal tube in the center of the tube socket should be soldered to the shield; the shield is held to the chassis by two $0-32$ screws. Soldering lugs should be mounted under

Fig. 5-43-All of the components of the power supply are grouped at the right. The tubular capacitor, C_{5}, mounts against the chassis wall. At the opposite side of the chassis, the metal strip shields the input circuit of the r.f. stage. The coils to the right of the shield are L_{3}, and L_{4}.

the muts that hold the 6AK5 socket, and all the chassis ground connections of the 6 AK 5 grid and plate cireuit should be made to these lugs.

The roils are made from B \& W 3007 Miniductor stork. To make the coils, first cut off a coil of 21 turns from the stock. Next, unwind one turn from each end of the 21-turn coil. Now count off $5{ }^{1}, 2$ turns from one and and cat the wire at this point. If you hend the 4 th and 6 th turns in toward the crenter of the coil you should be able to reach the 5 th turn with your wire eutters. Cnwind the half turn from cach side leaving two coils on the same support bars, one 5 turns and the other 13 turns. Two of these dual coils are needed, one for the r.f. stage and the other for the mixer. They wan be mounted on a standard terminal tie point or supported by their own leads. Tie points provide a more rigid support.

The power supply is a simple half-wave rectifier, using a transformer, selenium rectifier, and an $R C$ filter circuit. Incidentally, when connecting the rectifier, the + side is connected to the oulput side of the supply. Again, a standard terminal tie point is used for most of the connections of the supply.

The preliminary checks are simple and should present no problems to the buider. First, turn on S_{1} and see if the tubes light up. If they don't, turn off the switch and carefully cheek the wiring. Once the tubes light, allow a minute or two for the unit to warm up. The first thing to check is the crystal-controlled oscillator. If your receiver tumes to 25 Mr . . listem in that region for the oscillator signal, which should come in loud and clear.

If it doesn't, adjust the slug of L_{5} until the oscillator starts. Should you find that it doesn't oscillate you'll need to make some voltage checks to make sure there is plate voltage on the oscillator. The voltage should be approximately 110 , give or take 10 volts. If no voltage is indicated, chork the wiring for errors.

Connert the converter to your rereiver, using a piece of coax as the connecting lime. Come is used for the lead between the two units to minimize any pickup of unwanted signals near or in the 80 -meter band. set your receiver to the the right range, 4000 to 3550 ke , and turn both units on.

Adjust C C_{1} and Cor maximum barkground noise. You'll find two values of "ap aritance (four points) on each (apacitor that will give an increase in noise, one near minimum capacitance (plates ummeshed) and the other with more capacitance. The setting at the greater capacitance point is 21 Mc , while the lesser is 28 Mc . Adjust the converter for maximum noise at 21 Mr , and tune your receriver arross the band. If the band is open - and don't forget that sometimes it's as dead as the famous doomail - you should hear signals. Tune in one and paak it up by tuning ('i and ('2 of the converter. Eateh control should give a definite peak. Pretty niee to know that your receiving front end is lined up, isn't it". And it is, you know; you align it when you peak the two controls. Your receiver is now working as a tunatble i.f. and the only adjustment required is to peak the sntenna trimmer (if you have one) for maximum signal.

5-HIGH-FREQUENCY RECEIVERS

The "Selectoject"

The Selectogect is a receiver adjunct that can be used as a sharp amplitior or as a simgle-fro quency rejoction filter. 'The frequency of operattion may be set to any point in the andio mane by turning a single knots. The degree of selectivity (or depth of the null is contimuously atjustahbe and is independent of tuning. In phone work, the rejertion noteh can be used to redure or eliminate a homodyne. In e.w. reception, interfering sirnats may for rejectod or, alternatively, the desired signal may to pirked out and amplified. "The Selechojeed may also be operated as a low-diswortion variablefrequeney atulo ossillator suitathe for amplifier frequencreveronse measurements, modulation teste, amd the like, by atvameing the "selectivity" eontmal far conogh in the seleceliveamplifier condition. The Selectojoct is connerded in a receiver between the detertor and the fiest andiostage. $1 t s$ power requirements are 4 mat at 150 volts and 6.3 volts at $(0.6$ ampere. For proper operation, the lio volts should be obtained from atoses a V'R-1.an or from a supply with an output (alparity of at least $20 \mu \mathrm{f}$.

The wiring diatram of the Solectojecet is shown in Fig. $5-45$. $R_{\text {ansistors }} R_{2}$ and R_{3} and R_{4} and R_{5}, (ambe within loper cent ol the nominal vabue but
they should be as close to each other as possible. An olmmeter is quite satisfactory for doing the matching. One-watt resistors are used beomase the larger ratings are usually more stable over a long period of time.

If the station receiver has an "accessory soneket" on it, the cable of the Sellectuject can be made up to mated the combertions to the somet, and the numbers will not neressarily mateh those shown in Figg. :- 15. The lad bet ween the seromd detector and the reediver gain control should be brokern and rin in shielded loads to the two pins of the socket corresponding to these on the plug marked "A.F. Input" and "A.F. Ontput." If the receder has a VR-1 00 induded in it for voltage stabilization there will be no problem in getting the plate voltage - otherwise a suitable voltage divieter should the ineorporated in the receiver, with a $20-$ to $40-\mu$. Aledrolytie capacitor conneeted from the +150 -volt $1: 10$ to ground.

In operation, overload of the receiver or the seleretojeet should be avoided, or all of the possible selectivity may not be realizod.

The selectojeet is useful as a means for obtaining much of the performance of a erystal filter from a receiver lacking a filter.

Fig. 5-45-Complete schematic of Selectoject using 12 AX 7 tubes.
$C_{1}-0.01-\mu f$. mica, 400 volts.
$\mathrm{C}_{2}, \mathrm{C}_{3}-0.1-\mu \mathrm{f}$, paper, 200 volts.
$C_{1}, C_{\Omega}-0.002-\mu \mathrm{f}$. paper, 400 volts.
C: $-0.05-\mu \mathrm{f}$, paper, 400 volts.
$\mathrm{C}_{11}-16-\mu \mathrm{f}$. 150 -volt electrolytic.
$\mathrm{C}_{7}-0.0002-\mu \mathrm{f}$. mica.
R_{1}-I megohm, $1 / 2$ watt.
$R_{2}, R_{3}-1000$ ohms, 1 waft, matched as closely as possible (see text).
$R_{4}, R_{5}-2000$ ohms, 1 waft, matched as closely as possible (see text).
$R_{B}-20,000$ ohms, $1 / 2$ watt.
$R_{7}-2000$ ohms, $1 / 2$ watt.
Rs- 10,000 ohms, 1 watt.
$\mathrm{R}_{!}-6000$ ohms, $1 / 2$ watt.
$R_{10}-20,000$ ohms, $1 / 2$ watt.
R_{11} - 0.5 -me gohm $1 / 2$-watt potentiometer (selectivity).
R_{12}-Ganged 5 -megohm potentiometers (tuning control) (IRC PQ11-141 with IRC M11-141.)
$\mathrm{R}_{13}-0.12$ megohm, $1 / 2$ watt.
S_{1}, S_{2}-D.p.d.t. toggle (can be ganged).

Antenna Coupler

Antenna Coupler for Receiving

In many instanees reeception can be improved by the addition of an antema coupler between the antemat ferdline and the recoiver, and in all cases the r.f. image rejection will be increased. The unit shown on this page consists of one wriestuned circuit and one parallel-tuned circuit: ustally its best performance is obtained with the parallel-tumed circuit connected to the recoiver input, as indirated in Fig. 5-46. However, the compler should also be tried with the connections reversed, to see which gives the better results. The desired eomection is the one that gives the sharper peak or londer signals when the circuits are resonated.
The coupler is built on one section of a $5 \times$ 4×3-inch Minibox (Bud CU-2105N). Tuning capacitors ('1 and ('2 are mounted directly on the Minibox face. sincer there is no need to insulate the rotors. The arrangement of the components can be seon in Fig. 5-47.

The coils L_{1} and L_{2} are mate from a single length of $13 \& W$:3011 Miniductor. The wire is snipped at the center of the coil and unwound in both directions until there are three empty spaces on three support bars and two empty spares on the bar from which the suipped ends projeet. These inner enels run to the eombectors J_{1} and J_{2}. (Fig. B $^{2}-46$). Unwind turns at the emels of the coils until cach coil has a total of 22 turns. When soldering the lads to the Brd, 6th, 8th and 12 th turns from the inside ends of the coils, protect the adjacent turns from solder and flus ly placing strips of aluminum rooking foil between the turns. An iron with a sharp point will be required for the soldering.

The "panel" side of the box can be finished off with decals indicating the knob functions and switeh positions.

The antenna coupler should be mounted within a few feet of the receiver, to minimize the length of $\mathrm{IR}(\mathrm{B}-59 / \mathrm{U}$ between coupler and receiver. In crowded quarters, the use of M-359A right-angle

Fig. 5.47-Receiver antenna coupler, with cover removed from case. Unit tunes 6 to 30 Mc . The coil is supported by the leads to the capacitors and switches.
adiuptars (Amphenol 83-58) and I_{1} and J_{2} will make it possible to bring out the cables in bettor lines.

Normally the coupler will be adjusted for optimum coupling or maximum image rejection, but by detuning the coupler it can be used as an auxiliary gain control to reduce the overloading difects of strong local signals. The coupler circuits do not resonate helow 6 M ., but a coupler of this type is seldom if ever used in the 80 -meter band: its major usefulness will be found at the higher frequencies.

Fig. 5-46-Circuit diagram of the receiver antenna coupler.
$C_{1}, C_{2}-100-\mu \mu \mathrm{f}$, midget variable (Hammarlund HF-100). $\mathrm{J}_{1}, \mathrm{~J}_{2}$-Coaxial cable connector, SO-239.
$L_{1}, L_{2}-22$ furns No. 20, $3 / 4$-inch diameter, 16 t.p.i. Tapped 3, 6, 8 and 12 turns from inside end. See text
on spacing and tapping.
S_{1}, S_{2}-Single-pole 11 -position switch (5 used) rotary switch (Centralab PA-1000).

5-HIGH-FREQUENCY RECEIVERS

A Regenerative Preselector for 7 to 30 Mc .

The beriomanere of many meerivers begins to (hrop) off at 14 Ma, and higher. The signal-tomoise ration is roduced, and miks denuble converssion is used in the recerver there is likely to be incroased trouble with r.f. images at the higher frepuencies. The preselector shown in liges, 5 - 18 athd 5 - tha can be added athead of athy revoiver without making any changes withen the recoiver. and at self-contained power supply rlimitates the prohlom of furnishing leater and phate power. The poorer the reeriver is at the higher froguonries, the more it will bemelit by the addition of the preselocetor.

A truly goal reoceder at $\geq S$ Ma. Will show little or no improvement when the preselector is added. hat a metiore reseriver on one without an r.f. stage will bro improved groatly through the use of the presedecelor.
 one triode as a band switched regenerative r .f. stage and the other as a cathode follower. A eonventional neumalizing cireuit is used in the amphifior: hy upsetting this cirenit conough the stage "atu be made to oscillate, smonth control of rearencration up to this point is ohtaimed by varying one of the eapacitane in the newtalizing cirenit.

If athe whon it heromber meressatry to redure gain (to awod overlanding the receiver), the regeneration control can be retarded. One position of the bandwitch permite straight-through opration, so the presedector unit wan lat left con-
 recoption.

The preselector is built on a $5 \times 10 \times 3$-inch
 panel is beld to the chassis by the extonsion-shaft hushing for the regeneration-control alamator, (3. and the hosking for the rotary swited. The coils, L_{1} and L_{2}, are supported on a smatl staging

Fig. 5-48 - The regenerative preselector covers the range 7 to 30 Mc ; it can be used ahead of any receiver to improve gain, image rejection and, in many cases, sensitivity. A dual triode 6CG7 is used as r.f. amplifier and cathode follower.
of $1 \frac{1}{4} \times 3$-inch elear plastic. (It ran be made from the lid of the box that the sprague $5(: A-s i$. 01- $\mu \mathrm{f}$. disk coramic capabitors come in.) All coils ("an be made from a simgle length of $138 W$: 3011 Miniductor. Ther are cementerl to the plastic staging with Duco cemont.

The rotor of (chan be insulated from the Chassis by monting the caparitor bracket on insulating bushings (National LS-6 or Millen 36001): its shaft is extended through the use of an insulated extomder shaft (Alliod Radio No. (60 H :305). The landwith S_{1} is mande from the sperifiod sertions (sere ligg, 5-ion).

The first sertion is spared $3 / 4$ inch from the indexing head, there is 1 -ind soparation low-

Fig. 5-49-The r.f. components are bunched around the 9 -pin miniature tube socket. Power supply components are supported by screws and tie points.

Regenerative Preselector

Fig. 5-50-Cirauit diagram of the regenerative preselector. Unless otherwise specified, resistors are $1 / 2 \mathrm{watt}$, capacitors are in $\mu \mu \mathrm{f}$., capacitors marked in polarity are electrolytic.
$\mathrm{C}_{1}-140-\mu \mu \mathrm{f}$. midget variable (Hammarlund HF-140).
$\mathrm{C}_{2}-3$ - to $30-\mu \mu \mathrm{f}$. mica compression trimmer.
$\mathrm{C}_{3}-100-\mu \mu$ f. midget variable (Hammarlund MAPC-100B).
$C R_{1}-50$-ma. selenium rectifier (International Rectifier RSO 50).
J_{1}, J_{2} —Phono jack.
$\mathrm{L}_{1}-19$ turns, 7 -furn primary.
$\mathrm{L}_{2}-5$ turns, 2 -turn primary. Coils are $3 / 4$-inch diameter, 16 t.p.i., No. 20 wire (B \& W 3011 Miniductor).

One-furn spacing between coils and primaries.
S_{1} - Three-wafer switch. $S_{1 \text { A }}$ and $S_{1} 1 /$ are 1 -pole 12 -position (4 used) miniature ceramic switch sections (Centralab PA-1); $S_{1} C$ and S_{1}) are 2 -pole 6 position (4 used) miniature switch (Centralab PA-3). Sections mounted on Centralab PA-301 index assembly.
$\mathrm{T}_{1}-125 \mathrm{v}$. af $15 \mathrm{ma} ., 6.3 \mathrm{v}$. at 0.6 amp . (Stancor PS. $8415)$.
RFC $_{i}-100-\mu h$. r.f. choke (National R-33).
tween this and the next section ($S_{1 B}$), and the next sertion ($S_{1 c}, S_{1 D}$) is spaced 2 亿年inches from S_{11}.

The regenoration control, (3 , is mounted on a small aluminum bracket. Its shaft doos not have to be insulated from the chassis, so eithor an insulated or a solid shaft comector can be used. The smatl moutralizing capacitor, ('2, is supported by soldering one lead of it to a stator bar of C^{\prime} : and rumning a wire from the other lead to pin 6 of the tube socket. The rotor and stator comections from ('i are brought through the ehassis deek through small rubber grommets.

Power supply components, rosistors and rapacitors are supportad by suitable lugs and tie points. Phono jacks are used for the input and output connectors.

Adjustment

Assuming that the wiring is correct and that the eoils have been constructed properly and cover the required ranges, the only preliminary adjustment is the proper setting of (2 . Comneet an antemna to the input jack and connect the receiver to the output jack through a suitable length of $1 \mathrm{RG}-58 / \mathrm{U}$. Turn on the receiver b.f.o. and tune to 28 Mc . with S_{1} in the on position. Now turn S_{1} to the 21- to $30-\mathrm{Me}$. range. Swing
the tunivg eapacitor, C_{1}, and listen for a loud rough signal which indicates that the preselector is oseillating. If nothing is heard, advance the regeneration control toward the minimum caparitance end and repeat. If no oscillation is heard, it may be necessary to change the setting of ("2. Once the oscillating condition has been found, set the regeneration control at minimum capacitance and slowly adjust ('2 until the preselector owillates only when the regeneration control is set at minimum sapacitance. You can now swing the receiver to 21 Me and peak the preseleceor tuming caparitor. It will be found that the regencration caparitance will have to be increased to avoid oscillation.
(heek the performance on the lower range by tuning in signals at $1+4$ and 7 Me: and peaking the preselector. It should be possible to set the regeneration control in these two ranges to give both an oscillating and a non-oscillating condition of the preselector.

A little experience will be required before you can get the best performance out of the preseleetor. Learn to set the regeneration control so that the preselector is selective, but not so seleretive that it must be retumed every 10 ke . or so. Changing antenna loads will modify the eorrect regeneration control setting.

5-HIGH-FREQUENCY RECEIVERS

A Clipper/Filter for C.W. or Phone

The clipper/filter shown in Fig. 5-51 is plugged into the receiver headphone jack and the headphones are plugged into the limiter, with no work required on the receiver. The limiter will cut down serious noise on phone or c.w. signals and it will keep the strength of c.w. signals at a constant level, and while the filter will add selectivity to your receiver for e.w. reception, the unit will do much to relieve the operating fatigue caused by long hours of listening to static erashes, key clicks encountered on the air and with break-in operation, and the like.
There are times when only the selective audio circuits will be wanted, while on other occasions only clipping will be needed. Since it is a simple matter to provide a switching arrangement so that either function, or both, can be used at will, this has been done in the unit described here.

The frequeney response of the selective cireuits reaches a peak at about 700 eveles and has a null at about 2000 eycles. The peak frequency is determined by the combined values of L_{1}, C_{1}, and (${ }_{2}$ (or L_{2}, C_{3} and (C_{4}), while the noteh frequency is that of the parallel-resonant cireuit $L_{1} C_{1}$ (or $L_{2} C_{3}$). If different peak and null frequencies are desired the values of C_{1} and (C_{2} (and C_{3} and (${ }_{4}$) can be changed; for raising the noteh frequency the capacitance of C_{1} and C_{3} should be made
smaller; to raise the peak frequency reduce the capacitance at ('2 and ('4.

The rotary switch S_{2} (Fig. 5-51) is used to provide different combinations of the clipper and filter. To simplify the wiring diagram the switehing cireuit is shown separately in the diagram.
The filter-clipper can be built on an aluminum chassis, but a steel cabinet should be used to house the unit. Steel is preferable to aluminum because L_{1} and L_{2} are sensitive to stray magnetic fields (which would show up as hum at the output) and the steel cabinet aids in shielding. One layout precaution should be ohserved: Place the filter inductors L_{1} and L_{2} as far as possible from the power transformer, and mount them with their cores at right angles to the core of the transformer. This will minimize hum pickup by the induetors.

Before mounting L_{1} and L_{2}, it will be necessary to remove the mounting frames and insulate the "1" laminations, as shown in Fig. 5-52. The frame is removed easily by prying out its two legs and then lifting it from the core. The "I" laminations are in the form of a bar lying across the top of the " E " core.

By mounting the chokes with nonmetallic straps the Q will remain high. If aluminum or other nonmagnetic materials are used the Q will

Fig. 5-51-Circuit of the two-stage elipper-filter. All capacitances are in $\mu \mathrm{f}$. All $0.01 \mu \mathrm{f}$. capacitors may be ceramic; capacitors marked with polarity are electrolytic. Others should be tubular plastic or mica. Resistors are $1 / 2$ watt unless otherwise specified. Switch functions are as follows: Position 1, dual filter alone; Position 2, clipper and dual filter; Position 3, clipper alone; Position 4, straight through with cathode-follower output.
$C R_{1}-50$-ma. selenium rectifier.
$\mathrm{h}_{1}-6.3$-volt pilot lamp.
J_{1}-Open-circuit phone jack.
$\mathrm{L}_{1}, \mathrm{~L}_{2}-5-\mathrm{h} .65-\mathrm{ma}$, filter choke; frame removed and choke remounted as described in the text.
S_{1}-S.p.s.1. toggle switch
S_{2}-3-section 6-pole 4-position rotary switch, shorting type preferable. (Centralab PA-1020).
T_{1}, T_{2}-Output transformer: 7000-10,000-ohm primary to 3.2 -ohm voice coil (Thordarson24S52).
T3-Power transformer: 125 volts, 50 ma .; 6.3 volts, 2 amps. (Stancor PA-8421).

A Clipper/Filter

Fig. 5.52-Sketch showing the method of clamping and tuning the filter inductors. Clamping strips must be of bakelite, phenol, plastic or other suitable insulating material. Metal should not be used.

lo adversely afferted and the selectivity of the filter will suffer.

The switeh wiring shown at the bettom of the sehematie diagram can be done before mounting S_{2} in place. After the switch is mounted the wiring betwern it and the other components ran be rompleted.

Apply power by closing S_{1}, insert the plug in the receiver phone jack and turn switch S_{2} to the "out" or straight-through position. 'Tune the receiver until a c.w. signal is found and adjust the reeciver controls for temfortable copwing.

Now turn S_{2} to the "elipper" position. In order to berome familiar with the action of the clipper these strps should be followed: Adjust the "rlip)ping" control so no rlipping oreurs (maximum positive bias on the diode plates). Set the "(elip) level" rontrol on the unit so that there will be no appariont change in the strength of the e.w. signal whon switching from "rlipper" to "out" and hatek to "elipper." Then turn the "clipping" control until the positive bias is low rongh to canse limiting to start; the point at which limiting begins can be reagnized by the face that the signad strugth begins to decreases. B:ak off slightly with the "clipping" "ontrol so that the signal strengeth in the phomes is just at the original laved.

Tuning the receiver without the use of the limiter shows signads of all strongths, some so lomel
as to be car-breaking: but switching to "elipper" will make these hig ones drop down to the "comfortable" preset level.
The filter can be aligned with the help of an audio signal gemerator and a srope. The procedure is to sot the two thmed circuits individually to within 10 to 15 reveles of the chosen prak froqueney. Jut on opposite sides of that frequenery. This aljustment can be made by tightoning or loosening the elamping serews on cath ehoke until "ach circuit is tuncd to the desired fredueney. Altoring the number of laters of paper placed between the "I" and "E" laminations of either or both chokes will allow any two simitar chokes which, due to manufacturing tolerances, may be of slightly different inductances, to lee tuned to the same frequenc:. The filter is then ready to go. If the response is too sharp. slightly greater sepatration of the two frequencies can be achieved by readjusting the elamp) on one of the chokes.

In order to paak a desired signal the reeeiver b.f.o. or tuning control should be adjusted so the pitch of the signal is 700 eyres. Since the selertivity curve is rather sharp, any adjacent undesired signals will fall short of the peak and be attematem. If the reeciver b.f.o. has sultiedent range to thene $\mathbf{f (0)}$ (evelos or more on both sides of zero leat, the mederimed sigmal can always be plared on the noteh side of the pe:ik.

A Simple Audio Limiter

Fig. 5.53-Circuit diagram of a simple oudio limiter. $C R_{1}, C R_{2}-1 N 34 A$ or similar germanium diade.
J_{1}-Open-circuit headphone jack.
P_{l}-Headphone plug.
$S_{i}-$ D.p.s.t. toggle or rotary switch.
A Keystone battery holder No. 155 (Allied Radia) will hold two Burgess N, Eveready W468 or Ray-o-Vac 716 flashlight cells.

A simple andio limiter to hold down static crashes and kege clicks can lo made from two flashlight eells, two gromanium diodes and a fow other parts. lts use reguires no alteration of the reeriver, since it is plugged in at the output jack of the reeediver and the headphones are plugged into the limiter. A suitable circuit is shown in lig. 5-53. No constructional details are given because there is mothing eritical. If desired, the parts can be housed in at smatl utility eabinet or "Minibox." Leads can be solderod directly to the flashlight reolls or, if desired, a suitable battery holder ean be oltained from a radio or model airplane store. Hold the germanium diode leads with pliers when soldering, to provent heat from reaching and injuring the crystals.

DCS-500 Double-Conversion Superheterodyne

The recoiver shown in Jig. 5-5t was designed to meet a need for a botter-than-average ham recoiver reguiring a minimum of mechanieal work and using standard and easily obtainable parts. It ineorporates such features as a 100 -ke. calibrator. provision for reereption on all ham hands from 80 through 10 moters, adeguate selectivite for today's crowded bands, and stability high conough for ropuing s.s.b. signals. Wubled the 1)(Ch-500 berease of its $50($ orecle selectivity in the sharpest i.f. position, it is a double-conversion suporheterodye receiver capable of giving good results on either a.m., ew. or s.s.b.

The Circuit

lkoferting to the circuit diagram, Figs, 5-55 and $5-56$, a bibad r.f., stage is followed by a GCSA mixer-oscillator. The 4.5-Me. mixer output is amplifiod by a 6 GAD and filtered by a twostage erystal filter, after which a fol8A serond mixer-oxcillator, erystal-eontrolled, heterodynes the signal to 50 ke .
The combination of i.f. amplifiers may apporar rather umustal at first glanere, since one might expert that a cascade rerystal filter in the highfrepueney i.f. would make further selectivity unneecesary: This would the true with highly doveloped filters, but two filters are meded if the best possible job, is to be done on hoth phone and c.N., and such filtors are expensive. With inexpensive surphus crestals such as are used in this receiver it would ine difficult, if not imposisible, to match the performanere of the high-elass filters: in addition, sperial test equipment ant extreme care in adjust ment would be neressary. The approach Hised here is to nse the surplus arsatals without such sperial adjustment, therehy achieving a good, if not quite optimum, degrere of selectivity against strong signals near the desired one, and then to back up the filter bey a low-frecuenery i.f. amplifier that will give the "closo-in" stratightsided solertivity noeded in present-day operation. The overall result is a high order of protertion against strong interforing signals at considerably less cost, for the entire double-i.f. system, that that of two high-performance filters alone. The choiere of 4.5 Na. ., approximately, for the first i.f. was hased on the availability of sumplus crystats around this frequencer, with due comsideration for minimizing spurious responses. A second i.f. of 50 ke. was chosen berause it lont itsell nierey to

the utilization of low-rost 'IV horizontal-oscillator coils as i.f. transformers.

The two i.f. amplifiers at 50 kc . contribute the necessary adjacent-chanmel selectivity. Three dr-grees of soloctivity are available, depending on the degree of capacitive coupling between the two windings of cach i.f. transformer. The greator the momber of eapacitors swithed in paralledthat is, the larger the coupling capacitance - the lower the compling between the windings and thus the groater the selertivity.

A standard diode detector develojs the andio output for all reeception modes. The output of the detertor is simultaneously applied to loth the first audo amplifier and the audio a.g.e. cirenit. A sorics-type noiso limiter can be used on atm, to reduce impulsemoise interferener, but this type is ineffertive on c.N. or s.s.lo. leceamse of the large amplitude of the b.for. injertion voltare.

The bifo., a Hartlow-type oweillator, can be thered from : kc , above to 3 ke. Welow its 50 -ke. center frequency ber the tming capmeritor.

The first audio stage is a mormal Class a voltage amplifier with its output either roupled to the gride cirenit of the audio output tube or to a phone jack. High-impedance head-phones (20,000 ohms a.ce impedaner or highore are required, Plugging in the phomes antomatically diseonnoets the speaker. If low-impedane headphomes are used. they catl be comered to the sporaker termanals. (apmeitaners shmoting the grid resistors restrict the audio response to all uper limit of about 4000 cerelds.

The audio output transformer couples to a lowimpedance (3.2 -ohm) spoaker. The tiohm resistor across the secondary proterts the transformer in the alsemere of a speaker load.
The audio output of the detertor is also amplified sparately in the audio atg.e. circuit and then rectified to dovelop a negative voltage that ran be nised for at.g.e. on r.w. and s.s.t. Two different time comstants are used in the reetifier filter circuit, for either fast or stow-decay a.g.e.

The 100 -ke, ealibrator emplose two 2 N 107 p-n-p tramsistors, one as the osillator and the second as a 100-ke. amplifier. Its transistors ohtain the necessaty oprating potential from the cathode resistor of the audio output tube. Output from the $100-\mathrm{ke}$. unit is caparity-rompled to the antema winding of the ref. coil. Cabibrating signals at 100 -ke. intervals are available on all frequencies rovered by the reoder.

The calibrator minit is constructed in a separate

Fig. 5-54-The DCS-500 double-conversion superheterodyne. Left bottom, antenna trimmer, $100-\mathrm{kc}$. calibrator switch; center, left, top to bottom, noise-limiter switch, volume control, sensitivity control; center, right, b.f.o. switch, a.g.c. speed, selectivity; right, headphone jack, b.f.o. pitch control. The dial is a National ICN. Front panel is $83 / 4$ inches high; the receiver is mounted in a Bud CR-1741 rack cabinet.

Fig. 5-55-Front-end circuit of the receiver. Unless otherwise spocified, resistors are $1 / 2 \mathrm{watt} ; 0.01$ and $0.02-\mu \mathrm{f}$, capacitors are disk ceramic, 600 volts; 0.5 capacitors are tubular paper; capacitors below $0.01 \mu \mathrm{f}$. are mica; capacitors marked with polarities are electrolytic.
$\mathrm{C}_{1}-50-\mu \mu \mathrm{f}$. variable (Hammarlund HF-50).
$\mathrm{C}_{2}, \mathrm{C}_{4}$-See coil table.
$\mathrm{C}_{3}-2$-section variable, $5-28.5 \mu \mu \mathrm{f}$. per section, double spaced (Hammarlund HFD-30-X).
$\mathrm{C}_{5}=-3-30-\mu \mu \mathrm{f}$. ceramic trimmer.
J_{1}-Coaxial receptacle, chassis mounting (SO-239).
L_{1}, L_{2}, L_{3}-See coil table.
$L_{\text {t }}$, L.:-18-36- $\mu \mathrm{h}$. slug-tuned (North Hills 120 E coil
mounted in North Hills S-1 20 shield can).
$\mathrm{L}_{6}-4.7 \mathrm{mh}$. (Waters C1061).
Li-1-2-mh. slug-tuned (North Hills 1 20K).
$\mathrm{RFC}_{1}, \mathrm{RFC}_{2}-4.7 \mathrm{mh}$. (Waters C1061).
S_{1}-Single-pole rotary.
$\mathrm{Y}_{1}-100 \mathrm{kc}$. (James Knights H-93).
$Y_{2}, Y_{4}-4495 \mathrm{kc}$. (surplus).
$Y_{3}, Y_{5}-4490 \mathrm{kc}$. (surplus).

Minibos so that it can be plugged into the accessory socket of the receiver or used as an individual unit powered by penlite cells.

The power supply, Fig. 5 -at, is a full-wave rece tifier with a choke-input filter. It provides approximately 250 volts d.e. under load. A $0.25-\mu \mathrm{f}$. capacitor is shunted across the 10 -henry filter choke to form a parallel-resonant cireuit at $1 \cdot 20$ cycles; this provides an increased impedance to the ripple component and thus reduces hum in the output of the supply.

The power-supply requirements are 250 volts at 110 milliamperes, and 6.3 volts at approximately 5 amperes. Any transformer-choke combination fultilling the requirements can be used.

Front End

The use of plug-in coils for the front end eliminated the meehanieal problems of a band-
switching tumer, and also offered the possibility of realizing higher-Q tuned cirenits. Ganged tuming of the r.f. amplifier along with the h.f. oscillator and mixer cerreuits was decided against, beceuse of the complexities it would cause in coil construction and the proilem of keeping three stages tracking with each other. The r.f. amplifier has to be peaked separately be the antemat trimner, but separate paking insures maximum performance at all frequencies.

Construction

The reeciver is construeted on a $12 \times 17 \times$ 2-ineh aluminum chassis with an $83 / 4 \times 19$-ineh aluminum front panel, which permits it to be installed in a table-type raek cabinet. The gencral layout of components can be seen in Figs. $5-58$ and 5 -60. A good procedure to follow when

5-HIGH-FREQUENCY RECEIVERS

Fig. 5-56-l.f. amplifier, detector, a.g.c. and audio circuits. Unless otherwise specified, resistors are $1 / 2$ watt; 0.01 - and $0.02-\mu \mathrm{f}$. capacitors are disk ceramic, 600 volts; $0.5-\mu \mathrm{f}$. capacitors are fubular paper; capacitors below $0.01 \mu \mathrm{f}$, are mica; capacitors marked with polarities are electrolytic.
$C_{6}, C_{7}, C_{4}, C_{11}, C_{1 n}, C_{11}-0.01$ mica (Aerovox CM-30B-103) $\mathrm{C}_{12}-9-180-\mu \mu \mathrm{f}$. mica compression trimmer.
$\mathrm{C}_{13}-50-\mu \mu \mathrm{f}$. variable (Hammarlund HF-50).
$\mathrm{C}_{1: 4}-0.1-\mu \mathrm{f}$. paper (Sprague 2TM-PI).
J_-Phono jack.
J_{3}-Closed-circuit phone jack.
L*- 125 mh . (Meissner 19-6848).
L:-9-18 $\mathbf{\mu}$., slug-funed (North Hills 120D).
$\mathrm{M}_{1}-0-1$ d.c. milliammeter (Triplett 227-PL).
R_{1}-2500-ohm, 4 -watt control, wire-wound.
$\mathrm{R}_{2}-0.5$-megohm control, audio taper with push-pull type
switch (S_{i}) (Mallory No. PP55DT 1 683).
R_{3} - 1000 -ohm, 1-watt control, wire-wound.
RFC ${ }_{3}$ - 10 mh . (National R-50-1).
S_{i}, S_{3}-Rotary, 1 section, 1 pole, 2 position.
starting to wire the receiver is first to complete the power supply and hoater wiring, and then start wiring from the antenna toward the speaker. This allows proeceding in a logival order so that the work can be picked up readily at any time after an intermission.
The use of good quality ceramir tube and cond sockets, particularly in the front end, is highly recommended. When momenting the sockets orient them so that the leads to the various points in the eirenit will he ats stort as possible.

Millen roil shichds ($8(0008)$ are used atound the plug-in coils in the front end-i.e., the r.f., miser and oseillator - and the shogh hases are monnted with the same serews that hold the
S_{2}-Rotary, 2 section, 1 pole per section, progressively shorting. Switch section Centralab PA-12, index Centralab PA-302.
S.t-Rotary, 1 section, 5 poles per section (4 poles used), 3 positions used, Centralab PA-2015.
S_{5}-Rotary, 1 section, 2 poles per section, 2 positions used. Centralab PA-2003.
$\mathrm{T}_{1}-\mathrm{T}_{5}$, inc. -50 -kc. i.f. transformers made from TV components (Miller 6183); see text.
T_{B}-B.f.o. transformer (Miller 6183); see text.
T_{7}-Audio interstage transformer, 1:2 ratio (Thordarson 20A16).
Ts_Audio output transformer, 5000 to 4 ohms (Stancor 3856).
$\mathrm{Y}_{\mathrm{G}}-4540 \mathrm{Kc}$. (surplus).
cramie coil sockets. All plug-in eoils are wound with No. ${ }^{2}(6$ enameled wire on Amphenol polystyrene forms, and Hammarlund APC-type airpadder eapacitors are momed in the recesses at the tops of the coil forms. Ater finishing a coil it is a good idea to fasten the winding and the trimmer capacitor in place with Duco erment. Decal earh set of coils for a particular hand and nount them on small wooten bases that have holes to take the pins Then paint or stain each of the roil-set bases. The final result will be a moat and conveniont arrangemont for holding the (ovils for cach band (lig. 5-5!). Ilug-in coil data for catch hand are given in the coll table.

The tuning caparitor, C_{3}, is mounted on the

chassis and reinforred by a bracket to minimize any rocking movement. This bracket is triangular in shape with a right-angle flange at the botom. It is drilled to take the front learing sle ve of the tuning caparitor and held firmly to it be the capacitor monting nut and a lock washer, as shown in Fig. j-ise. Flexing of the chassis can be minimized by the use of lengthe of angle stock bolted to the chassis at strategic points throughout the receiver. Fxact aligmment of the tuming caparitor with the dial shalt is not always possible, so a flexible coulding (Millen 3:0)t6) is used.
When wiring the erystal filter keep leads as short and dirert as possible, as this will minimize stray coupling between the imput and output conds, which would deteriorate the performance of the erystal-filter cirenits.

The 50 -ke, i.f. eirenits used Miller 6183 TV horizontal-oscillator replacement coils as i.f. transformers. These coils must be altered before they can be used. As they are supplied, the terminal lugs are brought out at the top of the can: these lugs must be reversed before the can is mounted. By applying slight pressure to the phenolic coil form the assembly will slide out of the aluminum shiold can and then can be re-
versed. Howewer, tefore reasembling the mit at few slight changes must be made. There are artually two separate windings: carh one will be tumed and used wither as a primary or serondary for the zo-ke. i.f. tramsormer. The tap on the large winding must be lifted off the soldering lug © taped, and tucked away, tring rarefol toot to break it: this leaves just the lead from the small winding on terminal C. Torminals A and F represent the large winding. The shall coil is thed ly connecting at (680- $\mu \mathrm{L}$. miea capariter betweron terminals C and D: these capacitors should be fastened on the soldering lugs inside the shicled can. The can is then sliphed back over the eoil and eapacitor, keeping in mind that the lugs must come out the botom, and the assembly is ready for mounting on the chassis.

The b.foo coil is also a Miller 6183, and the procedure for reversing the assembly before mounting is identical to that followed with the $50-\mathrm{ke}$. transformers. However, it is not nevessary to alter any of the wiring in the b.f.o. transformer, sinee only the large winding ($A-F$) and its tap (C) is used.

Point-to-point wiring is recommended, along with generous use of hoth insulated tie points and

5-HIGH-FREQUENCY RECEIVERS

Fig. 5-57-Power-supply circuit. Capacitors marked with polarities are electrolytic.
$C_{1,5}-0.25-\mu \mathrm{f}$. paper, 600 volts.
L_{10}-Filter choke, 10.5 henry, 110 ma . (Knight 62 G 139). P_{1}-Fuse plug.
ground lugs. Cre of shiedfed wire facilitates routing wires throughout the receiver as the shichs can be spot-soldered to ground lugs and to each other in bundles. When wiring, mount romponentes at right angles to the chassis sides wherever possible; this helps give the finished unit a neat appearaner. In eritical cireuits, however, do not sacrifiece short and direct leads for the sake of making the unit look protty.

Placing the receiver in a rack cabinet and marking all rontrols on the front pancl with decels also helps in giving the finished receiver a noat and "commercial" appearance.

The Calibrator

The 100 -ke. (atibrator is built in a soparate $4 \times+\times$-inch aldminum box and plugs into the anecesory socket at the left rear of the reeciver chassis. Fig. g -til shows the internal construetion. The areressory socket provides the neecesary operating voltage for the tramsistors and offers a convenient means for coupling the 100-ke. harnonies out of the calibrator into the receiver. If the ealibrator is to be tised as a self-eontained mit it must be supplied with approximately $7-10$ volts. A serids arrangement of penlite cells, or a moremry hattery, (an be used. it battery (rlip)
S_{6}-See R_{2}, Fig. 5-56.
T_{9} —Power transformer, 700 v. c.t., 120 ma,; $5 \mathrm{v} ., 3 \mathrm{amp}$.; 6.3 v., 4.7 cmp . (Knight 62 G 044).
mounted on the side of the box is a convenient way to hold the internal batteries. If the mit is to be self-contained, a separate output jack for the calibrator must he provided. A phono jaek may le used.

I.F. Alignment

Before starting alignment of the receiver, first determine whether the audio stages are functioning correctly. An audio signal shonid be coupled to the tope end of the volume rontrol, and varying the eontrol should change the output level of the audio signal. If an andio signal is not available, the fo-evele heater voltage will provide a conveniont andio signal for chereking.

There are various ways to approad the alighment problem. A so-ke. signal gememator ran be used; however, these are hard to come be. Some of the better atudio oseillators go as high as 50 ke . and can be used for alignment purposes. A serond. and possibly superior, mothod is to use any of the numbrous sigual generators which will deliver 4.5-Nb. output: fed into the first i.f. amplifior grid, the for-Me. signal will beat against the serond eonversion oseillator to produce a $50-\mathrm{ke}$. i.f. signal which then can be used for aligmment. This mothod also insures that the first i.f. signal

Fig. 5-58-The power supply is built along the back of the chassis; filter capacitor and VR tube are just in back of the filter choke in this view. The crystal calibrator unit at right is cushioned by rubber bumpers mounted on the receiver chassis. C_{5} is on top of the calibrator unit. Front-end coil shields are at the top right in this photograph, along with the tuning capacitor bracket and flexible coupling. The on-off s witch, S_{G}, on rear of the audio gain control, is a new push-pull type. Filter crystals are grouped behind the volume contro!, and the second conversion oscillator crystal is slightly to their left. The 4.5-Mc, i.f. transformers (in the small shield cans) are clase to the filter crystals. The b.f.o. coil is at the extreme left in this view; all other large cans contain the $50-\mathrm{kc}$. i.f. transformers. Connections on the back chassis wa!l, left to right, are the muting terminals, B-plus output for auxiliary use, speaker terminols, i.f. output (phono jack). and antenna input connector.

Fig. 5-59-Each set of coils is provided with a wooden base for storage. C_{2} and C_{1} are mounted in the recesses at the tops of the oscillator and mixer coil forms.

DCS-500 Coil Table

Band

Stomalary

 l., 1:3! turus - pacent to ${ }^{5}$ inch.

 $L_{8} .91 /{ }^{6}$ turns slated to $1 / 2$ inch.

 $L_{1}, 6^{1}$ turns spaced to *ib-inch.

 7"itums, !-inch watige from socondars.
 73, thrns, f-imell watrine from semondars.

will fall within the erystal filter bandpass in case
 ing. comneret a ace voltmoter (preliorially a V.t.v.m.) arooss the deoteretor lond resistor (porint 1) of 7_{5} abd chassis), turn the i.f. gain control almot three-quarters opern, amel tune both the phate rimenit of the seroud conversion aseillator
and the 50 -ke. i.f. transformers lon maximum ontpht, as indicated on the moter. The ontput of the signal geacrator should mot be modhlated, and at the start will most likely le: "wide open." Howaver, ats aligmment progresses the output of the Generntor will have to be progressively dodreased. Whan aliguner the i.f. fransformers theres shoulel

Fig. 5-60-The potentiometer for S-meter adjustment and the audio output transformer are on the right chassis wall in this view. The 50 -kc. i.f. trap is located just above the power transformer in the lower right-hand corner. The antenna trimmer is located at extreme left center. The crystal filter sockets are at top center, and to their left on the front wall is the calibrator switch S_{1}. To the right of the calibrator switch is the sensitivity control, followed to the right by the selectivity switch S_{2} and the b.f.o. pitch-control capacitor. The octal accessory socket for the calibrator is at the lower left. As shown, shielded wire spot-soldered together in bundles can be routed conveniently to various points in the receiver. Ceramic sockets are used throughout the front end (center leff). Mounting components parallel with the
chassis sides helps give the finished unit a neat appearance.

5-HIGH-FREQUENCY RECEIVERS

In a definte peak in output as each circuit is brought through resonance. If a particular coil foes not peak, that coil and its assoriated cirouits should be cheeked. After praking one winding of a transformer, recheok the other: it may mend toudhing up. Ifter aligmment of all the so-ke. coils is completed, go batek and "rock" each roil shag to be sure it is peaked lom maximum output. This completes the solke, atigmment.

Latave the signat generator ons. sat the b, fo. piteh controd at half caparitance, tum the b, foo. on, and adjust its coil shag for zero heat with the notke, i.f. signal. Varying the piteh control ower its range should produce a tone with a maximum frequences of 3 ke , either side of zoro beat.

Coxt. He solke trap on the outpuat of the detector should be anljatod. Coment the vertional imput terminals of an meilloseope betwern the phate of the first andio amplifier and chassis, turn on the h.f.o., and adjust fie for minimum $30-\mathrm{ke}$. signal on the seope. This trap, made up of ' 'exand La, atternates any 50-ke. Ferel-through.

The first-i.f. coils at t.in-Me. should next bo adjusted. Couple the signal generator to the grid of the first mixer and pak L_{1} and L_{55} for naximum deflection of the v.t.r.m. at the detertor. The i.f. system is then completely aligued.

Front-End Alignment

Tou aljust the front end. plug in a sut of coils and check the owillator irequeney range eithor with a calibrated g.d.o. or on a catibrated gert aral-owarge reeiver, the lat ter being preforable. Feap in mind that the ascillator works 4.5 Me. alowe the sigual on 80, 10 and 20 meters, and 4.5. Mr. bebow the signal fregueney on the bis- and 10 -meter hands. This means that on 1.5 and 10 motures the oncillator trimmer capacitor. (4, must be at the largeremparitanere setting of the two that bring in signals. After astablishing the rorreet frequency rathge of the oscillator, injeret a signal at the low rad of the band into the antema terminals and peak the mixer capacitor, \mathbf{C}_{2}, and the antenta trimmer, (', for maximum signal. Then move the test signal to the high end of the hand and recherk the mixer trimmer rapacitor (the antenna trimmor also will have to be ropraked) for correct tracking. If (2g has to be reatjusterl, spread the mixer coil turns apart or compress them together until the signal strengeth is uniform at both conds of the hand, without readjustment of ("2. If the mixer trimmer calatatature hatd to be increased at the high-frequeney end of the band to maintain traking, the roil tap is (ow)
far up the coil and the turns below the tap must Ine spreal apart or the tap itself must be moved down. If the trimmer rapacitance has to be dorroased the tap is too low. Coil sperifications might possibly have to be altered slightly from those given in the table. particularly on the higher frequencies, breanse of variations in strays from one receiver to another.

General

Aldustment of the ralibrator is relativel! straight forward, and should present mo prohlems. Turn on the calibrator and you should hear the 100-ke. harmonies on whatever hand son hatpern to be using. Once it is determined that the unit is working correctly, the only adjestment neeressary is to set the frequency of the calibrator exarths. The nsual relerence is WWV or ang broadrast station that is on a frequency which is a wholdnumber multiple of 100 ke . The frequeney tolerance for standard broadrast stations is 20 cyedes, thus bere stations represent a soureve for aecurate frequency determination.

Lsing a general-coverage or bic. rweriver, thuc in cither W"WV' or a known broadrast station and adjust the calibrator trimmer C"s for zero beat. The calibrator will then provide accurate $100-\mathrm{ke}$. signals that can be used for frequency determination and band-otge marking.

The first intermediate frequeney can be altered sightly to farilitate the use of particular sets of crystals available. Howrer. if the deviation is more than 20 kc . or so, slight changes may he noeded in the h.f. oseillator roil specifications to maintain the proper handsprend.

If the reeniver is to be worked in a rack cabinet as shown in lig. 5-5.t, or if a cover plate is attached to the bottom of the recoiver chasisis. minor aligument tomeh-up masy be necessary.

Spaying the receiver chassis with a light eoat of clear plastic lacquer before mounting ans of the components will prevent fingerprints and oxidation of the chatsisis.

The andio output stage has adequate power to drive a $\overline{5}$ - or 6 -inch speaker, which may be monted in a small open-bark metal utility box.

The i.f. output jack at the rear provides a convenient way of attarhing accessory devices such as an oscilloseope for modulation chereking.

A side-hy-side comparison of the finished receiver with some of the better-quality commercial units will show that this receiver can hold its own in sensitivity, selectivity and stability. Nerdless to sar, the more care taken in construction, wiring and alignment the better the results.

Fig. 5-61-Inside view of the calibrator unit. The $100-\mathrm{kc}$. oscillator coil, L_{15}, is at the right, the oscillator transistor, Q_{2}, is in the foreground mounted to the crystal socket, and the amplifier transistor, Q_{1}, is mounted at the right on a terminal strip. The $100-\mathrm{kc}$. crystal is mounted horizontally between the plate and the octal plug. The plug can be mounted on 2 -inch screws as shown in the photograph, or on the botfom plate of the Minibox, with flexible leads to the circuit. If the calibrator is to be used as a self-contained unit (see fext) the octal plug is not necessary.

Q Multiplier

A Transistorized Q Multiplier

A "() multiplier" is an electronie device that leosis the Q of a tumed circuit many times beyond its normal value. In this condition the single tuned rirenit has much greater selectivity than normal, and it can be utilized to rejeet or amplify a narrow band of frequencies. There are vacumtule versions of the (2 -multiplier circuit, but the transistorizod (\& multiplier to be deseribed has the advantage that it eliminates a power-supuly problem and is very compact.

Circuit and Theory

I arallel-tuned sircuits have been meed for vars as "surk-out" trap cirenits. l'ropedy coupling a parallel-tumed rireuit lonsely to a varum-tube amplifier stage. it will be found that the amplifier stage has no gain at the frequency to which the trap cirruit is tuned. The additional tuned cirenit puts a "notch" in the response of the amplifier. The principle is used in TV and other amplifiers to minimize response to a narrow band of frequencirs. Increasing the ($)$ of the trap circuit reduces the width of the rejection notch.

The trausistorized (\% multiplier makes use of the above effect for its operation. A tuned cirenit is made regenerative to inerease its () and is coupled into the i.f. stage of a receiver. By changing the frequency of the regenerative cireuit, the sharp notch ean be moved about arross the passband of the receiver. The width of the notch is changed by eontrolling the amount of regeneration.

Althongh it seems paradoxical, the transistorized () multiplier with no change in circuitry will also permit "peaking" an incoming signal the way a varrum-tube (multiplier does. The mode of operation is selected by adjustment of the regeneration control, and this then usually requires a slight readjustment of the frequeney control. The peaking effeet is not quite as pronomesed as the noteh, but it is still adequate to give fairly good single-signal e.w. reception with a receiver of otherwise inadequate selectivity.

The regenerative cireuit builds up the signal and feeds it back to the amplifier at a higher level
and in the proper phase to add to the original signal. The noteh effert deseribed carlier works in a similar manner exept that the tuming of the regenerative cirroit is such that it feeds back the signal ont of phase.

The sehematie diagoam of the Q multiplier is shown in Fig. z-fiz. The inductor L_{1} furnishes coupling from the receiver to the (a multiplier, and G_{4} is reguired to prevent shortementiting the reereivers phate supply. The muthiplier proper consists of the thathle cirenit $G_{1} \mathrm{C}_{3} L_{2}$ commeded to a transistor in the collector-tumed rommonbase owallator eircuit using capacitive foed mack via ('2, Regeneration is controlled by varying the d.c. operating voltage through dropping resistor R_{1}.

Layout

The onit and power supply are built in a small ahuminum " Hinitox" measuring $5 \times 21 / 4 \times 21 / 4$ inches (Bud CC-3004) and the operating controls are mounted on a lurite or aluminum subpanel. All parts of the unit are built on one half of the box. 'This feature not only simplifies construction but makes a battery change a simple joh, even if this is required only a couple of times a year.

DIl major components, such as the two slugtuned coils, tie point, battery holder, regenerattion and tuning controls, are mount ed directly on the box and subpand. The remaining resistors, calpacitors and the single transistor are supported hy their commetions to the above parts.

The two slug-tuned roils, L_{1} and L_{2}. are rentered on the box and spaced one inch apart on centers. Operating controls C_{1} and R_{1} are phaced $11 / 4$ inches from the ends of the subpanel and centered. The tir point mounts directly behind tuning control (${ }_{1}$.
lower for the unit is supplied by four penlight eells (type ! 92) which are mount ed in the hattery holder (hafayette Radio Co. Stork No. MS-170) directly behind regeneration control R_{1}. Total dratin on the battery never exeeds 0.2 mat.

Connection to the receiver is made with a threefoot length of R(i-58/U cable brought through the rear wall of the Minibos. A rubber grommet

Fig. 5-62-Circuit diagram of the $455-\mathrm{kc}$. Iransistorized Q multiplier. Unless otherwise indicafed, capacitances are in $\mu \mu$., resistances are in ohms, resistors are $1 / 2$ waft.

Fig. 5-63-View of the Q mu!tiplier showing its single connecting cable to the receiver. The box can be placed in any convenient spot on or around the receiver.
should tre pared in the hole to prevent chafiner of the cable insulation.

When soldering the transistor in phace be sure to take the usual precautions against heat damage

Alignment

After completing the wiring (and double erhereking it) connect the open end of the thres-foot callde to the plate circuit of the reeceiver mixer tubre. This can be done in a permanent fashion hes soldering the inner eonductor of the rable to the plate pin on the thbe sorket or any point that is connected directly to this pin, and by soldering the shifd to any conveniont mearlsy ground point. If you are one of those prople who is afraid to take the botom plate of his receiver, and you have a receiver with octal tubes, a "ehicken connection" ran be made by removing the mixer tube and wrapping a short piere of small wire aromen the plate pin. Reinsert the tube in its socket and solder the renter conductor of the coas to the small wire coming lrom the plate pin. Now ground the coas shield to the receiver chassis.
Fig. 5-64 - The Q multiplier and its battery supply are combined in one small Minibox. The single transistor is visible near the top right corner.

It is important to keep, the lead from the tube pine to the coan as short as possible, to prevent stray piekup.

Cheek the schematic diagram of the reeriver for help in locating the ahoverereiverconnertions.

Turn on the receiver and tune in a signal strong doongh to give an S-moter reating. Ang decent signal on the broadeast band will do. Next, tume the slug on L_{1} until the signal peake up. Fou are tuning out the reactance of the connecting cable, and effectively peaking up the i.t. If the receiver has no s meter, use an acr. voltmeter across the andio output. When this step has been sucerssfully completed the (a multiplier is properly conneted to the receiver and when switehed to "off" (S_{1} opened) will not affect normal receiver operation.

The next step is to bring the multiplier into oscillation, and to adjust its frequeney to a nseful range. sot the tuming control to half capabity and advamee the regroneration control to about hadf opern. This later movement also turns the power on. Tune the reederer to a cloar spot and set the receiver b.f.o. to the econter of the pass-hand. Now adjust the slug of $L 2$. The multiphier should be oscillating, and somewhere in the adjustmant of L_{2} a beat note will be heated from the reerever. This indicates the frequency of oseillation is somewhere on or near the i.f. Swing this into zero beat with the b.f.o.

Final Adjustment

One of the best wats to make final alignment is to simulate an unsanted hoterodyme in the receiver and aljust the () multipliar for maximum attemation of the umwanted signal. To do this, tune in a moderately wrak signal with the b.f.o. on. A broudeast station remeived with the antemat disconnerted will do. The b.i.o. will beat with the incoming signal, producing ant andio tone. Adjust the b,foo. for a tone of about 1 kc . or sol

Back off on control R_{1} until the osedlator brcomes regenerative. By alternately adjusting the tuning control, C_{1}^{*}, and the regeneration control, R_{1}, a point can be found where the audio tonc disappears, or at least is attenuated. Some slight retouching of L_{2} may have to be done in the above alignment, since the movement of any one control tends to "pull" the others. The optimum situation is to have the tuning eontrol C_{1} set at about half caparity when the notel is in the center of the passband.

If you happen to get a super active transistor and the regenemation control does not have the range to stop oseillat or attion, inerease the value of the series resistor R_{2}. Conversely, if the unit fails to oscillate, reduce the value of R_{2}.

When making the above adjustments, you should notice that the andio tone can be peaked as well as nulled. If it ean not be peaked, a little more practice with the controls should produce this condition. In the unit shown here, the best mull was produced with the regeneration control turned only a few degrees. Optimum peak position was obtained with the regeneration eontrol almost at the point of oseiltation.

Conelrad

Conelrad

Effective January 2, 1957, the "Conelrad" rukes beeame part of the amateur regulations. Visentially, compliance with the rules consists of monitoring a broadeast station - standard band, f.m. or 'TV - either continuonsly or at intervals not execeding ten minutes, during periods in which the amateur transmitter is in use. On receipt of a Conclrad Alert all transmitting must cease, exept as authorized in 12.193 and 12.194 of the FCC regulations.

The existence of an Alert may be determined

Fig. 5-65-Converter circuit for monitoring broodeost stotions in connection with a communicotions receiver. Copacitonces are in $\mu \mu \mathrm{f}$.
$C_{1_{A}}, C_{1 B}$-Two-gang broadcast capacitor, oscillator section according to intermediate frequency to be used.
L_{t}-Loop stick.
T_{1}-B.c. oscillator transformer (for i.f. to be used).
T_{2}-l.f. coil and trimmer. This con be taken from an i.f. tronsformer, or the transformer can be used intact, the output being taken from the secondary.
Nofe: If only one broadcast station is to be monitored $C_{1_{A}}$ and $C_{i_{11}}$ can be padder-type capocitors (or a combination of padding and fixed capacitance as required) adjusted for the desired station and intermediate frequencies. Other types of converter tubes may be substituted if desired.

Power for the unit can be taken from the receiver's "accessory" socket.
as outlined in 12.192(b)(3). Operation during hours when local broadeast stations are not on the air will rerpuire tming through the standard broadcast hand to determine if operation appears to be normal. The presence of any U. S. broadeast stations on frequencios other than 640 and 1240 ke , indicates normal operation.

Perhaps the simplast form of compliance is by means of a simple converter working intos the i.f. amplifier of the regular station receiver. A typical circuit is shown in Fig. $\mathbf{i j}$ - $\mathbf{6 5}$. The converter can be built in a small motal (rase aud mounted at in
convenient spot on the receiver so that S_{1} can be closed at regular intervals for checking the broadeast station. As an alternative, the converter can be mounted out of the way at the rear of the receiver and the switch leads brought out to a convenient spot.

- A "FAIL-PROOF" CONELRAD ALARM

The conelrad alarm shown in Fig. 5-(i5 uses a small BC receiver to furnish both audible and visible indications of a Conelrad Alert (the roceiver may still be used for normal broaleast reception).

With the receiver tuned to a broadeast carrier and the alarm cireuit in oproat ion, a green "safe" light indieates that all is well on the broadeast band. When the broudeast earrier goes off, as it will in a Conelrad Radio Alert, the green light goes out, a rod "danger" light comos on, at buzzer sounds, and the 11 j -volt ane line to the transmitter is opened up. In other words, the device puts you off the air! The atutible and visible warnings also are given in the event of a component failure in either the control receiver or the alarm. Even the disappearane of the 115volt supply will not go umotied, since in that case the green "sufe" light will go out, indicating that the alarm is inoperative.

The alarm requires a minimum of 0.7 volts (negative) from the receiver's a.v.c. (automatic volume control) circuit for dependable operation. Receivers having one stage of i.f. amplifieation will develop at least this much a.v.e. voltage when tumed to a signal of reasonable strength. But watch out for the "supmerhets" that do not have an i.f. stage: they are of little value as a source of control voltage for the alarm. You can usually find out if the recoiver has an i.f. stage by looking at the tube list pasted on either the chassis or the inside of the cahinet.
The circuit of the alarm is shown in section 13 , Fig. $\overline{5}$-6if. Section A is a typical a.v.c.-detectorfirst audio stage of an a.ce.ed.e. receiver, and shows how the alarm cirenit is tied into a receiver.

Although a 12.1 V 6 is shown as the detector, other tubes maty be used in some receivers. However, the basic circuit will be the same or very similar.

Finding the a.v.c. line in the jumble beneath the chassis of the ordinary a.c.-d.c. receiver is not always easy. Here are a few hints:

Uising section A, Fig. J-bic, as a guide, locate the detector tube socket. Trate out the leads going to the secondary of the last i.f. transformer, T_{1}. This transformer usually will be adjacent to the detector tulse. The lower end of the secondary winding will be connected to several different rosistors, one of these boing the diode-load filter resistor (approximately 50 人゙ in most cirenits) and another the a.v.e. filtar resistor, h_{1}. The value of the latter resistor is ordinarily above one megohm. Trate through R_{1} in the direation of the arrow (Fig. $\overline{0}$-(iti), until you locate the fairly high

5-HIGH-FREQUENCY RECEIVERS

Fig. 5-66-Circuit of the Coneirad alarm (B) connecied to the a.v.c. circuit (A) of a typical a.c.-d.c. broadcast receiver Resistors are $1 / 2$ watt unless otherwise specified. C_{1}, R_{1} and T_{1} in section A are components in the broadcast receiver
H_{1}-6-volt a.c. buzzer (Edwards 725).
1:, 1:3-6-volt pilot lamp, No. 47.
K_{1}-D.p.d.t. sensitive relay, 5000 -ohm coil, 5 -amp. contacts (Potter \& Brumfield GBIID).
$\mathrm{R}_{2}-5$-megohm potentiometer.
$S_{1}, S_{2}-S . p . s . t$. rotary canopy switch (ICA 1 257). S_{2}-Momentary-contact switch (Switchcraft 101).
T_{2} —Replacement-type power transformer, 150 volts, 25 ma.; 6.3 volts, 0.5 amp . (Merit P-3046 or equivalent).
value (0.0. μ f. or so) a.v.r. filler (athemitor, ('1. Now you have the a.v.e. line clearly identified and the $t a y$ for the alam direnit mas be mate

Notiee that the cathode of V^{5} and the eold sitle of e_{1} are both returned to at common bus or -13 line, not directly to the chassis. Nso observe that the return for the alarm cirenit is made to the common bus in the rereiver, not to the chassis of the sot. Do mot aroumt this lowd to the chassis or comnert it to any frpmesed metal perts. If there is any difficulty in lorating the common bus in the viefinity of the detector stage, wherk bark from the negative side of the power-supply filter cat patitors, as this point is always attached to the common bus.

The monitor should be built in an insulated box of some kind and not in a metal case. The box can be made of plyworl, or a bakelite instrument rase (e.g., ICA type 8202). The baknlite case is ideal for the applieation, hat it must be handled with aure during eonstruetion, to avoid seratehing, chipping, or brakage. Ba espe riatly careful when drilling latge holess such as those used in mounting the pilot-limp assemblies and switches, because a large drill tends to bind and ratack the case.

Testing and Operating

The chames are protty good that right after the rereiver and the monitor have beon turned on the reed lamp will light and - if you haven't had the foresight to opern s_{3} to prevent the noise the buzare will sound. Tune the readiver to a broadrast station and see if the red light goes out and the green light comes on. If this happons, close sta and wou're all sed for conelrad complianre. If the "safe" light does not come on, tume around for a signal strong enough to actuate tho alarm. Should the signal of greatest apparent strength fail to trigger the monitor, leave the rereiver tuned to this signal and then momentarily press S_{2}. The alarm should now lork on "safe," provided the a.v.e. rireuit delivers $0, \overline{7}$ volt or more to $\mathrm{I}_{2 \mathrm{~A}}$.

The only d.e measurements of any eonseguener that need be made in cherking through the alarm cirenit are the output voltage of the power supply and the voltage at the eathode of F_{23}. The proper voltages at these two points are given on the circuit diagram. If the alarm fails to respond properly, it may be advisable to cheek the a.v.e. voltage with a v.t.v.m.

High-Frequency Transmitters

The principal requirements to be met in c.w. transmitters for the amateur bands betwern 1.8 and 301 Me. are that the frepuency must be as stable as good practiee permits, the output signal must be free from modulation and that harmonies and other spurious cmissions must be eliminated or redued to the point where they do not cabse interference to other stations.
The over-all design depends primarily upon the bands in which operation is desired, and the power output. A simple ascillator with satisfartory frequency stability may be used as a transmitter at the lower frequencies, as indicated in Fig. 6-1.1, but the power output obtainathe is small. As a general rule, the output of the oseillator is fed into one or more amplificrs to bring the power fed to the antenna up to the devired level, as shown in 1 .

III amplifier whose output frequency is the same as the input frequency is called a straight amplifier. A buffer amplifier is the term sombtimes appliod to an amplition stage to indieate that its primary purpose is one of isolation, rather than power gain

Becanse it becomes increasingly diflicult to maintain osiflator frequeney stability as the frequency is increased, it is most usual practiee in working at the highor frequencies to operate the oscillator at a low frequeney and follow it with one or more frequency multipliers as required to arrive at the desired output frequeney. A frequener multipher is an amplifier that delivers output at a multiple of the exciting frequencer. I doubler is a multiplier that gives output at twiee the exeriting frequener; a tripler multiplies the exciting frequeney by three ete. From the viewpoint of any partieular stage in a transmitter, the preceding stage is its driver.

As a general rule, frequency multipliers should mot be ased to fered the antenna system direetly, but should foed a straight amplifier which, in turn, feeds the antemat sistem, as shown in Fig. I-(', I) and lis. Is the diagrams indiente, it is often pessible to operate more tham one stage from a single power sumply.
(iood frequeney stability is most easily whtained through the use of a crystal-controlled oscillator, although a different erystal is needed for earh frequency desired (or multiples of that frequeney). A self-controlled oscillator or v.f.o. (variable-frequency oseillator) maty be tunced to any frequency with a dial in the maner of a
receiver, but requires great care in design and construction if its stability is to compare with that of a crystat oscillator.

In all twpes of tramsmitter stages, sereen-grid tubes have the advantage over triodes that they refuive less driving power. With a lower-power exciter, the problem of harmonie reduction is made casior. Most satislactory oscillator circhits use a sereen-grid tubs.

Fig. 6-1-Block diagrams showing typical combinations of oscillator and amplifiers and power-supply arrangements for transmitters. A wide selection is possible, depending upon the number of bands in which operation is desired and the power output.

6-HIGH-FREQUENCY TRANSMITTERS Oscillators

CRYSTAL OSCILLATORS

The frequency of a crystal-controlled oscillator is held constant to a high degree of accuracy by the use of a quartz crystal. The frequency depends almost entirely on the dimensions of the crystal (essentially its thirkness); other circuit values have comparatively negligible effect. However, the power obtamalle is limited by the heat the erystal will stand without fracturing. The amome of heating is dependent upon the r.f. crestal current which. in turn, is a function of the amount of feedback required to provide proper excitation. Crystal heating short of the danger point results in frequency drift to an extent depending upon the way the erystal is cut. Excitation should alwass be adjusted to the minimum necessary for proper operation.

Crystal-Oscillator Circuits

The simplost rustal-oseillator cireuit is shown in Fig. (6-2A. An equivalent is shown at 13. It is a Colpitts eireuit (sere chapter on vacumm-tube prineiples) with the tube tapped ancoss part of the tuned circuit. The erystal has been replaced by its equivalent - a series-tuned cireuit $L_{1} C_{4}$. (see chaptor on cleotrical laws and cirenits.) C_{5} and C_{6} are the tube grid-cathode and plate-
circuit in the actual plate circuit. Although the oscillator itself is not entirely independent of adjustments made in the plate tank cirenit when the latter is tuned near the fumdamental frequeney of the crestal, the effects can be satisfactorily minimized by proper ehoice of the osesillator tube.

The cireuit of lig. 6-3. 1 is known as the Tritet. The oscillator circuit is that of lig. 6-2C. Exeitation is controlled be adjust mont of the tank $L_{1} C_{1}$. which should have : a low L / C ratio, and be tuaced considerably to the high-frequency side of the errstal frequency (approximately 5 . We. for a 3.j-Mc. erystal) to prevent over-excitation and high erystil eurrent. One the proper adjustment for average rerstals has beron found, ri may be replaced with a fixed capacitor of "dual value.

The oscillator eirenit of Fige, $3-13$ is that of Fig. (i-2.2. Vxatation is controlled le゙ ("g.

The oscillator of the gried-plate circuit of Fig. 6 -3C is the same as that of Fig. $(\mathbf{j}-313$, exerpt that the ground point has been moved from the eathode to the plate of the oscillator (in other words, to the sereen of the tubre). Exeitation is adjusted by proper proportioning of C_{6} and C_{7}.

When most tyes of tubes are used in the circuits of Fig. ($6-3$, oscillation will stop) when the output plate circuit is tuned to the erystal fre-

Fig. 6-2-Simple crystal-oscillator circuits. A-Pierce. B-Equivalent of circuit A. C-Simple triode oscillator. C_{1} is a plate blocking capacitor, C_{2} an output coupling capocitor, and C_{3} a plate byposs. L_{1}, C_{4}, C_{3} and C_{6} are discussed in the text. C_{i} and L_{2} should tune to the crystal fundamental frequency, R_{1} is the grid leak.
(athode caparitances, respoctively. In best practical form, C_{5} or C_{6}. or both, would be angmented hy external capacitors from grid to cathode and plate to rathode so that feotback rould be adjusted properly.

The rirenit shown in Fig. (i-2C is the erguivalent, of the tuned-grid tumed-plate circuit disenssed in the chapter on vacumm-tube primeiples, the erystal raplacing the tuncd gride cirenit

The most commonly used erystin-oscillatar cirruits are hased on one or the other of these two simple types, and are shown in Fig. 6-3. Although these circuits are somewhat more complicated, they combine the functions of oscillator and amplifier or frequency multiplier in a single tube. In all of these circuits, the sereen of a tetrode or pentode is used as the plate in a trine oscillator. fower output is taken from a soparate tuned tank
queney, and it is neeossary fo opreate with the phate tank rireuit critically detumed for maximum output with stability: However, when the 6A(67 , 576:3, or the lower-power (6.1166 is used with proper adjustment of expitation, it is possible to tume to the erystal fredurney without stopping oseillation. The plate thang characteristic should then be similar to lig. (6-4. These tubes also operate with less erystal furrent that most other tyes for a given power output, and loss frequency change occurs when the plate circuit is tuned through the crystal frequency (loss than 25 cereles at 3.5.5 Me.).

Crystal eurrent may be estimated by olserving the relative brilliance of a 60 -mat. dial lamp cont neoted in sories with the erystal. Curvent should be hed to the minimum for satisfactory output by careful adjustment of excitation. With the

Oscillators

operating voltages shown, satisfactory output should be obtained with erystal currents of 40) mit. or less.
In these circuits, output maty be obtained at multiples of the erystal frequency by tuning the plate tank rirenit to the desired harmonic, the

MODIFIED PIERCE

GRID-HLATE:
Fig. 6.3-Commonly used crystal-controlled oscillator circuits. Values are those recommended for a 6AG7 or 5763 tube. (See reference in text for other tubes.)
C_{1}-Feedback-control capacitor-3.5-Mc. crystals-approx. $220-\mu \mu$ f. mica-7-Mc. crystals-approx. $150 \cdot \mu \mu \mathrm{f}$. mica.
$\mathrm{C}_{2}-$ Output tank capacitor-100- $\mu \mu \mathrm{f}$. variable for singleband tank; $250-\mu \mu \mathrm{f}$. variable for two-band tank.
C_{3}-Screen bypass- $0.001-\mu \mathrm{f}$. disk ceramic.
C_{1}-Plate bypass -0.001 - μ. disk ceramic.
C. $\overline{3}$-Output coupling capacitor- 50 to $100 \mu \mu \mathrm{f}$.
C_{6}-Excitation-control capacitor-30- $\mu \mu \mathrm{f}$. trimmer.
Ci-Excitation capacitor-220- $\mu \mu \mathrm{f}$. mica for 6AG7: $100 \cdot \mu \mu \mathrm{f}$. for 5763.
C_{s}-D.c. blocking capacitor- $0.001-\mu \mathrm{f}$. mica.
C_{9}-Excitation-control capacitor-220- $\mu \mu \mathrm{f}$. mica.
C_{10}-Heater bypass- $0.001-\mu \mathrm{f}$. disk ceramic.
R_{1}-Grid leak- 0.1 megohm, $1 / 2$ watt.
R_{2}-Screen resistor-47,000 ohms, 1 watt.
L_{1}-Excitation-control inductance- $3.5-\mathrm{Mc}$. crystals-ap. prox. 4μ h.; 7-Mc. crystals-approx. $2 \mu \mathrm{~h}$.
L_{2}-Output-circuit coil-single band:-3.5 Mc.- $17 \mu \mathrm{~h}$.; 7 Mc. $-8 \mu h_{\text {. }} 14$ Mc. -2.5μ h.; 28 Mc.- 1μ h. Two-band operation: 3.5 \& 7 Mc. $-7.5 \mu h . ; 7$ \& 14 Mc. $2.5 \mu \mathrm{~h}$.
$R F C_{1}-2.5-\mathrm{mh} .50-\mathrm{ma}$. r.f. choke.
output dropping oft, of course, at the highor harmonics. lispecially for hamonic operation, a low(plate tank cirenit is desirable.
lor best performaner with a 6 AC 7 or $576: 3$, the values given under Fig. 6-is should be followed closely. (For a discussion of values for other tubes, see (SS'l' for Mareh, 1950, page 28.)

- VARIABLE-FREQUENCY OSCILLATORS

The frequeney of a v.f.o. deponds ontirely on the values of inductance and rapacitance in the circuit. Therefore, it is neressary to take careful steps to minimize changes in these values not under the control of the operator. As examples, even the minute changes of dimensions with temperature, particularly those of the coil, may result in aslow but noticeable change in frequener called drift. The effertive input capacitance of the oscillator tube, which must be comected across the circuit, changes with variations in electrode voltages. This, in turn, causes a change in the frequency of the ascillator. To make use of the power from the oscillator, a load, usually in the form of an amplifier, must be coupled to the osedlator, and variations in the load maty reHeet on the frequenerg. Very slight mechational movement of components may result in a shift in frequency, and vibration can cause modnlation.

V.F.O. Circuits

liig. (6-5 shows the most commonly used circouts. They are all designed to minimize the - ffeets mentioned above, Ill are similar to the (rystal oscillators of lig. (i - 3 in that the serem wil a tetrode or pentode is used as the oscillator plate. The useillating circuits in Figs. (i-bat and 13 are the llartley type; those in C and 1) are ('olpitts cirenits. (Sior chapter on varumm-tube principles.) In the cireuits of A and $(x$, all of the above-mentioned effeets, exerpt changes in inductanee are minimized by the use of a high-(Q tank circuit obtained through the use of large tank rapabeitancess. Any uncontrolled changes in raparitane thes beome a very small pereentage of the total -irenit caparitanere.

In the serine-tumed Colpitts cirenit of Fig. (5 -5)) (sometines called the Clapp (irenit), a high-(cirevit is obtained in a different mamber. The tube is tapped across only a small portion of the oscillating tank circuit, resulting in very loose coupling between tube and circuit. The taps are provided by a series of three capacitors arrose the coil. In addition, the tube capacitanees are shunted by large eapacitors, so the efferts of the tube - changes in electrode voltages and loading - are still further reduced. In contrast

6 - HIGH-FREQUENCY TRANSMITTERS

to the proweding ciruits, the resulting tank bireuit has athigh L / C^{\prime} ratio and therofore the bamk curent is much lower than in the eirenits using high-C tanks. As a result, it will usually la fouml that, other things being equal, drift will be less with the low-C cirenit.

For best stability, the ratio of C13 or ('14 (which ate usually equal) to $C_{11}+C_{12}$ should be as high as possible without stopping oscillation. The permissible ratio will be higher the higher the (g of the roil and the mutual conductance of the thine. If the cirruit denes not aseillate over the desireal range, a coil of highere \& must be used or the reaparitance of 'tas and $^{\circ}$ is reduced.

Load Isolation

In spite of the precutions already disenssed, the tuning of the ontput pate cirenit will canse a
noticeable change in frequence, particularly in the region around resoname. This effect can be reduced considerably by designing the oscillator for half the desired frequency and doubling freyuener in the output cirenit.

It is desirable, although not a strict necessity if detuning is recognized and taken into arcount, to approach as closely as possible the condition where the adjustment of tuning controks in the transmitter, beyond the w.f.o. freculency eontrol, will have negligible effert on the frequenay. This: gan be done ber substituting a fixed-thened eirruit in the output of the aseillator, and addling isolating stages whose tuning is fixed between the osellater and the first tamable amplifier stage in the transmitter. Fig. fifi shows such an arrangement that gives grod isolation. In the first stage, a $6 \mathrm{C}: 4$ is connecter! as a cathode follower. This

(B) hartley nonresonant output

(C) COLPITTS

(D) SERIES-TUNED COLPITTS

Fig. 6.5-V.f.a. circuits. Appraximate values far 3.5 Mc . are given belaw. For 1.75 Mc ., all tank-circuit values af capacitance and inductance, all tuning capacitances and C_{13} and C_{14} should be daubled; far 7 Mc ., they shauld be cut in half. C_{1}-Oscillatar bandspread tuning capacitor-150- $\mu \mu$ f. variable.
C_{2} —Output-circuit tank capacitor-100- $\mu \mu \mathrm{f}$.
C_{3}-Oscillatar tank capacitor-500- $\mu \mu$ f. zero-tempera-ture-coefficient mica.
$C_{1}-G r i d$ coupling capacitor-100. $\mu \mu$ f. zero-tempera-ture-coefficient mica.
C:-Heater bypass- $0.001-\mu \mathrm{f}$. disk ceramic.
C_{8}-Screen bypass - $0.001 \cdot \mu$. disk ceramic.
C_{7}-Plate bypass- $0.001-\mu \mathrm{f}$. disk ceramic.
C_{8}-Output coupling capacitor-50 to $100-\mu \mu \mathrm{f}$. mica.
C_{9}-Oscillator tank capacitor- $\mathbf{6 8 0}-\mu \mu \mathrm{f}$. zero-fempera. ture-coefficient mica.
C_{10}-Oscillator tank capacifor- $0.0022 \cdot \mu$ f. zero-tem-perature-coefficient mica.
C_{11}-Oscillatar bandspread padder-50- $\mu \mu \mathrm{f}$. variable air.
C_{12}-Oscillator bandspread tuning capacitor- $25-\mu \mu \mathrm{f}$. variable.
C_{13}, $\quad C_{14}$-Tube-coupling capacitor- $0.001-\mu \mathrm{f}$. zero-temperature-coefficient mica.
$R_{1}-47,000$ ohms, $1 / 2$ watt.
L_{1}-Oscillator lank coil-4.3 $\mu \mathrm{h}$., lapped about one-third-way from grounded end.
L. - Output-circuit tank coil- $22 \mu \mathrm{~h}$.
L_{3}-Oscillator tank coil-4.3 $\mu \mathrm{h}$.
L_{4}-Oscillator tank coil- $33 \mu \mathrm{~h}$. (B 8 W JEL-80).
RFC 1 - 2.5 -mh. 50 -ma. r.f. choke.
V_{1}-6AG7, 5763 or 6AH6 preferred; other types usable. $V_{2}-6 A G 7,5763$ or 6AH6 required for feedback ca. pacitances shown.

Oscillators

drives a 5703 buffer amplifier whose input circuit is fixed-tuned to the approximate band of the v.f.o. output. For bust isolation, it is important that the $\mathrm{eC}+$ does not draw grid current. The output of the v.f.u., in the cathoule resistor of the 6 C 4 should be adjusted until the voltage across the cathote resistor of the $6 C+4$ (as measured with a high-resistance d.e. voltmeter with :an r.f. rhoke in the positive lead) is the same with or withont excitation from the v.f.o. L_{1} should br adjustod for most constant output from the 5763 over the band.

Chirp

In all of the circuits shown there will be some change of frequency with changes in sereen and plate voltages, and the use of regulated voltages for both usually is necessary. One of the most sorions results of voltage instability oceurs if the oscillator is keyed, as it often is for brak-in operation. Although voltage regulation will supply a steady voltage from the power suphly and therefore is still desirable, it cannot alter the fact that the voltage on the tube must rise from zero when the key is open, to full voltage when the key is closed, and must fall bark again to zero when the key is opened. The result is a Whirp rach time the key is opened or closed, unless the time constant in the keying circuit is reduced to the point where the chirp takes place so rapidly that the receiving operator's ear cimmot deteet it. Unfortunately, as explained in the chapter on keying, a certain minimum time constant is neeessary if key clicks are to be minimized. Therefore it is evident that the measures necessary for the reduction of chirp and clicks are in opposition, and a compromise is necessary. For best keving characteristics, the oscillator should be allowed to rum eontimuously while a subsequent amplifier is keved. However, a keyed amplifier represents a widely variable load and unless sufficient isolation is provided between the oscillator and the keyed amplifier, the keying eharateteristics may be little better than when the owillator itwelf is keyed. (Sree keying ehapter for other methods of break-in keying.)

Frequency Drift

Frequency drift is further reduced most easily by limiting the power input as much as possible and by mounting the components of the tuned circuit in a separate shielded eompartment, so that they will be isolated from the direct heat from tubes and resistors. The shielding also will
eliminate changes in frequency caused by movement of nearby objects, such as the operator's hand when tuning the v.f.o. The cireuit of Fig. (i-5l) lends itself well to this arrangement, since relatively long leads between the tube and the tank circuit have negligible effert on frequency because of the large shunting capacitances. The grid, cathode and ground leads to the tube cath be bunched in a cable up to several feet long.

Variable eapacitors should have ceramie insulation, good bearing contacts and should preferably lo of the domble-bearing type, and fixed caparitors should have zero temperature eodfirient. The tuhe sorket also should have (eramie insulation aud speroial attention should be paid to the selection of the coil in the ossillating section.

Oscillator Coils

The ($)$ of the tank coil used in the oseillating portion of any of the circuits under dischassion should be as high as eireumstances (usually space) permit, since the losses, and therefore the heating, will be less. With recommended care in regard to other factors mentioned previously, most of the drift will originate in the coil. The roil should be well spared from shiclding and other large metal surfaces, and be of a type that radiates heat well, such as a commereial air-

Fig. 6-6-Circuit of an isolating amplifier for use between v.f.o. and first tunable stage. All capacitances below 0.001μ f. are in $\mu \mu \mathrm{f}$. All resistors are $1 / 2$ watt. L_{1}, for the $3.5-\mathrm{Mc}$. band, consists of 93 turns No. 36 enam., $17 / 32$ inch long, $1 / 2$-inch diameter, close-wound on National XR-50 iron-slug form. Inductance 69 to $134 \mu \mathrm{~h}$. All capacitors are disk ceramic.
wound twer, or should be wound tightly on a threaded ceramie form so that the dimensions will not change readily with temperature. The wire with which the eoil is wound should be as large as practicable, esperially in the high-C circuits.

Mechanical Vibration

To eliminate mechanical vibration, eomponents should be mounted securely. l'articularly in the eireuit of Fig. 6-5I), the capacitor should preferably have small, thick plates and the coil braced, if neressary, to prevent the slightest mechanical movement. Wire comections between tank-cireuit components should be as short as possible and flexible wire will have less tendency to vibrate than solid wire. It is advisable to cushion the entire oscillator unit by mounting on sponge rubber or other shoek mounting.

6-HIGH-FREQUENCY TRANSMITTERS

Tuning Characteristic

If the circuit is oscillating, touching the grid of the tube or any part of the cireuit connected to it will show a change in plate current. In tuning the plate output cireuit without load the plate current will be relatively high until it is tuned near resonance where the plate current will dip to a low value, as illustrated in Fig. 6-t. When the output circuit is loaded, the dip should still be found but browder and much less pronounced as indicated by the dashed line. The circuit should not be loaded berond the point where the dip is still recognizable.

Checking V.F.O. Stability

A v.for. should the chereked thoroughly before it is placed in regular operation on the air. Since suceerding amplifier stages may atfere the signal characteristiers, final tests should be made with the complate transmitter in operation. Almost any v.i.o. Will show signals of good quality and stathility when it is rummeng free and not connected to a load. A well-isolated monitor is a nuressity. l'erhaps the most convenient, as well as one of the most satisfactory, well-shiedded monitoring arrangements is a receiver combined with a reystal oscillator, as shown in Fig. 6-7. (sier "(rystal owcillators." this chapter.) The arstal frequeney should lie in the band of the lowest fraquency to be checked and in the frequeney range where its harmonics will fall in the higher-frequeney hands. The reecoiver b.f.o. is turned off and the v.f.o. signal is tumed to beat with the signal from the erystal oseillator instoad. In this waty any recolver instability caused by overloading of the input circuits, which may result in "pulling" of the h.f. oscillator in the receiver, or by a change in line voltage to the recewer when the tramsmitter is keved, will not
affect the reliability of the cherk. Most crystals have a sufficiently low temperature coofficient to give a cherk on drift as well as on chirp and signal quadity if they are not overloaded.

IIarmonics of the crystal may be used to beat with the transmitter signal when monitoring at the higher freguencies. Since any (hirp at the lower frequencies will be magnified at the higher frequencies, aceurate checking eat best be done by monitoring at a harmonic.

The distance between the crystal oscillator and receiver should be adjusted to give a good beat between the errstal oseillator and the tramsmitter signal. When using harmonies of the erestal oscillator, it may be newessary to attach a piece

Fig. 6-7-Setup for checking v.f.o. stability. The receiver should be tuned preferably to a harmonic of the v.f.o. frequency. The crystal oscillator may operate somewhere in the band in which the v.f.o. is operating. The receiver b.f.o. should be turned off.
of wire to the oscillator as an antenna to give sufficient signal in the receiver. Cheres may show that the stability is sufficiently grood to permit oseillator kesing at the lower frequencies. where brak-in operation is of greater value. hat that ehirp becomes objertionable at the higher frequencies. If further improvement toes not seem possible, it would the logical in this case to use ose illator kesing at the lower frequencies and amplitior keving :t the higher frequencies.

R.F. Power-Amplifier Tanks and Coupling

R.f. power amplifiers used in amateur transmitters usually are operated umder Class (Conditions (sere chapter on varumm-tube fundat mentals). Fig. (i-10 shows it sercen-grid tube with the repuired tuned tank in its plate eireuit. Equivalent cathote connections for a filamenttype tube are shown in Fig. 6-s It is assumed that tho tube is boing properly driven and that the various electrode voltages are appopriate for Chass (' oprration.

plate tank Q

The main oljective, of course, is to deliver as much fumdamental power ats possible into a load, h, without exereding the tube ratings. The load resistance R may be in the form of a transmission line to an antenina, or the grid circuit of another amplifier. A further objective is to minimize the harmonic energy (always gencrated be a Class C amplifior) fed into the load circuit. In attaining these objectives. the Q of the tank cireuit is of importance. When a load is coupled inductively. as in Fig. 6-10, the Q of the tank circuit will have afl cfferet on the coefficient of coupling nec-
essary for proper boaling of the amplifier. In resperet to all of these factors, a tamk Q of 10 t 20) is usually eonsidered optimum. A muth lower Q will result in lese efficiont operation of the amplifier tule. greater harmonic output, and greater difficulty in ermpling inductively to a load. A much higher Q will result in higher tank current with incrased loss in the tank coil.
The Q is determined (see chatpter on electrical laws and (ircuits) by the L / σ^{C} ration and the load resistane at which the tube is operated. The tube load resistance is related, in approximation, to

Fig. 6-8-Filament center-tap connections to be substituted in place of cathode connections shown in diagrams when filament-type tubes are substituted. T_{1} is the filament transformer. Filament bypasses, C_{1}, should be $0.001-\mu \mathrm{f}$. disk ceramic capacitors. If a self-biasing (cathode) resistor is used, it should be placed between the center top and ground.

Fig. 6.9-Chart showing plate tonk capacitance required for a Q of 10 . Divide the tube plate voltage by the plate current in milliamperes. Select the vertical line correspanding to the answer obtained. Follow this vertical line to the diagonalline for the band in question, and thence horizontally to the left to read the capacitance. For a given ratio of plate-valtage/plate current, doubling the capacitance shown doubles the Q etc. When a split-stator capacitor is used in a balanced circuit, the capacitance of each section may be one half of the value given by the chart.
the ratio of the d.c. plate voltage to d.c. plate current at which the tube is operited.

The amount of C' that will give a Q of 10 for various ratios is shown in Fig. (b-9. For a given plate-voltate, plate-current ratio, the Q will vary directly as the tank caparitanee, twice the (aparitance doubles the Q ete. For the same Q, the eapacitance of each section of a split-stator capacitor in a balmed circuit should be half the value shown.

These values of rapacitance include the output raparitance of the amplifier tube the input capalcitane of a following amplifier tube if it is coupled (aparitively, and all other stray capacitances. At the higher plate-voltage, plate-current ratios, the chart may show values of capacitance, for the higher frequeneies, smatler than those attainable in practice. In such a case, a tank Q higher than 10 is unavoidable.

In low-power exciter stages, where capacitive coupling is used, very low-() eireuits, tuned only by the tube and stray circuit capacitances are sometimes used for the purpose of "broadhand-
ing" to avoid the necessity for retuning a stage across a band. Higher-order harmonics generated in such a stage can usually be attentuated in the tank circuit of the final amplifier.

Inductive-link coupling

Coupling to Flat Coaxial Lines

When the load R in Fig. 6 i- 10 is located for convenience at some distance from the amplifier, or when maximum harmonie reduction is desired, it is advisable to feed the power to the load through a low-impedance coaxial cable. The shielded construction of the cable prevents radiation and makes it possible to install the line in any convorient manner without danger of unwanted compling to other eireuits.

If the line is more than a small fraction of a wavelength long, the load resistance at its output end should be adjusted, by a matching circuit if necessary; to mateh the imperdance of the cable. This reduces losses in the cable and makes the coubling adjustments at the transmitter independent of the cable length. Matching circuits for use between the cable and another transmission line are diseussed in the chapter on transmission lines, while the matching adjustments when the load is the grid cireuit of a following amplifier are deseribed elsewhere in this chapter.

Assuming that the cable is properly terminated, proper loading of the amplifier will be assured, using the circuit of Fig. 6-11C, if

1) The plate tatuk circuit has reasonably high value of Q. A value of 10 is usually sufficient.
2) The induetance of the piek-up or link coil is close to the optimum value for the frequeney and type of line used. The optimum coil is one whose self-inductance is sueh that its reactance at the operating frequeney is equal to the charac-

Fig. 6-10-inductive-link output coupling circuits.
C_{1}-Plate tank capacitor-see text and Fig. 6.9 for copacitance, Fig. 6-33 for voltage rating.
C_{2}-Heater bypass- $0.001-\mu \mathrm{f}$. disk ceramic.
C_{3}-Screen bypass-valtage roting depends on method of screen supply. See paragraphs on screen considerations. Voltage rating same as plate voltage will be safe under any condition.
C_{1} —Plate bypass $-0.001 \cdot \mu \mathrm{f}$. disk ceromic or mica. Voltage roting same as C_{1}, plus safety factor.
L_{1}-To resonate of operating frequency with C_{1}. See LC chart and inductance farmula in electrical-laws chapter, or use ARRL Lightning Calculator.
L_{2}-Reoctance equal to line impedance. See reactance chart and inductance formula in electrical-lows section, or use ARRL Lighining Calculator.
R-Representing load.

6-HIGH-FREQUENCY TRANSMITTERS

Fig. 6-11-With flat transmission lines power transfer is obtained with looser coupling if the line input is tuned to resonance. C_{1} and L_{1} should resonate af the operating frequency. See table for maximum usable value of C_{1}. If circuit does not resonate with maximum C_{1} or less, inductance of L_{1} must be increased, or added in series at L_{2}.
treristic impedaner, Z, of the line.
3) It is possible to make the coupling between the tank and piek-up enils very tight.

The serond in this list is offen hatral to meet. F'ow manulaturea link coils have adequate inductance even for coupling to atorohm line at low frecurneits.

If the line is oproting with a low s.w.r., the systom shown in lizg. ©-1IC will require tight coupling botwern the two eroils. Sine the serondary (pick-up roil) aircuit is mot resontut, the leak: ge reatianere of the piek-up roil will eatur some detuning of the amplifier tank rirenit. This detming effeet incrases with inmansing eothpling. hut is usually not serions. However, the amplifier tuning must be adjusted to resonture as indieated ber the platereurront dip, each time the coopling is chatnged.

```
Capacitance in \mu\muf. Required for Coupling to
Flat Coaxial Lines with Tuned Coupling Circuit
frrmpenes (hururmristic Immenlonce of lim
```



```
\({ }^{1}\) Caparitanere valurs are maximum nsable.
Note: Inductance in cirruit nust be adjusted to rixonate at oprating frombency.
```


Tuned Coupling

Ther design difficulties of using "untumed" piek-up enik, mentioned abowe, can be avoided hy using it coupling armit tumed to the operating frequenes. This contributes alditional selectivity as well, and henee atids in the suppression of spurious radiations.
If the line is flat the input impedance will be essentially resistive and equal to the Z_{0} of the lime. With eomaial cable, a cirenit of reasomable (a) can be obtained with practicable walnes of inductance and capateitance connereded in series with the line's input terminals. suitable cirruits are given in Fige (i-11 at A and B. The Q of the coupling circuit often may be as low as 2 , without running into difficulte in gettine adopuate coupling to at tank rimenit of proper design. Samgar values of Q din be used tand will resuld in increatsal (ease of compling, but ats the () is increased the freguency range over whish the cirenit will operate without realjustment becomes smatler. It is usually good pratioe, therefore, wase a couplingcircuit (a just low enough to permit operation, over ats much of a bind as is normally used for a particulat tyon of communication, without requiring retuning.
Capanitaner values for a () of 2 and line impedances of 52 and 75 ohms are given in the accompanying table. These are the maximum values that should be used. The inductance in the ritrout should be adjusted to give resonance at the operating fremeney. If the link eoil used for a particular band does not have emongh inductane to rewonate, the additional inductance may be commerted in suries as shown in Fig. 6-11 13.

Characteristics

In practice, the amount of imbuctance in the cireuit should be ehosen so that, with somewhat loose coupling bet weon L_{1} and the amplifior tank eoil, the amplifier plato corrent will increase when the variable capacitor, ('s, is tunced through the value of capaeitance given by the table. The coupling between the two coils should then be increased until tho amplifior loards normally, without changing the setting of 6_{1}. If the transmission line is flat over the entire frequency band under consideration, it should not be neressary to readjust f_{1} when ehanging frequener, if the values given in the table are used. However, it is unlikely that the line actually will be flat over such a range, so some readjustinent of C_{1} maty le^{2} needed to compensate for changes in the input imperdance of the line. If the input imperdane variations are mot large, f_{1} maty be used as at loading eontrol, no rhanges in the coupling betwen L_{1} and the tank eoil being neeessary.

The degree of eoupling between L_{1} and the amplifier tank eoil will depend on the couplingcircuit Q. With a Q of 2 , the coupling should be tight --comparable with the coupling that is typical of "fixerl-link" manufactured coils. With a swinging link it maty be nedessary to increase the Q of the coupling cireuit in order to get sufficient power transfer. This can be done by incrasing the L / C ratio.

Pi-Section Output Tanks

PI-SECTION OUTPUT TANK

A pi-section tank rircuit maty also be used in coupling to an antenna or transmission line, ats shown in litg. ($\mathbf{i}-12$. The valuess of catpateitane for C'i and 'so, and indurtane for L_{1} for any values of tube lowd resistance and output load resistance may be calculated from the formulas in the chateter on clecetrical laws.

Fig. 6-12-Pi-section output tank circuit.
C_{1}-Input capacitor. See text or Fig. 6-13 for reactance. Voltage rating should be equal to d.c. plate voltage for c.w.; double this value for plate modulation.
C_{2}-Output capacitor. See text or Fig. 6-1 5 for reactance. See text for voltage rating.
C_{3}-Heater bypass- $0.001-\mu \mathrm{f}$. disk ceramic.
C_{4}-Screen bypass. See Fig. 6-10.
$C_{\text {: }}$-Plate bypass. See Fig. 6-10.
C_{6} - Plate blocking copacitor- $0.001-\mu$ f. disk ceramic or mica. Voltage rating same as C_{1}.
L_{1}-See text or Fig. 6-14 for reactance.
RFC, -See later paragraph on r.f. chokes.
$\mathrm{RFC}_{2}-2.5-\mathrm{mh}$, receiving type lessential to reduce peak voltage across both input and output capacitors).
Vahus of reactance for (${ }_{1}, L_{1}$ and ('2 may be taken directly from the charts of Figs, (i-13, if-1t sund 6-15 if the output lowd resistance is 52 or 72 ohms. It should be borne in mind that these values apply only where the output load is resistive i.e., where the antenna and line have been matched. The tube load resistanee k_{1} in ohms is determined by dividing the plate voltage by twier the d.e. plate current in decimal parts of ath ampre.

Output-Capacitor Ratings

The voltage rating of the output caparitor will depend upon thes.w.r. If the load is resistive, rereiving-type air catpacitors should he adequate for amplifior input powers up to I kw. with plate modulation when feeding 52- or 72 -ohm loads. In obtaining the larger capacitances required for the lower frequencies, it is common practice to switch fixed capacitors in parallel with the variable air capacitor, While the voltage ratting of a mica or ceramic eapacitor may not he exereded in a particular case, capateitors of these types are limited in eurrent-carrying capabity. Postage-stamp silver-mica eapacitors should be adequate for amplifier inputs over the range from about 70 watts at 28 Mr. to 400 watts at 14 Mr. and lower. The larger mica catpacitors (CM-ts catse) having voltage ratings of 1200 and 2500 volts are usually satisfactory for inputs varying from about 350 watts at 28 Me. to 1 kw at $1+$ Me. and lower. Because of these current limitations, particularly at the higher frecquencies. it is and-

PI-NETWORK DESIGN CHARTS FOR FEED. ING 52- OR 72-OHM COAXIAL TRANS. MISSION LINES

Fig. 6-13-Reactance of input capacitor, C_{1}, as a function of tube load resistance, R_{1}, for pi networks, R_{1} equals plate voltage divided by twice plate current (amperes).

Fig. 6-14-Reactance of tank coil, L_{1}, as a function of load resistance, R_{1}, for pi networks.

Fig. 6-15-Reactance of loading capacitor, C_{2}, as a function of tube load resistance, R_{1}, for pi networks.

6-HIGH-FREQUENCY TRANSMITTERS

Fig. 6.16-Multiband tuner circuits. In the unbalanced eircuit of A, C_{1} and C_{2} are sections of a single split-stator copacitor. In the balanced circuit of D, the two split-stator copacitors are ganged to a single control with an insulated shaft coupling between the two. In D, the two sections of L_{2} ore wound on the same form, with the inner ends connected to C_{2}. In A, each section of the capacitor should have a voltage rating the same as Fig. 6-33A. In D, C_{1} should have a rating the same as Fig. 6-33H (or Fig. 6-33E if the feed system corresponds). C_{2} may have the rating of Fig. 6-33E so long as the rotor is not grounded or bypassed to ground,
visable to use as large an air capacitor as practicable, using the mieas only at the lower frequencios. Broadeast-recoiver replacoment-type caparitors cath the obtained very reasomably. They are available in triple units totaling about $1100 \mu \mu \mathrm{f}$, or dual units totaling about $906 \mu \mu$. Thoir insulation should be suflicient for inputs of 500 watts or more. Air capacitors have the additional advantage that they are seldom permanently damaged by a voltage break-down.

Neutralizing with Pi Network

Sereen-grid :mplifiers using a pi-network output circuit maty be meutralized by the system shown in Figs. (j-23B and C.

MULTIBAND TANK CIRCUITS

Multiland tank circuits provide a convenient mo:us of covering several bands without the need for changing coils. Tuners of this type consist esinntially of two tionk rirenits, tuned simultaneously with a single control. In a tuner designed to rover so through 10 meters, each circuit has a sutidiontly large capamitance variation to assure an approximataly 2 -to-1 frognency range. Thus, one circuit is designed so that it covers 3.5 through 7.3 Mc., while the other covers 14 through 29.7 Mc .

A single-conded, or umbalanced, circuit of this type is shown in Fig. (i-16A. In principle, the reartance of the high-frequency coil, L_{2}, is small enough at the lower frequencies so that
 in parallel arross L_{1}. Then the circuit for low frequencies becomes that shown in lig. 6-16B.

At the high frequencies, the reactance of L_{1} is high, so that it may be considered simply as a choke shunting C_{1}. The high-frequeney circuit is essentially that of lig. 6-16C, L_{2} being tuned by C_{1} and C_{2} in series.
In practice, the effect of one vircuit on the other cannot be neglected antirely. L_{2} tends to increase the effertive caparitance of C_{2}, while L_{1} tends to decrease the effective capanitance of C_{1}. This effert, however, is relatively smath. Each eircuit must rover somewhat more than a 2-to-1 frequency range to permit staggering the two ranges sufficiently to avoid simultaneous responses to a frequancy in the low-frequency range, and one of its harmonics lying in the range of the high-frequency circuit.

In any circuit covering a frequency range as great as 2 to 1 by capacitance alone, the circuit () must vary rather widely. If the circuit is designed for a Q of 12 at 80 , the Q will he 6 at 40 , 24 at 20,18 at 15 , and 12 at 10 moters. The increase in tank current as a result of the increase in () toward the low-frequency end of the highfregueney range may make it necessiory to design the high-frequency coil with care to minimize loss in this portion of the tuning range. It is generally found desirable to provide separate output coupling coils for each circuit.

Fig. ($\mathrm{i}-16 \mathrm{I}$) shows a similar tank for batanced circuits. The same principles apply.

Sories or parallel feed may be used with either balaned or unbalanced circuits. In the balanced (ircuit of lig. 6-161), the series feed point would be at the center of L_{1}, with an r.f. choke in series.
(For further discussion see QS'T, July, 1954.)

R.F. Amplifier-Tube Operating Conditions

In addition to proper tank and output-coupling circuits discussed in the preceding sections, :in r.f. :mplifier must be provided with suitable clectrode voltages and an r.f. driving or excitation voltage (sec vacuum-tube chapter).

All r. f, amplifior tubes require a voltage to operate the filament or heater (a.e. is usually promissible), and a positive d.e. voltage between the phate and filament or cathode (plate voltage). Dlost tubes also require a negative d.e. voltage (hiasing voltage) between control grid ((irid No. 1) and filament or cathode. Screen-grid
tubes require in addition a positive voltage (sereen voltage or (irid No. 2 voltage) between screen and filament or cathode.

Biasing and plate voltages may be fed to the tube either in series with or in parallel with the associated r.f. tank cireuit as discussed in the chapter on electrical laws and circuits.

It is important to remember that true plate, sereen or biasing voltage is the voltage between the particular electrode and filament or cathode. Only when the cathode is directly grounded to the chassis may the electrode-to-chassis voltage

Transmitting-Tube Ratings

be taken as the true voltage.
The required r.f. driving voltage is applied between grid and cathode.

Power Input and Plate Dissipation

Plate power input is the d.e power input to the plate circuit (d.c. phate voltage \times d.e. plate current. Sereon power input likewise is the d.e. soreon voltage X the d.e. sereen current.
llate dissipation is the difference between the r.f. power delivered by the tube to its lowded plate tank eirenit and the d.e plate power input. The sereen, on the other hand, dows not deliver any output power, and therefore its dissipation is the same as the screen power input.

TRANSMITTING-TUBE RATINGS

Tube manufacturers specify the maximum values that should be applied to the tubes they produce. They also publish sots of typical operating values that should result in good efficiency and normal tube life.

Maximum values for all of the most popular transmitting tubes will be fomed in the tables of transmitting tubes in the last chapter. Also inchuded are as many sets of typical operating values as space permits. However, it is recommonded that the amateur serure a transmittingtube manual from the manufturer of the tube or tubes he plans to use.

CCS and ICAS Ratings

The same transmitting tube may have different ratings depending upon the manner in which the tube is to be operated, and the service in which it is to be used. These different ratings are based primarily upon the heat that the tube can saffely dissipate. Some typer of operation, such as with grid or sereen modulation, are less efficient than others, meaning that the tube must dissipate more heat. Other types of operation, such as e.w. or single-sidebtud phone are intermittent in nature, resulting in less average heating than in other modes where there is a continuous power input to the tube during transmissions. There are also different ratings for tubes used in transmittors that are in almost constant use (CCN Contimous Commercial Servier), and for tulos that are to be used in transmitters that average only a few hours of daily operation (ICAS Intermittent Conmercial and Amateur Service). The latter are the ratings used by amateurs who wish to obtain maximum output with reasonable tube life.

Maximum Ratings

Maximum ratings, where they differ from the values given under typical operating values, are not normatly of signifieance to the amateur except in sperial applications. No single maximum value should be used unkess all other ratings can simultancously be held within the maximum values. As an example, a tube may have a maximum plate-voltage rating of 2000 , a maximum
plate-current rating of 300 mat., and a maximum plate-power-input rating of 400 watts. Therefore, if the maximum phate voltage of 2000 is used, the plate current should be limited to 200 mas . (instead of 300 ma .) to stay within the maximum power-input rating of 400 watts.

SOURCES OF ELECTRODE VOLTAGES

Filament or Heater Voltage

The filament voltage for the indirectly heated eathode-type tubes found in low-power classifications may vary 10 per eont above or below rating without scriously reducing the life of the tube. But the voltage of the higher-power fila-ment-type tubes should be held closely between the rated voltage as a minimum and $\overline{3}$ por cont above rating as a maximum. Make sure that the plate power drawn from the power line does not cause a drop in filament voltage below the proper value when plate power is applied.

Thoriated-type filaments lose omission when the tube is overloaded appreciably. If the overload has not been too prolonged, cmission sometimes may be restored by operating the fitament at rated voltage with all othor voltages removed for a prodod of 10 minutos. or at 20 per cent above rated voltage for a few minutes.

Plate Voltage

D.c. plate voltage for the operation of r.f. amplifiors is most often obtained from a trans-former-rectifier-fitter shstem (see power-supply chapter) designed to deliver the reguired plate voltage at the required current. However, batteries or other d.e.-generating deviees are sometimes used in certain types of operation (see portable-mobile chatpter).

Bias and Tube Protection

Several methods of oltaining bias are shown in Fig. ($\mathrm{i}-17$. In A , bias is ohtained by the voltage drop aeross a resista. in the grid d.e. return cireuit when rectified grid current flows. The proper vatue of resistance may be determined by dividing the reguired hiasing voltage by the d.e. grid current at which the tube will be operated. Then, so long as the r.f. driving voltage is adjusted so that the d.e. grid current is the recommended value, the biasing voltage will be the proper value. The tube is biased only when excitation is applied, sine the voltage drop across the resistor depends upon gridecurrent flow. When excitation is removed, the bias falls to zero. At zero bias most tubes draw power far in excess of the plate-dissipation rating, so it is advisable to make provision for protecting the tube when excitation fails by aecident, or by intent as it ches when a preceding stage in a c.w. tramsmitter is keyed.

If the maximum c.w. ratings shown in the tube tables are to be used, the input should be cut to zero when the key is open. Aside from this, it is not necessary that plate current be cut off completely but only to the point where the rated

(A)

(D)

(B)

(E)

(C)

(F)

Fig. 6-17-Various systems for obtaining protective and operating bias for r.f. amplifiers. A-Grid-leak. B-Battery. C-Combination battery and grid leak. D-Grid leak and adjusted-voltage bias pack. E-Combination grid leak and voltage-regulated pack. F-Cathode bias.
dissipation is not exceded. In this case platemodulated phone ratings shoud be used for e.w. opreation, however.

With triodes this proteretion can be supplied beghaining all bias from it source of fixed voltage, as shown in lig. (i-173. It is preferable, fowover, to use only sufficient fixed bias to protwe the tube and ohtain the bablane needed for operat ing bias from a grid laak, as in C. The gridlaak resistance is calculated as above, exerpt that the fixel voltage is subtracted first.

Fixul bias may he obtained from dry batteries or from a power pack (ser power-smply chapter). If dry batterios are used, they should be cheeked priodically, since even though they may show nomal voltage, they eventually develop a high internal resistanee. (irid-eurent flow through this battery resistance maty increase the hias considerably above that antieipated. The life of batteries in bias serviec will be approximately the same as though they were subject to a drain mpual to the grid eurrent, dempite the faet that the arid-rument flow is in such a diemetion as to oharge the hattery, rather than to diseharge it.

In Fig. 6-175, bias is obtained from the voltane drop adoross a resistor in the rathode (or filament (enter-tap) lemb. Drotertive hias is ob1ained by the voltage drop armoss R_{5} as a result of plate (and sereen) current flow. Since plate cument must flow to obtain a volage drop aroross the resistor, it is obvious that cuteoff protective bias wamot be ohtained. When cxatation is ap-
plied, plate (and sereen) current inereases and the grid current also contributes to the drop across R_{5}, thereby ineressing the bias to the opreating value. Sinee the voltage betwern plate and cathould is redued by the amonent of the voltage drop across R_{5}, the over-all supply voltage must be the sum of the plate and operating-bias voltagos. For this reason, the ase of eathonde bias usually is limited to low-voltage tubes when the extra voltage is mot diffieult to obtain.

The resistance of the eathodo biasing resistor R_{5} should be adjusted to the value whieh will give the correet operating bias voltage with rated grid, plate and soreen currents flowing with the amplifier loaded to rated imput. When excitation is removed, the input to most types of tubes will fall to a value that will prevent damage to the tube, at least for the period of time required to remove plate voltage. A disadvantage of this biasing system is that the cathode r.f. conneretion to ground depends upon a bypass capacitor. From the eonsideration of v.h.f. harmonies and stability with high-perveance tubes, it is proferable to matke the eathode-to-ground impedanere as chose to zero as possible.

Screen Voltage

For rew. opraration, and undor cortain conditions of phone opration (ser :umplitude-modulattion (hapter), the sereen may be operated from a power supply of the sime type used for plate supply, exocpt that wollage and current ratings

Bias and Tube Protection

should be appropriate for soreen requirements. The screen may also be operated through a series resistor or voltage-divider from a source of higher voltage, such as the plate-voltage supply, thus making a separate supply for the screen unneressary: Certain precautions are necessary, deproding upon the method used.

It should be kept in mind that sereen current varies widely with both exditation and loading. If the soreen is operated from a fixed-voltage sourer, the tube shond never be operated without plate voltage and load, otherwise the sereen may be damaged within a short time. supplying the sereen through a series dropping resistor from a higher-voltage source, such as the plate supply, affords a measure of protection, since the reeistor calases the screen voltage to drop as the courent increases, thereby limiting the power drawn by the screen. However, with a resistor, the sereen voltage may vary considerably with exitation, making it necessary to check the voltage at the sereen terminal under actual operating conditions to make sure that the screen voltage is normal. Reducing excitation will cause the sereen current to drop, increasing the voltage; incrasing excitation will have the opposite dfoct. These changes are in addition to those caused be changes in bits and plate loading, so if a sereen-grid tube is operated from a series resistor or a voltage divider, its voltage should be cherked as one of the final adjustments after oxditation and loading have been set.

An approximate value for the sereen-voltage dropping resistor may he ohtained by dividing the voltage drop required from the supply voltage (difference between the supply voltage and raterl sereen voltage) by the rated sereen current in derimal parts of an ampere, Some further adjustment may be neressary, as mentioned above, so all adjustable resistor with a total resistance above that calculated should be provided.

Protecting Screen-Grid Tubes

Sorren-grid tubes cannot be cut off with bias unless the sorean is operated from a fixed-voltage supply. In this case the cut-off bias is approximately the sereon voltage divided by the amplification factor of the sereen. This figure is not always shown in tubordata sheots, but eut-olf voltage maty be determined from an inspection of tube curves, or by experiment.

When the screen is supplied from a series dropping resistor, the tube can be protected by the use of a rlamper tuhe, as shown in lig. 6-18. The grid-leak bias of the amplifier tube with expitation is supplied also to the grid of the clamper tube. This is usually sufficient to cut off the clamper tube. However, when excitation is removed, the clamper-tube bias falls to zero and it draws enough current through the sereen dropping rexistor usually to limit the input to the amplifior to a safe value. If complete screenvoltage cut-off is desired, a VIR tube may be inserted in the sereen lead as shown. The VIRtube voltage rating should be high enough so that it will extinguish when exeitation is removed.

Fig. 6-18-Screen clamper circuit for protecting screengrid power tubes. The VR tube is needed only for complete cut-off.

FEEDING EXCITATION TO THE GRID

The required r.f. driving voltage is supplied by an oscillator generating a voltage at the desired frequency, cither directly or through intermediate amplifiers or frequeney multipliers.

As explained in the chapter on vacum-tube fundamentals. the krid of an amplifier operating under Class C conditions must have an exeiting voltalge whose patak value expeds the negative biasing voltage over a portion of the exitation eycle. During this portion of the cevle, current will flow in the grid-cathoule circuit as it does in a diode circuit when the plate of the diode is positive in respect to the cathorle. This requires that the r.f. driver supply power. The power required to develop the required prak driving voltage arross the grid-athode impedane of the amplitier is the r.f. driving power.

The tube tables give approximate figures for the grid driving power required for cowh tube under various oporating conditions. These figures, however, do not indude cireuit losses. In general, the driver stage for any Class C amplifier should be capable of supplying at least three times the driving power shown for typical operating conditions at frequencios up to 30 . 1 c., and from three to ten times at higher frequencios.

Since the d.e. grid current relative to the biasing voltage is related to the peak driving voltage, the d.c. grid current is commonly used as a convenient indisator of driving conditions. A driver adjustment that results in rated d.c. grid current when the d.e bias is at its rated value. indicates proper excitation to the amplifier when it is fully loaded.

In coupling the grid input circuit of an amplifior to the output circuit of a driving stage the objective is to load the driver plate circuit so that the desired amplifior grid exeitation is obtained without exereding the plate-input ratings of the driver tube.

Driving Impedance

The grid-current flow that results when the grid is driven positive in respect to the eathode

6-HIGH-FREQUENCY TRANSMITTERS

Fig. 6-19-Coupling excitation to the grid of on r.f. power amplifier by means of a lowimpedance coaxial line.
$C_{1}, C_{3}, L_{1}, L_{3}$-See corresponding companents in Fig. 6-10.
C_{2}-Amplifier grid tank capacitor-see text and fig. 6-20 for capacitance, Fig. 6-34 for voltage rating.
$\mathrm{C}_{4}-0,-001-\mu \mathrm{f}$. disk ceramic.
L_{2}-To resoncte at operating frequency with C_{2}. See $L C$ chart inductance formula in electrical-laws chapter, or use ARRL Lightning Calculotor.
L_{4}-Reactance equal to line impedance - see reactance chart and inductance formula in electrical-laws chapter, or use ARRL Lightning Calcu'ator.
R is used to simulate grid impedance of the amplifier when a low-power s.w.r. indicator, such as a resistance bridge, is used. See formula in text for calculating value. Standing-wave indicator SWR is inserted only while line is made flat.
over a portion of the excitation evele represents ath average resistance across which the exciting voltage must be developed by the driver. In other words, this is the boud resistance into which the driver plate circuit must le coupled. The approximate grid input resistance is given by:

$$
\begin{aligned}
& \text { Inpul impednance (ohms) } \\
& =\frac{\text { driwiu! pouer }(\text { watts })}{\text { d.c. grid curcent }(\mathrm{ma} .)^{2}} \times\left(\mathrm{i} 22 \times 10^{3}\right.
\end{aligned}
$$

For normal operation, the driving power and grial enrrent may be taken from the tube tables.

Since the grid input resistance is a matter of a few thousand ohms, an impedance step-down is nocessary if the grid is to be fed from a lowimpedince transmission line. This ean be done by the use of a tank as an impedance-transforming device in the grid circuit of the amplifier as shown in Fig. (j-19). 'This coupling sustem may be eonsidered cither as simply a means of obtaining mutual inductance between the two tank coils, or as a low-impedance transmission line. If the line is longer than a smatl fraction of a wave length, and if is.w.r. bridge is available, the line is mowe easily handled by adjusting it as a matehed transmission line.

Inductive Link Coupling with Flat Line

In adjusting this type of line, the object is to make the s.w.r. on the line as low as possible over as wide a band of frequencies as possible so that power can be transferred over this range without retuning. It is assumed that the output coupling considerations discussed earlier have been observed in connertion with the driver plate circuit. So far ats the amplifier grid cirevit is eoncerned, the controlling factors are the Q of the tuned grid circuit, $L_{2} C_{2}$, (see Fig. (6-20) the inductance of the coupling coil, L_{4}, and the degree of coupling between L_{2} and L_{4}. Variable coupling between the coils is convenient, but not strietly neeessary if one or both of the other factors can be varied. An s.w.r. indicator (shown as "SWR" in the drawing) is essential. An indicator such as the "Mieromatch" (a commereially available instrument) may be connected as shown and the adjustments made under actual operating
conditions; that is, with full power applied to the amplifier grid.

Assuming that the coupling is adjustable, start with a trial position of L_{4} with respeect to L_{2}, and adjust C, for the lowest s.w.r. Then change the roupling slightly and repeat. Continue until the s.w.r. is as low as possible; if the eireuit constants are in the right remion it shoulal not be difficult to gret the s.s.r. down to 1 to 1 . The Q of the tuned gride circuit should be desigmed to be at least 10 , and if it is not possible (1) get a very low s.w.r. with such a grid circuit the probable reason is that L_{4} is too smatl. Aasimum coupling, for a given degree of physi-

Fig. 6-20-Chart showing required grid tank capacitance for a Q of 12 . To use, divide the driving power in watts by the square of the d.c. grid current in milliamperes and proceed as described under Fig. 6-9. Driving power and grid current may be taken from the tube tables. When a split-stator capacitor is used in a balanced grid circuit, the capacitance of each section may be half that shown.

Interstage Coupling

(al coupling, will oceur when the induetance of L_{4} is such that its reactance at the operating froguency is equal to the characteristir imperdance of the link line, The reactance can be calendated as deseribed in the ehapter on clectrical findat mentals if the induetaner is known; the inductaned can bither be calculated from the formula in the same daptor or measured as deseribed in the chapter on measuremonts.

Once the s.w.r. has been brought down to 1 to 1, the fredueney should be shifted over the band so that the variation in s.w.r. ran be observed, without changing f: or the coupling betweren L_{2} and L_{4}. If the s.w.r. rises rapidly on cither side of the original fregueney the circuit ran be made "flatter" beveluming the $\left(\frac{1}{\text { of the tuned grid cir- }}\right.$ enit. This may be done by derrasing ('2 and eorrespondingly increasing I_{2} to maintain resonancer and bey tightening the eompling betwern L_{2}. and L_{4}. going through the same adjustment process again. It is pussible to sot up the system so that the s.w.e. will mot cexered 1.5 to 1 ower, for example, the cotire 7 - Mce hathe and proportionately on other hands. L'uder these ciremastaneres at single setting will serw for work anverere in the band, with essentially constant power transfer from the line to the power-amplifier gride.

If the compling belween L_{2} and L_{4} is not adjustable the same result maty be secured by varying the $L /$ (' ration of the tumed gride cirenit - that is. by varsing its (4 . If any diflimalty is cmomtered it can be overeome be changing the number of turns in L_{4} until a matrh is serured. The two coils should be tightly eoupled.

Whon a resistance-bridge type s.w.r. indicator (ser measuring-equipment sertion) is used it is not possible to put the full power through the line when making adjust ments. In such case the operating conditions in the amplifier grid circuit can be simulated by using a carbon resisfor ($1 / 2$ or I watt size) of the same value as the ralculated amplifier grid impedaner. comnerted as indieated by the arrows in Fig. (i-1!). In this case the amplifier tube most be operated "cold" - without filament or heater power. The adjustment process is the same as described above, but with the driver power reduced to a value suitable for operating the s.w.r. bridge.

When the grid rompling sustem has lreen adjusted so that the s.w.r. is close to 1 to 1 over the desired fredueney range, it is certain that the power put into the link line will be delivered to the grid cirouit. ('oupling will be facelitated if the line is tunct as described under the earlier seetion on output coupling systems.

Link Feed with Unmatched Line

When the system is to be treated without regard to tramsmission-line effects, the link line must not offor appreciable reatetance at the operating freguence. Any appreciable reactance will in effect reduce the eoupling, making it impossible to transfer suflicient power from the driver to the amplifier grid eirenit. Conaxial cables especially have considerable eapacitance for even short lengths and it may be more desirable to
use a spaced line, such as Twin-Lead, if the radiation can he tolerated.

The reartanere of the line can be nullified only be making the link resontht, This maty requirchanging the mumber of turns in the link coils. the length of the lize, or the insertion of a tuming cotpacit:there. Nince the s.w.r. on the link line maty lo quite high, the line losses inerease becalise of the greater current, the voltage inere:ase maty le sufficient to cause a breakdown in the insulation of the cable and the added tomed eireuit makes adjustment more critial with relatively. small changes in frequencr.
'These troubles maty not be eneountered if the link line is kept very short for the highest froquencr. A length of 5 feet or more may be tolcrable at 3.5 Me., hut a length of a foot at 28 Me. may be enough to canse serious effects on the functioning of the sustem.

Adjusting the coupling in such a system must necessarily be largely a matter of ent and try. If the line is short enough so ats to have negligibli. reatance, the conpling betwern the two tank circuits will increase within limits by adding turns to the link coils, or be conpling the link coils more tightly, if possible, to the tank eoils. If it is impossible to chatuge ceither of these, a variable capacitor of $300 \mu \mu \mathrm{f}$. may be connected in serios with or in parallel with the link coil at the driver cod of the line, depending upon which conneetion is the most effective.

If consial line is used, the capacitor should be comereted in series with the inner conductor. If the line is long enough to have appreciable reactanere, the variable capasitor is used to resonate the entire link circuit.

As mentioned previously, the size of the link coils and the lengt hof the line, as well as the size of the capacitor, will affect the resonant frequeney. and it may take an adjustmont of all three before the capacitor will show a pronounced effect on the coupling.

When the sustem has been made resonant, coupling maty be adjusted by varying the link' eapacitor.

Simple Capacitive Interstage Coupling

The eaparitive system of Fig. (i-21A is the simplest of all corupling spotems. (Bee Fig. 6-8 for filament-type tubes.) In this cirecuit, the plate tank circuit of the driver, Co L_{1}, serves also as the grid tank of the amplifier. Although it is used more frequrntly than any other system, it is Inss flexible and hats certain limitations that must le taken into consideration.

The two stages eamot lo separated physically any appreciable distance without involving loss in transferred power, radiation from the eoupling lead and the danger of feedback from this lead. since both the output capacitance of the driver tulve and the input capacitance of the amplifier are arross the single circuit, it is sometimes difficult to obtain a tank cireuit with a sufficiontly low Q to provide an efficiont crrcuit at the higher frequencies. The coupling can be varied by altering the capacitance of the eoupling

6-HIGH-FREQUENCY TRANSMITTERS

Fig. 6-21-Capacitive-caupled amplifiers. A-Simple capacitive coupling. B-Pi-section coupling.

C_{1}-Driver plate tank capacitar-see text and Fig. 6-9 for capacitance, Fig. 6.33 for voltage rating. C_{2}-Coupling capacitor- 50 to $150 \mu \mu \mathrm{f}$. mica, as necessary for desired coupling. Voltage rating sum af driver plate and amplifier biasing voltages, plus safety factor.
C_{3}-Driver plate bypass capacitor- $0.001-\mu \mathrm{f}$. disk ceramic or mica. Voltage rating same as plate voltage.
C_{1}-Grid byposs- $0.001-\mu$ f. disk ceramic.
C. -Heater bypass- $0.001-\mu$ f. disk ceramic.
C_{6}-Driver plate blacking capacitor- 0.001 - μ f. disk ceromic or mica. Voltrge rating same os C_{2}.
$\mathrm{C}_{7}-\mathrm{Pi}_{\text {-section }}$ input capacitor-see text referring to Fig. 6-1 2 for capocitance. Voltage rating-see Fig. 6-33A.
$\mathrm{C}_{8}-\mathrm{Pi}$-section output copocitor- $100-\mu \mu \mathrm{f}$. mica. Valtage rating some as driver plate voltoge plus safety factor.
L_{1}-To resonote at operating frequency with C_{1}. See LC chart and inductance formula in electrical-lows chapter, or use ARRL Lighining Calculafor.
L_{2}-Pi-section inductor-See Fig. 6-12. Approx. some as L_{1}.
RFC_{1}-Grid r.f. choke-2.5-mh.
RFC_{2}-Driver plate r.f. choke- 2.5 mh .
"apatitor, ("2. The driver load impedanere is the sum of tho amplifior grid resistanoe and the feartane of the coupling rapacitor in serios, the coupling rapacitor sorving simply as a serios meator. The driver loal resistance inereases with a dererease in the capacitanere of the coupling ("aparitor.

When the amplifier grid impedanee is lowor than the optimum load resistance for the driver, it transforming action is possible by tapping the grid down on the tank eoil, but this is not reconmended beatuse it invariably eanses an inerease in v.h.f. harmonies and sometimos sote up at parasitice cirenit.

So far as coupling is conererned, the Q of the - irenit is of little significance. llowever, the other considerations disernsed earlier in eonnertion with tank-cireuit Q should he observerd.

Pi-Network Interstage Coupling

A pi-scrotion tank circuit, its shown in Fig. (i-2113, may be used as at coupling devico botwern sereron-grid amplifier stages. The eireait is arotually a mapaitive coupling arrangement with the grid of the amplifier tappeed lown on the vircoit by morans of at capreitive dividor. In contrast to the tapperd-coil method montioned proviously. this system will be very effoctive in rolucing
v.h.f. harmonits, berause tho output capasitor, C_{8}, provides a dirert calpacitive shant for harnonios andoss the amplifier grid circuit.

To be most effertive in reducing v.h.f. harmonies, f's slaould be in micit citpabitor conneeted directly across the tube-socket terminals, '「apping down on the cireuit in this manner also helps to stabilize the amplifier at the operating freepuence beatuse of the gried-circuit loseling provided by C.s. Fior the purposes both of statbility and harmonie reduetion, experience has shown that a value of 100) $\mu \mathrm{l}$ f for ("8 usuatly is suffieient. In general, C_{7} and L should have values approximating the caparitance and inductanee used in a eonventional tank eircuit. A reduction in the inductance of L_{2} results in an increas in equpling becaluse (77 must be inereased to retume the eirenit to resonamee. This changes the ratio of C_{i} to ('s and hats the efferet of moving the grid tap) up on the eircuit. Ninere the coupling to the grid is comparatively loose under any rondition. it may be found that it is impossible to utilize the full power expability of the driver stage. If sufficiont excitation cannot be obtained, it may be meressary to raise the plate voltage of the driver, if this is permissible, otherwise a larger driver tahe maty be reguired. As shown in Fig. (i-2113, parallel driver plate feed and amplifier grid foed arcenemsmy.

Stabilizing Amplifiers

STABILIZING AMPLIFIERS

External Coupling

A struight amplifier operates with its input and output circuits tuned to the same frequency. Therefore, miless the coupling between these two circuits is brought to the necessary minimum, the amplifier will oscillate as a tuned-plate tuned-grid circuit. Care should be used in arranging componemts and wiring of the two circuite so that there will lee negligible opportunity for coupling external to the tube itself. Complete shielding betwern input and output circuits usually is required. All r.f. leads should be kept as short as possible and particular attention should be paid to the r.f. return paths from plate and grid tank circuits to cathode. In general, the best arrangement is one in which the cathode (or filament cen(er tap) comnection to ground, and the plate tank rireuit are on the same side of the chassis or other shiclding. Then the "hot" lead from the grid tank (or driver plate tank) should be brought to the sorket through a hole in the shielding. Then when the grid tank rapacitor or bypass is grounded, a return path through the hole to cathode will be encouraged, since transmissionline charateristies are simulated.

A check on external roupling between input and output circuits can be made with a sensitive indicating device, such as the one diagrammed in Fig. 6-22. The amplifier tube is removed from its socket and if the plate terminal is

Fig. 6-22-Circuit of sensitive neutralizing indicator. Xfal is a 1 N34 crystal detector, MA a 0-1 direct-current milliammeter and C a $0.001-\mu \mathrm{f}$. mica bypass capacitor.
at the socket, it should be disconnected. With the driver stage running and tuned to resonance, the indicator should be coupled to the output tank coil and the output tank capacitor tuned for any indication of r.f. feedthrough. Experiment with shielding and rearrangement of parts will show whether the isolation can be improved.

Screen-Grid Neutralizing Circuits

The plate-grid capacitance of screen-grid tubes is reduced to a fraction of a nicromicrolarad by the interposed grounded sereen. Nevertheless, the power sensitivity of these tubes is so great that only a very small amount of feedback is necessary to start oscillation. To assure a stable amplifier, it is usually necessary to load the grid circuit, or to use a neutralizing circuit. A neutralizing circuit is one external to the tube that balances the voltage fed back through the grid-plate capacitance, by another voltage of opposite phase.

Fig. 6-23.1 shows how a sereen-grid amplifier may be neutralized hy the use of an inductive link line coupling the input and output

Fig. 6-23-Screen-grid neutralizing circuits. A-Inductive neutralizing. $B-C$-Capacitive neutralizing.
C_{1}-Grid bypass capacitor-approx. $0.001-\mu \mathrm{f}$. mica. Voltage rating same as biasing voltage in B_{r} same Voltage rating same as biasin
as driver plate voltage in C .
C_{2}-Neutralizing capacitor-approx. 2 to $10 \mu \mu \mathrm{f}$.-see text. Voltage rating same as amplifier plate voltage for c.w., twice this value for plate modulation. L_{1}, L_{2}-Neutralizing link-usually a furn or two will be sufficient.
tank circuits in proper phase. The two coils must be properly polarized. If the initial connection proves to be incorrect, connections to one of the link coils should be reversed. Neutralizing is adjusted by changing the distance between the link coils and the tank coils. In the case of capacitive coupling between stages, one of the link coils will be conpled to the plate tank coil of the driver stage.

A capacitive neutralizing system for screengrid tubes is shown in Fig. 6-23B. C_{2} is the neutralizing capacitor. The capacitance should be chosen so that at some adjustment of C_{2},

$$
\frac{C_{2}}{C_{1}}=\frac{\text { Tube arid-plate capacitance (or } C_{\mathrm{gp}} \text {) }}{\text { Tube input capacitance (or } C_{\mathrm{IN}} \text {) }}
$$

The tube interelectrode capacitances $C_{g p}$ and ('is aregiven in the tube tables in the last chapter. The grid-cathode rapacitance must include all

6-HIGH-FREQUENCY TRANSMITTERS

strays directly across the tube capacitance, including the caparitane of the funing-capacitor stator to ground. This may amount to 5 to 20 $\mu \mu \mathrm{f}$. In the case of caparitance coupling, as shown in Fig. 6-23C, the output capacitance of the driver tube must be added to the gridcathode capacitance of the amplifier in arriving at the value of C_{2}. If C_{2} works out to an impractically large or small value, ('i can be changed to compensate by using combinations of fived mica capacitors in paralled.

Neutralizing Adjustment

The procedure in neutralizing is essentially the same for all types of tubes and circuits. The filament of the amplificr tube should be lighted and excitation from the preceding stage fed to the grid circuit. Both sereen and plate voltages should be disconnected at the transmitter terminals.
The immediate objective of the neutralizing process is reducing to a minimum the r.f. driver voltage fed from the input of the amplifier to it. output eircuit through the grideplate capacitance of the tube. This is done be adjusting caurfully, bit hy bit, the nontralizing capacitor or link coils until an r.f. indicator in the output circuit reads minimum.
The device shown in Fig. (f-22 makes a sensitive neutralizing indieator. The link should be coupled to the output tank coil at the low-potential or "ground" point. Care should be taken to make sure that the coupling is lowe enough at all times to prevent burning out the meter or the reetificr. The plate tank capacitor should he readjusted for maximum reading after each change in ncutralizing.
The grid-current meter may also be used as a neutralizing indicator. With plate and sereen voltages removed as deseribed above, there will be a change in grid corrent as the plate tank circuit is tuned through resomanes. The neutralbaing capacitor should be adjusted until this dofleetion is brought to a minimum. As a final adjustmont, plate and screen voltages should bx applied and the neutralizing capacitance adjusted to the peint where minimum plate current, maximum grid current and maximum serech current orcur simultanemsls: An inervase in grid current when the plate tank cirenit is tuned slightly on the high-fregneney side of resomance indicates that the neutralizing capacitanere is tox sumall. If the indrease is on the low-itrepuency side. the nentralizing caparitane is too latge. When nentralization is complete, there should 1 w a slight docrease in grid eurrent on cither side of resonamere.

Grid Loading

The use of a neutralizing circuit may often be avoided by loading the grid circuit if the driving stage hats some power capability to spare. Loading by tapping the grid down on the grid tank coil Cor the plate tank coil of the driver in the case of capacitive coupling), or by a resistor from grid tos eathode is effective in stabilizing an amplifier, but cither deviee may increase v.h.f.
harmonies. The hest lowding system is the use of a pi-section filter, as shown in lig. (i-21 H . This circuit paces a capacitance directly bet ween grid and cathode. This not only provides the desirable loading, but also a very effective capacitive short for v.h.f. harmonics. A $100-\mu \mu$ f. mica capacitor for C_{3}, wired directly betweren tube terminals wilt usually provide sutficient loading to stathilize the amplifier.

V.H.F. Parasitic Oscillation

Parasitic oscillation in the v.h.f. range will take plare in almust every r.f. power amplifier. To test fur v.h.f. parasitie nseillation, the grid tank coil (or driver tank coil in the case of cat pacitive coupling) should be short-rircuited with a clip lead. This is to prevent any pensible t.g.t.p. oscillation at the operating frequeney which might lead to confusion in identifying the parasitic. Any fixed hias should be replaced with a grid leak of 10,000 to 20,1000 ohms. All haud on the output of the amplificr should be diseonnected. Plate and sereen voltages should be reduced to the point where the ritted dissipation is mot exceeded. If a Variac is not avatiable, yoltage may be reduced hy a 115 -volt tamp in serics with the primary of the plate transformer.
With power applied ouly to the amplifier monder test, a search should be made he idjusting the input capacitor to several sottings, including minimum and maximum, and turning the plate capacitor through its range for each of the gridcaparitor settings. Any grid current, or any dip, or flicker in plate current at any point, indicates oscillation. This can be confirmed by an indicating ahsorption wavemeter thened to the froqueney of the parasitic and hodd close to the plate lead of the tube.
The heavy lines of Fiig. (i-2 2 A show the usual parasitic tank circuit, which resonates, in most cases, between 150 and 200 Ale. For carh 1 yg ge of tetrode, there is a region, hisually below the paratsitic frequency, in which the tule will be solfneutralized. By adding the right amount of inductance to the parasitic circuit, its resomamt frequeney can be brought down to the frequence:

Fig. 6-24-A—Usual parositic circuit. B—Resistive looding of porositic circuit. C-Inductive coupling of looding resistonce into porositic circuit.

Parasitics

at which the tuhe is self-neutralized. Howerer, the resonant fregueney should not be brought down so low that it falls close to TV Chammel 6 ($88 . \mathrm{Me}$.). From the consideration of TVI, the circuit may be lowded down to a frequeney not lower than 100 Me . If the self-neutralizing frequency is below 100 Mc., the cireuit should be loaded down to somewhere betwen 100 and 120 Me, with inductance. Then the parasitie can be suppressed by loading with resistance, as shown in Fig. f -2 1B3. A coil of 4 or $\overline{0}$ turns, $1 / 4$ inch in diameter, is a grood starting sime. With the tank cataritor tumed to maximmon capacitance, the circuit should be chereked with a g.d.o. to make sure the resonatue is above 100 Me Then, with the shortest possible leads. a moninductive 100)-ohn 1 -wat resistor should be connected across the entire coil. The amplifier should be tuned up to its highost-frequeney band and operated at low voltage. The tap should be moved a little at a time to find the minimum number of turns required to suppress the parasitic. Then voltage should be inereased until the resistor hegins to feel warm after several minutes of operation, and the power input noted. This input should be conmared with the nommal input and the pouer rating of the resistor increased by this proportion: i.e., if the power is half normal, the wattage rating should be doubled. This increase is best made by connecting 1 -watt carbon resistors in parallel to give a resultant of about 100 ohms. Is power input is increased, the parasitic may start up again, so power should be applied only momentarily until it is made certain that the parasitic is still suppressed. If the parasitio starts up again when voltage is raised, the tap must be moved to include more turns. so long the the parasitic is suppressed, the resistors will heat up only from the opratingfrerumbey curront.

Since the resistor ean be placed across only that portion of the parasitic circuit represented by L_{p} the latter should form as large a portion of the circuit as possible. Therefore, the tank and bypass capacitors should have the lowest possible inductancer and the leads shown in heave lines should he as short as possible and of the heaviest practical conductor. This will permit L_{p}, to be of maximum size without tuning the circuit below the $100-\mathrm{Mc}$, limit.

Anothor arrangement that has been used successlully is shown in Fig. (i-24C, A small furn or two is insured in place of L_{p} and this is coupled to a ciremit tuned to the parasitio frequemes. and loaled with resistance. The heaveline cirenit should first be chooked with a g.d.o. Then the toaded circuit should be tumed to the same frequeney and coupled in to the point where the parasitic ceases. The two coils can be wound on the same form and the coupling varied by sliding one of them. Slight retuning of the loaled circuit may be reguired after coupling. Start out with low power as before, until the parasitic is suppressed. Since the loaded cirenit in this case carries murh less operating-frequency current, a single 100-ohm 1 -watt resistor will often be suffiedent and a $301-\mu \mu \mathrm{l}$. mieat trimmer shentid sorve
as the tuning capacitor, C_{p}.

Low-Frequency Parasitic Oscillation

The screening of most transmitting sereen-grid tubes is sufficient to prevent low-frequency parasitic oscillation caused by resonant circuits set up by r.f. chokes in grid and plate circuits. Should this type of oscillation (usually between 1200 and 200 ke .) orrour, spe paragraph under triode amplifiers.

PARALLEL-TUBE AMPLIFIERS

The circuits for parallel-tube amplifiers are the Same as for a single tube, similar terminals of the tubes being connected together. The grid impedance of two tubes in parallel is half that of a single tube. This means that twice the grid tank capacitance shown in Fig. $6-20$ should be used for the sume Q.

The plate load resistance is halled so that the plate tank caparcitance for a single tube (Fig. (6-10) also should be doubled. The total grid current will be doubled, so to maintain the same grid bias, the grid-leak resistance should be half that used for it single tube. The reguired driving power is doubled. The capacitance of a neutratizing celparitor, if used, should be doubled and the value of the screen dropping resistor should be cut in half.

In treating parasitic oscillation, it may be necessary to use at choke in each plate lead, rather than one in the common lead. Input and output capacitances are cloubled, which maty be a factor in oltaining efficient operation at highor frequeneies.

PUSH-PULL AMPLIFIERS

Basic push-pull rircuits are shown in Fig. (6-26C :und I). Amplifiers using this eirenit are cumbersome to bandswitch and consequently are not very populat helow 30 Mc. However, since the push-pull configuration places tube input and output capacitances in series, the circuit is widely used at 50 Mc . and higher.

- TRIODE AMPLIFIERS

Circuits for triode amplifiers are shown in Fig. 6-26. Neglecting references to the sereen, all of the foregoing information applies equally, well to triodes. . 1 ll triode straight amplifiers must the neutralized, as Fig. 6-26 indicates. From the tube tatbles, it will be sem that triodes reguire considerably more driving power than sereengrid tubes. However, they also have less power sensitivity, so that groater feodback can be tolerated without the danger of instability.

Low-Frequency Parasitic Oscillation

When r.f. chokes are used in both grid and pate cireuits of a triode amplifier, the splitstator tank capacitors combine with the r.f. chokes to form a low-fregueney parasitie circuit, unless the amplifier cireuit is arringed to prevent it. In the cirruit of Fig. $6-26 \mathrm{~B}$, the amplifier grid

6-HIGH-FREQUENCY TRANSMITTERS

Fig. 6-25-When a pi-network output circuit is used with a triode, a balanced grid circuit must be provided for neutralizing. A-Inductive-link input. B-Capacitive input coupling.

Fig. 6-26-Triode amplifier circuits. A-Link coupling, single tube, B-Capacitive coupling, single tube. C-Link coupling, push-pull. D-Copacitive coupling, push-pull. Aside from the neutralizing circuits, which are mandatory with triodes, the circuits are the same as for screen-grid tubes, and should have the same values throughout. The neutralizing capacitor, C_{1}, should have a copacitance somewhat greater than the grid-plate capacitance of the tube. Voltage rating should be twice the d.c. plate voltage for c.w., or four times for plate modulation, plus safety factor. The resistance R_{1} should be at least 100 ohms and it may consist of part or preferably all of the grid leak. For other component values, see similar screen-grid diagrams.

Grounded-Grid Amplifiers

Fig. 6-27-A-Grounded-grid triode input circuit. B-Tetrode input circuit with grid and screen directly in parallel. C-Tetrode circuit with d.c. voltage applied to the screen. Plate circuits are conventional.
pedance and a relatively high driver-power requirement. The additional driver power is not consumed in the amplifier but is "fed through" to the plate circuit where it combines with the normal plate output power. The total r.f. power output is the sum of the driver and amplifier output powers less the power normally required to drive the tulse in a grounded-cathode circuit.

Positive feedback is from plate to eathorle through the plate-cathode, or plate-filament, rapacitance of the tube. Since the grounded grid is interposed between the plate and cathode, this capacitance is very small, and neutralization usually is not necessary.

A disadvantage of the grounded-grid circuit is that the cathode must be isolated for r.f. from ground. This presents a practical difficulty, esperially in the case of a filament-type tube whose filament current is harge. Another disadvantage in plate-modulated phone operation is that the driver power fed through to the output is not modulated.

The chief application for grounded-grid amplifiers in amateur work at frequencies below 30 No. is in the case where the available driving power far exceeds the power that can be used in driving a conventional grounded-cathode amplifier.
D.c. electrode voltuges and currents in grounded-grid triode-amplifier operation are the same as for grounded-cathode operation. Approximate values of driving power, driving impedance, and total power output in Class Coperation can be calrulated as follows, using information normally provided in tube data sheets. R.m.s. values are of the fundamental components:

[^1]Then,
Driving poter (watts) $=E_{\mathrm{g}}^{\mathrm{g}}\left(I_{\mathrm{p}}+I_{\mathrm{E}}\right)$
Driving impedance $(o h m s)=\frac{E_{\mathrm{g}}}{I_{\mathrm{g}}+I_{\mathrm{p}}}$
Poucer fed through from driver stage (watts) $=E_{\mathrm{g}} I_{\mathrm{p}}$
Total power outpul (uratts $)=I_{\mathrm{p}}\left(E_{\mathrm{g}}+E_{\mathrm{p}}\right)$
Screen-grid tubes are also used sometimes in grounded-grid amplifiers. In some cases, the sereen is simply connected in parallel with the grid, as in lig. 6-2713, and the tube operates as a high- μ triode. In other cases, the sereen is bypassed to ground and operated at the usual d.c. potential, as shown at C. Since the soreen is still in parallel with the grid for r.f., operation is very much like that of a triode except that the positive voltage on the sereen redures driver-power roquirements. Since the information usually furnished in tubedata sheets does not apply to triode-type operation, operating conditions are usually determined experimentally. ln general, the bias is adjusted to produce maximum output (within the tube's dissipation rating) with the driving power available.

Fig. 6-28 shows two methods of coupling a grounded-grid amplifier to the 50 -ohm output of an existing transmitter. At A an l , network is used, while a conventional link-coupled tank is shown at 13. The values shown will be approsimately correct for most triode amplifiers operating at 3.5. Mc. Values should be cut in half each time frequency is doubled, i.e., $250 \mu \mu$, and 7.5 $\mu \mathrm{h}$. for $\overline{7}$ Me., ete.

Filament Isclation

Since the filament or cathode of the groundedgrid amplifier tube operates at some r.f. potential above ground, it is neressary to isolate the filament from the power line. In the case of lowpower tubes with indirectly heated cathodes, it is sometimes feasible to depend on the small caparitance existing between the heater and cathode, although it is preferable to provide additional isolation.

In Fig. 6-29, isolation is provided by a special low-caparitance filament transformer. $R F^{\prime} C_{1}$ carries only the cathocle current. However, since transformers of this tepe are not generally avail-

6-HIGH-FREQUENCY TRANSMITTERS

Fig. 6-28-Two methods of coupling a low-impedance driver to a grounded-grid in. put. A-L network. B-Link-coupled tank circuit.
able, other means must usually he employed.
In Fig. $6-29 \mathrm{O} 3$, chokes are used to isolate the filament from the filament tramsformor. The re adtane of the chokes should be several times the imput impedance of the amplifier and must be wound with conduetor of sufficiont size to carry the filament current. It is usually necessary to use at transformer delivering more than the rated filament voltage to compensate the voltage drop armes the chokes. In lig. (6-290, r.f. chokes are placed in the primary site of the transformer. This reduces the current that the chokes must hatalle, but the filament tramsformer must be monnted so that it is spated from the chassis and other gromuled metal to minimize the rapacitance of the transformer to ground. RPC, carrios rathode eurrent onls:

In the rave of the input circuit of Fig. (i-2813, it is sometimes fasible to wind the tank inductor with 1 wo conductors in parallel, and feed the filatment voltage to the tube through the two conductors, as shown in Fig. 6-291). This atrangement does not lend itself well to bandehanging, however.

FREQUENCY MULTIPLIERS

Single-Tube Multiplier

Output at a multiple of the frequency at which it is boing driven may be obtained from an amplifier stage if the output eireuit is tuned to a harmonic of the exciting frequency instead of to the fundamental. Thus, when the frequency at the grid is 3.5 Mc ., output at 7 Me . 10.5. Ma., It Me., otce, may be obtained by tuning the plate tank circuit to one of these frequencies. The eireuit otherwise remains the same as that for a straight amplifier, although some of the values and operating conditions may require change for maximum multiplier affiriency.

Fificiency in a single- or paralled-tube multiplier eomparable with the efficiency obtainable when operating the same tube as a straight amplifier involves deereasing the operating angle in proportion to the increase in the order of frequency multiplication. Obtaining output comparable with that possible from the same tube as a straight amplifior involves greatly increasing the plate voltage A practical limit as to afficiency and output within normal tube

Fig. 6-29-Methods of isolating filament from ground. A-Special low-capacitance filament transformer. BR.f. chokes in filament circuit. C-R.f. chokes in transformer primary. D-Filament fed through input tank inductor.

166

Frequency Multipliers

ratings is rached when the multiplier is operated at maximum permissible plate voltage and maximum permissible grid current. The plate current should be reduced as necessary to limit the dissipation to the rated value by increasing the bias. Iligh efficiency in multipliers is not often required in practice, since the purpose is ustally served if the frequeney multiplication is obtained without an appreciable gain in power in the stage.

Multiplications of four or five sometimes are used to reach the bands above 28 Mc . from a lower-frequency erystal, but in the majority of lower-frequency transmitters, multiplication in a single stage is limited to a factor of two or three, because of the rapid decline in practicably obtainable efficiency as the multiplieation factor is increased. screen-grid tubes make the best frequency multipliers because their high power-sensitivity makes them easier to drive properly than triodes.
Since the input and output cireuits are not uned close to the same frepueney, neutralization usually will not be required. Instances may be eneountered with tubes of high transconductance. however, when a doubler will oscillate in t.g.t.p. fashion, requiring neutralization. The link neutralizing system of Fig. ($\mathrm{i}-23 \mathrm{~A}$ is convoniont in such a contingener.

Push-Push Multipliers

I twotube circuit which works well at even harmonies, but not at the fundamental or odd harmonies, is shown in lig. (0-30. It is known as

Fig. 6-30-Circuit of a push-push frequency multiplier for even harmonics.
$C_{1} L_{1}$ and $C_{2} L_{2}$-See text.
C_{3}-Plate bypass- 0.001 - $\mathrm{\mu}$. disk ceramic or mica. Voltage rating equal to plate voltage plus safety factor.
RFC-2.5-mh. r.f. choke.
the push-push cireuit. The grids are connected in push-pull while the plates are connected in parallel. The efficiency of a doubler using this circuit may approach that of a straight amplifier, because there is a plate-eurrent pulse for each cevole of the output frequency.

This arrangement has an advantage in some applications. If the heater of one tube is turned off, its grid-plate capacitaner, being the same as that of the remaining tube, serves to noutralize the cireuit. Thus provision is made for either
straight amplification at the fundamental with a single tube, or doubling frequency with two tubes as desired.

The grid tank circuit is tuned to the frequency of the driving stage and should have the same constants as indicated in Fig. 6-20 for balanced grid circuits. The plate tank rircuit is tuned to an even multiple of the exciting frequenery, and should have the same values as a straight amplifier for the harmonie frequency (see Fig. (i-10), bearing in mind that the total plate eurrent of both tubes determines the C to he used.

Push-Pull Multiplier

At single- or paratlel-tube multiplier will detiver output at either even or odd multiples of the exciting frequence. A push-pull multiplier does not work satisfactorily at even multiples because even harmonics are largely canceled in the output. On the other hand, amplifiers of this type work well as tripters or at other odd harmonics. The operating requirements are similar to those for single-t ube multipliers, the plate tank cireuit being tuned, of course, to the desired odd harmonic frequency.

Metering

Fig. 6-31 shows how a voltmeter and milliammeter should be commeted to read various voltages and currents. Voltmeters are seldom installed bermanently, since their principal use is in preliminary checking. Also, milliammeters are not normally installed permamently in all of the positions shown. Those most often used are the ones reading grid curront and plate current, or grid current and cathode corrent.

Milliammeters come in various eurrent ranges. Current values to be expected can be taken from the tube tables and the moter ranges selected arcordingly. To take care of normal overloads and pointer swing, a meter having a current range of about twice the normal eurrent to be experted should be selerted.

Meter Installation

(irid-current meters connected as shown in lig. (i-31 and moters comected in the cathode circuit need no sperial precautions in mounting on the transmitter pamel so far as safoty is con(erned. However, milliammeters having zoroadjusting serews on the face of the meter should be revessed behind the pamel so that arcidental contact with the adjusting screw is not possible. if the meter is connected in any of the other positions shown in Fig. fi-31. The meter can be mounted on a small subpanel attached to the front panel with long serews and spacers. The meter opening should be covered with glass or colluloid. Llluminated motors make reading Gasior. Reference should also be made to the TV'l chapter of this Hambook in regard to wiring and shielding of meters to suppress TVI.

Meter Switching

Milliammeters are expensive items and there-

6-HIGH-FREQUENCY TRANSMITTERS

Fig. 6-31-Diagrams showing placement of voltmeter and milliammeter to obtain desired measurements. A-Series grid feed, parallel plate feed and series screen voltage-dropping resistor. B-Parallel grid feed, series plate feed and screen voltage divider.

AMPLIFIER ADJUSTMENT

Larlior sertions in this chapter have dealt with the design and adjustment of input (grid) and output (plate) coupling systems, the stabilitization of amplifiers, and the methods of ohtaining the recquired electrode voltagers. Reference to these seetions should be made as neressary in following a proredure of amplifier adjust ment.

The objective in the adjustment of an intermediate amplitier stage is to secure adequate excitation to the following stage. In the case of the output or final amplifier, the objective is to obtain maximum power output to the antenna. In both cases, the adjustment nust be consistent with the tube ratings as to voltage, current and dissipating ratings.

Adeguate drive to a following amplifier is normally indicated when rated grid curwent in the following stage is obtained with the stage operating at rated hias, the stage loaded to rated plate eurrent, and the driver stage thmed to resonanere. In a final amplifier, maximum output is nomally indicated when the output roupling is adjusted so that the amplifier tube draws rated plate current when it is tuned to resonante.

Resonance in the plate circuit is mormally indieated by the dip in plate earrent reading as the phate tank capacitor is tuned through its range. When the stage is unloaded, or lightly
fore it is seldom feasible to provide even gridcurrent and plate-current meters for all stages. The exeiter stages in a multistage transmitter often do not require metering after initial adjustments. It is common practice to provide a meterswit ching system by which a single milliammeter maty be switched to read currents in as many cireuits as desired. Such a meter-switehing circuit is shown in Fig. 6-32. The resistors, R, are connerted in the various sircuits in place of the milliammeters shown in Fig. 6 i-31. Since the resistance of h is several times the internal resistance of the milliammeter, it will have no practical effect upon the reading of the meter.

When the meter must read currents of widely differing values, a meter with a range sutficiently low to accommodate the lowest values of current to be measured may be selected. In the circuits in which the current will be above the seale of the meter, the resistance of R can be adjusted to a lower value which will give the meter reading a multiplying factor. (See chapter on Measuroments.) Care should be taken to observe proper polarity in making the connections between the resistors and the switch.

Fig. 6-32-Switching a single milliammeter. The resistors, R, should be 10 to 20 times the internal resistance of the meter; 47 ohms will usually be satisfactory. S_{1} is a 2 . section rotary switch. Its insulation should be ceramic for high voltages, and an insulating coupling should always be used between shaft and control.

Amplifier Adjustment

loadod, this dip in plate courent will be quite pronounced. As the loading is increased, the dip will berome less noticeable. Sor Fig. 6-4. However, in the case of a screen-grid tube whose screen is fed through a series resistor, maximum output may not bre simultaneous with the dip in plate current. The reasom for this is that the sereen current varies widely as the plate cirenit is tuned through resonance. This variation in sereon current causes a corresponding variation in the voltage drop aeross the sereen resistor. In this case, maximum output may occur at an adjustment that results in an optimum rombination of screen voltage and nearness to resonamee. This cffect will seldom be observed whon the sereen is operated from a fixed-

(E) Fig. 6.33-Diogroms showing the peok voltoge for which the plote tonk copocitor should be roted for c.w. operotion with vorious circuit orrongements, E is equol to the d.c. plate voltage, The volues should be doubled for plate modulotion, The circuit is assumed to be fully loaded. Circuits A, C and E require that the tank copocitor be insuloted from chossis or ground, and from the control. voltage source,
'The first step in the adjustment of an amplifier is to stabilize it, both at the operating frequency by neutralizing it if necessary, and at parasitic frequencies by introducing suppression circuits.

If "flat" transmission-line coupling is used, the output end of the line should be matehed, as desribed in this chapter for the case where the amplifier is to feed the grid of a following stange, or in the transmission-line sortion if the amplifier is to feed an antenna system. After proper mateh has been obtained, all adjustments in anupling should be made at the input end of the line.

Until preliminary adjustments of exoitation have been made, the amplifier should be operated with filamont voltage on abol fixed bias, if it is roguirod, but sareon and plate voltages off. With the exater coupled to the amplifier, the coupling to the driver shoud be adjusted until the amplifior driws rated grid curront, or somewhat aloove the rated value, Then a load (the antenma grid of the following stage, or a dummy load) should be eoupled to the sumplifier.

With screen and plate voltages (preferably reduced) applied, the plate tank eapacitor should be adjusted to resonance as indicated by a dip in plate current. Then, with full screen and plate voltages applied, the coupling to the load should be adjusted until the amplifier draws rated plate current. Changing the eoupling to the load will usually cletune the tank rircuit, so that it will be necessary to readjust for resonance cach time a change in coupling is made. An mplifier should not be operated with its plate circuit off reso-
nance for any excopt the briefest necessary time, since the plate dissipation increases greatly when the plate circuit is not at resoname. Also, a sereen-grid tube should not be operated without normal load for any appreciable length of time, since the screen dissipation increases.

It is normal for the grid current to decrease when plate voltage is applied, and to decrease again as the amplifier is louded more heavily. As the grid curront falls off, the coupling to the driver should be increased to maintain the grid wurrent at its rated valur.

COMPONENT RATINGS AND INSTALLATION

Plate Tank-Capacitor Voltage

In selecting a tank capacitor with a spacing between plates sufficient to prevent voltage breakdown, the peak r.f. voltage across a tank cireuit under load, but without modulation, may be taken eonservatively as equal to the d.c. plate voltage. If the d.e. plate voltage also appears across the tank eapacitor, this must be added to the peak r.f, voltage, making the total peak voltage twice the d.c. plate voltage. If the amplifier is to be plate-modulated, this last value must be doubled to make it four times the d.c. plate voltage, because both d.e. and r.f. voltages double with 100 -per-cent plate modulation. At the higher plate voltages, it is desirable to choose a tank eireuit in which the d.c. and modulation voltages do not appear across the tank capacitor, to permit the

6-HIGH-FREQUENCY TRANSMITTERS

use of a smaller capacitor with less plate spateing. Fig. 6-3:3 shows the prak voltage, in terms of dec. plate voltage, to be expected atross the tank eapateitor in various circuit arrangements. These peak-voltage values ave given assuming that the amplifier is loaded to rated plate current. Without load, the peak r.f. voltage will run much higher.

The plate spacing to be used for a given prak voltage will depend upon the design of the variatbe rapacitor, influencing finctors being the mechanical eonstruction of the tunt, the insulation used and its placement in respert to intense fiolds, and the capacitor plate shape and degree of polish. Capacitor manufacturers usually rate their products in terms of the peak voltage betwen phates. Typical plate spacings are shown in the following table.

Typical Tank-Capacitor Plate Spacings					
spacing (In.)	peak loluage	s゙pacimg ($/ \mathrm{rt}$.	l'enk Voltagr	s゙pacing (In.)	Peak Vollagr
0.01\%	1300	0.07	3000	0.175	7000
0.02	1200	0.08	$3 \mathrm{SF}(\mathrm{O})$	0.25	9090
0.0:3	1500	0.125	4.7 (0	0.85,	11000
0.0 .9	$2(\%)$	10.15	firso	$0 . i)$	13000

Plate tank capacitors should be mounted as close to the tube as temperature considerations will permit to make possible the shortest capatitive path from plate to cathode. Esporially at the higher frequencies where minimum circuit catparitance beromes important, the capacitor should be mounted with its stator plates well spaced from the chassis or othor shieding. In circuits where the rotor must be insulated from ground, the capacitor should be mounted on ceramic insulators of size commensurate with the plate voltage involved and - most important of all, from the viewpoint of safety to the operator - a well-insulated coupling should be used between the eapacitor shaft and the dial. The section of the shaft allached to the dial should be well arounded. This can be done conveniently through the use of panel shaft-bearing units.

Grid Tank Capacitors

In the circuit of Fig. 6-3t, the grid tank eatpacitor should have a voltage rating approximately rutal to the biasing voltage plus 20 per cont of the plate voltage. In the balanced circuit of Is, the voltage rating of earh seclion of the caparitor should be this same value.

The grid tank capacitor is proferably mounted with shielding between it and the tube socket for isolation purposes. It should, however, be mounted close to the socket so that a short lead ean be passed through a hole to the socket. The rotor ground load or hypass lead should be run directly to the nearest point on the chassis or other shiclding. In the cirenit of lig. 6-3HA, the same insulating precautions mentioned in connection with the plate tank capacitor should be userd.

(A)

Fig. 6-34-The valtage rating of the grid tank capacitar in A should be equal to the biasing valtoge plus about 20 per cent of the plate valtage.

Plate Tank Coils

The inductance of a manufactured coil usually is bused upon the highest plate-voltage/ plate-current ratio likely to be used at the maximum power level for which the coil is designed. Therefore in the majority of cases, the caparatance shown by Figs. 6-9 and (6-20 with be greater than that for which the coil is designed and turns must be removed if a Q of 10 or more is needed. At 28 Me., and sometimes 14 Me., the value of caparitance shown by the chart for a high plate-voltage/plate-eurrent ratio may be lower than that attainable in practice with the components avaikable. The design of manufactured coils usually takes this into consideration also and it may be found that values of caparitance groater than those shown (if stray capacitance is inchuded) are required to tune theso coils to the band.

Manufactured coils are rated according to the plate-power input to the tube or tubes when the stage is loaderl. Since the circulating tank current is much greater when the amplifier is unloaded, care should be taken to operate the amplifier conservatively when unloaded to prevent damage to the coil as a result of excessive heating.

Tank coils should be mounted at least their diameter away from shiolding to prevent a marked loss in Q. Wixcept perhaps at 28 Me., it is not important that the coil be mounted quite close to the tank capacitor. Leards up to 6 or 8 inches are permissible. It is more important ta keep the tank caparitor as well as other components out of the immediate field of the coil. For this reason, it is preferable to mount the coil so that its axis is parallel to the capacitor shaft, either alongside the capacitor or above it.

There are many fartors that must be taken into consideration in determining the size of wire that should be used in winting a tank eoil. The considerations of form factor and wire size that will produce a coil of minimum loss are often of less importance in praetice than the coil size that will fit into available space or that will handle the required power without excessive heating. This is particularly true in the case of screen-grid tubes where the relatively small driving power required can be easily obtained even if the losses in the driver are quite high. It may be considered preforable to take the power loss if the physical

Component Ratings

size of the exeiter can be kept down by making the coils small.

The accompanying table shows typical conductor sizes that are usually found to be adequate for various power levels. For powers under 25 watts, the minimum wire sizes shown are largely a matter of obtaining a coil of reasonable Q. So far as the power is concerned, smaller wire could be used.

Wire Sizes for Transmitting Coils		
Potrer Input (l'atts)	Rand (. $/ 1 / \mathrm{c}$.)	Wiresize
1000	$\begin{aligned} & 28-21 \\ & 14-7 \\ & 3.5-1.8 \end{aligned}$	$\begin{array}{r} 6 \\ 8 \\ 10 \end{array}$
500	$\begin{aligned} & 28-21 \\ & 14-7 \\ & 3.5-1.8 \end{aligned}$	$\begin{array}{r} 8 \\ 12 \\ 14 \end{array}$
150	$\begin{gathered} 28-21 \\ 14-7 \\ 3.5-1.8 \end{gathered}$	$\begin{aligned} & 12 \\ & 14 \\ & 18 \end{aligned}$
75	$\begin{aligned} & 28-21 \\ & 14-7 \\ & 3.5-1.8 \end{aligned}$	$\begin{aligned} & 14 \\ & 18 \\ & 22 \end{aligned}$
25 or less*	$\begin{aligned} & 28-21 \\ & 14-7 \\ & 3.5-1.8 \end{aligned}$	$\begin{aligned} & 18 \\ & 24 \\ & 98 \end{aligned}$

* Wire size limited principally by consideration of Q.

Space-winding the turns invariably will result in a coil of higher Q, especially at frequencies above 7 Me., and a form factor in which the turns spacing results in a coil length between 1 and 2 times the diameter is usually considered satisfatetory. Space winding is especially desirable at the highor power levels hecause the heat developed is dissipated more readily. The power lost in a tank coil that develops appreciable heat at the higherpower levels does not usually represent a serious loss percentagewise. A more serious consequence, especially at the higher frequencies, is that coils of the popular "air-wound' type supported on phastic strips may deform. In this case, it may be necessary to use wire (or copper tubing) of sufficient size to make the coil self-supporting. Coils wound on tubular forms of ceramic or mici-filled bakelite will also stand higher temperatures.

Plate-Blocking and Bypass Capacitors

Plate-blocking capacitors should have low inductance: therefore capacitors of the mica or ceramic type are preferred. For frequencies between 3.5 and 30 Mc., a capacitance of 0.001 is commonly used. The voltage rating should be 25 to 50% above the plate-supply voltage (twier this rating for plate modulation).

Small disk ceramic capacitors (approximately $1 / 4$ inch in diameter) are to be preferred as bypass (apacitors, since when they are applied correctly (see TV'I ehapter), they are series resonant in the TV range and therefore are an important measure in filtering power-supply leads. Capacitors of this
type are rated at 600 to 1000 volts. At higher voltages, disk ceramics with higher-voltage ratings, or capacitors of the TV "doorknob" type are recommended. Voltage ratings of bypass capacitors should be similar to those for blocking capacitors.

R. F. Chokes

The characteristics of any r.f. choke will vary with frequency, from characteristics resembling those of a parallel-resonant cireuit, of high impedance, to those of a series-resonant circuit, where the impedance is lowest. In between these extremes, the choke will show varying amounts of inductive or capacitive reactance.

In series-feed circuits, these characteristics are of relatively small importance because, in a correctly operating circuit, the r.f. voltage across the choke is negligible. In a parallelfeed circuit, however, the choke is shunted across the tank circuit, and is subject to the full tank r.f. voltage. If the choke does not present a sufficiently high impedance, enough power will be absorbed by the choke to cause it to burn out. With chokes of the usual type, wound with small wire for compactness, a relatively small amount of power loss in the choke will cause excessive heating.

To avoid this, the choke must have a sufficiently high reartance to be effective at the lowest frequency, and yet have no series resonances near the higher-frequeney bands. The design of a choke that meets requirements over a range as wide as 3.5 to 30 Mc . at the higher voltages is quite critical.

Universal pie-wound chokes of the "receiver" type ($2.5 \mathrm{mh} ., 125 \mathrm{ma}$.) are usually satisfactory if the plate voltage does not exceed 750. For higher voltages, a single-layer solenoid-type choke of correct design has been found satisfactory. The National type IR-175A and Raypar RLL-100, 1RL-101 and RI-102 are representative mamufactured types. An example of a satisfactory homemade choke for voltages up to at least 3000 consists of 112 turns of No. 26 wire, spaed to a length of $3 \% / 8$ inches on a 1 -inch ceramic form (Centralah) stand-off insulator, type X3022H). A reramic form is advisable from the consideration of temperature. 'Tbis choke has only one series resonance (near 24 Mc .), and exhibits an equivalent parallel resistance of 0.25 megohm or more in all of the amateur bands from 80 through 10.

Since the characteristics of a choke will be affected by any metal in its field, it should be checked when mounted in the position in which it is to be used, or in a temporary set-up simulating the same conditions. The plate end of the choke should not he connected, but the power-supply end should be connected directly, or by-passed, to the chassis. The g.d.o. should be coupled as close to the ground end of the choke as possible. Series resonances, indicating the frequencies of greatest loss, should be checked with the choke short-circuited with a short piece of wire. Parallel resonances, indicating frequencies of least loss are ehecked with the short removed.

A Three-Band Oscillator Transmitter for the Novice

The novice transmitter shown in ligs. 6-35-(i-3x, inclusive, is casy to build and grt working. It is a restaleontrolled, one-tube owillator rapable of rummen at 30 watts input on the :3.5)-, T, and 21 Me. Novier hands. A sperial feature of the transmitter is a built -in keying monitor which permits the operator to listen to his own somding.

Regulated woltagre is used on the sereen of the oseillator. 'This minimizes frequene shift of the osciltator with keving, which is the calse of chirp. In addition, a small amount of cathorle bias (R_{4}) is used on the osidilator. This also temds to improve the keying charateristies in a cathotekeyed simple-osedilator transmitter.

Circuit Details

The ostillator circuit used is the grid-plate type, and the thbe is a bloged pontote. The power output is taken from the plate cireuit of the tube. (On 80 meters, inn 80 -meter erystal is needed. ()n fo, either 80- or fo-moter erystals ran be used, although slightly more output will the oftamed by using fo-meter erystals. To operate on 15 metors, a to-meter cersial is used.

The tank cirenit is a pi motwork. The plate tank rapaeitor is the variable (6 , and the tank inductame is $L_{2} L_{3}$. (${ }_{8}$ is a two-section variable, approximately $365 \mu \mu \mathrm{l}$. per sertion, with the stators commecterl together to give a total capacitance of about $7.30 \mu \mu \mathrm{f}$. This range of capacitanere is adequate for coupling to 50 or 7 方 ohms on 7 and 21 Me. When operating on 3.5 Mer, an additional 1000$) \mu \mu l^{\prime}$. ($(\%)$ is added to furnish the noeded range of caparitamer. L_{1} and R are essential for suppressimg v.h.f. parasitio oscillations.
The krying-monitor circuit uses a meon bulb, (type NE-2) athdio-frequency oseillator conmerted to the asthode of the bib)(esid at the key jack, J_{1}. The headphones are plugged into J_{2}, a
jack mounted on the back of the transmiter chassis. Another jack, J_{3}, is used as a terminal for the leads that go to the headphone jack on the rereiver.

Power Supply

The power supply uses a st'ti in a full-wave rircuit. A rapacitor-imput filter is used and the output voltage is approximatrly 370 volts with a cathode current of 90 milliamperes. A $0-150$ milliammeter reads cathode current. The sereren and grid currents are approximately 4 ma. when the oscillator is loaded.

Construction

All of the eomponents, including the power supply, are mounted on a $2 \times 7 \times 1: 3$-ind aluminum ehassis that is in tumn curlosed in a $7 \times 9 \times 15$-ineh ahminum box. (ldremier A (:1597). (He of the removable covers of the box is used as the front panel, as shown in lig. (i-3is). The box hats a $1 / 2$-inch lip around both openings, so the bottom ealge of the chassis should be placed one inch from the bottom of the pancl. The sides of the chassis are also one inch from the sides of the panel. The chassis is held to the panel $\mathrm{b}_{\mathrm{y}} S_{2}, J_{1}$, and the mounting serews for the eristal socket, so both the front edge of the chassis and the pamel must be drilked alike for these eomponents. S_{1}, at the left in the front view, is one inch from the edge of the chassis (that is, two inches from the edge of the pamel) and rentered vertically on the chassis edge. Thas it is one inch from the bottom of the chassis edge and two inches from the bottom edge of the pancl. The hole for J_{1} is centered on the chassis edge and the holes for the arystal soeket are drilled at the right-hand end of the chassis to correspond with the position of S_{1} at the left.

Fig. 6-35-This 30 -watt three-band Novice transmitter is enclosed in a $7 \times 9 \times$ 15 -inch aluminum box. A group of $1 / 4$-inchdiameter holes should be drilled in the top of the box over the oscillator tube, as shown, to provide ventilation. A similar set of holes should be drilled in the back cover behind the oscillator circuit.

Fig. 6-36-Circuit diagram of the three-band transmitter. Unless otherwise specified, capacitances are in $\mu \mu \mathrm{f}$. Resistances are in ohms ($K=1000$).
$\mathrm{C}_{1}-3$-30- $\mu \mu \mathrm{f}$. trimmer.
$\mathrm{C}_{2}-100-\mu \mu \mathrm{f}$. mica.
$C_{3}, C_{9}, C_{10}, C_{11}, C_{15}, C_{16}-0.001-\mu \mathrm{f}$. disk ceramic.
$\mathrm{C}_{4}, \mathrm{C}_{5}-0.001-\mu \mathrm{f}$. 1600 -volt disk ceramic.
$\mathrm{C}_{0}-365-\mu \mu \mathrm{f}$. variable capacitor, single section, broad-cast-replacement type.
$\mathrm{C}_{7}-0.001-\mu \mathrm{f} .600$-volt mica.
$\mathrm{C}_{8}-365-\mu \mu \mathrm{f}$. variable capacitor, dual section, broadcostreplacement type.
$\mathrm{C}_{12}-500-\mu \mu \mathrm{f}$. mica or ceramic.
$\mathrm{C}_{13}-0.01-\mu \mathrm{f}$. disk ceramic.
$\mathrm{C}_{14}-8 / 8-\mu \mathrm{f} .450$-volt dual electrolytic capacitor.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$-Open-circuit phone jack.
J_{3}-Phono jack, RCA type.
J_{4}-Cooxial chassis connector, SO-239.
$L_{1}-10$ turns No. 18 wire space-wound on $R_{2 .}$.
There is nothing eritical about the placement of the meter or the shafts for C_{6}, C_{8} and S_{1}. As shown in I'ig. 6-38, C_{6} is mounted directly above J_{1} and approximately two inches from the top of the panel. C_{8} similarly is above the crystal socket and on the same horizontal line as C_{6}. S_{1} is about at the middle of the square formed by these four components.

The holes on the rear edge of the elassis for the coaxial connector J_{4}, phone jack J_{2}, receiver connector J_{3}, and for the a.c. cord are drilled at the same height as those on the front edge. dccess holes should be cut in the rear cover of the box at the corresponding positions; these holes may be large enough to clear the components, but not larger than is necessary for this purpose. The cover fits tightly against the rear edge of the chassis and thus maintains the shidding for preventing radiation of harmonies

L_ -6 turns No. 16 wire, 8 furns per inch, $11 / 4$ inches diam. (B \& W 3018).
L_{3}-23 turns No. 16 wire, 8 turns per inch, $1 / 4 / 4$ inches diam. ($B \& W 3018$). The 7 -Mc. tap is 18 turns from the iunction of L_{2} and L_{3}.
$\mathrm{L}_{4}-8$-h. 150 -ma. filter chake (Thordarson 20C54).
$M_{1}-0-150 \mathrm{mo}$. (Shurite 950).
$R_{1}-R_{x}$ inc.-As specified.
$\mathrm{RFC}_{1}, \mathrm{RFC}_{2}, \mathrm{RFC}_{3}-2.5-\mathrm{mh}$. r.f. choke (National R-50 or or similar).
S_{1}-Single-pole 3 -position switch (Centralab 1461).
S_{z}-Single-pole single-throw toggle switch.
T_{1}-Power transformer: $360-0-360$ volts, 120 ma .; 6.3 volts, 3.5 dmp ; 5 volts, 3 amp (Stancor PM8410).
Y_{1}-Crystal (see text).
in the tele wision bunds. However, it is ardvisable to fasten the cover to the chassis edge with a few sheel-metal screws, in order to insure good electrical contact.

There are several different types of broadeastreplacement variable capacitors on the market. Some of these have holes tapped in the front of the frame, and this type ean be mounted directly on the panel using machine serens and spacers. Others have mounting holes only in the bottom. In this case, the capacitor can be mounted on a pair of L-shaped brackets made from strips of aluminum.

Both L_{2} and L_{3} are supported by their leads. One end of L_{3} is comnected to the stator of ('s and the other end is connected to a junction on top of a one-inch-long steatite stand-off insulator. L_{2} has one end connected to the stator of C_{6} and the other end to one of the terminals on S_{1}.

Fig. 6-37-Rear view of the transmitter showing the placement of components above chassis. The loading capacitor, C_{v}, is at the left, $L_{: 3}$ is the vertical coil and L_{2} the horizontal one. Rubber grommels are used to prevent chafing and to furnish additional insulation on the leads coming from below chassis.

The voltage-dividing network consisting of L_{6} and R_{7} provides the correct voltage for operating the keying monitor, R_{6} is $1.6 \bar{y}^{2}$ megohms, a value obtained hy using two 3.3 -megohm 1 -watt resistors in parallel. These resistors and other small components may bo mounted on standard bakelite tic points.

Adjustment and Testing

When the unit is roady for testing, a 15 - or 20-watt elowtric light will serve as a dhmmy load. One side of the lamp, should be comeeded to the output lead and the other side to ehassis ground. A ervstal appropriate for the hand to be used should be phugged into the ervatal socket, and a key eomected to the key jack. Sh should be wed to the proper band. Sg may then be chosed and the transmitter allowed to warm up.

Set Cox maximum caparitame (plates completely moshed) and close the key. (Quickly tume (6 to resonance, as indicated by a dip) in the athode-curent rading. (irablatly derease the (atatcitance of $(8$, while retburhing the tuning of C_{6} as the loading increases. Incrated lombing
will be indicated by incrasing lamp brightness and be larger values of cathode current. Tune for maximum lamp brilliance. The cathote current should raad between 90 and 100 milliamperes when the oseillator is fully loaded.
C_{1} should be adjusted for the best keying characteristics consistent with wasonably good power output. It is not advisable to attempt to adjust (' 1 with a lamp dummy load, since the lamp resistance will change during the heating and cooling that take plate doming keying, and this will atfect the keying characteristio of the oscillator. Cse a regular antemata, with or without an antenna coupler or matching net work as the antema system may require, and listen to the keying on the station receiver. Remove the antemat from the recoiver to prevent overloading, athd adjust the r.f. gain control for a signal level comparable with that at which sigmals on that band are normally heard. Further details on cheeking keving will he found in the chapter on keying and break-in.
(Originally described in QST' Deember. 1957.)

Fig. 6-38-Below-chassis view. Powersupply components are mounted in the left-hand side and the oscillator section is at the right-hand side. Mounted on the back wall of the chassis is the keying monitor. Although not visible in this view, the monitor components are mounted on o four-terminal tie point.

A One-Tube 50-Watt Transmitter

The transmitter shown in Figs. 6-39 and 6-41 is similar in some respects to the one described previously: However, it demonstrates a different type of construction and will handle more power. For simplicity, operation is confined to two bands - 80 and 40 meters.

The ribeuit is shown in Fig. 6-40. The single (61-46 is used in a Colpitts-type erystal-oscillator (irecuit. The dial lamp) $/ 1$ serves as an indieator of r.f. cervial current and will also act as a fuse in case the crystal carrent beromes suficient to radanger the erystal. (A erystal will fracture if the current through the crystal is sufficient to (ranse exerssion heating.)

The output circuit, consisting of ('2, L_{1} and $(4$, is a pimetwork designed to feed a low-imperdane ($\overline{0} 0$ - $\overline{\text { an }}$-ohm) load. The band switeh S_{1} shorts out a portion of the coil for 40 -moter opreration and adds C_{3} in parallel with ('4 for 80-meter output.

One of the functions of the r.f. choke RFO $_{4}$ is that of a safety devier. Should the $1000-\mu \mu \mathrm{f}$. 1:200-volt blocking apacitor break down, high voltage would be ferl to the antemna or transmission line - a dangerous situation for the operator. The choke provides a d.e, short to ground should this oecur, although it has no dfert on the nomal operation of the transmitter. The choke also makes it possible to use caparitors with a lower break-down voltage rating at ('2 and ('4.
The meter M_{1} and the key are in the cathode circuit. serem voltage is obtained from a voltage divider consisting of R_{1} and R_{2}, R_{1} consists of
three 33,000 -ohm 1-watt resistors connected in parallel, and R_{2} is two 100,000 -ohm resistors in parallel. If desired, 10,000 -ohm and 50,000 -ohm 10 -watt resistors can be used instead.

Power Supply

A power supply delivering approximately 400 volts is included. The supply uses a 5 U 4 CA a $5 R 4(i Y$ rectifier and a eaparitive-input filter. The 100,000 -ohm bleoder resistanere across the output of the supply (shown in Fig. (j-40 as 100 K 5 watts) is made uf of three 33,000 -ohm, 2 -watt resistors in series.

Construction

The transmitter is built on a $7 \times 11 \times 3$-inch aluminum ehassis. The meter requires a 2 -inch hole, and the two tube sockets (Amphenol type MHP) take $1 \frac{1}{8}$-inch boles. The power transformer is mounted in the left rear comer of the chassis with the rectifier tube alongside. The rystal socket and $61+6$ tubre are plated close together in front of the transformer. The lamp I_{1} is mounted in a $1 / 2$-inch rubber grommet set in the chassis close to the erystal socket. Comnertions to the lamp are made by soldering directly to its terminals.

On the front wall of the chassis, the power switch and key jack are mounted at the left-hand end. On the other side of the meter are the plate tank capacitor (' 2 , the band switch and the output capacitor ('4.
On the under side of the chassis, the filter whoke is fastened against one end wall, and the

Fig. 6-39 - This view of the 50 -watter shows the panel arrangement and layout of the components above chassis. The crystal is between the 6146 and dial-light grommet. Behind the 6146 is the power transformer and to its right is the rectifier tube.

6-HIGH-FREQUENCY TRANSMITTERS

Fig. 6-40-Circuit diagram of the Novice-50 watter. Unless otherwise specified, capacitances are in $\mu \mu \mathrm{f}$. Capacitors marked with polarity are electrolytic. Capacitors not otherwise identified are disk ceramic.
C_{1}-470- $\mu \mu$ f. mica capacitor
$\mathrm{C}_{2}-\mathbf{2 5 0}-\mu \mu \mathrm{f}$. variable capacitor (Hammarlund MC250M).
$\mathrm{C}_{3}-680 \cdot \mu \mu$ f. mica copocitor.
$\mathrm{C}_{1}-365-\mu \mu \mathrm{f}$.-per-section dual variable capacitor, broad-cast-replacement type, sections connected in parallel (Allied Radio 60H725).
It—Dial lamp, 2 volts, 60 ma., No. 48 or 49.
J_{1}-Key jack, open-circuit.
$\jmath_{2}-$ RCA type phono jock.
$L_{1}-35$ turns No. 20, $11 / 4$-inch diam., 16 t.p.i., tapped 15 turns from the C_{4} end ($B \& W$ No. 3019).
filter capaeitors are against the rear wall, supported at the positive eld by an insulated terminal strip, and at the negative end by soldering to the grounded terminal of the phono jack used as an output eonnector.

The coil L_{1} is suspended by its hads betwoen the stator terminals of the tank rapacitor ('2 and the output or loading capacitor C_{4}.

On the 6146 socket, the three cathode prongs, Sos. 1,4 and 6 , should be connerted together and the leads from (${ }_{1}$ and $R P C_{2}$ should be soldered to any of the three prongs.

On S_{l}, the center terminal connects to the stators of ('4. The 40-meter tap from L_{1} goes to one outside terminal on S_{1}, and the mica capacitor (' 3 goes to the other terminal.

Operation

After completing the wiring, check all connections to make sure you haven't made a mistake. When you feel you are ready to try the transmitter, plug in the key, an 80-meter erystal,
L_{2}-9.hy. 125-ma. filter choke (Triad C.10X or equiv.).
$M_{1}-21 / 2$-inch square (Shurite 850).
$R_{1}-11,000$ ohms 3 watts. (See text.)
$R_{2}-50,000$ ohms, 2 watts. (See text.)
$\mathrm{RFC}_{1}, \mathrm{RFC}_{2}, \mathrm{RFC}_{3}-1-\mathrm{mh}$. r.f. choke (National R.50, Millen 34300-1000).
RFC_{4}-2.5-mh. r.f. chake (National R-100S).
S_{1}-1-pole 2-position switch (Centralab No. 1460).
S_{2}-Single-pole single-throw toggle switch.
$T_{1}-750$ volts, c.t., 150 ma., 5 volts 3 amp., 6.3 volts, 4.5 amp. (Stancor PC-8411 or equiv.).
the line cord, and turn the power on. Leave the key open until the 6146 warms up. A 40 -watt light loulh makes a good load for testing the transmitter, the threaded portion connecting to the chassis ground and the base pin to the output lead.

Switch S_{1} to the 80 -meter position and set (${ }_{4}$ at maximum capacitance (plates fully meshed) (lose the kny and tune (2 for a "dip)" in metor reading. Once you've resonated the tank circuit by tuning (${ }_{2}$ to a dip, you may or may not find that the lamp lights. Also, the meter reading at the dip will probably be only 20 or 30 ma . By decreasing the capacitance of C_{4} and rodipping with C_{2} you'll find that the lamp will get brighter and the loading heavier, as indicated by an increasing meter reading at the dip point. Be careful not to hold the key down any longer than necessary with the 6146 out of resonance as the tube is casily damaged during such operation. Increase the loading until the meter reads 100 to 125 ma. at the dip). This will be an input

50-Watt Transmitter

Fig. 6-41 - This view shows the arrangement of the components below chassis. At the far right, mounted against the side of the chassis, is L_{2}, the power-supply choke. The filter capocitors are mounted along the back wall. At the lower left is C_{4}, the output capacitor. The other variable is C_{2}.
of approximately 50 watts, and the dummy load should be fairly bright. Under these conditions rou should have approximately 400 volts on the plate of the $61+6$ and roughly 150 volts on the wereen. Use an 80 -meter erystal for 80 -meter operation and a 40 -moter one for 40 . It is possible to use an 80-meter crystal for 40 -meter work, but the oscillator will be operating as a frequeney doubler and the output is less than when operating straight through at the erystal frequency.

Antennas

Antennat systems oi any of the types disenssed in the antenna chapter of this Handbook may be used with the transmitter, provided it is appropriate for the bands to be used. Two simple types of antenna are shown in the sketeh of Fig. 6-42. Pach will work on both of the two bands covered by the transmitter. The antenna shown in Fig.

Fig. 6-42-Sketch of simple aniennas described in the text. A shows a parallel-dipole system. The system of B requires a ground connection.
$6-42 \mathrm{~A}$ consists of two dipoles, one for 80 meters and one for 40 meters, connected in parallel at the center where the feed line is attached. The antemat can be made of 300 -ohm television ribbon line. First measure off two sections of ribhon each 66 ft . long. Then at the eenter of each section eut one of the two wires in the ribbon. Peel off one of the two 33-ft. sections of wire. Then conneet the remaining $3 ; 3-\mathrm{ft}$. wire and the $66-\mathrm{ft}$. seetion of the other conductor together as shown in the sketeh. Reprat the same operation with the other $66-\mathrm{ft}$. section of riblon line and attach an insulator between the two sections. The feed line should be conneeted across the insulator as shown.

The antenna shown in Fig. 6-42B is similar in principle, exrept that the antennas are quarterwave systems. This antenna is suitable if a good ground connection, such as a water pipe, is available within a few feet of the base of the antemas. The antoma is constructed in a manner similar to that deseribed previously for the half-wave system. The antenna may be run vertically or rum slanting to a tree or other support. If necessary, the first portion of it may be run vertically and the remainder horizontally.

The system of Fig. 6-42A should be fed with 72-ohm coax or ribbon lime, The system of Fig. 6-42 should be fed with $53-\mathrm{thm}$ eoaxial line.

To avoid possible sccond-harmonic radiation, particularly when operating in the 80 -meter Novice band, an antenna tuner, such as the one described in QST for August, 1958, is recommended.
(Originally described in QST for December, 1958.)

6-HIGH-FREQUENCY TRANSMITTERS
 A 75-Watt 6DQ5 Transmitter

The transmitter shown in Fig. 6-4:3 is designed to satisty the requirements of either a Novice or General class licensee. As deseribed here it is capable of ruming the full 75 watts limit in the 80-, 40- and 15 -meter Novice bands, with bandswitching, crystal switching and other operating foatures. The General liense holder can use the transmitter in any band 80 through 10 moters, and he can add v.f.o. control or amplitude modulation at any time without modifying the 6 l) (a) F transmittor. Crystal switching is a convonience for rapidly shifting frequenery within a band to dodge (QRM, and as ser position on the operate switch permits identifying oness fredueney relative to others in a band. In arecesory sorket, X_{3}, furnishes a converient point for borrowing power for a v.f.o. or for controlling the oscillator by an external witch.

Relorring to Fig. 6-44, the cireuit diagram of the tramsmither, the crestal selector switch, S_{1}, is used to choose the desired erystal. For crystalcontrolled operation arystals would be plugged in pins 1 and 3 and $\overline{5}$ and 7 of socket X_{1}. Similar sorkets (not shown in the diagram) are used to hold the other erystals. When v.f.o. operation is desired, the v.f.o. output is commerted to I_{1}, the plug I_{1} is inserted in socket X_{1}, and the formor tide is crystal oseillator stage beromes an amplifior or multiplier stage when switch S_{1} is turned to position 1.

Since the output of the 6 A (ia stage will vary considerably with the bands in use, an exeitation rontrol. R_{1}, is included to allow for proper adjustment of the drive to the (il) (Q) amplifier. The (id)(2j), a highly sensitive tube, is neutralized to avoid oscillation; the small variable capacitor C_{2} and the $390-\mu \mu \mathrm{f}$. miea capacitor form the neut ralizing eircuit. Acreen or screen and plate modulation power can be introduced at socket X_{2}; for radiotelegraph operation these romections are
completad by P_{2}. Girid or phate current of the 6I)(25 can be read by proper positioning of S_{5}; the 0-15 milliammeter reads 0-15 ma. in the griedeurrent position and $0-300 \mathrm{ma}$. in the platecurrent position.

The transmitter is keyed at.Γ_{3}, and a keyclick filter (100 -ohm resistor and ('s) is included to give sutstantially click-free keying, The v.f.o. jack, J_{4}, allows a v.f.o to be keyed along with the transmitter for full break-in operation.

Construction

A $10 \times 17 \times 3$-inch ahminum chassis is used as the base of the transmitter, with a standarel $83 / 4$-inch ahuminum rolay rack panel helal in plate by the bushings of the pilot light, excitation control and other components common to the chassis and panel. The panel was cut down to 17 inches in length so that the unit would take a minimum of room on the operating tathe, A good idea of the relative location of the parts can be obtained from the photographs. The support for the r.f. portion housing is made by fastening strips of 1 -inch aluminum angle stoek (lueynolds aluminum, available in many hardware stores) to the pancl and to a sheet of aluminum $91 / 2$ inches long that is held to the rear chassis apron by screws and the key jack, J. J_{3}. A piece of aluminum angle must ako be cut to mount on the chassis and hold the cane-metal (Reynolds aluminum) housing. Fig. ($0-55$ shows the three clearance holes for the serews that hold this latter angle to the chassis after the cane metal is in place. Build the can-metal housing as though the holes weren't there and the box has to hold water; this will minimize electrical leakage and the ehances for TVI. To insure good electrical contact between panel and angle stork, remove the paint where necessary by heavy applications of varnish remover, with the rest of the panel

Fig. 6.43 - This 75-watt crystal-controlled transmitter has provision for the addition of v.f.o. control. A GAG7 oscillator drives a 6DQ5 amplifier on 80 through 15 meters.

As a precaution against electrical shock, the meter switch, to the immediate right of the meter, is protected by a cane-metal housing. The switch to the right of the meter switch handles the spot-operate function, and the switch at the far top right is the plate-circuit band switch.

Along the bottom, from left to right: pilot light, excitation control, crystal switch, grid circuit band switch, and grid circuit tuning.

Fig. 6.44-Circuit diagram of the 75-watt 6DQ5 trans mitter. Unless specified otherwise, capacitance is in $\mu \mu \mathrm{f}$., resistance is in ohms, resistors are $1 / 2$ watt.
$\mathrm{C}_{1}-100-\mu \mu \mathrm{f}$. midget variable (Hammarlund HF-100).
$\mathrm{C}_{2}-15-\mu \mu \mathrm{fd}$. midget variable, .025 inch spacing (Johnson 15J12).
$C_{3}-325-\mu \mu$ f. variable (Hammarlund MC-325-M).
C_{4}-Dual $450-\mu \mu \mathrm{f}$. broadcast replacement variable, two sections connected in parallel.
$\mathrm{C}_{5}-1-\mu \mathrm{f} .400$-volt tubular.
$\mathrm{C}_{6}, \mathrm{C}_{7}-16-\mu \mathrm{f}$. 700 -volt electrolytic (Aerovox PRS).
-6-volt pilot lamp.
J_Phono jack.
J_{2}-Coaxial connector, chassis mounting, type SO-239. J_{3}, J_{4}-Open-circuit phone jack.
$L_{1}-71 / 2$ t. No. 18, 5/8 inch diam., 8 t.p.i., tapped $51 / 2$
turns from grid end (B\&W 3006).
$L_{2}-38$ t. No. 32, 1 inch diam., 32 t.p.i., tapped 23 and 31 turns up (B\&W 3016).
$\mathrm{L}_{3}-5$ turns No. 14, 1 -inch diam., 4 t.p.i., self-supporting, tapped $31 / 2$ turns from plate end.
L. 15 turns No. 14, $13 / 4$ inch diam., 4 1.p.i., tapped $61 / 4$ and $101 / 4$ from output end (B\&W 3021).
L_{5}-10-henry 200 -ma. filter choke (Triad C-16A).
P_{1}-Octal plug (Amphenol 86-PM8)
$\mathrm{P}_{2}-4-$ pin plug (Amphenol 86-PM4).
P_{3}-Fused line plug.
$\mathrm{R}_{1}-25,000$-ohm 4 -watt potentiometer (Mallory M25MPK).
RFC $_{1}$, RFC $_{2}-750-\mu \mathrm{h}$. 100 -ma. r.f. choke (National R-33).
RFC $_{3}$ - 3 turns No. 14 around 68 -ohm 1-watt composition resistor.
$\mathrm{RFC}_{4}-1$-mh. r.f. choke, 500 ma. (Johnson 102-752).
RFC: $\mathbf{2 . 5 - m h}$. r.f. choke (National R-100S).
S_{1}-1-pole 11 -position rotary ceramic switch (Centralab Y section on P - 121 index assembly).
S_{2}-Single-pole 11 -position (3 used) non-shorting rotary switch (Centralab PA. 10011)
S_{3}-Single-pole 12 -position (5 used) rotary ceramic switch (Centralab PA-1 on PA-301 index assembly).
S_{4} - 2-pole 5 -position rotary ceramic switch (Centralab 2505).
$\mathrm{S}_{5}-$ S.p.s.t. toggle.
T_{1}-800 v.c.t. $200-\mathrm{ma}$. power Iransformer (Triad R-21A).
X_{1}-Octal tube socket
$X_{2}-4$-pin tube socket
$x_{3}-5$-pin tube socket.

6-HIGH-FREQUENCY TRANSMITTERS

masked off. The paint will blister and be easy to remove; wash the panel and then drill the holes for the eomponents and serews. (lf the holes are drilled first, the varnish remover may lak through and spoil the paint on the front of the panel.)
from a suitable piece of cane metal, make the four-sided $21 / 4 \times 21 / 4 \times 21 / 4$-inch box that cov(rs S_{5}, and fasten it to the utility-hos cover with sheremetal sarews. Don't forget J_{1} on the side of the box.

The self-supporting coil, L_{4}, ean bo wound on the covedope of the GACis and then pulled apart to give the eorrect winding length.

Installation of the eleretrical eomponents should present no problems. To insulate it from the chassis, capacitor f_{1} is mounted on a small wramic come insulator (Johnson 135-500 or National (iN-10). The socket for the (il)(25) is mounted above the chassis on a pair of $3 / 4$ inch sleevers, with a large elowance hole under the sooket for the several leads ruming from under the chassis. ('athoulo and soreen bepass capacitors for the 61)(q) ronnect to the chassis at soldering lugs under the sleeves.

Tups on L_{2} are readily made by first pushing the wire on cither side of the desired turn toward the center of the eoil.

Note that shiclded wire is used for many of the power hads: this is done to minimize the chances for stray radiation and it also contributes to the stahility of the transmitter. Don't negleet it.

Adjustment

Whon the wiring is complated and checked, disable the amplifier stage by removing $I^{\prime} 2$ phag in P_{3} and turn on S_{5}. The tube heaters and filaments should light up. If a voltmeter is available and comected across ('6, it should indicate over 500 volts. Later on, with full loading, the plate voltage will run around 400.

With S_{1} switehed to an 80-moter erystal, S_{3} switched to 80 or $t 0$ and S_{5} switched to aRob, flip S_{2} to spor and tune f_{1} through its range. If the erystal is oscillating the moter should give an indication at some setting of C_{1}. The grid current roading should vary with the setting of C_{1} (maximum at resonamer) and with the wotting of h_{1} (maximum with arm at 20 K end). If a key is plugged in at δ_{3} and S_{2} is set to oper, the grid earrent should appear only when the key is rlosed. Listen to the signal on a receiver (no antenna); if the signal is chime try adjusting the 3-30 $\mu \mu \mathrm{f}$. compression trimmer between grid and eathode of the lidG7.

With a 40 -meter erystal switchol in, check for grid eurrent at 14 and 21 Mc., by switching S_{3} to the desired band and tuming with C_{1}. These settings should be cherked with an absorptiontype wavemeter, since it is possible in some eases to find more than one harmonic in the range of C'. The 28-Mc. range can also be checked, hut the 4 th harmonic of the 7 -Mc. erystal will yichd only ahout 1 mas. of grid current.

Next cherk the mentralization on the 15 -meter

Fig. 6-45 - Top view of the 6DQ5 transmitter with cane-metal cover removed. A $3 \times 4 \times 5$-inch utility box (upper right) serves as a shield for the crystals; the canemetal protection for the meter switch is fastened to the box cover. Phono jack mounted on the meter-side of the box receives v.f.o. output; short length of Twin-Lead from this jack to octal plug brings v.f.o. output to crystal socket.

For protection against high voltage, meter terminals are covered by ceramic tube plate caps (Millen 36001).

A 75-Watt Transmitter

Fig. 6-46 - Group of six octal sockets (upper left) serves as crystal sockets. Socket at center of chassis holds 6AG7 oscillator tube; the 3-30- $\mu \mu \mathrm{f}$. mica compression trimmer mounted alongside is excitation control for oscillator stage. Small midget capacitor above coil is neutralizing capacitor adjusted from above chassis; this capacitor and grid tuning capacitor to right must be insulated from chassis.

Mand. With 2l-Mt. grial curment indieating, switch S_{4} to 15 , sot f't at half wallo, and swing ('3 through its range. Watch closely for a dieker in grid current. If one is ohsorved. try a different sotting of Y. Work carefully until the flaterer is a minimum, A more sensitive indication of neuradization (an be obtained by using a germaniam dionte and a $0-1$ milliammeter in the output at $I_{2}:$ adjust Con 2 for minimum metor indication. If using this sensitive test. it is wise to start out with R_{1} sot at half mang or less, until it hats laom doterminerd that the meter will not swing off sate. Endor no ciredmetathes use this tese with P in place: the GDe 5 output is quite likely to dretrey the arystal diode.

When the amplifier has been nemtralizend, conmert a dummy lomed (a (e)-watt lamp will do)
 a fow dots ats for thed through its rames. At resonance the lamp should light up and the pate current should dip. The plate current can be made to increase, along with the lamp brilliance, by decreasing the capacitance at (4. The 6) (q) plate current can be rim up to 180 ma. (4 ma. on the meter) for Novice work: the grid current should be hed at 2 to 4 mat Crestals in the $3.5-$
to $4.0-$ Me. range should be used for $80-$ and thmeter operation, and 7 -Ma. arestals should be used on to, 20 and 15 moters. For 10 -meter operation, it is recommemed that a rifo. with ?()-meter outpot be used to drive the fillis: trying to drive the $6 \log ^{2} \mathrm{~g}$ with the fth harmonic wf a 7 -Me. arystal is tox marginal for all hat the most experioned opreatons. With v.foo control, always frequeney multiply (etouble or triple) in the tiAt is stage to the desired hand.
 values of phate sorrent when not tumed properls. it will pay to take care in learning how to adjust the transmitter. Guere the rentrols have beon "calibrated" ami the approximate sottings for sach hand become kiown. it should no longer be necessary to tune up with the "series-of-dots" technigue mentioned above. However, in the early stages of familiarization with the tramsmitter, the dots, or a fast hand on the kery, may save a tube or power supply. The fact that the (i) (e) ${ }^{5}$ cen draw such heaver currents at low plate voltages makes it an excellent tuhe for an effective inexpensive transmituer, but the tuhe is not as tolerant of careless taning habits as aro some other tubes.

6-HIGH-FREQUENCY TRANSMITTERS

A 90-Watt All-Purpose Amplifier

The amplifier shown in Figs. (6-17 through 6-50 will serve as a Class- 13_{1} linear amplifier or as a Class-C power amplificr with no changes other than the proper adjustment of excitation and loading. To accomplish this, a stabilized hian supply provides proper Clasi-A13 hias: the hias increases to the correct value for Class-C operation when the excitation is brought up to the point that yields normal gride current. A stahilized screen supply is included to insure goow linear operation.
Reperring to the amplifier cirruit in Fig. 6-19. excitation on the desired band is introluced at J_{1}. The grid circuit is a commervial assembly: Z_{1}, that can be switched to the correct band by S_{1} and tuned by (${ }_{1}$. A pi-network coupler is usiced in the output, switched by S_{2} and tuned ly. C_{3}. 1'roper loading is obtained by adjustment of C_{a} : to provide sufficient output capacitance in the so-meter band an additional $680 \mu \mu$ f. is added. A neutralizing circuit, C'2 and a $680-\mu \mu f$. capacitor, adde to the fundamental stability at the higher frequencies. Parasitic suppressors were found to be neeressary in the grid and plate circuits.
Overload protection is provided by a 250 -mat. fuse in the cathode circuit. The grid, plate or screen current can be metered hy a suitable setting of S_{3} : with the resistancess shown the meter provides a full-seale reading of 5 mat. on grid current, 25 ma. on sereen current, and 2.50 mab. on phate current.

If it is desired to plate- or sereen-modulate the amplifier for a.m. operation, the necessary audio

Fig. 6-47-Front view of the 6146 all-purpose amplifier The upper panel is part of an $8 \times 6 \times 31 / 2$-inch Minibox (Bud CU-2109); the ventilated shielding of Reynolds Aluminum cane metal is fastened to the Minibox and base with sheet-metal screws.

Plate-circuit tuning controls and switch are mounted on the Minibox, and the grid-circuit cantrols, power switches and meter are mounted on the end of the $8 \times 12 \times 3$ inch aluminum chassis that serves as a base.
power can be introduced at J_{3}.
The power-supply cireuit is shown separately. (Fig. (i - 5) for convenience onty, sine the amplifier and power supply are all brilt on the same $8 \times 12 \times 3$-inch chatsis. High voltag. for the plate of the tilti is provideal bey

 (wo) (i) $1=1$ rectifices stahilized serven voltage is ohtained from the same supply and two voltagreregulator tubes.

Fig. 6-48-Rear view of the 90 -watt allpurpose amplifier with the cane-metal cover removed. One voltage regulator tube has been removed from its socket (right edge of transformer) to allow the neutralizing capacitor and plate blocking capacitor to be seen. The plate r.f. choke (RFC_{3} in Fig. 6-49) is mounted on one side wall, and the load capacitor and safety choke (C_{1} and RFC_{4} in Fig. 6-49) are mounted on the far side wall.

The rear apron of the chassis (foreground) carries the input and output coaxial-connector jacks, the 6146 cathode fuse, and the socket for the a.m. modulator connections. A shorting plug is shown in the socket.

Fig. 6-49-Circuit diagram of the all-purpose amplifier and its bias supply. Unless otherwise indicated, resistors are $1 / 2$ watt.
$\mathrm{C}_{1}-140-\mu \mu \mathrm{f}$, midget variable (Hammarlund APC.140-B)
$\mathrm{C}_{2}-10-\mu \mu \mathrm{f}$. midget variable (Hammarlund HF-15X with one stator plate removed
$\mathrm{C}_{3}-250-\mu \mu \mathrm{f}$, variable (Hammarlund MC-250M).
$\mathrm{C}_{4}-730-\mu \mu \mathrm{f}$. variable (Broadcast receiver replacement $365 \mu \mu$, each section, connected in parallel)
$C R_{1}$-20-mo. 130-volt selenium rectifier.
\jmath_{1}, μ_{2}-Coaxial cable connector, SO-239
$\mathrm{J}_{3}-4$-pin tube socket.
$L_{1}-33 / 4$ turns No. 18 at grid end of L_{2}, tapped 2 turns from ground end
$L_{2}-50$ turns No. 24, $13 / 4$ inches long on $3 / 4$-inch diameter threaded ceramic form. Tapped at $5,8,13$ and 25 turns from grid end.
$\mathrm{L}_{3}-41 / 2$ turns No. 14, $13 / 16$ diam., $5 / 8$ inch long.
$L_{1}-18$ turns No. 16, 2 -inch diameter, 10 t.p.i. Tapped of $11 / 8,51 / 8$ and $111 / 8$ turns from plate end. ($B \& W$ 3907-1).
$\mathrm{P}_{1}-4$-prong plug, with jumper connections as shown.
RFC $_{1}$ - 2.5 -mh. $100-\mathrm{ma}$. r.f. choke (National R-50).
$\mathrm{RFC}_{2}-5$ turns No. 16 wire, wound on 100 -ohm 1-watt resistor.
RFC $_{3}-1$-mh. 500 -ma. r.f. choke (Johnson 102-752).
RFC_{4} - 2.5 -mh. 125-ma, r.f. choke (National R-100S).
S_{1}-2-pole 6-position (5 used) miniature ceramic switch (Centralab PA-2002).
S_{2} - 1 -pole 6 -position (5 used) ceramic switch (Centralab 2501).
$\mathrm{S}_{3}-2$-pole 6 -position (5 used) non-shorting miniature ceramic switch. (Centralab PA-2003). Alternate contacts used only, to increase voltage rating.

S4-S.p.s.t. toggle switch.

T_{1}-6.3-volt filament transformer (Stancor P-6134),
Z_{1}, comprising C_{1}, L_{1}, L_{2} and S_{1} is Harrington Electronics GP-20 unit. Capacitors showing polarity are electrolytic; $680-\mu \mu \mathrm{f}$, copocitors are silver mica, $.001-\mu \mathrm{f}$. are ceramic.

6-HIGH-FREQUENCY TRANSMITTERS

a piece of it to form the cover. Make the cover with lips on the vertical portion that slip tightly ower the sides of the Minibos, and with a bend at the bottom that can be fastened to the chassis. Another piree of cane metal should be cut to serve as a bottom cover: mounting the chassis on rubber fere lifts it above the table and permits good air cireulation through the unit.

The self-supported inductor L_{3} ran le wound on the envelope of one of the Gillet rectificers, removed and pulled apart slightly to give the spocified winding length. The taps on L_{4} are made by first bending inwarl the wire on aither side of the turn to bo tapped, then looping the tap wire atround the turn and soldering it securely in place. Both L_{3} and L_{4} are supported only by their leads.

Testing and Adjustment

With all tubes in their sockets cexecpt the 6116, the line cord should be plugged in and the power switch turnod on. The bias-supply 0.d:3 should glow immediately and the rectifior filament and heaters should light up. The sereen-suphly regu-
lators should glow. If a voltmeter is available, the high-voltage supply should show first around 400 volts, and then rise slowly to about 950 volts. Switch off the power; the plate supply voltage should decay to less than 100 in under 20 seconds, indicating that the 40,000 -ohm resistors are "bleeding" the supply: Note also how long it takes for the voltage to reach a value of only a few volts: this will demonstrate forcofully how long it takes to discharge a high-capacitance filt:r.
When the power supply has dischargel, plug in the $6 i 46$, comert the plate eap, and wit S_{4} to stavo by. Set the noutralizing (apamitor (at at half caparitance and the band switches on 80 maters. 'lum on the power and set the mater switeh, S_{3}. to read plate eurrent. The 6146 heater should warm up, Now flip S_{1} to operate; the meter should read $10-20$ mat. (.2-. 4 on the scale). Switehing to road sareell current, the meter should show under 1 mat. (2 divisions on the meter). Thare should be no grid current.

Turn off the power and romove the three rectifier tubes. Connere at J_{1} the driver or exeitat-

Fig. 6.50-Bottom view of the all-purpose amplifier. The $150-\mathrm{ma}$. filter choke is mounted on the left-hand wall; the smaller filter choke, the smail filament transformer (T_{1} in Fig. $6-51$) and the selenium rectifier are mounted on the right-hand wall. The strap of aluminum, visible below the meter at the top right, pravides additional support for the length of RF-58/U cable that runs to the output coaxial connector. All power leads except the high voltage to the plate are run in shielded wire.

A 90-Watt Amplifier

Fig. 6.51-Power supply section of the all-purpose amplifier.
L_{1}-7-henry 150 -ma. choke (Stancor C-1710).
$\mathrm{L}_{2}-81 / 2$-henry 50 -ma. choke (Stancor C-1279).
P_{1}-Fused line plug, 3 -ampere fuses.
$\mathrm{S}_{1}-$ S.p.s.t. toggle.
$\mathrm{T}_{1}-800$ v.c.t. at $200 \mathrm{ma} ., 6.3 \mathrm{v}$. at $5 \mathrm{amp} ., 5 \mathrm{v}$. at 3 amp . (Allied Radio Knight 62 G 033).
tion source to be used - less than a watt is required for linear operation, and only a shade more for Class C. Use the drive at a high frequency, such as 21 or 28 Mc . Turn on the amplifior and switch the band switehes to the band corresponding to the excitation-source frequency. Adjust the grid tuning eapacitor for a show of grid current; peak the tuming and (if necessary) adjust the excitation for a half-scale reading of grid current. With the loading capacitor ('s set at half satale, swing the tuning capacitor C3 through its range. Wateh carefully for a slight Hicker in grid eurrent. If one is found, adjust the noutralizing rapacitor C'2 until the flicker is minimized. The amplifier is now neutralized. Alternatively, a sensitive detector of r.f. can be coupled at the output connector, J_{2}, and used instead of the grid-eurrent flieker. Adjust C_{2} for minimum r.f. in the output when the plate circuit is tuned through resonance. Turn off the power switeh and diseonneet the exeitation source.

Remove the sensitive detector, if used, and replace the rectifier tubes. Turn on the power and switch the meter to read plate current. With the grid and plate circuits switched to the same band ($10,15,20$ or 40) it should be possible to swing the grid and plate tuning to any combination of settings with no change in plate eurront reading. This indicates that the amplifier is stable and free from oscillation. (The amplifier can be made to oscillate on 80 meters with no grid or plate loading, but in loaded operation it will be stable.)

The antenna and excitation can now be connected and the amplifier used in normal fashion. Used as a linear amplifier, the excitation should be adjusted just below the level that would kick the grid-current indication on signal peaks. Proper loading will be obtaned when a stardy carrier just under the grid-current level is used for drive and the loading at resonance is set for about 100 mat. plate current. Under these conditions
of loading, a sideband signal will kiek the plate current to about 40 or 50 mat. on peaks. Measured p.e.p. input before elipping should be (60 to 70 watts.

When used as a Class-C amplifier, the drive should be inereased to where about 2 to 3 ma . grid eurrent is drawn, and the loading to where the 6146 draws about 125 ma . If the amplifier is plate modulated, the plato current should be reduced to 95 ma., to stay within the tube ratings.

Since the amplifier uses a fixed and "stiff" sereen supply, it is good practice always to bring up the excitation and loarding together, while checking to see that the screen current never execeds about 15 ma . In normal Class-C operation the screen current will run around 10 ma.

Fig. 6-52-Exploded view of the cable clamp used to hold the coaxial cable running to J_{2}. The top plate is a $11 / 2$-inch square of sheet aluminum with holes at the four corners for $6-32$ screws. The arch is a $7 / 6$-inch wide strap that mounts diagonally under the chassis. When tightened, the top plate clamps the cable braid to the chassis; the arch lends support to the cable.

6-HIGH-FREQUENCY TRANSMITTERS

A Self-Contained 500-Watt Transmitter

Figs. 6-53 through 6-58 show the details of a 500 -watt c.w. transmitter, completely self-contained except for the external remote v.f.o. tuning how shown in Figs. 6-57 and 6-58. Provision is made for introducing s.s.b. input at the grid of the driver stage. While plate modulation can be applied to the final amplifier in the usual manner, ratings of the phate power supply limit the safe input to about 250 watts.

The circuit is shown in Fig. 6-5t. Switeh S_{2} permits either v.f.o. or crystal-controlled operation using a $6.1 H 6$ oscillator. Either $80-$ or $40-$ moter erystals may be used. The v.f.o. circuit is in the 80 -meter band and S_{1} selects either of two frequency ranges - 3.5 to 4 Mc . for complete coverage of all bands, and 3.5 to 3.6 Me . for greater bandspread over the low-frequency ends of the wider bands. The plate circuit of the oscillator is on 40 meters for all output bands except 80 meters where it is non-resonant.

A 6CLG buffer separates the oscillator and the first keyed stage. This stage doubles to 20 moters for 20 - and 10 -meter output and triples to 15 moters. The driver is a 21226 which doubles to 10 moters and works straight through on all other bands. This stage is nentralized and a potentiometer in its screen cirenit serves as an exeitation control.

The final is a 7094 , also neutralized, with a pi-metwork output circuit using a B\&W 851 handswitching inductor anit.

A differential break-in keying system using a $12 \mathrm{Al}^{-7}$ is included. Joth the final amplifier and driver are keyed by the grid-block method. The differential is adjusted by R_{1}. Clicks are prevented by envelope-shaping eireuits which include ("z, ('11 and the grid-leak resistances.

The 100 -ohm meter shunts give a full-scale reading of 50 ma.. the 51 -ohm shunts a full-scale reading of 100 ma , and the 10 -ohm resistor in the negative high-voltage lead provides a $500-\mathrm{ma}$. seale.

Power Supply

The plate transformer in the high-voltage
supply uses a transformer designed for a conventional full-wave rectifier circuit with an ICAS d.c. output rating of 300 ma . at 750 volts. A bridge rectifier is used with this transformer so that an output voltage of 1500 is obtained. The short duty avele of rew. or s.s.b. operation makes it possibile to draw up to the rated maximum of the 7004 (330 ma.) through a choke-input filter without a prohibitive rise in transformer temperature.

The low-voltage supply has two rectifiers. A full-wave rectifier with a capacitive-input filter provides 400 volts for the plate of the driver and the screen of the final amplifier. A tap on a voltage divider across 400 volts provides 300 volts for the plates of the oscillator, buffer and keyer tubes. A half-wave rectifier with a choke-input filter supplies $\because 50$ volts of hias for the kever and fixed bias for the 2 EDG and $709+$ when they are operating as Chass AB_{1} linear amplifiers.

Control Circuits

S_{-}is the main power switch. It turus on the low-voltage, filament and bias supplies. Until it has been colosed, the high-voltage supply camot be turned on. In addition to turning on the highvoltage supply, So operates the relay K_{1} which applies screen voltage to the final amplifier. Thus. to protect the screen, sereen voltage cannot bo applied withont applying plate voltage simultaneously. J_{8} is in parallel with S_{8} so that the high-voltage supply can be controlled remotely from an external switch. Also, in parallel with: the primary of the high-voltage transformer is another jaek, J_{7}, which permits control of an antenna relay or other deviee by S_{s} if desired.

The v.f.o.-set switch S_{5} tarns on the exciter and grounds the screen of the final amplifier.
S_{2} has three positions. the is for erystal control, the second for v.f.o. operation, and the third position is for operating the last two stages of the transmitter as linear amplifiors with an external s.s.b. exciter. In addition to shifting the input of the driver stage from the buffer amplifier to ans.s.b. input commertor, fixed bias is providerd for $A B_{1}$ operation of both stiges.

Construction

The transmittor is assembled on a $17 \times 1: 3 \times$

Fig. 6-53-A 500-watt transmitter. Power supplies and a differential keyer are included. It operates with the exterital v.f.o. tuner shown in Fig. 6-57. Controls along the bettom, from left to right, are for low-voltage power, v.f.o./crystals/s.s.b. switch, driver tank switch, driver tank capacitor, final loading, v.f.o. set switch, and high-voltage. Above, from left to right, are controls for excitation, final tank switch, final tank capacitor and meter switch. The band-switch pointer is made by cutting down the metal skirt of a dial similar to the one to the right.

All dials are Johnson.

Fig. 6-54-Circuit of the 500 -watt self-contained transmitter. Capacitance less than $0.001 \mu \mathrm{f}$. are in $\mu \mu \mathrm{f}$. Fixed capacitors of capacitance greater than $100 \mu \mu$. should be disk ceramic, except as noted below. Fixed capacitors of $100 \mu \mu \mathrm{f}$, and $220 \mu \mu \mathrm{f}$. should be mica. Capacitors marked with polarity are electrolytic. Resistors not otherwise marked are $1 / 2$ watt.
B_{1}-Blower (Allied 72P715).
$C_{1}, C_{3}-100-\mu \mu$. air trimmer (Hammarlund APC-100-B).
C_{2}-Midget dual variable, $25 \mu \mu \mathrm{f}$. per section (Johnson 167-51 altered as described in the text).
$\mathrm{C}_{4}, \mathrm{C}_{5}-0.001-\mu \mathrm{f}$. silver mica.
$\mathrm{C}_{6}-30-\mu \mu \mathrm{f}$. mica trimmer (National M-30).
$\mathrm{C}_{\bar{i}}, \mathrm{C}_{11}-0.1-\mu \mathrm{f}$. paper (keyer shaping).
$\mathrm{C}_{\S}-30-\mu \mu \mathrm{f}$. miniature variable (Johnson 160.130)
$\mathrm{C}_{0}-100-\mu \mu \mathrm{f}$. midget variable (Johnson 167-11).
$\mathrm{C}_{10}-330-\mu \mu \mathrm{f}$. mica.
$\mathrm{C}_{12}-10-\mu \mu \mathrm{f}$. neutralizing capacitor (Johnson 159-125).
$\mathrm{C}_{13}-0.001-\mu \mathrm{f} .3000$-volt disk ceramic.
$\mathrm{C}_{14}-0.001-\mu \mathrm{f} .5000$-volt ceramic (CRL 858 S).
$\mathrm{C}_{15}-250-\mu \mu \mathrm{f} .2000$-volt variable (Johnson 154-1).
C_{16}-Triple-gang broadcast variable, $365 \mu \mu \mathrm{f}$. or more per section, sections connected in parallel.
$\mathrm{I}_{1}, \mathrm{I}_{2}$ —One-inch 115 -volt fanel lamp.
J_{1}, J_{2}-Cable connector for RG-22/U (Amphenal 83-22R, UG-103/U).
J3-Crystal socket (Millen 33102).
J_{4}, J_{5}-Cooxial receptacle (SO-239).
J_{n}-Key jack, open circuit.
J_{1}, J_{x}-Chassis-mounting a.c. receptacle (Amphenol 61 -F).
K_{1}-S.p.s.t. 115 -volt a.c. relay (Advance GHA/IC/ 115 VA or similar).
$\mathrm{L}_{1}-35 \mu \mathrm{~h} .-32$ turns No. 18, 2 inches diameter, 2 inches long (Airdux 1616).
L_{2}-Approx. $10 \mu \mathrm{~h} .-65$ furns No. 26 enam., on $3 / 8$-inch iron-slug form (Waters CSA-1011-3).
L. 3 -Approx. 2μ h.- 16 turns No. 26 enam., close -wound at center of form similar to L2.
L. 1 -Approx. 1μ h. - 13 turns No. 26 enam., $1 / 2$ inch long at center of form similar to L_{2}.
Ls- 16 turns No. 20, 3/4 inch diamefer, 1 inch long, tapped at 10 turns and 13 turns from L_{6} end (Airdux 616).
L6-40 turns No. $16,11 / 4$ inches diameter, $23 / 4$ inches !ong, tapped at mid point and at L :s end (Airdux 1016).
$L_{7}-3$ turns No. $14,1 / 2$ inch diameter, $3 / 4$ inch long.
Ls-4 turns $3 / 16 \times 1 / 16$-inch copper strip, $13 / 8$ inches diameter, $21 / 2$ inches long (part of B\&W 851 coil unit).
$L_{9}-43 / 4$ turns No. 8, $21 / 2$ inches diameter, $13 / 4$ inches long, tapped at $13 / 4$ turns from La end, plus $91 / 2$ turns No. $12,21 / 2$ inches diameter, $11 / 2$ inches long, tapped at 6 turns from output end (part of B\&W 851 coil unit).

6-HIGH-FREQUENCY TRANSMITTERS

L10-7-hy. 150-ma. filter choke (Stancor C.1710).
$\mathrm{L}_{11}-15$-hy. 75 -ma. filter choke (Stancor C-1002).
$\mathrm{L}_{12}-5 / 25$-hy. $300-\mathrm{ma}$. swinging filter choke (Triad C.33A).
M_{1}-Shielded 0.5 -ma. d.c. milliammeter, $31 / 2$-inch rectangular (Phoostron).
$P_{1}, P_{2}-$ Plug for RG-22/U cable (Amphenol 83-22SP).
R_{t} - 100,000 -ohm potentiometer.
$R_{2}, R_{3}, R_{f}-100$ ohms, 5%.
$\mathrm{R}_{4}-20,000$-ohm 4 -watt potentiometer (Mallory M20MPK)
$\mathrm{R}_{\mathrm{s}}, \mathrm{R}_{\mathrm{s}}-51$ ohms, 1 watt, 5%.
R_{i}-Two 10,000 -ohm 2 -watt resistors in series.
R_{a}-Three 100 -ohm 1 -watt noninductive resistors in parallel.
R10-25,000 ohms, 25 walts with slider.
$R_{11}-15,000$ ohms, 20 watts, with slider.
$\mathrm{R}_{12}-4700$ ohms, 1 watt.
$R_{13}-2200$ ohms, 1 watt.
$\mathrm{R}_{14}-10$ ohms (Five 51 -ohm 1 -watt 5% resistors in parallel.)
R_{15} - 1000 ohms $1 / 2$ watt 5%.
S_{1}-Single-pole ceramic rotary swith (Centralab 2000, 2 of 12 positions used).
S_{2}-Two-wafer ceramic rotary switch (Centralab PA-300 index, PA-4 wafers. $S_{2 A}$ and S_{24} are on one wafer, $S_{2 c}, S_{211}$ and $S_{2 E}$ on second wafer).
S_{3}-Three-wafer ceramic rotary switch (Centralab PA. 301 index, wafers PA-0, 5 positions used).
S_{4}-Port of B\&W 851 coil unit.
S_{5}-2-pole 3-position ceramic rotary switch \{Centralab 2003, two positions used).
S_{B} —Double-pole ceramic rotary switch (Centralab 2003).
$S_{i}, S_{8}-S . p . s .1$. toggle switch.
T_{1} —Power transformer: 750 v.a.c., c.t., 150 ma.; 5 volts 3 amps.; 6.3 volts, 4.7 amps. (Thordarson 22R06).
$\mathrm{T}_{2}, \mathrm{~T}_{3}$-Filament transformer: 2.5 volts, c.t., 3 amps. (Triad F-1X).
T_{t} —Plate transformer: 1780 volts, c.t., 310 ma., center tap not used (Triad P-14A).
T_{5} —Filament transformer: 5 volts, c.t., 3 omps. (Triad F-7X).

Fig. 6-55 - The only shielding required on top of the chassis is the amplifier enclosure shown. A perforated cover for the enclosure is not shown.

4-inch aluminum clatswis with a $1!$ x 121/4-inch pathel. The amplifer encho sure monsures $8^{1} \frac{1}{2}$ inches wide, $8^{1} 4$ inches deep and $7 \frac{1}{2}$ inches high. The thred permanent sides shown in lig. (i-5.5 (an be bent up from a single sheot of solid aluminum stock. The top and hack (not shown) are made from a single piece of Reynolds perforated shext atuminum.

The tuhe sorket is mounted on $3 / 4$-inch ceramie cones over a large hole eut in the chassis and covered with a patrh of perforated sheet. The
 bring its shaft level up, to that of the switeh on the BdW induetor which is moment direetly on the chassis. The two shafte are spaced 4 inchers.

Exciter

A $4 \times 5 \times(6-i n d$ aluminum how is used as the foundation for the exater. The driver tank caparitor is centemed on the chassis with its center approximately 3 inches back from the front edge of the chassis. The eapacitor suedified hats an insulated momong. If ath uninsulated capacitor is substituted. an insulating moming must bo provided. The shatts of S_{2} and S_{3} are spaced $\underline{2} 1 / 2$ inehes and rentered on the front ene of the box. On the side of the box toward the teming (apacitor, the oscillator tubre, the buffor tuler, the low-fregurners seretion ($\left(L_{6}\right)$ of the driver tank woil, and the 2 lex are lined up so as to chear the tank caparitor and its shaft. The latter is litted with an insulated couphing and a patmelbearing unit. The slug-tuned coils are mounted in holes near the bottom adge of the box. Neptralizing caparitor ' 's is mounted at the rear com of the box. rlose to the $21: 3$ (6 sorkes. The highfrequencer section (L_{5}) of the tank coil is suspenided between the outor comb of

Fig. 6-56 - The exciter is assembled using a standard aluminum box as the foundation. The perforated cover has been removed. The bottom of the chassis should also have a perforated metal cover.

the low-frequency section and the plate cap of the 2leth. Coil-tap leads rum through small featthrough points or grommeted clearanere holes in the side of the box.

The loading caparitor ('is is placed so that its shatt is symmetrieal with the shaft of S_{3}, and S_{5} is spared from it to balance seat the other end.

The V.F.O. Tuner

The v.f.o. ther is assembled ina $5 \times 0 \times 9$-inch aluminum box (Pumier $\mathbf{A C - 5 9 6}$). The dual thang capacitor Co has 7 phatos, 4 rotor and 3 stationary, in carh sertion. In the front seetion, Which is used to wover the contire 80 -meter hand, the two rotor phates nearest the front should be remowed. This leaves two rotor plates and two athive stator plates, the fromt stator plate being inartive. In the rear section, the front rotor plate and the last fwo rotor plates are removed. This leaves one rotor plate riding between two stators.

The eapacitor is monnted on a batake fastened arainst the bottom of the low. althongh it conkl be mounted from the front cover with spaces to eloar the hul, of the Millen 100:35 dial. The shaft of the eapacitor should be central on the front morer. The eoil is susponded betweon a pair of

6 -HIGH-FREQUENCY TRANSMITTERS

21 -2uch coramic pillars (Nillen 3100:) It is plated immediately to the rear of the tuming capacitor. The two air trimmers, C_{1} and C_{3}, are mounted on the top side of the box with their shafts protruding so that they cam be adjusted from the top. The bandspread switch is mounted in one end of the box and the cable connector at the other end.

The unit is housed in a st:undard cabinet (But (-1781) having an 8×10-inch panel. The dial should be fastened to the panel, making sure that the hub of the dial lines up aceurately with the shaft of the tuning capacitor. Then the box is inserted in the wabinet through the front opening. The switch shatit goes out through a hole drilled in the side of the cabinet, and the cable goes

Fig. 6-57-The remote v.f.o. funing unit is housed in a standard metal cabinet. The cable at the right plugs into the main chassis.
through a hole in the opmosite and to the cable connertor. The dial should be set to read zero at maximum raparitame of the tuning caparitor. The box should be supported on spacers.

Adjustment

With all tulus exept the rectifiers out of their sockets, the power supplies should be cheeked first to be sure that they are fund tioning property. The voltage output of the low-voltage supply should the in exerss of 400 volts, the bitasing voltage 300 or more and the high voltage above boo. The slider on the low-voltage bleder should be set at approximately three quarters of the way from ground. The slider on the biassupply blecder should be set for a reading of -250 volts to ground.
loug in the oseilator and buffer tubes and an so-metar erystal if one is available: otherwise connert the v.f.o. tumer. With the low-voltage supply turned on, the 0.A2 should glow. When the key is closed, the 0.02 should dim but stay ignited. If it dors not, the value of the $10 \mathrm{~K} V \mathrm{~V}$ resistor should be redured.

The v.f.o. can now be adjusted to frequeney. Set fos at maximum rapacitanee. Net S_{1} to the so-meter position. Adjust the 80 -mater trimmer until a signal is heard at 3500 ke . on a calibrated receiver. Then set the receiver to 4000 ke . and tune the v.f.o. until the signal is heard. If the signal is not close to 100 on the dial, carefully

Fig. 6-58-Interior of the v.f.o. tuning box showing the mounting of the coil and other components.
bend the rear rotor plate of the 80 -meter section of $\left({ }^{\prime} 2\right.$ outward a little at a time to get the desired bandspreal. Wach time this adjustment is made, the trimmer should twe reset to bring 3500 kc . at zero on the dial.
The same proedure should be followed in adjusting for the other v.f.o. range, aiming for 3600 ke. (or alhove if desired) at 100 on the dial.
The $2 E 26$ should now be phuged in and the exeitation control R_{4} set at the ground end (zero sereen voltage). S_{2} should be set in the vif.o. position. With low voltage on and the key closed, a $\mathbf{5 7} \mathbf{7}$;3 grid-eurent reading should be obtained with the band switeh in the 80 -meter position. With the switch in the 40 -meter position, the slug of L_{2} should be adjusted for maximum grid carrent to the 2 lede. With the band switeh in the 20-meter position, L_{3} should be adjusted for maximum grid current, and then the shig of L_{4} should be adjusted for maximum grid current with the band switeh in the 1 jometer position.

Now insert the 7094 in its socket and neutralize the 2 E 2 e as deseribed corlier in this chapter.

Tosting of the final amplifier requires a load applied to the output comector. Two 150-watt lamps connerted in paralled should serve the purpose. Turning on the high voltage will also apply sereen voltage throngh the relay K_{1}. With both band switehes set to 10 meters, and Cis set at about half eapacitanee, quiekly tune the output circuit to resonance as indieated by the platereurrent dip. The load lamp should show an indication of output. Switch the meter to read grid current and neutralize as described patier in this chapter. After neutralization the amplifier ean be loaded to rated plate current. If it is above the rated maximum value, increase ('is and retune to resonance, or decrease ('is if the plate current is below the rated value.

With the final adjusted and the entire transmitter operating, make a final cheek on the voltage at the tap on the low-voltage supply, adjusting the slider if necessary to bring the voltage to 300 with the key rlowed. Be sure to turn off all voltages each time an adjustment is made.

The last adjustment is in the keyer. Adjust the potentiometer R_{1} to the point where the oseillator camot be heard between dots and dashes at normal keying speed.

813 Amplifier

An All-Purpose 813 Amplifier

Figs. 6-5! through (0 - 6) show the cireuit and photographs of an 813 amplifier designed for cew., a.m., or s.s.b. operation. l'rovision has been made for convenient ehanging from one mode to another as well as to any of the bands from 80 through 10 meters.

The erirenit is shown in (0-60. A turret-type grid circuit is used and the output cirenit is a pi motwork designed to work into roas cable. The inductor is the rotary-type variable. Provision for noutralizing is induded. h_{1} is a parasitio suppressor.

For Class C c.w. or phone operation, S_{4} is open. The 90 volts of fixed bias, furnished he a small bias supply and regulated by the VR9, is angmonted ber a drop of about 50 volts across the grid-leak resistor R_{2} at a normal grid current of 15 mat. This brings the total hias to 140 volts. With S_{4} closed, the grid leak is short-cirenited and the 90 volts of fixed bias alone remains for $A B_{2}$ s.s.b. operation. (An advantage in $A B$ for cow. operation is that it preserves the keying chatacteristies of the exeiter better than with (Class (operation.) R_{3} should be adjusted so that the Vle90 just ignites with no exedation.
serern voltage is regulated at 750 volts by a string of tive 0.A2s for s.s.b. opreration. When the geid drive is increased for Class C operation, the sereen corrent increases, increasing the drop across the serecon resistor R_{5}, and the sereen voltage falls to too. The regulators then lose control and the amplifier is ready for phate-serern modulation.

The sereen is protected against exerssive input, should the load or plate voltage be removed, by the overload relay K_{1}. The tripping point is set at 40 ma. by the variable shunt resistor R_{4}. If the relay trips, current through k w will hold the sereen circuit open until plate voltage is removed. One moter, L_{1}, measures cathode corrent, while the other moter, M_{2}, may be switehed to read wither
grid current or sereen eurrent.
Forced-air ventilation is always advisable for a medium- or high-power amplifier if it is buttoned up tight to suppress TVI. A surplus 100 r.f.m. blower dors the job more than adequately.

Construction

The amplifier is built on a $13 \times 17 \times 1$-inch alumimm chassis fastened to a standard $123 / 4 \times$ 19 -inch rack pancl. The r.f. output portion is curlosed in a $121 / 2 \times 13 \times 81 / 2$-inch box made of aluminum angle and sheet. The VR tubes, ralay, blower and meters are mounted external to the box.
The grid tank-cireuit eomponents are mounted underneath the chassis and are shielded with a $5 \times 7 \times 3$-inch aluminum box. A standard chassis of these dimensions might be substituted. The bias and filamont transformers are in a second box measuring 6 by 3 by 3 inches. This type of construction, together with the use of shieded wire for all power cirenits, was followed to reduce TVI to a minimum. Bach wire was bypassed at both ends with 0.001-mi. ceramic disk eaparitors. L_{4} can be adjusted to series resonate with the $600-\mu \mu$. "apacitor at the fredueney of the most troublesome channel. A Bud low-pase filter completes the TVI treatment. As a result, the amplifier is completely free of TVI on all channels even in most fringe areas.

Adjustment

In the pi network, the output eapmeitors are fixed. However, the adjustment of the network is similat to that of the more conventional arrangement using a variable portion of the output capacitance. The only difference is that the "fine" loating adjustment is done with the variable inductor.
The inductor is fitted with a Groth turns comnter, making it casy to return to the proper

Fig. 6-59-W4SUD's ali-purpose 813 amplifier. The output-capacitor switch (coarse looding) is above the turns counter for the variable inductor. Dials near the center are for the plate tank capocitor C_{4} (above) and the grid lank capacitor C_{1} (below). To the right of the dials are the controls for the plate padder switch S_{3} (above) and the grid band switch S_{1} (below). The loggle switch below the meters is the mode switch S_{4} with the meter switch S_{z} to the left. Ventilating holes are drilled in the cover in the area above the fube. The output connector is on the left-hand wall of the shielding box

B_{1}-Ventilating blower, 100 c .f.m. (surplus).
$\mathrm{C}_{1}-250-\mu \mu \mathrm{f}$, variable (Hammarlund MC-250.M
$\mathrm{C}_{2}-1000-\mu \mu \mathrm{f}$, mico.
C_{3} —Neutralizing capacitor, $10 \mu \mu \mathrm{f}$. maximum (Jahnson 159-250).
$\mathrm{C}_{4}-150-\mu \mu \mathrm{f}$. 6000 -volt variable (Johnson 153-12).
C_{5} - 100- $\mu \mu$ f. 5000-volt fixed capacitor (surplus vacuum Amperex VC-100, or two 200- $\mu \mu$ f, 5000 -volt micas in series).
$C R_{1}$ - 130 -volt 50 -ma. selenium rectifier.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$-Coaxial receptacle (SO-239).
K_{t}-Screen overload reloy, 2500 ohms, 7 ma. (Potter \& Brumfield KCP5).
$l_{1}-3.5$ Mc. -32 turns No. 20, 1 -inch diam., 2 inches long, 5-furn link (B\&W 3015 or Airdux 816).
-7 Me.- 18 turns No. 20, $3 / 4$-inch diam., $1 / 8$ inches long, 3-turn link (B\&W 3011 or Airdux 616).

- 14 Mc.- 10 turns No. $18,5 / 3$-inch diam. $11 / 4$ inches long, 2-turn link (B\&W 3006 or Airdux 508).
-21 Mc.-7 turns No. $18,5 / 8$-inch diam., $7 / 8$ inch long, 1-turn link (B\& W 3006 or Airdux 508).
-28 Mc. -5 turris No. $18,5 / 8$-inch diom., $5 / 8$ inch lang 1-furn link (B\&W 3006 or Airdux 508).
$\mathrm{L}_{2}-3$ turns $3 / 16$-inch copper tubing, 1 -inch diam., $13 / 4$ inches long.
$\mathrm{L}_{3}-15-\mu \mathrm{h}$. variable inductor (B\&W 3852)
L-See text.
$M_{1}, M_{2}-31 / 2$-inch d.c. milliammeter.
$\mathrm{R}_{1}-39$ ohms, $1 / 2$-watt carbon.
$\mathrm{R}_{2}-3300$ ohms, 2 watts.
$R_{3}-15,000$ ohms, 10 watts with slider.
R_{4}-2000-ohm 4-watt variable resistor (Mallory M2 MPK).
$\mathrm{RFC}_{1}, \mathrm{RFC}_{3}$-2.5-mh. r.f. choke (National R-50 or similor).
RFC_{2} —Plate r.f. choke (Nationa! R-175-A).
RFC $_{4}$-V.h.f. choke (National R-60).
S_{1}-Rotary switch: 3 wofers, 3 poles, 11 positians per pole, 5 positions used (Centralab PA-0 wafers, PA-301 index).
S2-Rotary switch: single pole, 10 positions, progressively shorting, 6 positions used (Centralab PA-2042).
$\$_{3}$-Rotary switch: s.p.s.t., ceramic lantenna link switch from BC. 375 tuning unit, or Communications Products Model 65).
S_{4}-S.p.s.t. toggle switch.
S $_{5}$-D.p.d.t. rotary switch (Centralab 1405).
T_{1}-Filament transformer: 10 valts, 5 amp . (Thordarson 21F18).
T_{2}-Bias transformer: 120 volts, 50 ma.; 6.3 volts, 2 amp., filament winding not used; could be used for pilot light (Merit P-3045)

813 Amplifier

Fig. 6.61-This view shows the placement of components on the chassis. The 813 socket is mounted on spacers over a large clearance hole in the chassis. The several mica oufput capacitors are assembled in a stack on a threaded rod fastened to the left-hand wall of the shielding box. The neutralizing capacitor and the 80-meter plate padder are to the right of the tank capacitor. To the right of the box are the five 0A2s (the front one hidden), the screen overload relay and the VR90, the blower and meters.

setting for cach band. Intil the settings for cach band have been found, S_{3} should be turned so that all of the output capacitance is in cireuit. The inductor should be set near maximum for 80 , and approximately half maximum for 40 . On the higher-frecumency bands, the inducter should be set so that the cirenit resonates with the tank caparitor near minimum eaparitance. Loading should increase as the output caparitanec is de-
creased. A change in output caparitance requirns a readjustment of C_{4} for resonance. When the louding is near the desired point, final adjustment can be made by altering the inductance slightly.

A 20-i or similar exeiter is wroll suited as a driver for this amplifier on all modes. The 813 runs cool at 500 watts input on a.m. and c.w. and at 1000 watts p.e.p. on s.s.b. (Uriginally described in QST' for August, 1958.)

Fig. 6.62-Bottom view of the all-purpose 813 amplifier. The grid tank-circuit components within dashed lines in Fig. 6.70 are enclosed in the box atlower center. Input links are wound over ground ends of grid coils. Filament and bias transformers are in the second box. The large resistor to the left of the grid box is the screen resistor. The variable resistor in the upper left-hand corner is the relay shunt R_{4}. The selenium bias rectifier is fastened against the left-hand wall of the chassis.

6-HIGH-FREQUENCY TRANSMITTERS

A Medium-Power Tetrode Amplifier

Fig. 6.63-This medium-power tetrode amplifier is assembled on a $17 \times$ 12×3-inch aluminum chossis with a $19 \times 121 / 4$-inch rack panel. Controls along the bottom of the panel are for the grid band switch, grid tuning copacitor, meter switch, a.c. power, and pi-network looding capacitor. Above are the controls for the plate tank capacitor and plate band switch. The sides ond back of the shielding enclosure ore a single piece of Reynolds perforated oluminum sheet "wrapped" oround the chossis. A 1 -inch lip is bent along the three top edges so that the top cover can be fastened on with sheetmetal screws.

Figs. 6-fi3 through 6-66 show photographs and circuit diagram of an amplifior using an RC.I 7004 tetrode that will handle up to 500 watts input on c.w, or 3:30 watts with phate-sereen modulation. Construetion has been simplified by the use of manufactured subassemblies -a harrington Jiketronics (iP-jo multiband grid tank and a Is d W type 851 bandswitehiner pinetwork inductor. The amplifier is nentralized hy the caparitive-bridge mothod. R_{1} and L_{5} are adjusted to suppress v.h.f. parasitic oscillation. The single milliammoter H_{1} maty be switeherd to read either grid or plate current, The shunt R_{2} multiphes the original 50 -mat. scale hy 10 , giving readings up to 500 ma . when the meter switeh S_{3} is in the platerurrent position. Forced-air ventiation is provided by a small blower B_{1}.

Shiched wire is used in all power circuits and terminal latds are bypassed for v.h.f. as they enter the chassis.

Construction

The plate blocking rapacitor is threaded onto one of the plate tank-capacitor stator rods.
 strip. Sremond filament bybasses bre conmeted directly lwenern the theresocket terminals and the perforated sheet. lath of the three sereen torminals is hypatssed with a $1000-\mu \mu \mathrm{f}$. 1000-volt disk coramic eapacitor. The grid-tank unit is spaced from the front wall of the chassis on 1-inch pillar inzulators to provide space for an insulating shatit coupling.

Along the rear wall of the chassis are the come

Fig. 6-64-Rear view of the mediumpower omplifier. The shofts of the plate band switch and plate tuning capacitor ore $23 / 4$ and $61 / 4$ inches from the left-hand end of the chassis in this view. A ventilating hole somewhat larger than the tube socket (829-B type) is centered $61 / 2$ inches from the right-hand end of the chassis ond 6 inches from the rear. A piece of perforated aluminum covers the hole ond supports the tube socket mounted on 1 -inch ceramic cones. Feed-through insulators carry connections to the bottom terminals of the plate tank-coil unit, the plate r.f. choke and the neutralizing capacitor. The meter is enclosed in a $4 \times 4 \times 2$-inch aluminum box.

Medium-Power Tetrode Amplifier

Fig. 6-65-Circuit of the 7094 amplifier. Unless specified otherwise, capocitances are in $\mu \mu \mathrm{f}$. All fixed capacitors rated atless than 5 kv . are disk ceramic. The $5-\mathrm{kv}$. capacitors are TV.type ceramics (Centralab 858). Dashed lines in grid circuit enclose components of Harrington GP- 50 multiband tank unit. Those in the plate circuit enclose components of the B \& W 851 pi-network inductor.
B_{1}-Blower (Allied Radio Cat. No. 72P715).
$\mathrm{C}_{1}-250-\mu \mu \mathrm{f}$. midget variable (special).
$\mathrm{C}_{2}-$ Neutralizing capacitor-11 $\mu \mu \mathrm{f}$. max. (Johnson N125).
$C_{3}-250-\mu \mu \mathrm{f} .3000$-volt variable (Johnson 250E30).
$\mathrm{C}_{4}-1100-\mu \mu \mathrm{f}$. variable-triple-gang broadcast replacement type, $365 \mu \mu$ f. (or more) per section, sections connected in parallel.
1 l-6.3-volt dial lamp.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$-Coax receptacle (SO-239).
$L_{1}-2$ turns No. 16, 1 inch diam., over ground end of L_{2}. $L_{2}-14$ turns No. 16, $3 / 4$ inch diam., 2 inches long.
$L_{3}-3$ turns No. 16, 1 inch diam., over ground end of l_{4}
$L_{1}-38$ turns No. 22, $3 / 4$ inch diam., $11 / 2$ inches long.
L.- 3 turns No. 12, $1 / 8$ inch diam., 1 inch long.
$\mathrm{L}_{6}-4$ turns $3 / 16 \times 3 / 16$-inch copper strip, $13 / 8$ inches diameter, $21 / 2$ inches long.
$\mathrm{L}_{7}=43 / 4$ turns No. 8, $21 / 2$ inches diam., $13 / 4$ inches long,
output commetor, a.e. power eonmedor, fuse, serom-voltage, hias and gromd torminals, highvoltage rommetor (Millon) and the roax input combector. Strips of $\frac{1}{2}$-inch aluminum angle fastened to the panel provide a means of fastering the shiolding emelosure to the panel. laint should he removed where the angle rests against the panel so that there will be good electrical contand bet weren the two.

Preliminary Adjustment

To maintain a tank () of 10 at 4 and 7.3 Me., t turns should be removed or shortad out at the front end of the Bell unit, and the to-metor fals should be moved one tum towad the rear. (For operation at less tham maximum ICAS ratings, see pi-motwork charts carlior in this chapter.)
tapped at 3 turns from the l_{s} end.
Ls- $91 / 2$ turns No. 12, $21 / 2$ inches diam., $11 / 2$ inches long, tapped at 6 turns from the output end (see text).
Note: t_{7} and l_{s} are mounted close together on the same axis; L_{6} is mounted at right angles.
M_{1}-D.c. milliammeter, $0-50$-ma. scale- $33 / \mathrm{Z}$-inch rectangular (Triplett Model 327-PL).
R_{1}-Three 150 -ohm 1 -watt carbon resistors in parallel.
R_{2}-Approx. 32 turns No. 24 on a $1 / 4$-inch diam. form (see measurements section for method of adjustment).
$\mathrm{RFC}_{1}-750-\mu$ h. r.f. choke (National R-33).
RFC_{2} —Plate r.f. choke $120 \mu \mathrm{~h}$ (Raypar RL-101).
RFC_{3} - 2.5 -mh. r.f. choke (National R-50).
S_{1} - Two-wafer 5 -position ceramic rotary switch.
S_{2}-Special heary-duty 5 -position rotary switch (camponent of $B \& W$ inductor unit).
T_{1}-Filament transformer: 6.3 volts, 3.5 amps. minimum (Thordarson 21F1l).

Bofore applying excetation, the amplifier should be checked for v.h.f. parasitic oseillation ats described earlier in this sertion. A resistor of about 30,000 ohms should be connereted between the hias tomminal and ground. Full plate voltage may be applied, but the serecoshould be operated from an adjustable 50,000 -ohm 50 -watt serios resistor connere ed to the phate supply. The grid hand switeh should be turned to the 10 -moter position and the plate switeh to the $8(0)$ moter position. With the meter switched to read plate current, the screon resistance should be reduced antil the plate power imput is about 100 watts. The meter should then be switened to mad grid curvent and the recommonded prodedire followed. The objective is to suppress the parasitio oscillation with the smallest posible roil to kerep the parasitirereireuit

6-HIGH-FREQUENCY TRANSMITTERS

Fig. 6-66-Bottom view of the 7094 amplifier. The grid-tank assembly in the upperleft-hand corner and the autputloading capacitor in the lower right-hand corner are placed so that the shaft of the latter and the shaft of the grid band switch are $11 / 2$ inches from the ends of the chassis. Spacers between the chassis and the autput capacitor bring its shaftlevel with thase af the grid-tank unit. The meter switch is at the center. The filament transfarmer is mounted on an aluminum bracket. The ventilating fan is bolted against the rear wall of the chassis.
resonant frequency betwern the two v.h.f. TV bands. If ossellation is doteremed additional loading resistons should be tried first. If this dows not work, another turn should be added to the woil, or the turns squerzod eloser together. With the parasitie roil deseribed, the resunant frequeney of the circuit is about 100 meracereles.

Neutralizing

Neutralizing shouh be done with exeitation applied to produce rated grind eurrent. The input and output cirruits should be tuned to the same frequency. Plate and sereen voltages should be diseomeneted at the tramsmitter terminals. The neutralizing rapacitor should then be adiusted until a point is found where there is no change in grid current as the plate tank cirenit is tumed through resonamer. The out put eapacit or should be set at maximum capacitance for this check. After plate and serean voltages have beon appliod and the amplifier loaded, the neut ralizing caparitor should be given a final adjustment to the point where minimum plate rurrent and maximum grid and sereen curvents occur simultameonsly.

Power Supply

Maximum IC.Ls ratinge on the $700-\mathrm{t}$ are 1500
 (lass $A B_{1} s, s, b$., and 1200 volts, 275 ma. for a.m. phone. However, the tube will work well at phate voltages down to at least $7(0)$ volts, provided appropriate values are used in the pi network as montioned previously. 'The reeommended sereen voltage is 400 for all classes of operation at sereen
currents up to :30 mat, (eperneling on the tyen of operation. Therefore a ragulated sereen voltage (ath be obtained using a pair of 0n:3s and one 00:3 in series. If semen voltage is obtained from the plate supply an adjustahlo 100 -watt 75,000 -ohm sorios resistor should be used and the value adjusted to obtain the desired operating plate eurrent after init ial turing adjustmonts have beon made.

Biasing

A fixed biasing voltage of 50 is reguired for s.s.i. operation. Batteries should last indefinitely. The biasing voltage may also be obtained from a voltage divider arooss a Vla tubo with suitable sories resistor. A hiasing voltage of 130 is recommonded for plate-modulated Class (Y serviee and 100 volts for (e.w. operation. IRerommended grid current is $\overline{5}$ mat. If the sereere is operated from a fixed-voltage sourece, a source regulated by an 0.d:3 should provide plate-emerent cut off. The batane of the required operating bias maty be ohtained from a grid laak (5000 ohms for (cow. or $11,(000$ ohms for phone). In ease the sereen is suppliod through a dropping resistor from the plate supply, fixed biasing voltages of 100 for (e.w. or 1:30 for phone (no grid lake) should provide reasonable proteretion for the tube in case of failure of excitation.

The rated driving power is 5 watts, casily furnishod by a $2 l^{\circ}: 2$ without pushing it. Bisisting transmitters using a 6 id, 6 , $61+6$ or 807 in the final may be used if provision is made for controlling the output of these units by adjustment of sereen voltage.

Grounded-Grid Half Kilowatt
 A Grounded-Grid Half Kilowatt

The amplifier shown in Figs. (i-67, 6-69 and G-70 will run at about 500 watts input on c.w. or p.e.p. input as an s.s.b. linear - on all hands from 80 through 10 meters. The unit is small enough to sit on the operating table right along with the rest of the station equipment; no need for hig racks here.

Using a pair of 811 As in parallel in the gromeded-grid circuit, this rig is a good one to use following transmitters surh as the Viking Ranger, 1)X゙-40, (ilobe Seout, and others of similar power class, for a worth-while increase in power output on c.w. As a linear amplifier following an s.s,h, exciter it reguires no swamping because the 811.1 grids provide a fairly constant lond in themselver, and also the fedthrough power with grounded-grid prosents an additional constant load to the driver. The total driving power neded on any band is less than 20 watts.

An additional useful feature is a built-in direcotional coupler using a version of the "Mickey Mateh," Bosides its olvious application for checking the sw.r. on the transmission line to the antenna or for holp in tuning up a coas-roupled antenna coupler, it is practically indispensable as an indicator of relative power ontput in tuning the amplifier.

The Circuit

A number of tulbe types could be used in an amplifier of this powor class, but the 811 As are a good choice because ther do not need a bias supply and are not expensive. (Surplus 811 s can be used if you don't want to buy new tuibes: the ratings are not quite as high but they can be pushed a bit in intermittent service sueh as c.w. and s.s.b.)

The complete circuit is shown in Fig. 6-68. To save trouble and work, standard components are used throughout - the only special construction is the shiolding and a few simple r.f. chokes. The tube filaments are driven directly from coan input from the driver; no tuning is used or is
nealed in this eircuit. The filaments are kept above ground by the 13 \& W type FC 15 filament choke.

The plate tank is the familiar pi network, using a $13 \& W$ type 851 tapped coil and band-switeh assombly. This assembly has been modified slightly in two resperets: lirst, the eopper-strip 10-meter coil normally mounted at the top of the rear plate is taken off and moved so that it is supported between the tank assembly and the stator of the tank tuning capacitor as shown in Fig. (i-69). A short length of copper strip is bolted betwern the free cond of the eoil and the righthand stator comeretion of the tuning capacitor, to support the free end. This change is made in order to avoid the long load that would have to be rum from the capaceitor to the regular input terminal on the tank assombly, since this terminal is at the righthand side of the assembly as viewed from the top. The turns of the 10 -meter coil are also squeemed together a bit to inerease the induetance, berause it was found that a rather large amonnt of eapacitance had to be used to tume the cireuit to the band with the coil at its original length. The length is now $15 / 8$ inches between mounting holes.

The serend modification is the audition of at pair of switch contacts on the rear switeh plate of the tank assembly. There is an extra position on this plate with holes already provided for contacts, and the additional set of contacts is used to switeh in fixed output loading rapacitance on so moters, where a large output rapacitance is needed. The variable loading eapacitor, ('3, with the five fixed mieal caparitors, C_{5} to ('9 inclusive, give contimous variation of capacitance up to $1275 \mu \mu$ f. on all bands, including the regular switch position for the 80 -moter band. However, if the switeh is turned to the extra position an additional $1000-\mu \mu \mathrm{f}$, mical caparitor is connected in parallel, so that continuous variation of ceipacitance to over ${ }^{2} 200 \mu \mu \mathrm{f}$. is possible on 80 . This takes eare of cases where the load resistance

Fig. 6-67-This amplifier operates at a plate input of approximately 500 watts, uses a pair of 811As in grounded-grid, and is complete with power supply on a $13 \times 17 \times 4$ inch chassis. The rack panel is $101 / 2$ by 19 inches. Front-panel controls include the plate tuning capacitor and band switch in the center, filament and plate power switches with their pilot lights at the lower left, sensitivity control and forward-reflected power switch for the directional coupler at the lower right, variable loading capacitor and auxiliary loading-capacitor switch underneath the 0.1 milliammeter at the right, and the grid-cathode milliammeter with its switch of the upper left. The filter choke, 866As and plate transformer occupy the rear section of the chossis.

6-HIGH-FREQUENCY TRANSMITTERS

hapmons to tre umasally low or reactive. ${ }^{1}$
A 500-mata. d.e. mular is used for realing aither fotal cathode equrent or gride rurrent alome. 'Ithe cathoster current is read in preforemere to plato

These comateran be obtamed direetly from the mannfacturer of the tank asembly, 「品 secure a set of contacts with mounting hardware, send one dollar to Barker \& Williamson, Beaver Jiam and (anth, lriveol, Penna., sperifying the type of tank assembly for which they are wanted, The contarts are not catalog items and are not available through deaters.
current because of safety eonsiderations. l'utting the incter in the hot d.e. plate lead le aves nothing hut a little plastie insulation between the high voltage and the moter adjusting sarew. It is a hit of a nuisance to have to subtract the grid current from the eathode current in order to find the plate current, but it isn't serious. The dee. grid circuit has a jack, J_{3}, for introducing external bias cither for borked-grid kering or for cutting

Fig. 6-68 - Circuit diagram of the parallel-81 1 A grounded-grid amplifier. Unless otherwise specified, fixed capacitors are disk ceramic, 600 -volt rating.
$C_{1}-500 \mu \mu$ f., 20,000 volts (TV 'doorknob' type).
$\mathrm{C}_{2}-250-\mu \mu \mathrm{f}$. variable, 2000 volts (Johnson 250E20).
$C_{3}-325-\mu \mu f$. variable, receiving type (Hammarlund) $M C-325-M)$.
$C_{4}-C_{3}$, inc. 1200 -volt mica, case style CM-4 5.
$1_{1}, 1_{2}-6.3$-volt dial lamp, $150 \cdot \mathrm{ma}$. (No. 47).
J_{1}, J_{2}-Coox connector, chassis mounting.
J_{3}-Closed-circuit phone jack.
J_{i}, J: -115 -volt male connector, chassis mounting (Amphenol 61-M1).
$L_{1}, L_{2}, S_{2}-5$-band pi-network coil-switch assembly; see text (B \& W 851).
L_{3}-Swinging choke, 4-20 henrys, 300 mo . (UTC S-34).
L. - Section of coax line with extro conductor inserted; see Footnote 1 for construction references.
M_{1}, M_{2}-Milliammeter, $31 / 2$-inch plastic case (Triplett 327-PL).
R_{1}-20,000-ohm composition contral, linear taper.
RFC 1 -Filament-choke assembly, to carry 8 amp. (B \& W FCl 51 .

RFC 2, RFC $_{3}-2 \mu \mathrm{~h}$. (National R-60).
RFC $1-90 \mu \mathrm{~h} . ; 4^{3 / 3}$-inch winding of No. 26, 40 t.p.i., on $3 / 4$-inch ceramic form ($B \& W 800$).
RFC 5 - 2.5 mh., any type.
RFC $6_{6}-$ RFC $_{11}$, Incl.- 18 turns No. 14 enam., close-wound, $1 / 2$-inch diam., self-supporting.
S_{1}-4-pole 2-position rotary, nonshorting (Mallory 3242J or Centralab 1450).
S_{2}-Part of tank assembly; see $L_{1} L_{2}$.
S_{3}-Miniature ceramic rotary, 1 section, 1 pole, 6 positions used, progressive shorting (Centralab 2042).
S_{1}-Miniature ceramic rotary, 1 section, 2 poles, 2 positions used, nonshorting (Centralab 2003).
$\mathrm{S}_{i}, \mathrm{~S}_{\mathrm{i}}$-S.p.s.t. toggle.
T_{1}-Filament transformer, 6.3 volts, 8 amp . min. (UTC S-61).
T_{2} —Filament transformer, 2.5 volts, 10 amp. (UTC S-57).
T_{3}-Plate transformer, 3000 volts center-tapped, 300 ma . d.c. (UTC S-47).

Grounded-Grid Half Kilowatt

off the plate current during receiving, and a fourpole switeh, S_{l}, is therofore meded for handling the moter switching while kerping all cireuits functioning normally.

The power supply uses 866its with a plate transformer giving is00 volts cith side of the renter tap, and working into a single-section (hoke-input filter. The filter catpacitor consists of four $80-\mu$. elfertrolytios connered in sorices to handle the voltare, giving an effertive filter rapacitance of 20μ. This supply is ruming well lelow its capabilities in the intromitent type of operation represented by a.w. and s.s.b., and the amplifier is somewhat "over-powrede" in this resperet. A lighter plate transfomer can be used since the avorage current in regular operation is only about hatf the maximum tube rating of 350 mat for the pair.
The a.ce imputs to both filaments and plates have TVI filters installed right at the a.e. conmectors. The chokes in these filtors, RPVC ${ }^{6}$ to RFC's inclusive, are homemade byy winding 18 turns of No. 14 emambled wire close-wound on a half-inch dowed or drill.

Construction

The only space available for the filament tramsformers is below chassis, so these are momed on the front wall of the chassis as shown in Fig. ($0-60$. There is plenty of room for all other power-supply parts bolow chassis, and the photographe make ally further comment on this sedtion umererssars.

The r.f. layout shown in Fig. (i-tis is atmost an exate copy of the circuit layout as given in Fig. 6-68. The plate blocking caparitor, (1 , is mounted on a small right-angle bracket fastened to the left-hand stator conncetion of the tank apacitor, C ${ }_{2}$. The tube plates are connerted to Ci through individual parasitio-suppreswor assemblies, Z_{1} and Z_{2}. The loot rad of the plate choke, $R P C_{i}$, also connerets to this same point. The tank capacitor is mounted on $3 / 4$-inela coramie pillars to bring its shaft to the same hoight as the switch shaft on the tank-coil assembly: The
eaparitor is grounded ber comerting the bottom of its frame through a half-inch wide strip of aluminum to crsentially the same point at which the platerohoke hypass raparitor, a $0.001-\mu$ f. 2000 -volt disk, is grounded. The ground end of the aluminum strip artually is under the bottom of the plate choke, and the ground lag for the hepass capacitor is just to the left. This strip, plus short leads in the cireut from the tube plates through the tank caparitor to ground, keep the rowonat frecurney of the loop thas formed well up in the v.h.f. region: this is important beranse it promits using low-inductance parasitie chokes in shant with the suppressor resistors, and thus tends to keepp the r.f. plate courent at the regular operating frequencios out of the resistors. With other tank grounding arrangements originally triod, larger parasitie chokes had to be used and it was impossible to prevent the resistors from burning up when oprating on 10,15 and even 20 meters. Now they do not overheat on any fregumere, and v.h.f. parasitics are nonexistentalthough without the suppressors the parasities are only too much in evidenes.

The output loading capacitors, C_{3} through ("g, are mounted toward the rear so the leads from the tank coil can be kept as short as possible. A length of ropper strip is used betweren the coil and the stator of (${ }_{3}$; originally this lead was No. 14 wire but on 10 meters the tank current was mough to hat it to the point of discoloration. The ground lead from the fixed units, made to the raar bearing connection of $C_{3}{ }_{3}$, is also copper strip. ('3 and s_{3} are operated through extension shatis, using Millen flexible couplings to simplify the alignment problem.

Underneath the chassis, each 811 A grid is bypassed dircetly to the sorket-mounting screw nearest the plate choke (right-hand side of the sorket in Fig. (i-70). The d.e, leads have small chokes, RFC' 2 and $/$ RF' ${ }_{3}$, with :udditional bypasses for good r.f. filtering, particularty at v.h.f. since grid reetification gonerates harmonies in the TV bands. The filament choke, $R F C_{1}$, is mounted

Fig. 6-69-The r.f. section with the shield cover removed. Components here are readily identifiable by reference to the circuit diagrom. The meters ore enclosed in rectangular boxes made from thin aluminum sheet, formed to be fastened by the meter mounting screws. The back covers on these boxes ore made from perforated aluminum, folded over at the edges and held on the boxes by sheet-metal screws. The switch for shifting the 0.500 milliammeter (left) from grid to cathode is concealed by the box which encloses the meter.

6-HIGH-FREQUENCY TRANSMITTERS

so that the filament side is close to the filament terminals on the tubo sorkets; the other ond is hepassed direetly to the chatsis.

The shielding aroum the amplifier eonsists of two pieres of sheet aluminum and a perforatod aluminum ("do-it-yourself" type) cover having the shape of an inverted C. Fig. (i-69) shows how the rear wall is made. Its odges are bent to provide flanges for fastening the eover with sheotmetal sorrews, and there is a similar flange projecting to the rear at the bottom for fastoming the wall to the ehassis. The front pieree extemes the full heright of the panel and is identisally drilled and cut out for moters and controls. It has flanges at the top and extending down the sides from the top to the ehassis. The cover itself extends down over the sides of the chassis for about one inch. Numorous serews are used for fastening the cover, to prevent leakage of harmonies.
The shields over the moters are mado as described in the raption for the inside top view. Meter leads are bepassed to the shield boxes where they emerge.
Construction of the dirextional coupler parallels that given for the antema coupher in Chapter Thirtern.

Operating Conditions and Tuning

The voltage dolivered by the power supply is approximately 1500 volts with no drive and with the tubes taking only the mo-bias statio plate current, which is about 60 mat. It the full load of 350 mat. the voltage is slightle undor 1400 . Optimum operating conditions for 1400 volts at 350 ma. peak-envelope power input as an s.s.b. lincar call for a prak-envelope grid current of 60 mat. The peak-envelope tube power output is close to :350 watts under these conditions. The same operating conditions are also about optimum for e.w.

The behavior of the rathode current when
tuning a grounded-grid triode amplifier is somewhat confusing, and the meter is principally useful as a check on operating conditions rather than as a tuming indicator. The best indicator of proper tuning of the plate tank caparitor is the forward-power reading of the dirertional coupler. For any trial setting of the loading controls and driving power, alwoys sot the plate tank capacitor control at the point which results in a maximum reading on the power-output indicator.

The power indications are only relative, of course, and the sensitivity control should be set to give a reading in the upper half of the seale of the moter.
The objertive in arljusting loading and drive is to arrive at maximum power output simultancously with a plate current of $\mathbf{3} \mathbf{s} 0 \mathrm{mat}$ and a grid current of 60 ma . - that is. a total cathote current of 110 mat. when the grid eurent reating is 60 mat. The loading is critianh. If the amplifior is not loaded heavily enough the grid curront will be too high and the right value of total rathode current either will not be reached or, if reached, the amplifier will be operating in the "Hattening" region as an s.s.l. linear. (It can be oprated this way on c.w., however, since lincarty is unimportant here.) If the loading is too heavy, the grid eurrent will be low when the cathode current reaches the proper vahue, but the efficioney will be low and the tubes will overheat.

Getting the knack of it takes a littlo practice, but when the job is done right the tulnes will rua cool on all bands in regular operation. Running key-down over a period of time may show just a trate of dark red color on the plates sinee the input and dissipation are somewhat over ratings under these operating ronditions, although perfectly satisfactory with ordinary keying or s.s.h. voice.

Fig. 6-70-In this be-low-chassis view, the two filament transfarmers are at the rop, mounted on the chassis wall. The 811A sockets are of the upper left. The rectangular box on the left-hand wall contains the FC1 5 filamentchoke assembly. The "Mickey Match" directianal coupler is at the upper right. Filter capacitors and the bleeder resistors are in the lower section. A.c. inlefs, fuse holder, bias jack, and the 115 -volt lire TVI filters are on the bottom chassis wall.

A Compact 650-Watt Amplifier

Compactuess in the high-power amplifier
 through the use of germanium rectifiers in the power supply and tubes of the radial-heam type. When driven by an excitor delivering almont 30 watts output, the amplifier runs at ahout bion watts imput and gives an output of about 400 watts on cew, or p.e.p. s.s.b. It covers 80 through 10 meters by moans of bathd switching and has a fixed 50 -ohm output imperdance.
 in a groundedeathorle cirouit (see Fig. (6-T2). No grid tuning is used, sine an exerter of the size mentioned will drive the grids directly aroses the 110 -ohm resistance. L_{1} is a serios peaking coil to increase the drive on 10 moters. A paralleltumed tank with fixed-link output coupling is used in the plate cireuit. This system has the advantage that series plate feed can be used, and no lange output capacitance is noeded. Truning is straight forward and the compling, onee adjusted holds over a wide frequeney range.

The link circuit is grounded through a removable jumper at the output conneretor, so that a bataned load can be fod if desired.

The small 15- $\mu \mu$ l', capacitor (('RL, Type 8ion), from the plates to gromed, provides a short path for harmonie currents and kerps them out of the output coil. On the 3.5- to $1-$ Me, range a fixed $100-\mu \mu \mathrm{f}$. capacitor is commeted arross the coil, so that a proper L-to- $($ ratio cam be maintained at 4 Me . When switehed out of the cireuit, the coil and fixad capacitor resonato around 5 Mc., which is sufficiently removed from any of the other ranges to avoid any difficulty.

The 10 -ohm resistor in the $B+$ lead serves as at fuse in case of a shorted tube or other fatult that might endanger the power supply.

Power Supply

The plate supply uses two voltage doublers in
serios: see Fig. 6-ī. Two 325-volt windings on T_{2} feal strings of germanium rectifiers in full-wave voltage-doubler connections. biach doubler capacitance is $160 \mu \mathrm{f}$., made up of two parallel $80-\mu \mathrm{f}$. fon0-volt cartridge type mits with cardhoard slocros. The chassis is linod with insulating material under the ('s and ('6 capacitoss, sine their outer cans rum as high as +1300 volts. The ripple is around 3 per eent r.m.s., and the regulation from no load to full load is about 15 per cent. Sistern cells are used. Wach gromp of four cells in one side of a voltage dombler has two atio K resistors conneded across pairs of colls to equalize the reverse voltage drop. Other 560 K resistors are connected as beeders only as a safoty moasure, since no bleceders are needed for proper dirmit operation. But even with the bleders, the capacitors can retain a charge for several minutes, so be carculul!

Grid bias is furnished by a 75 -volt winding on T_{1}, a hall-wave rertifior and an $80-\mu$. capaci-itor. About -90 volts is developed across ("9 and applied to the tubes during stand-hy periods. The oproating bias is adjustable from -30 to -60 volts by R_{3}.
Seren voltage is taken from the +375 -volt point of the plate supply (junction ("7 and ("s). It is dropped through the 61315 regulator to deliver a low-impedanee output adjustable from about 250 to $3: 5$ volts at up to 75 ma . Since this type of regulator will not handle reverse (aurent, bleoder R_{2} (Fig. ($\mathrm{f}-\mathrm{F} \boldsymbol{2}$) is provided to offsot no-signal negative soreen current to the 4×25013 and make the serecm moter read on seale.

When in operating condition, the "reference" voltage for the sereen regulator is the -90 volt bits supply. In stand-by condition the refereme is switehed down to the tap on R_{3}, thus reducing the screen voltage from its nominal +300 or so to a lower value. This action, together with the inereased grid bias, insures that the $4 \times 25013 \mathrm{~s}$

Fig. 6-71 - The panel of this 650 -watt omplifier built by W9LZY measures only 10 by 14 inches. Below the meter are the meter switch, high-voltage switch and filament/bias switch. To the right are controls for the band switin (above) and the tank capacitor (below).

6-HIGH-FREQUENCY TRANSMITTERS

Fig. 6.72 -Circuit diagram af the r.f. partion of the amplifier. Unless atherwise indicated, capacitances are in $\mu \mu \mathrm{f}$., resistances are in ahms, resistors are $1 / 2$ watt. The $1000-\mu \mu \mathrm{f}$. plate bypass is a CRL Type $858-\mathrm{S}$; the $1000-\mu \mu \mathrm{f}$. feedthraugh capacitars are 500 -valt ceramic.
$\mathrm{C}_{1}, \mathrm{C}_{2}$-Faur $1000-\mu \mu \mathrm{f} .500$-valt disk ceramic capacitors in parallel.
$\mathrm{C}_{3}-115-\mu \mu \mathrm{f}$. variable, 2000 -valt spacing. See text.
C_{1}-Twa $25-\mu \mu \mathrm{f}$. NPO ceramic and one $50-\mu \mu \mathrm{f}$. N750 ceramic in parallel, 7500 -valt rating
J_{1}-UG-291/U BNC panel jack (Amphenal 31-001)
J_{2}-SO. 239 UHF panel jack (Amphenal 83-1R).
$L_{1}-6$ turns $\mathrm{Na} .20,3 / 8$-inch diam., $1 / 2$ inch lang.
$L_{2}-41 / 2$ turns $1 / 8$-inch copper fubing, $11 / 4$ inches lang, $1 / 8$-inch diam. Link is 3 furns Na . 16 wire, $3 / 4$ inch lang, $3 / 4$-inch diam
$L_{3}-6$ turns $1 / 8$-inch capper tubing, $11 / 2$ inch lang, $15 / 8$-inch
draw no current in standiby condition. In operation the grid, sereon, and plate voltages all tend to vary in proportion to line-voltage changes.

The sereen current is measured by switehing the (0-75 millitmmeter ateross 20 ohms in the lead
diam. Link is 2 furns No. $12,1 / 2$ inch long, $1 / 8$-inch diam.
$L_{1}-81 / 2$ turns $\mathrm{Na} .12,11 / 8$ inches lang, $21 / 8$-inch diam. Link is 3 turns Na. $12,5 / 8$ inch lang, $11 / 2$-inch diam.
L_{5}-Twa cails, see text. Outer is 10 turns No. 12, $13 / 8$ inches lang, $21 / 8$-inch diam. Inner cail is $61 / 2$ furns Na. $12,3 / 4$ inch lang, $13 / 4$-inch diam., inside plate end af outer cail. Link is 4 turns Na. 12, $1 / 2$ inch lang, $1 / 2$-inch diam.
$\mathrm{RFC}_{1}-100-\mu$ h. r.f. chake (Natianal R-33-4).
$\mathrm{RFC}_{2}-21-\mu \mathrm{h} .600$-ma. r. f. chake (Ohmite Z-28).
to the sereen-voltage regulator. The resistor has negligiblo shanting effect. For motsuring plate current the moter is switchod adross a low resistance R_{6}, conneded botworn the two sections of the plate supply. R_{5} was aljusted for

Fig. 6-73-Rear view of the 650 -watt amplifier showing maunting of the $4 \times 250 \mathrm{Bs}$ and the plate transfarmer. Shields in the faregraund enclase valtage-regulator tubes and a relay. The shaft protruding fram the rear edge of the chossis operates the bias patentiameter.

Fig. 6-74-Side view of the $4 \times 250 B$ amplifier showing mounting of the band switch and tonk coils. The chassis is perforated for ventilation.

full-scale meter realing at 750 ma. There is a maximum of 42.5 volts between swith contacts and 8 800 volts from contacts to gromed.
The stand-he relay K_{1} is one that plugs into at -pinin miniature socket. It operates som 115 volts a.ce and a half-wave power supply. The input is brought out to two terminath on the rear of the chassis, where connection is made arross the anterna relay coil.

Construction

The amplifior is built on an 8×1-inch chassis with a 10×1-ineh pamel. The chassis is $4^{1 / 2}$ inches deep, to provide space for the filter capacitors and cooling fan underneath. As can lo seren by studying the photographs, the patte power supply orempies the left cond of the chassis, and the ref. circuits take most of the remaining spares. The hater and bias supply is stowed nuder the right rear corner of the chassis beline the plate turing caparitor. The sereen regulator and standby relay are at the rear of the chassis in the enter.

The controls are fow and simple. The band switch has four pusitions, for the 80-, 40-. 20and 15 - and 10 -meter bands. Other controls are the plate tuning capacitor. plate-rument/siserencurrent meter switch, power and plate voltage switches.

The plate tank capacitor is one from a BC3 3ab tuming mit, momed under the chassis on four wemmic ferd-through bushings. (. Iny othor (aparitor of equivalent rating, such as the Johnson has-1 may be suhstituted.) Fonur holes were drilled and tapped in the 1/-inch square frame reds on the right-hand side of the cat paritor, and (6-32 threaded rod was serpenced into the holes and passed through the insulators. The four screws project above the insulaters at
the top, of the chassis, where the $B+$ ends of the plate coiks eomect to them via "opper strips. An insulated shaft extension goes through the pancl to the tuning knot.

The wire from coth coil was wrapped around a pipe of suitathe diameter. Fome Plexighass strips were drilled with dearanee holes at the desired sparing, then the coil wire was fool through the holes. The 80 -methe coil was made with two conerontric serfions in series to get conough induetance into the arailable space. The 80- and to-moter links were also theaded through strips, while the $2(0)$-and 10 -meter links are self-supporting. All links are a push fit inside the insulating strips of thei: respective coils, and are held with a drop or two of erment after adjustment.

The two hand-switch wafers are cerch singlepoke, t-posithon, tiodegrer throw (Communian-
 and-shaft asembly from an (Oak Type H switch was used. The rest of the switeh was made up from (i - 3 ; 2 threaded brass rod, $1 / 4$-inch o.d. tubing, 1/16-inch allumisum sheot, and miserellaneons ceramic sparers and fiber washers from junked rotary switches.
The fromt wafer switelles the plate coils. The limks are comected to the rear wafor through 1ati-58/U cable, exept the 80-meter link which goes dirent. The cold sides of all links are soldered to a strip of copper raming around the waffer, supported ly $2-50$ serews through the umused lokes betwern contacts. The u.h.f.-type output comeredor is momenci on a strip of bakelite fastened to the rear switch bataket: its shell is grounded through a comple of solder lugs shown. Te weighs abou twenty pounds: the chassis should to at least 0.08 -inch aluminum to be strong cmough to carry it.

Fig. 6.75-Circuit of the power supply. Unless otherwise indicated, resistances are in ohms, resistors are $1 / 2 \mathrm{watt}$.

B1-3250-r.p.m. motor with 4 -inch fan blade (Rotron* 92AS motor).
$C_{5} C_{f_{1}} C_{7}, C_{8}$-Two $80-\mu \mathrm{f}$. electrolytics in parallel (Sprague TVA-1716). Insulate as described in text.
$C R_{1}$ - CRis $_{4}$-Four 500 -ma. 300-volt peak inverse (1N153 or equiv.).
CR-100-ma. 380-volt peak inverse.
CR_{6}-65-ma. 380-valt peak inverse (Federal 1002A).
$\mathrm{I}_{\mathrm{t}}-150$-ma. $6-8$ valts (GE No. 47).
$K_{1}-5000$-ohm coil, 4 ma. pull-in (Terado Series 600 or
*Rotron Mfg. Co., 7 Schoonmaker Lane, Woodstock, New York.
equivalent).
R_{2}-2-watt linear potentiometer (Ohmite CU-1021).
$\mathbf{R}_{\mathbf{f}}$-2-watl linear potentiometer (Ohmite CU-2541).
$\mathrm{S}_{2}, \mathrm{~S}_{3}$ - 15 -amp. 125-volt toggle (Cutler-Hammer 7501K13).
S_{4}-Two-pole 2-throw 60-degree throw ceramic rotary switch, non-shorting. See text.
$T_{1}-6.2$ volts af $5.5 \mathrm{amp} ., 6.3$ volts at $1 \mathrm{amp} ., 75 \mathrm{volts}$ at 100 ma. (Forest Electric Co.** T-423).
T_{2}-Two-secondaries, each 325 volts, 1 amp. (Forest** T-412).
**Forest Electric Co., 7216 Circle Rd., Forest Park, III.

Fig. 6-76-This bottom view show the ventilating far, tank capacitor, rectifier stacks and filter capacitors.

A bottom cover and a per-forated-metal shield over the top, sides and rear should be added, for satety as well as TVIproofing. An opening should be cut above the r.f. tubes and covered with hardware cloth.

Cooling

Each 4 N 250 B tube requires at least 3.6 cubic feet of air per minute through the anode cooler. The base also requires some air. The tube is ordinarily mounted in an limac "air-system" socket so that the air flows first over the base, then through the anode cooler. This leads to a fairly large pressure dron, which is ordinarily considered to require a centrifugal blower. Since a blower of this type requires considerable space, the design has been altered to permit the use of a fun. Only the insulating rings and contacts from Limac sockets are used, mounted by the cathode talss in oversized holes in the chassis. Many small holes are drilled in the chassis to provide additional air passage. A small aluminuma housing above the chassis directs all the air through the anote coolers. It comes to within $1 / 4$ inch of the anode coolers. The opening is closed by a piece of Fiberglas-base phastic fitting on top. It comes to within $1 / 16$ inch of the tubes, so that a small amount of the air flows around the outside of the coolers.

All of the left end and part of the right end of the chassis are perforated by $3 / 8$-inch holes. The air drawn in by the fan passes over the plate rectifier fins and past the heater transformer. The whole air path is direct and free from large obstructions and sharp bends.

The fan is a 4 -inch blade driven by a Rotron Mfy. Co. Type $92-\mathrm{AS}$ motor at 3250 r.p.m. It is mounted in a hole $41 / 8$ inches in diameter in the grid housing, with about $1 / 3$ of the blade thickness projecting into the housing. The motor is a capacitor-run type. The $1-\mu \mathrm{f} .600$-volt phasing capacitor mounts on the side of the grid housing. The motor, housing and capacitor can be removed as a unit, leaving only the front and rear walls of the housing in place.

Under the conditions described, the pressure vs. flow curves of the fan and of the tubes indicate that somewhere around 10 e.f.m. of air is delivered. This is entirely ample for the pair of 4 N 250 Bs . Since the only major souree of heat is the tubes, and since this heat is quickly removed by the air, the whole amplifier runs at a satisfactorily low temperature.

Operation

For Class $A B 3$ operation, the screen voltage is set at 300 volts, and the grid bias at a point (about -40 volts) where the tubes draw 150 ma . without drive. When operating and fully loaded, full output from an HT-30 or similar exciter should swing the plate current to approximately 400 ma .

The various links are of approximately the right inductance to couple to a 50 -ohm load. They must be quite tightly coupled to their plate coils. When properly positioned with a 50 -ohm koad connected, the plate current dips 10 or 15 ma . as the plate capacitor is tuned through resonance with r.f. drive applied. (nee adjusted, these links are left alone. The antema is tuned with the aid of an s.w.r. bridge to present a 50 -ohm load to the amplifier. The amplifier should not be operated without a suitable load

Operation is now very simple. The heaters are warmed $n \mathrm{p}$, for at least 30 seconds. With the plate power switch off, the band switch is set to the proper range. The exciter is tuned up to give c.w. outphit. (Not more than 40 volts r.m.s.) The plate power is turned on and the plate capacitor tuned to the plate current dip, or to maximum indicated output if a Mieromatch is being used. The exciter is then set to give the type of outgut desired.
(Originally deseribed in QST for Sept. 19.58.)

6-HIGH-FREQUENCY TRANSMITTERS

4-250-A's in a $1-\mathrm{Kw}$. Final

The amplifier shown in the aceompanying photographs uses two t-250.ts in parallel and covers 3.5 to 28 Mc . with complete band-swit ching. The output cirenit is a pi network designed for working into rasonably well-matehed 52- to 70nohm coaxial lines. The amplifier ean handle a kilowatt input in Class C opreation on either phone or c.w. without pushing the tubes to their limits. It can also tre operated as a linear amplifier for single side band.

The various components are mounted on a $17 \times 13 \times 4$-inch ahminum chassis attached to a standard l!-inch relay rack pancl $153 / 4$-inches high. The abowechassis section is curlosed in a $111 / 2$-inch high shield made from $1 / 16$-inch sheet aluminum. An aluminum bot tom plate completes the below-ehatsis shiedding. buclosing the amplifier in this way, plus the use of shichled wire and filters in the supply leads, takes eare of the harmonic TVI question.

The +250 As are eooled by foreing air into the (hassis and thence up) past the tubes ber mens of a 21 ent. ft. per minute blower. The air is exhausted through two 3 -inch diameter circular openings over the tuters in the top cover. 'To maintain the shiolding intact, these are covered with perforated ahminum.

A Barker and Williamson Model 850 bandswitching pi-tank inductor is used in the output circuit. It is tuned by a vacuum variable ca-
pacitor operated through the counter dial (Groth TC-3) shown in the panel view

Circuit Details

The eircuit, Fig. (i-i8, is eleetrically the more-or-less standard arrangement of a parallel-t.med grid circuit and a pi-met work out.jut cirroit. The amplifier is nentralized by the caparitive bridge method. A filament transformer is included, but atl other voltages eome from external supplies.

The grid input eirenit of the amplifier uses a slightly modified BidW turret assembly. The grid (ools are tumed by a ain- $\mu \mu$ l. variable 'The 20), lim-, and lo-moter coils cach must have a few turns removed for proper grid tuning on these bands.

The circuit includes a 20 ())-ohm grid leak and has provisions for external bias, which should be: used in combination with the leak. The hevass eaparitors on the sereen leads all carry a rating of 1 goto volts. This rating is neronsary to avoid capacitor breakdowns when operating the amplifier sereons at their rated voltages for $\mathrm{X} B_{1}$ operation, and also with plate-modulated Class C operation where the boo-volt rating of the smather ecramic capacitors would be exeeded on modulation peaks. All of the 0.(א)1- and 0.(0):3- μ f. eat paritors are the disk type, and aside from the screen bypasses are used mainly for filtering TV harmonics from the supply leads.

The bypass capacitors in the high-voltage lead

Fig. 6.77-A $1-\mathrm{kw}$. final using a pair of 4.250.A's in parallel.

Fig. 6.78-Circuit diagram of the 4-250A amplifier. B_{1}-Blower-motor assembly, 21 c.f.m. (Ripley model 8433).
$\mathrm{C}_{1}-75 \cdot \mu \mu \mathrm{f}$. variable, receiving spacing (Millen 19075). $\mathrm{C} 2-7 \cdot \mu \mu \mathrm{f}$. neutrolizing capacitor (Cardwell type ADN). $\mathrm{C}_{3}-300 \cdot \mu \mu \mathrm{f}$. vacuum variable (Jennings type UCS).
$C_{4}-1500 \cdot \mu \mu \mathrm{f}$. variable (Cardwell type 8013).
$\mathrm{C}_{3}-220 \cdot \mu \mu \mathrm{f}$. mico or NPO ceramic.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$-Coax receptacle, chassis mounting.
L_{1}-Turret assembly (B\&W BTEL with 14-, 21-, and 28-Mc. coils modified by removing furns). 3.5 Mc .: 39 turns No. 22, $1 / 4$ inches diam., $13 / 8$ inches long, link 3 furns No. 18.
7 Mc .: 20 turns No. 20, $11 / 4$ inches diam., 1 W inches long, link 3 turns No. 18.
are the TV high-voltage ceramic type, as is also the blocking caparitor in the tank circuit. The loading eapacitor, C_{4}, in the output cireuit of the amplifier is a variable having enough range ($1500 \mu \mu \mathrm{f}$, total rapacitance) to give adequate loading on 80 through 10 moters when working into a 52- or $\overline{7}$-ohm resistive load.

Plate current is motered by a $0-1$ ammeter shunted across a resistor in the negative highvoltage lead. As shown in Fig. 6-78, this resistor is incorporated in the power supply, not in the amplifier unit. A 50 -watt rating represents an ample sufety factor, since the power dissipated would not exceed a few watts should the ammeter opon up.

Separate milliammeters are provided for the grid and screen circuits. The sereen meter is quite essential since the soreen current, and henee serem dissipation, is very sensitive to grid driving voltage and plate tuning.

Layout Details

Fig. 6-79 is at view looking into the amplifier with the top cover removed. The variable capaci-

14 Mc.: 8 furns No. 18, $11 / 4$ inches diam., $3 / 4$ inch long, link 2 turns No. 18.
21 Mc.: 4 turns No. 16, $11 / 4$ inches diam., 1/2 inch long, link 1 turn No. 18.
28 Mc.: $21 / 2$ turns No. 16, $11 / 4$ inches diam., $1 / 2$ inch long, link 1 turn No. 18.
L_{2}-V.h.f. parasitic suppressor, 4 turns No. 12, $1 / 4$ inch dia., turns spaced wire diameter.
L_{3} —Pi-tank inductor (B\&W Model 850). Inductances as fallows: $3.5 \mathrm{Mc} ., 13.5 \mu \mathrm{~h}$.; $7 \mathrm{Mc} ., 6.5 \mu \mathrm{~h} . ; 14 \mathrm{Mc}$. 1.75μ.; 21 Mc., $1 \mu \mathrm{~h} . ; 28$ Mc., $0.8 \mu \mathrm{~h}$.
RFC $_{1}$ —Notional type R175A r.f. choke.
$\mathrm{RFC}_{2}-2 \cdot \mu \mathrm{ph} .500 \cdot \mathrm{ma}$. r.f. choke (National type R-60).
RFC $_{3}$ - 2.5-mh. r.f. choke.
T_{1} —Filament transformer, 5 volts, 29 amp. (Thordarson T. 21 FO7-A).
tor at the right is the output loading control, C_{4}. To the left of C_{4} is the Model 850 inductor mit. lmmediately to the rear (below, in the photograph) of the inductor is the output lead, conneeted to a coaxisl receptacle mounted on the rear cover. The vatum variable, C_{3}, is mounted between the inductor and the $4-250 \mathrm{As}$. It is supported by an aluminum bracket 6 inches high and 4 inches wide. The neutralizing capaeitor C_{2} is between the $4-250 \mathrm{As}$ and the front panel.

The grid turret and toming eapacitor are mounted underneath the chassis to take advantage of the shielding alforded thereby. To fit under the chassis the turret is mounted with the switch shaft vertical, necessitating a rightangle drive to the panel control. The shaft approaches the panel at an angle, so a flexible coupling of the ball type (Millen 39001) is used between the shaft and panel bearing.

The meters are in a separate enclosure measuring $11 \times 3 \times 3$-inches. 1 t is mounted to the front of the box by countersunk flat-head screws. The top tips of the meter box are drilled to take sheetmetal screws when the lid is in place.

6-HIGH-FREQUENCY TRANSMITTERS

Fig 6.79 (above)
Fig. 6.80 (below)

Fig. 6-81

Connertions to the tube plates and nout ratizing rapacitor are made from lexible hrass strup $1 / 2$ inch wide. A piene of $3 / 4$-inch widd brass strip is wiad for the eremertion betwen the stater terminat of the vardum variablo and the tank induc-
 strip.

Fig. (i-S0 shons the amplifior with the (op and batek patals removel. The blower assembly is mounted on the reat chassis wall. To the right of the motor is :ha high-voltage torminal, the 115)volt commered, the grid and sorern terminals, and the bigh-voltage neqative commertor. Leads from these hast thre terminats rum helow rhassis in shiolded wire and then up to the moter hox. These leads are visithe in frome of the loadinge
 the lats. The inmer combuctor is bepasied to the shichd hraid at cateh end. The 2.in-mh. "sateoty" choke, RFE'3, shmming the output end of the pi metwork is monnted on the bisk of the timk reoil betwern the output had and chassis ground.

The iselantite feedthrongh insulator to the left of the inductor is used to bring the high voltage through the ehassis. Adjacont to it is the bepates at the bottom of the phate choke, Rli' ' 1.

Monnting dotails of the right-angle drive assombly for switching the grid eireuit are dearly visibla in lige ti-81. A $\frac{1}{2}$-itheh sequatre rod $23 / 4$ inchos long is drilled and lapped at both euds to support the drive.

The sorkets for the 1-250 its are mounted on one-inch isolantite pilkars. The srreen amd filat ment terminals ath hepassed diree ely at the somket torminals. Tha grid torminats on the sorkets faree cach other, allud small ferdh hrough is used to hring the ervel leat up thromgh the chatsis.
loig. fi-s'e is a bottom view of the amplition and Fig. (i-W3 is at cosc-up viow of the grid cirenit. A
 the reat chassis watl th the link terminals on the turret assmbly. The high-voltage lead is filtered
 two componemts are visible on the inside of the rate wall above the blower assombly. Twor terminal tirepoints atre wed for the ale rombertions to the filament tramsermer amd bhwer motor. Shideded leads atre used belworn the tiopoints and the 1 bib-volt comacetor.

Pig. 6-8:3 shows the grid-circuit wiring in a hit more detail, particularly the grid choke, yrid resistor and © ${ }^{5}$ chustared just abowe the thange (alparitor. The modifications to the lo- and bismoter coils also are somewhat more easily seen in this photograph.

Adjustment and Operating Data

The :mplifier should be neutalizen with the plate and serern supply leals diseomerted and the bandswiteh set to 2s . Al \cdot. An indiating wave meter should be eoupled to the tank cirenit and drive applied to the amplifier. Resonate the grid

6-HIGH-FREQUENCY TRANSMITTERS

and plate tanks and adjust the noutraliaing rapacitor for minimum r.f. in the tank eircuit as mdeated by the wase moter. That same mentradizinge atjustment should hod for all hamds. bon't attempt to nentalize with the pate and somed supply leats pomered-i.e., with at romplete cirenit for the. - beralse erem with the powe turned off this permits clectrons to flow from the "atherde to the platw and sereme, and r.f. will be present that ammot be motherlizad ont.
The parasitio chake will, it general, resonate the mate le:ad in one of the low v.h.f. 'IV ehathmels, and will tend to inerasis hamonic output in that chamel. Dtatume the bemant fremuney of the plate lead at L a with a mod-dip metere, and if it is in one of the chamels reweriod in sour lonality, wither puil the thons apart, or squenze them tored hed to move the frequeney 10 : m unused chamel. Any frequency from 70 to 100 Ne. should be sat isfactory.

Power Supply

For 1 kw . input, a plato voltage of at least 2000 is repuimed. serem voltage is ohtained preferably from a sepatate foobondt supply. For Class (oparation, an extemat bias supply regulated low a VR-150, phas a grid leak of 20)OO whms is reambmonded. With this combination, the gride current
 (60) mat with the amplifer folly lomend.

Some sort of r.f. output indieator, such as a

Fig. 6-82
 can hathelle :In s.w.r. in the aras line of atont 2 to 1 , but with higher sw.m. values it maty not hr passible to got the dewine lumatiag. Also, altherght theromstruetion is such that the amplifier is
 leakuge of hammonirs in thlu TV batmes ate enmemed, a gord low-hass filem will bereguired in most installations. A bow s.w.r. in the cosix line is derthirely : reguisement il exerssive huild-n! of
 awided. It the lime ramant be matidued at the antermas, an :llus lialy ammana rompler will have to le meri.

Fer Hate modulation at rooke rait may herontered in therd.e. sirvern lead :0) the sermen vallage will foblow the atudia varialions ith phate poltare. Tho rhoker slenulal have ath imela tatner of about 10 hemoss, and most be eatable

 maty in lat intart, the ont y remirement being to sapply lhe proper operating roltares from sultaldy well-regntater supplies. It the amplifier is 10 be operated :a ABy ons.s.h. Wro grid-leak menistar should be shortod rat; also, suitable lading should be appliad to the grial tank to maintain grod regrolattion of the ref. driving voitate.

A V.F.O.

A V.F.O. With Differential Keyer

Figs. (i-8t through li-ss show a v.foo with output on athor 3 , 5 or 7 Me. Dumendend is is differetial sestem for keving the rontrol grid of atm amplifior. The diagram is shown in Fig. (i-Sti, One seretion of a $12 \mathrm{~S}^{\prime} \mathrm{T}^{\prime}$ is used in the Varkar oscillator direuit, while the seemen seretion is usol at a (athoto follower driving a and amplifirr/doubler. S_{1} solects abher of two fremberes ranges - 3.5 to \mid Mre fer use in the sometor hamb, ame :3.5 to 3.6 .5 Mr. for multiplying to the higher-freopueney bathe. If only the first renge is dexired, ('1 and C_{3} maty lo omited and the staters
 L_{4}. If both 3 , $\overline{\text { on }}$ - and \bar{i}-Me. output is desired, the two coils cath be put on a witeh sertion ginged to Σ_{1}.

To avoill chirp and permit finll broak-in e.N. operation, a differential keymg alstem is ured. (irid-ldock kering of ath amplifier stage layond the v.f.o. unit is provided the the memative power supply (6 Nis rectifer), the trok resistor, the

 osedlator. A romplete deseription of the eirenit operation will be fond in ('haptor light. Opening siz turns on the oscillator for "frequence spotting" purposes.

Construction

The unit is built on a $7 \times 12 \times 2$-inch :thminum rhassis that will fit inside atn 8×1 1. \times
 8 by 12 inches and the dial is a Tillen 100035. bofore monnting the components, it is advisable to stiffen the whasis agamst vibation by fastoning two lengths of alomimm angle stork remning longthwise against the under surfare of the

Fig. 6.84-The v.f.o. unit mounted in its cabinet. Holes are drilled in the dial cover to accommodate the switch shafts. At the right, a poker chip has been cemented to the v.f.o. set push-button switch so that it can be operated while tuning the v.f.o.; this makes frequencyspotting a one-handed operation.
"hassis. Soveral mathine serews should be used with carh.

The rif.o. tumentrimut eomponents are enclowed in a $1 \times 5 \times$ ti-inch ahuminmm box. This shomel also be stiffened with lengths of angle stock, one strip ruming under the top of the box, :and one extemally along eath of the side comer

Thar coil is supported on 21 2-inch eramme pillars (Millen 31000^{2}). Thu teming ("apmetor (4 is clevated abow the bottom of the box on an alumimm bracket so that its shaft will line up with the dial. The band sproad switeh S_{1} is monnted in the boltom of the box, to the rear of the eoil, with its shaft vertieal. The shatt is controlled from the farnel ber mans of a National RA!) right-angle drivo and at "uni-versal-joint" type shatt eoupler (Millen 3900)), as shown in the botbom-viow photograph.

The there trimmer cabseritors are monted in the top of the low. $f^{\prime} 3$ is submomen so that its shaft. Which is at high r.f. potential, will not protrude from the box. It is adjusted with ath insulated seremadriver through a hole in the top of the how. $f^{\prime} 5$ is an air trimmer med here as at fixed capacitor. It is mounted on a bracket fastenerl to the bottom of the lox, under the eoil, and set at maximum capacitamere.

The box should be placed on the chassis so that an extemsion of the shatt of the thming eat paritor will line up with the dial. This plares the box somewhat off erenter.

Powrosupply components are mounted at the left-hated end of the chassis as viewed from the reatr. The power transformer, plate and hias reetifiers, voltage-regulator tubes and filter choke L_{5} are plated on the top side of the chassis, The

Fig. 6.85-Rear view of the v.f.o. unit. Power-supply components are to the left of the tuned-circuit compartment, and r.f. and 615 tubes to the right. The three screws along the center line of the box are used to fasten a stiffening strip of angle stock inside. Similar strips should be fostened ogainst the side covers.

6-HIGH-FREQUENCY TRANSMITTERS

V. F. O.

CATH. FOL
AMPLIFER

Fig. 6-86-Circuit diagram of the v.f.o., with its power supply and the keying system. Except as otherwise indicaled, fixed resistors are $1 / 2$ watt, capacitances are in $\mu \mu \mathrm{f}$., resistances are in ohms. Capacitors marked with polarity are electrolytic.
$\mathrm{C}_{1}, \mathrm{C}_{2}-75-\mu \mu \mathrm{f}$. variable (Hammarlund APC-75)
$\mathrm{C}_{3}-100-\mu \mu \mathrm{f}$. variable (Hammarlund APC-100).
$\mathrm{C}_{\mathrm{i}}-25-\mu \mu \mathrm{f}$. variable (Millen 20025).
C.:-50- $\mu \mu \mathrm{f}$. (Hammarlund APC-50); see text.
$\mathrm{C}_{0}-0.1-\mu \mathrm{f}$. 600-v. tubular, part of shaping circuit. Mounted in amplifier.
J_{1}-Coox connectors, chassis mounting.
L 1 - 30 purns No. 16, $13 / 4$ inch diameter, 10 turns/inch (Airdux 1410 T).
L2-3.5 Mc. 72 turns No. 22 enam., close-wound on $3 / 3^{\prime \prime}$ diometer slug-tuned form (Waters CSA. 1012-1.WH).

7 Mc.-40 turns No. 22 close-wound on same form as above; 5 -turn link.
$L_{3}-10$ turns, wound on cold end of, but insulatea from, L_{2}. $\mathrm{L}_{4}-10$ hy., 50 ma . (Triad C-3X).
$L_{5,} L_{6}-12$ hy. 75 mo. (Triad C-5X).
$\mathrm{R}_{1}-33,000$ ohms, part of shaping circuit. Mounted in amplifier.
S_{1}-Miniature rotary, 2-position (Centralab PA-2001).
S_{2}-Normally-closed push-button switch (Switchcraft 1002 modified with a longer shaft so as to extend through the main dial housing).
$T_{1}-700$ v. c.t., 90 ma.; 5 v., 3 amp.; 6.3 v., 3.5 amp . (Triad R-11A).
T_{2}-6.3-v. 0.6-ampere filament transformer.

A V.F.O.

Fig. 6-87-The v.f.o. coil is mounted on ceramic pillars. The tuning capacitor C_{4} can be seen behind the rear pair of insulators. The air capacitor C_{5} is partially hidden by the $1000-\mu \mu$ f. silver mica capacitor below the coil. No. 14 wire is used between the switch and the coil and capacitors. In the foreground, fransformer and tubes have been removed to show the adjusting screw of L.2.
bias filtor choke, the phate filter choke L_{6} and the filter capabitors arr undorneath. L_{6} mounts with the same serews usel for mounting L_{5} above. Wexeral 1/4-inch holes should be drilled in the chassis in the vicinity of the power-supply components to help wentilate the under side of
the chassis.
The v.f.o./cathote follower, amplifier and GJis tubnes and their associated cireuit components are at the loft hand bold of the chassis. The v.f.o. tube is close to the pancl, followed by the 5763

Fig. 6-88-Bottom view of the v.f.o. unit. The right-angle drive, right of center, drives the band-spread switch S_{1}. The small sections of aluminum angle stock ape stiffeners added after the components were mounted. The method suggested in the text is preferable.

6 -HIGH-FREQUENCY TRANSMITTERS

tuned roil L_{2} is mounted alongside the 5763. It can lo adjusted from the top of the chassis.

Along the rear edge of the chassis are a connoctor for the act. line, commertors for comereting a remoto switeh in parallel with S. for the key, for the keved amplifier grid, and a coavial connertor for r.f. output.

Large rectangular ventilating holes are cut in the lid of the rabinet and then backed with patches of Resnolde perforated aluminum. If this cletail is omitted, the temperature rise of the unit may caluse considerable frequency drift.

Adjustment

In adjusting the v.f.o. frecpueney ranges, first set S_{1} to the 80 -meter position. With the dial set at zero (6 , at :maximum (apacitanco) adjust (" 2 for a signal at 3300 kc , on a calibrated receiver. Then, with the dial of the v.f.o. sot at the upper region of the seale, the sigmal should be heard at 4000 kr . If it is impossible to reach 4000 ke . with
the v.f.o., the coil should be trimmed a part of a turn at a time.

In aldjusting the second range (3500 to 3650 ke.), turn S_{1} to the $7-28$-Mc. position. Set f_{3} temporarily at about half rapacitanere. Then, with the v.l.o. dial set at zero, adjust ('1 until a signal is heard at 3500 ke . Theon therk the v.f.o. frequency at the upper end of the dial. If the range does not go up to $36,50 \mathrm{ke}$., ('3 should be increased a little and ("1 deerrased to bring 3500 ke, at zero on the dial. If the tuning range gors above 3650 ke ., (C_{3} should be derreased, and Ci increased. A fow trial settings should vield the correct range. The only other aljustment of the r.f. cireuit is resomating the slug-tumed output coil. If set in the center of the tuning range, output should be reasonably constant over the entire range.

Adjustment of the keying cirenit shoukd be in areordance with the factors mentioned in Chapter light in connection with grid-block keying.

THE VACKAR VFO CIRCUIT

The Vackar variable-freduency oscillator appears to have some advantages over the usmal ('lapp eiremit.' In the later, the output amplitude varies greatly with fremuens?. In the Fankar rirenit, the outmut varios only a little with freguenes. The useful frepuency range of the clapp circuit is about 1.2 to 1 ; in the Vackar it is about 2.5 to 1 . The first of these advantages should be of interest to amatemes.

My friend and colleague, Mr. James B. Rieks, WotO, has pointed out that the $6 . \mathrm{A}^{2} / 7$ is not the best tube to use for a series-tumed VFO; indeed the several parers originally deseribing these circuits invariably show triodes. The hest tulne is that one which has the lowest ratio of change of inpmt caparitance to its mutual conductance. The operating mutual condurtance for the cathode, control grid, and sereen grid of a didi7 (as typirally used as an oscillator) is low, despite its high value for the normal grid-to-plate circuitry. Also, it has a high ingut caparitance and high boater and plate power inputs. In consequence, this tube is not ideal for the purposie.

A small dual triode, the 12.1T7, offers higher oscillator Qra in one triode sertion, lower input capacitance, and about one third the heater and phate power inputs required by the 6atif. In ronsequence, it is a superior tule for seriestuned osiolators. The output voltage will be lower for the 12.1T7, naturally, but a tube should not be evaluated for Flo use on the hasis of prower output.

W"el'O has adapted the Vackar circuit to an amateur VFO with outpont on 80 meters using the 12 AT7 in the circuit of F'ig. 6-8a. The first triode unit and its assoriated commonents form the oseillator moper; the other triode unit is a cathore follower which redures loading efferets on the oscillator freguen y. Two of these VIOO units have bern made and tested; their fregumery stability is exmellent, and they key well. The ontput r.f. was measired as 1.2 volts r,m.s, using a General kadio v.t.v.m. The total anrent from the $2 \overline{5} \overline{5}$-volt regulated 13 supply was 16 mas, key down.

In series-tuned oscillators of the (lamp or Vackat type the characteristies of the serics capacitor $C_{\text {a }}$ are critical if the oscillator is to be keyed. An annoging chirp, slight but deteretable, was finally traced to imperfertion of this eaparitor, even though it was a low temperature roeffieient silwered mied one. Several silvered mients of good make wre tried; they all produred slight chirp, some less than others. A so-called zero temperature corflieient (NIO) reramic capacitor wave less chirp (very little, in fart), but the chirp) was climinated by using an Al'C air trimmer for C_{x}. Apparently, there is enough r.f. current through C_{x} to cause di-
'Clapp, J. K., "Frequency sitable LC Oscillators," I'roc. of the I.R.E., Aug., 1954, Vol. 42, No. 8, page 12! ${ }^{2} 5$.

Fig. 6-89 - Vackar series-funed v.f.o. circuit at W9TO. The tube is a 12 AT7 dual triode. R.f. output from the cathodefollower second section is 1.2 volis r.m.s.
$\mathrm{C}_{1}, \mathrm{C}_{2}$-Silver mica.
$\mathrm{C}_{3}, \mathrm{C}_{1}, \mathrm{C}_{3}$-Mica
C-APC air variable.
Other copacitors are chramic.
clertric heating and a small resulting change in capacity even in these high-grade raparitors. This was confirmed indirectly b_{y} using for C_{x} a megative tomperature coefficient (NT:0) ceramic capacitor. The chirp was tremendous!

Of course, the series capacitor is not the only possible cause of chirp; poor plate voltage regulation or a long time constant in the keying rircuit might also contribute. To avoid this, the phate sumply should be regulated, and series resistances and shont capacotances in the keying rireuit should be kept to a minimum. ${ }^{2}$
The cirenit shown will kery cleanly without rhirp; with the constants shown it will be sonewhat colicky, due to turning on and off rapidls; this makes it very desirable for use in a differential keying system in which the oseilhator is turned on before the amplifier, and the amplifer is turned off before the oseillator.
— 1 HOK
2 The chirp diselused in the prereding baragraph evidently is a slow one attributable to temberature efferts. A chirp of the "dynamir" type often manifests itself ass a eliek when the time fonstant of the kesing cireuit is very short, beroming owervalde as a chirp when key-thump elimination methods are used. - EED.

This material originally appeared in QST for November, 10.5. - ED.

Converting Surplus

Converting Surplus Transmitters for Novice Use

War-surphus radio equipment, available in many radio stores, is a gool sourer of radio parts. Some of the transmitters and receivers can be made to operate in the amateur bands with little or no modification. It would be ham to find at more eeonomical way for a Novies to get started on 40 or 80 meters than by adapting a normallyv.f.o.econtrolled surplus "Command Set" to crestal control.

The "Command Sots" are parts of the SCR$27+N$ and $A N / A R(-5)$ equipments, transmitters and reeeivers designed for use in military aireratt. The two series are sulntantially identieal in circuit and construetion, (If the transmitters, two are of particular interest to the Noviee. These are the 13(-696 (part of $27+\mathrm{N}$) or T19 (AR('-5) covering 3 to 4 Mc., and the B(-45) or T22, 7 to 9.1 Me. The transmitter cireuit consists of a 1626 triode variahle-frequoney oscillator that drives a pair of 1625 in parallel, which for Noviee use can be run at 75 watts input. In addition to the 1626 and $1625 s$ the transmitters include a 1629 magierer tube, which wats used as a resonance indieator with a erystal for checking the dial calibration. The tubes have lo-volt heaters connected in series-parallel for ed-volt hattery operation. The B(-6) 6 and for are abaitable from surplus dealers at priees ranging from five to fiftern dollars each, depending on condition.

Several methods have berol deseribed for converting the transmitters to crystal control for Noviee use, but most of them didn't take into consideration the reconversion required to change back to v.f.o. when the Noviee beemme a Gen-eral-(lass lieense holder.

In the modification to be deseribed, the Noviee requirement for erystal eontrol is met by using a separate erystal-controlled oseillator. The output of the external oseillator is fed into the transmitter through a plug that fits into the 1620 oseillator socket. The 162 ti is not ased. The transmitter modifications are such that when it is desired to restore the transmitter to v.f.o operation the external oseillator is unplugged and the 1626 is put back in its socket. No wiring changes are needed to go from erystal control to v.f.o.

In addition to the external oscillator, a power supply is required for the ospillator and transmitter (Fig. $6-90$), and certain wiring changes are

Fig. 6-90-The complete Novice setup, in this case using the 80-meter ($\mathrm{BC}-457$) transmitter. Note the key jack at the lower-left corner of the transmitter panel. The crystal oscillator is connected to the transmitter oscillator-tube socket with a short length of cable terminating in an octal plug. A small notch should be cut in the transmitter cover to provide clearance for the cable when the cover is installed.

The power transformer, rectifier, and choke are mounted on top of the power-supply chassis at the rear, and the control switches are mounted on the wall as shown. Remaining components are underneath.
needed to make the transmitter itself suitable for amateur use. These changes consist primarily of removing two relays, changing the tube heater circuit for operation on 12 volts instead of 24 volts, and the addition of a power plug.

Transmitter Modifications

The 80 - and 40 -meter transmitters are practically iflentical exerpt for frequency range, and the modifications are the same in loth. Remove the top rover and bottom plate. Remove the tubes and erystal from thoir sockets so there will the no danger of breaking them as you work on the transmitter. If the sockets are not matrked by tube types, mark them yourself so you'll know which tule goes where.

The following modifications are required:

1) Remove the antema relay (front panel) and control relay (side of chassis) and unsolder and remove all wires that were connected to the relays with the exerption of the wire going to l'in 4 on the oscillator socket.
2) Remove the wire-womd resistor mounted on the rear wall of the transmitter.
3) Unsolder the wire from l'in 7 of the 1629 socket and move it to l'in 2 . (iround Pin 7 .
4) Lnsolder the wires from lin 1 of the 1625 closest to the drive shaft for the variable capaeitors and solder the wires to l'in 7 . Run a lad from the same l'in 1 to the nearest chassis ground.
5) Cusoldar all leads from the power socket at the rear of the chassis and remove the socket. The socket ean be pried off with a serewdriver.
(i) Unsolder the and of the 20 -ohm resistor (red-black-b) lack) that is comnected to lin 4 on the oscillator socket and connect it to P'in 6

6-HIGH-FREQUENCY TRANSMITTERS

of the ceatibration erystal socket. There is also a lend on l'in 4 that was connected to the keying rulay; connect this lead to the nearest chassis ground point.
7) Mount an octal socket (Amphenol 78-RS8) in the hole formerly oceupied by the power socket. Install a solder lug under one of the nuts holding the sooket mounting.
8) Wire the ortal socket as shown in Fig. (i-91, One of the leads unsoldered from the original power sorket is red with a white tramer. This is the $13+$ lead for the 1625 s. The yellow leat is the serern load for the 1625 sand the white lead is the heater lead. Although the mamuals covering this eguipment specify these eolors, it's safer not to take them for granted: check where each lead actually goes before comeneting it to the new power socket. The had from Pin 1 on the power soeket to l'in 6 on the calibration-rrystal socket is the oseillator plate-voltage lead. The leads from Pins 7 and 8 on the powor plug to Pins 1 and 6 on the oweillator sooket are new leads to uarry power to the external arystal-eontrolled oseillator. The lead from P'in 4 of the power socket to Pin 2 on the 1629) (resonance indicator) socket is the $12-$ volt heater lead.
9) Mount a closed-cireuit phone jack at the lower heft-hand rorner of the front panel. Conneet a lead from the ungrounded phone jack torminal to lin 6 (cathote) of either of the 1625 sockets. This completes the modification.

Crystal-Controlled Oscillator Details

The external crystal-controlled oveillator cirenit, shown in Fig. 6-92, uses a $6 . \mathrm{A}^{2} \mathrm{i}$ in the gritplate osedlator cireuit. Wither 80 - or $4(0$-meter reystals are required, depending on the band in use, A tuned plate cirenit is not required in the
oscillator; it was found that more than adequate grid drive could be obtained with the setup as shown.

Output from the oscillator is fed to the transmitter through an 8-inch longth of R(i-58 coax cable. The eable is terminated in an octal plug, $I^{2} 2$, which is phuged into the oseillator tube socket in the tranmitter. Power for the extemal oseillator is obtained through this sorket.

The cristal-controlled oscillator is built in and on a $4 \times 2 \times 23 / 4$-inch aluminum box. The tube and revstal sockets are mounted on top of the box and the remaining components inside. layout of parts is not particularly eritical but the general arrangement shown in ligs. (i-90 and (r-9:3 should be followed to insure good results.

In the completed sotup, oseillator and amplifier, the cathodes of the 1625 s are keyed and the crestal oseillator runs continuously during transmissions. It is thus neeresary to turn the oseillator off during standby periods, and this is acromplished by opening the B-phas switch on the power supply: This method is used in preforence to keying the oscillator and amplifier simultaneously because keying the oscillator is likely to make the signal chirpy. With amplifier keying the signal is a real ToN.

Power Supply

Fig. (i-91 shows the eirenit of the power supply, which uses a 5 Ut(; roctifier and a capacitorinput filter. The power transformer. T' is a tepe made beveremal manfacturers. To obtain the neesssary 12.6 volts for the heaters, a 6.3 -volt filament transformer is connected in series with the 6.3 -volt winding on $\%_{1}$. This setup also will provide 6.3 volts for the heater of the $6: 1637$. Current repuirement for the 6.16 活 heater is 0.65 amp, and for the $1625 \mathrm{~s}, 0.9 \mathrm{am}$, total.
 ma.; 5 volts, 3 amp ; 6.3 volts, 6 amp . (Knight 61 G414, Triad R-21A, or equivalent).
$\mathbf{T}_{\mathbf{2}}$-Filament transformer, 6.3 volts, 3 amp . (Triad F. 16 X , Knight 62-G-031, or equivalent!.

Fig. 6-92-(A) Circuit diogrom of externol crystal-controlled oscillotor. Unless otherwise specified, resistonces ore in ohms, resistors are $1 / 2$ wott. The 0.01 - ond $0.001-\mu$ f. capacitors ore disk ceromic. (B) Method of connecting the milliommeter in series with the key.
C_{1}-3.30- $\mu \mu \mathrm{f}$. trimmer.
$\mathrm{C}_{2}-220-\mu \mu \mathrm{f}$. fixed mica.
$\mathrm{M}_{1}-0-250$ d.c. milliommeter.
P_{2}-Octol plug, mole (Amphenol 86-PM8).
$\mathrm{P}_{3}-$ Phone plug.
$\mathrm{RFC}_{1}, \mathrm{RFC}_{2}-1$-mh. r.f. chokes.
Y_{1}-3.5- or 7-Mc. Novice-bond crystol, os required.

To turn off the plate voltages on the transmitter during stand-by periods, the center tap of T_{1} is opened. This can be done in two ways; by S_{2}, or by a remotely-mounted switch whose leads are connected in parallel with S_{2}. A two-terminal strip is mounted on the power-supply chassis, the terminals leing connected to S_{2} which is also on the chassis. The remotely-mounted switch can be installed in any convenient location at the operating position. A single-pole, single-throw switch can be used for this purpose or, if desired, a multicontact switch can be used to perform simultaneously this and other functions, such as controlling an antenna-changeover relay:

The high-voltage and heater leads are brought out in a cable to an octal plug, P_{1}, that connects to J_{1} on the transmitter. The length of the cable will, of course, depend on where you want to install the power supply. Some amateurs prefer to have the supply on the floor under the operating desk rather than have it take up room at the operating position.

The supply shown here was constructed on a $3 \times 6 \times 10$-inch chassis. The layout is not critical, nor are there any special precantions to take during construction other than to observe polarity in wiring the electrolytic capacitors and to see that the power leads are properly insulated. Never have P_{1} umplugged from I_{1} when the power supply is turned on; there is danger of clectrical shock at several pins of I_{1}. Interchanging the inserts of P_{1} and J_{1} will remove this hazard.

When wiring I_{1} don't connect the ${ }^{3}$-plus lines to Pias? or 3, the amplifier plates and screens, at first. It is more convenient to test the oscillator without plate and screen voltages on the amplifier.

When the supply is completed, check between chassis ground and the 12.6 -volt lead with an a.c. voltmeter to see if the two 6.3 -volt windings are connected correctly. If you find that the voltage is
zero, reverse one of the windings. If you don't have an a.c. meter you can check by observing the heaters in the 1625 s. They will light up if you have the windings connected correctly. Incidentally, leave B plus off, by opening S_{2}, for this check.

Next, set the slider on the bleeder resistor, R_{1}, at about one-quarter of the total resistor length, measured from the 13 -plus end of the bleder. Be sure to turn off the power when making this adjustment. With the tap set about one-quarter of the way from the 13-plus end of the bleeder the oscillator plate and amplifier screen voltages will be approximately 250 volts.

Testing the Transmitter

A kny and meter connected as shown in Fig. 6-92 are needed for chocking the transmitter. When I 's is plugged into the jack in the transmitter it will measure the cathote current of the 1625 s . The cathote current is the sum of the plate, screen and control-grid currents. Some amateurs prefer to install the meter in the plate lead so it reads plate current only. This can be done by opening the 13 -plus line at the point marked " X " in Fig. $6-91$, and inserting the moter in series with the line. However, unless more than one meter is available, don't install it in the power supply setup in this way until after the tests described below have been made.

Insert the external oscillator plug, P_{2}, into the 1626 socket and connect P_{1} to the transmitter. Plug P_{1} into the key jack on the front panel of the transmitter. With S_{2} open, turn on the power and allow a minute or two for the tubes to warm up. Next, close the center-tap comection, S_{2}, on the power transformer. Set the transmitter dial to the same frequency as that of the crystal in use and close the key, A slight indication of grid current should show on the meter. There is no plate or screen current because

6-HIGH-FREQUENCY TRANSMITTERS

there are no sereen or plate voltages on the amplifier. If no grid current is obtained, adjust (${ }_{\mathrm{t}}$ to the point where grid current shows, or try another erystal.

The next step is to peak the amplifior grid rircuit - that is, the 1626 v.f.o. tionk - for maximum grid-current reading. The v.f.o. trimmor eapacitor is in an aluminum box on the top of the chassis at the rear. There is a $1 / 2$-inch diameter hole in the side of the box; loosen the small serew visible through this hole, thus unlocking the rotor shat of the trimmer capacitor. Nove the rotor-arm shaft in either direction, olserving the moter reading, and find the position that gives the highest reading. This should be something more than 10 mal .

Now romnert the plate and sereen voltage leads to I_{1}. Be sure to turn off the power supply before making the eonnections!

The first test of the rig should be with a dummy load; a 115 -volt, 60 -watt light bulb can be used for this purpose. The lamp should be connected between the antemata terminal and chassis ground. However, to make the lamp take powar it may be necessary to add capacitance in paralled with it. A receiving-type variable capacitor having $250 \mu \mu$ f. or more maximum capacitance will be adequate for the job.
Turn on the power and allow the tubes to warm up, but leave the key open. Sot the intemat coupling control on the transmitter to 7 or 8 , and sot the variable eapacitor connocted across the dummy load to alout maximum capacitance. Next, close the koy and adjust the antemat inductance control for an increase in athode current. 'Turn the frequeney control for a dip in current reading. The indicated frequeney will probably differ from that of the erystal in use, hut don't worry ahout it.

Adjust the three transmitter controls, antenna inductance, antenna coupling, and frequency, along with the variable capacitor across the lamp load, until the lamp lights up to apparently full brilliance. The cathode corrent should le between 150 and 200 mal . With the tramsmitter fully loaded, adjust C_{1} in the erystal oseillator so that the lamp brillianer just starts to decrease. This is the optimum setting for (1 and it can be left at this sotting, no further adjustments being required.

If a d.e. voltmeter is available, check the different voltages in the setup. Using the power supply

Fig. 6-93 - This bottom view of the crystal oscillator shows the arrangement of components. Terminal strips are used for the cable connections and also as a support for C_{1}, the feedback capacitor.

shown here, the plate voltage on the 1625 s is approximately 400 with the amplifier fully loaded. With the plate voltage on the oseillator and sereen voltige on the 1625 suljusted to 250 volts (tap) on R_{1}), the oscillator screen voltage is 160 volts. The oseillator takes approvimately 30 ma. and the 1625 amplifier sereens atrout 10 ma. when the amplifier is fully louled.

Getting on the Air

To put the transmitter on the air it is necessary only to conneet an antema to the antenna post and conment a ground lead from the transmitter chassis to a water-pipe groumd or to a metal stake driven in the ground. Amost any length of antema will work, but for hest results the minimum longth should not be less than about $1 / 8$ wavelength for the band in use. This is approximately 333 feet for 80 moters and 16 fect for 40 meters. It is of course better to make the antenna longer - and to be sure to get the far end as high as possible.
An output indicator will prove to be a handy deviee for knowing when power is actually going into the antemat. For this purpose use a 6.3 -volt, 150-mat dial lamp. Comeet two leads, cach about one foot long, to the shell and base of the bulb, respectively. Clip one lead to the antenna post and the other lead on the antema wire two feret from antenna post. A small amount of power will go through the bulb and this will provide a visual indication of output. Follow the same tuning procedure as outlined above for the dummy antemm. If the bulb gets so bright that it is in danger of hurning out, move the leads closer together to reduce the pickup.
It may be found that certain antemna lengths won't work - that is, the amplifier won't load no matter where the antema coupling and inductance are set. In such a case, eonnect a variable capacitor - like the one used with the lamp dummy-botween the antema post and the transmitter chassis. Adjust the capacitor and antenna inductance for maximum brilliance of the output indicator; this will be the best setting for the controls.

A superior antenna system uses a twowire foeder system and an antenna coupler; examples are given in Chapters 13 and 14. If a coupler is used, the transmitter and coupler should be connected together with coax line. The inner conductor of the coax should be connected to the antema terminal and the outer braid to the transmitter case, as close to the antema terminal as possible. If desired, the antemna terminal can be removed and a coax fitting substituted.

When the coveted (ioneral (lass ticket is obtained, it is only necessary to unplug the crystal oscillator, put the original tube back in the rig, and move out of the Novice band,

Power Supplies

Fssentially pure direct-current plate supply is required to prevent serious hum in the output of receivers, speech amplifiers, modulators and transmitters. In the case of transmitters, pure d.ce, plate supply is also dietated by government regulation.
The filaments of tuhes in a transmitter or modulator usually may be oprated from a.c. However, the filament power for tubes in a receiver (excepting power audio tubes), or those in a speed amplifier mate be a.c. onty if the tubes are of the indi-reetly-heated-eathode type, if hum is to be avoided.

Wherever commercial a.c. lines are available, high-voltage d.c. plate supply is most cheaply and conveniently obtained by the use of a transformer-rectifier-filtor system. An example of such a system is shown in Fig. $7-1$.

In this circuit, the plate transformer, T_{1}, steps up, the a.c. line voltage to the reguired high voltage. The a.e. is changed to pulsating d.c. by the rectifiers, V_{1} and V_{2} Pulsations in the d.e. appearing at the output of the rectifier (points A and B) are smoothed out by the filter composed of L_{1} and $C_{1} . R_{1}$ is a bleeder resistor. Its chief function is to discharge (${ }_{1}$, as a safety measure, after the supply is turned off. By proper selection of value, R_{1}
also helps to minimize changes in output voltage with changes in the amount of current drawn from the supply. T_{2} is a step-down transformer to provide filament voltage for the rertifier tubes. It must have sufficient insulation between the

filament winding and the core and primary winding to withstand the peak value of the rectified voltage. T_{3} is a similar transformer to supply the filtuments or heaters of the tubes in the equipment operating from the supply. Frequently, these three transformers ane combined in a single unit having a single 115 -volt primary winding and the required three secondary windings on one core.

Rectifier Circuits

Half-Wave Rectifier

Fig. 7-2 shows three remifier circuits covering most of the rommon applications in amateur equipment. Fig. $7-2 \mathrm{~A}$ is the rireuit of a half-wave rectifier. During that hallf of the a.e. evale when the rectifier plate is positive with respert to the cathode (or filament). current will flow through the reetifier and loal. But during the other half of the cerle, when the plate is negative with respert to the rathode, no current can flow. The shape of the ontput wave is shown in (A) at the right. It shows that the eurent always flows in the same direction but that the flow of current is not continuous and is pulsating in amplitule.

The averige output voltage - the voltage real by the usual d.e voltmeter - with this circuit is 0.45 times the r.m.s. value of the a.e. voltage delivered by the transformer serondary. Because the frequenery of the pulses in the output wave is relatively low (one pulsation per cycle), considerable filtering is reguired to
provide adecuately smooth d.c. output, and for this reason this rireuit is usually himited to appications where the rurrent involved is small, such is in supplies for e:thode-ray tubes and for protective bias in a transmitter.

Another disalvantage of the half-wave rectifier cirenit is that the transformer must have a considerably higher primary volt-ampere rating (approximately to per rent greater), for the same d,e power output, that in other rectifier circuits.

Full-Wave Center-Tap Rectifier

The most universally usel rectifier eireuit is shown in lig. $7-213$, Being essentially an arrampement in which the outputs of two halfwave reatifiers are combined, it makes use of hoth halves of the ace, evele. A transformer with a center-tapped secondary is required with the circuit. When the plate of V_{1} is positive, current flows through the load to the center tap. Current cannot flow through V_{2} because at this
instant its cathode (or filament) is pusitive it respere to its mate. When the polatity reverses, le comduets and conrent again flows through the load to the renter-tap, this time through les.

The arerawe output voltage is $0 . \operatorname{ti}$ times the r.m.s. voltage of the entire trans-formor-serendary, or 0.9 times the voltage arooss half of the transformer secondary. For the same fotal secondary voltage, the average output voltage is the same as that delivered with a half-wave rectifier. However, as can be seen from the sketches of the output wave form in (B) to the right, the frequency of the output pulses is twice that of the half-wave rectifier. Therefore much less filtering is required. Since the rectifiers work alternately, eath handles half of the average load current. Therefore the load-current rating of each rectifier need be only half the total load eurrent drawn from the supply.

Two separate transformers, with thoir primaries commeted in parallel and secondaries connerted in series (with the proper polarity) may be used in this circuit. Ilowever, if this substitution is made, the primary volt-ampere rating must be reduced to about 40 per cent less than twice the rating of one transformer.

Full-Wave Bridge Rectifier

Another full-wave rectifior circuit is shown in Fig. $7-2 \mathrm{C}$. In this arrangement, two rectifiers operate in series on each half of the cyale, one rectilier boing in the lead to the load, the other being in the return lead. Over that portion of the cercle when the upper end of the transformer secondary is positive with respect to the other end, current flows through V_{1}, through the load and thence through V_{2}. During this period current cannot flow through reetifier V_{4} because its plate is negative with respert to its cathode (or filament). Over the other half of the cyrle, current flows through V_{3}, through the load and thence through V_{4}. Three filament transformers

Fig. 7-2-Fundamental vacuum-lube rectifier circuits. A-Half-wave. B-Full. wave. C-Full-wave bridge. A.c.-input and pulsating-d.c. output wave forms are shown at the right. Output-voltage values indicated do not include rectifier drops. Other types of rectifiers may be substituted.
are needed - one for V_{1} and V_{3} and one eath for V_{2} and V_{4}. The output wave shape (C), to the right, is the same as that from the simple center-tap rectifier eircuit. The output voltage obtainable with this rireuit is 0.9 times the r.m.s. voltage delivered by the tratnsformer secondary. For the same total transformersecondary voltage, the average output voltage when using the bridge rertifior will be twire that obtainable with the conter-tap rectifier circuit. Ilowever, when comparing rectifier circuits for use with the same transformer, it should be remembered that the power which a given transformer will handle remains the same regardless of the rectifier eircuit used. If the output voltage is doubled by substituting the bridge (imait for the center-tap) rectifice circuit, only half the rated load eurrent can be taken from the transformer without exceeding its normal rating. bach rectifier in a bridge cireuit should have a minimum load-eurrent rating of one half the total loal current to be driwn from the supply.

Rectifiers

High-Vacuum Rectifiers

ITigh-vacuum rectifiers depend entirely upon the thermionic emission from a heated filament and are chararterized by a relatively high internal resistance. For this reason, their application usually is limited to low power, although there are a few types designed for medium and high power in cases where the relatively high
internal voltage drop may be tolerated. This high internal resistance makes them less susceptible to damage from temporary overlond and they are free from the bothersome electrical noise sometimes assoriated with other types of rectifiers.
some rectifiers of the high-vacuum full-wate type in the so-ralled receiver-tube class will handle up to 275 ma. at 400 to 500 volts d.e. out-

Rectifiers

put. Those in the higher-power class ean be used in handle up to 500 mat at 2000 volts d.c. in fullwave circuits. Most low-power high-vacuum rectifiers are produed in the full-wave trpe, while those for greater power are invariably of the halfwave type, two tubes bing required for a fullwave rectifier cireuit. A few of the lower-voltage types have indirectly heated cathodes, but are limited in heater-to-eathode voltage rating.

Mercury-Vapor Rectifiers

The voltage drop through a mereury-vapor metifier is practically constant at approximately 15 volts regardless of the load eurrent. For high power they have the advantage of cheapness. Rectifiers of this type, however, have at tendency toward a tepe of osellation which produces nose in nearby roweres, sometimes difficult to climinate. R.f. filtering in the primary circuit and at the rectifier plates as wedl as shielding mar he required. As with high-vachum rectifiers, full-wave types are atvailable in the bower-powir ratings only. For higher power, two tubes are refuired in a foll-wave eirenit.

Selenium and Other Semiconductor Rectifiers

Solenium, gromanium and silien rectifiers are finding increasing application in power supplies for anateur equipment. These units have the advantages of compatetuess, low internal voltagedrop (about 5 volts prer unit) and low operating temperature Also, no filament transformessare required.

Individual units of all three types are availahle with input ratings of $1: 30$ volts r.m.s. SoIenium units are rated at up to 1000 mas. or more da. load current: germanium units have ratings up to 400 mat., and silicon units up to 500 mat. In full-wave circuits these load-arrent figures ran be doubled.

The extrome comparetness of silion types mates fatsible the stacking of several units in sories for higher voltages. Standard staths are available that will handle up to 2000 volts r.m.s. imput at a d.e. load current of 325 mat Two of these stacks in a full-wave cirenit will handle 6ian mat, although they are comparatively expensive.

Somiconductor rectifiers may be substituted in any of the basie cireuits shown in Fig. $7-2$, the terminal marked " + " or "cathode" corresponding to the filament connertion. Advantage may be taken of the voltagemultiplying cirecuits disensed in a bater sertion of this ehapter in adapting reetifiors of this type.

Rectifier Ratings

Vacuum-tube rectificrs are subject to limitations as to breakdown voltage and current-handhing capability. Some types are rated in terms of the maximum r.m.s. voltage which should be applied to the rectifier plate. This is sometimes dependent on whether a choke or capacitiveinput filter is usod. Others. pirticularly mercuryvapor types, are mated according to maximum inverse pration valtage - the patak voltage betwen plate and athode while the tube is not con-
ducting. In the circuits of lig. 7-2, the inverse peak voltage across each rectifier is 1.4 times the r.mis, value of the voltage delivered by the entive transformer secondary, exerpt that if a (apacitive-input filter is used with the halfwave rectifier cireuit of Fig. $7-2.2$, the multiplying factor beromes 2.8.

All reretifier tubes are rated also ats to maximum d.e. load current atm many, in addition, carry peak-rurrent ratings, all of which should be carofully olserved to assure normal tube life. With a eap:citive-input filter, the peak current may rum several times the d.c. current, while with a chokeimput filter the poak value may not run more than twice the d.e. load current.

Operation of Rectifiers

In operating rectifiers requiring filament or eathode heating. care should be taken to provide the correct filament voltager at the tube terminals. Low filament voltage can cause ceressive voltage drop in high-vacuum rectificrs and a considerable reduction in the inverse peak-voltage rating of a merrury-vapor tube. Filament connertions to the reetifice socket should be firmly soldered, particulaty in the case of the larger mercury-vapor tubes whose filaments operate at low voltage and high current. The sooket should be selected wim (atre, not only as to contact surftue but also as to insulation, siure the filament usually is at full output voltage to grouml. Bakelite sockets will serve at voltages uf) to 500 or so, but reramic sorkets. well spaced from the chassis, ahwas should be used at the higher voltages, spereial filatment transformers with high-voltage insulation betwon primary and secondary are required for rectifiers operating at potentials in exerss of 1000 volts inverse prak.

The rectilier tubes should be phaced in the equipment with adequate spate surrounding them to provide for ventilation. When mereury-vapor tubes are first phared in service, and each time altar the moreury has been disturbed, as hy removal from the socket to a horizontal position, they should be run with fil:ument voltage only for 30 minutes before applying high voltage. After

Fig. 7-3-Connecting mer-cury-vapor rectifiers in parallel for heavier currents. R_{1} and R_{2} should have the same value, between 50 and 100 ohms, and corresponding filament terminals should be connected logether.

that, a deley of 30 seconds is recommended each time the filament is turned on.
lacetifiers may be connected in parallel for current higher than the rated current of a single unit. This includes the use of the sections of a double diode for this purpose. With meraryvapor types, equalizing resistors of 50 to 100 ohms should be connected in serios with each plate, as shown in Fig. $7-3$, to help maintain an equal division of current between the two rectifiers.

7-POWER SUPPLIES

Filters

The pulsating der. Wates from the rectifiers shown in lig. 7 -2 are nut sufficiently constant in amplitude to prewent hum corresponding to the pulsations. Filters consisting of capacitanores and indurtances are required hetwern the rectifier and the load to smooth out the pulsations to an essentially eonstant dee voltage. Also, upon the design of the filter dependes to a large extent the dar. voltage output, the rollage regulation of the power supply and the maximum lead rurrent that can be drawn from the supply without axcooding the peak-virrent rating of the rectifior.

I'ower-supply filters fall into two clasifieations, deponding upon whether the first filter clement following the rectifier is a capacitor or a choke. Capacitive-input filtors are characterized heredatively high output voltage in pespert to the transformer voltage, but poor voltage regulation. Choke-input filters result in much better regulation, when properly designed, but the outpot voltage is less than would be obtained with a (apacitive-input filter from the same transformer.

Voltage Regulation

The output roltage of a power supply alway decreases as more rurront is drann, not only boealuse of increased voltage drops in the transformer, filter chokes and the reetifier (if highvacuma reetifiers are used) but also because the output voltage at light loats temets to soar to the peak value of the transtormer voltage as a result of charging the first rapacitor. By proper filter dexign the latter ofieet catn be climinated. "Ihe change in output voltage with load is callod moltage regulation and is expressed as a perecontage.

$$
\begin{aligned}
& \text { Ier cent regulation }=\frac{100\left(E_{1}-E_{2}\right)}{E_{2}} \\
& \text { Example: No-lowd voltage }=\boldsymbol{L}_{1}=1.300 \text { wolts. } \\
& \text { Fulloload voltagu }=E_{2}=1230 \text { volts. } \\
& \text { Permontage regulation }=\frac{100(1.5 .50-1230)}{12: 31} \\
& =\frac{32.0001}{12330}=20 \text { pior cent. }
\end{aligned}
$$

Regulation may beas great as loor, or more with at caparitive-input filter, hut bey proper design can be held to 20 , or less with a choke-input filtor.

Good regulation is desirable it the load cument varios during opreation, as in a keved stage or a (lass 13 modulator, berause a large change in voltage may inorease the temdeney toward key clicks in the former ease or distortion in the latter. On the othor hamd, a steaty load, such as is represented by a receiorr, surech amplifior or unkered stages in a tramsmitter, does not require good regulation so loug ta the proper voltage is obtained under load conditions, Another consideration that makes good voltage regulation dosirable is that the filtor caparitors must have a voltage rating satie for the highest value to which the voltage will soar when the external load is removed.

When essentially constant voltage, regardless
of cument variation is recquired (for stabbilizing an oseillator, for (example), spectal voltage-regulating circuits described asewhere in this chapter are used.

Load Resistance

In disenssing the preformaner of pewer-supply filters, it is sometimes anvenient to express the load connerted to the output terminals of the supply in terms of rexistanere. The load resistanero is equal to the outpat voltage divided by the total current drawn, including the eurrent drawn by the bleder resistor.

Input Resistance

Ther sum of the tamsformer impedance and the reetifior mestaner is ablled the input resistance. The approximate tratsformer impedance is given by

$$
Z_{\gamma \mathrm{R}}=N_{0} R_{\mathrm{PR}}+R_{\mathrm{SLC}}
$$

Where N is the transformer turns ratio, primary to soedondary (primary to ${ }^{1} 2$ serondary in the case of a full-wave redifior), and hord and have arm the primary and secondary mosistanes resportively. Rase will be the resistane of half of the serondary in the case of a full-wame cirnut.

Bleeder

A bleoder resistur is a resistanes connocted arross the output terminals of the power supply (sere fig. $7-1$). Its functions are to discharge the filter eapatitors as a safoty measure when the power is turned ofitad to improve voltage regulation beg providing a minimum load resistance. When voltage regulation is not of importanere. the resistance maty be as high as 100 ohms per volt. The resistancer value to be used for voltageregulating purposes is disersest in later sertions. From the eonsideration of satety, the power rating of the resistor should be as ronservative as possible, since a burned-out bleceler resistor is more langorous than none at all!

Ripple Frequency and Voltage

The pulsations in the output of the rectifier can he exmsidered for be the resultant of an alternating curvent superimpesed upen a stande dired corrent. From this vieworint, the filter mats be comsidured to ronsist of shanting rapacitors which short-rireuit the a.e component while not interforing with the flow of the dece componem, and sorios chokes which pass dece readily but which imperde the flow of the a.e. emmpenent.

The atternating component is called the ripple The effectivencos of the filter can be exprosed in ternss of per ent ripple, whish is the zation of the r.m.s. value of the ripple to the el.e. value in terma of procentage. For cis. tramsmittors. the output ripple from the power supply shonld not exeread 5 per cent. 'The ripule in the output of supplies for voiee tranmitters shonld not exeed i per cent. Chass 13 modulators require a ripple reduction to about $0.2 .5^{\prime}$, whilo voifors, high-

Filters

gain sporch amplifiors, and receivers may require areduction in ripple to 0.01%.

Ripple fredueney is the frequency of the pulsations in the reerifier outpat wave - the mamber of pulsations por secoud. The frequeney of the ripule with half-wave rectifiors is the same as the frequency of the line supply - 60 cycles with (6)cerle supply. Sine the output pulses are doubled with a full-wave rectifier, the ripple frequener is doubled - to 120 ereles with (io-eyele supply.

The amonut of filtering (values of induetanee and apateitame required to give adequate smoothing depends upon the ripple frequeney, more filtering loing reduired as the ripple fregueney is lowered.

CAPACITIVE-INPUT FILTERS

Capacitiveimput filter systoms are shown in Fig. 7-4. Disrogarding voltage drops in the chokers, all have the same charactoristios exeept

Fig. 7-4-Capacitive-input filter circuits. A-Simple capacative. B-Single-section. C-Double-section.
in respert to ripple. Botter ripple reduction will be ohtained whon $L C$ sections are added, as shown in Figs. $7-13$ and C.

Output Voltage

Todeterminc the approximate de. voltage ontput whol : caparitive-input filtor is used, reference should be made to the graph of Fig. $7-$ - .

> Exatmpl:
> Transformer r.mas. voltage - 3.50
> Ingut resiatanm - 200 ohtus

> ront - 17.5 nit.
> Lond resintance $=\frac{3.50}{0.17 .5}=2000$ ohms iblyrox.

From Fig. 7 - 0^{3}, for a lotel resistance of 2000 ohms and an input resistanee of 200 ohms, the d.e. output voltage is given as sightly over 1

Fig. 7-5-Chart showing approximate ratio of d.c. output voltoge across filter input capacitor to transformer r.m.s. secondary voltage for different load and input resistances.
times the transformer r.m.s. voltage, or about 350 volts.

Regulation

If a bloeder rexistance of 50,000 ohms is used, the d.e. output voltage, as shown in Fig. 7-ij, will rise to about $1.3 \overline{5}$ times the transformer r.mos. value, or about 470 volts, when the external load is removed. For greatar aceuraes, the voltage drops through the input resistance and the resistance of the chokes should be subtrated from the values dotomined above. For best regulation with a capacitive-imput filter, the bleeder resistance should be as low as possible without exereding the transformer, reetifier or choke ratings when the external load is connected.

Maximum Rectifier Current

The maximum current that can be drawn from a supply with a capacitive-input filter without exeading the peak-current rating of the rectifier may be estimated from the graph of Jigg, 7-6, Lsing values from the preceding eximple, the ratio of peak rectifier current to d.c. load current for 2000 ohms, as shown in Fig. 7-6 is 3. Therefore, the maximum load current that ean be drawn without excerding the reetifier rating is $1 / 3$ the patk rating of the rectifier. For al load eurrent of 175 mat, as above, the rectifier peak eurrent rating should be at lowst $3 \times 175=52 \overline{5}$ mat.

With beeder current only, lig. $7-6$ shows that the ratio will increase to wrer 8 . But sine the beoder draws less than 10 ma. d.e., the rectifier peak current will be only moma or less.

7 -POWER SUPPLIES

Fig. 7.6-Groph showing the relotionship between the d.c. lood current and the rectifier peok plote current with capacitive input for various values of laad and input resistance.

Ripple Filtering

The approximate ripple pereontage after the simple capacitive filter of Fig. 7-h maty be determined from lige. 7-7. With a load resistance of 2000 ohms, for instanes, the ripple will be approximately 10% with all $8-\mu \mathrm{f}$. ratpacitor or 20% with a $4-\mu$, ratuatitor. For other raparitances, the ripple will be in inverse proportion to

fig. 7.7-Showing opproximate 120 -cycle percentoge ripple across filter input capacitor for various loods.
the capacitance, c.g., 5% with $10 \mu \mathrm{f} ., 40 \%$ with $2 \mu \mathrm{f}$., and so forth.

The ripple can be reduced further by the addition of $L C^{\prime}$ sections as shown in Figs. $7-41$ and (${ }^{\prime}$. 1.ig. 7-8 shows the factor by which the riple from any preereling sertion is reduced depending on the product of the capacitanere and inductanceradded. For instance, if a section composed of a choke of 5 h . and a rapacitor of $4 \mu \mathrm{f}$. were to be added to the simple capsteritor of Fig. $7-\mathrm{HA}$, the product is $4 \times 5=20$. P i g . $7-8$ shows that the original riphle ($10 /$ a : above with 8μ f. for (examphe) will be reduced by a factor of about 0.08. Therefore the ripple percentage after the new section will be

Fig. 7-8-Ripple-reduction factor for various values of L and C in filter section. Output ripple $=$ input ripple X ripple factor.
approximately $0.08 \times 10=0.8^{\circ} \%$. If another section is added to the filter, its reduction factor from Figg. $7-8$ will he applied to the 0.8% from the proceding section; $0.8 \times 0.08=0.064 \%$ (if the serond section has the same $L C$ product as the first).

CHOKE-INPUT FILTERS

Murh better voltage regulation results when : choke-input filter, as shown in lig. $7-9$, is usod. ('hoke input also permits better utilization of the reetifier, since a higher load curent usually can be drawn without exceeding the peak current rating of the rectifier.

Minimum Choke Inductance

A choke-input filter will tend to are as a capari-tive-input filter meses the input choke has at least a certain minimum value of inductanere ralled the critical value. This critical value is given by

$$
L_{\mathrm{h}}=\frac{E_{\mathrm{VOHTS}}}{I_{\mathrm{AA}}}
$$

where E is the output voltage of the supply, and I is the current being drawn from the supply.

If the choke has at lcast the critical value, the output voltage will be limited to the average value of the rectified wave at the input to the

Fig．7－9－Choke－input filfer circuits．A－Single－section． B－Double－section．
choke（see Fig．7－2）when the eurrent drawn from the supply is small．This is in contrist to the capacitive－inuat filter in which the outpat volt－ age tends to soar toward the peak value of the rectified wave at light loads．Also，if the input choke has at least the eritieal value，the reetifier pak plate current will be limiterl to about twice the d．e．current drawn from the supply．Most rectilier tubes have peak－current ratings of three to four times their maximum d．e．output－eurent ratings．Therefore，with an input choke of at least critical inductance，current up to the maximum output－eurent rating of the reatilier may be drawn from the supply without exceeding the paik－current rating of the rectifier．

Minimum－Load－Bleeder Resistance

From the formula above for critical indurtance， it is obvious that if no current is drawn from the supply，the critieal inductance will be infinite．So that a practical value of induetance may be used， some eurrent must be drawn from the supply at all times the supply is in use．From the formula we find that this minimum value of current is

$$
I_{\mathrm{MA}}=\frac{E_{\mathrm{vO}, \mathrm{Ts}}}{L_{\mathrm{h}}}
$$

Thus，if the choke has an inductance of 20 h ．， and the output voltage is 2000 ，the minimum load current should te 100 ma．This load mat be pros－ vided，for example，by transmitter stages that draw current eontinuously（stages that are not keyed）．However，in the majority of cases it will be most conveniont to adjust the bleeder resist－ ance so that the bleeder will draw the required minimum eurrent．In the above example，the bleeder resistance shoukd be $2000 / 0.1=20,000$ ohms．

From the formula for eritical inductance，it is seen that when more current is drawn from the supply，the critioal inductance becomes less． Thus，as an example，when the total current，in－ cluding the 100 mat．drawn by the bleder rises to 400 mat．，the choke need have an induetance of only 5 h ．to maintain the critical value．This is fortunate，beeause chokes having the required in－ ductance for the bleeder load only and that will maintain this value of inductance for much larger eurrents are very expensive．

Swinging Chokes

Less costly chokes are availathe that will main－ tain at least eritieal value of indurtance over the range of current likely to be drawn from practi－ eal supplies．These elookes are called swinging chokes．As an example，a swinging choke may have an inductance rating of $5 / 25 \mathrm{~h}$ ，and a cur－ rent rating of 225 mat．If the supply delivers $10(0)$ volts，the minimum load current should be $1000 / 25=40 \mathrm{ma}$ ．When the full load current of 22.0 ma．is drawn from the supply，the indurence will drop to 5 h ．The rritical iniduet ince for 225 mat，at $10(0)$ volts is $1000 / 22 \overline{5}=4.5 \mathrm{~h}$ ．Therefore the $5 / 25$－h．choke maintains at least the critieal inductanee at the full current rating of 225 ma． At all load eurrents bet ween fora，and 22：）mal， the choke will adjust its inductance to at least the approximate critical value．
Table 7 －I shows the maximum supply output voltage that can be used with commonly－avail－ able swinging ehokes to maintain critical induc－ tamee at the maximum current rating of the rhoke．These elokers will also maintain（ritical inductance for any lourer values of voltage，or cur－ rent down to the recuired minimum drawn by a proper bleeder as discussed above．

TABLE 7－I				
Lh	Max．ma．	Max．volts	Max．R^{1}	Min．ma．${ }^{2}$
3，5／13．5	150	525	13．5K	39
5／25	175	875	25 K	35
2／12	200	400	12 K	33
5／25	200	1000	25 K	40
5／25	22.5	112\％	2.5 K	4.5
2／12	250	500	12に	42
4／20	300	1200	20 K	00
5／25	300	1500	2：3 ${ }^{\circ}$	60
3／17	400	1200	17K	71
4／20	400	1600	20 K	80
5／2．5	400	2000	2.5 F	80
4／16	500	2000	16 F	125
$5 / 25$	500	2.500	25に	100
5／25	$5: 50$	27：0	2．\％゙	110
${ }^{1}$ Maximum bleder resistance for critical inductance． ${ }^{2}$ Minimum current（bleder）for critical inductance．				

In the case of supplies for higher voltages in partieular，the limitation on maximum load resist－ ance may result in the wasting of an appreciable portion of the transformer power capacity in the bleder resistance．Two input chokes in series will permit the us of a bleeder of twice the resistance，cutting the wasted comrent in half． Another alternative that can be used in a c．w． transmitter is to use a very high－resistance bleder for protective purposes and only suf－ ficient fixed biats on the tubes operating lrom the supply to bring the total eurrent drawn from the

7 - POWER SUPPLIES

supply, when the key is open, to the value of current that the reguired bleder resistance should draw from the supple. Operating bias is brought back up to normal by incrasing the grid-leak resistanes. Thus the entire current catparity of the supply (with the exerption of the smatil drain of the protective beeder) can be used in oprerating the tramsmitter stages. With this system, it is advisable to operate the tubes at phome, rather than c.w., rating, sine the average dissipation is increased.

Output Voltage

lrovided the imput-rhoke inductance is at least the aritical value, the output voltage maty be caleulated quite closely by the following equation:

$$
R_{\mathrm{o}}=0.9 E_{\mathrm{t}}-\left(I_{\mathrm{B}}+I_{\mathrm{L}}\right)\left(R_{1}+R_{2}\right)-E_{\mathrm{r}}
$$

where E_{0} is the output voltage; E_{6} is the r.m.s. voltage applied to the reetifier (r.mas, voltane betwern center-tap, and one end of the secondary in the case of the conter-tap rectifier) I_{B} and I, are the bereder and load currents, respecetively, in amperes: R_{1} and R_{2} are the resistanes of the first and serond filter chokes: and L_{r}^{e} is the drop betweren rectifier plate and "athote The various voltage dropls are shown in Fig. 7 -f'… At no load I_{L} is zero, herme the no-load voltage may be ealeulated on the basis of bleeder current only. The voltage regulation may be determined from the mo-load and full-load voltages using the formula previously given.

Ripple with Choke Input

The pereontage ripple output from a singlesoction filtor (Figy, 7-9A) may be determined to a close approximation, for a ripple frequency of 120 cercles, from Fig. 7-10.

$$
\text { Example: } L=5 \text { h.. } C=4 \mu \mathrm{f} . . L C=20
$$

From Fig. 7-10, percentage ripple $=5$ per cent.

Fig. 7.10-Graph showing combinations of inductance and capacitance that may be used to reduce ripple with a single-section choke-input filter.

Example: $L=5 \mathrm{~h}$. What capacitance is needed to reduce the ripple to 1 per cont? Following the 1 -par-cent line to the right to its interseretion with the diagonal, thence downward to the $L . C$ seale, read $I . C=100,100 / 5=$ $20 \mu \mathrm{f}$,

In solecting values for the first filter section, the imduetanee of the choke should be determined by the eonsiderations diseussed previously. Then the eapacitor should be selereted that when eombined with the choke inductance (minimum indurtance in the case of a swinging choke) will bring the ripple down to the desired value. If it is found impossible to bring the ripple down to the desired figure with practical values in a single section, a second soetion ratn be added, as shown in Fig. $7-9 \mathrm{~B}$ and the reduction fartor from Fig. 7-8 appolied as discussed under capacitive-input filters. The second choke should not be of the swinging type, but one having a more or less constant inductance with changes in current (smoothing choke).

OUTPUT CAPACITOR

If the supply is intended for use with an audio-fregueney amplifier, the reatance of the last filter capacitor should be smatl (20) per rent or less empared with the other atadiofrequencer resistance or impedance in the eirenit, wathe the tube plate resistanere and load resistancer On the hasis of a lower a.f. limit of 100 eveles for spereh amplification, this condition usually is satisfied when thr output eapacitance (last filter caparitor of the filter hate a caparitance of $+108 \mu{ }^{\prime}$., the higher value of eapasitance being used in the case of lower tube and load resistanees.

- resonance

labomanere affects in the series eireuit across the output of the rectifier which is formed by the first rhoke (L_{1}) and first filter capacitor (C_{1}) must be aboited, sine the ripple voltare would build up to large values. This not only is the opposite artion to that for which the filter is intembed, but also maty catuse exerssive rectifier peak currents and ahomally high inverse peak voltages, For full-wave rectification the ripple frequency will be 120 a edes for a tio-cyele supple, and resomane will oreur whon the prodwet of rhoke indurtane in hemres times rat paritor capacitane in miorofarads is equal to 1.73. 'The eorresponding figure for soterele supply (100 -evele ripule frepuoney) is $2 . \sin$, and for
 At least twier these products of indurtanere and caparitaner shouk be used to emsure agatinst resonance efferts. With a swinging choke, the minimum rated inductatere of the ehoke should be used.

RATINGS OF FILTER COMPONENTS

Although filter eapacitors in a choke-input filter are subjected to smaller variations in d.e. voltage than in the capacitive-input filter, it is

Transformers

advisable to use capacitors rated for the peak transformer voltage in eatse the bleoder resistor should burn out when there is no load on the power supply, since the voltage then will rise to the same maximum value as it would with a filter of the caparitive-inpat trepe.

In a raparitive-input filter, the caparitors should have a working-voltage rating at latast as high, and preforably somewhat higher, than the peak-voltage rating of the transformere. Thus, in the ease of a center-fap rectilion hating a transformer delivering mat volts carh side of the conter-tap, the minimum satio raparitor voltage rating will be 5050×1.11 or 775 volts, An 8(0)-volt caparitor shombld be used, or prefcrably al(O)O-volt unit.

Filter Capacitors in Series

Filter eapacitors are made in sevoral different types. leloetrolytio capacitors, which are available for peak voltages up to about soon, combine high couparitance with small sizo, since the diclortrie is an axtremely thin tiln of oxide on alaminum foil. Capacitors of this trpe maty be eonneeted in series for higher voltiges, although the filtering capacitane will be redued to the resultant of the two caparitancers in sorios. If this arrangement is used, it is important that arach of the eapabitors be shunted with a resistor of ahout (ok) ohms per volt of supply voltage, with a power rating adeguato for the fotal rewistor current at that voltage. These resistors may serve as all or part of the bleder resistane (wed choke-input filtors). (apacitors with highervoltage rating usuatly are made with a didenetrie of thin paper impregnated with oil. The working voltage of a capacitor is the voltage that it will withstand continuously.

Filter Chokes

The input choke may be of the swinging type, the required minimum no-load and full-load inductane valums being ealeulated as deseribed above. For the second choke (smoothing choke) values of 4 to 20 hemrys ordinarily are used. When filtor ehokes are plated in the positive leads, the nogative boing gromoded, the windings should be insulated from the eore to withstand the full d.e. output voltage of the supply and be eapable of hambling the requived loud eurrent.

Filter chokes or inductances are woumd on iron cores, with a small gap in the core to prevent magnetic saturation of the iron at high currents. When the iron becomes saturated its

Fig. 7-11-In most opplications, the filter chokes may be placed in the negative instead of the positive side of the circuit. This reduces the danger of a voltage breakdown between the choke winding and core.
permeability decreases, consequently the inductance also decreases. Despite the air gap, the inductaner of a choke usually varies to some extent with the dircot current flowing in the winding; home it is moessary to suceify the inductance at the current which the choke is intended to carry. Its inductance with little or no direct current flowing in the winding may be considerably higher than the value when full load current is flowing.

NEGATIVE-LEAD FILTERING

For many years it has been almost miversal practice to place filtor chokes in the positive louds of phate power supplios, This means thatthe insulation bet weren the ehoke winding and its eare (which should be gromuded to chassis as a Saffety measure) must be adequate to withstand the output voltage of the supply. This voltage requirement is removed if the chokes are phaced in the negative lead as shown in lig. $7-11$, With this connertion, the raparitance of the transformer serondary to ground appears in paralled with the filter chokes tending to bypass the chokes. Howrver, this effer will be negligible in practical appliealion exerpt in cases where the output ripple must be reducod to a very low figure, such applieations arre usually limitod to low-voltage devices sum as recobers, sperh amplifiers and v.fon,'s where insulation is no problem and the chokes may be plated in the positive side in the comventional mamer. In highor-voltage applidations, there is no reason why the filter chokes should not be placed in the negative load to reduce insulation requirements. Choke terminals, nequtive rapacitor terminals and the transiomer center-tap terminal should be wedl protected against adecidental comtaret, since these will assume full supply voltage to chassis should a choke burn out or the chassis comere ion fatil.

Plate and Filament Transformers

Output Voltage

The output voltage which the plate transformer must deliver depends upon the reguired d.e. load voltage and the type of filtor cirenit.

With a choke-input filter, the reppuired rems.s. secondary voltage (each side of eroter-tap) for a center-tap) rectifier) ean be calculated by the equation:

$$
L_{\mathrm{t}}=1.1\left[E_{0}+I\left(R_{1}+R_{2}\right)+E_{\mathrm{r}}\right]
$$

where E_{0} is the required d.c. output voltage, I is the lowd curent (including bleder current) in amperes. R_{1} and h_{2} are the d.e resistaners of the chokes, and E_{r} is the voltage drop in the rectifier, b_{ℓ} is the full-lome r.m.s. secondary voltage; the open-eireuit voltage usually will be

7 -POWER SUPPLIES

Fig. 7-12-Diagram showing various voltage drops that must be taken into consideration in determining the required transformer voltage to deliver the desired oulpul voltage.

5 to 10 per cont higher than the full-load value.
The approximate transformer output voltage reguired to give a desired d.e. output voltage with a given load with a caparitive-input filter system can be calleulated with Fig. 7-12.

Examula:

Required d.e. output volts - 500
Load current to be drawn - 100 ma. (0.1 amp)
Load resistance $=\frac{500}{0.1}=5000$ ohms.
If the rectifier resistance is $2(00$ ohnns, Fig. 7-5 shows that the ratios of d.e. volts to the reciuiared transformer r.m.s. voltame is approximstely $1.1 . \bar{y}$
"The robutired trabiaformor torminal voltage under load with chokes of 200 and 300 ohms is

$$
\begin{aligned}
E_{\mathbf{t}} & =\frac{E_{0}+I\left(R_{1}+R_{2}+R_{r}\right)}{1.15} \\
& =\frac{500+0.1(200+300+200)}{1.15} \\
& =\frac{\overline{35}(0)}{1.1 .5}=49.5 \text { volts. }
\end{aligned}
$$

Volt-Ampere Rating

The volt-amprere rating of the transformer depends upon the type of filter (capacitive or (hoke input). With at apacitive-input filter the hoating alfere in the secombary is higher because of the high ratio of paok to average current, eonsequently the volt-imperes eonsumed hy the transformor may be several times the watts delivered to the load. With a choke-input filtor, provided the input choke has at least the eritical inductance, the secondary volt-amperes can be ealculated quite elosely hy the equation:

$$
\text { Scc. } V^{r} . A .=0.0007 .5 E I
$$

where E is the lotal r.m.s. voltage of the seeondary (hotween the outside ands in the case of at center-tapporl winding) and I is the d.c. ontput current in milliamperes (load current phe bleder current). The primary volt-amperes will be 10 to 20 per cent higher beanuse of transformer losses.

Broadcast \& Television Replacement Transformers in Amateur Transmitter Service

simall power trinsformers of the type solel for
replacement in broadeast and television receivers are usually designed for service in terms of use for several hours continuously with capacitorinput filters. In the usual type of amateur transmitter servier, where most of the power is drawn intermittently for periods of several minutes with equivalent intervals in betwoen, the published ratings ean be exceroled without excessive transformer heating.

With capacitor input, it should be safe to draw 20 to 30 per cent more current than the rated value. With a choke-input filter, an increase in current of about af pre cent is permissible. If a bridge rectifier is used (with a choke-imput filtere) the output voltage will be approximately doubled. In this case, it should be possible in amateur transmitter sarviee to draw the rated current, thus obtaning about twice the rated output fower from the transformer.

This does not apply, of eourse, to amatem transmittor phate transformers which are usually already rated for intermittent service.

Filament Supply

Execpt for tubes designed for battery operation, the filaments or heators of vacuum tubes used in both transmitters and receivers are universally operated on alternating current obstained from the power line through a stepdown transformer delivering a seeondary voltage equal to the rated voltage of the tubes used. The transformer should be designed to earry the corrent taken by the number of tubes which mas be connector in parallel across it. The filament or heater transformer generally is center-tapped, to provide a balaneed circuit for eliminating hum.

For medium- and high-power r.f. stages of transmitters, and for high-power audio stages, it is desirable to use a separate filament tramsformer for eath seetion of the transmitter, installed near the tube soekets. This avoils the neerssity for abnormally large wites to earry the total filament current for all stages without appreciable voltage drop. Maintenane of rated filament voltage is highly important, espeeially with thoriated-filament tubes, since under- or over-voltage may reduee filament life.

Typical Power Supplies

Figs. 7-13 and 7-14 show typical powersupply circuits. Fig. $\overline{7}-13$ is for use with trans-
formers commonly listed as broadeast or television replacement power transformers. In addi-

Typical Power Supplies

Fig. 7.13-Typical a.c. powersupply circuit for receivers, exciters, or low-power transmitters. Representative values will be found in Table 7-II. The 5 -volt winding of T_{1} should have a current rating of at least 2 amp , for types 5Y3-GT and 5V4-GA, and 3 amp . for 5U4-GB.
tion to the high-voltage winding for plate supply, these transformers have windings that supply filament voltages for both the rectifier tube and the 6.3 -volt tubes in the reeciver or low-power transmitter or exriter. Transformers of this type may be obtained in ratings up to 1200 volts r.m.s. center-tapped, 200 d.e. mat. output.

Fig. 7-1:3 shows a two-sertion filter with caparitor input. However, depending upon the masimum hum level that may be allowable for at particular application, the last capacitor and choke maty not be needed. In some low-current applications, the first capacitor alone may provide adequate filtering. Table $7-11$ shows the approximate full-load and bleceder-load ontput voltages and ace, ripplo pereentages for several representative sots of components. Voltage and ripple values are given for three points in the rircuit - Joint A (first (atpatcitor only used), Point 13 (last rapacitor and choke omitted), and Point ((eomplete twosedion filter in use).

In euch ease, the bleeder resistor R should be used across the output.

Table $7-11$ also shows approximate output voltages and ripple percentages for choke-input filters (first filter capacitor omitted), for Point B (last rapacitor and choke omitted), and Point C (eomplete two-section filter, first capacitor omitted).

Actual full-lowd output voltages may be somewhat lower than those shown in the table, since the voltage drop through the resistance of the transformer seeondary has not been ineluded.
lig. $7-1+$ shows the conventional circuit of a transmitter plate supply for higher powers. A full-wave rectifier circuit, half-wave rectifier tubes, and separate transiomers for high voltage. rertifire filaments and transmitter filaments are used. The high-voltage transformers used in this circuit are usuatly rated directly in terms of d.e. output voltage, assuming reetifiers and filters of the type shown in lig. 7-14. Tible 7-111 shows typioal values for represontative supplies, based on commonly available eomponents. 'Iransformer

Table 7-II																
Capacitor-Input Power Supplies																
T, Rating		V_{1} Tube Type	C		L		R		Approximate F'ull-lond d.c. Voles at			Approximate Ripple \% at			A pprox. Output 'olts Blesder load	$\begin{gathered} \text { Uscful } \\ \text { Output } \\ \text { Ma.* } \end{gathered}$
R.I.I.S.	D.C.		μf.	Volts	II.	Ohms	Ohms	Watts	A	B	C	\boldsymbol{A}	B	C		
650	40	593-(iT	8	600	8	400	90 K	5	375	360	34.5	2.5	0.08	0.002	450	36
6.0	40	514-riA	8	600	8	400	90 K	5	410	395	375	2.5	0.08	0.002	450	36
700	90	5-3-4:T	8	600	10	225	46 K	10	370	350	330	6	0.1	0.002	460	82
700	90	SVA- CA	8	600	10	225	46 K	10	410	340	370	6	0.1	0.002	460	82
750	150	51-4-(:B	8	700	8	145	2.5 K	10	375	350	330	9	0.2	0.006	500	136
750	150	-14-6iA	8	700	8	145	25 K	10	42\%	400	380	9	0.2	0.006	500	136
800	200	:178-413	8	700	8	120	22 K	20	375	350	32.5	12	0.3	0.008	550	184
					Ch	oke-In	nput P	Power	Supp	lies						
6.50	40	513-6 (iT	8	450	15	420	18K	10	-	240	22.)	-	0.8	0.01	265	25
6.50	40	S「4-6i.A	8	$4: 0$	15	420	18K	10	-	2 5 5	240	--	0.8	0.01	280	25
700	90	51:3-4'T	8	450	10	22.5	11 K	10	-	240	220	--	1.2.)	0.02	250	68
700	90		8	4.00	10	225	11 K	10	-	270	250	-	1.25	0.02	280	68
7.50	150	5Y:3-4T	8	450	12	150	13 K	20	-	265	245	-	1	0.01.)	325	125
750	150	514.cid	8	4.50	12	150	13 K	20	-	280	260	-	1	0.015	340	12.5
800	200	514 -6ib	8	450	12	140	14K	20	--	275	250	-	1	0.015	350	175

[^2]fig. 7.14-Conventional powersupply circuit for higher-power transmitters.
$\mathrm{C}_{1}, \mathrm{C}_{2}-4 \mu \mathrm{f}$. for approximately 0.5% output ripple; 2μ f. for approximately 1.5% output ripple. C_{2} should be $4 \mu \mathrm{f}$. if supply is for modulator.
R-25,000 ohms.
L_{1}-Swinging choke: $5 / 25 \mathrm{~h}$., current rating same as T_{2}.
L_{2}-Smoothing choke: current rating same as T_{2}.
$\mathrm{T}_{1}-2.5$ volts, 4 omp . for type 816; 2.5 volts, 10 amp . for 866A.
T_{2}-D.c. voltage rating same as output voltage.
T_{3}-Voltage and current rating to suit transmitter-tube requirements.

V_{1}-Type 816 for 400/500-volt supply; 866A for others shown in Table 7 -III.
See Table 7-III for other values.
voltages shown are reppresentative for units with dual-voltage secondaries. Tha bleoderload voltages shown may be somewhat lower than actually found in praticer, because transformer resistamer has not beren included. Ripple at the output of the first filter section will be approximately 5 per cent with a $4-\mu$ f. (apancitor, or 10 per cont with a $2-\mu$. (apandor. Transformers mate for amaterm service are designed for choke-input. If a ca-pacitor-input is used rating should be reduced about 30%.

Table 7-III							
Approx. D.C.		$\underset{\text { Rating }}{T 2}$		$\begin{aligned} & I, 2 \\ & I I . \end{aligned}$	Vollage Raling C_{1}, C_{2}	$\underset{\text { Watts }}{R}$	Appror. Bleederlonal Output Volts
Volts	Ma. ${ }^{1}$	Approx. V.R.M.S.	Ma.				
400/500	230	520/615	250	4	700	20	440/540
(600/750	290	750/9:50	300	8	1000	50	6.50/800
12:50/1500	210	1.500/17.30	300	8	2000	150	1300/1600
12.50/1.500	440	1500/1750	500	6	2000	150	1315/1615
$2000 / 2.500$	200	2100/2900	3004	8	3000	$320{ }^{2}$	$20.00 / 2500$
$2000 / 2.500$	400	$2400 / 2900$	500	6	3000	$320{ }^{2}$	2066-5/25 63
$2.500 / 3000$	380	2500/3450	500^{5}	6	4000	500^{3}	$2565 / 306.5$
I Balanre of transformer current rating eonsumed by bleeder resistor. ${ }^{2}$ l'se two lion-watt, 12.500 -ohn units in sories. ${ }^{3}$ l'se five 100 -watt, 5000 -ohm units in series. + Regulation will be somewhat better with a 400 or 500 -ma. choke. 5 legulation will be somewhat better with a $\overline{5} 0$ o-ma. ehoke.							

Voltage Dropping

Series Voltage-Dropping Resistor

Cortain plates and serems of the various tules in a transmitter or receriver often require a variely of operating voltages difiering from the output voltage of an available power supply. In most cases, it is not economically feasible to provide a separate power supply for each of the required voltages. If the eurrent drawn by an clectrode, or combination of electrodes operating at the same voltage is reasonably ronstant under normal operating conditions, the required voltage may be obtained from a supply of higher voltage hes means of a voltagedropping resistor in serios, as shown in Fig. $7-15 \Lambda$. The value of the series, resistor, R_{1}, may be obtained from Ohm's Law, $R=\frac{E_{4}}{I}$, where
F_{d} is the voltage drop required from the sup-
ply voltage to the desired voltage and I is the total rated current of the load.

Example: The plate of the tube in one stage and the sereans of the tuhes in two other stages require an oferating voltare of 2.0 . The ncarest avaibable supply voltage is 400 and the total of the rated plate and soreen currents is 75 ma. The required resistatice is

$$
R=\frac{400-250}{0.075}=\frac{150}{0.07 i,}=2000 \mathrm{ohms}
$$

The power rating of the resistor is obtained from 1' $($ watts $)=I^{2} / R=(0.07 .5)^{2}(2000)=11.2$ watts. A 20 -watt resistor is the nearest safe rating to be used.

Voltage Dividers

The regulation of the voltage obtained in this manner obviously is poor, since any change in current through the resistor will cause a directly proportional change in the voltage drop across the resistor. The regulation ean be im-

Fig. 7-15-A-Series voltage-dropping resistor. BSimple voltage divider. C-Multiple divider circuit.

$$
R_{3}=\frac{E_{1}}{I_{6}} ; R_{4}=\frac{E_{2}-E_{1}}{I_{1}+I_{1}} ; R_{6}=\frac{E-E_{2}}{I_{1}+I_{1}+I_{2}}
$$

proved somewhat by eomecting a second resistor from the low-voltage end of the first to the negative power-supply torminal, as shown in lig. 7 -15l3. Surh ath arragenment ronstitutes a voltage divider. The second resistor, R_{2}, atots as a constant load for the first, R_{1}, so that ally variation in current from the tap becomes a smaller percentage of the total current through R_{1}. The heavier the current drawn be the resistors when they atone are comnerted across the supply, the better will be the voltage regulation at the tap.
Such a voltage divider may have more than a single tap for the purpose of obtaining more thath one value of voltage, A typical arrangement is shown in lig. $\overline{-}$-I\%C. The terminal voltage is E, and two taps are provided to give lower voltages, E_{1} and E_{2}, at currents I_{1} and I_{2} respectively. The smatler the resistance between taps in proportion to the total resistance,

the smaller the voltage between the taps. For convenience, the voltare divider in the figure is considered to be made up of separate resistances R_{3}, R_{4}, R_{5}, between taps. R_{3} carries only the bleeder current, $I_{1} ; R_{4}$ carries I_{1} in addition to $I_{1} ; R_{5}$ carries I_{2}, I_{1} and I_{b}. To calculate the resistances required, a bleeder current, I_{b}, must be assumed; generally it is low compared with the total load current (10 per cont or so). Then the required values can be caleulated as shown in the raption of Fig. $7-15 \mathrm{C}$, I being in derimal parts of an ampere.
The met hod may be extended to any desired number of taps, eateh rexistance section being calculated by Ohm's Latw using the needed voltari dropacerossit and the total eurrent through it. The power disisipated by each section may be calculated either by multiplying I and E or I^{2} and R.

Voltage Stabilization

Gaseous Regulator Tubes

There is frequent nered for maintaining the voltage applied to a low-volatere low-curent circuit at a practically constant value, regardless of the vollage regulation of the power supply or variations in load current. In such appliations, gaseous regulator tubes (0C:3/ VR105, 01):3/VR150, ete.) eath be used to grood advantage. The voltage drop ineross such tuberg is constant over a moderately wide eurront range. Tubes ate available for regulated voltares near 150, 105, 90 and 75 volts.

The fundamental circuit for a gaseous regulator is shown in Fig. 7-16. . The tube is ron-

Fig. 7-16-Voltage-stabilizing circuits using VR tubes.
neeted in series with a limiting resistor, $R_{\mathbf{1}}$, across a source of voltage that must be higher than the starting voltage. The starting voltage is about 30 to 40 per reent higher that the oprating voltage. The load is connected in parallel with the tube. For stable operation, a minimum tube current of 5 to 10 ma , is required. The maximum permissible current with most types is 40 ma.; consequently, the load carrent (annot exceed 30 to 35 ma . if the voltage is to be stabilized over a range from zero to maximum load current.

The value of the limiting resistor must lie between that which just permits minimum tube curvent to flow and that which just passes the maximum permissible tube curent when there is no load current. The latter value is generally used. It is given by the equation:

$$
R=\frac{\left(E_{\mathrm{s}}-E_{\mathrm{r}}\right)}{I}
$$

Where R is the limiting resistance in ohms, E_{a} is the voltage of the source across which the tube and resistor are connected, E_{r} is the rated voltage drop across the regulator tube, and

7 -POWER SUPPLIES

Fig. 7.17-Electronic voltage-regulator circuit. Resistors are $1 / 2$ waft unless specified otherwise.
I is the maximum tube current in amperes, (usually 40 ma., or $0,0 t$ amp.).

Fig. 7-lbil shows how two tubes maty be used in series to give a higher regulated voltage than is obtaimable with one, and also to give two values of regulated voltage. The limiting resistor may be calculated as above, using the sum of the voltage drops across the two tubes for $E_{\text {r. }}$ Since the upper tube must carty more current that the lower, the load connected to the low-voltage tap must take small current. The total current taken by the loads on both the high and low taps should not exceed 30 to 35 milliamperes.

Voltage regulation of the order of 1 per cent can be ohtained with these regulator circuits.

A single VR tube maty abso be used to regulate the voltage to a load current of almost any value
so long as the variation in the eurrent does not exeed 30 to 35 mat. If, for eximple, the average boal current is 100 mas., at Vla tube may be used to hold the voltage constant provided the current does not fiall brow 85 mat. or rise above 115 mat. In this case, the resistane should be caldulated to drop the voltage to the vilube rating at the maximum load current to be experted plus about mat. If the low resistance is constant, the effects of variations in line voltage mat be climinated by hasing the resistane on the lowd eurrent plus 15 mat. Voltage-regulator tubes may also be conneted in paratlel as deseribed later in this chapter.

Electronic Voltage Regulation

Several circuits have been developed for regulating the voltage output of a power supply elec-

$C_{1}, C_{2}, C_{5}-16-\mu f .600$-volt electrolytic.
$\mathrm{C}_{3}-0.015 \cdot \mu \mathrm{f}$, paper.
$\mathrm{C}_{4}-0.1-\mu \mathrm{f}$. paper.
$\mathrm{R}_{1}-0.3$ megohm, $1 / 2$ watt.
$\mathrm{R}_{2}, \mathrm{R}_{3}-100$ ohms, $1 / 2$ watt.
$R_{t}-510$ ohms, $1 / 2$ wats.
$R_{5,}, R_{5}-30,000$ ohms, 2 watts.
$R_{0}-0.24$ megohm, $1 / 2$ watt.
R7-0.15 megohm, $1 / 2$ wath.
$R_{9}-9100$ ohms, 1 watt.
$\mathrm{R}_{10}-0.1$-megohm potentiomeler.
$R_{11}-43,000$ ohms, $1 / 2$ watt.
li-8-hy, 40-ma. filter choke.
$S_{1}-$ S.p.s.t. toggle.
T_{1}-Power transformer: 375.375 volisr.m.s., $160 \mathrm{ma.;}$ 6.3 volts, 3 amps.; 5 volts, 3 amps.
(Thor. 22R33).

Voltage Stabilization

tronieally. While more complicated than the VRtube circuits, they will handle higher voltages and currents and the output voltage may be varied continuously over a wite range. In the circuit of lig. $\mathbf{7 - 1 7}$, the 0 ("3 regulator tube supplies a reforener of approximately $10 ;$ volts for the 6.1[00 control tube. When the load conneded across the output terminals increases, the output voltage tends to deerease. This drops the voltage on the control grid of the (6.lCo, catusing the tube to draw less curront through the 2 -mogohm plate resistor. As a conserguener the grid voltage on the 807 series regulator rises and the voltage drop arorss the 807 deereases, comprinsating for the reduction in output voltage. With the values shown, adjustment of l_{1} will give a regulated output from 150 to 250 volts, at up to 60 or 30 mat. A Glig-ill rith be sulstituted for the type 807: the available output corrent ean be increased be adding one or more tubes in parallel with the series regulator tube. When tubes are connereted in patratled, 100 -ohm resistors should he wired to each control grid and phate terminal, to reduce the chanees for parasitic oseillations.

Another similar requlator cirouit is shown in Fig. $\mathbf{7}-18$. The primeipal difference is that sereengrid regulator tuhes are used. The fact that a serem-grid tuhe is relatively insensitive to changes in plate voltage makes it possible to obtain a reduetion in ripple voltage adequate for many purposes simply by supplying filtered d.e. to the screens with a consequent satving in weight and cost. The arcompanying table shows the performane of the circuit of Fig. 7 -18. Column 1 shows various output voltages, while Column II shows the maximum current that ean be drawn at that voltage with negligible variation in output voltage. Column III shows the measured ripple at the maximum current. The seeond part of the

Table of Performance for Circuit of Fig. 7.18			
I	II	III	Output coltage - 300
$4.70 \times$.	$\because \mathrm{O} \mathrm{ma}$.	3 mv .	1.50 ma .2 .3 mv .
125	13 ma.	4 mr .	12.5 ma. 2.8 mv .
100 v.	- ma.	6 mv .	100 ma. 2.6 mv .
35.	${ }_{0} 97 \mathrm{ma}$.	$8{ }_{8}^{8 \mathrm{~mm}}$	75ma. 2.5 mv .
350	İg ma.	9.5 mv .	$50 \mathrm{ma}$. , 3.0 mv .
385 v . 300 v .	150 ma.	${ }_{2} 3 \mathrm{mv}$.	$2.8 \mathrm{ma}, 3.0 \mathrm{mv}$.
300 v.	150 ma .	2.3 ms .	10 ma. 2.5 mv .

table shows the variation in ripple with load current at $3(3)$ volts output.

High-Voltage Regulators

Regulated screen voltage is reguired for screengrid tubes used as linear amplifiers in single-sidohand operation. Pigs. $7-19$ through $\overline{-}-22$ show various different circuits for supplying regulated voltages up to 1200 volts or more.

In the eireuit of fig. $\overline{-19}$, gas-filled regulator tubes are used to establish a fixed reforence voltage to which is added an electronieally regulated variable voltage. The design can be modified to give any voltage from 22 volts to 1200 volts, with each designerenter voltage variable by plus or minus (6) volts.

The output voltare will depend upon the number and voltage ratings of the VR tubes in the string loetween the !91 and ground. The total Vli-tube voltare rating needed can be determined by subtrating $2 \boldsymbol{\sigma} 0$ volts from the desired output voltage. As examples, if the desired output voltare is :350). the total VRtube voltage rating should be $350-250=100$ volts. In this case, a VR-105 would be used. For an output voltage of 1000 , the VR-tube voltage rating should be $1(0) 0-250=5 \overline{0} 0$ volts. In this case, five VR-150s would be used in series.

Fig. 7-19-High-voltage regulator circuit by W4PRM. Resistors ore 1 watt unless indicated otherwise.
$\mathrm{C}_{1}, \mathrm{C}_{2}-4-\mu f$. paper, valtage rating above peak-voltage oulput of T_{1}.
$\mathrm{C}_{3}-0.1-\mu \mathbf{f}$. poper, 600 volis.
$\mathrm{C}_{4}-12-\mu \mathrm{f}$. electrolytic, 450 volts.
$\mathrm{C}_{5}-40 \mu \mathrm{f}$., voltage rating above d.c. output valtage. Can be made up of a combination ef electralytics in series, with equalizing resistor. (See section on ratings of fifter components.)
$\mathrm{C}_{6}-4-\mu \mathrm{f}$. paper, voltage rating above voltage rating of

VR string.
$R_{1}-50,000$-ohm, 4-watt potentiometer.
\mathbf{R}_{2}-Bleeder resistor, 50,000 to 100,000 ohms, 25 watts (not needed if equalizing resistors mentioned above are used).
T_{1}-See text.
T_{2} —Filament transformer; 5 volts, 2 amp.
T_{3} —Filament transformer; 6.3 volts, 1.2 amp .
V_{1}, V_{2}, V_{3}-See text.

7 - POWER SUPPLIES

Fig. 7-20—Screen regulator circuit designed by W9OKA. Resistances are in ohms ($K=1000$).
$R_{1}-6000$ ohms for $211 ; 2300$ ohms for $812 \mathrm{~A}, 20$ watts.
$R_{2}-25,000$ ohms, 10 watts.
R_{3}-Output voltage control, 0.1 - megohm, 2-watt potentiometer.
Ti-Filament transformer: 10 volts, 3.25 amp . for $211 ; 6.3$ volts, 4 amp , for 812 A .
T2-Filament transformer: 6.3 volts, 1 amp.

The maximum voltage output that can be ol)tained is approximatels equal to 0.7 times the r.m.s. voltage of the transformer T_{1}. The current rating of the transformo must be somewhat above the lowed current to take care of the voltage dividers and bleoder resistances.

A single fild will handle 90 mat. For harger eurrents, fildis may be added in parallel.

The heater cirenit supplying the 6 it 6 and GN.J should not be grounded. The shatt of R_{1} should be grounded. When the output voltage is above 300 or 100 , the potentiometer shoulal be provided with an insulating mounting. and should be controlled fiom the pane by an extension shaft with all insulateal eoupling and grounded control.

In some cases where the plate tratasformer has sudident corrent-handling capacity, it may be dewirable to operate a sereen regulator from the plate supply, rather than from a separate supplys. This can be done if a regulator tube is used that can take the required voltage drop. In Fig. $\overline{\mathbf{7}}-20$, a type 211 or 812 A is used, the control
tule being a 6AQ5. With an input voltage of 1800 to 2000 , an output voltage of $\overline{50}$, to 700 can be ohtained with a regulation better than 1 per eent over a courent range of 0 to 100 mat.
 is used as the regulator, and the control tube is an kot which ean take the full output voltage, making it unneressary to raise it above ground with VlR tubos. If taps are switched on l_{1}, the output voltage can be varied over a wide range. Increasing the serem voltage clecreases the output voltage. For each position of the tap on R_{1}, docreasing the value of R_{3} will lower the minimum output voltage as h_{2} is varied, and dereasing the

Fig. 7-21-This regulator circuit used by WISUN operates from the plate supply and requires no $V R$ string. A small supply provides screen voltage and reference bias for the control tube.
Ur.less otherwise marked, resistances are in ohms. ($K=1000$). Capacitors are electrolytic.
$\mathrm{R}_{1}-50,000$-ohm, 50 -watt adjustable resistor. $\mathrm{R}_{2}-0.1$-megohm 2-watt potentiometer. $R_{3}-4.7$ megohms, 2 watts.
$\mathrm{R}_{4}-0.1$ megohm, $1 / 2$ watt.
T_{1} —Power transformer: 470 volts center tapped, 40 ma .; 5 volts, 2 amps.; 6.3 volts, 2 amps.
T_{2} —Filament transformer: 7.5 volts, 3.25 cmp . (for V-70D).

value of R_{4} will raise the maximum output voltare. However, if these values are made tem smatl, the 807 will tose control.

At siat volts output, the variation ower a courront change of 20 ta 80 mat. should be noglipible. At hool volts outpme with the same current change, the variation in output volt:ure should the lose that threre per erent. (Tp) to 88 volts of grial bian for a Class 1 or Class $A B_{1}$ amplifier may be taken from the putentiometer acrose the referenceroblage sotrere. This bias cammot, of comrse. loe used for biasing a stage that is drawing grid current.

A somewhat different twpe of regulator is the shunt regulater shown in Fig. 7-22. The V'ld tubes and R_{2} in sorios are across the ontput, Nince the voltage drop aross the V'le tuhes is constamt. any change in output voltane appears across R. This canses a change in grid bias on the $811-\mathrm{A}$ grid. ramsing it to draw more or less current in

Fig. 7-22-Shunt screen regulotor used by W2AZW. Resistonces ore in ohms ($K=1000$). $\mathrm{C}_{1}-0.01 \mu \mathrm{f} ., 400$ volts if needed to suppress oscillotion.
M_{1}-See text.
R_{1}-Adjustoble wire-wound resistor, resistonce and wottoge os required.
inverse proportion to the current heing drawn by the amplifier soreon. This provides a constant load for the serios resistor R_{1}.

The output voltage is equal to the sum of the VR drops plus the grid-tu-groumd voltage of the 811-A. This varies from of to 20 volts between full load and no load. The initial adjustment is mate by placing a milliammeter in the filament contor-tabl lead, as shown, and aljusting R_{1} for a meading of 15 to 20 mat. higher that the normal peak seresin curent. This adjustmont should be made with the amplifier connerted but with no excitation, so that the amplifior draws idling curvent. Niter the aljustment is complete, the moter may be removed from the circuit and the filament exater tap connereded direetly to ground. Wljustment of the tap on R_{1} should, of courses. be made with the high voltage tumed off.

Any mumber of VR tubes may be used to prosvide a regulated voltage near the desimed value The maximum curvent through the $811-\mathrm{A}$ should be limited to the maximum plate-enrront rating of the tulo. If larger cuments are neeressary, two Sll-as may be eontheded in parallel. Over a curvent range of 3 to tio ma., the regulator holels the output voltage constant within 10 or 15 volts.

Bias Supplies

As disenssed in Chapter it on high-frequency transmitters, the chief function of a bias supply for the r.f. states of a transmitter is that of providing protertive bias, although under certain circumstances, a bias supply, or pack, as it is sometimes called, can provide the oprating bias if desired.

Simple Bias Packs

Fig. 7-2:A shows the diagram of a simple bias supply. R_{1} should be the recommended grid leak for the amplifier tube, No grid leak should be used in the transmitter with this type of supuly. The output voltage of the supply, when amplifier grid current is not flowing, should the some value betwern the hias re-
quired for platweurrent cut-off and the recommended operating bias for the amplifier tube. The transformor patk voltage (1.4 times the r.m.s. value) should mot exeed the reeommonded operating-hias value, otherwise the output voltage of the park will soar above the operating-bias value with rated grid current.

This somang can be redued wa considerable extent hy the use of a voltage divider ateross the transiomer seromdary, as shown at 13. Such a sustem can be used whon the transformer voltage is higher than the operating-bias value. The tap on R.z should the adjusted to give amplifier cut-off hias at the output terminals. The lower the total value of R_{2}, the less the soaring will be when grid current flows.

7-POWER SUPPLIES

Fig. 7-23-Simple bias-supply circuits. In A, the peak transformer voltage must not exceed the operating value of bias. The circuits of B (half-wave) and C (full-wave) may be used to reduce transformer voltage to the rectifier. R_{1} is the recommended grid-leak resistance.

Fig. 7.24-lllustrating the use of VR tubes in stabilizing protective-bias supplies. R_{1} is a resistor whose value is adjusted to limit the current through each VR tube to 5 ma . before amplifier excitation is applied. R and R_{2} are current-equalizing resistors of 50 to 1000 ohms.

A full-wave circuit is shown in Fig. 7-2.3C. R_{3} and R_{4} should have the same total resistance and the tapse should be adjusted symmetrically. In all "ases, the transformer must be dowigned to furnish the current drawn by these resistors phas the current drawn by R_{1}.

Regulated Bias Supplies

The inconvenience of the eireuits shown in Fig. 7-2:3 and the difficulty of predicting values in practical application can be avoided in most cases by the use of gaseous voltageregulator tubes across the output of the bias supply, as shown in lig. 7-24A. A VR tube with a voltage rating anywhere between the biasing-voltage value which will reduce the input to the amplifier to a safe level when excitation is removed, and the operating value of bias, shouh be chosen. R_{1} is adjusted, without amplifier exeitation, until the VIR tube ignites and draws about 5\% ma. Additional voltage to bring the bias up to the operating value when expitation is applied can be obtained from a grid leak resistor, as discussed in the transmitter chapter.

Each VIR tube will handle f() mat. of grid current. If the grid current exceeds this value inder any condition, similar V'IR tahes should be added in parallel, as shown in Fig. $7-24 \mathrm{~B}$, for each 40 ma., or less, of additional grid current. The

Bias Supplies

Fig. 7-25-Circuit diagram of an electronically-regulated bias supply.
$\mathrm{C}_{1}-20-\mu \mathrm{f}$. 450 -volt electrolytic. $\mathrm{C}_{2}-20-\mu \mathrm{f}$. 150 -volt electrolytic. $\mathrm{R}_{1}-5000$ ohms, 25 watts.
R2-22,000 ohms, $1 / 2$ watt. $\mathrm{R}_{3}-68,000$ ohms, $1 / 2$ watt. $R_{f}-0.27$ megohm, $1 / 2$ watt. R.: $\mathbf{3 0 0 0}$ ohms, 5 watts. $\mathrm{Rf}_{\mathrm{f}}-0.12$ megohm, $1 / 2$ watt.
resistors R_{2} are for the purpose of holping to maintain equal eurrents through each VIR tube, and should have a value of 50 to 1000 ohms or more.

If the voltage rating of a single VR tube is not sufficiently high for the purpose, other VI tubes may be used in series (or surics-paratlel if required to satisfy grid-current repuirements) as shown in the diagrams of Pig. 7-24C and 1).

If a single value of fixed bias will serve for more than one stage, the biasing terminal of each such stage may be connected to a single supply of this type, provided only that the total grid current of all stages so connected does not exceed the current rating of the VIR tube or tubes. Alternatively, other separate VIR-tube branches may be added in any desired combination to the same supply, as in lig. $7-24 \mathrm{~L}$, to adapt them to the noeds of earh stage.

Providing the VIR-tube current rating is not exceeded, a series arrangement may be tapped for lower voltage, as shown at F .

The circuit diagram of an electronically regulated bias-supply is shown in Fig. 7-25. The output voltage may be adjusted to any value between 40 volts and 80 volts and the unit will handle grid currents up to 35 ma, over the range of 50 to 80 volts, and 25 ma . over the remainder of the range. If higher currenthandling eapacity is required, more 2A3s can be conneeted in parallel with V_{3}. The regulation will hold to about 0.01 volt per milliampere of grid current. The regulator operates as follows: Since the voltage drop across I_{3}^{\prime} and V_{4} is in parallel with the voltage drop acooss V_{1} and R_{5}, any change in voltage across V_{3} will appear across R_{5} because the voltage drops a a ross both VR tubes remain constant. R_{5} is a coithode biasing resistor for l_{2}°, so any voltage change across it appears as a grid-voltage change on l_{2}. This change in grid voltage is amplified by V_{2} and appears across R_{4} which is connerted to the plate of V_{2} and the grids of V_{3}. This change in
$\mathrm{R}_{\mathrm{i}}-0.1$-megohm potentiometer.
R, $-27,000$ ohms, $1 / 2$ watt.
$\mathrm{L}_{1}-20-\mathrm{hy}$. $50-\mathrm{ma}$. filter choke.
T_{1}-Power transfarmer: 350 volts r.m.s. each side of center 50 ma.; 5 volts, 2 amp.; 6.3 volts, 3 amp .
$\mathrm{T}_{2}-2.5$-volt filament transformer (Thordarson 21 F00).
voltage swings the grids of V_{3} more positive or negative, and thus varies the internal resistance of Γ_{3}, maintaining the voltage drop across V_{3} practically constant.

Other Sources of Biasing Voltage

In some cases, it may be convenient to obtain the biasing voltage from a source other than a separate supply. A half-wave redifier may be connected with reversed polarization to obtain biasing voltage from a low-volage plate suply, as shown in Fig. 7-26A. In an-

Fig. 7-26-Convenient means of obtaining biasing voltage. A-From a low-voltage plate supply. B-From spare filament winding. T_{1} is a filament transformer, of a voltage output similar to that of the spare filament winding, connected in reverse to give 115 volts r.m.s. output. If cold-cathode or selenium rectifiers are used, no odditional filament supply is required.
other arrangement, shown at 1 , a spare filament winding cin be used to operate a filament transformer of similar voltage rating in reverse to obtain a voltage of about 130 from the winding that is customarily the primary. This

7 -POWER SUPPLIES

will be sufficient to operate a VR75 or VR90 regulator tube.

A bias supply of any of the types disensed requires relatively little filtering, if the output-
terminal peak voltage does not approach the operating-bias value, because the effect of the supply is entirely or largely "washed out" when grid current flows.

Selenium-Rectifier Circuits

While the rireuits shown in Figs. 7-27, 7-28 and $7-2$? may be used with any type of rertifire, they lim their greatest advantage when used with selonium rectifiers which require no filament transformer. These rirenits mast be used with cation, observing line polarity in the cirwuits so markerl, to avoid shorting the line, since the nemative output terminal should always be grounded. In circuits showing isolating transformers, the transormer is a requirement, since withont the transformer, the negative output terminal camot be grounded in following good praction for safety without shorting ont part of the reetifier cirenit. In the eiremits which do not show a transfomer, the transformer is preferable, sinere it avoids the neod for a corredty polarized power-line connection to prevent a short cireuit.

Fig. 7-27-Simple half-wave circuit for selenium rectifier. $\mathrm{C}_{1}-0.05-\mu \mathrm{f} .600$-volt paper.
$\mathrm{C}_{2}-40-\mu \mathrm{f} .200$-volt electrolytic.
$\mathbf{R}_{1}-25$ to 100 ohms.
Fig. $7-27$ is a straghtforward half-wavo rectifier circuit wheh may be used in appliat tions where 11.3 to 130 volts d.e. is desired. It can be used as a bias supply bey reversing the polarity of the rectifier and caparitors.
'Threr voluagrodoubler cirenits are shown in Fig. 7 -28. At A is a full-wawe cireuit, while the other two, at A and B, are half-

Fig. 7-28-Voltage-doubling circuits for use with selenium rectifiers. Maximum back voltage on rectifiers is $2.8 \mathrm{E}_{\mathrm{rms}}$. Voltage rating at least 1.4 $E_{\text {rms }}$ for C_{1}, at least $2.8 E_{\text {rms }}$ for C_{2}.
$C_{1}-40-\mu \mathrm{f}$. electrolytic.
C_{2} - 40- $\mu \mathrm{f}$. electrolytic.
$R_{1}-25$ to 100 ohms.

L_{I}-Filter choke.

T_{1}-Isolation transformer.

Wave eirenits. Althongh easier to filter, the cirenit of I has the disadsantage that the output camot be grounded direetly unless an jeolation transformer is used. 13 and ("are similar, exerept that the series capareitor is in different sides of the cireuit. The output of 13 ran be grounded directly if proper line polarity is olserved. (irecuit C, which includes a filter for illustration parposes, requires an isolation transformer if the output is to be grommed, hat sime all thred capacitors, moluding the filtor caparitor, have a common nerative connertion, a triple-mit capacitor may be tised where spater must be conserved.

Fig. 7 -2? shows voltage tripher and quatruplor cirenits. The cireuit of A is a halfwave tripler. A full-wave tripler, reguiring an additional recetifier elomont, is shown at B. The circuit of Fig. $\bar{i}-$ en) $($ is a half-wave voltage quadrupler. The full-wave version is shown at 1). Both full-wave rireuits require an isolation transformer to permit grounding of the output.

In the circuits of Figs. $7-28$ and $7-29$ where an isolation transformer is not shown, it is essential that the inctieated line polarity be observed if the output is to be prounded. Otherwise part of the cireuit will be shorted out.

The resistors h_{1} are for reetifier protective purposes, and recommonded minimum values are given in the tatbe at the and of this section. The value of raparitaner given is representative. larger values will improve voltage regulation. smatler values may be used at a sacrifice in regulation.

Selenium Rectifiers

(A)

Fig. 7-29-A-Tripler circuif. B-Half-wave quadrupler. C-Full-wave quadrupler.
C_{1}-40- $\mu \mathrm{f}$. 200-volt ele ctrolytic.
$\mathrm{C}_{2}-40-\mu \mathrm{f}, 450$-volt electrolytic.
$\mathrm{C}_{3}-48-\mu \mathrm{f}$. 600-volt electrolytic (three 16- f . units in parallel).
$C_{4}-48-\mu \mathrm{f}$. 700-volt electrolytic (three $16-\mu \mathrm{f}$. units in parallel).
$R_{1}-25$ to 100 ohms.
T_{1}-lsolating transformer.

(B)

(C)

Power-Line Considerations

POWER-LINE CONNECTIONS

If the transmitter is rated at much more that 100 watts, special ronsideration shoulal be given to the ace line ruming into the station. lin some residential systems, three wires are brought in from the outside to the dist ribution board, while in other systems there are only two wires. In the three-wire system, the third wire is the neutral which is grounded. The voltage between the other two wires normally is 230 , while half of this voltage (115) appears between wach of these wires and moutral, as indieated in Fig. 7-30. . In systems of this type, usually it will be found that the 115 volt houschold load is divided as evenly as possible between the two sides of the eireuit, talf of the load being connered hetwern one wire and the neutral, while the other half of the load is romected between the other wire and neutral. Heavy appliances, such as elertric
stoves and heaters, normally are designed for 230 -volt operation and therofore are connerted aross the two ungrounded wires. While both ungrounded wires should be fused, a fuse should never be used in the wire to the neutral, nor should a switch be used in this side of the line. The rason for this is that opening the neutral wire does not disconnert the equipment. It simply leaves the equipment on one side of the 230 -volt circuit in series with whatever load may be arross the other side of the circuit, as shown in Fig. 7-3013. Furthermore, with the neutral open, the voltage will then be divided betwen the two sides in inverse proportion to the load resistance, the voltage on one side dropping below normal, while it soars on the ot her side, unless the loads happen to be equal.

The usual line running to basehoard outlets is rated at is amperes. Considering the power consumed by filaments, lamps, modulator, receiver and other auxiliary equipment, it is not

Fig. 7-30-Three-wire power-line circuits. A-Normal 3-wire-line termination, No fuse should be used in the grounded (neutral) line. B-Showing that a switch in the neutral does not remove voltage from ether side of the line. C-Connections for both 115 -and 230 -volt transformers. D-Operating a 115 -valt plate transformer from the 230 -valt line to avoid light blinking. T_{1} is a $2-$ to-1 step-down transformer.
musual to find this 15 -ampere rating exceeded by the reduirements of a station of onty mod(arate power. It must also be kept in mind that the same branch maty be in use for ot hor household purposises through another outlet. For this reason, and to minimizo light blanking when keying or modulating the transmittor, a separate havier line should be run from the distribution board to the station whenever posible. (A threr-volt drop in line voltage will cause noticoable light hlinking.

If the srstem is of the threr-wire type, the there wites should be bronght into the station so that the losed (e:n be distributad to kerg) the line bataneed. The voltage across a fixed load on one side of the eireuit will ineroase as the load rument on the other side is inmeased. The rate of increase will depend upon the resistanere intredued loy the moutral wire If the resistane of the nentral is low, the increase will be eorrespondingly small. When the eurrents in the two eirenits are balamed, no eurrent flows in the moutral wire and the system is operating at maximum eflicione

Light blinking ran bo minimized by using transformers with $2: 30$-volt primarias in the power supplies for the keyed or intermittent part of the load, commerting them arross the two ungrounded wites with no connertion to the neutral, as shown in Fig. $7-300$. The same atin be acomplished hy the insurtion of a stepdown transformer whose primary operates at 230 volts and whose secomdary delivers 115 volts. Convontional 115 -volt transformers mas: be operated from the secondary of the step-down transformer (see Fig. 7-301)).

When a sperial heary-duty lime is to be installed, the local powar company should he consulted as to local reguirements. In some Iocalitios it is necessary to have such a joh done by a lieronsed elertrician, and there may be special requirements to be met in regard to fittings and the manner of installation. Some amateurs terminate the sperial line to the station at a switch box, while others may use eleetrie-stove receptades as the termination. The power is then distributed around the station by moans of ronventional outlets at convenient points. All arruits should be properly fused.

Fusing

All transformer primary circuits should be property fused. To determine the approximate current rating of the fise to be used, multiply each curvent being dratur from the supple in amperes be the voltage at which the current is being drawn. ludade the carrent taken by hoeder resistanees and voltage dividers. In the cane of series resistors, use the sourer voltage, not the vultage at the ergipment end of the resistor. Include filament power if the transformer is supplying filaments. Aiter multiplying the various voltages and currents, add the individual products. Then divide be the line voltage and add 10 or 20 per eent. Lise a fuse with the nearest larger current rating.

LINE-VOLTAGE ADJUSTMENT

In cortain communities trouble is sometimes exporienced from fluctuations in line voltage. Isually these fluctuations are caused by a variation in the load on the line and, since most of the variation comes at certain fixed times of the day or night, such as the times when lights are turned on at evening, they may be taken care of by the use of a manually operated compensating device. A simple arrangement is shown in Fig. 7-31 A. A toy transformer is used to boost or buck the line voltage

(A)

(B)

Fig. 7-31-Two methods of transformer primary control. At A is a tapped toy transformer which may be connected so as to boost or buck the line voltage as required. At B is indicated a variable transformer or autatransformer (Variac) which feeds the transformer primaries.
as required. The transformer should have a tapped secomdary varying between 6 and 20 volts in steps of 2 or 3 volts, and its secondary should be capable of carrying the full load current of the entire transmitter, or that portion of it fed by the toy transformer.

The serondary is connected in series with the line voltage and, if the phasing of the windings is correct. the voltage applied to the primaries of the trinsmitter transformers can be brought up to the rated 115 volts her set ting the toy-transformer tap switch on the right tap). If the phasing of the two windings of the toy transformer happens to be reversed, the voltage will be redued instead of increased. This connection may be used in cases where the line voltage may be above 115 volts. This method is preferable to using a resistor in the primary of a power transformer since it does not affect the voltage regulation as seriously. The circuit of 7-31 3 illustrates the ase of a variable autotransformer (Variac) for adjusting line voltage.

Another scheme by which the primary voltage of cach transformer in the iransmitter may be adjusted to give a desired serondary voltage, with a master control for compensating for changes in line voltage, is shown in lige, 7-32.

This arrangement has the following features:

1) Adjustment of the switch S_{1} to make the voltmeter read $10 \overline{3}$ volts automatically adjusts all transformer primaries to the predetermined correct voltage.

2) The necessity for having all primaries work at the same voltare is eliminated. Thus, 110 volts can be applied to the primary of one transformer, 11.5 to another, ete., as required to obtain the desired output voltage.
3) Independent control of the plate transformer is afforded by the tap switeh S_{2}. This permits power-input control and does not require an extra autotransformer.

Constant-Voltage Transformers

Although comparatively expensive, sperial
transformers called constant-voltage transformers are available for use in cases where it is necessary to hold line voltage and/or filament voltage constant with fluctuating supply-line voltage. They are rated over a range of 17 v.a. at 6.3 volts output, for small tube-heater demands, up to several thousand volt-amperes at 115 or 230 volts. In average figures, such transformers will hold their output voltages within one per cent under an input-voltage variation of 30 per cent.

Construction of Power Supplies

The length of most leads in a power supply is unimportant, so that the arrangement of components from this consideration is not a factor in construction. More important are the points of good high-voltage insulation, adequate conductor size for filament wiring, proper ventilation for rectifier tubes and most important of all - safety to the operator. Exposed high-voltage terminals or wiring which might be humped into aecidentally should not be permitted to exist. They should be covered with adequate insulation or placed inaccessible to contact during normal operation and adjustment of the transmitter. l'owersupply units should be fused individually. All negative terminals of plate supplies and positive terminals of bias supplies should be securely grounted to the chassis, and the chassis comected to a waterpipe or madiator ground. All transformer, choke, and eapacitor cases should also be grounded to the chassis. A.e. power cords and chassis connectors should be arranged so that exposed contacts are never "live." Starting at the conventional a.fe. Wall outlet which is female, one cand of the eord should be fitted with a male plag. The other end of the eord should have a female receptalde. The input connector of the power supply should have a male receptacle to fit the female receptarle of the cord. The power-output connector on the power supply should be a female socket. A male plug to fit this socket should be
connected to the cable going to the equipment. The opposite end of the cable should be fitted with a female connector, and the series should terminate with a male comnector on the equipment. If comnections are made in this manner, there should be no "live" exposed contacts at any point, regardless of where a disconnection may be made.

Rectifier filament leads should be kept short

Fig. 7.33-A typical low-voltage power supply. The two o.c. connectors permit independent control of filament and high voltage.

7 - POWER SUPPLIES

to assure proper voltage at the rectifier socket, through a metal chassis, grommet-lined clearance holes will serve for voltages up to 500 or 7.50, but reramic feed-through insulators should be used for higher voltages. Bleeder and voltagredrupping resistors should be plated Where they are open 10 air circulation. Placily them in ronfined pater redures the rating.

Fig. 7-34. A bottom view of the low-voltage power supply. The separate filament transformer is mounted against the lower wall of the chassis. The electrolytic filter capacitors are mounted on terminal strips. Rubber grommets are used where wires pass through the chassis.

It is highly preferable from the standpoint of operating eonvenience to have separate filament transformers for the reotifier tuber, father that to usio combination filament and plate fransformers, surh as those used in recoivers. This promits the tramsmitter plate voltage fobeswitched on without the neeressity for wating for reetifier fitamonts to rome up totemperature after eateh time the high reltage has brem turnod off. Whon using a rombination power transommer, high voltage maty be turned off without turning the filaments off by using a switeh belwern the transformer erenter tap and chasis. This switeh should be of the rotary
type with good insulation between contacts. The shaft of the switch must be grounded.

SAFETY PRECAUTIONS

All power supplies in an installation should be fed through a simgle main power-line switeh so that all power may be cat off quickly, either before working on the aguipment, or in asisw of an acredent. Suring-operated switehos or relats are not sufficiently reliable for this important service Foolproof devies for cutting oft all power to the transmiter and other equipment are shown in Fig. $7-37$. The arrangements shown in Fig. 7 37 A and 13 are similar circuits for two-wite ($115-$ volt) and thre-wire (2:30-volt) sustoms. x^{\prime} is an enelosed double-throw knife switeh of the sort, usually used as the entramere switeh in house installations. J is a standard atere outhot and I^{\prime} a shored plug to fit the outlet. Ther switrh should bre lowated prominently in plain sight and mem-

Fig. 7-36-Bottom view of the high-voltage supply. The electrolytic capacitors (connected in series) are mounted on an insulating board. Voltage-equalizing resistors are connected across each cafacitor. Separate input connectors are provided for filament and plate power.

Fig. 7-35-A typical high-voltage supply. The sockets for the 866 A mercury-vapor rectifier tubes are spaced from the metal chassis by small cone insulators. Note the insulated tube plate connectors, the safety high-voltage output terminal and the fuse.

Fig. 7.37-Reliable arrangements for cutting off all power to the transmitter. S is an enclosed double-pole knife-type switch, J a stondord a.c. outlet. P o shorted plug to fit the outlet and I a red lamp.

A is for o two-wire 115 -volt line, B for a three-wire 230 -volt system, and C o simplified orrongement for low-power stations.
bers of the houschold should be instructed in its location and use. I is a red lamp located alongside the switch. Its purpose is not so much to sorve as a warning that the power is on as it is to help) in identifying and quickly locating the switch should it become neerssiry for someone else to cut the power off in an emergency.

The outlet J should be placed in some comer out of sight where it will not be a temptation for chidren or others to play with. The shorting plug can be removed to open the power circuit if there are others around who might inadvertently throw the switch while the operator is working on the rig. If the operator takes the plug with him, it will prevent someone from turning on the power
in his absence and cither injuring themselves or the equipment or porhaps starting a fire. Of utmost importance is the fact that the outlot J must be plared in the ungrounded side of the line.

Those who are operating low power and ferd that the expense or complication of the switch isn't warranted can use the shorted-plug ideat ats the main power switch. In this case, the outlet should bo located prominontly and identified by a signal light, as shown in Jig. 7 -37C.

The test bench ought to be fed through the main power switeh, or a similar arrangement at the bench, if the bench is located remote from the transmitter.

A bleeder resistor with a power rating giving a considerable margin of safety should be used across the output of all transmitter power supplies so that the filter cobpacitors will be discharged when the high-voltage transformer is turned off.

Silicon Rectifier Table		
$\begin{gathered} J E T E C \\ T_{I /} \end{gathered}$	$\begin{aligned} & \text { Max. R.1/S. } \\ & \text { Input Volls } \end{aligned}$	Max, D.C. Load Current
1N1082	140	500 ma
1 N1084	280	500 ma.
1*1109	840	425 ma .
1N1110	1120	400 ma .
1N1113	1960	325 ma .
* M 150	130	150 ma .
* M 500	130	500 ma .

Germanium Rectifier Table					
(All 300 ma. d.c. out mut)					
$\begin{gathered} \text { JETEC } \\ \text { Type } \end{gathered}$	Max. R. I/.s. Volts Input	$\begin{gathered} \text { JETEC } \\ \text { T'ype } \end{gathered}$	Mar. R., U.S. V'olts Input	$\begin{gathered} \text { JET'EC } \\ \text { Type } \end{gathered}$	$\begin{gathered} \text { Mar. R., 1/.S. } \\ \text { Volts Inmul } \end{gathered}$
1.N600	70	1N600A	70	1N611	210
1 N 601	105	1.N603A	210	1.N613	350
1.1502	140	1.V604A	280	1N607A	35
1, 6004	280	1N605A	3.50	1N608A	70
$1 . \mathrm{V} 60 .$	3:0	1.6607	3.5	1N611.1	210
1Nib9A	3.5	1 N608	70	1-56131	280

Keying and Break-In

Section 12.1333 of the FCC regulations says ". . . The frequency of the emitted . . . Wave shall be as constant as the state of the art pormits." It also says ". . . spurious radiation shall not be of sufficiont intensity to ciluse inturference in receiving equipment of good engineoring design including adequate selectivity characteristics, which is tumed to a frequency or frequencies outside the frequency bend of emission normally required for the type of emission being employed by the amateur station."
The state of the art is such that an emitted wave can be mighty stable, yet many code (and phone) stations show f.m. and chirp that leaves them open to a citation by the Commission. Key clicks (and splatter) represent violations of the spurious radiation clause, and it isn't hard to find evidences of them in any of the ham bands.

There are four factors that have to be considered in the keving of a transmitter. They are r.f. clicks, envelope shape, chirp and backwave.

R.F. Clicks

When any circuit carrying d.c. or a.e. is closed or broken, the small or large spark (depending upon the voltage and current) generates r.f. during the instant of make or break, This r.f. covers a frequency range of many megaceveles. When a trinsmitter is keyed, the spark at the key (and rolay, if used) causes a click in the receiver. This click has no effect on the transmitted signal. Since it occurs at the same time that a click (if any) appears on the transmitter output, it must be removed if one is to listen critically to his own signal within the shack. A small r.f. filter is required at the contacts of the key (and rolay); typieal eireuits and values are shown in Fig. 8-1. To chrek the effectiveness of the r.f. filter, listen on a lower-frequency band than the transmitter is tumed to, with a short antemat and the gain backed off.

Envelope Shape

The key clicks that go out on the air with the signal are controlled by the shape of the envelope of the signal. The envelope is the outline of the oscilloscope pattern of your transmitter output, but an oscilloscope isn't needed to observe the rffects. Fig. 8-2 shows representative scope patterns that might be obtained with a given transmitter under various conditions.

One should understand that the on-the-air clicks are determined by the shaping, while the r.f. clieks cansed by the spark at the key can only be heard in the station reeeiver and possibly a broulcast receiver in the same house or apartment.

Chirp

The frequency-stability reference in the opening paragraph refers to the "chirp" observed on
many signals. This is caused by a change in frequency of the signal during a single dot or dash. Chirp is an easy thing to detect if you know how to listen for it, although it is amazing how some operators will listen to a signal and say it has no chirp when it actually has. The easiest way to detect chirp is to tune in the code signal it a low beat note and listen for any change in frequency during a dash. The lower the beat note, the easier it is to detect the frequeney change. Listening to a harmonic of the signal will accentuate the frequency change.

The main roason for minimizing chirp, aside from complying with the letter of the regulations, is one of pride, since a properly shaped chirp-free signal is a pleasure to copy and is likely to attract attention by its rarity. Chirps cannot he observed on an oscilloscope pattern of the envelope.

Fig. 8-1 -Typical filter circuits to apply at the key (and relay, if used) to minimize r.f. clicks. The simplest circuit (A) is a small capacitor mounted at the key. If this proves insufficient, an r.f. choke can be added to the ungrounded lead (B) or in both leads (C). The value of C_{1} is .001 to $.01 \mu \mathrm{f}$., RFC_{1} and $R F C_{2}$ can be 0.5 to 2.5 mh ., with a current-carrying ability sufficient for the current in the keyed circuit. In difficult cases another small capacitor may be required on the other side of the r.f. choke or chokes. In all cases the r.f. filter should be mounted right at the key or relay terminals; sometimes the filter can be cancealed under the key. When cathode or center-tap keying is used, the resistance of the r.f. choke or chokes will add cathode bias to the keyed stage, and in this case a highcurrent low-resistance choke may be required, or com. pensating reduction of the grid-leak bias (if it is used) may be needed.

A visible spark on "make" can often be reduced by the addition of a small (10 to 100 ohms) resistor in series with C_{1} (inserted at point " x "). Too high a value of resistor reduces the arc-suppressing effect on "break."

Keying Factors

Fig. 8-2-Typical oscilloscope displays of a code transmitter. The rectangular-shaped dots (A) have serious key clicks extending many kc . either side of the transmitter frequency. Using proper shoping circuits increases the rise and decay times to give signols with the envelope form of B . This signal would have practica!ly no key clicks. Corrying the shoping process too for, os in C, results in a signal that is too "soff" and is not easy to copy.

Backwave

The last factor is "backwave," a signal during kev-up conditions from some amplifier-keyed transmitters. Some operators listening in the share to their own signals and hearing a backwave think that the backwave san be heard on the air. It isn't noressarily so, and the best way to eherk is with an amateur a mile or more away. If he can't hear a backwave on the S a + signal, you can be sure that it isn't there when the signal is weaker, backwave is undesimable because it makes a signal harder to copy, even with aceptable shaping and no chirp.

Amplifier Keying

Nany two-, three- and evon four-stage transmitters are utterly incapable of completely chirp)free amplifier kering because the severe "modulation" of the output stage has an efferet on the oscillator frequeney and "pulls" through the soveral stages. This is particularly true when the oseillator stage is on the same fregueney as the keyed output stage, but it ean ako happen when Freguency multiplying is involved. Another source of ratation is the variation in osellator supply voltage under keying conditions, although this can usually be handled by stabilizing the oweilatfor supply with a Vlk tube. If the objective is a completely chirp-free transmitter, the very first step is to make sure that keving the contemplated amplifier stage (or stages) has no effert on the oscillator frequency. This can be cherked by listening on the oscillator frepueney while the amplifier stage is keyed. Listen for chirp on rither side of zero beat to eliminate the possible effect of a chirpy receiver cansed bey line-voltage changes or pulling. If no chirp of the steatily ruming oscillator can be deteeted, the transmitter cam be keved without chirp in the stage or stages used for the test. This is no assurame that the transmitter can be keyed without charp in an carlier stage until the same test is passed by the earlier stage.

An amplifier can be keyed by any mothod that reduces the output to zoro. Noutralizod stages
can lo keved in the cathonk cireut, although where powers over 50 or 75 watts are involved it is often desirable to use a keying relay or vacum tube keyer, to minimize the chanees for electrical shork. Tube keying drops the supply voltages and adds cathode bias, points to be considered where maximum output is required. Blockedgrid keving is applicable to many neutralized stages, but it presents problems in high-powered amplifiers and requires a source of negative voltage. Output stages that aren't neutralized, surh as many of the tetrodes and pentodes in widespreal use, will usuatly leak a little and show some hatekwave regardless of how they are keyed. In at ease like this it maty be needestry to key two stares to climinate hackwawe. They cat be keyed in the cathodes, with blocked-grid keying, or in the sareens. When sureen keying is used, it is not ahways suffieient to reduce the sereen voltage to zoro; it may have to be pulled to some negative value to bring the ker-up plate current to zero, unless fixed negative control-grid biats is used. It should loe apparent that where two stages are keyed, keying the barlior stage must have no effert on the asillator frepuency if completely chirp)-free output is the goal.

Fig. 8.3-The basic cathode (A) and center-top (B) keying circuits. In either cose C_{1} is the r.f. return to ground, shunted by a lorger capacitor for shoping. Voltage ratings at least equal to the cut-off voltoge of the fube are required. T_{1} is the normal filament transformer. C_{2} can be about $0.01 \mu \mathrm{f}$.
The shoping of the signal is controlled by the values of L_{1} and C_{1}. Increased capacitance at C_{1} will make the signal softer on break; increased inductance at t_{1} will make the signal softer on make. In many cases the make will be satisfactory without any inductance.

Values at C_{1} will range from 0.5 to $4 \mu \mathrm{f}$., depending upon the tube type and operating conditions. The value of l_{1} will also vary with tube type and conditions, and may range from a fraction of a henry to several henrys. When tetrodes or pentodes are keyed in this manner, o smaller value can sometimes be used at C_{1} if the screenvoltage supply is fixed and not obtained from the plate supply through a dropping resistor.

Oscillators keyed in the cathode circuit cannot be softened on break indefinitely by increasing the value of C_{1} beccouse the grid-circuit time constant enters into the action.

8 -KEYING AND BREAK-IN

Fig. 8-4 - The basic circuit for blocked-grid keying is shown at A. R_{1} is the normal grid leak, and the blocking voltage must be at least several times the normal grid bias. The click on make can be reduced by making C_{1} larger, and the click on break can be reduced by making R_{2} larger. Usually the value of R_{2} will be 5 to 20 times the resistance of R_{1}. The power supply current requirement depends upon the value of R_{2}, since closing the key circuit places R_{2} across the blocking voltoge supply.

An allied circuit is the vacuum-tube keyer of B. The tube V_{1} is connected in the cathode circuit of the stage to be keyed. The values of C_{1}, R_{1} and R_{2} determine the keying envelope in the same way that they do for blocked-grid keying. Values to start with might be 0.47 megohm for $R_{1}, 4.7$ megohm for R_{2} and $0.0047 \mu f$, for C_{1}.

The blocking voltage supply must deliver several hundred volts, but the current drain is very low. The 6B4-G or other low plateresistance triode is suitable for V_{1}. To increase the current-carrying ability of a tube keyer, several tubes can be conne cted in parallel.

A vacuum-tube keyer adds cathode bias and drops the supply voltages to the keyed stage and will reduce the output of the stage.
oscillator donsin't rise to full vaher immediately, so the drive on the following stage is changing, which in then may reflect a variable load on the osrillator. Nooseillator has been devised that has no change in frecheney over its entire operating voltage range and with a changing load. Furthermore, the shaping of the keyed-oseillator enveloge usually hat to he exaggorated. beranse the following stages will temb to sharpon up the keying and introduere elicks untess they arr oprated as linear amplifiers (as described in detail later).

Arerptathe oweillatom keving rath be obtained on the lower-frequenery bands, and the mothods used to key tomplifiers can be used. but chirp-freo dickless oscillator keying is probably not possible at the higher fregurnemes. unless at some future date a romplately voltage-insensitive oseillator circuit is devised. Oiten some additional shaphing of the signal will be introduced on "make" through the use of a clamp tube in the output amplifior stage, berathes the time romstant of the screon hepass capacitor phas sereen dropping resistor increases the sereenvoltage rise time, but it is of no help on the "break" portion of the signal.

Shatping of the keying is ohtained in soveral watys. Blocked-grid and vacumm-tuln keyers get suitable shaping with proper flobier of resistor and "atpanitor values, while eathode and suremo grid keying ean be shaped by using inductors and capambors. Simple direnits are shown in Figs. 8-3, 8-1 and 8-5, together with instructions for their idjustment. Thare is no "best" adjustment, sine this is a mat ter of personal preference and what you want your signal to sound like. Most operators serm to like the make to be heste ior than the break. All of the cirenits shown here are camable of at wide range of aljustment.

If the negative supply in a grid-block keyed stage fatls, the tube will draw exersive ker-up coment. To proted against tube damage in this eventhality, ath overload relay ran be hed or, more simply, a fastarting fuse can be included in the eathonde cirenit.

Oscillator Keying

The reader maty womder why oscillator keving hasn't ben mentioned artiar, sime it is widely used. Thar sat fact of life is that exerellent oscillator kering is infinitely more dillicult tos ohtain than is exeeliont amplifier keving. If the objoretive is mo dotectable chirp, it is probably impossible to obtain with oseillator keving, particularly on the higher frequencios. The retrons atre simple. Any keredenseillator triblimittor rerguires shatping at the oseillator, whith involvers changing the oprating conditions of the wseillator wor at simifieant period of time. The output of the

Fig. 8-5-When the driver stage plate voltage is roughly the same as the screen voltage of a tetrode final amplifier, combined screen and driver keying is an excellent system. The envelope shaping is determined by the values of L_{1}, C_{1}, and R_{3}, although the r.f. bypass capacitors C_{1}, C_{2} and C_{3} also have a slight effect. R_{1} serves as on excitation control for the final amplifier, by controlling the screen voltage of the driver stage. If a triode driver is used, its plate voltage can be varied for excitation control.

The inductor L_{1} will not be too critical, and the secondary of a spare filament transformer can be used if a low-inductance choke is not available. The values of C_{1} and R_{3} will depend upon the inductance and the voltage and current levels, but good starting values are $0.1 \mu \mathrm{f}$. and 50 ohms.

To minimize the possibility of electrical shock, it is recommended that a keying relay be used in this circuit, since both sides of the circuit are "hot." As in any transmitter, the signal will be chirp-free only if keying the driver stage has no effect on the oscillator frequency.

Break-In Keying

The usual argument for oscillator koying is that it permits break-in operation, which is true. If break-in operation is not contemplated and as near preffect keving as possible is the objective, then keving ant:mplifior or two by the methods outhed earlier is the solution. For oprerating convenionere, an atomatic transmitter "turnoromner" (see Camphell, (S.'T', Aug., 1950), which will turn on the power supplies and switch antemat relase and reociver muting devieres, can be used. The station switehes over to the complete "transmit" rondition where the first dot is sent, and it holds in for a length of time dependent upon the sotting of the delay. It is equivalent to woiedoprated phone of the type commonly used by s.s.b. stations. It does not permit hearing the other station whenever the key is up, as does full break-in.

Full break-in with excollent keying is not asy to come by, but it is casier than many amateurs think. Many use osedfator keying and put up with a serond-best signal.

Three solutions to chirp-free break-in kowing have heen developerd. One is the "silent v.f.o.," Which eonsists of a well-shiclded oscillator and buffer stage rumbing rontinuously at a low fregueney. The output is keyed before it gets out of the shiolded compartment, and in some applications several subsequent stages are also keyed,

Fig. 8-6- When satisfactory blocked-grid or tube keying of an amplifier stage has been obtained, this VR-tube break-in circuit can be applied to the transmitter to furnish differential keying. The constants shown here are suitable for blocked-grid keying of a 6146 amplifier; with a fube keyer the $6 J 5$ and $V R$ tube circuitry would be the same.

With the key uF, sufficient current flows through R_{3} to give a valtage that will cut off the oscillator tube. When the key is closed, the cathode voltage of the 6J5 becomes close to ground potential, extinguishing the VR tube and permitting the oscillator to operate. Too much shunt capacity on the leads to the VR tube, and too large a value of grid capacitor in the oscillator, may slow down this action, and best performance will be obtained when the oscillator (turned on and off this way) sounds "clicky." The output envelope shaping is obtained in the amplifier, and it can be made softer by increasing the value of C_{1}, If the keyed amplifier is a tetrode or pentode, the screen voltage should be obtained from a fixed voltage source or stiff voltage divider, not from the plate supply through a dropping resistor.

A switch connected in series with the VR tube will, when opened, turn on the oscillator for "frequency spotting."

A second approach is to use a conversion exditer, in which two oscillators (one erystal-controlled, one v.f.o.) run contimuously and their outputs, with suitable buffer stages intervening, are fed to a mixer stage. The mixer stage output is the sum or difference frequency of the two oscillator frequencies, which have been selected to give as sum or difference in ath amateur band. When the mixer stage is turned off by keving, no output appears in the amateur haind, and the effert is the sime as keving an oseillator stage that eamot posibibly chirp. The ascillator freguencios must be selected carcfully so that none of their harmonics fabl within an amateur band, and sufficiont seloctivity must be present in stages following the mixar to insure that no spurious signals are amplified.

Differential Keying

A third approach is to turn the oscillator on fast before a keved amplifier stage can pass any signal and turn off the oseillator fast after the keved amplifier statge has cut off. The principle is called "difterontial keving" and a number of circuits have bern devised for areomplishing the artion. One of the simplest ean be applied to any grid-block keved amplifier or tube-keyed stage by the addition of a triode and a VR tube, as in Fig. 8-6. Losing this keving sistem for break-in, the keying will be chirp-free if it is chirp-free with the VR tube removed from its socket, to permit the oscillator to run all of the time. If the transmitter can't pass this test, it indicates that more isolation is required between keyed stage and owcillator.

Another VR-tube differential keying cireuit, useful when the sereen-grid cireuit of an amplifier is keyed, is shown in Fig. 8-7. The normal sereen keying circuit is made up of the shaping capacior C_{1}, the keying relay (to remove dangerous volt-

Fig. 8.7-VR-tube differential keying in an amplifier screen circuit.

With key up and current flowing through V_{1} and V_{2}, the oscillator is cut off by the drop through R_{3}. The keyed stage draws no current because its screen grid is negative. C_{i} is charged negatively to the value of the-source. When the relay is energized, C_{1} charges through R_{1} to a + value. Before reaching zero (on its way +) there is insufficient voltage to maintain ionization in V_{2}, and the current is broken in R_{3}, turning on the oscillator stage. As the screen voltage goes positive, the VR tube, V_{2}, cannot reignite because the diode, V_{1}, will not conduct in that direction. The oscillator and keyed stage remain on as long as the relay is closed. When the relay opens, the voltage across C_{1} must be sufficiently negative for V_{2} to ionize before any bleeder current will pass through Ra. By this time the screen of the keyed stage is so far negative that the tube has stopped conducting.

8 -KEYING AND BREAK-IN

: 1 ges from the key), and the resistors R_{1} and R_{2}. The + supply should be of to 100 volts higher than the normal sureron voltage, and the - voltage should lx^{2} sufficient to ignite the VR tulx, V_{2}, through the drop in R_{2} and R_{3}. Current through R_{2} will be detormined by voltage required to cut off oscillator; if 10 volts will do it the current will be 1 mat. For a desirable keying chanacteristie, R_{2} will usually have a higher value than R_{1}. Increasing the value of ('1 will softem both "make" and "break."
The tube used at $V^{\prime} 2$ will depend upon the available negative supply voltage. If it is betworn 120 and 150 , a 0 A $3 /$ CRTis is rerommended. Ahove this a 0 (3/VR10; can be used. The diode, l_{1}, can be any diode operated within ratings. i 6Alaí) will suffire with swern voltages under $2 \overline{\text { an }} 0$ and bleded comrents under i) ma. For maximum life a separate heator transformer should be used for the diode, with the "athode conneeted to one side of the heater winding.

Clicks in Later Stages

It wats mentioned earlier that key clicks ean be generated in amplifier stages following the keyed stage or stages. This is ofton a puzzling problem to an operator who has spent considerable time adjusting the keving in his excitor unit for clickless keving, only to find that the elicks are bad when the amplifier unit is added. There are two posible catuses for the clicks: low-frequeney parasitic oscillations and amplifire "clipping."
londer some combitions an amplifier will be momentarily triggered into low-frequency parat
sitic oscillations, and rlicks will be generated when the amplifier is driven by a keved exciter. If these clicks are the result of low-frequence parasitic oscillations, they will be found in "groups" of clicks oceurring at $5\left(j-t^{2} 0\right.$ 150)-kc. intervals wither side of the transmitter frequeney. Of course low-frequency parasitic oscillations cath le generated in a kibed stage, and the oparator should listen carefully to make sure that the outpet of the exeiter is cleat before he blames a later amplifior. Low-frequency parasitic oscillations are usually caused by poor choine in ref. dhoke valurs, and the use of more inductane in the plate choke than in the grid choke for the same stage is recommended. (Geo Chapter Nix and "low-frequency parasitic oseillations.")

When the elieks infrodued by the addition of an amplifier stage are found only netr the transmitter frequence, amplifier "clipping" is indicated. It is quite common when fixed hitus is used on the amplifier and the bias is well past the "cut-of"" value. The effert c:an usually be minimized or climinated by using a combination of fixed and grid-leak bita for the amplifior stage. The fixed bias should to sufficient to hold the key-up plate current only to a low level and not to zoro. In a triode amplifior, overdriving the amplifior can salso result in clipping that will :add key clieks, and the rure is to reduce the drive. 'The output won't suffer appreciably.

A linear amplifier (Class $A B_{1}, A B_{2}$ or 13) will amplify the exritation without adding any clicks, and if clicks show up a low-frepuency parasitic oscillation is probably the reason.

Testing Your Keying

The choice of a keying circuit is not as important as its testing. Ang of the circuits shown in this whapter can be made to give satisfartory keving. hut must lo adjusted properly.

The ewsiest way to lind out what your keyed signal sounds like on the air is to trade stations with a near-by ham friend some evening for a short (gs). If he is a half mile or so away. that's fine, but any distance where the signals are still s ! will he satisfatory.

After you have found out how to work his ris, make eontaet and then have him send slow dashes, with dash spacing. (The letter "T" at about $\overline{5}$ w.p.m.) With minimum solectivity, cut the r.f. gain back just enough to avoid receiver overloading (the condition where you get erisp signals instead of mushy ones) and tunce slowly from out of beat-note range on one side of the signal through to zoro and out the other side. Knowing the tempo of the dashes, fou can readily identify any rlicks in the vieinity as yours or someone else"s. . 1 good signal will have a thump on "make" that is perceptible only where you can ako hear the beat note, and the click on "break" should be pratetically nergligible at any point. liig. X-8. shows how it should sound. If your sigual is like that, it will sound good, provided there are no chirps. Then
have him run off a string of 35 - or $40-\mathrm{w} . \mathrm{p} . \mathrm{m}$. dots with the bug - if they are easy to copl, your signal has no "tails" worth worrying about and is a good one for any speed up to the limit of manual kering. Make one last chere with the selectivity in (Fig. 8-813), to sec that the clicks off the signal are negligible even at high signal level.

If you don't have any convenient friends with whom to trade stations, you can still check your keving, although you have to be a little more careful. The first step is to get rid of the r.f. chek at the key, as deseribed carlier, hecause if you don't you camon make lurther (o) wervations.

So far you haven't done a thing for your signal on the air and you still don't know what it sounds like, but you maty have cleaned up some clieks in the broadeast sot. Now disemmert the antema from vour recriver and short the antema terminals with a short piece of wire. Tume in your own signal and reduce the r.f. gein to the point where your recciver doesn't overload. Detune any antenna trimmer the reneiver may have. If you can't avoid overload within the r.f. gain-control range, pull out the r.f. amplifier tube and try again. If y ou still can't avoid overload, listen to the second

Keying Tests

Fig. 8-8-Representations of a clean c.w. signal as a receiver is tuned through it. (A) shows a receiver with no selzetivity and the b.f.o. set in the center of the pass band, and (B) shows the solectivity in and the receiver adjusted for single-signal reception. The variation in thickness of the lines represents the relative signal intersity. The audio frequency where the signal disappears will depend upon the receiver selectivity charocteristic ond the strength of the signal.
harmonio as a last resort. In overlouded reeriver ran generate elieks.

Deseribing the volume level at which you shothd sot your receiver for theso "shack" thets is a little difficult. The r.f. filter should be effective with the receiver rumning wide open and with an antenna connected. When you turn on the tramsmitter and take the wher steps mentioned to reduce the signal in the recoiver, run the atudioup and the r.f. down to the point where you can just hear a little "rushing" sound with the b.f.o. off and the receiver tuned to the signal. This is with the selectivity in. At this level, a properly adjusted kering cireuit will show no dieks off the mahingsound range. With the b, f.o. on and the same gain setting, there should be no clicks out side the beatnote range. When ohserving elicks. make the slow-dash and fast-dot tests outlined previomsly.

Now you know how your signal smuds on the air, with one possible exception. If keving your
transmitter makes the lights blink, you may not tre able to tell ton acourately about the chirp on bour sigmal. Howerer, if you are sutisfied wilh the :bseme of chirp when thang cilher site of zero heut. it is wofe ta aswme that your reeniver isalt rhirping with the light flieker :und that the whereod simal is a true representation. No eharp (ither side of zoroh hat is line. Won't try to make these tests withont first getting rid of the r.f. rlick at the kers. Inermere clicks cath mesk a charp.

Exchanging stations fomporarily with another interosted amateor is prohally the best way ta rhoek your krying. The seromethest metherd is to choerk it in the shatek as outlined above. The least satisfactory wiy is to ask another ham on the air how your keving sonnds. The reason it is the least satisfactory is that most hams are reluctant to be highly eritical of amother amat teures sighal. In a great many rases they don't arthatly know what to look for or how to desmibe any aberrations they may observe.

Vacuum-Tube Keyers

The practieal tube-kever cirenit of ligg, $8-9$ can be used for keying any stage of any transmitter. Depernding upon the power level of the keved stage, more or fewer Type 2 A 3 B thanes cath be comereted in paralled to handle the meressary current. The voltage dop) through a single $\underline{2} .13$ varies from alout 70 volts at 50 ma , to 40 volts at

20 mas. Tuhes athed in paratlel will reduce the drop in proportion to the mumber of tubes used.

When connereting the output terminals of the kever to the eirenit to be kered, the grounded output terminal of the kever must he eomueded to the transmitter groum, "Thus the kever esul be used only in negative-load or cathode keying.

Fig. 8-9-Wiring diagram of a practical vacuum-tube keyer.

8-KEYING AND BREAK-IN

When used in cathode keving, it will introduce cathode bias to the stare and reduee the output. This can be compensated for by a reduetion in the grid-leak bias of the stage.

The nerative-voltarer supply can be oliminated if a negative voltare is available from some other sumere, such as a hits supply. A simplificed version of this cirenit could climinate the switches amel assorithed resistors and caparitors. sibe they are inemporated only to allow the operator to seleet the combination he prefers. But one the values have been soldeted, they ean be soldered permat nontly in place. The rule for adjusting the keying (hatactoristie is the same as for blocked-grid keving.

Fig. 8-10-Simple low-power vacuum-fube keyer.
Connect keyer to a low-valtage power supply at point " X ".

A Low-Power Keyer

If a low-level stage ruming only a fow watts is to be kerad, the tube-keser circuit of Fig. 8-10 offers a simple solution. By using a 1171.7 type tulo, which incomporates its own rectifier, it is only neressary to eomert to some existing power supply at the moint marked " X ". The keymg chatacteristie will vary with many fartors, so the values of l_{1} and R_{2} only represont starting prints for experimentation.

When the key or keving lead has prod insulation, the resistance maty beome low enough (particularly in humid weather) to reduce the blocking voltage athe allow the keyer tube to pass some eurrent. This maty c:usera slight basckwave but it can be curcel by botter insulation, or bey reduced values of resistors and inereased vatues of eapascitors.

Monitoring of Keying

In genoral, there are two common mothods for monitoring one's "fist" and signatl. The first, and prohaps less common type, involves the use of an audio oseillator that is keyed simultancomsus with the transmiter.

The second method is one that permits reveriving the signal through one's rereover, and this generally requires that the receiver be tuned to
the transmitter not abwas conveniont unkes working on the same frecpucory) and that some mothod be provided for preventing overloading of the rexedere, so that a grod replica of the transmitted signal will be received. lixerpt where quite low power is used, this usually involves a relay for simultanernsly shorting the receiver input terminals and redueing the receivor gain.

Break-In Operation

Brabk-in operation requires a sepatrate rereiving antema, sine nome of the available antemat change-over relays is fist enough to follow keying. The recoiving antenna should be installed as far as possible from the transmitting antemma. It should be mounted at right angles to the transmitting atutemat and fod with low pirk-up lead-in material such as enaxial cahle or 300 orohn l'win-d.ead, to minimize pick-up,

If a low-powered trammitter is used, it is often quite satisfiactory to use mo sperial equipmont for break-in operation other than the separate roveiving antenna, since the tramsmitter will not block the recoiver too serionsl?: beon if the transmitter keys without rlieks. some clicks will be heard when the recedere is foned to the transmitter frequence because of overload in the receiver. An output limiter, as deseribed in Chapter Five, will wash out these
clicks and pormit grood break-in operation oven on your transmiter freformes.

When powers above 25 or 50 watts are used, surcial treatment is required for quiet break-in on the transmitter frequency. A means should be provided for shorting the input of the reerover when the colle characters are sent, and a means for redueing the gain of the reerever at the stme time is ofter neressary. The system shown in Fig. S-II permits quint break-in oparation for higher-powered stations. It reguires a simple operation on the reediver but otherwise is perfeetly straightforward. l_{1} is the regular reviver r.f. and i.f. gain control. 'lhe ground lead is lifted on this control and run to a rheostat, Re, that goes to ground. A wire from the junction runs outside the reediver to the keying relay: k_{1}. When the key is up, the ground side of R_{1} is connected to ground through the relay arm, and the receiver is in its normal operating

Fig. 8-11-Wiring diagram for smooth break-in operation. The lead shown as a heavy line and the lead from bottom relay contact to ANT post on receiver should be kept as short as possible for minimum pickup of the transmitter signal.
$\mathrm{R}_{\mathbf{t}}$-Receiver manual gain control.
$\mathrm{R}_{2}-5000$ - or 10,000 -ohm wire-wound potentiometer.
$K_{1}-S . p . d . t$ keying relay. Although battery and d.c. relay are shown, any suitable a.c. or d.c. relay and power source can be used.
eondition. When the key is cosed, the relay eloses, which breaks the ground connection from R_{1} and applios additional bias to the tubos in the recoiver. This bias is controlled by R_{2}. When the relay closes, it also closes the circuit to the transmitter oscillator. A filter at the key suppresses the elicks caused by the relay current.

The keying rolay should be momed on the reopiver as elose to the antemat terminals as possible, and the leads shown havy in the diagram should be kept short, since long leads will allow too murh signal to get through into the recoiver. A grod high-speed keying relay should be used.

I few of the recent communications receivers bring the return lad from the r.f. gain control to a nommally shorted terminal at the rear of the recoiver. The preceding break-in system ean be readily applied to a recoiver of this type, and it will repay the receiver owner to study
the instruction book and determine if his receiver alrealy has this comection made in it. ()ther receivers have provision for reducing the gain or for blanking the recoiver; one popular model has provision for bringing in negative bias from atransmitter grid leak to cut off an sudio stage during transmit periods.

Full deseriptions of systems for break-in operation can be found in the following QST articlas:
Crawfis, "Simplified 'Break-In with One Antenna," " Nov., 1954.
Goodman, "VIR Broak-In Keving," Feb., 1954.
Hays, "Solenium Break-In Keying," July, 1955.
Miller and Meichner, "TVG - An Aid to BreakIn," March, 195̈3.
P'ukett, "'I)e Luxe' Kicying Without Relays," Septomber, 1!953; 1'art II, Dee., 195:3.
Puckett, "C.W. Min's Control Unit," Feb., 1955.

Receiver Muting and Grid-Block Keying

The muting system shown in Fig. 8-12 can be used with any grid-block or tubr-keyed transmitter, and it is particulary applicable to the VR-tule differential kexing cirruit of Fig. 8-6, Reforring to Fig. 8-12, R_{1}, R_{2} and C_{1} have the same values and functions that the similarly dosignated components in Figs, 8-4 and 8-6 have. When the key is open, at small current will flow through R_{3}, the 0. ${ }^{2}$? and R_{2}, and the voltage drop across h_{3} will the sufficient to cut off the 6 Ct . With the 6 C 4 cut off, there is no curront through h_{4} and consequently no voltage appearing aeross Ra, The voltage of the recoiver a.v.c. bus is zero with resperet to ground.

When the key is closed, there is insufficiont voltage across the 0.12 to maintain conduction, and consequently there is no current flow through R_{3}. With zero voltage between grid and cathote, the $6 \mathrm{C}-4$ passes current. The drop arross R_{4}, and thus the negative voltage applied to the a.v.e. line in the receiver, is chetermined by the value of R_{4}. Thas the key-down gain of the receiver can be adjusted to permit listening to one's own
signal, by increasing the value of R_{4} until the receiver output level is a comfortable one. To utilize the same antenna for transmitting and receiving, and thus benefit during receiving from

Fig. 8-12-Circuit diagram of a receiver muter for use with grid-block or tube keying.
C_{1}-Shaping capacitor, see text.
R_{1}, R_{2}-Shaping resistors, see text.
$R_{3}-0.1$ megohm.
R_{4}-1 5,000-ohm 2-watt potentiometer
$\mathrm{RFC}_{1}-1$ mh. or less.

8-KEYING AND BREAK-IN

:athe directional propertios of the antemat, ant eloetronie thansmit-recoive switrh wath he used (sere hater in this chapter).
 - ate to the receiver instruction mamat, and conneetion be made to it through a length of shiedded wire. The a.v.e. switeh in the reediver must be turned to we for the muter to be effertive.

If desired, the mating ciretit cam be built into the trimmitter, or it "an be mounted on at welf
or small chassis behind the receiver. The two negative voltages can lie furnished be one supply and a masonably heary voltage divider: the man recpurement of the supply is that the nominal - 12.5 volts remain helow the normal voltage drop of the 0A? (150 volts). Installation of the muting ritenits should have little or mo efferet on the keving characteristice of the transmitter; if it does the chatacteristic wan be restored by proper valures for R_{1}, R_{2} and C_{1}.

The "Matchtone"

The "Matchton"" is a rombination of the Monimateh (sere (hapter 21) and a cow. toncgemerating monitor. It consists of a tramsistor atudio oscillator whith uses the Momimateh as a kered sourer of d.e. power. In addition to the usial function it can be used bey the sightless amateur as an andible tramemittor-antemata tuning indicator.

While direct monitoring of $\mathrm{r} \cdot \mathrm{w}$. trammissions via the reociver is a prefered mothod leceatse it can reveal murh athont the keving chatateristios, transmissions offse from the rexering frequenes call for a sparate monitor. The self-powered transistorized monitor fills the bill nieroly, The Hse of the r.f. bridge, abredly commered in the r.f. transmission line as a somere of power for the monitor is at logieal whore.

The eirenit of the Matrhtone and the comeretions to the Monimatah and the reereiver are
 grid-to-plate andio interstage transformor is used for forellatek as wath ats for compling to the reroiver. If a transformer having a p.p. Wrid wimling is not avalathe from the junk box. The andio compling
 to the ungroumeded and of R_{1}. While use of a tow value of capacitane for (2 is neressury to atwod cexewive shunting of the high-impedane receriver :andio rifenit, the value shown will provide suffirient coupling for a grod audio tone level from the monitor. A thiral possithitity for the atudio output eomeretion from the monitor is to substitute the headphones for h_{1}. togedher with a simglepote doublo-thow swith o: relay to switch the phones between the monitor and the remeiver. The on-off switch. S. S_{1} ean be made a part of h_{2} bue us of a volume erontrol witah attachment.

Ther value shown for ('1 gives an andio pitoh in the sor 1000 asede range, deperading somewhat on the paticulat tramsomer, the setting of h_{2} and the tramsmitter ontput power. Other values of (\% cath la lused to adjust the pitch to the operator's individual proferenere. h_{2} maty the adjusted to compensate lom the whange in the d.e. rurrent from the Monmateh camsed bey a rhange in trathemitter fremermeg hand or powers.
 "ireuit should osedlate with usable andio hevel with is little as 0.1 mis. d.e. flowing to grownd through the monitor. Other fon-cost transistors such as the $2 \mathrm{~N} 100^{2}$ and the 2 N 170 should work "plually well.

Berause the pitch of the atudio tone is to some degree dependent upon the d.e. voltage obtained from the Monimateh, the piteh gives a reatomably areurate indication of corrert tinal amplifier phate (irrouit tuning (matimum pown output) and, if an antonnt thaner is used, will also indieate resonanere of the thmer to the transmitter output frequency. This eharateristio of the Matohtone should be of considerable atid to sightless amatteurs. (From (SNT', January, 1958.)

Fig. 8-13-Circuit of the Matchtone. Section enclosed in dashed line is the Monimatch and its indicating circuit, Braid of shielded lead to oudio grid should connect to receiver chossis.

C_{1}-Paper.

C_{2}-Mica or ceramic.
$Q_{1}-2$ N109, CK722 or similar.
$R_{1}-1000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{2}-0.25$-megohm volume control.
S_{1}-S.p.s.t. toggle.
T_{1}-Push-pull interstage audio transformer, 2:1 or 3:1 total grid to plate.

T.R. Switches

Electronic Transmit-Receive Switches

No antenna relay is fast enough to switch an antema from transmitter to receiver and bark at normal keying speeds. As a consequence, when it is desired to use the same antema for transmitting and receiving (a "must" when directional antemas are used) and to operate e.w. break-in or voice-controlled sidehand, an electronic switeh is used in the antemna. The word "switel"" is a misnomer in this rase; the transmitter is connected to the antema at all times and the t.r. "switch" is a device for preventing burn-out of the receiver by the transmitter.

One of the simplest approarhes is the circuit shown in Fig. 8-14. The 6Ct cathode follower couples the incoming signal on the line to the receiver input with only a slight reduction in gain. When the transmitter is "on," the grid of the 6 Ct is driven positive and the rectified current hiasps the 6C4 so that it can pass very little power on to the receiver. The factors that limit the r.f, voltage the circuit can handle are the voltage break-down rating of the $47-\mu \mu \mathrm{f}$. capacitor and the voltage that may be sately applied between the grid and eathode of the taloe.

To avoid stray pick-up on the lead between the eathode and the antema terminal of the receiver, this lead should be kept as short as possible. The entire unit shouk be shioded and mounted on the receiver near the antema terminals. In wiring the tube socket, input and output cireuit components and wiring shoula be separated to reduce feed-through by stray (o) pling.

The t.r. switch of Fig. 8-15 differs in two Ways from the preceding example. By using a grounded eathode and a tuned plate circuit, a voltage gain is obtained through the tube. The input is taken from the plate of the transmitter output stage instead of from the transmission line, and as a result the voltage build-up in the transmitter tank is utilized. Unlike the preceding t.r. switeh, which permits listening on frequencies or bands to whieh the transmitter is not tuned, this switeh will not permit much receiver response at frequencies removed from the transmitter frequency. Usually this is no prohlem, since most operation is around one's transmitter frequency. The 2.2 K resistor across the plate dircuit broadens the frequency response and reduces the need for retuning over a band. In a commerrial version of this switeh, a broadband output transformer replaces L_{1} and the variable capacitor, and no coil changes are required in the range 3.5 to 30 Me .

The switch of Fig. 8-15 can be built in a small metal low and mounted in the transmitter close to the output stage. The plate and heater power can be "borrowed" from the transmitter; the plate power will be less than 15 man . at 100 to 150 volts. The coaxial line to the receiver can be any convenient length.

The capacitive voltage divider for feeding the t.r. switch is eomposed of the t.r. switeh input
caparitance (about $10 \mu \mu \mathrm{f}$.) and a series capacitor for connertion to the plate tank. A conservative value of the series capacitor for an a.m. platemodulated final ean be calculated by the following formula:

$$
C_{1}(\mu \mu \mathrm{f} .)=\frac{2500}{\text { d.c. plate volls }}
$$

The series capacitance as eallenlated alove may be doubled in value when the final is not modulated, as in c.w., grid modulation or in a linear power amplifier.

The series capacitance is generally less than $20 \mu \mu \mathrm{f}$. The capacitor should be of the low-loss variety and should be capable of withstanding the tank voltage. For plate voltages of 800 volts or less, the disk type ceramic capacitors have been found to be adequate. For greater voltages, an inexpensive capacitor may be fabricated from RG-8/U coaxial cable. This cable has a rating of approximately (a)o peak r.f. volts, and in the laboratory it withstands in excess of 20,000 volts of d.e. Actually, in normal use it is usually limited hy current rather than voltage. The capacitance of the cable is $30 \mu \mu$, per foot, so that one maty measure off the required rapacitance by the inch, and end up with a really low-loss and prartical unit.

The t.r. switch iuput is a high impedance for low frequencies. It is advantageons, therefore, to have the tank rircuit at d.c. ground potential so that crosstalk at power-line frequencies will be eliminated. Fortumately, this is the case in practically all modern transmitters. A type of noise rustomarily pieked up with electronie t.r. switches is that caused by phate current flowing in the power amplifier. It is nevessary, therefore, to bias the tubes beyond cutoff when receiving.

TVI and T.R. Switches

The preceding t.r. switches generate harmonics when their grid circuits are driven positive, and these harmonics can eause TVI if steps are not

Fig. 8-14-Schematic diagram of cathode-follower t.r. switch. Resistors are $1 / 2$-watt. The unit should be assembled in a small chassis or shield can and mounted on or very close to the receiver antenna terminals. The transmitter transmission line can be connected at the coaxial jack with an M-358 Tee adopter.

The heater and plate power can be "borrowed" from the receiver in most coses.

Fig. 8-15-A t.r. switch that mounts in the transmitter. Resistors are $1 / 2$-watt.
C_{1}-Depends upon transmitter. See text.
L_{1}-Plug-in coil to tune to band in use. Coupling coil to receiver, 20 per cent turns in L_{1} wound tight over "cold" end of L_{1}.
taken to provent it. The switeh of Fig. 8-14 should be wedl-shieded and used in the antemat transmission line between tramsmitter and lowpass filter. 'Thu switch of Fig. 8-15, when mounted
in a trimsmitter that was TVI-free, should not introduce ans 'TVI becanse the filtering that is sureesfind for the transmitter should be suceresful for the harmonies generated by the t.r. switch.

Speed Keys

The average operator finds that a sped of 20 to 25 words per mitute is the limit of his ability with a straght hand key. Hownerer. لe rall increas his sued to:30 to 40 w.p.m. by the use of a "spered key." The merehanical sued keys, available in most radio stores. give additional sheed ber making stringe of dote when the key lever is pushed to the right: dashes are made mamally bey closing the key to the laft. After practiong with the suod kese, the operator ohtains the eoreme "fore" for the kery which allows him to release the dot kever at exactly the right time to make the required number of dots. A preal key wat deliwer pratically perfere wath
wharacters when used he an operator who knows what good cote sounds like; however, one will not rompensate for an operator's poor code abilits.

An electronie speed key will not comperisate for an operator's poor sonding ability, either. However, the ele dronide speed key has the feature that it makess stringe of both dots amd of dashes. be proper manipulation of the key lover. and in current desigus the dashes are self-completinu. This means that it is impossible to send anything but the eorrect length of dash when the key lever is clewed on the dash side. It is, of course. possible to soud an incorrect mumber of dathes through poor operator timing.

An Electronic Speed Key

Fig. 8-16-This electronic speed key has a range of approximately 8 to 35 w.p.m., set by the speed control at top center. It has relay output and can be used with any transmitter that can be keyed by a hand key. The key $(l e f t)$ is made from two telegraph keys and a pair of $1 / 8$-inch thick sheet plastic paddles.

The unit shown in Figs. 8-16 and 8-18 represents one of the simpler designs of an clectronie key: The total cost of the key, in dollars and construetion time, is quite low. The keving lever is made from parts taken from two straight telegraph keys: these are available at less that a dollar carh in the war-surplus version (J-38). I more elegatht keving lever can be built from a (more-expensiwe) war-surphus merhanieal sperd key.
Referring to liig. 8-17, the timing of the key is provided by the osellator $l_{1,1}$. When the key is closed, a sawtooth wave is gencrated be the fast "harge and slow discharge of the $.25-\mu \mathrm{f}$. caparitor in the eathode circuit. The rate of discharge is set bey the total resistance across the apabitor, and the voltage to which the capacitor is charged is determined he the setting of R_{1}. The sawtooth wave, applied to the grid of len. commot drive the grid very pesitive because the 3.3 -megohm resistor limits the current; the offect is to "elip the tops" of the sawtooth cyeles. The

Fig. 8-17-Circuit diagram of the electronic speed key. Unless otherwise specified, resistors are $1 / 2$ watt. Polarity-marked capacitors are electrolytic, others are tubular paper.
$K_{1}-5000$-ohm 3 -ma. relay (Sigma 41 F -5000S-SIL).
P_{1}-Phone plug.
$P_{2}-A . c$. line plug.
$\mathbf{R}_{1}, \mathbf{R}_{3}$ - 100,000 -ohm potentiometer, linear taper.
R_{2} - 1 -negohm potentiometer, linear toper.
$\mathrm{S}_{1}-$ S.p.s.t. toggle.
T_{1}-5-watt 25,000-to-4-ohm output transformer, secondary not used (Stancor A-3857).
$\mathrm{T}_{2}-125-\mathrm{v} .50-\mathrm{ma}$. and 6.3-v. 2-amp. transformer (Thordarson 26R38 or similar).
voltage at which lea passer phough current to rlose the relay is set hy the position of the arm of k_{3}.

Finepet for the tubes, the kever cireuit is housed ins a gres Hammertone $6 \times \overline{5} \times$ tinch Minitox (Bud (Cl-2107), as shown in Fig. 8-16. The tulx. sockets are mounted so that the two tubes projeet outside at the rear of the unit. The power transformer is mounted on the rear wall, and the toggle switch and the there controls are mounted on the "front" panel. The power line to l ", the two-wire rable to l^{\prime}, and the three-wise (able as the key leave the eabinet at the rear through individual rubber grommets. Use multiple tio points gencrously for the support of the fixed resistors and mapacitors.

To make the key, first remove the kes from their bases and strip the bases of their remaining hatware. The four support legs for the key are

Fig. 8-18-Components for the electronic speed key are mounted on the three walls of a Minibox section, with the tubes projecting out the back. Keep wires away from screw holes, to prevent short circuits when the box is assembled.
formed from the original tice strijs and shorting switch arms. At the front there bolt to the key frame at the coomersumk holes: at the rear the y make up to the hinding posts. The threr-wire cable commerts to two binding posis and a supporting leg. A howy hase of theinch thick sterel adds weight to the structure, and rubber or eork feet ghed to the sterel prevent its scratching the table.

Adjustment of Electronic Speed Key

In operation, the threr eontrols will sorve as their labels indicate. There is a unique (but not highly aritical) rombination of settings of the weight and ratio controls that will give antomatio. dots and dashes at the samo spered: this sotting ran only be determined by ear and will be depenetent on how wall the operator can reroguize gool code. If the opreator taps his foot to count gromps of four dots or two dashes, the dots and dashes will have the same speed when the beat is the same. It is easy to determine whether dots or dashes are too heavy or too light. Connedt an ohmmeter to l_{1} : holding the dot lever elosed should make the ohmmeter needle hover aromed half sealde. and holding the dash lever relosed should make the ohmmeter hover around 75 per cent of the short-rimenit reading. hatcking an ohmmeter, the tramsmitter plate milliammeter (an be used; dots and dashes should give 50 per rent and 75 per cent of the key-down value when the keyor controls have lewe properly adjusted.

QST' articles desioribing other types of moretronie sued keys include:
Brann, "In Search of the ldeal foleretronie liey," F(b), 1951
Bartlett, "Compart Automatie Key Design," Der., 1951
Kaye, ' All-1jlectronie 'L'ltimatic' Kever,'" April, May, 1955

Speech Amplifiers and Modulators

Abstract

The aludio amplifiers used in radiotelephone tramsmitters operate on the prineiphes outlined earlier in this hook in the chapter on varum tulos. The design requirements are determined primeipally by the type of modulation system to be used athd by the type of miarophome to be employed. It is neressary to have a clear understanding of modulation wrimetpes hefore the problem of having out a spereh system an he approarhed suce sesully. Those primeinles are diselossed under appropriate chaptor headings. The present chapter deals with the design of andio amplifiar systems for communieation purposes. In voice commonication the primary objertive is to ohtain the most cffertive tramsmission; i.e., to make the message be understood at the recering point in spite of adverse combitions crated hy noise and interference. The mothods usod to areomplish this do not neecessarily coincine with the mothods used for

other purposes, such as the reproduction of musid or other program material. In other words, "Haturalness" in reproduction is distinctly secondary to intelligibility.

The fact that satisfactory intelligibility can be mantaned in a rolatively narrow hand of froquencies is particularly fortunate, because the width of the chammel oceupied by a phone transmitter is divectly proportional to the width of the audio-frequency band. If the channel width is redued, more stations can oreupy a given bamd of frequenerios without mutual interference.

In spereh transmision, amplitade distortion of the voice wave has very little effect on intelligibility. The importane of such distortion in communication lies almost wholly in the fact that many of the andio-frectueney hamonies caused by it lie outside the chammel nereded for interligible spererh, and thus will reate unneressary interference to other stations.

Speech Equipment

In designing spereh equipmont it is neeresary to know (1) the amount of audio power the modulation system must furnish and (2) the output voltage developed by the microphome when it is spoken into from nommal distance (at few inchers) with ordinary louduess. It then beromes possible to choose the number and type of amplifier stages neaded to generate the reguired andio power without overlading or undue distortion anywhere in the system.

- MICROPHONES

The level of a microphone is its electrical output for a given sound intensity. level varies grealy with microphones of different types, and deperids on the distane of the speaker she from the microphone, Onty approximate values hased on averages of "normal" spoaking voices can he given. The values given later are based on close talking; that is, with the microphone about an inch from the spoaker's lips.

The frequency response or fidelity of a mixrophome is its relative ability to convert soumds of difforent frequemes into alternating eurent. For understandable spereh transmission only a limited freguency range is necessary, and intelligible speerch can be obtained if the output of the microphone does not vary more than a few decibels at any frequency within a range of about 200 to 2500 cycles. When the variation expressed in terms of decibels is small between two fre-
quency limits, the microphone is said to be flat between those limits.

Carbon Microphones

The carbon microphone ronsists of a metal diaphragm placed against an insulating (ap) containing loosely packed carbon gramules (microphone button). When used with a vacuum-tube amplifier, the microphone is commeted in the cathode circuit of a low- μ triode, as shown in Fig. !-1.

Sound waves striking the diaphragmeause it to vibrate in areordance with the sound, and the presure on the granules alternately increases and decreases, causing a corresponding decruase and increase in the electrical resistance of the mierophone. The instantaneous value of this resistanee determines the instantaneous value of plate current through the tube, and as a consequent the voltage drop arross the pate load resistor inereases and derreases with the inereases and decrases in gramule pressure.

The carbon microphone finds its najor amateur application in mobile and portable work: a grood microphone in the e circuit of Fig. !-1 A will deliver 25 to 35 volts prak output.

Piezo-electric Microphones

The crystal microphone makes use of the piezoelectric propertics of Rochelle salts crystals. This type of microphone requires no battery or transformer and can be connected directly to the

Speech Equipment

grid of an amplifier tube. It is a popular type of mirrophone among amateurs, for these ratsons as well as the fart that it has good frequency response and is available in inexpensive models. The imput cirenit for the arystal miroophone is shown in Fig. ()-1 3 .
Although the level of crystal mierophones varies with different models, an output of 0.03 volt or so is representative for communication types. The level is affeeted by the length of the cable connecting the microphone to the first amplifier stage; the above figure is for lengthe of (i or $\overline{7}$ foet. The frequeney characteristic is unaffoeted by the cable, bint the load resistane (amplifier grid resistor) does affed it; the lower frequencies are attenuated as the value of load resistance is lowered. I grid-resistor value of at least 1 mogohm should be used for reasonably flat response, 5 megohms being a customary figure.

The ceramic microphone utilizes the piezoclectric effect in certain types of ceramie materials to achieve performance very similar to that of the crystal mierophone. It is less affected by temperature and humidity. Output levels are similar to those of crystal microphones for the same type of frequency response.

Velocity and Dynamic Microphones

In a velocity or "ribbon" microphone, the element acted upon by the sound waves is a thin corrugated metallic rihbon suspended between the poles of a magnet.

Velocit." mierophones are built in two types, high impedance and low impedance, the former being used in most applications. A high-imporlance microphone can be directly rommected to the grid of an amplifier tube, shunted he a resist: ince of 0.5 to 5 megohms (rig. $0-1 \mathrm{C}$). Lowimpedance microphones are used when a long connecting eable ($\overline{5}$ f feet or more) must be employed. In such a case the output of the mierophone is coupled to the first amplifier stage through a suitable step-up) transformer, as shown in Fig. 9-11).
The level of the velocity microphone is about 0.03 to 0.05 volt. This figure applies direetly to the high-imperlane type, and to the low-impedance type when the voltage is measured across the secondary of the coupling transformer.

The dynamic microphone somewhat resembles a dynamic loud-speaker. A lightweight voice coil is rigidly attachod to a diaphragm, the coil being suspended between the poles of a permanent magnet. Sound causes the diaphragm to vibrate, thus moving the eoil back and forth between the magnet poles and generating an alternating voltage.

The dynamic microphone usually is built with high-impedance output, suitable for working directly into the grid of an amplifier tube. If the connerting cable must be unusually long, a lowimpedance type should be used, with a step-up transformer at the end of the eable.

In gemeral, the dynamic microphones have the smoothest prak-free response and widest fre-
quency range, and they are also the least susceptible to damage from shock and extremes of temperature and humidity.

THE SPEECH AMPLIFIER

The audio-frequency amplifier stage that calues the r.f. carrier output to be varied is called the modulator, and all the amplifier stages prereding it comprise the speech amplifier. Depending on the modulator used, the speech amplifier may be called upon to deliver a power output ranging from practically zero (only voltage re(quired) to 20 or 30 watts.

(A) S.B. CARBON

Fig. 9-1-Speech input circuits used with various types of microphones.

Before starting the design of a speech amplifier, therefore, it is necessary to have selected a suitable modulator for the tramsmitter. This selection must be hased on the power required to modulate the tramsmitter, and this power in turn depends on the type of modulation system selected, as deseribed in Chapter 10. With the modulator picked out, its driving-power requirements (audio power required to excite the modulator to full output) (ain be determined from the tube tables in a later chapter. Gromerally speaking, it is advisable to choose a tube or tubes for the last stage of the speech amplifier that will be capable of

9-SPEECH AMPLIFIERS AND MODULATORS

Fig. 9-2-Resistance-coupled voltage-amplifier circuits. A, pentode; B, triode. Designations are as follows:

C_{1}-Cathode bypass capacitor.

C_{2}-Plate bypass capacitor.
C_{3}-Output coupling capacitor (blocking capacitor).
C_{4}-Screen bypass capacitor.
\mathbf{R}_{1}-Cathode resistor.
Rz—Grid resistor.
R_{3}-Plate resistor.
R_{+}-Next-stoge grid resistor.
\mathbf{R}_{5}-Plate decoupling resistor.
R_{6}-Screen resistor.
Values for suitable tubes are given in Table 9-1. Values in the decoupling circuit, $C_{2} R_{5}$, are not critical. R_{5} may be about 10% of R_{3}; an 8 - or $10-\mu f$. electrolytic capacitor is usually large enough at C_{2}.
developing at least 50 per cent more power than the rated driving power of the modulator. This will provide a factor of safety so that losses in coupling transformers, etc., will not upset the calculations.

Voltage Amplifiers

If the last stage in the speoch amplifier is a Class $A B_{2}$ or Chass 13 amplifier, the stage ahead of it must be capable of suflieiont power output (0) drive it. However, if the last stage is a Class $A 3_{1}$ or Class A amplifier the preceding stage can be simply a voltage amplifier. From there on bark to the microphone, all stages are voltage amplifiers.

The important characteristics of a voltage amplifier are its voltage gain, maximum undistorted output voltage, and its frequency response. The voltage gain is the voltage-amplification ratio of the stage. The output voltage is the maximum a.f. voltage that ran be secured from the stage without distortion. The amplifier frequency reponse should be adequate for voice reproduction; this requirement is casily satisfied.

The voltage gain and maximum undistorted output voltage depend on the operating conditions of the amplifier. Data on the popular types of tubes used in speech amphifiers are given in Table !-I, for resistance-coupled amplification.

The output voltage is in terms of peak voltage rather than r.m.s.; this makes the rating independent of the waveform. Wxeeding the peak value causes the amplifier to distort, so it is more usoful to consider only peak values in working with amplifiers.

Resistance Coupling

Resistance coupling gencrally is used in voltageamplifier stages. It is relatively inexpensive, good frequency response can be secured, and thore is little danger of hum piek-up from stray magnotic fields associated with heater wiring. It is the most satisfactory type of coupling for the output rireuits of pentoters and high- μ trioders. Wectuse with transformers a sufficiently high load impedance cannot be obtained without considerable froquency distortion. Typieal circuits are given in Fig. 9-2 and design data in Table 9-I.

Transformer Coupling

Transformer coupling between stages ordinarily is used only when power is to be tramsferred (in such a case resistance coupling is very indficient), or when it is neesessary to couple between a single-ended and a puish-pull stage. Triodes having an amplification factor of 20 or less are used in transformer-coupled voltage amplifiers. With transformor coupling, tubes should be operated under the Chass A conditions given in the tube tables at the end of this book.

Representative rircuits for coupling singleended to push-pull stages are shown in Fig. 9-3. The circuit at A combines resistance and transformer coupling, and may he used for exciting the

Fig. 9-3-Transformer-coupled amplifier circuits for driving a push-pull amplifier. A is for resistance-transformer coupling; B for transformer coupling. Designations correspond to those in Fig. 9-2. In A, values con be taken from Table 9-1. In B, the cothode resistor is calculoted from the rated plate current and grid bios as given in the tube tobles for the particular type af tube used.

TABLE 9－I－RESISTANCE－COUPLED VOLTAGE－AMPLIFIER DATA
Data are given for a plate supply of 300 volis．Departures of as much as 50 per cent from this supply voltage will not materially change the operating conditions or the voltage gain，but the output voltage will be in proportion to the ratio of cutoff．For increased low－irequency response measured at 400 cycles．Capacitor values given are based on 100 －cycle inverse proportion to capacitor values provided all are changed in the same proportion）．Apecified（cut－off frequency in values given has negligible effect on the performance．

	Plate Resistor Megohms	Next－Stage Grid Resistor Megohms	Screen Resistor Megohms	Cathode Resistor Ohms	Screen Bypass μ f．	Cathode Bypass μ f．	Blocking Capacitor μ ．	Output Volts （Peak）	Voltage Gain ${ }^{2}$
6SJ7，12SI7	0.1	0.1 0.25 0.5 0.25	$\begin{aligned} & 0.35 \\ & 0.37 \\ & 0.47 \end{aligned}$	$\begin{aligned} & 500 \\ & 530 \\ & 590 \end{aligned}$	0.10 0.09 0.09	11.6 10.9 9.9	0.019 0.016 0.007	$\begin{array}{r} 72 \\ 96 \\ 101 \end{array}$	$\begin{array}{r} 67 \\ 98 \\ 104 \end{array}$
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.89 \\ & 1.10 \\ & 1.18 \end{aligned}$	850 860 910	$\begin{aligned} & 0.07 \\ & 0.06 \\ & 0.06 \end{aligned}$	8.5 7.4 6.9	$\begin{aligned} & 0.0011 \\ & 0.011 \\ & 0.004 \\ & 0.003 \end{aligned}$	$\begin{array}{r} 101 \\ 79 \\ 88 \\ 98 \end{array}$	$\begin{aligned} & 104 \\ & 139 \\ & 167 \\ & 185 \end{aligned}$
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$	2.0 2.2 2.5	1300 1410 1530	$\begin{aligned} & 0.06 \\ & 0.05 \\ & 0.04 \end{aligned}$	6.0 5.8 5.2	$\begin{aligned} & 0.004 \\ & 0.002 \\ & 0.0015 \end{aligned}$	$\begin{aligned} & 98 \\ & 64 \\ & 79 \\ & 89 \end{aligned}$	$\begin{aligned} & 185 \\ & 200 \\ & 238 \\ & 263 \end{aligned}$
$\begin{aligned} & \text { 6J7, 7C7, } \\ & \text { 12J7-GT } \end{aligned}$	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.5 \\ & 0.53 \end{aligned}$	$\begin{aligned} & 500 \\ & 450 \\ & 600 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.07 \\ & 0.06 \end{aligned}$	8.5 8.3 8.0	$\begin{aligned} & 0.02 \\ & 0.01 \\ & 0.006 \end{aligned}$	59 81 86	$\begin{array}{r} 63 \\ 61 \\ 82 \\ 94 \end{array}$
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.18 \\ & 1.18 \\ & 1.45 \end{aligned}$	1100 1200 1300	$\begin{aligned} & 0.04 \\ & 0.04 \\ & 0.05 \end{aligned}$	5.5 5.4 5.8	$\begin{aligned} & 0.006 \\ & 0.008 \\ & 0.005 \\ & 0.005 \end{aligned}$	$\begin{array}{r} 96 \\ 81 \\ 104 \\ 110 \end{array}$	$\begin{array}{r} 94 \\ 104 \\ 140 \\ 185 \end{array}$
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$	2.45 2.9 2.95	$\begin{aligned} & 1700 \\ & 2200 \\ & 2300 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.04 \\ & 0.04 \end{aligned}$	4.2 4.1 4.0	$\begin{aligned} & 0.005 \\ & 0.003 \\ & 0.0025 \end{aligned}$	$\begin{array}{r} 75 \\ 97 \\ 100 \end{array}$	$\begin{aligned} & 160 \\ & 200 \\ & 230 \end{aligned}$
$\begin{aligned} & \text { 6AU6, 6SH7, } \\ & \text { 12AU6, 12SH7 } \end{aligned}$	0.1	$\begin{aligned} & 0.1 \\ & 0.22 \\ & 0.47 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.24 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 500 \\ & 600 \\ & 700 \end{aligned}$	$\begin{aligned} & 0.13 \\ & 0.11 \\ & 0.11 \end{aligned}$	18.0 16.4 15.3	0.019 0.011 0.006	$\begin{array}{r} 100 \\ 76 \\ 103 \\ 129 \end{array}$	$\begin{aligned} & 230 \\ & 109 \\ & 145 \\ & 168 \end{aligned}$
	0.22	$\begin{aligned} & 0.22 \\ & 0.47 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.42 \\ & 0.5 \\ & 0.55 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1000 \\ & 1100 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.098 \\ & 0.09 \end{aligned}$	12.4 12.0 11.0	$\begin{aligned} & 0.000 \\ & 0.009 \\ & 0.007 \\ & 0.003 \end{aligned}$	$\begin{array}{r} 129 \\ 92 \\ 108 \\ 122 \end{array}$	$\begin{aligned} & 168 \\ & 164 \\ & 230 \\ & 262 \end{aligned}$
	0.47	$\begin{aligned} & 0.47 \\ & 1.0 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.1 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 1800 \\ & 1900 \\ & 2100 \end{aligned}$	$\begin{aligned} & 0.075 \\ & 0.065 \\ & 0.06 \end{aligned}$	8.0 7.6 7.3	0.0045 0.0028 0.0018	$\begin{array}{r} 122 \\ -94 \\ 105 \\ 122 \end{array}$	$\begin{aligned} & 262 \\ & 248 \\ & 318 \\ & 371 \end{aligned}$
6AQ6，6AQ7， 6AT6，6Q7， 6SL7GT， 6T8，12AT6， 12Q7－GT， 12SL7，－GT （one triode）	0.1	$\begin{aligned} & 0.1 \\ & 0.22 \\ & 0.47 \end{aligned}$	－	1500 1800 2100	－	4.4 3.6 3.0	$\begin{aligned} & 0.027 \\ & 0.014 \\ & 0.0065 \end{aligned}$	40 54 63	$\begin{array}{r} 371 \\ 34 \\ 38 \\ 41 \end{array}$
	0.22	$\begin{aligned} & 0.22 \\ & 0.47 \\ & 1.0 \end{aligned}$	－	$\begin{aligned} & 2600 \\ & 3200 \\ & 3700 \end{aligned}$	－	2.5 1.9 1.6	0.013 0.0065 0.0035	$\begin{aligned} & 51 \\ & 65 \\ & 77 \end{aligned}$	$\begin{aligned} & 42 \\ & 46 \end{aligned}$
	0.47	$\begin{aligned} & 0.47 \\ & 1.0 \\ & 2.2 \end{aligned}$	－	$\begin{aligned} & 5200 \\ & 6300 \\ & 7200 \end{aligned}$	－	1.2 1.0 0.9	$\begin{aligned} & 0.006 \\ & 0.00635 \\ & 0.002 \end{aligned}$	$\begin{aligned} & 17 \\ & 61 \\ & 74 \\ & 85 \end{aligned}$	$\begin{aligned} & 48 \\ & 50 \end{aligned}$ 51
$\begin{gathered} \text { 6A V6, 12AV6, } \\ 12 A X 7 \\ \text { (one triode) } \end{gathered}$	0.1	$\begin{aligned} & 0.1 \\ & 0.22 \\ & 0.47 \end{aligned}$	二	$\begin{aligned} & 1300 \\ & 1500 \\ & 1700 \end{aligned}$	－	4.6 4.0 3.6	$\begin{aligned} & 0.027 \\ & 0.013 \\ & 0.006 \end{aligned}$	$\begin{aligned} & 43 \\ & 57 \\ & 66 \end{aligned}$	$\begin{aligned} & 45 \\ & 52 \\ & 57 \end{aligned}$
	0.22	$\begin{aligned} & 0.22 \\ & 0.47 \\ & 1.0 \end{aligned}$	－	$\begin{aligned} & 2200 \\ & 2800 \\ & 3100 \end{aligned}$	－	3.0 2.3 2.1	$\begin{aligned} & 0.013 \\ & 0.006 \\ & 0.003 \end{aligned}$	$\begin{aligned} & 50 \\ & 54 \\ & 69 \\ & 79 \end{aligned}$	$\begin{aligned} & 59 \\ & 65 \end{aligned}$ 68
	0.47	$\begin{aligned} & 0.47 \\ & 1.0 \\ & 2.2 \end{aligned}$	－	$\begin{aligned} & 4300 \\ & 5200 \\ & 5900 \end{aligned}$	－	1.6 1.3 1.1	$\begin{aligned} & 0.006 \\ & 0.003 \\ & 0.002 \end{aligned}$	$\begin{aligned} & 62 \\ & 77 \\ & 92 \end{aligned}$	$\begin{aligned} & 60 \\ & 79 \\ & 73 \\ & 75 \end{aligned}$
$\underset{\text { (one triode) }}{ }$	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	－	$\begin{array}{r} 750 \\ 930 \\ 1040 \end{array}$		－	$\begin{aligned} & 0.033 \\ & 0.014 \\ & 0.007 \end{aligned}$	$\begin{aligned} & 92 \\ & 35 \\ & 50 \\ & 54 \end{aligned}$	$\begin{aligned} & 29 \\ & 34 \\ & 36 \end{aligned}$
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$	－	$\begin{aligned} & 1400 \\ & 1680 \\ & 1840 \end{aligned}$	－	二	$\begin{aligned} & 0.012 \\ & 0.006 \\ & 0.003 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \\ & 55 \\ & 64 \end{aligned}$	$\begin{aligned} & 39 \\ & 42 \\ & 45 \end{aligned}$
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$	－	$\begin{aligned} & 2330 \\ & 2980 \\ & 3280 \end{aligned}$	二	－	$\begin{aligned} & 0.006 \\ & 0.003 \\ & 0.002 \end{aligned}$	$\begin{aligned} & 50 \\ & 62 \\ & 72 \end{aligned}$	
6CG7，6J5， 7A4，7N7， 6SN7－GT， 12J5－GT， 12SN7－GT （one triode）	0.047	$\begin{aligned} & 0.047 \\ & 0.1 \\ & 0.22 \end{aligned}$	－	1300 1580 1800	二	3.6 3.0 2.5	0.002 0.061 0.032 0.015	$\begin{aligned} & 72 \\ & 59 \\ & 73 \\ & 83 \end{aligned}$	$\begin{aligned} & 49 \\ & 14 \\ & 15 \\ & 16 \end{aligned}$
	0.1	$\begin{aligned} & 0.1 \\ & 0.22 \\ & 0.47 \end{aligned}$	－	$\begin{aligned} & 2500 \\ & 3130 \\ & 3900 \end{aligned}$		1.9 1.4 1.2	$\begin{aligned} & 0.031 \\ & 0.014 \end{aligned}$ 0.0065	$\begin{aligned} & 68 \\ & 82 \\ & 96 \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \\ & 16 \end{aligned}$
	0.22	$\begin{aligned} & 0.22 \\ & 0.47 \\ & 1.0 \end{aligned}$	－	$\begin{aligned} & 4800 \\ & 6500 \\ & 7800 \end{aligned}$	二	$\begin{aligned} & 0.95 \\ & 0.69 \\ & 0.58 \end{aligned}$	$\begin{aligned} & 0.015 \\ & 0.0065 \\ & 0.0035 \end{aligned}$	$\begin{aligned} & 68 \\ & 85 \\ & 96 \end{aligned}$	16 16 16
$\begin{gathered} \text { 6C4, } \\ \text { 12AUT7 } \\ \text { (one triode) } \end{gathered}$	0.047	$\begin{aligned} & 0.047 \\ & 0.1 \\ & 0.22 \end{aligned}$	二－	$\begin{array}{r} 870 \\ 1200 \\ 1500 \end{array}$	二－	4.1 3.0 2.4	0.065 0.034 0.016	$\begin{aligned} & 38 \\ & 52 \\ & 68 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \end{aligned}$
	0.1	$\begin{aligned} & 0.1 \\ & 0.22 \\ & 0.47 \end{aligned}$	二二	$\begin{array}{r} 1900 \\ 3000 \\ 4000 \end{array}$	－	1.9 1.3 1.1	$\begin{aligned} & 0.032 \\ & 0.016 \\ & 0.007 \end{aligned}$	$\begin{aligned} & 44 \\ & 68 \\ & 80 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 12 \end{aligned}$
	0.22	$\begin{aligned} & 0.22 \\ & 0.47 \\ & 1.0 \end{aligned}$	二二	$\begin{array}{r} 5300 \\ 8800 \\ 11000 \end{array}$	二二	$\begin{aligned} & 0.9 \\ & 0.52 \\ & 0.46 \end{aligned}$	$\begin{aligned} & 0.015 \\ & 0.007 \\ & 0.0035 \end{aligned}$	$\begin{aligned} & 57 \\ & 82 \\ & 92 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 12 \end{aligned}$

[^3]
9-SPEECH AMPLIFIERS AND MODULATORS

grids of a Class A or ΛB_{1} following stage. The resistanee coupling is used to keep the d.e. plate current from flowing through the transformor primary, therele preventing a reduction in primary inductance bolow its no-current valuc; this improves the low-frequency response. With low- μ
 with resistance coupling multiplied by the ser-ondary-to-primary turns ratio of the transformer.

In iz the transformer primary is in sories with the plate of the tube, and thes must carre the tube plate current. When the following amplifier operates without grid current, the voltage gatin of the stage is practically equal to the μ of the tube multiplied by the transformer ratio. This circuit also is suitable for transformen powor (within the capabilitios of the tube) to a following Chass AB_{2} or Class B stage.

Phase Inversion

Push-pull output maty he secured with resistanco coupling by using phase-inverter or phasesplitter circuits ats shown in Fig. I)-4.

The circuits shown in lig. ! P tare of the "solfbatancing' type. In A, the amplified voltage

Fig, 9-4-Self-balancing phase-inverter circuils. V_{1} and V_{2} may be a double triode such as the 12AU7 or 12AX7. V_{3} may be any of the triodes listed in Table 9-1, or one section of a double triode.
R_{1}-Grid resistor (1 megohm or less).
R_{2}-Cathode resistor; use one-half value given in Table 9-1 for tube and operating conditions chosen.
$\mathbf{R}_{3}, \mathrm{R}_{1}$-Plate resistor; select from Table 9-I.
$R_{i,}, R_{f}$-Following-stage grid resistor 10.22 to 0.47 megohm).
$\mathrm{R}_{\mathrm{i}}-0.22$ megohm.
R_{R}-Cathode resistor; select from Table 9-1.
R_{9}, R_{10}-Each one-half of plate load resistor given in Table 9-I.
$C_{1}-10-\mu \mathrm{f}$. electrolytic.
$\mathrm{C}_{2}, \mathrm{C}_{\text {: }}=0.01-$ to $0.1-\mu \mathrm{f}$, poper,
from V_{1} appears arross l_{5} and R_{7} in series. The drop arross $l_{7} i_{7}$ is applied to the grid of V_{2}, and the amplified voltage from lig appears amoss R_{6} and R_{7} in series. This voltage is 180 degrees out of phase with the voltage from V_{1}, thus giving push-pull output. The part that appeare across R_{i} from V_{2} oppeses the volage from V_{1} aross F_{i}, thus reducine the signal applied to the grid
 to regubate the voltage applied to the phaseinverter tube so that the output voltages from both tubes are substantially equal. The gain is slighty less that twier the gain of a single-tube amplifier using the same operating conditions.

In the single-tulue circuit shown in Fig. !)-43 the plate load resistor is divided into two cequal parts, R_{9} and R_{10}, one boing connected to the plate in the nomal way and the other between rathode and ground. Since the voltages at the plate and cathode are 180 degrees out of phase, the gride of the following tubes are fed equal at.f. voltages in push-pull. The grid return of V_{3} is made to the junetion of $h_{i s}$ and R_{10} so normal hias will be applied to the grid. This circuit is highly degencrative becalase of the way R_{10} is conneeted. The voltage gain is less than 2 even when a high- μ triode is usod at I_{3}.

Gain Control

A means for varying the over-all gain of the amplifior is neressary for keeping the final output at the proper level for modulating the tramimitter. The common mothod of gain rontrol is to adjust the value of ater, voltageapplied to the grid of one of the amplifice bey means of a voltage divider or potentionoter.

The gain-control potentiometer shouk be near the iaput end of the amplifier, at a point where the signal voltage level is so low there is no danger that the stages ahead of the gain control will be overloaded by the full microphone output. With carthon midrophones the gain control may be pladed diredty aross the mierophone-transformer secondary, With other types of nuicrophones, howerer, the gatin control usually will alfer the frequency response of the mierophone when eonnered direetly aboss it. Also, in it high-gain amplifier it is hotter to operate the first tube at maximum gain, sine this gives the best signal-to-ham ratio. The eontrol therefore is usually plated in the gride circuit of the second stage.

Designing the speech AMPLIFIER

The steps in designing a speech amplifier are as follows:

1) Determine the power needed to modulate the tramsmitter and selee the modulator. In the cate of phate modulation, a Class 13 amplifier may be required. sidect a suitable tube type and determine from the tube tables at the end of this book the grid driving power required, if any.
2) As a safiety factor, multiply the required driver power he at least 1, in.

Speech Amplifier Design and Construction

3) Select a tube, or pair of tubos, that will deliver the power determined in the second step. This is the last or output stage of the sperechamplifier. Receiver-type power tubes ran be used (bemo tubes surh as the 610 may be noeded in some cases) as determined from the reereving-tube tables. If the spereh amplifier is to drive al (lass 13 modulator, 11 se a (latss .1 or $A B_{1}$ amplifior.
4) If the speecelh-implifier output stage is also the modulator and must operate (lass AIs, to develop the required power output, use a lowor medium- μ triode to drive it. If more power is needed than can be obtained from one tube, use two in push-pull, in the driver. In rither case transformer coupling will have to be used, and transformer mamufacturers catabogs should be comsulted for at suitable tepe.
5) If the sperch-amplifier output stage operates Class A or $\mathrm{D} 3_{1}$, it may be driven by a voltage amplifior. If the output stage is pusiopull, the driver may be a single tube eouplod through a tramsormer with a balamed serondary, or may be a dual-triode phase inverter. Determine the sigmal voltage required for full output from the last stage. If the last stage is an single-tube Class A amplifier, the poak signal is equal to the grid-bias voltage: if push-pull Class A, the peak-to-peak sigual voltage is coptal to twier the grid bias: if Class AB_{1}, twire the bias voltage when fixed bias is used: if cathode bias is used, twioe the bias figured from the eathode resistaner and the maxi-mum-signal rathode current.
(6) From 'Table 9-I, wolert a tube capable of giving the reguired output voltage and mote its rated voltage gain. A double-t riode phase inverter (Fig. !-1A) will have approximately twiee the output voltage and twier the gain of one triode operating as an ordinary amplifier. If the driver is to be transformer-coupled to the last stage, select a medium- μ triode and caleulate the gain and output voltage as described earlier in this chapter.
6) Divide the voltage required to drive the output stage by the gain of the preceding stage. This gives the peak voltage required at the grid of the next-to-the-last stage.
7) Find the output voltage, under ordinary conditions, of the microphone to be used. This information should be obtained from the manufacturer's catalog. If not available, the figures given in the section on microphones in this chapter will sorve.
(9) Divide the voltage found in (7) by the output voltage of the microphone. The result is the over-all gatin required from the microphone to the grid of the next-to-the-last stage. To be on the safe side, double or tripte this figure.
8) From Table ! 1 -I, select a combination of tubes whose gains, when multiplied together, give approximataly the figure arrived at in (9). Theso amplifiers will be used in cascade. If high gain is required, a pentode may be used for the first sperch-amplifier stage, but it is not advisable to use a second pentode because of the possibility of ferdback and solf-oscillation. In most cases at triode will give enough gain, as a second stage.
to make up the total gain reguired. If not, a modium- μ trionle may lo used as al third stage.

A high- μ double triode with the sartions in caseade makes a good low-level amplifier, and will give somewhat greater gain than a pentode followod be a modimm- μ triode. With resistanescompled input to the first seection the eathode of that section maty be grounded (eontare potential bias), which is helpfal in reduring hum.

SPEECH-AMPLIFIER CONSTRUCTION

Once a suitable eireuit has been solected for a speech amplifier, the construction problem resolves itself into avoiding two differndies execssive hum, and unwanted feedbatek. For reasomally humless operation, the hum voltage should not exered about 1 per cent of the maximum audio output voltare - that is, the hum and moise should be at least 40 db . Indow the output level.

Dinwathted feedback, if negative, will reduce the gain below the calculated value: if poritive, is likely to catuse self-oscillation or "howls." Feedback ean be minimized be isolating rach stage with decoupling resistors and rapacitons. hy avoiding layouts that bring the first and hast stages near cach other, and bys shiclding of "hot" points in the rircuit, surh as qrid leads in lowlevel stages.

Spereh-amplifier equipmont, wiperially voltage amplifiers, should be const ructed on starel chassis, with all wiring kept below the chassis to take advantage of the shiolding afforled. lixposed leads, particularly to the grids of low-level high-gatin tubes are likely to piek up hum from the electric field that usually exists in the vieinity of house wiring. liven with the chassis, additional shichding of the input cereuit of the first tube in a highgain amplifier usually is nocessary: In adblition, such circuits should be soparated as much as posible from power-supply transformers and chokes and also from any adudo transformers that operate at fairly high power levels; this will minimize magnotic coupling to the grid cirruit and thus reduce hum or audio-frequency ferdback. It is alwass safe, although not absolutely neressary, to separate the speech amplifior and its power supply, building them on separate ehatssis.

If a low-lavel microphone such as the revstal type is used, the mierophone, its connerting cable, and the plug or comeretor by which it is attached to the speech amplifier, all should be shielded. The microphone and cable usually are constructed with suitable shielding: this should be comered to the speech-amplifier chatsis, and it is advisable - as well as usually neressary - to combere the chassis to a ground such as : water pipe. With the top-cap tubes, complete shieding of the grid lead and grite cap is a necessity.

Ileater wiring should be kept as far as possibla, from grid leads, and either the center-tap or one side of the heater-transformer secondary winding should be connected to the chassis. If the renter-

9-SPEECH AMPLIFIERS AND MODULATORS

tap is grounded, the heater leads to carh tube should be twisted together to reduce the magnerio field from the heater current. With either type of comertion, it is advisable to bay heater lads in the corner formed by a fold in the chassis, bringfing them out from the corner to the fulve sueket be the shortest possible path.

When metal tubes are used, ahosts ground the shed commertion to the whassis. (ilans tubes ased in the low-level stages of high-gain :mplifiors must be shichded; tube shiches :tre ohtainabla for that purpose. It is a good plan to concose the rentire amplifier in a motal box, or at least provide it with a canc-metal cower, to awoid feedhatek difi-
culties caused be the ref. firld of the tramsmitter IR.f. picked up on exposed niring, leats or tube elements eatuses overloading, distortion, and self-oserilation of the amplifier.

When neing paper cabaritors as bypasses, he sure that the ferminal marked "outside foil" is eommered to ground. This uilizes the ontside foil of the rapacitor ase at shield aromsed the "han"
 lownems stages, alwass womert the outwite boil terminat to the sithe of the rireut having the lowest impodanor to groumd. I sually. this will be the pande side rather than the following-grid side.

Modulators and Drivers

CLASS AB AND B MODULATORS

Class 13 or 13 modulator cireaits are basically identical no matter what the power output of the modulator. The diagrams of Fig. 9-5 therefore will sorve for any modulator of this type that the amaterur maty recet to buila. The triode ceirenit is givenat A and the cirenit for tetmenesal B3. When small tubes with indiredly heated mathotes are used, the eat thondes shombly be comereded to sround.

Modulator Tubes

The audio ratings of various types of trans-

Fig. 9-5-Modulator circuit diagrams. Tubes and circuit considerations are discussed in the text.
mitting tulues ate given in the chapter rontaining the tube tables. Choose a pair of tulos that is
 to somewhat more than half the d.e inpout to the modulated ('lass (' amplition, It is somotimes
 zame phate wollage as that appliod the the (lase 0

 remember that the figures given on the tablese are
 pat-transformer losises. To be aleghate for modulating the tratsmitter be motulator
 bility lo to en mor wome grater then the artatal powor merded for modulation.

Matching to Load

In giving abdio satings on power
 to-phate load im nedamere into whirh the tubes must onerate fordeliver the rated andio power output. This load impudanere selfom is the same as the modnlating imperlature of the (lass (" r.t. stage. so at match must be hrought about by aldinsting the turns ration of the coupling tramsiormer. The reguived tums ratio, primary to serondary, is

$$
\therefore=\sqrt{\frac{Z_{10}}{Z_{n 1}}}
$$

where $N=$ Turns ratio, primary to serondatry
$Z_{\mathrm{n} 2}=$ Modulating imperdance of (Class (Cr.l. amplifier
$Z_{\mathrm{p}}=$ Plate-toplate lowd impedance for Class 13 tubos

Example: The modulated r.f. athplifier is to operate at 12.00 volte and 2.00 that The power input is

$$
P=E I=12501 \times 0.25=312 \text { watts }
$$

so the modulating fower remined is $312 / 2=$ 156 wates. Increasime this by $2 \overline{5}$; in allow for losses and a reawonable oprerating margin gives

Modulators and Drivers

$150 \times 1.25=10.5$ watts. The modulating impedance of the ('lass ("stagn is

$$
Z_{\mathrm{m}}=\frac{E}{I}=\frac{12.51}{0.2 .5)}=5(000 \text { ohms. }
$$

From the tube tahbes a pair of chass 13 tubes is solected that will give ? 200 watts output when
 IThe primars-to-swombars turns ratio of the dadulation tramformer therefore shonded the

$$
N=\sqrt{\frac{\%_{p}}{\%_{m}}}=\sqrt{\frac{6 H 10}{j(H 0)}}=\sqrt{1.35}=1.17 \%: 1
$$

The required transformer ration for the ondinary range of impedanes are shown graphically in Fig. 9-6.

Many modulation transformers are provided with primary and serombary tape, so that various tums ratios cath be obtained to moet the reguiremonts of partioular tube combinations, However, it may be that the exact tums ration mo quired camot be secured, wen with a tapped modulation transtormer. Small departures from the proper turns ratio will have mo serions afferet if the modulator is operating well within its capatbilities: if the artual turne ratio is within 10 per rent of the ideal value the system will operate satisfantomils. Where the diserepaney is larger, it is matilly posible to choowe a new set of operating ronditions for the (lass (e slage to give a modulating imperdane that can be matched by the turns ration of the available transformer. This may require oporating the ("lass © amplifier at highor voltage and less plate eurront, if the modulating impedance must he increased, or at lower voltagre athd higher earent if the modulating impedane must be dererased. Howerer, this provess cemmot be carried very fir without exemeting the ratings of the clase (tubes for wither plate voltare or plate eurrent, even though the powor input is kept at the same figure.

Suppressing Audio Harmonics

Distortion in cither the driver or Clases 13 motubator will cature alf. harmonties that maty lie outside the frequeney band nereled for intelligible spereh tramsmission. Whila it is almost impossible to avoid some distortion, it is possible to eut down the amplitude of the higher-frequenery harmoniss.

The purpese of capacitors ('1 and ("2 acerns the primary and serondary. respertively, of the (lass 13 output transtomer in Fig. ! 8 - j is to redure the strength of harmonies and unteressary highfrequens eompenentsexisting in the modulation. The cabaritors ane with the leakage induelanere of the transformer winding to form a rudimentary low-pass filters. The values of caparitanere required will depend on the load resistame (modulating impredane of the (lass (C amplifier) and the leakage imbuetance of the partieular transformer used. In genomal, rapacitanoes betwern about 0.001 and $0.01 \mu \mathrm{f}$. will be required: the farger values ate heresesatry with the lower values of load mosistatere The voltage rating of varh ratadetor should at least be copalal to the d.e. voltage at the transformer winding with whish it is assoriaterl. Las the case of ('s. part of the watal wametane re-

Fig. 9-6-Transformer ratios for matching a Class C modulating impedance to the required plate-10-plate load for the Class B modulator. The ratios given on the curves are from total primary to secondary. Resistance values are in kilohms.
quired will be supplied by the phate bypass or blocking capacitor in the modulated implitier.

A still better arrangement is to use a low-pas: filter as shown lator, even though clipping is not deliberately employed.

Grid Bias

Certain triodes desigued for Class B audio work can he operated without grid bias. Besides eliminating the grid-hias supply, the fact that grid curvent flows over the whole andio cyele means that the lond resistince for the driver is faills constant. With these tubes the grid-roturn lead from the center-tap of the input transformer sceondary i simply eonnereted to the filament center-tip or cathede.

Wher the modulator tubes require bias, it should alwats be suppliad from a fixed voltage source. (athode biats or grid-leak bias camot be used with a (llass 13 amplifior: with both types the bias rhanges with the amplitude of the signal voltare, whereas proper operation demands that the bias voltage be unvarying mo materer what the strengt hof the signal. When only a small amount of bias is required it can be ohtained conveniontly from a fow dry erells. For langer hias voltages a heaverduty " 13 " battery maty he used if the grid eurrent dows not exered to or 50 milliamperes on voico poaks. The batteries are charged hy the grid current rather than diseharged, but a bat tery nevertheless will deteriorate with time and its internal resistance will inerease. When the inerease in internal resistanere heromes appreciables. the battery tends to ace like a gridleak resistor and the bias varies with the appliod signal. Batterios shoud be chereked with a voltmoter orcasionally while the amplifier is operating. If the hises varies more than 10 per cent or so with voise excitation the battery should be repland.

9-SPEECH AMPLIFIERS AND MODULATORS

As an alternative to battories, a regulated bias supply maty be used. This type of supply is described in the power supply chapter.

Plate Supply

In addition to adecguate filtering, the voltage regulation of the phate supply should be as good as it can be made. If the d.c. output volage of the supply varies with the load rarmont, the voltage at masimme curvent detormines the amomen of power that can be taken from the monhatator without distartion. A supply whose voltare drops from 1 Bot at mo load to 1250 at the full modulator matu current is a 12 ontovolt supfly. so far as the modulator is conermod, and ans asimate of the power output available should for based an the bower figure.
(Bood dynamic remulation-i.e., with suddooly applied loads - is equally as important as grosi regulation under steady loads, sinese an instantaneons drop in voltage on voice peaks also will limit the output and cense distortion. The output rapateitor of the supply should hat we as much rapabitance as comditions permit. A vahue of at loust 10μ. should lo ured, and still latrger values ate desirable, It is better to use all the availathe capacitancer in a single-section filter rather thath to distribute it betweren two sertions.

It is partionlarly imbortant. in the case of at totrocte Chass 13 stage, that the serrem-voltage power-supply sontere have exellent regulation. to prevent distortion. The serern voltage should be wot :as exatetly as possithe to the reeommended value for the tube. The andio impertance browern swern and cathote also mast be low.

Overexcitation

When a (lass 13 amplifier is ovordriven in ath athempt to secure mone thath the rated power, distortion increases rapidly. The high-livequency harmonics which result irom the distortion modulate the transmitter, producing spurious sidebatuch which ran cather serious interferener over a bamd of hrequenciosseveral times the chambel width required for sproch. (This call happern even though the modulation pereentare, as deffed in the chapter on amplitula moxlulation, is less than 100 per cont, if the modubater is incapable of delivering the andio power repuired to modulate the tramsmitter.)

Is shown later, such a condition may tre roached bey delibarato desirn, in case the moduLator is to be adjusted for peak from Table 9-1.
dipping. But whether it happens by aredent or intention, the splatter amel spurious sidehands can be diminated by inserting a low-pass filtor (Fig. (9-1:3) Wetween the modulator and the modulated amplifier, and then taking eare to see that the actual mordulation of the rif. amplifier does not exered 100 pre went.

Operation Without Load

Fixitation shoulal never be ap, died to a Class 13 modulator until after the' ('lass (' amplifier is turned on and is drawing the value of pate comrent recuired to present the rated lowd to the modulator. With no load to abson' the pown. the primare impedanere of the tratisformer rises to a high value and exeresion andio voltages may be developed in the primaty - irequently high enough to break down the transformer insulation.

DRIVERS FOR CLASS-B MODULATORS

(lass . Whe and Class 13 amplifiers are driven into the gridecurront region, so power is con-

Fig. 9.7-Triode driver circuits for Class B modulators. A, resistance coupling to grids; B, transformer coupling. R_{1} in A is the plate resistor for the preceding stage, value determined by the type of tube and operating conditions as given in Table $9-1, C_{1}$ and $R 2$ are the coupling capacitor and grid resistor, respectively; values also may be taken

In both circuits the output transfomer, $\left(T_{1} T_{2}\right)$ should have the proper turns ratio to couple between the driver tubes and the Class B grids. T_{1} in B is usually a $2: 1$ transformer, secondary to primary. R, the cathode resistor, should be calculoted for the porticular tubes used. The value of C the cothode bypass, is determined as described in the text.

Fig. 9-8-Speech-amplifier driver for 10-15 watts autput. Capacitances are in μ f. Resistors are $1 / 2$ watt unless specified atherwise. Capacitars with palarity indicated are electralytic; athers may be paper ar ceramic.
$C R_{1}$-Selenium rectifier, 20 ma.
R_{1} - 50,000-ohm potentiometer, preferably wire wound. T_{1}-Interstage audis transformer, single plate to pushpull grids, furns ratio 2 to 1 or 3 to 1 , total secondary to primary.
T_{2}-Class-B driver transformer, 3000 ohms plate-toplate; secondary impedance as required by
sumed in the grid circuit. The preceding stage or driver must be capable of supplying this power at the required peak audio-frequence grid-to-grid voltage. Both of these quantities are given in the manufatourer's tube ratings. The grids of the Class 13 mber repment at varying load resistane over the adio-fregurney excle, because the grid current does not increatio diredtly with the grid voltage. To prevent distortion, therefore, it is neressary to have a driving souree that will main$\mathrm{t}_{\text {ain }}$ the wave form of the signal without distortion even though the load varios. That is, the driver stage mast have good regulation. To this end, it should be canable of delivering somewhat more pewer than is consumed by the Class B grids, as previously deseribed in the diseussion on sperech amplifiers.

Driver Tubes

To secure good voltage regulation the internal impedance of the driver, as seen by the modulator grids, must be low. The principal component of this impedane is the plate resistance of the driver tube or tubns as rellerted through the driver transformer. Itence for low driving-source impedance the effective plate resistance of the driver tubes should be low and the turns ratio of the driver transformer, primary to secondary,

Class-B tubes used; 15 wart rating.
T_{3}-Pawer transformer, 700 volts c.t., 110 ma.; 5 valts, 3 amp.; 6.3 volts, 4 amp.
T_{4}-Power transformer, 125 volts, $20 \mathrm{ma}$. ; 6.3 volts, 0.6 mp .
T_{5}-2.5-volt 5 -ampere filament transformer (Thordarson 21 FOO).
should be as large as possible. The maximum turns ratio that can be used is that value which just permits developing the modalator grid-togrid a, f. voltage required for the desired power output. The rated tube ontput as shown by the tube tables should he reduced by ahout 20 per cent to allow for losses in the Class 13 input transformer.

Low- μ triodes such as the 2 A3 have low plate resistance and are therefore good tuhes to use as drivers for Class AB_{2} or Class B modulators. Tetrodes such as the 6 V 6 and $6 \mathrm{~d} \boldsymbol{d}$ make very poor drivers in this respeet when used without negative feedback, but with such feedbark the effective plate resistance cam be reduced to a value comparable with low- μ triodes.

Fig. 9-7 shows representative circuits for a push-pull triode driver using cathode bias. If the amplifier operates Class A the cathode resistor need not be bepassed, berause the a.f. cuments from each tube llowing in the eathode mesistor are out of phase and eancel each other. However, in Class AB operation this is not true: considerable distortion will be generated at high signal levels if the eathode resistor is not bypassed. The bypass capacitance required can be calculated by a simple rule: the cathode resistance in ohms multiplied by the hypass capacitance in microfarads should equal at least 25,000 . The

9-SPEECH AMPLIFIERS AND MODULATORS

voluage rating of the capacitor should be equal to the maximum bias voltage. This can be found from the maximum-signal plate current and the eathode resistance.

Krample: A pair of 2 A :is is to be used in
 rathode resistanee shomld loe 7 oth ohtus and the
 Ohmis Law.

$$
E=H I=780 \times 0.10=78.0 \text { wolts }
$$

From the rulle mentioned previonsly, the bypase chameitather regured is

$$
C=2.5,(0(6) \quad R=25,(0(6) / 780=32 \mu \mathrm{f}
$$

A (10- or int-mf. 1(K)-volt indoctrolytic capacitor wonld be satiofactory
Fig. ! $1-8$ is a topical circuit for a spereh amplifior suitable for use as a driver for a Class AB3 or Class 13 modulator. An output of about $1: 3$ watts can be realized with the power supply circuit shown (or any similar well-filtered supply delivering 300 volts under load). This is sufficient for driving any of the power triodes eommonly used as modulators. The 2.lise in the output stage are operated (latss λB_{1}. The eireuit provides erveral times the voltage gain neceded for commonications-tipe crestal or ceramic microphones.

The fwo sertions of a 12.1×7 tabe are used in the first two stanes of the amplifier. These are resistaner comped, the gatin control heing in the grid cirenit of the seromd stage. Although the eathede of the first stage is grounded and there is no separate bits supply for the grid, the grid

Fig. 9-9-Negative-feedback circuits for drivers for Class B modulators. A-Single-ended beam-tetrode driver. If V_{1} and V_{2} are a 615 and 6 V 6 , respectively, or one section of a $6 C G 7$ and a 6AQ5, the following values are suggested: $R_{1}, 47,000$ ohms; $R_{2}, 0.47$ megohm; $R_{3}, 250$ ohms; $R_{1}, R_{5}, 22,000$ ohms; $C_{1}, 0.01 \mu f_{4} ; C_{2}, 50 \mu \mathrm{f}$. B-Push-pull beam-tetrode driver. If V_{1} is a 6.15 or 6CG7 and V_{2} and V_{3} olos, the following values are suggested: $R_{1}, 0.1$ megohm; $R_{2}, 22,000$ ohms ; $R_{3}, 250$ ohms; $C_{1}, 0.1 \mu \mathrm{f} . ; \mathrm{C}_{2}, 100 \mu \mathrm{f}$.
bitas atuatly is about one volt hecanse of "eonlact potential."

The third stage uses a modium- μ triode which is roupled to the 2.13 grids through a tramsformer having a push-pull secondary. The ratio maty le of the order of 2 to 1 (totad seromdary to primary) or higher: it is mot (eritacal siner the rain is sufficiont without a high stop-up ratio.
The output transiomerer, T_{2}, should be selected to couple betwern push-pull 2.13s and the grids of the particular modulator tulnes used.
The power supply hats at rapacitor-input filter the output of which is applied to the 2.1:3 plates through T_{2}. For the lower-level stages, additional filtoring is provided by suceressive Re filters which also serve to prevent audio feredbatek through the plate supply.

Grid bias for the 2.a3s is furnished ber a serparate supply using a small solfonium reetifior and at TV "booster" transformer, T4. The bias maty be adjusted be means of h_{1}, atud should be sot to - 62 volts or to ohtatin at total plate current of 80 ma . (as measured in the lead to the primary conter tap of $F^{\prime 2}$) for the 2.1 :s.

In building an amplifier of this type the constructional premutions ontlined earlier should be ohserved. The Class $\$ 13_{1}$ modulators deseribed subserpuently in this chapter ate representative of good constructional pratetice.

Negative Feedback

Whenever tetromes or pentodes are used as drivers for Class 13 modulators. negative fredbatek should be used in the driver stage. for the reason already disernsed.
suitathe rireuts for single-ronded and push-pull tatrodes atere shown in
 compling betwern the proceding stage athel a single totroche suth as the filit, that operates at the same plate voltage as the precoding stage. l'art of the a.l. voltage arross the primary of the output transormer is ferd back to the grid of the tetrombe. 12. through the plate mesistor of the precending tube. I 1 . The total resistaner of h_{1} and h_{5} in series should be tern or more times the rated load resistame of lig. Instead of the voltage divider, a lat on the transtormer primary a an be used to suphly the feedbark voltage, if such a tap, is atyatable.

The amoment of ferdbark voltage What appears at the gride of tube I°, is determined loy h_{1}. h_{2} and the platere resistanee of V_{1}, as well as by the relationship botweron h_{1} and h_{5}^{\prime}. Cirenit values for tepieal tube combinations are given in detatil in lig. ! !-!

The push-pull circuit in Fig. (9-913 requires an atudio transformer with a split secondary. 'The foredbark

Modulators and Drivers

voltage is obtained from the phate of eath output folke by meaths of the voltage divider, hi. Re. The bowking capacitor, ('1, prevent: the d.e. plate voltage from being appliad to $h_{1} R_{2}$: the reactane of this apacitor should be fow. compared with the sime of h_{1} and h_{2}, at the lowest andio frequeney to be amplified. Aso, the stm of R_{1} atul h^{2} should be high (ten times or more) (ompared with the rated load resistance for $1=$ and V^{2}

In this remeruit the feed anek voltage that is
 (or l^{\prime}) through the thansformer seromblary and gritheallande aireuit of the tube provided the fabes are not driven to arid abrent. The per emt froullumek is:

$$
n=\frac{l_{1}}{l_{1}+l_{2}} \times 100
$$

Where n is the ferdmank proventage, and lin and

Rowe connerted as shown in the diagram. The higher the feedbark pereentage, the lower the offertive plate resistance. However, if the porcontage is made too high the preeding tuber l_{1}, may not be able to develop enough voltaras. through T_{1}, to drive the push-pull stage to maximum output without itself generating harmonic. distortion. Distortion in H_{2} is not comprensite 1 for by the feedbark cirenit.
If V_{2} and V_{3} are tilds operated solf-hiased in (lass $\$ 13_{1}$ with a load resistance of (300) ohme, V_{1} is a bind or similar triode, and T_{1} has a turns ratio of $2-t(o-1$, total secomdary to primary, it is posibibe to use over 30 per erent forethatek without going beyond the output-voltage capabilities of the triode. Twenty per cent feedback will reduce the efferetive plate resistather to the point where the output voltage regulation is better thath that of 2A3s without fecolhack. The power output under there conditions is aloont 20 watts.

Increasing the Effectiveness of the Phone Transmitter

 taking atvantage of spereh chatartoristios. Masasures that may be taken to make the modulation mone ateredive ind hade bathe compresson (filterfing), volume compresion, and spereh clipping.

Compressing the Frequency Band

Most of the intolligibilits in spored is contaned in the modian band of fremumeres: that is.
 hathet, a latre portion of sumed power is mormatly fomd holow ano revers. If these low fre-
 "arry most of the anthal communiation rath be increasad in amplitude withent exaeding booper erent modenation, and the affertivenuse of the

(hee simple way to redace low-frembery msponso is to us sinall values of (ompling (aipari-
 in Fig. $9-10 \mathrm{~A} .1$ time constant of $0,000 \mathrm{~s}$ serond for tha compling (apbacitor and following-starn grid resistor will have little offer on the amplitication at mol cereses, but will prationally halve it at 100 arders. In two raseaded stane the gain will be down ahout a dhe at 200 (exdes athd 10 dtb.
 a compling capatito of 0.001μ. will give the repuired time constatht.

The high-frequency response rath be reduced by using "tome control" mothods, utilizing at rat pawitor in sumes withat variable mesistor comberated across an andio imperdane at some point in the spered amplifies. The best pot for the tome ronfrol is arrose the primary of the output trans-
 The "alparitor should have a reatathee at box
 by the amplitier tube or tulxes, while the vatialble rosistor in seride may have atan ratal to four or five times the hat resistance. The control can
be aldusted while listeming to the amplifier, the ohjort being to cut the high-frequeney response withoat umblals satrificing intelligibility.

Restriating the frequency response not only pats more modulation pewer in the optimum frequency band but also reduces hum, beonase the low-frequeney response is reduced, and holps redued the width of the chamed orexpiod by the trillsmission, becatuse of the reduction in the amplitude of the high andio frequenciess

Volume Compression

Whough it is ohvionsly desimble to motulate

Fig. 9.10-A, use of a small coupling capacitor to reduce low-frequency response; B, tone-control circuits for reducing high-frequency response. Values for C and R are discussed in the text; 0.01μ f. and 25,000 ohms are typical.

9-SPEECH AMPLIFIERS AND MODULATORS

the transminter as complately as posible, it is diflicult to maintain ronstant voice intonsity when spaking into the mierophone. To overeome this variable output level. it is possible to wer atomatio gatin rontrol that follows the avernge (not instamanomus) variations in spereh amplitude. This can be dome be vertifying and filtering some of the aludio output and applying the rectified and filtereal d.e. to at control clentrote in an ramly stage in the amplifier).

A practical cimuit for this purpose is shown in loig. ! 1 -11. I', a medium- μ trionde. has its grid conmeded in patallel with the grid of the last spereh :mplifier tube (the stape preading the power stage through the gatin control R_{1}. The amplifiod ontput is couphed to a full-wave reetifior. In. The reetified :ludio ontput develops ab merative der wolatge aurnss (elk, which hats a sufliefent ly long time monstant to hold the voltage at at rowsonably stomedy value botworn syllables and words. The megative dec. voltage is applied as romerol hias to the suppressor grid of the first tula in the sprech amplifier (this riveruit requises a pentode first stage), ctherting at reduction in gain. The gain reduction is substantially proportional to the average microphone output and thus temes to hold the amplifior ontput at a constant level.

Fig. 9-11-Speech-amplifier output limiting circuit. V_{1}-6C4, 6C5, 6CG7, 6J5, 12AU7, etc. $\mathrm{V}_{2}-6 \mathrm{H} 6, \mathrm{GAL5}$, etc.
T_{1} - Interstage audio, single plate to p. p. grids.

An adjust abla hias is applied to the cathoders of I_{2} tu cut olf the tube at low levels and thas provent wetifiation umil at desired output lewed is retched. Re is the "threshold eontrol" which suts this farel. h_{1}, the gatin control, determines the rater al which the gatin is redured with increasing signal level.
The hodd-in time ean he increased bey increasing the rexistance of R_{3}. '2 ated R_{4} maty not be neressary in all rasw: thoir function is to provent for-rapid gaturedadion on a sudden voire pak. The "rise time" of this rimenit atn be ineredsed by increasing C_{2} or R_{4}, whoth.

The ower-all gain of the system must be high (mongh so that full output can be secured at a moderiatoly low voice level.

Speech Clipping and Filtering

In wereh ware forms the atrage power ent
tent is considerably less than in a sine wave of the same pak amplitude. Since modulation porcentage is based on peak vatures, the modulation or sideband power in at transmitter modulated 100 per cent by ath ordinary voice wate form will be considerably less than the sidebam power in the same transmitter modulated 100 per went by at sime water. In other words, the modulation percentare with voide wate forms is detormined by peaks hatwing relatively low aberage power coritent.

If the low-emergy peaks are elippod off, the remaining wave form will have a considerably higher ratio of a verage power to peak amplitade. More sideband power will result, therefores. when such a clipped wave is used to modulater the transmitter 100 per eent. . Ithough clipping distorts the wave form and the result therefore does not sound exaretly like the original, it is possible to sereure a woth-while increase in modulation power without sabrificing intelligibility, Once the system is properly adjusted it will be impossible to orermodulate the tromsmitter breatuse the maximum output amplitude is fixed.

13y itself, clipping generates the same highorder hamonics that owrmodulation does, and therefore will canse splatter. T'o prevent this, the audio frequencias abowe those needed for intedligiblo speed must be filtered out, after clipping and before modulation. The filter required for this purpose should have relatively little attenuation at frequemedes below about 2500 a yades, but high attemuation for all frequencios abowe 3000 creles.
It is possible to use as murh as 2.5 dh. of clipping before intelligibility suffers: that is, if the original peak amplitude is 10 volts, the signal can be dipped to such an extent that the resulting maximum amplitude is lass than one volt. If the original 10 -volt signal mpersented the amplitude that calused 100-preremt morlulation on peaks, the elipped and filtered sigmal ean then be amplified up to the same 10 -volt peak level for modulating the tramsmitter.
'There is a loss in natumalness wihh "deep" clipping, cven though the voice is highly intelligible. With moderate clipping levels (6 to 12 dh.) there is almost no change in "qualit!." but the voice power is ineratased considerably:
Brefore drastie elipping ean be used, the spereh signal must be amplified several times more than is neressiry for normal modulation. Also, the hum and noise must be much lower that the tolerable lavel in ordinary amplification, beceatuse the nowe in the output of the amplifer increases in proportion to the gain.

One type of clipper-filter strom is shown in honk form in Fig, !-12, T. The rlipner is a peaklimiting rectifier of the same genceral type that is used in reediver moise limiters. It must elip both positive and negative praks. The gain or elipping control sets the amplitude at which clipping starts. Following the low-gass filter for elimimating the harmonid distortion frequeneies is a second gain control, the "level" or modulation control. This control is set initially so that the

Fig. 9-12-(A) Block diagram of speech-clipping and filtering amplifier. (B) Practical speech clipper circuit with low-pass filter. Capacitances below $0.001 \mu \mathrm{f}$. ore in $\mu \mu \mathrm{f}$. Resistors are $1 / 2 \mathrm{watt}$.
L_{1}-20 henrys, 900 ohms (Stancor C-1515).
S_{1}-D.p.d.t. toggle or rotary.
amplitude-limited output of the elipper-filter camot cause more than 100 per cent modulation.

It should be noted that the peak amplitude of the audio wave form actually applied to the modulated stage in the transmitter is not necessarily held at the same relative level as the peak amplitude of the signal coming out of the clipper stage. When the clipped signal goes through the filter, the relative phases of the various frequeney components that pass through the filter are shifted, particularly those components near the cut-off frequency. This may cause the peak amplitude out of the filter to exceed the peak amplitude of the elipped signal applied to the filter input terminals. Similar phase shifts can occur in amplifiers following the filter, esperially if these amplifiers, including the modulator, do not have good low-frequency response. With poor low-frequency response the more-or-less "square" waves resulting from clipping tend to be changed into triangular waves having higher peak amplitude. Best practice is to cut the lowfrequency response before clipping and to make all amplifiers following the clipper-filter as flat and distortion-free as possible.

The best way to set the modulation control in such a system is to check the actual modulation percentage with an oscilloscope connected as deseribed in the section on modulation. With the gain control set to give a desired elipping level with normal voice intensity, the level control shouk be adjusted so that the maximum modulation does not exeed 100 per cent no matter how murl sound is applied to the microphone.

A practical elipper-filter cireuit is shown in Fig. (9)-12B. It may be inserted between two speech-amplifier stages (but after the one having the gain eontrol) where the level is normatly a few volts. The cathode-coupled clipper cireuit gives some over-all voltage gain in addition to performing the elipping fumetion. The filter constants are such as to give a cut-off characteristic that
combines reasonably good fidelity with adequate high-frequeney suppression.

High-Level Clipping and Filtering

Clipping and filtering also can be done at high level - that is, at the point where the modulation is applied to the r.f. amplifier - instead of in the lowlevel stages of the speech amplifier. In one rather simple but effective arrangement of this type the clipping takes place in the Class-B modulator itself. This is accomplished by carefully adjusting the plate-to-plate load resistance for the modulator tubes so that they saturete or clip peaks at the amplitude level that represents 100 per cent modulation. The load adjustment can be made by choice of output transformer ratio or by adjusting the plate-voltage/plate-current ratio of the modulated r.f. amplifier. It is best done by examining the output wave form with an oscillosrope.
The filter for such a sustem consists of a choke coil and capacitors as shown in Fig. 9-13. The values of L and ('should be chosen to form a lowpass filter section having a cut-off frequency of about 2500 cycles, using the modulating impedance of the r.f. amplifier as the load resistance. For this cut-off frequency the formulas are

$$
L_{1}=\frac{R}{7850} \quad \text { and } \quad C_{1}=C_{2}=\frac{63.6}{R}
$$

where R is in ohms, L_{1} in henrys, and C_{1} and C_{2} in microfarads. For example, with a plate-modulated amplifier operating at 1500 volts and 200 ma. (modulating impedance 7500 ohms) L_{1} would be $7500 / 8850=0.96$ henry and (is or (${ }_{2}$ would be $033.6 / 7500=0.0085 \mu \mathrm{f}$. By-pass capacitors in the plate circuit of the r.f. amplifier should be included in C_{2}. Voltage ratings for C_{1} and C_{2} when connected as shown must be the same as for the plate blocking capacitor - i.e., at least twice the d.e. voltage applied to the plate of the modulated amplifier. L and C values can vary 10 per cent or so without seriously affecting the operation of the filter.

Besides simplicity, the high-level system has the advantage that high-frequency components

Fig.9-13-Splatter-suppression filter for use at high level, shown here connected between a Class B modulator and plate-modulated r.f. amplifier. Values for L_{1}, C_{1} and C_{2} are determined as described in the text.

9-SPEECH AMPLIFIERS AND MODULATORS

of the andios signal fod to the modulator grids, whothor present legitimately or as a result of :mplitude distortion in lower-lavel stages, are suppresed along with the distortion components that arise in elipping. Also, the undesimble offerets of porer low-fremberey response following elipping and filtoring, mentioned in the preceding sertion,
are avoided. Phase shifts ran still orear in the high-level filter, however, so adjustments proforably should be math by using an oseilloseope to -herek the atual modulation pereentage undor all ronditions of spereh intensity. (For further discussion sere Bruene, " High-Lavel (lipping and Filtering", QSTT, Niovember, 1951.)

Low-Power Modulator

A mondulator suitable for plate modulation of low-power transmitters or for sereen or controlgrid moclulation oll high-powro amplifiers is piroured in Figs. !l-It and !-16. As shown in
 in the output stane. These atre driven by a det phase inverter. A twostage promplifior using a 12A. 7 brings the output voltage of a crestal or reramie microphome up to the proper leved for the 6 (4 grid. A power supply is included on the same chassis.

The undistortend audio output of the amplifior is $7-8$ watts. This is suffiemont for modulating the plate of an r.f. :mplifior ruming 10 to 15 watts input, or for modulating the control grids or sereens of ref, amplifiers using tubes having phatodissipation ratings up to $2: 0$ watts. When sereen modulation is used the seremen power for the modulated amplifior (up to 250 volts) ath be taken from the modulator power supplas. The witing shown in lijg, ?-1is prowides for this, through an adjustable talp on the $2 \mathrm{a}, 000$-ohm bleeder resistor, h_{5}, in the power supply. If a separate sereron suphly is userl, or if the modulator is used for grid-hias or plate modulation of an r.f. amplifier, the d.e. direnit shombld be opened at print " X " in Fig, (9-15.

The amplifier uses mesistanere couphing up to the output-stange prids. The first section, $V_{1 A}$, of the 12.1N7 has "erontart-potential" hias. The gain rontrol, R_{1}, is in the grid airenit of the seremed soretion, Ith, of the 12ANT. Negative fordhatek from the serondary of the output translomere, T_{1}, is introdured at the cathorde of this tube sertion. The feredbark voltage is dependent on
the rat in of R_{2} to R_{3}, approximately, and with the constants given is sufficient to result in it ronsiderable reduction in distortion along with improved regulation of the andio output voltages. The latter is important when the mit is used for modulating at sereen or control grid, as deseribed in the ehapter on amplitude modulation.

The phase invertor is of the split-load tyoue deseribed earlier in this chaptor. It drives the push-pull 6.10.j's in the power amplifier. The output transiormer used in the power state is a multitap modulation transformer suitabla for any of the tyeres of modulation montioned above

Capacitor (ch across the secondary of the output transformer, T_{1}, is used to redued the high-frequener response of the amplifier. Without it, selfeoseillation is likely to oecur at at high atudio frequency (usually above amdibility) becallse phase shift in the output transfomer at the end of its useful frepurney range causes the feod back to berome positive.

The power supply uses a replamement-type transformer and choke with a capacitor-input filter. Voltage umder the modulator and speredtamplitier lowd is 250. The deroupling resistinner rapabitanee networks in the plate rirenits of $V_{\text {is }}$ and lim contribute additional smonthing of the der for these low-level stagers.

The unit indlades provision for semd-recerive switching, si, being used for that pmonese. Sim rim be used to control the r.f. seretion - for example, be being romnected in parallel with the key used for c.s. operation. Simultaneously $S_{1 A}$ short-rireuits the seeondary of T_{1} so the transformer will not be damatged by leoing left

Fig. 9-14-Speech amplifier and low-power modulator suitable for screen or control-grid modulation of highpower amplifiers, or for plate modulation of an r.f. stage with up to 15 watts plate input. It is assembled on a $7 \times 9 \times 2$-inch steel chossis, with the power supply occupying the left-hand section and the audio circuits the right. The $12 A X 7$ preamplifier is at the lower right-hand corner, the 6C4 phase inverter is to its left, ond the 6AQ5 power amplifiers are behind the two. Contrals along the chossis edge are, left to right, the power switch, send-receive swith, gain control, and microphone jock.

A Low-Power Modulator

Fig. 9-15-Circuit of the speech amplifier and modulator. All capacitances are in $\mu \mathrm{f}$.; capacitors with polarities morked are electrolytic, others are ceramic. Resistors are $1 / 2$ watt except as noted below. Voltages measured to chassis with v.t. voltmeter.
J_{1}-Microphone connector (Amphenol 75-PC1M).
Ls - 10 henrys, 90 ma. (Triad C.7X).
S_{1}-D.p.d.t. toggle.
S:2-S.p.s.t. toggle.
T_{1}-Modulation transformer, tapped secondary, primary 10,000 ohms plate to plate (Thordarson 21 M68).
withont lowd. If $S_{\text {il }}$ is connerteal arross the t tamsmitter key, s'a also (an he used as a phome".W. switch, being loft in tha " R " position for (c.w. opration.

The treminals marked " 13 switeh" should be short rivenited (indicated by the dashed line) if x_{1} is used as a somderecoive switeh. If a switeh on the transmitar is used for semb-recerive, these terminats may be used for turning the plate voltage in the nodulator on and off through
T_{2}-Power transformer, 525 v.c.t., 90 ma.; $6.3 \mathrm{v.}$,5 amp.;
$5 \mathrm{v.}$,2 omp. (Triad R-10A).
$\mathrm{R}_{2}-1500$ ohms, $1 / 2$ watt.
R_{1}-App. 200 ohms, 2 watts (two 390 -ahm 1-watt re-
sistors in parallel).
an extrat pair of contade on the transmitter sendreerive switch. In that rase N_{s} shoula be left in the "semd" pesition for phome operation.

The proper serombary taps to nse on T_{1} will depend on the imperdaner of the load to which the amplifior is eomereted. Dathods for determining the modulating impedane with varicus typers of modulation are given in the seetion on amplitude mondulation, tugether with information on connecting the modulator to the r .f. stage.

Fig. 9-16-Below-chassis view of the modulator. The rectifier-tube socket and electrolytic filter copacitors are at the right in this view. The $12 A X 7$ socket is at the lower left. Bleeder resistor R_{s} is at the upper left, near the 6-terminal connection strip on the rear edge of the chassis. Placement of components is not critical, but the leads in the first two stages should be kept short and close to the chassis to minimize hum troubles.

9-SPEECH AMPLIFIERS AND MODULATORS

25-Watt Modulator using Push-Pull 6BQ6GTs

The spereh :mplifier-modulator shown in Figgs. 9-17 to 9-19. inclusive. can be used for plate modulation of low-powor transmitters maning
 as shown is cathable of an andio out put of $2 \overline{\text { a }}$ wat ta, but this can lne increased to :30 watts be a simple modifieation. The filselis in the output stage are oprated in Class $1 B_{1}$. Inexpensive reremertype replacemont romponents are used throughout. except for the mondulation transformer.

Circuit

Ther spech amplificu uses a pentode first stare resistanereroupled to a triodr serond stage. This combination gives sufliciont gatin for at rustal microphone. The pentode and triode are the two sections of a dual tube, the (i.S.X8. Transformere roupling is used betwen the triorlo and tho modulator tubes, in order to get push-pull voltage for the diBQtici'T grids. Cathode bias is used on the filal stage.

The roupling raparitaned lowtwen the first and second stages is purposely made small tor reduce the low-frequener response, ath the primary of the output transfomer is shmed bey for to redure the amplification at the high-frequancy end. ('1, on the first stage, also tends to reduce highfregueners response in addition to bepassing ams r.f. that might be pioked up on the mierophone cord. These measures coufine the frequency response to the most useful portion of the voice range.
A_{2} is the "send-receive" switeh. One seetion "pens the power transiormer ernter tap, thus cutting off the phate voltage during recoiving periods. The other section can be comerted to the key terminals on the transmitter, as indicated in the ripenit diagram, to turn the transmitter on and off along with the molalator'. If the transmitter is one in which the oscillator is not
keyed. Nion may be used to rontrol the transmitter phate voltage usually be being connerted in the llis-volt circuit to the plate-supply transformer.

Tho "phone-r.w." switch, siz, short-rimerits the seromblary of the modulation transformer, P_{3}, when the transmiter is to be keyed, and also opens the center-titp of T_{1} so plate voltage eatmot be applied to the modulator.

The power supply uses ar receiver replacementtape transformer with a rapacitor-input filter. Additional filtoring for the speren-amplifier stages is provided bey the $10-\mu \mathrm{f}$. ("apacitors and the suries resistors in the plate circuits. Ham is also redured ley the VR-150 used to regulate the modulator serem voltage. Noterhat the regulator tute is romberded betwern the sereens and (eathoukso that the arothal seremen voltage is $1: 00$ and is not reducel by the drop in the eathode bias resistor. Mandaning full sorroll voltage is important if the rated ontutit is to be seroured.

Operating

The gbogarit amplifier roguires a plate-toplate loat of fool ohans, and the out jut transformor ratio must be chosen to roflere this lowd to the plates (see later socolion on matehing at mothatar to its load). For most small transmitters ruming 30 to $\overline{0} 0$ wath impur to the final stageal-to-I transformer ratio will hesal isfartory, since the modulating impedanere of surh transmittors usually is in the moighborhood of 4000 ohms. The secomedary of T a is romberetel in serias with the d.e. lead to the plate (and sereen, if a soreen-grid tubr) of the Class ($($ amplifior to be modulated. For further details, sere the chapter on amplitude modulation.

For choreking the modulator oprotion a milliammoter ($0-2($ () range satisfactory) may be connected in the lead to the center-tap of the

Fig. 9-17-A modulator for transmit. ters operating at plate inputs up to 50 watts. The speech amplifier and modulator are at the left in this view; power supply components are at the right. The chassis is $7 \times 11 \times 2$ inches.

25-Watt Modulator

Fig. 9.18 -Circuit diagram of the 25 -watt modulator. Capacitances below $0.001 \mu \mathrm{f}$. are in $\mu \mu$. Capacitors up to 0.01μ. are ceramic. Resistors are $1 / 2$ watt unless otherwise specified.
L, 8 henrys, 150 mo .
$S_{1}-S . p . s . t$. toggle.
S_{2}-D.p.d.t. toggle.
S_{3}-2-pole 2-position rotary (Centralab PA-2003).
primary of T_{3}. Without voice input to the microphone the plate current should be approximately 50 mat. When modulating the transmitter, the eurrent should "kiek" to (00 or 70 mat.: this will usually represent 100 per cent modulation. If the amplifier can be tested with a singlo-tone signal replating the microphone, the plate earrent will be about 165 mas. at full ontput.

The audio power output can be increased to
T_{1}-Power transformer, 650 volts c.t., 150 ma .5 volts 3 amp .; 6.3 volts, 5 amp .
T_{2} —Interstage audio, single plate to p.p. grids, pri, to total sec. ratio 1 to 3.
T_{3}-Modulation Iransformer, multimatch type (UTC S-19).
about 30 watts, sufficient for modulating an 807 at its full phone rating, if the $61306 \mathrm{G} T \mathrm{c}$ eathodes are gromaded and bias of about 30 volts from a fixed sourere such as a smatl hattery is applied to the grids. The hattery may be substituted for the cathode resistor if the gromme ronnertion is moved from the center tatp of the secondary of T_{2} to the cathoules of the di3Qigits.
(From QSTT, Decomber, 1955.)

Fig. 9.19-Under-chossis view of the 6BQ6GT modulator. The two large capacitors at the right are the filter capacitors in the power sup. ply. The modulator bias resistor and bypass cafacitor $\left(R_{1} C_{3}\right)$ are at lower left. Leads from the modula. tion transformer go through the three holes in the chassis. Shielded wire is used for heoter, misrophone input, and gain-control leads.

9-SPEECH AMPLIFIERS AND MODULATORS Class AB1 Modulator Using 807s

The modulator unit shown in ligs. 9-20 to !-2e2. inclusive, uses at pair of 807 s as Class AB_{1} power amplifiers. Its adio power output depends on the plate voltage applied to the 807s: approximate values and optimum plate-to-plate load resistances are as follows:

I'lute-to-I'late

Plate Voltage	Load	Power Output
400	6200 ohms	30 watts
500	8000 ohms	40 wats
600	0800 ohms	45 wats
750	12,500 ohms	60 watts

The powrer-output figures are conservative, and will vary somenhat with the losses in the output transformer. These in turn may vary with differant rombinations of tap) ronnertions. The nominal tube output (without transformer losses) is 20 to 2 2j per cent higher than the figures given.

The modulator is intended for use with an extermal plate and sereen supply for the 807 s , but incholes a screen regalator circuit. The unit has a buit-in power supply for the speech amplifier section. Fixed bias for the 807s is taken from this supply.

Speech Circuit

The speerh amplifier uses a high- μ dual triode as a two-stage resistanceroupled amplifier. followed by a medium- μ triode. The latter is transformer-coupled to the modulator grids. The gain from the microphone input to the 807 grids is more than ample for crestal mierophones and others of similar output level.

The frequence response of the amplifier is adjusted to put maximum energy in the range where it contributes most to speech intelligibility: that is, the output is highest between $\overline{5}(0)$ and 1200 a veles and drops off gradually on either side. The lower frequencios are redued by using low
values of coupling raparitance between the re-sistance-coupled stages, and the high-frequeney end is attemated by (${ }_{1}$, Further high-frequene aftemation, particularly for such eomponents gemerated in the mondulator itself, is provided bs "apacitor ('2. commeded arooss the output terminals of the modulation transformer.

Power Supply

The plate-supply requirements of the 12A.N and $6 \mathrm{C} \cdot 4$ in the spech amplifier are quite smatl and easily can be supplied by a small "TV booster" trpe transformer, 7\% . As shown in the diagram, a halfowave selenium rectifier works into a rapacitor-input filter from this transformor, bias for the 80 is is obtamed from this supply by making the output current flow through k^{2} and R_{3} in series, these resistors being conneded between the negative output terminal of the supply and ground so that a negative voltage is developed with respere to chassis. The bias is adjustable by varying R. A single variable resistor having a total resistance of 10,000 ohms can be used instead of the two 5000 -ohm units in series; the adjustment beromes somewhat more reritical with the larger resistor but the operation is otherwise the same.

Heater power for the spech amplifier and modulator tubes is suppled by a separato filament transformer, T_{4}.

Plate power for the 807s is intended to be taken from an extermal source at a voltage level suitable for the output power desired. Sareen voltage for the 80 s s romes from the same souree, but is regulated at 300 volis by means of two 0.92 voltager-regulator tubes in series. Such regulation is essential for proper operation of the modulator tubes. The corrent through the 0.2 ss should be auljusted to 25 to 30 ma , with no signal on the

Fig. 9-20-Speech amplifier and modulator using Class $A B_{1} 807 \mathrm{~s}$. Depending on plate voltage used, audio power outputs up to at least 60 watts may be obtained.

Fig. 9-21-Circuit diagram of the 807 modulator. Capacitances are in μ f. unless otherwise specified; electrolytics are marked with polarity; others may be either ceramic or paper. Resistors are $1 / 2$ watt except as indicated.
C_{1}-470- $\mu \mu$ f. mica or ceramic.
C_{2}-App. $0.005 \mu \mathrm{f} ., 1600$ volts (see discussion on modulators earlier in this chapter).
C_{3}-Dual 40- μ. electrolytic, 250 volts. Must be type that can be insulated from chassis.
$C R_{1}$-Selenium rectifier, 20 -ma. or higher rating, 130 volts.
J_{1}-Chassis-type microphone connector (Amphenol 75. PCIM).
$\mathrm{L}_{1}-10$ henrys, 50 ma . (Triod $\mathrm{C}-3 \mathrm{X}$).
R_{1}-l-megohm control, audio taper.
$R_{2}-5000$ ohms, 2 watts.
grids of the 807 s , her setting the slider on the 20,000 -ohm adjustable resistor. R_{4}.

I pair of terminals is provided for connecting a d.e. milliammeter ($0-200$ mat range is suitable) in series with the 807 phates for measuring plate curent. Such a meter is useful as a check on the operation of the modulator during initial testing, and as at modulation indirator during artual operation. If a meter is not used the meter terminals should be connected together through a jumper.

Construction

The modulator shown is built on a $7 \times 11 \times 2$ inch stoel chassis, but other chassis sizes and layouts may be used if the builder prefers. The prin--apal ronstruetional precaution to be observed is to keep the modulation transformer. Ts. reasonably well separated from the low-level spereh components so stray coupling between the wiring of these stages is minimized. The interstage transformer, T_{1}, should not be mounted too close to the power fransformer, T_{3}, since there is a pos-
$\mathrm{R}_{3}-5000$-ohm wire-wound control, 2 wotts.
$\mathrm{R}_{4}-20,000$-ohm adjustable wire-wound, 25 watts.
$\mathrm{S}_{1}-$ S.p.s.1. toggle.
T_{1}-Interstage audio transformer, single plate to pushpull grids; 10 -ma. primary; 3 -to-1 turns ratio, total secondary to primary (Merit A-2914).
$\mathrm{T}_{\mathbf{2}}$-Multimotch modulation transformer, 30 -watt rating adequate for voice work (UTC CVM-1).
T_{3}-Power transformer, 125 volts at 15 ma .; 6.3 volts at 0.6 omp . (Stancor PS8415).
T_{4}-Filament transformer, 6.3 volts at 3 amp .
sibility of hum piekup in T_{1} if these two units are close togrether.

It is neerssary to cut a large hole - about 3 inches in diameter - for monnting the particular type of modulation transformer usod in the unit shown. The comoretion terminals on this transformer are lugs on the bottom of the ease, so the chassis opening must be large enough to permit making eommertions without danger of a shortcirculit to chassis.

In wiring the speech-amplifier sertion, the leads to grids and platess should be kept short and separated ats mudh as possible from heatery wiring. The heater leads should be rum atong a fold in the edge of the chassis exeept where they must be brought out to reach the tube sockets. In this unit shieded wire was used for the heater wiring. but this is not necessary as a hum-reducing preatation. The principal reason here was merhanieal: the shieded wire stats in place better and the shiolds ran be "tacked" togethed with a spot of solder as a simple method of (ab)ling.

9 -SPEECH AMPLIFIERS AND MODULATORS

Fig. 9-22-Below-chossis view of the 807 modulator.

In the top viow, Fig. 9-20, the spereh-amplifior section is along the righthand edge of the chassis. The tule near the front is the 12. NX 7 dual-triode amplifier. The eifedriver is just behind it, and the filament fransformer, T_{4}, is on the rear right-hand cormer. The modulation transformer is in the left renter alongside the 807 modulator tabes. Along the laft edge of the (hassis ate the power transormer, Th, the dual filter capacitor, f_{3}, and the two gas regulator tubes. The ungative terminal of 8 '3 mast be insulated from the chassis: the raparitor shown is a "twist-lok" type with a bakelite sooket.

In the brow-rhassis view, Fig. !-22, the power-supply components are at the right. L_{1} is mounted on the righthand wall of the chassis, with the selenium rectifier, ($/ R_{1}$. just to its loft. The dropping resistor for the Vheregulated sereen eibenit is near the upper right comer, elose to the 0, de sockets. The 115 -volt sorket and fuse are on the chassis wall near the regulafor tubes. The spereh-amplifier sertion is at the Iower loft in this viow, with components laid in as convenient. The interstage andio transformer, T_{1}, is mounted betwern the 807 sorkets at the left. The eontrol on the toj, wall is Ra, for setting the grid bias on the sots. Audio output, high voltage, and meter conneretions are made through the terminal strip (Millen $37: 30 \mathrm{i}$) between the fuse and bias control.

Operating Notes

The speed amplifier seretion may be tested independently of the modulator, simer it has its own power supply. Tresting maty le done and doseriberd hater in the ehapter, preforably with an audio oserillator and oscilloseope to cherk wave form.

The modulation transformer taps to be used will depend on the phate-to-phate load resistance required for the desired power output and on the modulating impedance of the r.f. amplifier. The
chart furnishod with the transformer should be consulted for this information.

If the Chass-(amplifier plate supuly has the proper voltage and has sufficient exeres capacity to furnish an average current of 70 to 100 ma . in addition to its normal Class (load, it may be nisel for this modulator as well. If not, a separate supply of conventional design (see chapter on power supply) may be used. It should have a choke-input filter and should have a minimum output capacitance of about 10μ f. for good dynamic regulation.

Bofore attempting to test the moslulator, remove the 80 an from their sockets and adjust R_{4} (shut off the voltage before making each adjustmont) for a current of 25 to 30 ma . through the VIR tubes. The curent may be moasured by connerting a milliammeter of suitable range in sories with the positive high-voltage lead between the external power supply and this unit, sine e with the 807sout of their sockets the only current is that through R_{4} and the VlR tubes.

After R_{4} is properly adjusted, replace the 807 s and with R_{3} at maximum resistanee (maximum bias) connert the plate milliammeter to the meter terminals. Then apply plate power and adjust R_{3} for a plate current of 40 to 50 ma . ; the value is not esperially reritical, but should not be too near cutoff and should not be so large as to cause the rated plate dissipation of the tubes to be excooded. With the Class-C' load ronnerted the plate corrent should rise to approximately 140 mat at full output, using a sine-wave signal. With voire input the current should kiek to 65-75 ma. on praks. These figures for plate curvent are the same regardless of the plate voltage used, so long as the sereen is maintained at 300 volts.

If ew. as well as phone operation is to be employed, provision should be made either in the modulator or the r.f. unit for short-cireniting the secondary of the modulation transformer when the transmitter is being keyed.

6146 Modulator

6146 Modulator and Speech Amplifier

The modulator shown in Figs. 9-2:3 to $9-25$, inchasiver uses a pair of tiltis in,λB_{1}, and is complete with power and hias supplies on a $10 \times 17 \times 3$-inch chassis. The modulator also is equipere with ath atudio takroff for seope monitoring.
The atudio power that ran be obtained (based on metaruments is is follows:

Nomimal		1/nte-to-IMate
I'late loltage	Pourer Output	Lond Resistunce
B00 volis	75 watts	4200 chans
(60) volt-	(1.) watis	5200 ohtus
750 volt:-	120 watts	6700 ohtus

suitable sets of romponents for all there of the voltages listed above are madily available, so the power lovel ratn be selected to suit the ('lass C' amplifier to tre modulated. The modulator shown in the photographs is sed up for 750 -volt operation, but aside from the power and modulation transformers all romponents are the same regardless of the voltage level.

Audio Circuits

As shown in the eireuit diagram, Fig. 9-2t, the audio swstem consists of a $1 \times .2$. 7 preamplifier with the two tube seretions in cascade, followed by a 6 (Ct voltage amplifior which is trams-former-coupled to the grids of the Class $A B_{1}$ modulator tubers. The combination provides ample gain for ar commonications-type crystal, erramier or dyatmic mirrophont.
The first stage of the amplifier is "rontantpotential" biaved, and is mesistanerompled to the seroud stage. The gatin control, R_{1}. is in the grid rireuit of the serond stage. Deronpling rosistors and caparitors are induded in the platesupply eireuits of these two stages: these dorompling eircuits also provide additional platesupply hum filtaring for the two low-lay stages.

The serondary of T_{1}, the transformer roupling the third speerh stage to the mordulator grids. is shunted by a 170 () $-\mu \mu$ l', calamitor to redure high-
fredueney response. The optimum value of ratpabitane will depend on the particentar type of atudio transformer selected, as well as on the highfrequency chatacteristics of the mierophone emplowed. Different values should be tried with the objeet of rutting the high-frequener response ats much as possible, consistent with intelligibility.
The modulation transformer is of the maltimatch there, and the taps should be selereted to reflert the proper plate-to-plate load impedanese, as given cartier, for the desired power output. The impedance ratio, serondary to primary, will depend on the modnating impedane of the modulated r.f. amplifier, as deseribed earlier in this dhapter. The secomdary of the modulation tramsformer is shonted by ('i to redure output at the higher andio frequencios, partioularly for attenuating high-frequenery hamonies that might be gencrated in the modulator at high output levels. The value suggested ($0.005 \mu \mathrm{f}$.) is an average figure and should to modified aceording to the modulating impedanere of the Class-C stage as discussed carlier in this chapter.

Power Supply

Plate power for atl tubes in the unit is supplied by a single power transformer. Morewry-vapor rectifions are used becauso good volage regulattion is desirable. The filter is a single section with choke input and a large (over $25 \mu \mathrm{f}$.) output "atpacitance. The filtor capacitor consists of three $80-\mu \mathrm{f}$. 450 -volt electrolytic (alpatitors in serios for 750-volt dic. output. If the output voltage is 600 or lass only two eaparitors in serie's will be needed. These raparitors are shunted by 0.1megohm resistors to help equalize the d.e. voltages areross them.
The 200-volt (approximately) supply for the 6116 sereerns and the plates of the spereh-amplifiop tules is taken from the main supply through at dropping resistor, athed is regulated by two 0b:

Fig. 9-23-Class- $A B_{1}$ modulator using 6146 s, camplefe with speech amplifier and power supply. The reiay-rack panel is $101 / 2$-inches high. Plate-and filament-supply primary switches, each with its own pilot lamp, are near the lower edge of the panel. The gain control is of lower center. Along the front of the chossis, just behind the panel, are the plate power transformer, filter choke, and modulation transformer, going from left to right. The tubes at the left are the 816 rec. tifiers, with the 6146s of the right. Along the rear edge are the two voltage-regulator fubes, the $12 A X 7$ and 6C4 speech amplifier tubes, and the interstage audio transformer, J_{1}.

9-SPEECH AMPLIFIERS AND MODULATORS

Fig. 9.24-Circuit diagram of the 6146 modulator and power supply. Capacitances are in μ f. unless indicated otherwise; capacitors marked with polarity are electrolytic, others may be paper or ceramic as convenient. Resistances are in ohms; resistors are $1 / 2$ watt except as indicated.
C_{1}-See text.
$C R_{1}$-Selenium rectifier, 20 ma . or higher rating, 130 volts.
$\mathrm{I}_{1}-6.3$-volt pilot lamp.
I:-Neon lamp, NE-5 1.
J_{1}-Microphone connector (Amphenol 75-PCIM).
J.- Phono jack.
$\mathrm{J}_{i,} \mathrm{~J}_{1}-115$-volt chassis-mounting plug (Amphenol 61-M1). K_{1}-Antenna changeover relay, 115 -valt coil (Advance $\mathrm{AH} / 2 \mathrm{C} / 115 \mathrm{VA}$; type AM also suitablel.
L_{1}-Filter choke, 10 henrys, 300 mo . (Triad C-19A).
$\mathrm{R}_{1}-0.5$-megohm control, audio taper.
$R_{2}-50,000$-ohm wire-wound contral, 4 watts.
$R_{:}$- 15,000 -ohm adjustable, 50 watts.
$S_{1}, S_{2}-S . p . s . t$ toggle.
S_{3}-S.p.s.t., mounted on R_{1}.
paritor is connceded arross the VR tules to improve the dynamie regulation in the 61 fti sereen rimolit, since the peak instantaneons serern rurrent exereds the regulationg capacity (30 mat . of the VIR tubes when the modulator is driven to maximum ontput.

Fixed bias for the 61 ft grids is taken from a built-in bias supply using a TV" "hooster" transformer with a sodenium rectifior. This bias is
T_{1}-Interstage audio, single plate to p.p. grids, 3-to-1 secondary-to-primary ratio (Stancor A-63-C).
T_{2}-Multimatch modulation transformer, 125 watts (Triad M.12AL).

Ts-Filament transformer, 6.3 volts at 4 amp. (Triad F-53X).
T_{1}-Power transformer, 117 volts at 20 ma ; 6.3 -volt winding unused (Thordarson 26R32).
Ti-Plate transformer. For 500 volts d.c.: 1235 volts c.t., 310 ma . (Triad P-7A); for 600 volts d.c.: 1455 volts c.t., 310 ma . (Triad P-11A). Transformer shown is for either 600 or 750 volts d.c. output at 310 ma .; sec. voltage 1780 c.t. for 750 volts (Triad P-14A).
$\mathrm{T}_{\text {is }}$ —Filament transformer, 5 volts of 3 amp., 2500-volt insulation (Stancor P-4088).
 athd filament transformer are on the same als. "ireuit so that bias is applied to the molulator grids whenever the tube heaters are chergized.

Control and Auxiliary Circuits

The modulater ineludes an ascillosoope takooff circuit consisting of the 0.0\%- -f . capacitor anal threr 1 -mogohm resistors in series. This an be

Fig. 9-25-Below-chassis view af the 6146 moduiator. The 816 sockets and filament transformer (T_{c}) are af the lower left. The chassis wall at the bottom tas on it, left to right, the 115 -volt a.c. plugs, fuse holders, bias control ($R 2$), microphone input connectar $\left(J_{1}\right)$, scope take-off connector (J_{2}) and a three-terminal strip (Millen 37303) for audio output and positive high voltage connections. The high-voltage filter capacitor bank is in the center, mounted on a plate of plastic insulation which is supported away from the chassis on small pillars. The 6.3 -vclt fransformer $\left(T_{3}\right)$ is to the right of the capacitors. The antenna changeover relay used for shorting the modulation-transformer secondary is on the right-hand chassis wall.
used for horizontal deflertion of a cer. tube to give the trapezoidal mohulation pattern (see chapter on amplitude modulation). Leually: it will bo nerersame to use ath extermal control tor adjusting the amplitude of the swerp voltage so obtatined. 10 desired, a I-megohm control ean be substituted for the fixed resistor at the bottom of the string. thus avolling the nocersity for an extermal control.

The normally elosed contatets of an :untemattype relay: K_{1} are used to shost-cincuit the sereombary of the modulation thansformor when the trathemitter is to be usel for rew, work. The switch, $\begin{gathered}3 \\ 3\end{gathered}$ that rontrols the relate is mounted on the gain control. R_{1}. so that when the gain is turnod all the way off. thus opening the switch, tha relay contarts elose This insures that the modulator is inoprative and canaot be driven by ateridental voire input (which would result in exeresive plate carent) when the transformer seromdary is shert-rimented.

Separate are imputs are provided for the filat mont-bias and plate power eireuits. The plate supply rath thus be controlled bey an external switch withont disturbing the operation of the filament ritedits or requiring a modifieation of the 11 ovolt wing.

Torminals are provided for taking out highvoltage d.e. for an external unit The powersupply equipment has more apacity than is meeded by the modulator unit itself (the rating for amaterurtype servioe is somewhat orer 300
ma.) and maty in some eases be suffeicht for oparation of the modulated r .f. ammalier as well. At least : 20 mat, should be available for this purpone. since the average pate-supply enerent in the modulator unit alone is leses that 100 mat., including the spereh-amplifier and Vh-tube drain.

Operating Data

The dropping resistor in the somen-supply oivcuit should be adjusted so that the rument through 0)B3: is 30 ma. With the bias on the tilti grids adjasterd so that the mo-signal phato earrent is approximately on mata. The eurmont through the VR tubse may be measured by temporarily opening the lead to the upper obse at pin 5 ath inserting a milliamanetor of appopriate range.

If a sime-wave signal is used for testing the modulator, full output should be eremed with a modulator plate courent of apposimately 3.40 ma. This value will be the same for all plate voltages, provided the sereen volage is mantained at approximately 200 volts and the valuow of plate-to-plate load resistame as sperified earlier arr used. With voiee input the plate courrent will kiek up to about 100 mat on peaks, drpending on the characteristies of the speaker's voire and these of the mirrophone tiscd. This peak value should be determined under anthal operating eonditions with an (weilloseope, after Which the plate milliammeter ean be used ats a modulation indicator.

9-SPEECH AMPLIFIERS AND MODULATORS
 Class B Modulator with Filter

Representative Class 13 modulator construction is illustrated by the unit shown in Figs. 9-26 and 9-28. This modulator includes a splatter

Fig. 9-26-A typical Class B modulator arrangement. This unit uses a pair of 811 As, capable of on audio power output of 340 watts, and includes a splatter filter. The modulation transformer is at the left and the splatter choke of the right. All high-valtage terminals are covered so they connot be touched accidentally.
filter, $C_{1} C_{2} L_{1}$ in the circuit diagram. Fig. 9-27, and also has provision for shorterirouiting the modulation transfomer somondary when e.w. is to) lo used.
The audio input transformer is not built into this unit, it being assumed that this transormer

Fig. 9.27-Circuit diagram of the Closs B modulator. C_{1}, C_{2}, L_{1}-See text. (l_{1} is Chicago Transformer type SR-300).
$\mathrm{K}_{1}-$ D.p.d.t. relay, high-voltoge insulation (Advance type 400).

M-0-500 d.c. milliammeter, bakelite case.
T_{1}-Variable-ratio modulation transformer (Chicago Transformer type CMS.1).
T_{2}-Filament tronsformer, $6.3 \mathrm{v} ., 8 \mathrm{amp}$.
$\mathrm{I}_{1}-6.3$-volt pilot light.
X_{1}, X_{2}-Chassis-type 115 -volt plugs, male.
X_{3}-Chassis-type 115 -volt receptacle, female.
$\mathrm{S}_{1}-$ S.p.s.f. toggle.
will be included in the driver assembly as is customary. If the modulator and speech amplifierdriver are monnted in the same rark or eabinet, the length of leads from the driver to the modulator grids presents no problem. The hias required by the modulator tules at their higher platovoltage ratinges should be fed through the center tap on the serendary of the driver transformer. At a plate voltage of 1250 or less no bias is needed and theoenter-tap connertion on the transformer can le giounded.

The values of C_{1}, C_{2} and L_{1} depond on the modulating impedance of the Class (' r.f. amplifier. They eath be determined from the formulas given in this chapter in the seetion on high-level clipping and filtering. The splatter filter will to effective regardless of whether the modulator operating conditions are chosen to give highteved rlipping, but it is worth while to design the sustem for elipping at 100 pror cent mondulation if the tube curves are available for that purposes. The voltage ratinge for ('and ' 2 shomld at least equal the d.e. voltage applied to the modulated r.f. :mplifier.

A relay with high-voltage insulation is used to short-cireuit the serondary of T_{1} when the

Fig. 9.28 -The relay and filament transformer are mounted below the chassis. C_{1}, C_{2} and K_{1} are mounted on small stand-off insulators.
rolay coil is not energized. A normally closed contart is used for this purpose. The other arm is used to elose the primary eirent of the modulator plate supply when the relay is anorgized. Shorting the transformer serondary is necessary When the r.f. amplifier is keved, to prevent an inductive discharge from the transformer winding that would put "tails" on the keved characters and, with "athode keving of the amplifier, would rause excessive sparking at the key eontacts. The control circuit should be arranged in such a way that K_{1} is not energized during e.w. operation hut is energized by the send-rerejor switch during phone onsration.

Careful attention should be paid to insulation sinere the instantaneous voltages in the serondary circuit of the transformer will be at least twice the d.e. voltage on the r.f. amplifier. If a "hi-fi" amplifier of 10 watts or more output is available, it ran be used as the driver for the 811As by coupling as shown in Fig. 9-29.

Fig. 9-29—A "hi-fi" audio amplifier will drive a Class-8 modulator; a suitable coupling transformer is required. The connections shown here are for a pair of 811As. The amplifier should have an output rating of of least 10 watts.
T_{1}-10-watt line-to-voice-coil transformer (Stancor A-8104).

Checking Amplifier Operation

An adequate joh of ehereking spereh equipment can be done with equipment that is neither Claborate nor expensive. It typital sotup is shown is fig. !-30. The constrution of a simple audio oscillator is deseribed in the chapter on meazurements. The audio-frequency voltmeter can be cither a vacuum-tube voltmeter or a multirange volt-ohm-millianmeter that has a rectitier-type: arce range. The hemset is induded for anral chorking ol the amplifier performanere
. In atulio aseilator usually will have ath output control, but if the maximum output voltare is in cexeress of a volt or so the output setting may lo rather critioal when a high-gain speed amplifiew is being tostod. In such a ases an attemator such as is shown in Fig. y-30 is a convenienee.

Fig. 9-30-Simple oscillator-attenuator test setup for checking a speech amplifier. It is not necessary that the frequency range of the audio oscillator be continuously variable; one or more "spol frequencies" will be satisfactory. Suitable resistor values are: R_{1} and $R_{3}, 10,000$ ohms; R_{2} and $R_{1}, 1000$ ohms.

Lach of the two voltage divilers redures the voltage by a fartor of roughly 10 to 1 , so that the over-all attentation is about 100 to 1 . The redatively low value of resistame, R_{4}, commed ed across the input terminals of the amplifier also will minimize stray hum pickup on the connceting leads.
The output of a power amplifier such as a modulator or driver for a Class 13 stage maty be chereked by using a resistaner load of the rated value for the amplifier. A useful cirenit arrangement is shown in Fig, 9-31. The load resistance. R_{1}. may be a single adjustable unit of appropriate power rating or may be made up of several resistors in serios or paralle to give the required resistance. If monsurement of the resistamer is nesessary an ohmmeter will tre sufliciently arourate. In the casc of a multimateh output transfiomer the taps should be those that will artually. be used with the Class C amplifier with which the modulator is intended to work. R_{1} then should have a value equal to the modulating impedance of the r.f. amplificr.

Fig. 9.31-Circuit for measuring power and making qualitative checks of the amplifier output. Values to be used for R_{1} and R_{2} are discussed in the text. The secondary winding of the output transformer in the amplifier should be disconnected from any d.c. source in the unit and one end connected to chossis as shown. An earth ground should be used on the system.

If an andio oscillator generating a good sine wave is used as tho signal soure the output power of the amplifier mat be measured by an audio-frequency voltmoter as indieated by. V. l:ither a varoum-tube voltmeter on its a.ce seale or a rectifier-type ale voltmeter will be satisfactory, the principat requirements being relatively high imperdanere (1000 ohms per volt or more) and a reasonatbly areurate calibration. The power output will he equal to $E^{\prime \prime} / R_{1}$, where E is the rem.s. value of the voltage arross the resistor (a.c. instruments usually are calibatad in r,mos. values). This assumes that the distortion generated in the amplifier is smatl: if distortion is high, the voltmeter reading will be inacedurate.

If the amplifier is a driver for a Class 13 mondulator, the value of h_{1} should be caleulated from $R / A^{\prime 2}$, where \mathcal{N} is the tums ratio, primary to total secondary, of the class 13 input transformer, and R is the rated plate-to-plate load for the driver tube or tulnes. R_{1} should of course be connected arross the total secondary in this case.

For a qualitative charek on distortion, provision is made in lig. 9-3f for monitoring the output of the amplifier. $R 2$ should be a wire-wound potentioneter having a rewistance of 10 or 20 ohms. A hoadset may be rommeded to the "Monitor" terminals. (ising the audio oseillator as at signal source, start with the gain control at minimum and then advance it slowly while listening carefully to the tone signal in the headset. When it legins to somud like a musionl oetave instead of a single tone, or when higher harmonically related tones can be heard along with the

9-SPEECH AMPLIFIERS AND MODULATORS

dewired one, distortion is starting to berome apprectiable. This effert usually will be detertable, but not serions, at full output of the amplifier as indicated by the voltmeter reading. Keep the signal in the headset at a moderate level by ardjusting h_{2} when nerersamy. If the amplifior passers the distortion test satisfactorily, reduce the andio input to zero and note whether any hum is audible in the headset. There should be nones, if the tone level in the headeret at full sime-wave ontput was no more than moderately high.

After comapheting these chereks with satisfartory results, substitute the mirrophone for the oserillator input to the amplifier and have someone speak into it at a moderate level. The headset will serve to indieate the spered quatity at various output levels. A tape reworder, if available. is useful at this stage sinere it can be substituted for the headset and will provide a means for comparing the ceffert of changes and adjustmonts
in which itis oceurring can be lowaterl by working from the last stage toward the front end of the amplifier, applying a signal to each grid in turn from the atadio oseillator and andosting the sigmal voltage for maximum output. In the ease of push-pull stages, the signal maty be applied to the primary of the interstage transformer - afler discomereting it from the phate-voltage sourer and the amplifier tube. Assuming that normal design principles have been followed and that all stages are theoretarally working within their (atpatbilities, the probable canses of distortion are wiring errors (wurh as arcidental short-ciment of at rathode resistor), defective components, or use of wrong values of resistance in cathode and plate cirruits.

Using the Oscilloscope

Sperh-implifier chereking is fireilitated ronsiderably if an owilloseope of the type having

Fig. 9.32-Test setup using the oscilloscope to check for distortion. These connections will result in the type of pottern shown in Fig. 9-33, the horizontal sweep being provided by the oudio input signal. For wove-form potterns, omit the cannectian between the oudia ascillatar ond the harizantal omplifier in the scope, ond use the harizontal lineor sweep.
in the amplifier as well as giving a better over-all cherk on spereh quality than the average headset. The offert of measures taken to attemuate high- or low-frequene response in the amplifer is readity ohserved be comparing reeordings made brefore and after changes. The output quality of the amplifier also can be compared with the original output of the microphone as registered on the recorder. In using a recorder cate must be taken to set has so that the first stage in the recorder amplifier is not overloaded. Ise the normal gain setting of the rerorder and adjust l a to give normal lavel indications.

Amplifier Troubles

If the hum level is too high, the amplifier stage that is eatasing the trouble ran be located by temporarily short-rircuiting the grid of earh tule ta ground, starting with the output amplifier. When shorting a part icular grid makes a marked dererase in ham, the hum presumably is comine from a precetiong stage, although it is possible that it is getting its start in that partioular grid circuit. If shorting a grid dores not arerease the ham, the ham is originating either in the plate circuit of that tube or the grid circuit of the next. Aside from wiring arors, a defertive tule, or inadequate phatersupply filtering. ojocetionable hum usually origimates in the first stage of the amplifier.

If distortion oceurs below the point at which the expected power output is secured the stage
amplifers and a linear swep eireuit is available. A tepical setup for using the oscilloweope is shown in Fig. !--32. With the eommertions shown, the sweep circuit is not required but horizontal and vertical amplifiers are nerersary. Ludio voltage from the oweillator is fed directly to one owdiloseope amplifier (horizontal in this (aso and the output of the sperech amplifier is commerted to the other. The seope amplifier gains should be adjusted so that each signal gives the samm line lengeth with the other signat shat off.

Cuder these conditions, when the input and output signals are applicd smaltaneonsly they are compared directly. If the surech amplifier is distortion-free and introcheces no phase shift, the resulting pattern is simply a straight line, as shown at the upper left in Fig. !--3.3, making an angle of ahout his degrees with the horizontal and vertioal axes, If there is no distortion but there is phase shift, the pattem will be a smooth ellipser, ats shown at the upper right. The greater the phase shift the greater the tembeney of the ellipee to grow into a dircle. When thare is abonharmonic distortion in the amplifier one end of the line or rellipse becomes rurverl, as shown in the serond row in Fig, !-3:3. With odd-hammonic distortion sum as is characteristio of owordriven push-pull stares, the line or ellipse is rarmed at both rinds.
latterns such as these will be ohtained when the input signal is a fatily good sine wave. They will tend to become complicated if the input

Checking Speech Equipment

wave form is romplex and the surech amplition introduces appreciable phase shifts. It is therm fore advisable to test for distortion with an input signal that is as mearly as possible a sine wave. Also, it is best to use a frequeney in the $500-1000$ evele range, since impropel phase shift in the amplifier is asuatly loast in this region. Phase shift in itself is not of great importanere in an atudo amplifior of ordinary design beranse it dowe not chatge the whatacter of sperech so fir ats the rat is enomerned. Howerer, if a complex signal is used for fosting, phaser shilt maty make it difficult to detere distartion in the oseilloseope pattern.

Sinere the oweilloweope amplifiens themselves maty introlue phase shift and possibl) distortion as well. it is advisable to chere the seope bofore attempting to make cherks on the sueerh amplifier. Aploly the signal from the andio oseillator simultamensy to the horizontal and vertial amplifier input terminals. If both amplifiers have the satme phase ehatateristics and negligible distortion the pattern, atter suitable adjustment of the Lains. will be a straight lime as shown at the upper left in Fig. !-ixiz. If distortion is visible. note whether it whanges when the seope gain rontools are redued: if mot. the signal voltage from the athe one ollator is too great abd should be redued to the peint where the input amplifiers are not owerloded. . Iter finding the proper settings for sighal imput and seope gatins. leate the latter atone in making rherks on the speerh efuipment and adjust the input to the seope be means of Re and the output of the atudio oscillater. 'Thase shift in the seope itsolf is not serious sine the presener of distortion in the sexerh amplitier ran he detereded by the patterms shown at the right in Fig. !-3;

In amplifiers having nor.tive foedhath, exressive phase shift within the fered-bark loop maty ratase solfosedlation, sine the sighal fed back masy arrive at the grial in phatse with the applied signal voltage instead of out of phase with it. such a phase shift is most likely to be assoriated with the output tramsormer. (berillation ushally oceurs at some frefurney atowe 10,0 (1) ereles, although oceasionally it will oerur at a vary low frequency. If the pass band in the stage in which the phatse shift oceurs is deliberately restrieted to the optimum voire range, ats described marlior, the gain at both very high and very low freguences will be so fow that self-oscillation is unlikely, even with large amounte of feredhack.
(ienerally spaking, it is easier to deteret small amounts of distortion with the type of pattem shown in Fig. !1-3;3 than it is with the waveform pattern obtained by ferding the output signal to the vertial plates and mating use of the linear swerp in the serpe. However, the wavelon mattern can be used satisfactorily if the signat from the atudio oscillator is at rasonably good sine wase. One simple mothed is to examine the output of the oveilator alone and trace the pattern on a sheet of tramparent paper. The patern given by the output of the amplifier ean then be

Fig. 9-33-Typical patterns obtained with the connec. tions shown in Fig. 9-32. Depending on the number cf stages in the amplifier, the pattern may slope upward to the right, as shown, or upward to the left. Also, depending on where the distortion originates, the curvature in the second row may appear either at the top or bottom of the line or ellipse.
compared with the "standate" pattern low adjusting the oncilloscone gatins to make the two patterne coincide are chandy an posible. 'The pattern diserepanderes are a measure of the distortion

In using the oseilhoseope came must be taken to avoid introducing hum voltages that will upset the mesturements. Hum pirkup oun the sepme leats or other exposed pate such as the amplifier load resistor or the voltmetor ean be detected by shatting off the atulio oseflator and wered atmplifier and comenerting lirst one an I then the other to the vertioal phates of the seope, sotting the internal horizontal swerp to an appropriate width. The trace should be at straght homizontal line when the vertieal main control is sod at the position used in the arthat mosarements. Wavimess in the line indieates lum. If the hum is not in the soope itsolf (choek bey diseommerting the leats at the instrument) make sure that there is a good ground combertion on all the equipment and, if necessary, shichd the hot leads.

The osedloseope ran he used to good advantage in stare-hy-stage testing to wherk wave forms at the grid and plate of cach stage and thas to determine rapidly where a source of trouble may be lomated. When the seope is commered to erientits that are not at gromid potentiat for d.e., a erat pacitor of abme 0.1μ. should be eomberted in scries with the hot oscilloseope lead. The probe lead should be shieded to prevent hum piekup.

Amplitude Modulation

As deseribed in the chapter on eirenit fundamentals, the process of modulation sets up groups of fregurences catled sidebands, whirh appear symmetrically above and below the frequeney of the ummodulated signal or carrier. If the instantaneous values of the amplitudes of all these separate frequencies aro added together, the result is colled the modulation envelope. In amplitude modulation (a.m.) the modulation envelope follows the amplitude variations of the audio-frefueney signal that is being used to modulate the wave.

For example, modulation by a 1000 -eycle tone will result in a modulation envelope that varies in amplitudeat a 1000 -ryclerate The atetual r.t. signal that produces such an envelope eonsists of three frequededes - the eatrier, a side frequeney 1000 reydes higher, and at side fredueber 1000 ceves lower that the ratrier. These three fre(fuencies casily eath be soptateded by a reeriver hatving high seloctivity. la order to reprodure the original modulation the reerever must have enough bendwidth to suerept the carrier and the sidehands simultameously. This is because an atm. deteetor responds to the modulation anvelope rather that to the individual signal components, and the anvelope will be distorted in the reeciver undess all the freduener eompor nents in the signal go through without change in their relative amplituder.

In the simple case of tone modulation the two side fredueneios and the carrior are eonstat in amplitude - it is only the envelope :mplitude that varies at the modulation rate. With more complex motulation such as voiec or muside the amplitudes and frequencies of the side frequencies vary from instant to instant. The amplitude of the modulation envelope varies from instant to instant in the same way as the complex andiofregueney signal ealusing the modulation. Nevertheless, even in this case the carvier amplitude is constant if the transmitter is properly modulated.

A.M. Sidebands and Channel Width

Speech ran be clectrically reproduced, with high intedligibility, in a bund of frequene ies lying botweon atproximately 100 and 3000 evides. When these frequencies ate combined with a
 the frepueney spectrum from about 3000 eveles below the carrier frequener to 3000 credes atovea total band or channel of about 6 kiloeveles.

Actual spereh frequencies extend up to $10,(0) 0$ crales or more, so it is possible to ocelupy a 20 -ke. chamed if no provision is made for reducing its width. For eommunication purposes such a chamel width represents at wate of valuable speretrum spate, since at (i-ke. chamuel is fully adequate for interligibility: Ocerpying more than
the minimum whand ereates maneressury interference. Thus spereh equipment design and transmitter adjustment and operation should be pointed toward maintaining the chamed width at the minimum.

THE MODULATION ENVELOPE

In Fig. 1()-1, the drawing at A shows the unmodulated r.f. signal, assumed to be a sine wave of the desired radio frequenes. The graph ean be taken to represent cither voltage or eurrent.

In I3, the signal is assumed to be modulated by the a $u d i o$ frequener shown in the smatl drawing above. This fregueney is much lower than the carrior frequency, a neressary condition for good modulation. When the modulating voltage is "positive" (above its axis) the cuvelope amplitude is inereased ahowe its ummodulated amplitude; when the modulating voltage is "negative" the anvelope :mplitude is decreesed. Thas the envelope grows larger and smaller with the polarity and amplitude of the modulating voltage.

The drawinges at (' shows what happerns with stronger modulation. The envelope amplitude is doubled at the insiant the modulating voltage reaches its positive peak. On the negative peak of the modulating voltage the envelope amplitude just reaches zero: in other words, the signal is completely modulated.

Percentage of Modulation

When a modulated signal is detered in a reediver, the detector output follows the modulattion envelopes. The stronger the modulation, therefore, the greater is the useful reremer output. Ohviously, it is desimable to make the modulation ats strong or "heary" as possible. A watve modulated as in Fig. 10-1(would produce eonsiderably more useful audio output than the one shownat I3,

The "depth" of the modulation is expresed as a pereentage of the unmodulated carrier amplitude. In either I3 or (', Fig. 10-1, I represents the ummodulated carrior amplitude, f is the maximum envelope amplitude on the modulation up-parak, and Z is the minimum onvolope amplitude on the modulation downemat.

In a properly operating modulation sustem the modulation convelope is an aterurate reproduation of the modulating wave, ats cin be sern in Fig. 10-1 at 13 and (1 be compatring one side of the outline with the shater of the modnatating water. (The lowere outline duplieates the upper', Dout simply appeats upside down in the drawing.)

The percentage of modulation is
\% Mod. $=\frac{Y-X}{N} \times 100$ (upward modulation), or $\%$ Mod. $=\frac{X-Z}{X} \times 100$ (downward modulation)

Fig. 10.1-Graphical representation of (A) r.f. output unmodulated, (B) modulated 50%, (C) modulated 100%. The modulation envelope is shown by the thin outline on the modulated wave.
If the water shape of the modulation is sum that its peak pesitive and negative amplitudes are equal, then the modulation pereentage will be the same both up and down. If the two percentages differ, the larger of the two is customamily specified.

Power in Modulated Wave

The amplitude values shown in Fig. 10-1 correspond to atrrent or voltage, so the dratwings may be taken to represent instantanous values of cither. The pewar in the wawe varies as the serure of cither the current or voltage, so at the prak of the modulation up-swing the instantaneous power in the envelope of Fig. 10-1C is four times the unmodulated atrrier power (berame the current and voltage both are doubled). . It the pritk of the down-swing the power is zero, simee the amplitude is zero. These statements are frue of 100 per eent modulation no mater what the wave form of the modulation. The instan1atheous envelope power in the modulated signal is propertional to the square of its anvelope amplitude at every instant. This litet is highly important in the operation of every mothod of amplitude modulation.

It is convenient, and customary; to describe the operation of modulation sestems in terms of sine-wave modulation. Athough this wave shape is seldom athatly used in practice (voice watve shapes depart very considerably from the sine form) it lends itself to simple calculations and its use as a standard permits comparison between systems on a common basis. With sinc-wave modulation the average power in the modulated signal over any number of full cucles of the modulation frequency is found to be $1 \frac{1}{2}$ times the power in the unmodulated carrier. In other words, the power output increases 30 per cent with 100 per cent modulation by a sine wave.

This relationship is very useful in the dusigu of modnlation systems and modulators, heretuse anty such wostem that is capable of increasing the arrage power output by ot per eent with sinewawe modulation automatioally fulfills the requirement that the instantemenm power at the modulation up-prak be four times the arriar power. (onserpentlys stems in which the adilitional power is supplied from outside the modulated r.l. stage (e.g., plate modulation) usually are dexigned on a sine-wave hasis as a mater of convenifenere. Morlulation systems in which the additional power is soctured from the modulated r.i. amplifier (e.g., grid modulation) usually are more conveniently designed on the basis of peats envelope power rather than average power.

The extrat power that is contanod in a modulated signal gers entively into the sidehands, hatl in the upper sidehand and hatl in the lower. As a numerical example, full modalation of a 100watt carrier by a sine wave will add 50 watts of sidehand power, 25 in the lower and 25 in the upper sideband. Supplying this additional power for the sidehands is the objeret of all of the varions systems devised for amplitude modnlation.

No such simple relationship exists with complex wave forms. Complex wave forms such ats spereh do not, as a rule, contain as much average power as a sine wave. Ordinary spereh watve forms have ahout hatl as murh average power as a sine wave, for the same para amplitude in both wave forms. Thas for the same modulation procontage, the sideband power with ordinary sperech will average only about half the power with sind-watve modulation, since it is the park envolope amplitude, not the average power, that determines the pereentage of modulation.

Unsymmetrical Modulation

In an ordinary electric cireuit it is possible to increase the amplitude of current flow indefinitele, up to the limit of the power-handling capability of the components, but it cannot very well bo deremised to loss than zero. The same thing is true of the amplitude of an r.f. signal; it catn be modulated "purarl to any desired extent, but it camot he modulated douncoma more than 100 per cent.

When the modulating wive form is unsymmetrieal it is prosible for the upward and downward modulation pererntages to be different. A simple case is shown in ligg. 10-2. The positive peak of the modulating sigmal is about 3 times the amplitude of the negative park. If, as shown in the drawing, the modulating amplitude is adjusted so that the peak demanard modulation is just 100 per cont $(Z=0)$ the peak upward modulation is 300 per cent $(Y=4 X)$. The carrior amplitude is represented by X, as in lig. 10-1. The modulation envelope meproduces the wave form of the modntatige signal acenrately, hence there is no distortion. In such a modulated sigmal the increase in power output with modulation is considerably greater that it is when the modulation is symmedriabl and therefore has to be limitad to loo for cont both up and down.

Fig. 10-2 - Modulation by on unsymmetrical wave form, This drawing stows 100% dawnward modulation along with 300% upward insdulation. There is no distortion, since the modulation envelope is an accurate reproduction of the wave form of the modulating voltage.

In Fig. 10-2 the peak anvelope amplitude, J, is four times the rarrier amplitude, X, so the peakenvelopu power is 16 times the earrier power. When the upware modulation is more than 100 per reat the pewere eapareity of the modulating sistemb obviously must be inareased sufficiently to take care of the much larger peak amplitudes.

Overmodulation

If the amplitude of the modulation on the downard swing heromes too great, there will be a perion of time during which the r.f. output is cntirely cut off. 'This is shown in Fig. 10-3. 'The shape of the downward half of the modulating wave is mo lenger areurately reprodured hy the modulation onvolope, conserfuently the modulat tion is distonted. Operation of this type is called overmodulation. The distortion of the modulattion cuveloge canses new frequencios (harmonies of the modulating frequences) to be generated. These combine with the carriar fo form new side frequencies that widen the channel ocoupied by the modulated signal. These spurious frequencies are eommonly called "splatter."

It is important to realize that the chamed

Fig. 10-3-An overmodulated signal. The modulation envelope is not an accurate reproduction of the wave form of the modulating voltage. This or any type of distortion occurring during the modulation process generates spurious sidebands or "splatter."
oreupied by an amplitude-modulated signal is dependent on the shape of the molulation emwhope. If this wave shape is complex and can low resolved into a with band of andio frepurneres, then the rhamel oecupied will be rorrespondingly large, An overmodulated signal splatters and orenpiow a murh wider chammel than is nerossary heratise the "elipping" of the modnlating wave that oreats at the zoro axis changes the envelope wave shape to sume that contans highorder harmonios of the original modulating frequencer. These harmonios appeat as side froguencids separated by, in some rases, many kilocyedes from the carrier freguency

Beratuse of this dipping action at the zero axis, it is impertant that eare be taken to provont applying too large a morlulating signal in the downward direction. Overmedulation downward results in more splatter than is eamed by most other typers of distortion in a phome trinsmitter.

GENERAL REQUIREMENTS

For proper oproration of an amplitude-modulated transmitter there are a fow gemeral requirements that must be mot no matter what particular mothod of modulation may be used. Failure to moret these morirements is areompanied bey distortion of the modulation envelope. This in tame incrases the chanmel width as compared with that required by the legitimate freguencies contained in the original modulating wave.

Frequency Stability

For satisfactory amplitude modulation, the carrier frequency must be entirels unafferted by modulation. If the application of modulation causes a change in the carrior frequencer, the frequence will woble back and forth with the modulation. This causes distortion and widens the channel taken bey the signal. 'Thus unnecessary interference is callsed to other transmissions.

In practice, this undesirable frequeney modulation is prevented by applying the modulation to an r.f. amplifier stage that is isolated from the frequency-controlling oseillator by a buffer amplifier. . Implitude modulation applied directly to an osellator always is acompanied by freguency modulation. Cuder existing Fe'('regulations amplitude modulation of an oscillator is permitted only on frequencios above $14 t$ Me. Below that frequency the requations require that an amplitude-modulated transmitter be completely free from frequency modulation.

Linearity

At least up to the limit of 100 per cent upward modulation, the amplitude of the r.f. output should be directly proportional to the amplitude of the modulating wave. Fig. 10-1 is a graph of an ideal modulation characteristic, or curve showing the relationship between r.f. output amplitude and instantaneous modulation amplitude. The modulation swings the r.f. ampli-

Fig. 10.4-The modulation characteristic shows the relafionship between the instantaneous envelope amplitude of the r.f. output current (or voltage) and the instan. faneous amplitude of the modulating voltage. The ideal characteristic is a straight line, as shown by curve A.
tude back and forth along the curve A, as the modulating voltage alternately swings positive and negative. Assuming that the negative peak of the modulating wave is just sutficient to reduce the r.f. output to zero (modulating voltage equal to -1 in the drawing), the same modulating voltage peak in the pasitive direction $(+1)$ should cause the r.f. amplitude to reach twiee its ummodulated value. The ideal is a straight line, as shown by curve A. Such a modulation characteristic is perfectly linear.

A nonlinear charateristic is shown by curve l?. The r.f. amplitude does not reach twice the unnodulated carrier amplitude when the modulating voltage reaches its positive peak. A modulation characteristic of this type gives a modulation envelope that is "flattened" on the uppeak; in other words, the modulation envelope is not inn exaret reproduction of the moduating wave. It is therofore distorted and harmonies are generated, causing the transmitted signal to
oecupy a wider channel than is necessary. A nonlinear modulation characteristic ean easily result when a transmitter is not properly designed or is misadjusted.

The modulation capability of the transmitter is the maximum percentage of modulation that is possible without objectionable distortion from nonlinearity. The maximum capability can never exceed 100 per rent on the down-peak, but it is possible for it to be higher on the up-peak. The modulation capability should be as close to 100 per cent as possible, so that the most effective signal can be transmittel.

Plate Power Supply

The d.e. power supply for the plate or plates of the modulated amplifier should be well filtered; if it is not, phate-supply ripple will modulate the carrier and cause amoying hum. The ripple voltage should not be more than about 1 per eent of the d.e. output voltage.

In amplitude modulation the plate current of the modulated r.f. amplifier varies at an audiofregueney rate; in other words, an alternating eurrent is superimposed on the d.e. plate current. The output filter capacitor in the phate supply must have low reactance, at the lowest audio frequency in the modulation, if the transmitter is to modulate equally well at all audio frequencies. The capabitance required depends on the ratio of d.e. plate eurrent to plate voltage in the modulated amplifier. The requirements will be met satisfactorily if the capacitance of the output capacitor is at least equal to

$$
C=2, \frac{I}{E}
$$

where $C=$ Capacitance of output eapacitor in $\mu \mathrm{f}$.
$I=1$.e. plate current of modulated amplifier in milliamperes
$E=$ Plate voltage of modulated amplifier

Example: A modulatenl amplifer operates at 1250 volts and 275 ma. The causacitanere of the output capacitor in the flatesuphly filter should be at least

$$
C=25 \frac{I}{E}=25 \times \frac{27}{1250}=25 \times 0.22=5.5 \mu \mathrm{f}
$$

Amplitude Modulation Methods

MODULATION SYSTEMS

As explained in the preceding section, amplitude mostulation of a carrier is areompanied by an increase in power output, the additional power being the "useful" or "talk power" in the sidebands. This additional power may be supplied from an external source in the form of audiofrequeney power. It is then adked to the unmodulated power input to the amplifier to be modulated, after whish the combined power is converted to r.f. This is the method used in plate modulation. It has the advantage that the r.f. power is generated at the high effiecioner
charatereristic of Clats C amplifiers - of the order of 65 to 75 per cent - but has the accompanying disadvantage that generating the ambio-frequency power is rather expensive.

An alternative that does not require relatively Jarge amounts of andio-frequeney power makes use of the fart that the power output of an amplifier can be controlled by varying the potential of a tube element - such as a control grial or a sereen grid - that does not, in itself, consume appreciable power. In this case the additional power during modulation is secured ly sarriticing earrier power; in other words, a tulue is capathle of delivering only so much total power

10 - AMPLITUDE MODULATION

Fig. 10-5-Plote modulotion of o Class C r.f. amplifier. The r.f. plate bypass capacitor, C, in the amplifier stage should hove reasonably high reactance at audio frequencies. A value of the order of 0.001μ. to $0.005 \mu \mathrm{f}$. is satisfactory in practically all cases. (See chapter on modulators.)
within its ratings, and if more must be delivered at full modulation, then less is available for the ummodulated carrior. Systums of this type must of neressity work at rather low efficionery at the ummodulated carrier level. is a practional working rule, the afliciency of the moxblated r.f. amplifier is of the order of 30 to 3 3 per cent, and the unmodulated carrior power output ohtanable with such it systom is only about onf-fourth to onethird that obtainable from the same amplifier with plate mochulation.

It is well to appreciate that no simple modulation seheme that purports to get around this limitation of grid modulation ever has athatly done so. Methods have bern devised that have resulted in modulation at high owr-atl efficienery, without reguiving andio powor, by obtaining tho neressary additional power from an amxiliary r.f. amplifior. This leads to cireonit and opreating complexities that make the systoms unsuitable for amateur work, where raphed frequeney change and simplicity of operation are almost abwas (ssential.

The methods diserssed in this soction ate the basie ones. Variants that from time to time at tain passing popularity can readily be appraised on the hasis of the preerding paragraphs. I simpho grid modulation sistem that claims high effivieney should be looked upon with suspirion, since it is almost certain that the high officieners, if acthally athiowol, is ohtained by sacrificing the linear relationship, helwern modulating signal and modulat iom envelope that is the first asent ial of a good moditation mothod.

Plate modulation

Fig. 10-5 shows the most widely used system of plate modulation, in this casie with a triode r.f. tube. A balaneed (push-pull Class A, Class AB or (lass 13) modulator is transformer-coupled to the plate circuit of the modulated r.f. amplifier. The atudiofrequency power generated by the modulator is combined with the d.e. pewer in the modulated-amplifior plate circuit by transfer through the coupling transformor, \dot{T}. For 100 per cont modulation the adadio-frecureney power output of the modulator and the turns ratio of the roupling transformer must be such that the woltage at the plate of the modulated amplifior values betweon aron and twiee the d.e. operating phate voltage, thus cansing corresuonding variations in the amplitude of the r.f. output.

Audio Power

As stated carlicr, the aworage power output of the modulated stage must incrase during modulation. The modulator must be capable of supplying to the modulated r.f. stane sine-wave audio power equal to .00 per eent of the d.e. plate input. For example, if the d.ce plate power input to the r.f. stage is 100 watts, the sime-wive audio power output of the modulator must be 50 watts.

Modulating Impedance; Linearity

The modulating impedance, or lowl resistance presented to the modulator by the modulated r.f. amplifier, is equal to

$$
Z_{\mathrm{m}}=\frac{F_{\mathrm{b}}}{I_{\mathrm{p}}} \times 10000 \mathrm{ohms}
$$

where E, $=$ D.e plate voltage

$$
I_{1}=1 \text {).e. plate current (ma.) }
$$

E_{1}, and I_{1} are measured without modulation.
The power output of the r.f. amplifier nust vary as the square of the instantancous plate voltage (the r.f. output voltage must be proportional to the plate voltage) for the modulation to be linear. This will be the case when the amplifier operates under Class \mathbb{C} conditions. The linearity depends upon having sufficient grid excitation and proper bias, and upon the adjustment of eirenit constants to the proper values.

Adjustment of Plate-Modulated Amplifiers

The wencral operating conditions for Class (' operation are deseribed in the chapter on transmitters. Tho grid bias and grid current reguired for plate modulation usually are given in the operating data supplied by the tube manufacturer; in general, the bias should be such as to give an operating angle of about 120 degrees at the d.c. plate woltage used, and the grid excitation should be great enough so that the amplifier's plate officieney will stay constant when the plate voltage is varied over the range from zero to twice the unmolulated value. For lest linearity, the grid bias should the obtained from a fixedbiats source of ahout the cut-off valur, supphemonted by enough grid-leak bias to bring the total up to the reguired oporating bias.

Fig. 10.6-Plate and screen modulation of a Class C r.f. amplifier using a screen-grid tube. The plate r.f. bypass capacitor, C_{1}, should have reasonably high reactance at all audio frequencies; a value of 0.001 to $0.005 \mu \mathrm{f}$. is generally satisfactory. The screen bypass, C_{2}, should not exceed $0.002 \mu \mathrm{f}$, in the usual case.

When the modulated amplifier is a beam tetrode the suppressor connection shown in this diagram may be ignored. If a base terminal is provided on the tube for the beam-forming plates, it should be connected as recommended by the tube manufacturer.
The maximum permissible d.c. phate power inpat for 100 per cent modulation is twiee the sinc-wave adio-frequenes power output atvailable from the modulator. This input is ontained by varying the loading on the amplifior (kerping its tank cirenit tuned to resonames) until the product of d.c. plate voltage and plate current is the desired power. The modulating impedance under these conditions must be transformed to the proper value for the modulator by using the correet output-transformer turns ratio. This print is considered in detail in the chapter on modulator design.
Neutralization, when triodes are used, should low an warly perfere as posible, sineer regeneration may cause umbinearity. The amplifier also must be completely free from parasitic arcillations.
Although the total power input (I.e. phas andio-fremueney a.c..) inereases with morluation, the de. plate "urrent of a platemodulated amplifier should not rhange when the stage is modulated. This is because cach increase in plate voltare and plate current is bataneed by an eguivalent decrease in voltage and current on the next

Fig. 10-7—Plate modulation of a beam tetrode, using an audio impedance in the screen circuit. The value of L_{1} is discussed in the text. See fig. 10-6 for data on bypass capacitars C_{1} and C_{2}.
half-evele of the morlulating wave. D.e. instruments camot follow the a.f. variations, and since the average d.c. plate current and plate voltage of a properly operated amplifier do not change, neither do the meter radings. A change in plate current with modulation indicates nonlinearity. ()n the other hand, a thermocouple rif. antmeter connected in the antomat or transmission line will show an incroase in r.f. current with modulation, because instruments of this type reapond to power rather than to eurrent or voltage.

Screen-Grid Amplifiers

Sereen-grid tubes of the pentode or beamtetrode type can be used as ('lass C plate-modulated amplifiers by applying the modulation to both the plate and sereeringrid. The usual method of leoding the serven grid with the necessary d.e. and modulation voltages is shown in Fig. 10-6. The dropping resistor, R, should be of the proper value to apply normal d.e. voltage to the sereen under steady carrier conditions. Its value can be calculated by taking the difference betweren plate. and sereen voltages and dividing it hy the rated serecticurrent.

The modulating imperdance is found by dividing the dies plate voltage by the sum of the plate and sereen currents, The plate voltage multiplied by the sum of the two currents gives the power input to bo used as the basis for detormining the andin power required from the modulator.

Morlulation of the serven along with the plate is neressary because the sereern voltage has a much greater effer on the phate current than the plate voltage does. The modulation characteristic is nonlinear if the plate alone is modulated. However, some bean tretrodes can lne modulated satisfactorily be applying the modulating power to the plate armuit alone, provided the serem is connereted to its d.e. supply through an andio impelance. U'nder these conditions the sereen bro comes solf-modulating, becanse of the variations in sereen current that oceur when the plate voltatre is varied. The cirruit is shown in Fig. 10-7. The choke coil L_{1} is the atudio impedanere in the sereme rireuit; its inductane should be large enough to have a reactane (at the lowest dosired audio fregueney) that is not less than the imperanere of the sereen. The serem imperdane (an be taken to be approximately equal to the d.e. sereen voltage divided by the d.c. screen eurrent in :mperes.

Choke-Coupled Modulator

The choke-coupted Class A modulator is shown in Fig. 10-8. Becanse of the relatively low power output and plate effierency of a Class A amplifier, this method is seldom used except for a few special applications. The audio power output of the modulator is combined with the d.e. power in the plate circuit, as in the case of the trans-former-coupled modulator. But there is considcrably less freedom in adjustment, since no transformer is available for matching impedances.

The modulating impedinnce of the r.f. amplifier must be adjusted to the value of load impedance

10-AMPLITUDE MODULATION

required be the particular modulator tube used, and the power input to the r.f. stare should not exered twice the rated at f. power output of the modulator for 100 per erm modulation. A combplicalion is the fact that the plate voltage on the

Fig. 10-8-Chake-coupled Class A modulatar. The cothode resistor, R_{2}, should have the normal value for operation of the modulatar tube as a Class A power amplifier. The modulation chake, L_{1}, should be 5 henrys or more. A value of 0.001 to $0.005 \mu \mathrm{f}$. is satisfactary of C_{2}, the r.f. amplifier plate bypass capacitor. See text for discussion of C_{1} and R_{1}.
modulator must be higher than the plate voltare on the ref. amplifier, for 100 per cent moslulat ion. This is beranse the af. voltage devoloped by the modulat or camot swing to zero without a great deal of distortion. h_{1} provides the neecesary d.c. voltage drop betwecn the modulator and r.f. amplifier, but its value cannot be calculated without using the published plate family of curves for the modulator thbe used. The d.e. voltage drop through R_{1} must egual the minimum instantaneous plate voltage on the modulator tule tmder normad operating conditions. C', an andiofrecquency bypass across R_{1}, should have a capacitane such that its reatance at 100 ereles is not more than alrout one-tenth the resistanes of R_{1}. Without $R_{1} r_{1}$ the percentage of modulation is limited to 70 to 80 per cent in the average case.

grid modulation

The primecipal disudvantage of plate modulation is that a comsiderable amount of andio power is necessary. This repuirement can be awoided by applying the modulation to a griel clement in the modulated amplifier. However, the emvenience and economy of the low-power modulator must be paid for, since no modulation system gives something for nothing. The increased power output that areompanies modulation is paid for, in the case of grid modulation, by a reduction in the carrier power output whtainable from a given r.f.
amplifier tulbe, and bey more rigorous operating requirements and more eomplicated adjustment.

The twrm "grid modulation" as used here applies wall typer - eontrol grid, serech, or suppresen - sine the oprerating principle are exactly the same wo matter which grid is actually medulated. With grid modulation the plate voltarge is constant, and the increas in power ontput with molulation is obtained by making both the plate current :and plate efficicucy vary with the modulating signal as shown in Fig. 10-9. For

relative modulating voltage
fig. 10-9-In a perfect grid-modulated amplifier both plate current and plate efficiency would vary with the instontaneous modulating valtage as shown. When this is sa the madulation characteristic is as given by curve A in Fig. 10-4, and the peak envelape output power is four times the unmodulated caprier power. The variatians in plate current with modulation, indicated above, do nat register an a d.c. meter, so the plate meter shows no change when the signal is modulated.
100 per cont modulation, woth plate current and efficieney must, at the peak of the modulation un-swing, be twice their carrice values. Thus at the modulation-envelope peak the power inpur is dondalal, ind since the plate efficiency also is doubled at the same instint the peak envelope output power will be four times the carrier power. The efficionney obtainable at the envelope paak dopende on how carrofully the modulated amplifier is adjusted, and sometimes cam be as high as 80 per wht It is generally less when the amplifier is adjusted for good linearity, and under averag. comditions a round figure of $2 / 3$, or 66 per cent, is representative. The efficience without modulation is ouly half the peak "fficienery, or atome $3: 3$ por eont. This low average efficioney redures the permissible carrier output to about one-fourth the power ohtainable from the same tube in ces. operation, and to alont our-third the carrier sutput ohtainable from the tube with plate monduation.
The moxdulator is reguirel to furnish only the audio power dissipated in the modulated grid under the oprating conditions chosen. A specech amplifier capable of delivering 3 to 10 watts is usnally sulficient.

Grid Modulation

Gonerally speaking, grid modulation does not give quite as linear a modulation characteristic as phate molulation, "ven under optimum operating conditions. When misadjusted the monlinearity may be sesore, resulting in had distortion and splatter. However, with eareful adjustment it is capable of sat isfactory results.

Plate-Circuit Operating Conditions

The d.e. plate pewer imput to the modulated amplifer, assuming a round figure of $1 / 3$ ($3: 3$ per eent) for the plate efficienery, should not exered 1!. times the plate disipation rating of the tube or tubse used in the modulated stage, It is genarally best to use the maximum plate volage permitted by the mandacturers ratings, because the optimum opreating conditions are more atsily adhieved with high phate voltage and the linearity also is improved.

Fixample: Two tubes having plate dissipation ratinges of in watts cach are to be usod with erid modulation.
'IThe maxitnum permissible power input, at $3: 3^{\prime}$ o wflicioney, is
$P=1.5 \times(2 \times 50)=1.5 \times 110=10.5$ watts The maximman recomamomed plate woitag for these tubes is $10(x)$ volts. I'sing this figure, the average plate current for the two tubes will be

$$
\boldsymbol{I}=\frac{P^{2}}{E}=\frac{16 z}{1500}=0.11 \text { au!). }=110 \mathrm{ma}
$$

At 33° eflicieney the carriar ontput to be expeeted is 5 s. watts.
The plato-boltano/phate-eurront ratio at twice carriar phate current is

$$
\frac{t i(x)}{220}=6.8
$$

The tank-aireuit $/ /$ / ratios should bre chosen on the basis of turie the atrouge or camber phate eurrent. If the L / e^{\prime} ration is hasid on the plate voltage/plate corrent ratio under carrier conditions the (may be too low for good coupling to the output circuit.

Screen Grid Modulation

Sereen modulation is probably the simplest form of grid modulation and the least eritical of adjust ment. The most sat isfact ory way to apply the modulating voltage to the sereen is throngh a transformer, as shown in kig. 10-10. With prattieal tubes it is neressary to drive the sereen somewhat megative with respect to the eathode to get comphete cut-off of ref. output. For this reason the pata modalating voltand required for 100 per cent modulation is usually 10 per cent or so greater than the d.e sereen voltage. The latter, in turn, is appoximately half the rated sereen voltage recommended under maximum ratings for c.w. operation.

The atulio power recpuired for 100 per rent modulation is approximately one-fourth the d.e. power input to the sercern in rew. operation, but varies somewhat with the operating conditions. A receiving-type andio power amplifier will suffice as the modulator for most transmitting tuhes. The relationship) betweren screon voltage aud sereen current is not linear, which mans that the load on the modalator varies over the

Fig. 10-10—Screen-grid modulation of beam tetrode. Capacitor C is an r.f. bypass capacitor and should have high reactance at audio frequencies. A value of $0.002 \mu \mathrm{f}$, is satisfactory. The grid leak can have the same value that is used for c.w. operation of the tube.
audio-freculeney revele. It is therefore highly advisable to use negative fred dark in the modulator cireuit. If exerss audio power is available, it is also advisable to load the modulator with a resistance (R in Fig. 10-10) its value being athjusted to dissipate the exeess power. Cnfortunately, there is no simple waty to determine the poper resistance cxept experimentally, hy of serving its effect on the modulation envelonn with the aid of an oseilloseope.

On the assumption that the modulator will be fully lowded by the sereern plus the additional load resistor h, the turns ratio recpuired in the compling transformor may be ealeulated as follows:

$$
N=\frac{R_{1}}{2.5 \sqrt{l R_{\mathrm{L}}}}
$$

Where N is the turns ratio, secomdary to prinary; Fa is the rated screen voltage for cow. operation; P is the rated andio power output of the modu$l_{\text {ator'; and }} R_{\text {a }}$ is the rited load resistance for the modulator.

Adjustment

A screcomomblated amplifier should be adjusted with the aid of an oscilloseope comected as shown in lige 10-11. A tone soure for modulating the transmitter is a convenience, since a steady tome will give a strady patterm on the oscilloseope. A stealy pattern is casier to study than one that flickers with voice modulation.

Having determined the permissible earrier plate current as previously described, apply r.f. excitation and de. plate and sereen voltages. Without modulation, adjust the plate loading to give the required plate current, kepping the phate tamk circuit tumed to resonance. Next, apply modulation and inerease the modulating voltage unt il the modulation characteristic shows curvature (sere later in this chapter for use of the os(illoseone). If curvature oechas well below 100 ber cent modulation, the plate cfficiency is too high at the carrier level. Increase the phate loading slightly and readjust the r.f. grid exaitation to maintain the stme plate current; then apply modulation and cheok the characteristic arain. Contimue until the chatacteristic is as linear as possible from zero to twire the carrier :mplitude.

In general, the amplifier should be heavily

Fig. 10-11-Using the oscillascape far adjustment of a screen-madulated amplifier.
L and C should tune to the operating frequency, and may be coupled ta the transmitter tank circuit through a twisted pair or coax, using single-turn links at each end. The blocking capacitor (0.05μ f.) that couples the audio voltage from the screen grid to the horizontal plates of the ascilloscape should have a voltage rating equal to at least twice the d.c. voltage on the grid that is being modulated. The r.f. and audio voltages shauld be fed directly to the deflection plates of the scope tube (through blocking capacitors if necessary or desirable), not through any vertical
or horizontal amplifiers that may be in the instrument.
loaded. T'neter proper operating conditions the platerourrent dip as the amplifier plate cirenit is tuned through resonance will be litale nove than just disermible. It is desirable to operate with the gride eurrent as low as possible. sine this redues the sereen equrent and thus redues the amomit of power reguired from the modulator.

With proper adjust ment the lincarity is good up to about 90 per erent motulation. When the sereen is driven megative for 100 per erent modulation there is a kink in the modulation chanarteristio at the zero-voltage point. This introdures a small amonent of euvelope distortion. The kink can be removed and the over-all limearity improved by applying a small amomet of modulat ing voltage io the control grid simultanously with screon moxlulation.

In an alternative adjustment mothoul not requiring an oseilloseope the r.f. :mphifier is first tuned up for maximum output without morlalation and the rated d.e. sereoth voltage (from a fixed-voltage supply) for (ew. ouncation applied. Cos heavy loading and reduce the gride exatition until the output just starts to fall off, at which print the resonance dip in plate current shonled be small. Note the plate current aml, if possible, ther r f. antenna or feeder comrent, and then reduce the des sereen voltage until the plate comrent is one-hatf its previous value. The ref. output current should also be one-half its previous value at this sereen voltage. The amplifier is then ready for modulation, and the modulating voltatge may be increased until the plate eurrent just starts to shift upward, which indicates that the amplifier is modulated 100 per cont. With voier modulation the plate emrent should remain stendy, or show just an occasional small upwand kick on intermittent peaks.

"Clamp.Tube" Modulation

A method of sereen-grid modulation that is eonvenient in transmitters provided with a sereon protective tube ("clamp" tule) is shown is l'ig.

10-10. An :untio-frequener signal is appliod to the grid of the (lamp) tulne, which then beromes a modulator. 'The simplicity of the eivenit is somewhat dereptive sime it is emsideraldy more difficult from a dexign stamlonint than the transiomer-compled arragement of fig. 10-10.

Fior proper mortulation the etamp tube must the operated as a trionde ($\mathrm{las} \boldsymbol{\sim}$ A amplifior, and it will be reongnized that the methot is cosontially identionl with the chake-rompled (lass A plate modulatom of Fig. 10-S except that a mesistance, liz. is substituted for the dhoke. h^{2} in the usual catse is the sorem dropming resistor mormally ined for (e.w. operation. Its value shoulel he at hast two or the the thes the foad resistane required by the ('lass I mondulator buhe for optimum andiofrequency ont put. ['nformataly, rehatively little

Fig. 10-12-Screen modulation by a "clamp" fube. The grid leak is the normal value for c.w. operation and C_{2} should be $0.002 \mu \mathrm{f}$. or less. See text for discussion of C_{1}, R_{1}, R_{2} and $R_{33} . R_{3}$ should have the proper value for Class A operation of the modulator tube but cannot be calculated unless triode curves for the tube are available.

Clamp Tube Modulation

information is available on the triode operation of the thens mosi frequently used for sereemprotedive purposta

Like the choke-smpled modulator, the elamptube modulator is incapable of modulating the r.f. stage 100 per cent unters the dropping besistor, h_{1}, and andio beghass, C_{1}, ane ineorporated in the cirenit. The same dexign comsiderations hold, with the addition of the fate that the sereen must be driven negative, mot just to zero voltage, for 100 per eent modulation. The modulator tube must thus be operated at a voltage ranging from 20 to 40) per eent higher than the sereen that it modulates. P'roper design requires knowledge of the sereen chameteristies of the r.f. amplifier and a set of plate-voltage plate-curreat curves on the modulator tube as a triode.

Adjustment with this system, onee the design voltages have beron determined, is carriod out in the same way as with tramstormer-eoupled sereen moxlulation, proferathly with the oseilloscope. Without the oweilloserope, the amplifier may first be adjusted for ce.N. uneration as deseribed earlier, but with the medulator tube removed from its socker. The modulator is then rephaced, and the cathode resistanere, R_{3}, adjusted to reduce the amplifier plate current to one-half its ew, value. The amplifier plate current should remain constant with modulation, or show just a small upward flicker on wecasiomal voice peaks.

Controlled Carrier

As explated carlier, a limit is phaerd on the output obtainable from a grid-modulation system be the low r.f. amplifier plate efficieney (approxi-
 conditions, 'The plate rfficioney increases with modulation, since the output increases while the d.e. input remains constant, and reaches a maximum in the meightorhood of 50 per cent with 100 per cent sime-wave modulation. If the power input to the amplifier can be senduced during periods when there is litile or momodulation, thas reducing the plate loss, alvantage can be taken of the higher efficioney at full modulation to ohtain lighere eflective output. This can be done be varying the dere prower input to the modnlated stage in areordance with arcouge variations in voice intensity, in such a way an to maintain just suffirent carrier power to keep the modulation high, but not exereding 100 per cent, under all momit tions. Thus the carrior amplitude is controlled hy the average voide intensity. Properly utilized, controlled carrier permits increasing the effertive carrier output at maximum level to a value about equal to the rated plate dissipation of the tulor, or twies the output obtamable with constant carrier.
It is desirable to control the power input just enough so that the plate lose, without modulation, is safely below the tube rating. Fixcresive control is disadvantageolis becanse the distant recoiver's aver. sistem must contimually follow the variations in average signal tevel. The cirenit of Fig. 10-1:3 permits adjustment of both the maximum and minimum power input, and al-

Fig. 10-13-Circuit for corrier control with screen modulation. A small triode such as the 6C4 can be used as the control amplifier and a $6 Y 6 G$ is suitable as a carriercontrol tube. T_{1} is an interstage audio transformer having a 1 -to-1 or larger turns ratio. R_{4} is a 0.5 -megohm volume control and also serves as the grid resistor for the modulator. A germanium crystal may be used as the rectifier. Other values are discussed in the text.
though somewhat more complieated than some circuits that have beren used is artally simpley to oprate becatuse it separaters the functions of modulation and carvier control. A portion of the andio voltage at the modulator grid is applied to a (lass A "control amplifier" which drives a rectifier circuit to produce a die. voltage negative with resperet to ground. (${ }_{1}$ filters out the andio variations, leaving a dec, voltage proportional to the average voide hevel. This voltage is applied to the gride of a "clamp" tube to rontrol the d.e. somen voltage and thas the r.f. carrier level. Maximum output is ohtaned when the carvercontrol tube grid is driven to entoff, the voice level at which this occurs being determined by the setting of h_{4}. The input without modulation is set to the desired level (usually about comal to the plate dissipation rating of the modulated stame) be adjusting R_{2}. R_{3} maty be the nomad sirreotedropping resistor for the modulated beam totrode, but in case a separate seren supply is used the resistance noed be just large enough to give sulficient voltage drop to reduece the nomodulation power input to the desired value.
('1/i, should have a time constant of about 0.1 second. The time constant of cer h_{3} should be no largar. Further details may be found in Qste for Apmil, 1951, page 64. An oseilloseope is required for proper adjustment.

Suppressor Modulation

Pentode-type tubes do not, in general, modulate wedl when the modulating voltage is applied to the sereen grid. However, a satisfactory modulation chatarteristic can be ohtained by applying the modulation to the suppressor grid. The cireuit arrangement for suppressor-grid modulation of a pentode tule is shown in Pig. 10-14.

The mothod of adjustment closely resembles that used with soreren-grid modulation. If an oseilloseope is not avaibable, the amplifier is first adjusted for optimum c.w. output with zero bias

10 - AMPLITUDE MODULATION

Fig. 10.14-Suppressor-grid modulation of an r.f. amplifier using a pentode-type fube. The suppressorgrid r.f. bypass copocitor, C, should be the same as the grid bypass capacitor in control-grid modulation.
on the suppresor gribl. Negative bias is then applied to the suppressor and increased in value until the plate current atul r.f. output curvent drop to half their original values. When this condition hats beeon reathed the amplifier is ready for modulation.

Sine the supperesor is atways negatively biased, the modulator is not required to furnish any power athed a voltate amplifier (ath be used. The suppressor hias will sary with the type of pentoxie:and the operating conditions, but wisally will le of the order of -100 volts. The peak af. boltage reguired from the modulator is equal to the suppressor hists.

Control-Grid Modulation

Although control-grid mondulation may be used with any type of r.f. amplifier tube, it is soldom used with tetrodes and pentodes beratuse sotern or suppressor modulation is gernerally. simpler to adjust. Howerer, cont rol-grid modulation is the only form of griel modulation that is

Fig. 10-15-Control-grid modulation of a Class C amplifier. The r.f. grid bypass capacitor, C, should have high reactance at audio frequencies ($0,005 \mu$ f. or less).
applicable to triode amplifiers. A topical triode cirenit is given in Fig. 10-15.

In control-grid modulation the d.c. grid hits is the same as in nomal (lass ('amplifier serviee, but the rif. grid exeitation is somewhat smallor. 'The atudio voltage superimposed on the d.e. bias changes the instantancous qried bias at an andio rate, thus varying the oprating conditions in the grid dircuit and controlling the output and ofliciener of the amplitior.

The change in instantanmons hias voltage with modulation eamses the reetified gride curent of the amplifier to vary, which places a variable load on the modulator: 'To redued distortion, resistor R in Fig. 10-15 is commered in the output cirevit of the moclulator as a constant lomed, so that the over-all load variations will be minimized, This resistor should be equal to or somowhat higher that the losed into which the modulator tube is rated to work at normal andio ontput. It is also reeommended that the modulator circuit incorporate as mach negative fordmack as posible, as at further aid in reducing the intertal rexistance of the modulator and thas improving the "regulation" - that is, reducing the affert of load variations on the adio output voltage. The turne ratio of tramsformer T :hould be ahout 1 to 1 in most cascos.

The load on the r.f. driving stage alson varios with modulation. 'lhis in turn will catuse the exratation voltarye to vary and may rause the modulation chamateristie to be nonlinear. To overeome it, the driver shomblat eapable of two or three times the r.f. power output actably reguired to drive the amplifier. The execss power may be dissipated in a dommy lowd (such as an incandesent lamp of appropriate pow(0) rating) that then perferms the same function in the r.i. cirenit that resistor R doses in the adodio cirmut.

The d.e. bias sourere in this sestem should have low internal resistance. Battorios or a voltagoregulated supply are suitable. (irid-leak bias should not be used.

Satisfactory adjust mont of a control-grid modulated amplifier requires an oscilloseope. Thw seope connections are similar to those shown for sereen-grid modulation in Fig. 10-11, with atudio from the modulator's output transformer socondary applied to the horizontal plates through a blocking raparitor and volume rontrol, and with r.f. from the plate tank virenits compled to the vertical plates. The adjustment proedure follows that for serem modulation as previously deseribed.

CATHODE MODULATION

Circuit

The fundamental rireuit for cathode modulation is shown in fig. 10-It. It is a combination of the plate and grid mothods, and permits a carrier efficiener midway betwern the two. The andio power is introclued in the cat hode circuit, and both grid bias and plate voltage are modnlated.

Berause part of the modulation is by the

Cathode Modulation

Fig. 10-16-Circuit arrangement for cathode modulation of a Class C r.f. amplifier. Values of bypass capacitors in the r.f. circuits should be the same as for other modulation methods.
control-grid methorl, the plate efficieney of the modulated amplifier must vary during modulation. The earrier efficiency therefore must be lower that the efficieney at the modulation peak. The required reduction in efficiency depends upon the proportion of grid modulation to plate modulation: the higher the pereentage of phate modulation, the higher the permissible carrier efficieney, and vice versa. The audio power required from the modulator also varies with the pereentage of plate modulation, being greater as this pereontage is inereased.

The way in which the various quantities vary is illustrated ly the curves of Fig. 10-17. In these eurves the performane of the eath-ode-modulated r.f. amplifier is plotted in terms

Fig. 10-17-Cathode-modulation performance curves, in terms of percentage of plate modulation plotted against percentage of Class C telephony tube ratings. $W_{\text {itI-D.c. plate input watts in terms of percentage of }}$ plate-modulation rating.
W_{u}-Carrier output watts in per cent of plate-modula. tion rating (based on plate efficiency of 77.5%).
W_{a}-Audio power in per cent of d.c. watts input.
\mathbf{N}_{p} - Plate efficiency of the amplifier in percentage.
of the tube matings for plates-modulated telephony, with the pereentage of plate modulation as a base. As the pereentage of plate modulation is docreased, it is assumed that the grid modulation is increased to make the over-all modulation reach 100 per cent. The limiting condition, 100 per erent plate modulation and no grid modulation, is at the right (A); pure gritl modulation is represented by the left-hand ordinate (B and C).

Example: Assume that the r.f. tube to be used has a 100^{\prime}, plate-modulation rating of 250 watts input and will give a cartior power output of 1 ! watts at that imput. (athode modalation with 40\% plate modalation is to be used. From Fig. 10-17, the carrier efficiency will be $5 \mathrm{o}^{\prime}$, with to ; plate nordulation, the permissible d.e. imput will be $65^{\prime \prime}$. of the phate-modulation rating, and the r.f. ontpot will be 48 , c of the plate-modulation rating. That is,

Power input $=250 \times 0,(05)=163.5$ watts
Power ontput $=190 \times 0.18=91.2$ watts
The required audio mower, from the chart, is egual to 20% of the d.e. input to the modulated amplifier. 'Therefore

$$
\text { Audio power }=162.5 \times 0.2=32.5 \text { watts }
$$

The modulator should supply a small amount of extra power to take eare of losses in the grid circuit. 'I'hese should not exceed four or five watts.

Modulating Impedance

The modulating impedance of a cathodemodulated amplifier is approximately equal to

$$
m \frac{E_{\mathrm{b}}}{I_{\mathrm{b}}}
$$

where $m=$ Pereentage of plate modulation (expressed as a decimal)
$E_{b}=$ D.c. plate voltage on modulated amplifier
$I_{b}=1 . r$. plate current of modulated amplifior

$$
\begin{aligned}
& \text { Example: Assume that the modnlated amplifier } \\
& \text { in the example above is to operate at a phate po- } \\
& \text { tential of } 1250 \text { volts. Then the d.e. Mate current is } \\
& \qquad I=\frac{P}{E}=\frac{1(52.5)}{1250}=0.13 \text { amp. (1330 ma.) }
\end{aligned}
$$

The modulating impedance is

$$
m \frac{E_{\mathrm{t}}}{J_{\mathrm{t}}}=0.4 \frac{1250}{0.13}=38.46 \mathrm{oh} \mathrm{~ms}
$$

The molulating impodance is the load into which the modulator must work, just as in the case of pure plate modulation. This load must be matehed to the load required by the modulator tubes by proper choice of the turns ratio of the modulation transformer, as deseribed in the chapter on speech equipment.

Conditions for Linearity

R.f. excitation requirements for the cathodemodulated amplifier are midway between those for plate modulation and control-grid modulation. Nore exedtation is required as the percentage of pate modulation is inereased. (irid bias should be considerably beyoud cut-off; fixed bias from a supply having good voltage regulation is preferred, especially when the pereentage of plate modulation is small and the amplifier is operating more nearly like a grid-bias modulated stage. At the higher per-

10-AMPLITUDE MODULATION

centages of plate molulation a combination of fixed and grid-loak hias ean be used, since the variation in rectified grid current is smatler. The grid leak should be bepassed for andio fregucncids. The pereentage of grid modulation may be regulated by choire of a suitable tap on the modulation-transtormer serondary.

The cathode cireuit of the modulated stane must be independent of other stages in the transmitter. When directly heated tubes are modulated their filaments mast be supplied from a separate transformer. The filament byass capacitors should not be larger than about 0,002 μ l $^{\prime}$, to avoid bypassing the andio-fredueney modnlation.

Adjustment of Cathode-Modulated Amplifiers

In most respects, the adjustment procedure is similar to that for grid-hias modulation. The eritical adjustments are antemua loading, grid bias, and exeitation. The proport ion of grid-bias to plate modulat ion will determine the operat ing conditions.

Adjustments should be mate with the aid of an oscilloseope commected in the same way as for grid-biar modulation. With proper antemat loading and excitation, the normal wedge-shaped patterm will he obtained at 100 per cent modulation. As in the ease of grid-hias modulation, too light antemat loading will canse flattening of the upward peaks of modulation as also will too high exeitation. The cathode current will be practically constant with or without modulation when the proper operating conditions have been established.

LINEAR AMPLIFIERS

If a signat is to be amplified after modulation has taken place, the shape of the modulation envelope mast be preserved if distortion is to be avoided. This requires the use of a linear amplifier - that is. one that will reprodure, in its output eirenit. the exact form of the signal envelope applied to its grid.

Limear amplifiers for amplitude-modalated r.f. signals cammot be operated with the grid bias beyond cut-off. To do so would mean that the
part of the modulation convelope near the zoro :axis (ser Fig. 10 - (C) would be clipped, sine there would be times when the instintaneous signal voltage would be below the minimum value that would canse pate-murrent flow. The result would be overmodulation of the type shown in ligg. 10-3.

However, the grid hias maty In set at any value less than cutoff. Tosually, sum amplifiers are operated at or now the Class 13 condition - that is, with the grid bias at or somewhat less than cutoff. Although Class 13 oproation rosults in considerable distortion of the individual r.f. cereles applied to the grid, the motulation endope is not distorted if the oprating conditions are ehosen properlys. The r.f. distortion produces only r.f. hammonies, and these a,m be climinated by the selectivity of the output tank cirruit.

A linear :mplifier used for am, has the same disadvantages with respere to officioner that grid modulation dons. The reason also is murh the same: since the amplifior must hathde a peakenvelope powror four times ats grat as the unmodulated carrier power. it rannot be operated at its full catpabilities whon it is amplifying only the ummodulated earrier. The plate afficiency of the amplifier varies with the instantaneous value of the modulation envelope in the same way that it varies with the instantaneous modnlating voltage in grid modalation (Fig . 10-9). Hence the officieney at the ummondalated carrier level is only of the order of $33-3 \overline{0}$ per cent.

Beralase of this low efficiency, linestramplifiers have not had much application in cmateur transmitters, especially since equivakent refficioncy ean be ohtained with grid modnlation, along with a lass revitical adjustment procedure. Rorently there has beron some increase in use of atm. linears, particularly at v.h.f., as a moans of stepping up the modulated power ontput of very low power transmitters with a minimum of romplication in over-all equipment and operation. To obtain a uselul increase in power output he this means the lineur amplifior must use at tube or tubes (eapable of relatively hargo plate dissipation, simer about two-thirds of the d.e. power input to the :mplifier is consumed in heating the plate and only about oncothird is converted to usehal carrier output.

Checking A.M. Phone Operation

USING THE OSCILLOSCOPE

Proper arljustment of a phone transmitter is aided immeasuably bey the oscilloseope. The scope will give more information, more aterurately, than almost any eollection of other instruments that might be named. Furthermore, an oscilloscope that is cntirely satisfactory for the purpose is not necessarily an expensive instrument ; the cathode-ray tube and its power supply are about all that are needed. Amplifiers and linear sweep eircuits are by no means neeessary.

In the simplest soupe circuit, radio-frequeney voltage from the modulated amplifier is applied to the vertimal deflection phates of the telne, usually thromgh blocking capaceiters as showa in the oscilloseopereir euit in the chapter on moasurements, wad :udio-frequeney voltage from the modulator is applied to the horizontal deftection plates. As the instantancous amplitude of the audio signal varies, the rif. wutput of the transmitter likewise varies, and this produces a wedgeshaped pattern or trapezoid on the serven. If the oscilloseope has a built-in horizontal sweep, the

Checking A.M. Phone Operation

Fig. 10-18-Methods of connecting the oscilloscope for modulation checking. A-connections for wave-envelope pattern with any modulation method; B-connections for trapezoidal pattern with plate modulation. See Fig. 10.11 for scope connections for trapezoidal pattern with screen modulation.
r.f. volt:uge (atu be tuplied to the vericeil p)ates as lofore (nevor through an :mplifior and the swcep will produce a pattarn that follows the modalation convelope of the tramemitter outpat, provided the swerp frepueney is lower that the modulation iroquence. 'This produces a waveenvelope modnlation pattorn.

The Wave-Envelope Pattern

The connections for the waveronvelope pattern are shown in Fig. 10-18A. The vertical deflection plates are coupled to the amplifior tank eoil (or an anterma coil) through a low-impedano (roax, twisted pair, (ote.) line and piek-up coil. As shown in the alternative drawing, a resonant cirenit tuncel to the oporating frequene may be connected to the vertical plates, using link coupling botween it and the tramsmitter. This will elimiwate r.f. harmonies, and the tuning control provides a convenient means for adjustment of the pattern height.

If it is ineonveniont to couple to the fima tank eonil, as maty be the case if the trammitter is tightly shiclded to prevent 'TVI, the piek-up loop may be coupled to the tuned tank of at matching circuit or antemata roupler. Any mothod (even as short antemmateoupd to the tumed cirenit shown in the "alternate input connections" of Fig. 1()-18A) that will piek up
enough r.f. to give a suitable pattern height may be used.

The position of the pick-up coil should be variod until an unmodulated carrier pattern, ligig. 10-1313, of suitable height is obtained. The horizontal swerp voltage should be adjusted to make the wiath of the pattorn somewhat more than half the diameter of the sereen. When voiere modubation is applied, a mapidy changing pattorn of varving height will he ohtained. When the maximum height of this pattorm is just twice that of the earrier alome, the wave is beine modnlated 100 por cent. This is illustrated hy lig. 10-191), where the point I represents the horizontal
 rior loight, and $/$ ' $($) is the maximum height of the modulated wave.

If the height is greater than the distance I' $($, , as ilhustrated in F , the wate is overmodulated in the upward direction. Overmodulation in the downward direction is indieated by a gap in the pattern at the reference axis, where a single bright line appeass on the sreen. Overmodalation in either direstion may take place even when the modulation in the other direction is less than 100 per cont.
(A)

NO CARRIER
(F)

(G)

100% MODULATION

(I)
100% modulation
(E)

(J)

Fig. 10-19-Wave-envelope and trapezoidal patterns representing different conditions of modulation.

10-AMPLITUDE MODULATION

The Trapezoidal Pattern

G 'onnections for the trapozaid or wedge pattern as used for cherking plate modulation are shown int l'ig. 10-18B. "The wertioal plates of the e.r. tube are eoupled to the transmitare tank through a pick-up low, proferably using a thuod circuit, as shown in the upper drawing, aljustable to the operating frequence. Andio voltage from the modulator is applied to the horizontal plates though a voltage divider, hise. This voltage should be adjustalble so a suitable pattern width (:an be whtained: a 0.20 -mequme volume control ran he used at R_{2} for this purpose.

The resistance required at l_{1} will depend on the d.e. plate voltage on the modulated amplifier. The total resistanere of h_{1} athe R_{2} in series should be alonat 0.25 megohm for eath 100 volts of dee plate woltage. For example, if the modulated amplifier operates at logot volts, the fotal resistance should be 3.7 .5 megohms, 0.25 megohm at R_{2} and the remainder, 3.is megohms, in $R_{1} . R_{1}$ should be componed of individual resistors not larger than $0 . \overline{0}$ moghom adch, in which case 1-watt resistors will be satisfators.

For adegutate compling at 108 reveles the catpacitamer, in miorofitruts, of the borking rapaceitor, (. should be at least 0,05/ R, where R is the total resistance ($R_{1}+R_{2}$) in megohms. In the example above, where R is 3.75 megohms, the catpacitatue should the 0.05/3.05 $=0.013$ $\mu \mathrm{f}$. or more. The voltage rating of the eapacitor whond be at least twior the d.e. voltage applied fo the mosulated amplifier. The rebareitane ean be made up of (wo or more similar anits in serios, so long as the total capmitance is copal to that reguired, in cease a single unit of sufficient woltage rating is mot availathe. Two or more units may be used in patalled if calnaritors having adecpatar voltager rating but insufficient capacitanere are available.

The eoresponding sope connections for sereen modulation were given in lig. 10-11. This cirenit will he sat isfactory for d.e. sereen voltages up to 200 wolts or so. Which will indude most heam totrodes. If the die. sereen voltage, adjusted for proper modulation, exereds ? 3 on vols a voltage diviter similar to that shown in F"ig. 10-18 should be used, the values boing caloulated as deseribed above using the sereern voltage instead of the plate voltare.

Traproodidal patterns for various conditions of modulation are shown in Fig. 10-19 at F to J, cach alongside the corresponding wave-onvelope pattorm. With no signal, only the mathoreras spot appars on the serven. When the unmodulated carrior is applied, a vertieal line appeats; the length of the line should be adjusted, by means of the pick-up (ooil conpling, to a eonveniont value. When the earrier is moshabated, the wedgr-shaped pattern appears: the higher the modulation prerentage, the wider and more puinted the wedge breomes, At 100 per cent mohlulation it just makes a point on the axis, N, at one end, and the height, $\mathrm{P}($ (, at the other end is equal to twiee the ratrior height, I\%. Over-

Fig. 10-20-Top-A typical trapezoidal pattern obtained with screen roadulation adjusted for optimum conditions. The sudden change in slope near the point of the wedge occurs when the screen voltage passes through zero. Center-If there is no audio distortion, the unmodulated carrier will have the height and position shown by the white line superimposed on the sine-wave modulation patrern. Botfom-Even-harmonic distortion in the audio system, when the audio signal applied to the speech amplifier is a sine wave, is indicated by the fact that the modulation pattern does not extend equal horizontal distances on both sides of the unmodulated carrier.
modulation in the upward direction is indieated by increased height over $P^{\prime}()$ and downward by an extension along the axis X at the pointed end.

CHECKING TRANSMITTER PERFORMANCE

The tritpozoidal pattorn is gemerally more useful than the wavernvelope pattern for whecking the operation of a phone 1ransmitter. However, both types of patterns have their sperial virtues, and the best test sotup) is one that makes leoth available 'The traprogodal pattern is hetter adapted to showing the jerformanere of a modulated amplifier from the standpoint of inherent linearity, without regrad to the wave form of the audio modulatimg sigheal, that is the wave-ernveloge pattern. Distortion in the andio signal also can be dotiexted in the traperdidal pattern, although considerable experienere in antalyzing soope patterns is sometimes reguired to reoognize it.

If the waverenvelope pattorn is used with a

Checking Modulation

sinc-watve audio modulating signal, distortion in the modulation anvelope is easily reengnizable: however, it is diffiente to determine whether the distortion is masen ber bark of limentity of the r.f. stage or by al. distortion in the modulator. If the traperoidal pattern shows good linearity in surh a fase the troublo obviously is in the :undio systom. It is possible, of aburse for both deferts to la present simultaneomsly. If they are, the r.f. :mplifier should he made linear first; then any distortion in the modulation envelope will he the result of some type of improper operation in the surereh :mplifier or modulator, or in colpling the modulitor to the modulated r.f. stage.

R. F. Linearity

The trapmoidal pattorn is athatly at graph of the mondation rhatatereristio of the modulated :amplifier. The shoping sides of the werder show the r.f. amplitude for every value of instantaneons modulating voltages exactly the type of curse photed in lïg. 10-t. If these sides are protedty staight lines, as drawn in fig. 10-1! at 11 and 1 , the modulation chametaristio is limear. If the sides show eurvature, the chamere teristic is monlinear tu an cxtent that is shown hes the degree :o which the sides depart from perteet straghtues. This is true regardless of the wave form of the molulating voltage.

Audio Distortion

If the sperech system call he driven hy a good audio simewave signal insteand of at microphome, the traperaidal pattermalso will show the presence of aven-harmonio disturtion (the most common type, esperially when the modulator is over-
loaded) in the speech amplifier or modulator. If there is no distortion in the audio systrm, the trape\%oid will extemd horizontally ergat distaneme on tenth side of the wertiral line representian the ummotulated earrior. If theres is even-hamomice distortion the traporaid will extend farther to onte side of the ummolulated-carrier pesition than to the other. This is shown in ligs, 10-20. The protable cause is inadeyuate power output from the modulator, or incorrect had on the modulators.

An audio oscillator having reasomably good sine-wavo output is highly dexirable for testing both speech equipmont and the phome tramsmitter ats a whole. A vory simple audios oseillator
 is quite allequate. With surh an oseillator and the seoper, the pattern is stemoly and ceate be studied alosely to determine the effects of various operating adjustments.

In the rase of the wambergelenge pattern, distortion in the andio system will show up in the modulation envelope (with a sinmotwo input signat) as a departure from the sithe-watere form, and maty be whered by comparing the convelope with is dratwing of a sime wave. Dhributing any surh distortion to tho amdion sustem assumber, of course, that it cherk has beent made on the limestity of the modulated r.f. amplifier, proferably he use of the ratpezoblal pattern.

Typical Patterns

Figs. 10-20, 10-21 and 10-22 show somb typical srope patterns of modulated signals for different contitiens of operation. The servern-mondabation p:attorns, Fig. 16-20, also show how the presemere of even-hatmonic aturlio distortion eath be deterted in the trapezoidal pattern. 'The pattern

Fig. 10.21-Oscilloscope patterns showing proper modulation of a plate-and-screen madulated tetrode r.f. amplifier. Upper row, trapezoidal patterns; lower row, corresponding wave-envelope patterns. In the latter a linear sweep having a frequency one-third that of the sine-wave audio modulating frequency was used, so that three cycles of the modulation envelope show in the pattern.

Fig. 10.22-Improper operation or design. These pictures are to the same scale as those in Fig. 10.21, on the same transmitter and with the same test setup.
to be somght in adjusting the transmitter is the once at the top in Fig. H-20, where the 1op and bottom erges of the pattern eontinue in straight
 modulation. If these rdges tenal to hemed over fowated the horizontal at the maximmm height of "he wedge the amplifier is "Ilattraning" on the modulation up-peatis. This is usually caused by attempting to get for, large a carrier ontput, and coun be convertad be tighter coupling to the anternat or by veduring the d.e. serern voltage

Fig. $10-21$ shows pattorns indicating proper oproration of a plate-and-seremon modulated tetrokte r.f. amplifier, The comesomonding waveenvelope pattern is shown with "arh traperoidal pattern. The slight "tailing off" at the modulation down peak (mint of the wedge) am be minimized her raveful adjustment of r.f., grid rexitation amd plate lowding.
Noveral types of improper apreation are shown in big. 10-2?, la the photos at the left the linearity of the r.f. stage is gend but the amplifier is hoing modulated over 100 per erent. This is shown hy the maximum hoight of the pattern (compare with the ummodulated carrien of lig. $1(0-21)$ and by the bright line extomding from the print of the wedge (on Petwern sertions of the (aveloper).

Thae patterns in the centor, Fig. 10-2?, show the effert of a too-long time constant in the serern cireuit, in an amplifior gotting its serem voltage through a dropping resistor, both plate and screen bring modulated. The "doubleedged" pattern is the resuit of audio phate shift in the sereen cireuit combined with varying scrern-to-cathole resistaner doming modiolation. The over-all efferet is to delay the rise in output amplitude during the up-swere of the modulation cyele, slighty distorting the modula-
tion chuchere as shown in the waverenvelope pattern. This efferet. Which beromes more pronounerd as the andio modulating frequener is ineroased. is masatle absont at low modiatation percentages but develops rapidly as the modulation approathes 100 pro ext. It rath be reduced by reducing the sereon beyass rapacitance and also by comerting resistance (to be determined experimentally, but of the same order as the somen dropping resistaneo) betwern serean and cathonte.

The righthand pictures in Fig. 10-22 show the effere of insuffieinent :ondio power. Although the trafezoded pattorn shows geod lincarity in the r.f. amplifier, the waveromselope pattern shows flattened praks (both positive and norattive) in the modulation (envelopmeven though tha audio signal appliod to the amplifien was at sine wave. More speroh-amplifier gath merely increases the flattoning without inereasang the modulation perentage in such a case. Tha remedy is to use a larger modulator or less inpat to the modulated rif. stige. In same cases the trouble may be aused by an incorreet mona-lation-transformer turns ratio, cansing the mondulator to be overloaded bofore its maximum power output capabilities are reathed.

Faulty Patterns

The pattern dofects shown in big. 10-22 are only a few ont of matry that might bo observed in the testing of a phone transmitter, all eapable of being interpreted in terms of improper operistion in some part of the transmittery. It is well to kerep in mind, howrever, that it is not always the tramemitter that is at fiult when the serole shows an umasual pattorn The tromble may be In some clefert in the test setup.
fatterms representative of two common faulds

Checking Modulation

of this nature are shown in Fig. 10-23. The upper picture shows what happens to the trajerzoidal pattern when the andio voltage applied to the horizontal plates of the e.r. tule is not exactly in phase with the modulation convelope. The normal straight edges of the wedge are transformed into allipses which in the case of 100 per cent modulation (shown) touch at the horizontal axis and reach maximum heights equal to the height of the nommal wedge at the modulation up-peak. Such a phase shilt ran oceur (and usually will) if the audio voltage applied to the eres, tube dederetion pates is taken from any point in the audio system other than where it is applied to the modulated r.f. stage. The coupling capacitor shown in the revommonded cireuit of Fig. $10-18$ must have very low reactaner compared with the resistance of R_{1} and R_{2} in series - not larger than a few per cent of the resistance.

Fig. 10-23-Upper photo-Audio phase shift in coupling circuit between transmitter and horizontal deflection plates. Lower photo-Hum on vertical deflection plates.

The wave-envelope pattorn in Fig. 10-23 shows the effeet of hum on the vertical deflection plates. This may actually be on the carrier (poor power-supply filtering) or may be introduced in some way from the ace, line through stray coupling botwern the scope and the line or because of poor gromeling of the scope, transmitter or modulator.

It is important that r.f. from the momblated slage only be coupled to the oseilloseope, and then only to the vertical plates. If r.f. is present also on the horizontal plates, the pattern will lean to one side instead of heing upright. If the oseilloseope emonot be moved to a position where the umwanted piek-up) disappesars, a smatl leypass rapacitor ($10 \mu \mu \mathrm{f}$. or more) should be ronnerted arros the horizontal plates as clowe to the cathoderaty tube as possible. An rif.
choke (2.5 mh . or smaller) may also be comnected in series with the ungrounded horizontal plate.

MODULATION CHECKING WITH THE PLATE METER

The plate milliammoter of the molulated amplifier provides a simple and fairly reliable means for ehreking the performance of a phone transmitter, although it does not give nearly as definite information as the oscilloseope does. If the modulated amplifier is perfectly lincar, its plate current will not change when modulation is applied if

1) the upward modulation percentage dors mot exeed the modulation capability of the amplifer,
2) the downward modulation does not exceed 100 per cent, and
3) there is no change in the d.c. operating voltages on the transmitter when modulation is applied.

The plate current should be constant, ideally, with any of the methods of modulation discussed in this chapter, with the single exception of the controlled-earrier system. The plate meter cannot give a reliable cheek on the proformance of the latter sustem beause the plate current increases with the intensity of modulation. With this system the plate-current variations should be correlated with the transmitter performance as ohserved on an oseilloseope, if the plate meter is to be used for checking modulation.

Plate Modulation

With plate modulation, a downward shift in plate current may indicate one or more of the following:

1) Insufficient excitation to the modulated r.f. amplifier.
2) Insufficient grid bias on the modulated stage.
3) R.f. amplificr not loaded properly to present the required value of modulating impedance to the modulator.
4) Insufficient output capacitance in the filter of the modulated-amplifier plate supply.
5) D.c. input to the r.f. amplifier, under carrier conditions, is in exeess of the manufacturer's ratings for plate modulation. Alternatively, the cathode emission of the amplifier tubes may be low.
6) In plate-and-sereen modulation of tetrodes or pentodes, the sereen is not being sufficiently modulated along with the plate. In systems in which the d.c. sereen voltage is obtained through a dropping resistor, a downward dip in plate current may oceur if the sereen bypass "ophatitace is large mough to bypase audio frequencies.
7) Poor voltage regulation of the modulatedamplifier plate supply. This may be caused by voltage drop in the supply itself, when the modulated amplifier and a (lass I amplifier are operated from the same supply, on may be catued by voltage drop in the primary supply from the power line when the modulator load is thrown on. It is readily'

10 - AMPLITUDE MODULATION

chereded by mestsuring the voltage with and without modulation. Poor line regnataion will he shown by a drop in filament volage with modulation.
Any of the following maty canse an upwam shift in plate current:

1) Overmodulation (execosive atadio power, andio gatin too hight.
2) Incomplete nentralization of the modulated amplifier.
3) Parasitic oscillation in the modulated amplifier.

Grid Modulation

With any type of grid modnlation, any of the following masy calase a downsatrd shilt in modu-lated-amplifier plate carrent:

1) Too muth ref. exatation.
2) Insufficient grid hias particularly with cont rol-mrid modulation. Girid hias is usually mot eritical with sereon and sumpresor modubation, the value of erid leak recommended for c.w. operation being satisfactory:
3) With controi-grid modulation, exersive rexistamee in the bits supply.
4) Insufficient ontput raparcitance in platesupply filtor.
5) I'late afficienev too high under earrier eonditions: amplifier is not loaded hoavily enough.
becansegrid modulation is mot profrectly linear (always less ao than plate modulationt : an :anplifier that is property designed and operated may show a small moward platerourent shift with modulation, 10 per eant or less with sincWave modndation and amounting to an oreasional upward flicker with voire. An mpard plate enrrent shift in axerss of this may be (:atsed ber
6) Overmodulation (excessive modulating volt:は(1).
7) Inaremeration (incomplete neut malization).
8) With eontrol-grid or suppressor modulation, bias too great.
9) With sereen modulation, d.e. sereen voltage too low.
a) . Aurio rlistortion in modnlator.

In grid-modulation systems the modulator is not neressarily oprating lincand if the plate current stans eonstant with or without mombalation. It is reat lily prsibllo for arrive at a sot of operating conditions in which flattening of the up-paks is just bataned by oromomblation downamb, mesulting in practically the sathe pate current as when the transmiter is ummodalated. The osidlusenpe provides the only certain chack on grid modulation.

COMMON TROUBLES IN THE PHONE TRANSMITTER

Noise and Hum on Carrier

Noise and hum may be detected by listroning to the signal on al receriver, provided the re-
coiver is far enough away from the transmitter to aroid owertsading. The hum lavel should be low emmared with the voire at 100 per eont modulation. Hum may rond ather from the sperech amplifier and modulator or from the r.f. seedion of the tramsmitter. Hum from the r.f. section can be delected by emmplelly shatting off the moduhator: if hum remains when this is done, the power-supply filters for one or more of the r.f. stagre have insuflicient smoothing. With a humfree carrier, ham introdued by the mondalator can be chereked hy turuines on the modulator but leaving the sporeh atmplifior off: power-supply filtering is the likely sontere of such hum. If carrier and mondalatore both clean, eonnect the speech amplifier and wherve the inerease in ham level. If the hum disappeatrs with the gain control at minimum, the hum is leoing introduced in the stage or stages preereling the gain eentrol. The miecophone alsu mat pick up hum, a condition
 from the circuit but lowing the first speech-amplifier grid cirrait otherwise unchanged. A grood gromil (to a cold water pipe, for example) on the mierophone and speech sustem usually is essential to hatu-free operation.

Spurious Sidebands

A superheterodyun remerer having a variablesodectivity arstal filter is neded for cherking spurions sidedands outside the normal communieation chamel. The r.f. inpat to the remeder must he kent low conough, ber removing the antrenta or bex aderpate separation from the transmittor, to awoid owerloading and "onserpmot spurions receriber responses. An "s"-meter reading of alout half seale is satisfactory. With the crystal filter in its sharpest position tume through the region outside the normat chamel limits (3 to 4 kiloevelles cand side of the carrier) while another person talks into the mierophone. Smbious sidebameds will be observed as intermittent "rlicks" or crackles woll away from the ramier freduener. Sidehands more than 3 to 4 kiloeveres from the ratrion should be of negligible strength, combared with the carrier, in a properly mondulated phone transmitter. The canses are overmedulation or nonlinear operation.

With sinc-wave modulation the relative intensitios of sidebatheds ratn be olserved if a tome of 1000 ayrles or so is used, sine the ervstal filtor matily can sepamate frequencies of this ordor. The "s'"-meter will show how the spurions side frempundes (those spaced more than the moduhating freduency from the carrier) compare with the curricr itself. Withont an "s"-moter, the a.v.e. should the turned off and the b.f.o. thumed On: then the r.f. gation should be set to give a moneataly strong beat note with the catrior. The intonsity of side frequencies cath be estimated from the relative strength of the beats ats the reobiver is tumod through the spectrum adjacent to the carrier.

Is an altormative to the sharp arystal filter, a (l-multipliar adjusted for sharpest solectivity "an give "oluivalent results in analyang the

Modulation Monitoring

spectrum of the signal if the same care is used to prevent overloading and spurious recoiver responses. This generally requires keeping the r.f. and i.f. gain low.

Receivers having steep-sided band-pass filters for single-sidehand reception can be used, but the teehnique is more diffientt. If the band pass is, say, $3 \mathrm{ke} \cdot$, the signal should first be tuned in with the earrier pladed at one edge of the pass band. If it is placed at the low edge, for example, the receiver should then be tunod 3 ke. higher so its response will be in the region just outside the normal sportrum space oroupiod by one sideband. Any "rackles" heard in this region represent the results of nonlinearity or overmodulation. This assumes that the precautions mentioned above with respert to receiver overloading have heren carefully observed.

R.F. in Speech Amplifier

A small amount of r.f. curront in the speoch amplifier - particularly in the first stage, wheh is most suscepptible to surh r.f. piekup - witl eatuse overloading and distortion in the low-level stages. Freguently also thore is a regonorative effect wheh causes an audio-frectuoner osedlation or "howl" to be set up in the chadio sustem. In sueh cases the gatin control camot be arlvaneed very far before the howl builds up, (won though the amplifior may be perfeetly stable when the r.f. section of the transmitter is not turned on.

Complete shielding of the mierophone, mierophone eord, and specel amplifier is neeossury to provent r.f. piekup, and a ground eommertion separate from that to which the tramsmither is conneeted is advisable.

If the transmitter is "hot" with r.f., the cause usually is to be found in the mothod of coupling to the antomat. Any form of coupling that involves either a dirert or eapacitive conneetion between the transmitter and the transmission line is likely to rause the transmitter chassis to assume an r.f. potential above ground berause of "parallel" type currents on the line. An earth eonnection to the transmitter does not ahways help in such a case. The best remely is to use inductive coupling between the transmitter and line, a matehing circuit such as is
described in the chapter on transmission lines being suitable.

MODULATION MONITORING

It is always desirable to modulate as fully as possible, but 100 per econt modulation should not be exereded - particularly in the downward direction - bectuse harmonie distortion will be generated and the channel width ineroased. This eauses unneressiry interference to other stations. The oseilloseope is the best instrumont for continuously checking the modulation. Howorer, simplar indieators may te used for the purposer, once ealibrated.

A convenient indieator, when a Class B moduhator is used, is the plate milliammeter in the Class B stage, since the plate current of the moduhator fluctuates with the voire intensity. Cining the oscilloscope, determine the gain-control setting and voice intonsity that give 100 per cent modulation on voice peaks, and simultaneously observe the maximum (lass 13 plate-milhammoter reading on the praks. When this maximum roading is obtained, it will suffice to adjust the grin so that it is not execeded.

A high-resistance ($100(0$-ohms-ber-volt or more) reetifier-type voltmeter (enpper-oxide or germanium trpe) also can be used for modulation monitoring. It should be conneted aeross the output eircuit of an adio driver stage where the power level is a few watts, and similary calibated against the oscilloscope to dotermine the reading that represents 100 por erent modulation.

The plate milliammeter of the modulated r.f. stage also is of value an an indieator of overmodulation. As explained earlier, the d.c. plate current stays constant if the amplifier is linear. When the amplifior is overmodulated, expeeially: in the downward direction, the operation is no longer lincar and the average plate current will change. A flieker of the pointer may therefore be taken as an indieation of overmodulation or nonlinearity. However, since it is possible that under some operating conditions the plate current will remain constant even though the amplifier is considerably overmotulated, an indicator of this type is not wholly reliable unless it has been cheeked against an oscilloseope.

Suppressed-Carrier and Single-Sideband Techniques

A fully modulated a m. sighal has two-thinds of its power in the carrier and ouly one-thimd in the sidetands. The sidmbuds e:rreve the intelligenee to be dansmitted: the carrion "gons along for the ride" and serversonly to demodnlate the signal at the reerever. By elminating the carrier athd transmitting only the sidediants or just one sidebind the available transmittor power is used to greater advathtage. The carriop must be reinserted at the rerevere but this is no great problem. as explained later mater "Rowiving suppresod-Camior sighals."

Assuming that the same final-amplifier tube or tublos are used rither for nommal am. or for simgle sidelathd, (arrion suppresed, it cath be shown that the use of s...b. retm give ath elforetive tain of up to ! dh. were am. - empivalent to inmeasing the tramsmitter pownor times. l: limibating the carriar also eliminates the hetorodste. interference that so often spoils emmmateation in congesiod phone bands.

DOUBLE-SIDEBAND GENERATORS

The carrior cim be suppresed or neaty alimi-
 balanced modulator. "The laside minciple in any balanered mendulator is to introcluen the carrier in
 but so that the sidetnands will. This requiremment is satisfied ber int roducing the andio in push-pull and the r.f. Wrive in patallel. and eomereting the output in plash-pull. Balatmed modulatoms ran also be commeded with the r.f. drive and andion imputs in push-pull and the ontput in patralled

 atructional ronsiderations and the method of modulation protiored beg the buidder. Vadumtube balanced modulators cata be operated at high powar levels and the doulde-side hand out-
 d.s.b. signal can le copiad low the same mothots that are mised for singlo-sidelathed signals. provided the reroiver has sufficiont selertivity to rojeret one of the sidelmats.

In any hataneremodulator aiment there will be no output with mo andios signal. When pushpull imdion is applied, the batamer is upset, athe men branch will comeduet more then the other. Sinere aty modulation process is the same as " mixime" in reroivers, sum and differone frequene its (sidebambs) will be gemerated. The modulator is not bataneod for the sidebands, and they will appear in the ontput.

In the reetifier-tepe balaneed modulators shown ins Fig. 11-1, the dionde reetifiess are eommorted in sum a mamer that, if they have equal forwand resisfances. no r.f. catn pase from the rarrier somer to the output circuit via either of

Fig. 11-1-Typical rectifier-type balanced modulators,
The circuit at A is called a "bridge" balanced modulator and has been widely used in commercial work.
The balanced modulator at B is shown with constants suitable for of eration at 450 kc . It is useful for working into a crystal bandpass filter. T_{i} is a transformer designed to work from the audio source into a $600-\mathrm{ohm}$ load, and T_{2} is an ordinary i.f. transformer with the trimmer reconnected in series with a $0.001-\mu \mathrm{f}$. capacitor, for impedance. matching purposes from the modulator. The capacitor C_{1} is for carrier balance and may be found unnecessary in some instances-it should be tried connected on either side of the carrier input circuit and used where it is more effective. The 250 -ohm potentiometer is normally all that is required for carrier balance. The carrier input should be sufficient to develop several volts across the resistor string.
The batanced modulator circuit at C is shown with constants suitable for operation at 3.9 Mc . T_{3} is a small step-down output transformer (UTC R-38A), shunt-fed to eliminate d.c. from the windings. L_{1} can be a small coupling coil wound on the "cold" end of the carrier-oscillator tank coil, with sufficient coupling to give two or three volts of r.f. across its output. t, is a slug-tuned coil that resonates to the carrier frequency with the effective $0.001 \mu \mathrm{f}$. across
it, The 1000 -ohm potentiometer is for carrier balance.

Suppressing the Carrier

Fig. 11-2-A twin-diode balanced-rodulator circuit. This is essentially the same as the circuit in Fig. 11-1C, and differs only in that a twin diode is used instead of dry rectifiers. The heater circuit for the twin diode can be connected in the usual way lone side grounded or center tap grounded).
the two prossible paths. The net effect is that no r.f. conergy appears in the ont applied, it umbalateres the ofrenit by batsing the dionde (or diontes) in one path, depending upon the instantaneous polarity of the adudio, and henee somer.f. will appear in the output. Theref. ist the output will appoar as a double-sidebathed sup-prossed-amrier signal. (For a more complete description of diode-modulater oporation, ser "Diode Modulators," (0.7\%, April, 195.3, p. 39.)

In any diode modalater, the ref. voltage should be at least 6 or 8 times tha prak adio voltage, for minimum distartion. The usual oproration involves a fraction of a volt of autho and several volts of r.f. 'The diodes should be mateded as Closely as possible - ohmmoter measumoments of their forward resistanees is the usual texi.
(The circuit of lig. $11-113$ is described more fully in Weaver and Brown, "Crystal Pathere Hilters for 'Transmitting and Rerefiving," (Q, T, August, 1951. The cirenit of Fig. 11-I (is sulat) for use in a double-babancomi-modulato ritrout
 Ham Veus, september, 1!上̃o.)

Varomm-tule diodes ran also be used in the two- and four-dionde balinem-modulatore ribenits, and mathy oprators consider them superion wo the
 lator cirenit using at twin diode (tidas, filti, (ato.) is shown in Fig. II-2. In phasing-t ape s.s.b. gencrators (described later) two of these mondulators ate reguired, and they are netally wored

 modulatars, see Vitales, "Choeap and Pasy

Another form of balanered mombator uses a "heam-deflection" tube. and it is capable of high dexpers of carrior suppression (60 (llo.) with good output (4 bolts peak-to-peak) and low dis-
 freghenery range 250 to 5000 kr ., is shown in Fig 11-3. I carrier signal of 10 volts paak-to-patak is applied to the No. 1 grid, and a maximum andio signal of 2.8 volte peak-to-pack is introduced at one of the deflector clectrodis: the other deflewtor is bepased. With no audio signal, the output (an be minimized by adjustment of the betane controls R_{1} and R_{2}. When the balance is upset by
an atudio signal, the lewm is dofloeted back and forth hetween the two platus. and a doublesidebatad supprowederarrior signal appeats in the ontput.

Sime stray magnotio fields may upset the batance, the 7 bicio should be mounted as far as possible from components with magenetio fields. Plate and deflewtion-ellectroude cireuits should be symmet rical to minimize "alpacitive ublalathee.

SINGLE-SIDEBAND GENERATORS

'Two basic' sustems for gemerating s.s.b. signals are shown in Fig. 11-4. One involves the use of a handuase filter having suffieront soledivity to pass one sideband amd rejeet the ot her. Filters having such wharaterist ies cath only be ronstrueted for redatively low frequmeins, and most filters used by amateurs are designod to work somowhere around 500 ke . (iood sidel)and filtering (zun be done at frequeneios as high as 5) Me. by using multiple-crestal filters. The low-frequeney oscillator output is rombined with the audio output of a sprech amplifier in a babatioed modulator, and ondy the upper and lower sidehands appear in the output. One of the sidehards is passed bey the filter atm the other rejoedod, so that an s.s.b. signal is fed to the mixer. 'The signal is there mixed with the output of a high-frequenere r.f. nseillator to produre the desired output frequencr. For additional amplifieation a linear r.f. amplifier (Class if or (hass B) must be used. Whon the ss.b, signal is menmerated atround 500 ke . it may be meressary to convert twice to reach the operating frequeney, sinee this sim-

Fig. 11-3-A beam-deflection balanced modulator works well to 5 Mc ., giving excellent carrier suppression with low distortion. Capacitances are in $\mu \mathrm{f}$.
C_{1}, C_{2}-To resonate output circuit or filter.
\mathbf{R}_{1}-Carrier balance control.
Rz-Quadrafure balance contro'.

11-SIDEBAND

plifies the problem of rejecting the "image" irequencies resulting from the heterodyne prowras. The problem of image frequencies in the frocfurncy conversions of s.s.b. signals differs from the problem in receivers beause the beat-ing-oscillator frequency beromes important. bither balaneed modulators or sufficient selectivity must be used to attemuate these frequenries in the ontput and henere minimize the possibility of umwanted radiations. (lixamples of
 Junc, 1958, and Jamuary, 19\%).
'lhe serond system is based on the phase relationships betweren the carrier and sidebands in a modulated signal. As shown in the diagram, the andio signal is split into two romponents that are identical exeept for a phate difference of 90 de-
level can be inereased in a following amplifier.
Properly adjusted, either system is capable of good results. Arguments in favor of the filter system are that it is somewhat casier to adjust without an oscilloscope, since it requires only a receiver and a v.t.v.m. for alignment, and it is more likely to remain in adjust ment over a long period of time. The chicf argument against it, from the amateur viewpoint, is that it reguires quite a few stanes and at least one freguency eonversion after modulation. The phasing sustem requires fewer stages and win be designed to reguire no frequenes eonversion, but its alignment and adjustmont are often considered to be a little "trickier" than that of the filter system. This probably stems from lack of familiarity with the system rather than any actual difficulty, and now that

Fig. 11-4-Two basic systems for generating single-sideband suppressed-carrier signals. Representations of a typical envelope picture (as seen on an oscilloscope) and spectrum picture (as seen on a very selective panoramic receiver) are shown above and below the connecting links.
grees. The output of the r.f. oseillator (which may be at the operating frepuenery, it desired) is likewise split into two separate components having a 90-degree phase differenere. One r.f. and one atudio romponent are rombined in carh of two separate badinned modulatoms. The eatrier is suppressed in the modulators, and the relative phases of the sidebands are such that one sidebamd is bataneod out and the other is augmented in the combined output. If the ontput from the balaned modulators is high coough, such an s.s.b. exciter can work directly into the antenna, or the power
commercial preadjusted audio-phasing networks are available, most of the alignment difficulty has beron eliminated. In most cases the phasing system will cost less to apply to an existing transmitior.

Regardless of the method used to generate a s.s.b. signal of 5 or 10 watts, the minimum cost will be fond to be higher than for an a.m, transmitter of the same low power. However, as the power level is increased, the s.s.b. transmitter beromes more economical than the a.m. rig, both initially and from an operating standpoint.

Phasing-Type Exciters

Phasing-Type S.S.B. Exciters

It should be obvious that a phasing-1 yepe s.s.b. exciter can take many forms, but in general it will consist of a speech amplifier, audio phaseshift network, audio amplifier, balaned modulators, r.f. source, r.f. phases-shift network, and r.f. amplitier. If operation on a bund other than that of the ref. source, a mixer stage will also be required, for heterodyong the signal the the desired freduenes. Sine there are several batane edmodulator, atudio- and rif. phasing eirenits, it is apparent that many diferent combinations aro available. Ghe of the simplest of all (emblinations is that shown in Fig. (1-i).
Referring to Fig. 11-n, the surerh amplifier buide up the signal from a crystal microphone
to at usedut level. The :matio signal is then ford to an atulio phaseshift motwork, P心, which ab-
 out of phase to the grids of the $12 A^{\prime} 17$ atadio amplifier. "The two andio signals, !e) dewres ont of phase, are applied to two balate modulators that have their out puts in paralled (L_{3}). The r.f. exritation to the balamed modulators is also So degrees out of phase, obtatined by coupling from the two tuned direnits at L_{1} and L_{2}. A CiAt is linear amplifier, operating Class. AB_{1}, follows the balaneed-modulator stage and provides about 5 watts peak rowedepe output.

The gain control in the speedh amplifior sets the gatin to the proper lobel, depending upon the

Fig. 11-5-Schematic of a phasing.type s.s.b. exciter. Capacitance in μ f. unless otherwise noted-resistors are $1 / 2$-watt unless otherwise noted. Chassis grounds marked * should be the same.
$C_{1}-5$ or $10 \mu \mu \mathrm{f}$. if inductive coupling between L_{1} and t_{z} not sufficient.
T_{1}-Single plate to push-pull grid, 1:3 ratio (Stancor A53C).
$\mathrm{T}_{2}, \mathrm{~T}_{3}$-6-wath universal output transformer, 30 ohms output (UTC R-38A).
$L_{1}, L_{2}-32$ turns No. 22 enam, closewound on $1 / 2$-inch diameter iron-core tuned form (Millen 69046). link turn is 6 turns hook-up wire wound adjacent to cold end.
$\mathrm{L}_{3}-16$ turns No. 22 enam., spaced to occupy 1 -inch length on $1 / 2$-inch diameter iron-core-tuned form (Millen 69046), tapped at center. One-turn link wound at center.
l_{1}-Same as $l_{1} ;$ no link.
L:-25 turns No. 22 enam. closewound on $1 / 2$-inch iron-core-tuned form (Millen 69046). Link of 4 turns at cold end.
S_{1}-D.p.d.t. toggle or rotary.
PSN-Audio phase-shift network (Millen 75012). See Fig. 11-6.

11-SIDEBAND

microphone and how the operator uses it. Since the audio phas-shilt notwork, Ps.l, has unequal gains through its two chammels, unequalamplitude audio is required at the input to

Fig. 11-6-Schematic of the phase-shift network marked PSN in Fig. 11-5. Resistors and capacitors should be within 1 per cent of values shown.
oltain equal signals in the output. This is obtained through proper adjust ment of the 100 -ohm input andio balance control. To compensate for lack of uniformity in audio-amplifier gains, a 500 -ohm audio balance cont rol is provided in the
 is ohtatined bey proper setting of the loo()-ohm earrier balance eontrols. The sidehand in use (upper or lower) is solocted $\mathrm{b} \mathrm{N}_{1}$, which reverses the andio signal in one of the chammels. The r.f. phasing adjustment is ohtained by the tuning of L_{1} and L_{2}.

Construction

There are a few constructional precautions that should be observed in a unit of this type. Transformers T_{2} and T_{3} should preforably be mounted at right angles to curch other, to minimize st my coupling. The 1 No゙2 germanium diodes used in the bationed modulator should be chereked for forward and back resistanee with an ohnmeter, and the forward resistaneres (the lower readings) should agroe within 10 per cent. The leads from the coupling loops at L_{1} and L_{2} should return to the balanced modulator stage in twistad pairs, and the gromeding precaution mentioned in Fig. 11-5 should be ob served. Coils L_{1} and L_{2} should be mometed paralled to each other and with it separation of about $11 / 2$ diameters - L_{3} and L_{4} should be mounted to minimize coupling betwern them and L_{5} and the oscillator coils. This can be accomplished by providing shiclding or using the chassis doek to separate them.

Although slug-tuned roils are shown in the sehematic, capawitanerotumed cireuits can of course be used. Approximately the same L / C ration should be retaned, however. If operation on another amateur band is desired, the tuned cireuits can be modified areordingly, retaining the same L / C ratios,
or the output of this unit can be heterodyned to the different band.

Adjustment

If v.f.o. operation is to be used, the v.f.o. signal should furnish at least 10 volts r.m.s. at the terminals. With erystal control, plug in a ervetal and tune L_{1} until the circuit oscillates, as indirated be a signal in a reereiver tuned to the proper frequences, and then tume the cirvit to a slightly higher freguener: With v.f.0. operation, the cireuit is resonated in the usual manner, as indicated by a platerourent minimum.

The output from the 6.10 is stage can be cherked on an oscilloscope or on a reeeiver. The method of coupling an oscilloscope or reeriver to the exeriter is shown in Fig. 11-7. When eonnerting to an oscilloscope, a tumed circuit is required, and the r.f. voltage developed across the tuned cirenit is applided directly to the vertieal deflection plates. The receriver is connerted by coupling loosely through a loopand longth of shichled cable; when further attemuation is required it is obtained through the use of resistors at the recoiver input terminals.

With the ose illator ruming, tume the babaned modulator and $6.1\left(\frac{17}{}\right.$ rireuits for maximum output - this resonates these eirenits. Next adjust the earrier balance potentiometers for minimum output. Then introduce a single audio tone of around 1000 oycles at the microphone terminal. Here again it maty be neessary to use a resistance voltage divider to hold the sigual down and prevont overload. Alvance the gain control and cherk the voltage at Pins 2 and 7 of the 12 AT 7 audio amplifier with a v.t.v.m. If they are not

Fig. 11-7-Fundamental arrangement for using an oscilloscope and or receiver when testing an s.s.b. exciter or transmitter. An audio oscillator is required to furnish the audio signal, and its output is best controlled by the external control R_{1}. The audio volume control in the s.s.b. exciter should not be turned on too far, or it should be set at the normal position if you know that position, and all volume controlling should then be done with R_{1} and the output attenuator of the audio oscillator. This will reduce the chances of overloading the audio and other amplifier stages in the exciter, a common cause of distortion.

The oscilloscope is coupled to the dummy load through a loop, length of coaxial line, and an L-C circuit tuned to the operating frequency. It is necessary to go directly to the vertical deflection flates of the osciloscope rather than through the vertical amplifier.

The receiver is coupled to the dummy load through a loop and a length of shielded line. If too much signal is obtained this way, an attenuator, $R_{2} R_{3}$, can be added to the input terminals of the receiver. Small values of R_{2} and large values of R_{3} give the most attenuation; in some cases R_{2} might be merely a few inches of solid wire.

Fig. 11-8-Sketches of the oscilloscope face showing different conditions of adjustment of the exciter unit. (A) shows the substantially clean carrier obtained when all adjustments are at optimum and a sine-wave signal is fed to the audio input. (B) shows improper r.f. phase and unbalance between the outputs of the two balanced modulators. (C) shows improper r.f. phasing but outputs of the two balanced modulators equal. (D) shows proper r.f. phasing but unbalance between outputs of two bolonced modulators.
("qual, adjust the l(0)-rohm audio balaner cont mol until they are. Listoning to the signal, from the fiscia, or looking at it on the seope, should give a modulated signal. Try various sottings of L_{2} until the modulation is minimized, as well as tonching up the $\overline{\text { on }}$ (otom andio balaner control. With the v.t.v.m. cherek the r.f. voltages at the arms of the 1000 -ohm carrier babance potentiometers - they should be about the same. If not, they can be brought into this condition by readjust ment of the tuning conditions which, however, must be kept consistent with minimum modulation on the output signal.

The s.s.h, signal with single-tone andio input is a steady momodulated signal. While it may not be possible to eliminate the modulation entirely, it will be poesible to get it down to a satisfatedrily low level. Conditions that will prevent this atre improper r.f. phasing, lack of carrior babancer (suppression), distortion in the andio signal (at the source or through overload in the speerh
amplifior), and lack of andio balance at the 12AT7 andio amplifier, of these, the r.f. phasing is proltaps the most eritical.

A final check on the signal ean be mate with the receiver in its most selective condition. The speretrum testing described liflow camot be done with a broad receiver. Examining the spoetrum near the signal, the side signals other than the main one (earrier, unwanted sideh)ands, and sidebands from audio harmonies) should be at least 30 db . down from the desired signal. This rherking can be done with the S-meter and the a.v.e. on - in the earlier tests the a.v.e, should be off but the ref. gain reduced low enough to avoid receiver overload.

Examples of the proper and improper scope patterns are shown in Fig. 11-8.
(For an extensive treatment of the alignment of commercial phasing-type sasb. exeiters, see Fhrlieh, "How to Adjust Phasing-Type S.S.B. Exciters," (SAT', November, 1!56.)

Filter-Type S.S.B. Exciters

The basic configuration of a filter-type s.s.h. exciter was shown earlier in this chapter (Fig. 11-4). Suitable filters, shatp enough to rejoedt the unwated sidehand above a few humdred eveles, ram be built in the range 20 ke , to $\overline{5}$. Me, The low-frequency filters generally use iron-oored inductors, and the new toroid forms find eonsiderable favor at fiequencios up to 50 or tio ke. These filters are of normal band-pass constant- k and m-derived configuration. In the range tion to bet ke, dither erustal-lattice or electromoentaidal filters are used. Low-frequeney filters are mamulactured be Barker of Williamson and by bamell \& Con, and olectromochamical filters are made by the Collins IRadio Co. Crystallattion filters are availahbo from Hermes feretroniss in the megarerle range: homemate filters generally utilize crustals from military surplus.

Tha frequence of the filter determines how mamy converions must be mate before the operating frequency is reached. For example, if the filter frequeney is 30 ke. or so, it is wise to convert
first to $5(N)$ or $(G(N)$ ke. and then eonvert to the 3.9-Me. hand, to avoid the image that would almost surely result if the eonversion from 30 to $3(3) \mathrm{k})$ ke. were made without the intermediate step. When a filter at oro ke, is used, only one conversion is neeressury to operate in the 3.9-Me. band, but 14 -Me. and higher-frequaner operation would require at least two conversions to hold down the images (and lowal-oscillator signals if balaned misers aren't used) and make them cosy to climinate.

The ehoied of converter circuit depends largely on the fregueneine involved and the impedance
 impedanees, rectifier-tyo balanced modulators are often used for mixers, berabuse the balaneed modulator does not show the loeal-osedilator frequener in its ontput and one soure of spurious signal is minimized. At frequeneies at high impodance levels, and at the highor frequeneies, varumm tubes are generally used, in straight converter or balaneed-modulator circuits, de-

11-SIDEBAND

pending upon the ned for minimizing the localaseillator frequency in the output.

Low-drepurney sidebabl filters in the 30- to 5th-kr. range are ushally low-impedane deviess, atm rectifior-type Dadaned modulators are common pratice. Sideband filters in the i.f. range
this ran be nothing more elabomate tham a shigelded b,for anit. The signal should be introdued at the balaneed modulator, and an output indicator connected to the plate circuit of the vacumm tube following the filter. With the arstals out of the circuit, the transformers can lye

Fig, 11-9-One type of balanced-modulator circuit that can be used with a mechanical filter (Collins F455-31 or F500-31 series) in the i.f. range. The filters are furnished in various types of mountings, and the values of C_{1} and C_{2} will depend upon the type of filter selected.
T_{1}-Plate-to-push-pull grids audio transformer.
are highor-impedance arenits and vatumm-tube batanced modulators are the rule in this case. An example of one that rath be used with the high-impertane (15,0 (h) ohms) morhatnical filter is shown in ligg. 11-10. The filter com le followed bex a convertor or amplifior tube, depending nom the sigatel level. Some motels of the meehanifal filters have at $2: 3-\mathrm{d}$ b. insertion loss, while others hatre only 10.

Crastal-lattice filters are also used to rejeet the unwanted sideband. These filters can be
brought close to frequency by phuging in smatl (etpacitors (10 to $2.5 \mu \mu$,) in one arystal socket in eath stage and then tuming the transformers for peak output at one of the two revstal froquencies. The smatl raparitors ath then be removed and the erystals replated in their somekets.

Toming the signal somrer slowly aross the pats bend of the filter and watehing the output indicator will show the selertivity rhatacteristio of the filter. The objective is a farly flat response for about two ke, and a ritpid drop-off outside

Fig. 11-10-A cascaded half-lattice crystal filter that can be used for sideband selection. The crystals are surplus type of FT-243A holders, Y_{1} and Y_{3} should be the same frequency and Y_{2} and Y_{4} should be 1.8 kc . higher. $T_{1}, T_{2}, T_{3}-450-\mathrm{kc}$. i.f. transformers.
mate from ervstals in the i.f. range - many of these are still availathe from stores solling military surplus. A pepular configuration is the ""ascaded half lattion" shown in Fig. It-1t. The ervatals used in this filter com be obtatined at frogumens in the i.f. renge, and omes that are within the ranges of the modified i.f. transformers
 rontiereded ateross the serondary winding of two of the tremsiomers to give push-pull output. The arcatals should he ohtained in paits 1.8 kr . apart. The i.f. transomers ran be rither eabemitorfomed as shown, or they can be slug-t med.

A variahldefrefuency signal gramator of some kind is required for aligmment of the filter, but
this range. It will be found that small changes in the tuning of the transfomers will ehange the shater of the selfertivity chatucteristic, so it is wise to make at small adjust ment of one trimmer, swing the frequency anerss the band, and oloserve the chataderistic. Sfter a little experimenting it will be found whieh wat the trimmers must be moved to compersate for thre poaks that will rise when the filter is out of adjusiment.
The (suppessed) carrice frepurney must be adjusted so that it falls property on the slope of the filter ehatrateristic. If it is too rlens to the fitter mid-frembener the sidebathed rejoetion will he poor: if it is too for away there will be a lack of "lows" in the signal.

Amplification of S.S.B. Signals

AMPLIFICATION OF S.S.B. SIGNALS
When an s.s.b. signal is generatel at some frefueney other than the operating frequeney, it is neressary to ehange frequence by heterodye mothods. These are exactly the sime as those used in receivers, and any of the normal mixer or converter rireuits am le used. One exerption to this is the case where the heterodrang osedlator fredueney is rlose to the desired output fremurner. In this cases, a balanered mixer should be used, to climinate the heterodyning osedlator frecturnery in the output.

To increase the power level of an s.s.l), signal, a linear amplifier must be used. A linear amplifier is one that operates with low distortion, and the low distortion is oltained her the proper choiee of tulo and operating conditions. Phesically there is little or no differoner bet ween a linear amplifier ath thy other type of r.f. amplifier stage. The circuit diagram of a totroder.f. amplifier is shown in Fig. 11-11: it is no different basically than the similar ones in Chapter Six. The pratetioal differchers can be found in the supply voltages for the tube and their sperial requirements. The proper voltages for a number of suitable tubes can be found in Table 11-I; filament-type tubes will roguire the addition of the filament hypass caparitors ('sand (10 and the completion of the filamont rifenit he grounding the filament-transformor whtor tap. 'The grid hias, b_{1}, is furnished through an r.f. choke, although a resistor can be nsed if the tube is operated in (lass AB_{1} (no grid (current). The sorren voltage, E, must bo supplied from a "stiff" souren (lit tle or no voltage (rhange with current ehange) which climinates the use of a dropping resistor from the plate supply undess a voltagrorgulator tube is used to stabilize the serem voltage.

Any r.f. amplifior circuit can be adapted to linear oneration through the proper choire of oncrating conditions. For example, the circuit in Fig. 11-11 can be modified by the use of different
input and/or output coupling circuits, or by the use of another neutralizing scheme, and the resultant amplifier will still be linear if the proper operating conditions are observed. A triode or pentode amplifier rireuit will differ in detail; typieal cireuits can be found in Chatper Six.

The simplest form of linear amplifior is the Class A amplifier, which is used almont without exerption throughout rereivers and low-level suereh equipment. (Sise (hapter Throe for an explanation of the classes of amplifior operation.) While its linearity can be made relativoly good, it is inefiecient. The theoretieal limit of effiedeney is 50 por cent, and most pratical amplifiers run 25-35 per cent efficiont at full output. It low levels this is not worth worrying about, but when the 2- to 10 -watt forel is exceoded something else must be done to improve this efficience and reduce tube, power-supply and operating rosts.

Class $A B_{1}$ amplifiers make excellent linear amplifiers if suitablo tubes are solerted. Primary advantages of Class $A B_{1}$ amplifiers are that there Hive much greater output than straight Class if amplifiers using the same tuber, and they do not reguire any grid driving power (no grid current drawn at any time). Although triodes (an be used for Class Al_{1} operation, tetrodes or pentodes aro usually to be preferred, sine Class $A B_{1}$ operation requires high peak plate current without grid current, and this is casior to obtain in tetrodes and pentodes thin in most triodes.
'To ohtain maximum output from tetrodes, pentodes and most triodes, it is neressary to opcrate them in Class ABs. Although this produers maximum peak output, it increases the drivingpower reduirements and, what is more important, requires that the driver regulation (ability to maintain wave form under varying load) le good or exerellent. The usual mothod to improve the driver regulation is to connoct a fixed resistor. R_{1}, ateross the gride circuit of the driven stage. to offer a load to the driver that is modified only slightly by the additional load of the tube when

Fig. 11-11-Circuit diagram of a tetrode linear amplifier using link-coupled input tuning and pi network output coupling. The grid, screen and plate voltages $\left(E_{1}, E_{2}\right.$ and $\left.E_{3}\right)$ are given in Table $11-1$ for a number of tubes. Although the cir cuit is shown for an indirectlyheated cathode tube, the only change required when a filament type tube is used is the addition of the filament bypass capacitors C_{9} and C_{10}.

Minimum voltage ratings for the capacitors ore given in terms of the power supply voltoges.
C_{1}-Grid tuning capacitor, $3 E_{1}$
C_{2}-Neutralizing copacitor, $2 \mathrm{E}_{3}$.
C_{3}-Grid-circuit bypass capacilor, part of neutralizing circuit, $3 E_{1}$.
C_{4}-Plate funing capacitor, 1.5E E_{3}.
C_{5}-Output loading capacitor. 0.015 spacing for kilowatt peak.
C_{6}-Plate coupling capacitor, 2E.
C_{7}-Screen bypass capacitor, $2 \mathrm{E}_{2}$.

TABLE II－I－LINEAR－AMPLIFIER TUBE－OPERATION DATA FOR SINGIE SIDEBAND
Except where otherwise noted，ratings are monufocturers＇for oudio operation．Volues given are for one fube．Driving powers represent fube losses only－sircuit losses will increase the figures．

Tube	Class	Plate Voltage	Screen Voliage	D．C．Grid Voltage	Zero－Sig． D．C．Plate Current	Max．－Sig． D．C．Plate Current	Zero－Sig． D．C．Screen Current	Max．－Sig． D．C．Screen Current	Peok R．F． Grid Voltage	Max．－Sig． D．C．Grid Current	Max．－Sig． Driving Power	Max．－Rated Screen Dissipation	Max．－Rated Grid Dissipation	Avg．Plate Dissipation	Max．－Sig． Useful Power Outpu
$2 \mathrm{E26}$	$A B_{1}$	500	200	－ 25	9	45	ーー	10	25	0	0	2.5	－	－	15
$\begin{aligned} & 6146 \\ & 6883 \end{aligned}$	AB_{1}	$\begin{array}{r} 600 \\ 750 \end{array}$	$\begin{array}{r} 200 \\ 200 \\ \hline \end{array}$	$\begin{array}{r} 50 \\ -\quad 50 \\ \hline \end{array}$	$\begin{aligned} & 14 \\ & 12 \end{aligned}$	$\begin{array}{r} 115 \\ 110 \\ \hline \end{array}$	$.5$	$\begin{aligned} & 14 \\ & 13 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathbf{3} \\ & \mathbf{3} \end{aligned}$		$\begin{aligned} & \mathbf{2 5} \\ & \mathbf{2 5} \end{aligned}$	$\begin{aligned} & 47 \\ & 60 \end{aligned}$
$\begin{aligned} & 807 \\ & 1625 \end{aligned}$	$A B_{2}$	$\begin{aligned} & 600 \\ & 750 \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \end{aligned}$	$\begin{array}{r} -30 \\ -\quad 32 \\ \hline \end{array}$	$\begin{aligned} & 30 \\ & 26 \end{aligned}$	$\begin{aligned} & 100 \\ & 120 \end{aligned}$	$\begin{array}{r} .4 \\ .3 \end{array}$	$\begin{aligned} & 6 \\ & 8 \end{aligned}$	$\begin{aligned} & 39 \\ & 46 \end{aligned}$		1	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$		$\begin{aligned} & \mathbf{2 5} \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & 60 \end{aligned}$
811－A	B	$\begin{aligned} & 1000 \\ & 1250 \\ & 1500 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & -\quad 4.5 \end{aligned}$	$\begin{aligned} & 22 \\ & 27 \\ & 16 \end{aligned}$	$\begin{aligned} & 175 \\ & 175 \\ & 157 \end{aligned}$	二	—	$\begin{aligned} & 93 \\ & 88 \\ & 85 \end{aligned}$	13	$\begin{aligned} & 3.8 \\ & 3.0 \\ & 2.2 \end{aligned}$			$\begin{aligned} & 65 \\ & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 124 \\ & 155 \\ & 170 \end{aligned}$
4－65A	$A B_{2}$	$\begin{aligned} & 1500 \\ & 2000 \\ & 2500 \end{aligned}$	$\begin{aligned} & 300 \\ & 400 \\ & 500 \end{aligned}$	$\begin{aligned} & -551 \\ & =801 \\ & -1051 \end{aligned}$	$\begin{aligned} & 35 \\ & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & 2002 \\ & 270^{2} \\ & 2302 \end{aligned}$		$\begin{aligned} & 453 \\ & 653 \\ & 453 \end{aligned}$	$\begin{aligned} & 150 \\ & 190 \\ & 165 \end{aligned}$	$\begin{array}{r} 15 \\ 20 \\ 8 \end{array}$	$\begin{aligned} & 2.3^{3} \\ & 3.8^{3} \\ & 1.3^{3} \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 60 \\ & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 150 \\ & 300 \\ & 325 \end{aligned}$
7094	AB_{1}	2000	400	-50	30	200	－	35	44	0	$4{ }^{\circ}$	20		－	250
813	$A B_{1}$	2500	750	-95	25	145	－	27	90	0	0	－	－	－	245
	$A B_{2}$	$\begin{array}{r} 2250 \\ 2500 \end{array}$	$\begin{array}{r} 750 \\ 750 \end{array}$	$\begin{array}{r} -90 \\ -95 \end{array}$	$\begin{array}{r} 23 \\ 18 \end{array}$	$\begin{aligned} & 1.58 \\ & 180 \end{aligned}$	$\begin{aligned} & .8 \\ & .6 \end{aligned}$	$\begin{aligned} & 29 \\ & 28 \end{aligned}$	$\begin{aligned} & 15 \\ & 112 \end{aligned}$	—	$\begin{array}{r} 1 \\ .2 \end{array}$	$\begin{array}{r} 22 \\ -22 \\ \hline \end{array}$	$=$	$\begin{array}{r} 100 \\ 125 \\ \hline \end{array}$	$\begin{array}{r} 258 \\ 325 \end{array}$
4－125A	AB_{1}	$\begin{aligned} & 2000 \\ & \mathbf{2 5 0 0} \\ & \mathbf{3 0 0 0} \end{aligned}$	$\begin{array}{r} 615 \\ 555 \\ 510 \end{array}$	-1051 -1001 $-\quad 951$	$\begin{aligned} & 40 \\ & 35 \\ & 30 \end{aligned}$	$\begin{aligned} & 135(100) \\ & 120(85) \\ & 105(75)^{4} \end{aligned}$	$=$	$\begin{array}{\|l\|} \hline 14 \\ 10 \\ 10 \\ 6.0 \\ (3.0) \\ 6.5) \\ \hline \end{array}$	$\begin{array}{r} 105 \\ 100 \\ 95 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \end{aligned}$		二	$\begin{aligned} & 150 \\ & 180 \\ & 200 \end{aligned}$
	$A^{\prime} \mathbf{B}_{2}$	$\begin{aligned} & 1500 \\ & 2000 \\ & 2500 \end{aligned}$	$\begin{array}{r} 350 \\ 350 \\ 350 \end{array}$	$\begin{aligned} & -411 \\ & =451 \\ & -431 \end{aligned}$	$\begin{aligned} & 44 \\ & 36 \\ & 47 \end{aligned}$	$\begin{aligned} & 200 \\ & 150 \\ & 130 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 17 \\ 3 \\ 3 \end{array}$	$\begin{array}{r} 141 \\ 105 \\ 89 \end{array}$	$\begin{aligned} & 9 \\ & 7 \\ & 6 \end{aligned}$	$\begin{gathered} 1.25 \\ .7 \\ .5 \end{gathered}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 125 \\ & 125 \\ & 122 \end{aligned}$	$\begin{aligned} & 175 \\ & 175 \\ & 200 \end{aligned}$
$\begin{aligned} & 7034 / \\ & 4 \times 150 A \end{aligned}$	$A B_{1}$	$\begin{array}{r} 1000 \\ 1500 \\ 1800 \end{array}$	$\begin{aligned} & 300 \\ & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & -\quad 50 \\ & =50 \\ & -\quad 50 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 225 \\ & 225 \\ & 225 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 11 \\ & 11 \\ & 11 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \end{aligned}$			$\begin{aligned} & 115 \\ & 200 \\ & 250 \\ & \hline \end{aligned}$
4－250A	AB_{1}	$\begin{aligned} & 2500 \\ & 3000 \\ & 3500 \\ & 4000 \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \\ & 555 \\ & 510 \end{aligned}$	$\begin{array}{r} -115 \\ -110 \\ -105 \\ -100 \end{array}$	$\begin{aligned} & 65 \\ & 55 \\ & 45 \\ & 40 \end{aligned}$	$\begin{aligned} & 230(170)^{\prime} \\ & 210(150)^{\prime} \\ & 185(130) \\ & 165(115)^{4} \end{aligned}$	\bar{Z}	15 (3.5) 12 $(2.5)^{4}$ 9.5 $(2.0)^{4}$ 7.5 $(1.5)^{4}$	$\begin{aligned} & 115 \\ & 110 \\ & 105 \\ & 100 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0	$\begin{aligned} & 35 \\ & 35 \\ & 35 \\ & 25 \end{aligned}$	\bar{Z}	$=$	$\begin{aligned} & 335 \\ & 400 \\ & 425 \\ & 450 \\ & \hline \end{aligned}$
	AB_{2}	$\begin{aligned} & 1500 \\ & 2000 \\ & 2500 \\ & 3000 \end{aligned}$	$\begin{aligned} & 300 \\ & 309 \\ & 300 \\ & 300 \\ & \hline \end{aligned}$	$\begin{aligned} & =481 \\ & =481 \\ & =511 \\ & =531 \end{aligned}$	$\begin{aligned} & 50 \\ & 60 \\ & 60 \\ & 63 \end{aligned}$	$\begin{aligned} & 243 \\ & 255 \\ & 250 \\ & 237 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 17 \\ & 13 \\ & 12 \\ & 17 \end{aligned}$	$\begin{array}{r} 96 \\ 99 \\ 100 \\ 99 \end{array}$	$\begin{aligned} & 11 \\ & 12 \\ & 11 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.2 \\ & 1.1 \\ & 1 \end{aligned}$	$\begin{aligned} & 35 \\ & 25 \\ & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.50 \\ & 185 \\ & 205 \\ & 190 \end{aligned}$	$\begin{aligned} & 214 \\ & 325 \\ & 420 \\ & 520 \\ & \hline \end{aligned}$
304TL．	$A B_{1}$	$\begin{aligned} & 1500 \\ & 2000 \\ & 2500 \\ & 3000 \end{aligned}$	=	$\begin{array}{r} -1181 \\ -1701 \\ -2301 \\ -290 \end{array}$	$\begin{array}{r} 135 \\ 100 \\ 80 \\ 65 \end{array}$	$\begin{aligned} & 286 \\ & 273 \\ & 242 \\ & 222 \end{aligned}$	$=$		$\begin{aligned} & 118 \\ & 170 \\ & 230 \\ & 290 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	－	ב	二	$\begin{aligned} & 128 \\ & 245 \\ & 305 \\ & 365 \\ & \hline \end{aligned}$
PL－6569	${ }^{3}$	$\begin{aligned} & 2500 \\ & 3500 \\ & 4000 \end{aligned}$	二	$\begin{array}{r} -601 \\ =901 \\ -\quad 1051 \end{array}$	$\begin{aligned} & 40 \\ & 30 \\ & \mathbf{2 4} \end{aligned}$	$\begin{aligned} & 300 \\ & 270 \\ & 250 \end{aligned}$		——	$\begin{aligned} & 180 \\ & 220 \\ & 205 \end{aligned}$	$\begin{aligned} & 80 \\ & 68 \\ & 42 \end{aligned}$	$\begin{aligned} & 706 \\ & 755^{6} \\ & 60^{8} \end{aligned}$	こー・	=—	二二	$\begin{aligned} & 550 \\ & 7 c 0 \\ & 800 \end{aligned}$
PL－6580	8	$\begin{aligned} & 2500 \\ & 3500 \\ & 4000 \end{aligned}$	\bar{Z}	$\begin{array}{r} =50 \\ =\quad 85 \\ -100 \end{array}$	$\begin{aligned} & 60 \\ & 45 \\ & 40 \end{aligned}$	$\begin{aligned} & 350 \\ & 300 \\ & 300 \end{aligned}$	二	—	$\begin{aligned} & 195 \\ & 210 \\ & 230 \end{aligned}$	$\begin{aligned} & 95 \\ & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 75 \\ & 78 \\ & 78^{6} \end{aligned}$	二		＝	$\begin{aligned} & 610 \\ & 765 \\ & 910 \end{aligned}$
PL－172	AB_{1}	$\begin{aligned} & 2000 \\ & 2500 \\ & 3000 \end{aligned}$	$\begin{aligned} & 5007 \\ & 5007 \\ & 500^{7} \\ & \hline \end{aligned}$	$\begin{array}{r} -110 \\ -110 \\ -115 \end{array}$	$\begin{aligned} & 200 \\ & 220 \\ & 220 \\ & \hline \end{aligned}$	$\begin{aligned} & 800 \\ & 800 \\ & 780 \\ & \hline \end{aligned}$	$\begin{aligned} & 9 \\ & 9 \\ & 9 \end{aligned}$	$\begin{aligned} & 48 \\ & 43 \\ & 41 \end{aligned}$	$\begin{aligned} & 110 \\ & 110 \\ & 110 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 35 \end{aligned}$		二	$\begin{aligned} & 1020 \\ & 1280 \\ & 1540 \end{aligned}$
1 Adiust to give stated zero－signal plate current． 2 Single－sideband suppressed－corrier ratings，voice signal． ${ }^{3}$ Approximate value． －Values in porentheses are with two－tone test signal．										${ }^{5}$ Grounded－grid circuit． © Includes bias loss，grid dissipation，and feed－through pawer． $7+75 \mathrm{v}$ ．suppressor grid． 860 Mc ．					

Amplification of S.S.B. Signals

it is driven into the grid-current region. This inreases the driver's output-power requirements. Further, it is desirable to make the grid eireuit of the ('lass $A B_{2}$ stage a high-(cireuit, to improve regulation and simplify coupling to the driver. A "stiff" hias soure is also required, since it is important that the bias remain constant, whether or mot grid current is drawn.
(lass 13 amplifiers are theoretically eapable of 78.5 per cent efliciency at full output, and practical amplifiers run at $60-70$ per cent efficioney at full ontput. Triodes normally designed for Chass IS athedo work cath be used in r.f. linear amplifiors and will operate at the same fower rating and efficionery provided, of eourse, that the tube is apable of operation at the radio frequener. The operating conditions for r.f. are substantially the stme as for audio work - the only differenee is that the input and output trinsformers are replaced lye suitable r.f. tank cireuits. Fourther, in r.f. circuits it is readily possible to operate only one tube if only half the power is wated - pushpall is not a neeresity in Class B r.f. work. However, the r.f. harmonies may be higher in the case of the single-ended amplifier, and this should be taken into eonsideration if TVI is a problem.

For proper operation of ('lass ABe and B amplifiers, and to reduce harmonies and facilitate coupling. the input and output circuits should not have a low (-to- L ratio. A good guide to the proper size of thming caparitor will be found in Chapter Six: in case of any doubt, it is well to be on the high-caparitance side. When zoro-bias tubes are used, it may not be neeresary to add much "swamping" resistance arross the grid rirevit, because the grids of the tubes load the cirruit at all times. However, in AB. operation, the swamping resistor should be such that it dissipates from five to ten times the power remuired by the grids of the tubes, insuring an almost constant load on the driver stage and good regulation of the r.f. grid voltage. In turn this means that at least five to ten times more driving power will be required tham is indieated in Table 11-I. Where an exeres of driving power is atvalable. it is gemeratly better to increase the loading (do(rease the resistance of the swamping resistor) to the point where the maximum availathe driver power is utilized on peaks.

Brfore going into detail on the adjustment and loading of the linear amplitior, a few genemal considerations should the kept in mind. If proper operation is experted, it is essential that the amplifier be so ronstructed, wired and neutraliaced that no trate of regencration or parasitio instability remains. Nerdless to say, this also apphes to the stages ahead of it.

The bias supply to the Class ABe or IB limear amplifier should be quite stiff, such as batteries or some form of voltage regulator. If nonlinearity is noticet when testing the unit, the bias supply may be checked ly means of a large electrolytic "apacitor. Simply shunt the supply with $100 \mu \mathrm{f}$. or so of caparity and sec if the linearity improves. If so, rebuild the bias supply for better regula-
tion. Do not rely on a larye capacilor alone.
Where tetrodes or pentodes are used, the screen supply should have good regulation and its voltage should remain constant ander the varring current dem:unds. If the maximum sereen current does not exceed 30 or $3 \overline{5}$ mat, at string of VR tubes in series ean be used to regulate the serem voltage. If the curront demand is higher, it maty be neressury to use an clectronically regulated power supply or a heavily bled power supply with a current eapacity of several times the eurrent demand of the screen circuit.

Whore VR tubes are used to regulate the screen supply, they should be selacted to give a rogulated voltage as close as possible to the tube's rated voltage, but it does not have to be exalet. Minor differenees in idling plate current can be made un by readjusting the grid bias.

The plate voltage applied to the linear amplifice should be held as constant as possible under the varying current-demand conditions. This condition can be met by using low-rosistance transformers and indurtors and he using a large value of output capacitor in the power-supply filter. An output raparcitor value three or four times the minimum required for normal filtering (Chapter Soven) is reasonable. Although some slight improvement ran be obtained by using still higher values of output caparitance, the problem of turning on the supply without blowing fuses (from the initial surge) starts to become significimt.

One should bear in mind that the same amplifier con te operated in several clases of operation by merely ehanging the operating conditions (bias, loading, drive, sereen voltage, ete.). However, when the power sensitivity of an amplifier is increased, as by changing the operation from Class $.1 B_{3}$ to Class.$~ D B_{1}$, the stability requiremonts for the amplifier berome stringent.

From the standpoint of cese of adjustment and availability of proper operating voltages, a linear amplifier with Class AB tetrodes or pentodes or one with zoro-bias Class I triodes would be first choire. The Class 13 amplifier would require more driving power. (For eximples of Class AB_{1} tetrode :mplifiers, see Russ, "The 'Little Firecracker' Lincur Amplifier," QS"J', Sopt., 1953, Eekhardt, "The single Side-siaddle Linear," gst', Nov., 1953, Wolfe and Romander. "A 4N25013 Line:ar." (QNT, Nov., 1956, Muir, "GroundedGrid 'Tetrode Kilowatt." (2S'l', April, 1957, and Rinatudo, "Compact AB3 kilowatt," QST', Nov., 1957.)

Table 11-1 lists a fow of the more popular tubes commonly used for s.s.b. linear-amplifier operation. Wixerept where ot herwise noted, these ratings are those given by the manufacturer for audio work and as such are based on a sine-wave signal. These ratings are adequate ones for use in s.s.b. amplifier design, but they are conservative for such work and hence do not necessarily represent the maximum powers that can be obtained from the tubes in voice-signal s.s.b. service. In no case should the areraye plate dissipation be exceeded for any considerable length of time, but
the mature of as.s.b. signal is such that the average plate dissipation of the tube will run well below the prak plate dissipation.

Geoting the most out of a limear amplifier is dome by incroasing the peak power without exaroling the avarge phate dissipation over ats appreciable length of time. This ran be done by raising the plate voltage or the peak eurrent (or both), provided the tube ran withstand the inerease. However, the manufacturers have not released any data on such opreation, and any extrapolation of the andio ratings is at the risk of the amateur. A 3j- to 50 opre rent inerease above plate-voltage ratings should be perfertly safe in
most cases. In a tetrode or pentoole, the pak plate eurrent can be boosted some be raising the serem voltage.

When running at linear amplifier at considerably higher than the audio ratings, the "t wo-tone test signal" (deseribed later) should never be applied at full amplitude for more than a frew seronds at any one time. The above statements about working tubes above ratings apply only when a voicro signal is used - a prolonged whistle or twotone test signal may danage the tube. (For a method of adjusting amplifiers safoly at high input. sore Goodman, "Linear Amplifiors and l'ower Ratings," QS"T, August, 1! 1 万̄.)

Grounded-Grid Amplifiers With Filament-Type Tubes

It is not neressary to use indirectly heated rathode type tubes in grounded-grid direnits, and filament-tye tubes an be used just as efferetivels. However, it is necessary to raise the filament above r.f. ground, and ond way is shown in lig. 11-12. Here filament chokes are used betwern the filament transformers and the tube socket. The indurtanere of the r.f. chokes does not have to be very high, and 5 to $10 \mu \mathrm{~h}$. will usually suffice from 80 meters on down. The currenterarrying rapurities of the r.f. chokes must be aderquate for the tube or tubes in use, and if the resistance of the rehokes is too high the filament voltage al the tube sucke may be too low and the tube life will be embangered. In surh a rase, at higher-voltage filament transformer can be used, with its primary voltage cut down umtil the voltage at the tube socket is within the proper limits.

Filament chokes ram be woumd on reramie or wooden forms, using a wirr size large enough to carry the filament curent without undue heating. Large cylindridal ceramic antenna insulators rem be used for the forms. If enameled wire is used, it should the spaced from hatf the diameter to the diameter of the wire; heavy string can be used for this purpose. The separate chokes indigated in Fig. 11-12 are not essential; the two windings ran be wound in paralled. In this ease it is not necessary to space all windings; the two parallel wires coun be treated as one wire, winding them together with a single piece of string to spate the turns. Enamelod wire can be used beratuse the entmel is suffirent insulation to hamde the filament voltage.

When considerable power is available for driving the grounded-grid stage, the matehing betwen driver stage and the amplifier is not too important. However, when the driving power is

Fig. 11-12-When filament-type fubes are used in a grounded-grid circuit, it is necessary to use filament chokes to keep the filament above r.f. ground. In the portion of a typical circuit shown here, the filoment chokes. RFC1 and $R F C_{2}$, can be a manufactured unit (e.g., B\&W FC1 5 or FC30) or homemade as described in the text. Total plate and grid current can be read on a milliammeter inserted of x.
marginal or when the driver and amplifier are to be connected by a long length of coasial eable, a pi network matehing circuit can be used in the input of the grounded-grid amplifier. The input imperdance of a grounded-grid amplifier is in the range of 100 to $f(x)$ ohms, depending upon the tube or tubes and their operating conditions. When data for groumded-grid cperation is available (as for two tubers in Table 11-I), the input imperdane cath be computed from
$Z_{\mathrm{iu}}=\frac{(\text { peak r.f. driving rollage })^{2}}{2 \times \text { driving power }}$
From this and the equations for a pi network, a suitable network can be devised.

Adjustment of Amplifiers

One of the more important features of the lincar amplifier is that the ordinary plate and grid meters are at best only a poor indicator of what is going on. As the meters bounce back and forth, ceven a person who is thoroughly familiar with this kind of amplifier would be hard put to
sense whether the input power registered is attributable to (a) overdrive and underload, which yitld distortion, splatter, TVI, ete, or (b) underdrive and too-heary loading, resulting in inefficiency and loss of output.

The simplest and best way to get the whole

Adjustment of Amplifiers

story is to make a linearity tost : that is, to send through the amplifier a signal whose amplitude varies from zero up to the peak level in a rertain known manmer and then observe, by means of an aseiloseopre, whether this same wayeform comes out of the amplifier at maximum ratings.

Test Equipment

Fien the simplest twpe of cathoderay oseillowepe ran be used for linearity tosts, so long as it has the regular intermal swopp eircuit. If this instrument is not already part of the regular stattion "quipment, it might be well to purehase one of the several in xpensiw kits now on the market, so that it will be on hand not only to make initial tosts but also as a permanent monitor during all operation. Barring a purchase it is recommended at hatst that a seoper be borrowed to make the lime-np, chereks, wherempon the regular plato and grid moters cath serve thereafter to inticate ronghly changes in operating conditions.

All limetrity tests require that the vertieal plates of the seope be supplied with r.f. from the amplifion output. To awod interation within tho instrument, it is usually hest to comeed diperetly to the mathoderay tube terminals at the hatek of the rablonet. A piek-up devier and its ronnertions to the oseilloseope atre shown in lig. 11-\%. Normally, tho pirk-up loop shouk be rouplad to the dummy load, antrmas tumer, or transmission line: i.e., to a point in the sustem befoud where ally tuning adjustments are to be marde.

The only other piere of test eguipment will be ath atadio oseillator. Sinef only one frequeney is nereded, the simple cirenit of Fig. 11-13 works quite well. Some "rquipment has a cireuit similar to this one built right into the exciter audio sustem.

Fig. 11-13-Fixed-frequency oudio oscillotor hoving good output waveform. The frequency con be varied by changing the values of C_{1} and C_{2}.
L_{1}-Small speaker output transformer, secondory not used.

Two-Tone Test

The two-tone test involves sending through the amplifier or the sustem a pair of r.f. signals of equal amplitude and a thousand cereldes or so apart in frequency. The rombined momelope of two such signals looks like two sine waves folded on one another. If this waverom comes out of the final, well and goonl: if not, there is work to do.
'There are two commonly used ways to generate
the two-tone signat, and the ehoiere of which to use depends on the partienlar exciter.

Wehod A - for Filler or Phasing Erccilers:

1) Turn up the carrier insertion until a carrien is obtained at about half the expereded ontput amplitude.
\because) Connect an andio oscillator to the microphone input and advamer andio gatin until (when the earriew and the ond sidelsand are eqpal) the serpe pattern takes on the appeatane of full mumbation: i.r... the anspes just meret at the center line, Nere Fig. 11-14, photo No. 1.
2) 'To ehange the drive through the syatem, increase or dererase the remrier and andio sottings together, matintaning equality of the two signals.

Methal B-for Phasing Excilers:

(1)

(2)

(3)

Fig. 11-14-Correct Patferns. 1-Desired two-tone test pattern. 2-Desired double-trapezoid test pattern. 3-Typical voice pottern in a correctly adjusted omplifier, scope set for 30 -cycle sweep. Note that peaks are clean and sharp.

1) Disable the audio input to one balaned modulator, by removing at tube or be temporarily shortor ircuting an andio transformer
 audio gatin to get the desired drive. Nome that with ond batanced modnatar rut out. Hhe resultant signal will be doublewidehand with no rarrior, hene two aqual r.f. signads.

Double-Trapezoid Test

When Mothot 13 a.th be used with phasing exiters, it is possible to derive a sommewat more informative pattern by making a ronnertion from the exeiter andio system to the horizontal signal input of the oscillescope and using this andio signal, instead of the regular internal swerp, to canse the horizontal deflection. Those who are familiar with the regular trapezoid tost for atm. transmittors will reeogniza this sot-up as being the same, exerpt that instrad of one trapezoid, this test profures two triangles pointing toward earh other.
bach individual triangle is subjert to the same abilysis as the regular trapezoid patitem; i.e., the sloping sides of the pattern should be straight lines for proper operation. Simere it is much easier to tell whether a line is straight or not tham to jutge the correcthess of a sine cerver, the double traperoid has the advantage of being somowhat more positive and sensitive to slight departures from linearity than is the regular twotone patturn.

If the audio ram be picked off at the plate of the audio modulator thabe that is still working, the imput signal need not be a pure sime wave: morely whistling or talking into the microphone should produre the appropriate pattern. If, beranse of the exater layout, it is neressary to piok up the andio signal ahead of the phase-shift network, it will then be meressary to use a good sincowabe atudio oseillator as before, Aso, with the latter sot-up, the pattern will probably have a loopy appeatace at first, and phase correction

Fig. 11-15-"Phaser" circuit for the oscilloscope.
will be needed to make the figure close up. This can be done cither bey varying the audio frequency or be putting a phaser in series with the horizontal input to the scoper, as shown in Fig. 11-15.

Ratings

Before procerding with linearity tesis, it is well to have in mind the current and power levels to expert. A suppressed-carrior sigual is

Fig. 11.16-When the two-tone test signal is used for checking the linearity of an amplifier, the peak current is higher than the current indicated by the plate meter. The ratio of these volues depends upon the ratio of the idling (no-signal) current to the indicated current.
The graph shows the relationship.
$I_{\mathrm{i}}=$ no-signal (idling) current,
$\boldsymbol{I}_{\mathrm{d} \mathrm{c}}=$ meter reading with two-tone test signal,
$\boldsymbol{I}_{\mathrm{pk}}=$ actual peak current.
exactle like ath andio signal, exerpt for its frequemey, so the atudio ratings for any tube are perfortly applimable for linear r.f. sorvior where no aurior is involved. Win the other hame, the ratings sometimes shown for Class 13 r.f. trolophong are not what is watod, berause they are for convontional atm. tramsmission with carrier.

If audio ratings are not given for the desimed tube type. it will be saffe to assume that the maximum-signal imput for (chass 13 on Abservice is athout 10 pre emt lass that the key-down Class ((ew, conditions. Tho input will have to be held sommewhat hower in (lass $A B_{1}$ oproation beramse the average ofliciency is lower and, also, the tulne can draw only a limited amount of current at zorog grid voltage.

The maximum-signal rombitions determined from tube data rorrepoul in s.s.b. work to the vers peak of the r.f. enverope: When a two-tone test signal (or voire) is used, the phate milliammoter dose not indiato the pata plate carrent. The relationship betwern peak current and indicated current is variable with voice sighals, but with the two-tone tesl signal applied there is a definite relationship betwern indie:ated (dac.) (anrent and peak current. This relationship is plotted in Fig. 11-16, Kinowing the ration of the idlling curent to the plate comrent with the twotone test signall, $/ 0 / I_{\text {be }}$, ond eath find the fartor that ran be applied to give the peak eurrent. For example, an amplifier draws of mat with no signal and eso mat. (before flateming) with the two-tone test signal. $\quad I_{0} / I_{\mathrm{D}}=0.2$, and $I_{\mathrm{PK}} / I_{\mathrm{IN}}=1.15$, from lifg. $11-16$. Thus $I_{\mathrm{PK}}=$ $1.45 \times 250=36: 3 \mathrm{ma}$.

Should the resulting peak input (0.36i.3 \times plate voltage) be different than the design value for the particular amplifier thbe the drive and loading atjustments ram the rhanged in the proper divertions (always adjusting the lowling so that the peaks of the envelope are on the verge of fattening) and the proper value reathed.

Adjustment of Amplifiers

Using the Linearity Tests

The photos (Figs, 11-14. 11-17 and 11-18) hatre been taken to show many of the typical patterns that maty be eneomenterd with either of the test atrangements described previonsly. Thes are dassifiod separately as to those representing corred conditions (lige 11-11), fanlty operation of the r.f. :mplifier (Fig, 11-17), and varions other patterns that look iregegular but which
 the exefter but not int the final (Fig. 11-18).

Aside from the problem of parasities, wheh may or may not be a diffient one. it should be possible without mueh difficulty to arhere the corred limeaty pattern by taking action as indicated lis the captions acompanying the photos. It rath then be assumed that the amplifier is not eontributing any distortion to the signal so long as the pata power lewe indiented bex the test is mot excereded. It is rmtimely possible, however, that good linearity will he ohs tained only by holding the power down to a
level considerably below what is axpected, or conversely that there will be signs of exeessive pate dissipation at a level that the tuhes should hatudle quite easily. In such cuses, some attention should be givern in the plate loading, as diselussed below.

The several patients of Fig. 11-19 show how loading afferets the output and eflicieney of a linear amplifier. In the first two. loading is rolativol! light and limiting taker plate in the final phate virent. Raserve power is still avalable in the driver, exidened hy the faet that heavier loating on the final allows the peak output to incrase up to the optimum level of the third pattern. With still heavior loading the output censes to increase bat in faet drops somewhat: even though the input powor goes up all the time. the affienemg goes down rapidly. In the last two patterns, the driver is the limiting doment in the system, and the extra powerhandling capubitity of the final, due to heavier loading is wasted by inability of the driver to do it justice.

11 - SIDEBAND

1) For good eflieferery, the fimal itsolf must be the limiting oldrumt in the power-hameling capahility on the stetan
 it shomild be lowed lass heraty until suath is the (:as".
(3) It the prowr bevel obtanm athowe is less that suould be experted, more driving powe is nerempl.

There are soceral wass to tedl whether ar not the finat is twing drixen to its limit. Whe hay is to adrance the drive until peak limiting is apparent in the output, then move the oseilloseons coupling link oves to the driver phate tank amd
see whether or not the same limiting appoars there. Another way is to decrease or increase the final loading slightly the note whet her the limit-
 spontingly. If it does not, the finall is mot rontrolling the system. Still another but simila methed is to detume the fimal slighty while limiting is apparent, and if proper drive conditions preval the pattern will improwe when the amplifier phate is detumed.
The intermediate and driver starns will follow the same laws, exerept that what is malled "loading" on a final is of on reformed to as "impedance matching" when going betwern tabes. Nore

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

Fig. 11-18-Improper Test Set-up 12 -Two r.f. signals unequal, in Method A, coused by improper settings of either carrier or audio control. Method B, either carrier leakage through disabled modulator or unequal sidebands due to selective action of some high-Q circuit off resonance. 13-Same as 12, double-trapezoid test (Method B). 14-Distorted audio. A clue to this defect is that successive waves are not identical. 15-Same distortion as 14, but switched to double trapezoid test pottern. Note that correct pattern prevails regardiess of poor audia signal. 16 Carrier leakage through working modulator (Method 8 only). 17Same as 16 , double trapezoid. 18 - (Note tilt to left.) Caused by incomplete suppression of unwanted sidebond (Method A) or by r.f. leakage into horizontal circuits of scope. 19-Double tropezoid with audio phose shift in test set-up.

Frequency Conversion

(20)

Fig. 11-19-Amplifier Loading Characteristics. Two.tone patterns taken ot the output of a Class B linear amplifier with constant drive and successively heavier loading. Measured input power: 20-90 watts; 21-135 watts; 22-250 wotts; 23-330 watts; 24400 watts.

(21)

(23)

(22)

(24)
often than not, an apparent lack of power transfor from a driver to its succeeding stage is hue to a poor match. In Class AB3 or B service, a step-down tye of roupling is required hetwern power stages, and a person areustomes to the conventional plate-to-grid eoupling capacetor torhaigue will be surprised to find how eftective it is to tap the driven stage down on its tank or otherwise to derouple the system. For esample, an 807 driving a pair of 811 s requires a whage step-blown of about 3 or 4 to 1 from plate to carh grid.

Dummy Load

Fior the sake of everyone conermad, literarity teste should be kept off the air as murh as ponsiWhe. They make quite a racket and sparious signals are plentiful in carlier stages of misarljust ment. Ordinary lamp bullos make a fine dummy load so Jong as it is recognized that their mpedance is not examtly the same as the antemat and that this impedanee changes somewhat as the bults light up. These factors can be taken into acoount by making careful note of plate and grid currents after the tramsmittor has beem adjustod and is operating with a linearity test
signal at maximam linear output into the lamp load Then, having reconncetind the reglilar antemat, the same loading emoltions for the finat will be reprodued by adusting its tuning and loading until the identical combination of plater and grid aurrents can be obtainod. This process will require only a fow moments of on-the-ain opraration.

When the final on-the-air cheeks are made, it will be convonient to makera fow refermer marks on the oseilloseope sereron to indioate the peak height of the pattern. 'Ther seope will then serve as a permanont output monitor for all operations. Fow best results the sworp shoukl ine sot for about 30) ryoles, in whirh case the voice patherns will stand ont clearly and ram casily be bapt just within the reforme lines. Ineidentally, the pattem is really fascinating to watth.
bon't tre a "moter lubuler." Input power isu't everything. If you have to cut vour input in hate to avoid overlead, the frliow at the other and will hardly notier the difference in level. It the same time, your ecigharers, both those on the ham band and those next door trying to wateh TV, will apprewiate the difference right : Way.

Frequency Conversion

The proferred s.s.b. tramsmittor is probathe man that germerates the ses.b. sigual at some suitable freguemey and then heterodumes the signal into the desired amateur hands, althongh afow designs exist that generate the s.s.b. signal at the operating frofurney and conseruently aminate the ned for heterodyning. When the hoterodying is done at low level (involving an s.s.b. signal of not more than a few volts:, standard receiving techniques are, satisfactory, The convertor tubes oprorated at manufarturrors rat-
ings leave little to be desired.
When high-level beterowtening is reguired, as Whon an ex-iter deliverine Irons 5 to 20 watts on a singie band is availabla and maltiband operattion is desired, a high-level converter is used. since the efficiency of a conver:t-r is only about onc-fourth that of the same talne or tubus used in Clioss ADn, using a comverter stige as the output stage is not very ecomomir al, sut the lighthevel converter is gencrally used to drive the wutput stare

Fig. 11-20-Two examples of "high-level" mixer circuits. The circuit at A has been used with $6 V 6,6 L 6,6 A Q 5$ and 6 Y6 type tubes. With 300 volts on the plate the idling current is about 15 ma., kicking as high as 30 ma . with the s.s.b. signal.

The circuit in B operates with a positive screen voltage and some cathode bias, and is capable of somewhat more output than the circuit shown in A .

In either case the output circuit, $C_{1} L_{2}$, is tuned to the sum or difference frequency of the oscillator and s.s.b. signal. Coupling coils L_{1} and L_{3} will usually be three or four furns coupled to their respective driving sources.

Raderence to tube manuals will diselose no information of the opration of small trasmitting tubes as mixers. Ilowever, it hats berof found that most of the tetrodes in the $15-\mathrm{to}$:35-wate platediswipation "lass make adereptable mixers. and
 used sucersatuly. The usual proerdure is to fered one of the signats (nasillator or s.s.th.) to the eontrol grid and the other to the rathode or serem grid. Topical eirenits are shown in Fig. 11-20.
(Sugrestions for converting to and operating in the fo- and 1+1-Mc. bands cem be found in 'Tilton, "Single-sidediand ldeas for the V.H.J". Man," QST, May, 1457.)

- VOICE-CONTROLLED BREAK-IN

Although it is possible for two s.s.b. stations operating on widely different frequencies to work "duplex" if the carrier suppression is great enough (inadequate carrier suppression would be a violation of the FCC rulos), most s.s.b. operators prefer to use voice-controlled break-in and operate on the same frequency. This overromes any possibility of violating the FCC rules and permits "round table" operation.

Many various sytems of voice-controlled break-in are in use, but they are all basically the same. Some of the audio from the speech amplifior
is amplified and rectified, and the resultant dere. signal is used to key an oseillator and one or more stages in the s.s.h. Mransmitter and "hank" the recerver th the time that the transmitter is on. Thus the tramsmitter is on at ans and all times that the operator is speaking hut is off during the intervals betwern semteners. The voiereremtrol cirenit must have a small amount of "hold" built into it, so that it will hodd in bet weron words, but it should be made to turn on rapidly at the slightest voior signal coming through the speech amplifier. Both tabe and relay kevers have been used with grod surerss. Some voicerontrol systems rempuite the nse of headphones bey the operator, but a loudspatare cath be used with the proper circuit. (Sore Nowak, "VoneroControlled Break-Jn . . . and a lomdspeaker," (ぶT, May, !!!at, and Huntor, "Simplified Voice Control

If an atutema molay is used to switch the antenna from the rerevere to the transmitter and batek again, it is often possible to oprerate the output lincar amplifior stagre with some idling reurrent and experionere no diffienty with the "diode nowe" gencrated by the amplifiop plate curront. However. when the reecover, fransmittor and antemat are always comered together, as when :In electronic transmit-receive switch is used (seer (hapter lizght), weak signats will not be hated through the diode noise of the tramsmitter. To overeome this difficulty, the idlling curvent of the amplifier must be redued to zoro during listening periosk. This can be acoomplished throngh the use of the cireuit in Fig. 11-21. Here

Fig. 11-21-Bias-switching circuit for use with a Class $A B_{1}$ linear amplifier and an electronic t.r. switch.
$R_{1}-4700$ ohms, 1 watf.
$R_{2}-100,000$ ohms, 2 watts.
K_{1}-VOX relay or relay controlled by VOX circuit.
V_{1}-OA2 or OB2, depending upon amplifier re-
K_{1} is a relay controlled by the voice-controlled break-in circuit. When the relay is closed, the operating bias E_{1} for the linear amplifier is determined be the setting of the arm on h_{2}. When the relay is opern, the grid hias jumps to the value E, which should be high cuough to cut off the amplifier stage. The voltage regulator tube should be one with a nominal voltage drop in exerss of the nommal bias for the amplifier tube, and the negative supply voltage li should be at least 25 per cent higher than the ignition potential of the V'R tube. The circuit in Fig. 11-21 is applicable to Class $.113_{1}$ amplifiers: it camot be used when grid current is drawn during operation.

Receiving Suppressed-Carrier Signals

Restriction of Audio Range

In either type of s.s.b. generator, it is good practice to rostrict the frequency range of the andio amplitior. In the filter-t ye exriter, meducing the response below 300 or foo arelos makes it easier for the filter to climinate the unwanted side frequencies below this range. In the phasingtype exciter, restricting the range of the audio amplifier to the frequencies at which the network gives its best performance (usually about 300 to 3000 eyceles) reduces the possibility of generating unwanted side frequencies outside this range. High-frequency audio cut-off is not as important in the filter-type expiter beatuse the filter takes care of the higher frequeneies.

When a restricted audio range is used, it is a
good idea to make a number of cherks on the system, in an effort to obtatin the best compromise between naturalness and intelligibility. Voice characteristios diffor from oprator to operator, and it is somotimes preferable to acerentuate the "highs" slightly to give better intelligibility. No standards can be given here it is a subject for experimentation and ehecking under varied conditions.

The simplest means for reducing the lowfrequency response in the audio amplifier is to roduce the values of the coupling capacitors. High-frequency response exin be reduced by adding eapacitance across grid resistors. More elahorate means require the use of filters using inductance and capacitance combinations.

Receiving Suppressed-Carrier Signals

The reception of suppressed-earrier signals requires that the carrior be accurately reinserted at the receiver. In addition, the reception of a double-sideband suppressed-carrier signal refuires that one sideband bo filterd off in the rereiver before demodulation or that a special type of converter be used. Because little or no rarrier is tranmitted, the usual a.v.e. in the reariver has nothing that indicates the average signal level, and this fact requires either manual variation of the r.f. gain control or the use of a special a.v.e. sustem. (As, for eximple, Luick, "Improved A.V.(". for sideband and C.lV.." QS'T, Oetober, 1957.)

A suppressed-courior signal can be identified by the absence of astrong carrier and by the severe variation of the s meter at a syllabie rate. When such a signal is emoountered, it should lirst be peaked with the main tming dial. (This centers the signal in the i.f. pass band.) After this oparation, do not touch the main tuming dial. Then set the r.f. gain control at a very low level and switeh off the a.v.e. Inerease the audio volume control to maximum, and bing up the r.f. gatim control until the sigual can he heard weakly. Switch on the beat oscillator, and carefully adjust the frequency of the heat oscillator until proper speech is heard. If there is a slight amount of rarrier present, it is only neressary to zerobeat the beat oseillator with this weak carrier. It will the noticed that with incorreet tuning of an s.s.b. signal, the sperech will sound high- or low-pitehed or even inverted (very garbled), but no trouble will be hat in getting the correct setting once a little experience hats been oltained. The use of minimum r.f. gain :und maximum atulio gain will insure that no distortion (overload) oceurs in the receiver. It may require a readjustment of your tuning habits to tune the receiver slowly mough during the first few trials.

Guce the proper setting of the b.f.o. hats been wablished be the procedure above, all further luming should be done with the main tuning conthol. However, it is not umlikely that s.s.b. stistions will be encountered that are transmitting the other sideband, and to receive them will re-
quire shifting the b.f.o. setting to the other side of the receiver i.f. passband. The initial tuning procedure is exactly the same as outlined above, except that you will end up with a considerably different b,f.o. setting. The two b.f.o. settings should be noted for further reference, and all tuning of s.s.b. signals can then be done with the main tuning dial. With experience, it beoomes a simple matter to determine which way to tune to make the signal sound lower- or higher-pitehed if the receiver (or transmitter) drifts off.
When a double sidehand suppressed-carrier signal is received, suffienent sedertivity will be required in the recoiver to chminate one sideband and convert the signal into a single-sideband signal before detection, where it can be reedved by the method outlined above. Reeciver bandwidths of 3 kc . or less will be required for this purpose, or the use of a "Signal slicer," a selertivity device that uses the phasing prineiple. (See GE Ham News, Vol. (i, No. 4, July, 1951.)

Newomers to single sidehand often wonder if there is any deviee that ean be added to a receiver that will make the tuning of sideband signals less critieal. At the present time there is no deviee that will "loek in" antomat ically. However, if the receiver is lacking in selectivity, an apparent improvement an be obtained be using an adapter that adds selectivity to the receiving system. No improvement in ease of tuming will be noticed on good sideland signals (good suppression of unwanted sideband), but fair or mediorre signals will be easier to tune. The reason is that the adapter makes a better sideband signal out of the ineoming signal hy removing the vestiges of the umwanted sideband. and at good sidehand signal will tune easier than a fair one. The sideband adapters also usually have deteetors designed for best detection of sideland signads, a point that was overlooked in some of the older receivers. (bood detectors for sidehand signals include diodes with sufficient b.f.o. injertion (5 to 10 times peak signal) and "produet detertors" (see Chapter Five). Either detector is capable of low distortion output if the input is held down.
the signal from your $100-\mathrm{ke}$. standard). Note which side of zero beat gives little or no signal.

If tuning through a steady carrier gives
little or no signal on the
High Frequency
Low Freguency
side of zero beat, and then if tuning the receiver to a lourer frequeney makes the voice of a single-sideland signal sound lower pitched, he is using the
Lower $\mid \quad U_{\mu \mu}$
sideband.

Specialized Communication Systems

 Frequency and Phase Modulation

 Frequency and Phase Modulation}

It is possible to convoy intelligence by modulating any property of a carrior, including its fregueney and phase. Whon the frequency of the carrier is variod in acordane with the variattions in a modulating signal, the result is frequency modulation (f.m.). Nimilarly, varying the phase of the carrior curront is called phase modulation (p.m.).
lirequency and phase modulation are not indopondent, since the frequeney camof be variod without also varying the phase, and viece versa. The differonce is largely a matter of definition.

The efferetivenss of $\mathrm{f} . \mathrm{m}$. and p.m. for eommumication purposes depends almost antirely on the receiving methods. If the readiver will respond to frequency and phase changes but is insensitive to amplitude changes, it will diseriminate against most forms of noise, particularly impulse noise such as is set up by ignition systems and other sparking deviers. spectal methods of detection are required to aromplish this result.

Morlulation mothods for f.m. and p.m. we simple and require practically no audio power. There is aks the advantage that, since there is no amplitude variation in the signal, interference to broadeast reception resulting from rectification of the transmitted signal in the audio cireuits of the 13C receiver is sulstantially climinated. These two points represent the principal reasons for the use of f.m. and p.m. in amatelor work.

Frequency Modulation

Fig. $12-1$ is a reprosentation of frequency
(A)

(B)

(C)

Fig. 12-1-Graphical representation of frequency modulation. In the unmodulated carrier of A, each r.f. cycle occupies the same amount of time. When the modulating signal, B, is applied, the radio frequency is increased and decreased according to the amplitude and polarity of the modulating signal.
modulation. When a modulating signal is applied, the eariar frequence is increased during one half-eycle of the modulating signal and decreased during the half-evele of opposite polarity. This is indicated in the drawing by the fart that the r.f. "erles occupy less time (highor frequener) when the modulating signal is positive, and more time (lower froquency) when the modulating signal is nogative. The change in the carrier frequeney (frequency deviation) is proportional to the instantanoous amplitude of the modulating signal, so the deviation is small when the instantanoons amplitude of the modulating signal is small, and is greatest when the modulating sigmal reaches its peak, either positive or negrative.

As shown by the drawing, the amplitude of the signal does not change during morlalation.

Phase Modulation

If the phase of the current in a circuit is elanged there is an instantancous frequency change during the time that the phase is being shifted. The amount of frequency ehange, or deviation, depends on how rapidly the phase shift is accomplished. It is also dependent upon the total amount of the phase shift. In a properly operating p.m. system the amount of phase shift is proportional to the instantaneons amplitude of the modulating signal. The rapidity of the phase shift is directly proportional to the froguency of the modulating signal. (onsequently, the frequeney deviation in f.m. is proportional to both the amplitude and frequency of the modulating signal. The latter represents the outstanding difference betwern f.m. and 1 , m. since in f.m. the frequeney deviation is proportional only to the amplitude of the modulating signal.

Modulation Depth

Perentage of molulation in f.m. and p.m. hats to be defined differently than for a.m. Praveticalls, "100 per cent modulation" is reached when the transmitted signal oceupies at chammel just equal to the bandwidth for which the receiver is designed. If the frequency deviation is greater that the rereiver can areept, the receiver distorts the signal. However, on another receiver designed for a different bandwidth the same signal might be equivalent to only 25 per cent modulation.

In amateur work "narrow-band" f.m. or p.m. (frequently abbreviated n.f.m.) is defined as having the same chamel width as a properly modulated atm. signal. That is, the efferetive chamel width does not exceed twice the highest

12 - SPECIALIZED COMMUNICATION SYSTEMS

Fig. 12-2-How the amplitude of the pairs of sidebands varies with the modulation index in an f.m. or p.m. signal. If the curves were extended for greater values of madulation index it would be seen that the carrier amplitude goes through zero at several points. The same statement also applies to the sidebands.
audio frequency in the modulating signal. N.f.m. transmissions based on ath upper andio limit of Bow exeles therefore should oreupy a chamed not significantle wider than if ke.

F.M. and P.M. Sidebands

The sidebands sot up by f.m. and p.m. differ from those resulting from a.m. in that ther oredr at integral multiphes of the modulating frequency on "ither side of the carrier rather than, as in at.m., consisting of a single set of side frequencies for cach modulating frequence. An f.m. or p.m. signal therefore inherently oceupies a wider ehannel than a.m.
'The number of "extra" sidebands that oreur in f.m. and p.m. depends on the relationship between the modulating freguenere and the froquener deviation. The ratio between the fregueney deviation, in eycles per second, and the modnlating frequency, also in cyeles per sceond, is catled the modulation index. That is,
Morlulation index $=\frac{\text { Carrier firequency deviation }}{\text { Modulating frequency }}$
Example: The maximum frequency deviation in an f.m. transmitter is 3000 eycles either side of the carricr frequency. The modulation index when the modulating frequency is 1000 cyeles is

$$
\text { Modulation index }=\frac{3000}{1000}=3
$$

At the same deviation with 3000 -cyele modulation the index would be 1 ; at 100 eycles it would be 30, and so on.
In p,m. the modulation index is constant regatrdess of the modulating frequenery; in f.m. it varies with the modulating frequency, as shown in the above example. In an f.m. system the ratio of the maximum carrier-frequency deviation to the highest modulating frequency used is called the deviation ratio.

Fig. 12-2 shows how the amplitudes of the carrier and the various sidebands vary with the modulation index. This is for single-tone modulation: the first sideband (actually a pair. one above and one below the carrier) is displaced from the carrier by an amount equal to the modulating frequenery, the serond is twice the modulating frequeney away from the carrier, and so on. For cxample, if the modulating frequeney is 2000 eycles and the carrier frequency is 29,500 ke., the first sidehand pair is at $29,498 \mathrm{kc}$, and $29,502 \mathrm{ke}$., the serond pair is at $29,490 \mathrm{ke}$, and $29,504 \mathrm{ke}$, the third at $29,49+\mathrm{kc}$. and $29,506 \mathrm{ke}$, etc. The amplitudes of these sidebands depend on the
modulation index, not on the frequency deviation.
Note that, as shown by lig. 12-2, the carrier strength varios with the modulation index. (In amplitade modulation the carrier strength is constant; only the sideband amplitude varios.) At a modulation index of approximately 2.4 the carrior disappears entirely. It then becomes "negative" at a higher index, meaning that its phase is reversed as compared to the phase without modulation. In f.m. and p.m. the conergy that goes into the sidehands is taken from the earrier, the total power remaining the same regardless of the modulation index.

Frequency Multiplication

Since there is no change in amplitude with modulation, an f.m, or p.m. signal ran be amplified without distortion by an ordinary Class C amplifier. The modulation eath take place in a very low-level stage and the signal can then be amplified by either frequency multipliers or struight :mpilifiers.

If the modulated signal is passed through one or more frequency multipliers, the modulation index is multiplied by the same factor that the carrier frequency is multiplied. For example, if modulation is applied on 3.5 Me. and the fimal output is on 28 Mr. the total frequener multiplication is 8 times, so if the frequency deviation is 500 eycles at 3.5 Me . it will be 4000 eyches at 28 Mc. Frequency multiplieation offers a means for obtaining practically any desired amount of froqueney deviation, whether or not the modulator itsolf is capable of giving that much deviation without distortion.

Narrow-Band F.M. and P.M.

"Narrow-hand" f.m. or p.m., the only type that is authorized by FCC for use on the lower frequencies where the phone bands are arowded, is defined as f.m. or p.m. that does not oceupy it wider chamel than tun am. signal having the same :udio modulating frequencies.

If the modulation index (with single-tone modulation) does not exered 0.6 or 0.5 , the most important extras sidehand, the second, will be at least 20 dl). below the ummodulated carrier leved, and this should represent an (ffertive channel width about ropuivalent to that of an a.m. signal. In the ease of spereh, a somewhat higher modutation index can be used. This is breause the enorgy distribution in a complex wave is such that the modulation index for any one frequancy eom-

Frequency and Phase Modulation

ponent is reduced, as compared to the index with a sine wave having the same peak amplitude as the voice wave.

The ehicf adyantage of narrow-hand f.m. or p.m. for frequencies bolow 30 Mc . is that it eliminates or reduces certain types of interference to broudeast reception. Also, the modulating equip)mont is relatively simple and inexpensive. Howevor, issuming the same unmodulated carrier power in all casos, natrow-band f.m. or p.m. is not as effective as a.m. with the methods of reception used by most amateurs. As shown hy Fig. 12-2, at an index of 0.6 the amplitude of the first sidchand is about 25 per cont of the un-modulated-carrier amplitude; this compares with a sideband amplitude of 50 per cent in the rase of a 100 per cent modulated a.m. transmitter. So far as effeetiveness is concorned, a narrowband f.m. or p.m. transmitter is about equivalent to a 100 per cont modulated at.m. transmitter operating at one-fourth the earrier power.

Comparison of F.M. and P.M.

Frequency modulation cannot be applied to an anıplifier stage, but phase modulation can; p.m. is therofore readily adaptable to transmitters emploving oscillators of high stability such as the crystal-controlled type. The amount of phase shift that can be obtained with goond linearity is such that the maximum practiable modulation index is about 0.5 . Because the phase shift is proportional to the modulating frequency, this index cin be used only at the highest frequeney present in the modulating signal, assuming that all frequencies will at one time or atother have
equal amplitudes. Taking 3000 eycles as a suitable upper limit for voice work, and setting the modulation index at 0.5 for 3000 cycles, the frequency response of the speech-amplifior system above 3000 eycles must be sharply attenuated, to prevent sideband splatter. Also, if the "tinny" (uuality of p.m. as received on an f.m. receiver is to be avoided, the p.m. must be changed to f.m., in which the modulation index decreases in inverse proportion to the modulating frequency. This requires shaping the speechamplifier frequency-response curve in such a way that the output voltage is inversoly proportional to frequency over most of the voice range. When this is done the maximum modulation index ean only be used at some relatively low audio frequency, perhaps 300 to 900 eveles in voice transmission, and must decrease in proportion to the increase in frequency. The result is that the maximum linear frequency deviation is only one or two hundred eycles, when p.m. is ehanged to $\mathrm{f} . \mathrm{m}$. To incroase the deviation for n.f.m. requires a frequency multiplication of 8 times or more.
It is relatively easy to secure a fairly large frequency deviation when a self-controlled oscillator is frequency-modulated dirertly. (True frequency modulation of a crystal-controlled oseillator results in only very small deviations and so reduires a great deal of frequeney multiplication.) The chief problem is to maintain a satisfactory elegree of carrier stability, since the greater the inherent stability of the oscillator the more diffieult it is to sccure a wide frequeney swing with linearity.

Methods of Frequency and Phase Modulation

A simple and satisfactory deviee for producing f.m. in the amaterar transmitter is the reactance morlulator. This is a vacuum tube sonnected to the r.f. tank cirenit of an oscillator in such a way as to act as a variable inductance or capacitance.

Fig. $12-3$ is a representative circuit. The control grid of the modulator tube, V_{2}, is connected across the oscillator tank circuit, $C_{1} L_{1}$, through resistor K_{1} and blocking eapacitor (${ }_{2}$. (8 represents the input capacitance of the modulator tube. The resistance of R_{1} is made large comproded to the reactance of C_{8}, so the r.f. current through $R_{1} C_{8}$ will be practically in phase with the r.f. voltage appearing at the terminals of the tank circuit. However, the voltage across C_{8} will lag the current by $9(0)$ degrees. The r.f. current in the plate circuit of the modulator will be: in phase with the gris voltage, and consequently is (9) degrees behind the current through C_{8}, or 90 degroes lohind the r.f. tank voltage. This lagging corront is drawn through the oscillator tank, giving the same effort as though an inductance were connected arross the tank. The frequency incroases in proportion to the amplitude of the lagging plate current of the modulator. The audio voltage, introduced through a radio-frequency choke, $R P^{\prime} C_{1}$, varies the transeonductance of the
tube and therehy varies the r.f. plate current.
The modulated oscillator usually is operated on a relatively low frequency, so that a high order of earrier stability ean be secured. Frequeney multipliers are used to raise the frequency to the final frequency desired.

A reactance modulator can be connected to a erystal oscillator as well as to the self-controlled type. However, the resulting signal is more phasemodulated than it is frequency-modulated, for the reason that the frequency deviation that can be secured by varying the tuning of a erystal oscillator is quite smadl.

Design Considerations

The sensitivity of the modulator (frequeney ehange per unit change in grid voltage) depends on the transconductance of the modulator tube. It increases when R_{1} is made smaller in comparison with ('g. It also increases with an increase in L/C ratio in the oscillator tank cirouit. However, for highest carrior stability it is desirable to use the largest tank caparitane that will permit the desired deviation to be secural while keeping within the limits of linear operation.
Λ change in any of the voltages on the modu-

12 - SPECIALIZED COMMUNICATION SYSTEMS

lator tube will catuse a change in r.f. plate current, and conseguently a frequency change. Therefore it is alvisable to use a regulated plate power supply for both modulator and oscillator. It the low voltuge used (250) volts or less) the reguired stabilization ean be secured by means of gaseous regulator tubes.

Speech Amplification

The speed amplifier preceding the modulator follows ordinary design, exeept that no power is taken from it and the a.f. voltage required by the modulator grid usually is small - not more than 10 or 15 volts, even with large modulator tubes. Beanne of these modest requirements, only a few speerh stages are needed; a two-stage amplifier consisting of a pentode followed by a triode, both resistance-coupled, will more than suffice for crystal microphones.

PHASE MODULATION

The same type of reactance-tube circuit that is used to vary the tuning of the oscillator tank in f.m. can be used to vary the tuning of :m amplifier tank and thus vary the phase of the tank current for prom. Hence the modulator circuit of lig. 12-3 can he used for 1 .m. if the reactance tube works on an amplifier tank instead of directly on a self-controlled oscillator.

The phase shift that occurs when a rircuit is detuned from resonance depends on the amount of detuning and the Q of the circuit. The higher the Q, the smaller the atmount of dotuning needed to secure a given number of degrees of phase shift. If the Q is at least 10, the relationship, between phase shift and detuning (in kilocyoles either side of the resonant frequency) will be sub-

Fig. 12-3-Reactance modulator using a hightransconductance pentode (6BA6, $6 \mathrm{CL6}$, etc.). $\mathrm{C}_{1}-$ R.f. tank capacitance (see text).
$\mathrm{C}_{2}, \mathrm{C}_{3}-0.001$ - μ f. mica.
$C_{4}, C_{5}, C_{8}-0.0047-\mu$. mica.
$\mathrm{C}_{7}-10-\mu \mathrm{f}$. ele ctrolytic.
C_{8}-Tube input capacitance.
$\mathrm{R}_{1}-47,000$ ohms.
$\mathrm{R}_{2}-0.47$ megohm.
$\mathrm{R}_{3}-$ Screen dropping resistor; select to give proper screen voltage on type of modulator tube used.
R_{4}-Cathode bias resistor; select as in case of R_{3}.
L_{1}-R.f. tank inductance.
$\mathrm{RFC}_{\mathrm{t}}-2.5$-mh. r.f. choke.
stantially linear over a phase-shift range of about 25 degrees. From the standpoint of modulator sensitivity, the Q of the tuned circuit on which the modulator operates should be as high as possible. On the other hand, the effective Q of the eircuit will not be very high if the amplitier is delivering power to a load since the load resistance reduces the Q. There must therefore be a compromise between modulator sensitivity and r.f. power output from the modulated amplifier. An optimum ligure for Q appears to be about 20; this aliows reisonable loading of the modulated amplitior and the necessary tuning variation can be secured from a reactance modulator without difficulty. It is advisable to modulate at a very low power level - preforably in a stage whore roceiving type tubes are used.

Reactance modulation of an amplifier stage usually also results in simultaneous amplitude modulation because the modulated stage is detuned from resonance as the phase is shifted. This must be eliminated by feeding the modulated signal through an amplitude limiter or one or more "saturating" stages - that is, amplifiers that are operated Class Cand driven hard enough so that variations in the amplitude of the grid excitation produce no appreciable variations in the final output amplitude.

For the same type of reactance modulator, the speech-amplifier gain required is the same for p.m. as for f.m. However, as pointed out earlier, the fact that the actual frequeney deviation increases with the modulating audio frequency in p.m. makes it necessary to cut off the frequencies above about 3000 cyeles before modulation takea place. If this is not done, unnecessary sidebands will be generated at frequencies considerably away from the carrier.

Checking F.M. and P.M. Transmitters

Accurate checking of the operation of an f.m. or p.m. transmittor requires different methods than the corresponding checks on an a.m. set. This is beciuse the common forms of measuring devices cither indicate amplitude variations only (a d.c. milliammeter, for example), or because their indications are most easily interpreted in terms of amplitude. 'lhere is no simple measuring instrument that indicates frequency deviation directly.

However, there is one favorable feature in f.m. or p.m. checking. The modulation takes place at a very low level and the stages following the one that is modulated do not affect the linearity of modulation so long as they are properly tuned. Therefore the modulation may be checked without putting the transmitter on the air, or even on a dummy antema. The power is simply cut off the amplifiers following the modulated stage. 'lhis not only avoids unneces-

Frequency and Phase Modulation

sary interference to other stations during testing periods, but also keeps the signal at such a low level that it may be observed quite casily on the station receiver. A good receiver with a crystal filter is an essential part of the cherking equipment of an f.m. or p.m. transmitter, particularly for narrow-band f.m. or p.m.

The quantities to be cherked in an f.m. or p.m. transmitter are the linearity and frequency deviation. Jecause of the essential difference between f.m. and p.m. the methods of checking differ in detail.

Reactance-Tube F.M.

It is possible to calibrate a reactance modulator by applying an adjustable d.c. voltage to the modulator grid and noting the change in oscillator frequency as the voltage is varied. A suitable circuit for applying the adjustable voltage is shown in Fig. 12-4. The battery should have a

Fig. 12-4-D.c. method of checking frequency deviation of a reactance-tube-modulated oscillator. A 500- or 1000 -ohm potentiometer may be used at R_{1}.
voltage of 3 to $\mathbf{6}$ volts (two or more dry rells in series). The arrows indieate clip connections so that the battery polarity can be reversed.

The oscillator frequency deviation should be measured by using a receiver in ronjunction with an accurately calibrated frequency meter, or by any means that will permit accurate measurement of frequency differences of a few hundred cycles. One simple method is to tune in the oscillator on the receiver (disconnecting the receiving antenma, if necessary, to keep the signal strength well below the overload point) and then set the receiver b.f.o. to zero beat. Then increase the d.c. voltage applied to the modulator grid from zero in steps of about $1 / 2$ voit and note the beat frequency at each change. Then reverse the battery terminals and repeat. The frequency of the beat note may be measured by comparison with a calibrated audio-frequency oscillator. Note that with the battery polarity positive with respect to ground the radio frequener will move in one direction when the voltage is increased, and in the other direction when the battery terminals are reversed. When several readings have been taken a curve may be plotted to demonstrate the relationship between grid voltage and frequency deviation.

I sample curve is shown in Fig. 12-5. The usable portion of the curve is the renter part which is essentially a straight line. The bending at the ends indieates that the modulator is no longer linear; this departure from lincarity will catse harmonic distortion and will broaden the channel occupied by the signal. In the example, the characteristic is linear 1.5 kc . on

Fig. 12-5-A typical curve of frequency deviation vs. modulator grid voltage.
either side of the center or carrier frequency.
A good modulation indicator is a "magiceye" tube such as the $6 \mathrm{EL5}$. This should be connected across the grid resistor of the reactance modulator as shown in Fig. 12-6. Note its deflection (using the d.c. voltage method as in Fig. 12-4) at the maximum deviation to be used. For narrow-hand f.m. the proper deviation is approximately 2000 cerlos (this maximum deviation is based on an upper a.f. limit of 3000 eveles and a deviation ratio of 0.7) at the output frequenes. This deflertion represents " 100 per cent modulation" and with spereh input the gain should be kept at the point where it is just reached on voice peaks. If the transmitter is used on more than one hand, the gain control should be marked at the proper setting for

Fig. 12-6-6E5 modulation indicator for f.m. or p.m. modulators. To insure sufficient grid voltage for a good deflec. tion, it may be necessary to connect the gain control in the modulator grid circuit rather than in an earlier speech-amplifier stage.
cach band, because the signal amplitude that gives the correct deviation on one band will he either too great or too small on another. For example, if the output frequency is in the 29 - Me. hand and the oscillator is on 7 Mre, the deviation at the oscillator frequency should not exceed $2000 / 4$, or 500 eycres.

Checking with a Crystal-Filter Receiver

With p.m. the d.e. method of checking just described cannot be used, because the frequeney deviation at zero frequeney (d.e.) also is zero. For narrow-band p.m. it is neressary to check the actual width of the chamel occupied hy the transmission. ('The same method abo can he used to check f.m.) For this purpose it is necessary to have a erystal-filter receiver and

12 - SPECIALIZED COMMUNICATION SYSTEMS

all a.f. oscillator that generates a 3000-cycle sine wave.

Ferping the signal intensity in the roceiver at a medium level, tune in the carrice at the output frequency. Do not use the a.v.e. Switeh on the beat oscillator, and set the erystal filter at its sharpest position. leak the signal on the erystal and adjust the b.f.o. for any eonvenient beat note. Then apply the $3000-\mathrm{cyc}$ be tone to the sperech amplifier (through an attenuator, if necessary, to avoid overloading; see chapter on audio amplifiers) and increase the audio gain until thore is a small amount of modulation. Tuning the recerver near the earrier fregueney will show the presence of sidebands 3 ke. from the earier on both sides. With low audio input, these two should be the only sidebands detectable.

Now increase the audio gain and tume the receiver over a range of about 10 ke . on both sides of the carrier. When the gain becomes high enough, a second set of sidehands spared 6 ke . on either side of the carrier will be detected. The signal amplitude at which these sidebunds become detectable is the maximum speed amplitude that should be used. If the 6E:5 modulation indicator is incorporated in the modulator, its deflection with the 3000 -cycle tone will le the " 100 per cent modulation" deflection for speech.

When this method of checking is used with a reatetance-tube-modulated f.m. (not prom.) transmitter, the linearity of the system can be checked by ohservina the carrier as the anf. gam is slowly increased. The beat-note frequency will stay constant sulong ats the motulator is linear, but nonlinearity will be aecompanied by a shift in the average carrier frequency that will ratuse the beat note to change in frequency. If such a shift oceurs at the same time that the 6-ke. sidelands appear, the extra sidelathels may be caused by modulator distortion rather than by an excessive modulation
index. This means that the modulator is not eapable of shifting the freguency over a wideenough range. The 6-kc. sidebands should appear before there is any shift in the carrier frequeney.

R.F. Amplifiers

The r.f. stages in the transmitter that follow the modulated stage may be designed and adjusted as in ordinary operation. In fact, there are no special requirements to be met execpt that all tank cireuits should he carefully tumed to resoname (to prevent unwanted r.f. phase shift: that might interact with the modulation and thereby introduce hum, moise and distortion). In neutralized stages, the noutralization should be as exact as posible, also to minimize unwanted phase shifts. With f.m. and p.m., all r.f. stages in the tramsmitter can bed operated at the manuficturer's maximum c.w-telegraphy ratings, since the average power input does not vary with modulation as it does in a.m. phone operation.

The output power of the transmitter should be checked for amplitude modulation. It should not change from the ummodulated-arrier value when the transmitter is modulated. If no output indicator is available, a flashlight lamp and loop can be coupled to the final tank coil to serve as at current indicator. If the carrier amplitude is constant, the lamp brilliance will not change with modulation.

Amplitude modulation areompanying f.m. or p.m. is just as much to be avoided as frequency or phase modulation that accompanies atm. A misture of atm. with rither of the other two spstems results in the generation of spurious sidebands and consequent widening of the chanmel. If the presemere of a.m. is indieated by variation of antema current with modulation, the cause is almost certain to be nonlinearity in the modulator.

Reception of F.M. and P.M. Signals

Receivers for f.m. and p.m. signals differ from those for a.m. and s.s.b. principally in two foratures - there is no need for linearity in the amplifier stages preceding dotection (in fact, it is advantageous if the amplitude variations in the signal and background moise ran be "washed out"), and the detector must be eapable of converting the frerpuency variations in the incoming signal into amplitude variations. These amplitude variations, combined with rectification, produce an audio voltage corresponding to the frequency or phase modulation on the signal.

Freguencr- or phase-modulated signals can be received after a fashom on ans ordinary reroviver that has a seldelivity mure with slopinir sides. Is shown in Fig. 12-7. , the rereiver is tuned sh that the earrier frequency is placed part-way down on one side of the selectivity curve so that the amplitude is less than the maximum that would be
possible with normal tuning. When the frequency of the signal varies with modulation it swings between some surl limits ats are indicated in Fig. 12-7. , resulting in an amplitude-modulated output varying between X and S. After this f.m.-to-am. conversion the signal goes to a conventional detector (usuadly a diode) and is reatified in the same way as an atm. signal.
With most receivers, partioularly those having steep-sided selectivity curves, the method is not very satisfactory because the distortion is quite severe unlass the frequency deviation is smatl, because the relationship between frequency deviation and output amplitude is linear over omla a small part of the sedectivity curbe.

A detertor designed expmessly lor f.m. or p.m. will have a characteristic similar to that shown in Fig. 12-7B. The output is zero when the unmodulated carrier is tuned to the center, 0 , of

Frequency and Phase Modulation

Fig, 12-7-F.m. or p.m. detection chorocteristics. A"Slope detection," using the sloping side of the receiver's selectivity curve to convert f.m. or p.m. to o.m. for subsequent rectificotion. B-Typicol diseriminator chorocteristic. The straight portion of this curve between the two peoks is the useful region. The peaks should olwoys lie outside
the pass band of the receiver's selectivity curve.
the characteristic. When the frequency swings higher, the rectified output amplitute inereases in the positive direction (as chosen in this example), and when the frequency swings lower the output amplitude increases in the negative direction. Over the range in which the characteristie is a straight line the conversion from $\mathrm{f} . \mathrm{m}$. to a.m. is linear and there is no distortion. One type of detector that operates in this way is the fre-
quency discriminator, which combines the f.m.-to-a.m. conversion with rectification to give an audio-freguency output from the frequencymodulated r.f. signal.

Limiter and Discriminator

A practical diseriminator circuit is shown in Fig. 12-8. The f.m.-to-a.m. conversion takes place in transformer T_{1}, which operates at the intermediate frequency of a superheterodyne receiver. The voltage induced in the transformer secondary, S, is 90 degrees out of phase with the primary current. The primary voltage is introduced at the center tap on the secondary through C_{1} and combines with the secondary voltanges on each side of the center tap in such a way that the resultant voltage on one side of the secondary leads the primary voltage and the voltage on the other side lags by the same phase angle, when the circuits are resonated to the unmodulated carrier frequency. When rectified, these two voltages are equal and of opposite polarity. If the frequency changes, there is a shift in the relative phase of the voltage components that results in an increase in output amplitude on one side of the secondary and a corresponding decrease in amplitude on the other side. Thus the voltage applied to one diode of V_{2} increases while the voltage applied to the other diode decreases. The difference between these two voltages, after rectification, is the audio-frequency output of the detector.

The output amplitude of a simple discriminator depends on the amplitude of the input r.f. signal, which is undesirable because the noise-redueing bencfits of $\mathrm{f} . \mathrm{m}$. are not secured if the rereiving sustem is sensitive to amplitude variations. A discriminator is always preceded by some form of amplitude limiting, therefore. The conventional type of limiter also is shown in Fig, 12-8. It is simply a pentode i.f. amplifier, V_{1}, with its operating conditions chosen so that it "saturates" on a relatively small signal voltage. The limiting action is aided by grid rectification, with grid-leak

Fig. 12-8-Limiter-discriminotor circuit, This type of circuit is frequently used ot 455 kc . in the form of on "odopter" for communicotions receivers, for reception of norrow-band f.m. signals.
C_{l} —App. $100 \mu \mu \mathrm{f}$. for $455-\mathrm{kc}$. i.f.; $50 \mu \mu$ f. for higher $\mathrm{RFC}_{1}-10 \mathrm{mh}$. r.f. choke for $455-\mathrm{kc}$. i.f.; 2.5 mh . satisfrequencies.
T_{1} —Discriminator transformer for intermediate frequency used. Push-pull diode tronsformer may be subfoctory for frequencies obove 3 Mc . stifuted.

12 - SPECIALIZED COMMUNICATION SYSTEMS

bias developed in the 50,000 ohm resistor in the grid circuit. Another contributing factor is low sereen voltage, the screen voltage-divider constants being chosen to result in about 50 volts on the screen.

Receiver Tuning with an F.M. Detector

In tuning a signal with a receiver having a diseriminator or other $t \mathrm{yp}^{\mathrm{e}}$ of $\mathrm{f} . \mathrm{m}$. deteetor the tuming controls should be adjusted to center the
carrier on the detector characteristic. At this point the noise suppression is most marked, so the proper setting is eisily recognized. An am-plitude-modulated signal tuned at the same point will have its modulation "washed off" if the signal is completely limited in amplitude and the diseriminator alignment is symmetrical. With either f.m. or a.m. signals, there will be a distorted audio-frequency output if the receiver is tuned "off center."

Radioteletype

Radioteletype (abbreviated RTTY) is a form of telegraphie commmication employing type-writer-like machines for 1) generating a coded set of electrical impulses when a typewriter key eorresponding to the desired letter or symbol is pressed, and 2) converting a rereived set of such impulses into the eorresponding printed charaeter. The message to be sent is tepered out in much the same way that it would be written on a typewriter, but the printing is done at the distant receiving point. The telet ypewriter at the sending point also prints the same material, for checking and reference.

The machines used for R'VTY are far too complex mechanically for home construetion, and if purchased new would be highly expensive. However, used teletypewriters in good mechanical condition are available at quite reasonable prices. These are machines retired from commercial sorvice but capable of antirely satisfactory operation in amateur work. They may be obtained from a number of sourers (latest information on this maty be obtaned from ARRL, West I Iartford, Comn.) on condition that ther will be used purely for anateur purposes and will not be resold for commercial use.

Types of Machines

There are two general typers of machines, the page printer and the tape printer. The former prints on a paper roll about the same width as a business letterhead. The latter prints on paper tape, usually gummed on the reverse side so it may be cut to letter-size width and pasted on a sheet of paper in a series of lines. The page printer is the more common type in the equipment available to amateurs.

The operating speed of most machines is such that characters are sent at the rate of about 60 words per minute. Ordinary teletypewriters are of the start-stop varicty, in which the pulse-forming merhanism (motor driven) is at rest until a typewriter key is depressed. At this time it begins operating, forms the proper pulse sequence, and then romes to rest again lefore the next key is depressed to form the following eharacter. The receiving mechanism operates in similar fashion, being set into operation by the first pulse of the sequence from the transmitter. Thus, although the actual transmission speed camot exceed about 60 w.p.m. it can be eonsiderably slower,
depronding on the typing speed of the operator.
It is also possible to transmit by using perforated tape. This has the advantage that the complete message may be typed out in advance of actual transmission, at any eonvenient speed; when transmitted, however, it is sent at the machine's normal maximum speed. A sperial transmitting head and tape perforator are required for this process. A reperforator is a device that may be connected to the conventional teletypewriter for punching tape whon the marhine is operated in the regular way. It may thus be used cither for an original message or for "tiping" an incoming message for retransmission.

Teletype Code

In the special code used for teletype every charateter has five "elements" sent in sequence. dach element has two possible states, either "mark" or "space," which are indicated by different types of electrical impulses (i.e., mark might be indieated be a nogative voltage and space by a positive voltage). In eustomary practice each element oceupies a time of 22 milliseconds. In addition, there is an initial "start" element (space), also 22 milliseconds long, to set the transmitting and receiving mechanisms in operation, and a terminal "stop", element (mark) 31 milliseconds long, to shat down the operation and ready the machine for the next chatrueter.

This sequence is illustrated in Fig. 12-9, which

Fig. 12-9-Pulse sequence in the teletype cade. Each character begins with a start pulse, always a "space," and ends with a "stap" pulse, always a "mark." The distributian af marks and spaces in the five elements between start and stap determines the particular character transmitted.
shows the letter G with its start and stop elements. The letter code as it would appear on perforated tape is shown in Fig. 12-10, where the black dots indicate marking pulses. Figures and arbitrary signs - punctuation, etc. - use the

Fig. 12-10-Teletype letter code os it appears on perforated tape. Start and stop elements do not appear on tape. Elements are numbered from top to bottom. and dots indicate marking pulses. Numerals, punctuation signs, and other arbitrary symbols are secured by carriage shift.
There are no lower-case letters on a teletypewriter. Where blanks appear in the above chart in the "FIGS' line, characters may differ on different machines.
same set of code impulses as the abhabot, and are selected by shifting the carriage as in the case of an ordinary typewriter. The carriage shift is accomplished by transmit ting either the "LTTRS" or "FICiS" code symbol as required. There is also a "carriage return" code character to bring the carriuge bark to the starting position after the end of the line is reached on a pige printer, and a "line fead" character to advance the parge to the nest line after a line is completed.

Additional System Requirements

To be used in radio commumication, the pulses (d.c.) generated by the teletypewriter must be utilized in some way to key a radio transmitter so they may be sent in proper sequence and usable form to a distant point. At the receiving end the incoming signal must be converted into d.e. pulses suitable for operating the printer. These functions, shown in block form in Fig. 12-11, are

Fig. 12-11-Radioteletype system in block form.
performed by electronic units known respectively as the keyer and receiving converter.

The radio transmitter and receiver are quite conventional in design. Practically all the special features needed can be incorporated in the keyer and converter, so that any ordinary amateur equipment is suitable for R'TY with little modification.

Transmission Methods

It is quite possible to transmit teletype signals by ordinary "on-off" or "make-break" keying sueh is is used in regular hand-keyed c.w. tramsmission. In practice, however, frequency-shift keying is preferred because it gives definite pulses on both mark and space, whirh is an advantage in printer operation. Also, since f.s.k. can be received by methods similar to those used for f.m. reception, there is considerable diserimination against noise, both natural and man-made, distributed uniformly across the receiver's pass band, when the received signal is not too weak. Both factors make for increased reliability in printer operation.

Frequency-Shift Keying

General practice with f.s.k. is to use a frequency shift of 850 cycles per second, although FCC regulations permit the use of any value of fregueney shift up to 900 cycles. The smaller values of shift have been shown to have a signal-to-noiseratio advantage in commercial circuits, and are currently being experimented with by amateurs. At present, however, the major part of amateur RTTY work is done with the 850 -cycle shift. This figure also is used in much commercial work. The nominal transmitter frequency is the mark condition and the frequency is shifted 850 cycles (or whatever shift may be ehosen) lower for space.

On the v.h.f. bands where 12 trinsmission is permitted audio frequency-shift keying (a.f.s.k.) is generally used. In this case the r.f. carrier is transmitted continuously, the pulses being transmitted by frequency-shifted tone modulation. The audio frequencies used have been more-orless standardized at 2125 and 2975 cycles per second, the shift being 850 cycles as in the case of straight f.s.k. (These frequencies are the 5th and 7 th harmonics, respectively, of 425 cycles, which is half the shift frequency, and thus are convenient for calibration and alignment purposes.) With a.f.s.k. the lower audio frequeney is customarily used for mark and the higher for space.

The Receiving Converter

In receiving an f.s.k, teletype signal, the receiver's beat-frequency oscillator is turned on as for ordinary e.w. reception and the receiver tuning is then adjusted so that the mark and space signals produce audio beat tones of 2125 and 2975 eycles. Either frequency can be used for
either mark or space, but no matter which may be used at the transmitter, the mark and space frequencies can be reversed at the receiver simply by tuning to the "other side of zero beat." (This cannot be done with a.f.s.k., of course, but the reversal can be accomplished quite simply, if

12 - SPECIALIZED COMMUNICATION SYSTEMS

Fig. 12-12-Receiving converter for f.s.k. teletype signols (W2PAT). Unless otherwise indicated, capacitances are in μ f. resistances are in ohms, resistors are $1 / 2$ watt. Capacitors of $0.01 \mu \mathrm{f}$. or less may be mica or ceramic; larger values may be paper. Capacitors with polorities indicated are electrolytic.
$\mathrm{C}_{1}-0.15-\mu \mathrm{f}$. paper.
$\mathrm{C}_{2}-0.1-\mu \mathrm{f}$. paper.
$C R_{1}, C R_{2}-1 N 34$ or equivalent.
K_{1}-Polar relay, to operote on 20 ma .
$L_{1}-36 \mathrm{mh}$. (TV width control, GE type RLD-019).
$\mathrm{L}_{2}-29 \mathrm{mh}$. (TV width control, GE type RLD-014).
M_{1}-Zero-center d.c. milliammeter, 20 ma . or more full scale (may be a 100-0-100 microammeter appropriately shunted).
$\mathrm{R}_{1}-50,000$-ohm volume control, linear taper.
$R_{3}-1000$ ohms, 1 wott.
S_{1}-S.p.s.t. toggle.
T_{1}-Power transformer, 500 volts c.t., $30 \mathrm{ma} ; 6.3$ volts 3 gmp.
$V_{1}, V_{2}-6 S L 7$ (or 12AX7).
$V_{3}-6 S N 7 G T$ (or 12AU7).
necessary, by interchanging the outputs from the two frepuencies as applied to the printer.) The audio-frequency tones are applied to separate rectifiers to convert them into d.c. impulses, which may then be further amplified to the power level required to operate the printer.

The receiving converter which performs these functions generally will include means for clipping or limiting the signals so they are held at constant amplitude, and may also include provision for some shaping of the pulses to overcome distortion that oceurs in transmission. There are many ways by which these results can be acomplished, and the higher the order of performance the more complicated the circuits become. Iowever, satisfactory results under reasomably good receiving conditions can be secured with relatively simple equipment, and the "hasic" circuit shown in Fig. 12-12 has proved to he quite successful in practice. It operates as follows:

When andio output from the receiver is applied, the two diodes, C R_{1} and C h_{2}, which are biased with approximately 0.3 volt, limit the pak voltage at the grid of the limiter tube, $V_{1 A}$, to 0.0 volt or less for signal voltages up to 30 volts or more. Additional limiting in $V_{1, i}$ further stathilizes the voltage level. Ves is primarily an
amplifier, and delivers approximately 15 volts output, constant to within 1 db . for receiver output voltapes varying between about 0.5 volt and nore than 30 volts.

The two toncs, thus limited in amplitude, are applied to two simple filter circuits, $L_{1} C_{2}$ and $L_{2} C_{2}$, tuned to 2125 and 2905 cyclen, respertively. The two tones are thas separated, one being applied to the grid of $V_{2 A}$ and the other to the grid of $V_{2 B} . V_{2 A}$ and $V_{2 B}$ operate as grid-leak detectors, and when a signai is applied to, say, $V_{2 A}$, the flow of grid current causes the grid to be driven practically to plate-current cutoff. As a result the plate voltage on V_{2}, normally 15 volts with no signal, rises to 50 volts. This is sufficient to ignite the neon lamp connected between the plate of $V_{2 A}$ and the grid of $V_{3 B}$, and a positive bias of ahout 25 volts is applied to the grid of $V_{3 B}$. V $V_{3 B}$ then takes a plate current of about 20 ma, and a bias of 20 volts is developed across the common cathode resistor, he. This is sufficient to cut off the plate current of $V_{3 A}$, hence the left-hand magnet of the polarized relar, \mathscr{K}_{1}, is inoprative while the right-hand magnet rloses the contacts on its side. A similar action takes place when a signal is applied to the grid of V_{21} but not to $V_{2 A}$; in this

Radioteletype

Fig. 12-13-Madification of converter circuit far use with single-magnet printers. Uniess atherwise indicated, capacitances are in $\mu \mathrm{f}$., resistances in ahms, resistars are $1 / 2$ watt.
M_{1}-Zero-center d.c. milliammeter, 100 ma. full scale (may be micrammeter with apprapriate shunt)
$\mathrm{R}_{1}-50,000$-ahm valume cantral.
case the relay contacts are pullal to the left. The relay thus keys the mark and space voltages applied to the printer.

Potentiometer R_{1} is adjusted so that incoming noise (which will affect both channels equally) is balanced out and does not cause K_{1} to operate. The neon lamps improve the operation of the circuit by acting as switehes, thus making a sharp demarcation between mark and space pulses.

The zero-center meter, M_{1}, is not a necessity but is a convenience in making adjustments. R_{1} should be adjusted on receiver noise for zero reading. With a 2125 -cycle tone the pointer will
swing to the left and L_{1} shouht be adjusted for maximum deflection. With a 2975 -cyele tone the pointer will swing to the right and L_{2} shoukl be adjusted for maximum deflection. Equal deflecetions should be obtained from both channels.

The kering circuit shown in lig. 12-12 is for use with the Model 12 matchine which requires an external power supply. For machines having at single selector magnet the modification shown in fig. 12-1:3 may be used so the printer may be operated directly. These machines usually require a current of 60 ma ., which will be furnished by this circuit and may be adjusted to the correct value by means of R_{1}.

Frequency-Shift Keyers

The keybourd contacts of the teletypewriter actuate a direetecurrent circuit that operates the printer magnets, and a pair of terminals is provided at which a keyed d.e. signal of the order of 100 volts is availathe. (Some machines, such as the Model 12, require an external d.e. power supphy for this purpose; others have self-contained power supplies.) In the "resting" or nonoperating condition the contacts are closed (mark) and the voltage at the terminals, which are in parallel with the contacts, is zero. In operation, the contarts open for "space" and the full voltage appears aross the terminals. As normally comected, the spacing signal is of positive polarity.

This keyed d.c. voltage may be used to operate a kever circuit for the radio transmitter, provided it is not "loauled" to such an extent that it affects the operation of the printer. Alternatively, the keved current, rather than the voltage may be used for external keving. This san the done by using an auxiliary keving relay with its coil connected in series with the printer magnet or relay circuit. I fast-acting relay must be used, and the coil must be one that will operate satisfactorily on the current available in the printer cirenit. This will usually be either 20 or 60 milliamperes, depending on the type of machine.

F.S.K. with Variable-Frequency Oscillators

Perhaps the simplest satisfactory circuit for frequener-shift keying a v.f.o. is the one shown in Fig. 12-14A. This operates from the voltage available at the kerboard contant terminals and uses a reactance tube to obtain the required frequeney shift.

The frequency shift is obtained by changing the plate resistance of the reactance tube, V_{2}, so that in effect the variable capacitor C_{2} is alternately disconnected or conneted in paratlel with the tuming capacitor in the v.f.o. tank circuit. With no voltage applied to the grid, V_{2} is biased so that the plate current is low and the effert of C2 on the oscillator frequency is small. When a positive voltage from the keyoard contarts is applied to the grid the plate resistance is low and the oscillator frequency becomes lower heranse of the greater effect of C_{2}. The : mount of frequency shift depends on the eaparitance of C_{2} and the amplitude of the positive voltage applied to the grid of V_{2}. The latter can be controlled by R_{1}.
C_{1}, the associated 20,000 -ohm resistor, and the neon bulb, V_{1}, constitute a filter for removing dicks generated at the keyboard contacts. The value of C_{1} depends somewhat on the machine,

12-SPECIALIZED COMMUNICATION SYSTEMS

Fig. 12-14-Frequency-shift keyer circuits. Unless otherwise indicated, ca. pacitances are in $\mu \mu \mathrm{f}$, resistances are in ohms, resistors are $1 / 2$ watt. A-React-ance-fube keyer for use with variablefrequency oscillator (W6OWP). BCrystal oscillator circuit (W2PAT). It is essential that all leads associated with the crystal portion of the circuit be held to o small fraction of an inch in length if moximum shift is desired.
C_{1}-Paper (see text).
$\mathrm{C}_{2}-50-\mu \mu \mathrm{f}$. midget variable.
$\mathrm{C}_{3}-100-\mu \mu \mathrm{f}$. midget variable.
$\mathrm{CR}_{1}, \mathrm{CR}_{2}-1$ N34 or equivalent.
K_{1}-Normally closed relay, fast operaling, coil current according to printer magnet or relay current
R_{1}-Volume control.
$S_{1}-$ S.p.s.t. toggle.
V_{1}-l-watt neon bulb without base resistor.
V_{2}-6C4 or equivalent.
$V_{3}-6 A K 5$ or equivalent.
(B)
and values up to 0.25μ. ran he used, if necessary, without objectionable distortion of the keving pulses. The eapacitance shoud be adjusted for clickless keving.

The frequency-shift cireuit should be initially adjusted at the lowest radio frequency to he used, since the shift will be smallest in this case. If cos is set so a shift of 850 eveles is ohtamed at this frequency, furt her adjustment of the shift maty be made by means of R_{1}. If the tramsmiter output is on a higher-frequency band than that on which the v.f.o. operater, the shift at the v.f.o. fundatmental frequency must be reduced acoordingly.

F.S.K. With Crystal Oscillators

Fig. 12-1413 is a cireuit which has been found to give a frequency shift of 850 ercles or more with erystals of the type ordinarily used for frequencies of the order of $3 . \overline{5}$ Me and higher. This is an oscillator of the "grid-plate" trpe discussed in Chapter if on transmitters, with the addition of a variable capacitor, C_{3}^{\prime}, in serios with the crystal. C3 reduces the total capacitance across the crustal and thus raises the osailation frequenoy. When it is shorted out the raparitance across the crystal is higher and the resulting frequency is lower.

Although relay contacts could be used for shorting the capaeitor, the diode arrangement shown in Fig. 12-1 H3 is more reliahle in practice. With the contacts of K_{1} open there is now d.e. path through $C R_{2}$ and it acts simply as an small eapacitance (about $1 \mu \mu \mathrm{f}$.) in parallel with ("3. When the contacts of K_{1} :ure closed there is a d.e. circuit through $C R_{1}, C R_{2}$ and the 1000 -ohm resistor. Thus there is a path for direat current
flow an a result of reetification of the r.f. voltage across Che. Beatuse of the d.c. bias the resistance of ('he drops to a low value and C_{3} is effectively shorted out.

Adjustment of the rimeuit consists simply of determining the setting of ('zat which the operating freguency is 880) eveles (or the desired shift) higher with the contarts of K_{1} open than the frequency when the rolaty contacts are closed. A nommally closed relay is used in order to make the mark froquency lower than the space frequency, in areordance with usuat practice.

Frequency Adjustment

The frequency shift, whatever the trpe of circuit, should he made as nearly exact as available equipment wilh permit, since the shift must matech the frequency difference between the filters in the receiving converter if the signals are to be usable at the receiving end. An acourately calibrated audio oscillator is useful for this purpose. 'Io cheek, the mark frequency should be tuned in on the station receiver, with the b.f.o. on, and the receiver set to exact zero beat (see Chapter 21 on measurements for identification of exant zero beat). The space frequener should then be adjusted to exactly the desired shift. This may be done hy adjusting for an anditory zoro beat betwen the beat tone from the receiver and the tone from the atudio oseillator. If an oseilloseope is available, the frequency adjustment may be accomplished by feeding the receiver tone to the vertical plates and the audio-oseillator tone to the horizontal pates, and then adjusting the spase frequeney for the elliptical pattern that indieates the two frequencies are the same.

Transmission Lines

The place where r.f. power is generated is very frequently not the place where it is to be utilized. A transmitter and its antenna are a good example: The antema, to radiate well, should be high above the ground and should be kept clear of trees, buildings and other objects that might absorb energy, but the transmit ter itself is most conveniently installed indoors where it is readily aceessible.

The means ly which power is transported from point to proint is the r, f, transmission line.

At radio frequencies a transmission line exhibits entirely different characteristics than it does at commercial power frequencies. This is because the speed at which electrical energy travels, while tremendously high as compared with meehanical motion, is not infinite. The peculiarities of r,f. transmission lines result from the fact that a time interval comparable with an r.f. cycle must clapse before energy leaving one point in the rircuit can reach another just a short distance aw:

Operating Principles

If a source of e.m.f. - a battery, for example - is connected to the ends of a pair of insubated paratlel wires that extend outward for an infinite distance, electrif curronts will immediately become detectable in the wires near the battery turminals. The electrie field of the hattery will canse free eloctrons in the wire connerted to the positive terminal to be attracted to the battery, amb an equal mumber of free clectrons in the wire comered to the negative terminal will be repelled from the battery. These currents do not flow instantaneously throughout the length of the wires; the electrie field that eauses the electron movement cannot travel faster that the spered of light, so at measumable interval of time clatuses before the currents lecome evident aven at relatively short distance away.

For example, the currents would not become detectable 300 meters (nearly 1000 feet) from the battery until at least a mierosecond (one millionth of a serond) after the commertion was made. By ordinary standards this is a very short length of tims, but in terms of radio frequeney it represents the time of one complete cerlfe of a I(M) -kilocyele rurent - a frequeney eonsidarably lower than those with which amateurs communicatc.

The current flows to charge the capacitance betwen the two wires. However, the conductors of this "limear" capacitor also have appreciable inductance. The line may be thought of as lowing

Fig. 13-1-Equivalent of a transmission line in lumped circuit constants.
eomposed of a whole series of small inductances and capacitances connected as shown in Jig. 1:3-1, where each coil is the inductance of a very short section of one wire and each capacitor is the equacitance between two such short sertions.

Characteristic Impedance

An infinitely long chain of coils and capacitors commected as in Fig. 13-1, where the smatl inductances and rapacitanees all have the same valurs, respectively, has an important property. To an electrical impulse applied at one end, the combination appears to have an impedance (alled the characteristic impedance or surge impedance - approximately equal to $\sqrt{ } L / /^{\prime}$, where L and C are the inductance and capacitance per unit length. This impedance is parely resistive.

In defining the characteristic impedanee as $\sqrt{L / C}$, it is issumed that the conductors have no inherent resistance - that is, there is no $I^{2} R$ loss in them - and that there is no power loss in the diclectric surrounding the conductors. There is thus no power loss in or from the line no matter how great its length. This may not serm consistent with calling the characteristie impedance a pure resistance, which implies that the power supplied is all dissipated in the line. But in an infinitely long line the effect, so far as the source of power is concerned, is exactly the same as though the power were dissipated in a resistance, because the power leaves the source and travels outward forever along the line.
The characteristic impedance determines the amount of current that can flow when a given voltage is applied to an infinitely long line, in exactly the same way that a definite value of actual resistance limits current flow when a voltuge is applied.

The inductance and capacitance per unit length of line depend upon the size of the conductors and the spacing between them. The doser the two eonductors and the greater their diameter, the higher the capacitance and the lower the inductance. A line with large conductors closely spaced will have low impedance, while one with small conductors widely spaced will have relatively high impedance.

"Matched" Lines

Actual transmission lines do not extend to infinity but lave a definite length and are connected to, or terminate in, a load at the "output"

13 -TRANSMISSION LINES

end, or end to which the porver is delivered. If the luad is a pure resistance of a value equal to the charateristic impedaner of the line, the linne is said to be matched. To comrent traveling along the lime such a load just looks like still more transmission line of the same characteristie impedance.

In other words, a short line terminated in a purely resistive load conal to the characteristio impedance of the line abte just as though it were infintitely long. In a matelued tranmission line, power travels outward along the line from the sourec until it reaches the load, where it is eompletely absorbed.

R.F. on Lines

The principles diselussed above, although hased on direct-current flow from a battery, also hold when an r.f. voltage is applied to the line. The difference is that the alternating voltage eauses the amplitude of the current at the input terminals of the line to vary with the voltage, and the direction of courent flow also periodically reverses when the polarity of the applied voltage reverses. The eurrent at a given instant at any point along the line is the result of a voltage that was applied at some earlier instant at the input torminals. Sine the distance traveled by the eloctromangetio ficlds in the time of one cevele is equal to one wavelength (Chapter 2), the instantaneous amplitude of the current is different at all points in a onewavelength scretion of line. In fart, the current flows in opposite directions in the same wire in sureresive hati-wabelength sections. Howover. at any given point along the line the eurrent gos: through similar variations with time that the curent at the imput terminals did.
"Thus the eurrent (and voltage) travels aboug the wire as a series of waves having a lengthequal to the sperd of travel divided by the frequency of the alre voltage. On an infinitely long lime, or one properly matehed by its load, an ammeter inserted any where in the line will show the same corrent, beemuse the ammeter averages out the variations in current during a cerle. It is only when the line is not properly mateled that the wave motion becomes apparent through olservattions made with ordinary instruments.

STANDING WAVES

In the infinitely long line (or its matehed counterpart.) the impedance is the same at any point on the line because the rat io of volange to "urrent is always the same. However, the impedance at the end of the line in Fig. 13-2 is zero - or at least extremely small - because the line is short-cireuited at the end. The outgoing power, on meet ing the short-cireuit, reverses its direetion of fow and goes back along the transmission line tow:ard the input end. There is a large current in the short-cireuit, but substantially no voltage across the line at this point. We now have a voltage and current representing the power going outward (incident power) toward the short-rireuit,
and a second voltage and eurent representing the reflected power traveling back toward the source.

The reflected current travels at the same speed as the outgoing rurrent, of its instantancous value will be different at every point along the line, in the distince represented by the time of one cycle. At some points along the line the phase of the incident and refleeted currents will be surh that the currents cancel each other while at others the amplitude will be doubled. At inbetween points the amplitude is between these two extremes. The points at which the currents are in and out of phase depend only on the time required for them to travel and so depend only on the distance along the line from the print of reflection.

In the short-circuit at the end of the line the two eurrent components are in phase and the total eurrent is large. It a distance of one-half wavelength batek along the line from the shortcircuit the outgoing and reflected eomponents will again be in phase and the resultant current will again have its maximum value. This is also

Fig. 13.2-Standing waves of voltage and current olong short-circuited transmission line.
true at any point that is a multiple of a half wavelength from the short-circuited and of the line.

The outgoing and reflected currents will cancel at a point one-quarter wavelongth, along the line, from the short-circuit. It this point, then, the current will be zero. It will also be zero at all points that tue tur odel multiple of one-quarter wavelongth from the short-rireuit.

If the current along the line is metasured at successive points with an ammeter, it will be found to vary about as shown in Fig. 13-2B. The same result would be obtained by measuring the rurrent in either wire, since the ammeter camot measure phase. However, if the phase could be ehercked, it would be found that in each successive half-wavelength sedtion of the line the currents at any given instant are flowing in opposite directions, as indicated by the solid line in Fig. 1:3-2C. Furthernore, the current in the second wire is flowing in the opposite direction to the curent
in the adjacent section of the first wire. This is indicated by the broken curve in Fig. 13-2(\% The variations in current intensity along the fransmission line are reforred to as standing waves. The point of maximum line current is ealled a current loop or current antinode and the point of minimum line current is catled a current node.

Voltage Relationships

Since the emd of the line is short-circuited, the voltage at that point has to be zero. This can only he so if the voltage in the outgoing wave is mot, at the end of the line, by a roflected voltage of edual amplitude and opposite polarity. In other words, the phase of the voltage wave is reversel when reflection takes place from the short-cireuit. This reversal is equivalent to an extra half evele or half wavelength of travel. As a result, the outgoing and roturning voltages are in phatse a quarter wavelongth from the end of the line, and again out of phase a half wavelength from the end. The standing waves of voltage, shown at D in Fig. 1:3-2, are therofore displaced by one-cparter wavelength from the standing waves of current. The drawing at E shows the voltages on both wires when phase is taken into account. The polarity of the voltage on mach wire reverses in each half wavelongth section of transmission line. A voltage maximum is called a voltage loop or antinode and a voltage minimum is called a voltage node.

Open-Circuited Line

If the end of the line is open-circuited instead of short-circuited, there can be no current at the end of the line hut a large voltage can exist. Igain the incident power is reflected back toward the souree. The incident and reflected components of current must be equal and opposite in phase at the open rireuit in order for the total current at the cund of the line to be zoro. The incident and refleeted eomponents of voltage are in phase and add togethor. The result is again that thore are standing waves, bat the conditions are reversed as compared with a short-riredited line. Fig. 13-3 shows the open-circuited line case.
(A)

Fig. 13-3-Standing waves of current and voltage along an open-circuited transmission line.

Fig. 13-4-Standing waves on a transmission line terminated in a resistive load.

Lines Terminated in Resistive Load

Fig. 13-4 shows a line terminated in a resistive load. In this case at least part of the incident power is absorbed in the load, and so is not available to be reflected back toward the source. Becalse only part of the power is reflected, the reflected components of voltage and current do not have the same magnitude as the incident components. Therefore neither voltage nor current cancel completely at any point along the line. However, the sperd at which the incident and reflected components travel is not affected by their amplitude, so the phase relationships are similar to those in open- or short-rireuited lines.

It was pointed out earlier that if the load resistance, Z_{R}, is equal to the characterist ic impedance, Z_{0}, of the line all the power is absorbed in the load. In such a case there is no reflected power and therefore no standing waves of current and voltage. This is a special case that represents the change-over point hetween "short-cireuited" and "open-circuited" lines. If Z_{R} is less than Z_{0}, the current is largest at the load, while if Z_{R} is greater than Z_{0} the voltage is largest at the load. The two conditions are shown at B and C , respectively, in Fig. 13-4.

The resistive termination is an important practical case. The termination is seldom an actual resistor, the most common terminations being resonant circuits or resonant antenna systems, both of which have essentially resistive impedances. If the load is reactive as well as resistive, the operation of the line resembles that shown in Fig. 13-4, but the presence of reactance in the load causes two modifications: The loops and nulls are shifted toward or away from the load; and the amount of power reflected back toward the source is increased, as compared with the amount reflected by a purely resistive load of the same total impedance. Both effects become more pronounced as the ratio of reactance to resistance in the load is made larger.

Standing-Wave Ratio

The ratio of maximum current to minimum current along a line, lig. 13-5, is called the standing-wave ratio. The same ratio holds for maximum voltage and minimum voltage. It is a measure of the mismateh between the load and the line, and is equal to 1 when the line is per-

13 - TRANSMISSION LINES

fertly matched. (In that case the "maximum" and "minimum" are the same, since the current and voltage do not vary along the line.) When the line is terminated in a purely resistive load, the standing-wave ratio is

$$
\begin{equation*}
S . W^{\prime} . R .=\frac{Z_{\mathrm{R}}}{Z_{0}} \text { or } \frac{Z_{0}}{Z_{R}} \tag{13-A}
\end{equation*}
$$

Where S.W.R. = Standing-wave ratio

$$
\begin{aligned}
& Z_{\mathrm{n}}= \text { Impedance of load (must be } \\
& \text { pure resistance) } \\
& Z_{0}= \text { (haracteristic impedance of } \\
& \text { line }
\end{aligned}
$$

Example: A line having a cloaracteristic impedance of $3(1)$ ohms is terminated in a resistive load of 2.5 ohms. The s.w.r. is

$$
S . W^{\prime} . R .=\frac{Z 0}{Z_{\mathrm{H}}}=\frac{300}{25}=12 \text { to } 1
$$

It is customary to put the larger of the two (quantities, Z_{R} or Z_{0}, in the numerator of the fraction so that the s.w.r. will be expressed by a number larger than 1 .

It is easier to measure the standing-wave ratio than some of the other quantities (such as the

Fig. 13-5-Measurement of standing-wave ratia. In this drowing, lmas is 1.5 and luin is 0.5 , so the s.w.r. $=$ fmas/ $\mathrm{f}_{\text {иіи }}=1.5,0.5=3 \mathrm{ta} 1$.
impedance of an antenna) that enter into trans-mission-line computations. Consequently, the s.w.r, is a convenient basis for work with lines. The higher the s.w.r., the greater the mismateh between line and load. In practical lines, the power loss in the line itself increases with the s.w.r., as shown later.

INPUT IMPEDANCE

The input impedance of a transmission line is the impedane seen looking into the sending-end or input terminals; it is the impedance into which the source of power must work when the line is connected. If the load is perfectly mat ched to the line the line appeats to be infinitely long, ats stated earlier, and the input impedanere is simply the characteristie impedance of the line itself. Iowever, if there are standing waves this is no longer true; the input impedance may have a wide range of values.

This can be understood by referring to Figs. 13-2, 13-3, or 13-4. If the line length is such that standing waves caluse the voltage at the input terminals to be high and the current low, then the
input impedance is higher than the Z_{0} of the line, since impedance is simply the ratio of voltage 10 eurrent. Conversely, low voltage and high current at the input terminals mean that the input impedance is lower than the line 7 Zo . (omparison of the three drawings also shows that the range of input impedance values that maty bencountered is greater when the far end of the lime is open- or short-cireuited than it is when the line has a resistive toad. In other words, the higher the s.w.r. the greater the range of input impedance values when the line length is varied.

In addition to the variation in the absolute value of the input impedance with line length, the presence of standing waves also canses the input impedane to contain both reactance and resistance, even though the lowd itself maty be a pure resistance. The only execptions to this occur at the exact current loops or nodes, at which points the input impedance is a pure resistance. These are the only points at which the outgoing and reflected voltages and currents are exactly in phase: It all other distances atong the line the current either leads or lags the voltage and the effect is exarety the same as though a capacitance or induetance were part of the input impedanere.

The input impedane can be represented either by a resistance and a capacitane or hy a resistance and an inductance, as shown in lig. liz6. Whet her the impedane is induetive or caparitive depends on the characteristics of the load and the lengt hof the line. It is pessible to represent the input impedane be an equivalent circuit having resistance and reactance cither in series or parallel, so long as the total impedance and phase angle are the same in either case. For a given impedance and phase angle, different values of resistanee and reartance are required in the series circuit as compared with the parallel equivalent circuit.

The magnitude and character of the input impedance is quite important, since it determines: the method by which the power souree must be coupled to the line. The calculation of input impedance is rather complicated and its measurement is not feasible without sperial equipment. Fortunately, in amateur work it is unnecessary either to calculate or measure it. The proper coupling can be achieved be relatively simple methods dessribed later in this chapter.

Lines Without Load

The input impedance of a short-circuited or open-eireuited line not an exact multiple of onequarter wavelength long is practieally a pure reactance. This is because there is very little power lost in the line. Such lines are frequently used as "linear" indurtaneres and capacitances.

If a shorted line is hess than a duarter-wave long. as at X in Fig . $13-2$, it will have inductive reastamee. The reactance increases with the line length up to the quarter-wave point. Beyond that, as at Y, the reactance is capacitive, high near the quarter-wave point and beroming lower as the half-wave point is approached. It then alternates between indurtive and raparitive in successive

Input Impedance

quarter-wave sections. Just the reverse is true of the open-circuited line.

At exact multiples of a quarter wavelength the impodance is purely resistive. It is apparent, from examination of 13 and D in Fig. 1:3-2, that at points that are a multiple of a half wavelength i.c.. 1/2. 1, $11 / 2$ wavelengths, ete. from the short-circuited end of the line the current and

Fig. 13.6-Series and parailel equivalents of a line whose input impedance has both reactive and resistive camponents. The series and paraliel equivalents do not have the same values; e.g., in A, L does not equal L^{\prime} and R does not equal R^{\prime}.
voltage hatve the same values that they do at the short circuit. In other words, if the line wore an exart multiplo of a half wavelength long the genrator or souree of power would "look into" a short eircuit. On the other hand, at points that are an odd multiple of a quarter wavelength i.e., $1 / 4,3 / 4,1 \frac{1}{4}$, ete. - from the short circuit the voltage is masimum and the current is zero. Ninere $\%=E / I$, the impedanere at these points is theorretically infinite. (Actually it is very high, but not infinite. This is because the current does not actually go to zero when there are losses in the line. Losses are always present. hut usually are small.)

Impedance Transformation

The fact that the input impedance of a line depends on the s.w.r. and line length can be used to advantage when it is necessary to transform a given impedance into another value.

Study of Fig. 13-4 will show that, just as in the open- and short-circuited cases, if the line is onehalf wavelengeth long the voltage and curvent are exartly the same at the input terminals as they are at the load. This is also true of lengths that arre integral multiples of a hall wavelength. It is also true for all values of s.w.r. Hence the input impedance of any line, no matter what its Z_{11}, that is a multiple of a half wavelength long is exatety the same as the load impedance. Such a line can be used to transfer the impedance to a new location without changing its value.

When the line is a quarter wavelength long, or ath odd multiple of a quarter wavelength, the load impedance is "inverted." That is, if the current is low and the voltage is high at the load, the imput impedance will be such as to require high
current and low voltage. The redationship between the load impedance and input impedance is given bu:

$$
\begin{equation*}
Z_{s}=\frac{Z_{0}^{2}}{Z_{12}} \tag{13-B}
\end{equation*}
$$

where $/$ ss $=$ Impedance looking into line fline longth an odd multiple of one(quarter wavelength)
$Z_{\mathrm{H}}=$ Imperdince of load (must be pure resistance)
$Z_{0}=($ "harareristic impedance of line
Examphe: A yuarter-wavelength line having a characteristic impedance of $5(0)$ ohms is terminated in at resistive load of 75 ohms. The impedance looking into the innat or somding end of the line is

$$
\%_{4}=\frac{Z 0^{2}}{Z_{11}}=\frac{(5010)^{2}}{75}=\frac{220,0(0) 0}{75}=3333 \mathrm{ohms}
$$

If the formula above is rearranged, we have

$$
\begin{equation*}
Z_{01}=\sqrt{ } / \overline{s Z_{12}} \tag{13-C}
\end{equation*}
$$

This means that if we have two values of impedance that we wish to "match," we can do so if we conneret them together hy a quarter-wave tramsmission lime having a characteristic impedanere equal to the square root of the ir product. is quarter-wave line. in other words, has the characteristies of a transformer.

Resonant and Nonresonant Lines

The input impedance of a line operating with a high s.w.r. is eritically dependent on the line length, and resistive only when the length is some integral multiple of one-puarter wavelength. Lines cut to such a length and operated with a high s.w.r. are called "thued" or "resonant" lines. On the other hand, if the s.w.r. is low the input impedance is close to the Z_{0} of the line and does not vary a great deal with the line length. such linesarecalled "flat," or "untuned," or "nonresonant."

There is no sharp line of demareation between tuned and untuned lines. If the s.w.r. is below 1.5 to I the line is essentiall! fat, and the same input coupling method will work with all line lengths. If the s.w.r. is alove 3 or 4 to 1 the type of coupling system, and its adjustment, will depend on the line length and such lines fall into the "tumed" category.

It is usually advantugeous to make ther s.w.r. as low as possible. A resonant line becomes necosary only when a considerable mismateh betwen the load and the line has to be tolerated. The most important practial example of this is when a single antemat is operated on several harmonically related frecpemes, in which case the antenna impedance will have widely different values on different harmonies.

RADIATION

Whenever a wire carries alternating current the electromagnetic fields travel away into space with the velocity of light. It power-line frequencies the lield that "grows" when the current is

13 - TRANSMISSION LINES

increasing has plenty of time to return or "collapse" about the conductor when the current is decerasing, beeause the alternations are so slow. But at radio frequencies fields that traved only a relatively short distance do not have time to get bark to the conductor before the next eyele commences. The consequence is that some of the ele tromagnetic energy is prevented from being restored to the conductor; in other words, energy is radiated into space in the form of electromagnetic waves.

The amount of energy radiated depends, among other things, on the length of the conductow in relation to the frequency or wavelength of the r.f. current. If the conductor is very short comparel to the wavelength the enorgy radiated (for a given current) will be small. However, a transmission line used to feed power to an antemna is not short; in fact, it is almost always an appreciable fraction of a wavelongth long and may have a length of several wavelengths.
The lines previously considered have consisted of two parallel conductors of the same diameter. Provided there is nothing in the system to destroy symmetry, at every point along the line the current in one conductor has the same intensity as the current in the other conductor at that point, but the currents flow in oppsite directions. This
was shown in Figs. 13-2C and 13-3C. It means that the ficlds set up about the two wires have the same intensity, hut opposite directions. The consequence is that the total field set up about such a transmission line is zero; the two fields "cancel out." Hence no energy is radiated.

Pramically, the fields do not quite cancel out bee:ause for them to do so the two conductors would have to occupy the same space, whereas they are actually slightly separated. However, the caurclation is sulstantially complete if the distance between the conductors is very smatl compared to the wavelength. Transmission line radiation will be negligible if the distance between the conductors is 0.01 wavelength or less, provided the currents in the two wires are batanced.
The amount of radiation also is proportional to the current flowing in the line. Because of the way in which the current varies along the line when there are standing waves, the effective current, for purposes of radiation, becomes greater as the s.w.r. is increasel. For this reason the radiation is least when the line is flat. However, if the conductor spacing is small and the currents are balanced, the radiation from a line with even a high s.w.r. is inconsequential. A small unbalance in the line eurrents is far more serious - and is just as serious when the line is flat as when the s.w.r. is high.

Practical Line Characteristics

The foregoing discussion of transmission lines has been based on a line eonsisting of two parallel conductors. The parallel-conductor line is but one of two gencral types, the other being the coaxial or concentric line. The coaxial line consists of a conductor placed in the center of a tube. The inside surface of the tube and the outside surface of the smaller imner conductor form the two condurting surfaces of the line.

In the coasial line the fields are entively inside the tube, because the tube acts as a shiold to prevent them from appearing outside. This reduces radiation to the vanishing point. So far as the electriwal behavior of coaxial lines is conermed, all that has previously been said about the operation of parallel-rondurtor lines applies. There are, however, practieal differences in the construction and use of parallel and coavial lines.

ParAllel-Conductor lines

A type of parallel-conductor linesomet imes used in amateur installations is one in which two wires (ordinarily No. 12 or No. 14) arre supported a fixed distance apart by means of insulating rols callod "spaters." The spacings used vary from two to six inches, the smaller spacings bring necessaty at frequencies of the order of 28 . Me. and higher so that radiation will be minimized. The construction is shown in Fig. 13-7. Such a line is said to be air-insulated. Typical spacers are shown in Fig. 13-8. The characteristic impedance of such "opern-wire" lines is betwern 400 and 600 olms, depending on the wire size and spacing.

Parallel-condurtor linesalso areoceasionally constructed of metal tubing of a diameter of $1 / 4$ to $1 / 2$ inch. This reduces the characteristic impedance

Fig. 13-7-Typical construction of open-wire line. The line conductor fits in a groove in the end of the spacer, and is held in place by a tie-wire anchored in a hole near the groove.
of the line. Such lines are mostly used as quarterwave transformers, when different values of impedance are to be matched.

Irefabricated parallel-conductor line with air insulation, developed for television reception, can be used in transmitting applications. This line consists of two conductors separated one-half to one inch by molded-on spacers. The characteristic impeditnce is 300 to 450 ohms, depending on the wire size and spacing.

A eonvenient tape of manufactured line is one in which the parallel conductors are imbedded in low-loss insulating material (polyethylenc). It is commonly used as a TV lead-in and has a charac-

Practical Line Characteristics

Fig. 13-8-Typical manufactured transmission lines and spacers.
teristie impedince of about 300 ohms. It is sold under various names, the most common of which is "Twin-L"ul." This type of line has the advantages of light woight, close and uniform conductor spacing, flexibility and neat appearance. However, the losses in the solid dielectric are higher than in air, and dirt or moisture on the line tends to change the characterist ic impedance. Moisture efferts can be reduced by coating the line with silicone grease. A special form of 300 -ohm TwinLead for transmitting uses a polyethylene tube with the condurtors molded diametrically opposite; the longer dielectric path in such line reduces moisture troubles.

In addition to 300 -ohm line, Twin-I ead is obtainable with a characteristic impedance of 75 ohms for transmitting purposes. light-weight 75and $150-\mathrm{ohm}$ Twin-Lead also is available.

Characteristic Impedance

The characteristic impedance of an air-insulated parallel-conductor line is given by:

$$
\begin{equation*}
Z_{0}=276 \log \frac{b}{a} \tag{13-D}
\end{equation*}
$$

where $Z_{0}=$ Characteristic impedance
$b=$ Center-t, 1 -center distince between conductors
$a=$ Radius of conductor (in same units as b)
It does not matter what units are used for a and b solong as they are the same units. Both quantities may be measured in centimeters, inches, ete. Sinee it is necessary to have a table of common logarithms to solve practical problems, the solution is given in graphical form in lig. 13-9 for a number of common conductor sizes.

It solid-dielectric parallel-conductor lines such as Twin-lead the characteristic impedanee cannot be caldebatied readily, because part of the electric field is in air as well as in the dielectrie.

Unbalance in Parallel-Conductor Lines

When installing parallel-conductor lines care should be taken to avoid introdueing electrical unbalanere inte the system. If for some reason the courent in one conductor is higher than in the wher, or if the currents in the two wires are not
exactly out of phase with each other, the electromagnetic fields will not cancel completely and a considerable amount of power maty be radiated by the line.

Maintaining good line balance requires, first of all, a balanced load at its end. For this reason the antenna should be fed, whenever possible, at a point where each conductor "sees" exactly the same thing. Usually this means that the antenna system should be fed at its electrical center. However, even though the cutenna appears to be symmotrical, physieally, it cam be unbalaned electrically if the part comeded to one of the line conductors is coupled to something (such as house wiring or a metal pole or roof) that is not duplicated on the other part of the antenna. Every effort should be made to kecp the antenna as far as possible from other wiring or sizable

Fig. 13-9-Chart showing the characteristic impedance of spaced-conductor parallel transmission lines with air dielectric. Tubing sizes given are for outside diameters.
metallic objeets. The transmission line itself will cause some unlabance if it is not brought away from the antenna at right angles to it for a distance of at least a quarter wavelength.

In installing the line conductors take care to see that they are kept awoy from metal. The minimum separation between either conductor and all other wiring should be at least four or five times the conductor spacing. The shunt capacitance introduced by close proximity to metallie objects can drain off enough current (to ground) to unbalance the line currents, resulting in increased radiation. A shunt capaccitance of this sort also constitutes a reactive load on the line, causing an impedance "bump" that will prevent making the line actually flat.

COAXIAL LINES

The most common form of coaxial line consists of either a solid or st manled-wive inner conductor surmunded by polvethylene dielectric. Copper brad is woven over the dielectric to form the
outer conductor, and a waterproof vingl covering is placed on top of the braid. This cable is made in a number of different diamoters. It is moderattely flexible, and so is comvenient to install. Some different types are shown in Fig. 13-8. This solid coaxial cable is commonly available in impedances approximating 50 and 70 ohms.
dir-insulated eosxial lines have lower losses than the solid-diclectrie type, but are rarely used in anateur work berause they are expensive and difficult to install as compared with the flexible cable. The common type of air-insulated coaxial line uses a solid-wire conductor inside a copper tube, with the wire held in the renter of the tube be moans of insulating "beads" plaeed at regular intervals.

Characteristic Impedance

The characteristic impedance of an air-insulated coaxial line is given by the formula

$$
\begin{equation*}
Z_{0}=1.38 \log \frac{b}{a} \tag{13-E}
\end{equation*}
$$

where $Z_{0}=$ Charateristic impedance
$b=$ Inside diameter of outer conductor
$a=$ Outside diameter of inner conductor (in same units ats b)
Curves for typical conductor sizes are given in lig. 13-10.
The formula for coaxial lines is approximately correret for lines in which bead spacers are used, provided the beads are not too closely spaced. When the line is filled with a solid dielectrie the characteristic impedance as given by the chart should be multiplied by $1 / \sqrt{K}$, where K is the dielectric constant of the material.

- electrical length

In the discussion of line operation earlicr in this chapter it was assumed that currents traveled along the conductors at the speed of light. Actually, the velocity is somewhat less, the reason being that electromagnetic fields travel more

Fig. 13-10-Chart showing characteristic impedance of various air-insulated concentric lines.

TABLE 13-I Transmission-Line Data				
'Type	Description or 'l'spe Vumber	(hararteristic Impurdance	Velority liaclor	```Capaci- tance pur foot; \mu```
Coaxial	Air-insulated 113.8 131;-58/l 13(;-11/l 16(3.59 I	$50-100$ 53 53 7.3 7.3	10.85^{1} 0.66 0.66 0.66 0.66	$\begin{aligned} & \mathbf{9 9} .5 \\ & 28.5 \\ & 20.5 \\ & 21.0 \end{aligned}$
l'arallel. Comluctor	Air-insulated $21.1-080^{3}$ $211-023^{3}$ 211-0703 211-05 6^{3} $211-076^{3}$ $214-022^{3}$	$\begin{gathered} 200-600 \\ 75 \\ 75 \\ 150 \\ 300 \\ 300 \\ 300 \end{gathered}$	$\begin{aligned} & 0.9 .5^{2} \\ & 0.68 \\ & 0.61 \\ & 0.76 \\ & 0.89 \\ & 0.84 \\ & 0.8 .5 \end{aligned}$	$\begin{array}{r} 19.0 \\ 20.0 \\ 10.0 \\ 5.8 \\ 3.9 \\ 3.0 \end{array}$

${ }^{1}$ Average fikure for small-liameter lines with ceramic beads.
${ }^{2}$ Avcrage figure for lines insulated with ceramic spacers at intervals of a few feet.
${ }^{3}$ Amphenol typu numbers and lata, lime similar to $211-0.56$ is made by several manulacturers, hut rated luss may differ from that given in lig. 13-11. Tyin's $214-1023,214-0.6$, and $214-022$ are made for tramsmitting apmications.
slowly in material dielectrics than they do in free space. In air the velocity is practically the same as in empty space, but a practical line always has to be supported in some fashion by solid insulating materials. The result is that the fields are slowed down; the currents trivel a shorter distance in the time of one eycle than they do in space, amd so the wavelength along the line is less than the wavelength would be in free space at the same frequency.

Whenever reference is made to a line as being so many wavelongths (surh as a "half wavelength" or "quarter wavelength") long, it is to be understood that the electrical length of the line is meant. Its actual physical length as measured by a tipe always will be somewhat less. The physical length corresponding to an electrical wavelength is given by

$$
\begin{equation*}
\text { Length in feet }=\frac{98+V}{f} \tag{13-F}
\end{equation*}
$$

where $f=$ l'rectueney in megacyeles

$$
V=\text { Velocity factor }
$$

The velocity factor is the ratio of the actual volority along the line to the velocity in free space. Values of 1 for several common types of lines are given in Table 13-I.

Example: A 7a-foot length of 300 -ohm TwinLead is used to earry power to an antemna at a fremuency of 7150 ke . From Tathe 13-I. V in 0.82. It this fregurney (7.15 Me) a wavelength is

$$
\begin{gathered}
\text { Lenoth (feet) }=\frac{9815}{f}=\frac{481}{7.15} \times 0.82 \\
=137.6 \times 0.82=112.8 \mathrm{ft}
\end{gathered}
$$

The line length is therefore $75 / 112.8=0.665$ wavelength.
Berause a quarter-wavelength line is frequently used as a linear transformer, it is ron-

Losses in Transmission Lines

Fig. 13-11-Attenuation dota for common types of transmission lines. Curve A is the nominal attenua. tion of 600 -ohm openwire line with No. 12 conductors, not including dielectric loss in spacers nor possible radiation losses. Additional line data is given in Table 13-1.
venient to caleulate the length of a quarter-wave line direetly. The formula is

$$
\begin{equation*}
\text { Length (feet) }=\frac{246 V}{f} \tag{13-G}
\end{equation*}
$$

where the symbols have the same meaning as above.

LOSSES IN TRANSMISSION LINES

There are three ways by which power may be lost in a transmission line: by radiation, by heating of the eonduetors ($I^{2} R$ loss), and by heating of the dielectric, if any. Radiation losses are in general the result of "antenna currents" on the line, resulting from undesired coupling to the radiating antenna. They camnot readily be estimated or measured, so the following diseusssion is based only on conductor and dielectric losses.

Heat losses in both the conductor and the dielectric increase with frequency, Conductor tosses also are greater the lower the characteristie impedance of the line, because a higher current flows in a low-impedance line for a given power imput. The converse is true of dielectrie loseses berause these increase with the voltage, which is greater on high-impedance lines. The dielectric loss in air-insulated lines is nogligible (the only loss is in the insulating spacers) and such lines oprate at high efficiency when radiation losses are low.

It is convenient to express the loss in a transmission tine in deribels per unit length, since the loss in (th. is directly proportional to the line length. losses in various types of lines operated without standing waves (that is, terminated in a resistive load equal to the characteristic imped-
ance of the line) are given in graphical form in l'ig. 1:3-11. In these curves the radiation loss is assumed to be negligible.

When there are standing waves on the line the power loss increases as shown in lig. 13-12. Whether or not the inerease in loss is serious depends on what the original loss would have been if the line were perfectly matched. If the loss with perfect matehing is very low, a large s.w.r. will not greatly affect the efficiency of the line - i.e.,

Fig. 13.12-Effect of standing-wave ratio on line loss. The ordinates give the additional loss in decibels for the loss, under perfectly matched conditions, shown on the horizontal scale.

13 - TRANSMISSION LINES

the ratio of the power delivered to the load to the power put into the line.

Example: A liofor length of RGi-11/U cable is operating at 7 Alo. with a j -to-1 s .w.r. If perfectly matched, the loss from Fig, 13-11 would be $1.5 \times 0.4=0,6 \mathrm{db}$. From Fig, $13-12$ the additional loss berause of the s.w.r. is 0.73 db . The total loss is therefore $0.0+0.73=1.33 \mathrm{db}$.
An appreciable s.w.r. on a solid-dielectric line may result in excessive loss of power at the higher frequencies. Such lines, whether of the
parallel-conductor or coaxial type, should be operated as nearly flat as possible, particularly when the line length is more than 50 feet or so. As shown by Fig. 13-12, the increase in lime loss is not too serious so long as the s.w.r. is below' 2 to 1 , but increases rapidly when the s.w.r. rises above 3 to 1. Tuned transmission lines such as are used with multiband antennas always should be air-insulated, in the interests of highest eflieiency.

Loads and Balancing Devices

The most important practical load for a transmission line is an antenna which, in most cases, will be "balanced" - that is, symmetrically constructed with respect to the feed point. Aside from considerations of matching the actual impedance of the antema at the feed point to the characteristic impedance of the line (if such matching is attempted) a balanced antema should be fed through a balanced transmission line in order to preserve symmetry with respect to ground and thus avoid difficulties with unbalanced currents on the line. Such currents, as pointed out earlier in this chapter, will result in undesirable radiation from the transmission line itself.

If, as is often the case, the antenna is to be fed through coaxial line (which is inherently unbatanered) some method should be used for conneeting the line to the antemat without upsetting the symmetry of the antemma itself. This requires a circuit that will isolate the balanced load from the unbalanced line while providing efficient power transfor. Deviecs for doing this are called baluns. The types used between the antenna and transmission line are generally "linear," consisting of transmission-line sections as described in Chapter 14.

The need for bahuns also arises in coupling a tramsmitter to a balanced transmission line, since the output circuits of most transmitters have one side grounded. (This type of output circuit is desirable for a number of reasons, including TVI reduction.) The most flexible type of balun for this purpose is the inductively couphed matching not work deseribed in a subsequent section in this chapter. This combines impedance matching with balanced-to-unbalanced operation, but has the disadvantage that it uses resonant circuits and thus can work over only a limited band of frequencies without readjustment. However, if a fixed impedance ratio in the balun can be tolerated, the coil balun described below can be used without adjustment over a frequency range of about 10 to $1-3$ to 30 Mc ., for example. Alternatively, a similarly wide band can be covared by a properly designed triansformer (with the same impedance limitation) but the design principles and materials used in such transformers are quite specialized. Their construction is beyond the seope of this IFandbook.

Coil Baluns

The type of balun known as the "coil balun" is based on the principles of a linear transmissionline balun as shown in the upper drawing of Fig. 13-13. Two transmission lines of equal length having a characteristic impedance Z_{0} are connected in series at one end and in parallel at the other. At the seribs-connected end the lines are Inalanced to ground and will match an impodance equal to 2%. At the parallel-connected end the lines will be matched by an impedance equal to $Z_{0} / 2$. One side may be connected to ground at the parallel-conmerted end, provided the two lines have a lengtl such that, considering cach line as a single wire, the batanced ond is effectively deroupled from the paralled-connerted end. This reguires a length that is an odd multiphe of $1 / 4$ wavelength. The impedance transformation from the series-connected end to the parallelconnected end is t to 1 .

A definite line length is required only for decoupling purposes, and so long as there is adequate decoupling the system will act as a f-to-1 impedance transformer regardless of line longth. If each line is wound into a coil, as in the lower drawing, the inductances so formed will art as choke coils and will tend to isolate the seriesconnected end from any ground connection that may be placed on the parallel-connected end. Balun coils made in this way will operate over a wide frequency range, since the choke inductance is not critical. The lower frequency limit is where the coils are no longer effective in isolating one end from the other; the length of line in eath coil should be about equal to a quarter wavelength at the lowest frequency to be used.

Fig. 13-13-Baluns far matching between push-pull and single-ended circuils. The impedance ratio is 4 to 1 from the push-full side to the unbalanced side. Cailing the lines as shawn in the lawer drawing increases the frequency range aver which satisfactary aperation is abtained.

Loads and Balancing Devices

The principal appliation of sulh coils is in going from a 300 -ohm halaned line to a 75 -ohm ronsial line. This requires that the $\%$ of the lines forming the coils be 150 ohms. Design data for winding the eoils is not availathe; however, liguation 1:3-1) (an be used for determining the approximate wire spacing. Allowance should be made for the fact that the effertive dieloetric constant will be somewhat greater than I if the coil is wound on a form. The proximity effect between turns can le redured ber making the turn spacing somewhat larger than the conductor spateing. For operation at 3.5 . Me. and higher frequenein's the length of each condurtor should be about 60 feet. 'The conductor spacing can be adjusted to the proper value by terminating cath line in a noninductive 150 -ohm resistor and adjusting the spacing until an imperdance bridge at the input end shows the line to be matehed to 150 ohms.

A balun of this type is simply a fixed-ratio transformer, when matcheod. It cammot rompensate for inatecurato matehing elsewhere in the sustem. With a ":300-ohm" line on the balanced cond, for example, a 75 -ohm coax cable will not Wre matched unless the 300-ohm line actually is terminated in a 300 -ohm load.

- NONRADIATING LOADS

Typical examples of nomradiating loads for a transmission line eure the grid cirenit of a power amplifier (considered in the ehapter on transmitters), the inpul eivenit of a reediver, and another transmission line. This last case inchedes the "antenna tume" - a misnomer heremise it is antually a device for coupling a transmission line to the transmiture. Beremse of its importane in amateur installations, the antennat couphor is considered separately in a hater part of this chapter.

Coupling to a Receiver

A good match between an antenna and its transmission line does not guarantee a low stand-ing-wave ratio on the line when the antematsystem is used for recoiving. The s.w.r. is determined wholly by what the line "sees" at the recoiver"s antenna-input terminals. For minimum s.w.r. the recoiver input cirroit must be matehed to the line. The rated input impedanere of a reeriver is a nominal value that varies over a considerable range with frequency, Methods for bringing about a proper mateh are diselusud in the chapter on rereivers.

It should be noted that if the recoiver is matehed to the line, then it is desirable that the antenna and line also be matehed, since this results in maximum signal transfor from the antemat to the line. If the receiver is mot matehed to the line, the input imperatace of the line (at the terminals of the antemat itedf) in turn camot mateh the antenna impedance. In such a case the signal input to the reereiver doponds on the coupling sestem used between the line and the reereiver. for greatest signal strength the coupling system has to be adjusted to the best compromise between receiver input imprdance and load appearing at the input (antenna) end of the line. The proper adjustments must be determined by experiment.

A similar situation exist, when the reereiver input impedanere inherently matehes the line Z_{0}, but the line and antenna are mismatehed. ["nder these comditions perfere matehing at the receriver dow not result in greateri wignal strength: a deliberate mismateh has to be int rodued so that the maximum power will be taken from the antenma.
The most desirable condition is that in which the rexeriver is matehed to the line Zatand the line in turn is matehed to the antoman. This tramsifers maximum power from the anterna to the receiver with the least loss in the tranmission line.

Coupling the Transmitter to the Line

The trpe of coupling system that will he nerded to transfer power adequately from the final r.f. amplifier to the tranmission line depends almost cntirely on the input impedance of the line. As shown carlier in this chapter, the input impedance is determined by the standing-wave ratio and the line length. The simplest case is that where the line is teminated in its charareristic impedance so that the s.w.r. is 1 to 1 and the input impedance is equal to the Z_{0} of the line, regardless of line length.

Conpling systems that will deliver power into a flat line are readily designed. For all practical purposes the line can be considered to be flat if the S.w.r. is no greater than about 1.5 to 1 . That is, a coupling system designed to work into a pure revistanee equal to the lime $\%_{0}$ will have emough herway to take care of the small variations in input impedance that will oceur when the line length is changed, if the s.w.r. is higher than 1 to 1 but no greater than 1.5 to 1 .

Courrent practive in transmitter design is to provide an output circuit that will work into such a line, usually a comaial line of 50 to 75 ohms charatereristic impedance. The design of such output circuits is diseussed in the chapter on high-frequeney transmitters, If the input impedance of the transmission line that is to be connereded to the transmitter differs appreciably from the value of impedance into which the tramsmitter output circuit is designed to operate, an impedaner-matehing network must be inserted hetween the transmitter and the line input terminals.

IMPEDANCE-MATCHING CIRCUITS FOR PARALLEL CONDUCTOR LINES

As shown arrlier in this chapter, the input impedance of a line that is operating with a high standing-wave ratio can vary over quite wide

13-TRANSMISSION LINES

Fig. 13-14-Matching circuits using a coaxial link, for use with parallel-conductor transmission lines. Adjustment setup using an s.w.r. bridge is shown in the lower drawing. Design considerations and method of adjustment are discussed in the text.
limits. The simplest type of circuit that will mateh such a range of impedances to 50 to 75 ohms is a paralled-tuned cireuit approximately resonant at the operating frequens. In its ordiuary form, such a circuit will be connected to a short length of coasial line or "link" by inductive coupling as shown in Fig. 13-14, the other end of the cable being attarhed to the output terminals of the transmitter. The cable may tre any convenient length if the impedane that it "sees" at the matching circuit is equal to its own characteristic impedance. This method has the further advantage that the coasial link offers an ideal spot for the insertion of a low-pass filter for preventing harmonie interference to television and f.m. reception.

The constants of the tuned circuit $C_{1} L_{1}$ are not particularly ritical; the principal recuirement is that the cireuit must be capable of heing tuned to the operating frequencr. Constants similar to those used in the plate tank circuit will be satisfactory. The construction of L_{1} must be such that it can be tapped at least avery tum. L_{2} must be tightly coupled to L_{1}, and the inductance of L_{2} should be approximately the value that gives a reatance equal to the $\%_{0}$ of the connecting line at the frequency in use. An average reactance of about 60 ohms will suffice for either 52 - or 75 -ohm coaxial line.

The most satisfactory way to set up the system initially is to connect a cotsiat s.w.r. bridge in the link is shown in Figg. 13-14. The "Monimatch" type of bridge, which can handle the full transmitter power and may be left in the line for contimuous monitoring, is excellent for this purpose. However, a simple resistance bridge such as is deseribed in the chapter on moasurements is perfectly adequate, requiring only that the transmitter output be reduced to a very low value so that the bridge will not be overlouled. To adjust the circuit, take a trial position of the line taps on L_{1}, keeping them erpuidistant from the ernter of the coil, and adjust (${ }_{1}$ for minimum s.w.r. ats indicated be the bridge. If the s.w.r. is not close
to 1 to 1 , try new tap) positions and aljust (1 again, continuing this procedure unt il the s.w.r. is practieally 1 to 1 . The setting of C_{1} and the $t a p$ positions may then be logged for future referenee. At this point, check the link s.w.r. over the frequener range normally used in that hand, without changing the setting of (ct. No readjustment will be required if the s.w.r. does not exeed 1.5 to 1 over the range, but if it goes higher it is advisable to note as many settings of (1, as maty be neeessary to keep the s.w.r. below 1.5 to 1 at any part of the hand. Changes in the link s.w.r. are caused chiefly by changes in the s.w.r. on the main transmission line with frequency, and relatively little by the coupling circuit itself. A single setting of C_{1} at mid-frequency will suffice if the antemat itself is broad-tuning.

If it is impossible to got a 1-to-1 s.w.r. at any settings of the taps or cis the s.w.r. on the main transmission line is high and the line length is probably unfavorable. Ordinatily there should be no difficulty if the transmission-line s.w.r. is not more than about 3 to 1 , but if the lime s.w.r. is higher it may not be possible to bring the link s.w.r. down execpt hy using the methods for reactance compensation deseribed in a subsequent sertion in this chapter.

The matching adjustment can be considerably facilitated by using a variable caparitor in series with the matching-cireuit coupling eoil as shown in Fig. 13-15. The additional adjustment thus provided makes the tap settings on L_{1} much less critical since varying 6,2 has the effert of varying the roupling between the two eireuits. lor op)timum control of coupling, L_{2} should be somewhat larger than when ('z is not used - perhaps twire the reactance reommended above - and the reatance of C_{2} at maximum capacitance should be the same as that of L_{2} at the operating frequence. L_{1} and ('1 are the same as before. The method of adjustment is the same, except that for each trial tap position C_{1} and C_{0} are alternately adjusted, a little at a time, until the s.w.r. is brought to its lowest possible value. In gomeral, the adjustment sought should be the one that keps ("2 at the largest possible eapacitance, sine this broadens the frequeney response. Also, the taps on L_{1} should be kept as far apart as possible, While still permitting a match, since this also broadens the frequency response of the circuit.

Once the matehing circuit is properly adjustod, the s.w.r. bridge maty be removed, if neressary; and full power applied to the transmitter. The power input should br adjusted by the coupling or loading control built into the transmitter, mot

Fig. 13.15-Using a series capacitor for control of coup. lling between the link and !ine circuits with the coaxcoupled matching circuit.

Coupling the Transmitter to the Line

by making any changes in the matching-rirenit adjustments. if an amplifier having a paralleltuned tank circuit will not load properly, tuned coupling should be used into the coax link.

It is possible to use a circuit of this type withont initially setting it up with the s.w.r. bridge. In such a case it is a mattor of cut-and-try until adequate power transfer betwern the amplifier and man transmission line is secured. Ilowever, this mothod frequently results in a high s.w.r. in the link, with ronserguent powor loss, "hot spots" in the coaxial cable, and tuning that is critieal with frequener. The bridge method is simple and gives the optimum operating conditions quickly and with certainty.

Untuned Coupling

A simple coil ram he used for coupling to a line having a high standing-wave ratio providing the line length is adjusted so there is a current loop near the point where it connerts to the pick-up) coil. The coupling will he maximum, for a given degree of separation between the pirk-up coil and the amplifier tank coil, if the line is pruned to a length such that the input impedance is just sufficiently caparitive to cancel the indurtive reactance oi the piek-up coil. This ran be done by cut-and-try. The higher the s.w.r. on the line the easier it heoomes to load the amplifier with loose coupling betwen the two coils. The sharper the antenna and the higher the line s.w.r. the more dificult it becomes to oproate with this system over a hand without progressively changing the line length.

Series and Parallel Tuning

Lines elassified as "tumed" or "resonant" i.e., cut to kongtheapproximately equal to integral multiples of ondequartor wavelength, and operating with a high standing-wave ratio - are characterized hy having either very high or very low input imperdaners. Also, the input impedtures of surh lines are cesontially resistive.

Conder these conditions the cirenit arrangemonts shown in Fig. 13-16 will work satisfactorily.

PARALLEL
Fig. 13-16-Link-caupled series and parallel tuning.
Their advantage over the cirenit of Fig. 13-1t is that it is not mecessary to provide for taps on the matehing-rirenit coil, L_{1}. "series" tuning
is used when a current loop occurs at or near the input end of the line; i.e., when the input impedance is low. "Parallel" tuning is used when there is a voltage loop at or near the input end; i.e., when the input impedance is high.

In the series case, the cireuit formed by L_{1}, C_{1} and ('2 with the line terminals short-rircuited should tune to the operating frequener. (th and C_{2} shouh the mantaned at equal caparitance. In the parallel case, the cirruit formed by L_{1} and C_{1} should tume to resonance with the line disconnerted.
The $L_{\text {, }} C$ ratio in either circuit depends on the transmission line Z_{0} and the standing-wave ratio. With series tuning, a high $L^{\prime}($ C ratio must be used if the s.w.r. is relatively low and the line Z_{i} is high. With parallel tuning, a low L / C ratio must be used if the s.w.r. is relatively low and the tramsmission-line Z_{0} also is low. With either sertes or parallel tuning the L / C ratio becomes less critical when the s.w.r. is high. As a first approximation, coil and capacitor values of the same order as those used in the plate tank circuit may he tried. The coupling coil, L_{2}, should have a reactance about equal to the Z_{0} of the coasial line, just as in the case of the circuit of Fig. 13-14. The coupling between L_{1} and L_{2} should be continuously adjustable.

Two capacitors are used in the series-tuned circuit in order to keep the line balimed to ground. This is because two identieal eapacitors, both commerted with either their stators or rotors to the line, will have the same capauitane to ground. A single caparitor would be perfectly usable so far ats the operation of the coupling circuit is concorned, but will slightly unbalance the cironit because the frame has more capacitance to ground then the stator. The unbalame is not esperially serious unless the capacitor is mounted near a large mass of metal, such as a chassis or shield assembly.

A badanced capacitor is used in the parallel cirenit, in preferener to a single unit, for the same ratson. In alternative scheme to maintain balanere is to use two single-ended capacitors in parallel, but with the frame of one connected to one side of the line and the frame of the other connected to the other side of the line. The same t wo eaparitors may be switched in series when serics tuning is to be used.

As an alternative to adjustable compling between L_{1} and L_{2}, fixed coupling may be used and a variable capacitor connected in series with L_{2} as shown in Fig. 1:3-15.

These circuits should be set up and adjusted in the same way as the tapped matehing cirenit, lig. 13-14. That is, an s.w.r. bridge should be used to indicate the impedance mateh, which is brought about by altemately adjusting ('s and the cotupling betweren L_{1} and L_{2} until the bridge shows a null.

In the event that there is difficulty in bringing the s.w.r. down to 1 to 1 in the coaxial link, the probable cause is that the input impedance of the transmission line is neither very high nor very low. In such a case, if series tuning does not

13-TRANSMISSION LINES

work it may pay to try parallel tuning, and vice versa. If a mateh cannot be secured with cither, the circuit should be changed to that of Fig. 13-14.

Adjustment Without the S.W.R. Bridge

U'se of the s.w.r. bridge with the circuits described above is the only certain way of arriving at optimum adjustments. However, if a bridge is not available, the transmitter usually can be made to take the proper lowd be a cut-and-try mothod of adjustment. In the case of Fig. 13-1.t, take a trial position of the taps fairly close to the center of L_{1}. With loose coupling between L_{1} and L_{2} (this maty be controlled rithor by adjustment of the mutual inductance or by mans of the series caparitor ('2) and with the amplifior plate tank circuit tuned to resonance as indiated by the plate-antront dip, vary ('s until a setting is found that causos the plate current to rise to a peak. This peak should be less than the expected nommal loaded plate current. Thon increase the coupling between L_{1} and L_{2}, readjust (' for maximum plate current, and ratadust the amplifier tank for the plate-current dip. Continue until the amplifier is fully loanded at the plate-current dip, increasing the coupling botwere the transmitter tank and the roax line if neressary to ohtain full loading. Then spread the taps on L_{1} a little forther apart and go through the same procedure. The object is to use the widest spread between taps that will permit proper loading of the transmitter.
The procedure with series or parallel tuning is similar except that there are no taps to adjust. If full loading camot be secured with either, the cireuit should be changed to Fig. 13-14.
Although this cut-ind-try method generally will lad to adequate transmitter loading, the adjustmonts seldom are optimum from the standpoint of low s.w.r. in the cots link. This may lead to exerssive power dissipation in the link, with overhoating the result. Also, the loading may change more rapidly with small freguency changes than would be the case with a matching circuit adjusted for optimum performance with the aid of the s.w.r. bridge.

Lines of Random Length

Series or parallel tuning will atways work satisfactorily with lines having a high standingWave ratio so long ats either atrurent loop or node orrurs at the input end of the transmission line. This will be the ease if the anteman is resonant and the line length is a multiple of one-quater wavelongth. However, it is not always posible to comple satisfactorily when intermediate line lengths are used. This is because at some lengths the input impedane of the lime has a considerable reative component, and berause the resistive component is too large to be connected in series with at tuned cirenit and too small to be connected in parallel.

The eoupling system shown in lig. 13-14 is capable of handling the resistive component of the input impedance of the transmission lines used in most amateur installations, regardless of
the standing-wave ratio on the line. Consequently, it can generally be used wherever either series or parallel tuning would normally be called for, simply by setting the taps properly on the coil. (A possible exception is where the s.w.r. is considerably higher than 10 to 1 and the line length is such as to bring a current loop at the input end. In such a case the resistance may be only a few ohms, which is difficult to match by means of taps on a coil.)

Within limits, the same circuit is capable of being adjusted to compensate for the reactive component of the input impedance; this merely means that a l-to-l s.w.r. in the link will be obtained at a different sotting of r_{1} thain would be the case if the line "looked like" a pure resistance. Sometimes, howrer, rit does not have enough range availatble to give complete compensation, particularly when (as is the case with some line lengths when the s.w.r. is high) the input impedance is prineipally reartive.

Linder such conditions it is neressary, if the line length cannot be changed to a more satisfactory value, to provide additional means for compensating for or "cancerling out" the reactive component of the input impedance. As deseribed carlicer in this chatpter (Fig. 1:3-6) the input impedance can be considered to be aduivalent to a circuit consisting either of resistance and inductance or resistance and capamitance. It is generally more convenient to consider these elements as a parallel combination, so if the line "looks like" $L^{\prime} R^{\prime}$ at A in lig. 13-6, it is apparent that if we eoment a capacitance of the right value across L^{\prime} the cirenit will beome resonant and will appear to be a pure revistance of the value R^{\prime}. Similarly, connecting an inductance of the right value across (" in Fig. 1:3-613 will resonate the circuit and the impedance will be equal to R^{\prime}. The resistive impedance that remains can easily be matched to the coax link by means of the circuit of Fig. 13-14.

The practical application of this principle is shown in Fig. 13-17, where L and C are the react-

Fig. 13-17-Reactance cancellation on random-length lines having a high standing-wave ratio.
ances required to cancel out the line reartance, L for cases where the line is caparitive, ef for lines having inductive reactance. The amount of either

Matching to Coaxial Lines

inductance or capacitance required is casily determined by trial, using the s.w.r. bridge in the cons link. First discomect the main transmission line from L_{1} and eonnect a noninductive resistor in its place. A l-watt carbon resistor of about the same resistance as the line \boldsymbol{Z}_{0} will do, if a low-power bridge of the resistaner type is used. With the "Monimatch" bridge, a suitable load mat be made by comecting earbon resistors in parallel; for example, five 1500 -ohm 2 -watt resistors in parallel will make a 300 -ohm load capable of handling 10 watts of r.f. Adjust the coil taps and C_{1} for a 1 -to-l standing-wave ratio in the link, as described earlier. This determines the proper setting of C_{1} for a purely resistive load. Then take off the resistor and comnect the line, again adjusting the taps and (${ }_{1}$ to make the s.w.r. as low as possible, and compare the new setting of C_{1} with the original setting. If the capacitance has increased, the line reactance is inductive and a capacitor must be connected at C in Fig. 1:3-17. The amount of capacitanere needed to bring the proper setting of (x_{1} near the original setting ean be determined by trial. On the other hand, if the capacitance of C_{1} is less than the original, an inductance must be connected at L. Trial values will show when the proper tuning conditions have been reached.

It is not necessary that C_{1} be at exactly the original setting after the compensating reactance has been adjusted; it is sufficient that it be in the same vicinity.

Using this procedure practically any length of line ran be coupled properly to the transmitter, (vorn when the line s.w.r. is quite high. I'nfortunately, no specifie values can be suggested for L and C, since they vary widely with Z_{0}, line length and s.w.r. 'Their values usually are comparable with the valucs used in the regular coupling dirruits at the same frequency.

MATCHING TO COAXIAL LINES

Coaxial transmission lines usually are (or at least should be) operated at a low-enough stand-ing-wave ratio so that no special matching circuits are needed; the line simply may be connected to the trimsmitter output terminats. A properly designed transmitter output cireuit (see (hapter on high-frequency transmitters) will be capable of handling variations in s.w.r. that are acepeptable from the standpoint of line losses.

However, there are cases where it beomes neressury to provide some frequeney selectivity brotweren the transmitter and antennal system in order to prevent undesirable radiation of harmonies. A matching circuit of the same general type as those disenssed above can provite a (onsiderable degree of seleetivity in addition to matching the input impelance of the transmission line to the $Z 0$ of the consial link. The difference in the circuit arrangement is simply that the secondary or output side need not be balanced with respere to ground.

Fig. 13-18 shows a typical circuit. Except for

Fig. 13-18-Inductively coupled matching circuit for coupling between coaxial lines. The principles are the same as in Fig. 13-14; the secondary circuit is simply made single-ended for use with a coaxial transmission line.
the fact that there is only one coil tap, the design considerations and adjustment procedure are the same as described for Fig. 13-14. Also, the series rapacitor. (\%, shown in Fig. 13-15 maty be used with this circuit for fine variation of the reffertive roupling between L_{1} and L_{2}. Constants for the cireuit $L_{1} C_{1}$ are not critical; any convenient values that will tume to the operating frecuency may be used. The Q of this circuit, and hence the selectivity, is controlled principally by the position of the line tap. As the tap is moved farther up the coil the Q a and selertivity decrease.

The pratiocal matching cireuits described in the following section may be used with coaxial line simply by connerting the outer conductor of the line to the center of the coil and tapping the inner conchuctor along one side. The batanced circuit may still be used, although if the coupler is to be used only with coasial line the circuit may be made single-ended as shown in Fig. 13-18.

Fig. 13-19—Half-wave filter for harmonic suppression. The twa sections of the filter should be shielded from each other as indicated by the dashed line, and the whole filter should be constructed in a shield enclosure to insure effective operation. A separate filter is required for each amateur band. All capacitors have the same value, as do all inductors, for a given band. Suggested constants are as follows:

Band	Capacitance	Inductance
3.5 Mc.	$820 \mu \mu \mathrm{f}$.	$2.2 \mu \mathrm{~h}$.
7 Mc.	$390 \mu \mu \mathrm{f}$.	$1.3 \mu \mathrm{~h}$.
14 Mc.	$220 \mu \mu \mathrm{f}$.	$0.57 \mu \mathrm{~h}$.
21 Mc.	$150 \mu \mu \mathrm{f}$.	$0.375 \mu \mathrm{~h}$.
28 Mc.	$100 \mu \mu \mathrm{f}$.	$0.3 \mu \mathrm{~h}$.

Design is based on standard values of fixed mica capacitors. Larger capacitances may be made up by using smaller-capacitance units in parallel, if necessary. See text for valtage ratings. Inductances may be adjusted to proper value by resonating to center of band with the capacitance value given in the above table.

"Half-wave" Filters for Harmonic Suppression

If imperlance matching is not a consideration - i.e., the transmission line to the antema is oprerating at a low s.w.r. - but harmonic sup-
pression is dewirable, the cirruit of Fig. 13-19 mary be used as an alternative to Fig. 13-18. This is a "hall-wave" filter eircuit, so called treanse it has similar properties to a half-wave trimsmission line. When inserted in a line, the imperdaner at the input terminals of the filter is the same impedance that the filter "seres" at its output terminals. Thus if the line input impedance is a pure resistance of 50 ohms, the imperdance at the filter input terminals also will be 50 ohms.
Just as in the half-wave line ease, the characteristic impedane of the filter can be any value without altering its performance with respect to input and output impedance. However, it is dewirable in the intercests of broad-band operation to make the filter characteristie imperdace approximately the same as the $\%_{0}$ of the line. The constints given in Fig. 1:3-19 will serve for either 50)- or 7 -othm line. The filter can be used without adjustment at :any frepheners within
the amateur band for which it is designed.
The eapacitance values required are fairly large, but under the assumed conditions (how s.w.r. on the line, filter Z_{0} approximately equal to line Z_{0}) the voltages across the capareitors are low. Miea capacitors having a voltage rating suitable for the power hevel aro satisfatory. The peak rating required is copual to $\sqrt{2 P \%}$ where l ' is the r.f. power and $\%_{0}$ is the characteristic impedance of the line. This value shomld be doubled for 100 per cent amplitude modulat tion, and it is advisable to allow a safety fartor in addition. A rating of $15(k)$ volts d.e. will be sulficient for a kilowatt :am. transmitter if the line is well matehed be the antemat.
The attenuation of a filter of this type is about 30 dh . at the serond harmonic and greater at higher harnonics, until limited by selfresonances at high frequencies that oceur in the inductors. Thesise usually are not important at harmonies below the fourth.

Coupler or Matching-Circuit Construction

The design of matching or "anteman coupler" circuits has been covered in the preceding section, and the adjustment proeedure also has been outlined. Since circuits of this type are most frequently used for transfering power from the tramsuitter to a paralled-conductor transmission line, a principal point requiring attention is that of mantaining good balanee to ground. If the coupler circuit is appreciably unbalanced the currents in the two wires of the transmission line will also be unbatanced, resulting in radiation from the line.
In most cases the matching cirenit will be built on a motal chassis, following common practice in the construction of transmitting units. The chassis, because of its relatively large area, will tend to "stablish a "ground" - even though not actually grounded-partientarly if it is assembled with other units of the tramsmitter in at rack or calbinet. The components used in the coupler, therrfore, should be phaced so that they are electrically symmetrical with respect to the

chassis and to cald other.
In general, the construction of a coupler cirenit should phesically resemble the tank layouts used with push-pull amplifiers. In parallel-tuned cirruits a split-stator caparitor should be used. The eapacitor frame shond be insulated from the chatsis because, depending on line length and other factors, harmonic reduction and line batance may be improved in some cases by proumbing and in others by not grounding. It is therefore advisable to adopt construction that permits either. Provision also should be made for grounding the center of the coil, for the same reason. The coil in a paratlel-tuned cireuit should be momented so that its hot ends are symmetrically phated with respect to the chassis and other components. This equalizes stray caparitances and helpe maintain good balance.
When the coupter is of the type that can be shifted to series or paralled tuning as required, two separate single-ended eapacitors will bo satisfactory. As described earlier, they shouh the comected so that both frames go to corresponding parts of the circuit - i.e., either to the coil or to the line - for series tuning, and when used in paralicel for parallel tuning should tre emoneted frame-to-st:itor.
A coupler designed and adjusted so that the connecting link acts as a matched transmission line may be placed in any convenient location. Some amateurs prefor to install the coupler at the point where the main transmission line enters the station. This helps maintain a tidy station lay-

Fig. 13-20-Matching circuit for coupling balanced line to a coaxial link. It may also be used between two coaxial lines as described in the text. The coil at the left is simply "stored" on the chassis as a convenience for changing between two favorite bands. A "Monimatch" bridge is mounted under the $7 \times 11 \times 3$ inch chassis.

Coupler Construction

out when an air-insulated parallel-conductor transmission line is used. Witb solid-dielectric lines, which lend themselver well to neat installation indoors, it is probably more desirable to install the coupler where it ean be reached easily for adjustment and band-changing.

COAX-COUPLED MATCHING CIRCUIT

The matehing unit shown in lig. 13-20 is constructed according to the design principles outlined eartior in this chapter. It uses a paralleltuned circuit with taps for matching a paralledconduetor line through a link roil to at coasial line to the transmitter. It will handle ahout 500 watts of r.f. power and will work, without modifieation, into lines of any length if the s.w.r. is below 3 or 4 to 1 . If the s.w.r, is high, it may be necessary to compensate for the reatetive part of the input impedance of the line, at erertain line lengths, by using an additional coil or caparitor as disenssed carlior. The neressity for such compensation ain be avoided, on lines having a high s.w.r., by making the electrical length of the line a multiple of a quarter wavelength.
As shown by the circuit diagram, Fig. 13-21, the link cireuit is adjusted by means of a variable (anparitor, ('2, to facilitate matching between the main transmission line from the antemna and the coas line to the transmitter. The coils are constructed from commercially atvailable coil material. and the link (L_{2}) indurtanes are chosen to provide adequate coupling for flat lines. The link
coil, of smaller diamoter than the tank coil L_{1}, is mounted inside the latter at the center. Duco cement is used to hold the coils together at their hot tom tie strips. The coils are mounted on Millen type 40305 plugs and require no other support than the stiffuess of the short lengthe of wire going into the end prongs of the phag from the tank coil. Short lengths of sparhetti tubing are slipped over the leads to the link coil where they go between the tank coil turns to reach the plug.

Taps on the tank eoil for connection to a paralleleconductor tramsmission line are made by means of Johnson type 2 ? 3 j-8tio clips. If coils are changed freguently it will be conveniont, after finding the proper tap points for each band, to bend ordinary soldering lugs around the wire and solder them in places so they projert radially from the coil. The elips ran then be adjusted to fit snugly over the lugs when pushed on sidewise. Lseal this way, the rlips provide an casy and rapid method of connecting and disconnecting the line.

Monimatch

The circuit as shown in Fig. 13-21 includes a lridge or dirertional coupler of the Monimateh type to assist in adjusting the circuit to matoh the coas line. It is constructed from a 24 -inch length of either R($\mathrm{i}-8 / \mathrm{U}$ or RG-11/U (erepending on the Z_{0} of the roax line between the transmitter and the matching cirenit) as deseribed in the seretion on measurements. The piekup line, to

Cuil Data for Fio. 18-z1								
Brand, Mc.	$L{ }_{4}$				L_{2}			
	Turns	Wire size	Dia., In.	$\begin{gathered} \text { Turns/ } \\ \text { In. } \end{gathered}$	Turns	$\begin{aligned} & \text { Wire } \\ & \text { Size } \end{aligned}$	Dia., In.	Turns/ In.
3.5	44	16	91/2	10	10	16	2	10
7	18	12	21/3	6	6	16	2	10
14	10	12	21/2	6	3	16	2	10
-21-28	(12	21/2	6	2	16	2	10

Fig. 13-22-Below-chassis view of the matching circuit, showing Monimotch made from a section of coax cable. The crystal rectifiers are mounted on dual tie-point strips, with R_{1} between them.
which R_{1} and the revstal rectifiors are connected, is a length of No. 30 enameled wire inserted between the insulation and the shield-braid outer combuctor of the coax cable. In constructing this line seetion be careful not to scrape the enamel from the wire, and after the braid has beon smonthed out to its original length cherk betwern it and the piekup wire with an ohmmeter to make sure the two are not short-riteraited. The cable is formod into a double turn so that the renter, where R_{1} connerts to the piekup wire. is close to the cmds. 'This keeps the ground paths to minimum langth and helps in obtaining proper hatane in the bridge. The braided outsides of the turns are spot soldered together at sevoral points to reduce the affert of mananted eurents on the surface, and also to improve the assembly mechanically.

Bridge Adjustment

Adjusting the bridge is simply a matter of finding the value of l_{1} that gives a good mull reading with the indicating moter connected to the "reflected" position when the output end is terminated in a resistive load of cither $5 \mathbf{2}$ or 75 ohms, depending on whether RGG-8/U or RG-11/U is used. If a suitable dummy load is available (see chapter on measurements) the wiring to hashould be diseonneded at B in lig. $13-21$ and the dummy load connected between B and ground (that is, to the output terminals of the Monimateh). R_{1} may be set to the proper value by trying several values of half-natt carbon resistors, or combinations in parallel, to find the resistance that gives the derepest mull. A value of about 35 ohms proved to be optimum with IR(:-8/U in the bridge shown in the photegraph.

Alarnatively, a dummy load may be connerted to the labaneed line terminals, and the Monimateh diseonnerted at B. If a suitahle bridge ean be borrowed, it can be comnected at B and r.f. power fed through it to the matehing circuit, which should then be adjusted to mateh the coas line. This establishes a load of known value which may then be used for adjustment of the built-in Monimateh as described above, after the comnection at B has been restored.

A suibable indicator unit, indrluding meter, variable resistor, and forward-rellected switeh, is cleseribed in the chapter on measurements.

Matching-Circuit Adjustment

The method of adjusting a matehing cireuit of this type has heen described earlier in this chapter in comection with Figs. 1:3-1 1 and 13-15. The ronstruction is such that either the center tap of L_{1} or the rotor of ('1 may be grounded to the (hassis, since C_{1} is mounted on small stand-off insulators. Insofar as normal balanced-line operation is concerned, it makes no difference which is grounded (or meither). Grounding will, however, affect any parallel or "antemna" currents on the line. In general, the effere of such currents will be minimizel if the ground eomeretion showing the leasi r.f. Cureent is chosen. This test should aho be (riod with and without an actual earth connection to the matrhing-rircuit chassis.

Thu eroupler may be used betwern coaxial limes by groumeling the eenter tap of L_{1} and connecting the outer braid of the coas line to the chassis and the inner conductor to a single tap on the coil. The mothod of adjustment is otherwise the stme as for balanced lines.

The matehing eirenit should be adjusted with the aid of an s.w.r. bridge, as desoribed earlier in this chapter. In gencrat, the tuning will be less critical, and the circuit will work over a wider frequency range without realjustment, if the taps are kept as far toward the ends of the coil as possiblo and C_{2} is set at the largest capacitance that will permit bringing the s.w.r. in the coan link down to 1 to 1 .

- ANTENNA MATCHING CIRCUIT FOR HIGH OR LOW IMPEDANCE

The unit shown in Figs. 13-23 and 13-25 can be used to mateh the coaxial-lime output of a transmitter to either a high- or low-impedance loat. To facilitate tuning it inchudes an s.w.r. indicator that can be set for a wide range of power levels. The power-handling ability of a circuit of this type will depend to some extent upon the imped-

Coupler Construction

Fig. 13-23-Antenna coupler out of its case. The large dial controls a $100 . \mu \mu$ f. tuning capacitor, and the smaller dial (bottom center) turns a $320-\mu \mu \mathrm{f}$. coupling capacitor. Two knobs control the sensitivity and direction of the s.w.r. bridge. Simple band switches on top of the aluminum arch are made from banana plugs and insulated jacks
ance of the load, but as shown the matehing cirruit will haudle up to 300 or 400 watts under practically any condition. If higher power is involved, the eirenit can be "sealed upward" with heavier inductances and greater capacitor spacings.
leferring to the circuit in Fig. 13-24, a seriestuned cireuit, $L_{3} \mathrm{C}_{2}$, is coupled to a balaneed circuit, $C_{2}^{\prime} L_{2} L_{4}$. This latter circuit is series-tunem if the load is conmected to terminals $\mathrm{A}-\mathrm{A}$ and par-allel-tuned if a jumper is used between A-A and the load is comected at B-13. Low-impedanere loads (highocurrent) eall for series tuning, and high-impedance loads (high voltage) couple better with paralled tuning.

A simple version of the "Monimateh" s.w.r. imbicator is included by wrapping the necossary length of $126-58 / \mathrm{U}$ around the indicating moter (see Jig. 1;3-25).
The mit shown here was built on a $7 \times 9 \times 2$ inch ahminum chassis, but dimensions are not critical so long as the inductance is not crowded against the metal parts of the chassis or honsing. Capacitor C_{2} is insulated from the chassis and panel by using small stand-off insulators for its support and a ceramic insulating shaft couphing.

The switches S_{1} and S_{2} are made from nyloninsulated banana jacks (Johnson 108-901) mounted on an arch of $3 / 32$-inch shect aluminum. ln each switeh one jack serves as the rotor

Fig. 13-24-Circuit diagram of the antenna coupler.
$\mathrm{C}_{1}-320 . \mu \mu \mathrm{f}$. midget variable (Hammarlund MC. $325-\mathrm{M}$).
$\mathrm{C}_{2}-100-\mu \mu \mathrm{f}$. tuning, $\mathbf{0} \mathbf{0 7 7 - \text { inch spacing (National TMC. }}$ 100).
J_{1}-Coaxial receptacle, type SO-239.
L_{1}-Wire inside coaxial line. See text.
L_{2}, L_{3}, L_{1}-See Fig. 13-26.
$\mathrm{M}_{1}-\mathrm{O}-1$ milliammeter (Triplett 227-PL).
R_{1}-25,000-ohm volume control (Mallory U.28),
R2-33 oh.ms, $1 / 2$ watt. Must be composition, not wirewound.
$\mathrm{S}_{1}, \mathrm{~S}_{2}$-See text.
$S_{3}-$ D.p.d.t. retary switch (Centralab 1462).
S_{4}-Tap on L_{3}, shorted to end of coil by copper test dip (Mueller 45C).

Fig. 13-25-Rear view of the coupler shows the coaxial line of the s.w.r. indicator wrapped around the meter. The test clip of S_{4} is parked on one of the feedthrough insulators for L_{3}. Shorting bar in B-B (center) only for photograph; it is used only in A-A.
terminal and the others serve as the contacts. A shorting bar of aluminum with two hananat pugs (Johnsen loE-750) monnted on it at the proper distaner is used as the switeh amm. The shorting bar for the A-A commetion is made similarly. Two ferdthrough insulators at the rear of the rablinet (Bud (-17 thi) are nsed as anternat torminak; flexible leads fomeroted to them have banana plugs at the otiner end to commert to A-A or 13-B as required.

The indurtors L_{2}, L_{3} abd L_{4} aro made from a length of "-inch diamoter iransmitting coil stork. as indieated in Fig. 1:3-3(i. While the over-all sizes of the erots will suffiere for practically any installation, it is suggested that the taps be made temporarily until the unit can be tested with the antenna to be used. The tajs as indieated will be forrect for most cases, But variations in antema sustems will arcount for some discrepancies. The inductors are sapported by their leads from the banana jacks. Switch S_{4} is merely two solder lugs on the proper wires: they can be shorted together by clipping them with a copper test clip. (It is recommended that screws and hardware be tested with a magnet iofore using noar the coils; iron will get hot in the fickds surrounding the coils.)

The s.w.r. bridge is made hy first peesling the vinsl outer eonting from a $\boldsymbol{i}^{1} 2$-foot length of 1 di$58 /$ U. Measure $61 / 2$ inches out either side of the center and opern the shiwld braid slightly with a pointed tool. Thread a lemath of insulated wire (No. 22 or $\because 1$) in one lole and out the other, being eareful not to seratol off the insulation of the wire; test with an o!meter to make sure. Smooth out the shield brail on the PCi-58/4 and wrap the coaxial line for two turns around the meter housing. The coaxial line ean then be threaded through a rubber grommet in the chassis
and led to I_{1} and the feedthrough from L_{3}, both at the rear of the chassis. The lengeth of insulated wire, L_{1}, will have its ends conveniontly sithated for solduring to S_{3}.

In oprotation, the antema fied line can be con-
 for parallel thang if oprot-wire line is used. This is not an iron-dad ruld, however. particulaty when a high s.w.r. exists on the lime to the antemata. Caparitors ('1 and C'e are then adjusted for minimum refleeted reading and maximum forward reading of M_{1}. If the maximum reading tends to send the meter off seale, increase the rersistame at R_{1}. If the reflected reading camot be brought down to a very low value, it may be neeessary to try the opposite suries/parallel comertion or, as montioned earlior, to change the location of the taps on L_{2} and L_{4}.

Fig. 13-26-Details of coil tapping. Material is No. 16 wound 10 t.p.i. on 2 -inch diometer (B\&W 3907-1). Half furns peeled off between $L_{2}-L_{3}$ and $L_{3}-L_{4}$ to give one-turn separation. Tap placement may vary somewhat with antenna system.

CHAPTER 14

Antennas

An antenna system can be considered to include the antenna proper (the portion that radiates the r.f. encrgy), the feed line, and any coupling deviees used for transfaring power from the transmitter to the line and from the line to the antenna. Some simple systems may omit the transmission line or one or both of the coupling devices. This chapter will describe the antema proper, and in many dases will show popular types of lines, as well as line-toantenna couplings where they are required. Howerer, it should be kept in mind that any antenna proper can be used with any type of feedline if a suitable coupling is used between the antennat and the line. Changing the line does not change the type of antemat

Selecting an Antenna

In selerting the type of antemna to use, the matiority of amateurs are somewhat limited through spare and structural limitations to simple antenna systems, except for v.h.f. operation where the small spare requirements make the use of maltielement beams readily possible. 'This seetion will ronsider antemas for frequencies as high as 30 Mc. - a later chapter will describe the popular types of v.h.f. antennas. However, even though the available spate may be limited, it is well to consider the propagation characteristies of the frequency band or bands to be used, to insure that best possible use is made of the available facilities. The propagation characteristics of the amateur-band frequencies ate deseribed in ('hapter Fiftern. In general, antenma construction and location berome more critical and important on the higher frequencies. On the lower frequoncies (3.5 and 7 Mr.) the vertical angle of radiation and the plane of polarization may be of relatively little importance; at 28 Me, they may be all-important.

Definitions

The polarization of a straight-wire antenna is determined by its position with respect to the earth. Thus a vertical antenna radiates vertically polarized waves, while a horizontal antenna radiates horizontally polarized waves in a direction broadside to the wire and verticall! polarized waves at high vertical angles of the ends of the wire. The wave from an antenta in a slanting position, or from the horizontal antenna in directions other than mentioned above, contains components
of both horizontal and vertical polarization.
The vertical angle of maximum radiation of an antenna is determined by the free-spare pattern of the antenna, its height above ground, and the mature of the ground. The angle is measured in a vertical plane with respect to a tangent to the earth at that point, and it will usually vary with the horizontal angle, except in the case of a simple vertical antenna. The horizontal angle of maximum radiation of an antenna is determined by the free-space pattern of the antema.

The impedance of the antema at any point is the ratio of the voltage to the current at that point. It is important in connection with feeding power to the antemna, since it constitutes the load to the lime offered by the antenna. It can be pither resistive or complex, depending upon whether or not the antenna is resonant.

The field strength produced by an antennat is proportional to the current flowing in it. When there are standing waves on an antenna, the parts of the wire carrying the higher current have the greater radiating effect. All resonant antennas have standing waves - only terminated types, like the terminated rhombic and terminated "V," have substantially uniform current along their lengths.

The ratio of power required to produce a given field strength with a "comparison" antenna to the power required to produce the same field strength with a specified type of antemna is called the power gain of the fatter antenna. The field is measured in the optimum direction of the antenna under test. The comparison antema is generally a half-wave antenna at the same height and having the same polarization as the antema under consideration. Gain usually is expressed in decibels.

In unidirectional heams (antennas with most of the radiation in only one direction) the front-to-back ratio is the ratio of power radiated in the maximum direction to power radiated in the opposite direction. It is also a measure of the reduction in received signal when the beam direction is changed from that for maximum response to the opposite direction. Front-to-back ratio is usually cxpressed in decibels.

The bandwidth of an antemat refers to the frequeney range over which a property falls within acceptable limits. The gain bandwidth, the front-to-back-ratio bandwidth and the standing-wave-ratio bandwidth are of prime interest in amateur work.

Ground Effects

The radiation pattern of any antenna that is many wavelengths distant from the ground and all other objects is called the free-space pattern of that antenna. The free-space pattern of an antenna is almost impossible to obtain in practice, exept in the v.h.f. and u.h.f. ranges. Below 30 Me., the height of the antenna above ground is a major factor in determining the radiation pattern of the antenna.

When any antenna is near the ground the free-space pattern is modified by reflection of radiated waves from the ground, so that the actual pattern is the resultant of the free-spare pattern and ground reflections. This resultant is dependent upon the height of the antenna, its position or orientation with respect to the surface of the ground, and the electrical characteristics of the ground. The effect of a perfectly reflecting ground is such that the

Fig. 14-1-Effect of ground on radiation of horizontal antennas at vertical angles for four antenno heights. This chart is based on perfectly conducting ground.
original free-space field strength may be multiplied by a factor which has a maximum value of 2 , for complete reinforcement, and having all intermediate values to zero, for complete cancellation. These reflections only affect the radiation pattern in the vertical plane - that is, in directions upward from the earth's surface - and not in the horizontal plane, of the usual geographical directions.

Fig. 14-1 shows how the multiplying factor varies with the vertical angle for several representative heights for horizontal antennas, As the height is increased the angle at which complete reinforement takes phare is lowered, until for a height equal to one wavelength it occurs at a vertical angle of 15 degrees. It still greater heights, not shown on the chart, the first maximum will occur at still smaller angles.

Radiation Angle

The vertical angle of maximum radiation is of primary importance, especially at the higher
frequencies. It is advantageous, therefore, to erect the antenna at a height that will take advantage of ground reflection in such a way as to reinforce the space radiation at the most desirable angle. Since low angles usually are most effective, this generally means that the antenma should be high - at least one-half wavelongth at 14 Mc., and preferahly three-fuarters or one wavelength, and at least one wavelength, and proforably highor, at 28 Me. The physioal height reguired for a given height in wavelengths decreases as the frequency is increased, so that good heights are not impracticable; a half wavelength at 14 Mc. is only 35 fert, ap)proximately, while the same height represents a full wavelength at 28 Me . At 7 Mr . and lower frequencies the higher radiation angles are effective, so that again a useful antenna height is not difficult of attaimment. Heights between 35 and 70 feet are suitable for all bands, the higher figures being preferable.

Imperfect Ground

Fig. 14-1 is based on ground having perfect conductivity, whereas the actual earth is not a perfect conductor. The principal effect of actual ground is to make the curves inaceurate at the lowest angles; appreciable high-frequency radiation at angles smaller than a few degrees is practically impossible to obtain over horizontal ground. Above 15 degrees, however, the curves are accurate enough for all practical purposes, and may be taken as indicative of the result to be expeeted at anghes betwern 5 and 15 degrees.

The effective ground plane - that is, the plane from which ground reflections can be considered to take place - seldom is the actual surface of the ground but is a few feet below it, depending upon the character of the soil.

Impedance

Waves that are reflected directly upward from the ground induce a current in the an-

Fig. 14-2-Theoretical curve of variation of radiation resistance for a very thin half-wave horizontal antenna as a function of height in wavelength above perfectly reflecting ground.

Half-Wave Antenna

tenna in passing, and, depending on the antema height, the phase relationship of this induced current to the original current may be such as either to increase or decrease the total current in the antenna. For the same power input to the antema, an increase in curent is equivalent to a decrease in impedance, and vice versa. Hence, the impedance of the antema varies with height. The theoretial curve of variation of radiation resistance for a very thin half-wave antema above perfectly reflefting ground is shown in Fig. 1.-2, The imperdane approweres the froe-spater value as the height beromes large. but at low heights may differ considerably from it.

Choice of Polarization

Polarization of the transmitting antenna is generally unimportant on frequencies between
3.5 and 30 Mc. However, the question of whether the antenna should be installed in a horizontal or vertical position deserves consideration for other reasons. A vertical halfwave or quarter-wave antenna will radiate "qually well in all horizombl directions, so that it is substantially nondirectional, in the usual semse of the word. If installed horizontally, however, the antenna will tend to show directional effects, and will radiate best in the direction at right angles, or broadside, to the wire. The radiation in such a case will be least in the direction toward which the wire points.

The vertical angle of radiation also will be afferted by the position of the antenna. If it were not for ground losses at high frequencies, the vertical half-wave antenna would be preferred because it would concentrate the radiation horizontally.

The Half-Wave Antenna

A fundamental form of antemna is a single wire whose length is approximately equal to hatif the transmitting wavelongth. It is the unit from which mathy mone-romplex forms of athtomas are constructed. It is kown as a dipole antenna.

The leongth of a half-nawe in space is:

$$
\begin{equation*}
\text { Length }(\text { feet })=\frac{402}{\text { Freq. }(M(\cdot)} \tag{14-A}
\end{equation*}
$$

The actual length of a half-wave antenna will not be exactly equal to the half-wave in space, but depends upon the thickness of the ronductor in relation to the wavelength as shown in Fig. $1+-3$, whore K is a factor that must be multiplied by tho half wavelongth in free space to obtain the resonant antenna longth. An additional shortening eftert occurs with wire antemas supported by insulators at the ends because of the capareitance added to the system hy the insulators (end effect). The following formula is sufficiently accurate for wire antemas at frequencies up to 30 Mr .:
length of half-ware antenna (feet) $=$

$$
\begin{equation*}
\frac{492 \times 0.95}{\text { Freq. }(\mathrm{Mc} \cdot)}=\frac{46 \mathrm{~N}}{\text { Freq. }(\mathrm{Mc} .)} \tag{14-B}
\end{equation*}
$$

Example: A half-wave antenna for 7150 ke . (7.15 Mc) is $\frac{46 \mathrm{~N}}{7.15}=6 \overline{5} .4 \mathrm{i}$ lect, or 65 leet 5 inches.
Shove 30 Me . the following formulas should be used, particulaty for antemas constructed from rod or tabing. K is taken from Fig. 14-3.

$$
\begin{gather*}
\text { Length of half-anave antemma (fret) }= \\
\frac{492 \times K}{\text { Freq. }(\mathrm{Mr})} \tag{14-C}\\
\text { or length (inches) }=\frac{3905 \times K}{\text { Freq. (Mr.) }}
\end{gather*}
$$

(14-D)

1:xample: Find the length of a half wa velength antenna at 29 Mc .. if the antenna is made of 2 inch diameter tulbing. At 29 Me, a half wavelength in sjace is $\frac{492}{29}=16.9{ }^{\circ}$ feet, from Eq. 14-A. Ratio of half wavelength to conductor diameter (ehanging wavelength to inches) is $\frac{16.97 \times 12}{2}=101 \mathrm{~N}$, From Fig. $14-3, K=0,963$ for this ratio. The length of the antenna, from Eq. $14-\mathrm{C}$, is $\frac{492 \times 0.963}{29}=16.34$ feet, or 16 feet 4 inches. The answer is obtained direetly in inches by substitution in Eq. 14-1): $\frac{5005 \times 0.963}{29}$
$=196$ inches.

Fig. 14-3-Effect af antenna diameter an length far haif-wave resanance, shawn as a multiplying factar, K, ta be applied to the free-space half wavelength (Equatian 14-A). The effect af canductar diameter an the center impedance alsa is shown.

Current and Voltage Distribution

When power is fed to an antenna, the current and voltage vary along its length. The current is maximum (loop) at the center and nearly zero (node) at the conds, while the opposite is true of the r.f. voltage. The current does not abthatly reath zero at the current nodes, beame of the end effect; smilarly, the voltage is not

Fig. 14-4-The above scales, based on Eq. 14-B, can be used to determine the length of a half-wave antenna of wire.
unform in all directions but varies with the angle with respect to the axis of the wire. It is most intense in directions perpendicular to the wire and zerod along the diretion of the

Fig. 14-5-The free-space radiation pattern of a halfwave antenna. The antenna is shown in the vertical position, and the actual "doughnut" pattern is cut in half to show how the line from the center of the antenna to the surface of the pattern varies. In practice this pattern is modified by the height above ground and if the antenna is vertical or horizontal. Fig. 14-1 shows some of the effects of height on the vertical angle of radiation.
zero at its node because of the resistance of the antenta, which consists of both the r.f. resistance of the wire (ohmic resistance) and the radiation resistance. The radiation resistance is in equiralent resistance, a convenient conception to indicate the radiation properties of an antenna. The radiation resistance is the equivalent resistance that would dissipate the power the antemaradiates, with a current flowing in it equal to the antenna current at a current loop (naximum). The ohmic resistance of a half wavelongth antomat is ordinarily small enough, compared with the radiation resistance, to be meglected for all practical purposes.

Impedance

The radiation rewistanco of an infinitelythin half-wave antema in free spate is about 7.3 ohms, The value under practical conditions is commonly taken to be in the neighborhood of tio to 70 ohms, although it varies with hoight in the mamer of lig. 14-2. It increas's toward the emds. The actual value at the ends will depend on a number of factors, such as the height, the physical construction, the insulators at the ends, and the position with respect to ground.

Conductor Size

The impedance of the antenna also depends upon the diameter of the conductor in relation to the wavelongth, as indicated in Fig. 14-3. If the diameter of the conductor is increased the capacitance per unit length increases and the inductance per unit length decreases. Since the radiation resistance is affected relatively little, the decreased L / C ratio caunes the Q of the antenna to decrease, so that the resonance curve hecomes less sharp. Hence, the antenna is capable of working over a wide frequency range. This effect is greater as the diameter is increased, and is a property of some importance at the very-high frequencies where the wavelength is small.

Radiation Characteristics

The radiation from a dipole antenna is not
wire, with intermediate values at intermodiate angles. This is shown be the sketeh of Fig. 14-5, which represents the radiation pattern in free spare. The relative intensity of radiation is proportional to the length of a line drawn from the erenter of the figure to the premeter. If the antemma is vertical, as shown, then the field strength will be uniform in all horizontal direations; if the

Fig. 14-6-lllustrating the importance of vertical angle of radiation in determining antenna directional effects. Off the end, the radiation is greater at higher angles. Ground reflection is neglected in this drowing of the freespace pattern of a horizontal antenna.
antenna is borizontal, the relative field strength will depend upon the direction of the receiving point with respect to the direction of the antenna wire. The variation in radiation at various vertical angles from a half wavelength horizontad antemna is indiconted in Figs. 14-16 and 14-7.

FEEDING A DIPOLE ANTENNA

Direct Feed

If possible, it is advisable to lucate the antemat at least a hadf wavelongth from the transmitter and use a transmission line to carry the power from the transmitter to the antenna. However, in many cases this is impossible, particularly on the lower frequencies, and direct feod must be used. Three examples of direct feed are shown in Fig. 14-8. In the method shown at A, Cind C_{2} should be about $150 \mu \mu \mathrm{f}$. asth for the $3.5-\mathrm{Mc}$. hand, $\overline{\mathrm{j}} \mathrm{j} \mu \mu \mathrm{l}$. each at 7 Mc., and proportionately smaller at the higher frequencies. The antenna coil connected between them should resonate to 3.5 Mr . with ahout (00 or $70 \mu \mu \mathrm{l}$., for the $80-$ moter band, for 40 moters it should resonate with 30 or $3 \mathrm{~B} \mu \mu \mathrm{f}$., and so on. The rireuit is adjusted by using loose coupling between the antenna coil and the transmitter tank coil and adjusting C_{1} and C_{2} until resonance is indi-

Fig. 14-7-Horizantal pattern af a harizantal half-wove antenno of three vertical radiation angles. The salid line is relative radiation at 15 degrees. Datted lines shaw deviatian from the 15 -degree pattern far angles af 9 and 30 degrees. The potterns are useful for shape anly, since the amplitude will depend upan the height of the antenna abave ground and the vertical angle considered. The patterns far all three angles have been propartioned to the same scale, but this daes not mean that the maximum amplitudes necessarily will be the same. The arrow indicates the direction of the harizontal antenna wire.
cated by an increase in plate current. The coupling between the coils should then be increased until proper plate current is drawn. It may be neensary to re-resmate the transmitter tank circuit as the coupling is increased, but the change should he small.

The circuits in Fig. 14-813 and C are used when only one end of the antema is accessible. In B, the compling is adjusted by moving the

Fig. 14.8-Methods of directly exciting the half-wave antenno. A, current feed, series tuning; B, voltage feed, capacitive coupling; C, voltage feed, with inductively caupled antenna tank. In A, the coupling circuit is not included in the effective electrical length of the antenna system proper. Link coupling can be used in A and C.
tap toward the "hot" or plate end of the tank coil - the series capaudor may be of any conveniont value that will stand the voltage, and it doesn't have to he variable. In the circuit at (') the antemma tuned circuit (C_{1} and the antenna coil) should be similar to the transmitter tank circuit. The antennat tuned circuit is adjusted to resonance with the antenna connected but with loose coupling to the transmitter. Heavier loading of the tube is
then obtained by tightening the coupling between the antema coil and the transmitter tank coil.

Of the three systems, that at A is preferable because it is a symmetrical system and generally results in less r.f. power "floating" around the shack. The system of 13 is undesirable because it provides practically no protection against the radiation of harmonics, and it should only be used in emergencies.

Transmission-Line Feed for Dipoles

Since the impedance at the center of a dipole is in the vicinity of 70 ohms, it offers a good mateh for \quad To-ohm two-wire transmission lines. Several types are available on the market, with different power-handling capabilities. They can be contnected in the center of the antenna, across a small strain insulator to provide a conveniont comnection point. Coaxial line of 75 ohms impedance ean also be used, but it is heavier and thus not as

Fig. 14-9-Canstruction of a dipale fed with 75 -ahm line. The length of the antenna is calculated from Equation 14-B or Fig. 14-4.
convenient. In either case, the transmission line should be rum away at right angles to the antemat for at least one-quarter wavelength, if possible, to avoid current unbalance in the line caused by pick-up from the antenna. The antenna length is calculated from liquation 14-B, for a half wavolength antenna. When No. 12 or No. 14 enameled wire is used for the antenna, as is generally the case, the length of the wire is the over-all length measured from the loop through the insulator at each end. This is illustrated in Fig. 14-9.
"The use of 75 -ohm line results in a "flat" line over most of any amateur band. However, by making the half-wave antema in a special manner, called the two-wire or folded dipole, a good mateh is offered for a 300 ohm line. Guch an antenna is shown in Fig. 14-10. The open-wire line shown in Fig. 14-10 is made of No. 12 or No. 14 enameled wire, separated by

Fig. 14-10 The construction of an open-wire folded dipole fed with 300 -ohm line. The length of the antenna is colculated from Equation 14-B or Fig. 14-4.
lightweight spacers of Lucite or other material (it doesn't have to be a lom-lows insulating material), and the sparing (an be on the order of from 4 to 8 inches, depending upon what is convenient and what the operating frequency is. At 14 Mr., 4 -inch separation is satisfactory, and 8 -inch spacing ean be used at 3.5 Me .

The half wavelongth atatrona (ain also be made from the proper length of 300 -ohm line, opened on one side in the eenter and connected to the feedline. After the wires have been soldered tugether, the joint can be strengthened by molding some of the axeess insulating material (polyethylene) around the josint with a hot iron, or a suitable lightwoight clamp of two pireres of lacite can be devised.

Fig. 14-11-The constructian of a 3-wire folded dipale is similar to that of the 2 -wire folded dipole. The end spacers may have to be slightly stronger than the others becouse of the greater compression force on them. The length af the antenna is obtained from Equation 14-B or Fig. 14-4. A suitable line can be made from No. 14 wire spaced 5 inches, or from No. 12 wire spaced 6 inches.

Similar in some resperets to the two-wire folded dipole, the threw-wire folded dipole of Fig. 14-11 offers a good matrh for a 600 -ohm line. It is favored by amatcurs who prefer to use an open-wire line instead of the 300 -ohm insubated line. The three wires of the antenna proper should all be of the same diameter.

Another method for ufforing a match to a (000 -ohm open-wire line with a half wavelength antenna is show:a in Fig. 1-12. The system is called a delta match. The line is "famed" as it apmonches the antenna, to have agradually increasing impedance that equals the antemat impedance at the point of combertion. The dimensions ate fairy critical, but careful measurement bofore installing the antenna and matching sertion is generally all that is nemessary. The length of the antema, I, is calder-

Fig. 14-12-Delta-matched antenna system. The dimensions C, D, and E are found by formulas given in the text. It is important that the matching section, E, come straight away from the antenna without any bends.
lated from Lquation 14-B or Fig. 14-4. The length of section ' $'$ is computed from:

$$
\begin{equation*}
C^{\prime}(\text { feet })=\frac{118}{\text { Freq. (Me.) }} \tag{14-E}
\end{equation*}
$$

The feeder clearance, E, is found from

$$
E(\text { feet })=\frac{148}{\text { Freq. }(\mathrm{Mc} .)}
$$

(14-F)
Fxample: For a frequeney of 7,1 . Me., the length

$$
\begin{aligned}
& L=\frac{468}{7.1}=65.91 \text { fect, or } 65 \text { feet } 11 \text { inches. } \\
& C=\frac{118}{7.1}=16.62 \text { feet, or } 16 \text { feet } 7 \text { inches. } \\
& E=\frac{148}{3.1}=20.84 \text { feet, or } 20 \text { feet } 10 \text { inches. }
\end{aligned}
$$

Since the equations hold ouly for 600 -ohm line, it is important that the line be close to this value. 'This requires 5 -inch spaced No. 14 wire, 6 -inch spared No. 12 wire, or $33 / 4$-inch spared No. 16 wire.

If a half wavelongth atombat is fed at the center with other than 75 -ohm line, or if : two-wire dipole is fod with other than 300 -ohm line, standing waves will apmear on the lime and coupling to the transmitter maty become awkward for some line lengths, an deseribed in Chopter l:3. However. in many rases it is wot ronvenient to fered the half-wave antemata with the eorreet line (as is the case where multiband operation of the same antenna is desired), and sometimes it is not convernient to feed the antenna at the center. Where multiband operation is desired (to be disenssed later) or when the antemat must be fed at ond end hy a trans-

Fig. 14-13-The half-wave antenna can be fed at the center or at the end with on open-wire line. The antenno length is obtained from Equation 14-B or Fig. 14-4.
mission line, :n onen-wire line of from 150 to t 000 ohms impedance is gencrally used. The impedanere at the end of a half wavelongth anternata is in the virinity of several thousand ohms, and henee a standing-wave ratio of 1 or 5 is not unusual when the line is connereded to the end of the antemat. It is advisables, therefore, lo kerep the loseres in the line as low as possible. This requires the nise of ceramic or Micalex feeder sparers, if any appreciable power is used. For bow-power installations in dry dimates. dry wood spacers boiled in paraflin are satisfartory. Meehanical details of half wavelongth antennas fed with open-wire lines are given in lig. It-1:3, Regardless of the power level. solid-didenetrie Twin-Lead is not recommended for this use.

Long Wires

Long-Wire Antennas

An antema will be resonant so long as an integral number of standing waves of current and voltage can exist along its length; in other words, so long as its length is some integral multiple of a half wavelength. When the antenna is more than a half-wave long it usually is called a long-wire antenna, or a harmonic antenna.

Current and Voltage Distribution

Fig. It-1t shows the current and voltare distribution along a wire operating at its fundamental frequency (where its length is

2NO HARMONIC (FULL-WAVE)

D
4 TH HARMONIC (2.WAVE)
Fig. 14.14-Standing-wave current and voltage distribution along an antenna when it is operated at various harmonics of its fundamental resonant frequency.
equal to a half wavelength) and at its second, third and fourth harmonics. For example, if the fundamental frequency of the antemat is 7 Me., the current and voltage distribution will be as shown at A. The same antenna excited at 14 Mc. would have current and voltage distribution as shown at 13 . At 21 Me ., the third harmonic of 7 Me., the current and voltage distribution woud be as in C ; and at 28 Mc ., the fourth harmonic, as in D. The number of the harmonic is the number of half waves contained in the antenna at the particular operating frequency.

The polarity of current or voltage in each standing wave is opposite to that in the adjacent standing waves. This is shown in the figure by drawing the current and voltage curves successively above and below the antenna (taken as a zero reference line), to indicate that the polarity reverses when the current or voltage goes through zero. Currents
flowing in the same direction are in phase; in opposite directions, out of phase.
it is evident that one antenna may be used for harmonically-related frequencies, such as the various amateur bands. The long-wire or harmonic antema is the basis of multiband operation with one antenna.

Physical Lengths

The length of a long-wire antemna is not an exact multiple of that of a half-wave antenna because the end effects operate only on the end sections of the antenna; in other parts of the wire these effects are absent, and the wire length is approximately that of an equivalent portion of the wave in space. The formula for the length of a long-wire antenna, therefore, is

$$
\text { Length }(\text { fcet })=\frac{492(N-0.05)}{F r e q .(\mathrm{Mc})} \quad 14-\mathrm{G}
$$

where N is the number of half-waves on the antenna.

> Example: An antenna 4 half-waves long at 14.2
> Me. would be $\frac{492(4-0.05)}{14.2}=\frac{492 \times 3.95}{14.2}$
$=136.7$ feet, or 136 feet 8 inches.
It is apparent that an antenna cut as a halfwave for a given frequency will be slightly off resonance at exactly twice that frequency (the second harmonic), because of the decreased influence of the end effects when the antenna is more than one-half wavelength long. The effect is not very important, exrept for a possible unbalance in the feeder system and consequent

Fig. 14.15-Curve A shows variation in radiation resistance with antenna length. Curve B shows power in lobes of maximum radiation for long-wire antennas as a ratio to the maximum radiation for a half-wave antenna.

Fig. 14-16-Horizontal patterns of radiation from a full-wave antenna. The solid line shows the pattern for a vertical angle of 15 degrees; dotted lines show deviation from the 15 -degree pattern at 9 and 30 degrees. All three patterns are drawn to the same relative scale; actual amplitudes will depend upon the height of the antenna.
radiation from the fecdine. If the antenna is fed in the exact center, no unbalance will oceur at any frequeney; but end-fed systems will show an unbalaner on all but one frepuency in each hammonic range.

Impedance and Power Gain

The radiation resistance as measured at a current loop becomes higher as the antennat length is increased. Also, a long-wire antemna radiates more power in its most favorable direction than does a half-wave antenna in its most favorable direction. This power gain is secured at the expense of radiation in other

Fig. 14.17-Horizontal patterns of radiation from an antenna three half-waves long. The solid line shows the pattern for a vertical angle of 15 degrees; dotted lines show deviation from the 15 -degree pattern at 9 and 30 degrees. Minor lobes coincide for all three angles.
directions. liyg. $14-15$ shows how the radiation resistance and the power in the lobe of maximum radiation vary with the antenma leugth.

Directional Characteristics

As the wire is made longer in terms of the number of hali wavelongthe, the direetional effects change. Instead of the "doughmut" pattern of the half-wave antenna, the directional characteristic splits up into "Iobes" which make various angles with the wire. In general, ths the length of the wire is increased the direction in which maximum radiation oceurs tends to approach the line of the antenma itself.

Directional characteristies for antenats one wavelongth, threre half-wavelengths, and two wavelongths long are given in Figs. 14-16, 14-17 and $14-18$, for three vertical angles of radiation. Note that, as the wire length in-

Fig. 14-18-Horizontal patterns of radiation from an antenna two wavelengths long. The solid line shows the pattern for a vertical angle of 15 degrees; dotted lines show deviation from the 15 -degree pattern at 9 and 30 degrees. The minor lobes coincide for all three angles,
creases, the radiation along the line of the antenna becomes more promounced. Still longer antemas can be considered to have practically "end-on" directional chatacteristics, even at the lower radiation angles.

Methods of Feeding

In a long-wire antenna, the currents in adjacent half-wave sections must be out of phase, as show! in Fig. $14-14$. The feeder system must not upe this phase relationship. This is satisfied by ferding the antennat at either end or at any current loop. A two-wire ferder canmet be inserted at ab coment mode, howerry, because this invariably brings the curronts in two adjacont half-watve sections in phase. A long wire antemat is usually made a half wavelength at the lowest frequency and fed at the cond.

Multiband Antennas

Multiband Antennas

As suggested in the preceding section, the same antenna may be used for several hands by operating it on harmonies. When this is done it is neressary to use thened feeders, since the impedane matching for nonesonant feeder operation ran be aromplished only at one frequency unles means are provided for changing the length of a matching section and shifting the point at which the feoder is attareded to it.

1 dipole antemat that is center-fod by a soliddiolectric line is usoless for aven hammonie operation; on all even harmonies there is a voltage maximum occurring right at the feed point, and the resultant impedance mismatch causes a large standing-wave ratio and consequently high losses arise in the solid dielectrin. It is wise not to attempt to use on its even harmonies a half-wave antemat erenter-fed with coaxial cathle. On odd harmonies, as betwoon 7 and 21 Mre.. a current loop will appear in the erenter of the antomatand a fair mateh ran be ohtained. High-impedance solid-dielecture lines such as 300 -ohm Twin-Lead may be used in an emergences, provided the power does not exeed a few humdred watts, but it is an inoficient foed method.

When the stmo atomat is used for work in several bands, the directional characteristies will vary with the band in use.

Simple Systems

The most practical simple multiband antenna is one that is a hall wavelength long at the lowest frequency and is fed either at the center or one end with an open-wire line. Although the standing wave ratio on the feedline will not approath 1.0 on any band, if the losses in the line are low the system will be efficient. From the standpoint of reduced feedline radiation, a center-fed systom is superior to one that is end-fed, but the end-fed arrangemont is often more eonvenient and should not be ignored as a posibibity. The center-fed antenna will not have the same radiation pattern as an end-fed one of the same length, exrept on frequencies where the length of the antenna is a half wavelongth. The end-ferd antenna acts like a long-wire antenna on all bands (for which it is longer than a half wavelengib), but the eenter-fed one acts like two antenmas of half that length fed in phase. loor example, if at tull-wavelongth antomat is fed at one end, it will have a matiation pattern as shown in figg. 14-16, but if it is fed in the renter the pattern will be somewhat similar to Fig. $14-\overline{7}$, with the maximum radiation broadside to the wire. Bither antenna is a good radiator, but if the radiation pattern is a factor, the point of feed must be ('onsidered.

Since multiband operation of an antenna does not promit matching of the feedline, some attention should be paid to the length of the ferdline if convenient transmitteroroupling ar-
rangements are to be obtained. Table 14-I gives some suggested antenna and feeder lengths for multibaud operation. In general, the longth of the feredline can be other than that indieated, but the type of coupling cireuit may change.

Open-wire line foed is recommonded for an antenna of this type, since the losses will run too high in solid-diedectrie line. For low-power applications up to a fow hundred watts, open-wire TV line is compenient and satisfactory to use. However, for high-power installations up to the kilowatt limit, an open-wire line with No. 14 or No. 12 conductors should be used. This can le built from soft-drawn wire and reramic or other sultahble spacers, or it can be bought ready-made.

Antennas for Restricted Space

If the space available for the antema is not large enough to accommodate the length necessary for a half wave at the lowest frequency to be used, quite satisfactory operation can be socured by using a shorter antennat and making up the missing length in the feeder system. The antema itsolf may be as short as a quartor wave length and will radiate fairly well, although of course it will not be as effertive as one a half wave long. Nevertheless, surh a system is useful where operation on the desired band otherwise would be impossible.

Tuned feeders are a practical necessity with such an antenna systom, and a renter-fod antenna will give best all-around performance.

Fig. 14-19-Practical arrangement of a shortened antenna. When the total length, $A+B+B+A$, is the some as the antenno length plus twice the feeder length of the center-fed antennas of Table 14-1, the same type of coupling circuit will be used. When the feeder length or antenna length, or both, makes the sum different, the type of coupling circuit may be different but the effectiveness of the ontenno is not changed, unless $A+A$ is less thon a quarter wavelength.

With end feed the feeder currents become badly unbalanced.

With senter ferd, practically any ronverient lengeth of antenma can be used. If the total length of antemat plas twior feredline is the same as in Table $1+1$ I the type of tuning will be the stme as stated. This is illustrated in Fig. 1-1-19. If the total length is not the same, different tuming comditions can be experted on some hands. This should not be intorpreted as a fitult in the atho temat, and any thming serstom (serios or patalled) that works well without any trace of heating is quite satisfactors. Heating may result when the taps with parallel tuning are made too dose to the eenter of the coil - it cem often be corrected by using less total inductance and more rapacitince.

Bent Antennas

Since the field strength at a distance is proportional to the current in the antenna, the high-eurent part of a dipole antemina (the cemter quarter wave, approximatedy) does most of the radiating. Advantage cath be taken of this fitet when the space available does not permit building an antenna a half-wave long. In this ease the ends may be bent, cither horizontally or vertioally, so that the fotal lengeth copaads a half wave. ceon though the straghtaway horizontal longt maty be as short as a quarter wave. The operation is illustrated in lig. 14-20. Such an antemat will be a somewhat better radiator than a quarter wavelongth antenat on the lowest fre-

Fig. 14-20-Folded arrangement for shortened antennas. The total length is a half-wave, not including the feeders. The horizontal part is made as long as convenient and the ends dropped down to make up the required length. The ends may be bent back on themselves like feeders to cancel radiation partially. The horizontal section should be at least a quarter wave long.
quenes, but is not so desirable for multiband operation because the ends play an inereasingly important part as the frequeney is raised. The performanee of the system in such a case is difficult to prediot, esperially if the conds are vertical (the most convenient arrangement) because of the complex combination of horizontal and vertieal polarization which results as well as the dissimilar direetional charatsteristies. However, the fart that the radiation pattern is incopable of predietion does not detrant from the general usefulness of the antemna. For one-band operation, end-loading with eoils (5 foret or so in from carh oud) is practional and efficiont.

"Windom' or Off-Center-Fed Antenna

A multiband antenma that enjoyed considerable popularity in the lo3ses is the "offerenter feed" or "Windom." named after the amatern who wrote a comprehensive artiole about it, Shown in Fig. 14-21A, it consists of a half wavelengeth anternat on the lowest-frequence band to be used, with a single-wire feeder commerted It', off center. The antemat will operate sat isfactorily

Fig. 14-21-Two versions of the off-center-fed ontenna.
(A) Single-wire feed shows approximately 600 ohms impedance to ground and is most conveniently coupled to the transmitter as shown. The pi-network coupling will require more copocity of C_{1} than at C_{2}. L_{1} is best found by experiment-an inductance of about the some size as that used in the output stage is a good starting point. The parallel-tuned circuit will be a tuned circuit that resonates of the operating frequency with L and C close to those used in the output stage. The top is found by experiment, and it should be as near the top of L as it can and still give good loading of the transmitter.
(B) Two-wire off-center feed uses 300 -ohm TV line. Although the 300 -ohm line can be coupled directly to some transmitters, it is common proctice to step down the impedance level to 75 ohms through a pair of "balun" coils.

Trap Antennas

on the even-harmonic frequencies, and thus a single antenna can be made to serve on the 80-, $40-20$-, and 10 -meter binds. The single-wire feeder shows an impedance of approximately $6(0)$ ohms to groumd, and consequently the anterna coupling system must be capable of matehing this value to the transmitter. A tapped parallel-tuned circuit or a properly-proportioned pi-network coupher is generally used. Where TVI is a problem, the antenna coupler is required, so that a low-pass filter can be used in the connecting link of coaxial line.

Although theoretically the feed line can be of any length, sone lengths will tend to give trouble with "too much r.f. in the shack," with the consequence that r.f. sparks can be drawn from the transmitter's metal cabinet and/or v.f.o. notes will devolop serious modulation. If such is found to be the cass, the feeder lengt h should be changed.

A newer version of the offeenter-feed antenna uses 300 -ohm TV' Twin-Lead to feed the antemna, as shown in Fig. 1f-2113. It is claimed that the antenna offers a good mateh for the 300 -ohm line on four hands and, although this is more wishful thinking than actual truth, the sustem is widely used and does work satisfactorily: It is subject to the same feed line length and "r.f.-in-the-shack" troubles that the single-wire version enjoys. However, in this case a pair of "halun" coils can to used to step) down the impedance level to Ti) ohms and at the same time alleviate some of the feed line troubles. This antema sustem is popular among amateurs using multiband transmitters with pi-network-tuned output stages.

With cither of the off-center-fed antemat systems, the feed line should run away from the antenna at right angles for ats great a distance as pessible before bending. No sharp bends should be allowed anywhere in the line.

Multiband Operation with Coaxial Line Feed

The proper use of conatial line roquires that the standing-wave ratio be held to a low value, preferably below $2: 1$. Since the impedane of an ordinary antenna changes widely from band to band, it is not possible to fered a simple antemna with coasial line and use it on a number of bands without tricks of some kind. The single exerption to this is the use of 75 -ohm coasial line to feed a 7-Mc. half-wave antemat, as in Fig. 1f-1!?; this antenna can also be used on 21 . Ne. and the s.w.r. in the line will not run too high.

One multiband antenna system that can be used he anyone without much trouble is shown in Fig, $1+22$. Here separate dipoles are connected to one feedline. The 7 -Mre, dipole also serves on 21 Mr. A low s.w.r. will appear on the feedline in eath hand ii the dipoles are of the proper length. The antenna system can be built by suspending one set of elements from the one above, using insulator-terminated wood spreaders about one: foot long. An alternative is to let one antemat droops several foce under the other, bring ropes attached to the insulators hark to a eommon sup-

Fig. 14-22-An effective "all-band" antenna fed with a single length of coaxial line can be constructed by joining several half wavelength antennas af their centers and feeding them at the common point. In the example above, a low s.w.r. will be obtained on $80,40,20$ and 15 meters. (The 7 -Mc. antenno also works of 21 Mc .) If a $28-\mathrm{Mc}$. antenna were added, 10 -meter operation could also be included.

The antenna lengths can be computed from formula 14-B. The shorter antennas can be suspended a foot or two below the longest one.
port point. It has bern found that a separation of only an inch or two between dipoles is satisfaetory. By using a length of the 'lwin-Lead used for folded dipoles (one Copperweld eombuctor and one soft-drawn), the strong wire can be used for the low-frequeney dipole. The soft-drawn wire is then used on a higher band, supported by the solid dielectrie.

A vertical antenna can be operated on several hands and fed with a single length of coasial line provided the antenna is no longer than 0.6 wavelength at the highest frequency and that a suitable matching net work for each band is used at the hase. A good radial or ground system is required. The matching sections can be housed in a weatherproof tox and changed mantally or bey stepping relays; their form will vary from parallel-tumed circuits to L sections. (See MeCos, (QNT, 1)erember, 1955, for description of L -sertion coupler.)

Multiband "Trap" Antennas

Suother approarh to the problem of multiband operation with a single untumed ford line is the use of parallel-tuned circuits installed in the antemna at the right points to "divores" the remainder of the antema from the center section (part fod by coasial line) as the transmitter is changed to a higher-frequency band. This prinriple of the divoreing circuits is utilized in a commoredial "all-band" vertical antema, and a 5 -hand kit for horizontal antemnas is also available commercially, The divoreing circuits are also used in several commercial multiband beams for the $1+$-, 21-and 28-Mc. bands.

The multiband antenna system shown in Fig. $14-23$ may le of interest to the ham who wishes to work on several bands but doesn't have sufitcient spare for an 80-meter antenna and consoguently is limited to 40 meters and below. (A five-band antema requires more than a 10 (h)-foot span; ser (iremberg, (2s'T, Oetober, 1956.)

On to moters the traps serve as inductors to lowit the system to 7 Mr. On 20, the traps (resonant to 1 i. 1 Ma.) divore the 13 seetions from the

14 - ANTENNAS

Fig. 14-23-Sketch showing dimensions of a trap dipole covering the 40-, 20- and 10 -meter bands. The total span is less than 60 feet.
 locomes approximately a $\overline{5} / \mathbf{Z}$-radiator.

As shown in fig. 14-2:3, cach trap is liturally built around an "egy" or "strain" insulator". In this type of insulator, the folde at one cond is at right angles to the hole at the other ernd, and the wires are fastened as in Fig. I $1-2$. ${ }^{5}$. These jnsulators have greater eompressive strength than tensile strength and will not permit the antemat to fall should the insulator break, sine the two interleoped witres prewont it. There is ample spare within the indurtor for both the insulator and eapacitor. The plastie revers are not assential hat are considered desirable berause they provide merhanical protertion and prevent the areamulation of ire or soot and tams which may not wash ofl the traps when it ratus.

Plectrically, (anh traj comsists of a $25-\mu \mu \mathrm{f}$. rapacitor shunted by $1.7 \mu \mathrm{~h}$. of imeluctanere. A
 $2 \overline{3} /$, rated at $15,0(6)$ volts d.e., is shown and will safely handle a kilowatt. Othor erramio caparitors rated at appoximately bollot volts would be satisfactory, ats well as cheapre The inductors are mate of No. 12 wite, 2 年 inches in diameder, of turns per inch (B \& W^{2} 390\%-1 coil stock)

One maty wish to ehoose a difterent lieptuenery in the 20-meter band for which ontimum results are desired; for example, 14.0.5. Me. for ew. operation, 14.25 Me. for phome operation, of prothaps +4.175 Me. for general coverage. In any mase, the number ef inductor turns is adjusted aceordingly.

Trap Adjustment

As a preliminary step, lonps of No. 12 wite atre fitted to one of the ege insulators in the nomal mamere (sere Fig. 1--25), exerep that alter the wats are made, the cond loads are suipped off close to

the wrap)s. A (aparitor is then phaced in position and bridged with short leads across the insulator and soldered sufficiently to provide temporary support. The rombination is then slipped inside about 10 turns of the indurtor, one cond of which should be soldered to an insulator-capacitor leand. Ddjustment to the resonant frequence van now proced, using a grid-dip meter.

Compling betworn the g.d.o, and the trat should be very loose. To insure areuracy, the station receriver should be used to cherk the g.d.o. fregutarys. The inductane should be redued $1 / 4$ turn at a time. If one is careful, the resomant frogueney can casily be set to within a few kilocerelos of the chowen figure.

The reason for snipping the and feads close to the wraps and the inclusion of the loops through the cage insulator soon beromes apparent. 'The resonant frecureney of the eapacitor and inductor alone is reduced about 20 ke . per inch of and la ad length and about 350 ke . We the insulator loops The lattor add appoximatele $2 \mu \mu$ f. to the fixed capacitor value and areount for the total of 27 $\mu \mu$. shown in Fig. 14-2;3.

Assembly

Having detormined the exart number of induetor turns, the trap is taken apart and reassombled with leads of any conveniont length. One maty, of ronser, commed the entire lengthe of sertions A and B to the tratp at this time, il desired. But, if more comvenient, a foot or two of wire can be fastened and the remaining lenge has soldered on just before the antemat is maised.

The protective covers are most readily formed by wapping two turns (plus an overlap of $\frac{1}{2}$, inch) of (0.020-inch polyst vrene or luate shereting around a 3 -inch plastio disk hold at the center of the evelinder so formed. The length of the eover should be about 4 inches. A very small amount of plastic solvent (a cohesive cement that actually soltras the phastie surfares) should then be applied under the edge of the overlap and the joint held firmly for about

Fig. 14-24-The 14-Mc. trap is enclosed in a weatherproof cover made of plastic sheet. The ceramic copacitor and strain insulator are inside the coil.

Fig. 14-25-Method of connecting the ontenno wire to the strain insulator. The ontenno wire is cut off close to the wrap before checking the resonont frequency of the trop.

B are then adjusted for resoname at approximately 7.2 Me. For the dimensions shown, with the antenna about 250 ft . above stret lovel and 35 ft . abowe chectrical ground, an s.w.r. of virtually 1 to 1 was ohtaned at 7.2 Me., with maximums of 1.3 and 1.1 at 7.0 and 7.3 Ma ., respectively. In the 20 meter band, the s.w.r. was also I to 1 at $14.1 \mathrm{Mr} \cdot, 1.1$ at 14.0 Mr , and 1.3 art 14.3 Mr. In the 10 -meter band, the s.w.r. was 1.3 to 1 at $28.0 \mathrm{Me}, 1.1$ at $28 . \mathrm{II}^{2}$., 1.5 at 29 Mc ., and only 2.4 at the upper extreme of the band The s.w.r. on 21 Me. will be high because the antemat is not resonant in that band.

R(i-59/L 7 73-ohm convial cable forms the transmission line and is commered to the antema through it Continental Electronies \& Sound Co. "Dipole Dri-l"it Commertor." .Ifter commecting the cable and antenna wires, the eomeretor should be coated with severabl laters of insulating vamish to make ertain that the junction is watertight.

Vertical Antennas

A vertical quartor-watvelength antemat is often used in the low-frequence amateur bands to ohtain low-angle madiation. It is also used when there isn't mough room for the supports for at horizontal antemat. For maximum effertiveness it should be located free of nearby objects and it should be operated in conjunetion with a grood ground sustem, but it is still worth trying where these ideal ronditions cammot be ohtained.

Four typical examples and suggested mothouts for feoding a vertical antemat are shown in Fig. 11-26. 'The :untemat maty be wire or tubing supported bey worl or insulated guy wires. When tubing is used for the intemat, or when guy wires (broken ap by insulators) are used to reinfore the structure, the length given by the formula is likely to be long by a fow per cent. A cherek of the standing-wave ratio on the line will indicate the freduenes at which the s.w.r, is minimum, and the antenna length an be adjusted accordingly.

I good ground comection is necessary for the most effertive operation of a vertioal antemna (other than the ground-plane type). In some eases a short comection to the eold-water sustem of the house will be adequate. But maximum performance usually demands a separate ground sustem. I single 4 - to 6 -foot ground rod driven into the carth at the base of the antemat is usually not sufficient, unless the soil has execptional conductivity. I minimum ground system that can be depended upon is 6 to 12 quarter watvelength radials latid out as the spokes of a wheel from the base of the antennat. These radials can
be made of heavy aluminum wire, of the type used for grounding TV intomas, buried at least

Fig. 14-26-A quorter-wovelength antenna con be fed directly with 50 -ohm coaxiol line (A) with a low stondingwove rotio, or a coupling network con be used (B) thot will permit o line of any impedonce to be used. In $(B), L_{1}$ and C_{I} should resonote to the operoting frequency, ond L_{1} should be lorger thon is normally used in o plote tonk circuit of the same frequency. By using multiwire ontennas, the quorter-wove verlical con be fed with (C) 150-or
(D) 300-ohm line.
(i) inches in the gromed. This is momally dome he stitting the fanth with it spathe and pushing the wire into the slot, after which the rarth rath la famped down.
"The examples shown in Fig. 1-2tiall require an anternat insulated from the ground, to provide for the fered point. A groamberl tower or pipe cem be used as at radiator by emploving "shunt tered," which consists of tepping the inmer eonductor of the rowial-line ferd up on the tower until the lest mateh is ohtained, in murh the same manner as the "gamma mateh" (described later) is used on a horizontal eloment. If the anternat is not an deretrical quaterer wavelongth long, it is neressaty to tune out the reactance be adding retparite of indurtaner betwern the consiab line and the shunting condurtor. A metal tower supporting a TV antanat or rotary beme can be shunt-fod only. if all of the wires and leads from the supported antemat run dewn the erenter of the tower and underground away from the tower.

THE GROUND-PLANE ANTENNA

I ground-plane antennat is at vertical quaterwavelength antemm using an artificial motallic ground, usually consisting of four rods or wires perpendienlar to the antemna and extending radially from its base. S'alike the quarter-wavelength vertioul antromas without an atificial groumd, the ground-plane antomat will give low-angle radiation regatelless of the height above actuat ground. LIowever, to be a true ground-platice athtranat, the platue of the reulials should be at least at ghaterer wavelength ahove gromel. Despite this one limitation, the antemat is useful for DX work in any band bolow 30 . Mc.

The vertical portion of the gromad-plane antemat can be made of sedf-supported ahminum thbing or at top-sinpported wire dopenting upon the necessary length and the avatiblble supports. The radials ate also made of tubing or heavy wire depending upon the available supports and neeressary lengeths. Thay nered not be exatoly symmetriat athout the base of the vertioal portion.

The radiation resistane of a ground-platere :artemat varies with the diameter of the vertieal element. Since the radiation resistanere is usually in the vicinity of 30 to 32 ohms the anternat ath
 length matehing section of sothom cotxial line is used between the lime and the antemat. (Sere "(Quterter-Wave "Transformers" in this ehatptere)

For multiband opration. aground-phane antemat cian be ferl with tumed open-wire line.

Three-Band Ground-Plane Antenna

A threx-band ground-plame antronat using wire
rements and fed with robidid line is whow in Fig. 14-27. The hmilder (Kishlid) elocted to monnt it on top of a : f -fome lingth of galvanizel iron pipe, sitre at ground-plane antennat close fo the gromed is not a ground-plane antematat atl. four 17 -foot "drooping radials" form the ground plane and donble as guy wires. These four wires are fastened to a pipe flange at the top of the mast. At one point on the mast the pipe sections are joined by a T fitting, which provides a convernient point for bringing out the R(i-8/L feed line. If it is more convenient to bring out the coas at the hase of the mast, one com eliminate the ' 1 ' fitting and use at ordinary eoupling.

I cane fishing pole supports the three separate verticed elements. These elements, made of No. 12 wire, are tiped to the pole every three ine hes with Seoteh clectrical tape. The botiom end of the pelle is jummed tight into the upper end of the support pipe and the costaial line is brought out of the pipe through at small hole just below the bottom of the flange. The inner condurtor of the coasial line is soldered to the junetion of the three vertical coments and the braid of the coaxial line is romaceted to the pipe flange. Ansone worrying about the insulating ability of a cand pole can forget it; it is being used at a low-impedance point.

Fig. 14-27-The three-band ground-plane antenna uses wire elements. Vertical elements are taped to a cone pole; the four radials also serve as guy wires. The radials "droop" a little, making a 40-degree angle with the supporting 1 -inch pipe.

Antennas for 160 Meters

Rasults on I.S Mr. will depend to a large extent on the antemat system and the time of day or night. Amost any random long wire that can be
tuned to resonance will work during the night but it will genarally be found very ineffective during the day. A vertical antema - or rather an an-

Antennas for 160 Meters

fomat from which the radiation is predominantly wertically polazed - is probaloly the best for 1.א-Me. queration. I horizontab antrama (hori-zontally-polatized radiations will give better wo sults during the night than the dely. The verti-rally-polarizod radiator gives a strong gromad wave that is effertive day or might, and it is to be prefered on 1.8 Me.

The low-angle ratdiation from a horizontal antenna $1 / 8$ or $1 / 4$ wavelength above ground is almost insignificant. Any reasonable height is small in terms of wavelength, so that a horizontal antenma on $1(60$ meters is a poor radiator at angles useful for long distances ("long," that is, for this band). Its chiof usefuhness is over relatively short distanres at night.

Bent Antennas

Since ideal vertical antemnas are generally out of the question for practical amateur work, the best compromise is to bend the antenna in sueh a way that the high-current portions of the antenna run vertically. It is advisable to place the anteman so that the highest currents in the antemat ocenr at the highest points above actual ground. Two anteman systoms desigued along these lines are shown in Pig. 14-28. The antemma of Fig, $1+28 \mathrm{~B}$ uses at full half wavelength of wire but is bent so that the higherorrent portion runs vertically. The horizontal portion rumning to $L_{1} C_{1}$ should rum 8 or 10 feet above ground.

Grounds

A good ground connection is generally important on 160 meters. The ideal system is a number of wire radials buried a foot or two underground and extending 50 to 100 feet from the central connertion print. The use of any less than six or eight radials is inadvisable.

If the soil is good (not rocky or sandy) and generally moist, a low-resistance conmection to the cold-w:ater pipe system in the house will often serve as an alequate ground system. The connertion should be made close to where the pipe enters the ground, and the surfate of the pipe should be scraped clean before tightening the ground clamp around the pipe.

A 6 - or 8 -font length of 1 -inch water pipe, driven into the soil at a point where there is considerable natural moisture, can be used for the ground connertion. Three or four pipes driven into the ground 8 or 10 feet apart and all joined

Fig. 14-28-Bent antenna for the 160-meter band. In the system of A, the vertical portion (length X) should be made as long as possible. In either antenna system, $L_{1} C_{1}$ should resonate at 1900 kc ., roughly. To a diust L_{2} in antenna A, resonate $L_{1} C_{1}$ alone to the operating frequency, then connect it to the antenna system and adjust L_{2} for maximum loading. Further loading can be obtained by increasing the coupling between L_{1} and the link.
together at the top with heavy wire are more effective that the single pipe.

The use of a counterpoise is recommented where a huried system is not prateticable or where a pipe ground camot be made to have low resistance because of poor soil ronditions. A counterpoise ponsists of a mumber of wires supported from (i) to 10 feet above the surface of the ground. (ienerally the wires are spared 10 to 15 feet apart and located to form a square or polygonal configuration under the vertical portion of the antennat.

Long-Wire Directive Arrays

As the length (in wavelengths) of an antenna is increased, the lobes of maximum radiation make a more actite angle with the wire, Two long wires can be combined in the form of a horizontal " V ", in the form of a horizontal rhombus, or in parallel, to provide a long-wire directive arras. In the " V " and thombin antemats the main lobes reinfore atong a line biserting the ateute angle between the wires: in the parallel antema the reinforement is along the line of the lobe. This reinforement provides both gain and directivity. along the line, since the lobes in other directions tend to eancel out. In general, the power gain
depends upon the length in wavelengths of the wires, assuming that the proper configuration for a given length and height alove ground is used.

Rhombir and " V " antennas are normally hidirectional along the biscector line mentioned above. They ean be made undirectional by terminating the conds of the wires away from the feed point in the proper value of resistance. When properly terminated. " V " and rhombic antennas of sufficient length work well over a thres-to-one or four-to-one frequency range and hence are useful for multiband operation.

Antema gains of the order of 10 to 15 db . can

Io obtained with properly-constructed long-wire arrays. Jlowerer, the paltem is rather shatp "the gains of this orter", and rhombie and " 5 "

they were, having heen displaced by the rotatable multi-element lagi beam. Further information on these antemnas can be found in The ARRL - Interna Bool.

Beams with Driven Elements

By combining individual half-wave antemats into :th array with suitahbe sparing betwern the intomats (rallod elements) and fording power to them simultanomsty, it is possible to make the radiation from the elements add up along at single direetion and form a beam. In other direetions the radiation tends to (ancel, so a power gain is obtained in one direction at the expense of radiation in other directions. There atre several methods of arranging the cloments. If they are strung end to cond, so that atl lie on the same straight line, the dements are said to be collinear. If they are patallel athd all lying in the same plane, the foldmouts are said to be broad-side when the phase of the current is the stmo in all, and end-fire when the rurrents are not in phase.

Collinear Arrays

Simple forms of collinetr arratys, with the current distrihution, are shown in lig. 14-29.

Collinear armas maty be mounted either horizontatly or vertically. Horizontal monting gives incroased horizontal dirertivity, while the wertioal direetivity remains the same as for at single element at the same height. Vertieal monnting gives the satme horizontal pattern as is single cloment, but concentrates the radiation at low angles.

Broadside Arrays

Paritlel antemnat elements with currents in phase may be combined as shown in Fig. 14-30 to form a broadside array, so named hecatuse the direction of matimum radiation is broadside to the plane containing the antennas. Igain the gain and direetivity dopend upon the spateing of the elements.

Broadside armas may be suspended either with the chements all vertical or with them horizontal and one thove the other (stacked). In the formor case the horizontal pattern beromes quite sharp,

Fig. 14-29-Collinear antennas in phose. The system of A is known as "two half waves in phase" and has a gain of 1.8 db . over a half-wave antenna. By lengthening the antenno slightly, as in B, the gain can be increased to 3 db . Maximum radiation is of right angles to the antenna. The antenno of A is sometimes called a
"double Zepp" ontenna, and that at B is known as on "extended double Zepp."

The two-clement array at.X is popularly known as "floo hatl-wayos in phater" of a double Zepp antembat. It will be reoguized ats simply a eronterfed dipole operated at its second hatrmonic.

Byy exterding the antemat, as at 13 , the additiontal gaill of ath extended double Zepp antomat cam be ohtained. (aurying the length beyond that,
 no longar has the maximum radiation at right angles to the wire.

While the vertical pattern is the same as that of one clament abone. If the arraty is suspended horizontally, the horizontal pattern is equivalent. to that of one element while the vertical pattern is sharponed, giving low-angle radiation.

Broadside arrays maty be fed either bey tuned open-wire lines or through gutarter-wave matehing sections and flat limes. In Fig. 14-3013, note the "crossing over" of the phasing section, which is neressary to bring the clements into proper

Fig. 14-30 - Simple broadside array using horizontal elements. By making the spacing S equal to $3 / 8$ wavelength, the antenno of A can be used of the corresponding frequency and up to twice that frequency. Thus when designed for 14 Mc . it can also be used on 21 and 28 Mc . The antenna at B can be used on only the design band. This array is bidirectional, with maximum radiation "broadsice" or perpendicular to the ontenno plane (perpendicularly through this page). Gain varies with the spocing S, running from $21 / 2$ to almost 5 db . (See Fig. 14-32).

(A)

Beams with Driven Elements

Fig. 14-31-Top view of a horizontal end-fire array. The system is fed with an open-wire line at x and y; the line can be of any length. Feed points x and y are equidistant from the two insulators, and the feed line should drop down vertically from the antenna. The gain of the system will vary with the spacing, as shown in Fig. 14.32, and is a maximum at $1 / 8$ wavelength. By using a length of 33 feet and a spacing of 8 feet, the antenna will work on 20,15 and 10 meters.
phase relationship.

End-Fire Arrays

Fig. It-31 shows a pair of paratlel half-wave dements with eurrents out of phase. This is known as an end-fire array becouse it radiates best along the plane of the antemnas, as shown.

The end-fire arraty may be used rither vartically or horizontally (elements at the same height), amb is woll adapted to amateur work beratuse it gives maximum gain with relatively close elemont spacing. Fig. 14-32 shows how the gain varies with spacing. Bind-fire clements may le eombined with additional collinear and broadside elements to give a further inerease in gain and dirertivity.

Bither tumed or untuned lines maty be used with this type of amm. Contumed lines preforably are matched to the antemat through a quater-wave

Fig. 14-32-Gain vs, spacing for two parallel half-wave elements combined as either broadside or end-fire arrays.
matching section or phasing stub).

Combined Arrays

Broandide, collinear and end-fire arrays may be combined to give both horizontal and vertioal directivity, as well as additional gain. The lower angle of radiation resulting from starking oldments in the vertieal plame is desirable at the higher frequencies. In general, doubling the numher of chements in an array by starking will raise the gatin from 2 to 4 (d).

Although armas can be fed at ono rond as in Fig. 1-3-3013, it is not esperially dasirable in the rase of large arratys. Better distribution of emergy hotwend clements, and henee better over-all performane will result when the fereders are attached as nearly as possible to the center of the arrey.

A four-ekmont arraty, known as the "lazy-H" antennet, hats been quito frecpuently used. This arrangement is shown, with tho fered point indicated, in Fig. 14-33. (Compare with Fig. 14-3013). For lest results, the bottom sertion should be at least a half wavelongth above ground.

Fig. 14-33-A four-element combination broadsidecollinear array, popularly known as the "lazy-H" antenna. A closed quarter-wave stub may be used at the feed point to match into on untuned transmission line, or tuned feeders may be attached at the point indicated. The gain over a half-wove antenna is 5 to 6 db .
It will usually suffiee to matke the length of eath elemont that given by Equations 14-B or 14-C. The phasing line betwern the parallel clements should be of oper-wire construction, and its length can be cadealated from:

Lerngth of half-way line (feet) $=$

$$
\begin{equation*}
\frac{480}{\text { Freq. (Mc.) }} \tag{14-H}
\end{equation*}
$$

Example: A half-wavelength phasing line for
28.8 Mr . would be $\frac{480}{28.8}=16.66 \mathrm{f}$

8 inclu-s.
The spacing let weon eloments catn be made equal fo the fength of the phasing line. No special atdjustments of lime or coloment longet on spating ame neoded, provided the formulas are followed closely.

Directive Arrays with Parasitic Elements

Parasitic Excitation

The antemat arrays previously deseribed are bidirectionald that is, they will radiate in directions both to the "front" and to the "back" of the antennat system. If radiation is wanted in
only one direction, it is necessary to use different clement arrangements. In most of these arrangements the additional elements receive power by induction or radiation from the driven element generally called the "antema," and reradiate it

Fig. 14.34-Gain vs, element spacing for an antenna and one parasitic element. The reference point, 0 db. , is the field strength from a half-wave antenna alone. The greatest gain is in direction A at spacings of less than 0.14 wavelength, and in direction B at greater spacings. The front-to-bock ratio is the difference in db, between curves A and B. Variation in radiation resistance of the driven element also is shown. These curves are for a self resonant parasitic element. At most spacings the gain as a reflector can be increased by slight lengthening of the parasitic element: the gain as a director can be increased by shortening. This also improves the front-to-back ratio.
in the proper phase relationship to achieve the desired effert. These celemonts are called parasilic elomonts, as contrasted to the driven elements which receive power directly from the transmitter through the transmission line.
'The parasitic eloment is called a director when it reinforeses radiation on a line pointing to it from the intema, and a reflector when the reverse is the rase. Whether the parasitio element is a director or reflector depends upon the paratsiticerelemont tuning, which usually is adjusted by changing its length.

Gain vs, Spacing

'The gatn of an antemat with parasitio elements varies with the spacing and tuning of the celomonts and thus for any given sparing there is a tuning condition that will give maximum gain at this sparing. The masimum front-to-back ratio soldom if ever, oerons at the same condition that gives maximum forward gain. The impedance of the driven element also varios with the tuning and sparing, and thus the antemas system must bre tumed to its final condition before the matoh between the line and the antena can be completed. However, the tuning and matching may interlock to some extent, and it is usually neresssary to rum through the adjust mentes severibl times to insure that the best possible tuning has been obtained.

Two-Element Beams

A 2 -dement bram is useful where spare or other considerations prevent the use of the larger structure required for a 3 -edement beam. The general practice is to tume the parasitie chement as a refleetor and space it about 0.15 wave-
length from the driven element, although some successful antennas have been built with 0.1wavelongth spacing and diverotor tuning, (iain mo. elemont spating for a 2 -dement antemata is given in fig. 14-3t, for the special case where the parasitic element is resomant. It is indicative of the performance to be expected under maximumrain tuming conditions.

Three-Element Bearns

Where room is available for an over-all length groater than 0.2 wavelength, a 3 bellemont heam is profer:ble to one with only 2 olements. ()nce the over-abll length has bern decided upm, the curves of Fig. I $1-35$ can be used to determine the proper spacing of director and reflector. If, for example, the distance between dieector and reflector can be made 0.4 wavelongth, Fig. 11 -35 shows that a spacing of $0.15 \mathrm{~J}-0.2 \mathrm{oh}$ gives a gain of 7.8 db ., and a spacing of 0.25) -0.15R gives a gain of 8.2 db. Ohviously the latter is the hetter choier, although the practical differenee might be diflienth to measure, and practical (merhanical) considerat tions might call for usiur the more balanerd $0.2 \mathrm{~J}-0.2 \mathrm{~K}$ construction and at gain of 8.1 dh .

Fig. 14-35-Gain vs, element spacing for 3-element beams using a driven element and a director and a reflector. The $0-\mathrm{db}$. reference level is the field strength from a half-wavelength antenna alone. These curves are for the system tuned for moximum forward gain.

The element spacing shown is the fraction of wave-
length determined by $\frac{984}{f(\mathrm{Mc.})}$. Thus a wovelength at 14.2
Mc. $=984$ ' $14.2=69.3$ feet. A spacing of 0.15 wavelength at 14.2 Mc . would be $0.15 \times 69.3=10.4$ feet $=$ 10 feet 5 inches.

When the over-all length has been decided upon, and the element spacing has been determined, the element lengths can be found by referring to Fig. $14-36$. It must be remembered that the lengths determined by these charts will vary slightly in actual practire with the alement diameter and the mothod of supporting the ehoments, and the tuning of a heam should always be ehecked after installation. However, the lengths ohtained hy the use of the chats will be
close to correct in practically all cases, and they can be used without checking if the beam is difficult of access.

The preforable method for checking the beam is by means of a field-strength meter or the

Fig. 14-36-Element lengths for a 3-element beam. These lengths will hold closely for tubirg elements supported at or near the center. The radiation resistance (D) is useful information in planning for a matching system, but it is subject to variation with height above ground and must be considered an approximation.

The driven-element length (C) may require modification for tuning out reactance if a T- or gamma-match feed system is used, as mentioned in the text.

A $0.2 \mathrm{D}-0.2 \mathrm{R}$ beam cut for 28.6 Mc . would have a director length of $45228.6=15.8=15$ feet 10 inches, a reflector length of $490 / 28.6=17.1=17$ feet 1 inch, and a driven-element length of 470.5, $28.6=16.45=$ 16 feet 5 inches,

S-meter of a communications receiver, used in conjunction with a dipole antemat located at least 10 wavelongths away and as high as or higher than the beam that is being checked. A few watts of power fed into the antenna will give at useful signat at the olservation point, and the power input to the transmitter (and henere the antenna) should the held constant for all of the readings. Beams tuned on the ground and then lifted into place are subject to tuning errors and camot be depended upon. The impedance of the driven element will vary with the height above ground, and good practice dietates that all final matching between antennatad line be done with the antema in plare at its normal height above ground.

Simple Systems: the Rotary Beam

Two- and 3 -element systems are popular for rotary-heam antennas, where the entire antemna system is rotated, to promit its gain and directivity to be utilized for any compass direction, They may he mounted either horizontally (with the plane containing the elements paralfol to the earth) or vertically.

A 4-element beam will give still more gain than a 3 -element one, provided the support is sufficient for abont 0.2 watvelength sparing between clements. The tuning for maximum gain involves many variables, and eomplete gain and tuning data are oot available.

The clements in close-spared (less than oncquarter wavelength element spacing) arrays preferably should be made of tubing of onehalf to one-inch diameter. A conductor of large diameter not only has less ohmic resistance but also has lower Q; both these factors are important in close-spaced arrays because the impedance of the driven element usually is quite low compared to that of a simple dipole antennat. With 3 - and 4 -element close-spaced arrays the radiation resistanne of the driven element may be so low that ohmie losses in the eonductor fan consume an appreciable fraction of the power.

Feeding the Rotary Beam

Any of the usual methods of feed (described later under "Matching the Antennat to the Line") can be applied to the driven element of a rotary beam. Tuned feeders are not recommended for lengths greater than a half wavelength unless open lines of copper-tubing conductors are used. The popular choices for freding a beam are the gamma match with series capareitor and the T match with series capacitors and a half-wavelength phasing section, ats shown in Fig. 1.t-37. These methods are preferred over any others because they permit adjustment of the matehing and the use of coasial line feed. The variable aipacitors can be housed in smanl plastic cups for weatherproofing: rereiving typers with chose spacing can be used at powers up to a few handered watts. Maximum caparity required is usuatly $110 \mu \mu \mathrm{f}$, at 14 Me. and proportionately less at the higher frequeneies.

Fig. 14-37-The most popular methods of feeding the driven element of a beam antenna are (A) the gamma match and (B) the T match. The aluminum tubing or rod used for the matching section is usually of smaller diameter than the antenna element; its length will vary somewhat with the spacing and number of elements in the beam, The coaxial line in the phasing section can be coiled in a
2- or 3-foot diameter coil instead of hanging as shown.
If physically possible, it is better to adjust the matehing deviece after the antema has bern installed at its ultimate height, sinee a mateh made with the antema near the ground may not hold for the same intemit in the air.

Sharpness of Resonance

Pak performance of a multiclement parasitie array depends upon proper phasing or taming of the elements, which can be exact for one frequency only. In the case of close-spared arrays, which because of the low radiation resistance usually are quite sharp-tuning, the frequency range over which optimum results can be secured is only of the order of 1 or 2 per cent of the resonant frequenery, or up to about 500 ke , at 28 Mc. However, the antenna
can be made to work satisfactorily over a wider frequency range by adjusting the director or directors to give maximum gain at the highest frequency to be covered, and by adjusting the reflector to give optimum gain at the lowest frequency. This sacrifices some gain at all frequencies, but maintains more uniform gain over a wider frequenty range.

The use of large-diametor conduetors will broaden the responsce curve of an array because the larger diameter lowers the Q. This causes the reactances of the elements to change rather slowly with frequency, with the result that the tuning stays near the optimum over a considerably wider frequency range than is the case with wire conductors.

Combination Arrays

It is possible to eombine parasitie elemonts with driven elaments to form arrays composed of collinear driven and parasitio dements and combination broadside-collinear-parasitio choments. Thus two or more colline:tr elements might be provided with a eollinear refleretor or director set, one parasitio dement to cath driven element. Or both directors and reflectors might be used. A broadside-oollinear array ean be treated in the same fashion.

The Quad Antenna

The "cubical quad" antentar shown in fig. 14-38 uses a square loop drivern dement and at square loop, parasitic reflector. The spacing is usually betwern . 5 a and .20 wavelength and it is not retical, sinee the reflector element is tuned for maximum gatu after installation.

Quad antemats are pepular berause they are lightweight and have low wind resistance. 'Their gain has been measured at 8 db . or more i itMe. quad will have approximately a 17 -foot "wing span" and a boom longth of about 12 feot, and it can be built light enough to be turned bey a good TV' motator. Suggestions for the construction of a quad antennat are given in Fig. If-39. The design was intended to be as light as possible and while the antemat will whip some in the wind, this should not cause any noticeable change in

Fig. 14-38-Two different arrangements of cubica' quad antennas.

Quad Antenna

Fig. 14-39-End and side views of a quad. Upper insert shows method of fastening antenna wire ta support arms. Center insert shows construction of support-arm mounting bracket. Lower insert shows method of attaching feed line and stub to the center insulators. Two small egg insulatars are used, fastened to end of lower boam as shown with a small nail. The length of one side is found from $L($ feet $)=\frac{251}{f(M C .)}$
loweling or on recoived signals. There is nothing aritical in the construetion exerpt the length of the wire clements. One quad used 1×2-inch pine for the support arms but this beam was much too hervy and blew down in the first light wind. The support arms shown in the drawing are ordinary bamber fishing polds about 16 feet long, with the butt rads wrapped with friction tape to prevent the metal mounting bracket and wire from biting into the bamboo. These arms are fastened to the monnting brackets with several turns of No. It galvanized wire, and the far ents are not trimmed until the antenna wire has been fastenced in place. Two mounting brackets and right bamboo support arms are recuired. The mounting brackets serve to hold the arms in place and to fasten them to the end of the boom. These brackets are made by welding two 24 -inch longths of 1 -inch angle iron together back to batek to form a large " X " 00 degrees hetween legs, and welding a 5 -inch length of $11 / 2$-inch strap iron bet ween two of the legs to fasten the "X" to the boom end. The arms are assembled and the antenna wire is fastened in plare before attaching the brackets to the boom.

If the fishing poles are well treated with a weatherproofing eompound they will last soveral vars. Weatherproofing compounds are available at all lumber dealers. Get straight poles with no splits in them. No insulators are neeressary, the poles themselves acting ats long insulators. The

Fig. 14-40-A 15 10 -meter quad. Tuning stubs for the reflectors are looped bock along the tie bars. Total weight of this assembly, not including the mast, is 13 pounds.
easiest way to mount the antenna wire on the arms is to lay a long length of wire on the ground and mark it at the approximate quarter-wave intervals, and use these marks to indicate where the wire fastens to the pole.

Duab and triple quands can be built for the bands 20) through 10 meters. One such antemat is shown in Fig. $1+-40$, a dual quad for 15 and 10 meters. The same supporting structure is used for the two antennas, making the boom length equal to 0.15 to 0.2 wavelongthe at the lower-frequency band. Separate roaxial rable fered limes are brought, down from the two driven elements. In a twoband quad ($20 / 15$ or $15 / 10$) the lengt ho of one side is obtained from

$$
L(\text { foct })=250 \div(M c .)
$$

In the case of any quad or combination of

quads, ratch quad whould la tumed up sepatrately for maxinum forward gain hy aljusting the stul, length on the reflector clement and eheeking the field strength with a nearby ham. If aecessible, the reflector element cam be resonated with a griddid meter to a frequence just below the lowest to be used: this is a good starting place for lurther arljustment. The resonamer of the antennat
shistom ran la chreked ly finding the frequeney that gives the lowest s.w.r. on the feed line; this lowest s.w.r. is not necessarily 1.0. If the resonant frequency is higher than the desired frequeney, lengthen the driven element: shorten the elemment if the resonant frequency is too low. In the dual antemas that have been construeted, there has been little or no evidence of interaction of tuning.

Matching the Antenna to the Line

The load for a transmission line may be any device capable of dissipating r.f. power. When lines are usod for transmitting applications the most common type of load is an antennat When a transmission line is connected between an antomat and a recoiver, the recoiver input circuit (not the antenna) is the load, because the power taken from a passing wave is delivered to the recriver.

Whatever the application, the conditions existing at the load, and only the load, determine the standing-wave ratio on the line. If the load is purely resistive and equal in value to the characteristice impedance of the line, there will be no standing waves. If the load is not purely resistive, and/or is not equal to the line Z, there will be standing waves. No adjustments that can be mate at the input end of the line can change the s.w.r., nor is it affected by ehanging the line length.

Only in a few special cases is the load inherently of the proper value to match a practicable transmission line. In all other cases it is necessary cither to operate with a mismatch and acerept the s.w.r. that results, or clse to take steps to bring about a proper mateh between the line and load by means of transformers or similar deviess. Impedance-matching transformers may take a varicty of physical forms, depending on the circumstances.

Note that it is essential, if the s.w.r. is to be mate as low as possible, that the load at the point of connection to the transmission line be purely resistive. In general, this requires that the load be tumed to resonance. If the load itself is not resonant at the operating frequency the tuning sometimes can be arcomplished in the matehing system.

- THE ANTENNA AS A LOAD

Wvery antenna system, no matter what its physical form, will have a definite value of impedance at the point where the line is to be connerted. The problem is to transform this antenna input impedance to the proper value to match the line. In this respect there is no one "best" type of line for a particular antenna system, because it is possible to transform impedances in any desired ratio. (onsequently, any type of line may be used with any type of antonna. There are frequently reasons other than impedaner matelting that dictate the use of one type of line in preference to another, such as ease of installation, inherent loss in the line, and so on, but these are not considered in this section.

Although the input impedance of an antenna system is soldom known very aceurately, it is often possible to make a reasonably close estimate of its value. The information earlier in this chapter can be used as a guide.

Matehing cireuits may be constructed using ordinary coils and (atpacitors, but are not used very extensively because they must be supported at the antenna and must be weatherproofed. The systems to be described use linear transformers.

The Quarter-Wave Transformer or " Q^{\prime} Section

As described earlier in this chapter, a quarterwave transmission line may be used as an impedance transformer. linowing the antenna impedance and the characteristic impedance of the

Fig. 14-41-"Q" matching section, a quarter-wave impedance transformer.
transmission line to be matched, the required characteristic impedance of a matching section such as is shown in lig. $1: 3-13$ is

$$
\begin{equation*}
Z=\sqrt{Z_{1} Z_{0}} \tag{14-I}
\end{equation*}
$$

Whre Z_{1} is the antenna impedanee and Z_{0} is the eharacteristic impedanee of the line to which it is to be matehed.

> Example: To match a 600 -ohm line to an antenna presenting a $\overline{2}$-ohm load, the fuarterwave matching section would require a characteristic impedance of $\sqrt{62 \times 600}=\sqrt{43,200}$ $=208$ ohms.

The sparings between conductors of various sizes of tubing and wire for different surge impedances are given in graphical form in the chapter on "Transmission lines." (With $1 / 2$-inch tuhing, the spacing in the example above should be 1.5 inches for an impedanee of 208 ohms.)

The length of the quarter-wave matehing section may be ealculated from

$$
\begin{equation*}
\text { Length }(\text { feet })=\frac{246 \mathrm{~V}}{f} \tag{14-J}
\end{equation*}
$$

where $V=$ Velocity factor
$f=$ Frequency in Mc.
Example: A quarter-wave transformer of RG-II/U
is to be used at 28.7 Mc. From the table in Chapter

Folded Dipoles

Thirteen, $V=0.66$.
Length $=\frac{2.46 \times 0.66}{28.7}=5.67$ feet
$=5$ feet 8 inches
The antenna must be resonant at the oprating frequency. Setting the antennalength by formula is amply aceurate with single-wire antennas, but in other systems, particularly close-spaced arrays, the antenna should be adjusted to resonance before the matching sertion is ronnected.

When the antenna input imperdane is not known accurately, it is advisable to construct the matching section so that the spacing between conductors ean be changed. The spacing then may be adjusted to give the lowest possible sur.r. on the transmission line.

Folded Dipoles

A half-wave antenna element can be made to match various line impedances if it is split into two or more parallel conductors with the tramsmission line attached at the eenter of only one of them. Various forms of such "folded dipoles" are shown in Fig. 14-12, (urrents in all condurtors are in phase in a folded dipole, and sime the ronductor spacing is small the folded dipole is capuivalent in radiating properties to an ordinary singleronductor dipole. Ilowever, the current fowing into the input terminals of the antemna from the line is the current in one conductor only, and the entire power from the line is delivered at this value of current. This is equivatlent to saying that the input impedance of the antennat has beon raised by splitting it up into two or niore conductors.

Fig. 14-42 - The folded dipole, a method for using the antenna element itself to provide an impedance transformation.

The ratio be which the input impedance of the antema is stepped up depends not only on the number of conductors in the folded dipole but also on their relative diameters, since the distribution of current between conductors is a function of their diameters. (When one conductor is larger

Fig. 14-43-Impedance transformation ratio, two-conductor folded dipole. The dimensions d_{1}, d_{2} and s are shown on the inset drawing. Curves show the ratio of the imped. ance (resistive) seen by the transmission line to the radiation resistance of the resonant antenna system.
that the other, as in Fig. 1-42C, the larger one carries the greater current.) The ratio also depends, in general, on the sparing between the conductors, as shown by the graphs of liges. $14-4: 3$ and $1+44$. An inportant spectal case is the 2-ronductor dipole with conduetors of equal diameter; as a simple antenna, not a part of a directive array, it has an input resistance close enough to 300 ohms to afford a good match to 300 -ohm Twin-Lead.

The required ratio of conductor diameters to give a desired impedance ratio using two conduetors naty be ohtained from Fig. 14-43. Nimilar information for a 3 -conductor dipole is given in Fig. 1-4-4. This graph applies where all three condurtors are in the same plane. The two conductors not connected to the transmission line must be equally spaced from the fed eonductor, and must have equal diameters. The fed conductor maty have a diffarent diameter, however. 'The unequal-conductor method has been found particularly useful in matching to low-impodance antennats such as directive arrays using closespaced parasitic elements.

The length of the antema element should be such as to be approximately self-resonant at the median operating frequency. The length is usually not highly critical, because a folded dipole tends to have the characteristics of a "thick" antemna
and thus has a relatively broal frequency-response curve.

Fig. 14-44-Impedance transformation ratio, three-conductor folded dipole. The dimensions d_{1}, d_{2} and s are shown on the inset drawing. Curves show the ratio of the impedance (resistive) seen by the transmission line to the radiation resistance of the resonant antenno system.

"T" and "Gamma' Matching Sections

The method of matching shown in Fig. $14-5.5$ is based on the fact that the impedance between any two points along a resonant antemma is resistive, and has a value which depends on the spacing between the two points. It is therafore possible to choose a pair of points hetween which the impedance will have the right value to mateh a transmission line. In practiee, the line camot be comereded direetly at these points because the distane between them is murh greater than the condurtor spacing of a practicable transmission line. The "l" arrangement in lig. $14-45.1$ overcomes this difficulty by using a second conductor paralleling the antema to form a matehing sertion

Fig. 14-45-The "T" match and "gamma" match,
to which the line may be connected.
The "T" is particularly suited to use with a parallel-eondurtor line, in whieh case the two points along the antemma shouk be equidistant from the center so that electrieal balance is maintained.

The operation of this system is somewhat comphex. Earch "T" ronductor (y in the drawing) forms with the antemna condurtor opposite it a short section of transmission line. Bach of these transmission-line sertions can be considered to the terminated in the imperdance that exists at the point of connection to the antennat. Thus the part of the antema between the two points carries a transmission-line current in addition to the normal antema current. The two transmission-line matching sections arre in series, as seren by the matin transmission line.

If the antenna by it self is resonant at the op(rating frecquency its impedance will be purely resistive, and in such cas the matehing-section lines are termimated in a resistive load. However, since these sertions are shorter than a quarter wavelongth their inpat imperdane - i.e., the impredance seen by the main transmission line looking into the matehing-sertion terminals - will be reartive as well as resistive. This prevents a perfeet match to the main transmission line, since its load must be a pure resistance for perfect matching. The reactive eomponent of the input impedance must be tuned out hefore a proper mateh can be serured.

One way to do this is to detume the antenna just enough, by changing its length, to cause reartance of the opposite kind to be reflected to the input torminals of the matching section, thus cancelling the reactance introduced by the latter. Another method, which is considerably easier to adjust, is to insert a variable capauitor in series with the matching seetion where it connects to the transmission line, as shown in lig. $1+-37$. The capacitor must be proteeted from the weather.

The method of adjustment commonly used is to cut the antemna for approximate resonance and then make the spacing x some value that is convenient constructionally. The distance y is then adjusted, while maintaining symmetry with respect to the center, until the sw.r. on the trinsmission line is as low as possible. If the s.w.r. is not below 2 to 1 after this adjustment, the antemat longth should be changed slightly and the matching-section taps adjusted again. This proeess may be continued until the s.w.r. is as close to 1 to 1 as possible.

When the series-apacitor method of reactane compensation is used (lig. $1+4-37$) the antenna should be the proper length to be resonant at the operating frequener. Trial positions of the match-ing-section taps are taken, each time adjusting the capacitor for minimum s.w.r., until the standing waves on the transmission line are brought down to the lowes posible value.

The unbalanced ("gamma") arrangement in Fig. 14-15B is similar in principle to the " Γ," hut is adapted for use with single coax linc. The method of adjustment is the same.

Balancing Devices

- BALANCING DEvices

An antemba with open ends, of which the halfwave type is an example, is inherently a batanced radiator. When opened at the center and fed with a parallol-emondor line this balance is maintained throughout the system, so long as the rauses of unbalane diseussed in the transmissionline chapter are avoided.

If the antemas is forl at the eonter through a coaxial line, as indieated in Fig. If-46A, this batande is upset because one side of the radiator is ronnected to the shicld whike the other is conneeted to the inner conductor. (On the side conmeeted to the shicld, a current eath flow down over the outside of the coaxial line, and the fiehles thus sot up cannot be ranceled by the fiede from the inner conduetor becanse the fields inside the line camot eseape through the shichding afforded by the outer conductor. Hence these "antanna" currents flowing on the outside of the line will be responsible for ratiation.

Linear Baluns

Line ratiation can be prevented by a number of devieres whose purpose is to detume or derouple the line for "antenna" currents and thus greatly redure their amplitude. Such devies generally are known as baluns (a contraction for "balanced to unbalanced"). Fig. $1+4613$ shows one such arrangement, known as a bazooka, which uses a sheve over the transmission hine to form, with the outside of the outer line condurtor, a shorted quarter-wave line sertion. Is dewribed earlier in this chapter, the impedance looking into the open end of such a section is very high, so that the end of the outer conductor of the consial line is affectively insulated from the part of the line below the sleeve. The length is an declical quarter wave, and may be physically shorter if the insulattion between the sleeve and the line is other than air. The bazooka has no effect on the impedance relationships between the antemna and the coaxial line.

Another method that gives an equivalent effect is shown at C. Since the voltages at the antenna terminals are equal and opposite (with reference to ground), equal and opposite currents flow on the surfaces of the line and second conductor. Beyond the shorting point, in the direction of the transmitter, these currents combine to cancel out. The balancing section "looks like" an open eireuit to the antenna, siner it is a quarterwave parallel-tonductor line shorted at the far end, and thus has no effect on the normal antenna operation. However, this is not essential to the line-badaning function of the devies, and batuns of this type are sometimes made shorter than a quarter wavelength in order to provide the shunt inductive reartance required in certain types of matching systems.
Fig. $14-46 \mathrm{D}$ shows a third balun, in which equal and opposite voltages, batanced to ground, are taken from the inner conductors of the main transmission line and half-wave phasing sertion. Since the voltages at the balaned end are in series while the voltages at the unbabanced end are in

Fig. 14-46-Radiator with coaxial feed (A) and methods of preventing unbalance currents from flowing on the outside of the transmission line (B and C). The half-wave phasing section shown of D is used for coupling between an unbalanced and a balanced circuit when a 4-to-1 impedance ratio is desired or can be accepted.
parallel, there is a $1-t 0-1$ stop-down in impedance from the balaneed to the unbalaneed side. This arrangement is useful for coupling between a balanced 300 -ohm line and a 7 b-ohm coaxial line, for example.

RECEIVING ANTENNAS

Nearly all of the properties possessed by an antenna as a radiator also apply when it is used for reception. Current and voltage distribution. impedance, resistance and directional eharacteristies are the same in a reeceiving antematas if it were used as a transmitting antennat. This reciprocal behavior makes possible the design of a receiving antema of optimum performance based on the same considerations that have been diserssed for transmitting antonnas.

The simplest receiving antenna is a wire of random length. The longer and higher the wire, the more energy it abstracts from the wave. Becatase of the high sensitivity of modern receivers, sometimes only thort length of wire strung around the room is nsed for areopiving antenna, but such an antemat eamot be experted to give good performaner, although it is adequate for loud signals on the 3.5 - and 7 -Me, hands. It will serve in emergencios, but a longer wire outdoors is alwaysbetter.

The use of a tuned antenna improves the operation of the receiver, bectuse the signal strength is greater than with a wire of random length. Where locial electrieal mosise is a prohbem. as from ath electrical applianer a meature of reliof catn of ten be obtained by locating the antemata th high above and ats far as possible from the noise soure abd power lines. The leat-in wire from the center of the antennth, should be a coasial line or shiolded twin-ronductor cable (IRCi-ti2 ('). If the twin-ronductor cable is used, the conductors connert to the antenna binding posts and the shicld to the ground hinding post of the reediver.

Antenna Switching

Switching of the antenna from receiver to

Fig. 14-47-Antenna changeover for receiving and transmitting in two-wire line (A) and coaxial line (B). The lowpass filter for TVI reduction should be connected between switch or relay and the transmitter.
transmitter is commonly done with a changeover relay, connerted in the antemna leads or the coupling link from the antema funer. If the relay is one with a 115 -volt ace coil, the switch or relay that controk the transmitter plate power will also cont rol the antenna relay. If the eonvenience of a reday is not desired, poredain knife switches can be used and thrown by hand.

Typical arrangements are shown in Fig. 11-17. If comial lime is used, a coaxial relay is recommended, athough on the lower-frequarey bands ar regular switch or change-over redas will work almost as well. The relay or switeh contarts should be rated to hatudle at least the maximum power of the transmitter.

In ablelitional refinement is the use of an flomtronic transit-receive switeh, which permits full break-in operation even when using the transmitting antenma for reecoiving. For details and rireuitry on t.r. switches, soe Chapter Fight.

Antenna Construction

The use of good materials in the antemna system is important, since the antennat is exposed to wind and weather. To keop deetrical losses low, the wires in the antenna and feeder system must have good conductivity and the insulators must have low dielectrie loss and surfaee leakage, particularly when wet.

For short antemas, No. 14 gauge hard-drawn enameled copper wire is a satisfactory conductor. For long antennas and direetive arrays, No. 14 or No. 12 enameded copper-clad sted wire should be used. It is best to make feeders and mat ching st uls of ordinary soft -drawn No. 14 or No. 12 enameled copper wire, since harddrawn or copper-clatd steel wire is difficult to
hande unkess it is under considerable tension at all times. 'The wires should he all in one pierere; where a joint cannot be avoided, it should be carefully soldered. (0pen-wire TV line is excellent up to several hundred watts.

In buiding a two-wire open line, the spacer insulation should be of as good quality as in the antenna insulators proper. For this reason, good coramie spacers are advisable. Wooden dowols boiled in paraffin may be used with untuned lines, but their use is not recommended for tuned lines. The wooden dowels can be attached to the feeder wires by drilling small holes and binding them to the feeders.

At points of maximum voltage, insulation is

Antenna Construction

most important, and l'yrex glass or ceramic insulators with long leakage paths are recommonded for the antenna. Insulators should be cleaned once or twiee a year, especially if they are subjected to much smoke and soot.

In most caves poles or masts are desirable to lift the antenna chear of surrounding buildings, although in some locations the antenna will be sufficiently in the clear when strung from one chimmey to another or from a housetop to a tree. Small trees usually are not satisfactory as points of suspension for the antenma beatuse of their movement in windy weather. If the antomba is strung from a point near the center of the trunk of a large tree, this diffieulty is not so serious. Where the antenna wire must be strung from one of the smaller branches, it is best to tie a pulley firmly to the branch and run a rope through the pulley to the antenna, with the other end of the rope attached to a counterweight near the ground. The counterweight will keep the tension on the antenna wire reasonably constant even when The branches sway or the rope tightens and stretches with varying elimatic conditions.

Telephone poles, if they ran be purchased and installed coonomirally, make execllent supports berause they do not ordinarily require grying in heights up to 40 feet or so. Many low-oost television-antenna supports are now available, and they should not be overlooked ats possible ant enma aids.

- "A"-FRAME MAST

The simple and inexpensive mast shown in Fig. $14-48$ is satisfactory for heights up to 35 or 40 feet. Clear, sound lumber should be selected. The rompleted mast may be protected by two or three coats of house paint.

If the mast is to be erected on the ground, a couple of stakes should be driven to keep the bottom from slipping and it may then be "walked up" by a pair of helpers. If it is to go on a roof, first stand it up against the side of the building and then hoist it from the roof, keeping it vertieal. The whole assembly is light enough for two men to perform the complete operation - lifting the mast, carrying it to its permanent berth, and fastening the guys with the mast vertical all the while. It is entirely practicable, therefore, to erect this type of mast on any small, fata area of roof.

By using 2×3 s or 2×4, the height may be extended up to about 50 feet. The 2×2 is too flexible to be satisfactory at such heights.

SIMPLE 40-FOOT MAST

The mast shown in Fig. 14-49 is relatively strong, easy to construet, readily dismantled, and costs vory little. Like the "A"-frame, it is suitable for lieights of the order of 40 feet.

The top section is a single 2×3, bolted at the bottom between a pair of 2×3 with an

Fig. 14.48-Details of a simple 40 -foot " A ".frame mast suitable for erection in locations where space is limited.
overlap of about two feet. The lower section thus has two legs spaced the width of the narrow side of a 2×3. At the bottom the two legs are bolted to a length of 2×4 which is set in the ground. A short length of 2×3 is placed between the two legs about halfway up

the bottom sertion, to maintain the spacing.
The two back guys at the top pull against the antenns, while the three lower guys prevent buekling at the center of the pole.

The $2 \times t$ eretion -hould be set in the ground su that it fares the proper direction, and then made vertial by lining it up with a phumb bob. The holes for the bolts shouk be drilled beforehand. With the lower section laid on the ground, bolt A should be slipped in place through the three pieces of wood and tightened just enough so that the section can turn freely on the bolt. Then the top serction may be bolted in plate and the mast pushed up, using a ladder or another 20 -foot 2×3 for the jol. As the mast goes up, the sack in the guys ean be taken up so that the whole structure is in some measure continually supported. When the mast is vertiata, bolt B should be sliped in phate and both A and B tightened. The lower guys can then be given a final tightening, leaving those at the top a little sark until the antenna is pulled up, when they should be adjusted to pull the top section into line.

- GUYS AND GUY ANCHORS

For masts or pules up to about 50 feet, No. 12 iron wire is a satisfactory guy-wire material. Heavier wire or st ramded cable may be used for taller poles or poles installed in locations where the wind velocity is likely to le high.

More than three guy wires in any one set usually are unneecssary. If a horizontal antema is to be supported. two guy wires in the top set will be sulficient in most cases. These should run to the rear of the mast about $\mathbf{1 0 0}$ degrees apart to offset the pull of the antenna. Intermediate guys should be used in sets of three, one romning in a direation opposite to that of the antenna, while the other two are spaeed 120 degrees either side. This leaves a clear space under the antema. The guy wires should be adjusted to pull the pole slightly back from vertioal before the antenna is hoisted so that when the antenna is pulled up tight the mast will be stratight.

When ratsing a mast that is big enough to tax the available facilities, it is some advantage to know nearly exactly the length of the guys. Those on the side on which the pole is lying ean then be fastoned temporarily to the anchors beforehand, whichassures that when the pole is raised, those holding opposite guys will be able to pull it into nearly vertical position with no danger of its getting out of control. The guy lengths can be figured by the right-angledtriangle rule that "the sum of the squares of the two sides is equal to the square of the hypotenuse." In other words, the distance from the base of the pole to the anchor should be measured and squared. To this should be added the suatre of the pole length to the point where the guy is fastened. The square root of this sum will be the length of the guy.

Guy wires should be broken up by strain
insulators, to aroid the possibility of resonance at the transmitting frequencs. Common prastice is to insert an insulator neat the top of cach guy, within a few feet of the pole, and then eut each section of wire between the insulators to a length which will not be resonant cither wh the fundamental or harmonies. . In insulator every 25 feet will be satisfactory for frequencies up to 30 Me . The insulators should be of the "cgg" type with the insulating material under compression, so that the guy will not part if the insulator breaks.

Twisting guy wires onto "egg" insulators maty be a tedious joh if the guy wires are long and of large gange. A simple time- and fingor-saving

Fig. 14-50-Using a lever for twisting heavy guy wires.
device (piece of heavy iron or sterl) can be made by drilling a hole about twice the diameter of the guy wire ahout a hatf ineh from one end of the preere. The wire is passed through the insuhator, given a single turn by hand, and then held with a pair of pliers at the point shown in Fig. 14-50. By passing the wire through the hole in the iron and rotating the iron as shown, the wire maty be quickly and neatly twisted.

Guy wires may be anchored to a tree or buiking when the happen to be in convenient spots. For small poles, a 6 -foot length of 1 -ine h pipe driven into the ground at an angle will suffice.

- HALYARDS AND PULLEYS

Halyards or ropes and pulleys are important items in the antemnt-supporting system. Partieular attention shond be directed toward the choice of a pulley and halyards for a high mast since replacement, once the mast is in position, may be a major undertaking if not entirely imposible.

Galvanized-iron pullegs will have a life of only a year or so. Fisperially for coastal-area installations, mame-t ype pulleys with hardwood blocks and bronze wheds and bearings should be used.

For short antermats and temporary installations, heavy clothesline or window-sash cord may be used. Howover, for more permanent johs, 38 -inch or $1 / 2$-inch waterproof hemp rope should be used. Even this should be replaced about once a year to insure against breakage.

Rotary Beam Construction

Fig. 14-51 - An antenna lead-in panel may be placed over the top sash or under the lower sash of a window. Substituting a smaller height sash in half the window will simplify the weatherproofing problem where the sash overlaps.

It is advisable to carry the pulley rope back up to the top in "endless" fashion in the manner of a flag hoist so that if the antenna breaks close to the pole, there will be a means for pulling the hoisting rope back down.

BRINGING THE ANTENNA OR FEED LINE INTO THE STATION

The antenna or transmission line should be anchored to the outside wall of the buikding, as shown in Fig. $14-52$, to remove strain from the lead-in insudators. Holes cut through the walls of the building and fitted with feed-through insulators are undoubtedly the best means of
bringing the line into the station. The holes should have plenty of air clearance about the conducting rod, especially when using tuned lines that develop high voltages. Probably the best place to go through the walls is the trimming board at the top or bottom of a window frame which provides flat surfaces for lead-in insulators. Cement or rubber gaskets may be used to waterproof the exposed joints.

Where such a procedure is not permissible, the window itself usually offers the best opportunity. One satisfactory method is to drill holes in the glass near the top of the upper sash. If the glass is replaced by plate glass, a stronger job will result. llate glass may be obtained from automobile junk yards and drilled before placing in the frame. The glass itself provides insulation and the transmission line may be fastened to bolts fitting the holes. IRubber gaskets will render the holes waterproof. The lower sash should be provided with stops to prevent damage when it is raised. If the window has a full-length sereen, the seheme shown in Fig. 14-5213 may be used.

As a less permanent method, the window may be raised from the hottom or lowered from the top to permit insertion of a board which earries the feed-through insulators. This lead-in arrangement can be made weatherproof by making an overlapping joint between the board and window sash, as shown in Fig. $1+-51$, or hy using weatherstrip material where necessary.

Coaxial tine can be brought through clearance holes without additional insulation.

Rotary-Beam Construction

It is a distinct advantage to be able to shift the direction of a beam antenna at will, thus securing the benefits of power gain and directivity in any desired compass direction. A favorite method of doing this is to construct the antenna so that it can be rotated in the horizontal plane. The use of such rotatable antennas is usually limited to the higher frequencies - 14 Mc. and above-and to the simpler antema-clement combinations if the structure size is to be kept within practicable bounds. F'or the 14 -, 21 - and 28 -Nc. bands such antennas usually consist of two to four elements and are of the parasitic-array type described earlier in this chapter. At 50 Mc . and
higher it becomes possible to use more elaborate arrays because of the shorter wavelength and thus obtain still higher gain. Antennas for these bands are described in another chapter.

The problems in rotary-beam construction are those of providing a suitable mechanical support for the antenna clements, furnishing a means of rotation, and attaching the transmission line so that it does not interfere with the rotation of the system.

Elements

The antenna elements usually are made of metal tubing so that they will be at least partially self-supporting, thus simplifying the

Fig. 14-53-Defails of telescoping tubing for beam elements.
supporting structure. The large diameter of the conductor is heneficial also in redueing resistance, which becomes an important consideration when close-spaced elements are used.

Aluminum alloy tubes are gencrally used for the elements. The elements frequently are constructed of sections of telescoping tubing making length adjustments for tuning quite easy. Electrician's thin-walled conduit also is suitable for rotary-beam elements. Ingardless of the tubing used, the ends should be plugged up with corks soculed with glyptal varnish.

The element lengths are made adjustable by sawing a 0 - to 12 -inch slot in the ends of the larger-diameter tubing and clamping the smatler tubing inside. Homemade clamps of aluminum can be built, or hose clamps of suitable size cam
be used. An example of this construction is shown in Figg. $1+-5$.3. If sterl clampsate userl, they should be cadmium- or zincoplated before installation.

Supports

Metal is commonly used to support the elements of the rotary heam. For 28 Mar, a piece of 2 -inch diameter duraluminum tubing makes a good "boom" for supporting the elements. The elements ean be made to slide through suitable holes in the boom, or special clamps and brackets can be fashioned to support the clements. Fittings for TV antemats can of ten be used on 21-and 28-Mc. beams. "Irrigation pipe" is a good source of aluminum tubing up to diameters of 6 inches and longthe of 20 feet. Muffler damps ann be used to hold beam clements to a boom.

Most of the TV antenna rotators are satisfactory for turning the smaller beams.

Withall-motal eonst ruction, delta, "gamma" or "I"'-match are the only practiond matching methods to use to the line, since anything ense requires operning the driven element at the remter, and this complieates the support problem for that element.

"Plumber's-Delight" Construction

The lightest beam to build is the so-called "plumber's delight", an array eonstrueted antirely of metal, with no insulating members betwen the elements and the supporting structure. some suggestions for the constructional details are given in Figs. 14-54, 14-5j and 14-50, These show portions of a tedement 10 -meter beam, but the same principles hold for 15 - and 20 -neter beims.
l3oom material can be the irrigation pipe sugHested earlior (available from Sears Roehbek). Muffer clamps and homemate brackets (ahominum or cadminm-plated steel) can be used to hold the parasitic elements to the boom, as

Fig. 14-54-Muffler clamps can be used to hold beam elements to the boom. The angle can be aluminum angle or ongle iron; if iron is used it should be cadmium plated. This example shows a $3 / 4$-inch-diameter element held to a 2 -inch diameter boom.
shown in Fig. 1+5 4 . The mutfler clamps and all hardware should be cadmium-plated to forestall corrosion; the plating ean be done at a plating shop and will not he very expensive if it is all done at the same time.

Fig. 14-55 - The boom can be tied to the mast with muffler clamps and a steel plate. The coaxial line from the driven element is taped to the boom and mast.

Muffler clamps and a sterl plate ran be used to holel the boom to the supporting mast, as shown in lig $14-5 \overline{3}$. For maximum strength, the mast acetion should be a longth of galvanized iron pipe. The plate thickness shonld run from $3 / 16$ wheh for a 10 -meter beam to $1 / 2$ inch or more for a 20 -metor beam. Stioel plates of this thickness are test cut in a welding shop, where it can be dono quickly for a nominal fere. After the plate hats herof rat and the muffereremap holes drilled, the plate, damps and hatwatre should be plated.

The photograph in Fig. 14-56 shows one way

Rotary Beam Construction

Fig. 14-56-Details of a coaxial-line termination board and T-match suppart far a 10 -meter beam. The balun of a half-wavelength of coaxial line is cailed and then fastened to the boom with tape.

The speed of rotation should not be too great - one or $11 / 2 \mathrm{r} . \mathrm{p} . \mathrm{m}$. is about right. This requires a considerable gear reduction from the usual 1750-r.p.m. sperd of small induction motors; a large rodurtion is advantageous because the gear train will prevent the beam from turning in weather-vane fashion in a wind. The usual beam dors not require a great deal of power for rotation at slow speed, and a $1 / 8$-hp. motor will be ample. A reversible motor should be used. Wir-surplus "prop pitch" motors have found wide application for rotating 14-Mc. beams, while TV rotators can be used with many 28-Me. lightweight heams.

Driving motors and gear housings will stand the weather better if given a coat of aluminum paint followed by two coats of enamel and a coat of glyptal varnish. liven commercial units will last longer if treated with glyptal varnish. Be sure that the surfaces are clean and free from grease before painting. Crrase can be removed by brushing with korosone and then squirting the surface with a solid stream of water. The work can then be wiped dry with a rag.

The power and control leads to the rotator should he run in electrical conduit or in lead covering, and the metal should be grounded.

A Compact 14-Mc. 3-Element Beam

A 20 -meter beam now larger than the usual lo-meter beam ran be male by using centerloaded elements and rlose spacing. Such an antenna will show good direativity and an be retated with a Tl-antema rotator.

Constructinnal details of the elements are shown in Figs. 14-57 and $11-58$. The bouling orils are spuce-wound by interwinding phomb line (somotimes known as chalk line) with the No 12 wire coils. The coil euds are secured by drilling small holes through the polystyrene bar, as shown in Fig. 14-60. The coils should be splabed or painted with krylon before installing the protective Lucite tubes.

The beam will require 4 -foot lengths of the
tulings indicated in lig. 14-57.1. For good telesooping, element wall thickness of 0.058 inch is recommended. The ends of the tubing sections should be sloted to promit adjustment, and seeured with clamps, so that the joints will not work loose in the wind. barforated ground clamps ean be used for this purpose. The boom is a 12 -foot longth of $11 / 2$-inch o.d. (i1S'T aluminum tubing, with 0.125-inch wall.
The line is coupled and matched at the center of the driven element through adjustment of the link wound on the outside of the Lucite tubing. To check the adjustment of the elements, iurst resonate the driven element to the desired frequency in the $14-M c$. band with a grid-dip oscil-

Fig. 14-57-Dimensions of a compact 14 Mc. beam. A-Side view of a typical element. TV-antenna " U " clamps hold the support arms to the boom. Birnbach 4176 insulatars support the elements. B-Top plan of the beam showing element spacing and looding-coil dimensions. Elements are made of aluminum tubing. Construction of the loading coils and adjustment of the elements are discussed in the text. End-section lengths of 41 inches for the reflector, 40 inches for the driven element, and 10 inches for the director will be close to optimum.
lator: 'Then resonate the director to approximately 14.8 . Are, and the wofloter to approximately 13.6 Mre. This is tot eritical and omly survers at rough paint for the final tuming, which is done lig nise of at conventional fiold-strongth imdicator. Clowe the transmitter leading and tradjust if meressary . Wijust the director for maximum forward gain, and then adjust the reflector for maximmn forward gain. It this point, check the driven moment for resonamere and readjust if neressary. Furn the reflectar toward the fieldstrangth indiator and adjust for back cut-off.

This must be dome in small steps. Do not expect the attemation off the sides of a short beam to be as high as that oltained with full-lengih eldments. The sw.r. of the line foeding the antenna ram be cherked with a bridge, and aftere the clements have been tumed, a final aldinstment of the sw.r. can be made by adjusting the compling at the antema loading coil terns and sparing. As in :my beim, the s.w.r. will depend upon this adjustment and wot on any that can be made at the transmitter. Transuitter coupling is the usual for any coanial line. (From (2ST', M: My, 195 1 .)

A "One-Element Rotary" for 21 Mc.

The directional propertios of a simple halfwavelength :utema herome more apparent at higher frepuencios, and it is possible to take adsantate of this fact to build : "oncordement motary " for 21 ur $2 x$ Nac. To take adsantage of the direetional properties of the antema, it is culs necesestry to rotate it 180 degrees. It exmbe rotated by hand, as will he described, or by a
small TV antenna rotator. 18 : Mr. antema should be made full size (14-C) and fend at the renter with R(i-11/L.

 abetrie supply shop. It comes in 10 -foot longthes and, while 20 freet is short for a half-wave antemat

Rotary Beam Construction

Fig. 14-59-(A) Diagram of the 21-Mc. antenna and mounting. The U-bolts that hold the 2 by 2 to the floor flange are standard 2 -inch TV mast type bolts. (B) A more detailed drawing of the coil and coax-fitting mountings. The $1 / 4$-inch spacing between turns is not critical, and they can vary as much as $1 / 16$ inch without any apparent harm to the match.

at 21-Me., with londing the length is just about
 antenna would nommally be fed with 72 -ohnu cable, siner the antemmations a good mateh for this impodance value. In this antemat sistem, the shorter clements, phas the small coil, bffer a good match for 52 -ohm cable.) If ahminum tul)ing is availathle, it can be used in plater of the conduit, and the antenna will be lighter in weight. As shown in figs, $1+$-59 and $1+$-fo, the two pieress of tubing are supported be four stand-off insulattors on: a tour foot long 2 by 2. The coax fitting for the feed line is monnted on the end of one of the lengths of tubing. I mounting point is made by flattening the cond of the tubing for a length of about 1^{12} anches. The tubing can be flattened ber squerozing it in a vise or be laying the end of the tubine on a hatd surfare and then hammering it fat. This will provide enough spare to ateommodate the coax fitting (Amphomel type 8:3-1R). A \bar{x}-inch hole will be needed in the flat section to clear the she fl of the eocix fitting.

The coil, L_{1}, is mate from $1 / 8$-inch diameter copper tubing. It cousists of 5 turns spared $1 / 2$ inch apart and is 1 inch inside diameter. The abil is commerfed in serios with the inmer conducter pin on the cosax litting amd the other half of the
 fitting, the coil leat should be wommed aromed the inner-conductor pin athe soldered. The other end of the coil can be commerod with a screw and mat.

Mounting

The autemat ran be monnted on at 1 -ineh floor llange and held in place by two 2 -inela bolts, as shown in Fig. it-61. The floor flange can be commeded to at 12 -foot length of 1 -inch piper Which will serve as a mast. Tolovision abtemnab wall monnts can be used to support the mast.

In the instathation shown in Fig. $11-\mathrm{ti} 1$, 1!-inch wall moments were used in orther to elcan the cobves of the house, A 2 -inch long piece of 1 -itineh pipe was used as a sleeve, and it wats champed in the U bolt on the bottom wall monat. A ! ${ }^{2}$-ineh hole

Fig. 14-60-A close-up of the coil and coax fitting mountings. Be sure that the coil doesn't short out to the outer conductor when soldering the coil end to the inner conductor pin on the coax fitting.

14 - ANTENNAS

Fig. 14.61-Over-all view of the antenna and mounting. The feed line comes out of the bottom of the mast and through the wall into the shack.
was dribled through the mast pipe approximately (6 inches from the bottom. Then a $11 / 2$-inch bolt was slipped through the hole and the mast was then mounted in the slereve on the bottom wall mount. The bolt aded ats abearing point agatinst the top of the slonve. Another ${ }^{1}$ i-inch hole was dribled through the mats about three feet albove the foottom wall momet. A pieere of 1 -inch motal rood, sis inches long, was forced through the hole
so that the rod projected on earh side of the mast. To turn the mast, a piece of rope was attached to each end of the rod and the rope wits brought into the shaek, so that the antemat rould be rotated by the "itm-strong" method. Ohviously, one rould spend more money for at "tle luxe" version and use a TV antenna rotator and mast.

1RG-8 [5 5 - ohm coax cable is reommended to feed the antemat. For power inputs up to low watts, the smatler and less expensive R(i-58 U (an be used. However, when you buy lici-is/l, be sure that the line is made by a reputable manufaturer (surly ats Amphenol or Belden). Some of the lino made for 'l' ' instathations is of inferior quadity and is likely to have higher losers. The feedline was fod up through the mast pipe and through at $3 / 4$-inch hole in the 2 by 2 . An Amphemol 8:3-15l' fitting on the end of the mots lime connerts to the femate fitting on the antemat.

Coupling to the Transmitter

It may he found that, when the foed line is coupled to the tramsmitter, the antemat won't take power. Since the line is terminated at the antenna in its chatratoristic impelance of 52 ohms, the output of the final r.t. amplifier must be adjusted to couple into at $52-$ ohm lowd. Where the output conpling deviere is a variable link, all that maty be nerded is the corrert sotting of the link. If the link is fixed, one end of the link ram be groumed to the trimsmitter chassis and the other end of the link comereted in sorios with at smatl variable ratpacitor to the inner conductor of the feed line. The outer combuctor of the rown is grounded to the tramsmitter chassis. The ceat pacitor is tuned to the point where the finat amplifier is property lowded. For trinsmitters hatwing a pi-net work output cireuit. it is morely a mattor of adjusting the network to the point where the amplifier is propery lowled.
(From (QST, January, 1955.)

Wave Propagation

Murh of the appeal of amaterer communicat tion lies in the faet that the results are not alwats predictable. Trunsmission conditions on the same frequeney vary with the yoar, season and with the time of day. Although these variations usually follow erertain established patterns. many peroliar efleets can be observed frem time to time. Every radio amateur should hatve some umderstanding of the known facts about radio wate propagation so that he will stand some chance of interpreting the unusual conditions

When they oceur. The observant amateur is in an exeellent position to make worthwhile contributions to the seienee, provided he has sufficient background to understiad his results. He may discover new facts abont propagation at the veryhigh fregueneides or in the mierowate region, as amateurs have in the past. In fant, it is through amateur elforts that most of the extended-range possibilitios of various radio freguene ies have been discovered, both by aroident and by long and careful investigation.

Characteristics of Radio Waves

Radio waves, like other forms of electromagnetie radiation such as light, travel at a speed of $300,0 \% 0,000$ moters per seeond in free space, and can be rethereted, refracted, and diffracted.

An eleetromagnetie wave is romposed of moving fields of electrie and magnetic foree. The lines of forer in the chertric and magnetie fields are at right angles, and are mutually perpendicular to

Fig. 15-1-Representation of electric and magnetic lines of force in a radio wave. Arrows indicate instantaneous directions of the fields for a wave traveling toward the reader. Reversing the direction of one set of lines would reverse the direction of travel.
the direction of travel. A simple representation of a wave is shown in Fig. 15-1. In this drawing the electric lines are perpendicular to the earth and the magnetic lines are horizontal. They could, however, have any position with respect to carth so long as they remain perpendicular to each other.

The plane containing the continuous lines of eleetric and magnetic force shown be the grid- or mosh-like drawing in Fig. 15-1 is called the wave front.

The medium in which electromagnetic waves travel has a marked influence on the speed with
which they move. When the medium is empty spare the speed, as statiod above, is $300,000,000$ meters per second. It is almost, but not quite, that great in air, and is much less in some other substances. In dielectries, for example, the speed is inversely propertional to the squatre root of the diefertric constant of the material.

When a wave meets a good conductor it cannot ponotrate it to any extent (althongh it will travel through a diolectric with (ase) because the electric lines of fore are practically shortcircuited.

Polarization

The polarization of a radio wave is taken as the direction of the lines of fore in the ehectrice fieh. If the eleatrie lines are perpendicular to the earth, the wave is said to be vertically polarized; if parallel with the earth, the wave is horizontally polarized. The longer waves, when traveling along the ground, usually matintain their polarization in the same plane as was generated at the antomata. The polarization of shorter waves may be altered during travel, however, and sometimes will vary guite rapidly.

Spreading

The field intensity of a wave is inversely proportional to the distance from the source. Thus if in a uniform medium one receiving point is twiee as far from the tramsmitter as another, the fied strength at the more distant point will bo just half the field strength at the neatere point. This results from the fart that the emergy in the wave front must be distributed over a greater areal as the waye movers away from the source. This inverse-distance law is based on the assumption that there is nothing in the modium to absorb nomgy from the wave ats it tratvels. This is not the case in pratical commmancation along the ground and through the atmosphere.

Types of Propagation

According to the altitudes of the paths along which they are propagated, radio waves may
be clasificel as ionospheric waves, tropospheric waves or ground waves.
The ionospheric wave or sky wave is that part of the total radiation that is directed towam the ionosphere. Depending upon variable conditions in that region, ats woll as upon tramsmitting Wave lengeth, the ionospherice wave maty or maty not be returned to earth by the effeets of refraction and reflertion.

The tropospherie wave is that part of the total radiation that undergoes rofraction and reffer(ion in regions of abrupt shange of dielectric constant in the troposphere, surh as maty oerer at the boundaries between air masses of dilfering temperature and moisture content.

The ground wave is that part of the total radia-

Fig. 15-2-Showing how both direct and reflected waves may be received simultaneously.
tion that is directly affected by the presence of the earth and its surface features. The ground wave has two components. One is the surface wave, whith is an earth-guided wave, and thes other is the space wave (not to be confused with the ionospheric or sky wave), The space wave is itself the resultant of two components - the direct wave and the ground-reflected wave, is shown in Pig. lig-2.

Ionospheric Propagation

PROPERTIES OF THE IONOSPHERE

Exrept for distanees of a few miles, nearly all amateur communication on frequencies below 30 Mc. is by moans of the sky wave. Cime leaving the transmitting antenna, this wave travels upward from the carth's surface at such an angle that it would rontinue out into space were its: path not bont sufficiontly to bring it back to earth. The medium that causers such bending is the ionosphere, a region in the upper atmosphere, ahove a height of about fil miles, where free ions and electrons exist in sufficient quantity to have ath appreriable effect on wave travel.

The ionization in the upper atmosphere is believed to be calased be ultaviold radiation from the sun. The ionosphere is not a single region but is composed of a series of layers of varying densities of ionization ocrouring at different hoights. Wach layer consists of a contral region of relatively dense ionization that tapers off in intensity both above and bolow.

Refraction

The greater the intensity of ionization in a layer, the more the path of the wave is bent. The bending, or reftaction (often abso ealled roilection), also depends on the wavelength; the longer the wate the more the path is bent for a given degree of ionization. Thus low-frequeney waves are more readily hent than those of high frequoncy. for this reason the lower frequencies -3.5 and 7 Mr. - are more "roliable" than the higher frequencies - 14 to 28 Me;; there are times when the ionization is of such low value that waves of the latter frequency range are not bent enough to return to earth.

Absorption

In traveling through the ionosphere the wave gives up some of its chorry by setting the ionized partieles into motion. When the moving ionized particles rollide with others this emerger is lost. The absorption from this caluse is greater at lower freguencies. It also increases with the intensity of
unization, and with the density of the atmosphere in the ionized region.

Virtual Height

Athough an iomopherie layer is a region of considerable depth it is conveniont to asigu to it a dofinite height, called the virtual height. This is the height from which a simple refleetion would give the same offect as the gradaal bood-

Fig. 15-3-Bending in the ionosphere, and the echo or reflection method of determining virtual height.
ing that actually takes place, as illustrated in Fig. 15-3. The wave taveling upward is bent hack over a path having an appreciable radius of turning, and a moasumble interval of time is fonsumed in the turning process. The virtual height is the height of a triangle having equal sides of a total length proportional to the time taken for the wave to travel from ' I ' to R.

Normal Structure of the Ionosphere

The lowest useful ionized layer is called the E lager. The average height of the region of maximum ionization is abont 70 miles The air at this height is suffiriently dense so that the ions and electrons set free be the sun's radiation do not travel far before they meed and recombine to form noutral partides, so the layor can maintain its normal intensity of ionization only in the presence of continuing radiation from the sum. Hene the jonization is greatest around local noon and practically disappears after sumdown.

In the daytime there is a still lower ionized

Sky-Wave Propagation

area, the D region. D-region ionization is proportional to the height of the sun and is greatest at noon. The lower amateur-band frequencies (1.8 and 3.5 Me.) are almost eompletely absorbed hy this layer, and only the high-angle radiation is reflented hy the E haver. (Lower-angle radiation travels farther through the D region and is abl)sorbed.)

The second principal layer is the F layer which hats a height of about 175 miles at night. At this altitude the air is so thin that recombinattion of ions and electrons takes place very slowly. The ionization derreases after sundown, reaching a minimum just before sumrise. In the daytime the F laver splits into two parts, the F_{1} and F_{2} layers, with average virtual heights of, resperetively, 140 mikes and 200 miles. These lavers are most highly ionized at about lowal noon, and merge again at sumset into the F laver.

SKY-WAVE PROPAGATION

Wave Angle

The smaller the angle at which a wave leaves the couth, the less the bending required in the ionosphere to bring it back. Also, the smaller the angle the greater the distanee between the boint where the wave leaves the earth and that at which it returns. This is shown in Fig. 15-4. The vortical angle that the wave makes with a tangent to the earth is called the wave angle or angle of radiation.

Skip Distance

More bending is recuired to return the wave to eath when the wave angle is high, and at times the bending will not he sufficient unless the wave angle is smather than some critical value. This is illustrated in Figg 15-4, where . 1 and smaller angles give useful signals while waves sent at higher angles penetrate the laver and are not returned. The distane betwern \dot{T} and R_{1} is, therefore, the shortest possible distance, at that particular frequency, over which communication by ionowherie refraction can be areomplished.

The area between the end of the useful ground Wave and the beginning of ionospheric-wave reception is called the skip zone, and the distance from the transmitter to the nearest point where the sky wave returns to earth is called the skip distance. The extent of the skip) aome depends upon the frequency and the state of the imosphere, and also upon the height of the layer in which the reliartion takes plare. The higher bayers give longer skip distances for the satme wave angle. Wave angles at the framinitting and receiving points are usually, although not always, approximately the same for any given wave path.

Critical and Maximum Usable Frequencies

If the frequency is low enough, a wave sent vertieally to the iono-
sphere will he reflected back down to the transmitting point. If the frequency is then gradually increased, eventually a freguency will be reached where this vertical reflection just fails to occur. This is the critical frequency for the layer under consideration. When the operating frequency is below the critical value there is no skip \%one.

The critical frequener is a useful index to the highest frequeney that can be used to transmit over a specified distance - the maximum usable frequency (m.u.f.). If the wave leaving the transmitting point at angle A in Fig. 15-4 is, for example, at a frequeney of $1+$ Me., and if a highen freduency would skip over the receiving point R_{1}, then 14 Me, is the m.u.f. for the distance from T to R_{1}.

The greatest possible distance is covered when the wave leaves along the tangent to the earth; that is, at zero wave angle. Under average conditions this distance is about 4000 kilometers or ${ }^{2} 500$ miles for the F_{2} laver, and 2000 km . or $12: 00$ miles for the E lavor. The distances vary with the layer height. Frequencies above these limiting m.in.f.'s will not be returned to earth at any distance. The $4000-\mathrm{km}$. m.u.f. for the F_{2} layer is approximately 3 times the eritical frequency for that layer, and for the E layer the $000-\mathrm{km}$. $1 \mathrm{~m} . \mathrm{n}$.f. is about 5 limes the eritical frequency.

Absorption in the ionosphere is least at the maximum usable fropuency, and increases very rapidly as the frequency is lowered below the mu.n.f. Consequently, best results with low power always abe scured when the frequency is as close to the m.u.f. as possible.

It is readily possible for the ionospherie wave to pass through the E laver and be refracted back to earth from the F, F_{1} or F_{2} layers. This is because the aritical frequencies are higher in the latter lavers, so that a signal too high in frequency to be returned by the E layer can still eome back from one of the others, depending upon the time of day and the existing comditions.

Multihop Transmission

On returning to the earth the wave can be rellected upward and travel again to the ionosphere. There it may one more be refracted, and

Fig. 15-4-Refraction of sky waves, showing the critical wave angle and the skip zone. Waves leaving the transmitter at angles above the critical (greater than A) are not bent enough to be returned to earth. As the angle is decreased, the waves return to earth at increasingly greater distances.

15-WAVE PROPAGATION

again bent back to earth. This proress may be repeated several times. Multihop propagation of this nature is necessary for transmission over great distances because of the limited heights of the layers and the curvature of the earth, which restrict the maximum one-hop distance to the values mentioned in the prereding section. However, ground losses absorb some of the energy from the wave on each reflection (the amount of the loss varying with the type of ground and being least for reflection from sea water), and there is also absorption in the ionosphere at each reflertion. Hence the smaller the number of hops the grater the signal strength at the recoiver, other things being equal.

Fading

Two or more parts of the wave may follow slightly different paths in traveling to the rereiving point, in which celse the difference in path lengths will eause a phase differenoe to exist betwern the wave components at the recoiving antenna. The total tiold strength will be the sum of the components and may be larger or smaller that our component alone, sine the phases may low such as either to aid or oppose. Since the paths change from time to time, this causes a variation in signal strongth callod fading. Pading can also result from the eombination of single-hop and multihop waves, or the combination of a ground wave with an ionosphorie or tropospherie wave.

Fading may be either rapid or slow, the former type usually resulting from rapidly-changing conditions in the ionosphere. the latter ocenrring when tranmission conditions are relatively stable.

It frequently happens that transmission eonditions are different for waves of slightly diferent frequencies, so that in the cass of voice-modulated transmission, involving sidebands differing slightly from the carrier in frequeney, the carrier and various side band components may mot be propagated in the same relative amplitudes and phases they had at the trammitter. This affert, known as selective fading, causes severe distortion of the signal.

Back Scatteı

Liven though the operating frequency is aloove the m.u.f. for a given distance, it is usually possible to hear signals from within the skip zone. This phenomenon, called back scatter, is calused by reflections from distances beyond the skip zone. Such reflections can orar when the transmitted energy strikes the corth at a distance and some of it is rellected back into the skip zone to the reediver. siuch seatter signals are weaker than those normally propagated, and also have a rapid fade or "fluttor" that makes them easily rerognizalble.

A iertain amount of scattering of the wave also takes place in the ionosphere becanse the ionized region is not completely uniform. Scattering in the normal propagation direetion is called forward scatter, and is responsible for extending
the range of transmission berond the distatne of a regular hop, and for making commmication possible on frequencies greater than the actual m.u.f.

- other features of ionospheric PROPAGATION

Cyclic Variations in the Ionosphere

Since ionization depends upon ultraviolet radiation, conditions in the ionosphere vary with changes in the sun's radiation. In addition to the daily variation, seasonal changes result in higher eritical frequences in the E layor in summer, averaging about +Me a as aginst a winter average of 3 Mc. The F hyor eritical frequency is of the order of 4 to 5 Me . in the evening. The F_{1} haver, Which has a eritical frequency near 5 Mar. in simmmer, usually disappears contirely in winter. The daytime maximum eritical frequencies for the F_{2} are highest in winter (10 to 12 Mc .) and lowest in summer (around 7 Me .). The virthal height of the Feg later, which is about 18.5 miles in winter, averages 250 miles in summer. These values are representative of latitude 40 deg . North in the Western hemisphore, and are subject to considerable variation in other parts of the world.

Vory marked changes in ionization also oecor in strp with the 11-year sunspot cycle. Although there is no apparent dierect correlation between sunspot activity and eritical frequencies on a given day, there is a definite correlation bet ween averge sumspot activity and aritial frequeneios. The eritionl frequencies are highest during sumspot maxima and lowest during sumspot minima. During the period of minimum sumsot ativity the lower fredumeies - 7 and 3.5 Me. - frequently are the only usable lands at night. It such times the e8-Ne. band is seldom useful for long-distance work, while the 1 t-Mc. band performs well in the daytime but is not ordinarily useful al night.

Ionosphere Storms

Cortain types of sunspot artivity cause considerable disturbances in the ionosphere (ionosphere storms) and are acompanied by disturbanes in the carth's magnetic fielal (magnetic storms). Ionowhere stoms are characterized by a marked increase in absorption, so that radio conditions berome poor. The eritial froquencies also drop to relatively low values during a storm, so that only the lower frequencios are usaful for commanication. Ionosphere storms maty last from a few hours to several days. Sine the sun rotates on its asis once every 28 days, disturbances tend to recur at such intervals, if the sumpots responsible do not berome inactive in the meantime. Ahsorption is usuatly low, and radio conditions therefore good, just preceding a storm.

Sporadic-E Ionization

Scattered patches or clouds of relatively dense ionization occasionally appear at heights approximately the same as that of the E layer, for rea-

Prediction Charts

sons not yet known. This sporadic- E ionization is most prevalent in the equatorial regions, where it is substantially cominuous. In northern latiluales it is most freguen in the spring and cardy summer, hat is present in some degree a fair per"rotatge of the time the year rommel. It areounts for a good deat of the night-time short distance work on the lower frequencios (3.5) and 7 Mc.) and, when more intense, for similar work on 14 to 28 Mr. Fxeeptionally intense sporadie-l: ionization is responsible for work over distances exceeding 100 or 500 miles on the E0-Mc. band.

There are indications of a relationship between sporadic-l: jonization and average sunspot activity, but it does not appear to be directly related to daylight and darkness since it may oceur at any time of the day. However, there is an apparent tendency for the ionization to pak at mid-morning and in the carly evening.

Tropospheric Propagation

Changes in temperature and humidity of air masses in the lower atmosphere often permit work over greater than normal ground-wave distances on 28 Me and higher freguencies. The effect can be observed on 28 Me., but it is geneally more marked on 50 and 144 Ne. The subject is treated in detail later.

- PREDICTION CHARTS

The Contal Radio Propagation Lahoratory of National Burean of Standards offers predietion chats three months in advance, by means of which it is possible to predict with considerable accuracy the maximum usable frequeney that will hold over any path on the earth during a monthly period. The charts can be obtained from the Superintendent of Documents, U. S. Government Printing Office, Washington $2 \mathrm{~F}, \mathrm{D}$). C. for 10 cents a copy or $\$ 1.00$ per year. They are called "('RPL L D Basic Rulio I'ropagation I'redictions." The use of the charts is explaned in Cireular 46 , "Ionospheric Ratio I'ropayation," available for $\$ 1.00$ from the same address. This publication also contains much information of value to those who wish to pursue the subject of ionospherie propagation in more detail.

PROPAGATION IN THE 3.5 TO 30-MC. BANDS
The 1.8-Mc., or "160-meter," band offors reliable working over ranges up to 25 miles or so tharing daylight. On winter nights, ramges up to several thousand miles are not impossible. Gnly
small sections of the band are currently available to amateurs, becanse of the presener of the loran service in that part of the Epectrom.

The 3.5-3 Me., or "80-moter," hamd is a more usoful band daring the night than during the daylight hours. In the daytime one can soldom hear signals from a distance of greater than 200 miles or so, but during the darkness hours distances up to several thousand miles are not unusual, and transoceanie contacts are regularly made during the winter months. During the summer, the static level is high.

The 7-Me, or " 40 -meter," bilnd has many of the same chamateristies as 3.5 , except that the distances that can be covered during the day and night hours are increased. During dilylight, distinces up to a thonsand miles can be covered under good conditions, and during the dawn and dusk periods in winter it is possible to work stiltions as far as the other side of the world, the signals following the darkness path. The winter months are somewhat better than the summer on's. In general, summer static is much less of a problem than on 80 meters, although it can be scrious in the semitropical zones.

The 11-Mc., or "20-meter," bind is probably the best one for long-distince work. During the high portion of the sumspot cyele it is open to some part of the word during pratically ath of the 24 hours, while during a sunspot minimum it is erencrally useful only during daylight hours and the daun and dusk poriods. There is practically always a skip zone on this band.

The 21-Me. or "15-meter," band shows highly variable characterist ics depending on the sumseot ebelc. Daring sumpot maximat it is usplua for long-distamee work during a large part of the 24 homs, but in rears of low sunspot activity it is ahost whally a davtime band, and sometimes unusable even in davime. However, it is often possible to matintain eommanication over distances up) to 1500 miles or more hy sporadic- E ionization which may orcur either day or night at any time in the sumspot evele.

The 28-14s. ("lo-moter") band is gencrally considered to be a I S. band during the daylight hours (exerpt in summer) :und good for local work during the homs of darkness, for about half the sumspot eycle. At the very pata of the sunspot cerce, it may be "open" into the late evening hours for 1 NX communication. At the sumsont minimum the band is usually "dead" for longdistance communication, by means of the F_{2} layer, in the northern lititudes. Nevertheless, sporadie- b^{\prime} propargation is likely to opeur at any time, just is in the case of the 21-Ale. batud.

Propagation Above 50 Mc.

The importane to the amatern of having some knowledge of wave propagation was stressed at the begiming of this chapter. An understanting of the means by which his signals reath their destination is an cenen greater aid to the v.h.f.
worker. Each of his bands shows different charactoristics, and knowhedge of their peenliarities is as yed far from romplete. The ohservant user of the amaterar v.h.f. assigmments has a good op)portunity to contribute to that knowledre, and
his conjoynent of his work will be greatly anhanered if he knows when to expert umsual propagation comditions.

CHARACTERISTICS OF THE V.H.F. BANDS

An outstanding foature of our hands from 50 Mc. up is their ability to provide eonsistemt and intorference-free commanication within a limited range. All lower froguencios are subjeret to varying conditions that impair their aflemetive ness for work over distanes of 100 mikes or loss at least part of the time, and the heave orempance they suppor results in serere interferenere problems in areas of dense population. 'lhe v.h.if. hands, boing murh wider. can handle mans times the amaterur population without rowding, and their characheristies for local work are more stable. It is thes to the advantage of amatedur radio as a whole to make use of at Me. and higher hands for short-range communieation wherever possible.

In addition to reliable docal coverage, the v.h.f. bands also cxhibit several forms of longdistanere propagation at times, and use of 50 and 14t Me. has boob taken up in reacont vars hy mamy isolated amaterurs who must dopend on these propagation peraliaritios for all or most of their contacts. It is particularly important to these operators that they umberstand eommon propagation phenomena. The material to follow supplements information presented carlior in this chapter, bat deals with wave propagation only as it afferts the oreflpants of the world above 50 Me. lirst let us consider the bands individually.

50 to 5 s. Wha. This band is bortertine territors betwen the 1)N frequencias and those normatly employed for local work. Thus just about evary form of wave propatation found throughout the radio spectrum appeits, on oecasion, in the $50-$ Me. region. This has contributed groatly to the popularity of the $\overline{5} 0-$ Mc, band.

I Haring the peak years of a sumspot revele it is oreasionally possible to work 50- Me. IDN of word-wide proportions, bex reflection of signals from the l_{2} layer. Sporadic- E skip provides contacts over distaneres from 400 to $2 \overline{5} 00$ miles or so during the early summer months, regardless of the solar cevele. Reflection from the aurora regions allows 100- to toot-mile work daring pronouncol ionospherie disturbanes. The ever-changing weather pathern offers extension of the normal coverage to ats much as 3 Bot to oro mikes. This develops most oftere during the warmer months. but maty oreur at any seasom. In the absonere of any favorable propagation, tho avorage well"cquiperd eot-Mr. station shombl the able to work regularly over a radius of 云 to 100 miles or more. depending on loeal terrain.
 redued at 14t Mo. fo-layer reflection is unlikely. and sporadio- E : skip is rare, Aurora DX is fairly common, but signals are generally weaker than on 50 Me. Tropospheric effects atre more pro-
nounced than on $\overline{\text { on }}$ Me, and distances eovered during favorable weather conditions are greater than on lower bathes. tir-mass boundary bending has beron responsible for communisation on 1 it Nr. over distances in exeress of 2 anot miles, and Eon-mile work is failly rommon in the warmer months. The reliable range umber normal conditions is slightly Iess that on 50 Mc., with romparable equipmant.

220 We. and Higher: lomosphorice propagation is unlikel! at 220 Me. and up, but fromespherie Isending is more prevalent than on lowe hames. Amateur cexpericnere on 220 and 420 Mr. is showing that they can be as usoful as 111 Me., when comparable equipment is used. Condor minimum conditions the ratuge may be slightly shorter, but When sigmak arr good on $1 / 1$ Ma., they may be bottor on 220 or f20. liven above 1000 Me. there is cevidene of tropospherie I)X.

- PROPAGATION PHENOMENA

The various known means by which v.h.f. signals may be propagated over unusual distances are discussed brow.

Fo-Latyer heflection: Most montarts made on 28 Me and lowar frequenemes are the result of reflemen of the wave bey the fig laver, the ionization density of which varies with solar activity, the highesi frequenotes ixeing roflered at tho prak of the 11-vatur solar evele. The maximum usable frequency (m.u.f.) for forention also follows other well-defined reves, daily, monthly. and suasonat, all related to conditions on the sum and its position with respert to the carth.

At the low point of the 1 -vear cercle, surf ats in the early 'olos, the m.u.f. may reath 28 Ne. only during a short period cach spring and fall. Whereas it maty go to fol Mr. or highor at the peak of the evele. The fall of 1946 satw the first aththentie instaneres of long-distance work on 50 Me. by fo-layer reflection, and as lato as lation contacts were made in the more favorable areas of the world by this medium. The rising curvo of the current solar evele again made $f_{2} 10 \times$ on 50 Mr . possible in the low latitudes in the winter of $1955-15$. IS was worked over much of the earth in 1980-8 and may he experetod through 1959. Lass of the 50-Me, band to television in some conntries will limit the seope of ort- Me. 1)N in vars to come.

The f te m.n.f. is readily determined by obsorvation, and it may be estimated quite acretrately for any path at any time. It is prodictablo for monthsin advance rababling the v.h.f. worker to arrange test sehedules with distant stations at propitious times. As there are momorote rommoretal signals. hoth harmonics and fumblamontal transmissions, on the air in the range betwern 28 and an Ma... it is possibla to determine the approximate m.u.f. by carofial listening in this rango. laily ohsorvations will show if the m.n.f. is rising or falling. athed one the pata for a given month is detomined it can be assumed that another will oecour about 27 days later, this cyele coinciding with the turning of

Miscellaneous Phenomena

Fig. 15-5 The principal meons by which v.h.f. signols may be returned to eorth, showing the approximate distances over which they ore effective. The F_{2} loyer, highest of the reflecting loyers, moy provide $50-\mathrm{Mc}$. DX of the peak of the 11 -yeor sunspot cycle. Such communicotion moy be world-wide in scope. Sporodic ionizotion of the E region produces the fomilior 'short skip" on 28 ond 50 Mc . It is most common in eorly summer ond in lote December, but moy occur of ony time, regordless of the sunspot cycle. Refraction of v.h.f. woves also tokes ploce of oir-moss boundories, moking possible communicotion over distonces of severol hundred miles on oll v.h.f. bonds. Normolly it exhibits no skip zone.
the sun on its axis, The working range, viat F_{2} skip, is roughly comparable to that on 28 Me., thomgh the minimm distaner is somewhat, longer. 'Two-way work on al Me by reflection from the F_{2} later has bren arromplishod over distaners from 2200 to 12.000 miles. The maximum freduchey for F_{2} reflertion is belinved to he aloout 70 Mr .

Sporulir-l: ship: Patehy concentrations of ionization in the E-hayer region are often responsithe for redeetion of signals on 28 and 50 Me. This is the popular "short skip" that provides fine contacts on both bands in the range between 100 and 1:300 miles. It is most common in May. June and Juls, during morning and early avoning hours, hat it may oreur at any time or seasom. Multiple-hops affects may appear, when ionization develops simultameotsle over large areas, making posiblde work over distaners of more than 2.010 miles.

The upper limit of frequeney for sporatic- E skip is not positively known, but seattered instames of $1+4-M c$ propagation over distances in excess of 1000 miles indicate that L-layer rellection, possibly abled by tropospheric effects, may be responsible.

Aurore Effert: Low-frequency communication is oceasionslly wiped out by absorption in the ionosphere. when ionospheric storms, associated with variations in the earth"s magnotio fish, orreur. During surh disturhaneres, however, v.h.f. signals maty be reflocted back to earth. making commumication possible over distances not normally workahle in the v.l.f. range. Magnetie storms mat be ateompanied by an aturora-lowedis displaty, if the disturbanere orrurs at night and visibility is good. Aming a diredional arrab at
the amroral curtain will bring in signals strongest, regardless of the true divection to the transmittimg station.

Aurora-reflected signals are characterized by a rapid flutter. Which lends a "dribhling" sound to $28-$ Mc. carriers and may render modulation on 50 and 144-Mc. signals completely unveadable. The ouly satisfactory means of communication then beromes straght e.w. The effect maty be motieeahbe on signals from amy distanee other than purely local, and stations up to about 1000 miles in any direction may be worked at the peak of the disturbance. Unlike the two mothods of propagation previously deseribed, aurora effect (exhibits no skip zone. It is observed frequently on 50 and 144 Me, in nothastern U. S. A., usially in the early evening hours or after midnight. 'The highest frequeney for amoral reflection is not yot known, but pronomeed distubances have permitted work by this medium in the 220-Me. band.

Tropospheric Benting: The most common form of v.h.f. DS is the extemsion of the nomal operating rangre assoriated with easily ohserved wather phenomena. It is the result of the change in refratetive index of the atmosphere at the boundary botween air masses of differing tompreathure and humidity rhamatoristirs. Such airmass boumdaries usually lir along the western or southorn edges of a stable slow-moving area of high harometric pressure (fair, calm weather) in the priod prior to the arrival of a storm.

A typical upher-air somading showing temperature and water-vapor gradients fatvorable to v.h.f. 5 . N is shown in lig. 15 - 6 , An inerease in temberature and a sharp drop in water-vatpor

15-WAVE PROPAGATION

gradient are seen at about 4000 feret, in comparison to the U. S. Standard Atmosphere curves at the left.

Such a favorable condition develops most often in the late summer or carly fall, along the junction betwern air masses that may have come together from surh widely separated points as the Culf of Mexioo and Northern Canada. Ender stable weather conditions the fwo air massos may retain their original character for several
wave range, and there is good evidence to indicate that our assignments in the u.h.f. and s.h.f. portions of the frequency spectrum may someday support communiration over distances far in excess of the optical range.

Scaller: Forward seatter, both ionospherie and tropospheric, may be used for marginal communiration in the v.h.f. bands. Both provide very weak but consistent signals over distances that were onee thought impossible on frequencies

Fig. 15-5-Upper-air conditions that produce extended-range communication on the v.h.f. bands. At the left is shown the U.S. Standerd Atmosphere temperature curve. The humidity curve (dotted) is that which would result if the relative humidity were 70 per cent from the ground level to 12,000 feet elevation. There is only slight refraction under this standard condition. At the right is shown a sounding that is typical of marked refraction of v.h.f. waves. Figures in parentheses are the "mixing ratio"-grams of water vapor per kilogram of dry air. Note the sharp break in both curves at about 4000 feet. (From Collier, "Upper-Air Conditions for 2-Meter DX," QST, September, 1955.)
days at a time, usually moving slowly east ward arross the country. When the path between two v.h.f. stations separated by filty to several humdred mikes lies along such a boundary, signal levels run far above the average value.

Many factors other than air-mass movement of a continental chatarter provide increased v.h.t. operating range. The eonvertion along coastal areas in warm weather is a good example. The rapid cooling of the carth after a hot day in summer, with the air aloft cooling more slowly, is another, producing a rise in signal strength in the period around sundown. The early morning hours, when the sun heats the air aloft, before the temperature of the carth's surface begins to rise, may be the best of the day for extended v.h.f. ramge, particularly in clatr, calm woather, when the harometer is high and the humidity low.

The v.h.f. ©nthusiast soon learms to rorrelate various woather manifestations with radioproparation phenomena, By watehing temporat thre, harometric pressure, changing eloud formations, wind direction, visibility, and other casilyohserved weather signs, he can tell with a reasonable degree of aceurary what is in prospect on the v.h.f. hands.

The responsiveness of radio waves to varying weathor conditions increases with frequencer. Ther ou- Mre. band is more semsitive to weather variations than is the 2s-Me. band amd the $1+4-$ - Mr. band may show strong signats from fat beyond wisal distances when lower frequencies are redatively anactive. It is arobable that this tradeney rontinues on up through the miero-
higher than about 30 Mr .
Tropospheric seatter is prevalent all through the v.h.f. and microwatve regions, and is usable over distaneres up to about too miles. Ionospheric seatter, augmented by meteor bursts, brings in signals over 600 to 1300 miles, on frequencies up to about 100 Me . Bither form of seattor requires high power, lange antemas and c.w. technique to provide effective communication.

Bark scatter, of the type heard on lower hands, is also heard oceasionaliy on 50 Me., when l_{2} or sporadic- E skip is present.

Reflertions from . Weteor Trails: Irobably the least-known means of v.h.f. wave propagation is that resulting from the passuge of moteors across the signal path. Reflections from the ionized meteor trails may be noterd as a Doppler-offert whisthe on the carrier of a signal already being received, or they may cause burste of reception from stations not nomatly receivable. Ordinarily such refleretions arr of little value in communie: tion, sine the increases in signal strength are of short duration, but moteor showers of considerablo magnitude and duration may provide fluttery signals from distaneres up to loot miles or more on both 50 and $1+4$ Me.

As meteor-burst sigmals are relatively wak, their deteretion is greatly aded if high power and high-gain antematas ano usol. Twn-way commusitation of soms has lown maried on hy this
 (0) 130 K mikes, through the use of shot ciw. tramsmissions and fregurat repetition.

V.H.F. Receivers

Good recoiving facilities are all-important in v.h.f. work. Iligh sensitivity, adectuate stability and good signal-tomoise ratio, neeressury attributes in a recoiving swatem for so Me, and higher frequencies, are most readily attaned through the use of a eonverter working into at communications rocodver designed for lower frequeneies. Though recoivers and converters for the v.h.f. bands are available on the amateur market, the ammateur worker can build his own with fully as good results, usually at a considerable salving in eost.

Basically: modern v.h.f. receiving equipment is little different from that emploved on lower frequencies. The same order of selectivity may be used on all amateur frequencios up to at least tion Me: The greatest practical selectivity should the emploged in v.h.f. reception, as it not only allows more stations to operate in a given band, but is an important factor in improving the signal-to-noise ratio. The effective sensitivity of a receiver having "communication" selectivity" can be mate much bottor than is possible with broadband systems.

This rules but converted radar-typer reecivers and othors using high intermediate frefuencies. The superregenerative roeciver, a simple but broadhand deviee that was popular in the early days of v.h.f. work, is now used principally for portable operation, or for other applieations Where high sensitivity and seleetivity are not of prime importance. It is capable of surprising proformature for a given number of tubes and components, hut its latek of selectivits, its poor signal-to-noise ratio, and its tendence to radiate a strong interforing signal hatve eliminated the superregemerator as a fixed-station receiver in areas where there is appreciable v.h.f. activity.

R. F. AMPLIFIER DESIGN

The noise generated within the receiver itself is an important factor in the effertivenoss of v.h.f. recoiving gear. At lower frectumeios, and to a considerable extent on 50 Me., external noise is a limiting factor. At 144 Me. and higher the recolver noise figure, gain and solertivity determine the ability of the system to respond to weak signals. Proper solection of r.f. amplitier tubes and appropriate circuit design aimed at low noise figure are more important in the v.h.f. receiver "front end" that more gain.

Triode or Pentode?

Certain triode tubes have been developed with this end in view. Their superiority over fentode types is more pronomered as we go
higher in frequency. Because of the limitation on sensitivity imposed by external noise at that frequency, triode or pentode r.f. :mplifiers give athout the same results at 50 Me. Thus the pentode types, which offer the advantages of better selectivity and simpler circuitry, are often nsed for 50 -合c, work. But at 144 Mc ., the newer triodes designed for r.f. amplifier service give fully as much gatin as the pontodes, and with lower intermal noise. With the exerption of the simplest unit, the equipment deserihed in the following pages incorporates low-noise r.f. amplifier techniques.

Neutralizing Methods

When triodes are used as r.f. amplifiers some form of neutralization of the grid-plate capaceitance is required. This can be caparitive is is commonly used in transmitting applications, or inductive. The alternative to neutralization is the use of groumled-grid technique. Cirenits for v.h.f. triode r.f. amplifier statges are given in Figs. 16-1 through Iti-1.

A dual triode operated as a neutratized push-pull amplifier is shown at $\mathbf{1 6 - 1}$. This ar-

Fig, 16-1-Schematic diagram of a push-pull r.f. amplifier for v.h.f. applications. This circuit is well-suited to use with antenna systems hoving balanced lines. Coil and capacitor values not given depend on the frequency at which the amplifier is to be used. Neutralizing capacitance, C_{N}, may be built up by twisting ends of insulated leads together.
rangement is well adipted to v.h.f. preamplifier applieations, or at the first stage in a converter, particularly when a balaneed transmission line such is the popular 300 -ohm Twin-Lead is used. It is rolatively selective and maty require resistive loading of the plate circuit, when used as a preamplifier. The loading offeret of the following circuit maty he sufficient to give the reauired band width, when the push-pull stage is inductively coupled to the mixer.

A triode amplificer having exerellent nowe figure and hroudband chatracteristies is shown in lig.

Fig. 16-2-Circuit of the cascode r.f. omplifier. Coupling capacitor, C_{1}, may be omitted if spurious receiver responses are not a problem. Neutralizing winding, LN should resonate at the signal frequency with the gridplate capacitance of the first tube. Base connections are for 417A and 6AJ4, but other small triodes may be used.

1fi-2. Commonly called the ansode, it uses a trionte or trinde-annerded pentode followed by a trionde grounded-grid stage. This rircuit is extremely stable and uncritical in adjustment. At 50 Ne and highor its over-all gain is at least equal to the best single-stage pentode amplitior athd its nowe figure is far lower.

Neutralization is acomplished loy the coil /心. Whose valat is such that it resonates at the signal frequency with the grid-plate capacitance of the tuhne. Its inductaner is mot reitical: it masy lae omited from the cireuit without the stage going into oscillation, but neutralization results ill a lower noise figure thath is pessible without it. Any of several r.h.f. tubes may be used in the casconte ciremit. "The example shown in lig. lig-2
 would work almost equally well, as would the
 $16-2$ should be ehanged to suit the tubes selected.

A simplified version of the eascoote, using a dual trionde bube designed reperially for this application, is shomen in Fig. lo-3. By reducing stray (athateitalla, through direct coupling hatwere the two triode seretions, this cirenit makes for improved protormane at the frequences abowe lot Na. The two sections of the tube are in series, as far at phate voltage is concerned, so

Fig. 16-3-Simplified cascode circuit for use with dual triodes having separate cathodes. Coil and capacitance volues not given depend on frequency. Bifilar r.f. chokes are occosionally used in heater leads.
it requires higher voltage than the other cirenits shown.

The neutralization proeress for the casoode and noutralized-triode amplifiers is somewhat similar. With the circuit operating normally the noutralizing adjustments (capacitance of ('s in Fig. 16i-1: inductance of L_{N} in Figs. $16-2$ amd [6-i-3) (atn be set for best signal-to-noise ratio. The best results are obtained using a moiso generator, adjusting for lowest noise figure but carrful adjustment on a woak signal provides a fair approximation. Noise genorators and their use in v.h.f. rereiver adjustment are treated in July, 1!5:3, QST', p. 10, and in this Mandbook, (hepter 21 .
(irounded-grid r.f. amplifier terchmigue is illustrated in Figs. 16-4 and Iti-I 4 . Here the input is in the cathode lead, with the grid of the tube grounded, to ade as a shiold botween cathode and plate. 'The grounded-grid circuit is stable and easily adjusted, and is well adapted to broadband applications. The gain per stage is low, so that two or more stages maty be required.

Touses well-suited to grounded-grid amplifior service include the 6Jt, dANt, dAJt, GAMt, 6I3C.4, 417 A and 416 B . Disk-seal tubers such as the "lighthouse" and "pencil tulne" types are often used ats r.f. amplifiers above 500 Ne., and the new eramic tubes show great possibilities for r.f. amplifier sarviee in the u.h.f. range.

Great care should be used in adjusting the r.f. portion of a v.h.f. receiver, whatever cireuit is used. If it is working properly it will control the noise figure of the entire sustem.

Reducing Spurious Responses

In areats where there is at high level of v.h.f. artivity or extensive use of other frequencias in the v.h.f. range, the ability of the reeceiver to operate properly in the presidner of atrong signals may le an important consideration. Suerial tube types, otherwise similar to odder numbers, hate beren developen for low owerload and arosimodulation suserptibility: "Ihe 6 BCC , which maty be used as a replacement for the $613(2 \pi \mathrm{~A}$ or $613 \% \overline{7}$, is one of these.

Modification of the converter design (ein also improve performance in these respects. In gemeral, the gatm ahead of the mixer stage should be made no more that is nerersary to achieve good noise figure characeristics. The plate voltage on the r.f. amplifier shoud te kept as high as pratetical, to prevent casy overbading.

Rajection of signials outside the desired frequency range can be improved by the use of high-Q tumed circuits aheod of the first r.f. amplifier stage. Teldevision transmitters are particuIarly troublesome in this respert, and one or more conxial-tyer circuits insorted in the lead from the antemna to the converter maty be mecessary to kerp, such signals from interforing with normal reception.

A common catuse of unwanted signals appearing in the tuning range is the presence of oscillator harmonies in the encrgy loring fed to the mixer of a crystal-controlled converter. 'This maty be pre-

Fig. 16-4-Grounded-grid amplifier. Position of tap on plate coil should be adjusted for lowest noise figure. Low gain with this circuit makes two stages necessary for most applications. R.f. choke and coil values depend on frequency.
voltage. When a good r.f. amplifier is used the mixer plate current may be run higher, for better operation with strong signals.

Oedasionally oserillation near the signal fredueney maty be oneountered in v.h.f. mixers. This usually results from stray lead inturtine in the mixur plate eircuit, and is most common with triode mixers. It mas he eorreted by eonmerting a small cat pacitance from plate to cathoder, directly :t the tube sorket. 'Ten to 25 $\mu \mu \mathrm{f}$. Will be sutficient, deponding on the signal frequener.

OSCILLATOR STABILITY

Whan a high-solnctivity i.f. system is employed in v.h.f. reerption, the stability of the oscillator is extremoly important. Slight variations in oscillator frequeney that would not be noticed when a hroudhand i.f. amplifier is used berome intolerable when the passhand is redued to erystal-filter proportions.

One satisfactory solution to this problem is the use of a rervital-montrolled asiblator, with frequener multipliers if nerded, to supply the injection voltage. Such a converter usuatly employs one or more broadband r.f. amplifior stares, and tunimg is done by tuning the reociver with which the comberter is used to cover the desired intemediate fregurney lenge.

Fig. 16.5-Typical v.h.f. mixer circuits for triode (A), pentode (B) and push-push triode (C). Circuits A and B may be used with one portion of various dual-purpose tubes. Plate current of pentode (B) should be held at lowest usable value if no r.f. stage is used.

16 - V.H.F. RECEIVERS

Fig. 16-6-Recommended oscillator circuits for tunable v.h.f. converters. Dual-triode-version (B) is recommended for 220 or 420 Mc. R.f. choke coil and capacitor values not given depend on frequency.

When a tumable oscillator and a fixed intermediate froguency are used, sperial attention must be paid to the osdillator devign, to be sure that it is mechamieally and cheretrially stable. The tuning capmeitor should be solidly built, proforably of the double-baring type. Splitstator eapocitors specifically designed for v.h.f. service, usually hatsing ball-bearing end phates and special ronstruction to insure short leads, are well worth their extrat eost. Leads should be made with stiff wire, to reduce vibration effects. Merohanical stathility of air-wound eoils "an be improved hy tying the turns together with harrow strips of household eement at sewral points.

Recommended oseillator circuits for v.h.f. work are shown in Fig. 16-6. The single-ended meillator may be used for 50 or 144 Me. with good results. The push-pull version is rerommended for higher frequencios and masy also be used on the two lower bands, ans well. Circuit A works well with almost any small triode, or one half of a $6.5 t$ or $12 \mathrm{~A}^{\prime} 7$. The 6.5 f is well suited to push-pull applications, as shown in rircuit It-6ik.

- THE I.F. AMPLIFIER

Superheterodyon receivers for 50 Ma , and up should have fairly high intermodiate froguencies, to reduce both owillator pulling athd image response. Approximately 10 per cont of the signal froquency is commonly used, with 10.7 Mr. being set up as the standard i.f. for rommorially-hailt f.m. reacivers. This part ieular Prequency has a disadvantage for 50-Me. work, in that it makes the receiver subjeret to image reponse from $28-31$ e. signals, if the oseillator is on the low side of the signal frequener. A spot around 7 Me, is favored for amateur eonverter surviee, as practically all communications re"evers are catpable of tuning this range.

For selecetivity with a reasomable number of i.f. stages, double conversion is usually emplowed in complete rewemers for the v.h.f. rimge. A 7 -Anc, intormediate frequency, for instance, is changed to 455 ke , by the atdition of a second mixer-oseillator. This procedure is, of course, inlerent in the use of it v.h.f. converter atheal of it communications receiver.

If the receiver so used is lacking in sensitivity, the over-all gain of the eonverter-reenver eombination maty be inadequate. This can be corrected by building an i.f. amplifier stage into the eonverter itself. Sueh a stage is useful even when the gain of the system is allequate without it, as the gain control can le used to permit opratation of the converter with receivers of
widely different porformanere. If the receriver has an S-metor, its adjustment may be laft in the position used for lower froguencios, and the converter gatin set so ats to make the metor read normally on v.h.f. signals.

Where reaption of wide-band f.m. or anstable signals of modulated oscillators is desired, it converter may be used ahead of an f.m. broadeast receiver. A suprrregenerative detector operating at the intermediate frequence, with or without additional i.f. amplifier statues, also maty serve :as an i.f. and detector system for reecption of widebiand signals. By using a high i.f. (10) to 30 Ma, or so) and ber resistive loanding of the i.f. transform(ars, almost any desired dugree of bathdwidth can be serured, providing good voice quality on all but the most unstable signals. Any of these methods maty be used for rereption in the miarowate region. Where stablilized transmission is cextremely diffieult at the current state of the art.

- THE SUPERREGENERATIVE RECEIVER

The simplest trpe of v.h.f. roceriver is the suprregenerator. It affords far monsitivity with few tubes and elementary cireuits, but its woaknewses, listed carlier, have rokgated it to applie:ations where small size and low power eonsumption are important considerations.

Its selnsitivity results from the use of all altermating quenching voltage. usually in the range betwen 20 and 200 ke.. to interript the normal oscillation of a regenerative deteetor. The regeneration coun thus be ineramed far heyond the amount usable in at straght regenerative circuit.

Fig. 16-7-Superregenerative defector circuit for selfquenched detector. Pentode tube may be used, varying screen voltage by means of the potentiometer to control regeneration.

The dotector itself can he made to furnish the quenching voltage or at weprate oscillator tube can be used. Requmeration is usually eontrolled by varying the plate voltage in triode detectors, or the sereen voltage in the ease of pentodes. A typicen circuit is shown in Fig. 16-7.

Crystal-Controlled Converters

Crystal-Controlled Converters for 50 , 144 and 220 Mc .

The three eonverters and their power suphly. shown below, were designed to meet the surecial requirements of each of the w.h.f. bands, insof:ar as possible. They offor high statility and reasomably low noisc figure, and sperial attention was paid to the reduction of spurious responses. partienlarly in the converters for an and 220 Me . Bach mit plugs into the power supply, which also includes the i.f. output circuitry: Anyone interested in one or two of the bands cem thus build for his own purposes :and onit the other band or bands. The i.f. tmuing range is 7 to 11 Me. for $\overline{5}(0)$ and $14+\mathrm{Me}$, coverage, and $7-12 \mathrm{Mc}$. for the $220-\mathrm{Mt}$ e. band.

THE 50-MC. CONVERTER

A pentode r.f. :mplifier stage is used in the
 proper design and adjustment surh a stage will have a noise figure suficiently low that it will respond to the weakest signals that em be heard with other and more complex stages. The tube shown is at GCB , but ot her pentodes such as the $6.15 \overline{5}$ may be substituted.

A gain comtrol is included in the cathode cirruit. Xormally this is rum all-out, for optimm mosise figure and gain, but in the presence of strong local signals it can be cut in to redure overlouding. This causes some impairment of the noise figure, but may still make possible reception of distant signalis through the lowals.

Note the double-tuncel coupling circuits in the r.f. input and betwern the r.f. amplifier and the mixer. The caparitors C_{1} and C_{2}^{\prime} are kept as smatl as possible and the coils are not coupled toget her atherwise. A value of 1 to $2 \mu \mu$. gives sutticient compling at the desired frequenes. but the system rexponds only wery slightly to lower froguencies. This helps to prevent interference from signals on the intermediate frequency.

The mixer is also a $6 \mathrm{CCB6}$. Its oprerating eonditions are set mpfor resistance to overloading and cross-modulation from strong signals, rat her than for optimum noise figure, as the latter is taken care of the the famplifier. Note that the phate rircuif of the mixer is omitted from the eomverters. It is build into the power unit, and thus only one coil ned be made for all the converters.

The uscillator is a biaft triode. Any other smadl triode could be sulnstituted. Input is held to a low level (mote 47,000 - , hom resistor in series with L_{-i} i in the interest of stahility. The oscillater cireuitry is isolated from the rest of the comverter, wo that injeetion cian be eontrolled readily. Benergy from the oscillator is carried to the mixer grid circuit through a shiedded link.

Mechanical Features

Bath converter is built on a flat plate, which serews onto a stamdard aluminum chassis. Con-
nection to the power unit is made through a t-pin phig momented on the side of the case. This earrics the heater voltage the plate voltage, the mixer phate lead and the commen chassis comneretion. The plug on the eonverter is the male type. It may be fastened to the chassis conveniently ley soldering $f-10$ nuts to the hark of the flanges used for monting the plug. Flat-head marchine screws in countersunk holes, in both the converter and the fower supply unit allow the two to fit sulugly together. This is importint in preventing pickip of signals in the i.f. range.

In the bottom virw, Fig. I($i-9$, the antemat comeretor js seen at the hewer right. Just to the left, separated by a small shiedd, are the two r.f. coils, L_{1} and I_{20}. The coupling capacitor, C_{1}, made of two wires twisted thgether, is on the low side of the shield, its leat to L_{2} rumning through a hole in the shicld.
The lead from L_{2} to the amplifier grid pin rums through the main lengthwise shicllt. This lead Was mate of shiedded wire. with the shielding removel from the part of the lead that is in the coil compartment. The portion of the wire in the tube compartment must be shiedded to prevent feedhack betwere the plate eoil, L_{3} a and the grid rircuit. The exupling (apacitor, (se, the gain rontrol. the plate coil and all other amplifior components are in this section, upper right.
Mixer components are at the upper left, with the oseillater section below, The eoppling link betweren L_{5} and L_{6} is made of shichded wire, ruming through the main shied partition.
The leals from the mixer to the plug, I_{2}, and all power leads, are made with shielded wire. The common eomection for ground and hater lead is the shiddling over the other three wires. These leads should the long enough so that the converter cam be lifted from the bex without removing the plug. A length of vinyl sleeving slipped over the keads will help to prevent shorts. Tramsparent sleeving was used, so it does not show in the
Fig. 16-8-Converters for the three v.h.f. bands, with their power supply and i.f. output unit. The $220-\mathrm{Mc}$. converter is shown plugged into the power unit. At the left is the $50-\mathrm{Mc}$. converter. The one for 144 Mc . is at the right.

Fig. 16-9-Bottom view of the $50-\mathrm{Mc}$. converter. R.f. input circuit is of the lower right, with the amplifier itself above. Crystal oscillator components at lower leff; mixer and output cable above.
pholographs.
The main shiclat is of by 1 tion inches in size, with a $\frac{1}{}-\mathrm{i}$ uch lip folded ower for mounting to the wate. The two shieds porpendientar to it are $17 / 8$ hy 115/6 inches, with lips folded over on the beottwon :und one enti. 'lhe isolation shied betweron the r.f. coils is 1^{3}, by 1515 inches. and is mounted 3_{1} ineh in from the lower edge of the cross shied.

The placing of the parts utherwise is not partioularly eritioal exerpt that bypass caparitors should be comneced with the shortest possible leats. Lise of the smatlest size disk erramio type is recommended.

Adjustment

'Tuning up, the convertur is a simple mattor. (lacek the wiring to tre sure that no mrors have beren made. Apply a.ce and see if all heaters come on. Then apply plate voltage be chasing siz on the power supply unit. If the eonverter output is

16 - V.H.F. RECEIVERS
comberted to a communioations reeriver tunced to the $\mathbf{7 - M e}$ range there should be a considerable increase in moise as phate voltage is appliod, even with circuits out of tunc.

First check the oseillator. This com be done by listening in the liz-Ite. range, if a rexover is available for that frequence. or a grid-dip metor may be used as a wavemeter. Gutput should appear on 43 Mc., and on that frequency only. Adjust $L_{\bar{z}}$ for maximum output indication, with the grid-dip coil coupled to L_{7}. Check around $1+.3$:and 28.6 Mc . to be sure that no output is in evidencer on these frequencies. should there be enorgy on these frepuences it mosins that the erystal is oscillating on its fundamental froguobey and showing output on its various harmonics. (hacillation on the fundamental indieates that the plate circuit is not properly tund

If the eonverter is wired correctly it should now be possibla to reecive strong signals, even before the circuits have been resomated. A calibrated signal genemator is helphul, but it is bey no means neressary. A test signal should be fed into the antemat conmector and the eore sorews in all coils adjusted for maximum sighal strongth.

The response of the comverter will not be flat acrose the entire 4000 ke , of the 50 - M (e. band, bat it will work over a wider freguchey range that most divective antenna systems. The sotting of the cores in L_{3} and L_{4} can be variod to give miniform response arress the dowired pass band. The input circuit should be adjusted for best signal-to-moiser ratio at the middle of the desired frequencer range.

The value of the small coupling capaeitors, C_{1} and ('2, will have some effect on the bandwidth of the rif. portion of the converter. lew directive antemas will work over more than about 1 ano

Fig. 16-10-Schematic diagram of the 50 -Mc. converter. Capacitors are ceramic; values .001 and up are in μ f. Resistors $1 / 2$-watt unless specified.

L_{2}-Same as L_{3}, but 9 turns.
L:- 2 turns insulated hookup wire at low end of L_{4}.
L_{i}-Same as L_{i}, but at low end of L_{i}.
L_{i} - Same as L_{3}, but 16 turns.
J_{1}-Coaxial connector, female.
J2-4-pin power connector, male. Must mount flush with chassis surface.

144-Mc. Converter

ke. of the band, so there is soldom much point in making the front end of the converter broader than this. If optimum performane is needed at the opposite end of the bind it is morely neerssary to repeak the core studs for leest results at the desired frepuency. Adjustment of the i.f. coil in the power unit also affeets the bandwidth. It can be peaked somewhat above the midelle of the tuning range if it is desired to externd the coverage of the ronverter-antemat combination.

When the converter is tumed for best results it maty le desirable to check the oscillator injection. This is best done with the aid of a noise generator. though a signal generator or weak signals may be used if care is taken to observe optimum signal-to-noise ratio, rather than mere gain. The value of the droppling resistor in series with L_{7} call be varied, the idea being to use the highest value that will not affeet the signal-to-noise ratio adversely.

A simple check on performance that ean be made in a location free of mammade noise is as follows: Comere a 50 orhm resistor in place of the antema coax. Ohserve the noise level, either by ear or as indicated on an output meter or the receiver S-meter. Now put the antema batek on. If the ref. stage is free of regeneration, a rise in noise level when the antenna is connected shows that external nowe can be heard. This noise is the limiting factor in weak-signal reception, and further reduction in receiver noise figure will serve no useful purpose.

THE 144-MC. CONVERTER

In the converter for 144 Mc. Figs. $16-11$ and 16-12, triode r.f. amplifiers are used, as they give better noise ligure than pentodes at this frequeney and higher. The tubes shown are 6BC 4 . but comparable results ean be achieved with the 6.JJ4, 6 AMt or 6.N.N, with the neressary revision of the pin comnections. Noise figure obtainable with any of these tubes is about 5 dh., which is about the level at which extermat noise begins to limit recoiver sensitivity. A noise figure of 3 db . or lower ean be had with 417 As, or even one 417A and one less expensive tube. but there may be no observable difference in weak-signal performanee.

The easeote circuit (see beginning of chapter) is used, with the circuit of Fig. lit-2 in preference to that of $16-3$. The latter, operating at lower plate voltage por stage, maty be slighty more susecptible to overloading. The 6CB6 mixer is also operated under conditions designed to keep down overloading and cross-modulation troubles.

The erystal oscillator is operated at the highest frequency that is possible with simple circuitry. This holds down the number of unwanted froquencies apparing in the multiplier output, which could beat in signals from outside the intended frequency range. The erestal oscillates on tr.ebia Me., using the triode portion of a 6 G 8. The pentode portion is a tripler to 133 Me.

The oscillator-tripler portion is isolated from the rest of the converter bey apper shided rumning down the middle of the 5 by 5 -inch plate.

The grid circuit of the first r.f. amplifier stage is adjacent to the tripler, but is as far away from it as possible, and the coils are positioned for minimum coupling. The lower seetion of the comverter, ats shown in lig. 16-11, is the portion in question, the antemat connection and grid coil being at the lower right.

Ahove the shidel maty be seen the first ref. stage, right, the second stage, with a shield down through the middle of its socket, center, and the mixer at the far left. To provide effertive isolation and bypassing, fered-through capacitors are mounted in the copper shicld to carry power leuds from one eompartment to the other. Three are used for the b-plus line and two for the heater leads.

IR.f. cirenits and the tripler plate circuit are tumed her means of small TV-type trimmers. Four of these are shown in the photograph, but the one that is comeded to the first r.f. plate coil, L_{3}, may be omitted, as the cirenit thenes vory broadly. The r.f. plate eoil, L_{4}, and the mixar grid coil, L_{5}, are 3 ind athart, ementer to conter. Compling betwern the two stages is mainly through the twisted-wire eapareitor, (ing. The r.f. input coil. L_{1}, is connereted to the grid pin of the I 1 ly a lead that roms through a li-inch hole in the shicld.

Both shiedds are made of flashing copper, The larger is $5 \frac{3}{4}$ he $13 / 4$ inches. with folded-owor cdges for mounting, and for rigidity. The smatlor is 116 be $13 / 4$ inches. It is held in phare bey soldering to lugs unter the monnting sorews of the GI3C't socket. This shicld tumed out to he roquired to prevent oseillation in the grounded-grid stage. It rrosses the middle of the tube sorket.

Connections for the power are mate in the sambe mancer as for the Eo-Me converter, and leads should be long enough to permit removal of the convertor from the box without unsoldering ang leads. The shiolds are bonded togethor and anchored to a lug lolted to the main shiod, near the loft end.

Note that wafretrpe sockets are used. This is
Fig. 16-11-Bottom view of the $144-\mathrm{Mc}$. converter. Crystal oscillator and tripler accupy lower left side of the assembly. Antenna input circuit is at the right. Above the partition, right to left, are the cathode trimmer, the first r.f. amplifier socket, the r.f. plate coil, the second amplifier socket, with shield across its center, the plate coil, mixer grid coil and mixer tube socket.

Fig. 16-12-Wiring diogram and ports information for the 144-Mc. converter. Ports specified as in Fig. 16-10.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}-8-\mu \mu \mathrm{f}$. plostic trimmer (Erie No. 532-10). $\mathrm{C}_{4}-3-30-\mu \mu \mathrm{f}$. mico trimmer. Set ot tight position initially. $C_{5}, C_{f}, C_{7}, C_{8}, C_{9}-500-\mu \mu$. feed-through bypass (Centralab MFT-500).
$L_{1}-41 / 2$ turns No. 18 tinned, $1 / 4$-inch inside diam., $1 / 2$ inch long, tapped at $11 / 2$ turns.
$L_{2}-14$ turns No. 24 enam., $1 / 16$-inch diam., $1 / 2$ inch long. $L_{3}-5$ turns No. 18 tinned, $1 / 4$-inch diam., $1 / 4$ inch long. $L_{4}-51 / 2$ turns like L_{3}.
$L_{5}-31 / 2$ turns like L_{3}.
more than tun ceonomy measure; shorter ground leads are possible with this type of socket. Where socket torminals are to be grounded, they are bent down flush with the bottom of the plate. Then a hole is drilled adjacent to the lige and it can then be seeured to the phate under a washer and nut. This method of grounding is superior, at these frecuencies, to the more commonly used lead-and-lug arrangement.

Adjustment

The first step in putting the $1+4-$ Mc. converter into service is to be sure that the oseillator is working correctly, as deseribed in conneetion with the $50-$-Ite. converter. This may be done with the plate and sereen voltages diseonneded from the pentode portion of the 6 U 8 , if desired, by lifting tripher plate coil and the sereen resistor from the B-plus line temporarily. Be sure that the oseillator is on the right frequency, and no other, as deseribed carlier.

Now commert the tripler plate coil and sercen resistor to the B-plas line and cherek the tuming of the tripler caparitor, (3. het it for maximum output on 1:37 Ne., as indieated by a grid-elip meter coupled to L_{i}. The ontput reguired from the tripler may be chereked alfer the ref. seetion is tumed properly. It may be controlled by varying the value of the sereen dropping resistor, which is 17 , UNe ohms in the original. The tripler maty be pun al the lowest input that will give

Le- 13 turns No. 24 enam. closewound on $1 / 4$-inch diom. iron-slug form (North Hills F-1000).
L_{7} - 8 turns like $L_{3}, 3 / 4$ inch long.
L8-1 turn insuloted hookup wire between first two turns of L_{7}.
L_{9}-Same as L_{8}, inserted in L_{s}.
J_{1}-Coaxial connector, female.
J_{2}-4-pin power connector, male. Must mount flush with surface of chassis.
RFC $_{1}$, RFC $_{2}-1.8 \mu$ h. solenoid r.f. choke (Ohmite Z-144).
satisfactory signal-to-noise ratio. Above that point the injection is not critical.
The r.f. cireuits may now be adjusted. set the trimmer, (4 , across the r.f. cathode resistor, at maximum at first. Then on a test signal tune C_{1} and (iz for maximum response. The spacing between the turns of the r.f. plate coils, L_{3} and L_{4}, should also be adjusted for highest signal level.

If a noise generator is available, it should be used to set up the r.f. input circuit, the inductance of the neutralizing coil, and the value of the cathode bepass, (4. If signals or a signal genorabtor are used, the criterion should be greatest rise over noise for a given signal, rather than maximum ti-meter reading or loudest volume. Adjustment of the neutralizing coil, and setting of the cathode bypass value wre all but impossible without a noise generator. lacking one, it is best to use a fixed bypass of about $100 \mu \mu$. for C_{4}, and leave the nentralizing winding at the specification given in the cut lated. Changes in the nentralizing coil affert the tuning of the grid circuit. Recheek the setting of C_{1} after altering L_{2}.

The conpling capacitor. (${ }_{10}$, is not critical, but for best rejertion of i.f. signals it should be as bow as will give satisfactory performance on 14t-Mce signals. Insulated wires twisted together provide a emvernient adjustment mothod.

As the band is ne:rly there times as high in frequency as the sol-Me, hand, there will be less

220-Mc. Converter

difficulty in getting uniform response aross the entire band. Tuning of the serond r.f. and miver cireuits can be staggered to develop the desired bandwidth, and the value of C_{10} will have some effect on it as well.

THE 220-MC. CONVERTER

In the converter for 220 Ne., Figs. 16-13 and 16-1.4. an additional r.f. amplifier stage is used ahead of the eascode-and-mixer combination. This is required because the gatin per stage is lower at this frequeney. It is also desirable boratuse of the added selectivity it affords. This may be very helpful in areas where interference from other services adjacent to the band may be lothersome.

The additional stage is a grounded-grid tmplifier, using a modified conxial-line plate circuit for high "()" and selectivity. It is not a broadband deviee and must be retuned in covering the band. The tube shown is a GADI4. Similar results were achieved with the dBC.t, and nearly identian performance is possible with other u.h.f. triodes. The 47.1 and 416 B should be superior. Noise figure is about 6 d db .

A series rascode using a fiBC8 dual triode follows. This type of amplifier is easily adjusted :und tends to doliver superior results as the upper limit of frequence is approtwhed. The mixer is a 6AK5. Its ontput circuit is, of course, the coil assembly in the power unit.
The r.f. amplifier is similar to the one doseribed separately later in the chapter, exeept that the output is taken off through the bottom of the assombly, with a tuned link, instead of through at coaxial fitting on the side. In the diagram, Fig. 16-1t, the plate line and eoupling loop ate shown as if they were coils, it being cumbersome to express a trough-line cireuit schematically.

Mechanical Details

A somewhat different method of eonstruction is employed in the $22($)- Ale. converter, in order to insure the most effective grounding and bypassing. A plate of aluminum is used, as in the other converters, but only for appearance and rigidits. The plate used for actual cledtrical grounding is a sheet of flashing copper. Wafer sockets are used, and wherever a terminal is grounded it is bent down flat and soldared direetly to the eopper plate. This makes for less lead and more effertive grounding than where socket mounting serews and lugs are used ground commections. It also allows shield partitions of eopper to be soldered directly to the base plate.

The $220-\mathrm{Me}$. converter requires more space than the others, so a 7 by 9 -inch chassis and plate are used. The longthwise partition $11 / 8$ ly 7 inches in size, atter folding over $1 / 8$ inch on cach side for mounting and rigidity. The smaller is $1 \frac{1}{8}$ by 4 inches. The large shield is rentered on the plate $23 / 8$ inches in from the long edge. The smaller is $4 \frac{1}{4}$ inches in from the left edge.

The oscillator is similar to the $14.4-\mathrm{Me}$. unit, except that an air-wound coil and at variable catpacitor are used instated of a slug-tuned eoil. The pentode section of the fiU8 is a quidrupler to 213 Mc. from a ervstal frequeney of 53.25 Mc . A sories-tmed link feeds energy to the mixer grid cireuit through a shiedded-wire line. (Jseillatormultiplier eomponents are in the left portion of Fig. 16-13.

At the rightare the mixer (upper sorket) and the series cascode r.f. atmplifier, below. Note that power wiring is made with shidded wire, latid close to the shieds. Plate voltage is fed into the oseillator-multiplier and r.f.-mixer compartments on feed-through hypasses. Heater voltage for the r.f. amplifier goes through the plate on shielded wire at the lower left, and plate voltage at the

Fig. 16-13-Interior of the 220 -Mc. converter. Bottom plate and partitions are of flashing copper, for effective grounding. Oscillatormultiplier circuitry is at the left; mixer and cascode r.f. amplifier at the right. Groundedgrid amplifier is above the chassis.

16 - V.H.F. RECEIVERS

Fig. 16-14-Schematic diagram and parts infarmatian far the $220-\mathrm{Mc}$. canverter.
lower right. The mica trimmer at the lower right is ('2, in series with the low side of the coupling loon), La. The other end of the loops comes ont on at feredhluough bushing, National True Trl'ls. Its lead to $/ 2$ is shioleted wire. rumang through the bartition.

In working with flashing roppor parts the motal work should he eompleted, up to the point where the parts are ready to assemble The ropper parts may then be polishord with stoed wool and given a fine spray roat of cleat lancpure. This will help to kerop them clean and bright, and it will not affer the soldering oprorations to be done hater.

Adjustment

The oscillator and mulipoliow sages should be adjusted as oultined for the ot her comwerters, mathing sure that the
$\mathrm{C}_{1}-5-\mu \mu \mathrm{f}$. miniature variable (Hammarlund MAC-5).
$\mathrm{C}_{2}-3-30-\mu \mu \mathrm{f}$. mica trimmer.
$\mathrm{C}_{3}-20-\mu \mu \mathrm{f}$. miriature variable (Hammarfund MAC-20).
$C_{1}-10-\mu \mu \mathrm{f}$. miniature variable (Hammarlund MAC-10).
$\mathrm{C}_{5}-7-45-\mu \mu$. ceramic trimmer (Centralab 822-BN).
$C_{6}, C_{7}, C_{8}, C_{6}-500-\mu \mu f$. feed-thraugh bypass (Centralab MFT 500).
L_{1}-Inner canductor of trough line - $1 / 4$-inch copper tubing, $61 / 4$ inches lang, $1 / 4$-inch diam. C_{1} cannects $13 / 4$ inches fram plate end. See Fig. 16-22 and text.
L_{2}-Caupling loop-insulated haakup wire 3 inches lang. Laap partian lays clase to cald end of L_{1} for 2 inches. Hot end cames through chassis an Natianal Type TPB feed-thraugh bushing.
$L_{3}-3$ turns No. 18 tinned, $1 / 4$-inch diam., $1 / 4$ inch lang, center-tapped.
$L_{1}-4$ turrs like $L_{3}, 3 / 8$ inch lang.
$\mathrm{L}_{5}-81 / 2$ turns like $L_{3}, 5 / 8$ inch lang, centertopped.
$\mathbf{L}_{6}-2$ turns insulated haokup wire at center of L_{5}.
$\mathrm{L}_{7}-6$ turns Na. 20 tinned $1 / 2$-inch diam., $1 / 2$ inch lang. (B \& W Na. 3003).
Ls-2 turns Na. 18 tinned, $3 / 8$-inch diam., spaced $1 / 8$ inch.
Ls- 2 turns insulated haokup wire between turns of Ls.
J_{1}-Caaxial fitting, female.
J, 4-pin pawer cannector, male. Must mount flush with surface of chassis.
$\mathrm{RFC}_{1}, \mathrm{RFC}_{2}, \mathrm{RFC}_{3}-18$ turns Na. 24 enam., close-waund, $1 / 8$-inch diam.

220-Mc. Converter

corred freduencies arr ohtained. Next a signal may be fod into the GBC8 stage through the shiodded line to L_{3}. This maty fo discommerted from L_{2} temporarily and coas-fod antomata or a abohm signal generiator termiation may be eonnereded aross it. Now adjust the spareing of the thms in L_{3} and L_{5} for hest perlomatnec. Maximum gain will be a goodermongh indieation here, so at noise genorator is mot neoded.

Now the ciADIt amplifior may be hooked up and tumed. It will be quite seldertive and will have to toe reflumed several times acerss the hand. With the plate foning caparitor tapped down the line as it is, the toming range in magacreles is not great. Be sure, therefore, that it athatly doess tune the entire wals, and does mot hit maximum or minimum capareitane inside the hand.

Adjustmonts maty be made all along the line using maximum signal level as tho hasis for achioving the optimum sotting, but only a noise generator will show if the convertor is delivering the best sensitivity of which it is rapable. It should be possible to get the noise figure down to about © (ll). using the 6AMA, if everything is working properly.
If any doubt exists that the eoils L_{a} and L_{5} are foning propery, small twisteri-wire catpatitors maty be conneded from the gride end of L_{2} athed the plate end of L_{5} to ground, and gradually increased in value. If the gatin drops when the (atameter is connected. the coil is foo large. If a small atmount of atded eapacitanere inceratses tho gain, sumero the eoil tums eloser together and try again. The inductance of L_{4} should not be partienalarly eritical. It should be as large as can be used without cansing instability.

Injertion from the quadrupher maty be comtrolled by varying the pesition of either link winding, L_{60} or L_{9}, with respert to its coil, and byo adjusting ('s. Coupling should be inereasod until

Fig. 16-15-Bottom view of the power supply and i.f. output circuitry for the v.h.f. converters. A.c. swith is above power transformer, right. Next are the filter capacitor and the rectifier socket. The switch of the lower left cuts off the high voltage. The i.f. plate coil and the output fitting are in the upper left of the picture.
there is no improvement in signal to noise ratio. Injertion heyond that point is not aritical, though it will affert the overall gain somewhat Fairly low injertion is desirable as it will keep down the level of spurious responses.

- power supply and t.f. output

Though it may be pessible to run a v.h.f. converter from the power supply of the reeciver with which it is to be used, as suply for the ronverters is desirable. The one shown in Fig. 1ti-15 and 16 -16 is incexpensive and convenient. It de livers the heater and plate power required by the converters, and in addition carries the mixer plate cirenit and the provision for coupling into the recesere.
Cunstruction is not eritical. Parts are assembled on as 5 ber 7 -inch plater and this fastens to a similarly sized chassis that matches the converters. The $50-$ and $141-$ Me units plug into the

Fig. 16.16-Schematic diagram of the converter power supply and i.f. output unit. Capacitors with polarity marked are electrolytic; others ceramic.
C_{1}, C_{2}-Dual .005 - $\mu \mathrm{f}$., 125 volts a.c. disk ceramic (Sprague 125L-2D50).
$\mathrm{C}_{3} \cdots .01-\mu \mathrm{f}$. disk ceramic. Mount at plug end of cable. $R_{t}-50,000$ ohms, 2 watts $(2100,000$-ohm 1-watt resistors in parallel).
L 1 -10-hy. 50 -ma. filter choke.
$L_{2}-$ No. 28 enam. closewound $1 / 2$ inch long on $3 / 8$-inch iron-slug form. Wind near upper end.
J_{1}-Coaxial fitting, female.
J_{2}-4-pin power connector, female. Must mount flush with surface of chassis.
S_{1}, S2-S.p.s.f. toggle switch.
T_{1}-Power transformer, 480 v . a.c., c.t., $40 \mathrm{ma}$. . 5 v . $2 \mathrm{amp} ., 6.3 \mathrm{v} .2 \mathrm{amp}$. (Thordarson TS-24ROO).
P_{1}-A.c. plug on cord.
power unit through matching fittings on the suldes 'lhe larger 220-We eonverter has the plug mounted on the rad wall of the (hassis, so that it: $\overline{\text { Finch }}$ dimension is alignod with that of the supply.

Arengement of parte should he cloar from the photographes and parts location is in no way ritical. Note that the a.e. commertion is bepassed on both sides of the line. The eaphatitors ("s and ('2 ate a dual unit designed for this purpose. The bypass on the b-phus line, (3 , should be at the phug end of the cable, with as short leads as possible. It is important in preventing pickup of signals in the i.f. tuning range, as atre (${ }^{\prime} 1$ and (2 .
switches are prowided for tuming on the a.e. . and for breaking the flow of plate current. This feature is helpfinf duming adjustment when it may fo desirable to remove the converter from its rase. l'late voltage maty he cut off for safety in handling, and then turned on again without loss wif the time needed to warm up the tuthes.
Contant between the converter case and the power supply case may be important in preventing signal pickup at 7 Me. If i.f. signals are botharsome, try putting at spring elip under one of the sorws that holds the power supply plate down. Plane this so that it will make contant with the ronverter case or top plate when the two mits are plugged together. It also may be neerssary to lond the convorter and power supply eombinattion to the frame of the communieations reerever with which they are to be used. This should be
(lone with a short heavy copper strap or braid.
(onnection betwen the i.f. mit and the rereiver should be rith coaxial line and it is highty desirable to install a roxial fitting on the rereiver in plate of the usual terminal strip. The comeretions should be removed from the back of the strip, or the terminals may still allow some i.f. pickup.

Using Other Intermediate Frequencies

The i.f. tuning range beginning at 7 Me. was selected as the most desirable for most recerivers. Other ranges may be proferred, and the i.i. can be altered easily enough. The injection fropuency is lower than the signal frequeney be whatever i.f. you intend to use. For example, a 50 - Me. converter with a $14-M \mathrm{Me}$. i.f. would have a ervistal and injoetion frequeney of $50-14$, or 36 Me. The 14t-Me. converter would have a I 330 - Me. injertion frequener, and the erystal would be onethird of this, or +3.33: Me.

Generally speaking, single-wonversion commmmations receivers (most inexpensive types. and all older recoivers) work best with low intermediate freguencios, such as 7 Me. or lower. Doublewowersion recerivers will be satisfactory in the 1t-Mc. range in almest every case, and some are stable enough to do well around 30 Mr. At least one commanications receiver, the NC-300, has a range designed esperially for b.h.f. converter use, starting at 30.5 Me.

Preamplifier for $\mathbf{2 2 0} \mathbf{~ M c .}$

The amplifier shown in Figs. 16-17 to 16-19 will improve the gain aud noise figure of at 220 -Me. convertor that is not operating at maximum offertiveness, it also provides some additional selectivity, which may be helpful in areas where signals from outside the band are troublesome. The plate cirruit has high (), so it must be retumed in eovering the bend.

The sehematic diagram is the same as the first stage of the 220-We. converter, Fig. 16-14. The sigual is fed into the eathode of the gromeded-grid amplificr. The plate circuit is a trough line. Any
of the smatl u.h.f. triodes may be used, though a GAMt is shown. Cherk pin connections and cathode resistor values for other types.

Construction

The outer eondurtor of the line, which also serves as the chassis, is made of flashing eopper. If the details of lig. 16 - 18 are followed, it may be made from a single piece. A small eopper shiedd is placed across the tube socket to isolate the input and plate circuits. Just where this shield is located depends on the tube used, as various

Fig. 16-17-220-Mc. trough-line preamplifier. Construction is similar to that used with the $220-\mathrm{Mc}$. converter, Fig. 16.8, except that provision is made for cable connection to a remote receiver or converter.

420-Mc. Receiver

Fig. 16-18-Details of the outer conductor and chassis for the $220-\mathrm{Mc}$. preamplifier.
tubes have different grid pin arrangements. All grid terminats are bent flat against the copmer case, and soldered in place.

The left end (bottom view, Fig. I(6-19) contains the coasial fitting for the antenna comeetion, the r.f. chokes and other eomponents of the input cirenit. The wate line. tuming capacitor, output rouphing loop and coas fitting, and the 13 -phus feed-through eapatitor mount in the large portion. A hottom cover for the line can he made of ropper 8 inches long and $21 / 4$ inches wide. Bend ower a quatter inch on catch side, and slip the eover over the edges of the eatee.

The inner conductor is $1 / 4$-inch copper tuling. sitart with a piece $61 / 4$ inches long. Saw the ends lengthwise to depths of $1 / \frac{1}{4}$ and $1 / 2$ inch. Cut off one hatif at eath end. The rematining portions are used to make comnections. The halli-inch end is bent down to sobler ta the plate lugs of the socket. The guarter-inch end solders to the feedthrough cuptacitor.

The tuning calacitor, ${ }^{\prime}{ }_{1}$, is mounted with its stator hars toward the tube end of the line. The inner eonductor will rest between these hars and they ean be sohtered to it readily. Plate voltage
is fed through Co, heater voltage through (ig. Shatput is taken off through the coupling lown, Ls, visible in Fig. 16-19, The series eapacitor, Co. W:as omitted from the promplifier, though it might be useful if the amplifior works into it converter with an untmed input circuit.

Adjustment

The preamplifier may be connected to the converter through a coasial line of any eonveniont lengeth, but the converter input should be a oonvial fitting. To put the preamplifier into service, adjust the plate line for maximum signal strength. Then cherk the position of the eoupling loop, adjusting for maximum response. Readjust the tuning of the line as the eompling is changed.

The tuning range of c^{\prime} is not wide, so be sure that it actually tumes the line at both ends of the band. some adjustment of tuning range can lue had be rotating the mounting of the capacitor 180 degrees. If this doces not bring the tuming within range, the mounting hole can be clongated and the position of the trimmer adjusted as reduired.

Fig. 16-19-Bottom view of the preamplifier

Receivers for 420 Mc .

For bext signal-to-noise ratio, reereivers for any frectueney should have the highest degree of selectivity that can be used sucecssfully at the frequeney in question. With erystal control or it: eruivalent in stability arecpted as standard practiee on all bands up through 148 Mc., there is little point in using more bandwidth in receivers for these frequencies than is necessary for satisfac-
tory voide reception, a maximum of about 10 ke . such communication selectivity is now being used suceresfully by most workers on 220 and 420 Mc ., too, but it imposes several problems not encountered on lower hands.
first is the matter of oscilletor instability in the converter. Even the best tunable oscillator at 420 Mc . suffers from vibration and hand-capacity

efferes sulficiently to make it difficult to hold the signal in a IO-ke. i.f. band width.

Thern, there are still some unstable transmitters Deing used in work on 220 and 120 . Ma. It is out of the question to copy these on a seleretive rereiver.

Last. searehimg a hand 30 mogaryoles wide is exersively timeronsuming when rommunica-lions-rereiver solertivity is used in the i.f. system.

There is no single solution to these problems, but the best approach appears to be that of breaking up of the band into segments for differant tepes of operation. This is being done by mutual agreoment among 420-Me, opreators at presiont, as follows: 420 to -132 Mc . - modulated
 erystal-controlled c.w., a.m. and narrow-band f.m.: 133 10 +40 - television.

The first sugment ram be eovered with a superregencrative receriver, a sumerhotorotwe having a widelnad i.f. system, or a convertere used ahead
 required for lnest use of the midille portion makes a cerstal-rontrolled or otherwise highly stable convorter and commonications reverive combination almost mamatory. Amatem T'Y is usually
 receiver, thmed to some chanmel that is not in use lowally.

Many of the tulnes used on the v.h.f. bande are useless at - 120 Mre, and the performance of even the best u.h.f. tubers is down compared to lower bands. Onty the lighthouse of pencil-t riode tubes and a few of the miniatures are thathle and these require moditiations of conventional cireuit tee hnifue to produer satisfiatory results.
('rystal diokles are often used as mixers in f20)Me reveivers as in this frequeney ramge they work nearly as well as vacuum tulow. The over-all gatim of a converter having a cerestal mixer is alout 10 dh. lower thath one using a tube, so this difterence thast be made up in the i.f. amplifier. The noise ligure of a reredver having a cryatal mixer and to rif. stage includes the noise ligure of the i.f. amplifier following the mixer, so best resulta require that the i.f. amplifior employ low-noise terhniques diselused carlier in this ehapter. If the i.f. is ot Me. or higher it is partiendary imporatht that a low-moise triode be used for the first i.f. stage.
(rystal liodes of the type used in radar mixers,
 miser sorviere, though eate must he taken to avoid hamage from transmither r.f. conergy. Wther types of arstal dioders sueh as the $1 N ゙ 2$ and CK710

16 - V.H.F. RECEIVERS

Fig. 16-20—A highly effective r.f. amplifier for 420 Mc. The tank circuit is a half-wave line made of flashing copper. Coaxial fittings are for input and output connections. Heater and plate voltages are brought in on feed-through bypass capacitors just visible on either side of the 6AJ4 tube.
will stand higher values of crystal courent, and their use is recommented.
fow conventional vatuam tubes work wall as mixers at 420 Mr , and higher. The $6 . / 6$ is useful where a balaned input eireuit is desired, as in Fig. 16-5C. For singlemeded cireuitry the 6:AM4 and 6.1 .24 are recommended. Ther may be used in grounded-grid or grounded-eathode cireuits.

For high-selectivity coverage of the 432- to 436-Me, segment of the band, at common practice is to use a arystal-eontrolled ronverter working into another converter for either the $\bar{j}(0-$ or $1+1-$ Me. bamb. funing the latter for the four-megaerele tuning range.

- 420-MC. R.F. AMPLIFIER

The r.f. amplifier shown in Figs. 16-20 through $16-22$ is capablo of a gain or more than 15 dh. and its noise figure ean he as low ats 6 d (h) with rareful adjustment. It will make a lange improvement in the smativity of any eonverter or recoiver that has no r.f. stage, or one that is working poorls.

The design shown is for either the GidJ or 6ADIt, hat with suitable socket and pin-emaeetion changes the H 7 A , b BC C or diANt will work equally well. It is a grounded-grid amplifier with

Fig. 16.21-Schematic diagram of the 420. Mc. r.f. amplifier.
$C_{i}-500-\mu \mu$ f. ceramic.
$\mathrm{C}_{2}, \mathrm{C}_{3}-1000-\mu \mu \mathrm{f}$. ceramic feedthrough (Erie style 2404).
C_{1}-Copper tabs, $7 / 8$-inch diam.; see text and photographs.
$\mathrm{R}_{1}-150 \mathrm{ohms}, 1 / 2$ watt.
R2-470 ohms, $1 / 2$ watt.
$\mathrm{L}_{1}-1 / 4$-inch copper tubing, $73 / 8$ inches long, tapped $23 / 8$ inches from plate end.
L_{2}-Loop of insulated wire adjacent to L_{1} for $3 / 4$ inch.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$-Coaxial fitting.
$\mathrm{RFC}_{1}, \mathrm{RFC}_{2}, \mathrm{RFC}_{3}-9$ turns No. 22, $3 / 8$-inch diam., spaced one diam.

420-Mc. R.F. Amplifier

Fig. 16-22-Bottom view of the 420-Mc. r.f. amplifier with the slip-on cover removed. The inner conductor of the tank circuit is held in place by a block of polystyrene, mounted near the low-voltage point on the line. The platevoltage feedthrough and output coupling loop may be seen at the left of this support. Heater, cathode and antenna-circuit components are in a separate compartment at the tube end of the assembly. The line is tuned at the opposite end by a handmade copper-tab capacitor.
a half-wave tine in the phate circuit. The antenna is comerted to the cathode of the tube through a coupling caparitor. As the input impedance of the grounded-grid stage is low, nothing is gained by the use of a tuned cireuit in the cathode lead. Output is taken off through a coupling loopat the point of lowest r.f. voltage along the line.
The amplifier is built in a frame of flashing eopper that serves as the outer conductor of the tank circuit. The whole assembly is 10 inches long and $1 \frac{1}{4}$ inches square, exsept for the bottom, which is aloout $13 / 4$ inches wide. Vdges are folded over with lips $1 / 4$ incla wide which slide into a bottom cover made from coppor sheet $2 \frac{1}{4}$ by 10 inches in size, with its edges bent up $1 / \frac{1}{4}$ ind wide on earh side.

The plate circuit is made of $1 / 4$-inch coppor tubing tuned by a ropper-tab eapanitor at the firr end from the tube. leate voltage is fed in at the point of minimum r.f. voltage, which in this mstance is about 5 inches from the open end. The antema is connerted to the cathode through a roupling capacitor. The input impedanere of the grounded-grid amplifier is so low that mothing is gatued by using at tumed eireuit at this point. The eathode and heater are matintanod above ground potential by small air-wound r.f. chokes.

The tule socket is two inches in from the end of the trough, and is so oriented that its phate comnection, Pin $\overline{5}$, is in the proper position to connert to the line with the shortest possible lead. A coppor shielding fin is mounted across the interior of the trough $21 / 8$ inches from the end, dividing the socket so that l'ins 3, 4,5 and (6) are on the plate side of the partition.

Minimum grid-lead inductanee is important. This was insured be hemding all the grid prongs down against the eoramie body of the socket, and then making the mounting hole just big enough to pass this part of the socket and the prongs. They were soldered to the wall of the trongh.
huput and output connections are coaxial fittings mounted on the side wall of the trongh. 13-plus and heator voltage are brought into the assembiy on feed-through gapators mounted on the same side of the trough as the tube. Connection to the immer coudurtor of the line is made with a gride elip, so that the point of comertion can be adjusted for optimum results.

The eopper tubing is sloted at the plate end with a hatek saw to a depth of about $1 / 4$ inch, and a strip of hashing enpper suldered into this slot to make the phate commertion. A copper tab about the size of tome-rent piece is soldered to the ot her

end of the tubing to provide the stationary plate of ('4. The line is supported near the low-voltage point by a $1 / 4$-inch-thick block of polystyrene. This is centered at a point $5 \frac{1}{4}$ inches in from the tulse end of the trough assembly: The hole for the B-plus fredthrough is $4 \frac{1}{4}$ inches from the same end.
The movable plate of C_{4} is soldered to a serew rumning through a nut soldered to the upper surface of the trough at a point $3 / 8$ inch in from the open end. If a fine-h had serew is available for this parpose it will make for casier tuning, though a ($i-32$ thread was used in this model. This made a wohbly combat. so a coil spring was installed between the top of the trough and the knoh to kerp some tension on the adjusting screw.

Adjustment of the - $220-\mathrm{Me}$, amplifier is mate easior if a noise generator is used, though it is not as important ats in the case amplifiers with tuned input circuits. If the amplifier is working properly there will be ath appreciable rise in nowe as the phate circuit is luned through resonamee. and it maty break into oseilation if operated without load. When comected to a following stage, with a reasonably matehed antenna plugged into J_{1}, the amplifier should not oscillate unk ess the coupling loop, L_{2}, is much too far from the inner ronduetor.

When the amplifier is operating stably and tuned to a test signal (or to a peak of response to a moise generator), the next step is to lowate the optimum position for feeding the plate voltage into the line. This maty be done by ruming a pencil lead slowly up and down the inner conductor, until a spot is found where (ourhing the lead to the line has lit tle or no effert on the operattion of the amplifier. The plate voltate elip should the placed at this point and the prowess repeated, moving the clipslightly until it is at the minimumvoltage point precisely. This adjustment should be made at the midpoint of the tuning range over which the amplifier is to be used.

The position of the coupling foop, should then be aldusted for hest signal-to-moise ratio. This will probathy turn out to be with the insulated wire lying aratinst the inner comblator for a distance of about 34 to 1 inch, starting at the minimum-voltage point just loated.

A CRYSTAL-CONTROLLED CONVERTER FOR 432 MC.

The converter shown in Jigs. 16-23 through $16-26$ is designed to provide high sensitivity and

Fig. 16-23-A crystal-cantralled canverter far 432 to 436 Mc . R.f. and mixer stages are in capper subassemblies at the righ ${ }^{2}$. Oscillatar, multiplier and i.f. amplifier ore on the left side.
signal-to-noise ratio in reception of signals in the $4: 32-$ to 436 -Me. range. It uses a grounded-grid r.f. amplifier stage similar to the one shown in Fig. 16-20, working into a crystal-diode mixer. The intermediate frequener, with the design eonstants given, is 50 to 51 Me , though lower froquancies could be used ber suitable modifiration of the injoretion chatin.

Crotal-eontroiled injection on 382 Mc. is provided by two (iJds operating as overtone oscellat-tor-tripler and teipler-moubler, respectively. As only a small amount of r.f. is required at 382 Mc ., this lime-up is not difficult to build or adjust, An inexpensive $\mathbf{7}$-Mc erotal is used. An i.f. preamplifier stage follors the erystal mixer. This maty or mate not be needed, depending on the performatre of the receiver or converter that will serve as the tanable i.f. fow-mone amplifieation in the i.f. stage is a factor in the over-iall performance of the system, so use of the built-in i.f. stage is recommended.

Construction

The convorter is built on a $7 \times 11 \times 2$-inch aluminum (hassis, with the r.f. and mixer portions in at eopper subassembly that mounts on the top of the rhassis, at the right side as seen in Hig, Ifi-2:3. The oweildator-tripher and tripher doubler (iJes are at the left front, with the 6 begi.d i.f, amplifier at the rear. "The mixer line is the short portion of the copper assembly, with the r.f. amplifier line at the right. In the bottom view, Fig. 16i-25, the injertion-chain and i.f. amplifier components are visible.

Fig. $16-2 t$ is an interior view of the r.f. and mixer lines. These are made as two soparate assemblies, joined bue short length of eopper tubing that is visible in the top view. Joth tank rimenits are $1 \frac{1}{4}$ inches square, with $1 / 4$-inch (oppor tubing imer conductors. They are made from shects of flashing copper $41 / 4$ inches wide. The mixer compartment is $5 \frac{1}{2}$ inches long and the r.f. portion is 10 inches long.

The r.f. amplifior is similar structuratly to the one desoribed proviousle, except for the method of roupling botwern it and the erystal mixer. This is chone with a grid elip on cach lime and at cramio compling capacitor. The lead from the caparitor, inside the amplifior line, is brought through a half-inch longth of eopper tubing that is soldered into the walls of both lines. The lead is insulated with aphghetio slerving.

The 13 -plus feed to the ref. stage should be at the point of minimum r.f. voltage, $17 / 8$ inches from the plate end of the copper tubing. The eoupling tap is one inch out from the B -plus feedpoint. The coupling point on the mixer line is 1 inch from the ground end. The errstal diode is inserted in a small hole in the mixor inner conductor, $13-1$ inches from the ground elod. The inmer eonduetors of the r.f. and mixer lines are $7: 3 / 16$ and 5 inches long, respertively. Mixer tuning is done with a small plastio trimmer, ('ho. whik the r.f. plate ciredia is tuned with a handmadre tab ("apatitor, ('9, similar to ('t in Fig. 16-21.

Note the ref, bypass, (res, on the outside of the mixer lime. 'This is mate from a piece of copper $7 / 8$ inch in diameter, insulated from the line homsing by a pioce of vingl phatic. Two thicknesses of the material eommonly used for small parts envelopes are satisfartory. The arstal, which may be any of the u.h.f. diodes, is slipped through a close-fit hole tund is held in place be the wire soldered to its outside terminat.
llate and filamont voltares are fed into the assembly on feed-through bepass cupacitors, visible in the top-view photograph. Antennat connertion is made through a eosxial fitting on the end of the ref. assomble, A restal-eurrent jark, a 4 -pin power fiting and 1 wo i.f. connectors are on the end wall of the ehassis. The serend coaxial connertor was instabled so that tests could be made with and without the i, f amplifier stage.

Wiring in the power riteuts is done with shideded wire, in case that 'TV' might result from the oserllator or multiplier stages. The addition of a bottom plate and power-lead filtering would then be effertive. Injection and i.f. coupling leads are also made of shiched wire, this serving in plawe of "osax line that is harder to hatudle.

The output of the injection chain is coupled into the mixer line by means of a loop, L, that

Fig. 16-24-Interiar view af the r.f. amplifier and mixer assemblies. The r.f. circuit is a half-wave line. The shorter assembly is the quarter-wave line using a crystol diade mixer.

Fig. 16.26-Wiring diagram and parts list far the $432-\mathrm{Mc}$. crystalcontralled canverter. Values given are far an i.f. af 50 ta 54 Mc .
$\mathrm{C}_{1}-75-\mu \mu \mathrm{f}$. miniafure trimmer (Hammarlund MAPC-75). $\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}-20-\mu \mu \mathrm{f}$. miniature trimmer (Jahnsan 20M11). $\mathrm{C}_{5}-25-\mu \mu \mathrm{f}$. miniature trimmer (Hammarlund MAPC-25). $\mathrm{C}_{6}, \mathrm{C}_{i}-500-\mu \mu \mathrm{f}$. feed-thraugh ceramic (Centralab MFT-500).
C_{8}-Handmade copper-tab bypass; see text.
C_{9}-Handmade copper-tab variable; see text.
$\mathrm{C}_{10}-0.5$ - to $5-\mu \mu \mathrm{f}$. plastic trimmer (Erie style 532-08OR5).
L. $131 / 2$ turns No. 20 tinned, $5 / 8$-inch diam., $1 / 8$ inch long, tapped at $41 / 2$ turns (B \& W Miniductor No. 3007).
$\mathrm{L}_{2}-5$ turns No. 20 tinned, $1 / 2$-inch diam., $3 / 8$ inch long (B \& W Miniductor No. 3003).
$L_{3}-23 / 4$ turns similar to L_{2}.
L_{4}-2 turns No. 12 tinned, $1 / 4$-inch diam., $1 / 4$ inch long.
$L_{5}-1$ turns ins. wire between turns of L_{4} May be inner conductor of shielded wire, with braid removed.
L_{0}-Half-wave line, $1 / 4$-inch copper tubing, $73 / 16$ inches long.
L_{i}-Quarter-wave line, $1 / 4$-inch capper tubing, 5 inches lang.
Ls-Loop af insulated wire 1 inch lang and $1 / 2$ inch high prajecting thraugh base plate an which line assemblies are maunted. May be made fram inner conductor of shielded wire, with braid removed from last two inches.
$L_{9}-2$ furns No. 22 enam. around cold end of L_{10}.
$L_{10}-6$ turns similar to L_{2}.
$L_{11}-11$ turns No. 22 enam. close-wound on $3 / 8$-inch slugtuned form (National XR-91).
L:2-4 turns No. 28 silk or enamel waund over cold end of L_{11}.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$-Coaxial fitting.
J_{3}-Closed-circuit jack.
$J_{4}-4$-pin male chassis fitting.
RFC- 10 turns Na. 22 tinned, $1 / 8-$ inch diam. Space turns diam. of wire.
is not visible in the photogriphs. This loop is mounted on the copper hase plate that is under the mixer and r.f. assembly. Its size and proximity to the mixer inner conductor are not particularly eritieal, ats there is a surplus of injection under ordinary conditions of operation.

Adjustment

The first step in putting the eonverter into operation is to tune up the oscillator and multiplicr stages. This process is similar to the adjustment of a tramsmitter and will not be detailed here. Cherk to see that the proper frequencies appear as indicated on the sehematic diagram. Only enough power at 382 Me . is needed to develop,
ahout 0.5 ma. of crystal current. Anything from 0.2 to 1.0 ma. is satisfactory. Adjustments should be made with no plate voltage on the r.f. stage.
Now connect the converter to a $50-\mathrm{Me}$. reeciver or converter and peak the i.f. amplifier circuits at about 52 Mre on noise. Next apply plate voltage and feed a signal into the r.f. stage. Prak the r.f. and mixer capacitors ior maximum response at about 13.4 I . These adjust ments (an be made on noise also, if the eireuits were close to resonance originally. If a mise generator is not availathe, the margin of signal over recreiver noise that is obtained on a reerived signal is also usable, if adjustments are made with care.
The points of comertion for the 13 -plus and the

Fig. 16-25—Bottom view of the 432-Mc. converter, showing the oscillator, multiplier and i.f. amplifier circuits.
eompling tap on the r.f. and mixer lines are eriti(al adjustments, but if the dimensions given athene are followed catroflly the peints should he clase to ontimum. Adjustments can be made and
checked readily if the r.f.-mixer assembly is mounted in plare temporarily with a fan selftapping sarews. (Origina!ly deseribed in Junuary, 1!5\% (2バT, 1.24.)

A Crystal-Controlled Converter for 1296 Mc.

Fion simpliaty, no r.f. :mphtifor stage is used wheted of tha arestal mixer in the convorter shown in Pig. Hi-27. While a wood amplifion may have athantages over a straight restalmixer type of stanerhetorodyon at this fregtemes. murh interesting work can the done with the simpher arrangement. By. Following eretain dowige primephes, tas he diserissul later, the performanere of at ersital mixer ant he mate very nomery as ghond as that of the hest r.f. amplifor stages.
 rathal ravity. lujection at 1280 Ma is furnished he an owillator-multiplico shain ronsisting of at
 conberter latout lawes phonts of space for (dhanges and the varions mits and be modifion reatily. Rif. commetions betworn stayse are mado With convial comberoms and R(i-iN/T or R(iBrat callde.

The Cavity Mixer

Most mixer cavities desorithed atre the comsial tyen. hut this converter employs the radial variedy. In a formal cavity the longth is the primary freduedery-dermining dimension. (The diameter
 fregueney almost totally depordent on its diamooter. Contor lowding the radial cavity capamively. lomers its resematht freguomer, just as does and loating a conaial line.

The phasical dotails of the mixer are shown in Fige. 16 -2s and 16 -2? The dimensions given ato not eritioal. A first moklel was made ber salwing : $3 / 4$-ineh length off a $f^{1} 2$-inch diameter aluminum pipe for the main body. The $3 / 4$-inch length was chosen to accommodate the phosical length of the $1 \times \geq 1$-s ries revetats.

The antemat inpus, the bocal osedilator injeretion and the mixing erystat and all on one fare of the mixer, spared 120 degrese apart. The erystal was monnted somewhat eloser to the midder of the esvity than the antennat imput conmertor. This was becatse the anternat conmeretion on an earlier model was a wire $3 / 4$ inch long, from the renter roonductor of the rombertor to the opposite cme plate of the ravity. Assuming the r.i. input impertanere of the aristal to le about 100 to $1: 00$ ohms. the ervestal would have to be eloser to the centers that the imput tap, for the latter to provide a grod mateh for oionohm input. Laboratory

Crystal-Controlled Converter for 1296 Mc.

tests showed that this arrangement worked out quite well, but the loop coupling gives just as gool mateh. The cavity is loaded quite heavily, as image rejection is no problem. So long as the image rejection is 10 db . or more the over-all noise figure will not be adversely afferted. The lower (f reduces insertion loss and hesons the mechanical rigidity requirements of the mixer.

Tuning the mixer is done with a $1 / 4$-inch brass shaft passing through the end plate opposite to that containing the mixer crystal and eotxial connectors. A promy-sized copper disk is soldered to the shaft for a caparitor plate, and the shaft rums through a locking-type panel boshing adjusted to provide the mecessary friction. In prattioe the mixer rarely requires tuning, but the redblooded experimenter would rightfully feed cheated if something were not available for adjusting oreasionally.

Spring copper wipers, shown in the drawing, were a refinement that was found to be unneeasary. hut it may be just as well to add them anyway. Herratio mixer thming was at erst thought to be duc to poor contart betweren the shaft and its bushing. later it was fomed that the cond plates were "oil-ranning.' 'This was cured be mounting the mixer against a heave pand, as seen in the rear-view photograph, and changing the and plate to a heavier stork. A further refinement to reduce mixer los and improve tuning stability was to improve contant between the main body and the cond plates lex undereutting the end fares of the main boty, ${ }^{1}$ as shown in lig. 16-29.

The mixing arestal protrudes through one end plate and contarts the opposite one. The large end is insulated be a tight-fitting piere of spagheti someving. The i.f. output is hrought off bey a copper tab that presses down on the end of the erystal. The tah also serves as a mixer bepass rapacitor. It is lastened to the cmel plate with two

[^4]

Fig. 16-28-Cut-away view of the radial cavity mixer assembly in the 1296 -Mc. converter.
nylon serews, and is insulated from the plate bey a strip of plastic chertrical tape. (Natal serews, suitably insulated, may be used if the nylon serews are not available.) Berause of to $\mu \mu \mathrm{f}$. of (eapacitance to ground so provided. and the relatively low impedance of the circuit, about 400 ohms, there is nogligible pickup at the intermediate frequency.

I.F. Preamplifier

As no communications receiver hats enough gain to arcommodate the low signal level from the mixer, a premplifier is weressary. Other arrangements might give more gain and lower noise figure than the one shown in Fig. 16-:30, but none would be more simple or readily adjusted. Jike the injection string, the i.f. proamplifier is built as a suhasembly: Fixprimentation with other circuits is thus made casy, Inut in the meantime the builder of the converter is able to receive signals.

The i.f. amplifere is a 12. ST^{\prime}. The first stage is grounded-grid, and has an input impedaner, neglecting input caparitance, of mominally 400 ohms. This happens to be the optimm i.f. im-

Fig. 16-29-Dimensions of the principal parts of the radial cavity. Material may be aluminum or brass.

16 - V.H.F. RECEIVERS

Fig. 16-32-Details of the 1280-Mc. doubler plate circuit. Circular plate fits top of on ASB cavity. See text and Fig. 1627. The inner conductor of the line fits over the plote cop of the 2C40 or 446A tube. Output coupling loop can be mode from the inner conductor of the coaxiol line. Tuning capacitor is mode from o pistontype trimmer and its bearing assembly.

With the subassemble construction (mplowed ideas can be tried one at a time. with the assurance that unchanged other units will eontinue to operate properly. A pi-metwork input to the i.f. preamplifior may aid matrorially in matching the crystal to the grounded-gride amplifier input. This can be done bex adjusting different combinations whike listening to a fairly weak signal. The ninth harmonie of a $1+4-\mathrm{Me}$. tramsmitter can be used as a signal source, though a silieon dieste or vacuum-tube noise gencrator maty give better results.

Cascode and pontode promplifier cirenits can be ceppored. Two problems to be expereted will be instability and matehing the itput imedanere of the amplifier. Fierp in mind that more absemere of oscillation in an amplifior does not gnarantere that it is free of regencration.

Adecpate injection was obtained with the s.tup deseribed, but some experimenters may experienee trouble due to variation in lighthous tube condition. Many +46 A and $2(40$ tulo or ol tained on the surphes market are inferior in one way or another. Noarly all have been remowed from equipment, even when they are advertised as "new,"

While the $3 / 8$-inch signal injection loop serms to work well there is no aswurance at this point that some other size foop or different coupling mothod would not be better. Untuned mixers deserve consideration. Some experimenters report poor results with these, possibly hecause of mismatehed antema or feredine impedamers. Poor mixer performane may also result from mueh of the signal being shunted into the loceal oscillator chain, where it is dissipated. High-(? tank cirruit design for the injection chain output stage may bo helpful here, a proint that is oftern overlooked in 120-Mc. erystal-mixer converters, as well. The untuned mixer has the advantage that the signal may be injected at 610 or $4 \div 7$ Mc. with only slightly degraded pertormanere.

In sipite of the fart that most u.h.f. triodes are not supposed to work well at 1:300 Me., several experimenters have used ftisis. pencil triodes and the +163 with gratifying results. The apporcul improved performance mase be due to a poorly constructed or improperly adjusted mixer. benefiting greatly from the gain of the r.f. amplifier. The thebs, particularly, was designed for commereial applications at foco Na ., so it should

We gexal at 1:300 Me. When properly handled. Poor noise figures queted for this tule are from data intended for wide-hand applications. Byproper eavit! dexign the bandwidth ean be kept fow in amatour applieations, and improved notise figures might result.

I goond readremade r.f. amplifier is the . Asis-a ($C^{\prime} \mathrm{P}^{\prime}\{-4(\mathrm{C}-\mathrm{I}(\mathrm{J})$ r.f. cavity. This was originally intended for use in the sol)-Me region, Both input and output cavities will tume to 1300 Mr. as threcoquarter waw limes. This ravity uses the H6id tube. but adapter rings have heon eonstructed to permit the wise of the llibls. The LSB-7 cavity is also useful. In mane ways this mit is more flexible than the former and more cirvuit adaptations berome apparent during its use, Fairly sucerssful attempts have beren mate in other directions also. Wine such amplifier used a ${ }^{6}$ (13) ${ }^{\prime}$ ceramic u.h.f. rereiving triode on 1200 Ne. As neaty as could be determined, this tube perfomed as well as a 11613 known to be operating properly.
(ryestal mixer diokes come in a variety of tripes. The most commen ones atre $1 N 21$ and 1 Noes sures, These have beren mand in suffixes ranging through the letter "li,." The 1 N゙2l series is intended for use from 1000 to 3000 Ma . It will work higher. The $1 \times 2 \mathrm{E}$. is intended for use from 3000 to $10,000 \mathrm{Me}$. and will work lower. As long as a mixer is operating peorly, or only fairly well, there is virtually no difference in the performance of any of these erystals. It is when a reatly offere tive mixer is coupled with an i.f. preamp of 1 to 3 dh. noiso figure that the amazing difference between $1 \mathbb{N} \geq 1 \mathrm{~A}$ and the INOLE Deromes evident.

Nower erystals such the the MISI give noise figures of 6 dhb, and botter in standard test setups. Individually-tailored amateur circuits can be experted to perfrom even better. Beratuse of semiconductor progress, both in mixers and amplifiers, the varumm-tube r.f. amplifier at 1200 Me . appears less desirable that ever.

The rectified ersital current flowing as a result of the local osedilator injection should be measured with a milliammeter having as low a d.e. resistanere as possible. Degraded performance may result from the d.e. bias developed a deross this resistance. The experimenter is invited to try the use of small amomets of back hias on the crestal to improve performance.

CHAPTER 17

V.H.F. Transmitters

Transmitter stability regulations for the 50Mre hand are the same as for lower bands, and proper design maty make it possible to her the same rig for $50,28,21$, and reven 14 Mr ., but incorporation of IH Mre and higher in the nsual multiband transmittor is gemerally not foasible. Rathery it is usually more satisfactory to rombine so and itt Ne., sinere the two bands are chose to a third-harmonic relationship, At latast the exeiter portion of the transmitter maty he made to cover looth bands very readily.

Though no stability restrictions are imposed lay haw on amateme opration at 114 Ma. and higher. the hase of stabilized narrew-band systems pays off in improved effectiveness in both transmitter and receiver. It is this factor, more that the interferener potentialitios of the wide-band systems, which makes it desirable to employ advanced terhmigues at $1+1,220$ and 420 . Mc.

The low-power stages of a transmitter for the v.h.f. hands neod not be greatly different in dosign from those used for lower bands, and the terhnigues of Chapter six can be used. The ronstructor has the choico of starting at some lower frequence, usually aromed 6,8 or $12 \mathrm{Mc} \cdot$, multiplying to the operating frequency in one or more additional stages, or he cain use a high initial fredueney and thas reduce the mumber of multiplier stages. The first approach has the virtue of using low-rost erystals, but h.f. crystals may efferet an eronomy in power consumption, an important fartor in portable or emorgence-powered gear.

CRYSTAL OSCILLATORS

(rustal oscillator stages for v.h.f. transmitters may make use of any of the circolits shown in ('hapter six when arstals up to 1! Me are used, but certain variations are helpful for higher frequencios. Crystals for 12 Mr. or higher are usually of the overtome variete: Their frequenery of osilation is an approximato ondd multiple of some lower frequenery, for which the reystal is athally groumd. Thus 2t-Mc, errostals commonly used in 1.tt-Mc. Work atre 8-Mr. culs, sperially treated for overtone characteristies. The overtone ervials currently bring supplied aro nearly as stable as those designed for fundamental opreation, and they are easy to handle in propaly designed circuits.

Bost results are usually obtaimed with overtone erystals if some regeneration is added. This makes for casy starting under load and greator output than would be obtainable in a simple triode or tetrode circuit. Regencrative circuits, with constants for 8- or 2t-Mc. crestals, are shown in Figs, 17-20 and 17-24. Triodes are shown, but the stme arrangement may be used with tetrode or pentolde tubes. The important point in either case is the amount of regeneration, controlled by the
number of turns below the tap in L_{1} of Fig. 17-20 or 17-23. There should be only enough feedbatek to assure asy orvalal starting and satisfato tory operation under load: too much will result in insellation not under the control of the crustal.

Overtone opration is possible with standard fundamontal-type restals, using these cireuits. Practically all will oscillate on their third overtones, and fifth and higher odd overtones may be pessible. Adjastmont of regomeration is more reritical, however. if the erestals are not ground for owertone chatacteristics. The fregueney maty not be an exact multiple of that marked on the crystal holder, so care should be used in working with crustals that are near a band edge.

Cristals ground for overtone servier ean be made to oncillate on other overtones than the ond marked on the holder. For more diselussion of overtone owillator terdniques, see (SST for April,

(rrestals are how available for frequencies up to around 100 Me. They are somewhat more expensive and more critical in operation than those for 30 Me , and lower, however. Dise of 50-Me. arystals is made occasionally as a motas of preventing radiation of the harmonies from low frequency erystals that might cause TVI.

- fREQUENCY MULTIPLIERS

Frequency multiplying stages in a v.h.f. transmitter follow standard practice, the principal pre("ation being arrangement of components for short load length and minimmenstray caparitance. This is particularly important at 144 Me . and higher. To reduce the possibility of radiation of oscillator harmonies on frequegies that might interfere with television orother sorviees, the lowest satisfactory power level should be used. dow-powered stages are easior to shield or filter, in case such steps berome necessary.

Common practice in v.h.i. exciter dosign is to make the tuned circuits capalle of operation over the whole rauge from 48 to 5.1 Me., so that the output stage can drive reither an amplifior at 50 to 54 Mc. or a tripler from 48 to 144 Me. Tripling is olten done with push-pull stages, particularly when the output frequency is to be $1+1 \mathrm{Me}$, or higher.

- AMPLIFIERS

Most transmitting tubes now used by amateurs will work on 50 Me ., hut for 1+4 Me. and higher the fube types are limited to those having low input and output capatritances and compart physical structure. latads must be as short as possible, and soldered eomeretions should bo avoided in high-powered circuits, where heating may be great enough to molt the solder.

Plug-in roils and their assoriated sockets or

17 -V.H.F. TRANSMITTERS

jack hars are gencrally unsatisfactory for unc at 1.4. Me and higher because of the stay inductance and capacitance they introduce. One way around this trouble is the use of a dual tank cirruit in which the inductor for $1+4 \mathrm{Me}$, is a conventional tuned line, with its shorting bar made as a removable plug. When the stage is to be used on another band the short is removed and a coil is pluged into the jack, the line then serving as a pair of plate leads. Such an arrangement will operate as cfficiontly on 144 Mc. as if it were designed for that band alone.
At 220 Me and higher it may be neecssary to employ half-wave lines as tuned circuits, as shown in Fig. 17-28 ($1 I_{1}$ in place).
Neutralization of triode amplifiers for 50 and 144 Mr. can follow standard practiere, but the stray inductance and capacitance introdued by the nentralizing eircuits may be excessive for 220 Me , and higher. In such instineres gromudedyrid amplifiors may be used. Driving power is applied to the rathode rireuit, with the grid areting as a shiold. Some of the drive appears in the output, so both the driver and amplifior must be modulated when a.m. is used. For this reason the grounded-grid amplifier is used mainly for f.m.
Instability shows up frequently in tetrode amplifiers as the result of ineffective screen bypassing. The solution lies in series-resonating the screon circuits to ground, as shown in Figs. 17-13 and 17-2.4. The r.f. choke and capacitor values vary with frequency, so soreen noutralization is assentially a one-hand device.

- FREQUENCY MODULATION

Though f.m. has not anjoyed great popularity in v.h.f. operation, probably berause of lack of suitable receivers in most v.h.f. stations, its possibilities should not he overlooked, partieularly for the higher bands. At 420 Mc., for instance, the efficiency of most amplifiers is so low that it is often diflicult to develop sufficient grid drive for proper a.m. service. With f.m. any amount of grid drive may be used without affecting the audio quality of the signal, and the moduation process adds nothing to the plate dissipation. Thus considerably higher power can be run with f.m. than with a.m. before damage to the tubes dovelops or the signal is of poor quality.

Freguoney modulation also simplifies transmitter design, The principal obstacle to greater use of f.m. in v.h.f. work is the wide variation in solectivity of v.f.f. receivers, making it difficult for the operator to set up his deviation so that it will be satisfactory for all listeners.

V.H.F. TVI PREVENTION AND CURE

The principal causes of TVI from v.h.f. transmitters are as follows:

1) Adjacent-channel interference in Channel 2 from 50 Mc.
2) Fourth harmonie of 50 Mc . in Channels 11, 12 or 13 , depending on the operating frequency.
3) Radiation of unused harmonies of the oscillator or multiplier stages. Examples are 9 th harmonie of 6 Me , and 7 th harmonie of

8 Mc. in Chanmel 2; 10th hamonic of 8 Mc. in Channel 6 ; 7 th hamonis of 25 - Me. stages in Chamel 7 ; the hamonic of 48 - Me. stages in Chamel 9 or 10; and many other combinations. This may include i.f. pickup, as in the cases of 21-Mc. interference in recoivers having 21-Mc. i.f. systems, and t8-Mc, trouble in t5-Mc. i.f.'s.
4) Fundamental blocking effects, including moduation bars, usually found only in the lower (hamels, from $50-$ We equipment.
5) Image interference in Channel 2 from 14 Mr., in recoivers having it $15-$ Mc. i.f.
6) Sound interference (picture clear in some cases) resulting from r.f. pickup by the audio circuits of the TV receiver.
There are many other possibilitics, and u.h.f. TV in general use will add to the list, but nearly all can be corrected completely, and the rest can be substantially reduced.

Items 1,4 and 5 are receiver faults, and nothing can be done at the transmitter to raluce them, except to lower the power or increase separation between the transmitting and TV antenma systems. Item 6 is also a receiver fault, but it can be alleviated at the transmitter by using f.m. or c.w. instead of a.m. phone.

Treatment of the various harmonic troubles, Items 2 and 3, follows the standard methods detailed elsewhere in this Mandbook: It is suggested that the prospective builder of new v.h.f. equipment fimiliarize himself with TVI prevention terhniques, and incorporate them in new construction projects.

Use as high a starting frequency as possible, to reduce the number of hamonics that might cause trouble. Sclert crystal freguencies that do not have harmonies in TV channels in use locally. Example: The 10th harmonic of 8-Mc. erystals used for operation in the low part of the $50-\mathrm{Me}$. band falls in Chamel 6, but 6-Mc. crystals for the same hand have no harmonie in that channel.

If TVI is a serious prohlem, use the lowest tramsmitter power that will do the job at hand. Much interesting work can be done on the v.h.f. bands with but a few watts output, partieularly if a good antenna system is used.

Keep the power in the multiplier and driver stages at the lowest practical level, and use link coupling in preference to capacitive coupling.
Plan for complete shielding and filtering of the r.f. sections of the trunsmitter, should these steps become neressutry.

Use coaxial line to feed the antenna system, and locate the radiating portion as far as possible from TV receivers and antenna systems.

Some v.h.f. TV tuners have removable strips that can be replaced with double-conversion inserts for u.h.f. reception. For a number of channels the first eonversion frequency maty then fall in or near the $1+4-$ Me. band. Where this method is employed for u.h.f. reeeption the receiver is very sensitive to $1+4$ MIc. interference. The cure is to replace the strijs with othors having a different conversion frequency, or use a eonventional u.li.f. converter for reception of the channels from 14 up.

A High-Power Transmitter

High-Power Transmitter for 50 and 144 Mc.

The gear described in the next several pages shows how tranmitting equipment for two v.h.f. bands rem lo comodinated in design so as bo work from a single exariter'. If the buidere so desires, the station may be operated from one sot of power supplies and spereh equipment, with a singlo set of moters measuring the important currents in both transmitters. bach item ean bo usod he it solf, or they combine readily to cover both zet and 144 Mr., at a power level approaching the legal limit.

In order of their desoription they are an exerter capable of delivering up to to watts output at 48 to 5 : Mre, a companion amplitier for the 50)- Are. band, a triplet-driver-amplifion for 1.44 Mr., and a dual antennal coupler for fording an- and litMe, antennats having halane of lines. "Their phasieal apperamere is sum that they eombine neatly for rack mounting, as sern in l"ig. 17-1.

- THE EXCITER

Though it is shown mounted on the same panel as the :00-Nre amplifier in lig. 17-2, the exefor unit might well be used alone, as a worsatile jol Me. transmitter capable of ruming up to about

(6) watts input. Provision is made for taking off 48-Me. output at two power levels, through J_{3} or I_{2}, the latter bering used for driving the 111 Me. triphor to be desoribed later.

The exeiter is eompletely shichled, and its power leads are filtered to prevont radiation ol harmonies be the power athlo. In addition, there are built-in traps to admonh, umwanted usidilatom hatmonies that might otherwise be passed on to the amplifior, or to the antonda. Ifarmonies of this kind are partionaty 1 romblesomo when then fall in (hammel 2, which is so chese to the opmating frequeney that a filter in the antenma line is matively ineffertive agatust them.

The interstage compling sirenits are of bantpass design. Oure they are properly abloustond there reguire no linther toming, when the from
 the ervestal switeh and the output plate rement need be adjusted when chamging frequency.

Circuit Details

 8, 12, or 24 Mr. for 1H-Mc. oprotion, or 6.25, $8.34,12.5$ or 2.5 Mr . for O (Mr. Ms plato cimat tumes 24 to 27 Mr., quatrupling, tripling or dotibling the arystal frequency. (Crystals at 24 to 27 Mr. arre overtone rons What osedlate at onc-thiad the marked fresgueney in this eirenit.) A series-tunod trand, $L_{1} G_{1}$, in the oweillator phateremernit absorts the third harmonio of fo-Mre. (rystals. This IR-Mt' © mongy otherwise would pass in to the next stage. Wharer it would the tripled to a frequenery in Chamel 2. This hammone has heron
 TVI in Chathail 2 :aroas.

The doubler js also at 50isiz. A seeond trap, ("s L_{4}, in the gride cirenit, is tumed
 The fwo trats thas prevent radiation of energy in Chamel 2. the most aritiaal transmitter prohlem a (i-meter man is likely to cheomer in correcting TVI. They rean be moditiod for other fro-

Fig. 17-1-A high-power r.f. section for a 50 - and 144 -Mc. stotion. Equipment includes a bond-poss exciter for both bonds, - $50-\mathrm{Mc}$. r.f. omplifier built on the some panel, a tripler-driver-omplifier for 144 Mc., and a dual ontenna coupler for both frequencies. Units can be operoted with a single set of power supplies, and with common speech equipment and meters.

Fig. 17-2-The 50-Mc. r.f. unit. Exciter, left portion on the ossembly, olso serves on 144 Mc . Amplifier utilizes o 4-1 25A, 4-250A or 4-400A.

quencias to suit loral problems. An example is the 10th harmonic of 8-Mc. rerstals, that falls in Chamod 6. A trap for the 5th harmonio of the (rystal freduchey should take are of this.

The 6146 amplifier stage has a shunt-fed pinotwork phate cireuit. For best stability over the entire operating range the stage is neutralized. The choke, RF' 4 , is provided to short out the d, e. voltage that would apmar on the output eircuit it c'y should break down. The rhoke in the plate lead, $R F^{\prime} C_{5}^{2}$, is for parasitio ascillation suppression. Note that each of the three eathode leads is hypased soparately at the sockeot. The exeiter may be keved in the 6 it 46 cathode jark, J_{4}.

Double-tuned hand-gass riveruits betwern the oscillator and doubler, and betwern the doubler and final, provide essentially flat response from 48 to $\mathrm{b}^{2} \mathrm{M}$ Me, or 50 to 54 Mr . A potentiometer in the doubler serven eireuit provides exedation control for the (iffi, and maty be used to comprosiato for variations in drive that may appear at somer spots in the band.

The link winding on the doubler plate circuit, $L_{\text {f }}$, is for the purpose of taking off low-level 48Ma. output to drive the tripler in the $144-\mathrm{Me}$, r.f. unit. Note that the keying jack in the (i)-46 athorde rincuit is the open-ritruit tyer. Removing the key thas disathes the 6146 stange, when the first two stages are being used in this way. Noparate heater and filament switches on all mits allow them to be oproated separately: Highvoltage supplies mas be left comnereded to all r.f. units, currgizing only the filaments and hatiors in the ones boing usod.

Construction

The exciter is built on a $5 \times 10 \times 3$-ineh aluminum rhassis, with a bottom plate and a perforaterd aluminum rage to complete the shiclding. The small koohs at the lower left of the front view are for the erystal switeh and the exemation control. The arystal switeh has 12 positions. Ton are for the erystals on the multiple erystal socket
(Johnson No. 126-120-1). One more erystal position is provided on the front pand (a convenience if sou want to use a frequenery mote eovered by the 10 (rystals in the multiple sockert), and the 12th switch position is for atn external v.f.o. It
 fitting, and shorts out RFC C_{1} and its paralled capacitor. The stage then functions an a frequency multiplier. The output frequency of the v.f.o. could thus be in the 6 -, 8 - or 12-Me. range. Above the exeitation rentrol may be seen the knobs for the 6116 plate and output conpling capatritors.

Three eonxial commertors are on the rear watl of the exriter. The one at the outside alge is for v.f.o. input. The others are the doubler and 6146 output fittings. TVo f-torminal stratite strips handle the various power and metering leads. Adjarent to each terminal exerpt the ground eonneretion is a feed-through bepass capabeitor to take the power lead through the chassis.

TVI that might result from radiation of hatrmonies by the power leads is prevent ed by filtering of cearch lead. The feed-through hypasses aro rommeted to the exelter circuits through ref. chokes, the inner ends of which are again bepassed with small disk ceramic rapareitors. All power leads atre made with shielded wire, bonded at intervals to the chassis.

The side view shows the multiple crestal sorket at the front of the chassis. Separate crystal sorkats maty be used if desired. The oscillator and doubler tubes are in the foreground. The trap (ap)adeitors, ('i and ("4, are adjacent to these tubers, while ('s and Cowe betwen them, a bit off their center line. To the rear of the 5y(is doubler are ${ }^{(}{ }_{5}$ and C_{5}. The grid tuning eaparitor for the (ilti, (' 6 , is just visible inside the amplifier compart ment.

A separate leat is provided for earh power circuit. Fixed bias for the 6 l 46 is brought in from the bias supply that is patt of the high-power amplifior assombly. This bias is desirable to prevent the phate current from rising too high when

Exciter Construction

the excitation is batcked off. If the expiter is used alone, fixed hias is unneerssary. lixternal meters can be connerted in any of the eirenits at the terminal strips.

The sides, back and top of the amplifier cage are Revnolds "1)o-lt-Yourself" perforated alumimm sheet, now available in many hardware stores. The pieces are joined together at the comers with lengths of 3 - $\mathbf{- i n c h}$ aluminum angle which cam be bought or bent up from sheet stork. The tuning and loading caparitors are mounted on the front of the eage, so this part should be a piece of solid sheet stack rat her than the perforated material. The dimensions of the cage are not critical. The original is $53 / 4$ inches deep, $25 / 8$ inehes aross, and $41 / 4$ inches high. Make provision for removing the top and outside sherets of perforated stork for ronveniener in sorviding, when the exater is mounted against the amplifier unit. bextension shafts and rouplings bring out the amplifier controls to the patiel.
laside the enge, the (itif ran he seen with its socket momped above the ehatisis on 1 -inch motal slevers. The wathende and sereen bypasess should eomed to separate gromed lags on the top of the chassis, with the shortest possible leads. This wiring can be done conveniently before the soeket is mounted on the chassis if nuts are used temperarily to hold the gromed lugs in place over the socket monting screws. The nentralizing adjustmont, (x , is mounted on the rear wall of the eage, and wired to the 61.46 plate elip and the feed-through bushing with $3 / 8$-ine h wide strips of thin copper. A erramic insulator mounted on the wall near the difti plate eap supports the junction of $R F^{\prime} C_{5}, R F^{\prime} C_{3}$, and C_{9}. An ordinary tie point supports the other end of Rer's and the shieleled power lead. The plate coil, $L a$, can be seen in back of the 5763 donbler tube, wired betwent the stators of f_{10} and Cu. C'12 and RPC'4 are mounted near ('u, and hooked between its stator bar and a ground lug. I short lebigth of R(i-5S/U coak runs down through a hole in the chatsis from " 11 over to J_{3}.

Most of the parts visible in the chassis view wan be identified from our deseription of the pathel. reatr, and topside layouts. The oscillator cathode (hoke, $R P C_{1}$, can be seen mounted up)right near the oscillator tube and erystal sorkets. Both $\overline{50} 6 ; 3$ sockets should In oriented so that lias 1 and $\overline{5}$ are adjarent to the outside chatssis wall. L_{1} is visible between ('1 and the oseilator tube socket. L_{2} and L_{3} rum bet wern this socket and that of the doubler. These

Fig. 17-3-Side view of the exciter, with cover removed. Band-pass coupling circuits eliminate front-panel tuning controls except for crystal switch and output stage funing.
eoils are made from a single length of Miniductor stock with the sperified number of tirns removed to provide spacing between them. The same applies to L_{5} and L_{77}. These are to the loft of the 6116 socket. L_{4} is between the doubler sorket and C_{4}. The trap coils are mounted with their axes vertieal, to minimize coupling to the band-pass coils. L_{6} is wound around and eemented to the bepassed end of L_{5}.

The power lead r.f. chokes are monnted between single-terminal tie points on the rear lip of the chassis and the ferd-through rapacitors. The disk ecramie bypasses are then applied to the tie points. A single-terminal tie point mounted under $R F$ '', holds one end of the :3:300-ohm doubler sereen resistor and the lead over to the terminal strip) at the rear. I double tio point is mounted betwern the two 5763 sorkets to support the bexpassed ands of L_{2} and L_{3}. Dnother over mearer the rear of the chassis supports the cold and of L_{5} athd the bottom of the doubler gride resistor.

Wiring will be simplified bey the following procodure Before mounting the erystal switeh, ground one terminal of rach crystal sorket through a bus wire. Connect short lengths of tinned wire to the other terminal of carh sorket that will be under the switeh. Then when the latter is installed, the wires ran be run to the proper contacts and soldered in place. Note that the front wafer of the switch is used for shorting out $R P^{\prime}($ n while the ersstal socket rommertions are made to the rear wafer, which is more aceressible. The v.f.o. input socket is comerted to the proper switch contact with a length of 1RG-58/ C coan.

In assembling the power lead filtering compo-

Fig. 17-4-Schematic diagram of 48-54-Mc. exciter. All capacitances less than . $001 \mu \mathrm{f}$. are in $\mu \mu \mathrm{f}$. All. $001-\mu \mathrm{f}$. capacitors are disk ceramic. All resistors are $1 / 2$ watt unless otherwise specified.
$C_{1}, C_{2}, C_{3}-35-\mu \mu \mathrm{f}$. miniature trimmer (Hammarlund $L_{\text {L, }}, L-6$ turns No. 20, $1 / 2$-inch diam., 16 t.p.i. (B \& W MAPC-35).
$C_{1}-10-\mu \mu{ }^{f}$. miniature variable (Hammarlund MAC-10).
$\mathrm{C}_{-1}, \mathrm{C}_{13}-20-\mu \mu \mathrm{f}$. miniature variable (Hammarlund MAC-20).
$\mathrm{C}_{-}-50-\mu \mu \mathrm{f}$. miniature trimmer (Hammarlund MAPC-50).
$\mathrm{C}_{\checkmark}-15-\mu \mu \mathrm{f}$. miniature trimmer (Hammarlund MAPC-15).
$C_{19}, C_{1 s}-.001-\mu \mathrm{f} .3000$-valt disk ceramic.
$\mathrm{C}_{10}-35-\mu \mu \mathrm{f}$. miniature variable (Hammarlund HF-35).
$\mathrm{C}_{11}-100-\mu \mu \mathrm{f}$, miniature variable (Hammarlund MAPC100B).
$\mathrm{C}_{12}-100-\mu \mu \mathrm{f}, 1000$-volt mica.
$\mathrm{C}_{1:}-\mathrm{C}_{20}-.001-\mu \mu \mathrm{f}$. feedthrough-type ceramic (Centralab FT-1000).
L_{1} - 16 turns No. 24, 5/8-inch diam., 32 t.p.i. (B \& W Miniductor No. 3008).
L2, L ${ }_{3}$ - 12 turns each No. 20, 5/8-inch diam., 16 t.p.i (B \& W Miniductor No. 3007). Make from one piece of Miniductor with 5 turns removed between coils. Cold ends are adjacent.
$\mathrm{L}_{4}-10$ turns No. 20, $1 / 2$-inch diam., 16 t.p.i. (B \& W Miniductor No. 3003).
nombe at the reat of the chatsis, the disk eremmice hepasios catm most masily be monated on the tie wints befone the hater are fastemed inside the chassis. Wiring up the power leads shond be done hefore the r.f. chokes are monnted in plater.

THE 5O-MC. AMPLIFIER

Though the exeriter and amplifier are pietured on a single panel, the pussibility of asing aither by itsolf should not the overlooked. 'The exeder will make a fine low-powered transmitter, and the final amplifior may be used with any exdeder delivering lo watts or more

It will take up to the legal limit of power with a 4 foch thbe, 700 watts with a $4-250 \mathrm{~L}$, or 400 watts with a $4-125$.

Miniductor No. 3003). Make from one piece of Miniductor with 3 turns removed between coils.
$L_{6}-2$ turns hookup wire wound around cold end of L_{5} and cemented in place.
Ls- 4 turns No. $18,3 / 4$-inch diam., 8 t.p.i. (B \& W Mini. ductor No. 3010).
J_{1}, J_{2}, J_{3}-Cooxial chassis fitting (Amphenol 83-1R).
J_{1}-Open-circuit phone jack.
\mathbf{R}_{1}-25,000-ohm 4-watt pot.
$\mathrm{R}_{2}-33,000$-ohm 3 -wott (3 100,000-ohm 1-watt in paralle!).
RFC $_{1}$ - $2.5-\mathrm{mh}$. r.f. choke (National R-100S).
RFC $_{2}$, RFC $_{3}$, RFC $_{4}-7-\mu \mathrm{h}$. solenoid v.h.f. choke (Ohmite Z-50).
RFC $_{5}-6$ turns No. 22 tinned wire, $1 / 4$-inch diam., spaced one-wire diam.
RFC $_{6}-$ RFC $_{12}-15$ turns No. 24 enam. close-wound on high value 1 -watt resistor.
S_{1}-2-pole 12-position miniature ceromic rotary (Centralab PA-2005).

The plate cirenit is a larger version of the one used in the filtio stage of the exeiter, a shunt-fed pi-network. "peration is completely stable without neut malization, probably berause the natural nentralized frequeney of the tuhes is chose to 50 Mr. Provision was originatly made for neatralization, hot it was found to be umerecssary. larasitio suppression devires were not reguired, but if the layout is variod appreriably from that shown, the builder should cherek for both typers of instability with great rate.
'The jark in the filament center-tap) head is for kering, or for insertion of a gridelias modulator. A bias supply that dedivers about at volte negative for the 6146 and 150 for the final amplifier is included in the final stage assembly, Filament transformers for the exciter and final are also part

50-Mc. Amplifier

of this unit. Separate filament switches are included; one for the exciter and the other for the final tube and the blower motor. Power leads exrept the high voltage, are brought in on an 8 pin plag.

Building the Amplifier

A $12 \times 10 \times 3$-inch aluminum chassis is used for the amplifier unit. Thus, it maty be combined with the exeiter on a $10 \frac{1}{2}$-inch rack panel, if dosired. The amplifier controls mounted near the panel botfom atre, left to right, the input link ranctancecanawitor, ('i; the grid tuning eatparitor, ('2; and s_{1} and $s_{2} s_{1}$ applics ace. to the tramsformer for the exerter heaters and to the bias supplias. N_{2} applies isc. to the filament transformer of the amplifior and starts the cooling fan. Ahove the swit ches on the pand are the amplifier phate tuning and boading controls.

On the rear of the chassis, coasiat connectors for r.f. input and output are mounted at aither end. Between them are the high-voltage connector for the plate supply, the cathode rifenit jatck, and at fitting for the remaining power and meter leads.

Nove the ehassis, the $\mathbf{1 - 2 5 0 A}$ tube is seen noar the front of the chassis. Note that its socket is mounted on $1 / 2$-inch sleeves. Holes 38 inch in diameter are drilled in the chassis diredty underneath those provided in the socket for the passuge of cooling air. Holes are also drilled adjaeent to the cat hode, grid, and sureen pins to paiss their leads. Bypassing of cathode and sereen is dome above the ehassis. The heat radiating plate comertor for the $4-250 \mathrm{~A}$ was cut down to four fins to reduce the ovor-all hoight requirement. The filanuent transformer, T_{3}, and the sereen morlutat ion choke, L_{4}, are also topside.

The amplifier plate cireuit eomponents are to the left of the tube. The tuning capacitor, ('z, originally a neutralizing (atpacitor, is mounted on the side wall of tha shichling assembly. Two modifications should le made to the neut ralizing unit before monnting. The eireular pates supplied shouk be replaced with harger ones, 3 inches in diamoter, to increase the availahke tuning range. 'lhe bearing assombly of the rotor disk must the temporarily removed, and a strat of eopper min betwern the serew holding the hearing in phace and the opposite (gromuldal) and of the square ceramic

Fig. 17-5-Bottom view of the 50 Mc. exciter, showing band-pass circuits and TVI protective measures.
insulating pillar, grounding the capacitor rotor. Two copper straps must be inserted liet ween the stator disk and its insulator, to comect the stator with the blocking capacitor, C_{5}, and with L_{23}.

The blocking capacitor, the shout-feed r.f. choke, $R F^{\prime} C_{2}$, and the high-voltage byass, (${ }_{6}$. are assembled into one unit hefore mounting in the amplifier. This is done with the aid of the hardware supplied with the 'TV-t spe high voltage eapacitors. The bepass caparitor, on the bottom of the stack, is equipped with one terminal theraded and one tapped. The latter is on the bottom cud, for fastening the assembly to the chassis. The threaded terminal serews into the $21 / 2$-inch erramic insulator upon which $R P F^{\prime} 2$ is wound. The ends of the choke winding are soeured by lugs at each end of the insulator. ('s should be fitted with a threaded terminal at the lower and for screwing into the top of the insulator. This also sorves to fasten the $3 / 4$-inch wide strip of (oppor which runs up to the $4-250 \mathrm{~A}$ plate catp. Finally, the longer of the two roperer strips roming from the stator of (' 7 is serewed to the top of ('5. A $/$-ineh foedthrough bushing brings the high-voltage up to the hot side of C_{6}. The loading eapacitor, ('s, is mounted on the chassis directly underneath Cir $_{7}$. The plate coil, L_{3}, gets rather warm when the rig is operated at high power level, so both of its ends must be bolted in plate rather than soldered. One end is bent :uround and fastened under a

Fig. 17-6-Interior of the 50-Mc. final amplifier. Plate tuning capacitor is modified neutralizing unit, left.

mut provided on the stator of ('s. Ther other is loultad to the short lougth of roppor strap previously fastomed to the stator of (${ }^{\circ} \mathrm{F}$. . A longth of R(i-N'P roasial cable is run botwern ('s and J. At the catparitor end, this cable is connered to hags under the stator and frame mounting sorows.

Andid sheret aluminum is used for the enclosure of this unit, as it must be reasomably airtight exerep for holes dieectly above the tube itself. The side that supports C $_{2}$ must be of fairly heary stork for tigidity. Hommonent $3 / 4$-inch targle stork Was used to hold the assembly together. If the over-all height of the unit is keppt to just about that of the 10's-inch rack panel, there will he

Most of the under-chassis components are visible in the bettom view. The grid cirenit is mear the frome edge of the chassis. Copper strap) eonneets the tube socket grid pin with the stator of (". Le. then is soldered betwern this strap) and a tie peint. L_{1} is stid inside the cold cond of $L_{\text {nen }}$, and remented lightly in plate.
'The cooling fan surks air in from the side of the smplifier near the back comer. The motor is mounted on an aluminum bracket. Tha fan as supplied will blow, rather than suck, so the blades must be bent batek to reverse thrir pitch. A small piere of ahminum window sareoning shields the hole reat in the chassis side for the fan.
lias supply components ocrupy the lower left
gherter of the fortom viow. Layout and wiring of this portion of the rig is angthing but aritionl. Whieded wire was used for abl power leads. lis. passing at the power connertan should be done with very short bads, and ('14 should be mounted as close as perssible to the high-voltage comector.

Adjustment and Operation

In initial settiteg of the exator controle can foe made before power is applied, if agrid-dip moter is availather. The sories traps, $L_{1} C_{1}$ and $L_{4} C^{\prime}{ }_{4}$, introdice varying amotente of reactanco acrose the tumed cirenits whet they are adjusterl, so some further aljustmont will be nerded after these atre sot up finally, hat the following proeedure will result in a close approximation.
 grid-dip moter to L_{2} and thie it with P_{2} ta athont 24.5 Me. Je:eving the sotting of foat that peri-

 "irenits shonid bre sot for operation on 48 to $\overline{2} 2$ Mr. Por 50 tw it Me., the frogurneios should be

Brocedure for the seromed biand-pass cimenit is similar exeret for the frederen ies involsed. For 18 to $52 . \mathrm{Me}$, disemmert L_{5} and tume (${ }^{2} L_{5}$ to 19) Me. Reromnert L_{-7} and diseomeret $L_{\text {ab }}$, tuning $L_{-7}\left(\mathrm{C}_{\mathrm{g}}\right.$ to 5 L Me. Rocomeert L_{5}. For the 50- to 5t-Me. range these fredumaies would be about 51 and 5:3 Me.

Fig. 17.7-Schematic diagram and parts list for the 4-250A amplifier. All capacitors marked $.001 \mu \mathrm{f}$. are 600 -volt disk ceramic.
$\mathrm{C}_{1}-50-\mu \mu \mathrm{f}$. miniature variable (Hammarlund HF-50). $L_{3}-6$ turns No. 12 tinned wire, 1 -inch diam., spaced twice $\mathrm{C}_{2}-15-\mu \mu \mathrm{f}$. miniature variable, double-spaced (Hammarlund HF-15X).
$\mathrm{C}_{3}, \mathrm{C}_{1}, \mathrm{C}_{13}-.001-\mu \mathrm{f} .1000$-volt disk ceramic.
$\mathrm{C}_{3}, \mathrm{C}_{6}, \mathrm{C}_{14}-500-\mu \mu \mathrm{f} .20,000$-volt ceramic (CornellDubilier MMI 20T5).
$\mathrm{C}_{\mathfrak{i}}$-Disk-type capacitor with 3 -inch diam. plates (made from Millen 15011).
$\mathrm{C}_{\varsigma}-250-\mu \mu \mathrm{f}$. variable, double-spaced (Johnson 250-F20).
$\mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{12}-12-\mu \mathrm{f}$. 250 -volt ele ctrolytic.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$-Cooxial chassis fitting (Amphenol 83-1R).
J_{3}-Closed-circuit phone jack.
$C R_{1}-65-\mathrm{ma}$. selenium rectifier (Federal 1002A).
$\mathrm{CR}_{2}-20$-ma. selenium rectifier (Federal 1159).
$L_{1}-5$ turns No. 24, $1 / 2$-inch diam., 32 t.p.i. (B \& W Miniductor No. 3004).
$\mathrm{L}_{2}-4$ turns No. $18,3 / 4$-inch diam., 8 t.p.i. (B \& W Miniductor No. 3010).
Comnert a solurece of 6.3 volts ate. at 2.5 amperes or more betwern the ground and heater terminats, and a low-range meter from the doubler grid return terminal to ground. Insert crystals for the desired frequency range. Apple about 200 volts d.e. to the oseillator phatesereren tominal through a 50 - or 100 -mat meter. Current should be 20 to 30 mat., and grid current in the following stage should be about 0.5 mat, when the voltage is increased to the normal 300 volts. Tourh up the funing of the bad-pass circuit, if neeressary, to got uniform response arross the desired range,

The trap circuits can be adjusted at this point, tuning for minimum signal at the frequeney to be attemated in each case. A receriver tuning to the harmonic frequencies is helpful. These will he about 18 to $20,25 \mathrm{Mc}$. For the first trap and 50 to 60 Mr . for the seeond, if they are for Chanmel 2. A TV reeciver on the chamels to be proteded may atso be used, merely tuning the traps for minimum TV'. Some slight readjustment ol the
wire diam.
L_{4}-Filter choke, about 10-hy. 100-ma. (Triad C-10X).
B_{1}-Blower motor and fan (Allied cat. No. 72P715).
$\mathrm{R}_{1}-20,000$ ohms 10 watts.
$\mathrm{R}_{2}-500$ ohms 2 watts (21000 -ohm 1 -watt resistors in parallel).
$R F C_{1}, R F C_{3}-7-\mu h$, solenoid choke (Ohmite Z-50).
RFC_{2}-Solenoid choke, 42 turns No. 24 d.c.c. closewound on $1 / 2$-inch diam., $21 / 2$-inch long insulator (National GS-2).
$\mathrm{S}_{1}, \mathrm{~S}_{3}$-Single-pole single-throw toggle switch.
T_{1}-Power transformer, 135 volts at 50 ma . (Triad R-30X).
T_{2} —Filament transformer, 6.3 volts at 3 amp . (Triad F-16X).
T_{3}-Filament transformer, 5.2 volts e.t. at 15 om . (Triad F-1 lu).
hand-pass direnit may be needed after the finat trap luning is slone.

Now remove the grid comrent moter and ground the metering terminal in the doubler grid cirenit. Comere a meter (1) to mat. or more) betwen the terminals provided for moasuring the 6 thti grid current. Not the sereen potentioneter, h_{1}, to about the middle of its range and apple about 20 volts to the doubler plate-sarem input terminal. Adjust the band-pass cireuit, $L_{5} \mathrm{C}_{5}^{*}, L_{0} \mathrm{C}_{6}$ for nearly uniform response aress the desired range, using the $61: 6$ grid current as the output indiattion. There should be at least 2 mat arross a 4 - Ma. range when the doubler plate voltage is raised to 306. Note that the serem potentiometer controls the input to the doubler, and through it the exritation to the 6146.

The 48 - Me. output compling adjustment, $L_{6} F_{7}$, may be cherked at this time. The line to a ittMe, tripler stage should be connected to J_{2}, ambl the series "apacitor, C', atjusted for maximum
gride current in the driven stage. Reeherek the at-

 for stable opration, Its adjustment was not aritital, howerer, athd 's conall be sod anywhere near minimum (apmedtanco with ged results, stat
 grid driwe appled but no plate or serern voltage, fune the dilfo plate cirenit through resonamere, trying varions sotting of ('s matil there is mo grid carrent dipat resonamere.

A load lor the (il 46 output direnit is now required. This am be at for or (o)-watt lamp, with
 :ance. Seljast it for minimum refleotod power, as indiested on the s.w.r. bridge. With the lowe connowted :and grid drive on, apply :300 to 100 volts to the amplifier ulate and serem terminat. Tune ('onfor maximum indieated output. Landing ran be adjusted by varwing ('in, reduning ('10 after rath movement of Css.

Rawherk for mentratization at this point, working for an whing of r's at which minimum plate ruront, maximum gride rurron, and maximum outpat ath ereare at the same setling of the phate
 about dijo watts with plate modulation and $3 \overline{5}-40$ Wafts output should be oblainecl. Highor input "an loe man on c.w. Mate voltagre shoulal not exreed alsont 100 with plate modnation, thongh it fan lo sommentat more for c.w.

Now make a final chaed on the trap eirenits, if meressury, In case TVI is experionered, aljust the trates while someme watehes the 'TV sireren, and sere whether :ay impovemont is possible. Remomber that the frans shewn were designed primatily to redure Chamed 2 interferonere Where the treuble is with other chammels, the tratse can be modified to redure the offombing hatmunie as required. A low-pass filter or ath ther harmonie thep will te nereded if there is hamonic intorforencr in (Mantmels 11-1:3.

The amplifier as shown furnishes heater voltage and promertive bias for the exater. Hook together the fi.3-vold and ground terminals of the two unis, and comeret the bias ontput pin on the amplifior to the $61 / 6$ gid retum in the exciter.

Aphly 115 volts anc. to the appropriate pias on the amplifier power plug. When si. Figg. 17-7. is edowed. the cxefor heaters and the hias supples are energized. The hias voltages ate about 50 and 150 negation for the driver and amplifier. respertively. Closing staghts the amplifier filiment and starts the fin motor.
bor the intial testing of the amplifier disembere its fised bias supply, bey lifting the commetion betwern R_{1} and R_{2}, so that instability will be more evident. Comanet the ontput of the excitor through at length of coaxial cable to J_{1}. Hosk a 0-2ij- or 0-i0 (0-ma, meter to the terminals provided for measuring grid enrrent. Then on the exriter and adjest the driver ont put and amplifion imput for maximum grid current. So this current betworn 10 : and 15 mat. With the exatiation rontrol, R_{1}, in the exritor. Fo insure proper adjustment of the amplifer grid circnit, insert an s.w.r. bridge unit such as a Midomatch in the coas conneding the driver and :mplifier, and tume ('1 and C_{2} in the amplifier alternately for minimmo reflerted power. Ablust the driver tuming for maximum forwarl power.

Narer apply serworm wothe without hawing the plate voltage on also, and do mot operate the amplifior without load. bither will result in exressiver serem dissipat iom, and almost vertain tulse lature if continued for :any lengh of times A Hasble dummy losul for lesting can be mate by conneding lwo or more l(N-w:atl b:mps in
 more, will be heppful in making the lamp load something like ool ohms, resistive, at this frequmery

It is woll to start with something less than maximum voltages in testing. If the phate voltane is under 1000 and the sereen voltage about 200 to 360 volts, litale ham 'an result if something is not guite right. With the dummy ford romeded, apply phate and screen voltages. Set coy near the middle of its range and tome ('z for maximum ont put. If this orcurs at or close to the end of the thming tange of ('z, adjust the spareing of the turns in the phate coil areordingly, Adjust ('y for maximum output, retuming ('z as required. If the grid current dropped below 10 mas. mider boad,

Fig. 17-8-Botlom view of 50-Mc. exciter and amplifier. Note that the two units are built separately, though they mount together on a sirgle panel. Amplifier unit includes bias and filament supplies for both.

144-Mc. Driver-Amplifier

incroise the drive with the doubler seren potentiometer in the exater.

Cherk now for stability. Briefly cut off the drive and see if the amplifier grid eurrent drops to zero. If it doesu't, the amplifier either needs neutralization, or it has a pamatie oscillation. If no grid aurent shows with drive remowed, note Whether, when drive is applied and the amplifior is tuned properly, maximum output, minimum wate current and maximum grid current all orem at the satmeplate tuning. If they do, the amplifior is operating satisfactorily.

If oscillation does show up, dheek its frogurner. If it is much higher than the operating frequeney (probably over lot Mr.) v.h.f. parat sitic suppresion mestsures are in order. If it is in the so-Mr. region, neutalization will be required. These troubles are most common in multiband designs, and undikely in a layout of this sort. Neutralization of the capacity-bridge tyer, like that in the exeiter, ran be incorpomater readily, and parasitio supmession is moved in adatil elsewhere in this Hamdrook. Neutralization may require additional grid-phate caparitance in some layouts. l'rovision was mado for mentralization in the original layout (explaining the phagend hole in the front panel), but it was found to be muneress:ry.

When the amplifier is operating stabley, the plate and sereen voltages may be incrensed in areordance with the tube mandareturer's ratings, for the type of operation intended. Oprating conditions are different for the three tules which ran be used and they should follow the mamufacturer's recommendations. This is not to sty that variations from the published data are unsate or undesiralde. Any of the values e:m he variod over quite a range if the maximum rating for earh tube element eonermed is not exeeded. In this commection, it is highly desirable to provide continuous metering for the grid, sereen, and phato currents. This, with a knowledge of the applied voltages, will help insure proper operation and make correct adjustment a simple matter.

A 144-MC. DRIVER-AMPLIFIER

The unit shown in Figs. 17-! through 17-14 is : three-stage tripler-driver-amplifier that mas the used with the exciter just deseribed. Driving power at 48 Me. maty be taken from the doubler stage (hy connecting to J_{2} in Fig. 17-4) or from the output stage, ruming at low power. Almost am. 50-Mc. tramsmitter of 3 to $\overline{5}$ watts ontput could be used bey substituting a suitable orystal and rotuning the stagre for opreration at 48 to HI.3 Me. If a small $1+1-\mathrm{Mr}$. trinsmitter is avatilable, the tripler stage maty be dispensed with, in which rase about 5 watts drive on $14+\mathrm{Me}$, is required.

This section of the station is built in two parts. The tripler and driver stages are in the small portion at the right of Fig. 17-9, with the final stage at the left. All are push-pull stares, the tripler and driver using dual tetrodes. The tripher is an Amperex (i3tio, followed by an RCA bī2t st raight-through amplifier. This drives a pair of t-125.1s in the final stage.

Input to the +125 as can be up to (600 watts on a.m. phone, or S00 watts on r.w. or f.m. By suitable adjustment of sereen and plate voltages the power can be dropped as low ats 150 watts input and still maintain good efficioncy. Some means of reduring power is highly desirable, as most opration on 14t Mr. can be carried on satisfactorily with low power.

The Driver Portion

The tripler and driver stages, Figs, 17-11 and 17-12, both operate well below their maximum ratings. Self-tumed grid cirrouts are used in euch stage. 'This simplifies construction, and in the ease of the driver stage, redures the possibility of self-oscillation. With a surplas of drive availathe, the grid circuit of the (ing I maty be resonated as low as $1: 30$ Me. There is little tendeney to tuned-phate tuned-grid ascillation, therefor, and neutralization is not required.

Tripler and driver are buitt on a standard $5 \times 10 \times 3$-inch abluminum chassis, with the tripler at the back. theplate cirenit is tuncel from the front panelby an extension shaft. Omission of the sercen bypass on the tripler is intentionial as the stage works satisfactorily without screen bypassing.

The din24 is eisily over driven. This maty be corrected by squeezing the driver grid coil turns

Fig. 17-9—The high-power 2 -meter rig, with shielding enclosures in place. The small unit at the right houses the tripler and driver stages.

17 - V.H.F. TRANSMITTERS

doser together, lowering the resonatht frequemer until the desired 25 to :3.5 mat. is obtaned aceross the bind. The farther it can be resonated helow $1+4$. Me. the lows likelihond there is of self-oscillattion in the driver stare

The 652 1 is monnted horizontally, and holes are drilled in the chassis under the tulbe to allow for air cideulation. l'late leads are mado of thin phosphor bronze or eopper. bent into a somicirelde. romberting the buttrifly eapacitor and the heatdissipating connectors. This allows the latter to be removed for changing tubes, without putting undue strain on the plate pins. The embere tors hatve to be sawed or filed down on the insides to fit on the (6isel pins. The compling link at the driver phate cireuit is tuned. to provide efficient (ransfor of energy to the amplifier grids.
small feredthrough hepassis are used in the driver sereon eirenit. ('s is monted in the allami-
 is in the chassis surlame.

Amplifier Features

Design of the 1-125. I grid circuit is important in arhineving efficiont transfor of onergy from the driver stage. The input caparitance of the large tormens is so high that a tumed gride cirenit of comventional design camon be used at I4t Mre, so at half-wave lime is sulstitutod, as shown in 17igs, 17-1:3 and 17-14. The input eoupling link is sorios tund, permitting adjustment for minimam standing wave ration on the coaxial line commerting it to the driver stage output link. The grid line, $L_{1} L_{2}$, is made of $1 / 4$-inch copper tubing. to redure herat losses.

Mantaining the + -125id serems and filament leads an ground potential for r.f. is nomessary for stability. To this rod, the tube sorkets are monated above the chassis. rather than below: They are devated only enough to allow the sorket eonatacts to elear the chatssis, and are monnted eorner to cormer, with the inmer romers almost tourhing. The grid line is brought up though 1 -ineh chassis holes and solderod direetly to the grid contacts. This determines the lime sparing, about 1 , -inches renter to center.

The imer fitament tominals on each sorket are grounded to the dhassis, The others emmert to feredthrough hepasses with the shomest possible leats. These are joined umber the ehassis with a shiedded wire and tiod to the filament transformer. The r.f. rhokes in the serem leads are under the chassis, their wire leads eoming un through Millan trpe 32100 feedthrough hushings iuserted in chassis holes under the soreen terminats. The two sereen terminabls on ateh sorket ate strapped together with : 3 z-imeh wide strip) of flashing eopper. The seren montratizing "aparitor is mountod ats chose to the sockets as possible and sill leave room for the shaft eompling on its rotor. leads to its stators are about one hall inch long.

More combant and symmetrical design is possible if a modified singla-sertion rapateritor is used for ('6. It should be the type haviag suppolts at both ends of the rotor shaft. The Millen 19140 and hammarlend M(-If0 aro suitable units for the purposes. The stator bars are sawed at cach side of the reonter stator plate. The front rofor plate is remowed, making a split-stator variable with + platers on cablh statom and 8 on the rotor. This procedure maty not be applicable to :lll 1 10- $\mu \mu \mathrm{f}$. (:aptaitors, but athe mothod that results in a balaned unit having about $\overline{3} 0 \mu \mu$. per sise tion should do.

Construction of the final phate cirenit should be cloar from Fig. 17-10. Tuning is dono with pats of a disk-tope nebtratizing capacitor (Mil-
 inches high. These are made of one 1 -ineh and one 2's-inch stand off each. fastemod tor goh her with athreaded insert. Commedion to the limes is mado with copper or silver strap. 4'e ine has from the plater and. Silver plating of all tank eirenit parts is a woth-whike investment. though it should not be considered a nemessity: I shatf coupling designed for high-voltage service is attared to the threaded shatt of the movalbe. plate, and this is rotated with a shaft of insubating material lirought out to the frome panel.

I word about the extemsion shafts is in orter at this point. If they are of motal they may have a serious detuning efferet in some rireuits, even though they are commerted through insulating rouplings. Bakeliter rod is line, but sime the insulating qualitios are of no importance, 1 i-inch wooden doweling will do the joh just as well. Lucite or polystyrene rod will

Fig. 17-10-Rear view of the 4-125A final stage. The split-stator capacitar near the middle of the picture is the screen neutralizing adjustment. The plate line is funed with a copocitar mode from parts af a neutralizing unit, mounted an ceramic stand affs.

Fig. 17-11-Schematic diagram of the tripler and driver stages of the high-powered 2 -meter transmitter.
$C_{1}, C_{2}-10.5 \mu \mu \mathrm{f}$.-per-section butterfly variable (Johnson $L_{3}-3$ turns No. 14 enamel, $3 / 4$-inch diam., spaced $1 / 16$ inch 10LB15).
$\mathrm{C}_{3}-25-\mu \mu \mathrm{f}$. screwdriver-adjustment variable (Hammarlund APC-25).
$\mathrm{C}_{1}-25-\mu \mu \mathrm{f}$. miniature variable (Bud LC-1642).
$\mathrm{C}_{5}, \mathrm{C}_{6}-500-\mu \mu \mathrm{f}$. feed-through bypass (Centralab FT5001.
$\mathbf{R}_{1}-11,000$ ohms 2 watts (two 22,000-ohm l.watt resistors in parallel.)
$\mathrm{R}_{2}-50,000$ ohms 2 watts (two 100,000-ohm 1-watt resistors in parallell.
$\mathbf{L}_{1}-2$ turn insulated wire around center of L_{2}. Twist leads to J_{1} and C_{3}.
$L_{2}-13$ turns No. $20,5 / 8$-inch diam., $7 / 8$-inch long, center tapped (B \& W Miniductor No. 3007).
not stand the heat and should not be used.
The final chatsis is ahminum, 10 by 12 by 3 inches, matching up with the driver chassis to fit into at standard $101 / 2$-inch rauck panel. Comphete raclosure is a must for TVI prevention, and it pates dividends in improved stability by providing effective isolation of circuits that tend to give trouble in open layouts.

The enchsures were made by mounting $1 / 2$-inch aluminum ingle stork aromed the edges of the chassis of both mits and entting the sides and covers to fit. It was not intended to cool the driver unit originally, so the enchosure was made of perforated aluminum. The blower for the final provided plenty of air, however, so three holes are made

Fig. 17-12-Side view of the tripler and driver stages. Coil adjacent to the 6360 tripler tube is the grid coil for the 6524 driver. Plate leads for the driver tube are flexible copper straps, to permit removal of the tube from its socket. Screwdriver adjustment of the lower right is the reactance tuning capacitor for the tripler input link.

17 - V.H.F. TRANSMITTERS

The somewhat random appearance of the front pand is the resule of the development of the whit in experimental form. A slight rearrangement of some of the noneritical components could he made to arhine a symmetrical panel layout readily enough.

Operation

The 1 wo units have their own filament transformers. Plate supply requirements are 300) volts at 50 mad. for the tripler, $f(H)$ volts at $1(\%)$ ma. for the driver. 300 to $4(0)$ volts at ite ma. for the final s.reemes and 1 (H)N to 2 2ato volts at 400 mat. for the final plates. The driver plates and final screens may be run from the same supply, but mone ilexibility is possible if they are supplied scparately. A variable-voltage supply for the final sorerns is a fine way to rontron the power level.
In putting the rig on the air the stages are fired up, separately, heginning with the tripler. A jack (J_{3}. in Fige. 1 T-11) is provided on the fromt panel for measuring the (iz36i) grid corrent. Nout 1 mat. through the 150,000$)$-odim grid revistor is plenty of drive. The series rapacitor, f_{3}. in the link can be used as a drive adjustment, if more shan neressary is atvailable.

Sise plug the grid moter into the tise 2 gride current jack, J_{1}, and tume the (i360) plate circoit for maximum grid rurrent. If it is higher than :3 to 4 mat inerease the indurtance of the grid coil. L_{6}, by supuerzing its turns closer together. Now apply plate and sireen voltage to the fis2.4. and chare for signs of sedf-userillatiom. If the phate cirroit is tumed down to the same frequenty as that at which the gride coil ressmates with the tubse caparitaure, the stage may oscillate, but if it is stathle abross the intended tuning range there should be mo operating diffirulty resulting from : tendeney to oscillate lower in frequeners athed as nentralization should tre needed.

Comeet at coaxial line between the driver output and the final grid imput preferably with at standing-wave bridge eonnected to indicato the standing-wave ration on this line. Tune the driver plate cirewit and its series-thuned link for maximum grid current in the final amplifier. Adjust the final grid tuning. Ci, for maximum grid current, athl the serios calpacitor, C3. in the link for minimum refleded pewer on the s. w.r. bridge. Adjust the compling loop position for maximum transter of power, using the least mopling that will athice this com

Fig. 17-13-Schematic diagram of the 4-125A amplifier for 144 Mc .
$\mathrm{C}_{1}-30-\mu \mu \mathrm{f}$.-per-section split-stator variable (Hammarlund HFD-30X).
C_{2}-Plate tuning capacitor made from Millen 15011 neutralizing unit; see text and photo.
$\mathrm{C}_{3}-25-\mu \mu \mathrm{f}$. miniature variable (Bud LC-1642).
$\mathrm{C}_{1}, \mathrm{C}_{5}-500-\mu \mu \mathrm{F}$. feedthrough bypass Centrolab FT-500).
Coi-Approx. $50-\mu \mu$ f.-per-section split-stator variable. Make from Millen 19140 or Hammarlund MC. 140; see text.
$\mathrm{C}_{7}-25-\mu \mu \mathrm{f}$. variable (Johnson 25L15).
$\mathrm{C}_{x}-0.25-\mu \mathrm{f}$, tubulor.
$\mathrm{R}_{1}-5000$ ohms, 10 watts.
$L_{1}, L_{2}-1 / 4$-inch copper tubing, 12 inches long, spaced $1 / 1 / 2$ inches center to center. Bend around $11 / 2$-inch rodius, 1 inch from grid end.
L3-Loop made from 5 inches No. 14 enamel. Portion coupled to line is 1 inch long each side, about $3 / 8$ inch from line.
$L_{4}, L_{5}-1 / 2$-inch copper tubing 12 inches long, spaced $1 / 2$ inches center to center. Bend around 2 -inch radius to make line 4 inches high. Attach $C_{2} 41 / 2$ inches from plate end.
$L_{6}-$ Loop made from 7 inches No. 14 enamel. Sides spaced $11 / 4$ inches.
$\mathrm{L}_{i}-5$-h. (min.) $100-\mathrm{ma}$. rating filter choke.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$-Coaxial fitting, female (Amphenol 83-1R).
$M A_{1}, M A_{2}, M A_{3}-$ External meters, not shown; 100,200 and 500 ma .
M—Motor-blower assembly, $17 \mathrm{c.f.m}$. . (Ripley inc., Middletown, Conn., Type 8433).
RFC-_V.h.f. solenoid choke (Ohmite Z-144). Four required
S_{1}-Toggle switch.
S_{2}-Rotary jack-type switch (Mallory 720).
T_{1} - Filament transformer, 5 -volt 13 -amp. (Chicago FO-513).

144-Mc. Amplifier

 for maximm final gride eurent. with the plate and screen valtages off. Do not attempt to run the final stage without load. IVith a fixed sermen supply the serven dissipation goes very high when the plate lout is removed or made too light. It is important to morer the sereme current at all times. With $4-125$ hs danger to the platers ":an be detereded be their color, but the sereen 'aurent is the only indeation of possible damage to that element.
There is no suitable inexpensive dummy load for testing at v.h.f. rig of this power level. The best load is probably an antemath This can be an indorer gamma-matched dipole, foed with coax. Its scrios capacitor shombl be adjusted for a standing-wave ratio close to $1: 1$. The Mieromateh ran be used in this operation. hat adjustments shondel be made at less than finl power. IV:atch for any sign of heating in the heridge unit.
The pesition of the eompling loop, L_{6}. should be adjusted for maximum trathetor of onergy to the antema, kecping the eoupling as loose ats possible. The suries capacitor, ('7. (an be used as a loading adjustment thareatore. If the sermen voltage is continuously variable it will be foum that there is an eptimum value around 325 to 350 volts.

Below are some conditions uncier which the rig hat ben oporated experimentally:

Niage	$E r$	1	E. c	$I_{\text {BC }}$	I_{6}
'l'ripler		3.5 ına	-	-	1.s ina.
l) river	4010	(12 mat.	-	8 ma.	3-1 1112.
Final	10015	300 1118.	100 v	(6) intt.	29 т1a.
final	2000 v.		3.0 \%.	4ij miti.	20 ния
Final	2iour	400) mat.	3.0 v,	10 ma .	18 เ11:

The first ant third conditions given for the final stige represent extromes, beth exeereding the tubes ratinge in some way, so the bere mot rerommented. At low phate voltages the sereen hats to be run above reeommended ratings to make the thbes draw the in fill mated plate corment and operate efticiently. At high plate voltares the seremen dissipation drops markedng The use of $4-122^{2} d s$ at a full kilowatl input exereds the manufacturer's maximum ratings, and is done at
the user's risk. To operate safely, the maximum plate voltage for voice work at $1+1$. Mr. shombld probably not go over 2000 . At this leved thr tubes will handle bot watts input on voice, and $\begin{gathered}\text { of } \\ \text { (watts on c.w. (easity. }\end{gathered}$

Modulation and Keying

Keying is dome in the sereern eivenit of the driver stage, and in the sereen and plate rirenits of the tripler. Cathode keying of the driver was attempted hut it caused instability tronbles, so was abandoned. The sereen method makes the key hot, so an insulated key or a keying relay must be used in the interest of suffery. The keving jack must be insulated from the panel.
Fixed bias for the finat amplitier is provided by the VIR-tube method. When the tube ignites at the appliation of drive. the capacitor ("s charges Removing excitation stops the flow thromen the VR tube and leaves the negative charge in the capaceter applied to the amplifier grids. The efferetiveness of this sustem requires a low-leakige caparitor for C ${ }^{(}$,

Modulation is applied to the plates onls. A rhoke of about 10 hemers is rommered in the soreren lead, or the modibation can be supplied throngh a sereen winding on the modnlation trumsiomer. The bypuse value in the screen ciranit shond be low robugh to avoid alloreting the higher andio fregurncies. Werasionably andio resonature in the sereon chate maty embe ab singing efiere on the modalation. If this develops, the rhoke may be shunted with a rexistor. Use the highest value that will stop the singing.

In neutralizing the 1-125ds it maty be found that what appears for be the hest setting of the seremen (apacitor will result in a very large drop) in grid current whon phate voltage is applied. The setting mas be altered slightly, raising the full-load grid current, without iulversely atferting the stability of the amplifior. The fimal chuek for neut ratization is twofold. There shomber bo no osedlation when drive is removed: and maximum grid current, minimum plate current and maximum output should all show at one setting of the plate tuning ciblacitor. The latter condition

Fig. 17-14-Under-chassis view of the 2 -meter transmitter. Tripler grid and plate circuits are at the upper left. Only two of the three jacks on the front panel show in the lower left. The halfwave line used in the 4-125A grid circuit is the main item of interest in the amplifier section. Both units are fitted with bottom covers, to provide shielding and confine the flow of cooling air to the desired areas.

Fig．17－15－Antenna couplers for 50 ond 144 Mc ．designed for use with the high－power transmitters on the previous poges．
may be observed only when the amplifier is oproated withont dixed hias．

ANTENNA COUPLERS FOR 50 AND 144 MC ．

The antemat eouplers shown in Figs．17－15， and at the top of lig．1－1，can be used with in2－ whm or T⿹勹口欠hm eomaial Fince，and with bataned limes of any impedance from 200 to tion ohms or more．They wore desigued for use with the high－ power transmittors daseribed previously，but may he used at any power lewel．

Construction

The two rouphers are identical circuitwise． Ther arr built inside a standard 3 by the 17 －inch aluminum chassis，with a bottom plate to com－ phate the shodling．The pand is 33^{1} anderes high． If only one roupler is required，a 3 by the（ \mathbf{i}－ineh utility box ran be usod．Terminals on the bark of the chassis include a coaxial input fitting and a two－post output fitting for rach coupler．The circuit diagram，Fig．17－la，serves for both．

The ion－Mc．coils are cat from commeretally available stork，though they ram be made by hand if desired．The erompling winding，L_{1} ，is inserted inside the tumed eireuit．The polyethylene strips on which the eroils are wound keep the two coils from making electrical contart，so no support ot her that the wire leads is nereded．

Leads to L_{1} are brought ont between the turns of L_{2} ，and are insubated from them by two sleeves of spaghet ti，one inside the other．Do not use the soft vingl trye of slecving，as it will molt too readily if，through an aerident to the antenna system，the coil should rum hot．In the $1+4-\mathrm{Me}$ ． coupler the positions of the coils are reversed， with the tunced circuit，L_{2} ，at the eenter，and the coupling roil ontsicie it．

Similar tuning eapheritors are used in both （oouplers，but some of the plates are removed from the one in the $14+$－Me．cireuit．This pro－ vides casior tuning，though it has little effert on the minimum rapseritanee，and therefor on the size of the eoil．

Adjusting the Couplers

An antemin compler rath be adjusted propery only if some form of standing－wave britge is comered in the line leetwers the transmitter and the eompler．If it is a powar－indicating type， so much the better，ats it then can be used for idjusting the transmitter loading，and the work can be done at normal thansmifter power．

With the bridge sot to read forward power， adjust the coupler raparitors and the transmiter tuning roughly for maximum intiontion．Now set the bridge to read refleeted power，and adjust the antemat coupler caparitors．first one and then the other，until minimum roflected power is

Fig．17－16－Circuit ond ports informotion for the v．h．f． antenno couplers．
$\mathrm{C}_{1}-100-\mu \mu \mathrm{f}$ ．varioble for 50 Mc ． $50-\mu \mu \mathrm{f}$ ．for 144 Mc ． （Hammorlund MC－100 ond MC－50）．
$\mathrm{C}_{2}-35-\mu \mu \mathrm{f}$ ．per－section split－stator variable， 0.07 －inch spacing（Hammorlund MCD－35SX）．Reduce to 4 stator and 4 rotor plates in each section in 144－Mc．coupler for eosier tuning；see text．
J_{1}－Coaxiol fitting，female．
J_{2}－Two－post terminal assembly（National FWH；＇．
$L_{1}-50$ Mc．： 4 furns No． 18 tinned， 1 inch diameler， $1 / 8$ ．inch spocing（Air－Duk No．808i）．
114 Mc．： 2 turns No． 14 enam．， 1 inch diameter， $1 / 8$－ inch spacing．Slip over L_{2} before mounting．
$\mathrm{L}_{2}-50 \mathrm{Mc}$ ．： 7 turns No． 14 tinned， $1 / \frac{1}{2}$ inch diameter， $1 / 4$ inch spacing（Air Dux No．1204）．Tap $11 / 2$ furns from each end．
144 Mc．： 5 turns No． 12 tinned， $1 / 2$ inch diameter， $7 / B$ inch long．Tap $11 / 2$ turns from each end．
achieved．Unless the line input inspelance is very highly ractive，it should be possible to get the reflected power down to zero，or very clese to it． Adjustment of the roupler is now romplate． Tuning for maximum transfer of power from the transmitter is done entirely at the transmitter．

Simple Transmitters

Simple Transmitters for 50 and 144 Mc.

The two tranmitters shown in Fig. $17-17$ are designed to fill several nereds. They ean be used ats completer r.f. sections for 50 and $1+4$ Me., or they serve well as exaters for higher-powered amplifies. Depending on the final amplifier tuhes chosen, the power level wan be anthing from under 10 to as much as al watts input. At low power they are well suited to mobile and portable applications. l'rovision is included for rew. operation. Modulation equipment for the transmitters ran be foumd clsewhere in this I/andhook.

The designs are ats similar as possible, merhamirally and electrically, the tubes and many of the parts being interehangeable. They are built on standad 5 by 10 bex 3 -inch alumimum chassis, with shield rovers of perforated ahminum over thoir output stages. These shiclds are an aid to TVI prevention, and they provide protertion for the tumed eircuits moment topside.

Circuitry

Both transmitters employ third-overtone arystal oweilators of simple dexign. Cristals should be in the range betwern 8.34 and 9 Ite or $2 \overline{5}$ and $2 \overline{2}$ Mr. for 50-Mr. operation. For $144-\mathrm{Mr}$, work
 If the ferefbark in the oweilator cireuit is adjusted to make conventional K-Ne. (resstals oscillate on their third overtone, erystals in the $2+-10 \cdot 27-\mathrm{Me}$. range will also work. If only the latter (third overtone) type arstals are used, the feedhark an Ire set at a lower levol. This is controlled by the position of the tap on the coil, L_{1}. Crystals in the 8-Mc, range that multiply out close to a band edge should bs: chereked rarefully under actual oprating conditions in the equipment, as the oscillation fremency may mot be exactly three times that marked on the holder.

Ther esciltator is the triode portion of a gUS triode-pentode. The pentente seetion is a frequency multiplier, doubling to 50 Ne . in the
(i-meter trammitter and tripling to $\overline{2}$: Ma. in the 14-Ma. one. The donder seetion drives the output stage in the $\overline{0}(0-\mathrm{Me}$. rig. An extra stage is required to reath $1+4$ Me. This is a 12.1Tt dual triode with its correspomeling triode cements commerted in parallel, doubling from -2 to $1+1$ Me. The output stage is a 2 lide, where the input power is to be under 25 watts. A 610 may be used at higher power levels. There is substantially no difference in the driving power required by thase tubes, and they ran ber intorehanged with only slight readjustment of the tumed cirenits

When the exditers are to drive an amplifier using an 829 B or a 589 , the output tube should be a 2 Fiz6. The plate supply voltage nerd be no more than 300 volts, and as little as 200 mas suffice. When the units are used alone the final phate voltage should to 300 for at 21626 , or 400 to 500 for the $61+t$. If the latter tulne is used in exeiter serviee the output will be suflicient to drive tefrode amplifiers of up to 1 kilowatt input.

Construction

Arrangement of parts is not particularly aritical, though it would be well for the inexperienered constructor to follow the layouts shown elowely in all principal dedails. Layout drawings, Figs. $1 \overline{7}-21$ and $17-25$ are provided for those who maty wish to make exact duplinates. The dimensions given apply only when identical parts to those of the origimal are purhased. Cherk sockets, partionlarly, for mounting dimensions before following the layouts in complete detail.

The shield covers of the two transmitters were made in slighty differont wars, to ilhostrate differing terhaigues. The mothod used in the $50-$ Me. unit maty be the easior of the two for ambaters not well equipped with metal working tools. The front and bark plates are 5 inches wide and $4^{\prime}{ }^{2}$ inches high. The hot tom half inch of rach plate overlaps the main chassis, and is fastened

Fig. 17-17-Transmitters for 50 (right) and 144 Mc . Designs are similar and many parts are interchangeable. Power ratings may be varied from under to more than 50 watts input, depending on rube used in the output stage.

17-V.H.F. TRANSMITTERS

fo it with self-tapping serrows. The rover is made of prerforated alominmm, availahde in many hardwate slores. This can be out and bent with simple tooks. The box thas mate js time hes high, \bar{b} ineloes wide and 5 imehes deop. The premated eover is made latrger tham these dimensions be about 38 ind on all sides. The extra materiat is bent over so that the front and hatek plates can be fastened to it with self-tapping simens.

In the 1ft-Mr. transmitter the edges of the front and bank plates are bent over, so that the rover noed be only a plate bent into atn inserted
 The bent-over colges of the front and batek walls show patime in the top viow, Fig. $1-2$-2

Building the 50-Mc. Transmitter

Looking at the bottom view of the ion-. Ule. franmitter, Fig. 15-19. Wre sor the oseillator tuming capacien, (1, atud the plate coil. L_{1}, at the right. Next to the left is the dit'8 sorket. The donder plate coil. L_{2}, and the amplifier grid coil, Lis. are betwern the tulde sorkets. Note that these roils are momed side he side, with their ases vertial. Tharir besition with respere to carh other is adpusted for maximum grial drive, with the optimum sparing britg about one coil diamater. The amplifer serven-deopping resistor (f 1-watt
 Jacks for wathode keving and grid-rarrent measurement orerupy the lioft side of the front wall, as seroll in lig. 17-19.

Arangement on parts inside the shiold ambpartment 'an be sen in Fig. 17-18. The amplifion thlo. at 61. 16 in this instathere, is at the left side of the box. The plate leming capacitor, ('4, is mear the midelle of the fromt wall. The antemat loading capacitor, ('5. and the cosisial output fitting. J_{1}. are on the rear wall. The power conneretor strip is centered on the rear wall of the chassis. Note the parasibie choke. LA, betwern the tale and the plate eoil. This is womd on the resistor in parallel with it. The plate coil. L_{5}, is moment with its axis vertical. The output compling coil, L_{6}. is close against the bottom of L_{5} a and insulated from it by spaghotid sloreving.

The type of socket used for the amplifier tube is important. Do not use the common moulded soreket with an elevated grounding ring having t hgs spated around its circomforenee. Theso lugs maty introduce roupling tretwern the cirenits grounded or bepassed thereto, cansing instability that anmot be neutralized out. A Millen remamic. sorket was used in the original, but any type that does not have the separate gromeling lugs and ring is suitathle. (irounding should the dome to lugs under the nuts used for mounting the sorket. It is imprative that lopass raparitor connertioms be made with virtually no leads at all, particulaty in the amplifire cirenits. Note that carh cathote load is lopassed separately. This is important where the cathole is keved. as in this instamere.
The noutralizing capacitor, res, is a type intended for mounting with one side groumided, so another mounting method must be provided in this application. A small tab of copper about 3's by i inch in siza supports the capacitor, the rend of the tab being solderef to a lug on the 3 -hug tio-point strip nearest the sorket. The 150- $\mu \mu \mathrm{f}$. bepass at the low end of L_{3} comberets from that point to the ground lug at the midelle of the terminal strip. The lead from the sleeve of ('3 is a stiff wire that passes up through a $3 \frac{8}{8}$-inch hole in the chassis to the lower stator terminal of the plate tuming caparitor. ('t The lattor is monateal with its stator terminals one above the other.

Adjustment and Operation

For initial tests a power supply capable of delivering 200 to 300 volts d.e. at abonat 100 man. and ti.3 volts atce, or dere at 1.7 amperes may bo usod. (Only 1.25 amp, will be necoded if a 2 Preb is userl.) The negative side of the plate supll! a and one side of the heater supply are romberted togother. The oscillator is tested first. This is done be feding plate power to the tion-ohm rexsistor in the oscillator phate lead only. diseomerting the doubler plate-sereen lead temporarily.
Apply heater voltage onlys and allow the tubes to warm up for 30 seronds or more. ('ommert al ($($ ()millimpere meter in the lead to the plate sup-

Fig. 17-18-Laaking dawn inside the amplifier shield. The plate tuning capacitar, C_{4}, is an the frant wall, with the laading adjustment, C_{i}, an the rear wall. Parasitic suppressar and plate cail cannect ta tap statar bar of C_{4}. Black lead, lawer left, runs thraugh a rubber grammet to the neutralizing capacitar, below the chassis.

Fig. 17.19-Bottom view of the 50 Mc. transmitter. Note positions of the various coils, particularly those in the doubler plate and amplifier grid circuits, near the middle of the assembly.

ply, and apply power. Swing the oscillator tuning capacitor, C, through its range. There will be a sharp dip in current to about 10 mat as the crystal starts oscillating.

Chere the frecquency of owillator with a griddip moter or wavemeter. If you have a receiver that tumes the 20- or 50-Mc. region, listen for the oseillator to determine if it is erystal controlled. 'The fredueney will ehange only slightly, if at all. When the eirenit is tuned through resonamere. Listen to the note with the rereiver leat oscillator on, and place a screwdriver or other motal ohjeet near the temed circuit. There should be very little ehange in frequence. Should the frequenes dhange more than a few hundred eveles under these tests the oseillator may not be controlled hy the crystin.

Self-oscillation is the result of too mumble ferdbark. This can be corrected by moving the tip
lower on the coil. Too little feedback may prevent the oscillator irom working at all, or it may drop out of oweilation whon boded approciably hy the following stage. The cure is to raise the tap presition on the coil.

When the osillator is working corredy, renowe the millitmmeter from its power lead and commed it between the high-voltage soure and the jundion of the sereen resistor and 100b-ohm resistor at the low end of the plate coil. Plug a low-range millizmmetor, preferably 5 or 10 mat, into the grid coment jark, fer of the amelifier. Apply phate voltare to the first two stages and thane the doubter plate cirevit for maximum grid rurrent, as real of the meter in . F2. This should be
 varying the semaration between L_{2} and $L_{\text {a }}$, leaving spacing at the poist that yields greatert grid (murnt. Retuse the doubler plate cireuit as the

Fig, 17-20-Schematic diagram and parts information for the 50 - Mc. Iransmitter. Capacitars are ceramic unless specified. Values under .001 ore in $\mu \mu \mathrm{f}$. Resistors $1 / 2$ watt unless specified
$\mathrm{C}_{1}-50-\mu \mu \mathrm{f}$. variable (Johnson 157-4).
$\mathrm{C}_{2}-25-\mu \mu \mathrm{f}$. variable (Johnson 157-3).
$\mathrm{C}_{3}-0.5$ to $3 \mu \mu \mathrm{f}$. ceramic trimmer (Erie 3139D).
$\mathrm{C}_{1}-25-\mu \mu \mathrm{f}$. variable (Johnson 167-2).
J_{1}-Coaxial chassis fitting.

$\mathrm{J}_{2}, \mathrm{~J}_{3}$-Closed-circuit jack.

$L_{1}-14$ t. No. 20 tinned, $1 / 2$-inch diam., $7 / 8$ inch long, tapped at $41 / 2$ t. from crystal end (B \& W No. 3003).
t $-61 / 2 \mathrm{t}$., $7 / 16$ inch long, similar to L_{1}.
$L_{3}-71 / 4$ t., $1 / 2$-inch long, similor to L_{2}.
$\mathrm{L}_{4}-5 \mathrm{t}$. No. 20 wound on and spaced to fill 100 -ohm 1 . watt resistor.
$L_{5}-31 / 2$ t. No. 14 tinned, $3 / 4$-inch i.d., $1 / 2$-inch long.
$L_{6}-2$ t. No. 14, similar to and at cold end of L_{5}. Cover with spaghetti sleeving.
$R_{1}-37,500$ ohms, 4 watts (4 150,000 -ohm 1 -watt resistors in parallel).
RFC_{1}-Single-layer v.h.f. choke, 2 to $7 \mu \mathrm{~h}$. (Ohmite Z-50 or National R-60).

Fig. 17-21-Layout drawing of the $50-\mathrm{Mc}$. chassis top. Precise duplication is not important, though the general parts layout should be followed. Hole sizes may vary with different types of sockets.
spacing is changed.
Next comes neutralization of the amplifiers. With drive on, but no plate or sereen voltage, tume the amplifier plate cirouit through its range. Watching the grid current moter. There maty be at downward dip in grid current when the plate cirruit is resomated. Adjust the noutralizing capacitor, (${ }^{3}$, a turn or two and cheek the grid current dip) again. If there is less ehange that before, the adjustment was in the right direretion. Contimue in this wat until no downard movement an ba seen in the grid current as the plate cirouit is tumed through resonamere.

If neutralization camet be achieved, a different value of begass will be required at the low end of L_{3}. If the mentralizing capacitor is at minimum sotting when mentralization is appoached, a larger value of bypass will ox meded. Try 20 $\mu \mu$, ats a mext step.

Power may now be applied to the final amplifier. This ram be from the same souree as has beren used for the earlier tests, for the time being. The mater may be removed from the doubler power lead and comeneded betwern the junction of the r.f. thoke, $R P P_{1}$, and sorentr resistor and the terminal on the bate of the transmiter. This will measure the combined plate and sereen rurront drawn by the amplifier. The meter may also be plugged into the eathode jack, where it will read combined plate, serern and grid emerent.

A light bulb of about 25 watts or more can be comuered to a coaxial fitting and used as a dummy load in place of an antemas. This will not represent a 50 -ohm load, so the thening of the stage will not be the same as when a matehed antonna system is used, but it will do for initial tests, and it will give a rough indication of powor output.

Apply plate-sareon power to all stages, and tume the phate circuit of the amplifier to the point where plate current dips the lowest. Now adjust the serfes caparitor, retming the plate capacitor, until maximm brilliance is seen in the load lamp, Cherk carefnlly for any sign of oscillation in the amplifier. Ramove the ersstal from its sorket briefly, while watching the amplifier gride curent. 'This curtent and the amplifier output should drop to zero, and remain there regardless of the tuning of any of the transmitter circuits. Should grid current appear with the oscillator inoperative,
recherk mentralization. The griderurent dip mas. be only an appoximate indication of nentralization, so the adjustment may have to be tourhed up after power is appliod to the amplifier. Tom off power as a satedy meatime when this is dome. With perfect neutralization, maximum grid curront, minimum phato current and maximum output will all oreur at the same setting of the amplifier plate cirenit tuning. Perfertion in this resperet may not be pasible, but there should be no sign of osedlation (grid courent in the amplifier when the drive is removed) at any setting of the toming controls.

When the rig is oprated with a properly designed antemat the settings of the amplifier plate athd antemat bading adjustments may be somewhat different from thase obtained with a lamp doad. Both should be adjusted for maximum power delivered to the athemat This ran be rerorded on a fiold-strength moter, giving a relative indication of the power radiate whe the antemat. Botter than this is a power-itheationg standingwave bridge. Which may le left connereded in the lime to the antemat at allme.

Final oprating comditions for the transmitter will deperde on the supply voltage and final tube used. With a 300 -volt supply the wicillator plato current will run about 10 mat. with the ow illator operating properly, and 17 mat. with the arsatal ont of oseillation. The doubler pata-serecon empront is about 12 ma. . Implifier grid curront will boat lanst 3 mat withont plate athd serem voltage, athd around 2.5 mat with the amplifior operating uneder load. These values will be slightly lower with a 250 -volt supply: Plate-swern current to the amplifier will depend on the power leved and
 about 20 ma, at resonamere, with no lead. and !aj mat of resonance. Lobded for maximum officiones the 2 PVO phate and screen current will be about (60 ma. With a 6 a 46 at +50 volts the loaded phate and saren current will be ahont 120 ma .

The $50-$ - Ile transmitter was deseribed originally in (SSTC for () atober, 1958.

The 144-Mc. Transmitter

Layout and testing of the $14+$ - Me. unit are very similar to the $\boldsymbol{j}(0-\mathrm{Me}$, model already deweribed, so only the points of difference will he covered in this part of the text. Looking at the bottom view,

Fig. 17-22-Top view of the 144.Mc. transmitter with shield cover removed. A 2E26 is shown in the amplifier socket.

Fig. 17-2:3, the oseillator tuned circuit is at the far right. The tripler plate capacitor, C_{2}, is next on the front wall. The GU8 socket is between these two caparitors, on the eenter line of the (bhassis. The 12. 1'T' approximately in the middle of the chassis. The coil mounted vertically at the right and slightly below the 12AT' sorket is the tripler plate coil, Ls.

The doubler plate coil, L_{3}, and the amplifier gride coil, L_{4}, are mounted on a common center lime and close together, making them appar as one coil in the photograph. The tope end of L_{3}, as seen in the schematie diagram, lig. 17-24, is toward the back of the chassis. The grid end of L_{4} is toward the front. Capacitors ('3 and C_{4} are (ylindrical plastic trimmers. They are at either side of and just above the upper end of L_{3}.

The amplifier sorket is at the left. The sereen

Fig. 17-23-Bottom of the 144.Mc. transmitter, with oscil-lator-tripler at the right. Doubler stage is near the middle of the chassis and amplifier at the left.
tuning capacitor, C_{7}, is mounted across the socket. Sereen voltage is fed through the r.f. choke just above the socket. The switeh for shorting out the grid leak when e.w. is used is in the upper left corner of the photograph. The two jacks on the front wall are for keying (far left) and grid current measurement.

Cireuit differences between the two units, aside from the inclusion of the extra multiplier stage in the $1+4-$ Me model, arise mainly from the efferts of tube and cireuit capacitances at the higher frequency. Tube eapacitances load the tumed circuits heavily, so series-tumed direuits are used in the amplifier stage. It will be seru that the keying jack is connected in the cathode of the doubler stage instead of in the amplifier cathote lead. It is diffient to bypass the amplifier cathode completely at 144 Mc , and the insertion of the keying jack in that position would cause oscilla-

Fig. 17-24-Schematic diagram and parts information for the 144.Mc. transmitter.
$\mathrm{C}_{1}, \mathrm{C}_{n}-50-\mu \mu \mathrm{f}$. variable (Johnson 157-4).
$\mathrm{C}_{2}, \mathrm{C}_{5}-15 \cdot \mu \mu \mathrm{f}$. variable (Johnson 157-2).
$\mathrm{C}_{3}, \mathrm{C}_{4}-1-8-\mu \mu \mathrm{f}$. plastic trimmer (Erie 532-10).
$J_{1}, J_{2}=$ Closed-circuit jack.
J_{3} - Coaxial chassis fitting.
$L_{1}-14$ turns No. 20 tinned, $1 / 2$-inch diam., $1 / 2$ inch long tapped at 4 turns from crystal end (B \& W No. 3003).
$\mathrm{L}_{2}-53 / 4$ turns No. 18 enam., $1 / 16$-inch diam., $3 / 8$ inch long.
$\mathrm{L}_{3}-23 / 4$ furns No. 18 enam., $7 / 6$-inch diam., $1 / 4$ inch long.
$L_{4}-6$ furns No. 18 enam., $7 / 6$-inch diam., $3 / 8$ inch long,
center tapped.
L: - 4 turns No. 14 tinned, $3 / 4$-inch diam., turns spaced 2 diamefers. Make extra space at center for L_{6}; see Fig. 17-22.
Lel furn No. 14 enamel, $3 / 4$-inch diam. Cover with insulating sleeving and insert at center of L_{5}.
$R_{1}-33,000$ ohms, 3 watts (3 100,000-ohm 1-watt re. sistors in parallel).
RFC $_{1}-7-\mu$ h. soienoid choke (Ohmite Z-50).
$\mathrm{RFC}_{2}-1.8-\mu \mathrm{h}$. solenoid choke (Ohmite Z-144).
S_{1}-S.p.s.t. switch, any type.

17-V.H.F. TRANSMITTERS

Fig. 17-25-Layout drawing of the 144-Me. chassis.
tion. Soren boparsing is a similar problem, as eonventional hypassing mothods are indeferive at this and higher frequencies. Bringing the sereen to gromed potential reenires a eritical value of (apacitanee, so a trimmer ($\left(C_{0}^{\prime}\right)$ is connected from sereen to ground.

Adjustment Procedure

The power supply for testing the 1/t-Mc. transmitter should deliver 6.3 volts at 1.6 am-
 it should be capable of stpplying $2-$ amperes. Initially 250 to 300 volts at tial mat. will do for the plate supply. Final plate voltage for a (illimay be as high as 500 volts.

Tosting the first two stages is similar to that outlined for the 50-Ate transmitter, exeret for the freguencies involved. Make sure that the oweillator is between 24 and $\underline{2}$ b.fit Mr., and that the pentode seretion of the til'8 multiphes this fredueney by 3. Tume the tripler bate "irenit, $L_{2}-C_{2}^{\prime}$, for maximum output, as indieated by at -2-volt G0-mat. pilot lampe eoupled to the cold end of L_{2} with a single-turn loop of insulated wire abont the diameter of the roil.

Noxt apply plate voltage to the losTo doubler, and tume it for maximum amplifier grid current. Adjustment of C_{3}^{\prime} and C_{4} will interloek to some extent, but be sure that carh is thued for maximum grid current, as read in I_{2}. The swith S_{1} ran be in either position for this adjustment, though the grid current will be much higher if it is in the elosed position.

Neut ralization is done similarly to the mamer outlimed for the 50-Ne, transmiter, exeret that the setting of the sereen caparitor, C_{7}, is the means
 as Coz reaches maximum capatanere a larger trimmer will be needed. Rxperimentation with the value of the ref. choke in the sereen lead may also be helphel. A variation of the noutralization sustern shown is the use of at critieal value of induetane in the serem lead, and the elimination of C_{i} Grid current, when meutralization is competed, should be at least 1.5 mas. with s_{1} in the open position. (io over all adjastmonts carefilly, and experimont with the epacing between L_{-3} and L_{4} if the grid drive is low.

The balane of the testing is similar to the so-Me. prowdure. llate curwent for the 1 ent doubler will be about 25 mat. Amplifier grid current should be all that rain be obtained, but
good modulation characteristics.

Amplifier plate current at resonance with no load will be higher than on 50 Me ., and the output will be lower. Efficiency will be lower with a $614(6$ than with a 2102 , but the higher plate dissipation rating of the 61.16 may make its uso desirable if more output is needed than can be ohtained with the al: $\boldsymbol{0}$. Fither transmitter can be used in mobile service. For fi-volt cars the tubes can be as shown. Twolve-volt equivalents of all the tube types are now avalable for cars with liz-volt systems.

Modulation and Keying

For voiee work a modulator is required. This should have a power output of approximately half the input to the final amplifier. Several suitable modulators are shown in other chapters of this Handlook. The plate and sereen current of the amplifier are run through the secondary of the modulator output transformer. If the transmitter is to rom at low power, a single 300 -volt supply can be used for all stages, including the molnlator, if it has a sufficiently high current rating.

Keying methods differ for the two r.f. units. The $\overline{0} 0$-Me. transmitter is keyod for c, w, by breaking the rathode lead. This would cause instability if applied to the 14 - Me, transmitter, so the later is keved in the cathome of the doubler stage. Fixed bias must be applied to the fimal amplifier grid. to kerp the phate current to a safe value. The voltage reopured will depend on the phate voltage applied to the final. The plate current need not be cut completely off, but merely held to less that the plate dissipation rating for the tube used. A $231 / 2$ volt battery is sufficient for phate voltages up to t(0). The simplest way to apply bias, for orcasional res. use, is to plug it into the grid current jack. The positive terminal of the bias battery should connect to the ground side of the plag.
The switch S_{1} cuts out the 27,000 -ohm grid resistor, so that the grid bias will not be excessive when fixed bias is applied. The rig con be operated in this manner (fixed bias phes the smaller of the two grid resistors) on voice, if it is desirable or convenient to do this. The grid current is so low that the bias battery will last ahmost indefinitely, and a small hearing adel size is suitable. It can be monnted inside the chassis and wired into the cireuit permanently, where more frequent c.w. operation is expected.

A Simple Transmitter

Simple Transmitter for 220 and 420 Mc .

 the neweomer who wants to start with simple gear. going on to something better when he hat gathed renstruction and operating expariencer It is built in two units, with the idea that the modulator can lne retained when the r.f. portion is discarded.
The r.f. section is a simple oserilator with two G.AFt or (i.SI't tuhes in push-pull. Its plate
pending on the plate voltage and whether a tiVti or blat tube is used. It maty heromsidered as a long-term investment that will be suitalse for use with any r.f. section of up to 20 watts input that may be constructed at a later date.

Construction

The two units are built on identical 5 by 7 by 2 -inch aluminum chassis, connecting by

Fig. 17-26 -The simple trons. mitter for 220 ond 420 Mc . is mode in two ports. The modulotor, left, moy be retcined for use with more odvonced r.f. sections thon the simple oscillotor shown of the right. The two units moy be plugged together or connected by o cable.

circuit is changed from a quater-wave line at 220 Me. 10 a half-ware line at 420 Me. Me platring in suitalde terminations at the eme of the tumed eireuit.
lheratuse the useillathe is mulabated direstly it will hater eonsiderable fresumery modulation, and the signad will not be madable on solective receivers unless the modulation is kept at a very low lavel. Where a bonder remeriver is in wise at the other end of the path a higher modulation level ean be emploved.

The modulater is designed for a crysta! mierophone. It delivers 3 to 10 watts output, de-
mouns of a plug on the oscillator and a sochet on the modulato: Power is fond through a similar phag on the back of the mondulator. Arangement of purts in the modulator is not aritical, but the oscillator should be exactly as shown
sorkets for the tubes are mes inch apourt conter to center, $23 / 4$ imh in from the end of the ehatsis. (eis is at the exact renter of the
 loig. 17-27. It the far left is a cerstal soreket. wied for the antronat torminal, J_{1}. Ono-ineh ceramic standoff: are mounted on the sorews that hola J_{2} in place. These support the antenata coupling loop, $I_{\text {an }}$.

Testing and Use

A power supply dolivering about 200

Fig. 17-27-Bottom view of the oscillotor unit, showing the fwo-bond tork circuit. The line terminotions, with their protecting cops removed, ore in, the foreground. At the left is the 220-Mc. plug, with the $420-\mathrm{Mc}$. one of the right.

17 - V.H.F. TRANSMITTERS

Fig. 17-28-Schematic diagram and parts informatian for the two-band oscillatar and modulator.
$\mathrm{C}_{1}-10.5-\mu \mu \mathrm{f}$.-per-section butterfly variable (Johnson 10LB15).
$\mathrm{L}_{1}-231 / 2$ inch pieces No. 12 tinned, spaced $1 / 2$ inch. Bend down $3 / 4$ inch at tube end and $1 / 2$ inch at socket end. R.f. chokes connect $5 / 8$ inch from bend at tube end. Connect C_{1} at 1 inch from bend at socket end.
L_{2}-Hairpin loop $21 / 4$ inches long ond $1 / 2$ inch wide, No. 16 , covered with insulating sleeving.
J_{1}-Crystal sacket used for antenna terminal.
$\mathrm{J}_{2}-5$-contact ceramic socket (Amphenol 49-RSS5).
volts d.e. at at mat. or more and 6.3 volts at 1 amp. or more is nordod. Plug the units together or connere them be a cable. With a cable, a milli:ammeder maty he comered betwern the No. I pins to measure the asillator plate rarrent. Otherwise the meter should be connerted temporatily botwoen Pin 4 of J_{3} and lin 3 of J_{2}, in place of the wire shown in Fig. 17-28.
leate current should be about 25 to 30 ma . If the slage is oweillating there will be a fluctuation incurrent as the plate line is touehed with an insulated motal objeet. Do not hold the metal in the hands for this test! The frequeney is lxast chereked by moans of Lecher wires, a terhuigue that is rovored in the chapter on measurements.

With the dimensions given the range with I' phugend in should be about to.
 guency should fall within the 220-. Mr . band with (") sot it the same prosition

Fig. 17-29-Looking of the underside of the modulator.

220-Mc. Transmitter

A 40-Watt Transmitter for $\mathbf{2 2 0} \mathbf{~ M c}$.

The erystal-controlled transmitter shown in Figs. $17-30$ and $1 \overline{-3} 32$ will rum 30 to 40 watts at 220 Mc. Resorring to Fig. 17-31, a simple overtone oweilator circuit uses one half of a 12 AT dual triode. The erystal may be between 8.15 and 8.33 Me, or $24 . \operatorname{ta}$ and 25 Me . In either case. the frequeney of oscillation is in the latter range, as the crestal works on its thid overtone, The serond half of the $12 \mathrm{AT}^{\prime}$ is a tripher to $\overline{3} 3$ to $\overline{6}$ Me. This stage hats a balanered plate cirenit. so that itsoutput may be capacitively roupled to the grids of a serond $12 \mathrm{AT}^{7}$, working ans a push-pull tripler to $\geq 20 \mathrm{Me}$. The low side of the first tripher plate cireuit has a halancing caparitor. ('3s so that a caparitancere equal to the output capacitance of the 12. 1T' can be added to that side of the eireuit. Without this the two halves of the push-pull tripler may reecive unequal drive and one hatf of the tube will ran hoter thatn the other.

The plate eirenit of the push-pull tripler is inductively coupled to the grid circuit of an Amperex diz60 dual tetrode amplifier that rums stratht through on $2: 20$ Mr. Similar indurtive coupling transfors the drive to the grid eireuit of the final amplifier stage, an Amperex (6252 dual tetrode. This thbe is a somewhat more efficient outgrowth of the 8:32, which may also be used, though with hower rfficioney and output. Base eonnertions are the same for both tubes.

The grid return of the 6252 is brought out to the terminal strip on the back of the unit, to allow for rouncetion of a grid moter. Both this point and the tip jack in the bi360 grid return have 1000 -ohm resistors completing the grid returns to ground, so that operation of the stages is unafferted if the moters are removerd.

Instabinity in tetrode amplifiers for v.h.f. survice maty develop as at result of the inefferetive bypassing of the sereern. In the case of the diz60 stage stable operation was obtained with no bypassing at all, whike on the (625: a suatl mieat trimmer was eommeded directly from the sereen torminal to ground. It is operated near the minimum setting.

Construction

The transmitter is built on an alumimm plate (f) by 17 inches in size. This serews to a standard chassis of the same dimensions, which serves ats
both shield and case. Cut-onts about three inches sopare are made in the chassis and base plate, above and bedow the tulx, to allow for ventilation. These oproings arre fitted with perforated aluminum or sreening to presserve shielding. The case should be equipped with rubber feet, to avoid marring the surfate it rests on, and to allow air circulation around the fube.

The tubre sorkets and all the rontrols exerpt the tuning eapateitor of the oserilator are monnted along the erenter line of the cover plate. The -20-NLe stages are inductively roupled, using hatiphin loop tank cirenits the dimensions of which are given in Fig. 1--33. The trming range of these direnits is affereted bey the widthe of the loops as well as their lehgth. so some variation can be hat bey squerzing the sides together or spreading them apart.
It is important that the method of momnting the (i2:) sorket be followed closely. At aluminum brateket about $27 / 8$ inches high and 4 inches wide supports the socket. Note that the sorket and tube are on the same side of the phate. Holes are drilled in the plate in line with the control grid torminals to pass the grid leads. These holes are $3 / 8$-inch diameter, and are equipped with mbler grommets to prevent aceidental shorting of the grid leates to groumd. The shape of the grid inductance should be such that its loads pass through the centers of the holes. The socket is supported on $5 / 1 \mathrm{c}^{-\mathrm{j}}$ ach motal pillars. It may be neeressary to bend the socket hugs slightly to keep them from shorting to the monnting plate. The heater lead comes to the top of the plate, and the cathode lead bends aromid the bottom of it.

Power leads are made with shielded wire, and are brought out to a terminal strip on the batck of the chatsis. These leads and the coax to tine output commertor should tre long enough so that the plate on which the transmitter is built ram tre lifted off the chatsis and inverted as shown in the photograph.

Adjustment

Initial tests should to made with a power supply that delivers no more than 250 volts, and as little as 1.50 to 200 volts ean tre used. If the voltage is more than 250 , insert a 5000 -ohm 10 -watt resistor in series with the power lead

Fig. 17-30-Top view of the 220-Mc. transmitter. Final amplifier tube is inside the chassis, below the screened ventilation hole. Power connections, keying jack and output terminal are on the back of the chassis.

17 - V.H.F. TRANSMITTERS

Fig. 17-31-Schematic diagram and parts information for the 220-Mc. transmitter. Capacitor values below 0.001μ. are in $\mu \mu \mathrm{f}$. Resistors $1 / 2$ watt unless specified.
$\mathrm{C}_{1}-50-\mu \mu \mathrm{f}$. miniature variable (Hammarlund MAPC-50-B). $\mathrm{C}_{2}, \mathrm{C}_{1}, \mathrm{C}_{5}-8-\mu \mu \mathrm{f}$. miniature butterfly variable (Johnson 160-208).
$\mathrm{C}_{3}, \mathrm{C}_{f}-3-30-\mu \mu \mathrm{f}$. mica trimmer.
C_{7}-Butterfly variable, 1 stator and 1 rotor (Johnson 167-21, with plates removed).
$\mathrm{C}_{s}-15-\mu \mu \mathrm{f}$. miniature variable (Hammarlund MAPC-15-B). J_{1}-Tip jack, insulated.
$\mathrm{J}=$-Closed-circuit phone jack.
$J_{3}-$ Coaxial chassis fitting, SO-239.
$L_{1}-15$ t. No. 20 tinned, $1 / 2$-inch diam., 1 inch long (B \& W Miniductor No. 3003). Tap at 4 turns from crystal
$\mathrm{L}_{2}-12$ t. No. 18 tinned, $1 / 2$-inch diam., 1 inch long, centertapped.
$L_{3}, L_{1}, L_{i}, L_{i}-U$-shaped loops No. 18 enam., center-tapped. Dimensions given in Fig. 17-33.
L--2 t. No. 14 enam., 1 -inch, 1 -inch diam., leads $5 / 8$ inch long. Center-tapped, space turns $1 / 2$ inch apart.
$L_{x}-1$ t. No. 18 enam., inserted between turns of t_{7}. Cover with insulating sleeving.
$R_{1}-23,500$ ohms, 2 watts. (Two 47,000-ohm 1-watt resistors in parallel.)
RFC $C_{1}-25 \mathrm{t}$. No. 28 enam. on 1-watt high-value resistor.
fomporarily. Plato voltage should he applied to the various stages soparately. starting with the oscillator, makings ume that cach stage is working correetly hefore proveding to the next.

A milliammeter of 50 to 100 -mat range should Ix connected temporarily in weries with the fono-ohm resistor in the oseillator phate lead. When power is applied the courrent should be not more than about 10 mat. Rotate $(1$ and noto if an mpward kiok oreurs, probably near the midelle of the range of ('z. At this point the stage is oscillating. Lack of oscillation indicates tom low feredtack, or a defertive erystal. Listen for the mote on a communications reediver tumed near 24 Mre, if ono is availathle. There should be no more than a slight rhange in frequenco When a motaltie tool is held near the tumed rifcuit. or when the circuit is tumed through its range. The note should be of pure erestal quatits. If there is a rough sound or if the frequency changes with mechanical vibation, the oweillator is mot controlled by the erystal. This indieates too much feredhatek, and the tap on the coil, L_{1}, should be moved hear the erystal emd.

The proper amonat of feedback is the lowest tap position that allows the owedlator to start
readity under load. If 2t-Me revstals are used the tap can be lower on the roil than with 8-Me. arystals. When 8-Me. erystals are operated on the third overtome, as in this case, the frequeney of oseillation may not le exaretly three times that marked on the erestal holder.

Now apply plate voltage to the serend half of the 12. $17^{7} 7$ a again using at temporary plate moter connected in seriess with the 100 -ohm derompling resistor that fereds phate power to La. Current will be about 10 mal, as with the aseillator. Tume (ey for maximum output. This ram be detormined be brilliane indieation in a 2 -volt (60-mat pilot lamp comerted to a $1-\mathrm{tarn}$ boop of insulated wire coupled to L_{2}. Check the frequeney of this stage with a wavemetor.

Now connect a low-range milliammeter (not more that 10 ma.) botween the test point, J_{I}. and ground. dpply power to the push-pull tripler. again using a temporary milliammeter comoected in the lead to the plate coil. L_{3}. Tume the plate cireuit for maximum indication on the grid mater. Plate current will be about 20 mat . Adjust the position of L_{3} with respere to L_{4} for maximm grid current. Now go back over all previous adjustments and set them carefully for maximum

220-Mc. Transmitter

Fig. 17.32-Interior view of the 220-Mc. transmitter. A!! r.f. components are mounted on an oluminum plate, which is screwed to the top of a standard 6×17-inch chassis. Screen trimmer capacitor C_{6} mounts on the tube socket mounting plate.
The crystal socket and the oscillator coil and capacitor ore at the far right. Next is the first 12AT7 socket. Next to the left is the first tripler plate coil, mounted over its trimmer, with the mica balancing padder, C_{3}, above. The 12 AT7 tripler, the test point, J_{1}, the tuning capacitor C_{1}, the tripler plate and amplifier grid loops, L_{3} and L_{4}, the 6360 socket, the 6360 plate and amplifier grid loops, the 6252, and its tuned circuits follow in that order. The series capacitor, C_{k}, and the coaxial lead to the output connector, J_{3}, are at the far left.
grid current. Adjust the balancing padder, C_{3}, reluning ('2 earh time this is done, until the comlination of ('2 and C_{3} that gives the highest grid durrent is foumb. Check the frequency to be sure that the stage is tripling to 220 Mr .

Now apply power to the 6:360 plate circuit, again using the temporary moter to check the current. Comeret the low-r:ange milliammeter between the grid-metering terminal on the connector strip and ground. Sot the sereen trimmer, (6 , near minimum, and tune the 6360 plate cirenit for maximum grid current. With 300 volts on the preceding stages, it should lx_{o} possible to get at least 4 mad. Adjust the spacing between L_{5} and L_{6} carefully for maximım grid current, retuning ('5 each time this is clone. 1'late current should not exceed 55 ma.

Cherk for neutralization of the final amplifior by tuning ('z through resonance while watching the grid-current moter. If there is no change, or only a slight rise as the cirenit groes through resonamee, the stage is near enough to neutralization to apply plate power. The 6255^{2} has built-in cross-over caparitance, intonded to provide neutralization in the v.h.f. range, so it is likely to be stable at this frequency. If there is a downward kick in the grid current at resonanee, adjust the screen trimmer matil it disapmors. If best neutralization shows at minimum setting of the serenn trimmer it may be desirabie to climinate the trimmer.

With an antenna or dummy load connected at J_{3}, final plate voltage can be applied. Tune the final plate circuit for maximum output, with a meter of 100 ma . or higher range connected to read the combined plate and sereen current. This moter may be connerted in the power lead, or it can be plugged into the cathode jack. In the latter position it will read the combined plate, sereen and grid rurrents. Tune for maximum output and note the plate current. If it is much over 100 mat, loosen the coupling between L_{7} and L_{8}. The input should not be over 50 watts at this frequenev.

A fimal rherk for neutralization should now be made. P'ull out the erystal or otherwise disable the early stages of the transmitter. The grid current and output should drop to zero. If they do not, adjust the screen trimmer until they do. Make this test only very briefly, as the tubes

will draw exessive current when drive is ronoved. When perfert neutralization is achieved, maximum output will be found at a setting of (7 at which plate current is at a minimum and grid current at maximum.

Operation

All stages should be run as lightly as possible, for stable opration and long tube life. No more than 300 volts should be run on the exciter stages, and if sufficient grid drive can be obtained, lower voltage is desirabla. The di3to stage runs with rather low drive, and its efficiency is consefuently por, but it delivers mough power to drive the 6252 , even when run at as low as 250 volts, if all stages are oprating as they should.

Ohserve the plates of the tubes when the transmitter is operated in a darkened room. There should be no reddening of the phates. If one side of any of the last throe stages shows red and the other does not it is evidence of unbalance. This call usually be corrected by adjustmont of the balaneing trimmer, (${ }_{3}$, in the first tripler plate circuit. Lack of symmetry in lead lengths or unbalanced capacitance to ground in any of the r.f. circuits maty also lead to lopsided operation.

Though the (025^{2} 2 2 is rated for up to 600 volts on the plates, it is recommended that no more than 400 be used in this applieation, particularly if the stage is to be modulated for voiee work.

For voice work the plate-sereen current of the 6252 is run through the secondary of the output trinsformer on the modulator. The latter should have an output of 20 watts or so.

Fig. 17.33-De. tails of the hairpin loops used in the 220-Mc. transmitter.

A Tripler-Amplifier for $\mathbf{4 3 2} \mathbf{~ M c}$.

Goly tulnes designed experially for u.h.f. serviee will work satisfitemily at 420 Mc. and higher. The various small reerejing triodes made for u.h.f. 'Tl' ws will work woll in low-powared frequoner multiphiors and r.f. amplifiers for transmitting, lut tho treme is to tetrodes. Soveral of the lattor are now available.

The tripher-amplifier shown in ligs. 17-3t to $16-3 \%$ delivers up to 20 watts output on $1: 32$ Nr.

Fig. 17-34-A tripler-amplifier for 432 Mc. using dual tetrodes. Shielded construction and forcedoir cooling are employed.
holes in the top rover: Holes are drilled in the chassis under the amplifier tubse, and in the cover over it. With a bottom plate fitted to the chassis there should be colough aid flowing through tooth top vents to lift a paper briskly when the fan is started.

Halli-wave lines are used in all 1:32-Me. areuits. The grid cireuit of the amplifier is catpareitively coupled to the fripler plate line, the two over-

lapping about $1 \frac{1}{4}$ inches. The sparing between them must be adjusted earefully for maximam grid drive. llate voltage is fed to the lines through smatl resistors. These should the conneeted at the point of lowsit r.f. voltage on the lines. The emplifior gride.f. chokes are connected at the tube sorket.

Note that the plate line catpacitors, C_{1} and C2, have their rotors floating. This is important. Grounding the rotors, or use of c:tplators having motal and platers, may introdure multiple r.f. pathe and cireuit unbadanere. The eapacitors have small metal mounting brackets that are not connered direetly to the rotors, but even so it was nercesily to resort to polystyrome mounting plates for best eircuit batanere and efficiency. Holes $3 / 4$ inch in diameter arre punched in the front wall to pass the rolor shafts.

Testing

The tripler-implifior is designed to operate in conjunetion with a 114-Mc. trathemitter surh as

Fig. 17-35-Looking into the tripler-amplifier with the top cover and front plate removed.

A Tripler-Amplifier

Fig. 17.36-Schematic diagram for the 432-Mc. tripler-amplifier.
$C_{1}, C_{2}-10-\mu \mu \mathrm{f}$.-per-section split stator, double spaced (Bud LC-1664). Do not use metal end-plate or grounded-rotor types.
$R_{1}, R_{2}-23,500$ ohms, 2 watts (two 47,000 ohm 1-watt resistors in parallel).
$L_{1}-2$ turns No. 20 eriam., $1 / 2$-inch diam. Insert between turns of L_{2}.
Le-4 turns No. 16 enam., $1 / 2$-inch diam., $1 / 2$-inch long, center-tapped.
L_{3}-Copper strap on heat-dissipating connectors, $31 / 2$ inches long. Twist 90 degrees $1 / 2$ inch from plate end. Space $3 / 4$ inch.
Li-Copper strap $27 / 5$ inches long, soldered to grid termi-
the $21: 26$ rig shown in Fig. 17-17. A plate supply of 300 volts at 200 mat. is needed (100 volts may be usal with js 8 Is. . Ipply power to the $111-\mathrm{Me}$. driver staug and adjust the spoueing of the turns in L_{2} and the alogree of coupling between L_{1} sud L_{2} for maximum tripler grid current. 'This should be about is mat.

Sest :uplly plate and sareen voltage to tho tripler athd tume ('s for maxinum grid rurvent in the amplifier, with mo phate or sereorn voltatge to the laterer Seljust the position of the grid lines with resperet to the pate cirenit. readjusting ('I whomever' a ehange is mate, until at least 1 mat. grid curment is ohtained.

Now rommert a limp lond aterose tho output treminal. Jg. Orilinary houso lamps atro mot suit-
 or more humetred pilot lamps in patallel. This (ath be done by writpping a $\frac{1 / 4}{4}$-inch copper strap

nals. Space about $1 / 2$ inch.

\mathbf{L}_{5}-Copper strap $37 / 6$ ir.ches long, fastened to heat-dissipating connectors. Space $3 / 4$ inch. All tank circuits of flashing copper $1 / 2$ inch wide.
Lo-Coupling loop, No. 20 enam. U-shaped portion is 1 inch long and $5 / 8$ inch wide. Mount on 3 -inch ceramic stand-offs.
J_{1}-Coaxial input fitting (Amphenol 83-1R).
J_{2}-Crysta! socket used for antenna terminal.
$\mathrm{J}_{3}, \mathrm{~J}_{1}$-Closed-circuit jack.
J, 5 -pin male chassis connector (Ampheriol 86-RCP5).
M—Motor-blower assembly, 17 c.f.m. (Ripley Ir.c., Middletown, Conn., Type 8433).
around the brass hases and soldering them all together. Then another strap should be soldered to the lead terminals. . Apply plate and sereen voltage and tune fag for maximum lamp brilliance. It should be possible to develop at very bright glow in the (j-lamp load with a plate current of ahout 100 mate at 300 volts.

Cont drive very bridly to chere for osedlation in the finall stage. (irid current should drop to zero. 'The sereen and grid resistors shown are for ongration with plate monlulation. Sore input ath be rum if the sereern or grid resistaner is derereased, but this should be dome only when the rig is to be used for f.m. or c.w. servier.

Operating conelitions are about ats follows: tripler gried current - 2 to 3 mat.; amplitier arid curront - 3 to 4 mat.: tripler plato and screon current - 90 mat: : amplifier plate and screen current - 110 ma; output - 12 watts.

V.H.F. Antennas

While the hasic principles of antenna design remain the same at all freguencies where eonvontional elements and tamsmission lines are used, rertain aspects of v.h.f. Work rall for changes in antemat techniques above so Me. Here the physicul size of arritys is redueded to the point where somo form of antemat having gatin over a simple halfwaw dipole can be used in almost amy location, and the rotatable high-gatin directional array has beeome at standad feature of all wedlerguipped wh.f. stations. The importanere of antemat gatin in v.h.i. work camot be over-emphasized. liy no other mone (ent so large a return be ohtained from a small investment as results from the crection of a grood directional array.

DESIGN CONSIDERATIONS

A1 50 Me. and higher it is usually important to have the antemat work well over all or most of the hand in gunestion, and as the bands are wider than at lower fredueneries the attention of the designer must be focused on broad frequency response. This may be attanod in some instances through saterificing other qualitios surh as high front-toback ratio.

The loss in a given length of tramsmission line rises with frequency. V.h.f. foedlines should be kopt as shout as presible, thorefor. Natching of the impedanese of the antenna and transmission line should be done with eare, and in open locat tions a high-gain antemat at polatively low hoight maty be preforable to a low-gain systom at groat height. Wharever possible, however, the v.h.f.

Fig. 18-1-Combination tuning and matching stub for v.h.f. arrays. Sliding short is used to tune out reactance of the driven element or phasing system. Transmission line, either balanced or coax, is connected at the point of lowest standing-wave ratio. Adjustment procedure is outlined in text.
array should be well above heave foliage, buildings power lines or ot her ohstructions.

The physieal size of a v.h.f. array is usuatly more important than the number of dements. A felement array for 432 Ne. may have as much gain over a dipole as a similarly designed array for 144 Mc ., but it will intercept only one-third as
much energy in receiving. Thus to be equal in commmuication, the fi32-Me, array must equal the $144-\mathrm{M}$ e, shtemnat in capture area, requiring throe times as many elements. if similar element configurations are userd in both.

Polarization

Early v.h.f. Work was done with simple antemats, and sinme the vertical dipole gave ats grod results in all directions as its horizontal counterpart offered in only two direations. vertical polarization berame the aceepted standard. Later when high-gatn antomats came into use it was only matural that these, too, were put up vertical in areas where v.h.f. inetivity was alleady well ewtablishad.

When the discovery of various forms of longdistance pronturtion stirred intorest in v.h.f. operation in areas where there was no previous experienere, many neweomers started in with horizontal armas, these having been more or less standard practioc on freguencies with which these oprotators wore fimilitr. As use of the same polarization at both ends of the path is necersaty for best results, this lack of standardization resulted in a confliet that, even now, hats not been completely resolved.

Tasts have shown no large difference in results over long pat the though evidence points to a slight superiority for horizontal in cortain kinds of terrain, but vertioal has other factors in its favor. Horizontal arratys are generally easior to build and rotate. Where ignition noise and other forms of man-made interferener are present, horizontal systems usually provide better signat-to-moise ratio. Simple 3 - or 4 -element arrays are more effective horizontal than vertical, as their radiation patterns are broad in the plane of the elemonts and sharp in at plane perpendicular to them.

Vertical systems can provide miform coverage in all directions, a fratume that is possible only with fairly complex horizontal arrays. Gain cain be built up without introducing directivity, an important feature in not operation, or in lowat tions where the iustallation of rotatable sustems is not possible. Mohile opreration is simplor with vertical antemas. Four of inemased TVI has kept v.h.f. men in some densely populated areas from adopting horizontal ats a standard.

The factors favoring horizontal have been predominant on 50 Me., and todaty we find it the standard for that band. exerpt for emergeney net operation involving mobile units. The slight advantage it offers in DS work has acelerated the trend to horizontal on 144 Mc . and higher bands, though vertical polarization is still widely used. The picture on 144, 220 and 420 . Mc. is still confused, the tendeney being to follow the local

Impedance Matching

trond. The newomer should cherk with local :mateurs 10 soe which poltrization is in general use in the area he experts to eover. Veventual standardization should be a major objective, and to this end it is recommended that horizontal polatization be estathished in areas where atetivity is developing for the first time.

- IMPEDANCE MATCHING

Berause lime lossos increase with frequener it is important that v.h.f. antemna sustems be matrobed to their transmission lines rarefully. Jines rommonly used in v.h.f. work include open-wire, usually $3(0)$ to 500 ohms imperdanee, spaced $1 / 2$ to two inchos: polyethyene-insulated flexible lines, availahle in 300 . 150 and 72 ohms impedance: and coasial lines of 50 to 90 ohms impedance.

The various methods of mat ehing intennat and line imperdanere are deseribed in detail in ('hapter 14. Matching deviecs commonly used in v.h.f. arrase fed with balaneed lines indude the folded dipold in its various forms, lig. 14-12, the "T" Matelh. Fïg, It-15. the "(l" sertion, Fig. It-11, and the adjustahle stub. Fig. I8-1. The gamma mateh. usclul for feeding the driven element of a parasitir army with coaxial line, is shown in sohematic form in Fig. 1+6. Batanced loads such as a split dipole or at folded dipole can be ford with eocex through a hatun, as shown in ligg. It-I6. Iractical exampless of the use of these devices are shown in the following patges. The principles upon which their operation depends ate explainod in ('hapter 14, with the exerption of the adjustable stul) of Fig. 18-1.

The Corrective Stub

The inljustable stuh shown in ligig. 18-1 provides a mo:ns of mastehing the anteman to the transmission line and also tuming out ratertane in the driven edement. It is, in efferet, a tuning devire to which the transmission line mas be connered at the print where imperdanes mateh. Both the shorting stab and the point of commertion are made adjustable, though onere the proper points are foumd the connections maty be made permanent.

For antema experiments the stub maty be made of thbing, and the conneretions made with sliding clips. In a permanent installation a stub of oprotwire line, with all conne tions soldered, maty he more satisfactory merhameally. The transmission line mat be ofen-wire or Twin-l ©tal. commeded direetly to the stath, or eomaial line of athy imperdance, which shoutd be comerted through a batum.
To adjust the stub start with the short at a point about a half wavelength below the antemat, moving the point of 'ronneretion of the transmiswion line up and down the stub until the lowest stimed-ing-wiareratio is arhioved. Then move the shorting stub) at small anomet and readjust the line romeretion for lowest s.w.r., again. If the minimum sw.r. is lower that at the first point checked the short
was moved in the right direction. (ontinu in that direction, readjusting the line comertion earh time, until the s.lv.r. is as elose to $1: 1$ as pessible. When adjustments arre completed the portion of the stub) helow the short c:un be eut off, if this is desirable mechanicatly.

TYPES OF V.H.F. ARRAYS

1)irectional anteman systems eommonly used in amateur v.h.f. work are of three general types, the collinatr, the Yagi, and the plane reflector

Fig. 18-2-Inserts for the ends of the elements in a v.h.f. array provide a means of adiustment of length for optimum performance. Short pieces of the element material are sawed lengthwise and compressed to fit inside the element ends.
arroly': ('ollinear systoms have two or more driven elements roud to end, fed in phase, usually hateked up ber purasitic reflectors. The Youg has at single driven element, with one or more parasitic clements in front and in back of the driven rlement, all in the same phane. The plane-reflector array has a large reflecting surface in back of its driven clement or elements. This mas be a sheot of metal, a motal sereorn, or celosely spaced rods or wires. The reflector mate be atat phane, or it can be bent into sceveral forms, such ats the rorner and the paralobla.
lixamples of atl three types are desoribed, and culh has points in its f:uvor. The collinear sustems surf ats the 12-and 16 -element arrats of Figs. 18 14 and $18-15$ require little or no adjustment :and they present few feed problems. They work well over a wide band of frequencies. Y'agi, or parasitic arravs. Figs. 18-9 to 18-10, depend on fairly precise thang of their elements for gain, and thus work over a narrower frequeney ratge. They are simple mechanicelly, however, and usually offer more gatin for a given mumber of edements than do the collinear sustems. Diane and corner-reflector arrays are iroadband devieres, having broad forward lobes and high front-to-back ratio. Ther are easily adjusted, but somewhat cumbersome mechanically.

ELEMENT LENGTHS AND SPACINGS

1) (signing a v.h.f. array presents both mexhania al and electrical problems. The electrical problems are basic, and their solution involves chousing the tepe of performance most desired. Mechanical design, on the other hand, a an be subject to almost endless variations, and the form that the artay will take caul usually be decided by the materials and tools available. One common

18 - V.H.F. ANTENNAS

TABLE 18-I Dimensions for V.H.F. Arrays in Inches				
Freq. (Mc.)	52*	146*	222.5*	435*
Wriven lilement	109.5	38	247/8	1234
('hatger pror Mr.*	2	0.25	0.12	0.03
Redlector	1111/2	40	261/6	1334
1st Jirector	$1011 / 2$	36	235/8	121/8
2nd Inirector	9, $1 / 2$	$3.83{ }_{4}$	$23^{3} \times$	12
3 ral I Director	$971 / 2$	3.7	23	1178
1.0 Wavelongth	234	81	53	27
0,62, Wamolengta	147	501/2	331/8	163^{3}
0.5 Wavelength	117	$401 / 2$	$261 / 2$	13.5
0.25 Wavelength	. $81 / 2$	20^{1}	13':	63年
0.2 Wavelength	47	16	105/8	53^{3}
0.1.5 Wituchorgth	3.5	12	8	4
Baturn loon (conax)	711	26.5	13^{19}	8^{3}
* Dimensions given for alement lengetis are for the middle of (meh hatud. For other freduencien adjust longths as shown in the third line of table. Fxample: A dipule for 50.0 Mc . would be $106.5+4=110.5$ inches. Aprly change figure to parasitic elements as well. For phasing lines or matching sections, and for spacing betwern elements. the midband figures are sufficiently armate. They apply onls to open-wire lines. Darasitio-element lengths are optimum for 0.2 wavelength spacing.				

sourer of materials for amaterur arrays is commerrially built TV antenms. They cam often be revamped for the amatedr v.h.f. bands with at minimum of effort and expense.
bimonsions for Yagi or collinear arrays and their matching deviets can be taken from Tahle 18-1. The driven element is usually wht to the formula:

$$
\text { Length (in inches) }=\frac{5540}{\text { Freq. }(\text { Me. })}
$$

This is the hasis of the lengths in Table 18-I. which are suitable for the tubing or rod sizes commonly used. Aratas for on Me usually have
 stock is common. Rod or tubing $1 / 8103 / 8 \mathrm{inch}$ in diameter is suitable for 220 and 420 Nar. Note that the clement lemgthe in the table are for the midder of the band eomedrad. For paked performanmer at ot her frequencies the element longths
should be altered aceording to the figures in the third line of the tatble.

Roflector clements atre usually about on prome cent longer that the driven element. The director nearest the driven eldement is $\overline{5}$ per ernt shorter, and others ate progressivedy shorter, as shown in the tahle. l'arasitic dements should also be adjusted areording to Lime 3 of the table if peats performanes is desired at some fredueney other than midhated.

Patasitio elemont longihs of Toble 18 -I are based on choment spacings of 0.2 wavelongth. This is most oftom used in v.h.f. arratys and is suitable for up to f or 5 oldoments (Wher sparings ran be used, however. If the eloment lengths are adjusted property there is little differenere in gatin with reflector spanings of 0.15 to 0.25 wavolengeth. The closer the reflector is to the driven element,

Fig. 18-3-Omnidirec tional vertical array for 144 Mc. Elements of aluminum clothesline wire are mounted on ceramic standoff insulafors screwed to a wooden pole. Feedline shown is 52 -ohm coax, with a balun af the feedpoint. Twin-Lead or other 300-ohm balansed line may also be used, but it should be brought away horizontally from the supporting pole and elements for at least a quarter wavelength. Coax may be taped to the support.

the shorter it must be for optimum forvard gain, :und the groater will be its effect on the driven element impedtace.

Directors may also be spared over a similar rather. ("loser spating thath 0.2 wateldength for artus of two or threx alements will terquite a longer director thath shown in Table is-I. Thus it can be scen that elosis-spared arrays tend to work over a narrower frequenery range than widespared ones, when they are tuned for bost pertformance. They also result in lower driveltalement impedanee, making them more diffiente to foed properly. Spacinge less that 0.15 wavo length are not commonly used in v.h.f. arrays for these reisons.

Practical Designs for V.H.F. Arrays

The antemas sustems pietured and deseribed herewith are examples of wase in which the information in 'lablate 18 -I ran loe used in armes of proven proformane, Dimernsions (an be taken from the table, exeept where otherwise noted. If
the Inaider wishes to experiment wish ehement andustment, atmple mothon is sthmo in lög. N-2. With clemont: ${ }^{1}$ z-ind on lamer diammer
 is sawed lengthwise ath then compressel to make

Practical Designs for V.H.F. Arrays

Fig. 18-4-Dimensions and supporting method for the 144-Mc. vertical array.
a tight fit inside the and of the element.
A readily availabla material ofton thend for clemomts in arratys for $1+1$ Mre and hishor is ahmmanm rothaslime wire. This is at stiff hateddratw wire aloout Is inch in diameter. It shonald be used in prefarmene to a similar-tupe:tring wire commonly sold for TV grombling purpases. The lather is low soft to make sathisfatory eloments if the lengeth is mone thatu about two feed.

A Collinear Array for 144 Mc.

Where a vertically-polarized array having some gath ower a dipold is needed, yet directivity is undesitathes, collinear halfoave dementa maty be momed vertically and fed itl whate, ats shown in Figs. 18-3 and 18-4. Fuch an atray maty have 3 chements, as shown or 5 . The impedane at the ronter is appoximately 300 ohms, permitting it to he fod direetly with TV'tyen line or through at romaitl balum, as in the model shown. Wither 52- of 72 -ohm line may be emplesed without sorious mismateh

The arraty is mate from I wo pieres of aluminum elotheslime wite about ! 18 inshes long overall, Thase atre lant to provide a : 3 -inch top sertion,
 center sertion. These efements ate mounted on reramie pillars, whirh are fistemed to a round woolen pole. Smatl clamps of sheret alominum are wrapped around the edements and sorwed to the stand-offs, it cheiper but somewhat lers desirable mother of momting is to use TV serew-eve insulators to bold the chements in place.

Fereding the array at the remter with a coasial balun makes a neat atrangement. The balun loop may be baped to the vertional support, and the
comaial line likewise taped at intervals down the mast. The satme typ of construmion ram lue applied to a 2 20-Ma. vertical collinear armay, us ing the lengthe for that hand given in Table is-l.

PARASITIC ARRAYS

 Hedd in E0- Ile. work. These maty bre built in many different wass, using the dimonsions given in the table, Probably the strongest and lightest st rueture pesults from use of aluminum or dural
 for the boom, though wool is also llsable. If the Coments are mounted at their midpoints there is no nered to use insulating supports. Jinally the (lements arre run through the hom atod elamped in phace in at manter similar to that shown in lixg, 18-12. Where atmal trom is used the joints betworn it and the clements must be tight, as any movement at this point will result in noisy reception.

2-Element 50.Mc. Array

 sigmed for protable use, hut it is also sutable for fixad-station work with minor modifestion, The 2 -motor array above it is dosmibed bater. The elrments are made in there sertions, for portahility, using inserts similar to that shown in lög, 18-2. The driven dement is gammat mat whed for coax feed, and the parasitio element is at 0.15 -watelength spared director. Details of

Fig. 18-5—Two-element 50-Mc. and four-element 144. Mc. arrays designed for portable use. Support is sectional TV masting clamped to car door handle. Elements of 50 Mc. array are made in three sections, for stowing in back of car. Antenna for 144 Mc . is cut-down TV array. Both use gamma match, as shown in Fig. 18-6.

18 - V.H.F. ANTENNAS

Fig. 18-6-Details of the gamma match for the $50-\mathrm{Mc}$. portable array. In a permanent installation the variable capacitor should be mounted in an inverted plastic cup or other device to protect it from the weather. The gamma arm is about 12 inches long for 50 Mc ., 5 inches for 144 Mc.
the gamma section, the boom and its supporting clamp are shown in Fig. 18-6. The arm is about 12 inches long, and the capacitor is at $50-\mu \mu \mathrm{f}$. variable. (${ }^{2}$ enn, tight comertions between the arm andeloment are important. Where the arrat is to be monnted permanmaty outdoors the apacitor masy te protected from the weat her by mounting it in an inverted plastice cup. More details on this :Hay are given in August, I! iñ. OST'

3-Element Lightweight Array

The 3-element 50- Me, array of Fig. 18-7 weighs onty 5 poumds. It uses the dosest spacing that is pratelical for v.h.f. applications, in order to make an antemnat that could be used individually or stacked in pairs without requiring at embersome support. The elements are half-inch aluminum tubing of 1 It -inch wall thickness, altached to the $1 \frac{1}{4}$-inch dural hoom with alumimum castings mate for the proose (Dick's, RRI, Tiffin, (Hio, Type HASL., By limiting the element sparing to 0.15 wavelength the boom is onle ti feet long. Two booms for a stacked array (Fig. 18-11) can thas be cut from a single 12 -foot length of tubing.

The folded-dipole driven element has No. 12 wire for the fed portions. These are mounted on $3 / 4$-inch rone standoff insulators and joined to the outer ends of tho main portion by means of metal pillate and $6-32$ serews and muts. When the wires are pulled up tightly and wrapped around the serew: solder should be sweated over the muts and screw onds to seal the whole against weather corrosion. The same treatment should be usent at earh standoff. Mount a soldering lug on the reramie cone and wrap the fand of the lug around the wire and solder the whole assembly together. These joints and other portions of the armay maby be sprayed with elear lacquer as an additional protection.

The inner ends of the folded dipole are $1 \frac{1}{2}$ inches apart. Slip the dipote into its aluminum casting, and then
drill through both remont and rasting with : So. 36 drill, and tap with $10-32$ throad. Sultable insorts for mounting the stand-oifs rath be mato by catting the heads off 6 - 32 serews Taper the cut end of the screw slightly with a file and it will screw into the standoff readily

Cut the dipole length aceording to T:bble 18-I, for the midelte of the frequency range you experet to use most. The reflector and director will be apmoximately I per cent longer and shorter, respectively: The closer spacing of the parasitic (rements (0 . 1 wavelengh makes this deviation from the dinmensions of the table desirable.

The singlo : 3 -element array has a feed impedance of about 200 ohms it its resubant frequence. Thus it may be fed with 52 -ohm coan and a bahun. A gamma-matehed dipole may also he used, as in the 2-element array. If the gammat mateh :and 72 -ohm eosis are used, a batun will convert to: 300 -ohm balationd ferd, if Twin-latad or : 300 ohm open-wier ' T ' line feed is desired. If the dimensions are selected for optimum preformaner : 50.5 Me. the array will show good performanere and faily bow standing-wave ratio over the range from 50 to $51 . \overline{5}$ Me.

A closenp of a monnting method for this or any other array using a mund boom is shown in Fig. 18-8. Four TV-type IT bolts champ the horizontal and vertical members together. The metal plate is about 1 i inches square. If $1 / 1$-inch shert aluminum is available it maty be used atone, though the photorraph shows as shere of I liinch stock backed up by : pimed of wood of the same sizo for stiffoming.

High-Performance 4-Element Array

The f-ehement array of Fig. Is-9 was designed for maximum forwadgath, and for dicert ford with : tob-ohm halanced tratsmission line. The parasitic eloments may be any diametor from 1/2 to 1 inch, but the drivern cloment should be made as shown in the sketeh. The same pereral arrangement maty be used for at 3 -element arras, exeept that the solid portion of the dipole should

Fig. 18-7-Lightweight 3 -element 50 -Mc. array. Feedline is 52 -ohm coax, with a balun for connection to the folded-dipole driven element.

Balun may be coiled as shown or taped to supporting pipe.

Parasitic Arrays

be $3 / 4$-inch tubing instrad of 1 -inch. With the clement lougths given the arma will give nearly uniform response from 50 to 51.5 Ma . and usathe gain to atove 52 Me. It maty be peaked for any portion of the band be using the information in Table 18-I.

If a shorter hoom is desired, the reflector spacing can be redued to 0.15 wavelength and both

Fig. 18-8-Closeup photograph of the boom mounting for the $50-\mathrm{Mc}$. array. A sheet of aluminum 6 inches square is backed up by a piece of wood of the same size. TV-type U clamps hold the boom and vertical support together at right angles. At the left of the mounting assembly is one of the aluminum castings for holding the beam elements.
directors spaced 0.2 or even 0.15 wavelength, with only a slight reduction ir forward gain and bstudwidth.

5-Element 50-Mc. Array

As aluminum or dural tubing is usually sold in 12-foot lengt he this dimension imposes a practical limitation on the construction of a $50-$ Mc. beam. A 5-element array that makes optimum use of a 12 -foot boom may be built acoording to Table $18-\mathrm{I}$. If the aluminum easting method of mounting elements shown for the 3-element array is employed the woight of a 5 -tlement beam can be held to under 10 pounds. The gamma mateh and coaxial line are recommended for feeding such an array, though a balun and 72 -ohm coax can be used for the rotating portion of the line, converting to balanced feed at the anchor point.

Elements should be spaced 0.15 wavelength, or about 36 inches. With 5 or more clements, good bandwidth can be secured by tapering the element lengths properly. A dipole 110 inches long, with at 116 -inch reflector, and directors of 105,103 and 101 inches respectively will work well over the first two megaeseles of the band, provided that the s.w.r. is adjusted for optimum at 51 Mc .

Long Yagis for 50 Mc .

With boom lengths greater than about 12 feet and with more elenents than 4, somewhat

Fig. 18-9-Details of a 4 -element $50-\mathrm{Mc}$. array designed far 300 -chm balanced feed. Element lengths and spacings were derived experimentally for optimum performance over the first 1.5 megacycles of the band.
better performance can be obtained by using gradually increasing spacing between the directors. 'The (i-element array in Fig. 18-10 is an example of this approarh. It also employs a variation of the gamma match that has mechanical advantages. The long boom and wide-spaced elements give a sharphess of horizontal pattern that is not obtainable with the same number of elements in a stacked array.

The long Yagi is not a broadband device. This one works well over the first megacyele of the band with the following dimensions. Subtract 2 inches from arach element for earh megacycle

Fig. 18-10—A 6-element long Yagi for 50 Mc . and a 16 element collinear array for 144 Mc . Both are all-metal construction. Each has its own vertical member, which is clamped to the rotating vertical pipe that runs down through the tower bearing.

highor. Radlertor- 116 inchess. Wriven demment
 - 10t. Third dirertor - 102.-3. Fomrth dimetor - 101. $\overline{\text { B }}$. sparinge are from hatk forward: Bio. $36,42,50$ and $\overline{6} 0$ inches. If a longer array is to be built rach additional director should be -0 inchere from the last.

Construction

The long liagi is built similar to the 3-colemont arroy of lig. Is-7 and $18-8$. using thos same castings for monting the clements. The gusset plate for fastening the hoom to the vertical support is made larger, and four U bolts are nsed on exth member instend of two. The array is monted at its conter of gravity. rather than at its phesieal contres. The boom is hraced to prevent drooping at points about 5 feot ont from the mounting point. Braces are aluminmm tuhing. Hattened at the cods. and dampeed th the beom and the vertieal member. suspension bracing. as shown in lig. $18-10$. prowides strongth with lightweight supports:

The dimensions given require a beom shightys more that 20 fert long. This wat made up by splicing. but if a 20 -font forgeth is available in one piece the spacinge of the two lomated directors can be made slightly less, in orter to aveid splicing. bohement spacting is mot particularly rritical, but benglls are fairly so.

The Gamma Match

The gamman match is ithal for matehing armas fod with doax. The arrangoment shown in Fig. |S-11 combines the adjusiable atm with the serice capabitor, and provides a ruged assombly that ean be weather-prowed readily. The main arm is cut from the same matorial as the clements, 15 inches long. It is supported parabled to the driven element by means of two 1 -ineh ceramice standeffs and shect-aluminum elips. Its inner end is commerted to the inner emmbetor of a coasial fitting. mounted on a small bracket sorewed to the loom.

The serics catpacitor, for thaning ont the raactance of the matehing arm and making contneetion to the driven element, is f -ineh rod or tubing it inchos longe. It is mantained consial with the main arm tog foro polystyrene bashings. One is forec-fitted to the end of the rod and the
wher is fitted tighty inside the math arm 10 ant as a bearing. 'These dan be made from
 forms can he adaphend ratily to tho purpose. . 1 clip of sheed atuminum comenets the rod and the driven dement. Be sure that at elean tight conttact is made at this mint.

Adjustment

Matching recpuires an sw.r. bridge. It can be donte properly in wh wher way. Mount the beam at least a half wavelongth abowe gromad and eloar of trensand wires be at hast the same distanere sot the transmitter at a frergeme in the middle of the range you want to work (5 ole.3 is a good poot for low-ond opration and adjust the pesition of the elipe and the length of the rod outside the matn arm for minimmms.w. Aove first one variable and then the other matil zaro reflected pewer is indieated. Tighten the dip, solidly, lathe over the junction betwern the arm and the rod with waterprool tape. and the arme is ready for use.

144-MC. PARASITIC ARRAYS

The main features of the arrays desaribed above cath be atapted to |1 $1-$ Me. antemats, but the small physial sizo of artays for this frequmery
 monte with case liow 2-metor antomats have lase
 aither in at single haty or in staked systams.

Parasibu armas lor It1 Me. ain be mate

 armas makes it presible waproximate the reommended 0.2 walvelengh at It Me., though the chement spabing is not a eritiosal factor. I f-rlement antay for 111 Ma. math trom an Chamel a TV Yagi is shown in lig. 18-5. It is led with:" gamma mateh and ioz-ohom eroax, and was dersigned primatily for portable work. Is most TV :mments are designed for 300 -nhm fered the same feed system ratl be amployed lor the $2-$ moler anras that is mate from them.

If one wishes to build his own Yagi amtemas from arailathe tubing sizas, the boom of : 2 meter antennat should be $3 / 4$ to 1 inch alumimum

Fig. 18-11-Details of the gamma match used on the 6 element $50-\mathrm{Mc}$. array. Series copacitor is formed by sliding a rod or tube inside the main arm.

144-Mc. Parasitic Arrays

or dural. lelemests can be $1 / \frac{1}{2}$ to $1 / 2$ inch stock, fastened to the boom is shown in Fig. 18-12. Revommended spacing for up to f elements is 0.2 wavelength, though this is mot too aritical. (amma math fred is recommonded for coax, or a folded dipole and balun may be used. If batanced line is to be used the folded dipole is

Fig. 18-12-Mode showing method of assembling alfmetal arrays for 144 Mc . and higher frequencies. Dimensions of clamps are given in Fig. 18-16.
recommended, the f to 1 ratio of conductor sizos being about righe for most designs.

Very high gain can be obtained with long Yagitye armas for 144 Me and higher frequencias, though the bandwidth of suth antemats is considerably narower than for thow having up to t or 5 endement The first two dirwers in long
 'The thim is stared about 0.2. inereasing to $0 . t$ wavengeth or so for the forwand directors. Highose gratio is ohtained when atl directors atre mate the sume langeth, hat better front-to-batek ratio and hower side lolne coment resuble if the director longthe are silpered 's to ${ }^{1}$ í inch por director. 'Tapering the ehe ment iong the aloon widens the aftertive handwidth. There is more on hong

STACKED YAGI ARRAYS

'The gain (in powior) ohtainathle from a single lasi army ean be mome than dinuided by stacking two or more of them vertically and ferding them in phatse. This rofery to horizontal serstems, of course. Verticosly-polarizad bays are usually stapked side hey side. 'The prineiples to follow apuly in either cara.

The sparing letween bays should he at teast

 but with longer lagis the spacing can be int areased 10 onw wath herlh or hatere Bats of 5 Whoms of bom, spated one wavelengh, are commumly hasel in antomber for 111 \t. and
 Yagis is atronit two wavelonghis.

Where half-wave staking is to be cmploved, the phasing line betwern bays ean be treated as a double "(2" sertion. If two bays, each dosigned for 300 -ohm ferd, are to be stacked a hatf wavelength apart and fed at the midpoint betwern them, the phasing line shonld have an imperance of about 380 ohms. No. 12 wire spaced one inch will do for this purposes. The midpoint then cim be ferd either with 300 -ohm line, or with 72 -ohm coas and abahm.

When a spateing of $5 / 8$ wavilengeth botwe mats is emploved, the phasing lines can be coas. (The velocity factor of coas makes a full wavelength of line actually about $5 / 8$ wavelength phesieally.) The impedation at the midpoint betwern two hays is slighty less that half the impodamere of either bay alome, due to the coupling betwern bays. This effert decerases with increased sparing.

When two hays are spared a full wavelength the coupling is redatively slight. The phasing line can le any open-wire line, and the impedance at the midpenint will he approximately half that of the individual bays. Predieting what it will be with a givern set of dimensions is diflicult, as many fateors eome into playe It will ustatly be of a value that catn be fed through the combination of a " (?" section and at trammission line of : 300 10 d50 whme imperancer. An adjustable " $($)" section, or an adjustable stablike the one shown in lig. 18-1, maty be used when the antemat impedanee is not known.

Fig. 18-13-Stacked array for 50 Mc . using two of the 3 -element bays of Fig. 18-7. Phasing system and flexible section for rotation are of coaxial line. A " Q " section matches this to 450 -ohm open-wire line for run to the station.

The stacked 3-over-3 for 50 Me., Fig. 18-13, uses a coaxial phasing line and an additional seretion of coax to provide for the flexible portion of the ferdline. Wath bay is fod with a halum and halfwave seretion of IRGi-8 U rable. These are joined at the center betweon bays with a Tee fitting. As eatch bay has an imperdaner of 200 ohms, two atohm leads are paralleled at the center, resulting in an impedance of about 20 ohms, whon the coupling effect between bays is includerl. A flexible section of 50 -ohm coas one wavelength long, with a balun at the end, steps this up to about 80 ohms. A " Q " section of $1 / 4-$ inch tubing $3 / 4$ inch center to center stcps this up, to the point where it ean be fed with 50 -ohm open-wire TV line.

The "Twin-Five" for 144 Mc.

A popular stacked array for 144-Mc. work is the Twin-Five, originally developed by W2PAU' ${ }^{1}$. In this design two 5 -element arrays of standard design are stacked a full wavelengh itpart. If the folded-dipole driven elements are constructed so that the individual batys have a feed impedance of about 400 ohms the midpoint of the open-wire phasing line can be fed with 52 -ohm roatx and a balum. Where open-wire line is desired, the impedances can be matched through a " Q " section of about 300 ohms impedance. If the const ructor is in donbt as to the actual feed impedance to be matched, the stub arringement of ligg. 18-1 will take care of a wide range of impedaners and lines to be mateled. Dimensions eatn be taken from Table 18-I.

An offective 20-element arraty can be made by using two of these arrays side by side, with fullwatve sparing horizontally also. The impedance at the midpoint of the horizontal phasing line will then be about 100 ohms, which is still well within the range of " Q " sections of practical dimensions.

LARGE COLLINEAR ARRAYS FOR 144 MC. AND HIGHER

High gain and very broad frequency response are desirable charateristies foumd in curtains of half-wave olements fed in phase and backed up by reflectors. The reflector can be made up of parasitic elements, or it can be a sereen extending approximately a quater wavelength beyond the conds of the driven elements. There is not a lange difference between the two types of reflectors, exept that higher front-to-batck ratio and somewhat broater frequeney response are athieved with the plane refteretor.

12- and 16-Element Arrays

Two collinear systems that maty be used on 144,220 or 420 Ma. are shown in ligs. $18-14$ and 18-15. Hither maty be fed directly with $3(0)$-ohm transmission lines or through coasial line and a tatum. In the 12 -element aray. Fig. Is-1t, the rellertors are sparel 0.15 wavelength in batck of

[^5]the driven elements, while the 19 -element arrity, Figs. 18-15 and 18-10, uses 0.2 wavelength spaceing. Dimensions maty be taken from Table 18-1, and figures for the middle of the band will give good performatnee arross either bithd.

Fig. 18-14-Element arrangement and feed system of the 12 -element array. Reflectars are spaced 0.15 wavelength behind the driven elements.

The supporting frame for cither array maty be made of wood or metal. Ietails of a metal support for the 12-element arraty are shown in ligs. 18-16 and 18-17. Note that all elements are mounted at their midpoints, and that no insulators are used. The elements are mounted in front of the supporting frame, to kerep metal out of the field of the array. This method is proferable to that wherein mechanical balanee is mantained

Fig. 18.15-Schematic drawing af a 16 -element array. A variable " Q " section may be inserted at the feed paint if occurate matching is desired. Reflector spacing is 0.2 wavelength.

Large Collinear Arrays

Fig. 18-16-Detail drawings of the clamps used to assemble the all-metal 2-meter array. A, B and C ore before bending into " U " shape. The right-angle bends should be made first, olong the dotted lines as shown, then the plates may be bent around a piece of pipe of the proper diameter. Sheet stock should be ${ }^{1 / 16 \text {-inch or heavier aluminum. }}$
through mounting the driven elements in front and the reflectors in bark of the supporting strinture.
Two l2-adomont armes may be momed one above the other and fed in phase, fo form a 2 t element array. 'This is dome in the $\mathbf{2 0}$) Me. arrac of lig. 18-18. The two midpoints are commered

Fig. 18-17-Supporting fromework for a 12-element 144 -Mc. array of all-mefal design. Dimensions are as follows: element supports (1) $3 / 4$ by 16 inches; horizontal members (2) $3 / 4$ by 46 inches; vertical members (3) $3 / 4$ by 86 inches; vertical support (4) $11 / 2$-inch diameter, length as required; reflector-to-driven-element spacing 12 inches. Parts not shown in sketch: driven elements $1 / 4$ by 38 inches; reflectors $1 / 4$ by 40 inches; phasing lines No. 18 spaced 1 inch, 80 inches long, fanned out to $31 / 2$ inches of driven elements (transpose each half-wave section).
through a phasing line onfe wavelength long, and the contor of this phasing line fod through a "(?" sedion. Tha impudanme at the midpoint is
 for freding with fö-ohm open-wire line.
('ombination of collinear atrass mate la maryed

 alomont beams fod in phase aro asod in some lataling stations on $1 / 1$. Mre. (omfigurations of :32 to bit clemmots atre mot diffientt to buidd athd support at 220 or 420 Mr. Wxamples of 16 - athd
 momand bark in bark in Frig. 18-18.

ARRAYS FOR 220 AND 420 MC.

The use of high grain antemmat systems is almost a neressity if woik is to be dome over any great distanere on 220 and 120 Me. Dixperimentation with antonnat arrays for these fremumeries is fise inating inderd, as their sizo is so smatl as to permit trying various chemont arrangements and fred systams with ease. Aratiss for 420 Mr., particnlarly, are ronvenient for study and demon-

Fig. 18-18-A 24 -element array for 420 Mc . and o 16 element for 220 mounted bock-to-back on a single support.
stration of antemat prineiples, as even high-gain systoms maty he of table-top proportions.

Any of the arras deseriled previonsly maty be used on these batme, but those having large numbers of driven elemuthts in phase are more readily adjusted for maximum offerefentes.

A 16-alemont atray for 220 Me. and a $21-$
clement arrat for +20 Mr. are shown mombted bath-to-bark in Fig. 18-18. Thre 220-Nr. putiont follows the 16 -element design already deseribed. It is fed at the renter of the system with $3(3)-$ ohm tubular Twin-latad, matehed to the renter intpedanere of the amay through a "(" " $^{\text {sertion of }}$
 center. This spacing was adjustal for minimum standing-wave ratio on the lime.
 aluminm furd-line tubing, whirh is very light in weight and easily worked. The supporting struture is dural tubing, using the clamp assembly methods of Fig. 18-16.

The $420-\mathrm{Me}$, armaty uses two 12 -edement assemblies similar to fig. 18-14, mounted one above the other, about one half wavelengt heparating the bottom of one from the top of the other. The two sets of phasing lines are joined hey ondenavelength sections of 'Twin-Sead at the middle of the arras. This junction, which has an imperanere of around 150 ohms. is fod with 300 -ohm tubular 'Twin-dad through an adjustahbe"()" sertion.

Iilements in the $420-$ Ne arrat are fout from thin-walled $1 / 4$-ineh tubing. Their supports are
 Slots were eut in the ends of these supports to take the cements. and a $4-40$ serew was run through both piecessand drawn up tightly with a mut. The horizontal supports were fastoned in holes drilled in the vertical members, and were also held in place with a $6-32$ serew and mut. The smath size and light wright of the $420-3 \mathrm{Ce}$: array require mo clamps to make a strong assombly.

The two one-wavelength sections of 300 -ohm line are $21 \frac{3}{4}$ inches long, taking the propagation fartor into aberount. The "($)$ " sertion may be anty convenient size tubing, $1 / 4$ to $1 / 2$ inch diamoter. It should be made adjustable, as matrhing is important at this frequency. Dimensions for both arrays can be taken from Table 18-1.
(For an cxample of stacking several commercial 200-Mt. Deams, se Tilton, "A fici-lement Stacked-Yagi Array for 220 Me," (QST, January, 195!)

MISCELLANEOUS ANTENNA SYSTEMS

Coaxial Antennas

At v.h.f. the lowest pessible radiation angle is resential, and the coaxial antembshown in Fig. 18-1! was developed to eliminate foreder radiation. The center eonductor of a 70 -ohm concentric (eoaxial) line is extended one-quarter wave beyond the end of the line. to act as the upper hall of a half-wave antema. The lower half is provided hy the quarter-wave shove. the upper end of which is commeded to the outer ronduetor of the eonerntric line. The shereve acts as a shobd about the frammision line and bery little erment is induced on the outside of the line hy the antemat field. The line is non-resonam, sine its whataderistice impedance is the same as the eenter impedane of the half-wave antemat. The sleeve may be made of copper or brass tub-
ing of suitahle diandor to dear the 1 mansmission line Ther romsial antumat is somentat diftionla to ronst met, but is superion 10 simpler systems in its performane at low radiation anders.

Fig. 18-19-Coaxial antenna. The insulated inner conductor of the $70 . \mathrm{ohm}$ concentric line is connected to the quarter-wave metal rod which forms the upper half of the antenna.

Broadband Antennas

(9oftain types of athemmas used in television are of interest buathe they work acress a wide band of frequencies with redatively uniform response. At very-high froquencias an athtemat made of smatl wire is purely resistive only over a very small frequenery range. Its Q, and therefore its soldectivity, is sufficient to limit is aptimum performane to a natrow frequeney ratuge, and radjustment of the lengeth or tuning is required for eath narrow slice of the spectum. With tunced transmission lines, the affective lemeth of the ant conata can be shifted he retuming the whole systrm. Howrever, in the case of athtomats fod by matehed-impedanee linces, amo appereiable frequence change requires an actual mechamical adjustment of the system, Otherwise, the resulting mismatch with the line will be sufficiont to canse significant reduction in power input to the antennat.

A properly designed and constructed wideband antemat, on the other hamb, will exhibit vory nearly constant input impedance over soveral megateyders.

The simplest mothod of obtaining a broadband whameteristic is the use of what is termed a "evlindrical" antemat. This is no more than a conventional doublet in which large-diameter tubing is used for the elemems. The use of at relatively lara diamoter-to-length ratio lowers the (Q of the antemat, thus broadening the resonature characteristie.

As the diameter-to-length ratio is increased, end efferts also increase, with the result that the antema mast be made shorter than thin-

Miscellaneous Antenna Systems

wire :mbemat resonating at the same frequener. The reduction factor maty be as much as 20 per cont with the lubing sizes commonly used for amateur antemas at vih.f.

P'ane-Reflector A-nā́s

At 220 Me. and higher, where ther imensions beeome practicable, phatifereflector arrays are widnly used. Dixerpt as it afferets the imperdane of the sustem, as shown in Fig. Is-20, the spateing hotwen the driven elements and the reflereting bathe is not partiondarly ribical. Maximam gain oweurs atround 0.1 to 0.15 wavelongh, which is also the region of kwest impedance. Highest impodance appeats at atoout 0.3 wavelength. A phatne rellertor spaced 0.22 wavelongth in batek of the driven choments has no affer on thoir feod impedanere As the wain of a plane-reflector arrat is mearly constant at spacings from 0.1 to 0.en wavelength, it may be sere that the sparing maty be varied to achieve an impedance matrh.

An advantage of the plane reflector is that it may low used with two driven element swstems, one on cath side of the plane, providing for twobame operation, or the incorperation of horizontal and vartical polarization in a single strmether The gain of a plane-reflecolor artay is slightls higher than that of a similar number of drivern choments backed up be parasitio reflecotors. It also has a broader fregueney response and higher front-tu-batek ratio. To achieve these rnds, the reflereting plane must be larger than the aroa of the driven elements, extemding at least : quarter Wandength on all sides. (hieken wire on at wood or motal frame makes a good plane reflector. Consely spaced wires or rods may be substituted, with the sparing between them ruming up (o 0.1 wavelength without appreciable reluction in eilectiveness

Cone Antennas

From the exlimdrieal anternat various specialized forms of brobdly resomant radiators have bedn evolvod, induding the ellipsoid, spheroid, rone, diamond and double diamond. Of these, the ronieal antemnat is perhaps the most imoresting. With large amgles of revolution, the variation in the chamateristie imperd: mee with changes in frepucney ran be redued to a viry low value, making wheh ath athenta suitable lew extremedy wide-tamel upration. The cone may be made up either of shere metal or of multiple wire spians. I valutator of this form of conical anternat is widely nsed in TV reception.

Corner Reflectors

 Hrees, with the antenna on a line bisedting this angle. Maximam gain is obtaimed with the amtema 0.5 wavelength from the vertex. Sut compromise designs can be built with choser spatings. There is no fored prome, as would be ble rese for at paraloolie weflector: Comer angles greater thatn! 0 degrees ean be used at some sacrifice in gatu. At
less tham 90 degrees the gain increases, but the size of the reflecting sheets must be increased to roalize this gain.

At a sparing of 0.5 wivelength from the vertex, the impedane of the driven element is approximately twiee that of the same dipole in free spatere. The impedane derreases with smatler spationgs and corner angles, as shown in Fig. 18-20. The gain of a corncr-roflector array with a ! o-dogree angle, 0.5 wavelongth spacing and sides one wavehongth long is approximately 10 db . l'rincipal advantiges of the corner refleetor are broad frequency response and high front-to-batek ratio.

Fig. 18-20-Feed impedance of the driven element in a corner-reflector array for corner angles of 180 (flat sheet), 90,60 and 45 degrees. " D " is the dipole-to-vertex spocing.

Parabolic Reflectors

A plane sheret maty he formed into the shape of a parabolice curve and used with a driven radiator sitmated at its forous, to provide at highly directive antemat swstem. If the parabolic retherotor is sufficiontly large so that the distance to the foral point is a number of wavelengths, optical conditions ate approwehed and the wave actoss the mouth of the reflector is a plane wave. However. if the reflector is of the sume order of dimensions as the operating wavelonghth, or less, the driven radiator is appreciahly coupled to the reflereting sheet and minor lones oreur in the pattern. With :un :uperture of the order of 10 or 20 warelengthes si\%es that mathe pratetieal for mierowate work, a beam width of approximately 5 degrees maty be achowed.

A reflecting paraboloul must to carefally designod and ronstructod to olnatin ideal performanere The antemat most be. Jorated at the foral point. The most desirable forall length of the paraboba is that which phares the radiator along the plane of the month; this lengeth is equal to onc-half the mouth radius. At other foral distances interforence fiolds maty doform the pattern or rancel a sizable portion of the radiation.

Mobile and PortableEmergency Equipment

The amateur who goes in for mobile operation will find plenty of room for exereising his individuality and developing original ideas in equipment. bam installation hats its sperial problems to be sotved.

Most mobile receiving sistems are designed around the use of a h.f. convertor working into a standard car broadeast receiver tuned to 1500 ke , which serves as the i.f. and audio amplifiers. The car receiver is modified to take a noise limiter and provide power for the ronverter.

While a few mobile transmittors may run an input to the final amplifior as high as 100 watts or more, an input of about 30 watts normally is ronsidered the pratetical limit unless the car is equipped with a special battery-charging systom. The majority of mobile operators use phone.

In contemplating a mobile installation, the car should be studied carrfully to detormine the most suitable spots for mounting the "guipment, Then the various units should be built in a form that will make best use of that space. The location of the ronverter should have first consideration. It should be plared where the controls can be operated convenieutly withont distracting attention from the whed. The following list suggests spots that may lo found suitable, depronding upon the individual car.
(On top of the instrument panel
Attarhed to the sterring post
Tonder the instrument panel
In a unit made to fit between the lower lip of the instrument pancl and the floor at the eronter of the car

The transmittar power control can he placed close to the receriver position, or inrlated in the ronverter unit. This control normally operates relays, rathor than to switeh the power circuit directly. This permits a
minimum length of heavy-rurrent batery circuit. Frequency within any of the phone bands somotimes is changed remotely by means of a stepping-switeh system that swithes arystals. In most cases, however, it is necessary to stop the car to make the several changes required in changing hands.

Depenting upon the size of the transmitter unit, one of the following places may be found convenient for mounting the transmitter:

In the glove eompart ment
Voder the instrument panel
In a unit in combination with or without the eonverter, built to fit betwean the lower edge of the instrument panel and the floor at the erenter
On the ledge above the rear seat
In the trunk
Most mobile antemnas consist of a vertical whip with some shstem of adjustable loading for the lower frequencies. Power supplies are of the vibrator, motorgenorator, or transistor type operating from the ear stomge batteres.
['nits intended for use in mobile installations should be assembled with greater than ordinary care, since they will be subject to considerable vibration, soldered joints shoud be well made and wire wrap-aroumds should be used to avoid deprodener upon the solder for merhanical strength. Self-tapping screws should be used wherever feasible, otherwise lock-wathers should be provided. Any shafts that are nommally operated at a permanont or semi-permanont sotting should be provided with shaft lowks so they cammot jur out of adjustment. Where wires pass through metal, the holes should be fitted with rubher urommets to prevent chating. Iny cathling or wiring betwent units should be seedroly clamped in place where it catmot work loose to interfere witla the operation of the car.

Noise Elimination

Jileretrical-noise intarference torerepion in a car maty arise from soveral differont sources. As (xamples, troubla may be experioned with ignition moise, generator and voltage-regulator hash, or where and tire static.

A noise limitar added to the car broadeast rereiver will go far in redueling some types experially ignition moise from passing cars ase well as sour own. But for the satisfactory reeretion of woaker signals, some investigation and treat-
ment of the car's electrical system will be neressary.

Ignition Interference

Fig. 19-1 indicates the measures that may he taken to suppress ignition interference. The capacitor at the primary of the ignition eoil should be of the coaxial type: ordinary types are not effective. It should be plated as close to the coil terminal as posible. In stubborn eases, two

Noise Elimination

of these capacitors with an r.f. choke between them may provide additional supperssion. The size of the choke must be determined experimentally. 'Ther witiokizo shishil! the matu with wire heave enough to aury the coil primary current. I $10,0.0$ (0)-ohm suppressor resistor should be inserted at the ernater fower of the distributor a \quad. OOO-ohm suppressor at eath spark-plug tower on the distrihutor, and a 10,000 ohm suppressor at cach spatk plag. The latter may be built-in or extermal. I good suppressor element should be molded of material having low eataritance. seroral concerms manufacture satisfactory suppresoros. In extreme gands, it may be neeressary to luse shimded ignition wire. Supperesor ignition wire kits having the ressistane distril)uted throughont the length of the wire are availabe from some automobile supply dealers. Jistributed resistance of this type is somewhat ellperior to lumped resistancer and maty be used if the lead lengths are right to fit your car. They should not be cut. but used ats they are sold.

Fig. 19-1-Ignition system with recommended suppression methods.

Generator Noise

Grombator hash is catused by sparking at the commutator. The piteh of the noise varies with the spered of the motor. This type of noise maty her
 abarator in the gemerator armature aimat. This capacitor should be momed as near the armatare torminal ats possible and direotly on the frame of the genarater.

Tor redure the noise at 28 Ne., it may he neressury to insort a parallel trap, tumed to the midede of the band, in series with the gemerator output lead. The coil shomid have about 8 tarns of No. Io wire. spater-wound on at 1 -inch diancter and should te shuntod with a $30-\mu \mu \mathrm{f}$. miea trimmer. It ean be pretuned by putting it in the antenna lead to the home-station reeriver tuned to the middle of the hand. and adjusting the traty to the point of minimmm noise. The thning maty need to be patabl hip after insabling in the ear, since it is fairly critical.

Voltage-Regulator Interference

In climinating voltanc-regulator noise, the use of two coaxial caplacitors, and a rexistor-micatcapacitor rombination, :s shown itn lërg. I: -2 ,
 should be placed betwern the battery terminal of the regulator and the battery, with its rase well
groumbed. Another eapacitor of the same size and tepe should be placed bet wern the generator terminad of the regulator and the semerator. A $0.002-\mu$. micez capacitor with at tohm carbon resistor in series should be connected bet wern the fiedd tominal of the regulator and gromad. Nover use a capacitor acroses the field contates or betwern firkd and gromm without the resistor in serios, since this greatly reduces the life of the

F.g. 19.2-The right way to install bypasses to reduce interference from the regulator. A capacitor should never be connected across the generator field lead withoul the small series resistor indicated.
regulator. In some cases, it may be neerestury to pull double-braid shielding over the leads bet ween the generator atod regulator. It will be advisable to rum mew wires, gromaling the shiclding well at both ends. If regulator noise persists, it maty he necorsatry to insulate the regulator from the catr body. The wire shiclding is then comnereded to the regulator case at one end and the generator frame at the other.

Wheel Static

Wheel static shows up as a steady popping in the receiver at seeds over about $15 \mathrm{~m} . \mathrm{p}, \mathrm{h}$. on smooth dry streets. Front-whed static colhertors are available on the market to (eliminate this variety of interference. They fit inside the dust cap and bear on the end of the axle, effectively grounding the whed at all times. Those designated partieularly for your car are preforable, since the universal type docs not atways fit woll. They are designed to operate without lubrication and the end of the asle and dust eap should be eleaned of grease before the installation is mathe. These collentors reguire replacemont about every 10.000 miles.

Rear-wherel collectors have a brush that bears anginst the inside of the brake drum. It may be necossary to order these from the factory through your deaber.

Tire Static

This sometimes sounds like a leaky power line and eath be very troublesome even on the broadeast hand. It can be remediod beinjecting an antistatic powder into the immer tubes through the value stem. The powder is matketed by Gemoral (ioment and possibly others. Gencral Cement deaters ean absu supply a convenient injeeter for insarting the jowder.

19-MOBILE EQUIPMENT

Tracing Noise

To determine if the recoiving antenna is pieking up all of the moise. the shielded lead-in shond be disconnemad at the point where it comberts to the antemat. The motor should be started with the reeceiver gain control wide open. If no noise is heard, all noise is heing pieked up via the antemata. If the noise is still heard with the antoma diseonnerted, even though it may be redured in strongth, it indicates that some signal from the ignition system is being pieked up by the anternat ransmission

Fig. 19-3-Diagrams showing addition of noise limiter to car receiver. A-Usual circuit. B-Modification.
$C_{1}, C_{3}-100-\mu \mu \mathrm{f}$. mica.
$\mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{6}-0.01-\mu \mathrm{f}$ paper,
$\mathrm{C}_{5}-0.1-\mu \mathrm{f}$. paper.
$\mathrm{R}_{1}-47,000$ ohms.
$R_{2}, R_{10}-1$ megohm.
$R_{3}-1 / 2$ megohm.
$R_{7}, R_{8}, R_{9}-0.47$ megohm.
$R_{1}-10$ megohms.
$\mathrm{R}_{5}-1 / 4$ megohm.
$\mathrm{R}_{6}-0.1$ megohm.
T_{1}--1.f, transformer.
V_{1}-Secend detector.
line. The kembin may mot be sufficiently-wall shimbed, or the shich not property grounded. Nosise may alsobe pieked up through the battery cibcuit. although this doos not normatly happon if the receriver is provided with the usual

In case of moise from this souree, a dived wire from the "hen " batery terminal to the receiver is recommended.

Ignition mise varries in remetition rate with rengine speed and usually can be recognized by that characteristie in the carly stages. Iater, however, it may resolve itself into a popping noise that does not always correspond with rongine speed. In such a case, it is a good idea to remove all leads from the gemerator so that the only sourece lift is the ignition system.

Regnlator and generator noise may be detered ber rating the ongine and cutting the ignition switch. This eliminater the ignition mose femerator moise is chatacterized by its musioal whine rontrasted with the ragged raspy irregnlar moise from the regulator.

With the motor rmming at idling spered, or slighlly fastere, chereks should he made to try to detremine what is bringing the moise into the fird of the antemna. It shomble the assumed that any conttrol rod, motal falke, steroring post, cote, passimg from the motor compartmont through an insubated bushing in the firmath will carry moise to a peint where it can be radiated to the anternom All of thase shomala be bonded to the firewall with haver wire or baid. Insulated wires ran be stripped of r.f. be bypassing them to groumd with $0.5-\mu$. metab-case capacitors. The following shombl wot be overlowied: battery lead at the :ummeter. gasolime gume, ignition switch. hoadlight, backup and taillight leads and the wirbing of any accessories ruming from the motor compartment to the instrument panel or outside the car.

The firewall should he bonded to the frame of the rar and also to the motor blocek with heavy braid. If the exhanst pipe and mufler are insulated from the frame by rubber mountings, they shonla likewis. the gromeded to the frame with flexible renpore hatid.

Noise Limiting

Fig 19-3 shows the allaralions that may be made in the existing car-remiver ciredit to provide for at mosise limiter. The usual diodetriode serond detector is replared with a type having an extra independent diode. It the car recolver uses octal-hase tubes, a 6s8dily may be substituted. The 7X7 is a suitable replaremont in reocivers using loktal-typo tubes, while the 6'98 may be used with miniatures.

The switch that ruts the limiter in and out of the cireait may be loeated for comveniener on or near the converter panel. Regardless of its placement, however, the leads to the switeh should be shisdled to prevent hum piek-up.
sidereal other moise limiter cireuits are desoribed in ARRRI's publication. The Mobite

 is a simple cirenit designed to suppress rereiver Inackground moise in the absemed of a signol. It does not, however, function as a moise limiter when the reegver is tuned to a sigmal.

It hast one mandiarturer ((ionsed) produces a complote nowe limiter mit. The unit is momed external to the main chassis and takes operating voltages from the receiver.

A Mobile Converter for 3.5 through 28 Mc.

Figures 19-4 through 19-7 show a crratal-controlled converter eovering 3.5 through 28 Mc. without complex hand switrhing or gang-tumed rircuits. Plag-in abil assemblies provide rapid batud changing and allow construction for cither single-band or multiband opreation. The convirter uses the car broadeast receiver as a tumable i.f. amplifier.

Plate power reduirements for the converter are approximately 20 milliampores at 200 to 250 volts. This means that the unit (an be supplied from the ear-receiver power pack without overloading it.

The Circuit

The circuit diagram of the converter is shown in loig. 19-5, A $613 \% / 6$ is used in the r.f. amplifier, and a 12. TT' operates as a mixer-oscilhator. The oscillator is crystal-controlled and works on the low-freguence side of the signal freguener. J_{1}, J_{2}, and J_{3} are the antemna-imput, mixer-output and power jacks, respertively. S_{1} performs the switching in chamging over from ham-band to broadeast input. $N_{1 A}$ and $N_{1 B}$ shift the antemata from the converter input circuit to the ear recoiver, and suc is the heater on-off switeh.

Since the tuning of the converter is fixal, the circuits of the ref, amplifier and the mixer must be broadmanded to pass all frequencies in any ham bathe. I slug-tumed coil, $L_{3,3}$, is used in the amplifier plate circuit, and $R P^{\prime} C_{1}$ provides a broad-band plate load for the mixer tutse $V_{2 a}$. The grid cirenit of the amplifier also uses a slugtuned coil and inchudes at trimmer capacitor. (ch, that permits peaking the input for the antemnat in use, or in tuming complotely across a bond. A slug-rored coil is used at L_{1} to facilitate resonnating the eirenit near the crystal frequeners.

Thie freguency of the oscillator must differ from the frefuene of the received signal be the frequence of the tumable i.f. amplifier. With the cat hroadeast recoiver following the converter, the i,f, range will be from approximately boto to bino he. Sinee the tunathle i.f, range is thus limited to a band $1(0) \mathrm{Ke}$ ke. wide. the tuming range of the system with any single crystal will he restrictent to I Me, This is sufficient for ath exerent the 2s-Mc. bamd. Two erystals are required to

Fig. 19.4-The aluminum case for the converter measures $3 \times 4 \times 5$ inches (Bud CU- 3005 or Premier AMC1005). Amphenal type 86-CP4 male jacks mounted on the front of the box mate with MIP 4 -prong sockets mounted on the rear of the coil compartment shown in the foreground. Knobs for C_{1} and S_{1} are to the left and right, respectively, of the pilot lamp. The coil box measures $21 / 4 \times 21 / 4 \times 5$ inches (Bud CU-3004 or Premier $A M C-1004$). Slug-adjustment screws for L_{2}, L_{3} and L_{4} protrude through rubber grommets mounted on the front wall of the plug-in coil assembly.
cover the entire 10-meter hand. The first of these gives: ${ }^{1}$ tuming range of 28 to 28.9 Mc. and the socoml permits thning 28.8 to $2!1.7 \mathrm{Mr}$. An acompanying freguency chart lists the erystal freguencies and the ranges over which the broadcast reeeiver must be tuned to cover the amateur bands.

Construction

The input-tuning capacitor, C_{1}, the pilot lamp and the switch are in line aceross the panel of the converter as shown in lig. 1!)-4. Each of these components is centered $3 / 4$ inch down from the top, of the case and eath is separated from the other in horizontal plane by $13 / 4$ inches. The mate jacks for the grid, plate and oveillator eoils are below (${ }_{1}$. I_{1} and s_{1} in that order. biach jack is centered $11 / 8$ inches up, from the bottom of the cabinet.
The chassis, shown in Fig. 19-7, maty be made of thin aluminum sheet and should be fastened to the side walls of the eabinet with homemate brackets, or angle stock. The sockets for V_{1} (at the right as sem in the rear view) and V_{2} are contered $15 / 8$ inches in from the right and left edges of the chassis, respectively. J_{3} is centered on the reatr wall of the ehassis with J_{1} and $J_{2} t_{1}$ the right and left.

A bottom view of the converter elearly shows the components mounted bolow deck.

The exterior and the interior of the coil box are shown in Figs. I!-t and 1!1-7. Wind the antennat coupling eoils, L_{1} it Fig. $19-$-i, around the ground ends of the grid eoils before the latter are soldeved in place. Wind the conpling eoils rather snugly but not so tighty as to prevent aldustment of the coupling to L_{2} during testing of the eonverter.

19-MOBILE EQUIPMENT

Fig. 19-5-Circuit diagram of the crystyl-controlled mobile converter. Unless otherwise indicated, capacitances are in $\mu \mu \mathrm{f}$., resistances are in ohms, resistors are $1 / 2 \mathrm{watt}$.
$\mathrm{C}_{1}-35-\mu \mu \mathrm{f}$. midget variable (Hammarlund MAPC-35-B).
$\mathrm{C}_{2}, \mathrm{C}_{3}-100-\mu \mu \mathrm{f}$. बeramic tubular.
$C_{1}, C_{n}, C_{i t}, C_{-}-1000-\mu \mu f$, disk ceramic.
$C_{k}-0.01-\mu f$. disk ceramic.
It-Pilot-light assembly [Johnson 147-503 with No. 44 (6 -volt) or No. 1815 (12-volt) Iamp).
J_{1}, J_{2}-Motorola-type shielded jack (ICA 2378).
J_{3}-4-prong male chassis connector (Cinch-Jones P -304-AB).
$L_{1}, L_{2}, L_{3}, L_{1}$-See coil chart.
An a.e. transformer may be hased for the fitaments whike testing the comverter. The plate supfly should deliver 20 milliamperes at 2010 to $2 \overline{0} 1$ wolls. A modulated-siguat generator covering tho bands for which the eonverter hats heren romstructed is extromedy holphat. T'o he most affere-
 termination. A grid-dip moter for prominary adjustment of the shag-tumed coils is useful. but not exsential to alignment. If at ali possible, the mar merever that is to he used as the thathle int. shombl be used during the texting.

I sing coaxiab-cable leads. conneret the signal generator and the broadeast reerever $10, /$ athed J. respertively. switeh sis to the ham-hamed position, and apply heater power. The rewiver noed mot the thraed on at this times and plate
$R_{1}-180$ ohms, $1 / 2$ watt.
R_{2} - 22,000 ohms, $1 / 2$ watt.
$R_{:}$- 2200 ohms, $1 / 2$ watt.
$R_{+}-1$ megohm, $1 / 2$ watt.
R:- 0.1 megohm, $1 / 2$ watt.
$R_{r}=33,000$ ohms, $1 / 2$ watt.
RFC 1_{1} - 10 -mh. r.f. choke (National R-100S).
S. $\mathbf{3}$-pole 3 -bosition (used as 3 p.d.t.) selector switch (Centralab PA-1007).
Y_{1}-See text and frequency chart (International Crystal type FA-9).
power for the remvertar dow not have to be applicel. Now, potate (10 topmoximatoly half
 the gridedip moler as the indiator) at the low rond of the bamt. Mowe the grict-dipler over to the plate cerruit of the amplifior and proak A_{a} at the erenter of the bathl. Next. comple the meter to L_{1} of the oweillator and tume the enoil to the fire"furnery of the wrstal in nsw

After these initial adjustmonts, pate power may be applied to the wonverter and at frequenerindiating devier used to deterat oseilation of 12n. If the gridedip moter is the solf-rentifying type it mas fre used for the cherek. An absenptionthar wasemetar with indiatar or a rereder tumed to the arystal ferguene (with the bilo. (on) may abso be used for the purpose. In any

Fig. 19-6-A bottom view of the mobile converter. The amplifier tube socket of the right is mounted with Pin 7 facing toward the rear wall of the chassis. R_{1} and R_{2} are to the right and left of the socket, respectively. The socket for V_{2} is mounted with Pins 4 and 5 facing toward the rear of the unit. C_{2} is to the lower left of R_{2}, and RFC C_{1} is mounted on the front wall of the housing. C_{7} and R_{i} are to the left of the base of the choke. $C_{i_{3}}$, C_{n} and R_{3} are to the right of $R F C_{1}$. The output coupling capacitor C_{3} is supported between Terminal 4 of J_{3} and Pin 6 of the socket for $V_{3,} R_{s}$ and R_{i} are partially visible to the right and left, respectively, of the V : socket.

A Converter

Branl	Turn＊				Tyin So．		
Mc．	L_{1}	L_{2}	L_{3}	L_{4}	12	L_{3}	14
3．5－1	11	3616	64－10\％	10－3－290	120－1］	1：0－6	120－11
7－7．3	7	（1－18	18－36	36－64	120－1）	120－1：	120－F
1＋1－14．35	1	3－5	54）	（1）－18	$12(3)$	$120-0$	120－1）
21－21． 5	3	23	3－5	3.	120－A	$120-13$	$120-13$
28.88 .9	3	1.1 .15	1.69 .7	$2.7-4$	1000）－ 1	1000－－13	$1000-\mathrm{C}$
28．8－29－	3	11.	1．6－2．7	2．74	1000－1	10060－13	1000－6：

 the highofregueney side of the erystal irequeney until the erostal oweplater meliably as indieated has rapiel starline when plate power is turned ons．

With the comvertar and the i．f．amplifier both turned on，and with the signal generator thaed to the eronter of the land．fane the reereiveremtil the
 response atm then prak hee with（＇，sot at half raparotaner．The roupling betwern h_{1} and I_{2} maty now he adjustad for ontimum performanere．

If the aforementioned trest entipment is mot available，the comwerter may be aligned whild nsing a strong local of kown fremency as the signal somere．of course，the signal fregnenery must be in the hand for which the converter is to be aligued．In using this systom．firse sel the broadeasi reerimer as edesely as possible to the proper i．f．fropurey（sere the frequeney ehart） and then tume $L_{\text {，until the crystal osedlates．It is }}$ alvisable to bane the reecome through a narrow ramge as the uscillator abil is being adjusted to assure that the lest signal will he heard as soon as the erystal breaks intoreseiltation，After the sigmal is detertent．the grid，phate ambloseillator cirenits may be adjusted for maximum over－all gain．

The mohile anterna should tre resomant and tighty coupled to the couverter．Traps for sup－ pressing interferenere eanse he strong lowal broad－ cast siguals that fered in through the couvertere to the tumalde i．f．have not beren induded in the converter breatse the wed for them will be contimely depondent on lacal broadeasi－station power and lrequoney assignments．

Fig．19．7—Homemade L－shaped chassis，mounted on small brackets fastened to the side walls of the converter housing，is $4^{15 / 16}$ inches long， 2 inches wide and $11 / 2$ inches deep．V_{1} is mounted on the chassis to the right of V_{2} as seen in this rear view，J_{1}, f_{3} and J_{2} are in line in that order from right to left across the rear wall of the chassis． An interior view of a coil compartment is shown in the foreground．Terminais of the coils are soldered directly to the socket terminals．Notice that the crystal for the oscillator is mounted adjacent to L_{1} ．

Contbiefer		
Banil ．$/ 1$.	（rinstal Firm．．． $1 / c$ ．	1．F．Rangle バゥ。
3．5－1	$2!$	（5．5）－1100
7－7．3	6.4	
14－11．3i	134	（ （1）$^{(1)-1250}$
21－21 4\％	20.1	（i0）－ 10.200
28－28．！	27.4	（im）－150）
28，8－2！ 7	28.2	（ix）－ 150

Note：I．l．ramge indicates broadeant werejer tuning range neressatry for rover－

（For a deseription of a bandwitching ervotabl－

Transistor Mobile Converter

The mystal-controlled ronvertur shown in Fig. 19-8 is a mompart, fixed-tumed ronverter which exhibits excollont performane whon used with the allomobite meriver. It is desighed for oncoband onseation but may bo construeted for athy amateur band between so and 10 motars.

All of the remponests, including the powere supply for the consorter, are housed in a $5 \frac{1}{4} \times$ $3 \times 21 / 8$-ind Minibox that ran be monted meler the dashboand of the cars. The unit is built in one half of the box so that it may he "dropned" for servicing or adjustment while the other half remains mounted to the dash.

Only two extemal ronnertions to the converter are meressary. A eots lead firom the athtema must go to the anterna imput of the unit, and an output roas commertion to the wat ratio,

The rircuit for the converter is shown in Fig. 19-9), The oscillator circuit is a transistorizad version of the triode liarer. Injection for the mixer is taken from a small link wound over ther rold and of the collentor tank roil. The amitter of the mixer transistor is returned to ground through this link. The mixer riteuit corresponds to a friode varcoum-tula mixer utilizing rathode injection from the oseillator, the major difference being the low input impedance of the transistor base ass compared with the relatively high input impedane of a vac-umm-1 where grid.

The ervisal frequeney used in the oseillator portion of the ronverter is given in the tumed circuit data table. On 30 and 21 Me., the erystal is oprotated at its third overtome and on the lower bands the fundamentad monde is used.

The inductaness are womed on slug-tumed forms and shanted with the calumitanees shown in the thened ciment data table.

The eireuit shows a reystal diode conmerted from the high impedance end of L_{1} to cell B_{2}. This gives a mensure of protertion for the mixer transistor in the event that an exeresive amonnt of rif. cucrgy is introdured into the converter. When at signal greater in voltage thath B_{2} atppars across L_{1}, the dionde will eonduct and short the exeress i.f. to gromed.

Power Supply

The converter requires about 8 volts d.e. for
oneration and takes on the order of 3 mat of current. A built-in batery supply serves two important purposes. First, it aliminates one of the prime soureres of ignition interferenes, sinero varions moises from tho eledredical strstem of the call wat be carried into the converter via the leads from the car hattery. Inso, with a solf-

TUNED CIRCUIT DATA FOR THE TRANSISTOR CONVERTER

Band	Coil	$\begin{gathered} r_{1} \\ \mu \mu \mathrm{f} . \end{gathered}$	12 $\mu \mu$.	('rystal Freq.	I.F. Range
$\begin{aligned} & 28 \\ & \text { If.。 } \end{aligned}$	la. 12 turns No, 20 mam. Tap at th turn. $L_{2,} 2$ turns No. 20 ल. mam. I.s. 12 turns No. 20 mam. L. 4,2 turns No, 21 mam.	15	15	$\begin{aligned} & 27.85 \\ & \text { Mc. } \end{aligned}$	$\begin{aligned} & 6,50-1600 \\ & \mathrm{kc} . \end{aligned}$
$\begin{aligned} & 21 \\ & \mathrm{Mc} . \end{aligned}$	I.1, 1.5 turns . Co . 20 लnam. Tap at 5th turn. $L_{2,}, 3$ turns No. 20 mam. L.3, 15 turns No. 20 enam, I.4. 2 turns Sin. 24 enam.	15	15	$\begin{aligned} & 20.33 \\ & \mathrm{Mc} . \end{aligned}$	$\begin{aligned} & \text { fi50-1100 } \\ & \text { ke. } \end{aligned}$
$\begin{aligned} & 14 \\ & \text { Sle. } \end{aligned}$	$L_{1}, 2 ; 5$ turns Sio. 21 लाаm. Tap at fith turn. I.2. 5 turiss Vo. 24 लиam. L.3. 2fi turns No. 21 enam. L.4. 3 turns No. 21 mam.	15	15	$\begin{aligned} & 13.35 \\ & \text { Me. } \end{aligned}$	$\begin{aligned} & 650-1000 \\ & \text { kc. } \end{aligned}$
Me.	IL, 35 turns No. 28 enam. Tap at luth turt. $L_{2}, 6$ turus No. 28 enam. Las. 40 turns No. 28 mam. $L_{4},+$ turus No. 28 unam.	33	33	$\begin{aligned} & 6330 \\ & \text { kc. } \end{aligned}$	$\begin{aligned} & 650-9.50 \\ & \text { ke. } \end{aligned}$
Me.	$L_{1}, 52$ turns No. 31 mam. Tabat 13th turn. L. 2,8 turis So. 34 enarm. L. 3.2 turns No. 34 cham. I.4. 5 turns No. 31 cnam.	10	40	$\begin{aligned} & 28.50 \\ & \text { ke. } \end{aligned}$	$\text { (} 5: 50-11.50$ kr.

- 38.5 to 29. 15 . Mc.

All coils clos-wound on ${ }^{1}$ '2-ineh (Eam. slug-tuned (iron rlug) forms. Tap on L_{1} to be made near cold esd of coil. L_{2} wound over cold end of L. .

Fig, 19-8-View of the transistorized converter. The variable autput capacitor C_{4} is maunted on the right frant panel. Directly behind C_{1} is the 8.4 volt mercury battery B_{1} held in place by a bracket which is sold in most hardware stores as a broom halder. The two transistors are the round black objects in the center. They are supported by their own leads which are soldered to tie points. The converter shown here operates on 10 meters.

Transistor Mobile Converter

$B_{1}-8.4$ volt mercury transistor battery (RCA VS31 2).
$\mathrm{B}_{2}-1.5$ volt penlite cell.
CR_{1} - High back-resistance crystal diode (1 N 54 A)
$\mathrm{C}_{1}, \mathrm{C}_{2}$-Silver mica or NPO ceramic; see the tuned circuit data table for values.
$\mathrm{C}_{3}-.005 \mu \mathrm{f}$. ceramic.
$\mathrm{C}_{4}-365 \mu \mu \mathrm{f}$. variable capacitor (Allied Radia Co. 61-H-009).

$\mathrm{J}_{1}, \mathrm{~J}_{2}$-Automobile type antenna connectors.

L_{1}, L_{1}, inc.-See coil table.
$\mathrm{L}=320-500 \mu \mathrm{~h}$. slug funed coil (Miller 4514).
$L_{6}-10$ turns No. 30 enam. close-wound over $L_{\text {a }}$.
$\mathrm{Q}_{1}, \mathrm{Q}_{2}-2 \mathrm{~N} 247$ transistors.
contanod hattery it is ummeressary for makn any power-supply combertions rither to the car rereiver or car batters. This satves considerable time during installation athe makes the unit readily adaptable to portable operation.

Wiring

No. 30 wire is adequate for wiring bectanse of the small current and voltage requirements of the eonverter. Spaghetti should bre nsed over exposed leads that might come in contart with other parts bramse of the vibration that oeseurs in mobile oprotion. For the same reason, it is asontial that good soldered commedions be mate.
The information given in the tumederiferit datia table applios to $1 / 2$-inch coil foms. Roadywound slug-tumed coils, such as the Millor hoon series or the ("TC IS: series, can also be used with the links shown in the chart. L_{1} is tapped about $1 / 3$ up from the cold rond. 1 ' and $\mathrm{C}^{\prime} 2$ shoukl twe chowen tormanate, in a given amatear hand, with the imluetante of the partientar coil used; the $I / / C^{\prime}$ ratio is not uritical.

Construction

The converter is assomblend in one half of a $51 / 4 \times 3 \times 21 / 8$-ineh Minibos. The box-cover (with the lips) is mounted permanently under the automobile dash. The only front-panel con-

$R_{1}-0.47$ megohms, $1 / 2$ watt (value may require slight adjustment for individual transistors).
S_{I}-Three pale two position rotary switch (Centraiab PA-2007).
Y_{1}-Crystal (Internationai Crystal Co. type FA-5 for miniature socket, FA-9 for standard socket). See toble for frequencies.
trols are the converter-hroalcast switch S_{1} and the output praking rontrol C_{4}. Mount S_{1} so that the leads coming from the antenna connertors will line up with the proper switeh terminals. Two 5-terminal tio points are mounted in the center of the chassis for supborting the (rystal socket, transistor's and other small compowents. The threr sher-tuned inductances are stupported on the rear wall of the chassis, as are the two antema commertors.

After the major components have been installed, only a fow wiring comnections remain. Be sure to leave long leads on the inductances after winding them so that the loads may be direetly commerted to their proper points.

In the circuit, cell /sa has its megative terminal grombded. A lug soldered to the cell case and bolted to the chassis will make a sturely support tor the rell.

Adjustment and Testing

After the unit is wired, the first test should be to make eertain that the oweillator is functioning. Turn on the converter. Tume a commmications receiver to the erystal frepurney and indjust, the slug in laz until the signal is lomad. The oscillator will not fumetion unloss the collector tank (${ }^{2} L_{3}$) is resonant.

After the oscillator is oprating property, install the unit in the car and turn it on. With the bromenast radio turned on, adjust the slug in L_{a} for maximum batkground moiso. Next. adjust the slug in L_{1} for maxim!n! mise, or solact at wat signal and prak it up, for maximum gain. Then sut the car radio at the high end of the i.f. band and adjust the slug in L_{5} for maximum
gain with ('s at minimum rapacity. The low end of the i.f. band should prak when ('4 is set near maximum. If only one segment of a pationdar band is going to be usod, additional gain can be had iby mativing tine roins for linat portion of the hand. If, for example, Tin-metor phome operation is desired, peak the eonvertar for 3800 to 7000 ke, rather thati 3:00 to 1000 ke .

Crystal-Controlled Converters for 50 and 144 Mc.

The mohile converters shown in figs. 1!-10 through 1! $1: 3$ combine simplicity with good v.h.f. design pratetice. Although only two tubes arre need in eateh, the converters indelade a stage of r.f. amplifitation phas revatal-ontrolled osdillators. Ton meters was whene an the i.f. Incathe when the broadeast reeriver is used as the funable i.f. for v.h.f. convertors imatges ate a problem, and only I Mc. at at time rould bo. tumed. The ronverters deserilsed here. therofore ate dexigned to work into a 10 -mutare converter or remerver. This eath be a thather converter which in turn works into the brombeast rewiber, of at complete wiffeontamed 10 -moter receiver.

The 50 Mc. Unit

The rirruit diagram for the ono-Mr. unit is
 amplifier. The same gain with lower noise "an be obtained with a casoode-type duatrimedo amplifior, but the periormane of this pentode stage is atiffactory and its diesign is considarably simpler than the triode amplifier.

The erystal oseillator makes use of at 2e3-Me. overtome aryatal. A arystal on the reguired injertion fregucney chminates the need for multiphier stages, and makes possible the use of a simple oscillator cirenit. The 10 -meter receiver or converter is thmed from 28 to 30 Mr . in cov-

 in the owillator will allow thming an to it Me. However, aby ingedion frequeney may be ased (o) cower a doximed portion of the bamd.

The pentorle half of the gU8 tube is used as
a mixer. The oncillator and mixer sertions ant in the same fube conelope so there is chough staty roppling betwern the two for adequate owallatfor injertion.

The diagram shows the heaters eomered for I2 solts. If ti-volt opration is desimed, the heaters aro connectod in parallel and l_{1} is disprogarderd.
 inch Minilus. All of the patte are monnted on the bottom hatl of the bex while the upper hat (the one with lips) is fastened under the rath dash. The bottom hatl contaming all the combponents rath be shid in athe out for masy sorviding.

Fig. 19-10 shows the parement of most of the components. The output pating control © ${ }^{\prime}$ and switeh sis are momoted on one side of the chasisis to form the from patmel. The thines. shag-tumed inductancos. orstal sorket athl anttrona romedors are momed directly opposite on the batek wall. Two tie-points are boltert to the hase of the lox for commerting and supporting lrads and componemts. When widing. make the r.f. leals as short and direet as possible.

The 144-Mc. Unit

The eirenit diagram for the 111-Mre eonvertar
 with the ponterke sertion of one thle ating as the r.f. :mplitier followed by the triodd-serelion miser. The other bles is used as an overtonto arystal oscillator and protitode frequeney mulliplier. By combining all the features of a t -tathe arstal-controlled converter in a twotube model spare-satving simplicity is arhieved.

The same hasic circuit used in the jo-Me.

Fig. 19-10-View of the 50.Mc. converter. The inductances are from left to right: (bottom) L_{i}, (top) $L_{i=1} L_{\text {i }} L_{3} L_{1}$, $L_{1} 1_{2}$. The top of crystal Y_{1} can be seen between the tubes. The 22 -ohm 2 -watt resistor in the center of the chassis is the heater current compensating resistor, used for 12 -volt operation. Input and output antenna connectors are mounted on opposite ends of the back wall. Power is fed to the unit through the twisted power cable running in from the left side of the photograph.

Crystal-Controlled Converters

Fig. 19.11-Schematic diagram for the $50-\mathrm{Mc}$. mobile converter. All resistors $1 / 2$ watt unless otherwise specified. Capacitor values below 0.001μ f. are in $\mu \mu$. All 0.001μ. capacitors are disk ceramic.

Other fixed capacitors are tubular ceramic.
$\mathrm{C}_{1}-35-\mu \mu \mathrm{f}$. midget variable capacitor (Hammarlund MAPC-35-B).
J_{1}, J_{2}-Automobile type antenna connectors.
$L_{1}-3$ turns No. 20 insulated wire, close-wound over cold end of l_{2}.
$L_{2}-9$ furns No. 20 enam. wire, close-wound on $1 / 2$ inch slug tuned coil.
$\mathrm{L}_{3}-16$ furns No. 20 enam. wire, close-wound on $1 / 2$ inch slug funed coil form.
L-6 turns No. 20 insulated wire, close-wound over cold end of L_{3}.
Ls-14 turns No. 20 enam. wire, close-wound on $1 / 2$ inch
motel is followed in the 141-Mc. mit exeept for the addition of a multiplier stage following the erustal oseillator. The oweillator operates at 38.66tio Me. and is multiplied to 116 Mr . in the tripler stage. As in the $50-\mathrm{Mc}$, converter, this unit is designed to work into a 10 -meter receiver or ronverter. If the i.f. thenes from 27 to 30 Me ., the converter will tume from $14 t$ to 117 Me. However, any segment of the band may be
slug funed coil form.
L6-2 furns No. 20 insulated wire, close-wound over cold end of l_{2}.
L7-28 turns No. 30 enam. wire, close-wound on $1 / 2$ inch slug tuned coil.
R_{1}-22-ohm 2-watt resistor (used for 12-volt heater operation only).
S_{1}-Three-pole two-position rotary switch (Centralab PA-2007).
$\mathrm{Y}_{1}-22 \mathrm{Mc}$. overtone crystal. (International Crystal type FA- 5 for miniature socket, FA- 9 for standard socket).
tuned be choosing the proper erystal frequeney.
Unlike the so-Mr. converter, the oscillatormultiplier stages of the $1+4-M$. converter are phesiablly separated from the miser stage. It is neressary, themforr to romple the 116-Ne. energe from the multipliee stage to the grid of the mixar. Caparitor ${ }^{2} 2$ is used for this purpose. It consists of a pair of twisterl hook-up wires with one cold of one lead comereted to the mixer

Fig. 19.12-View of the 144-Mc. converter. The inductances from left to right are: (top) $L_{1} L_{2}, L_{3} L_{4}, L_{5} L_{L_{1}}$ (botfom) L_{7} and L_{8}. All components except S_{1} and C_{1} are mounted on the back wall of the chassis. A single tie point in the bottom of the channel supports various leads and provides junctions for sundry connections. The input and output antenna connectors are placed near the bottom right and left of the back panel. The crystal Y_{1} is between the two tubes. Converter power is fed through the twisted cable which passes through a hole and grommet in the back wall of the chassis.

Fig. 19.13-Schematic diagram for the 144-Mc. converter. All resistcrs $1 / 2$ wall unless otherwise specified. Ccpacitor values below $0.001 \mu f$. are in $\mu \mu \mathrm{f}$. All 1000. $\mu \mu \mathrm{f}$. capacitors are disk ceramic. Other fixed capacitcrs are tubular ceramic.
$\mathrm{C}_{1}-35-\mu \mu \mathrm{f}$. midget variable capocitor (Hammarlund MAPC-35-B).
C_{2}-Oscillator injection capacitor (see text).
$\mathrm{J}_{1}, \mathrm{~J}_{2}$-Automobile type antenna connectors.
L_{1} - 2 turns No. 18 enam., $3 / 8$ inches long, on $1 / 2$ inch slug tuned coil form.
Lz-2 turns No. 20 insulated wire, close wound over cold end of L_{1}.
$\mathrm{L}_{3}-2$ turns No. 18 enam., $3 / 8$ inches long, on $1 / 2$ inch slug tuned coil form.
grid and the cond of the other load commered to the multiplior platte.

The rircuit diagram shows the heaters eoth-
 heaters should be commeded in parallel.

The same hasic ombine of construbtion usied
 mit. Fig. 1!-12 shows how matput patking control ' 1 athe the eontrol switeh S_{1} atre monmed on the fromet wall of the ehassis while most of the remaining parts ate seremed to the rear surlace. A single tife print is mombed on the logtom of the chassis for commerting and supporting various leads. The input athe output antemat romoretors are momented apposite conds of the back wall of the chassis.

Testing the Converters

 at © volts (or 0.tis ampere at 12 wolts) for the

L, 2 turns No. 20 insulated wire, close wound over cold end of L_{1}.
L.--9 turns No. 24 enam., close wound on $1 / 2$ inch slug tuned coil form.
L_{f}-2 turns No. 20 insulated wire, close wound over cold end of L_{5}.
$L_{7}-10$ turns No. 24 enam., close wound on $1 / 2$ inch slug tuned coil form.
Ls-5 turns No. 18 enam., $1 / 2$ inches long, on $1 / 2$ inch slug tuned coil form.
S_{1}-Three-pole two-position rotary switch (Centralab PA-2007).
$Y_{1}-38.666$ Mc. overtone crystal (International Crystal Co. type FA-5 for miniature sockel, FA-9 for standard socket).
hraters, and approximately 17 mat, at 150 volts for the pater supplas . If the can radio delivers in (exerss of 180 volts. the plate voltage on the ronverter shomblat be limited hy a dropping resistor.
 at 6 volts (or (0.tí) ampere at l2 volts) for the heaters. A phate voltage of töl volts is rectuised at alomit 30 mat.
 Hather with a grid-dipuer. The proper frequeney for carh rirenit is given in ligs. 1 ! 111 and $1!1-13$. Apply power to the converter under test, and adjust the oseilator coirenit until it grose into oscillation. This can le contimed by tung the heme merover to the aspillator frequener. Tune the useillator inehectane until the maximum oscillator signal is obtained. Now ferd a 50 or 1ft-Ate signal into the eonvertor maler tost. This signal may come trom a signal generator
 from the antemat. (io through the converter stage by stage, adjusting the inductances for peak output, Afer the first run of peaking is rompleted the converter should fer spot-ehereked

Hrough the rentire land to make sure the overfall responge is faidy flat. Output caparitor (' is used to peak the output circuit. L_{5} is antjusted so that ('i peaks at mid-caparitanee in the erenter of the i.f. tuning range.

A 20-Watt High-Frequency Mobile Transmitter

Figumes $19-1+$ through $19-17$ ilhustrate a complete 20 -watt transmitter that may be ouserated on any bind from 80 to 10 meters. 'The design atvoids the eomplication, expense athd elittientt construction assoriated with the average multiband tramsmitter, hut does not confine its application ta :ung one band. (hamging from one hand to another ats opmetting intorest varios is a simple matter of unsoldering a pair of reatily-aneresible coils :und rephlecing them with othors for the new bind.

Circuits

The cirenit of the transmitter is shown in Fig, 14-15. A $\overline{3}$ - $6 ; 3$ erystal oscillator drives a $21: 26$ final amplifier. (Qumbuphing frequency in the output of the grid-plate oscillator from at $\overline{\mathrm{F}}$ - Me, ervistal will provide adequate drive for the final on 10 moters. Siffieient capateitance is provided in the plate tank of the 2 lis 2 for a Q of $10 \mathrm{or}^{\circ}$ moreon all biands cerepht 80 meters. $0_{1} 80$ moters. tho tank ($)$ will drop to about 6 . but there is little danger of apprereiable harmonic output when fooding at high- l antemuta such ats the usual lowded whip. Aderquate output eompling on this hand is assured by tuning the output link line. lamallel phate ford is used in both stages.

The audio cirenit is equally simple. (he triode unit of a 12. I' $^{\circ}$ is used as a grounded-grid amplifier. This provides low-impedance input for a ratbon miarophone withont the nead for an merophone transformer. The seeond triode mit of the $12 \mathrm{Al}^{\circ} \mathrm{F}$ is used in eonventional fashion to drive a 1635 Class 13 modulator. This tube operates at zoro bias with an idling current of only 10 mat. 1). (e. voltage for operating the carbon misrophone is ohtanced by eonmerting the mirrophome in series with the two spereh-amplifier cathorles and gromind.

The 1-mat, meter M_{1} maty be switched across appropriate multiplior shunts to read amplifier grid or plate current, or modalator plate cument. A d.p.d.t. change-over relity, K_{1}, actuated by the
microphome push-to-talk switch. is also provided. One pole shifts the antennat from receiver to trinsmitter, while the other mutes the receiver hy shorting the voice coil of the speaker. S1 removes serem voltage from the $26^{\circ} 26$ and disables the relay so that the oscillator may be tumed up before the amplifior is put on the air.

Construction

A $5 \times 6 \times 9$-inch sterel utility box (Middletown Mfy. Co., Middletown, (omm.) is used as the cablunet for the trinsmitter. The chassis is bent up from aluminum shoct approximately $1 / 16$ inch thiek. The chassis is $83 / \frac{1}{4}$ inches wide, 6 inches deep and hats 2 -inch lips along the front and rear edges.

F ${ }_{3}$ and (${ }_{4}$ are mounted on the front watl of the partition with their shaft centers $13 / 8$ inches above the chassis, The shat of C_{4} is centered $11 / 4$ inches from the open edge of the shiedd. While the shatt of \boldsymbol{c}_{3} is centered 3 inches in. The shates of these citpuritors are conneoted to panel-bearing units by rigid motal shatit eouplors.

Thr sorket for the $2 \mathrm{l}^{\circ} 26$ is submounted on 3 inch spateres. bencoth a 1 - -inch clearance hole centered 1 inch from the roar adge of the chassis and 2 inches in from the side. $R F_{4}$ is mounted horizontally from the front wall of the partition, below and betwoen C_{3} and C_{4},

The output timk coil. Las, is cemented to a 1-inch conc insulator and soldered between arear stator terminal of r^{\prime} : and it gromending lug on the chinsis. The bottom cnel of L_{3} is commected to a reatr stator torminal of $(4$, while the other end gones through a small forel-through point in the chassis to a relay torminal immediately below. The $\overline{5}$ abi is centered between the partition and the fromt pancl, and botween the shatits of P_{3} and ${ }^{\prime} 4$.

Fig. 19-17 shows the modulation transformer in the upper right-hand corner of the chassis. The secondary tatis of T_{2} should be set tor $\overline{7.500}$ ohms. The $12 \times 1 \overline{4}$ and 1635 sockets are centored

Fig. 19.14-A panel-illuminating lamp is mounted to the right of the meter, clong with the amplifier-tank and antenna-link tuning controls. Along the bottom, from left to right, are the microphone jack, meter switch, filament switch, tune-operate switch, oscillator tuning control and the crystal.

19-MOBILE EQUIPMENT

Fig. 19.15-Circuit of the single-band mobile transmitter. All resistors are $1 / 2$ watt unless otherwise specified. All capacitances less than $0.001 \mu f$. are in $\mu \mu$ f. All $0.001-\mu$ f. capacitors ore disk ceramic. Fixed capacitors of smaller value may be mica or NPO ceramic. Capacitors marked with polarity are electrolytic.
C_{1}-Mico or ceromic trimmer.
C_{2}-Air variable (Hammarlund HF-50).
C_{3}-Air variable (Johnson 167-4).
C_{4}-Air variable (Hammarlund HF-140).
C_{5}-Paper ceramic.
I_{1} - 6.3 -volt 250 -ma. dial lomp.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$-Cooxiol connecter (SO-239).
J_{3}-Push-to-talk microphene jack.
J_{s}-Power connector (octal tube socket).
K1-D.p.d.t. 6-velt or 12 -volt d.c. re!ay (Guardion Series 200).
L_{1}, L_{2}, L_{3}-See coil table.
$M_{1}-0-1$ d.c. milliammeter, $23 / 8$-in. (Triplett 227-T).
R_{1} - 10 -times shur.t for M_{1} (6.1 ohms for 55 -ohm meter.)
$R_{2}, R_{3}-100$-times shunt for $M_{1} .10 .5$ ohm for 55 -ohm meter.)
S_{1}-D.p.d.t. rotary switch (Centralab PA-1002).
S_{2}-S.p.s.t. tog gle switch.
S:-2-pcle 3-position rotary switch (Centralab PA. 1003).
T_{1}-Driver transformer, 2.5:1 primary to $1 / 2$ secondary (Merit A-2920).
T2-10-watt modulation transformer (Merit A-3008).
on : line about halfway betwern the rear of the moler :and the modnlation transformer. The worket lior the $12.50^{7} 7$ is erntered 78 inch from the embl of the chassis. Then the sorket for the Itia3 is spated sullioinotly from the 12.5 dit socked so that the driver tratsformer. T1. can be momed breweren the two surkets. ambernath the chassis.

The two coasiall rommeroms, J_{1} and J_{2}, are mounted on the ram lip of the ehassis. spated to
 the powne-supply commertor f_{1}. :mind the ehamgeover rolay is rentered betwern this sueket and the noarest eowial emmertor.

Testing

The unit will oprorate from :my suphly dolivering 300 to 1000 volts at 125 mat or more

While the 21 atid might be used as a dowhom if nowessury straghthorgh oprotion is revommonded. Crystals in the s(o)-meter hand will provide adecpate drive for the final on all bands up to and including the 11-Me band. (irystals in the 7 -Mr. hand are needed for $21-$ and 28 -Mr. output. Coils should be sillerted from the coil
table to suit the hand desiered.
The useilator is adjusted with S_{1} in the thme position, and the motor switch thrned to reide amplifier grid current. With powor suphiod, re

Table of Coil Dimensions								
L_{1}								
Rmal	L. μ h.	Turns:	linm. $1 n$.	I.rnyth In.	llire Nize	$\begin{aligned} & B_{1} \\| \\ & \text { So. } \end{aligned}$	$\sqrt{\mid i r d u r}$	
80	24	14	1	$17 /{ }^{17}$	$\because 1$	3016	$8: 32$	
10	13.3	28	"*	${ }^{\circ}$	21	:30)8	$5 \mathrm{5} \% 2$	
20	2.8	113	${ }_{5}$	1	20		516	
15	0.4	9	5%	318	20	300	516	
10	0.5	6	${ }_{6}$	3,	20	:30\%	516	
I. 2								
80	32	80	31	21/2	24	3012	6:32	
10	8	11	$3 i$	$\underline{1 / 2}$	20	3011	616	
20	3.5	20	$3 i$	11	20	3011	616	
15	1.6	16	$3:$	2	18	3010	688	
10	1.1	12	3	$11 / 2$	18	3010	P08	

 2 similar turms for 15 and 10 metirs.

20-Watt Mobile Transmitter

Fig. 19.16-Bottom view of the 20 -watt mobile transmitter. The driver transformer is placed between the two audio-tube sockets. Along the front lip of the chassis, from left to right, are the microphone jack, meter switch, filament switch S_{2}, fune-up switch S_{1}, oscillator tank capacitor C_{2} and the crystal socket. C_{2} is spaced back of the panel, and mounted behind the 5763 socket. L_{1} is soldered across the terminals of the copacitor. All power and control wiring is done with shielded wire.

should be adjusted for maximum grid eurrent. The tuming shomld the chereked with a wave-moter to make sure that the owiflator onatput cirenit is tumed to the desired freduoners. Then 'is should be adjusted for maximum grid current. The reading should be at least 3 or 4 mat.

A pair of (i.S. trpo 1820, 28-volt, 1-amp, miniature lampsemenced in serios makes a good dummy load for testing the final. With sit thrown to the operate position. the meter swite heol to read 21026 plate courent, and pewor apulied. adjust P_{z} for at dip in plate courrent. ('herek the fremuchey with a wawemeter compled to the output tamk. Then indjust ("a until the moter ratals io mat Retume (sk for the platerourent dip. It may take a little juggling back and forth betworn
 the moter reads 50 mat. at the plate-current dip. The lowd lamps will not light to full brillianere. hut it should be possible to determine the adjustmont that gives maximum ontput. With the amplifier fully loaded. the grid current shoulad still remain at 3 to 4 mat.

The moter should now be turned to read modulator plate comrent. Without voice, the moter should read about 10 mat. When spoaking into the minepphone, a kirk of the moter reading up, (o 40 or 50 mat on praks should indieate (10) per cent modulation. The ref. amplifier plate current shmald rematin resolutially stealy umber modulation, hut the lamps in tha dummer load should show some incresse in brilliture.

Adjustment when an antemat is substituted for the dummy load should be done in a similar matmer. The anternat must, of eourse, be chereked for wemanee in advance with a g.d.o. or by other means. (0riginally deseribed in (QNT, Jan., 19:37). (For a description of a handswitching mothile transmiller with v.for, soe (gsio', August and Sept., 1957).

Fig. 19.17-Interior view of the single-band mobile transmitter. The output components are separated from the other components by an L-shaped aluminum partifion which measures $41 / 2$ inches along the front and 4 inches along the side. It is $21 / 4$ inches high with $1 / 2$-inch lips along the bottom edges for fastening to the chassis.

Mobile Transmitters for 50 and 144 Mc.

Figs. 19-18 through 1!9-2:3 show circolits and construbtional details of compact bamsmittors rovering the ti- and e-medor hathes. The units are only 3 inches deep and therefore ate suitable for under-therdash monnting.

Output on ano-Mc. is obtained hy using erystals in the 50 - Mtr rang. This elimmates athe neressity for multiplier stages and greatly simplifies the eirenit. In the two-metrer unit, a HoMr. rrysta! is usod whirh is multipliod to 14 Me. by at tripher stage.
Althongh the r.f. amplifier used in the trathsmitters will oprerate at highor voltages. the mits are designed primarily to work from a $300-$ volt. 100-ma. supply. A mansistor modulator (an lo used with the mits with a sotving in total eurront dratin.

The 50.Mc. Unit

The eirenit of the ou- Ma . Aramsmiter is shown
 hataters) is triondremomeded in an owertonstepre revial aseilator. Peodhath wimbing La heljs to sustatin Brdevertone asiallation and maty reguire some shight adjustment for optimam ontput in its placement with respert 10 $/ 9$. Thur $50-\mathrm{Mr}$. sighal from the oseillator is catharitively romplat to the grol of the eleen (6xes when using l?-volt heaters) amplifier. A jatek f_{1} on the rear of the transmitter allows the grid currelt to be masured.

Fig. 19-18-View of the 50-Mc. transmitter showing the r.f. amplifier tank circuits and output loading centrol. C_{3} is on the top right of the parel with C_{2} just below it. Output indicator h_{1} is below C . This view also shows the two antenna connectors, power plug and grid current jack which are mounted on the rear surface.

Fig. 19-19-The 50 Mc . mobile transmitter is built into a $7 \times 5 \times 3$-inch aluminum Minibox (Bud CU-3008). Oscillator coil $l_{1} l_{2}$ is near the top left. The jack on the right rear panel is the grid-current meter jack. One-inch holes are punched in both halves of the Minibox for ventilation. Perforated hole plugs can be used for neater appearance. In actual use, the transmitter would sit with the tubes horizontal. The half of the box at left is mounted under the car dash so that the transmitter half can be easily pulled in and out of position
for servicing or adjustment.

Thar amplifier phate tank rixuit. ('g L_{3}. is thated to resomance hy variabla capacitor (\%

The 144-Mc. Unit

 'Ihe oserllator is similat to the ome used in the
 oscilhator is ratabitively coupled to the pentode multiphior which is oprated as a frequetry tipher. Prom the tripher, the signal is imbertively conpent to the grial of the r.f. :mmplifire. Sincer this stage comtams a fixed capmetor, it is thend by "pinching" or "spreading" the turns of L_{4}. As in the eno-Mc. unit. provision is made for mavaring grid current (jack, Γ_{1}).

The amplifere tank cirenit in the 1 H-Ate. moklel is sories funerl. Output eonpling is through asingle-turn link. L_{6}. Noutratization is required
 of a 2 E -imeh length of No. 12 wire with ont (end ronnereted to pin as (eontmol grid) of the amplifier tuls, and with the other eme run up Insidfe the amplifier tula after pasing though the chassis (sere the photegrath in lig. I!-? ${ }^{2}$). A phere of spaghetti is used to insulate the nere tralizing wime fom the whasis.

Construction

6- and 2-Meter Mobile Transmitters

Fig. 19-20-Schematic diagram of the $50-\mathrm{Mc}$. mobile transmitter. Unless otherwise indicated, capacitances are in $\mu \mu \mathrm{f}_{1,}$, resistances are in ohms, resistors are $1 / 2$ watt untess specified otherwise.
$\mathrm{C}_{1}-35-\mu \mu \mathrm{f}$. midget variable capacitor (Hammarlund MAPC-35-B).
$\mathrm{C}_{2}-15-\mu \mu \mathrm{f}$. midget variable capacitor (Hammarlund HF-15).
$C_{3}-50-\mu \mu \mathrm{f}$. midget variable capacitor (Hammarlund MAPC-50-B).
C_{1}-Coupling copacitor for output indicator (see text).
K_{1}-Midget antenna relay s.p.d.t. (Advance AM 2C. 12 VD. Note: the last four figures in the number indicate the coil voltage. For 6 volts d.c. it should read 6 VD).
$t_{1}-3$ turns No. 20, 5/8-inch dio., $5 / 16$ inches long (B \& W 3006).
L2-2 turn link No. 20 insulated wire, close wound over cold end of L_{1}.

Chassis for the transmitters. A single bataket supports the tubes and assoriated parts. The bateket has a single berd and is fastened to the Minibox with machine serews.
The 6- and 2-meter transmitters are almost identical merhanically. The only real differenere betwern the two is that the z-meter model has ath additional multiplior bube. momied in line with the oseillator tube on the loracket.

All parts should be monnted before wiring is begen. Sine both cuds of the chassis are open. wiring and mounting of parts is a simple job). 'The photographs show the relative position on most of the components. Try to keep rif. leads as short as possible. The relay, antemat connertors, power plug and grid eurrent jark are all mounted on the rear panel.

Ther output inticator I_{1} is coupled to the fitu:d

Fig. 19-21-The 144 Mc . transmitter with the r.f. amplifier tube removed to show the neutralizing lead $C N$. Except for the 6BJ6 multiplier tube in the foreground, the same basic layout is used here as in the $50-\mathrm{Mc}$. unit.

L:3-4 furrs No. 16, 1 -inch dia., 1 -inch long (B \& W 3013) L-2 turn link No. 20 insulated wire, close-wound over cold end of L_{3}.
I_{1}-Neon bulb (NE-2).
J_{1}-Circuit clasing jack.
$\mathrm{J}_{2}-3$ conductor mike jack.
J_{3}, J_{4}-Automobile type antenna connectors.
RFC $_{1}$, RFC $_{2}$-Single-layer v.h.f. choke, 2 to $7 \mu \mathrm{~h}$. (Ohmite Z-50 or Nationa! R-60).
S_{1}-S.p.s.t. slide switch.
$V_{1}-5763$ for 6 volts, 6417 for 12 volts.
$V_{2}-2 E 26$ for 6 volts, 5893 for 12 volts.
$\mathrm{Y}_{1}-50-\mathrm{Mc}$. 3rd overtone crystal (International Crystal Co. type FA-9).
itor is acthally a fow turns of hook-up wire womm ower a piece of insulated wire that is

$C_{1}-35-\mu \mu f$. midget variable capacitor (Hammarlund MAPC-35-B).
$\mathrm{C}_{2}-15-\mu \mu \mathrm{f}$, midget variable capacitor (Hammarlund HF-15).
$\mathrm{C}_{3}-50-\mu \mu \mathrm{f}$, midget variable capacitor (Hammarlund MAPC-50-B).
C_{t}-Coupling copacitor for output indicator (see text).
C_{11}-Neutralizing capacitor (see text)
K1-Midget antenna relay s.p.d.t. (Advance AM/2C. 12 VD . Note: the last four figures in the number indicate the coil voltage. For 6 volts it should read 6VD.)
L_{1}-4 turns No. 20, 5/8 inch diam., 5/16 inches long (B \& W 3006).
$\mathrm{L}_{2}-2$ turn link No. 20 insulated wire, close wound over cold end of L_{1}.
L3-1 turn No. 20 insulated wire $1 / 2$-inch diam.
L4-2 turns No. 20 insulated wire $1 / 2$-inch diam.
comected to the final tank rireuit. If the lamp fails to ignite, a lew more turns may be meded.

Testing Notes

An a.c. power suphly delivering 300 volts at 100 mat. can be used during testing of the trathsmitter. Heater-cument repuirements for the 50-Mr, unit are l.is) ampere for fovolt operation and 0.75 ampere for 12 volts. The $141-\mathrm{Me}$. unit reruires 1.1 ampere at is volts and $0 . \overline{3}$ is ampres at le volts. Do not commed the plate supply to the ref. amplifier power terminal (marked " 300) mod." in the reirenit diagram) at this time. The comert ersstal and a dummy lom should be kept on hand for the test.
Tou tost the driver stage, plug a grid-rument moter ($0-\overline{3}$ mat.) in J_{1}, and apply heater voltage. Plug in the proper erystal and turn on the plate voltage (exciter stages only). As quickly as jossible adjust mapator ('1 until the oseillator gows into oseillation. This will be indicated by a downward kiek in the plate current. Girid curreft should begin to show when oscillation oceurs.

L:- 3 turns No. 16, 1 -inch diam., $3 / 4$ inches long, center topped (B \& W 3013).
Ln - 1 turn link No. 20 insulated wire wound in the center of L_{5}
1_{1} —Neon bulb (NE-2).
J_{1}-Circuit closing jack. $\mathrm{J}_{2}-3$ conductor mike jack.
J_{3}, J_{4}-Automobile type antenna connector.
RFC $_{1}$, RFC $_{2}$-Single-layer v.h.f. choke, 2 to 7μ h. (Ohmite Z. 50 or Natianal R-60).
\mathbf{S}_{1}-S.p.s.t. slide switch.
V_{1}-6C4.
$V_{2}-68 J 6$.
$V_{3}-2 E 26$ for 6 volts, 5893 for 12 volts.
$\mathrm{Y}_{1}-48 \mathrm{Mc}$. 3rd overtone crystal. Crystal frequency found by dividing desired output frequency by 3 (International Crystal Co. type FA-9).
In the Ift-Me, unit, adjust for maximum grid "urrent by "pinch-tming" $L_{3} L_{4}$ once oseillation has begm. Adjust (\% for maximum grid euryent. If there is diffiedty in ohtaining grid drive, try adjusting the position of L_{2} with resperet to L_{1}. In the e-meter model, some rearamgement of L_{3} and L_{4} maty be nerded in order to adoliove maximum grid drive.

Before testing the $1+1-\mathrm{Me}$, amplifier it will be meressary to neutralize it. With power applied to the exebter portion, slowly rotate the output thanig eontrol ('e through its full range. If the amplifier is mentratized, there will be no fluctuat tion in the grid curront. If there is surh at fluethation, adjust the nentraliaing wire to a new position with respert to the amplifier tube and swing the plate-tuming control again, Repeat until the grid courent remains stady, showing that the amplifier is ueut ralized.

Connert a dummy load to the output antema comeretor, close the antemna relay and apply plate power to the entire tramsmitter. is quirkly as pessible, ture ('2 for minimum plate current.

Mobile Modulators

Fig. 19.23-View of the $144 . \mathrm{Mc}$. transmitter.
The cail and link near the top left rear are $L_{1} L_{2}$. In the foreground are coils $L_{3} L_{4}$.

It is meressary to perform this oprettion raphidly berallase the amplifier may dran rexessive plate current when not fumed to besmanere. Whern thated to mesonaner, the ontput indicator bulb I_{1} will light. This r.f. indicator is not moly a tuning aid in the car but also atels as a contimous monitor to show that the transmitter is in opration. (apacitor C_{3} is the loating control and shoulal the adjusted for maximum plate current after the amplifier is resonated.

A microzhone jack, J_{2} is included on the trans-

mitter chassis to simplify the control ciecuits, La"ds from the microphone (marked "sw" and "mic" in the diagram) go to the power connertor at the rear of the transmitter.

Mobile Modulators

Vartum-tule mondulators for mohile operation are in general similar to those used in dixedstation installations, bumpment shown in the soretion on mondatars maty be modified for use with almmes any motile tramsmitter. Is in fixed
station work, the mohile moxhatator must bo (apable of supplying to the plate mondulated r.f. stage sinc-wave athdio power equal to . 50 per ecent of the d.e plate input for 100 pereront mondulation.

Fig. 19-24-Circuit diagram of the mobile modulator. Resistors are $1 / 2$ watt unless otherwise specified. Capacitors other than electrolytic may be either paper or ceramic. If a carbon microphone is used, substitute the carbon microphone speech amplifier circuit, at points marked " x ", in the upper part of the diagram.
T_{1}-Driver transformer: parallel 6N7 to class B 6N7 grids.
T_{2}-Modulation Ironsformer, topped secondary, primary 10,000 ohms plate to plate.

Fig. 19-21 shows a modulator that wan be used with ans mohile a.m. tramsmittor whose input
 (rompled ipereh amplifier using a single 12.1×8

 paralled fo obtain suftedent Iriving power.

Also shown in Fig. I!-2-2 are the changes in the sperech-amplifier eircuit neressatry to adapt it for use with a cartom microphone. Ile. voltage for the cathon mierophome is obtained by eommerting the misrophome in serios with tha siperedtamplifior eathotes.

The modulater refuires 30\% wolts at about 00 mat. for plate power. and bivolts at 1.9 amperes or 12 volte at . $\%$ ampores for the heaturs. Heator comections are given for both woltages. The plate
supply should use a latgre capmetitane (100) μ f. or more) it the output, to siove ase a reservoir for the heam mak-rimeront demands.

The matin constrictional preatution to be who served whon buiding the mondalator is that the (ontput transformer T should ano be moment (to elosio to the sporeh amplifier cirenits. Aoparat tion will reduee the chanere of feredhark throngh Atrave coupling. A fube shimeld over the 12A. 7 will sorve to hold it in the sorket wor bamper roads: goon ortal strekets will nomatly need no tuln clampe to rotain the fiNO.

In any mobile installation. the modulator may lay spatated from the r.f. assembly by any ronvenient distanes. The rable romereting the mondulator to the ref. seretion should be made with individually shimeded latuls.

A 25-WATT TRANSISTOR MODULATOR

Figs. 19-2i through 19-27 show a romplette tramsistor modulator that obtains its power directly from the atumohilas 12-volt storage hattery. It reduires only a fraction of the spatere required loy a comparable varumbtulo unit, and it allows full use of the high-voltage pown suphly for the ref. section.

The wnit is based on a dexign orignally puls-
 ('lase if modulator. . Among the advantages of a modulator of this twe are the eompactores (ens

Watts of andio int apmoximately 90 cobie inchers), high wer-all efficioncy, no watm-up time, athed low idling durront when not modulating. It will modulate an r.f. stage input of betwern to and
 with the output transiommer listed (about 4.50 volts and 110 mat.). Suitathle 12 -volt heator tulxes for the modulated output stage incelude the lowe
 (icheral Motors Corp. Kohomer, ludiana.

Fig. 19-25-A $3 \times 4 \times 5$-inch utility box is sufficient to house the modulation transformer and all of the smaller components of the 25 -watt transistor modulator.

Transistor Modulator

Fig. 19.26-Circuit of the $\mathbf{2 5}$-watt transistor modulator. Resistances are in ohms. Capacitors are electrolytic.

MK1-Single-button carbon microphone.
$\mathrm{Q}_{1}, \mathrm{Q}_{2}-2 \mathrm{~N} 190$ (GE) or 2 N109 (RCA).
$Q_{3}, Q_{4}-$ DS- 501 (Delco).
$\mathrm{R}_{1}-100$-ohm 2-watt potentiometer.
$\mathrm{T}_{1}-150$ ohms c.t. (c.t. not used) to 490 ohms c.t. (Thordarson TR-5).
(similar to 807) and the $888: 3$ (similar to the (i)t(i). The exciter portion of the transmitter can be made up of $6+1$ s.s (similar to the $5 \overline{3}(6: 3)$ or
 of the bi't and 6lfi). Maximum economy will In oldained with a transistorized power supply, similar to the mit deseribed later in this chapter.

Construction

The unit is constructed on a $+\times 5 \times 3$-inch utility box on which a $1 /$-inch aluminum cover 5×6 inches is sulostituted. This provides a 2 -inch overhang on one edge for mounting the power transistors, and it also serves as a hoat sink. Two transformers, plus gain control and mike jack, are also mounted on the cover (see lig. $19-2 \overline{2}$).

For a modulation transformor the unit uses a B.3-volt filament transformer turnod backwards; that is. with the 6.3 -voll 3 -ampere winding toward the collertors. This transformor is mounted inside the utility loos. Ample room is left for the input transformers, resistors and capatitors. 1t was found neressary to add an input filter on the 12 -volt line to prevent hash from getting into the mierophone cireuit and atding noist.

To ohtain a true eenter tap for the driver transformer, a transformer having taps at 4 and 16 ohms is used. Since the impedaner varios as the square of the turns ratio, the t-ohm tap provides a center tap.

Transistor Mounting

Berause the collertor comnertion is common with the cane of the transistor, mica spacers must fre herel helween the tramsistor eases and gromed. (Insubator package No. 12:2126!). These ran be ohtained in a speeial mounting kit from bedeo distrilutors.
$\mathrm{T}_{\mathbf{2}}-\mathbf{4 0 0}$ ohms c.t. to 16 ohms, c.t. (see text), Stancor TA-41).
$\mathrm{T}_{3}-6.3$-volt c.t., 3 -amp, filament transformer used as modulation transformer (see text) (Stancor P-5014).

A four-lug terminal box is located on top of the utility box to provide for the 12 -volt and output connections of the modulator. Although wiring of the unit may appear difficult, it beromes a relatively simple job if the internal wiring is done separatelys, hefore putting on the front cover.

Be careful to apply as litte heat as possible when soldering any transistor connections. Wither (.5 . . 2×190 or RC'A 2×109 can be used for the input transistors. Athough several other types rould be used for the output transistors, the sperified DN-501 should be casier to ohtain than some since it is sold as a replacement in car-radio servier.

It is not likely that a 0.1 -ohm 1 -watt resistor (sore Fig. l!-2 6 ($)$ can be purchased at any radio store. I sutisfartory substitute is to wind a suitable length of resistame wire over a 2 -watt resistor used as a form, or three 0.333 -ohm $1 / 2$-watt resistors can be wired in paralled to obtain a value sufficiently close.

Testing

After wiring and construction of the unit is completed, testing for proper operation can be done in soveral ways. Whe method is simply to comeret a 4000 -ohm 10 -watt resistor across the modulation transformer output connections and then place a d.e. ammeter in series with the 12volt line. and watch the current variation while talking into the microphone. The idling current should be around 700 ma., kieking up to above 2 amperes on peaks. Wo not, under any cireumstances, triy to operate the unit without a load of some sort on the outptit terminals as this may damage the output transistors.

Another method of testing is to place another

Fig. 19-27 - The frant cover of the modulator unit serves as a heat sink. The driver transformer and microphone jock ore at the bottom, the microphone transformer and potentiometer control af the center, and the two power transistors of the top.
(i.3-volt liamment transformer batek-to-batok with the monalation transformer, to bring the impedancer down to a low level, and then ronnere at p,m, speaker to the 6,3 -volt winding.

A swome fost ran be made after the mit is connereted to the transmitter. Tho ('latss ('load level ran be adjusted for imperdano matehing.

An lia rarlon mierophome is suitable for use with this unit. Althomgh not shown in Fig. 19-26t. the mat shoulal be eommeroal so that it is turmed on only while the transmit-reoreve switelt is in the transmit position. An inexpenisvo lo-volt atutomolvilo-horn rolaty (o.g.. Jichlin IIN 101). available at most filling stations or atutomobile parts distributors, should be used to rlose ambl "pen the rirent. 'The relay arm and rontact should be romberted in the $+12 . t$-volt lead from the battory and fuse. If axessive sparking is noted at the rolay rontames it may be reduced by moving the $\overline{50}-\mu \mathrm{f}$. $2 \overline{\mathrm{~J}}$-volt rajnaritor to the luse side of the relay eomatacting eireuit.

Concerning platement of the mit in the ratr: Try to find a looation away from high-tomperatare spots and in a woll-ventilated atroa. Thas tronk is not reeommended sinere there is littlo ventilation: this arrai rath beromo quitro bot in the summortime amel damage to the tratsistors could result. Ther engine eompartment makes a conveniont place to mount the unit but this spaner is not adequately ventilated exerpt porsibly whilo the car is in motion, The most fatcorable spot is on the fire wall in the petsengerer compartment. or umber the front seat. These aroats atro Hsually woll ventikated. or at hast eooler than any other emelosed seretion of the catr. . As in atry mobile installation where the modulator is some distancer from the r.f. serotion, the audio leank from the serombary of the momalation fransformer to the modulated r.f. stage should tre mado with individually-shielded loads.
(0)riginal deseription appeared in (SST for November, 195!.)

The Mobile Antenna

For moshile operation in the range betwern 1.8 and 30 Mc ., the vortical whip antomat is almost universally used. sinere lohger whips persent merhamieal diflioultios, the length is usually limited to a dimension that will resonate as a quarterwave antemmath the lo-meter band. The car body sorves as the ground robnection. I'his ambanta length is approxinately 8 feet.

With the whip length adjusted to resonamee in the 10 -meter band, the impedance at the ferd
 sistanm at the rosonatht frequeners. This resist ance will le composed almost contirely of ratiation resistanme (sece index), and the rficioner will be high. However, at fregumenes lower than the resonabit fropurnes, the anternas will show an increasingly large (atpatilive roxtetance athd a derreasingly small ratiation mesistanoo.

The equivalent rireuit is shown in Fig. 1 !l-2! bor the avorage 8 -ft. whip, the reatimee of the

Mobile Antenna

Fig. 19-28-The quarterwave whip at resonance will show a pure resistance of the feed point X.
capacitance, C_{A}, may range from about 150 ohms at 21 Me. to as high as $8(0)$ ohms at 1.8 Me., While the radiation resistance, h_{12}, varies from about 15 ohms at 21 Mc. to as low as 0.1 ohm at 1.8 Me. Since the resistance is low, considerable current must flow in the circuit if any apprexiable power is to be dissipated as ratiation in the resistance. Yet it is apparent that little current can be made to flow in the cireuit so long as the comparatively high series reactance remains.

Fig. 19-29-At frequencies below the resonant frequency, the whip antenna will show capacitive reactance as well as resistance. R_{k} is the radiation resistance, and $\mathrm{C}_{\text {a }}$ represents the capacitive reactance.

Eliminating Reactance

The caparitive reatiture an be canceled out by connecting an cruivalent inductive renctance, $L_{\text {L }}$, in series, as shown in ligg. I! $1-30$, thus tuning the system to resonance.

$$
\left\{\begin{array}{l}
\text { Fig. 19-30-The capacitive } \\
\text { reactance at frequencies lower } \\
\text { than the resonant frequency } \\
\text { of the whip can be canceled } \\
\text { out by adding an equivalent } \\
\text { inductive reactance in the form } \\
\text { of a loading coil in series with } \\
\text { the anlenna. }
\end{array}\right.
$$

['nfortunately, all coils have rewistance, and this resistance will be added in sorbes, as indicated at R_{C} in lig. 1!)-31. While a large eoil may radiate some conergs, thus adding to the radiation resistance, the latter will usually be negligible

Fig. 19-31-Equivalent circuit of a loaded whip antenna. Ca represents the capacitive reactance of the antenna, L_{L} on equivalent inductive reactance. R_{C} is the loadingcoil resistance, R_{G} the ground-loss resistance, and R_{R} the radiation resistance.
compared to the loss resistance introduced. However, adding the coil makes it possible to feed power to the circuit.

Ground Loss

Another element in the circuit dissipating jower is the ground-loss resistance. Fundamentally, this is related to the nature of the soil in the area under the antenna. Little information is available on the values of resistance to be experted in practice, but some measurements have shown that it may amount to as much as 10 or 12 ohms at 4 Mc. At the lower frequencies, it may constitute the major resistance in the circuit.

Fig. 19-31 shows the circuit including all of the clements mentioned above. Assuming C_{A} lossless

Fig. 19-32-Graph showing the approximate capacitance of short vertical antennas for various diameters and lengths, af 3.9 Mc . These values should be approximately halved for a center-loaded antenna.
and the loss resistance of the coil to be represented by R_{c}, it is scen that the power output of the transmitter is divided among three resistances R_{c}, the coil resistance; R_{i}, the ground-loss resistance: and h_{12}, the radiation resistance. Only the power dissipated in h_{12} is radiated. The power developed in R_{0} and R_{G} is dissipated in heat. Therefore, it is important that the latter two rewistures be minimized.

MINIMIZING LOSSES

There is little that can be done about the nature of the soil. However, poor electrical contact between large surfaces of the car body, and esperially between the point where the feed line is grounded and the rest of the body, can add materially to the ground-loss resistance. For example, the feed line, which should be grounded as close to the base of the antenna as possible, mity be connected to the bumper, while the humper may have poor contact with the rest of the body berause of rust or paint.

Loading Coils

The accompanying tables show the approximate loading-coil inductance required for the various bands. The graph of Fig. 19-32 shows the approximate capacitance of whip antennas of

TABLE 19-I

Approximate Values for 8-ft. Mobile Whip						
Base Loading						
$f_{\mathrm{k}} \mathrm{c}$.	Louding $L_{\mu} \mathrm{h}$.	$\begin{gathered} \text { Re (0.0) } \\ \text { Ohms } \end{gathered}$	$\begin{gathered} \mathrm{Hec}(0.300) \\ \text { Ohms } \end{gathered}$	$\begin{gathered} \mathrm{R}_{\mathrm{R}} \\ \text { Ohms } \end{gathered}$	Feed 1/* (hms	$\begin{gathered} \text { Mitching } \\ L_{\mu l_{1}} * \end{gathered}$
1800	345	77	13	0.1	23	3
3800	77	37	6.1	0.35	16	1.2
7200	20	18	3	1.35	15	0.6
14,200	4.5	7.7	1.3	5.7	12	0.28
21,200	1.25	3.4	0.5	14.8	16	0.28
29.000	36	0.23
Center Loading						
1800	700	158	23	0.2	34	3.7
3800	150	72	12	0.8	22	1.4
$\gamma 200$	40	36	6	3	19	0.7
14,200	8.6	15	2.5	11	19	0.35
21,250	2.5	6.6	1.1	27	29	0.29
RC $=$ Iomding-vil resistance: $R_{R}=$ Radiation resistance. * Asuming lomang coil $Q=300$, and indiading estitated ground-lows resistamere. following table.						

various average diametors and longths. For 1.8, 4 and 7 Me., the loading-roil induetance required (when the loating coil is at the hase) will be approsimately the inductance required to resonate in the desired band with the whip capacitance taken from the graph. For 11 and 21 Mc., this rough calculation will give more than the required inductance, but it will serve as a starting point for final experimental adjustment that must always be made.

Aso shown in tahlo ly-1 are approximate values of ratiation resistance to be expected with an 8 - ft . Whip, and the resistanees of loading roils - one group having a () of 50 , the other a () of 300 . A comparison of radiation and coil resistaneres will show the importance of reduring the coil resistance to a minimum, especially on the three lower-freduener bands.

To minimize loading-eoil loss, the roil should have a high ratio of reactance to resistance, i.e., high Q. A 4-Md. loading coil wound with small wire on a small-diameter solid form of por quality, and enclosed in a motal protertor, may have a Q as low as 50 , with a resistance of 50 ohms or more. High-() coils require a large conductor, "air-wound" construction, turns spared, the best insulating material avaiłable, a diameter not less than hadf the length of the coil (not ahays mechanically frasible), and a minimum of metal in the field. Such a coil for 4 Mr. maty show a Q of 300 or more, with a resistance of 12 ohms or less. This reduction in loading-coil resistance may be equivalent to increasing the
transmitter power by 3 times or more. Most low-hoss transmitter plug-in coils of the 100)watt size or larger, commereially produed, show a Q of this order. Where latger imductanere values are required, lengths of low-loss spate-wound coils are available.

TABLE 19-II

Suggested Loading-Coil Dimensions					
Req'd L_{μ} h .	Turns	$\begin{aligned} & \text { Wire } \\ & \text { Nize } \end{aligned}$	Jium In.	R.eッи! In.	form or B\& IV Type
700	190	22	3	10	Polystyrene
345	135	18	3	10	Polystyrene
150	100	16	21/2	10	Pulystyrene
$\begin{aligned} & 77 \\ & 77 \end{aligned}$	75 29	14	$\frac{21 / 2}{5}$	10	Polystyrene $160{ }^{\circ}$
$\begin{aligned} & 40 \\ & 40 \end{aligned}$	28 34	16	$\begin{aligned} & 21 / 2 \\ & 21 / 2 \end{aligned}$	2 4114	$\begin{aligned} & 8013 \text { less } 7 \text { t. } \\ & 80 \mathrm{~T} \end{aligned}$
$\begin{aligned} & 20 \\ & 20 \end{aligned}$	17 22	16 12	$\begin{aligned} & 21 / 2 \\ & 21 / 2 \end{aligned}$	$\begin{aligned} & 11 / 4 \\ & 288 \end{aligned}$	8013 less 18 t. $80^{\circ} 1$ less 121.
$\begin{aligned} & 8.6 \\ & 8.6 \end{aligned}$	16	$\begin{aligned} & 14 \\ & 12 \end{aligned}$	$\begin{aligned} & 2 \\ & 21 / 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 4013 \text { less } 4 \mathrm{t} \\ & 40 \mathrm{I} \text { less } 5 \mathrm{t} . \end{aligned}$
$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	10	$\begin{aligned} & 14 \\ & 12 \end{aligned}$	$\begin{aligned} & 2 \\ & 21 / 2 \end{aligned}$	$4^{11 / 4}$	$\begin{aligned} & 4013 \text { less } 10 \mathrm{t} \text {. } \\ & \left.40^{\prime}\right]^{\circ} \end{aligned}$
$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{array}{r} 12 \\ 6 \end{array}$	$\begin{aligned} & 2 \\ & 23,8 \end{aligned}$	$\begin{aligned} & 3 \\ & 41 / 2 \end{aligned}$	$\begin{aligned} & 1: 33 \\ & 151 \end{aligned}$
$\begin{aligned} & 1.25 \\ & 1.25 \end{aligned}$	6	12	13/4 ${ }^{3 / 6}$	2	$\begin{aligned} & 10 \mathrm{~B} \\ & 10 \mathrm{~T} \end{aligned}$

Mobile Antennas

Center Loading

The raliation resistance of the whip ran he approximately doubled by placing the loading roil at the center of the whip, rather than at the hase, as shown in lity I!--33. (The optimum position varies with grombl resistanes. The center is optimum for average groum resistathee.) Ilowever, the inductane of the loading eoil must be

approximately doubled over the value reguired at the hase to tune the systom to wementure. For at coil of the same (), the coil resistane will also he doubled. But, even if this is the rase, conter lowding represents a gatio in athenna efficioncy, esperially at the lower frequencies. This is berame the ground-lose resistaner rematins the sime, and the increased radiation resistance beromes a larger portion of the total circuit resistance even though the coil resistance also increases. However, is turns aro added to a lowding coil (other fartors being equal) the inductance (and therefore the reartanere inereases at a greater rate that the resistance, and the larger coil will usually have a higher Q.

Top Loading Capacitance

Since the eoil resistane varies with the inductance of the loading coil, the coil resistame can be reduced by reducing the number of turns. This e:un be done, while still mantaining resonatuer, by adding eaparitance to the portion of the antena above the coil. This caparitane can be provided by attaching apacitive surface as high up on the antenna as is merhanieally fomsible. Comacitive "hats," as they are usually called, may consist of a light-weight motal ball, (evinder, disk, or whed structure as shown in Fig. 19-34. This should be added to the raparitance of the whip ahove the loading coil (from Pig. 1!--is) in determining the approximate indenctaner of the loading coil.

When renter louding is used, the amount of capacitane to be added to permit the use of the sathe loading inductance required for hase loating is mot great, and should be seriously considered, since the total gain made be moving the roil to the center of the antemma mase quite marked.

Tuning the Band

Feperially at the lower frequencies, where the resistance in the cireuit is low compared to the coil reatance, the antema "ill represent a very

Fig. 19-34-The top-loaded 4-Mc. antenna designed by W6SCX. The looding coil is a B \& W transmitting coil. The coil can be tuned by the variable link which is connected in series with the two halves of the coil.
high-Q eircuit, making it neenssary to retume for relatively small changes in frequency. While many methods have bern tevised for tuming the whip ower a bathl. oure of the simplest is shown in Fig. 19-35. In this case, a standard Is of W plug-in coil is used as the loading coil. A length of largerdiamoter polystyrene rod is drilled and tapmed to fit botworn the upper and lower secetions of the antemat. The assembly also serves to clamp a pair of metal brackets on cach side

Fig. 19.35-W8AUN's adjustable capacity hat for tuning the whip antenna over a barid. The coil is a B \& W type B 160 -meter coil, with a turn or two removed. Spreading the rads apart increases the capacitance. This simple top loader has sufficient capacitance to permit the use of approximately the same loading-coil inductance of the center of the antenna as would normally be required for base laading.

19-MOBILE EQUIPMENT

of the polystymene bork that serve both ats support and comections to the loading-coil jack birr.
A $1 / 8$-inch steel rod, about 15 inches long, is brazed to each of two harge-diameter washors with holes to pass the theraded end of the upper seetion. The rods form a loading caparitance that varies as the upper rod is swung away from the lower one, the latter being stationaly, Dhough variation in tuning ean be oltained to cover the 80-moter band. (0)riginal deseription appeared in QST', September, 1953.)

R REMOTE ANTENNA RESONATING

Fig. 19-36 shows cireuits of two remoterontrol resonating sustems for mobile antennas. As shown, they make use of surplus dic. motors driving a loading coil removed from a surplas ARC'-5 transmitter. A standard roil and motor may be used in cither installation at increased expense.

The eontrol cirenit shown in Fig. 19-336-A is at threr-wire system (the car frame is the fourth conductor) with a double-pole double-throw switch and a momentary (normatly off) singlopole single-throw switch. sig is the motor reversing switch. The motor rons so long as s_{1} is closed.

The circuit shown in Fig. I!-36il3 uses a hatehing relay, in conjunction with mieroswitches, to antomatically reverse the motor when the roller reaches the end of the coil. x_{3} and x_{5} operate the relay, K_{1}, which reverses the motor. s_{4} is the motor on-off switch. When the tuning eoil roller

Fig. 19.36-Circuits of the remote mobile-whip tuning systems.
K_{1}-D.p.d.t. latehing relay.
$S_{1}, S_{3}, S_{1}, S_{5}$ Momentary-contaet s.p.s.t., normally open. S_{2}-D.p.d.t. toggle.
$\mathrm{S}_{i, 2} \mathrm{~S}_{7}$-S.p.s.t. momentary-contact mieroswitch, normally open.
reathes one eme or the other of the eril, it cleses S_{6} or S_{5}, as the case may be, operating the relay and reversing the motor.

The procedure in setting up the system is tor prume the enoter loading coil to resonate the antemat on the highest frepuebry used without the base loading coil. Then, the base loading coil is used to remonate at the lower fremuencos. When
 trol, s_{1} is used to start and stop the motor, and S. sot at the "up" or "down" position, will etetermine whether the resonant frequeney is mised or lowered. In the eirenit shown in Fig. 19-36B, S_{4} is used to control the motor. N_{3} or S_{5} is momentarily dosed (to activate the latehing relay) for raising or lowering the resonant frequenes. The broadeast antemat is used with a wavemeter to indiatoresonance.
(Originally desmibed in (Q゙̌T, Dec., 1993.)
several companios offer motor tuning for getting optimum periommance over a low-frequency band. (For a complete description of the commercially available remotely-tuned systems, see Goodman, "Freduency Changing and Mobile Antembas," (gnT", Der., 1957.)

Automatic Mobile Antenna Tuning

A somewhat more complex antonna tuning system for 75 and 10 motors is one that atutomatically tunes the antenna as the transmittere frequeney is shifted. Difor initial adjustments. the radiator is kept in resonatner without attention from the operator. (For a deseription of the automatic system. see Hargrave, "Automatic Mohild Antenna Tuning, QS゙T', May, l950.)

FEEDING THE ANTENNA

It is usually found most convenient to feed the whip antenna with coas line. Tuless very low-() loading coils are tred, the feed-point impedance will alwas be appexiably lower than 52 ohms - the chameteristic imperance of the commonly-used coax line, RG-8/L or R(i-58/U. Since the length of the tramsmission line will seldom exced 10 ft , the losere involved will be nogligible, evenat 2 ! Me ., with a fairly-high s.w.e. However, unless a line of this length is made reasonably flat, difficulty may be encountered in obtaining sulficient coupling with a link toload the transmitter output stage.

One mothod of obtaining a match is shown in Fig. 19-37. A small inductance, $L \mathrm{~m}$, is inserted at the base of the antema, the loading-coil inductance being reduced correspontingly to maintain resonance. The line is then tapped on the coil at a point where the desired londing is ohtained. Table 19-1 shows the approximate inductanere to be used between the line tap and gromed. It is advisable to make the experimental matehing roil larger that the value shown, so that there will be provision for varying aither side of the proper position. The matching coil can also be of the plug-in type for changing bands.

Adjustment

For operation in the bands from 29 to 1.8 Mc .,

Mobile Antennas

Fig. 19-37-A method of motching the loaded whip to 52 -ohm coox cable. 4 is the loading coil and L, M the matching coil.

the whip should first be resonated at 29 Me, with the matching coil insorted, but the line disonnecterl, using a grid-dip oseiliator compled to the matching eoil. Then the line should be attached, and the tips varied to give proper lomding, using a link at the transmitter cond of the line whose reactance is approximately 52 ohms at the opreratting frequency, tightly coupled to the output tank rircuit. . Ifter the proper position for the tap has been found, it may he neressary to realjust the antemat length slightly for resonamee. This ran be checked on a fiedt-strength meter several feret away from the car.

The sume procedure should be followed for eath of the other bamds, first resonating, with the g.cl.o. coupled to the matching coil, by adjusting the loading coil.

After the position of the matching tap has been found, the size of the matehing coil can be redued to only that portion between the tap and ground, if desired. If turns are removed here, it will be neressary to reresonate with the loading coil.

If an entirely fat line is desired, a s.w.r. indirator should be used while aljusting the line tap. With it good matelh, it should not be necessary to readjust for resoname aftor the line tap has been set.

It should te emphasized that the figures shown in the table are only approximate and may be altered considerably depending on the type of car on which the anterma is monnted and the spot at which the antemat is pleted.

ANTENNAS FOR 50 AND 144 MC.

A Simple Vertical Antenna

The most convenient type of antenna for mobile v.h.f. work is the quarter-wawe vertieal radiator, fed with 50 -ohm roaxial line. The antema, which may be a thexible toloseoping " fish pole." ran be mounted in any of several places on the car. An ideal mounting spot is on top of the car, though rear-derk mounting presents a better spot for esthetic reasons, 'losts have shown that with the car in motion there is no observable difference in average performane of the antemats, regarelless of their mounting positions. There mat be more in the way of divectional efferts with the rear-derek mount, but the over-all advantage of the roof mount is slight.

A good matech may be obtained by ferding
the simple vertical with 50 -ohm line. However, it is well to provide some means for tuning the sy.stem, so that all variables can be taken care of. The simplest tuning arrangement gronsists of a variable capacitor connceted between the low side of the transmitter coupling coil and ground, as shown in Fig. 19-38. This capacitor should

have a maximum capacitance of 75 to $100 \mu \mu \mathrm{f}$. for 00 Me., and should be adjusted for maximum londing with the least coupling to the transmitter. some mothod of varring the roupling to the transmitter should be provided.

Horizontal Polarization

Horizontally polarized antomas have a considerable tulvantage over the vertical whip under usual ronditions of mobile operation. This is particularly true when horizontal polarzation is used at both ends of a line-of-sight circuit, or on a longer circuit over reasonably flat terain. An aduitional advantage esperially on 6 moters. is a marked reduction in ignition noise from noighboring cars as woll as from the station car.

A Horizontally Polarized Two-Band Antenna for V.H.F.

One type of horizontally-polarized antennat. ralled the "halo," is shown in lige. 19-39. It is a dipole bent into a cirele, with the ends eapacitively louded to reduce the cireumference. Sime the $50-$ and $1+4-M \mathrm{M}$. bands are almost in thind harmonie relationship, it is possible to luide a simgle hato that will work on both bands. The antoma is changed from one band to athother be changing the spacing between the and loading plates and adjusting the matrhing merhanism.

Mechanical Details

The halo is made of $7 / 6$-inch aluminum fuclline tubing. This material is both strong and very light, but any tubing of about $1 / 2$-inch diameter could be used equally well. The boop is (is inches in cireumference and the eapacitor plates are $2 \frac{1}{4}$ inches square, with the comers rounded off.

To fasten the capacitor plates to the emals of the tubing, aluminm rod stock is turned down on a lathe to make a tight fit into the ends. This is tapped for (6 -3:2 thread, and then foreed into the tulbing conds. Ioles are drilled through tabing and inserts, at each ond of the halo, and a serew rum through each to keep the inserts from turning around or slipping out. The binding-head serews that hold the plates to the inserts are equipped

Fig. 19.39 -The 2 -band halo as it appears when set up for 50-Mc. operation. Changing to 144 Mc . involves decreasing the plate spacing by swapping cone insulators, and resetting the gamma matching clip and series capacitor.
with lock washers. The holes for monnting the ectamic cone sparer are drilled directly bedow the erenter, midway between the eenter and the edge of the calpacitor phates.

The halo is sed into a slot ent in the vertical support. This slot should lue just hig emough to promit the halo to be fored into it. The balo has to be siffoned, so rut it at the renter and insort about \geq inches of alominum rool, again turned down on a lathe fo fit tightly inside the thbing. 'The two piocers of tubing are then pushed together, over the insert, and drilled wath site of rontor to pass if 3 : serews. The halo and insert are also drilled at the midpoint, to pass the momenting serew. This is an $8-3 \mathbf{3}$ s.rew, $11 / 4$ inches long. If lathe farilities are not availather, the monnting of the capacitor plates and the securing of the hato to the vertical support ean be handled with angle backeds.

Merhanical stability is important so straps of aluminum $\frac{1}{2}$ inch wide are wrapped around the halo either side of the momenting post. These are bent at right angles and the conds pulled together with a bolt.

The matehing arm is $1 t^{1} \frac{6}{2}$ inches long, of the same materiall ats the halo itsolf. It is momited below the hate on two $3 / 4$-inely fone stamdofses. For ronvenienere in detaching the ferd lime a coasial fitting is monnted on an h bracket bolted to the vertical support. The stator har of the 2in- $\mu \mu \mathrm{f}$, variable raparitor (Johnson $167-2$) is sodered divertly to the coaxial fitting. The wotor of the eapacito is combered to the gamma atm through a pioce of stiff wire. For further stiblening an alominum anglo bracket is sorewed to the lower momting stud of the capacitor and the other cond mounted under the serew that holds the first rome standeff in place. (ontart betwern the arm and the halo proper is mate througha strap of ! - -iteh wido aluminum bent to form a sliding clip. Bo sure that a clean tight rontact is made betwern the tubing and the elip, as high current flows at this point, A poor or varying contate will ruin the fferetiveness of the antennal.

Adjustment

The caparity-loaded halo is a high-d device so
it must be tumed on-the-nose, or it will not work properly. The only reliable method for adjusting a halo is to nse a standing-wave bridge, making tuning and matehing adjustments for minimum reflectod power. ["wing a fiold-strenget moter and attempting to adjust for maximum radiatera power ran give confusing indications, and is ahost certain to result in something less than maximum effertiveness.

The adjustment process with this design can be simplified if the hato is first resonated apmoximately to the desired frequeney ranges with the aid of a grith-tip meter. Set the elip at about one inch in from the end of the arm, and the serics (al)atertor at the middle of its rangre. Cherk the resonant frequency of the loop with the grid-dip moter, with the $3 / 4$-inch spacer between the eapatitor plates. It should be elose to 50 Me . If the frequeney is too low, trimming the corners of the plates or putting shims under the coramis sparer will raise it somewhat. If the frequency is too high alroaly, make new and slightly larger raparitor plates.

Noxt, insert an sw.r. bridge between the antomat and the transmission line. Apply power and swing the capacitor through its range, noting whether there is a dip in reflected power at any point. If the reflected power will not drop to zero, slide the rlip, along the gammat arm and retume the capacitor, matil the lowest reading possible is obtained. If this is still not zero, the hato is not resonant. If the hato capacitance is on the low side, moving the hands near the plates will ratuse the reflected power to drop. (loser spacing of the plates, latger plates or a longer halo loop are posible solutions.

These adjustments should be made on a froquency natr the midalle of the range you expere to use. Adjusting for optimum at 50.25 Me., for example, will result in usable opration over the first 500 ke . of the band, and a gook mateh (heelow 1.5 to 1) from 50.1 to 50.4 . The s.w.r. will rise rapidly either side of this range.

To tume up on 114 Mc ., insert the $1 / 2$-inch cone between the capacitor plates. Slide the elip bate on the gamma armarout 3 to 4 inches and repeat the adjustment for minimum reflected power,

Field－Strength Meter

using a frequency at the middle of a $2-\lambda$ ． ．range． Tuning up at itis Me，for cxample，will give quite satisfartory operation from the low end to 146 Mr．，the hato being mueh broader in fre－ queney response when it is operated on its thirel harmonie．In this model the series caparitor in the gamma arm was at about the middle of its range for 50 Me，and near minimum for $14 t$ Mr．Slight differeners in merhanical construction may change the value of rapacitane required， so these settings should not be taken as important．

The photograph，Fig．19－39，shows a method used to avoid rumning the chanere that the see－ ond ecramid cone would be missing when a band change was to the made．The head was ent from a 6 －3： 32 surew，laving a threaded stud about $1 / 2$ inch long．This is serewed into one of the coramie cones．The other cone then serves as a mat，to tighten down the eaparitor plate．In ehanging bands merely swap cones．（Original deseription appeared in（QST，Sept．，1958．）

Bibliography

Swafford，＂Improved Coux Feed for l．ow－Frequeney Mo－ bile Intennas，＂（ぶT，I ecember，19．う．
Roverge MeConnell，＂Let＇s（io High Hat！，＂QST＇，Jannary， 1452.

Belrose，＂short Antennas for Mohile Operation，＂QST＂， september，19．3．3．
Dinsmore，＂The＂Ilot－Rorl＂Mohile Antenna，＂QST， sentember，19．3．
Picken \＆W＇ambsganse，＂IRemote Mobile－Antenna Reso－ nating．＂（2心．T，December，19．3．
Wehster，＂Mohile Loon）Antomms，＂＇（2s＇7，June，19．5．
Tilton，＂Have You Tried V：1．F．Molsile＂．＂（es＇T．Septem－ ber，10．0．4．
Hargrave，＂Automatic Mohile Antenna Tuning．＂QSTT， May， 10.5 m ．
Morgan，＂Tuning the Molile Antenna from the Driser＇s Neat，＂（2S7＂，October，195\％．\％．
Braschwitz，＂Directional Antema for the Transmitter Hunter，＂（2心TM，April，19．5f．
Tilton，＂I＇olarization Eifects in V．II．F．Mobile，＂Qs＇T， leemmer，lasf．
Breetz，＂A simple［talo for 2－Meter Mobile［se，＂QST， August，19．77．
Ilarris，＂Continuously Loaded Whip Antennas，＂QST， May， 1958.

A Field－Strength Meter for Portable－Mobile Use

The field－strength meter of Figs．19－10 through 19－42 can be used in a molile station as an antenna－resonance indicator or as a contimons output indicator showing that the transmitting sustem is actually radiating．It is designed to be inserted between the antomohile broadeast re－ eeiving antenna，which acts as the r．f．piek－up．

Fig．19－40－A front view of the field－strength meter． Sensitivity control R_{1} is to the right of the $0-1$ indicating meter．Antenna input and output connectors are mounted on the right end of the box．

Fig．19－42－Inside view of the meter．The back plate shown in the photograph is used as a cover for the box．
and the broulcast receiver．Small magnets or rubber suction cups on the back plate will hold the meter securely on top of the car dash．Al－ though in this position the meter will be fare up in most cases，it can nevertheless usually be read from the driver position．

Fig．19－41－Circuit of the field－strength meter． CR1－Crystal diode（IN34A）．
J_{1}, J_{2}－Automobile type antenna connectors．
$R F C_{1}-2.5 \mathrm{mh}$ ．r．f．choke．
R_{1}－ 500 ohm potentiometer（Mallory U－2）．
$\mathrm{S}_{1}-S . p . d . t$ switch for above potentiometer．

19-MOBILE EQUIPMENT

A handle ean be mounted on the meter box so that the moter can easily be carried about for portable measurements. The same basio layout less the haudle can be wed if the box is to be monted under the dash or in the glove compartment.

The circuit for the field-strength meter is shown in Fig. 19-f1. The values shown are not critical. Nearly any type of erystal deteretor can be used and the meter movement ran be anything from $100 \mu \mathrm{il}$, to 2 ma . or more, depending upon the size and plarement of the antenna and the power ontput of the transmitter. All components, ineloding the 3 -inch indieating moter, are housed in a! $2 \times 6 \times 4$-inch aluminum chatssis.

If a smaller moter is used, the box could be reduced in size arcordingly. However, in mobile operation a large moter is more convenient to read while in motion. An illuminated meter could be substituted for the one shown in the photograph for use at night. A switch, S_{1}, is used in the rirenit to switeh the antemat to the field-strength moter position or straight through to the broadeast set. For portable or temporary mobile operation, a short pick-up wire can be used instend of the automobile rereiving antemat. The pick-up) antema lead comes into at comertor mounted on one end of the box. There is a second connector for attaching the load to the broaleast receiver.

Conelrad Monitoring

The conelrad rules diseussed in the chapter: on high-frequence receivers and operating it station must be observed by amateurs who operate mobile. the convenient form of eompliance is he means of a separate tumable convertere covoring the broadeast bend, and converting to the same i.f. as the i.f. used bev the ham-band converter. This type of converter may also be used when the aur radio is used ats the tumable i.f. for a broad-band converter, providing that the recoiver is tuned to the converter i.f. at tronminute intervals. This ean be aceomplished mest conveniently be setting one of the push buttons to tume the receiver to the monitor output frequemer.

The circuit of a broadeast-band converter is shown in lig. 1!)-13. The input circuit ('ialat rovers the broadeast band. The oseilator cireuit ($1_{13} L_{3}$ tunes the range of 2050 to 3000 ke . to produce an i.f. of 1500 kc . A type hisis maty be used in the circuit and, of course. (either a 12 SBLF or a 125.17 shoula be used for 12 -volt operation.
llates mast be removed from ('as to provide the required tuning range. The oscillator section of the dual unit is the one having the smatler number of plates, starting at the rear, all rotor plates exepht five should be removed. It isn't neeresary to remove the unased stators. Be very careful to make sure that there are no shorted
plates after the modification is complete.
L_{2} is a forrite-rore loopstick. This roil usually comes with a length of wire attached to the ungrounded end and wound atround the loopstiek. When unwound. the short length of wire is intended to provide additional piekup if needed. Discomere this wire from L_{2} and, without unwinding it, use it for L_{4}.
L_{3} is close-wound with 60 turns No. 30 enamcled, and rither tapped at about one third of the waty up from the ground end. or with a sopatrate mathode coil consisting of about one thited the number of turns on L_{33}. wound over the ground end of L_{a}. and wound in the same direction. The bottom cind of this winding should be grounded.

Power for the converter may be taken from the car radio supply sine the eurent requirement is negligible. With 150 volts at the positive B terminal of the converter. the convertor draws approximately 4 mat and the drop across R_{2} is about 100 volts. The converter will work well at supply voltages up to 350 or more without change in the resistance value of R_{2}. The eurrent drain will, of course, be higher at the higher supply voltages, and the wattage rating of the resistor naty have to be increased. If eurrent dran is an important considaration, the resistance value of R_{2} can be incrased in proportion to the increase in supply voltage.

Fig. 19-43-Circuit of the conelrad converter for mobile use,

488

Fig. 19-44-Block diagram showing a switching system for the conelrad converter. K_{1} represents a spare set of contacts on the change-over relay. S_{1} is a s.p.d.t. toggle. With K_{1} in the receiving position as shown, power from the broadcast receiver may be applied to either the b.c. converter or the ham-band converter. With K_{1} in the transmitting position, power is applied to the broadcast converter for conelrad monitoring during transmitting periods.

The oscillator can be checked for proper frequency range by the use of a grid-dip meter before power is applied or, after power has been turned on, by listening on a communications receiver covering the 2 -to- 3 Mc. range.
Now connect an antenna to the input of the converter and connect the converter to the broadcast receiver. Sct the broadeast receiver at 1500 ke . (or to the frequency normally used with the ham-band converter). Turn on the power and adjust C_{4} and the slug of L_{4} for a peak in noise (if you can't find a signal). Then adjust the slug of \dot{L}_{2} for maximum response.
Fig. 19-44 shows how the converter can be connected into a convenient switch system. (O)riginally described in QST', June, 1957).

Mobile Power Supply

By far the majority of amateur mobile installations depend upon the car storage battery as the source of power. The tube types used in equipment are chosen so that the filaments or heaters may be operated directly from the hattery. Iligh voltage may be obtained from a supply of the vibrator-transformer-rectifier type, a small motor generator or a transistor-transformer-rectifier system operating from the car battery.

Filaments

Because tubes with directly heated cathodes (filament-type tubes) have the advantage that they can be turned off during receiving periods and thereby reduce the average load on the battery, they are preferred by some for transmitter applications. However, the choice of trpes with direct heating is limited and the saving may not always be as great as anticipated, because directly heated tubes may require greater filament power than those of equivalent rating with indirectly heated cathodes. In most cases, the power required for transmitter filaments will be quite small compared to the total power consumed.

Plate Power

Under steady running conditions, the vi-brator-transformer-rectifier system and the motor-generator-type plate supply operate with approximately the same efficiency. However, for the same power, the motor-generator's over-all efficiency may be some what lower because it draws a heavier starting current. On the other hand, the output of the generator requires less filtering and sometimes trouble is experienced in eliminating interference from the vibrator.

Transistor-transformer-rectifier plate supplies currently available operate with an eflicieney of approximately 80 per cent. These compact, light-weight supplies use no moving parts (vibrator or armature) or vacuum tubes, and draw no starting surge carrent. Most transistorized supplies are designed to operate at 12 volts d.e.
and some units deliver 125 watts or more.
Converter units, both in the vilbator and rotating types, are also available. These operate at 6 or 12 volts d.e. and deliver 115 volts a.e. This permits operating standard a.c.-powered equipment in the car. Although these systems have the advantage of flexibility, they are less efficient than the previously mentioned system: because of the additional losses introduced be the transformers used in the equipment.

Mobile Power Considerations

Since the car storage battery is a low-voltage source, this means that the current drawn from the battery for even a moderate amount of power will be large. Therefore, it is important that the resistance of the battery circuit be held to a minimum by the use of heavy conductors and grod solid connections. A heavydaty relay should be used in the line between the battery and the plate-power unit. An ordinary toggle switch, located in any convenient position, may then be used for the power control. A second relay may sometimes be advisable for switching the filaments. If the power unit must be located at some distance from the battery (in the trumk, for instance) the 6 - or 12 -volt cable should be of the heavy military type.

A complete mobile installation may draw 30 to 40 amperes or more from the 6 -volt battery or better than 20 amperes from a 12 -volt battery. This requires a considerably increased demand from the car's battery-charging generator. The voltage-regulator systems on cars of recent years will take care of a moterate increase in demand if the ear is driven fair distances regularly at a speed great enough to insure maximum charging rate. However, if much of the driving is in urban areas at slow speed, or at night, it may be neressary to modify the charging system. Special commu-nications-type generators, such as those used in police-car installations, are designed to charge at a high rate at slow engine speeds. The charging rate of the standard system can be increased within limits by tightening up

19-MOBILE EQUIPMENT

slightly on the voltage-regulator and currentregulator springs. This should be done with caulion, howerer, thecking for exessive generator temperature or albormal sparking at the commutators. The average 6-volt car generator has a rating oll 35 amperes, but it may be perssible to adjust the regulator so that the generator will at least hold evon with the tranmittor, reeciver, lights, eter, all operating at the same time.

If higher transmitter power is used, it may lec nocessary to install an a, chatrging sistem. In this system, the generator delivers a.c. and works into a rectifier. A charging rate of 75 amperes is easily obtained. Commutator trouble often experienced with d.e. generators
at high rurrent is a voided, but the cost of such a sustem is rather high.

Some mobile operators profor to tuse a separate battery for the radio equipment. Surh a system can be arranged with a switch that cuts the auxiliary battery in parallel with the car battory for charging at times when the ear battery is lighty loaded. The auxiliary battery can also be charged at home when not in use.

A tip: many mobile operators make a habit of carrying a pair of heavy cables five or six feet long, fitted with elips to make a connection to the battery of another ear in ease the operator's battery has been allowed to run too far down for starting.

The Automobile Storage Battery

The sucerss of any mobile installation depends to a large extent upon intelligent use and maintonance of the "ares battery.
The storage hattery is made up of units consisting of a pair of coated lead plates immersed in a solution of sulphuric acid and water. Cells, each of which delivers about 2 volts, can be connected in series to obtain the desired battery voltage. A (i-volt battery therefore has three cells, and a 12 -volt hattery has 6 cells. The average stank car battery has a rated capacity of (i)0 to soo watt-hours, regardless of whether it is a 6 -volt or 12 -volt battery.

Specific Gravity and the Hydrometer

As powor is drawn lrom the battery, the acid content of the clectrolvte is reduced. 'The acid content is restored to the edectolyte (meaming that the battory is recharged bey passing a current through the battery in a direction opposite to the direction of the discharge current.

Since the acide content of the eloctrolyte varies with the ehange and diselarge of the battery, it is possibte to detemine the state of charge by masuring the specific gravity of the chectrolyte.

An inexpensive device for checking the s.g. is the hydrometer which can be obtained at any automobile supply store. In checeling the s.g., conough electrolyte is drawn out of the cell and into the hydrometer so that the calibrated bulb, floats inely without leaning against the wall of the glase wine.

While the readings will vary slightly with batterise of difierent manulacture, a reading of 1.275 should indicate full chatge or nearly full charge, while a reading below 1.150 should indicate a battery that is close to the discharge point. Nore specilic values can be obtained from the car or battery deater.

Raadings taken immediately after adding Water, or shortly after a heavy discharge period will not be reliable, becatuse the chertrolyte will not be uniform throughout the cell. Charging will spered up the cutalizing, and some miving can bo done by using the hydrometer to withdraw and return some of the electrolyte to the cell several times.

A battery should not be left in a discharged eondition for any appreciable length of time. This is cspecially important in low temperatures when there is danger of the electrolyte freezing and ruining the batters. I battery discharged to :un s.g. of 1.100 will start to freree at about 20 degrees F., at about 5 degrees when the s.g. is 1.150 and at 16 below when the $\mathrm{s} . \mathrm{g}$. is 1.200 .

If a battery has been run down to the point where it is nearly discharged, it can usually be fast-charged at a battery station. Fast-charging rates may be as high as 80 to 100 amperes for a 6 -volt hattery. Any (j -volt battery that will accept a charge of 75 amperes at $\overline{7} . \overline{5} 5$ volts during the first 3 minutes of charging, or any 12 -volt battery that will aceept a charge of 40 to 45 amperes at $15 . \bar{j}$ volts, may be safely fast-charged up to the point where the gassing becomes so excessive that electrolyte is lost or the temperature rises aloove 125 degrees.

A normal battery showing an s.g, of 1.150 or less may be fast-charged for 1 hour. One showing an s.g. of 1.150 to 1.175 may be fastcharged for to minutes. If the s.g. is 1.175 to 1.200 , fast-charging should be limited to 30 minutes.

Care of the Battery

The battery terminals and mounting frame should te kept free from corrosion. Any corrosive areumulation may be removed by the use of water to which some household ammonia or baking soda has been added, and a stiff-bristle brush. Care shoula be taken to prevent any of the corrosive material from falling into the cells. Cell caps should the rinsed out in the same solution to keep the vent holes free from obstructing dirt. Battery terminals and their cable clamps should be polished bright with a wire brush, and coated with mineral grease.

The hold-down damps and the buttery holder should be checked occosionally to make sure that they are tight so the battery will not be damaged by pounding when the car is in motion.

Voltage Checks

Although the readings of s.g. are quite reliable as a measure of the state of charge of a normal

Mobile Power

battery, the nocossity for frequent use of the hydromotor is an ineonvenience and will not always surve as a fonclusive chere on a defertive battery. Colls may show normal or almost normal s.g. and yot have high internal resistance that ruins the usefulness of the battery under load.

When all colls show satisfactory s.g. readings and yet the battery output is low, service stations cherek each eoll by an instrument that moasures the voltage of eath cell under a heavy load. Unter a heavy load the cedl voltages should not differ be more than 0.15 volt.

A load-voltage test cam also be made by measbring the voltage of each edl while closing the starter switch with the ignition turned off. In many cars it is necessary to pull the central dis-
tributor wire out to prevent the motor starting.

Electrolyte Level

Water is evaporated from the electrolyte, but the ardid is not. Therefore water must be added to each eoll from time to time so that the plates are allwas completely covered. The level should be chorked at least once per work, especially during hot weather and constant operation,

Distilled water is proforred for replenishing, but clear drinking water is an aceeptable substitute. Too much water should not be added, since the gassing that areompanies charging may fore electrolyte out through the vent holes in the caps of the ecols. The cleotrolyte expands with temperature (l'rom QST, August, 1955.)

Emergency and Independent Power Sources

Emergeney power supply which operates independently of a.e. lines is available, or can he built in a number of different forms, depending upon the reguirements of the service for which it is intended.

The most practical supply for the avorage individual amateur is one that operates from a car storage battery. Such a supply may take the form of a small motor genorator (often called a dyamotor), a rotary converter, a vibator-transformer-rectifier combination, or transistor supply.

Dynamotors

A dynamotor differs from a motor generator in that it is a single unit having a double armature winding. One winding sorves for the driving motor, while the output voltage is taken from the other. Dynamotors usually are operated from (6-, $12-$, 28- or 32-volt storage batteries and doliver from 300 to 1000 volts or more at various current ratings.

Sucessfinl operation of dynamotors repuires heavy direct leads, mechanical isolation to roduee vibration, and thorough r.f. and ripple filtration. The shafts and bearings should be thoronghly "run in" before regular operation is attempted, and thereafter the tension of the bearings should be cheeked oceasionally to make certain that no looseness has develoned.

In mounting the dynamotor, the support should be in the form of rubber mounting blocks, or equivalent, to prevent the tramsmission of vibration mechanieally. The trame of the dynamotor should be gromeded through a heavy flexible conuector. The brushes on the high-voltage end of the shaft should be bypassed with 0.002- $\mu \mathrm{f}$. mica capacitors to a common point on the dynamotor frame, prefcrably to a point inside the end cover close to the brush holders. Short leads are essential. It mayprove desirable to shield the entire unit, or even to remove the unit to a distance of three or four feet from the recoiver and antema lead.

When the dymmotor is used for recoiving, a filter should be used similar to that deseribed
for vilorator supplies. A O.OI- μ f. (ion-volt (d.e.) paper cap:acitor should be eommected in shont arross the output of the dymamotor, followed by at 2.5 -mh. r.f. choke in the positive high-voltage lead. From this point the output should be rum to the recoiver power torminals through a smonthing filter using + to 8 - μ f. capacitors and a $15-$ or 30-henry choke having low d.e. resistance.

Vibrator Power Supplies

The vibuator type of power supply consists of a speceial step-up tramsormer combined with a vibrating intorrupter (vibrator). When the unit is comberted to a storage batlery, plate power is obtained by pasing current from the battery through the primary of the transformer. The cireuit is made and reversed rapidiy by the vibrator contacts, interrupting the current at regular intervals to give a changing magnetic fied which induces a voltage in the secondary. The resulting spuarewave d.e. pulses in the primary of the transformor cause an alternating voltage to be developed in the serondary. This high-voltage a.c. in turn is rectifiod, either by a vacumm-tube rectilier or by an additional syuchronized pair of vibuator contacts. The reetified output is pulsating d.c., which may be filtered by ordinary moans. The smoothing filter con be a singlo-section affair, but the output capacitance should be fairly large - 16 to $32 \mu \mathrm{f}$.

Fig. 19-15 shows the two types of circuits. At A is shown the nonsynchronous trpe of vibrator. When the battery is discomerted the reed is midway between the two contacts, touching neither. On elosing the battery eircuit the magnet roil pulls the read into contant with one contant point, causing current to flow through the lower half of the transformer primary winding. Simultaneously, the magnet coil is short-cirenited, deomergizing it. and the red swings back. Inertia carrices the reed intos contact with the upper point, causing current to flow through the upper half of the transformer primary. The magnet coil again is energized, and the cyele repeats itself.

19-MOBILE EQUIPMENT

Fig. 19-45-Basic types of vibrator power-supply circuits. A-Nonsynchronous. B-Synchronous.

The synehronous circuit of Fig. 19-4513 is provided with an extra pair of contacts which rectify the secondary output of the transformer, thus climinating the need for a separate rectifier tube. The secondary center-tap furnishes the positive output terminal when the relative polarities of primary and secondary windings are corred. The proper connections may be determined by experiment.

The buffer eapacitor, ("s. aceross the transformer secondary, absorbs the surges that oceur on breaking the eurrent, when the matnetic field collapses practically instantaneously and henee causes very high voltages to be indured in the serondary. Without this capacitor exerssive sparking oecurs at the vibrator contacts, shortening the vibrator life. Corrent values usatally lie between 0.005 and 0.03 m . , and for 250 -30(0-volt supplies the capacitor should be rated at 1500 to 2000 volts d.e. The exact capacitance is critical, and should be determined experimentally. The optimum valuc is that which results in loast battery eurrent for a given rectified d.e. output from the supply. In practice the value can be determined by observing the degree of vibrator sparking as the capacitance is changed. When the system is operating properly there should be practically no sparking at the vibrator contaets. A 5000 -ohm resistor in series with Ce will limit the secondary current to a safe value should the eapateitor fail.

Vihrator-transformer units are available in a variety of power and voltage ratings. Rapresentative units vary from one delioring 125 to 200 volts at 100 ma . to others that have a foo-volt output rating at 150 ma, Most units rome supplied with "hash" filtors, but not all of them hatve built-in ripple filters. The requirements for ripple filters are similar to those for a.c. supplies. The usual efficieney of vibrator packs is in the vicinity of 70 per cent, so a 300 -volt $200-\mathrm{ma}$. unit will draw approximately 15 ampores from a 6 -volt storage battery. Special vibrator transformers are also available from transormer manufactures so
that the amatcur may build his own supply if he so desires. These have d.c, output ratings varving from 100 volts at 40 mat. to 330 volts at 135 ma .

Vibrator-type supplies are also available for operating standard atc. equipment from a (b- or 12-volt storage battery in power ratings up to 100 watts continuous or 125 watts intermittent.

"Hash"' Elimination

Sparking at the vibrator contacts causes r.f. interference ("hash," which can be distinguished from hum by its harsh, sharper piteh) when used with a receiver. To minimize this, r.f. filters are incorporated. consisting of $R F C_{1}$ and C_{1} in the battery circuit, and $R F C_{2}$ with C_{3} in the d.e. output circuit.
Eefually as important as the hash filter is thorough shiclding of the power supply and its connecting leads, since even a small piece of wire or metal will radiate enough r.f. to cause interference in a sensitive amateur receiver.

The power supply should be built on a metal chassis, with all unshiolded parts undernceth. A bottom plate to complete the shielding is advisable. The transfomer ease, vibrator cover and the metal shell of the tulee all should be grounded to the chassis. If aglass tube is used it should be enelosed in a tuber shieda. The hattery leads should be evenly twisted, since these leads are more likely to radiate hash than any other part of a well-shielded supply. Experimenting with differront values in the hash filters should eome afer radiation from the battery bads hats been reduced to a minimum. Shelding the leads is not often found to be particularly helpful.

UNIVERSAL VIBRATOR POWER SUPPLY

I vibrator-type power supply may be designed to oprate from a stomage battery only, or from either a battery or 115 volts ace. Most late-model cars use 12 -volt battorios, but there are still many cars with (o-volt sistems in operattion - a point that should be given due consideration where emergency operation is an objertive.

The circuit of a universal power supply for emergency. mobile, or home-station use is shown in Pig. 19-16. The unit furnishes a d.e. output of 300 volts at 160 mas. and can be operated from any of the above-mentioned sources. Shifting from one power souree to another is aceomplished by plugging I_{1} or $I^{\prime \prime}$, connerted to the selected source into one of the two chassis ronneretors J_{1} or J_{2}. The vibrator-primary burent is 11.6 amperes with 6-volt imput under loaded conditions, and 6.8 amperes with 12 -volt input.

Heater Connections

To arlapt equipment for optional 6 - or 12 -volt operation, 6 -volt tubes must be used with their heaters in series-parallel. Fig. 19-4 shows a typical example of commertions. The tuhes in the

Fig. 19-46-Circuit of the universal power supply. All capacitances are in $\mu \mathrm{f}$.
C_{1}-Buffer capacitor, tubular plastic.
$\mathrm{C}_{2}, \mathrm{C}_{3}$-Hash-filter copacitor, paper.
C_{4}-Hash-filter capocitor, disk ceramic.
$\mathrm{C}_{5}, \mathrm{C}_{6}$-Ripple-filter copacitor, $5 \mu \mathrm{f}$. or more, 600 -volt oil-filled or electrolytic.
F_{1}-3-amp. cartridge fuse (Littlefuse type 3AG) in extractor-post mounting (Littlefuse 341001).
F_{2}-20-omp. cortridge fuse (Littlefuse type SFE) in in-line fuse retainer (Littlefuse 155020).
I_{1}-Neon pilot lamp.
$\mathrm{J}_{1}, \mathrm{~J}_{2}-12$-contact male chossis connector (Cinch-Jones P-312-AB).
$J_{3}, J_{4}-6$-contact female chassis connector (Cinch-Jones S.306-AB).
L_{1}-5-h. 200-mo. 80-ohm filter chake (Merit C.1396, Stancor C-1411).
$P_{1}, P_{2}-12$-contoct female cable connector (Cinch-Jones S-312-CCT).
$\mathrm{P}_{3}, \mathrm{P}_{1}$-6-contoct male cable connector (Cinch-Jones P-306-CCT).
P_{5}-Cigor-lighter plug (Mallory R-675).
equipment should be divided into two groups whose heater-cument ratings total as closely as posible the same value. The heaters in each group should be conneded in parallel, and the two groups then connerted in serios. If it is impossible to arrive at a grouping that will have exactly the same total current, a resistor may be connected in parallel with the group drawing the smaller eutrent as shown. The value of this resistor should be such that it will draw enough
R_{1}-Buffer resistor.
\mathbf{R}_{2}-Series voltage-dropping resistor for receiver, slider adjustable.
RFC: -30 turns No. 14 enam., $1 / 2$-inch diam., close-wound.
RFC2-1-mh. r.f. choke (National R-300-U, Millen 34106).
S_{1}-S.p.s.t. toggle switch.
S_{2}-S.p.d.t. toggle switch.
S_{3}-S.p.d.t. toggle, or other, of transmitter.
T_{1}-Combination power transformer: 6 -volt d.c. vibrotor or 115 v. o.c. input; 300 volts, 160 mo.; 6.3 volts 3 amp .; 6.3 -volt 4.5 -amp. tap on vibrator primary (Merit P-3176). Numbered terminals are color-coded as follows: 1 -heavy green; 2-yellow; 3-light green; 4-black; 5-brown; 6-blue; 7-white; 8-red; 9-red-yellow; 10-red; 11 and 12-black.
$X_{1}-4$-prong tube socket for 6 -valt vibrator (Mallory 4501 vibratorl.
X_{2}-4-prong tube socket for 12 -valt vibrator (Mallory G4501 vibrator).
(arrent at 6 volts to make up the difference between the two totals. Whe side of one group may begrounded to ehassis but the other side of this gromp and both sides of the second group must he insulated.

Switching Circuits

Battery input comucetions are made through I_{3} which plugs into a cigar-lighter socket in mobile serviere, F_{2} is a finse which is inserted in the

Fig. 19-47-Circuif showing typical seriesparallel heater connections for 6 -volt and $6 / 12$-volf fubes. Re sisfor R_{1} is used when necessary to balance the currents in the two branches as described in the text. The dashed line shows how the switching system connects all tubes in parallel for 6 -volt opera. tion by grounding.
cord between P_{5} and P_{1}.
For (j-volt operation P_{1} is plugged into J_{1}, For 12 -volt operation l_{1}^{\prime} is plugged into, J_{2}. For 115 -volt ance operation P_{2} is plugged into J_{2}.

Positive high-voltage output from the supply is fed to lines 3 on output connectors, J_{3} and J_{4}. The three heater connections are made through lins 1, 2 and 6 . The cable for transmitter plug P_{3} has provision for connecting to a transmitreceive switch $\left(S_{3}\right)$ at the transmitter. In the transmit position the plate voltage is fed to the trausmittor. In the receive position the switch feeds the plate voltage. via l'in 4 , through series voltage-dropping resistor R_{2} to l'in t on the other output jack and thence to the receiver. It will be noticed that the same circuit results with I_{3} and I_{4} in either output jack.

Construction

The unit is constructed on a $7 \times 12 \times 3$-inch chassis, with only the transformer and output conneretors J_{3} and J_{4} above derk. The two rectifier tubes and both vibrators are mounted bolow deck for rompartnoss and shielding. This leaves a clear area on top of the chassis for mounting a receiver or small transmitter. Adequate vontilat tion is provided by patterns of $1 / 4$-inch holes in the top of the chassis, directly over the rectifier tubes, and along the bottom edge of the chassis on both sides.

The pilot lamp, a.ce power switch and filter switch S_{2} can be mounted on the front end of the chassis, with fuse F_{1} and the input jarcks at the other end. Shielding should be completed with a chassis bottom plate.

Operation

Although the eireuit is arranged so that no damage will oreur if a mistake is made, the imput comoctors should be plainly marked to avoid plugging a cable into the wrong sorket.

Original deseription appeared in QST', Oet., 1957.)

- TRANSISTOR POWER SUPPLIES

A mobile or portable power supply using transistors has high over-all efficiency at its
rated power output. Since there are no moving parts there are few maintenance problems. Cat pacitors and resistors may oecasionally need replacement, but if the transistors are operated within their clectrical and thermal ratings, their life expertancy is in terms of years rather than hours.

In a transistor power supply, the transistors operate as electronie switchos to interrupt the d.e. through the primary of the power transformer much like the morehanical vibrator dors in a vibrator supply.

When voltage is applied to the power supply circuit, current will flow through the transistors: however, sinee no two transistors are procisely alike electrically, initially one will condurt a little more current than the other. This differcure current or "starting" current will cause a small voltage to be induced in the transformer winding connected to the bases of the transistors. The polarity is such that the conducting transistor is biased to ronduct even more heavily while the base of the other transistor is biased to cutoff. This provess continues until the increasing curront causes magnotic saturation of the transformer core, at which time the induced voltage drops to zero and there is no longer enough base bias to maintain the collertor aurent. When this happens the current decreasos, causing an induced voltage of opposite polarity. The prosers then reverses so that the previously noneondueting transistor starts to condurt and the previously ronducting transistor beromes cut off. The result is an alternating current of squarewave form through the transformer primary. This in turn induces a stepped-up) voltage in the h.v. serondary of the transformer.

The transistor supply is self-protecting against overload berause if a short cirenit or heave overlowd occurs oscillations cease and the input current drops to a low value. The output voltage regulation is extremely good making the transistor supply esperially useful as a souree of plate or sereen power for a singlesideband mobile or portable rig.
Transistor power transformers are availathle in both conventional and torodal construction, with outputs ranging up to 150 watts. The eireuit shown in Fig. 19-48, a typical transistor power supply, has an output of about 350 volts at 190 ma. It uses eight selenium rectifiors in a bridge cireut but four silicon-type power diodes having an inverse peak voltage rating of 800 volts or more could be sulstituted with a substantial saving in space. The center-tapped serondary of T_{1} provides a half-voltage source that may be used simultancously with the high voltage.

In a transistor power supply eircuit that has not been properly designed, small spikes may appear on the leading edges of the square wave generated in the transistor power oscillator. Even though the spikes are of short duration they can cause punch-through of the transistor junction if the total voltage execols the transistor collertor-to-emitter rating. The amplitudes

Fig. 19.48-Circuit of the transistor power supply. Resistances are in ohms.
$\mathrm{C}_{1}-2000 \quad \mu \mathrm{f} . \mathrm{r}, 15$ volts 12 paralleled $1000 \mu \mathrm{f}$. electrolytics, Sprague TVA 1 163).
$C R_{1}$ through $C R_{s}-150$ ma. selenium rectifier (Radio Receptor 5P1).
F_{1} - 10 - amp. fuse.
$Q_{1}, Q_{2}-2 N 278$ transistors.
T_{1}-Transistor power trans-
former \{ Sunair Electronics type 14-450-1).

of these spikes can be hold to a safe value if the primary and serondary roils on the power transformer are tightly eoupled (bifilar wound) and a large capacitor (C_{1} in lig. 19)-48) is connerted aeross the low voltage supply.

It is very important to provide good heat transfer from the monting bases of the transistors to the chassis. The transistor junction temprature must not be allowed to exened the manufacturer's ratings or thermal rumaway will oceur and the transistors will berome useless. Lavout of the parts is not critical. A conventional box type chassis may be used: the larger the surfare area the better, since that moans more rapid heat transfer from the transistors.

Siner hoat is the prime limiting factor in transistor power supply operation, platement of the unit in the car should have special consideration. Try to find a loration away from hightempreature spots and in a well-ventilated area.

- GASOLINE-ENGINE DRIVEN GENERATORS

For higher-power installations, such as for communications control centers during emergencies, the most practical form of independent power supply is the gasoline-engine driven generator which provides standard 115-volt 60-ryole supply.
such gencrators are ordinarily rated at a minimum of 250 or 300 watts. They are available up to ten kilowatts, or big enough to hamdle the highest-power amateur rig. Most are arranged to charge automatically an auxiliary 6- or 12 -volt battery used in starting. litted with self-starters and adequate mufllers and filters, they represent a high order of performance and efliciency. Many of the larger models are liquid-cooled, and they will operate
continuously at full load.
The output frequency of an engine-driven generator must fall bitween the relatively narrow limits of 50 to 60 cyeles if standard $60-\mathrm{cyc} \mathrm{le}$ transformers are to operate efficiently from this source. A 60 -eyele electric clock provides a means of checking the output frequency with a fair degree of accuracy. The clock is connected across the output of the generator and the second hand is checked closely against the second hand of a watch. The speed of the engine is adjusted until the two second hands are in synchronism.

Output voltage should be checked with a voltmetor since a standard 115 -volt lamp bulb, which is sometimes used for this purpose, is very inaccurate.

Noise Elimination

Electrical noise which may interfere with receivers operating from engine-driven a.c, generators may be reduced or eliminated by taking proper precautions. The most important point is that of grounding the frame of the generator and one side of the output. The ground lead should be short to be effective, otherwise grounding may actually increase the noise. A water pipe may be used if a short connection can be made near the point where the pipe enters the ground, otherwise a good separate ground should te provided.

The next step is to loosen the brush-holder locks and slowly shift the position of the brushes whike cheeking for noise with the receiver. Usually a point will be found (almost always different from the factory setting) where there is a marked decrease in noise.

From this point on, if necessary, bypass capacitors from various brush holders to the frame, as shown in lig. 19-49, will bring the hash down to within 10 to 15 per cent of its

TABLE 19-III Servicre life of some typical zinc-rarbon rells and batterins					
Cell or Batters	As.t (ell size	Continuons servire		t hours per day sorviere	
		miat	hrs.	ma.	lirs.
1.5) v. pen light erdl	A.	30	$1 \ddagger$	$20)$	33
1.5 . flawh light aell	11	16i)	9	130	21
1.5 \times, ignition erll	46		43	500	80
		18		17	11
B-hattery	1840 170	19	1.7	17	24
		20	3.\%	24	47

original intensity, if not entirely climinating it. Most of the remaining noise will be reduced still further if the high-power audio stages are cut out and a pair of headphones is conneeted into the second detector.

Fig. 19-49-Connections used for eliminating interference from gas-driven generator plants. C should be $1 \mu f$., 300 volts, paper, while C_{2} may be $1 \mu f$. with a voltage rating of twice the d.c. output voltage delivered by the generator. X indicates an added connection between the slip ring on the grounded side of the line and the generator frame.

POWER FOR PORTABLES

Dry Cell Batteries
Dry-coll batterios are a practical sombere of power for supplying portables or ergipment which must be transported on foot. However, they are costly and have limited current capai-
bility. The zinc-arbon erells lone their power even when bot in use, if allowed to stand idle for pertiods of a suat or more. This makes them umeronomical if not used more or hess contimuously:

The merrery rell has a much higher ratio of ampere-hour rapacity to volume at higher canrent densitios that are obtainable from the conventional dry ede. Mercury hatterios are well suitad for cmorgeney portable operation even after many months of storage.

Trpieal service life data for several trees of zinc-rarbon cells and battorics is given in Table 19-III. The figures show length of servier time before the erell torminal voltage drops to 1.0 volt (in 13-hatterios, when individual eedls reach 1.0 volt).

Moremer batteries and cells are availathle in several sizes and shapes. Some may be operated at current drains up in the ampere range and others are available in potentials in the hondereds of volts. A typical 1.3 ob-volt mereory redl measuring only $21 / 4 \times 21 / 4 \times 23 / 4$ inches, has a capacity of 43 ampere hours (maximm, (ourent 3 amperes). Cells of this type would be useful for filament or heater applieations. I reperentative mereury li-hattery has a voltage of 67.5 volts and a capacity of 3.6 ampere hours (maximum murront 250 ma .). It measures about $33^{3} \times 1 \frac{1}{2} \times 101 / 6$ inches.

Construction Practices

TOOLS AND MATERIALS

While an easier, and porlaps a better, joh can be done with a greater variety of tools available, by taking a little thought and (are it is possible to turn out a fine piece of equipment with only a fow of the common hand tools. A list of tools which will be indispensable in the eonstruction of radio, equipment will be found on this page. With these tools it should be possible to perform any of the reguired operations in preparing

INDISPENSABLE TOOLS

Long-mose niers, 6-inhth.

Wiagonal cuttine pliers, 6-inch.
Wire stripuer.
Serewtriver, 6-to 7 -inch, 1 -inel hade.
Screwdriver, 1 - to 5 -inch, $1 / 8$-inch hade.
Scratel awl or scriber for marking linea
('ombination square, 12-ind for laving out work.
liand drill, $\frac{1}{4}$-inch chuck or larger, 2 -speed tym preferable.
Electric soldering iron, 100 watts, $1 / 4$-in. tip.
Hack saw, 12-inch blades,
('enter puich for marking hole centers.
Hammer, hall-peen, 1-lb. head.
Heary krife.
Yardstick or other straightedge.
('arponter's brace with adjustable hole entter or soeket-hole punehes (see text),
Large, coarse, flat file.
Iarge round or rat-tail fle, $1 / 2$-inel diameter.
Three or four small and meditum filcs-flat, round, half-round, triangular.
Drills, particularly $1 / 4$-inch and Nos. 18, 28, 33,42 and 50.
Combination oil stone for sharpening tools.
Solder and soldering paste (noncorroding).
Medium-weight machine oil.

ADDITIONAL TOOLS

Bench vise, 4 -inch jaws.

T'in shears, 10 -inch, for cutting thin sheet metal. 'I'aper reamer, $1 / 2$-inch, for enlarging small holes.
Taper reaner, 1 -ineh, for enlarging holus.
Countersink for brace.
Carpenter's plane, 8- to 12-ineh, for woodworking. Carpenter's saw, crosscut.
Motor-driven emery whed for grinding.
Long-shank s.rewdriver with serew-holding clip for tight places.
Set of "Syintite" socket wrenches for hex nuts. Sot of small. flat, opremel wrenches for hex nuts. Wood chisel, $1 / 2$-ineh.
Cold (hisel, $1 / 2$-ituch.
Wing dividurs, \&-ineh, for scribing rireles.
Sot of nachine-serew taps and dies.
Donsting lurusin
Sueket punches, esp. $5 / 8^{\prime \prime}$. $8 / /^{\prime \prime}$, $11 / 8^{\prime \prime}$ and 11/4".
panels and metal chassis for assembly and wiring. It is an excellent idea for the amatome who dons constructional work to add to his supply of tools from time to time as finaboers permit.

Several of the pieces of light woodworking machinery, often sold in hardware stores and mat-order retail stores, are ideal for amateur radio work, esperislly the drill press, grinding head, band and circular saws, and joiner. Although not essential, they are desirable should you be in a position to acquire them.

Twist Drills

Twist drills are made of either high-speed steel or carbon steed. The latter type is more common and will twally be supplied unless specifie request is made for high-speed drills. The carbon drill will suffice for most ordinary cquipment construetion work and costs less than the high-speed type.

While twist drills are available in a number of sizes those listed in bold-faced tybe in Table 20-I will be most commonly used in construetion of amateur equipment. It is usually desirable to purehase several of each of the commonly used sizes rather than a standard set, most of which will be used infrequently if at all.

Care of Tools

The proper care of tools is not alone a matter of pride to a good workman. IIe also realizes the energy which may be saved and the annoyance which may be avoided by the possession of a full kit of well-kept sharp-edged tools.

Drills should be sharpened at frequent intervals so that grinding is kept at a minimum each time. This makes it casier to maintain the rather critionl surface angles required for best cutting with least wear. Occasiomal bilstoning of the cutting edges of a drill or reamer will extend the time betweng grindings.

The soldering iron can be kept in good condition by kepping the tip well tinned with solder and not allowing it tor rum at full voltage for long periods when it is not being used. After each period of use, the tip should be removed and cleaned of any seale which may have accumulated. An oxidized tip may be cleaned by dipping it in sal ammoniate while

20-CONSTRUCTION PRACTICES

loot and then wiping it clean with a rag. If the tip becomes pitted it should he filed until smooth and hright, and then timed immodiately by dipping it in sodder.

Useful Materials

Smatl stocks of various miserellaneous materials will be reduired in constructing radio apparatus, most of which are avaibable from hardware or radio-supply stores. A representative list follows:

Shere aluminum, solid and perforated, if or 18 gatuge, for brackets and shiolding.
在 \times-inch aluminum angle stork.
1/4-inch diameter round bats or aluminum rod for shaft extensions.
Marhine serews: Round-head and flat-lead, with nuts to fit. Most useful sizes: $4-36$, ($6-32$ and 8-32, in lengths from $1 / 1$ ineh to 196 inches. (Nickel-phated iron will be found satisfactory excent in strong r.f. fields, where brass should be used.)
Bathelite, lucite and polystyrene suraps.
Soldering lugs, pablel bearings, rubber grommots, terminal-lug wiring strips, var-nished-rambrie insulating tubing.
Shiclded and unshiched wire.
'Tinned have wire, Nos. 22, 14 : mad 12.
Machine screws, mats, washers, soldering lugs, ete, are most reasonably purchased in quantities of a groes.

CHASSIS WORKING

With a few essential tools and proper procedure, it will be found that building radio gear on a metal ehassis is no more of a chore than building with wood, and a more satisfactory job results. Aluminum is to be proferred to sterel, not only berames it is a suprerior shielding material, but because it is much rasior to work and to provide good chassis contads.

The placing of eompoments on the chassis is shown quite rlearly in the photographs in this /landbook. Aside from certain essential dimensions, which usually are givenin the text, exart duplication is mot neressary.

Much troubla and chorgy an be saved by spending sullicifent time in platming the joh. When all details are worked out beforehand

Fig. 20-1 - Method of measuring the heights of copocitor shofts, etc. If the square is adjustable, the end af the scale should be sef flush with the foce of the head.

TABLE 20-1			
Number	Diameter (mils)	H'ill lemar sirro	Drilled for Tapming Iron. Nitol lar Brass*
1	288.0	-	-
2	231.0	12-21	-
3	218.0	-	14-24
4	209.0	12-20	-
5	20.5 .0	-	-
6	201.0	-	-
7	201.0	-	-
8	1:90.0	-	-
9	1:\%.0	-	-
10	193.8	10-3:	-
11	191.0	10-24	-
12	181.0	-	-
13	185.0	-	-
14	182.0	-	-
15	180.0	-	-
16	177.0	-	$12-24$
17	173.0	-	-
18	169.5	8-32	-
19	1668.0		12-20
20	161.0	-	-
21	159.0	-	10-32
22	1.87 .0	-	
23	154.0	-	-
$\because 4$	1.52 .0	-	-
易	114.5	-	10-24
20	117.0	-	-
27	14.0	-	-
28	140.0	6-32	-
29	136.0	-	8-32
30	128.5	-	-
31	120.0	-	-
32	116.0	-	-
33	113.0	4-36, 4-40	-
34	111.0	-	-
35	110.0	-	6-32
36	106. ${ }^{3}$	-	-
37	101.0	-	-
38	111. 5	-	-
39	090. 5	3-48	-
40	(198.0	-	-
41	096.0	-	-
42	093.5	-	4-36, 4-40
43	089.0	2-56	-
44	0818.0	-	-
45	083.01	-	3-48
46	081.0	-	-
47	178.5	-	-
48	136,0	-	-
49	(173.0)	-	$2-56$
50	070.0	-	-
51	0617.0	-	-
52	OMi3.	-	-
53	0) 095	-	-
54	0.nio 0	-	-
*Use rubber.	xizu Jatmor	r tapping bat	elite amd hard

the actual construction is greatly simplified.
Cover the top of the chassis with a piece of wrapping paper or, preferably. cross-section paper, folding the edges down over the sides of the chassis and fastening with adhesive tape. Then assemble the parts to be mounted on top of the chassis and move them about until a satisfactory arrangement has bern found, keeping in mind any parts which are to be mounted underneath, so that interferences in mounting may be aroded. Plane rapacions and other parts with shafts extending through the panel first, and arrange them so that the controls will

Metal Work

form the desired pattern on the panel. Be sure to line up the shafts squarely with the chassis front. Locate any partition shields and panel brackets next, and then the tube sockets and any other parts, marking the mounting-hole centers of each accurately on the paper. Watch out for capacitors whose shafts are off conter and do not line up with the mounting holes. I) o not forget to mark the eenters of socket holes and holes for leads under i.f. transformers. ete., as well as holes for wiring loads. The small holes for socket-mounting sorews are best located and center-punched, using the sorket itself as a template, after the main center hole haw beren eut.

By means of the square lines indieating accurately the centers of shafts should be extended to the front of the rhassis and marked on the panel at the chassis line, the panel being fastened on temporarily. The hole centers may then be punched in the chassis with the center punch. After drilling. the parts which require mounting underneath may be located and the mometing holes drilled, making sure by trial that no interferenes exist with parts mounted on top. Mounting holes along the front edge

Fig. 20-2-To cut rectangular holes in a chassis corner, holes may be filed out as shown in the shaded portion of B, making it possible to start the hack-saw blade along the cutting line. A shows how a single-ended handle may be constructed for a hack-saw blade.
of the chassis should be transferred to the panel, by once again fastening the panel to the chassis and marking it from the rear.

Next, monnt on the chassis the capacitors and any other parts with shafts extending to the panel, and measure accurately the height of the echter of each shat above the chassis. as illustrated in lïg. 20-1. The horizontal displacement of shafts having already been marked on the chassis line on the panel, the vertical disphacemont can be measured from this line. The shaft centers may now be marked on the back of the panel, and the holes drilled. Holes for any other panel equipment coming above the chassis lime may then be marked and drilled, and the remainder of the apparatus mounted. Holes for terminals ete., in the rear edge of the chassis should be marked and drilled at the same time that they are done for the top,

Drilling and Cutting Holes

When drilling holes in metal with a hand drill it is important that the conters first be located with a renter punch, so that the drill point will not "walk" away from the center when starting the hole. When the drill starts to break through, special are must be used, Often it is an adrantage to shift a two-speed drill to low gear at this point. Holes more than $1 / 4$ inch in diameter may be started with a smallerdrill and reamed ont with the largerdrill.

The chuck on the usual type of hand drill is limited to $1 / 4$-inch drills. Although it is rather tedious, the $1 / 4$-inch hole may be filed out to langer diameters with round files. Another mothod possible with limited tools is to drill a series of small holes with the hand drill along the inside of the diameter of the large hole, placing the holes as close together as possible. The center may then be knocked out with a cold chisel and the edges smoothed up with a file. Taper reamers which fit into the carpenter's brace will make the jub easier. Alarge rattail file champed in the brace makes a very good reamer for holes up to the diameter of the file, if the file is revolved counterelowkwise.

For socket holes and other large round holes, an adjustable cutter designed for the purpose may be used in the brace. Oceasional application of machine oil in the ratting groove will help. The cutter first should be tried out on a block of wood, to make sure that it is set for the correct diameter. The most convenient device for cutting socket holes is the socket-hole punch. The bost type is that which works by turning a take-up serew with a wreneh.

The burrs or rough edges which usually result after drilling or cutting holes may he removed with a file, or sometimes more eonveniently with a sharp knife or chisel. It is a good idea to keep an old wood chisel sharpened and available for this purpose.

Rectangular Holes

Square or rectangular holes may be cut out by making a row of small holes as previously described, but is more casily done by drilling a 3_{2}-inch hole inside each corner, as illustrated in Figg. 20-2, and using these holes for starting and turning the hark saw. The sockethole punch and the stuare punches which are now available also may be of considerable assistance in cutting out large rectangular openings.

- CONSTRUCTION NOTES

If a control shaft must be extended or insulated, a flexible shaft coupling with adequate insulation should be used. Satisfactory support for the shaft extension can be provided by means of a metal panel bearing made for the purpose. Never use pancl bearings of the nonmetal type undess the capacitor shaft is grounded. The melal bearing should be connected to the chassis with a wire or grounding strip.

20-CONSTRUCTION PRACTICES

This prevents any possible danger of shork.
The use of fiber washers betwern eremmic insulation and metal brackets. serews or muts will prevent the coramic parts from breaking.

STANDARD METAL GAUGES			
Gange No.	$\begin{aligned} & \text { A merican } \\ & \text { or } B .+S,{ }^{1} \end{aligned}$	I'S. Niandard ${ }^{2}$	Birmingham or Slubs ${ }^{3}$
1	.280.3	$\because 8125$. 300
2	.2.720	. 26.2085	284
3	.2093	.2.)	.259
4	. 2043	. 231375	. 238
5	. 1819	.2187.7	.220
6	.16i20	$\therefore 03185$.203
7	.1443	.187\%	. 180
8	,1085	.17187\%	.165
9	.1144	.10425	. 148
10	.1019	. 1.40608	.131
11	.09074	.125	.120)
12	.08081	. 1040375	.10:
13	. 071196	.090375	. 09.5
1.4	. Midos	. 07×180	.08:3
1.7	. 0.5707	.0703125	. 072
16	.05082	. 060	. 066
17		.0.70.9	. 0.58
18	.04030	.0.i	. 014
19	.03.88!	. 018375	. 1042
20	. 03146	. 0337	.03:7
91	. 102810	.0.3437	.1032
22	. 12.3 .38.$)$.0312.7	. 028
23	. 02.2 .77	. 02812.5	. 12.5
21	. 02010	. 025	(1023
25	.017!0)	. 021878	. 020
26	. 01594	. 0187 \%	. 018
27	. 01120	. 017187.7	. 016
28	. 01213	. 01.0180	. 014
29	. 01126	. 0140102 C	. 0113
30	. 0101013	.012-9	. 012
31	. 0088928	. 010937	. 010
32	.007450	.0101562\%	. 009
33	.007080	.000:375	. 008
3	.0063.10	.008-9,37.	. 0007
35	.003tila	.007812.5	. 005
36	.00.5000	.0070312\%	. 004
37	. 001453	. Onticitorich	. . .
38	.003世云	. 00062.7	
$3!$. 0003.3 .31	
40	(0)13115	-	
${ }^{1}$ l'sed for aluminum, copper brass and nonferrous alloy sheets, wire and rods. 2 l'sed for irom. strel. nirkel and ferrous alloy sheets. wire and roxis. ${ }^{3}$ l'sed for stamhess tubers; alsu by some mantafactarars for copurer and brass.			

Cutting and Bending Sheet Metal

If a sheet of metal is ton large to be cut conveniently with a hack saw, it may be marked with seratehes as deep as posibible along the line of the eut on both sides of the sheet and then clamped in a vise and worked back and forth until the sheet breaks at the line. Do not carry the bending too far until the break hegins to weaken; otherwise the edge of the sheet may become bent. A pait of iron bats or pieces of heaty angle stock, as long or longer than the width of the shect, to hold it in the vise will make the job easier. " (""-clamps may be used to keep the bars from spreading at the
ands. The rough edges may be smoothed up with a file or by placing a large piece of emery doth or sandpaper on a flat surface and rumning the edge of the metal back and forth over the sheet.

Bends maty be made similarly. The sheet should be seratehed on both sides, but not so deeply as to catuse it to hreak.

Finishing Aluminum

Aluminum (hassis, pancls and parts may be given a sheen finish by treating them in a caustic bath. An chamelled container, suth as a dishpan or infant's bathtub, should be used for the solution. Dissolve ordinary household lye in eold Water in a proportion of $1 / \frac{1}{4}$ to ! 2 can of lye per gallom of water. The stronger solution will do the job more rapitly. Stir the solution with a stick of wood until the lye erystals are eomplete dissolved. Be very careful to atood any skin contant with the solution. It is also harmful to clothing. Sufficiont solution should be prepared to cover the piece completely. When the aluminum is immorsed, a very promonerd bubbling takes pare and ventilation should be provided to disperse the "seaping gits. A hailf hour to two hours in the solution shoudd be sufticiont, depending upon the strength of the solution and the desired surfiace.
lamove the aluminum from the solution with sticks and rinse thoroughly in oold water while swabling with a rag tormove the Wark deposit. Then wipe off with a rag soaked in vineerar to remove any stubhom stans or fingrorints. (Nee May, $1050,0 S T$, for a method of coloring and anodizing aluminum.)

Soldering

The secret of good soldering is in allowing time for the joint, as well as the solder, to attain suifieiont temperature. bimugh heat should be applied so that the solder will melt when it eomes in eontart with the wires being joined, without tourching the solder to the iron. Always use rosin-core solder, never arjedeore. Exerpt where absolutely neressary, solder should never be dependerl upon for the meremiacel strengeth of the joint; the wire should be wrapped around the tommals or elamped with soddering terminals.

When soldering erystal diodes or earhon re-

Soldering

Fig. 20-3-Cable-stripping dimensions for Jones Type P- 101 plugs. Smaller dimensions are for $1 / 4$-inch plugs, the larger dimensions for $1 / 2$-inch plugs. As indicated in C, the remaining copper braid is wound with bare or tinned wire and then tinned, to make a snug fit in the sleeve of the plug. Hold a hot iron to the sleeve after the cable is inserted to solder the sleeve to the braid.
sistors in place, experially if the leads have heen rut short and the resistor is of the small $\frac{2}{}$-wat si\%e, the resistor lead should be gripped with a pair of pliers up dose to the resistor so that the heat will be comelucted away from the resistor. (Werheating of the resistor while soldering can catuse a permanont resistance change of as much as 20 per erent. Also, merhamidal stress will have a similar effect, so that a small resistor should be momeded so that there is now apprectiable merehanceal stran on the leads.

Trouble is sometimes experioned in soldering to the pins of coil-forms or male cablo phage. It helps first to tin the inside of the pins ber applying soldering paste to the hole, and then flowing soleder into the pin. Then immediately clear the sulder from the hot pin by a whipping motion or by blowing through the pin from the inside of the form or plug. Before inserting the wire in the pin, file the niekedplate from the tip. After soldering, round the solder tip) off with a tile.

When soldering to somets, it is a good idea to have the tube or coil form inserted to prevent solder ruming down into the socket prongs. It

Fig, 20-4-Dimensions for stripping $1 / 2$-inch cable to fit Amphenol Type 83-1 SP (PL-259) plug.

Fig. 20-5-Method of assembling $1 / 4$-inch cable, Amphenol Type 83-1 SP (PL-259) plug and adapter.
also helps fo conduct the heat away when soldering to polystyreme sockets, which often soften under the heat of the iron.

Wiring

The wire used in eonnecting up amateur equipment should be solected ronsidering both the maximum curvent it will he called upon to hamdle and the voltage its insulation must stand without breakdown. Also, from the consideration of TVI, the power wiring of all transmittors should be done with wire that hats: blataded shelding cover. Recriver and ablio cireuits maty also reguire the use of shiolded wire at some points for stability, or the edimination of hum.

No. 20 stranded wire is commonly used for most receiver wiring (exrent for the high-

Fig. 20-6-Stripping dimensions for Amphenol 82-830 and 82-832 plug-in connectors. The longer exposed braid is for the first type.

Fig. 20.7-Methods of locing cobles. The method shown at C is more secure, but tokes more time thon the method of B. The lotter is usually adequate for most amoteur requirements.
freduency (ircuits) where the current does not exeed 2 or 3 amperes. For higher-current heater rireuits, No. 18 is available. Wire with rellulose aretate insulation is good for voltages up to about 500 . For highor voltages, thermophastic-insulated wire should be used. Inexpensive wire strippers that make the removal of insulation from hook-up wire and casy joh are available on the market.
In cases where power lats have several branches in the chassis, it is convenient to use fiber-insulated tie points or "lug strips" as anchorages or junction points. Strips of this type are also useful as insulated suphorts for resistors, r.f. chokes and (alpatcitors. High-voltage wiring should have exposed points held to a minimum, and those which ramot be avoided should the rendered as inacressible as possible to acecidental contart or short-circuit.

Where shielded wire is called for and caparitince to ground is not a factor, Belden type 8885 shioded grid wire maty be used. If capacitance must be minimized, it may be neressary to use a piere of car-radio low-raparitance lead-in wire, or coaxial cable.

For wiring ligh-frequencre circuits, rigid wire is often used. Bare soft-drawn tinned wire, sizes 22 to 12 (depending on mechanical requirements), is suitable. Kinks ean be removed by stretching a piece 10 or 15 feet long and then cutting into short lengths that can he handed conveniently. 1R.f. wiring should be run directly from point to point with a minimum of sharp bends and the wire kept well spated from the chassis or other grounded motal surfices. Where the wiring must pass through the chassis or a partition, a clearance hole should be eut and lined with a rubber grommet. In cuse insulation becomes neressary, varnished cambric tubing (spaghetti) ean be slipped over the wire.

In transmitters where the pak voltage does not exceed 2500 volts, the shielded grid wire mentioned above should be satisfactory for power rimuits. For higher voltages, Belden type 8050 , Birnbath type 1820 , or shiedded ignition cable can be used. In the case of filament circuits earrying heavy current, it may be necessary to use No. 10 or 12 bare or enameled wire, slipped through spatghetti, and then covered with copper braid pulled tightly over the spaghetti. The chapter on 'TV'l shows the manner in which shied ded wire should be applied. If the shiedding is simply slid batek ower the insulation and solder flowed into the end of the braid, the braid usuatly will stay in plawe without the neressity for cutting it back or binding it in place. The brad should be burnished with sumpauer or a knife so that solder will take with a minimum of heat to protect the insulation underneath.
R.f. wiring in transmitters usually follows the method described above for receivers with due respert to the voltages involved.
l'ower and control wing external to the transmitter chassis preferably should be of shiedded wire bound into a cable. Fig. 20-7 shows the correct methods of laceing cables.

To give a "rommercial look" to the wiring of any unit, run any cabled leads along the edge of the chassis, If this isn't possible, the eabled leads should then run parallel to an edge of the chassis. Further, the generous use of bakelite tie points (mounted parallel to an edge of the (hassis), for the support of one or both ends of a resistor or fixed caparitor, will add to the apperarance of the finished unit. In a similar manmer, "dress" the small components so that they are parallel to the panel or sides of the chatssis.

Winding Coils

Clowewound coils are reatily wound on the specified form by anchoring one and of a length of wire (in a vise or to a doorknob) and the other end to the eoil form. Straighten any kinks in the wire and then pull to keep the wire undor slight tension. Wind the coil to the reduired number of turns while walking toward the anchor, always maintaining the slight tension on the wire.

To space-wind the coil, wind the coil simultaneously with a suitable spacing medium (heavy thread, string or wire) in the manner deseribed above. When the winding is complete, secure the end of the coil to the roil-torm terminal and then rarefully unwind the spacing material. If the coil is womd under suitable tension, the spacing material can be easily removed without disturl)ing the winding, finish the space-wound eoil by judicious applications of Duco eement, to hold the turns in place.

COMPONENT VALUES

Values of eomposition resistors and small (aparitors (mira and reramie) are specified throughout this IFandbook in terms of "preferred values." In the preferred-mumber sys-

Stan	ABLE 20 Compone	alues
$\begin{gathered} 20 \% \\ \text { Tonfrance } \end{gathered}$	$\begin{gathered} 10 \mathrm{C} \\ \text { T., eranef } \end{gathered}$	$\begin{gathered} 5 \% \\ \text { Tilmrance } \\ \hline \end{gathered}$
10	111	111
	12	12
		13
15	15	1.7
		110
	18	1s
		211
22	22	?
		21
	27	27
		311
33	33	:3
		36
	39	3:4
		43
47	47	4
		: ${ }^{1}$
	50	56
		(i)2
68	68	68
		75
	82	82
		91
100	100	100

tem, all values represent (approximately) a constant-pereentage increase over the next lower value. The base of the system is the number 10. Only two significant figures are used. Table 20-11 shows the preferred values hased on tolerance steps of 20,10 and 5 per cont. All other values are expressed by maltiplying or dividing the base figures given in the table by the appropriate power of 10 . (For example, resistor values of 33,000 ohms, 6800 ohms, and 150 ohms are obtained by multiplying the hase figures by 1000, 100, and 10 , respectively.)
"Tolerance" means that a variation of plus or minus the perentage given is considered satisfactory. For example, the athat resistance of a " 7700 -ohm" 20 -per-cent resistor can lie anywhere between 3700 and 5000 ohms, approximately. The permissible variation in the same resistance value with 5-per-cent tolerance would be in the range from 4500 to 4000 ohms, approximately.

Only those values shown in the first column of Table 20-11 are available in 20-per-cent tolerance. Additional values, as shown in the second column, are available in 10-perecent folerance; still more values catn be obtained in o-per-cent tolerancer.

In the component sperifications in this Ilambook, it is to be understood that when no tolerance is specified the largest tolerance available in that value will be satisfactory.

Values that do not fit into the preferrednumber system (such as $500,25,000$, ete.) easily can be substituted. It is obvious, for example, that a 5000 -ohm resistor falls well within the tolerance range of the 4700 -ohm 20-per-cent resistor used in the example above.

It would not, however, be usable if the toleranee were specified as $\overline{3}$ per cent.

COLOR CODES

Standardized color codes are used to mark values on small components such as composition resistors and miest rapaeitors, and to identify leads from transformers, ete. The resistor-rapacitor number color code is given in 'lable 20-III.

Fired Capacitors

The methods of marking "postage-stamp" mica rapacitors, molded paper capacitors, and tubular ceramir capatitors are shown in 1.ig. 20-8. Capacitors made to American War Ntandards or Joint Army-Navy sperifieations

Fig. 20-8-Color coding of fixed mica, molded paper and tubular ceramic capacitors. The color code for mica and molded paper capacitors is given in Table 20-1II. Table 20-IV gives the color code for tubular seramic capacitors.

20-CONSTRUCTION PRACTICES

are marked with the 6 - elot code shown at the top. Practically all surphus rapacitors are in this category. The 3 -dot EIA code is used for rapacitors having a rating of 500 volts and $\pm 20 \%$ tolerance only; other ratings and toldaneses are eovered hy the fi-dot EiA rode.

Jixambes: I capacioor with a di-dot code has
the following markings: Top row, left to right. the following markings: Top row, left to right. black, sullow, riolet; bottom row, right to left, brown, silver, red. Nince the first color in the top row is black (signifieant figure zero) this is the AWs rode and the capacitor has mica dielectric. The significant figures are 4 and 7 , the derimal maltiplier 10) (brown, at right of second row), so the capacitance is $-470 \quad \mu \mu \mathrm{f}$. The tolerance is ± 10 \%/ 'I'he final color. the charateristic, deals with tumporature coodlieients and methods of testing (sien 'Tahle 20-V on grace 50.5).

A capacitor with a 3 -dot conde has the following colors, left to right: brown, black, red. I'he significant figures are 1,0 (10) and the multiplier is 100 . The eaparitanee is therefore $1000 \mu \mu \mathrm{f}$.
A cagaseitor with a fodot eode has the following markings: 'loup row, loft to right, brown, black, batk; botton row, risht to left, black, gold. blae. Since the first color in the top row is neither !hack nor silver, this is the LIA eode. The significant figures are 1.0.0 (100) and the decimal multinlior is I (black). The capmeitanec is therefore $100 \mu \mu$. 'The gold dot shows that the tolerance is $\pm 5 \%$ and the blue dot indicates (600-volt rating.

Ceramic Capacitors

Convontiomal matkings for remmic raparitors are shewn in the lower drawing of lig. 20-8. The colors have the meanings indicated in Table 20-IV. In patetiere, dets may be used instrad of the narrow bands indiated in lig. 20-8.

Example: A ecramic caparitor has the following matkings: Broad band, violet; narrow hands or dots, green, brown, Hack, green. The significant figure are $n, 1$ (5 m) and the decimal tubltiplier is 1 , so the eapheitance is $51 \mu \mu$. The temprature coceficient is -750 parts per million fer degree ('.. as given by the broad band, and the cabaritance tolerance is $\pm 5 \%$.

Fixed Composition Resistors

Composition resistors (including small wirewound units molded in cases identical with the (romposition typu) are coloneroded as shown in Fig. 20-9. Colored bands are used on resistors having axial leads: on radial-lead resistors the

Coulir	TABLE 20-III Resistor-Capacitor Color Code			
	Simnifican foigure	h llicimal IInltiplier	Tulerance (i;)	linllage Rafing*
13tack	0	1	-	-
lsrown	1	10	1*	100
Red	2	100	2*	200
Orame	3	10\%)	3 *	30)
liblow	4	10,000	4*	400
Gireen	5	100,000	- ${ }^{*}$	500
bhue	6	1,000,000)	(i*	600
Violet	7	$10,000.000$	\%	7 m
Ciray	8	100.1006060	8*	8100
White	9 1	1, \%m,000,000	(1)*	9100
Giold	-	0.1	i	1100
Nilver	-	0.01	10	2000
No color	-	-	20	500

Fig. 20-9-Color coding of fixed composition resistors The color code is given in Table 20 -ili. The colored areas have the following significance:
A-First significant figure of resistance in ohms.
$B-S e c o n d$ significant figure.
C-Decimal multiplier.
D-Resistance tolerance in per cent. If no color is shown the tolerance is $\pm 20 \%$.
colors are placed as shown in the drawing. When bands are used for color coding the body color has no significance.

Examples: A resistor of the type shown in the lower drawing of Fig. 20-9 has the following eolor bands: A. red; 13 , redl; C , orange; D, no color. The siznificant figures are 2,2 (22) and the decimal multiplier is 1000 . The value of resistance is therefore 22.000 ohms and the tolerance is $\pm 20 \%$.

A resistor of the type shown in the upper drawing has the following colors: body (A), blac; end (B), gray; dot, red: end (I)), gold. The significant fizures are 6 . 8 (688) and the decimal multizlier is tow, so the resistance is 680 ohms. The tolerance is $\pm 5 \%$.

I.F, Transformers

Blue - plate lead.
Red-"13" + lead.
Green - grid (or diode) lead.
Black - grid (or diode) return.
Nore: If the secondary of the i.f.t. is centertappod, the seeond diode plate lead is green-and-black striped, and black is used for the center-tap lead.

TABLE 20-IV Color Code for Ceramic Capacitors					
			Capacilance	Toterance	
Color	Nignificant Figure	Decimal Mulitiplier	More than $10 \mu \mu f$. (in \%)	Less than $10 \mu \mu f$. ($i n \mu \mu f$.)	$\begin{gathered} \text { p.p.m. } / d e y \\ \text { C. } \end{gathered}$
Black	0	1	± 20	2.0	0
Brown	1	10	± 1		-30
Red	2	100	± 2		-80
Oratue	3	1000			-150
Yellow	4				-220
Green	5		± 5	0.5	-3:30
Blue	6				-470
Vislet	7				-7510
Gray	8	001		0.25	30
White	9	0.1	± 10	1.0	500

PILOT-LAMP DATA					
Lamp No.	Bead Culor	Base (Miniature)	$\begin{aligned} & \text { Bulb } \\ & \text { Tupe } \end{aligned}$	RATING	
				Volts	Amp.
40	Brown	A.rew	'1-31/4	6.8	0.15
$40 A^{1}$	Brown	Bayonet	7-31/4	6-8	0.15
41	White	Sirew	T-31/4	2.5	0.\%
42	Green	Licrew	'1-31/4	3.2	**
43	White	Bayonet	' $\mathrm{T}-31 / 4$	2.5	0.5
44	blue	Hayonet	T-31/4	6-8	0.2.
45	*	13:yonet	'1-31/6	3.2	**
48^{2}	Blue	Screw	T-31/6	6-8	0.25
47^{1}	Brown	Bayonet	T-31/4	$6-9$	0.15
48	Pink	Screw	T-31/	2.0	0.06
49^{7}	link	Bayonet	T-31/6	2.0	0.08
4	White	screw	T-31/4	2.1	0.12
498 ${ }^{3}$	White	Bayonet	T-31/4	2.1	0.12
50	White	sirew	($\mathrm{i}-31 / 2$	6-8	0.2
512	White	Basoret	(i-31/2	Ci_{6}	0.2
-	White	sicres	($: 1-41 / 2$	(i-8	0.4
55	White	Bayonet	($3-41 / 2$	6-8	0.1
$292{ }^{5}$	White	Sicrew	'l-31/4	2.9	0.17
292A ${ }^{\text {b }}$	White	Bayonet	'1-31/4	2.9	0.17
1455	Brown	screw	C-5	18.0	0.25
1455A	Brown	Bayonet	G-5	18.0	0.25

140 A and 47 are interchangeable.
${ }^{2}$ Have frosted bulb.
${ }^{1} 49$ and 49 A are interchangeable.

- Replace with No. 48.
- Cise in 2.5 -volt sets where regular bulb burns out too frequently.
* White in G.E. and Sylvania; green in National Union, Raytheon and Tung-Sol.
** 0.35 in G.E. and sylvania; 0.5 in National Union. Raytheon and Tung-Sol.

TABLE 20.V Capacitor Characteristic Code		
$\begin{aligned} & \text { Color } \\ & \text { Sixth } \\ & \text { Dot } \end{aligned}$	Tempera/ure Coofficient p.p.m./deg, C.	$\begin{gathered} \text { Caparitance } \\ \text { Drift } \end{gathered}$
Black Brown Red Orange Yellow Green	$\begin{aligned} & \pm 1000 \\ & \pm 500 \\ & +200 \\ & +100 \\ & -20 \text { to }+100 \\ & 0 \text { to }+70 \end{aligned}$	$\begin{aligned} & \pm 5 \%+1 \mu \mu \mathrm{f} . \\ & \pm 3 \%+1 \mu \mu \mathrm{f} . \\ & \pm 0.5 \% \\ & \pm 0.3 \% \\ & \pm 0.1 \%+0.1 \mu \mu \mathrm{f} . \\ & \pm 0.05 \%+0.1 \mu \mu \mathrm{f} . \end{aligned}$

A.F. Transformers

Blue - plate (finish) lead of primary.
Red - " 13 " + lead (this applies whether the primary is phain or center-tapped).
Brown-plate (start) lead on eenter-tapped primaries. (13lue may be used for this lead if polarity is not important.)
Green - grid (finish) load to socondary.
Black - grid return (this applies whether the secondary is plain or center-tapped).
Yellow-grid (start) lead on center-tapped secondaries. (Green may be used for this lead if polarity is not important.)

Note: These markings apply also to line-togrit and tube-to-line transformers.

Loudspeaker Voice Coils
Green - finish.
Black - start.

Loudspeaker Field Coils

Black and Red - start.
Vellow and Red - finish.
Slate and Red - tap (if any).

Power Transformers

1) Primary Leads. Black

If tapped:
Common. Black Tap....... Black and Vellow Striped Finish. Black and Red Striped
2) High-Voltage Plate Winding......... Red Center-Тap. . . Red and Yellow Striped
3) Rectifier lilamont Winding. Vellow Conter-Tap. . Yellow and Blue Striped
4) Filament Winding No. 1.......... Cireen Conter-Tap. Green and Yellow Striped
5) Filament Winding No. 2. Brown Conter-Tap. Broun and Yellow Striped
6) Filament Winding No. 3. Slute Center-Tap. . . Shate and Yellow Striped

COPPER-WIRE TABLE

	$\begin{aligned} & \text { Diam. } \\ & \text { in } \\ & \text { Mils } \end{aligned}$	$\begin{gathered} \text { Circulnr } \\ \text { Mil } \\ \text { Area } \end{gathered}$	Turns per Linear Inch ${ }^{2}$				Turns per Square Inch ${ }^{2}$			Feet per Lb.		$\begin{gathered} \text { Ohms } \\ \text { per } \\ 1000 \mathrm{fl} . \\ 25^{\circ} \mathrm{C} . \end{gathered}$	Current Carryiny at 700 C.M. per Amp.	Diam. in $m m$.	Nearest British s. H°, G. No.
			Enamel	S.S.C. ${ }^{4}$	$\begin{gathered} \text { D.S.C. }{ }^{5} \\ \text { or }{ }^{\text {S.C.C. }} \end{gathered}$	D.C.C. ${ }^{7}$	S.C.C.	Enamel S.C.C,	D.C.C.	Bare	D.C.C.				
1	289.3	83690	-	-	-	-	-	-	-	3.947	一	. 126.4	119.6	7.348	1
2	257.6	66370	-	-	-	-	-	-	-	4.977	-	. 1593	34.8	6.544	3
3	299.4	52640	-	-	-	-	-	-	-	6.276	-	. 2009	75.2	5. 827	4
4	204.3	41740	-	-	-	-	-	-	-	7.914	-	.2533	89.6	5. 189	5
5	181.9	331100	-	-	-	-	-	-	-	9.980	-	. 3190	17.3	4.621	7
6	$1 \mathrm{Ita}^{2} .0$	26280	-	-	-	-	-	-	-	12.88	-	.4028	37.5	4.11.5	8
7	14.3	208:0	-	-	-	-	-	-	-	15.87	-	. 5080	93.7	3. 6.65	9
8	128.5	16.10	7.6	-	7.4	7.1	-	-	-	20.01	19.6	.640:	23.6	3.264	10
9	114.4	13090	8.6	-	8.2	7.8	-	-	-	25.23	24.6	. 8077	18.7	2.904	11
10	101.9	10380	9.6	-	0.3	8.9	87.5	84.8	80.0	31.88	30.9	1.018	11.8	2.588	12
11	90. 74	89.34	10.7	-	10.3	9.8	110	105	97.5	40.12	38.8	$1.28{ }^{\text {d }}$	11.8	2.305	13
12	80.81	${ }^{6} 830$	12.0	-	11.5	10.9	136	131	121	50.09	48.9	1.619	9.33	0.053	14
13	71.96	5178	13.5	-	12.8	12.0	170	162	150	033.80	61.5	2.042	7.40	1.828	15
14	64.08	$+107$	15.0	-	14.3	13.8	211	148	183	80.44	77.3	2.575	5.87	1.628	16
15	57.07	3257	16.8	-	15.8	14.7	262	250	223	101.4	97.3	3.247	4.85	1.450	17
16	50.82	$2 \overline{23}$	18.9	18.9	17.9	16.4	321	306	271	127.9	119	4.094	3.69	1.291	18
17	45.26	20.48	21.2	21.2	19.9	18.1	347	372	329	161.3	150	5.163	2.93	1.150	18
18	40.30	16 L 4	23.6	23.6	22.0	19.8	418	454	399	203.4	188	6.510	2.32	1.024	19
19	35.80	1288	26.4	26.4	24.4	21.8	542	553	479	256.5	237	8.210	1.81	. 3116	20
20	31.96	1022	29.4	29.4	27.0	23.8	77.5	725	625	323.4	298	10.35	1.46	. 8118	21
21	28.46	810.1	33.1	32.7	29.8	26.0	940	895	754	407.8	370	13.05	1.16	. 72310	22
22	25.35	6.42.4	37.0	36.5	34.1	30.0	1150	1070	910	514.2	461	16.46	918	. 6.438	23
23	22.57	509.5	41.3	40.6	37.6	31.6	1400	1300	1080	618.4	584	00.76	. 728	. 5733	24
24	20.10	404.0	46.3	45.3	+1. i	35.6	1700	1570	1260	817.7	745	26.17	. 577	. 5106	25
25	17.90	330.4	51.7	50.4	45.6	38.6	2060	1910	1510	1031	903	33.00	-4is	. 40.47	26
26	15.94	254.1	58.0	55.6	50.2	41.8	2.00	2300	17.50	1:300	1118	+1. (i)	. 313	.40.19	27
27	14.20	201. 5	64.9	61.5	$5 \overline{3} .0$	45.0	3030	2780	2020	16339	1422	52.48	. 288	. 36106	29
28	12.64	159.8	72.7	88.6	66. 2	48.5	3670	33350	2310	2067	1759	66.17	. 228	. 3211	30
29	11.26	126.7	81.6	74.8	65.4	51.8	4300	3:100	2700	246107	2207	83.44	. 181	. 2859	31
30	10.03	100.5	90.5	83.3	71.5	55.5	50.40	4ific)	3020	3287	253.	105.2	. 14.4	.2516	33
31	8.928	79.70	101	92.0	77.5	59.2	5920	5280	-	4145	2768	132.7	. 114	.2268	34
32	7.980	63.21	113	101	83.6	62.6	7060	19,50	-	5227	3137	167.3	. 000	. 2019	36
33	7.080	50.13	127	110	90.3	66.3	$81: 0$	7350	-	(6991	4697	211.0	. 072	. 1798	37
34	6.305	39.75	143	120	97.0	70.0	9600	8310	-	8310	6168	2466.0	.0.77	. 1601	38
35	5.615	31.52	158	132	104	73.5	10900	8700	-	10.480	6737	335.0	.04\%	. 1426	38-39
36	5.000	25.00	17.5	143	111	77.0	12200	10700	-	13210	7877	+23.0	. 036	.1270	39-40
37	4.453	19.83	198	154	118	80.3	-	-	-	16660	9300	533.4	. 028	. 1131	41
38	3.965	15.72	224	166	126	83.6	-	-	-	21010	10666	672.6	. 022	.1007	42
39	3.531	12.47	248	181	133	86.6	-	-	-	26500	11907	848.1	. 018	. 0807	43
40	3.145	9.88	282	194	140	89.7	-	-	-	33410	14222	1069	. 014	. 0709	44

${ }^{1}$ A mil is $1 / 1000$ (one-thousandth) of an inch. ${ }^{2}$ The figures given are approximate only, since the thickness of the insulation varies with different manufacturers. ${ }^{3} 700$ circular mils per ampere is a satisfactory design figure for small transformers, but values from 500 to $1000 \mathrm{C} . \mathrm{M}$. are commonly used. For 1000 C . A ./amp, divide the circular mil area (third

CHAPTER 21

Measurements

It is pratically impossible to operate an amateur station without making measurements at one time or another. Although quite erude measurements often will suffire, more refined equipment and methods will riohd more and better information. With adequate information at hand it beomes possible to adjust a piece of equipment for optimum performance quickly and surely, and to design circuits along estahlished principles rathor than depending on cutandletre.

Moasuring and test equipmont is valuable during construction, for testing components bofore installation. It is practically indispensable in the initial adjustment of radio gear, not only for establishing operating values but also for tracing possible errors in wiring. It is likewise nocoded for locating breakiowns and defective eomponents in existing equipment.

The hasie measurements are those of current, voltage, and freguemes. Determination of the values of cireuit clements - resistance, inductance and coparitance - are almost equally im-
portant. The inspection of waveform in audiofrequency cireuits is highly useful. For these purposes there is available a wide assortmont of instruments, both complete and in kit form; the: latter, particularly, compare vory favorably in cost with strictly home-built instruments and are freduently more satisfactory both in appearance and calibration. The home-built instruments deseribed in this chapter are ones having fratures of particular usefulness in amateur applications, and not ordinarily available commereially.

In using any instrument it shoukd always be kept in mind that the accuracy depends not only on the inherent aceurary of the instrument itsolf (which, in the case of commercially built mits is usually within a few per cent, and in any event should be specified by the manufacturer) but also the conditions under which the measuremont is made. Large errors ean be introdued by failing to recognize the existence of eonditions that affeet the instrument readings. This is partieularly true in rertain types of r.f. measurements, where stray effeets are hard to climinate.

Voltage, Current, and Resistance

D.C. MEASUREMENTS

A direct-current instrument - voltmeter, ammeter, milliammeter or microammeter - is a device using electromagnetic means to deflect a pointer over a catibrated seate in proportion to the current flowing. In the D'Arsonval type at coil of wire, to which the pointer is attached, is pivoted between the poles of a permanent magnet, and when current flows through the eoil it caluses a magnetie field that interacts with that of the magnet to cause the eoil to turn. The design of the instrument is usually such as to make the pointer deflection direretly proportional to the eurrent.

A less expensive type of instrument is the moving-vane type, in which a pivoted soft-iron vate is pulled into a coil of wire by the magnetie field set up when eurrent flows through the coil. The farther the vane extonds into the coil the greater the magnetie pull on it, for a given change in eurrent, so this type of instrument doess not have "linear" deflection - that is, the scale is cramped at the low-eurent end and spread ont at the high-eurrent end.
The same basie instrument is used for measuring either current or voltage. Good-quality instruments are made with fairly high sensitivity -
that is, they give full-seale pointer deflection with very small eurrents - when intended to be used as voltmeters. 'The sensitivity of instruments intended for moasuring large currents can be lower, but a highly sensitive instrument can be, and frequently is, used for measurement of curronts much greater than needed for full-seale deflaction.

P:anel-mounting instruments of the I'Arsonval tape will give a smaller deflection when mounted on iron or steel panels than when mounted on nonmagnetic materiat. Readings maty he ats much as tom per eont low. Sperially calibrated meters should be obtained for mounting on such panels.

- VOLTMETERS

Only a fration of a volt is required for fullseale deflertion of a sensitive instrument (1 mil liampere or less full scale) so for measuring voltage a high resistance is conneoted in series with it, Fig. 21-1. Ninowing the current and the resistance, the voltage coll casily be ealeulated from Ohm's Jatw. The meter is calibrated in terms of the voltage drop, arooss the series resistor or multiplier. Practieally any desired full-sealo

Fig. 21-1 - How voltmeter multipliers and milliammeter shunts are connected to extend the range of a d.c. meter.
voltage range can be obtained bug proper choiere of multiplier resistaner, and voltmeters freduently hatwerveral ramges soldeded by a switeh.

The somsitivity of the voltmetor is usually expresed in "ohms per wolt." I semsitivity of 1000 ohms per volt mesus that the resistane of the voltmoter is 1000 times the lull-seate voltage. and by Ohms Lat the current required for fullseale defleretion is 1 milliampere. A sersitivity of 20,000 ohms pror volt, another eommonly wed value, mants that the instrument is a 50 -mieroampere meter. The hirgher the resistane of the voltmeter the more accurate the measurements

fig. 21-2-Effect of voltmeter resistance on accuracy of readings. It is assumed that the d.c. resistance of the screen circuit is constant at 100 kilohms. The actual current and voltage without the voltmeter connected are 1 ma . and 100 volts. The voltmeter readings will differ becouse the different types of meters draw different amounts of current through the 150 -kilohm resistor.
in high-rexistane cireuts. This is because the rurrent lowing through the voltmetor will catase a dhange in the voltage between the prints actoss wheh the motor is connereted, compared with the voltage with the meter atheent, ass shown in lig. 21-2.

Multipliers

The rexpured multiphiar mesistanere is found by dividing the desired full-sate voltage he the current. in amperes, requined for full-scale deflection of the motor alone. Stritoty, the internal resistance of the meter shouhd be subtrated from the value so foumd, but this is seldom neressary (ex(ept prohaps for very low ranges berause the moter wesistance will be negligibly smatl eompared with the multiplier resistance. An exeption is when the instrument is alrady prosided with an internal multiplier, in whide casse the multiplier resistance reguirel to extend the range is

$$
R=R_{\mathrm{t}}(n-1)
$$

where R is the multiplior resistaner, $h_{\text {w }}$ is the total resistance of the instrument itself, and n is the factor hy which the seale is to be multiplied. For example, if a 1000 -ohms-per-volt volfmeter hateing at catibrated ramge of (0)-10 volts is 10 be rextended to 1000 volts, R_{21} is $1000 \times 10=$ 10,000 ohms, n is $1000 / 10=100$, and $R=$ $10,000(100-1)=990,000)$ ohms.

If a milliammeter is to be used as a voltmeter, the value of somios resistance can be fomd by Ohm's Law:

$$
R=\frac{1000 E^{2}}{I}
$$

where E is the desired full-scale voltage and I the full-scale roading of the instrument in milliamperes.

Accuracy

The aceuracy of a voltmeter depends on the (ablibration acruracy of the instrument itself and the areuracy of the multiplier resistors. (iond quality instruments are gemerally rated for an areuracy within phas or minus 2 por erent. This is also the usual areuracy rating of the basie meter movement.
When extenting the range of a voltmoter or ronverting a low-ratuge milliammettre into a voltmeter the rated atecuracy of the instrument is rettined only when the multipliser resistane is precise. Precision wiro-wound rosistors are used in the multipliers of high-quality instruments. These are relatively expensive, but the home reonstructor catn do quite well with 1^{\prime} e toleramee composition resistors. They sheuld be "derated" when used for this purpose - that is, the actual power dissipaterd in the resistor should not be more tham $1 / 4$ to $1 / 2$ the ratiod dissipation - and care should be used to avoid overheating the body of the resistor when soldering to the leads. These precomutions will help prevont permanent change in the resistance of the unit.

Ordinary composition resistoms are gemerally
 possible aroms of this order can be arerpted, resistors of this type maty be used ats multipliers. They should be operated below the rated power dissipation figure, in the interests of long-time stidrility.

MILLIAMMETERS AND AMMETERS

A mierommmeter or milliammetre cath be used to measure ruments larger than its full-seale reading by commeding a resistance shunt across its terminals as shown in Fig. 2l-1. Part of the curent flows through the shunt and part through the motor. Finowing the moter resistaner and the shunt resistance, the relative curvents an easily be maleulated.

The value of shunt resistance required for a given full-scale curvent range is given by

$$
R=\frac{R_{m}}{n-1}
$$

where R is the shunt. l_{m} is the int rmal mesistance of the moter, and n is the factor by which the
original meter scale is to loe multiplied. The internal resistance of a milliammeter is preferably determined from the manufacturer's catalog, but if this information is not available it can lue motsured by the mothod shown in Fig. 21-3. Do not attempt to use an ohmmeter to measure the internal resistane of a millimmeter; the instrument may lo ruined by doing so.

Homemade milliammeter shunts ean be constructed from any of the varions special kints of resistance wire, or from ordinary copper wire if no resistane wite is avaibable. The (opper Wire Table in this Hamblook gives the resistance per 1000 feet for various sizes of copper wire. After computing the resistance required, determine the smallest wite size that will carry the full-seable current (200 circular mils per ampere is a satisfatory figure for this purpose).

Fig. 21-3-Determining the internal resistance of a milliommeter or microammeter. R_{1} is an adjustable resistor having a maximum value about twice that necessary for limiting the current to full scale with R_{2} disconnected; adjust it for exactly full-scale reading. Then connect R_{2} and adjust it for exactly half-scale reading. The resistance of R_{2} is then equal to the internal resistance of the meter, and the resistor may be removed from the circuit and measured separately. Internal resistances vary from a few ohms to several hundred ohms, depending on the sensitivity of the instrument.

Measure off enough wire to provide the required resistance. Acedrater ran be chocked by cansing anough eurment to flow through the meter to make it read full seale without the shant: fonneeting the shunt should then give the eorreet reading on the new range.

Current Measurement with a Voltmeter

A current-me:suring instrument should have very low resistance compared with the resistane of the errenit being metsured; otherwise, inserting the instrument will cause the eurrent to differ from its value with the instrument out of the circolit. ('This may not matter if the instrument is left permamently in the cireuit.) However, the resistane of many rercuits in radio equipment is quite high and the cireuit operation is affereded little, if at all, by adding as murh as a fow hundred ohms in series. In such cases the voltmeter methorl of mosturing current, shown in Fig. 21-4. is frequently convenient. 1 voltmeter
or low-range milliammeter provided with a multiplier and operating as a voltmeter - having a full-seale voltage range of a few volts, is used to measure the voltage drop) across a compara-

Fig. 21-4-Voltmeter method of measuring current. This method permits using relatively large values of resistance in the shunt, standard values of fixed resistors frequently being usable. If the multiplier resistance is 20 (or more) times the shunt resistance, the error in assuming that all the current flows through the shunt will not be of consequence in most practical applications.
tively high resistanco acting as a shunt. The formula previously given is used for finding the proper value of shunt resistance for a given seale-multiplying fiactor, R_{m} in this case being the multiplier resistance.

D.C. Power

Power in directerurrent circuits is determined by measuring the current and voltage. When these are known, the power is equal to the voltage in volts multiplied by the current in amperes. If the current is measured with a milliammeter, the reading of the instrument must be divided by lok to convert it to amperes.

RESISTANCE MEASUREMENTS

Measurement of doe resistance is based on measuring the current through the resistance when a known voltage is applied, then using Ohm's Law. A simple circuit is shown in Fig. 21-5.

Fig. 21-5-Measuring resistance with a voltmeter and milliammeter. If the approximate resistance is known the voltage can be selected to cause the milliammeter, MA, to read about half scale. If not, odditional resistance should be first connected in series with R to limit the current to a safe value for the milliammeter. The set-up then measures the total resistance, and the value of R can be found by subtracting the known additional resistance from the total.

The internal resistane of the ammeter or milliammeter, $.1 / .1$, should be low compared with the resistanee, R, heing measured, since the voltage read by the voltmeter, V, is the voltage across $M .4$ and R in series. The instmments and the d.e. voltage should be chosen so that the reatings are in the upper hatf of the scale, if possible, sinee the pereentage error is less in this region.

An ohmmeter is an instrument consisting
fundamentally of a voltmeter (or milliammetor, depending on the circuit used) and a small dry hattery as a sourco of d.ce. voltage. catibmed so the value of an unknown resistanee can be reat directly from the soale. Typiad ohmmeter eirruits ture shown in Fig. 21-ti. In the simplest type, shown in Fig. 21-is S, the moter and battery are comered in series with the unknown resistane. If a given defleretion is obtained with terminals A-IS shorted, inserting the resistane to be motsured will cather the meter reading to decrease. When the resistane of the voltemeter is known, the following formala (ean be applied:

$$
R=\frac{e R_{\mathrm{tn}}}{E}-R_{\mathrm{tn}}
$$

where R is the resistance under measurement,
e is the voltage appliad ($1-B$ shorted),
E is the voltmeter rending with R connected, and
R_{m} is the resistance of the voltmeter.
The rireuit of Fig. 21-fid is not suited to metaruring low values of resistane (below a hundred ohms or so) with a high-resistane voltmotar. For sudh meximemments the rirenit of Fig. 2l-til3 rath be used. The millimmeter should be a 0 - 1 mat. instrument, and h_{1} should be equal to the hattery voltage, re, multiplied by 1000 . 'The unknown resistance is

$$
R=\frac{I_{2} R_{\mathrm{m}}}{I_{1}-I_{2}}
$$

where R is the unknown,
R_{m} is the internal resistance of the millismmeter',
I_{1} is the current in mat. with R disconneeted from terminals $A-B$, and
I_{2} is the current in mat. with R eonnected.
The formula is apporoximate, but the error will be negligible if e is at least is volts so that l_{1} is at least 3000 ohms.

I third circuit for measuring resistance is shown in lig, 21-60\%. In this case a high-resistance voltmoter is used to mosature the voltage drop ateross a reforence resistor, R, when the unknown resistor is comeded so that eurment flows through it. Re and the battery in series, By suitable cheice of R_{2} (low values for low resistathee, high valuos for high-msistance unknowns) this cireuit will give equally grod results on all resistane values in the range from one ohm to soveral megohms, provided that the voltmeter resistanere, $R_{\text {th }}$, is always very high (50 times or more) eompared with the resistance of $R_{2}, 1$ 20 , (M) (0) hims-per-volt instrument (50 (- mamp. movemont) is gencratly used. Assuming that the current through the voltmeter is negligible arompared with the current through R_{2}, the formula for the unknown is

$$
R=\frac{e R_{2}}{E}-R_{2}
$$

(A)

(B)

(c)

Fig. 21-6-Ohmmeter circuits. Values are discussed in the text.
where R and R_{2} are as shown in Fig. 2l-6C, e is the voltmeter reading with $A-B$ shorted, and
E is the voltmeter reading with R connerted.
The "zero iuljuster," R_{1}, is usod to set the voltmeter reading exactly to full seale when the moter is rabibrated in ohms. I $10,($ (M) $)$-ohm varialbla resistor is suitable with a $20,0000-$ ohms-per-volt meter. The hattery voltage is usually 3 volts for ranges up to loo, o(N) ohms or so and 6 volts for higher ranges.

A. C. Measurements

Several types of instruments are available for measurement of low-frefueney alternating currents and voltages. 'The better-grade paum instruments for power-line frequencies ate of the dynamometer type. 'This compares with the l'drsonval movement used for d.e moasurements, but instad of a permanent magnet the dyamometer movement has a firld eoil which, together with the moving eoil, is commerted to the ace, sourere 'Thus the moving coil is urged to turn in the same direction on both havers of the a.c. crele.

Moving-vane type instruments, described earlier, also are usod for :ace. measurements. This is possible berease the pull exerted on the vane is in the same direetion regardless of the direation of current through the eoil. The calibration of a moving-vane instrument on itce. will, in general, differ from its d.ce. calibration.

For measurements in the audio-frequency range, and in appliations where high impedance is required, the rectifier-type a.ce. instrument is

Resistance Measurements

generally used. This is essentially a sonsitive d.e. meter, of the type previonsly deseribed, provided with a rectifier for converting the a.e. to d.e. A typical rectifier-type voltmeter airenit is shown in Fig. 21-7. The half-wave meter rectifier, C/R1, is frectuently of the copper-oxide type, but cristal diodes catn be used. Surh a reetifier is mot "perfere" - that is, the application of a voltage of reversed polarity will result in a smath current flow - and so C \mathcal{R}_{2} is used for climinating the affert of reverse current in the moter cirenit. It does this by providing a low-resistance path across $\left(R_{1}\right.$ and the meter during the a.e alternations when ('his is not eonducting.

Fig. 21-7—Rectifier-type a.c. voltmeter circuit, with "lineorizing" resistor and diode for bock-current correction.
Resistor R_{2} shunted across.M_{1} is used for improving the linearity of the circuit. The cffective resistane of the reetifier deereases with inereasing current, leading to at calibration scale with nonuniform divisions. 'Ihis is overome to a considerable extent by "bleeding" several times as much current through R_{a} as flows through.V_{1} so the rertifier is always earrying a fairly large current.

Because of these expedients and the fact that with half-wave rectification the average current is only 0.45 times the r.m.s. value of a sime wate producing it, the impedane of a rectifion-type voltmeter is rather low compared with the resistance of a d.e. voltmeter using the same meter. Values of 1000 ohms per volt are representative, when the d.e. instrument is a $0-200$ mirroammeter.

The d.e. instrument responds to the average value of the rectified alternating current. This average current will vary with the shatpe of the a.e. Wave applied to the rectifier, and so the meter reading will not be the same for different Wave forms having the same maximum values or
the same r.m.s. values. Hence a "wavo-form error" is alwates present unless the a.e. Wate is very closely simusoidal. The adtual rabibration of the instrument usually is in terms of the r.m.s. value of a sine watve.

Modern rectifier-type ace voltmeters are capable of good aceurary, within the wavoform limitations mentioned above, throughout the audio-frequeney range.

COMBINATION INSTRUMENTS THE V.O.M.

Since the same hasie instrument is used for measuring current, voltage and resistance, the three functions can readily be combined in one unit using a single meter: Virious models of the "v.o.m." (volt-ohm-milliammeter) are availables commercially, both completely assembled and in kit form. The lass expensive ones use a $0-1$ milliammeter as the basie instrument, providing voltmeter ranges at 1000 ohms per volt. The more elaborate moters of this type use a midroammeter - 0-50 mirroamperes, frequontly with voltmeter resistanees of 20,000 ohms per volt. With the more sonsitive instruments it is possible to make resistane meaturements in the megohms range. A.c. voltmeter seales also are frequently inchuded.

The v.o.m., even a very simple one, is among the most useful instruments for the amateur. Besides current and voltage measurements, it ran be used for cherking contimuty in circuits, for finding defective components before installation - shorted (abletitors, open or otherwise defective resistors, efc. - shorts or opens in wiring, and many other chereks that, if applied during the construction of a piere of equipment, satve much time and trouble. It is equally usoful for servicing, when a component fats during operation.

THE VACUUM-TUBE VOLTMETER

The usefuluces of the vacuum-tube voltmeter (v.t.v.m.) is based on the fact that a vacuum tube (an amplify without taking power from the source of voltage applied to its grid. It is therefore possible to have a voltmeter of extremely high resist-
$\mathrm{C}_{1}, \mathrm{C}_{3}-0.002$ - to $0.005 \cdot \mu \mathrm{f}$. mica.
$C_{2}-0.01 \mu \mathrm{f}, \mathrm{l}, 1000$ to 2000 volts, poper or mico.
$R_{1}-1$ megohm, $1 / 2$ wolt.
R_{2} to R_{5}, inc.-To give desired voltoge ronges, totoling 10 megohms.
$\mathrm{R}_{\mathrm{C}_{1}}, \mathrm{R}_{7}-2$ to 3 megohms.
$R_{s}-10,000$-ohm vorioble.
$\mathrm{R}_{9}, \mathrm{R}_{10}-2000$ to 3000 ohms.
R_{11}-5000. to 10,000 -ohm control.
$R_{12}-10,000$ to 50,000 ohms.
R_{13}, R_{14}-App. 25,000 ohms. A 50,000-0hm slider-type wire-wound con be used.
$\mathrm{R}_{15}-10$ megohms.
$\mathrm{R}_{16}-3$ megohms.
$\mathrm{R}_{1-1}-10$-megohm vorioble.
$\mathrm{M}-0.200 \mu \mathrm{mp}$. to 0.1 mo . ronge.
V_{1}-Duol triode, 6SN7 or 12AU7.
V_{2}-Duol diode, 6H6 or 6AL5.

Fig. 21.8-Vocuum-tube voltmeter circuit.

21-MEASUREMENTS

ance, and thus take negligible eurrent from the cirenit under measurement, without using a de. instrument of exerptional sensitivity.

The v.t.v.m. has the disadvantage that it requires a source of power for its operation, as eompared with a regular d.e. instrument. Also, it is susceptible to r.f. pirk-up) whon working around ath operating transmitter, undess well shioded and filtered. The fact that one of its terminals is grounded is also disadvantageous in some cases, since ace readings in particular maty be inaceurate if an attempt is made to measure a rirenit having both sides "hot" with respert to ground. Neverthehess, the high resistance of the v.t.v.m. more than compensates for these disaluantages, Caperially sine in the majority of measurements they do not apply.

While there are several possible eircuits, the one commonly used is shown in lig. 21-8. A dual triode, V_{1}, is arranged so that, with no voltage applied to the lefthand grid, equal currents flow through both sertions. Ender this condition the two cathorks are at the same potential and no current flows through il. The currents can be adjusted to balance by potentiometer R_{11}, which takes care of variations in the tube sections and in the values of cathode resistors R_{9} and R_{10}. When a positive d.e. voltage is applied to the left-hand grid the current through that tube section incruses, so the current balaner is upset and the meter indicates. The sensitivity of the moter is regulated by Re, which serves to adjust the calibration. R_{12}, common to the cathodes of both tube sections, is a feod back resistor that stabilizes the system and makes the readings lincur. A_{6} and C_{1} form a filter for any abe. component that may be present, and R_{6} is batanced by $R_{\text {; }}$ commected to the grid of the second tube section.
'To stay well within the linear range of operation the scale is limited to 3 volts or less in the average commereial instrument. I Figher ranges are olotatited be means of the voltage divider formed by R_{1} to R_{5}, inclusive. Is many ranges as desired can be used. Common pratice is to use 1 mog ohm at R_{1}, and to make the sum of R_{2} to R_{5}, inclusive, 10 mm ghluns, thus giving a total resistance of 11 momohms, comstant for all voltage ranges. R_{1} should tre at the probe end of the d.e. lead to minimize capacitive loading efferts when moasuring der, voltages in r.f. cirenits.

Falues to be used in the circuit depent considcrably on the supply voltage and the sensitivity of the moter; $I /$. R_{12}, and $l_{13}-R_{11}$, should be adjusted bey trial so that the voltmeter cirenit (an be brought to balance, and to give full-scale deflection on M with abont 3 volts applied to the lelt-hand grid. The meter comeretions can In reversed to ratad voltages that are negative with respect to ground.

A.C. Voltage

For measuring a.e. voltages the rectifier circuit shown at the lower left of Fig. 21-8 is used. One section of the double diole, V_{2}, is a half-wave
reetifier and the second hati acts as a batancing device, adjustable by $R_{1 z}$, to climinate contact potential efferes that would eatuse a residual dee. voltage to appeat at the v.t.v.m. grid.
The rectifice output voltage is proportional to the peak amplitude of the a, wase, wather that to the average or rem.s. values. Siner the positive and negative peaks of a complex wave may not have equal amplitudes, a diferrent reading may be obtained on sueh wave forms when the voltmoter probe terminals are reversod. This "turnover" effer is inheront in anse peak-indieating devier, but is not merensabily a disadvantage, The fact that the readings are not the same When the voltmeter connections are reversed is an indication that the wawe form under measurement is unsummetrical. In some measurements, as in audio amplifiers. a peak meatsurement is more useful thath an r.m.s. or averatge-value measurement beratuse amplifier capabilities ate based on the prak :mplitudes.

The scale calibration usually is based on the r.m.s. value of a sine wave, R_{y} being set so that the same scale can be used either for ace or d.e. The r.m.s. reading eath easily be converted to a peak reading by multiplying by $1 .+1$.

INSTRUMENT CALIBRATION

When extending the range of a d.e. instrument, calituration usually is meressary-although mesistors for voltmeter multipliers often can be purchased to chase-onough tolerances so that the new range will be acearately known. I fowever, in calibrating an instrument such as a v.t.v.m. a known voltage must be available to provide a starting point. Presh dry eells have ath open-cirenit terminal voltage of approximately $1 .(\mathrm{i}$ volts, and one or more of them may be commected in series to provide several ealibration points on the low range. (ase regulator tubes in a power supply, such an the (0C:3, OD):3, ete., also provide a stable source of voltage whese value is known within a few per cent. Oner a few such points are detormined the voltmoter ranges maty be extented readily be adding multipliers or a voltage dividere as appropriate.
Shunts for a milliammeter may be adjusted hy first using the meter alone in suries with a source of voltage and a resistor soldered to limit the curront to full sate. For example, a 0 - 1 milliammoter may be comeneted in series with at dry cedl and a 2000 -ohm variable resistor, the latter being adjusted to allow exardly 1 milliampere to flow. Then the shunt is added across the meter and its resistance adjusted to reduce the meter reading loy exactly the soale factor, n. If n is 5 , the shunt would be adjusted to make the moter rated 0.2 milliampere, so the full-sate current will be 5 mat. Ising the now seale, the serond shunt is added to give the nest range, the same procedure being followed. This can be carried on for several ranges, but it is advisable to cheek the meter on the highest range against a separate meter used as a standard, since the errors in this process tend to be cumulative.

Measurement of Frequency

ABSORPTION FREQUENCY METERS

The simplest possible frequency-measuring device is a resonant circuit, tunable over the desired frequency range and having its tuning dial calibrated in terms of frequency. It operates by extracting a small amount of energy from the oscillating circuit to be measured, the frepuency being determined by the tuning setting at which the energy absorption is maximum (Fig. 21-9).
Such an instrument is not capable of very high

Fig. 21-9-Absorption frequency meter and a typical application. The meter consists simply of a calibrated resonant circuit LC. When coupled to an amplifier or oscillator the tube plate current will rise when the frequency meter is funed to resonance. A flashlight lamp may be connected in series at X to give a visual indica. fion, but it decreases the selectivity of the instrument and makes it necessary to use rather close coupling to the circuit being measured.
accuracy, berause the Q of the tuned circuit camot be high enough to avoid uncertainty as to the exact dial setting and becanse any two coupled circuits interact to some extent and change cach others' tuning. Nevertheless, the absorption frequency meter or "wavemoter" is a highly useful instrument. It is compact, inexpensive, and requires no power supply. There is no ambiguity in its indications, as is frequently the case with the heterodyne-type instruments described later.
When an absorption noter is used for checking a transmitter, the plate current of the tube connected to the rircuit being checked can provide the necessary resinance indiation. When the frequeney meter is loosely coupled to the tank cireuit the plate current will give a slight upward tlicker as the meter is tuned through resonance. The accuracy is greatest when the loosest possible coupling is used.
A receiver oscillator may be checked by tuning in a steady signal and heterodyning it to give a beat note as in ordinary c.w. reception. When the frequency meter is coupled to the oscillator coil and tuned through resonance the beat note will change. Again, the coupling should be made loose enough so that a justperceptible change in beat note is observed.
An approximate calibration for the meter, adequate for most purposes, may be obtained by comparison with a calibrated receiver. The usual receiver dial calibration is sufficiently
accurate. A simple oscillator circuit covering the same range as the frequency meter will be useful in calibration. Set the receiver to a given frequency, tune the oscillator to zero beat at the same frequency, and adjust the frequency meter to resonance with the oscillator as described above. This gives one calibration point. When a sufficient number of such points has been obtained a graph may be drawn to show frequency $v \mathrm{~s}$. dial sottings on the frequency meter.

INDICATING FREQUENCY METERS

The plain absorption meter requires fairly close coupling to the oscillating circuit in order to affect the plate current of a tube sufficiently to give a visual indication. However, by adding a rectifier and d.c. microammeter or milliammeter, the sensitivity of the instrument can be increased to the point where very loose coupling will suffice for a good reading. A typical circuit for this purpose is given in Fig. 21-10, and Figs. 21-11 and 21-12 show how such an instrument can be constructed.
The rectifier, a crystal diode, is coupled to the tuned cireuit $L_{1} C_{1}$ through a coupling coil, L_{2}, having a relatively small number of turns. The step-down transformer action from L_{1} to L_{2} provides for efficient energy transfer from the highimpedance tuned circuit to the low-impedance rectifier circuit. The number of turns on L_{2} can be adjusted for maximum reading on the d.c.

Fig. 21.10-Circuit diagram of indicating frequency meter. $\mathrm{C}_{1}-50-\mu \mu \mathrm{f}$. variable (Johnson SOR12).
$\mathrm{C}_{2}-0.002$ - μ. disk ceramic.
$C R_{1}$-General purpose germanium diode (1N34, etc.) J_{1} - Phono jack.
J_{2}-Closed-circuit phone jack.
M_{1}-D.c. microammeter or 0.1 milliammeter,

Freq. Range	Coil Data		Coil Length, In.
	Turns, L_{1}	Turns, L_{2}	
3-6 Mc.	60	5	close-wound
6.12 Mc .	29	5	$11 / 4$
12.25 Mc.	13	2	1
23.50 Mc .	51/4	1	1/2
50.100 Mc .	11/2	1/2	$1 / 4$
90.225 Mc .	See below		

All except 90-225-Mc. coil wound with No. 24 enam. wire on 1 -inch diameter 4 -prong forms (Millen 45004). \boldsymbol{L}_{2} interwound at bottom of \boldsymbol{L}_{1}, using smaller wire where necessary. The $90-225-\mathrm{Mc}$. coil consists of a hairpin loop of No. 14 tinned wire just clearing the bottom of the coil form, which is cut to $5 / 2$-inch length. L_{2} is a similar hairpin of No. 16 wire bent over so it almost touches L_{1}.

Fig. 21.11-The indicating frequency meter, plug-in coils, and pick-up cables. The meter is built in a bakelite meter case measuring $61 / 4 \times 33 / 4 \times 2$ inches. The 3 -inch dial is cut from a piece of aluminum and has a paper handcalibrated scale cemented on. Hairline indicators are clear plastic mounted on small metal pillars. A 2 -inch d.c. instrument is used. Pick-up loops are one turn of No. 14, spaghetti covered, soldered to the ends of the cables. The longer cable (5 feet) is useful to 30 Mc.; the shorter (13 inches) can be used for the full frequency range. Both are RG-58/U.
milliammeter; when doing this, use a fixed value of coupling betwern L_{1} and the sourer of enorgy. The proper number of turns for this purpose will depend on the sensitivity of : $1 / 1$. The roil dimensions given in lig. $2 \mathrm{i}-10$ are for a 0 -500 microammeter but will also be satisfactory for a $0-1$ milliammeter. Less that optimum roupling is preferathle, in most rasess sinere heavy louding lowers the () of the tured eirenit $L_{1} C_{1}$ and makes it less soloctive. The compling is reduced by reducing the number of turis on L_{2}.
The meter caln be used with a pick-up loop and coasial line comnerted to J_{1}. linergy pioked up by the loop, is fed throigh the eathle to h a and thenee compled to $L_{1}{ }^{\prime}{ }_{1}$. This is at convenient method of coupling to circuits where it would be phasically diffientt to serure induetive ambpling to L_{1}. The pick-up) (able should not in self-resonant, as a transmission-line sertion, at any frequener within the range in which it is to be used, so two cable lemgths are provided. The longer one is useful unt to 30 Mc . and the shorter at all frequencies up to the maximum useful frequener of the instrumert (205 M М.).

By plugging at hatudse into the ontput jark (phones having $2(0) K$ ohms or greater resistance should be used for groatest sensitivity) the fre-
quency meter can be used as a monitor for modulated transmissions.

The bakelite rase is a desirable feature sime the instrument can be brought elose to direuits being checked withont the dangor of shortcircuiting any of their wiring. 'This eould occur with a motal-cased unit.
In adition to the uses mentioned earlior, a moler of this type may be used for final adjustment of neutralization in r.f. amplifiers. For this purpese the piek-up) loop may be lowsely coupled to the plate tamk coil. In this case L_{1} maty be remowed from its sorket and the moter used as an untuned reetifier. This redures the sensitivity and insures that the r.f. pirkup is only from the tank eoil to which the loop is closely eoupled.

THE SECONDARY FREQUENCY STANDARD

The secondary frequency standard is a highly stable low-power oseilator genorating a fixed frequency, usually 100 ke . It is nomply always arystal-controlled, and inexpensive 100 -ke. arystals are avaitable for the purpose Sine the harmonies are multiples of 100 kr . throughout the sjectrum, some of them can be compared di-

Fig. 21-12-Inside the wavemeter. Only the milliammeter and phone jack are mounted on the removable panel. The funing capacitor is mounted vertically on an aluminum bracket fastened to the bottom of the case. The crystal diode is mounted between a coil-socket prong and a fie point. The phono jack for the pick-up cables is at the lower right.

Frequency Standards

rertly with the standard frequmeines transmitted by WUV.
 multiphes of lon ko.. on it beromes possiblo to determine the band edes very acrurately. This is an important consideration in amateur frequeney metantement. sime the only regulatory mefurement is that ath amatour tramission be inside the assigned hamel, net on a sumedife froquencre.

Manufucturers of lon-ke. cerstals usually supply circuit information for their particalar crystals. The areuit given in lige 21-13 is representative and will gememate usable harmonics up to 30 Me or su. The variable rathater. (1, provides a means for adjusting the fregueney to exabtly 100 ke . Harmonic output is taken from the cirwit through a smath erapmeitor, ('s. There are no sureial constructional points to be observed in building such it unit.

Fig. 21.13-Circuit for crystal-controlled frequency standard. Tubes such as the $6 \mathrm{SK7}, 6 \mathrm{SH} 7$, 6AU6, etc., are suitable.
$C_{1}-50-\mu \mu \mathrm{f}$. variable.
$\mathrm{C}_{2}-150-\mu \mu \mathrm{f}$. mica.
$\mathrm{C}_{3}, \mathrm{C}_{+}-0.01$ - μ. ceramic.
$\mathrm{C}_{5}-22-\mu \mu \mathrm{f}$. mica.
$R_{1}-0.47$ megohm, $1 / 2$ watt.
R2-1000 ohms, $1 / 2$ watt.
$R_{3}-0.1$ megohm, $1 / 2$ watt.
$R_{1}=0.15$ megohm, $1 / 2$ watt.
Power for the thime heater and pate mas be taken from the supply in the rereiver with which the unit is to be used. The pate voltage is not critical. but it is recommended that it he taken from a 1 PR-150 regulator if the receiver is equipperd with one.

Suffieiont signal strength from the standard usuatly will be sereured if a wire is run betweren the output terminal connerted to ('s and the antemat post on the receiver. At the lower freguencies a motallie connection may not be nerossary.

Adjusting to Frequency

The frequency can be adjusted exaretly to 100 kr . by making use of the IVIVV transmissions tabulated later in this chapter. Solect the WWV frequence that gives a good signal at your boeation at the time of day most conveniont. Tume it in with the reeoiver b.f.o. off and wait for the prod during which the modulation is absent. Then switch on the $100-\mathrm{k}$ e. oseillator and auljust its frequenery, by means of $(1$, until its harmonie is in zero beat with WWV. The exaret setting is easily found by observing the slow pulsation in
barkground noise as the harmonic comes close to erem heat, and adjusting to where the pulsation disappeats on achas at at very slow rato. Thu pulsation call be olserved aven more manlily by switehing on the recoiver's b.fo., after approximate zero twat has been secured, and ohserving the rise and fall in intensity (not fre(fueney) of the beat fone. For best results the WIVV signal and the sigual from the 100-ke. oseillator should be about the same strength. It is advisable not to try to set the 100-ke. osecillator during the priods when the WVIV sigmal is tomemodulated. simee it is diffieult to tell whether the harmonie is being adjusted to zero beat with the carrior or with a sideband.

Using the Standard

Basirally, the 100-ke. standard provides a manas for indicating the exact reeciver dial settings at which frecturnoies that are multiples of 100 ke . are to be foumd. The harmonies of the standard can thus be used to cherek the dial calibration of a rereciver, and many of the bettergrade communications recejvers either inchado a $100-\mathrm{ke}$. oseilat or for this purpose or have provision for installing one as an arersory. The adetual frequency of at least one loo-ke. point in a given amateur hath must be known, of course. that this is ponarally all easy mater since the artivity in amaterur labuls usually makes identification of the band-edge "marker signal" quite simple. Ifter onc frecpueney is known, the ronserutive 100 -ke. harmonic signals are simply counted off from it.

Although the 100-ke. standard doos not make possible the exiut measurement of a frequeney, it is readily possible to dotermine whether or Inot the signal is in a particular 100 -ke. segment. If the unknown signal tumes in between, saly, 21,200 and $21,300 \mathrm{kr}$., as indicated hy the marker signals in the reaeriver. its frequene y obviously lies betwern those two figures. For purposes of complying with the amateur regulations it is usually suffirisent to know that the signal is above, or helow. some sperified 100 -ke, point, sine the edges of the amateur bamds or sub, bands usuatly are at sum points. If a close measurement is dosired a fairly good estimate usually can be mate by counting the number of dial divisions betwern two $100-\mathrm{ke}$. points and dividing the momber into 100 to find how many kilorveres there are per dial division.

In using the reroiver to check ones own tramsmitting Prequency it is nerossury to take sperial preanutions to reduce the strength of the signal from the transmitur to the point where it doess not overload the recrever nor create spurions responses that could be taken for the artalal signal. This invariably means that the receiving antenna must be disconneded from the reeciver, and it may be neressary, in addition, to sho \mathfrak{a} circuit the receiver's antomat imput termin als. Try to reduce stray pickup to such an extent that the transmitter's signal is no stronger than normal incoming signals at the regular gatiocontrol settings. With some receivers this may

21-MEASUREMENTS

Fig. 21-14-A 100-kc. frequency standard and harmonic amplifier. The crystal in this unit is in the metal-fube type envelope. Power and r.f. output connections are taken through the rear chassis lip.
require additional shichling around the signalfrequeney cirenits, and perhaps filtering of the a.c. and speaker leads whore they leave the (hassis, to prevent enorgy pieked up on these leads from getting into the front and of the receiver.

Frequency Standard with Harmonic Amplifier

The frequeney st:mdard shown in Figs. 21-14 through 21-16 inclodes a tuined amplifier to increase the strength of the higher harmoniss, and ineorporatesa erysial-rdiow siswtont generator to make the harmonie strength reasonably uniform throughout the usable frequency spectrum of the
instrument. It will produce uscful calibration signats at 100 -ke. intorvals up to ahont (60 Mr. The strength of a partioular hamomia mas be peaked up bey selecting the proper amplifier toning range with seand adjusting ('A for maximum ontput. A gain rontrol, P_{2}, is included for adjusting the output signal to the desired level.

The 100-ke. osedtator uses the triode section of a 6 ANs, while the amplifier uses the pentode section of the same thbe. Power required for the anit is 150 volts at 10 mat. and 8.3 volts at 0.45 amp. This maty be taken from the areessory sorket of a receiver, or a sperial supply asily can lo made using a TV "Iooster" transformer (such as the Merit P-3046 or equivalent).

Fig. 21-15-Circuit of the $100-\mathrm{kc}$. crystal calibrator. Unless otherwise indicated, capacitances are in $\mu \mathrm{f}$., resistonces are in ohms, resistors are $1 / 2$ watt.
$\mathrm{C}_{1}-50-\mu \mu \mathrm{f}$. midget variable (Hammarlund MAPC-50). $\mathrm{L}_{4}-30-60 \mathrm{Mc}, 0.22 \mu \mathrm{~h}$.; 4 turns No. 20 plastic-insulated
$\mathrm{C}_{4}-100-\mu \mu \mathrm{f}$. voriable (Hammarlund HF-100).
$\mathrm{CR}_{1}, \mathrm{CR}_{2}-1 \mathrm{~N} 34 \mathrm{~A}$.
J_{1}-Phono jock.
L_{1}-3.5-7 Me., 10μ h. (National R-33 r.f. choke). $\mathrm{L}_{2}-6.5-14 \mathrm{Mc}$., $4.7 \mu \mathrm{~h}$. (IRC type CL-1 r.f. choke). $\mathrm{L}_{3}-15-30 \mathrm{Mc} ., 1.0 \mu \mathrm{~h}$. (IRC type $\mathrm{CL}-1$ r.f. choke).
wire, $3 / 8$-inch diam.
R_{2} - 5000 -ohm potentiometer (Mallory U-14).
S_{1}-S.p.s.t., mounted on R_{2} (Mallory US-26).
S_{2}-1-section, 1 -pole, 4 -position miniature phenolic rotary switch (Centralab PA-1000).
$Y_{1}-100-k c$. crystal.

A Frequency Meter

The standard is built in a $4 \times 5 \times 6$ inch chassis-type box. R_{2} and S_{2} are mounted on the panel, with the amplifier plate coils mounted on S_{2}. The remaining components are mounted on the chassis, ('4 being insulated from it because its phates are above ground for d.c. For the same reason, an insulated shaft extension is used for front-panel control of ('4.

Connedion betwern the standard and the meover can be made through a wire from the hot terminal of I_{1} to the antenna input post on the receiver. I epending on how well the receiver is shielded, such at wire maty not be needed at the lower-freguency end of the range.

The Heterodyne Frequency Meter

The heterodyne frequener meter is a variablefremuency oseillator designed to be as stable as possible and to be capable of being aterurately calibrated. Solid mechanieal eonstruction and a good dial are particularly important. In generad, the design of such an instrument will be similar to that of the refoo.s deseribed in Chapter 6 on transmitters. Lsually, the oscillator will cover a fregurncy range of approximately 1750 to 2000 ke. so that its hamonies will fall in the various amateur bands. It is usod with the receiver in much the same way as the $100-k$ e. standurd, exropt that in making a moasuremont the frequencemeter tuning is aljusted until the signal from it is in zero beat with the signal to be measmed. The two signals are then on exactly the same frequency, which rat be read from the calibration of the frequener meter.

The best method of calibating a heterodyne frequeney moter is to note the dial points at which its signal is in zoro beat with consecutive

100-kc. points from a secondary standard. These points may then be plotted on graph paper and a smooth curve drawn through them to give the calibration at frequencies inside the $100-\mathrm{ke}$. intervals. The calibration preferably should be made on a high range. l'oints at $100-k$ e, intervals on 28 Mr., for example, are equivalent to 50 -ke. intervals on 14 Mr., 25 -ke. intervals on 7 Me , and so on, since the meter is operating on lower-order harmonies on the lower bands.

More Precise Methods

The methods described above are quite adequate for the primary purpose of amateur frequency measurements - that is, determining whether or not a trinsmitter is operating inside the limits of an amateur band, and the approximate frequency inside the band. For measurement of an unknown frequency to a high degree of accuracy more advanced methods can be used. Aceurate signals at closer intervals can be obtained by using a multivibrator in conjunction with the 100 -ke. standard, and thus obtaining signals at intervals of, say, 10 ke . or some other integral divisor of 100 . Temperature control is frequently used on the 100 -ke, oscillator to give a high order of stability (Collier, "What I'rice I'recision?"', QST, September and October, 1952). Also, the secondary standard can be used in conjunction with a variable-frequeney interpolation oseillator to fill in the standard intervals (Woodward," A Linear Beat-Frequency Oscillator for Frequeney Measurement," (SST', May, 1951). An interpolation oscillator and standard can be combined in one instrument. One application of this type was described in QST' for Mav, 1940 (Grammer, "The Additive Frequency Meter").

Fig. 21-16-Underneath the frequencystandard chassis. The saw-tooth harmonicgenerating network is on the strip af the upper right. The small trimmer-type capocitor at the left is C_{1}. Other components are mounted where convenient.

STANDARD FREQUENCIES AND TIME SIGNALS

The Central Radio Propagation Labomatory of the National Bureau of Stamdards maintains two radio transmitting stations, WWV near Wishangton, D.C., and WWVI at Pumene, T.H., for broalrasting standard radio frequemeics of high arcoraces WWV broadeasts aro on $2 . \overline{5}, ~ 5,10,15,20$ and 25 nergacyeles per serond, and those from WWVH are on 5 , 10 , and 15 Ma. 'The radiofrequency signats are motulated by pulses at 1 reale pror soond, and also be stamdard audio frequencios alternating betwoen 410 athd 600 ereles per sorond as shown by the areompatying chart.
Transmissions are continuous, with the following execoptions: The WWV transmissions are interrupted for a 4 -minute period beginning at approximately fis minntes after the

hour; the W'WVY tranmissions are interrupted for a 3 -minute period bogimning approximately 10 soronds after the hour and each 15 mimute interval thereafter. WIIVH is also silont cand day for a 3 t-mimute prerion beginning at 1000 C-niversal Time.

Accuracy

Transmitted frequencies are aceurate within 1 part in 100 million. 'The W'WT' tramsmissions are gemaratly stable to I part in at billion in any given days althourh this is mot gatanterol. Frofuemeids are basod on an atomic stamdara. and daily correstions to the tramsmitted froquencios are sulsecpuently publishod abeh month in the I'rocerelings of the Instilute of Radio Engineres.

Time Signals

The 1-c.p.s, noodulation is at i-milliserond pulse at intervals of precisely one second, and is heard as a tick. 'The pulse tratismitted by WIVY consists of 3 corles of 1000 eyele tone: that transmitted ly WWVH consists
 sions, the 440 or fib)- cyele tone is banked out heginning 10 milliseconds lefore and embing 2.5 milliseronds after the pulse. On the WW'VI! transmissionts, the pudse is suprerimpored on the tone. The pulse on the sith second is omitted, and for additional identification the zeromecond palse is followed by another lok milliweonds later.

Propagation Notices

I Horing the anmoncemont intervals at $191 / 2$ and $491 / 2$ minutes after the hour, propagation notioes applying to transmission pathe over the North Athatice are trans-
 Similar foreraste for the North lacific are transmitted from WWVII during tho anmoncement intervals at 9 and 39 minates after the hour.

These notions. in telegraphice cexle, consist of the hetter N, W, or I' followed by a momber. 'Ihe letter dowignations afply to promagation conditions as of the time of the broadrast, athe haw the fellowing sighiliothere:

W -- Ionospheric disturbance in progress or experem.
U - Vinstable romditions. bit rommunication possille with hish prower.
N - No warning.
The number designations apoby to experted propazation conditions duringe the sulsempent l2 hours and have the following signifirance:

Di,jii	Forccast
1	Imgesexille
2	Vers Poor
3	Peror
4	Fatir to Poor
5	Fair
6	Fair to (ioml
7	(ioxal
8	Very (imal
9	Exarilent

Special Transmissions During the International Geophysical Year

The sperial broudeasts instituted during the International (ieophysical Year may te continued throngh part or all of 1 (hef). These broulcasts include information on IGY" "Alerts" and "siverial World Intorvals." The broadonats from WVV: are at $41 / 2$ and $341 / 2$ minutes past the hour and these from WWVY are at 11 and 44 minntes past the hour. Fiach such tranamission is precerded by the letters "A(iI" in International Morse

Cole. The fode used for the information is as follows: D. I's - state of allert.

ラ $\because \because:$ - No state of alert.
ists - Special World Interval begins at (OOOI\% the following day.
5'r's - Special World Interval terminates at 2309%. 3 long dashes - Evecial World Interval in progress.

Test Oscillators and Signal Generators

THE GRID-DIP METER

The grid-dip meter is a simple vateuum-tulse oscillator to which a microammeter or low-range milliammeter has been added for reading the oscillator grid eurrent. A 0-1 milliammeter is sensitive enough in most casos. The gridedip meter is so called because if the oseillator is coupled to a tuned circuit the grid current will show a decrease or "dip" when the oscillator is tuned through resonance with the unknown circuit. The reason for this is that the extemal eircuit will absorb energy from the oseillator when both are tuned to the same frequency; the loss of energy from the oscillator cireuit catues the feedbaek to decrease and this in turn is aceompanied by a decrease in grid current. The dip in grid current is quite sharp when the eireuit to which the oscillator is coupled has reasomably high ().

The grid-dip moter is most useful when it rovers a wide frequency range and is compactly constructed so that it can be coupled to circuits in hard-to-reach places such ats in a transmitter or recoiver chassis. It can thus be used to cherk tuning ranges and to find unwanted resonances of the type described in the chapter on TVI. Since it is its own source of r.f. chergy it does not requive the cirenit being eherked to be energized. In addition to resonance cheress, the grid-dip) meter also cam be used as a signal source for receiver aligmment and, as described later in this

Fig. 21-17-Circuit diagram of the grid-dip meter. $\mathrm{C}_{1}-50-\mu \mu \mathrm{f}$. midget variable (Hammarlund HF-50). $\mathrm{C}_{2}-100-\mu \mu \mathrm{f}$. ceramic.
$\mathrm{C}_{3}, \mathrm{C}_{1}, \mathrm{C}_{6}-0.001-\mu \mathrm{f}$. disk ceramic.
$\mathrm{C}_{5}-0.01-\mu \mathrm{f}$. disk ceramic.
$R_{1}-22,000$ ohms, $1 / 2$ watt.

$$
\text { Coil Data, } L_{1}
$$

78 -150 Mc. Nairpin of So. $1+$ wire, $3 /$ in, spacing, 2 inches long including coil form pins. Tiapped $13 / 2$ in, from ground end.
Coil forms are ${ }^{3}$ - - in. diameter.
*Turus from ground end.
$\ddagger \mathrm{B} . \& \mathrm{~W}$. Miniductor or equivaluat mounted inside coil form,
chapter, is useful in measurement of inductance and caparitance in the range of values used in r.f. circuits.

The circuit of lrig. 21-17 is representative, although practically any oseillator circuit that will operate over the desired frequency range may be used. An instrument to cover both low and very high frequencies must be constructed with short, direet r.f. leads. With ordinary care in this respert there should be little diffieulty in getting satisfactory operation up to 150 Me .

The power supply for the grid-dip meter may be included with the oscillator, but since this increases the bulk and weight a separate supply is often desirable. The power supply shown in Fig. 21-18 uses a miniature power transformer with a selenium rectifier and a simple filter to give approximately $1: 0$ volts for the oseillator plate. The potentiometer R_{2} is for adjustment of plate voltage. This is desirable because in any griddip meter the grid current may vary over wide limits in different parts of the frequency range, with fixed phate voltage.

Fig. 21-18-Circuit diagram of the power supply for the grid-dip meter.
$C_{1}, C_{2}-16-\mu \mathrm{f}$. electrclytic, 150 volts.
$\mathrm{R}_{1}-1000$ ohms, $1 / 2 \mathrm{watt}$.
$\mathrm{R}_{2}-0.1$-megohm potentiometer.
T_{1}-Power transformer, 6.3 volts and 125 to 150 volts. (Merit P-3046 or equivalent.)
CR_{1}-20-ma. selenium rectifier.
$M_{1}-0-1$ d.c. milliammeter.
The instrument may be calibrated by listening to its output with a calibrated reeceiver. The ealibration should be as accurate as possible, although "frequency-moter accuracy" is not required in the appiications for which a grid-dip meter is useful.

The grid-dip meter may be used as an indicat-ing-type absorption wavemeter by shutting off the phate voltage and using the grid and cathote of the tube as a diode. However, this type of eirruit is not as sensitive as the erystal-detector type shown carlier in this chapter, because of the highresistance grid leak in series with the meter.

In using the grid-dip meter for checking the resonant frequency of a eireuit the coupling should be set to the point where the dip in grid current is just perceptible. This reduces interaction between the two eireuits to a minimum and gives the highest aceuracy. With too-close

Fig. 21.19-Transistor circuit-checker or "grid-dip meter" covering 3 to 40 Mc . in five ranges. The circuit and battery power supply are contained in the $21 / 4 \times 21 / 4 \times 5$ inch oluminum box (Bud CU-3004) so the instrument is completely independent of the a.c. line. The dial is white cordboard with an inked-on calibration; the hairfine indicator is on a Lucite disk cemented to the tuning knob. The d.c. meter is a miniature type, but the box is large enough to take a standard 2 -inch instrument. The control on the near edge is R_{2}, for setting the d.c. meter reading to a suitable on-scale value.
coupling the oseillator frequency may be "pulled" by the circuit being checked, in which case different readings will be obtaned when resonance is approached from the high side as compared with approaching from the low side.

venient in the applications for whish the griddip meter is useful, sibee it lends itself to very compact construction with freedom from dependence on the a.ce line for power. The prinripal drawbark at the present time is that there are no low-eost transistors that will oseillate well in the v.h.f. range. However, it is possible to build an oseillator that will operate at least through the ordinary communication frequencies, as shown he ligs 21-19 to $21-21$, inclusive.
The oscillator cirruit in Fig. 21-20 is basically of the Colpitts type. Since there is no d.e. current in the transistor oscillator that compares with grid current in the tube oseillator, an equivalent effert is obtained by using (R_{1} to rectify some of the r.f. conergy, and then measuring the reetified current. To enable the use of a relatively inexpensive d.r. instrumont, a seeond transistor is used as a d.e. amplifier following the reotifier. Omitting (2. would require $1 /_{1}$ to be a sensitive midroammeter, since the power in the r.f. escillator is extremely low. R_{2} provides a means for setting the meter reading to the desired point on the seale.
The optimum value of bias resistor, A_{1}, varios with frequence so the proper resistor is monted in the roil form for each range, Any convenient pin arrangement can be used for the coil and resistor terminals. Mount the eoils near the open ends of the forms so they can be tightly coupled to the cireuit being cherked. The resistors should be placed near the bottom so they will be as far as possible from the coils.

The instrument is used in the same way as a tube grid-dip moter in checking unknown eircuits, and may be calibrated by the same method.

AUDIO-FREQUENCY OSCILLATORS

A useful accessory for testing audio-frequency

Fig. 21-20-Circuit of the transistor. ized grid-dip meter. Capacitances are in $\mu \mu \mathrm{f}$. except where specified otherwise; fixed resistors are $1 / 2$ watt. Fixed capacitors are ceramic.

Audio-Frequency Oscillators

Fig. 21-21-Inside the case of the transistor oscillator. All components are mounted on the flanged section of the two-piece box. The oscillator is at the right in this view, with connections anchored to tie points placed on either side of the coil sockel. Q_{1} is visible just below the tuning capacitor. $C R_{1}$ is mourted on the tie-point strip above the coil socket. The d.c. amplifier circuit is to the left of the mercury battery; the 1.5 -volt cell is mounted beside the variable resistor, using a
 lug soldered to the + terminal for support.
amplifiers and modulators is an :udio-fregueney signal gomerater or oscillator. Cherks for disfortion, gain, and the troubles that oceur in such amplifiers do not require elaborate equipment: the prineipal reduirement is a soure of one or more andio tomes having a good sine wate form, at a voltare level aljustable from a fow volts down to a few millivolts so the oseillator can be substitut ed for the type of microphone to be used.

An easily ronstructed ascillator of this type is shown in figs. 21-22 to 21-24, inclusive. Three audio frequencios are avitiblbe. approsimately $2(0)$. 900 and 2500 areles. These three frequemeins are sulficiont for testins the frequency response of ath amplifier over the range needed for voice communieation.

The circuit uses at double trionde as a cathodecouplend ascillator. the serend seet iem of the tube providing the feredbark neressary for ose illation through the common "athode commedion. The :3-wat hamp in this feredback loop ants as a variable resistame tor control the oseillation amplitude and thas matintain the operating eonditions at the point where the la whe we form is peneratod. This perating point is sot by the "oseillation control," R_{1}. The frequenery is determined by the resistance and matitanee in

Fig. 21-22-Bottom view of the audio oscillator, showing the power-supply components and amplitude-contral lamp, h_{1}. The lamp is mounted by wires soldered to its base. The seleninm rectifier is supported by a tie-point strip. Placement of resistors, which are hidden by the other components, is not critical. The unit fits in a $4 \times 5 \times 6$ inch box.
$C R_{1}$-20-ma. selenium rectifier.
J, 3-watt, 115 -volt lamp (G.E. 3S6).
L-8 henrys, 40 ma . (Thordarson 20C52).
$\mathbf{R}_{1}, \mathbf{R}_{2}$-Volume controls. S_{1}-2-pole 5-position (3 used) rotary switch.
S_{2}-D.p.d.t. toggle.
$S_{3}-S . p . s . t$. toggle (mounted on R_{1}).
T1-Power transformer, 150 volts, 25 ma .; 6.3 volts 0.5 dmp . (Merit P-3046).

Fig. 21-23-Circuit diagram of the audio oscillator. Capacitances below $0.001 \mu \mathrm{f}$. are in $\mu \mu \mathrm{f}$. Fixed resistors are $1 / 2$ watt unless otherwise indicated.

Fig. 21-24-Inside view of the audio oscillator. The a.c. switch. S_{3}, is mounted on the output control of the left on the panel. The ceramic copacitors in the frequencydetermining circuils are mounted on the rotary switch, S_{1}, at the right. S_{2} is above the tube, and T_{1} is on the near edge of the chassis, which is a U-shaped piece of aluminum $31 / 2$ inches deep with $11 / 2$ inch lips. R_{1} is mounted on the near lip at the left.
the coupling circuit between the first-section plate and scrond-spetion grid. Vimions values of eapacitance cotn be selected ber moans of N_{1} to set the frequency. The wethat frequrnefis meatsured in the unit shown in the photographs are given on the diagram. They may be wither inereased or derereased bey using smatler or latger capacitances, respertively.
Gutput is taken from the cathode of the serond triode seetion. lither the full output, $1 . \overline{\text { of }}$ volts, or approximately one-tonth of it can be selected by se. On aither of these two ranges smooth control of output is provided by $R 2$.

The built-in power supply uses a small fransformer and a selenium rectitier to develop approximately 150 volts. Hum is redued to a negligithe level by the filter rousisting of the 8 -henry choke and 20 - μ f. copaciton's.

An oseilloscope is useful for preliminary cheeking of the oscillator since it will show wave form. R_{1} should be set at the point that will consure oscillation on atl three frequencies when switching from one to the other.

- NOISE GENERATORS

A noise mencrator is a devire for ereating a controllable amont of radio-fregurnes nowe ("hiss"-1 ype noise) (emonly distributed throughout the frequency speetrum of interest. The simplest type of noise generator is a diocle. wither valumm-tule or cerstal, with direct current flowing through it. The emarent is also made to
flow thromgh a load resistanme which in gemeral is chosen to equal the chametromist imperdane of the tratsmission litue to be rommeoted to the reederers ingut torminals. The mesistane ther substitutes for the lines. and the amomet of r.f. noise fed to the input terminals of the recoiver is controlled bey rontrolling the der throngh the cliode.

The nsefulnese of the noise gencrator in amateur work lies in the fact that it provides a means for adjusting the "front-end" cirenits of a receiver for optimmom signal-to-moise ratio (sere seretions on reereiver design). Whthough it ram he built at little expensed it is athtally more effertive for this purpose than eostly laboratory-type signal generators. A simple circuit using a crystal diode is shown in l 4 ig . $21-25$. Fig. $21-26$ illus-

Fig. 21-25-Circuit of a simple crystal-diode noise generator.
BT_{1}-Dry-cell battery, any convenient type.
$\mathrm{C}_{1}-500-\mu \mu \mathrm{f}$. ceramic, disk or tubular.
CR1—Silicon diode, IN21 or 1N23 (do not use ordinary germanium diodes).
P_{1}-Cooxial fitting, cable type.
R_{1}-50,000-ohm control, counterclockwise logorithmic taper.
$R_{2}-51$ or 75 ohms, $1 / 2$-watt composition.
$\mathrm{S}_{\mathrm{t}}-$ S.p.s.t. toggle (may be mounted on R_{1}).
trates the construction, the primeipal requirement being that Res shoud be mounted right on the treminals of the roaxial fitting and that leat lengeths should be as short as possible in the eir-
 lengths are begligible the instrument should give uniform pertormaner up to at least 150 Me. R_{2} should matel the partionlar line and input impedanere for which the recodiver is designed.
To nse the gemerator, serew the roaxial fitting on the recrover's ingut fitting, open S_{1}, and measure the nowe ontput of the rereviver using ath are vartmm-tabe voltmeter or similar atif. voltage indieator. Make sure that the reremeres r.f. and addio gain controls are set well within the lincar range, and do not use a.ver. Then turn on the noise generator and set R_{1} for an appereciable increase in output, saty twier the original noise voltage, abd note the dial setting. Recoiver front-ond adjustments may then be made with the objert of attaining the same nowe incerase with the lowest pessible direet current through the dione - that is, with the largest possible rexistance at R_{1}.

The instrument may he used for comparing different reereivers of different front-6nd arrangements, sime this trye of measurement is independent of reeoberer bandwidth (which has a marked reffect on the artual signal-to-noise

R.F. Measurements

Fig, 21-26-Crystal-diode noise generator mounted in a $15 / 8 \times 21 / 8 \times 4$-inch box. Most of the space is occupied by the miniature 6 -volt dry-cell battery. The coaxial fitting (PL-259) con be mounted to the box by cutting a hole in a small square sheet-copper plate to make a snug fit over the end of the body of the connector and then soldering it in place. Holes can be drilled in the plate for mounting screws. The diode can be mounted in improvised clips, the larger being a small-size grid-grip and the smaller a miniature socket contact.
ratio). For consistent measuments the battery voltage should be cheeked to make sure that it dexs not change with the setting of R_{R}.
(Further information on noise generators, with additional references, may be found in (OST for July, 19\%3.)

R.F. Measurements

R.F. CURRENT

R.f. curpontmanaring devices use a thermocouple in conjunction with an ordinary d.c. instrument. "the thermocouple is made of two dissimilar motals which, when heated, generate a small d.ce voltage. The thermorouphe is heated be a resistance wire through which the ref. current Hows and sine the d.e. voltage developed is propertional to the heatines. Which in turn is proportional to the power used bey the hating ofement. the defledions of the d.e fonstrument are propertional to power rather than ta curment.
 at the low-ecurrent cond and spread ont at the highenrent end. The useful range of such an instrumont is about 3 or + to 1 : that is an ris ammeter hatving a full-sate reading of 1 amprore cata be read with satislactory aromacy down to about 0.3 ampere one having a full seale of a amperes ran beread down to athout 1.5 amperes, and so on. No single inst rument abl be made to handle a wide ramge of currents. Neither can the r.f. ammetor be shanted satisitutomilys as can be dome with d.e, instruments, bereatuse (reon a very small amomit of reactance in the shant will camse the

fig. $21-27$ shows a combationt waty of usimer ath r.f. ammeter for mensuring eurent in atomial line. The instrument is simply monated in a metal lax with at shert lead from eneh terminal

Fig. 21-27-R.f. ammeter mounted for connecting into a coaxial line for measuring power. A " 2 -inch" instrument will fit into a $2 \times 4 \times 4$ metal box.
to a comaial fitting. The shunt capacitance of an ammoter monntod in this way has only a nagligible affert on atreurary at freguemeres as high as 30 Mr , if the instrument has a bekelite fase. Motal-ranied meters should be mounted on a bakelite panel which in turn eat be mounted lehind a mateont that cleas the moter case by $1 / 4$ inch or so.

R.F. VOLTAGE

An r.f. voltmeter is a rectilier-t,ppe instrument in which the r.f. is converted to d.e., which is then measured with a d.e. instrument. The best type of revetifer for most applications is a revalal dionde. suth as the $1 N 34$ and similar tyons, becamse its caparitance is so low as to have
little effere on the behavior of the r.f. circuit to which it is connected. The principal limitation of these rectifiers is their rather low value of safe inverse peak voltage. Vacuum-tube diodes are considerably better in this respect, but their size, shunt capacitance, and the fact that power is required for heating the cathode constitute serious disadvantages in many applications.

One of the principal uses for such voltmeters is as null indicators in r.f. bridges, as described later in this chapter. Another useful application is in measurement of the voltage between the conductors of a coaxial line, to show when a transmitter is adjusted for optimum output. In either case the voltmeter impedance should be high compared with that of the circuit under measurement, to avoid taking appreciable power, and the relationship between r.f. voltage and the reading of the d.e. instrument should be as linear as possible - that is, the d.c. indication should be directly proportional to the r.f. voltage at all points of the scale.

All rectifiers show a variation in resistance with applied voltage, the resistance being highest when the applied voltage is small. These variations can be fairly well "swamped out" by using a high value of resistance in the d.e. circuit of the reetifier. A resistance of at least 10,000 ohms is necessary for reasonably good linearity with a $0-1$ milliammeter. High resistance in the d.c. circuit also raises the impedance of the r.f. voltmeter and reduces its power consumption.

The basic voltmeter circuit is shown in lig. 21-28. It is simply a half-wave rectifier with a meter and a resistor, h_{1}, for improving the linearity. The time constant of $C_{1} R_{1}$ should be large compared with the period of the lowest radio frequeney to be measured - a condition that can easily be met if R_{1} is at least 10,000 ohms and C_{1} is $0.001 \mu \mathrm{f}$. or more - so C_{1} will stay charged near the peak value of the r.f. voltage. The radiofrequency choke may be omitted if there is a low-resistame d.e path through the rircuit heing measured. ('2 provides additional r.f. filtering for the d.e. circuit.

Fig. 21-28-R.f. voltmeter circuit using a crystal rectifier and d.c. microammeter or $0-1$ milliammeter.

The simple eircuit of lig. 21-28 is useful for voltages up to ahout 20 volts, a limitation imposed by the inverse-prat voltage ratings of erystal diodes. A dual range voltmeter circuit. $0-20$ and $0-100$ volts, is shown in Fig. 21-29. A voltage divider, $R_{1} R_{2}$, is used for the higher range. An instrument using this circuit is shown in Jig. 21-30. It is designed for connection into a coaxial line. The principal eonstructional precautions are to kere) leads short, and to mount

Fig. 21-29-Dual-range r.f. voltmeter circuit. Capacitances are in $\mu \mu \mathrm{f}$.; capacitors are disk ceramic.
CR_{1} - 1 N 34 or equivalent.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$-Coaxial connectors, chassis-mounting type.
$\mathrm{R}_{1}-1000$ ohms, 1 watt.
$\mathrm{R}_{2}-3300$ ohms, 2 wotts.
R_{3} —App. 22,000 ohms (see text), $1 / 2$ watt.
S_{1}-S.p.d.t. rotary switch (Centralab 1460)
the components in such a way as to minimizo stray coupling betwen them and to keep them fairly well separated from metal surfaces.

For accurate calibration the power method dascribed below may be used) R_{3} should be adjusted. by selection of resistors or using two in sories to obtain the desired value, so that the moter reads full seale, with S_{1} set for the low range, with 20 volts r.m.s. on the line. A fregueney in the vieinity of 14 Me. should be used. Then, with S_{1} set for the high range, various resistors should be tried at R_{1} or R_{2} until with the same voltago the meter reads 20 por cent of full seale. The resistance variations usually will be within the range of 10 por rent tolorance resistors of the values specified. The readings at various othor voltages should be observed in order to cherk the linearity of the seale.

Calibration

Calibration is not neeessary for purely romparative measurements. A calibration in actual voltage requires a known resistive load and an r.f. ammetor. The sotup is the same as for r.f. power moasurement as deseribed later, and the

Fig. 21-30-Dual-range r.f. voltmeter for use in coaxial line, using o 0.1 d.c. milliammeter. The voltoge-divider resistors, R_{1} and R_{2} (Fig. 21-29) are at the center in the lower comparment. The bypass capacitors and R_{3} are mounted on a tie-point strip of the right. The unit is built in a $4 \times 6 \times 2$ inch aluminum chassis, with an aluminum partition connecting the two sides of the box to form a shielded space. A bottom plate, not shown, is used to complete the shielding.

Measuring Inductance and Capacity

voltage calibration is obtaned by calculation from the known power and known load resistanco, using Ohm's Law: $E=\sqrt{ } \bar{P} R$. As many points as possible should be obtained, by varving the power output of the transmitter, so that the linearity of the voltmeter can be cheeked.

R.F. POWER

Measurement of r.f. power reduires a resistive lowd of known value and either an ref. ammeter or a calibrated r.f. voltmeter. The power is then either $I^{2} R$ or E^{2} / R, where R is the hat resistance in ohms.
The simplest mothod of ohtaining a load of known resistance is to use an antemat system with coas-couphed matehing direuit of the typo described in the ehapter on transmission lines. When the rircuit is adjusted, by means of an s.w.r. bridge, to bring the s.w.r. down to 1 to 1 the load is resistive and of the value for which the bridge was designed (52 or 75 ohms).
The r.f. ammeter should be inserted in the line in plate of the s.w.r. bridge after the materhing has heen completed, and the transmitior then adiusted - without tourhing the matching sircuit - for maximum current. A 0-1 ammeter is useful for measuring the approximate range 5-50 wat ts in 52 -ohm line or $7.5-\overline{5}$ watts in $\overline{5}$-ohm line; at 0-3 instrument rath he used for 1:3-450 watts in 52-0hm line and $20-675$ watts in 75 -ohm line. The aceurary is usually greatest in the upper half of the seale.

An r.f. voltmeter of the type described in the preceding section also can be used for power measurement in a similar setup. It has the advantage that. Inerause its scable is substantially linear, a much wider range of powers can be measured with a single instrument.

INDUCTANCE AND CAPACITANCE

The ability to measure indurtance and eapar (itanee saves time that might otherwise be spent in cut-and-try. A convenient instrument for this purpose is the grid-dip oscillator, described curlier in this chapter.

For measuring inductance, use is made of a eapacitane of known value as shown at A in Fig. 21-31. With the unknown roil connected to the standard capacitor, rouple the grid-dip moter to the coil and adjust the oscillator frequency for the grid-current dip, using the loosest coupling that gives a detectable indication. The inductane is then given by the formula

$$
L_{\mu \mathrm{h},}=\frac{25,330}{C_{\mu \mu \mathrm{f},} f_{\mathrm{Mc}}^{2}}
$$

The reverse proedure is used for measuring capacitance - that is, a coil of known inductance is used as a standard as shown at B. The unknown capacitane is

$$
C_{\mu \mu \mathrm{f} .}=\frac{25,330}{I_{\mu \mathrm{L} .} f_{\mathrm{Mc}}^{2}}
$$

(8)

Fig. 21-31-Setups for measuring inductance and capacitance with the grid-dip meter.
The areuracy of this method depends on the accuracy of the grid-dip meter calibration and the accurary with which the standard values of L and (' are known. P'ostage-stamp) silver-mica (atpatcitors make satisfatory capacitance standards, since their rated tolerance is ± 5 per cent. Equally good inductance standards can be made from commercial mathine-wound coil materiat.

A single pair of standards will serve for measuring the L and C values commonly used in amateur equipment. A grod choice is $100 \mu \mu \mathrm{f}$. for the capacitor and $5 \mu \mathrm{~h}$. for the coil. Based on these values the chart of liig. 21-33 will give the unknown directly in terms of the resonant frequeney registered be the grid-dip meter. In measuring the frequenery the coupling betweren the griderlip, meter and resonant diruit should be kept at the smatlest value that gives a definite indication.

A correction should be applied to measurements of very small values of L and C to include the efferets of the shunt rapacitance of the mounting for the coil, and for the inductance of the leads to the capateitor. These amount to approximitely I $\mu \mu \mathrm{f}$. and $0.03 \mu \mathrm{~h}$., respectively, with the method of monnting shown in Fig. 21-32.

Coefficient of Coupling

The same equipment can be used for measurement of the coefficient of coupling between two

Fig. 21-32-A convenient mounting, using binding-post plates, for L and C standards made from commerciallyavailable parts. The capacitor is a $100-\mu \mu \mathrm{f}$. silver mica unit, mounted so the lead length is as nearly zero as possible. The inductance standard, $5 \mu \mathrm{~h}$., is 17 turns of No. 3015 B \& W Miniductor, 1 -inch diameter, 16 turns per inch.

Fig. 21-33-Chart for determining unknown values of L and C in the range 0.1 to $100 \mu \mathrm{~h}$. and 2 to $1000 \mu \mu \mathrm{f}$., using stondords of $100 \mu \mu \mathrm{f}$. ond $5 \mu \mathrm{~h}$.
coils. This simply repuires 1 wo meaturements of imblatatine (of oine of the coils) with the coupled coil first operowirented and then short-rimenited.
 coil and metsure the induretane with the terminals of the seremed coil open. Then short the terminals of the serond coil and abrain motinure the incluctance of the diest. 'The corefferient of compling is given by

$$
k_{i}=\sqrt{1}-\frac{L_{2}}{L_{1}}
$$

where $k=$ roefficient of roupling
$L_{1}=$ inductinere of first moil with terminals: of serond roil opner
$L_{2}=$ indurtance of first coil with terminals of serome roil shorterd.

R.F. RESISTANCE

Aside from the bridge methende used in trams-mission-line work, describued later, there is relattively little need for measurement of ref. resistance in amatelur pratiore. Alse. measurement of resistaneo by fundamental methods is mot pratticable with simple equipment. Where surh measuremonts are made, they are usually based
on known charartaristios of available resistors used as stamdarts.

Most topes of resistors have so much inherent reactance and skin offert that they do wot act like "pure" resistance at radio fromboneres, hat instead their colbertive resistance athl impedance vary with frepurber. This is esperefilly true of wire-woum resistors. Compsition (airlom wsistors of 25 ohms or more as a rale have negligible indurdime for fremumers up to 100 Nhe. or so. 'The skin afert also is small, hat the shunt rabaretane eamen he meglereted in the higher values of these resistors, einee it redures their imperdance athd makes it reartive. Howerer, for
 sidered to be negligible in romperition resivture of Galuos up to 1000 ohms, for frequeneries up to to 100 Mr., athd the ref. resistane of such units is practically the same as their dere resistane Hene they ran he eomsidered to le practioally pure resistaner in surh applications as ref. bridges. rte, provided they are monned in sum a way as 10 a woid magnetic robupling to wher virutit componemse, athet are mot so elose to grommbed metal bate as to give an appreriable incranse in shunt rapacitance.

Antenna and Transmission-Line Measurements

Two principal types of measurements are mate on antemate sustems: 1) the standing-wave ration on the tramsmision line. as a means for determining whether or bot the antomas is property matehed to: the line attermatively. the input resistane of the lime or antemat maty in masumed):
(2) the comparative radiation field strengeth in the vicinity of the amemns, as a moms for -hereking the dirertivity of a bean :untematand as an a ad in atjustment of choment tming and phasing. Both types of motasarmentents can be made with rather simple cuptipment.

Field Strength Meters

FIELD-STRENGTH MEASUREMENTS

The radiation intensity from an antemat is measured with a deviere that is cosentially a very simple recever equipped with an indieator to give a visual representation of the eomparative signal strenerth. Nuch a field-strength meter is used with a "pirk-up antenma" which should always have the same polarization as the antemat boing chereked - e.t., the piok-up antemma should be horizontal if the tramsmitting antenna is horizontal. (are should be taken to prevent stray pickup by the field-strength meter itself or he any tranmission line that may connere it to the pick-up anternat.
Fiokd-strongth measurements preferably should bo made at a distanere of several wavelengths from the transmitting antenna being tested. Measurements made within a wavelength of the antemat may l_{s} misleating, bereate of the possibility that the masuring equipmont may be responding to the combined induction and radiation fields of the antema, rather than to the radiation fiedd atome. Also, if the piek-up antemat has dimensions comparable with those of the anterman under test it is likely that the roupling between the t wo : antennas will be great enough to canse the piok-up antemat to tend to berome part of the radiating system and thus result in misheading fiold-strength readinge.

A dexirathe form of pick-up ant mata is a dipole installed at the same height as the antema being tested, with low-imperlane line sud as 7 on-ohm Twin-Lead connereted at the eenter to transfer the ref. signal to the fiedd-strength meter. The longth of the dipole nered only be great enough to give adequate meter readings. A half-wave dipole will give high sensitivity, but such lengeh will not he needed unldes the distance is several wavelengt he and a relatively insonstive metor is used.

Field-Strength Meters

The arystal-detcotor wavemuter doseribed marlier in this chaptor may be used as a fiedstrengih moter. It mate be coupled to the transmission line from the piek-up antenna through the coaxial-cable jark, I_{1}.
The indieations with a crostal wavemeter connerted as shown in Fig. 21-10 will tend to he "square law" - that is, the moter reading will In propertional to the square of the r.f, voltage. This exagerates the offere of relatively smath atdjustments to the antenna system and gives a fake impression of the improwement sereured. The moter reading abo be made more linear be connerting a fairly large resistance in series with the milliammeter (or microammeter), Dtont 10,000 ohms is repuired for good limearity. This ronsiderably reduces the sensitivity of the meter, but the lower sensitivity can be compensated for by making the pick-up antemat sufliciontly large.

Transistorized Wavemeter and Field-Strength Meter

A sensitive fiefl-strengt h meter con be made by using a transistor as a d.c. amplifier following

Fig. 21-34-Transistor d.c. amplifier applied to the wavemeter of Fig. 21-10 to increase sensitivity. Components not listed below are the same as in Fig. 21-10.
B_{1}-Small flashlight cell.
$M_{1}-0-1$ d.c. milliommeter (see text).
$Q_{1}-2 N 107$, CK722, etc.
$\mathrm{R}_{1}-10,000$-ohm control.
$R_{2}, R_{3}-1500$ ohms, $1 / 2$ watt.
S_{1}-S.p.s.t. toggle (on-off switch).
the ervistal rectifier of a wavemeter. A circuit of this type is shown in Pig. 으-3.4. Wepending on the rhatacteristies of the particular transistor used, the amplifieation of current may be 10 or more times, so that a $0-1$ milliampere d.e. instrument beeomes the equivalent of a sensitive microammeter.

The circonit to the left of the dashed line in Fig. $21-3 t$ is the same as the wavemeter cirenit of Fig. $21-10$, and the transistor amplifier ean (asily be accommodated in the ease shown in Figs. 21-11 and 21-12.

The transistor is commected in the commonemitter circuit with the rectified d.c. from the arestal diode flowing in the base-mitter cirent. Sime there is at small residual eurent in the collever circuit with no current flowing in the baseemitter eirenit, the d.c. meter is ronnected in at bridge arrangemont so the residual current can be bataneed out. This is aceomplished, in the absence of any signal input to the transistor base, by adjusting R_{1} so that the voltage drop a uross it is equal to the voltage drop from eollector to emitter in the transistor. R_{2} and R_{3}, being of the same resistane, hate equal voltage drops areross them and so there is no difference of potential arross the meter terminats until the rollector current increases berause of current flow in the hasc-emitter cirruit.

The eolleretor current in a circuit of this type is not strictly proportional to the base current, partieularly for low values of base current. The meter readings arr not direetle proportional to the field strength, therefore, but tend toward "square law" response just as in the case of a simple diode with little or no resistance in its d.e. circuit. For this reason the d.e. meter, h_{1}, should not have too-high sensitivity if reasonably limear response is desired. A $0-1$ milliammeter will be satisfactory,

The zero batane should be eherked at intervals while the instrument is in use, since the residual current of the transistor is sensitive to temperature changes.

IMPEDANCE AND STANDING-WAVE ratio

Adjustment of antenna matching systems requires some means either of measuring the input impedance of the antenna or transmission line, or measuring the standing-wave ratio. "Bridge" methods are suitable for cither measurement.
There are many varieties of bridge cirenits, the two shown in lig. 21-35 boing among the most popular for amateur purposes. The simple
(A)

(B)

Fig. 21-35-Bosic bridge circuils. (A) Resistance bridge; (B) resistonce-copocitance bridge. The latter circuit is used in the "Micromatch," with R_{s} a very low resistance (1 ohm or less) and the ratio $\mathrm{C}_{1} / \mathrm{C}_{2}$ adjusted accordingly for a desired line impedance.
resistance bridge of Fig. 21-35A consists essentially of two voltage dividers in parallel across a source of voltage. When the voltage drop across R_{1} equals that across R_{s} the drops arross R_{2} and R_{t}, are likewise equal and there is no difference of potential betwern points A and B. Hence the voltmeter reading is zero and the bridge is said to be "balanced." If the drops across R_{1} and R s are not equal, points A and B are at different potentiats and the voltmoter will read the difference. The operation of the circuit of Fig. 21-351 is similar, exeept that one of the voltage dividers is capacitive instead of resistive.
Because of the characteristies of practical compouents at radio frecuencies, the cireuit of Fig. $21-35 \mathrm{~A}$ is best suited to applications where the ratio R_{1} / R_{2} is fixed; this type of bridge is particularly well suited to measurement of standingwave ratio. The circuit of Fig. $21-3513$ is well adapted to applications where a variable voltage divider is essential (since C_{1} and C_{2} may readily be made variable) as in measurement of unknown values of R_{L}.

S.W.R. Bridge

In the circuit of Fig. $21-35 \mathrm{~A}$, if R_{1} and R_{2} are made equal, the bridge will be balanced when $R_{1}=R_{s}$. This is true whether R_{1}, is an actual resistor or the input resistance of a perfectly matehed transmission line, provided $R_{\text {s }}$ is chosen to equal the characteristic impedance of the line. Even if the line is not properly matched, the bridge will still be batanced for power traveling outward on the line, since outward-going power sees only the Z_{0} of the line until it rearhes the
load. However, power reflected back from the load does not "see" a bridge circuit and the reflected voltage registers on the voltmeter. From the known relationship between the outgoing or "forward" voltage and the reflected voltage, the s.w.r. is casily calculated:

$$
S . W^{\prime} R .=\frac{V_{0}+V_{r}}{V_{0}-V_{r}}
$$

Where V_{0} is the forward voltage and V_{r} is the reflected voltage. The forward voltage is equal to $E / 2$ since R_{s} and R_{1}, (the Z_{0} of the line) are equal. It may be measured cither by disconnesting R_{1}, or shorting it.

Measuring Voltages

For the s.w.r. formula above to apply with reasonable aremrate (partioularly at high stand-ing-wate ratios) the current taken by the voltmeter must be inappreciable compared with the currents through the bridge "arms." The voltmeter used in bridge circuits employs a crustal diode rectifier (see discussion eartior in this (hapter) and in order to meet the above requirement - as well as to hawe linear response, which is equally mecossary for calibration purposes should use a resistane of at least 10,060 ohms in serios with the milliammeter or microammeter.
sinee the voltage applied to the line is measured by shorting or disconnerting R_{L} (that is, the line input terminals), while the refferted voltage is measured with R_{2} connerted, the load on the source of voltage E ' is different in the two measurements. If the regulation of the voltage source is not perfert, the voltage E will not remain the s:ame under these two conditions. This can lead to large errors. Surh errors can be avoided by using ta second voltmeter to maintain a chark on the voltage applied to the bridge, readjusting the

Fig. 21-36-Bridge circuit for s.w.r. measurements. This circuit is intended for use with a d.c. voltmeter, range 5 to 10 velts, having a resistance of 10,000 ohms per volt or greater.
$C_{1}, C_{2}, C_{3}, C_{4}-0.005$ - or $0.01-\mu \mathrm{f}$. disk ceramic.
$\mathbf{R}_{1}, \mathrm{R}_{2}-47$-ohm composition, $1 / 2$ or 1 watt.
$\mathrm{R}_{3}-52$ - or $75 . \mathrm{ohm}$ (depending on line impedance) composition, $1 / 2$ or 1 watt; precision type preferred.
$\mathbf{R}_{4}, \mathbf{R}_{5}-10,000$ ohms, $1 / 2$ watt.
J_{1}, J_{2}-Coaxial connectors.
Meter connects to either "input" or "bridge" position os required.

Fig. 21.37-A simple bridge circuit useful for impedancematching in coaxial lines.
$C_{1}, C_{2}-0.005$ - or $0.01-\mu \mathrm{f}$, disk ceramic.
$R_{1}, R_{2}-47$-ohm composition, $1 / 2$ watt.
R_{3}-52- or 75 -ohm (depending on line impedonce) composition, $1 / 2$ watt; precision type preferred.
$R_{4}-1000$-ohm composition, $1 / 2$ watt.
J_{1}, J_{2}-Cooxial connector.
The meter may be a 0.1 milliammeter or d.c. volt. meter of any type hoving a sensifivity of 1000 ohm per volt or greater, ond o full-scole range of 5 to 10 volts. Negative side of meter connects to ground.
coupling to the voltage source to maintain constant applied voltage churing the two measurements. Since the "input" voltmeter is simply used as a reference, its linearity is not important, nor does its reading have to bear any definite relationship to that of the "bridge" voltmeter, except that its range has to be at least twice that of the latter.

A practical circuit ineorporating these features is given in Fig. 21-36.

If the bridge is to be used merely for antenma adjustmont, where the object is to secure the lowest possible s.w.r. rather than to meatsure the s.w.r. arcurately, the voltmeter requirements are not stringent. In this case the object is to get as (rlose to a "mull" or balame (that is, zero reading) as possible. At or near exact balanere the voltmeter impedance is not important. Neither is it necessary to maintain constant input voltage to the bridge. This simplifies the bridge circuit ronsiderably, Fig. 21-37 being a pratetical example. The construction of a bridge of this type suitable for antenna and transmission line adjustments is shown in Fig. 21-38.

Bridge Construction

A principal point in the construction of an s.w.r. bridge is to avoid coupling between the resistors forming the bridge arms, and between the arms and the voltmeter circuit. This can be done by keping the resistance arms separated and at right angles to cach other, and by plateing the cristal and its conneeting leads so that the loop so formed is not in inductive relationship with any loops formed by the bridge arms. Shielding between the bridge arms and the crystal cirenit is helpful in reducing such couplings, although it is not always necessary. The two resistors forming the "ratio arms," R_{1} and R_{2}, should have identical relationships with metal parts, to keep the shunt capacitances
equal, and also should have the same lead lengths so the inductances will balature. Leads should be kept as short as possible.

Testing and Calibration

In a britge intended for s.w.r. meatsurement (Fig. 21-36) rather than simple matching, the first check is to apply just enough r.f. voltage, at the highost frequency to be used, so that the bridge voltmeter raids full sabe with the load terminals open. Olaserve the input voltage, then short-circuit the load torminals and readjust the imput to the same voltage. The bridge voltmeter should again registor full scale. If it does not, the ratio arms, R_{1} and R_{2}, probably are not exactly equal. These two resistors should the earefully matched, although their actual vatue is not critical. If a similar test at a low frequeney shows better halanee, the probable cause is stray indurtance or caparitance in one arm not balanced by equal strays in the other.

Ifter the "short" and "open" readings have been equalized, the bridge should be chereked for null balanee with a "dumme" resistance, equal to the line impedanere, connected to the load terminals. It is conveniont to mount a half- or l-watt resistor of the proper value in a roax comector, keeping it centered in the connector and using the minimum lead length. The bridge voltmeter should read zoro at atl frequencos. A reading above zoro that remains constant at all frequencies indieates that the "dummy" resistor is

Fig. 21-38-An inexpensive bridge for matching adjustments using the circuit of Fig. 21-37. It is built in a $15 / 8 \times 21 / 8 \times 4$-inch "Chonnel-lock" box. The standard resistor, R_{3}, bridges the two coox connectors. A pin jack is provided for connection to the d.c. meter, 0.1 ma . or $0.500 \mu \mathrm{a}$.; the meter negative can be connected to the cose or to one of the coax fittings.

21-MEASUREMENTS

not matched to R_{3}, whike realings that vary with frequency indicate stray reactive effects or stray (onpling hetween parts of the bridge.

When the operation is satisfactory on the two points just described, the null should be checked with the dummer resistor connerted to the bridge through several different lengths of transmission line, to ensure that R a actually matehes the line impedanere. If the mull is not completer in this lest both the dummy resistor and R_{3} will have to be adjusted until a good mateh is obtaned. With are, composition resistors can be filed down to raise the resistance, so it is lest to start with resistors somewhat low in value. With each change in R_{3}, adjust the dummy resistor to give a good mall when eomeated direrety to the bridge, then try it at the end of several different lengths of line, continuing until the null is satisfactory under all conditions of line langth and frequency.

With a high-imperdane voltmeter, the s.w.r. readings will elosely approximate the theoretical curve of Fig 21-39. The calibration can be checked by using composition resistors as loals.

Fig. 21-39-Standing-wave ratio in terms of meter reading (relative to full scale) after setting forward voltage to full scale.

Adjust the transmitter coupling so that the bridge voltmeter reads full sale with the output terminals open, and then chock the input voltare. Connect various values of resistance aross the output terminals, making sure that the imput voltage is readjusted to be the same in cach case, and note the reading with the meter in the bridge position. This rherk should be made at a low frequency surh as 3.5 Mr . in order to minimize the effect of reactance in the resistors. The s.w.r. is given by

$$
\text { S.W.R. }=\frac{R_{1}}{R_{1}} \text { or } \frac{R_{0}}{R_{\mathrm{t}}}
$$

where R_{0} is the line impedance for which the bridge has bern adjusted to mull, and R_{L} is the resistance used as a load. Cise the formula that phaces the larger of the two resistames in the numerator. If the readings do not correspond exactly for the same s.w.r. when appropriate
resistors above and below the line impedane for which the bridge is designed are used, a possible reason is that the current taken by the voltmoter is afferting the measurements.

Using the Bridge

The operating procedure is the same whether the hridge is used for matelhing or fors s.w.r. measurement. dpply power with the load torminals cither opern or shorted, and aljust the input until the bridge voltmeter reads full seale. Because the bridge operates a very low power level it may be neressary to couple it to a low-power driver stage rather than to the final amplifier. Alternatively, the plate voltage and exeritation for the final amplifier may be reduced to the point where the power output is of the order of a few watts. Then comere the load and observe the voltmeter reading. For matching, aljust the matching network until the best possible mull is obtained. For s.w.r. measurement, note the r.f. input voltage to the bridge after adjusting for full-seale with the load termmals open or shorted, then connere the lowd and readjust the transmitter for the same input voltage. The bridge voltmeter then indieates the standing-wave ratio as given by Fig. 21-39.

Antemata systems are in general resonatht systems and thus exhibit a purely resistive impedance at only one frequency or over at smath hand of frequencies. In making bridge meatarements, this will cause errors if the r.f. energy used to operate the bridge is not free from harmonies and other spurious components, such as frequencies lower that the desired operating frequeney that maty be fod through the final amplifier from a frequence-doubler stage. When at good null cannot be seeured in, for example, the course of adjusting a matching sertion for l-to-1 s.w.r., a chorek should be made to ensure that only the desired measurement freguency is present. An indieating-type ahsorption frophenere moter conphed to the load usually will show whether currgy on undesired frequencios is present in significant amounts. If so, additional solerotivity must tre used betwern the soure of power and the measuring circuit.

Bridge for Monitoring S. W.R.

The low power kevel at which resistance-type bridges must operate is a disadvantage when the bridge is used ats an operating adjunct - r.g., for the adjustmont of matching rircuits when -hanging hatuds, or for reatjustment of surh circuits within a hamal. Por this purpose a bridge is mereled that will carry the full power output of the trammitter without absorbing an appreriable fraction of it.

The "Monimatch" shown in lrigs. "2l-40 to - $1-13$, inclusive, is such a devier. It makes use of the rombined efferets of inductive and capacitive coupling botwern the conter conductor of a coasial line and at longth of wire paralled to it. When the eromperd wire is properly terminated in a resistanere, the voltage imbued in it by power travelling atong the line in one dirertion will be balamed out in the erestal-rectifier wif. voltmeter

Monimatch

Fig. 21-40-Monimatch and indicator unit. The bridge is contained in the $2 \times 4 \times 4$-inch aluminum box at the left. The indicator unit, made separate from the bridge in case the latter has to be installed in a spot where the meter would not be readily visible, is in a $3 \times 4 \times 5$-inch box. Any convenient length of three-conductor cable (preferably shielded) can be used to connect the two.

rirenit, but pewer batvelling along the line in the opposide direction will catuse : voltmeter indieation. If the bridge is adjusted to match the Z_{0} of the remaxial line Ining used, the voltmoter will mespond only to the weflected voltage, just as in the ease of the resistancertype britges. The power comsumed in the bridge is helow one watt, even at the maximum power permited amateur transmitters.

The cirruit of tig. 21-11 has fwo such bridge rircuits so either the ineident or refleeded voltage fan be measwed.

The sensitivity of this type of bridge is proprotional to frequener, so higher power is repuived for at given voltmeter deflection at low than at high trequmbers. Typial values of "forwate " mectified cument (with R_{1}. Fig. 21-12, at moto mesistanee) are as follows. with a bridge adjusted for a charactoristio impedanere of 5x ohms:

Brand
3.5) Mc.

7 Me.
11 Mc .

()Vobl 1 mat.
70) $\mu \mathrm{L}$.
-(0) $\mu \mathrm{t}$.
50) $\mu \mathrm{a}$.
$21-28$ Mr

10 \|'alls: R.F. $\quad 50$ W'ates R.F.
$250 \mu \mathrm{a}$.
1 ma.
Over 1 mat
Over 1 mat.

A current of 1 mat. on 3.5 Mc . can be obtaned

Fig. 21-4 - Circuit of the Monimatch. The bridge element is a 24 -inch length of cooxial cable modified as described in the text. Capacitors are disk ceramic; capacitances in $\mu \mu \mathrm{f}$.
$C R_{1}, C R_{2}$-General-purpose germanium diodes (1N34A, etc.)
J_{1}, J_{2}-Cooxial fittings, chassis-mounting type.
R_{1}-Approximately 35 ohms for 52 -ohm line; see text.
with a power level of somewhat over 200 watts. These comments depend somewhat on the internal resistane of the dec. instrument.

Fig. 21-42-Indicator-unit circuit. For low power and low frequencies, M_{1} should be a $0-100$ microammeter. A $0-1$ milliammeter will suffice in other coses.
$\mathrm{R}_{1}-25,000$ - ohm control.
$\mathrm{S}_{1}-$ S.p.d.t. toggle.
The sensitivity also increases with an increase in cable length. but the cable should not be much longer than alout $1 / 20$ wavelength, to avoid standing-wave offects in the piek-up) cirruit. The length given in Fig. $2 l-41$ is suitable for frequencios up to about $\mathbf{5 0}$. Mr. For higher freguencies the length should be decreased in proportion to the wavelength. This reduces the sensitivity considerably at the lower frequencies, so it is alvisable to make sepamate units for v.h.f. and the frequencios below 30 Me .

The additional conductor in the bridge shown in the photographs is a length of So. 30 enamcled wire. T'o insert it under the cabble shiold, first loosen the brad by bunching it from the conds toward the wenter. Pumeh a smatl hole about ${ }^{\frac{1}{2}}$ anch from warh end of the braid and insert the and of the wire through one hole. then work it under the braid motil it can be pulled out through the other hole. Next. smooth out the braid to its original length, being carefing not to apply so much pressure that the enamel on the wire is seratehed. Then open a small hold in the braid at the exact center of the length and fish cough oi the No. 30 wire through to make the comeretion for R_{1}, agatin being careful about soraping the enamel off. Cheok with an ohmmeter to make sure the wire and bratd are not short circuited. Then wrap the ends of the braid with

21 - MEASUREMENTS

Fig. 21-43-Constructional details of the Monimatch (Fig. 21-40). This unit uses RG-58/U (52-ohm) cable, formed into several circular furns so the center where the lap for R_{1} is taken off will be close to the input and output connectors. The crystal diodes are mounted on tie points alongside the coax fittings so leods are kept as short os possible. The terminating resistor R_{1} consists of two resistors (47 ond 150 ohms) in porollel to give a resistance of opproximotely 35 ohms. The socket for d.c. connections to the indicator unit is an Amphenol 71-4S (71-3S can be substituted). Outside broid of the coble is spot soldered between odjocent furns in severol ploces for mechonical support and to ensure good grounding.
a turn or two of hate wire to prevent fraying and apply a drop or two of solder. The compheted assembly maty then be wound in a cirele or other form that will bring the renter conneretion near the two cods, and finally installed as shown in Fig. 21-4:3.

With heaviar eablue than the RC-is8/U used in the mit shown it will probably be neeresary to use a larger box. R(i-58/L is rated for 430 watts of r.f. up to 30 Mc , and, R(i-i9/U U for (i80 watts, For higher powers R(i-8/U or RGi11/U should be useth, An example of construetion using heavier cable is shown in the seetion on transmission lines. Aside from power, the type of rable should be chosen to mateh the charateteristice impedance of the line with which the Monimateh is to be used.

A dummy antennat of the same resistance as the Z of the line should be used to adjust R_{1} (Fig. 21 +1), A suitable dummy may bo made by connecting four 23 (0) ohm 1 -watt eomposition resistors in parallel for $5:-$-ohm line (or four 300 -ohm resistors for 75 -ohm line). Make the connerting leads as short as possible, The tramsmitter may be used as a sourer of power if its output ran be reduced to about 4 watts, or a 10 watt lamp may be commerted in serios in the lime from the transmitter to the bridge if the transmitter power eamot be redured below 50 watts. With power applied (preferably at 28 Mc .) through J_{1} and the dummy connected to J_{2}, try values for R_{1} until the meter reading is \%ero with S_{1} in the "reflected" position. It is luest to start with the resistance a little high (a fow trials will show
which way to go) and then try varions values of resistanco in paralled until a good moll reading is seroured. The final value should lie between the limits of 25 and 100 ohms, Finally, reverse the transmitter and load comeretions, when a good mull should be obtained with the switeh in the "forward" pesition. The "forward" and "reflerede" readings should he substantially identieal both ways if the construction is symmetrical.

With S_{1} in the "forward" position the meter gives a relative indiration of power matput, and thus is uscful for transmitter thang. With S_{1} in the "roflected" position the moter reading will be zero when the line is property matched.

Impedance Bridge

The bridge shown in Figs, 21-4t to 21-fif, inchavive, uses the baside cirenit of ligg. $21-3513$ and incorporates a "differential" esabacitor to obtain an adjustable ratio. When a resistive load of maknown value is commeded in place of R_{L}, the (${ }_{1} / C_{2}$ ratio maty be varied to at ain a balane a a indirated by a mull roading. The wabacitor settings can be calibrated in terms of resistance at $h_{\text {a }}$, so the unknown value can be read off the calibration.

The differential catpatitor eonsists of two ideritical caparitors on the stme shaft, arranged so that when the shat is rotated to increase the salparitane of one unit, the calpacitane of the other deroresses. The pratimb rifernit of the bridge is given in Fig, 21-4is. Sutisfatory operat tion hinges on ohserving the same ronstruetional prectutions as in the case of the s.w.r. bridge. Although a high-impedance voltmeter is not

Fig. 21.44-An RC bridge for measuring unknown values of impedance. The bridge operates at an r.f. inpul voltoge level of about 5 volts. The oluminum box is 4 by 5 by 6 inches.

Fig. 21-45-Circuit of the impedance bridge. Resisfors are composition, $1 / 2$ wott except os noted. Fixed copacitors ore ceramic.
C_{1}-Differentiol copacitor, 11.161 $\mu \mu \mathrm{f}$. per section (Millen 28801).
$C R_{1}$-Germonium diode \{1N34, 1N48, etc.).
$\mathrm{J}_{1}, \mathrm{~J}_{2}$-Cooxial connectors, chassis type.
$\mathrm{M}_{1}-0.500$ microommeter.
essential, since the bridge is always adjusted for a mull, the use of such a voltmeter is advisable beranse its better linearity makes the actual mull settings more accurately observable.

With the rireuit arrangement and caparitor shown, the useful range of the bridge is from about 5 ohms to $f(0)$ ohms. The calibration is such that the percentage aceuracy of reading is approximately constant at all parts of the scate. The midsorale value is in the range $50-75$ ohms, to correspond to the $\%_{0}$ of conxial cable. The reliable frecuroney range of the bridge includes all amateur hauls from 3.5 to $51 . \mathrm{Mc}$.

Checking and Calibration

A bridge constructed as shown in the photographs should show a complete mull at all frefuencies within the range mentioned alowe when a 50 -ohm "dummy" load of the type described carlier in comnection with the s.w.r. bridge is ronnertal to the load terminals. The bridge may be calibrated by using a momber of y watt 5\% toleraner composition resistors of different values in the $5-400$ ohm range as loats, in cuth case balancing the bridge by adjusting (i for a null reading on the meter. The leads between the test resistor and J_{2} should be as short as possible, and the calibration preforal)! should be done in the $3.5-\mathrm{Mc}$. hand where stray inductane and capabitance will have the least effert.

Using the Bridge

Strictly speaking. a simple bridge can measure only purely resistive impedanes. When the load is a pure resistance, the bridge can be batanced to at good null (meter reading zero). If the load hats a reateance romponent the null will not be eomplete; the higher the ratio of reactance to resistance in the load the poorer the null reading. The operation of the loridge is surh that when an exact mall connot be secured, the readings approximate the resistive component of the load for very low values of impedance, and approximate the total impedance at very high values of impedance. In the mid-range the approximation to either is poor, for loals having considerable reactance.

In using the bridge for adjustment of matching networks C_{1} is set to the desired value (usually the Z_{0} of the cowxial line) and the matching network is then adjusted for the best possible null.

PARALLEL-CONDUCTOR LINES

Bridge measurements made directly on paral-lel-conductor lines are frequently subject to considerable error because of "antenna" currents flowing on such lines. These currents, which are either induced on the line by the field around the antema or coupled into the line from the transmitter by stray capacitance, are in the same phase in both line wires and hence do not halance out like the true transmission-line currents. They will nevertheless actuate the bridge voltmeter, causing an indication that has no relationship to the standing-wave ratio.

S. W.R. Measurements

The effect of "antenna" currents on s.w.r.

Fig. 21-46-All components except the meter are mounted on one of the removable sides of the box. The varioble capacitor is mounted on an L-shaped piece of aluminum (with half-inch lips on the inner edge for bolting to the box side) 2 inches wide, $21 / 4$ inches high ond $23 / 4$ inches deep, to shield the copacitor from the other components. The terminols project through holes os shown, with ossociated components mounted directly on them and the load connector, J_{2}. Since the rotor of C_{1} must not be grounded, the capocitor is operoted by on extension shoft ond insuloted coupling.

The leod from J_{1} to $C_{1 A}$ should go directly from the input connector to the copocitor terminol (lower right) to which the 68 -ohm resistor is ottoched. The 4700 -ohm resistor is soldered ocross J.
measurments can le largoly overeme by using at coaxial bridge and coupling it to the paralle. rondurtor line through a properly designed impedancematehing circuit. A suitable cirenit is given in Fig. 21-47. An antennat conpher can be nsed for the purpose. In the batameed tank eimenit the "antentia" or patrallel components on the lime tend to batanee out and so atre not patsed on to the s.w.r. bridge. It is (wsential that L_{1} be coomperd to ab "cold" proint on L e to minimize "atpateitive roupling. and atso desirathlo that the center of I a be grounded to the chassis on which the cirenit is
 tuned to the operating frecurenery and that L_{1} provides sufficient compling, ate deseribed in the trans-mission-line ohapter. The measuremont procedure is as follows:
(onnert at noninductive (12 or 1-watt carbon) resistor, having the same value as the eharacteristic impedane of the paralleleandurtor lime, to the "line" terminals. Apply r.f. to the bridere, adjust the talps on L_{2} (keeping them equidistant

Fig. 21.47-Circuit for using coaxial s.w.r. bridge for measurements on parallel-conductor lines. Values of circuit components are idential with those used for the similar "antenna-coupler" circuit discussed in the chapter on transmission lines.
from the center), whike varying the capacitane of C_{1} and C e, until the bridge shows a mill. After the null is ohtained, do not touch athe of the cirenit adjustments. Xext, short-eireuit the "line" terminals and adjust the r.f. inpont unt the bridge voltmeter reads full scale. Remove the shoredircuit and test resistor, and conne the regular transmission line. The bridge will then indicate the stamding-water ratio on the line.

The circuit recuires rematching, with the test resistor, whenerer the froguency is changed apprediably. It can, however. be used ower a portion of an amateur band without readjustment, with megligible crror.

Impedance Measurements

Me:suremonts on parallelecenductor lines and other badanced lowds can be made with the impedance bridge previously deseribed by using a halum of the type shown schematically in Fig. 21-18. This is

Fig. 21-49-8alun construction (W2ZE). 150-ohm Twin-Lead may be used for the bifilar winding in place of the ordinary wire shown. Symmetrical construction with tight coupling between the two coils is essential to good performance.

Capacitors in unit shown in Fig. 21-49 are NPO disk ceramic. Units may be paralleled to obtain proper capacitance.
an autotransommer having a 2 -to-l thrms ration and thas provides a 1 -to-1 stop-down in impertance from a balaneed load to the ondput cirenit of the bridge, othe side of which is grommed. L_{1} :und L_{2} must be as tightly coupled at peosible, and so should be const ructed as at bifilat wimding. The rimenit is resonated to the operating frequeney by C_{1}, and Cow serves to tume ont any residual reactane that maty be present becanse the rompling betwern the two roils is not quite perferet.

Pig. 21-49 shows one method of constructing such a halum. The two interwound evils are made ase nesuly identiral ase pexsible, the "finish" end of the first being eombected to the "state" end of the seroond through at short lead rumaing under the winding inside the form. The center of this lowd is tapped to give the eomeredion to the shedl side of the coas amonetor. ('1 should be chosen to resonate the cirenit at the eenter of the band for which the bethan is designed with J_{1} opern, and (2 should resonate the cerecuit to the same froqueney with both f_{1} and the "load" forminats shorted. The frequeney therks maty be made with a grid-dip moter. (loor further details, see QS'I' for Sugust, 1 ! 15 5.)

S.W.R. Measurements

With the balun in use the bridge is operated in the same way as previously deseribed, except that all impedance readings must be multiplied by 4. The bahun also may be used for s.w.r. measurements on $3(00$-ohm line in conjunction with at resistance bridge designed for 7, -ohm coaxial line.

The "Twin-Lamp"

A simple and inexpensive slanding-wave indicator for 300 ohm line is shown in Fig. 21-50. It consists only of two flashlight lamps and a short piere of 300 -ohm line. When laid flat against the line to be checked, the coupling is such that outgoing power on the line causes the lamp nearest to the transmitter to light, while reflected power lights the lamp nearest the load. The power input to the line shoudd be adjusted to make the lamp nearest the transmitter light to full brilliance. If the line is properly matehed

Fig. 21-50—The "twin-lamp" standing-wave indicator mounted on 300 -ohm Twin-Lead. Scotch tape is used for fastening.

Fig. 21-51-Wiring diagram of the "twin-lamp" stand-ing-wave indicator.
and the reflected power is very low, the lamp toward the antema will be dark. If the s.w.r. is high, the two lamps will glow with practically equal brilliance.

The length of the piere of 300 -ohm line needed in the twin-lamp will depend on the transmitter power and the operating frequency. A few inches will suffier with high power at high frequencios, while a foot or two may be needed with low power and at low frequencies.

In constructing the twin-lamp, cut one wire in the exart center of the piece and peel the ends back on either side just fiar enough to provide teads to the flashlight lamps. Remove about $1 / 4$ inch of insulation from one wire of the main transmission line at some convenient point. Use the lowest-current flashlight butbs or dial tamps available. Solder the tips of the bulbs together and eonneet them to the hare point in the transmission line, then solder the ends of the cut portion of the short piece to the shells of the bults. Figs. 21-50 and -5। should make the construction clear.

The twin-lamp will respond to "antenna" currents on the transmission line in much the same way as the bridge circuits discussed earlier. There is therefore always a possibility of error in its indieations, unless it has been determined by other means that "antema" currents are inconsequential compared with the truc transmission-line current.

The Oscilloscope

The cathode-ray oscilloscope gives a visual representation of signals at both audio and radio frequencies and ean therefore be used for many types of measurements that are not possible with instruments of the trpes discussed earlier in this chapter. In amateur work, one of the principal uses of the seope is for displaying an amplitudemodulated signal so a phone transmitter can bo adjusted for proper modulation and continuously monitored to keep the modulation percentage within proper limits. For this purpose a very simple circuit will suffice, and a typical rirenit is deseribed later in this section.

The versatility of the scope can be greatly increased by adding amplifies and linear deflection circuits, but the design and adjustment of such cireuits tends to be complicated if optimum performance is to be secured, and is somewhat outside the field of this section. Special components are generally required. Oscilloscope kits for home assembly are available from a number of suppliers, and since their cost compares very favorably
with that of a home-built instrument of comparable design, they are recommended for serious consideration by those who have need for or are interested in the wide range of measurements that is possible with a fully equipped scope.

- CATHODE-RAY TUBES

The heart of the oscilloscope is the cathoderay tube, a vacuum tube in which the electrons emitted from a hot cathode are first accelerated to give them considerable velocity, then formed into a bean, and finally allowed to strike a special translucent scren which flumesces, or gives off light at the point where the beam strikes. A beam of moving elect rons cam be moved haterally, or deflected, by electric or magnetic fields, and since its weight and inertia are negligibly small, it can be made to follow instantly the variations in periodically changing fields at both audio and radio frequencies.

The electrode arrangement that forms the electrons into a beam is called the electron gun.

Fig. 21-52-Typical construction for a cathode-ray tube of the electrostatic-deflection type.

In the simple tube structure shown in Fig. 21-52, the gun consists of the cathode, grid, and anodes Nos. 1 and 2. The intensity of the electron beam is regulated by the grid in the same way as in an ordinary tube. Anode No. I is operated at a positive potential with respect to the eathode, thus aceelerating the electrons that pass through the grid, and is provided with small apertures through which the electron stream passes. On emerging from the apertures the electrons are traveling in practieally parallel straight-line paths. The electrostatic fields set up by the potentials on anode No. 1 and anode No. 2 form an electron lens system which makes the electron paths converge or forms to a point at the fluorescent sereen. The potential on anode No. 2 is usually fixed, while that on anode No. 1 is varied to bring the beam into forcus. Inode No. 1 is, therefore, called the focusing electrode.

Electrostatic deffection, the type generally used in the smaller tubes, is produced ly deflecting plates. Two sets of plates are placed at right angles to each other, as indicated in Fig. $21-\overline{2} 2$. The fields are created by applying suitable voltages between the two plates of each pair. Usually one plate of each pair is connected to anode No. 2, to establish the polarities of the vertical and horizontal fields with respect to the beam and to each other.

Formation of Patterns

When periodieally-varying voltages are applied to the two sets of deflecting plates, the path traced by the fluorescent spot forms a pattern that is stationary so long as the amplitude and phase relationships of the voltages remain unchanged. Fig. 21-53 shows how one sueh pattern is formed. The horizontal sweep voltage is assumed to have the "sawtonth" waveshape indicated. With no voltage applied to the vertical phates the trace simply sweeps from left to right across the screen along the horizontal axis $X-X^{\prime}$ unti] the instant H is reached, when it reverses direetion and snaps back to the starting point. The sine-wave voltage applied to the vertical plates similarly would trace a line along the axis $Y-Y^{\prime \prime}$ in the absence of any deflecting voltage on the horizontal phates. Itowever, when both voltages are present the position of the spot at any instant depends upon the voltages on both sets of
plates at that instant. Thus at time B the horizontal voltage has moved the spot a short distance to the right and the vertical voltage has similarly moved it upward, so that it reaches the arctual position B^{\prime} on the sereen. The resulting trace is easily followed from the other indicated positions, which are taken at equal time intervals.

Types of Sweeps

A sawtooth sweep-voltage wave shape, such as is shown in Fig. $21-\overline{5}$;3, is called a linear sweep, because the deflection in the horizontal direction is direetly proportional to time. If the sweep were perfect the fly-back time, or time taken for the spot to return from the end (I) to the begiming (I or A) of the horizontal trace, would be zero, so that the line $I I$ would be perpendicular to the axis $Y-Y^{\prime \prime}$. Although the fly-back time camnot be made zero in practicable sweep-voltage generators it cam be made quite small in comparison to the time of the desired trace $.1 / 1$, at least at most frecuencies within the audio range. The line $I I^{\prime} I^{\prime}$ is called the return trace; with a linear sweep it is less brilliant han the pattern, because the spot is moving much more rapidly during the fly-bark time than during the time of the main trate.

The linear swecp shows the shape of the wave

Oscilloscopes

in the same way that it is usually represented gratphically. If the period of the a.c. voltage applied to the vertical phates is considerably less than the time taken to sweep horizontally aross the sereen, several ceveles of the vertical or "signal" voltage will appear in the pattern.

For many amateur purposes a satisfactory horizontal sweep is simply a bo-cvele voltage of adjustable amplitude. In modulation monitoring (deseribed in the chapter on amplitude modulation) adio-frequency voltage can be taken from the modulator to supply the horizontal sweep. loor examination of adodo-frequency nate forms, the linear swerp is essential. Its frequency should be adjustable over the entire range of audio frequencies to be inspected on the oscilloseope.

Lissajous Figures

When sinusoidal ace voltages are applied to the two sets of deflecting plates in the oscilloseope the resultant pattern depends on the relative amplitudes, frequencies and phase of the two voltages. If the ratio between the two frequencies is constant and can be expressed in integers a stationary pattern will be produced. This makes it possible to use the oscilloseope for determining an unknown frequency, provided a variable frequency standard is available, or for determining calibration points for a variablefrequeney oscillator if a lew known frequencies are avalable for comparison.

The stationary patterns obtained in this way are called Lissajous figures, Examples of some of the simpler Dissajous figures are given in Fig. $21-\tilde{5} t$. The frequency ratio is found by eounting the number of loops along two adjacent edges. Thus in the third figure from the top there are three loops along a horizontal edge and only one along the vertical, so the ratio of the vertical frequeney to the horizontal frequency is 3 to 1 . Similarly, in the fifth figure from the top there are four loops along the horizontal edge and three along the vertical edge, giving a ratio of 4 to 3 . Assuming that the known frequency is applied to the horizontal plates, the unknown frequency is

$$
f_{2}=\frac{n_{2}}{n_{1}} f_{1}
$$

where $f_{1}=$ known frequency applied to horizontal plates,
$f_{2}=$ unknown frequency applied to vertical plates,
$n_{1}=$ number of loops along a vertical edge, and
$n_{2}=$ number of loops along a horizontal edge.

An important application of Jiscajous figures is in the ratibration of audio-frequency signal generators. For very low frequencies the 60-cycle power-line frequency is held accurately enough to be used as a standard in most localities. The medium audio-irequency range can be covered by comparison with the 440 - and 600 -cycle modulation on the WWV transmissions. An oscilloscope having both horizontal and vertical

Fig. 21-54-Lissajous figures and corresponding frequency ratios for a 90 -degree phase relationship between the voltages applied to the two sets of deflecting plates.
amplifiers is desirable, since it is convenient to have a means for adjusting the voltages applied to the deflection plates to secure a suitable pattern size. It is possible to calibrate over a 10 -to-1 range, both upwards and downwards, from each of the latter frequencies and thus cover the audio range useful for voice communication.

Basic Oscilloscope Circuit

The essential oscilloscope circuit is shown in

Fig. 21-55-Oscilloscope circuit for modulation monitoring. Constants are for 1500 - to 2500 -volt h.v. supply. For $1000-1500$ volts, omit R_{s} and connect the bottom end of R_{7} to the top end of R_{p}.
$C_{1}-C_{3}$, inc. -3000 -volt disk ceramic.
$R_{1}, R_{2}, R_{9}, R_{11}$-Volume-control type, linear taper.
$R_{3}, R_{1}, R_{5} R_{6,} R_{10}-1 / 2$ wath.
$\mathrm{R}_{7}, \mathrm{R}_{8}-1$ watt.
V_{1}-Electrostatic-deflection cathode-ray tube, 2-10 5. inch. See tube tables for base connections and heater ratings of type chosen.
lig. 21-55. The minimum requirements are supplying the various electrode potentials, plus controls for focusing and centering the spot on the face of the tube and adjusting the spot intensity. The cirruit of lig. 21-55 can be used with electro-static-delection tules from two to five inches in face diameter, with voltuges up to 2 200 . This includes practically all the types popular for small oseilloseopes.

The circuit has provision for introducing signal voltages to the two sets of deflerting phates. Lither set of deflecting alectrodes $\left(D_{1} I_{2}\right.$, or $D_{3} D_{4}$) maty be used for cither horizontal or vertical deflection, depending on how the tube is mounted.
The high voltage may be taken from a transmitter power supply if desired. The current is only a milliampere or so. The voltage prefatraby should be constant, such as is obtained from as supply having a constant load - e.g., the supply for the Class C amplifier in an am, transmitter.

In the circuit of lig. 21-55 the centering controls are at the full supply voltage above ground and therefore should be carefully insulated by being mounted on bakelite or similar material rather than directly on a metal panel or chassis. Insulated couplings or extension shat ts should be used. The focussing control is also several hundred volts above ground and should he similarly insulated.
The tube should be protected from striy magnetic fields, either by enclosing it in an iron or stee box or by using one of the sperial c.r. tube shields available. If the heater transformer (or other transtormer) is mounted in the same cathinet, care must be used to place it so the stray field around it does not defleet the spot. The spot cannot be forussed to a fine point when influenced by a transformer field.

Modulation Monitoring

The addition of Fig. 21-5t to the basic circuit of Fig. 21-55 provides all that is neressary for modulation checking. The r.f. from the transmitter is applied to the vertical platers through a tuned circuit $L_{1} C_{1}$ and link L_{2}. Wheon adjusted to the transmitter oprating frequency the tuned circuit furnishes ample deflection voltage even from a low-power transmitter, and C_{1} ean be used to control the pattern height.

I eflection voltage for the horizontal plates can be taken from the motulation transformer secondary of an a.m. transmitter, or borevole deflection can be used to give a wave-envelope type pattern. In either case a maximum of about 200 volts r.m.s. will give full-width deflection. This voltage is abmost independent of the size of e.r. tube used. Methods of using such a soope for modulation cherking are despribed in the chapter on amplitude modulation.

Fig. 21-56-Circuits for supplying r.f., audio, and a.c. voltages to oscilloscope deflection plates for modulation monitoring.
$\mathrm{C}_{1}-100-\mu \mu \mathrm{f}$, variable, receiving type.
$L_{1}-1.75$ Mc.: 30 enam. close-wound on 1 -inch form, coil length $3 / 4$ inch.
3.5-8 Mc.: 30 furns No. 22 enam., close-wound on 1 -inch form.
13.30 Mc . 7 turns No. 22, spread to $3 / 4$ inch length on 1 -inch form.
$\mathbf{L}_{2}-2$ or more furns, as required for sufficient coupling, at cold end of L_{1}.
\mathbf{R}_{1}-Volume control, 0.25 megohm or more.
S_{1}-D.p.d.t. switch.
T_{1}-Interstage audio transformer, any type. Use second-ary-to-primary turns ratio of 1-to-1 to 2-to-1.

Frequency Limitations of Oscilloscopes

Most rommercial or kitted oscilloseopers include vacuum-tube amplifiers betweon the imput terminals and the deflection phates, to inerease the sensitivity and usefulness of the instrument. Depending upon the construetion of the amplifiers, their useful frectuener range may be only as high as several humdred ke., although more expensive instruments will inchode amplifiers that work in the megacrele range. The operator should acepuaint himself with the frequence limitations of the 'soope through study of the sperefications, sinee attempts to pass, e.g., a too-ke, i.f. signal through an amplifier that cuts off at 100 kr . are doomed to failure. . No such frequency limits apply when the commetion is made directly to the defleretion plates. and conseduently r, f. at 20 to 30 Me , can be applied hy the mothod shown in Fig. ©l-őt, A practical limitation will the found when r.f. from the vortical plates is (stray) (aparitively coupled to the horizontal-a lefleretion plates: this will show as a thickening of tho trace. In some instances it cath be reduced by r.f. bypassing of the horizontal deflection plates.

Assembling a Station

The artual loration inside the homse of the "shate" the room where the tramsmitter athl receiver are lorated - depends, of course. on the free space amailable for amatome aterities. Fortumate imberd is the amateur with a separater room that he can reserve for his hobles, or the fow when ean have a sperial small building separatle from the main homse. Hownevor, most amaterurs must shatre a roon with othor domestia artivitios, abd amatedre stations will be found turked away in a cormer of the living room, :
 stope! A spot in the wellar or the attir cath almost the classod ats a sepabate room, although it may latek the "finish" of a normal room.

Regeralless of the lowation of the stationt, however. it should be dexigual for maximum operating convenione and sateoty. It is foolish to have the stat ion armangel se that the thatowing of sereeral swithers is reguired to go fom "receive" tu "tramsumit." just as it is sill! 10 have the equipacht arranged su that the (o)erator is in an umomfortable and ramped position during his operating homms. 'lhe retison for building the station ats satie as possible is ohvions. if you atre internested in spending at number of seats with your hobley!

- CONVENIENCE

The first consideration in any amateur station is the operating position. Which in-(-hades the operator's table amb chair and the pieces of equipment that are in constant use
(the recoiver. send-recoive switeh. and key or midrophoner). The table should be as large as possible, to allow sufficiont room for the receiver or rembers. frequoner-measuring equipment, monitoring comipmont, control switehes, and koes and niarophones. with enough space left over for the logbook, a pad and pencil, and perhaps a large ash tray. Suitable space should be inclloded for radiogram blanks and a call book, if these areessories are in frequent use. If the table is smatl, of the momber of pieces of equipment is large. it is often menessary to build a shelf or rack for the anxilatry equipment, or to mount it it some less comvernient lomation in or under the tathle. If ono hat the farilities, a semicireular" "comsule" ("an be built of wood, or a simpler solution is to use two small wooden rabinots to support a table top of wood or Matsonite. I flush-type door will make an cexellent table top. Home-built tables or consoles can be finished in any of the avatable oil stains, vamishes, paints or lacquers. Many operators Hase a larye piece of plate glass over part of their table, since it furnishes a good writing surfane athl can cover miscellameons charts and tables, prefix lists. operating aids, calendar, and similar areeresonies.

If the major interests never require frequent band changing, or frequency ehanging within a band. the tramsmitter call be loeated some distance from the operator, in a location where the meters ban be obsorved from time to time (and the color of the tube plates noted!). If frequent band or frequeney changes are a part

Here's one way to build a console. Use c 4 -foot $\times 4$-foot $\times 1 / 2$-inch piece of plywood for a center section, and a couple of 3-drower chests for the end sections. This gives plenty of operating space in a small area. (W 5KSE, EI Paso, Texas)

22 - ASSEMBLING A STATION

of the usual operating procedure, the transmitter should be mounted close to the operator, either along one side or above the receiver, so that the controls are easily accessible without the need for leaving the operating pesition.

A compromise arrangement would place the v.f.o. or crystal-switehed oscillator at the operating position and the transmitter in some convenient location not adjacent to the opcrator. Since it is usually possible to operate over a portion of a band without retuning the transmitter stages, an operating position of this type is an advantage over one in which the operator most leave his position to make a change in frequeney.

Controls

The operator has an excellent chance to exercise his ingenuity in the location of the operating controls. The most important controls in the station are the receiver tuning dial and the send-receive switch. The receiver tuning dial should be located four to eight inches above the operating table, and if this requires mounting the receiver off the table, a small shelf or bracket will do the trick. With the single exception of the amateur whose work is almost entirely in traflic or rag-chew nets, which require little or no attention to the receiver, it will be found that the operator's hand is on the receiver tuning dial most of the time. If the tuning knob is too high or too low. the hand gets cramped after an extended period of operating, hence the importance of a properly located receiver. The majority of c.w. operators tune with the left hand, preferring to leave the right hand free for copying messages and handling the key, and so the receiver should be mounted where the knob can be reached by the left hand. Phone operators aren't tied down this way, and tune the
communications receiver with the hand that is more convenient.

The hand key should be fastened securely to the table, in a line just outside the right shoulder and far enough baek from the front edge of the table so that the elbow can rest on the table. A good location for the semiantomatic or "bug" key is right next to the handkey, although some operators prefer to mount the automatic key in front of them on the left, so that the right forearm rests on the table parallel to the front edge.
The best loeation for the microphone is directly in front of the operator, so that he doesn't have to shont across the table into it, or run up the speech-amplifier gain so high that all manner of external sounds are pirked up. If the mierophone is supported ly a hoom or by a flexible "goose neck," it can be placed in front of the operator without its base taking up valuable table spare.

In any amateur station worthy of the name, it should be necessary to throw no more than one switch to go from the "receive" to the "transmit" condition. In phone stations, this switch should be loeated where it ean be easily reached by the hand that isn't on the receiver. In the case of $\mathrm{c} . \mathrm{w}$. operation, this switeh is most conveniently loated to the right or left of the key, although some operators prefer to have it mounted on the left-hand side of the operating position and work it with the left hand while the right hand is on the key. Bither location is satisfactory, of course, and the choice depends upon personal preference. Some operators use a foot-controlled switch, which is a convenience but doesn't allow too much freedom of position during long operating periods.

If the microphone is hand-held during phone operation, a "push-to-talk" switch on the mierophone is convenient, but hand-held

Here's a console that was designed with operating convenience in mind. W7EBG built it almost entirely out of $3 / 4^{\prime \prime}$ plywood, with strips of 2×2 along the bottom edges for caster supports. It is assembled with bolts so that it can be readily dismantled for shipping. Over-all dimensions are $48^{\prime \prime}$ wide, $401 / 2^{\prime \prime}$ high, with the horizontal desk top $16^{\prime \prime}$ wide ond the sloping portion $15^{\prime \prime}$ wide.

Controls

microphones tie up the use of one hand and are not too desirable, although they are widely used in mobile and portable work.

The location of other switches, such as those used to control power supplies, filaments, phone/c.w. change-over and the like, is of no particular importance, and they ean be located on the unit with which they are assorjated. This is not strictly true in the case of the phone/c.w. IDX man, who sometimes has need to change in a hurry from c.w. to phone. In this case, the change-over switch should be at the operating table, although the actual change-over should be done by a relay controlled by the switch.

If a rotary beam is used the control of the beam should be convenient to the operator. The direction indicator, however, can be located anywhere within sight of the operator, and does not have to be located on the operating table unless it is included with the control.

Frequency Spotting

In a station where a v.f.o. is used, or where a number of crystals are available, the operator should be able to turn on only the oscillator of his transmitter, so that he can spot acenarately his location in the band with respect to other stations. This allows him to see if he has anything like a clear chamel, or to see what his frequency is with respect to another station. Such a provision can be part of the "send-receive" switch. Switches are available with a center "off" position, a "hold" position on one side, for turning on the oscillator ouly, and a "lock" position on the other site for turning on the transmitter and antenna relays. If oscillator keying is used, the key serves the same purpose, provided a "send-receive" switeh is a vailable to turn off the high-voltage supplies and prevent a signal going out on the air during adjustment of the oscillator frequeney.

For phone operation, the telegraph key or an auxiliary switch can control the transmitter oscillator, and the "send-receive" switeh can then be wired into the control system so as to cont rol the oscillator as wellas the other circuits.

Comfort

Of prime importance is the comfort of the operator' If you find yourself getting tired after a short period of operating, examine your station to find what causes the fatigue. It may be that the ehair is too soft or hasn't a straight back or is the wrong height for you. The key or rereiver may be lorated so that you assume an uncomfortable position while using them. If you get sleepy fast, the ventilation may be at fault. (Or you may need sleep!)

power connections and CONTROL

Following a few simple rules in wiring your power supplies and control circuits will make it an easy job to change units in the station. If
the station is planned in this way from the start, or if the rules are recalled when you are rebuilding, you will find it a simple matter to revise your station from time to time without a major rewiring job.

It is neater and safor to run a single pair of wires from the outlot over to the operating table or some central point, rather than to use a number of adapters at the wall outlet.

Interconnections

The wiring of any station will entail two or three common circuits, as shown in Fig. 22-3. The circuit for the receiver, monitoring equipment and the like, assuming it to be taken from a wall outlet, should be run from the wall to an ineonspicuous point on the operating table, where it terminates in a multiple outlet large enough to handle the required number of plags. A single switch between the wall outlet and the receptaele will then turn on all of this equipment at one time.

The second eommon circuit in the station is that supplying voltage to rectifier- and trans-mitter-tube filaments, bias supplies, and anything else that is not switched on and off during transmit and receive periods. The coil power for control relays should also be obtained from this circuit. The power for this circuit can eome from a wall outlet or from the transmitter line, if a special one is used.

The third circuit is the one that furnishes power to the plate-supply transformers for the r.f. stages and for the modulator. (See section on Power Supplies for high-power considerations.) When it is opened, the transmitter is disabled except for the filaments, and the transmitter should be safe to work on. However, one always feels safer when working on the transmitter if he has turned off every power source.

With these three circuits established, it becomes a simple matter to arrange the station for different conditions and with new units. Anything on the operating table that runs all the time ties into the first circuit. Any new power supply or r.f. unit gets its filament power from the second circuit. Since the third circuit is controlled by the send-receive switch (or relay), any power-supply primary that is to be switched on and off for send and receive comnects to rircuit \mathbf{C}.

Break-In and Push-To-Talk

In c.w. operation, "break-in" is any system that allows the transmitting operator to hear the other station's signal during the "key-up" periods between characters and letters. This allows the sending station to be "broken" by the receiving station at any time, to shorten calls, ask for "fills" in messages, and speed up operation in general. With present techniques, it requires the use of a separate receiving antemna or a "t.r. box" and, with high power, some means for protecting the receiver from the transmitter when the key is "down." Several methods, applicable to high-power atations, are
deseribed in Chapter light. If the tramsmitter is low-powered (in watte or so), no spereial equipment is reguired except the sepabato be"riving antomatand arecoiver that "reconers" fast. Where break-in operation is used, there should be a switeh on the operating table to turn off the plate supplies when adjusting the oscillator to a new frequence. althomgh daring all break-in work this switel will be closed.
"Pash-to-talk" is an expmesion derived from the "push" switch on sume midophones. and it means a phone station with a singlo control for all change-over functions. Strictly speaking, it shomblaply only to a station where this single send-recoive switah must be hold in plate during transmission periods, but aby fast-acting switch will give practically the same effert. A control switch with a ronter "olf" position, and one "hold" athe one "Joek" position, will give more flexibility than a straight "phsh" switch. The one switch must control the trensmiter power supplies, the receiver "on-off" cirruit and, if one is nsed, the :antennat change-ever relas. The reereiver control is neressary to disable its output during transmit periods, to avoid aroustic fordhack.

Switches and Relays

It is dangerous to nse an werlonded switch in the power circuits. After it hats been used for some time, it may fail, leaving the power on the riveluit even after the switch is thrown to the "off" position, For this reason, large switrhes, or relays with adequate ratings, should be used to control the plate power. Rolays are rated by coil voltages (for their control eirenits) and by their contact current and voltage ratings. Any switch or relay for the power-montrol circuits of an amateur station should be conservatively rated; overlouding a switeh or relay is very poor economy. Switches rated at 20 amperes at 125 volts will handle the switching of cireuits at the kilowatt level, but the small toggle switehes rated 3 amperes at 125 volts should be used only in circuits up to about 150 watts.

When relitys are used, the send-receive switch

closes the cirenit to their coils, thus closing the rolay contares. 'The relay contacts are in tho pwate circuit being controlled, and thus the switch handles only the relay-aoil current. As a consequence, this switd cen hate a low current rating.

SAFETY

af prime importance in the layout of the station is the personal salets of the operator and of visitoms, invited or othemwise during normal operating pratotere. If there are smatl chiddren in the house, evory step must be taken to prevent their aceidental contart with power leads of any voltage. A locked room is a dine idea, if it is pessible, otherwise housing the tramsmitter amd power supplias in metal cablinets is : m exerollent, although expensive. solution. Lateking a medal cablinet, a wooden rabinet or a wooden framework eovered with wire sereen is the nextbest solution. Mans stations have the power supplies housed in metal cablindets in the oprerating rown or inta chosel or hasement. and this cabinet or entry is kept locked - with the key out of reteh of eversone but the operater. The power leads are rum through conduit w the transmitter, using ignition catble for the high-voltage leads. If the pewer supplies and tramsmittor are in the same cabinet. a lock-type main swith for the incoming line penwer is a good preatution.

A simple sulnstitute for a lock-type matin switch is an ordinary line plug with athort ennerting wire lodwern the two pins. By wiring a female recoptande in series with the main power line in the tramsmitter, the shorting phag will ant as the man satoty lock. When the plug is removerl and hidden, it will be impessible to energize the transmittor. and at struger or child isu't likely to spot or suspert the open rereptate.

Ancescontial adjunct tomystation is:a shorting stick for discharging :my high voltage to ground before ans work is dome in the transmitter. liven if introngeks and powr-supply blederss are ased. the liailure of one or more of these exmponents may leave the transmitur in a dangerous condi-

This neat "built-in" installation features separate finals and exciters for each band, along with room for receiver, frequency meter, oscilloscope, Q multiplier and v.h.f. converter. All units are mounted on the three large panels; the panels are hinged at the bottom so that they can be lowered for service work on the individual units. A common power supply is used, and band-changing consists of turning on the filaments in the desired r.f. section. (W9OVO, Sturgeon Bay, Wisc.)

Safety

tion. The shorting stick is mate by mounting a suatl metal hook, of wire or rod, on one end of a dry stick or bakelite rod. A piece or ignition cable or other well-insulated wire is then run from the hook on the stick to the chassis or common ground of the tramsmitter, and the stick is hung alongside the transmitter. Whenever the power is turned off in the tramsmitter th permit work on the rig. the shorting stiek is first used to wouh the soveral high-voltage leads (plate r.f. choke, filtor eatpatitor, tube plate eomeretion. etc.) to insure that there is no high voltage at any of these points. This simple device has saved many at life. Use it!

Fusing

A minor hazard in the amaterur station is the possibility of fire through the fature of at compenent. If the failure is complete and the romponent is large, the house fuses will generally bow. However, it is unwise and inconveniont to depend upen the house fuses to proteet the lines remning to the radio erpupment, and every power supply should have its primary cirenit individually fused. at athout 150 to 200 per erent of the maximum rating of the supply. Cireuit breakers can be used instead of fuses if desired.

Wiring

Control-eirenit wires rumning between the operating pesition and at transmiter in anothor part of the room shoud be hidden, if possible. This e:m be done by romming the wires under the floor or behind the base modding. bringing the wires cot to terminal boxes or regular wall fixtures. such construction, however, is generally only possible in elaborate installations and the average amateur must content himself with trying to make the wires as inconspienous as possible. If several pairs of leads must be run from the oprating table to the tranmitter, as is generally the ease, a single piece of rubber- or
vinyl-covered multiconductor cable will ahways look neater that several pieces of rubber-covered lamp cord. and it is much casior to sweep aromed or dust.

The antemat wires alwats present a prohlem, untess eotwiat-line foed is used. Open-wire line from the point of entry of the antemat line should alwatw be arranged neatly, and it is generatly best (0) support it at several prints, Many operators prefer to mount any antomatoming assemblies right at the point of entry of the feedline. together with an antenna changeover relay (if one is used), and then the link from the tuming assembly to the transmitter can be mate of inconspicious coasial line. If the tramsmitter is momited near the point of entry of the line. it simplifies the problem of "What to do with the feeders?"

Lightning Protection

The antenna system usually associated with amateour radio equipment is most vulnerable to lightning due to its height and lengt h. To vallidate one's insuranee, the antemna installation must (comply with the National lbard of lire Underwriters bilertrical Cothe which satys:
Liyhtning Irristirs - Transmitting Stations,
Except where proterted by a continuous metallic
shield (coax) which is permanently and effec-
tively urounded, or the antenna is permanently
and efferetively grounded, each conductor of a
lead-in for outdoor antenna shall be provided
with a lightning arrester or other suitable means
which will drain static charges from the antenna
system,

If coaxial line is used, complitnce with the above is reatily achieved by grounding the shied of the coas at the point where it is nearest to the ground outside the house. (ise a heavy wire the aluminum wire sold for gromoding 'T'V antennat is good. If the eable can be rum underground, a grounding stake should be loeated at the peint where the cable enters the ground, at the an-

A neal operating bench can be built from wood and covered with linoleum. There is enough room on the table shown here to house the transmitter, receiver, and numerous adjuncts and accessories. Interconnecting wiring is run behind the units or underneath the table. (W3AQN, York, Pa.)

22 - ASSEMBLING A STATION

tema end. The grounding stake, to be affective in soils of average conductivits, should be not less than 10 feet long and, if possible, plated with a metal that will not corrode in the local soil. Making eonnection to the outside of the outer conduetor of the comial line will normally have no effeet on the s.w.r. in the line, and consequently it can be done at any point or points.
()pen-wire or Twin-Lead transmission lines can be protected by installing a spark gitp such as the one sketehed in Fig. 22-1. The renter contiuct should be grounded with it No. 4 or luger wire. The gaps can be made from $1 / 8 \times 1$ - $\mathbf{2}$ inch flat brass rod shaped as shown, and the gaps should be set sufficiently far apart to prevent flashorser during normal opration of the transmittar. Depending upon the power of the trinsmitter and the s.w.r. pattern on the line, the gat maty run anything from $1 / 32$ to $: 3 / 16$ inch. It maty spark intermittently when it thunderstorm is building up or is in the general areat.

Fig. 22.1-A simple lightning arrester made from three stand-off or feed-through insulators and sections of brass or copper strap. It should be installed in the open-wire or Twin-Lead line at the point where it is nearest the ground outside the house. The heavy ground lead should be as short and direct as possible.

Rotary heams using a T or gamma mateh and with each element connected to the boom will usually be grounded through the supporting metal tower. If the antemma is mounted on a wooden pole or on the top, of the house, a No. \&
or larger wire should be comected from the beam to the ground by the shortest and most direct route possible, using insulators where the wire comes dose to the building. From a lightningprotection stindpoint. it is desir:thle to run the coasiall and control lines from a beam down a metal tower and undergromen to the shark. If the tower is well grounded and the intemna is higher than any surounding ohjeets, the combination will serve well ats at lightning rod.

The sole purpose of lightning rots or grounded roofs is to protert a building in case a lightning stroke oxeurs: there is no weepted evidence that any form of proteretion can prevent a stroke.*

Bxperiments have indieated that a high vertical conductor will gemorally divert to itself direct hits that might otherwise fall within a concshaped spare of which the apex is the top of the conductor athe the base a circle of radius approximately two times the height of the comductor. Thus a radio mast may afford some protection to low adjacent struetures, but only when lowimpedanere grounds are provided.

Underwriters' Code

The National Electrical Safety Code, Pamphlet 70 . Standard of the Sational Board of Fire Underwriters, deals with electric wiring and apparatus. The Coda was set up to protect persons and buildings from the clectrieal hazards arising from the use of electricity, radio, cte. Article 810) is entitled "latio Equipment." The seope of this article, sertion 8101, sitys, "The article applies to radio and television reeriving equipmont and to amateur radio transmitting equipment, but not to the equipment used in "arrier-rurrent operation."

The Board of Fire Coderwriters sets up the code as a minimum standard for grood pratetiere. Most cities adopt the code, or parts of it, cither ontirely or with cortain amondments which may apply to that particular city. It is up to the city to enfore these rules. When a violation is reported, periodic choreks are made by an inspertor until a correction is made and to insure

[^6]In this station arrangement, eight small panels near the front of the table carry the auxiliary gear. From left to right: (1) loud speaker with selector switch to receivers or monitor; (2) conelrad receiver and automatic transmitter disabler; (3) Monimatch; (4) antenna selector switch; (5) intercom to other rooms in house; (6) station control switch; (7) beam rotator control; (8) transmission timer and monitor. All eight accessory units are completely enclosed in perforated aluminum and are plug in. (K9HGJ, Milwaukee, Wisc.)

Underwriters' Code

Fig. 22-2-Power circuits for a high-power station. A shows the outlets for the receiver, monitoring equipment, speech amplifier and the like. The outlets should be mounted inconspicuously on the operating table. B shows the transmitter filament circuits and control-relay circuits, if the latter are used. C shows the plate-transformer primary circuits, controlled by the power relay. Where 230 - and 115 -volt primaries are controlled simultaneously, point " X " should connect to the "neutral" or common. A heavy-duty switch can be used instead of the relay, in which case the antenna relay would be connected in circuit C. If 115 -volt pilot lamps are used, they can be connected as shown. Lower-valtage lamps must be connected across suitable windings on transformers. With "push-to-talk" operation, the "send-receive" switch can be a d.p.d.t. affair, with the second pole controlling the "on-off' circuit of the receiver.
against future recurrence. The National Eilectric Code is only a minimum standard, and compliance with its rules will assure loss operating failures and hazards, and greater safety:

The pamphlet is available be writing the Nit tionall Board of Firc Inderwriters at 85 John Streot, Now York 38, N. Y. Ask for No. 7 ().
l'arts of the Cuderwriters' Code deal with power wiring and. in addition to the reguirement of the use of Underwriters Laboratory approved materials and fittings, have the following to say of direct interest to amateurs:
"All switches shall indicate clearly whether they are open or closed.
"All (switch) handles throughout a system ... shall hate uniform open and closed positions.
". . . supply circuits shall not be designed to use the grounds normally as the sole conductor for any part of the eireuit."

The katter means that wire conductor should be used for all parts of the power circuit. Dependenee should not be placed on water pipes, ete., as one side of a circuit.

CHAPTER 23

BCI and TVI

Abstract

Every amateur has the obligation to make sure that the operation of his station denes not, because of any shorteomings in eruipment, catuse interference with other radio serviecs. It is unfortunately true that much of the interference that amaterurs cause to broadeast and television reception is directly the fault of $13 C$ and $T V$ receiver construction. Nevertheless, the amateur can and should help, to alleviate interferemere even though the responsibility for it does not lic with him. Sucessful handling of interference rases requires wimning the listoner's cooperation. Here are a few pointers on how to go about it.

Clean House First

The first step obviously is to make sure that the transmitter has no radiations outside the bands assigned for amateur use. The best cheek on this is your own atm. or TV recriver. It is alwatys convincing if you can demonstrate that you do not interfere with rereption in your own home.

Don't Hide Your Identity

Whenever you make equipment changes - or shift to a hitherto unused band or type of emission - that might be expeeted to change the interference situation, cherk with your neighbors. If no one is experiencing interforence, so much the better; it dors no harm to keep the neighborhood aware of the fact that you are operating without bothering ansone.
Should you change loeation, announce your presener and conduct oerasional texts on the air, requesting anyone whose reception is being spoiled to let you know about it so steps may be taken to eliminate the trouble.

Act Promptly

The average person will tolerate a limited
amount of interferencer, but the sooner you take steps to diminate it. the more agreeable the listener will be: the longer he has to wat for you, the less willing he will be to cooperate.

Present Your Story Tactfully

When you interfere, it is natural for the eomplainant to assume that your transmitter is at fault. If vou are certain that the temble is mot in your transmitter, explain to the listener that the reason lies in the receiver design, and that some modifications may have to be made in the recoiver if he is to expert interferencorefereerption.

Arrange for Tests

Most listeners are not very competent observers of the various aspects of interference. If at all possible, enlist the help of another amateur and have him operate your transmitther while you soe for yourself what happens at the affected receiver.

In General

In this "public relations" phase of the problem a great deal depends on your own at titule. Most people will be willing to meet you half way, particularly when the interfernere is not of long standing, if you as a person make a good impression. Your personal appearance is important. So is what yousav about the reeriver - no one takes kiddly to hearing his possessions derided. If you discuss sour interferenere prohlemson the air, do it in a construetive way one caldulated to increase listener cooperation, not destroy it.

Interference With Standard Broadcasting

Interference with a.m. broadeanting usually. falls into one or more rather welledefined rategorics. An understamding of the gemeral types of interference will avoid much cut-and-try in finding a cure.

Transmitter Defects

Out-of-band radiation is something that must be rured at the transmitter. larasitio oseillations are a frequently unsuspected suuree of wheh radiations, and no transmitter can be considered satisfact ory until it has been thoroughly checked for both low- and highfrequency parasitics. Viry olten parasities show up only as transionts, causing lecy clicks in c.w. transmitters and "splashes" or "burps" on modulation peaks in atm. transmitters. Methods for detecting and eliminating para-
sities are discussed in the transmitter chapter.
In c.w. transmitters the sharp make and break that oecurs with unfiltered keying canses transients that, in theory, eontain frequeney components through the cent ire radionsert rum. Praetically, they are often strong enough in the immediate vicinity of the tramsmitter to catuse serious interfarence to broadeast reception. Key rlicks can be eliminated by the mothods detaiked in the chapter on keying.

A distinetion must be made betwen clicks generated in the transmitter itself and thove set up by the mere oproning and closing of the key contacts when corrent is fowing. The latt er are of the same nat ure as the clicks heard in a receiver when a wall switeh is thrown to turn a light on or off, and nay be more troublesome nearby than the rhicks that actually go

Causes of BCI

out on the signal. A filter for eliminating them usually has to be installed as close as possible to the key contaets.

Owrmodulation in am. phome transmittors gomoratos transionts similar to kev clicks. It ran be provented either by using atomatio systems for limiting the modulation to 100 per cent, of by eontimonsly monimoring the modulation. Mothods for both are deseribed in the chapter on amplitude modulation.

BC'l is frefulntly made worse by radiation from the power wiring or the r.f. transmission line. This is theratser the signal ratusing the interfermere, in such coses, is radiated from wiring that is mearer the broateast receder than the antenand itself. Much depends on the method used to conphe the tramsmitter to the antemma, a subjeet that is discussed in the chapters on transmission limes and antemmas. If it is at all possible the antemat itself should be placed so that it is not in chase proximity to house wiring, telephone and power liness, and similar conductors.

Image and Oscillator-Harmonic Responses

Most presint-day broadenst rercivers use a built-in loop, antenna as the grid cirenit for the mixer stage. The selectivity is not esperially high at the signal frequency. Furthermore, an appre(iathlo amome of signal pick-up usually occurs on the a.e line to which the reveiver is conneded. the signal so pieked up being fed to the mixer grid by stray means.

As a result, strong signals from nearby transmitters, even though the transmitting frequener is far momed from the broadenst band, ain foree themsodys to the mixer grid. They will normally be eliminated by the i,f, soleretivity, exerept in cases where the tranmitter firequency is the image of the broadeast sighal to which the rereiver is tuned, or when the transmitter frequeney is so melated to a hamonie of the broadeast reeriveres local oscillator as to produce a beat at the intermediate freguency.

These image and oscillator-harmonic responses tume in and out on the broatdeast reroiver dial just like a broadeast signal, exerpt that in the case of harmonic response the tuning rate is more rapid. sínce most recoivers use an intermediate frequeney in the neighborhood of $45 \pi \mathrm{kr}$., the interforence is a true image only when the amateur transmitting frequency is in the 1 ROO-ke. band. Oscillator-harmonic responses oreur from 3.i- and 7 - Me. transmissions, and sometimes even from higher frequencies.

Since images and harmonie responses oceur at definite frequencies on the receiver dial, it is possible to choose operating frequencies that will a void putting sueh at response on top of the hroudcast stations that are favored in the viemity. White your signal may still be heard when the recoiver is tuned off the local stations, it will at least not interfere with program reception.

There is little that can be done to most receivers to cure interference of this type exeret to reduce the amount of signal getting into the set
through the a.c. line. A line filtor such as is shown in Fig. 23-1 often will help aceomplish this. The values used for the eoils and eapacitors are in gencral not aritial. The affertiveness of the filtor maty depend considerably on the gromed conneerion used, and it is advisable to use a short ground leat to a cold-water pipe if at all possible. The line cord from the set should be bunched up, to minimize the possibility of piek-up on the cord. It maty be neeressury to install the filter inside the receiver, so that the filur is connected between the line cord and the set wiring. in order to get satiafactory operation.

Cross-Modulation

With phone transmittors, there are occasionally cases where the voice is heard whenever the broadeast receiver is tumed to a BC station, hat thare is no interference when tuning between stations. This is eross-modulation, a result of rectification in one of the early stages of the rereiver. Recorvers that are suserptible to this trouble usutally atso get a similat tupe of interference from regular brostemating if there is a strong local BC station and the receiver is tuned to some other station.

The remedy for cross-modulation in the receiver is the same as for images and oscillatorharmonic response-redure the strength of the amateur signal at the reerever ly means of a line filter.

The trouble is not always in the receiver, since cross modulation can occur in any nearby rectifying cireuit - such ats a poor contact in water or steam piping, gutter pipes, and other conduetors in the strong field of the transmitting antenna - cxternal to both receiver and transmitter, Locating the catuse may be difficult, and is bers attempted with a battery-operated portable broadeast receiver usod as at "probe" to find the spot where the interference is most intense. When such a spot is located, inspection of the motal struetures in the vicinity should indirate the cause. The remedse is to make a good clectrieal bond between the two ronduetors having the poor contact.

Audio-Circuit Rectification

The most frequent case of interference from operation at 21 Mr. and higher frequencies is rectification of a signal that by some means gets into the audio system of the recoiver. Iat the mider eases ath amplitude-modulated signal will be head with reasonably good quatity, but is not tunable - that is, it is present no matter what the fregueney to which the receiver dial is set. An unmodudated carrior may have no observable defect in such cases bevond cathsing a little hum. However, if the signat is very strong there will be a reduction of the aludio output level of the receiver whenever the carrier is thrown on. This eanses an amoring "jumping" of the program when the interfering signal is keved. With phone transmission the change in audio level is not so objectionable becanse it occurs at less frequent intervals. Rectification ordinarily gives no
audio output from a frequenc φ-modulated signal, so the interference can be made almost unnoticeable if f.m. or I.m. is used instead of a.m.

Fig. 23-1-"Brute-force" a.c. line filter for receivers. The values of $\mathrm{C}_{1}, \mathrm{C}_{2}$ and C_{3} are not generally critical; capacitances from 0.001 to 0.01μ f. can be used. L_{1} and t_{2} can be a 2 -inch winding of No. 18 enameled wire on a half-inch diameter form. In making up such a unit for use external to the receiver, make sure that there are no exposed conductors to offer a shock hazard.
Interference of this type usually results from a signal on the power line theing coupled by some means into the andio cirenits, although the pirkup also may oreur on the sot wiring itself. A "brute-fore" line filter as deseribed above may or may not be completely effertive, but in any event is the simplest thing to try. If it does not do the joh, some modification of the reexiver will be necessary. This usually takes the form of a simple filter connected in the gride cirenit of the tube in which the rectification is ocenrring. Lisally it will he the first audio ampliieer, which in most receivers is a diode-driode type tube.

Filter circhits that have proved to be effertive are shown in Fig. 2:3-2. In A, the value of the grid leak in the combined detertor/first andio tube is reduced to 2 to 3 megohms and the grid is berpassed to chassis by a 250 - $\mu \mu$ h, mica or ceramic capacitor, 1 somewhat similar method that dess not require changing the grid resistor is shown at I3. In C, a $\overline{6}, 000$-ohm (value not eritiaal) resistor is conneeted between the grid pin on the tula socket and all other grid commections. In combination with the input (aparitanere of the tube this forms a low-pass filter to prevent r.f. from reathing the grid. In some cases, simply bypassing the heater of the detector/first athdio thbe to chassis with a $0.001-\mu \mathrm{f}$. or larger capacitor will suffice. In all casers, cherek to sere that the at.e. line is bypassed to chassis: if it is not, install bypass catarators (0.001 to $0.01 \mu \mathrm{f}$.).

Handling BCI Cases

Assuming that your transmitter hats been checked and found to be fre from spurions radiations, get another amateur to operate your stat tion, if possible. while you make the arthat cherk on the interferenee yoursdi'. The following procedure should be used.

Tune the receiver through the hroadeast band, to see whether the interference tuncs like a regular BC station. If so, inage or oscillator-hamonic response is the canse. It there is interference only when a 13 C station is tuned in . but not betwern stations, the canse is cross motulation. If the interferener is heard at all settings of the tuning dial. the trombe is pirknp in the andio diralits. In the lather "ase, the reeceivers volume control maty or may not affere the strength of the interference, depending on the means he which your signal is being reetified.

Having identified the canse, explain it to the set owner. It is a good idea to have a line filter with you. equippod with enongh cord to replare the sot's line cord, so it can be tried then and theres. If it does not eliminate the interferenes, explatin to the sot owner that there is nothing further that can be done withont modifying the reeciver. Recommend that the work be done by a compertent service terhnician, and offer to ate vise the service man on the canse and remedy. Don't offer to work on the set yourself, but if you are asked to do so nse your own julgment about complying: set owners sometimes complain about the over-all performane of the reeceiver afterward, often without just ification. If you work on it, take it to your station so the efferet of the ehanges you make can be doserved, and return the reeediver promplly when wom have finished.

MISCELLANEOUS TYPES OF INTERFERENCE

The operation of amatenr phone transmitters occasionally results in interferenee on telephone lines and in andio amplifiers nsed in publio-atdress work and for home music reproduction. The canse is rectifieation of the signat in an andio circuit.

Telephone Interference

Telephone interferencer can be eured by connecting a bypass capacitor (about $0.001 \mu \mathrm{f}$.) arross the microphone wit in the telephone handset. The telephote companies have capacitors for this purpose. When such a catse oceurs, get in touch with the repair departmont of the phone company, giving all the partientars. Do not attempt to work on the telephone yourself.

Hi-Fi and P. A. Systems

In interfermere to publie-adderes and "hi-fi" installations the primeipal soures of signal piek-up are the a.e. line or a line from the power amplifier to a speaker. All amplifier units shonld be bonded together and comerted to a good ground such as a cold-water pipe. Make sure that the a.ce. line is

增

V.H.F. Television

bypassed to chassis in each unit with capacitors of about $0.01 \mu \mathrm{f}$, at the point where the line enters the chassis. The speaker line similarly should be bypassed to the amplifior ehassis whh about $0.001 \mu \mathrm{f}$.

If these measures do not suffice, the shiedding on the amplifiers maty be inadequate. A shied
cover and bottom pan should be installed in such c:lses.
The spot in the system where the rectification is occurring often can be looalized by seeing if the interference is affected by the volume control setting; if not, the cause is in a stage following the volume control.

Television Interference (See also Chap. 17)

Interference with the reception of television signals usually presents a more dificult problem than interference with a.m. broadeasting. In BCI cases the interference almost always can be attributed to deficient selectivity or spurious responses in the BC receiver, While similar deficiencies exist in many television receivers, it is also true that amateur transmitters generate harmonies that fall inside many or all television
channels. These spurious radiations cause interference that ordinarily cannot be eliminated by anything that mity be done at the receiver, so must be prevented at the transmitter itself.

The over-all situation is further complicated by the fact that television broadeasting is in three distinet bands, two in the v.h.f. region and one in the u.h.f.

V.H.F. Television

For the amateur who does most of his transmitting on frequencies below 30 Ne. the TV band of primeipal interest is the low v.h.f. band between 51 and 88 Me. If harmonie radiation can be reduced to the point where no interference is cused to Chamels 2 to ti, inclusive, it is almost certain that any harmonic troubles with chanmels above 171 Me , will disappear also.

The relationship between the v.h.f. television chamels and harmonies of amateur bands from II through 28 Me, is shown in Fig. 2:3-3. Hatrmonics of the 7 - and 3.5 -Me. bands are not shown berause they fall in every television channel. Howerer, the harmonies above at Me. from these bands are of surh high order that they are usually rather low in amplitude, although they may he st rong enough to interfere if the television reediver is equite close to the amateur transmitter. Low-order harmonics - up to about the sixth - are usualy the most diffieult to climinate.
()f the amateur v.h.f. bands, only 50 Me . will have harmonies falling in a v.h.f. television channel (channels 11, 12 and 13). However, a transmitter for any amateur v.h.f. band may canse interforence if it has multiplier stages either operating in or haveing harmonics in one or more of the v.h.f. TV channels. The r.f. energy on such frequencies can be radiated directly from the transmitting cirenits or conpled by stray means to the transmitting anterna.

Frequency Effects

The degree to which transmitter harmonics or other undesired radiation artually in the TV chamel must be suppressed depends principally on two factors, the strength of the TV sig-
nal on the chamnel or chamels affected, and the relationship between the frequency of the spurious radiation and the frequencies of the TV pieture and sound carriers within the ehamel. If the TV signal is very strong, interference can be eliminated by comparatively simple methods. However, if the TV signal is very weak, as in "fringe" areas where the received picture is visibly degraded by the appearance of set noise or "snow" on the srreen, it may be necessary to go to extreme measures.

In either case the intensity of the interference depends very greatly on the exact frequency of the interfering signal. Fig. 2:3-4 shows the placement of the picture and sound carriers in the standard TV ehamnel. In Channel 2, for example, the picture carrier frequency is $54+1.25=$ 55.25 Mc. and the sound carrier frequency is

Fig. 23-3-Relationship of amateur-band harmonies to v.h.f. TV channels. Harmonic interference from transmitters operating below 30 Mc . is most likely to be serious in the low-channel group (54 to 88 Mc .).

Fig. 23-4-Location of picture and sound carriers in a monochrcme television channel, and relative intensity of interference as the location of the interfering signal within the channel is varied without changing its strength. The three regions are not actually sharply defined as shown in this drawing, but merge into one another gradually.
(0) $-0.25=59.75 \mathrm{Me}$. The merond harmonia of
 $5 t=2.02 \mathrm{Me}$, above the low edge of the chammel and is in the region marked "sovere" in figg. 2:3-1. () 1 the other hand, the serond harmonio of $29,5(x) \mathrm{ke}$. (5!,000 ke. or $5!\mathrm{Mc}$.) is $59-54=5$ Me. from the low edge of the chanmel and falls in the region marked "Mila." Interference at this frequency has to be about 100 times anstrong as at 56.020 ke , to ratuse effects of equal intensity. Thus an operating frequency that puts a harmonic near the pirtare carrior reguires about 40 dh. more harmonic suppression in order to aboid interiorence, as compared with an operating freguency that puts the harmonic near the upper edge of the chammel.

For a region of 100 ke . or so wither sille of the sound carrier there is another "suevere" region Where a spurious radiation will interfere with rereption of the sound program, and this region atso whould be avoiderd. In general, a signal of intemsity equal to that of the pieture carrier will not canse noticeabla interterence if its frequene is in the " 11 ild "' region shown in Fig. 2:3-4, but the stme intensity in the "severe" region will utterly destroy the pieture.

Interference Patterns

The visible afferts of interformere vary with the type and intensity of the interferenere Complete "blackout," where the pirture and sound disappear eompletely, loaving the sereed dark, ocears only when the tramsmitere and recosiver are quite close tugether. Strong interference ordinarily catues the pieture to be broken up, leaving a jumble of light and dark lines, or turns the picture "negative" - the normally white parts of the picture turn black and the normally black

Fig. 23.5-"Cross-hatching," caused by the beat between the picture carrier and an interfering signal inside the TV channel.
parts turn white. "(ross-hatching" - diagonal hats or limes in the pieture - areompanise the latter, usually, and also represents the most common type of less-serve interferenere. The bats are the result of the beat between the harmonic frequenes and the pioture carrier frequeney. They are broad and relatively few in number if the beat frequeney is comparativedy low - near the pioture carriar - and arr mamerons and very fine if the beat frequency is very high - towatrel the upper end of the chammel. Tepical arosehat ching is shown in fig. 2;-i, If the frequence falls in the "Wild" region in Fige 2:3-4 the erosshatehing may the so fine as to be visible only on close inspertion of the pietures, in which eatere it maty simply cause the apparent brightness of the sereen to change when the tramsmitter carrier is thrown on and off.

Whother or mot reoss-hatching is visible, an amplifudo-modulated transmittor may eanse

Fig. 23-6_"Sound bars" or "modulation bars" accom. panying amplitude modulation of an interfering signal. In this case the interfering carrier is strong enough to destroy the picture, but in mild cases the picture is visible through the horizontal bars. Sound bars may accompany modulation even though the unmodulated carrier gives no visible cross-hatching.
"sound bars" in the pioture. These look almout ats shown in ligy 2:3-6. They result from the variat tions in the intensity of the interfering signat when modulated. Ender most fircumstanes modulation hars will not oceur if the amateur tramsmitter is frequency- or phase-mmbulated. With these typer of modulation the aross-hatehing will "wiggle" from side to sidte with the modulation.

Exerpt in the more severe censes, there is seldom any effect on the sound reception when interference shows in the picture tuless the frequeney is quite close to the sound carrier. In the latter

Reducing Harmonic Generation

event the sound mey be interfered with even though the pieture is clean.

Reference to fig. 2:3-3 will show whether or not harmonies of the frequeney in use will fall in any tolevision chanmels that can be received in the locality. It shoula be kept in mind that not only harmonies of the final frequency maty interfere, but also harmonies of any frequeneies that may be present in buffer or frepucheremultiplier stages. In the rase of 1H-Mre tramsmitters, fro-guencr-multipluing combinations that require a doubler or tripler stage to operate on a frequenery ato ually in a low-band v.h.f. chamed in use in the locality should be avoided.

Harmonic Suppression

Jiffective hammonic suppression has threr sepatrate phases:

1) Redueing the amplitude of harmonies generated in the transmittor. This is a matter of cireuit derign and operating conditions.
2) Preventing stray radiation from the transmitter and from assondiat ed wiring. This requires adequate shieding and filtoring of all cireuits and leads from which raliation can take place.
3) Preventing harmonies from being fed into the antemat.

It is impossible to build at transmitter that will not generate sem hamonies, but it is obviously advantageous to reduce thoir strength, be rirruit design and choice of aprating ronditions, by as luge a factor as possible before attemito ing to prevont them from being radiated. Harmonie radiation from the transmitter itself or from its associated wiring obviously will catuse interferenere just as readily as radiation from the antemat, so measures taken to prevent harmonies from rearling the antemat will not reduce TVI if the trammitter itsolf is radiating hamonics. But one it has been foumd that the tramsmitter itself is free from hamonic radiation, devides for preventing hamonics from reathing the antenna can be expected to produce results.

REDUCING HARMONIC GENERATION

Sime reasomably efficiont operation of r.f. power amplifiers always is aceompanied be harmonic generation, good judgment calls for operating all frequence-multiplier stages at a very low power level-plate voltages not exceeding $2 \overline{0} 0$ or 300. When the final output freguency is reathed, it is desirable to wee as few stages as possible in buidding up to the final output power level. and to use tubes that require a minimum of driving power.

Circuit Design and Layout

Harmonic currents of considerable :mplitude flow in both the grid and plate cirenits of r.f. power amplifiers, but the will do relativety little harm if they can be efiertively byased to the cathode of the tube. Fig. e: $:-\frac{1}{-1}$ shows the paths followed by harmonic eurrents in an amplifier
cirenit: beanse of the high reartance of the tank coil there is little harmonie current in it, so the harmonie currents simply flow through the tank (:apmaitor, the plate (or grid) blocking calparitor. and the tube caparitaners. The lengths of the leads forming these paths is of great importanere, siner the indurtance in this cirenit will resomate with the tule capabitance at some frequener in the v.h.f. range (the tank and blocking capratitanues asually are so large compared with the tube eaparitance that they have little offere on the resonant frequency). If such a resonance happens to oreur at or hear the stme frequency ats one of the transmitter harmonies, the effert is just the same as though a harmonie tank eireuit hat heren deliberately introdued: the harmonie at that frequency will be tremendously inereased in amplitude.

Fig. 23-7-A v.h.f. resonant circuit is formed by the fube capacitance and the leads through the tank and blocking capocitors. Regular tonk coils are not shown, since they have little effect on such resonances. C_{1} is the grid tuning capacitor and C_{2} is the plate tuning capacitor, C_{3} and C_{4} are the grid and plate blocking or bypass capacitors, respectively.

Such resonances are unavoidable, but by keeping the path from plate to cathode and from grid to eathode as short as is physically possible, the resonant frequency usually can le raised above 100 Me. in amplifiers of medium power. This puts it between the two groups of television channels.

It is atsider to place grid-circuit v.h.f. resonameres where they will do no harm when the amplifier is link-coupled to the driver stage, since this generally permits shorter leads and more favorable conditions for beparsing the harmonies than is the case with capacitive coupling. Link coupling also reduces the eoupling between the driver and amplifier at harmonie frequencies, thus preventing driver harmonies from being amplified.

The inductance of leads from the tube to the tank eapacitor can be redured not only be shortaning but be using flat strip instead of wire conducters. It is also better to use the chassis as the return from the blocking eapacitor or tuned circuit to cathode, sinere a chassis path will hatve less inductanee than almost any other form of connertion.

The v.h.f. resonamee points in amplifier tank cirenits com be found bey coupling a grid-dip moter covering the $50-250$ Ne. range to the grid and phate leads. If a resonance is fomm in or near a TV chamel, mothods such as those deseribed abowe should be used to move it well out of the TV range. The grid-dip meter atso should be used to check for v.h.f. resonanees in the tank euils, bectuse coils made for 11 Me and brlow usually will show such resonanees. In making the cheek, discomect the coil entirely from the transmitter
and move the grial-dip moter eot alone it while exploring for a dip in the st-ss Me. hand. If a resonancel latls in a TV' rhamed that is in use in the locality, changing the number of turns will move it to a lusitroublesome fropuency.

Operating Conditions

Grid bitus and grid curvent hatw an important effect on the harmonic eontent of the r.f. currents in both the grid and plate circuits. In general, hatrmonic output increaters as the grid hits and grid current are indreased, hat this is not necessarily true of a partienlar harmonie. The thited and higher harmoniss, cspecially, will go through fluctuations in amplitude as the gride courent is inceratsed, and sometimes at rather high value of grid current will minimize one harmonic ats compared with a low value. This charateristic can be used to advantage where a partioular hamonic is catusing interferenece, remembering that the operating conditions that minimize one harmonice may granly inerand another.

For equal operating conditions, there is little or no difforence betweron single-ended and pushpull amplifiers in respect to harmonic goneration. Push-pull amplitioes are frequently trouble-makers on even hatmonies becatase with such amplifiers the evom-harmonic voltages are in phase at the ends of the tank circuit and hence appeat with equal amplitude across the whole tank coin, if the center of the coil is not grounded. Cuder such direamstanes the aren hammonice can be eoupled to the output circuit throngh stray capacitane between the tank and coupling coils. This does not ore ur in a single-rometed amplifier having an inductively coupled tank, if the coupling eoil is placeed at the cold end, or with a pi-network tank.

Harmonic Traps

If a harmonic in only one TV' channel is particularly bothersome - frequently the case when the transmitter operates on $2 x$ Me. - at trap tund to the harmonic frequeney may be installed in the plate lead as shown in Fig. 2:3-8. At the hamonie frequeney the trap represents a very high imperdane and henee redued the amplitule of the hamonie current flowing through the tank eireuit. In the push-pull cirenit both traps have the same constants. The $L C$ ratio is not critical but a high- ${ }^{\prime}$ cireuit usually will have loast effere on the performance of the phate circuit at the nomal oproting freguencer.

Since there is a considerable hamonic voltage areoss the tratp, radiation may oceur from the traup unless the tramsmitter is well shielded. Trajs should be placed so that there is no coupling between them and the amplifier tank cirenit.
A trap is a highty seloctive devier and wo is useful only over a small rathge of frequmeies. A second-or third-hammonic trap on a 28-Nc. tank circuit usually will not be effective over more that 50 kc . or so at the fumdamental frequence; depending on how serious the interterenee is without the trap. Beranse they are critical of adjustment, it is better to prevent TVI by other means, if possible, and use traps only as a last resort.

Fig. 23-8-Harmonic traps in an amplifier plate circuit. L and C should resonate of the frequency of the hormonic to be suppressed. C may be a 25 - to $50-\mu \mu \mathrm{f}$. midget, and L usually consists of 3 to 6 turns about $1 / 2$ inch in diameter for Channels 2 through 6. The inductance should be adjusted so that the trap resonates af about half capacitance of C before being installed in the transmiffer. The frequency may be checked with a grid-dip meter. When in place, the trap should be adjusted for minimum interference to the TV picture.

PREVENTING RADIATION FROM THE TRANSMITTER

The extent to which interference will be catused by direet radiation of spurions signats depernds on the operating freguence, the tramsmitter power level, the stremgth of the tele vision signal, and the distaner between the transmitter and TV rereiver. Tramsmitter radiation can be a very serious problem if the T' signal is weak, if the 'TV rereiver and amaterur transmitter are rhose togother, and if the transmitter is operated with high power.

Shielding

Direct radition from the trinsmitter circuits and components eath be prevented by proper shichling. To be effective, a shield must completely andose the cireuits and parts and must hatwe no openings that will permit rif. energy to escope. Confortunately, ordinary metal boxes and cabinets do not provide good shielding, since such openinge as louvers, lids, and holes for rumning in commertions allow far too murh leakage.

A primatry requisite for good shiclding is that all joints must make a good eloctrical connertion along their entire length. A small slit or arack will lot out a surprising amount of r.f. energy; so will ventilating louver: and latge holes such as those used for mounting moters. On the other hand, small holes do not impair the shiclding very greatly, and a limited number of ventilating

Preventing Radiation

holes may be used if they are small - not over $1 / 4$ inch in diameter. Also. wire sereen makes quite effertive shiekding if the wires make good eloe tridal connection at each crossower. Perforated alamimum such ats the "do-it-yourself" sold at hardware stores also is good, althomgh not vory strong mechanically, If perforated material is used, rhoose the variety with the smallest openings. The lakage through large opronings ain be very much reduced hy rovering such openings with sererning or preforated aluminum, well bonded to all edges of the opening.

The intensity of r.f. fielde about coils. catateifors, tulnes and wiring dererasise wery rappidly with distance, so shideling is more offective, from a pradieal standpoint, if the components and wiring are not ton close to it. It is advisable to have at separation of several inches, if posible, bet wern "hot" points bat the cirenit and the nearest shicleling.

For a given thickness of metal, the greater the conductivity the better the shielding. Copper is best, with aluminum, brass and sted following in that order. Ifowerve, if the thieknoss is ade plate for structural purposis (over 0.02 inch) and the shield tand a "hot" point in the eireuit are not in rlose proximity, any of these metals will be sattisfatory. Creator separation should be used with sterl shidding than with the other materials not only berathe it is considerably poorer ats a shideld but abou becatase it will cateregreater lossos in nou-tovernuits than would coppor or aluminum at the same distane Wire sereron or perforated mutal used :ts:a shimh shomld also be kept at some distance from high-voltage or higheremrent r.f. points, since there is considerably more teakage through the mesh that through solid metal.

Where two pieres of motal join, as in forming a cormer, they should owerlap) at loast a half inch :thed bre fastened together firmly with sirems or bolts spaced at closeremough intervals to matiotain time comtate all along the joinn. The eontat surfares should be clean hefore joining, and should be ehorked oreationatly - experially stere, which is almost certain to rust after a period of time.

The leakage through a siven size of aproture in shishling increase with fropuenes, so such points ats good eontimons contart. sereming of harge holes, and so ons. Ireome even more important When the radiation to be suppressed is in the high band-171-216 Ma: Hence jol and 14tMe. Transmitters. which in gencral will have frecuencemultipher hamonies of relatively high intensity in this region, reguire spectal attention in this respect if the possibility of interfering with a chammed received lowally exists.

Lead Treatment

Even very good shichling can the made comphetely useless when commertions are run to external power supplies and other equipment from the cirenits inside the shiekd. Every such comduetor leaving the shielding forms a path for the eseape of r.f., which is then radiated by the con-
nerting wires. Hence a step that is essential in every case is to prevent harmonic currents from Howing on the lads leaving the shielded enchosure.

Ilarmonic currents always flow on the d.c. or a.e. leads comereting to the tube circuits. A very deflective means of presenting such currents from being conpled into other wiring, and one that provides desirable bypasing as well, is to use sholded wire for all such leads, mantaining the shielding from the point where the lead comeets to the tube or r.f. circuit right through to the point where it leaves the chassis, The shield braid should be grounded to the ehassis at both onds and at frequent intervals along the path.
(Good bypassing of shielded loads also is essential. Bearing in mind that ther shided braid about the combluctar confines the harmonic eurrents to the insild of the shisdled wire, the ohjeret of hypassing is to prevent their cescupe. Figs. 23-3 9 and 2:-10 show the proper way to bepass. The smathtrpe 0.001-mf. ceramie disk eapacitor, when monuted on the end of the shideded wire as shown in Fig. 2:3-9, actually forms a series-resonant riveluit in the at-ss-ine. range and thus reprewents practically a short-iment for low-band TV' harmonies. The exposed wire to the connertion terminal should be kept as short as is physically posible, to prevent any posible harmonic piekup, exterior to the shichled wiring. Disk eabacitors of this eapacitane are available in several voltage ratings up to 3000 volts. For higher voltages. the maximum caparitance available is approximately $\bar{j}(1) \mu \mu$., which is large chough for good bepassing of harmonics. Alternatively, mina (atpacitors may he used as shown in fig. 2:3-10. monnting the rapacitor lat aganst the Chassis and grounding the cond of the shield braid divedly to chassis, kecping the exposed part as short as posible. Eithor 0.001- μ f. or $470-\mu \mu \mathrm{f}$, ($\%$ (0) $\mu \mu \mathrm{f}$.) ratuatitors should be used. The larger eapuritance is series-resonant in Channel 2 and the smatler in Chamel 6.

Fig. 23-9-Proper method of bypassing the end of a shielded lead using disk ceramic capacitor. The 0.001 $\mu \mathrm{f}$. size should be used for 1600 volts or less; $500 \mu \mu \mathrm{f}$. at higher voltages. The leads are wrapped around the inner and outer conductors and soldered, so that the lead length is negligible. This photograph is about four times actual size.

Fig. 23-10-8ypassing with a mica capocitor the end of a high-valtage lead. The end of the shield braid is soldered to a lug fastened to the chassis directly underneath. The other terminal of the capacitor is similarly bolied directly to the chassis. When the bypass is used at a terminal connection block the "hot" lead should be soldered directly to the terminal, if possible, but in any event connected to it by a very short lead.

These bepasses are essential at the eonneretionblock terminals, and desirable at the tube eonds of the leads also. Installed as shown with shiohded wiring, they have bern found to ber so effertive that there is usually no need for fur ther harmonio filtoring. However, if a test shows that additional filtering is repuired, the arratagement shown in Fig. 2:3-11 may the used. Sum an ref. filter shouhd be installed at the tube eno of the shieded lead, and if more thath one cireuit is filtored care should be taken to kerp the ref. fhokes soparated from eathother and so orionted as to minimize eoupling botweon them. This is nerossury for proventing harmonies prosent in one rircuit from being roupled into another.

In difficult cases involving Channels 7 to 13 i.e., dose proximity betwern the transmitere and resoiver, and a waik TV'signal - whlitional leadfiltoring measures maty be needed to provent
 transmitters. A recommended mohod is shown in Fig. 2:3-12. It uses a shicdded lead inypased with a reramic disk as deseribeet atoove, with the addition of a low-inductance feed throngh type raparitor and atmall r.f. choke, the eatpacitor loing used as at terminat for the extornal connertion. For voltages above 40 $)$, at eapacitor of rompart construction (as indicated in the (atption) should be used, momed so that there is a very minimum of exposed leate, inside the chassis, from the eapacitor to the connerion termmal.

As an atternative to the series-resonant bypassing desuibed above, leed-throunhtypecapatitors such as the Sprague "Hypass" tope may
be used as terminals for external connections. The ideal mothod of installation is to mount them so they protrude through the chassis, with thorough bonding to the chassis all around the hole in which the repacitor is mounted. The principle is illustrated in Fig. 23-1:3.

Meters that are mounted in an r.f. unit should be enelosed in shielding covers, the comections being made with shicleded wire with ach lead bepassed as deserimed above. The shied braid should be grounded to the pand or chassis immediately outside the moter shield, as indieated in lig. 2:3-14. A bepass maty also be ronnerted across the meter terminals, principally to prevent any fundamental curront that may be present from flowing through the meteritself. As an alternative to individual meter shiclling the metors maty be mounted entirdy behime the pand, and the panel holds needed for ohservation maty be covered with wire seren that is carefully bonded to the pand all around the hole.
(atre should be used in the sedertion of shimded wire for tramsmitter use, Not only should the insulation be conservatively rated for the d.e. volt-

Fig. 23-12-Additional lead filtering for harmonics or other spurious frequencies in the high v.h.f. TV bond (174-216 Mc.).
$C_{1}-0.001-\mu f$. disk ceramic.
$\mathrm{C}_{2}-0.001-\mu \mathrm{f}$. feed-through bypass (Erie Style 326). (For $500-2000$-volt lead, substitute Plasticon Glass mike, LSG-251, for C_{2}.)
RFC-14 inches No. 26 enamel close-wound on $3 / 16$-inch diam. form or resistor.
age in use, but the insulation should be of matrerial that will not asily deteriomate in soldering. The ref. charameristies of the wire are not esperially important, cxerpt that the attenation of hamonies in the wire itself will be greater if the

Fig. 23-11-Additional r.f. filtering of supply leads may be required in regions where the TV signal is very weak. The r.f. choke should be physically small, and may consist of a 1 -inch winding of No. 26 enameled wire on a $1 / 4$-inch form, close-wound. Manufactured single-layer chokes hoving an inductance of a few microhenrys also may be used.

Preventing Radiation

Fig. 23.13-The best method of using the "Hypass" type feed-through capacitor. Capacitances of 0.01 to 0.1μ f. are satisfactory. Capacitors of this type are useful for high-current circuits, such as filament and 115 -velt leads, as a substitute for the r.f. chcke shown in Fig. 23.11,
in coses where additianal lead filtering is needed.
insulating materiad hate high losises at radio frequenerise in other words, wire intended fur use at d.e. and low fropurnios is proferable to cables Aesigned exprosely for "arring r.f. The attentattion atso will increase with the hength of the wire: in germeral. it is better to make he leads as lome as rireamstanere permit mather than to follow the same asual paration of using mom me hath than is achatly nerossary. Whore wires cross or rom parallel, the shiedts should be spot-soldered wand her and combered to the rhassis. for high woltages, : momobile ignition calble covered with adiodting bratial is reeonmended.

Proper shiedting of the tramsmiter requires What the r.f. ciremits he shieded entirely from the external emmerling lembs. I situation sum as is shown in Prig. 23-15, where the leals in the $\begin{gathered}\text { r.t. }\end{gathered}$ chassis have beon shieddal and property filtered Dut the chassis is mounted in a large shiold, simply invites the hammie eurrents to trand over the chassis and on out over the leats outwigh the chatresis. The shideling about the r.f. eirenits should make complete eontact with the chatsis

Fig. 23.14-Meter shielding and bypassing. It is essential to shield the meter mounting hole since the meter will carry r.f. through it to be radiated. Suitable shields can be made from $21 / 2$. or 3 -inch diameter metal cans or small metal chassis boxes.
on which the parts are mounted.

Checking Transmitter Radiation

A cherek for transmiture radiation ahwas should be mande hofore allompting to use low-pass filters or other devies for prewenting harmonies from reaching the antema system. 'The only reallys satisfactury indicating instrument is a television receiver. In regions where the 'TV signal is strong all indicating wasmenor sumb and hating a arysal or tube detector may be wiseful: if it is possible to get any indication at all from hamonies bithor ons supply hats or aromend the transmitter iterelf. the hamonics ate prolably strong comagh to rathe interference. However. the ahsemer of any such indication dexs not mean that harmonice
 of shiblting and lead tildering desoribed in the

Fig. 23-15-A metol cabinet can be an adequate shield, but there will still be radiation if the leads inside can pick up r.f. from the transmitting circuits.
promeding seretion are followed, the harmonice intonsity on any extermat leats should be far below What ang such insitruments rath detere.
ladiation chorks should be made with the tramsmitter delivering full power into a dummy anternat, such as ant incemberent lamp of suitable power rating, preferably installed inside the shiolded enclesure. If the dummy mast be extornal, it is elesitable toromere it through a coasmatehing eireuit such as is shown in l"ig. 2:3-1ti. Shielding the dummy antomat cirenit is also desir:able, although it is not always neressary.

Make the ratiation test on all frequences that are to be used in tratsmitting, and note whether or not interferenere palterns show in the remerved pioture. (There tests must be mado white a TV signal is being rereined, since the beat patterns will not be formed if the TV pieture carrier is not present.) If interferenere exists, its source ean be detected hy grasping the various external leads (by the insulation, not the live wire!) or bringing the hand near meter faces, louvers, and other possible points where harmonic energy might escape

Fig. 23-16-Dummy-antenno circuit for checking harmonic radiation from the transmitter and leads. The matching circuit helps prevent harmonics in the output of the transmitter from flowing back over the transmitter itself, which may occur if the lamp lood is simply connected to the output coil of the final amplifier. See trans-mission-line chapter for details of the matching circuit. Tuning must be adjusted by cut-and-try, as the bridge method described in the transmission-line chapter will not work with lamp loads because of the change in resistance when the lamps are hot.
from the tramsmiter. If any of these tests catuse a change- not neressarily an inerease - in the intensity of the interferenere, the presence of harmonies at that proint is indicaled. The location of such "hot" soots usually will point the way to the remedy. If the TV reeciver and the transmitter can be operated side-lox-ride, a lenghth of wire commerted to one antemat terminal on the reociver can be used as a probe to go over the tramimitter endoware and extomat leads. This devire will very quickly expose the spots from which sorious leakape is taking plate.

As a final test, comert the tramsmitiong antemna or ite transmission line terminals to the outside of the tramsmitter shielding. Interforence reated when this test is applied indieates that weak currents arre on the outside of the shied and can be comblued to the antemat when the normal antemat connertions are used. Currents of this nature represent intorforemer that ran be condueted orer low-pass filters, otc., and which therefore camot be climinated bey sud filters.

- PREVENTING HARMONICS FROM REACHING THE ANTENNA

The thind and last step) in reducing hatmonic TVI is to kerp the spurious emergy penemated in or passed through the final sage from traveling over the transmission line to the antemna. It is seldom worthwhile even to athempt this unt it the raliation from the framsmitter and its romere tine louds hats heren redured to the print where with the transmitter delivering full power into a dummy antennat, it has been determined bue artual testing with a telovision romover that the radiation is below the lever that ran mase interference. If the damme antmat test shows mough radiation to be sorm in a TV pieture it is a partical certainty that hamoniss will be couphed to the antenna system no matter what preventive measures are taken.

In inductively coupled output systems, some hamonic energy will be transforred from the final amplifier through the mutual induetane betweren the tank coil and the output coupling coil. Harmonies of the output freguence transioned in this way can be gratly redured by providing
sufficient selectivity between the final tank and the transmission line. A good deal of seleretivity, amomenting to 20 to 30 dh. reduction of the second harmonic and much higher reduction of higher-order harmonies, is furnished he a matehing circuit of the type shown in Fig. 23-16 and deseribed in the chaperer on tramsmission lines. In "antemna coupler" is therefore a worthwhile addition to the tramsmiter.

It $5(0)$ - and $111-$ Mr. (ransmitters, particularly, hamonies not dirertly associat ed with the out put frequence - such as those wonerated in low-froquency carly stages of the tramsmitter - may get compled to the antemat bey means. For example. a Itt-.We. transmittor might have an oseillator or frequeney multiplier at is Ma. . followed bex atripler to $1.1 t$ Me. Some of the 48- Me. energey will appear in the plate eireuit of the tripler, and if pased on to the grid of the final amplifior will appear as a 18 - Me. modulation On the IfI-Ne. signal. This will canse a sparious signal at 192 Mr , which is in the high 'T1 band. and the selectivity of the tank riruits may not be suflicient to prevent its being roupled to the antemat. Fourions signals of this type ean bereduced by using link coupling betwern the driver stage and final amplifior (and betwern earlion stages as well) in addition to the suppression afforded by using an antoma compler.

Capacitive Coupling

The upher drawing in Fig. 2:3-17 shows a parallel-comductor link as it might be used to rouphe into a paralleb-ronductor line through a matching cireuit. Ihasmuch as a coil is a sizable motallie objere. There is capacitane betweon the final tamk eoil and its assomiated link moil. and betwern the matching-riment roil and its link. Finergy couphed through these capateitances travels over the link eirenit and the transmission line as thongh these were momely single combluetors, The tumed circuits simply ant ans matses of motal and offer mo sheretivity at all for capacti-tively-roupled remergy Although the atotal
 medinm for frequemeres in ther v.h.f. ratge.
Capacitive coupling can be reduecol by coupling

Fig. 23-17-The stray copocitive coupling between coils in the upper circuit leads to the equivalent circuit shown below, for v.h.f. hormonics.

Keeping Harmonics From the Antenna

Fig. 23.18-Methods of coupling and grounding link circuits to reduce capacitive coupling between the tank and link coils. Where the link is wound over one end of the lank coil the side toward the hot end of the tank should be grounded, as shown at B.

(A)

(C)
to a "cold" point on the tank coil - the end connereted to ground or cathode in a single-rended stage. In push-pull circuits having a split-siator capacitor wit h the rot or gromeled for r.f., atl parts of the tank roil are "hot" at even harmonics, but the erenter of the eril is "rold" at the fundamentat and odd harmonies. If the center of the tank coil, rather than the rotor of the tatnk capacitor, is grounded through a bepass capacit or the ementer of the coil is "rold" at all frememers, but this arrangement is not very desirable becouse it raluses the harmonic aurrents to flow through the roil rather than the tank maparitor and this inereases the harmonie transfor by pure induetive roupling.
With cither single-emded or balaneed tank eircuits the coupling eoil should be grounded to the chassis ber a short, direet eonnedion as shown in Fig. 23-18. If the eoil feeds a balaneed line or link, it is proferable to ground its center, but if it feeds a coas line or link one side may be grounded. Cosxial output is much preferable to balaneed output, beatuse the hamonics have to stay inside a properly installed coax system and tond to be attemated by the cable before reathing the antemas conpler.

At high frequencies - and posibly an low an 14 Ne. - raparitive eoupling can be greatly redued hy using a shiched roupling coil as shown in Pig. 23-19. 'The inner conductor of a length of coaxial calbe is used to form andorn coupling eoil. The outer conductor serves as an opererirenited shiold around the turn, the shicld boing grounded to the chassis. "The shodding hats no effere on the inductive coupling. Because this construetion is suitable only for one turn, the coil is not well adapted for use on the lower frequandies where mamy turns are reguired for good coupling. Shideded eoupling eoils having at larger number of turns are availathe commercially. A shielded (oil is particularly usoful with push-pull amplifiors when the suppression of even harmonies is important.

A shieded coupling coil or coasial output will not prevent stray caparitive coupling to the antomat if hamonic currents ean flow over the outside of the coas lime. In Fig. 23-20, the arrangement at dither A or (" will allow r.f. to flow over the outside of the cable to the anteman system. The proper way to use roaxial cable is to shied the transmitter completily, as shown at 13 , and make sure that the outer eonductor of the cable is a continuation of the fransmitter shideding. This prevents r.f. inside the transmitter from getting out by any path exeept the insite of the cable. Darmonics flowing throngh a coas line can be stopped from reaching the antemat system by an

Fig. 23-19-Shielded coupling coil constructed from cooxial cable. The smaller sizes of cable such as RG-59/U are most convenient when the coil diameter is 3 inches or less, because of greater flexibility. For larger coils RG-8/U or RG-11/U can be used.
(A)

(B)

(C)

Fig. 23-20-Right (B) and wrong $(A$ and $C)$ ways to connect a coaxial line to the transmitter. In A or C, harmonic energy coupled by stray capacitance to the outside of the cable will flow without hindrance to the antenna system. In B the energy cannot leave the shield and can flow out only through, not over, the cable.
antomar compler or by a ion-pass filter installed in the line.

Low-Pass Filters

A low-pass filtor properly installed in a comaxial lime, foreling rithor a matching circuit satmonat (wopler) or fereling the alltenna directly, will provide very great attemuation of harmonies. When
 ductor type, the cose-rouphed matehing-ereruit arrangement is highty reommemed as a means for using a eoas low-pass filter.

A properly designed bow-pass filter will not introduce appreciable power loses at the fundamontal frequence if the cosxial litue in whech it is insorted is terminated so that the s.w.r. is low, (The s.w.r. cath easily be measured by means of at simple bridge as deseribed in the chapters on moasurements and transmission linco.) Such a filter hats the property of passing without loss all frequencies below its" "eut-olf" frequener, but simultamensly has large attentation for all frequencies atheve the cut-off frequeney.

Low-pass filters of simple and inexpensive construetion for use with transmitters operating bolow 30 Me. arr shown in Fixs. 2:3-21 and 2:3-23. The former is dosigned to use miea capabitors of readily available caparitance values, for comparthers and iow cost. Both use the same rircuit, Fig. 2:3-22, the only difference being in the Iathd ('values. Terhmiatly, they are threeseretion filters hatving two full eonstant-k sections and two m-derived terminating half-sections, and their attennation in the $\overline{\text { at }} 88$ - Mc. range varies from over 30 to mearly 70 db ., depending on the fredueney and the partienar set of values used. Hove 174. . Me. the theoretioal at embation is better than 85 db ., but will depend somewhat

Fig. 23-21-An inexpensive low-pass filter using silvermica postage-stamp capacitors. The box is a 2 by 4 by 6 aluminum chassis. Aluminum shields, bent and folded of the sides and bottom far fastening to the chassis, form shialds between the filter secticns. The diagonal arrangement of the shields provides extra room for the coils and makes it easier to fit the shields in the box, since bending to exact dimensions is not essential. The bottom plate, made from sheet aluminum, extends a half inch beyond the ends of the chassis and is provided with mounting holes in the extensions. It is held on the chassis with sheetmetal screws.

Fig. 23-22-Low-pass filter circuif for attenuating harmonics in the TV bands. J_{1} and J_{2} are chassis-type coaxial connectors. In the lable below the letters refer to the following:
A-Using 100 - and $70-\mu \mu$ f. 500 -volt silver mica capacitors in parallel for C_{2} and C_{3}.
B-Using 70- and $50-\mu \mu \mathrm{f}$. silver mica copocitors in parallel for C_{2} and C_{3}.
C-Using 100-and $50-\mu \mu \mathrm{f}$. mica capacitors, 1200 -volt (case-style CM-45) in parallel for C_{2} and C_{3}.
D and E-Using variable air capacitors, 500-10 1000 volt rating, adjusted to values given (see measurements chapter for data on measuring capacitance).

	A	B	c	D	E	
Zo	52	75	52	52	75	ohms
$f_{\text {c }}$	36	35.5	41	40	40	Mc.
${ }_{\infty}$	44.4	47	54	50	50	Mc.
f_{1}	25.5	25.2	29	28.3	28.3	Mc.
$f 2$	32.5	31.8	37.5	36.1	36.1	Mc.
C_{1}, C_{4}	50	40	50	46	32	$\mu \mu \mathrm{f}$.
C_{2}, C_{3}	170	120	150	154	106	$\mu \mu \mathrm{f}$.
$L_{1}, L_{\text {, }}$	$51 / 2$	6	4	5	$61 / 2$	Purns*
$L_{2 .}, L_{4}$	8	11^{1}	7	7	91/2	furns*
L_{3}	9	13	8	$81 / 2$	$111 / 2$	furns*

*No. 12 or No. 14 wire, $1 / 2$-inch inside diameter, 8 turns per inch.
${ }^{1}$ A 9 -turn coil with closer turn spacing to give the same inductance is shown in Fig. 23-21.
on internal resonant comblitions assoreiated prineipally with the lead lengths to the ceapareitors. There leads should be kiph as shott as is physically possible.

The powor that filters using miod eapatejtors (an handle saloly is determinod by the voltage and rurment limitations of the raparitors. The power (atpurity is loast at the highest frecuurncy. "Fhe unit using postagro-stamp silvor miora (apar-ifors is capablo of hamdling apporoximately 50 wat ts in the 28-Mr. hand, when working into a prop-erly-mat chenl line, but is grood lom aloon lan watts
 quencies. A filt or with larger micat catpareitors (ratse
 28 Me.. this rating incroasing to bon watts at ?l Me. and a kilowatt at l| Me. and lowor. If there
 the line into which it works, these ratines will leo
 itor lailure it is highly cessential that the lime un the entput side of the fillor lex estretully matehed by its loath. This can be done with ath s.w.r. bridge,

Fig. 23-23-Low-pass filter using variable oir copocitors. The box is a 2 by 5 by 7 aluminum chassis, fitted with a bottom plate of similar construction to the one used in Fig. 23-21.
and the matching is easy to control if the line from the filter terminates in a matehing circuit of the thpe described in the chapter on transmission lines.

The power capacity of these filters ean be increased considerably by substituting r.f. type fixed caparitors (such as the Centrabab 850 serios) or variable air eapacitors, in which event the power rapability will be sum as to hatrde the maxitum amateur power on any hand. The construction can be modified to aceommodate variahbe air capacitors as shown in lig. 2:3-2:3.
['sing fixed capacitors of standard tolerances, there should the little difliculty in getting proper filter operation. A grid-dip meter with an accurate rablibration should be used for adjustment of the coils. First, wire up the filter without L_{2} and L_{4}. Short-rimenit J_{1} at its inside end with a screwdriver or similar conductor, couple the grid-dip meter to L_{1} and adjust the indurtance of L_{1}, by varying the turn spacing, until the rirenit resonates at f_{∞} as given in the table. Ho the same thing at the other end of the filter with L_{5}. Then coupre the meter to the eirenit formed by L_{3}, C_{2} and C_{3}, and adjust L_{3} to resonate at the frequency f_{1} as given by the tablas. Them remove $L_{\text {s }}$.

Fig. 23-24 - Low-poss filter fo use with $50-\mathrm{Mc}$. transmitters and 52 -ohm line. If uses variable air copocitors adjusted to the proper capacitance values and is suited to powers up to a kilowatt.
install L_{2} and L_{4} and adjust L_{2} to make the circuit formed by L_{1}, L_{2}, C_{1} and C_{2} (without the short aeross J_{1}) resonate at f_{2} as given in the table. Do the same with L_{4} for the cirenit formed by L_{4}, L_{5}, C_{3} and C_{4}. Then replace L_{3} and check with the grid-dip meter at any coil in the filter; a distinct resonance should be found at or very close to the cut-off frequence, f_{c}. The filter is then ready for use.

The filter constants suggested at D and E in Fig. 2:-22 are based on the optimum design for good impedance characteristies - that is, with $m=0.6$ in the end sections - and a cut-off frequency below the standard i.f. for television receivers (sound carrier at 41.25 Mc: picture carrier at $45.7 \overline{5}$ Mc.). This is to avoid possible harmonic interference from 21 Me, and lelow to the receiver's intermediate amplifier. The other designs similarly rut off at 41 Me. or below, but m in these cases is neressarily based on the capacitances available in standard fixed capacitors.

Filters for 50- and 144-Mc. Transmitters

Since a low-pass filter must have a cut-off frequency above the frequency on which the transmitter operates, a filter for a v.h.f. transmitter camot be designed for attenuation in all television channels. This is no handicap for v.h.f. work but means that the filter will not be effective when used with lower-frequency transmitters, unkes it happens that no TV channels in use in the locality fall inside the pass band of the filter.

1ig. 2:3-21 shows a filter for 52-ohm coax suitable for a $50-\mathrm{Me}$, transmitter of any power up to the authorized limit. The eireuit diagram is given in lig. 2:3-25. If the values of indurtance and caparitance can be measured (see chapter on measurements) the components can be preset and assembled without further adjustment. Alternattively, the grid-dip meter method deseribed earlier may be used. The resonant frequencies are:

23-BCI AND TVI

$L_{1} C_{1}\left(J_{1}\right.$ shorted, L_{43} diseonneited)	
$L_{55} C_{4}\left(. J_{3}\right.$ shorted. L_{4} disconneeted)	81.5 Mr.
$L_{33} \mathrm{C}_{2} \mathrm{C}_{3}$ (L_{2} and L_{4} disconvecterd)	16
$L_{1} L_{2}\left({ }_{1} \mathrm{C}^{\prime}{ }_{2}\right.$ (L_{43} diswommerted)	
$L_{4} L_{5} \mathrm{C}^{\prime}{ }_{3} \mathrm{C}_{4}$ (L_{3} diswonnerted) $\}$	

The eut-off frequency is approximately 65 Me.

Fig. 23-25-Circuit diagram of the low-pass filters for $50-$ and 144 -Mc. transmitters. Values on the drawing are for the $50-\mathrm{Mc}$. filter. Partitions are not used in the 144-Mc. unit.
$\mathrm{C}_{1}, \mathrm{C}_{4}-50 \mathrm{Mc}$.; $50-\mu \mu \mathrm{f}$. variable, shaft-mounted, set to middle of funing range (Johnson 50L15). 144 Mc.: $11-\mu \mu \mathrm{fd}$. ceramic ($10-\mu \mu \mathrm{f}$. usable).
$\mathrm{C}_{2}, \mathrm{C}_{3}-50 \mathrm{Mc}: 100-\mu \mu \mathrm{f}$. variable, shaft-mounted set with rotor $1 / 4$ inch out of stator (Bud MC-905). 144 Mc.: $38-\mu \mu \mathrm{f}$. stand-off bypass (Erie Style 721 A).
50-Mc. coil data:
L_{1}, $\mathrm{L}_{5}-31 / 2$ furns $5 / 8$ inch long. Top leads $3 / 4$ inch, bottom leads $1 / 4$ inch long.
$\mathrm{L}_{2}, \mathrm{~L}_{4}-41 / 2$ turns $5 / 2$ inch long. Leads $1 / 2$ inch long each end.
$\mathrm{L}_{3}-51 / 2$ furns $/ / 8$ inch long. Leads 1 inch long each. All $50-\mathrm{Mc}$. coils No. 12 tinned, $1 / 2$-inch diam., coil length measured between right-angle bends where leads begin.
144-Mc. coil data:
$L_{1}, L-3$ turns $1 / 4$ inch long. Leads $1 / 4$ inch long each end. $L_{2}, L_{4}-2$ turns $1 / 8$ inch long. Leads 1 inch long each end. $\mathrm{L}_{3}-5$ turns $3 / 4$ inch long. Leads $5 / 8$ inch long each end. All 144-Mc. coils No. 18 tinned, $1 / 4$-inch diam., lengths measured as for $50-\mathrm{Mc}$. coils.

$\mathrm{J}_{1}, \mathrm{~J}_{2}$-Cooxial fitting.

The case for the 50-Me. filter is a standard aluminum slip-cover type box measuring $31 / 8$ hy 13 by $25 / 8$ inches. The two end rapacitors, ('1 and C_{4}, are mounted with their two stator posts toward the ends of the filter. The two larger units are mounted in the center compartment with their rotor shafts toward the midelle. The top leads from eoils L_{1} and L_{5} are wrapped around the stator terminals of C_{1} and C_{4}, and the botom leads fit directly into the coasial input and output
fittings. The outer ends of coils L_{2} and L_{4} are soldered to the coasial fitting terminals, and the ir inner ends are soldered to lugs supported on oneitheh reramie stand-ofl insulators. Leads from the stand-offs go through holes in the partitions to the loftomstator lugs on C'2 and $C_{3} . L_{3}$ is soldered to the two upper lugs on these two rapacitors, thas rompleting the filter circuit. Lead lengths for the coils given in the parts list are the total lengthe to be left when the winding is completed, including the portions that will be used in soldering operations.

This filter will give high attenuation in Chathnels t-6 and all the high-lond chamels, and thus will take eare of most of the spurious signals gencrated in a 50 -Mr. transmitter.

A filter for low-power 1/f-Mre transmitters is shown in lig. 2:3-26. It is designed for maximum attenuation in the $1901-215$ Me. reqion to suppress the spurious ratiations in that range that frequently orcur with IH-XC. transmitters, but also has good attenuation for all frequencies above 170 Me . Optimum eapacitance values are given in lig. 2:3-25. If possible, soveral units of the nearest standard values available should be measured and thos having values closest to the optimum used. The inductance values arr too small to be measured with suficient accuracy, so the filter should be adiusted as follows:

First, mount L_{1} and C_{1}, short J_{1} temporarily at its inner terminals, and adjust L_{1} until the combination resonates at 200 Nre as shown by a grieldip metor. Next, remove the short from J_{1} and connoct L_{2} and C_{2}, atjusting L_{2} until the cireuit
 disconnert L_{2} and mount L_{3} between C_{2} and C_{3}. Adjust L_{3} until the cirenit $L_{3} C_{2} C_{3}$ resonates at 112 Mr. Next, discomert L_{3} and follow a similar procedurestarting from the otherend with L_{5} and C4. linally, remonoed all coils and a cheok at any point in the filter should show resonance at 160 Mre, the approximate cut-off frequency.

The case for the 14-Ne, filter is made from flashing copper and is $1 \frac{1}{4}$ inches spuare by $71 / 8$ inches long. The main portion of the case is cut from a single piere with the end tabs folded down and soldered to the sides. Planges are folded over at the bottom, and a rover is made to slip over these.

Filter Installation

In order to give the harmonie attenuation of

Fig. 23-26-A 52-ohm low-pass
filter for 144-Mc. transmitters.

Low-Pass Filters

which it is eapable, a low-pass filter must be installed in such a way that all the output of the transmitter flows through it. If hammonic currents are permitted to flow on the outside of the connerting coaxial cables, they will simply fow over the filter and on up to the antemnat, and the filter does not have an opportunity to stop them. That is why it is so important tu perduere the radiation from the transmitter and its leads to nerligible propurtions.

Fig. 23-27 shows the proper way to install a filter between a shiehded transmitter and a matehing cirruit. Note that the coas, together with the shields athout the trimsmitter and filter, forms a continuous shield to keep atl the r.f. inside. It is thus fored to flow through the filter and the harmonies are attenuated. If there is no harmonic energy left after passing through the filter, shiedding from that point on is not meressary: fonsequently, the mat ehing eirenit ar antemat coupler dees not need to be shiehded. Iowever, the antenna-coupler chassis arrangement shown in Fig. 23-27 is desir:tble bocause it will tend to provent fundamental-freguenes energy from flowing from the matching eireuit back over the transmitur; this helps eliminate feed-back troubles in audios systems.

If the antema is driven through coaxial line the matehing eirenit shown in Fig. 23-27 may be omitted. In that case the line goes directly from the filter to the antennat.

When a filter does not seem to give the harmonie attenuation of which it should the capable. the probable reason is that harmonies are hybassing it berense of improper installation and inadequate transmitter shiolding, including load filtering. However, orrasionally there are cases where the eireuits formed by the cabless and the apparattus to which they conneet berome resonant at a harmonid frequener. This greatly inereases the hamonio output at that frequence. such tioubles ean be completely overeome by substituting a slightly differont cable length. The most critical length is that conneeting the transmitter to the filter. Cherking with a grial-dip moter at the final amplifier output coil usually will show whether an unfavorable resonture of this type exists.

SUMMARY

The methods of harmonic elimination outlined in this ehapter have been proved beyond doubt to be effertive even under highly unfavorable conditions. It must be emphasized once more, however, that the problem must be solvel one step at a time, and the procedure must be in logieal order. It camot be done properly without two items of simple equipment: a gridedip meter and wavemeter covering the TV bands, and a dummy antenna.

The proper procedure may be summarized as follows:

1) Tike a critical look at the transmitter on
the basis of the design considerations outlined under "IReducing I Lamonic Generation".
2) ('herk all circuits, particulaily those connereded with the final amplifior, with the gridedip, meter to determine whether there are any resonanees in the TV bands. If so, rearrange the eircuits so the resonameres are moved out of the eritical frequencer region.
3) Conneet the trimsmitter to the dummy anteman and cheek with the wavemeter for the presence of harmonics on leads and around the tramsmitter enclosure, Neal off the weak spots in the shielding and filter the loads until the wavemoter shows no indieation at any harmonic frequence:
4) At this stage, chock for interference with a TV receiver, If there is interference, determine the canse bey the methods daseribed previously and apply the recommended remedies until the interference disappears.
5) When the transmitter is eompletely clean on the dummy antema, conneet it to the regular antenna and chock for interforence on the TV receiver. If the interference is not bad, an antenna compler or matching eireuit installed as previously deseribed should eloar it up. Alternatively, a lowpass filter may to used. If weither the antenna couplernor filter makes any differenee in the interference, the evidence is strong that the interference, at least in part, is boing caused by receiver overloading because of the strong funda-mental-frequeney field about the TV antenna and receiver. (siee later seetion for identification of fundamental-frequency interforence.) A coupler and or filter, installed as deseribed above, will invariably make a difference in the intensity of the interference if the interference is caused by trinsmitter hatmonies alone.
6) If there is still interference after installing

Fig. 23-27 - The proper method of installing a low-pass filter between the transmitter and antenno coupler or matching circuit. If the antenno is fed through coax the matching circuit may be omitted but the same construction should be used between the transmitter and filter. The filter should be thoroughly shielded.
the coupler and/or filter, and the evidence shows that it is probably catused by a hamonic, more attemuation is noeded. A more elaborate filter maty be meressary. I Iowever, it is well at this stage to assume that part of the interference may the cansed by receiver orerloading, and take steps to alleviate such a condition before trying highlyelaborate filters, traps, etc., on the transmitter.

- harmonics by rectification

Benen though the transmitter is completely free from harmonic output it is still possible for interference to occur beause of harmonics generated outside the transmitter. These result from rectification of fundamental-frequency currents

23 - BCI AND TVI

induced in conductors in the vicinity of the transmitting antenna. Rectification caln take place at any point where two conductors are in joor electrical contact, a condition that frequently exists in plumbing, downspouting, BSX cables erossing each other, and numerous other phaces in the ordinary residence. It also can oceur in any exposed vacuum tubes in the station, in power supplies, specech equipment, cte., that may not be anclosed in the shiclding about the r.f. circuits. Poor joints anywhere in the antema system are expecially bad, and rectification also maty take plare in the contacts of antemnat changeover relays. Another common cause is overloading the front end of the communications receiver when it is used with a separate antenna (which will radiate the harmonies generated in the first tube) for break-in.

Rectification of this sort will not only eause hammonie interference lut also is frequently responsible for cross-modulation effects. It can be deteeted in greater or less degree in most loeations, but fortunately the harmonics thus gencrated are not usually of high amplitude. Howcvor, they can cause considerahle interference in the immediate vicinity in fringe areas, especially when operation is in the 28-Mc. band. The amplitude decreases rapidly with the order of the harmonic, the second and third being the worst. It is ordinarily found that aven in cases where destructive interference results from 28-Mc. operation the interference is comparatively mild from 11 Me., and is nogligible at still lower frequencies.

Nothing can be done at either the transmitter or receiver when rectification oedurs. The remedy is to find the source and eliminate the por rontart cither by separating the conductors or bonding them together. A ervstal wavemeter (tuned to the fundamental frequency) is useful for hunting the source, by showing which conductors are carrying r.f. and, comparatively, how much.

Interference of this kind is frequently intermittent since the rectification efficiencs will vary with vibration, the weather, and so on. The possibility of eorroded contarts in the TV receiving antenna should not be overlooked, especially if it has been up a year or more.

TV RECEIVER DEFICIENCIES

Front-End Overloading

When a television receiver is quite close to the transmitter, the intense r.f. signal from the transmitter's fundamental may overload one or more of the receiver cirenits to produce spurious responses that cause interference.

If the overload is moderate, the interference is of the same nature as harmonie interforence; it is caused hy harmonies generated in the earle stages of the rereiver and, since it oceurs only on channels harmonically related to the transmitting frequeney, is difficult to distinguish from harmonies actually radiated by the transmitter. In such cases additional harmonie suppression at the transmitter will do no good, but any means taken
at the receiver to reduce the strength of the amateur signal reathing the first tube will effect an improvement. With very severe overloading, interference also will occur on chanmels not harmonicully related to the transmitting frequency, so such cases are easily identified.

Cross-Modulation

Under some circumstances overloading will result in cross-modulation or mixing of the amateur signal with that from a local f.m. or TV station. For example, a $1+$ Me. signal can mix with a 92-Mc. f.m. station to produce a beat at 78 Mc . and cause interference in Channel 5, or with a TV station on Chammel 5 to cause interference in Channel 3. Neither of the channels interfered with is in harmonic relationship to 14 Me . Iboth signals have to be on the air for the interference to oceur, and eliminating either at the TV receiver will eliminate the interforence.

There are many combinations of this type, depending on the band in use and the loat frequence assignments to f.m. and TV stations. The interfering freguency is equal to the amatour fundamental frequency either added to or subtracted from the frequency of some local station, and when interference ocours in a TV chamel that is not harmonically related to the amateur transmitting frequency the possibilities in such frequency combinations should be investigated.

I. F. Interference

Some TV receivers do not have sufficient selectivity to prevent strong signals in the intermedi-ate-frequency range from forcing their wat through the front end and getting into the i.f. amplifier. The once-standard intermediate frequeney of, roughly, 21 to 27 Mc ., is subjecet to interference from the fundamental-frequancy output of transmitters operating in the 2l-Me. band. Transmitters on 28 Me. sometimes will cause this tepe of interference as well.

A form of i.f. interference peculiar to 50-Me. operation matar the low edge of the band orcurs with some receivers hatving the stimulard "H-Mc:" i.f., which hats the sound carrice at 41.25 Mc . and the picture carricer at 45.75 Mc . A $50-$ Me. signal that forees its way into the i.f. sustem of the reeciver will beat with the i.f. pieture rarrier to give a spurious signal on or near the i.f. sound carrier, even though the interferiug signal is not actually in the nominal passband of the i.f. amplifier.

There is a type of i.f. interference unique to the 1ft-Me. band in localities where rertain u.h.f. TV rhannels are in opreration, afferting only those TV receivers in which doubleronversion type plug-in u.h.f. tuning strips are used. The design of thesestrips involves a first intermediate freguener that varios with the TV chamel to be received and, depending on the particular strip design, this first i.f. maty he in or close to the 1H-Ne. amateur band. Since there is comparatively little selectivity in the TV sigmalfrequency circuits aheal of the first i.f., a signal from a $1 H-M c$. transmitter will "ride into" the

TV Receiver Deficiencies

i.f., even when the receiver is at a considerable distane from the transmitter. The chamels that can be afferted by this type of i.f. interference are:

> Recrivers with
> 21-1/c.
> scrond i.f.

Channols $1+-18$, ine.
Chammels 11-18, ine.

> Recrivers with
> \$1-,l/c.
> serond i.f.

Chamels 20-25, ine. Chamels it $1-58$, ine. Channels 82 and 8:3.

If the recoiver is not close to the transmitter, a trap of the tspe shown in lig. 2:3-30 will be effertive. Hlowever, if the separation is small the 11t-Mr. signal will be pieked up direetly on the reader rireuits and the best solution is to readjust the strip oscillator so that the first i.f. is moved to a frepurney not in the vidinity of the
 protent teshnician.
I.I, interference is casily identified since it oscurs on all chanmels - although sometimes the intensity varices from chamel to chammel - and the eross-hateh pathern it celuses will motate when the rerever's fine-tuning eontrol is varied. When the interference is calused he a harmonid. overlowing, or cross momblation, the structure of the interference pat tern does not change (its intensity may change) as the fine-tming control is varied.

High-Pass Filters

In all the above cases the interference can be eliminated if the fundimental signal strength com the redued to a level that the reediver eam hande. To aceomplish this with signals on bands below 30 Me., the most satisfactory device is a highpass filter having a cout-off frequoney between 30 and of Me., installed at the tuner input terminals of the recoiver. Cirmits that have proved effertive atre shown in Figs. 2:3-28 and 2:3-29. Fig. 2:3-2:1 has one more section than the filters of Fig. 2:3-28 amb ats a consequenere has somewhat befter cut-ofif charameristics. All the cireuits given are designed to have little or no effect on

Fig. 23-28-High-pass filters for installation of the TV receiver antenna terminals. A-balanced filter for 300ohm line, \mathbf{B}-for 75 -ohm coaxial line. Important: Do not use a direct ground on the chassis of a transformerless receiver. Ground through a $0,001-\mu \mathrm{f}$, mica capacitor.
the TV signals but will attemmate all signals lower in frequency than about - If Me. These filters preferahly shoalt be eonstratel in some sort of shidling enatainer. athoust thiol ling is not abwiss meresary. The dashed limes in lig. 2:3-2 , show how in livithal litare ofils ran be
 tubular ceramie units centerel in holes in the partitions that separate the coils.

Simple high-pars filters cannot always be applied suceessfully in the ease of $\mathbf{3}(0)$-Me tramsmissions, because they do not have sufficiently-sharp eutoff charameristios to give hoth good at temation at 50-54 Me and no attenuation above of Me. A more elaborate design eapable of giving the required sharp eut-otf hats been desrribed (1,adel, "o0-Me. TVI - Its Canses and Cures," gs'T, June and July, 195-t). This article also contains

Fig. 23-29 - Another type of high-pass filter for 300ohm line. The coils may be wound on $1 / 8$-inch diameter plastic knitting needles. Important: Do not use a direct ground on the chassis of a transformerless receiver. Ground through a $0.001-\mu \mathrm{f}$. mica capacitor.
other information useful in coping with the TV' problems peculiar to 50-Me. operation. As an alternative to such a filter, a high-Q wave trap tuned to the transmitting frequencer may be used, suffering only the disadvantage that it is quite selective and therefore will protert a reeriver from overlouling over only a small range of transmitting frequencies in the $50-\mathrm{M}$ (e, b:und. A trat) of this type using quarter-wave sections of Twin-Lead is shown in lig. 2:3-30. These "suck-out" traps, while absorbing energy at the frequency to which thes are tumed, do not affect the receiver operation otherwise. The assembly should be slid along the TV antenna lead-in until the most effertive position is found, and then fastened securely in plane with sootch Tape. An insulated tuning tool shoukd be used for aljustment of the trimmer capacitor. since it is at a "hot" point and will show considerable body-atparitance effert.

Jligh-pass filters are available commercially at mokerate prices. In this comeretion, it should be undenstood by all parties conerened that while an amatelur is responsible for harmonic rabliation from his transmitter, it is uo part of his responsibility to pay for or install filters, wave traps, etc. that mase be required at the reveiver to prevent interference catased by his fandamental frequeners. 'The set owner should be advised to get in touch with the organization from which he purehased the reeriver or which services it, to make arrangements for proper installation. Proper in-

Fig, 23-30-Absorption-type wave trap using sections of 300 ohm line tuned to have an electrical length of $1 / 4$ wavelength of the transmitter frequency. Approximate physical lengths (dimension A) are 40 inches for 50 Mc . and 11 inches for 144 Mc ., allowing for the looding effect of the capacitance at the open end. Two traps are used in parallel, one on each side of the line to the receiver.
stallation usually requires that the filtor be installed right at the input terminals of the r.f. tumer of the 'TV set and not merely at the external antomat terminals, which may be at a consideratbe distance from the tuncr. The question of cost is one to be settled hetwern the set owner and the organization with which he deals.

Some of the larger mandfacturers of TV recoivers have instituted arrangements for cooperating with the set dealer in installing high-pass filters at no rost to the rerejver owner. FCCsponsored TVI Committers, now operating in many ritios, have all the information neressary for cffertuating such arrangements. To find out whether such a committee is functioning in vour community, write to the FCC field offies having jurisdietion over your location. A list of the field oflioss is contained in the Radio . Imatew's Lieense Manual, publishod by ARRLL.

If the fundamental signal is getting into the receiver by way of the line cord a line filter such as that shown in Fig. 2:3-1 may help. To be most effective it should be installed inside the reenemer chassis at the point where the cord enters, making the ground conncetions directly to chassis at this point. It may not be so helpfal if placed between the line plug and the wall socket unless the r.f. is actually picked up on the house wiring rather than on the line cord itself.

Antenna Installation

Usually, the transmission line between the TV recoiver and the artual TV antemat will piek up a great deal more enorgy from a nearhy transmitter than the television receriving antema itseli. The eurrents indued on the TV' transmission line in this rase are of the "parallel" type, where the phase of the current is the same in both conductors. The line simply acts like two wires conneeted together to oprate as one. If the recoiver's antemat input cirruit were perdectly balaned it would rejert these "parallel" or "unbalance" signals and respond only to the tran transmissionline ("push-pull") currents: that is, only signals pieked up on the actual antennat would canse a mereiver response. However, no reeciver is perfeet in this resperet, and many TV reweivers will respond strongly to surh parallel currents. The result is that the signals from a meathe amateur tramsmitter are much more intense at the first stage in the TV reediver thatn they would be if the weceiver response were confined entirely to entrgy pioked up on the TV antema abone. This situation can be improved bey using shielded tramsmission line - coas or, in the balanced
form, "twinax" - for the rereiving installation. For best results the line should terminate in a roas fitting on the receiver chassis, but if this is not possible the shield should be grounded to the chaswis right at the antemuat terminals.

The use of shielded transmission line for the receiver also will be helpful in reducing response to harmonies actually boing radiated from the transmitter or transmitting antema, In most rocoiving installations the tranmission line is very much longer than the antennat itself, and is conseguently far more exposed to the harmonie fields from the tramsmitter. Much of the harmonic pickup. therefore. is on the receiving transmission line when the transmitter and reeciver are quite close together. Shiclded line, plas relocation of cithor the tramsmitting or rocoding antenna to take advantage of directive effects, often will result in reduring overloating, as well as harmonic pickup, to a level that does not interfere with reception.

U.H.F. TELEVISION

Harmonic TVI in the u.h.f. TV band is far less troublesome than in the v.h.f. band. Harmonies from tramsmitters operating below 30 Me, are of such high order that they would normally be experted to be quite woak: in addition, the components, eirenit ronditions and construction of low-frequency transmiters are such as to tend to prevent very strong harmonics from leing gemerated in this region. However, this is not true of amateur v.h.if. tranmiturs, particularly those working in the Ift-Mce and higher bands. lere the problem is quite similar to that of the low v.h.f. 'TV band with respert to tranmitters operating below 30 Me .

There is one highly lavorable lactor in u.h.f. TV that does not exist in the most of the v.h.f. TV band: If harmonios are radiated, it is possible to move the transmitter frequency sufficiently (within the amateor hatnd being used) to avoid interfering with a chamel that may lo in use in the locality. By restricting operation to a portion of the amateur band that will not result in hatmonic interference, it is possible to avoid the neressity for taking extraordinary precautions to prevent hamonic radiation.

The freguency assigmment for u.h.f. television consists of sevonty (6-megaryele channels (Nos. 14 to $8: 3$, inclusive) begiming at 470 Me. and ending at 890 Mr. The harmonies from amateur bands above 50 Me span the u.h.f. chamels as shown in Talbe 2:3-I, Since the assigmment pan

Amaleur Band 144 Mc.	TABLE 23-I						
	Harmonic Relationship-Amateur V.H.F. Bands and U.H.F. TV Channels						
	Harmonic	Fundamental Freq. Ranue	! II.I.TV Chantiel . Iffected	Amateur Band	I/armonic	Fundamental Freq. Range	U.II.F.TV Channel AJfected
	4th	144.0-14.5	31	220 Mc .	3 rd	220-200.67	45
		14.5-146.0	32			$220.67-222.67$	46
		141.0-147.	33			$222.67-22.4 .67$	47
		117.5-148.0	34			221.67-225	48
	5 th	14.0-14.4			4th	220-221	82
	3th	144.1-14.7.19	56			221-2:20.5	83
		$14.5 .1-146.8$	57	420 Mc	2nd	4:0-421	75
		116.8-118				421-424	76
						424-427	77
	6th	111-14.33	79			$427-430$	78
		$14.383-14.8 .38$	80			430-43:3	79
		14.5.33-147.33	81			433-436	80
		147.33-148	82			436-439	81
						$439-4.42$	82
						412-448	83

calls for a minimum soparation of six channels bet weren ame two stations in one lorality, there is ample opportunity to choose a fundamental frequency that will move a harmonie ont of range of a local TV frequency.

- COLOR TELEVISION

The color TV signal includes a subcarrier spaced 3.58 mogaceres from the regular pieture cartior (or 4.83 Mc . from the low edge of the channel) for tramsmitting the color informattion. Harmonies which fall in the color subcarrior region can be experted to catuse break-up of color in the reedver pieture. This modifies the rhatt of Fig. 23-3 to introduce another "severe" region contering aromed 4.8 Me. measured from the bow-frequency edge of the chamed. Hence with color television reception there is less opportunity to avoid hamonic interference by choice of operating frequener. In other respects the problem of eliminating interference is the same as with batck-and-white television.

- INTERFERENCE FROM TV RECEIVERS

The 'TV picture tube is swept horizontally by the electron beam 15,550 times por second, using a wave shape that hats very high harmonic content. The hamonice are of apprereiable amplitude even at frequencios as high as 30 Me., and when ratiated from the meeiver ean cause eonsiderable interference to reception in the amateur bands. While measures to suppress radiation of this nature are required by fec in courently manufactured rewivers, many older sets have had no such treatment. The inforference takes the form of rather matable a a e-modulated signals spaced at intervals of $15.5 \overline{5} \mathrm{ke}$.

Studies have shown that the rialiation takes place principally in three ways, in order of their importane: (1) from the a.c. line, through stray conpling to the sweep arenits; (2) from the antemat s.stom, through similar coupling; (3) direetly from the picture tube and sweep-circuit
wiring. Line radiation often can be reduced by bypassing the a.e. line cord to the chassis at the point of entry, although this is not completely effective in all cases since the roupling may take place outside the chassis beyond the point where the by passing is done. Radiation from the antemat is usually suppressed by instatling a high-pass filter on the receiver. The direct radiation requires shiolding of high-potential leads and, in some receivers, additional hypassing in the sweep circuit; in severe cases, it may be necessury to line the calbinet with screening or similar shiclding material.

Incidental radiation of this type from TV and bromleast receivers, when of sufficient intensity to cause serious interference to other radio services (such as amateur), is covered ly l?art 15 of the FCC rules. When such interference is cansed, the user of the receiver is obligated to take steps to eliminates it. The owner of an offending receiver should be advised to contart the soure from which the reenver was purchased for appropriate modification of the receiving installation. TV reeciver dealers can obtain the necessary informattion from the set manufacturer.

It is usually possible to reduce interference very considerably, without modifying the TV recoiver, simply hate hing a good amateur-band receiving installation. The principles are the same as those used in reducing "hash" and other noise - use a good antemat, such als the transmitting antomnal, for reception; install it as far as possible from a.e. circuits; use a good fooder system such as a property balaneed two-wire line or coas with the onter conductor grounded; use roas input to the recoiver, with a matehing circuit if neesessary: and check the receiver to make sure that it does not pick up signals or noise with the antemna disconneded. These measures not only reduce interference from sweep radiation and at.c. line moise, hut also build up the strength of the desired signal, so that the overall improvement in signal-to-interference ratio is very much worth-while.

Operating a Station

The cojogment of our hobliy comes montly from the opration of our station oner we have finished its construction. [pon the station and its operation drpend the commanication revords that are made. The sianding of imelividuats as amaterurs and resineret for the rathabilitios of the whole institution of amateorr radio deporal to at considerable extent on the prate ieal commenic:ations astahlishod by amaten's, the aggregate of all our station cllurts.

An opreator with a slow, stoatly, cleath-cut mothod of sonding hats a hig advantage over the peore operator. 'The terehnigure of speaking in connereted thonghts and phrases is ratally important for the voive operator. Cood sonding is partly a matter of practice but patienere and judgment are just as important qualities of an operator as a grod "fist."
Oproating knowledge rembraring standad procedures, development of skill in emploving e.w. to expand the station mange and operating offore tiveness at minimum power levels and some net know-how are all essentials in :uhiceving a triumphant amateru experinder with top station roreords. personal results and demonstrallims of what our stations can do in prartioal communications.

- OPERATING COURTESY AND TOLERANCE

Normal operating interests in amateur radio vary ronsiddrably. some profor to ratg-chew, others handle traffic, others work DNS, others: conecontrate on working eertain arras, countries or states and still others gat on for an oreasional contact only to cheok anow tramsmitter or antomint.

Interforence is one of the things we amatours have to live with. However, we cath eomduct our operating in a way dexignol to alleviate it as much as presible. Before putting the tremsmitter ol" the air, liston on your oum fremurne!!. If you hear stations engaged in emmmunimation on that

frechency, stand by until you are sure mo interforener will he ratised by your opreations, or shift to another frequrne:!. No athataur or any group of amateurs has any exrlusive elaim to any freduluy in any hamd. Wir must work toge her, ath respecting the rights of others. Iameminer, thone other chaps cath callase yon as murh interfornore as you rallise them. somotimes more!

In this rhapter we'll recomut some fibdamentalk of oporating surerss, rover major procodures for sumerssfal gemeral work alld indhate proper forms to use in mosiag labliding and other firdes. Notre alsu the sertions on spurial antivitites. awards :und organizationt. These permit us all to develop through our orgatization more sumerse together that we comble aver attatin beparate monordinated efforts that overlook the preapts rathblishat through oprating exprience.

C.W. PROCEDURE

The Best operators, twoth thase using voiore and
 gurded an "standard pramtiore."

1) Coulls. (:alling stations mas cotl efliamoty by transmitting the call signal of the station called three times, the lotters I)lic, followed by one's own station call sent there times. Nhort calls with frequent "braaks" to liston have proved to be the best method.) Rapeating the call of the station called four or five thans athe signing not more that two or threre times hats proved axedlent practioe thus: Wghs Whbl

C(C. The wemembinquiry call (C) should ho sent not more than live times without interspersing onces station identidiation. The langht of repated calls is carefully limited in intelligent amaterur oprating. (`) $($ is not to be used when testing or when the somber is not expeeting or looking for an answer, Never semb a CQ"blimd." Aways be sure to listen on the transmitting frequeney first.)

The directional (e): To reduce the number of
 should be made informative when pessible:

Erramples: A Touted stater -tation lowkizug for

 Wextern atation with tratfic for the East Const when looking for ath intermediate rolay station
 W:IGiW Wiltil W:IGiW R. I station with

Ilams who do wot raise stations reatily maty find that their sending is pors, their calle ill-timed or judgment in error. When conditions are right
to bring in signals from the desired locality, you can call them. Reasonably short calls, with appropriate and brief breaks to listen, will raise stations with minimum time and trouble.
2) Ansuering a Call: Call three times (or less); send DIE; sign three times (or less): after eontalet is established decrease the use of the eall signals of both stations to once or twice. When a station reerives a call but does not receive the eall letters of the station ealling, QliZ: maty be used. It means "By whom am I being called?" QRZ should not be used in platee of CQ.
3) Ending Signals and Sign-()ff: The proper use of $\overline{A R}, \mathrm{~K}, \overline{\mathrm{KN}}, \overline{\mathrm{SK}}$ and CL , ending signals: is as follows:

AR - Find of transmission. Recommended after call to a speeific station lefore contact has been established.

Example: WGABC WgabC W6.ABC W6ABC WGABCDE W:\%MN WOLMN AR. Also at the end of transmission of a raliogram, immediately following the signature, preceding identification.
K - (io aheal (any station). Recommended after $C Q$ and at the end of rach transmission during QSO when there is no objection to others breaking in.
E.cample: CQ ('Q CQ INE W1ABC WIABC K or WGIY\% DE WIABCK.

KN - Go ahead (specific station), all others kerep out. Recommented at the end of each transmission during a QSO, or after a call, when calls from other stations are not desired and will not le answered.

Example: W4FGII DE XLGGRL $\overline{\mathrm{KN}}$.

SK - lind of QSO. Recommended before signing last transmission at end of a (2SO.

Example: ... SK W8L.MN DE W5IBCD.
CL - I am clowing station. IRecommended when a station is going off the air, to indicate that it will not listen for any further calls.

Example: SE W7HIJ DE W上JKL CL.

1) Testing. When it is neressary for at station to make test signals they must not contimue for more than 10 seronds and must be composed of a series of VVY followed be the call sign of the station emitting the tost signads. Alway/s listen first to find a clear spot if possible, to avoid (ausing unwarranted (QRXM of a (QSO) in progress.
b) Rereipting for conversation or traffic: Never reeript for a transmission until it has bern entirely received. "IR" moans "tramsmission recrived as sent." "ise IR only when all is received corrertly.
(i) Repeats. When most of a transmission is lost, a eall should be followed by eorrect abbreviations to ask lor repeats. When a few words on the cond of a transmission are lost, the last word received correctly is given after ?AA, moaning "all after." When afew words at the beginning of a transmission are lost, "Al3 for "all before" a stated word should be used. The quickest way to ask for a fill in the middle of a transmission is to send the last word reeeived correetly, a ques-
tion mark, then the next word reeeived correctly. Another way is to send "?BN [word] and [word]."

Do not send words twice (QSZ) unless it is requested. Send single. Do not fall into the bad habit of sending double without a request from fellows you work. Don't say "QRM" or "QRN" when you mean "QRS." Don't CQ unless there is definite reason for so doing. When sending CQ, use judgment.

General Practices

When a station has receiving trouble, the operator aske the transmitting station to "QSV." The letter "If" is oftem used in place of a decimal point (e.g., " 31 s 5 Me.") or the colon in time designation (e.g., "2R30 l'M"). A long dash is sometimes sent for "zero."

The law concerning superfluous signals should be noted. If you must test, disconnect the antenna system and use an equivalent "dummy" antennas. Send your call frequently when operating. l'iek a time for aljusting the station apparatus when few stations will be bothered.

The up-to-date amateur station uses "breakin." For best results send at it medium speed. Send evenly with proper spacing. The standardtype telograph key is best for all-round use. Regular daily practiee periods, two or three periods a day, are best to acquire real familiarity and proficieney with code.

No excuse can be made for "garbled" eopy. Operators should copy what is sent and refuse to acknowledge a whole transmission until every word has been received correetly. Good operators do not guess. "Swing" in a fist is not the mark of a good operator. Unusual words are sont twice, the word repeated following the transmission of "?". If not sure, a good operator systematieally asks for a fill or repeat. Sign your call frequently, interspersed with calls, and at the end of all transmissions.

On Good Sending

Assuming that an operator has learned sending properly, and comes up with a precision "fist" - not fast, but clean, steady, making wellformed rhythmical characters and spacing beautiful to listen to - he then becomes subject to outside pressures to his own possible detriment in everyday operating. Ile will want to "speed it up" beause the operator at the other end is going fastor, and so he begins, unconsciously, to run his words together or develops a "swing."

Perhaps one of the easiest ways to get into had habits is to do too much playing around with special keys. Too many operators spend only enough time with a straght key to acquire "passable" sending, then subject their newlydeveloped "fists" to the entirely different movements of bugs, side-swipers, olectronic keys, or What-have-rou. All too often, this results in the ruination of what may have become a very good "fist."

Think about your sending a little. Are you satisfied with it: You should not be - ever. Noboly's sending is perfect, and therefore every

24-OPERATING A STATION

operator should continually strive for improvement. Do you ever run letters togethor - like (a) for MA. or le for AN - espectalle when you aro in a hurre. lractically averbody does at one time or another. Do you have a "swing"? Any rerognizable "swing" is a deviation from perfeetion, strive to send like tape sembling: copy a WI.SII Bulletin and tre to send it with the same sparcing using a local oscillator on a suhsergumt transmission.

Check vour spacing in charateres, betweren charaterers and betwern words occasionally by making a recording of your tist on ant inked tape recorder. This will show up your faults ans nothing else will. Practice the correction of fallts.

USING A BREAK-IN SYSTEM

Break-in avoids umerersarily long calls, prevonts QRM, gives more communication per hour of operating, Briof calls with froquent short panses for reply ean approach (but not equal) break-in efficioncy.

A separate reeriving antema facilitates breakin operation. It is only neressary with break-in to pausf just a moment with the key up or to cat the carrior momentarily and panso in a phone conversation) to listen for the other station. 'The cliek when the eartier is eut of is ats coffective as the word "break."
(',u. Trempuphy break-in is usually simple to arramge. With break-in, ideas and messages to be transmitted can be pulled right through the holes in the (elR.M. Shapps, rifiement amaterur work with break-in asually requires a separate receiving antematand arrangement of the transmittor and recoiver to criminate the neressity for throwing switches betweron transmissions.

In calling, the tramsmitting oprotator somes the letters " $13 \mathrm{~K} "$ "at intervals during his call so that stations hearing the call may know that break-in is in use and take advantage of the fact. Ife pernses at interats dirimg his call, to listen for a moment for areply. If the station being called does mot answer, the call can the eontinued.
o With atap of the key, the man on the reeceiving end ean interrupt (if a word is misead). The other operator is constantly monitoring, a waiting just such directions. It is not nocersiary that you have perfert farilitios to take alvantage of break-in when the stations you work are break-inequipped. Alter any invitation to brak is given (and at mach patuse) press your key - and contact can start immediately.

VOICE OPERATING

The use of proper prowedure to get best results is just as important as in using coole. In telography words must be seded out letter he letter. It is therefore but natural that aboreviations and shorteuts should have come into widespereal use. In voier work, however, abhreviations are not necessary, and should have loss importance in our operating procodure.

Abstract

Voice-Operating Hints 1) Listen before calling, 2) Make short (alls with breaks to tisten. Avoid long CQs; do not answer any. 3) I'sa push-totalk or waicu pontrol. (iive assential data moncisely in first transmission. 1) Make regorts homest. I'se defintions of strengith and readability for reference. Make sour reports informative and masful. Honest roports and full word deaription of signals sate amather oncrators from F (' (' troubld. 5) Limit transmission length. Two mimutes or less will ronvey muelt information. When three or more stations converse in round tables. brevity is essential. (i) Display sportsmanship and courtesy, Bands are congested . . . make transmissions meaningial . . . give uthers a break. 7) ('heed tramsmitur adjustment . . . avoid rarcier babance carefally, Ino not radiate whom mov- rewerver h.f.o. to choek atahility of siphat. (omplete testing before busy hours!

The letter "K" has boen agreal to in telegraphic practice so that the operator will not have to pound out the separate letters that spell the words "go aheal." The woier operator cat sa!! the words "go abead" or "over," or "erome in please."

Ont haghs on c.w. by spelling out 111 . On phone wir a latugh when oure is called for. Bre natural as you would with your family and friends.
The matter of report ing reatabilit! and strenth is as important to phome opreators as to those using eode. With telegraph momenelature, it is neressary to spell ont words to describe signals or use abbereviated signal reports. But on voice, wo have the ability to "say it with works." "Readablility four, strength right" is the hest way to give a quantitative report, Reporting can be done so much more meaningfully with ordinary words: "You are weak but you are in the clear and I can "molerstand von, so go aheatl," or "Your signal is stroug but you are buided under loeal interferenere." Why not say it with words."

Voice Equivalents to Code Procedure

Voice
Guahead; over
Wait; stand by Received
${\frac{\mathrm{K}^{\mathrm{AS}}}{\mathrm{R}}}^{\text {Code }}$

Self-explanatory self-explatatory Rerojnt for a cor-rectly-transeribed messame or for "solid" transmission with no missing prortions

Phone-Operating Practice

Efficient voice communication, like good cew. communication, demands grod operating. . Adherence to eertain points "on getting results" will go a long way toward improving our phoneband operating conditions.

Usis push-to-talk technique. Where possible arrange on-off switches, controls or voice-controlled broak-in for fast back-and-forth exchanges that emulate the practicality of the wire tolephome.

Voice Operating

This will help redure the longth of transmissions and kerep beother amateurs from calling you a ＂monologuist＂－a guy who likes to hear him－ sell talk！

Liston with rare．Kierp moise and＂hatek－ grounds＂out of your operating rom to facilitate good listeming．It is natural to answer the strong－ est signal，but take time to liston and give some emmideration to the best signals，regardless of strength．livery amateur cannot run a hilowatt， but there is mo reason why cory amateur cannot have a sigual of good quality，and utilize uniform operating practioes to atid in the maderstanda－ bility and case of his own eommunications．

Ihterpose wour call regularly amb at frequent intervals．Three short ralls atre better than me long one．In calling（ ${ }^{(}(2$, one＇s call should ertainly appoar at least one for overy five or six（e）s． （alls with frequent breaks to listen will save time and he most productive of results．In iden－ tifying，always transmit your oun call havt．Don＇t say＂This is W＂ABC＂standing hy for W21）IEF＂； sty＂W20）PR，this is W1ABC＇，over．＂FC（＇regu－ bations show the call of the lramsmitting station sent lasel．

Include conniry prefix before call．It is not cor－ reat to saty＂！RRSX，this is IBD）l．＂Corrert tud legal uso is＂W！？RRS，this is W1BB）I．＂FC（＂ regulations refuive proper use of calls；stations have been cited for failure to eomply with this requirement．

Monitor your oun frequency．＇This helps in tim－ ing ralls and transmissions．Transmit when there is at chather of lexing eopied suceessfully－not
 transmissions is an art to multivate．

Keep moslulation constant．By turning the gain ＂wide open＂you are subjecting anyone listening to the diversion of whaterer moses are present in or near your operating room，to say mothing of the possibilits of ferathatek，echo dur to poor ：woustios，and momblation exeresses due to sudden loud noises．Spack near the microphone，and don＇t let your gaze wander all over the station （ausing sharply－varying input to your spocech amplifier；at the same time，kepp far enough from the mierophone so your sigual is not modulated by your breathing．Change distance or gain only as necessary to insure uniform transmittor per－ formance without overmodulation，splatter or distortion．

Wake comnected thoughts and phrases．Don＇t mix discomnerted subjects．Ask questions consistently． lause and get answers．
llave a pad of paper handy．It is convenient and desirable to jot down questions as they come in the course of discussion in order not to miss any．It will help you to make intelligent to－the－ point replies．

Neer clear of imanities and soap－opera stuff．Our amateur radio and also our personal mputation as serious communications workers depend on us．

Aroid repelition．Don＇t repeat back what the other fellow has just satid．Too often we hear a conversation like this：＂Okay on your new an－ tenna there，okay on the trouble you＇re having
with your receiver，okay on the company who just came in with some iee croam，okay ．．． ［atc．．｜＂Just suy you received everything（O．K． Don＇t try to prove it．
lise phondics omly as required．When clarifying gemuinely doublful expressions and in getting wour call identificd positively we suggest use of the ARRL，Phonotic List．Limit such use to really－nocossary clarification．

The speed of radiotelephone transmission（with perfert aceurary）depends almost entirely upon the skill of the two operators involved．One must laun to speak at a rate allowing perfect under－ standing as wedl as permitting the recoiving operator to copy down the message text，if that is urecesary．Becanse of the similarity of many Euglish specelh somuds，the use of alphabetioal word lists has bern found neressary．All voice－ oprated stations should use a standard list as mereded to identify call signals or unfamiliar expressions．

ARRL Word List for Radiotelephony

A1）．1．1	Jolin	stsan
B．1だくれ	KlNG	THOMAS
（II．\RI，IE	1，ENIN	l＇N1ON
（1）．1VI1）	MARY	VICTOR
FilW AR1）	N．NCY	WILLIAM
FRSNK	OrTO	S－RAY
（idorlice	PETER	YOtNG
IIFNRY	QUEEN	ZEBRA
［U．A	ROBERT	

Eximple：W1AW ．．W 1 ADAM WILLIAM ．．WIAW
Round Tables．The round table has many ad－ vantages if run properly．It clears frequencies of interferenee，expecially if all stations involved are on the same frequeney，while the enjoyment value remains the samm，if not grater．By use of push－to－talk，the eomvarsation can be kept lively and interesting，giving each station oprator ample opportunity to participate without wat－ ing overtong for his turn．

Round tables can become very unpopular if they are not conducted properly．The monologu－ ist，off on a long spiel about nothing in particular， cannot be interrupted；make ！four transmissions short and to the point．＂Butting in＂is discourteous and unsportsmanlike；don＇t enter a round lable，or an！／contact between two other amateurs，unless you are imited．It is bad mongh trying to cony through prevailing interferenere without the added difliculty of poor voire quality；check your trans－ miller adjustments frequenlly．In general，follow the precepts as hereinbofore outlined for the most enjoyment in round tables as well as any other form of radiotelephone communication．

WORKING DX

Nost amateurs at one time or another make ＂working 1）X＂a major aim．As in every other phase of amateur work，there are right and wrong Wars to go about getting best results in working foreign stations，and it is the intention of this scetion to outline a few of them．

The ham who has trouble raising DX stations
readily may find that poor transmitter efficioney is not the reason. He may find that his semding is poor, or his calls ill-timed, or his judgment in error. When conditions are right to bring in the DN, and the receiver sensitive onough to bring in several stations from the desired locality, the way to work 1). is to use the appropriate freGumey and timing and call these stations, as against the common practice of calling "C(DN."

The call (Q D. means slighty different things to amateurs in difformont hands:
a) On v.h.f., (C() DN is a promeral call ordinatily used only when the band is open, under favorahle "skip" conditions. For v.h.f. work such a call is used for looking for now states and countries, also for distances beyond the customary "line-of-sight" range on most v.h.if. bands.
b) ('(2) D on our 7 -, 11-, 21- and 28-Me, bathds may be taken to mean "(bomeal call to any foreign station." The term "foreign station" usually rofers to any station in at foreign eontinent. EXperienced amateurs in the C. S. . 1 , and Camata do mot tise this call, but ansiecer such calls made by foreign stations.)

DX Operating code (For W/VE Amateurs)

Some amateurs interested in IDX work have cansed eonsiderable confusion atud QRSM in their (Hforts to work ISX stations. Ib be pints below, if olvervorl by all W/V゙E amatemes, will gor a long way toward making ISN more enjogable for eversberly:

1. ('all 1). $\begin{gathered}\text { only after he calls (' }(2 \text {, (eltZ?, signs }\end{gathered}$ Sk, or whone equivahents thereof.
2. Ih not call a [IN station:
a. On the frequenes of the stathon he is working until sou are sum the (gNO) is over. This is indicated by the embing signal $\overline{\mathrm{F}} \mathrm{F}$ on c.w. and any indication that the esperator is listening, on phone.
b. Beranse sou hear somentre dse rallime hin.
e. When he signs $\overline{\mathrm{FN}}, \mathrm{T} \mathrm{K}, \mathrm{CL}$, or phone erguivalents.
d. Examly on his fromeney.
c. Sfter he calls a directionall ('2. unless of comrse son are in the right direction or area.
3. Kiep within frequenv-band limits, Nome IDX stations oprotate outside. 1'erhales they ran get awas with it, but sou camot.
4. Ohsurve calling instructions of 10.5 stations. "101"" mouns "all ten ke. up from his frequency, " 15 J " means 15 ke dorn, ete.
i. (iive honest reports, Many forajen stations depend on W and VE regorts for adjustment of station and eduphment.
f. Keep your signal chan, Kiey clicks. chirps, ham or splatter give you a bal rephtation and may Let yon a citation from Fex
5. L.isten for and call station wen want. (alling ('Q WN is not the best assumame that the more DN: will repls
S. When there are several W or VF, stations watit ing tes work a D. statioh, suvod senking him th, "listen for a friemp." Iet smar friond tatie his chunces with the rest. Alse anoiderngaging D. . stations in rag-elsews against their wishes.
c) C(2 DN used on $3 . \overline{5}$ Me. under winter-night conditions maty be used in this same manner. At other times, under average 3.5-Mc. propagation conditions, the call may be usod in domestic work whon looking for new states or comentres in onc's own continent, usually applying to stations lorated over 1000 mikes distant from you.

The way to work IDX is not to use a CQ call at all (in our continent). Instead, use your best tuning skill-and listen-and listen - and listen. Von have to hear them before yon cun work them. Hear the desired stations lirst: time your calls woll. Cise sour utmost skill. A semsitive recoiver is ofton more important than the power input in working forcign stations. If you can hear stations in a particulatr cometry or area, chameres are that you will be able to work someone there.

One of the most effective ways to work DX is to know the operating habits of the 1)X stations sought. Doing too much transmitting on the D. X bands is not the way to do this. Igain, listening is affertive. Onee you know the operating habits: of the 1)X station you aro after you will know when and where to call, athd when to remain silent wating your chamere.
some 1)N stations indieate where ther will tute for replies by use of "It)(" of "15D)." (Sue print t of the ID (Operating ('ode.) In voice work the overseas opreator may say "listening on $11,225 \mathrm{ke}$," or "tuning upward from 28,500 ke." Many a DN : wation will not reply to a call on his exatet frequency.

ARIRI, has recommended some operating procedures to DN stations aimod at eontrolling some of the thoughthess oprating practices sometimes used by W/S le amatemes. A copy of these recommendations (Operating Vid No. 5) can be obtained free of charge from ARRI, Ileadquartors.

In any band, particularly at lincoof-sight frequencies, when directional antemats are used, the directional CO such as (' ($)$ Wis, C'() north, ote., is the proferathle type of call. Mature amat telus agree that ($(2) \mathrm{D}$) is a wishful rather than at pactioal type of call for most stations in the North Amerias looking for foreign contacts.

(onditions in the transmission medimm nake atl fiold strengthe from a given region more Hoatly mpal at a distance, imesperive of power nsed. In wempal, the higher the fregueney band, the less impertant power comsiderations income. This accounts in part for the relative popularity of the 11-, 21-and 2s-Me. binds among anmateurs who like to work D.S.

A page from the official ARRL log is shown above, answering every Government requirement in res oect to station records. Bound logs made up in accord with the above form can be obtained from Headquarters for a nominal sum or you can prepare your own, in which case we offer this form as a suggestion. The ARRL log has a special wire binding and lies perfectly flat on the table.

KEEPING AN AMATEUR STATION LOG

The FCC requires every amateur to keep a complete station oprating record. It may also contain records of exprerimental tests and adjustmont data. A stomegrapher's notobook ran be ruled with vertical lines in any form to suit the user. The federal Communications Commission requirements are that a log be maintained that shows (1) the date and time of each transmission, (2) all calls and transmissions made whether two-way eontarts resulted or not), (3) the input
power to the last stare of the transmitter, (4) the freguency hand used, (5) the time of pruling each (fin) and the opratar's identifying signatture for responsibility for cach session of operating. Messages may be written in the log or separate remords kept - but reoorl in st le erotained for one vear as required by the FCC. For the comvenionee of amateur station operatoms AlRIRI, stocks both loghooks and messigu blanks, and if one uses the official log he is sure to emply fully with the Govermment requirements if the precautions and suggestions included in the log are followed.

Message Handling

Amateur operators in the ['nited states and a few other countrics enjoy a priviluge not analil able to amaterurs in most countries - that of handling third-party message traffic. In the early history of amatur radio in this country, some amatcurs who were among the first to take advantage of this privilege formed an extensive relay organization which beame known as the American Radio Relay League.
'Thms, amateur mossage-handling has had a long and honorable history and, like most services, has gone through many prexiods of developmont and change. Those amateurs who hamded traffie in 1914 would hardly rerognize it the wats some of us do it today, just as equipment in those days was far different from that in use now. Progress hats been mate and new mothors have teen dovedoped in step with alvancement in communication techniques of all kinds. Amateurs who handled a lot of traffic found that organized operating scheduks were more dfoctive than random relays, and as technigues advaned and messages inereased in numbre, trunk lines were organized, spot frequencies began to be used. and thore sprang into existenee a number of traffic nets in which many stations operated on the same frequeney to effert wider cov-
erage in less time with fewer relays; but the old methods are still available to the amaterur who hambles only an oceasional message.
. Ththough mossatge hamdling is as old an art as is amatenr radio itself. thore are many amatemes who do not know how to hande a message and have never done so. As each amatem grows ohder and gains experienes in the amateur serviee, there is bound to come a time when he will be called upon to hamde a written mossage, daring a communications emorgency, in casual contare with one of his many aequaintances on the air, or as a result of a request from a nonamateur friend. Regardless of the oceasion, if it comes to you, you will want to rive to it! Considerable cmbarrasment is likely to be experienced by the amateur who finds he not only dons not know the form in which the message should be prepared, but does not know what to do with the message onere it has been filed or received in hisstation.

Traffic work need not be a complieated or time-consuming ativity for the casabl or oreasional message-hander. Amateurs may participate in traflie work to whatever extent they wish, from an oreasional message now and then to becoming a part of organized traffie systems.

This ehapter explains some principles so the reader may know where to find out more about the subject and may exereise the mossage-handing privilege to bost effert as the spirit and opportunity arise.

Responsibility

Amateurs who originate messages for transmission or who receive messages for relay or delivery should first consider that in doing so they are acecpting the responsibility of clearing the message from their station on its way to its destination in the shortost posible time. Fortycight hours after filing or receipt is the generallyaecepted rule among traflichandling anateurs, but it is obvious that if every amateur who relayed the message allowed it to remain in his station this long it might be a long time reaching its destination. Traffic should be relayed or delivered as quickly as possible.

Message Form

Once this responsibility is realized and accepted, handing the message becomes a matter of following generally-atecepted standards of form and transmission. For this purpose, each message is divided into four parts: the preamble, the address, the text and the signature. some of these parts themselves are subdivided. It is necessary in preparing the message for tramsmission and in actually tramsmitting it to know not only what cach part is and what it is for, but to know in what order it should be transmitted, and to know the various procedure signals used with it when sont low c.w. If you are going to send a message, you maty as well wod it right.

Standardization is important! There is a great deal of room for expressing originality and individuality in amateur radio, but there are also times and phaes where such expression can onty cause confusion and incffieiency. Rocognizing the ned for standardization in message form and message transmitting proerdures, Alilla has long sine recommended such standards. and most traflic-interested amateurs have followed them. In genoral, these recommondations, and the various changes they have undorgone from year to yoar, have been at the request of ama-

Here is an example of a plain-language message in correct ARRL form. The preamble is always sent as shown: number, station of origin, check, ploce of origin, time filed, date.
teurs participating in this activity, and they are completely outlined and explained in Operating an Amateur Radio, Station, a copy of which is available upon request or by use of the coupon at the end of this chapter.

Clearing a Message

Amateurs not experienced in message handling should depend on the experioneed messarehander to get a messuge through, if it is important; but the average amatour can enjoy operating with a message to be handled cither through a local traffie net or by free-lancing. The latter may be acomplished by careful listening for an amateur station at desired points. directional CQs, use of the National (:alling and Emergeney frequencioss or by making and keeping a sehodule with another amateur for regular work between specified points. He may well aim at learning and enjoying through doing. The joy and aeromplishment in thus developing one's operating skill to top perferetion has a reward all its own.

The best way to cloar a message is to put it into one of the many organized traffic networks, or to give it to a station who can do so. There are many amateurs who make the hamiling of traffie their primeipal oporating activity, and many more still who participate in this artivity to a greater or lesser extent. The result is a system of traffie nets which sperads to all corners of the United States and eovers most lt. S. possessions and ('andad. Oner a mossage gets into one of these nets, regardless of the net's size or covcrage, it is systematically routed toward its destimation in the shortest prossible time.

If you deride to "take the bull by the horns" and put the message into a traflie not yourself (and more power to vou if you do!), you will noed to know something about how traffic nets "perate, and the sperial () signals and procedure they use to dispatch all traffic with a maximum of efficiency. Refermer to net lists in (O)ST (usilally in the Covember and January issues) will give you the frequency and onerating time of the net in your section, or of other nets into which your message can go. Listening for a few minutes at the time and frequency indieated should acquaint you with enough fundamontals to enable you to report into the net and indieate your traffir. From that time on you follow the instruetions of the net control station, who will tell you when and to whom (and on what froqueney, if different from the not froquoney) to somd your message. Nince most nets use the sperial "Q2." signals, it is ustally very holpful to have a list of these before you (list available from ARRL Hq., Operating Aid No. 9).

Network Operation

About this time, you may find that you are enjoying this type of operating activity and want to know more about it and increase your proficiency, Many amateurs are happily "addieted" to tratlic handling after only one or two brief exposures to it. Much traffic is at present being conducted by e.w., since this mode of com-

Emergency Communication

munication seems to be popular for reeord purposes - hut this does not mean that high code speed is a necessary prerequisite to working in traffic networks. There are matne nets organized specifically for the slow-speed amateur, and most of the so-called "fast" nets are usually glad to slow down to accommodate slower oprators, cis prepially those nets at state or section lever

The signifieant face of net operation, however, is that eode speced atone does not make for efficiency - sometimes quite the contrary! A ligh-sped operator who does not know not procodure ean "foul up" a net much more completely and more quickly than can a slew operator. It is a proven fact that a bunch of high-speed oprerators who are not "savvy" in not operation cannot accomplish as much during a specified period as an equal number of slow operators who know net procedtare. Bon't het low rode speed deter you from getting into traffic work. Given a little time, your speed will reach the peint where you can eompere with the hest of them. Concentrate first on karning mot procedure, for most traffic nowadays is handled on nots.

Murh traffic is also handled on phone. This mode is cxeeptionally well suited to short-range traffie work and reguires knowledge of phoneties and proedure peroliar to voier operation. Proredure is of paramount impontance on phone, since the public maty he listening. The major problem, of course, is (QRAI.

Teromuort is the theme of not operation. The net which functions most efficiently is the net in which all participants are thoroughly familiar with the procedure used, and in which oprotators refrain from transmitting exerpt at the direction of the net control station, and do not oreupy time with extraneous comments, aven the exchange of pleasantries. There is a time and plate for cverything. When a not is in sossion it should concentrate on handling trafice until all trafic is cleared. Before or after the not is the time for rag-chewing and disecssion, some details of net operation are included in Operating an Amateur Radin Station, mentioned earlier, but the whole story cannot be told. There is no substitute for artual participation.

The National Traffic System

To facilitate and speed the movement of message traffic, there is in existence in integrated national system by means of which originated traffic will normally reach its destination area the same day the nesage is originated. This system uses the local soction het as a hasis. Fanch sertion not sembs at reperentative to a "regional" not (normally eovering a call areat and each "regional" not sends a representative to an "area" net (normally covering a time zone). After the area not has cleared all its traffic, its mombers then go back to their respective regional nets, where they clear traffic to the various section net representatives. $13 y$ means of conneeting schedules betwern the area nets, traffic can flow both ways so that traffic originated on the West Const reaches the bast Coast with a maximum of dispatel, and vice versa. In general local sertion nets function at 1900 , regional nets at 1945, areab nets at $20: 30$ and the same or different regional personmel again at 2130. Some section nets conduct a late session at 2200 to elleet traffic delivery the same night. Local standard time is refermed to in cateh ease.
The NTS plan somewhat spreads traflic opportunity so that casual traffic maty be reported into nets for efficient handling one or two nights per werk, early or late; or the ardent traflie man can operate in both early and late groups and in between to roll up impressive totals amd speed traffic reliably to its destination. Old-time traffic men who profor a high degree of organization and teamwork have returned to the traffic game as a result of the now systom. Beginners have shown more interest in becoming part of a sustem nationwide in seope, in which anyone ean participate. The National Traffie System has vast and intriguing possibilities ats an amateur serviece. It is open to any amateur who wishes to participate.

The above is but the briefest résume of what is of meessity a rather complicated arrangement of nets and schedules. Complete details of the system and its opreation are available to anyone interested. Just drop a line to AIRIRL Iİeadquarters.

Emergency Communication

One of the most important ways in which the amateur serves the publie, thus making his existence a mational asset, is by his preparation for and his participation in communidations emergencies. livery amateur, regardless of the extent of his normal operating artivities, should give some thought to the possibility of his being the only means of communication should his community be cut off from the outside world. It has happened many times, often in the most unlikely places; it has happened without warning, finding some amateurs totally unprepared; it can happen to you. Are you ready?

There are two prineipal ways in which any amateur ean prepare himself for such an eventuality. One is to provide himself with equip-
ment capable of operating on any type of emergency power (i.e., either a.c. or d.c.), and equip-

24-OPERATING A STATION

ment whirh ean readily be transported to the seene of disaster. Mobite equipment is especially desirable in most emergeney situations.
such equipment, rerardless of how elaborate or how morlern, is of little use, however, if it is mot used properly and at the right times; and so another way for an amatour to propare himsolf for amorgencies, be mo means less important than the first, is to learn to operate efliciently. 'There are many amateurs who feel that they know how to operate offiedenty but who find themselves ronsiderably handicapped at the erucial timo by not knowing proper procedure, by being unable. dure to bats of casual amatrour operation, to adapt themselves to suappy, ahbreviated transmisions, and be being unfanilan with message form and ronting procedures. It is dangerous to overrate your ability in this resperet; it is far better to assume that sou have mueh to learin.

In gencral it ean be said that there is more emergeney equipment available than there are operators who know properly how to operate during emorgoney eonditions, for such comditions require edipped, terese procedure with eompleto break-in on e.w. and litst push-tu-talk on phone. The rasual raterhewing aspere of amat teur radio, however emjovable and worth-while in its place, must be forgotern at surh times in favor of the business at hand. There is only one way to gain experiouer in this type of operation, and that is by procticing it. During an emergency is wo time for pratiee; it should be done beforehand, as often as possibhe, on a regolar basis.
This leads up to the neressity for emeryeney organization and preparedness. ARIRL, has long recognized this meersity and has provided for it. The Sertion (ommuncations Manager (whose
address appeats on page (i of every issue of QST ${ }^{T}$) is empowered to appoint certain qualified amateurs in his section for the purpose of enordinating emergency vommunication organization and preparedness in sperified areas or eommunitios. This appointere is known as an Vimergeney Coordinator for the rity or town. One is sperified for each commonity. For comodination and promotion at section lavel a Nomion Fimorgency (oordinator arranges for and reeommends the appointments of various Fomergeney Cordimators at activity points throughont tho sertion. Fomergoney Cordinators organize amateurs in their communitios acoording to lowal nerels for amorgeney rommunieation farilitios.
The community amatours taking part in the local organazation are members of the Amatere Radio limergeney Corps (AREC), All amateurs are invited to register in the AREX ' whother they are athe to play an active part in the ir local orpanization or only a supporting role. Applieation blanks ate avaibable from your BC, sle C , SCDI or direet from ARRI, Headquarters. In the event that inguiry reverals no Fimergenery Coordinator appointed for your community, your sedi would woleome a recommendation (either from yourself or from a radio (elub of which you are a member. By holding amaterar operator lienose, you have the mesponsibility hoth to your community and to amaterar radio to uphold the traditions of the serviere.

Among the Leagoe's publications is a booklet contitled Emergency Communientionw. This booklot, while smatl in size, contains at weath of information on Alape organization and fumetions and is invaduable to any amaterur participating in emorgentry or civil defonse work. It is free to ARL:C mombers and should bre in every ama-

Before Emergency

1'R EPAIR yoursedf hy providing a transmitter-receiver sotup together with an ennergeney power sonree upon which you can doyend.

Thist both the dependability of your emerseney equipment and your own oproting ability in the anmual ARRI.

 the community in time of disaster.

In Emergency

LISTEN before you transmit. Never violate this princifle,
REPORT at once to your Emergoney Coordinator so that he will have up-to-the-minute data on the facilities avalable to him. Work with lenal eivic amb relief agences ats the EX suggests, offer these agencies your servieps direety in the ahsenee of an lec.
 state of eommanications emergenes.
(QRIRR is the offeinl ARRL" "land SOS," a distress call for emorgeney only. It is for use ondy by a station seeking assistance.

RBislef "I the fact that the suceess of the amateur effort in emergency depends largely on eirenit diseipline. The established Net control Station should be the supreme authority for priority and traffie routing.

COOPERATH' with those we serve. Be reaty to holp, but stay off the air unles there is a suceific job to be done that you can handle more efficiently than any other station.
('OPV all bulletins from W'IAW, 1)uring time of emergency special bulletins will keep you posted on the latest developments.

After Emergency

REPOITT to ARRL. Headquarters as soon as possible and as fully as possible so that the Amateur Service can receive full credit. Amateur ladio has wonglowing public tribute in many major disasters since 1910. Maintain this record.

ARRL Operating Organization

teur's shack, Drop a line to the ARIRI, Communications I epartment if you want a copy, or use the coupen at the end of this chapter.

The Radio Amateur Civil Emergency Service

In order to be propared for any eventuality, FCC and the (Office of (ivil and befense Mobilization (0 (') DI), in collaboration with ARIRL, have promulgated the Radio Amatene Civil Emergeney serviere RAClis is a temporary amattelle servioe, intended primarily to serve aivil defense and to continue opreration during amy rextreme national emergenery, such as war. It shares eertain segments of frequencies with the regular Amateur Servier on a nonexdusive hasis. Its regulations have been made a subt-part of the familiar amateur regulations; that is, the original regulations have berome sub-part A, the R.ACBS regulations being added as sub-part B. Copies of leoth parts are included in the latest edition of the ARRIRL. Lierense Mramunl.

If every amatour participated, we would still be far short of the total operating persomel required property to implement R.ACEs. As the service which bears the responsibility for the sureessfill implementation of this important function, we face not only the task of installing (and in some cases building) the neressary equipment, but also of the training of thousands of additional prople. This can and shoudd be a function
of the local unit of the Amateur Radio Dmargency Corps under its liC and his assistants, working in close collaboration with the local civil defense organization.

The first step in organizing RACES locally is the appointment of a IRadio Officer by the loeal rivil defense director, possibly on the rerommendation of his communieations offerer. A romplete and detailed communications plan must be approved suceressively by local, state and (OCOM regional directors, by the OClOM Nat tional offier, and ly FCC. Once this has been atocomplished, applications for station athorizattions under this phan can lo submitted direet to FCC. QST' will carry further information from time to time, and ARRS will keep its field officials fully informed by bulletins as the situation requires. A complete bibliography of (2STM artieks deating with the subjeet of civil defense and IRACFS is availathle upon request from the ARIRL. Communications I epartment.

In the event of war, civil defense will place great relianer on IRACFS for radio communieations. RACLS is an Amateur Sorvice. Its imphementation is logirally a function of the Amateur Radio Dimergency Corps - an additional function in peacetime, hut probably an exelusive function in wartime. Therefore, your best opportunity to be of service will be to register with bour local EC, and to participate actively in the local AIREC/IR.ICLS program.

ARRL Operating Organization

Amateur operation must have point and constructive purpose to win publie respect. Bach individual amateur is the ambassador of the contire fraternity in his publice relations and attitude toward his hobby. ARRLL field organization adds point and purpose to amateur operating.

The Communications Department of the league is concerned with the practieal operation of stations in all brathehes of amateur activity. Appointments or awards are available for ray-hewer, traffic monasiast, phone operator, 1)X math and experimenter.

There are soventy-three ARRIL Nections in the Iedgue's field organization, which embrames the Conited states, canada and rertain other territory. Operating affairs in each seetion are supervised by a Seetion (ommunications Manager elected by members in that section for a twoyear term of office. Organization appointments are made by the section managors, elected as provided in the Rules and Regulations of the Communications Department, whichaccompany the I Augue's By-Laws and Artieles of Association. Suction Communications Managers' addresses for all sertions are given in full in carh issue of QST. SCMs woleome monthly ativity reports from all amateur stations in their jurisatiction.
Whether your activity embraces phoue or telegraphy, or loth, there is a place for you in Leagur organization.

LEADERSHIP POSTS

To advance each type of station work and group interest in amateur radio, and to devedop pratical communications plans with the greatest success, appointments of leaders and organizers in particular single-interest fields are mate by SCMs. Fach leadership post is important. Each provides activities and assistance for appointere groups and individual members along the lines of natural interest. Some posts further the general ability of amateurs to "ommunicate cfficiently at all times, by pointing activity toward metworks and round tables, others are amed speecifically at establishment of provisions for organizing the amateur service as a stand-by communications group to serve the publie in disaster, rivil defense need or amergency of any sort. The SCD appoints the following in arcordance with section needs and individual qualifications:
PAM Phone Activities Manager. Organizes activities for OPS's and voice uperators in his section. Promotes phone nets and reeruits OPSs.
RM Route Manager. Organizes and coordinates c.w. traffic articities. Supervises and promotes nets and recruits ORs.s.
SEC Section Emergency Coordinator. Promotes and administers section emergency radio organization. Emergency Cuordinator. Organizes amateurs of a community or other local area for emergency radiu service; maintains liaison with officials and agencies served; also with other local communication facilities. sponsors tests, recruits for AREC aml encourages alignnent with RACES.

STATION APPOINTMENTS

ARRLA's field organization has a place for cerry active amateur who has a station. The (ommunications Department organization exists to incroase individual anjoyment and station effectiveness in amateur radio work, and we extond a cordial invitation to every amatour to participate fully in the activitios and to apply to the scal for one of the following station appointments. ARRL membership and the (iemeral (lass lieconse or Vla equivalent is prorequisite to appointmonts, cerept OLS'S is avalable to Novice/ Terhnician grades.

OPS Official Phone Station. Nets hiph voice operating standarids and procedures, furthers phone nets and traffic.
ORS Oflicial Reday station. Trattienervioce operater cew. nets : noted for 1.5 willoth, and procedure ability. Oflicial Bulletin Station, Transmits ARIRL and $\mathrm{F}^{\circ} \mathrm{C}$ bulletin information to amateurs
OES Official Experimental Station. Cobleets and reports v.b.f.-1.h.f.-s.h.f. propagation data. may engage in farsimile, 'PT, TV', work on io Me, and/or above. Takes part as feasible in v.h.f. traffe work, reports same. subports r.h.f. mets. ohserves proeddure standards.
OO Offeial Observer. Sends cooperative notices to annateurs to assist in frequency ohservance, insures high-quality signals, and prevents $F^{\circ} \mathrm{CC}$ (rouble.

Emblem Colors

Members wear the ARRL, emblem with batekenamel background. A red batekground for an embem will indicate that the warer is SC.M. SECA, PCs, RMs, and IDMs may wear the emblem with green backgromad. (obsorvers and all station apppointees are antithed to wear blue emblems.

SECTION NETS

Amateurs can add much experiener and pleasure to their own amatedr lives, and substance and aceomplishment to the erodit of all of amateur ratio, when organized into effertive interconnection of cities and towns.

The suceresful oproration of a not depondes a lot on the Nel Control Station. This station should be chosen carorully and be one that will not hesitate to enforee each and every net rule and set the cexample in his own operation.

A progressive net grows, obtaining new members both direetly and through other net members. Bulletins may be issued at intervals to keep in dired contact with the mombers regarding general net activity, to keep tab on net provedure,
make suggestions for improvement, keep track of active mombers and wed ont inative ones.

A National Traffie Sistem is sponsored by ARRI, to facilitate the owr-all experditious rolay and delivery of messugn traffic. The system recognizes the need for handling traffic beyond the seretion-level networks that have the popular support of both phone and rew. groups (ol's
 tion. Area and regional provisions for NTs are furthered by leadquarters cormespondence. The ARRI, Not Directory, revised in Deromber each yoar, includes the frequencies and times of operation of the humdreds of different nets operating on amaterur band frecuoncies.

Radio Club Affiliation

ARRI, is pleased to grant affiliation to any amatere socioty having (1) at least $\mathbf{5 1 \%} \%$ of the voting (lub membership as full members of the Lague, and (2) at least 510° of members govern-mont-licensed radio amateurs. In high sehool radio clabs bearing the shool mame, the first abow requiremont is modified to require one full member of ARR1, in the cluh. Where a society has common aims and wishes to add strength to that of othere chab groups and strengthen anateur radio by aflilation with the national amateur organization, a reguest addressed to the Communications Manager will bring the neressary forms and information to initiate the application for affiliation. Such elubs receive fiedd-organization hulletins and suecial information at intervals for posting on club bulletin boards or for relay to their momberships. I travel plan providing communications, technical and secretarial contact from the Ifeadguarters is worked out seasonadly to give maximum behofits to as many as possible of the several handred artive affilated radio clubs. Pupers on club work, suggrestions for organzing, for constitutions, for radio courses of study, ete., are available on request.

Club Training Aids

One section of the AlRRI. Communications Department handles the Training Aids Program. This program is a sorvice to ARRIL affiliated clubs. Material is amed at colucation, trainingandentertainment of club members. Interest ing quiz material is available.

Training Aids include such items as motionpioture films, fitm strips, slides, atudio tapes and lecture outlines. Bookings are limited to AIRRI,affiliated clubs. sine the visual adds listings are not suffieiently extensive to permit surh serviers to other gronips.

All Training dids materials are haned free (exerpt for shipping chamess) to ARRL afliliated (cluls. Numerous groups use this ARRL, servied to good advantage. If vour club is affiliated but has not wot taken advantage of this serviere, you are missing a good chance to add the available fratures to vour moeting programs and general (dub artivities. Watch club bulletins and QST' or write the ARRI, Communications Department for TA-2l and TA-3?,

Operating Activities and Awards

- WlAW

The Maxim Memorial station, W1AW, is dedicated to fraternity and serviere. Operated by the leamer headguareres, W1AW is located about frar miles somath of the 1 headguaters of fices on at seven-areresite. The station is on the air daily, except holidays, and avaibable time is divided between different bands and modes.
 Telegraph and phone tribusmitters are provided for all binuls from 1.8 to 14 Me . The normal frequencies in each hand for (c.w. and voice fransmissions are as follows: $1 \times 2020,35 \overline{5}$, 3945, 7080, $7255,14,100,11,280,21,075,21,3330$, $28.080,20,000,50,900$ and 15.5 .60 ke . Operatingvisiting hours and the station sohedule aro listed every ether momth in gSt'

Weration is rough! proporlional to amateur interest in different bands and modes, with one Kw. exeept on 1 fio and v.h.f. bands. WiAW's daily lmalletins and carle pratioce aim to give operational help to the largest number.

All amaterurs are inviled to visit WIIIV, as well as to work the station from their own shatris 'The station was cetaiblished to be a living memorial to Hiram lerey Maximand to carry on the work and traditions of amateur radio.

OPERATING ACTIVITIES

Within the ARlRL, field organization there are several spectial activities. litst woek ends of card month are oftom oceasions for AlRl, officials, officers and directors to get together over the air from their own stations. This antivity is known to the gatg as the LO (League officials) party. For all appointers, quarterly (D) partios are scheduded additionally to devolop operating ability and a spirit of fraternalism.

In addition to those for appointees and officials, ARRL sponsors various other attivities open to all amateurs. The 1 N-minded amatem may participate in the Anmal ARRL, International DX Competition during Pebruary and Mareh. This popukar contest may hring you the thrill of working new countries and buidding up your 1)NCC totals; certificate awards are offered to top seorers in each country and AlRlR1, seretion (sece page b of any (QST) and to club loaders. Then there is the ever-popular Swerestakes in November, of domestic scope, the ss affords the opportunity to work new states for that WAs award. A Novice antivity is plamed ammally. The interests of v.h.f. enthusiasts are also provided for in contests hold in January, June and September of each year. Where enongh logs (three) are received to conslitute minimum "competition" a cortificate in spot activities, such as the "SS" and v.h.f. party, is awarded the leading newromer for his
work considered only in competition with other newomers.

As in all our operating, the idea of having a grood time is combined in the Ammal lited Day with the more serious thometh of preparing ourselves to render pablie servier in times of emergones. A premium is placed on the use of equipmont without connection to commercial power sourees. Chuls and individual gromps always enjov themselves in the "Fl)," and learn much afout the reguirements for operating under knorkabout conditions atield.

ARRR1, contest ativities are diversified to appal to all oporating interests, and will be found amomuced in detail in issues of QST prededing the different events.

AWARDS

The Iagur-sponsored operating activities herehofore mentioned have useful objertives and provide murh enjoyment for members of the fraternity. Achievement in amateur radio is reeognizod loy varions ertificates offered through the I engine and dedailed below.

WAS Award

WAS means "Worked All States." This award is availabla regardess of affiliation or nonaffiliation with any organization. Here are the simple rules to follow in going after your WAS:

1) Two-way commanication must be established on the amateur bands with dach of the states; any and all amateur

bands may be used. A card from the District of Columbia may be submitted in lian of one from Maryland.
2) Contacts with all states must be made from the same location. Within a given community ont location may be defined as from places no two of which are more than 25 miles apart.
3) Contarts may be made over any period of years, provided only that all contacts are from the same ligeation, and excent that only contacts with Alaska dated January 3, 19.9 or later count. and only contacts with Hnwaii dated August 21, 1979 or later connt.
4) QLL cards, or other written eommunications from stations worked confirming the necessary two-way contacts, must be submitted by the applicant to ARIRL headfluarters.
5) Sufficient postage uust be sent with the confirmations to finance their return, No corraspondence will be returned unless sufticient postage is furnished.
i) The WAs' award is avalable to all amnteurs. It is reguired that the eonfirmations submitted be placed alphabetirally in order hy states.
6) Address all applications and confirmations to the Communications lopartment, ARIRL, 38 La Salle Road, West Martford, Conn,

DX Century Club Award

Here are the rules under which the DX Cen-

24-OPERATING A STATION

tury Club Award will be issued to amateurs who have worked and confirmed eontact with 100 countries in the postwar period.

1) The 10N (entury ('lub) Award Certificate for confirmed contacts with 10 or more countries is available to all amatours everwhere in the world.
2) Confirmations must be subuitted direct to ARRL hemduarters for all countries claimed, Claims for a total of 100) countries must be ineluded with first application. Confirmation from foreign contest logs may be requested in the case of the ARRI, International DN Comprtition only, subject to the following conditions:
a) Sulficient confirmations of other types must be submitted so that these, whe the lDX Contest confirmations, will total 100. In every case, Contest confirmations must not be requested for any countries frou which the applicant has regular confirmations. 'l'hat is, contest confirmations will be granted only in the case of countries from which applicants have ro regular confirmations.
b) loonk up the contest results as published in ($2.5 T$ to see if your man is listed in the foreign scores. If he isn't, he did not send in a log and no confirmation is possible.
c) (iive ycar of eontest, date and time of Qso.
d) In future D. Contests do not request confirmations until aftor the final results have been published, usually in one of the early fall issues. Requests before this time must be ignored.
3) The ARIRL Cuuntries List, printed periodically in QST, will be used in determining what constitutes a "country." "lhis chanter emotains the lostwar Countries List.
4) Confirmations must be accompanied by a list of claimed countries and stations to aid in checking and for future reference.
5) Confirmations from additional countries may be submitted for credit eaeh time ten additional confirmations are availahle. Endorsements for alfixing to certificates and showing the new confirmed total ($110,120.130$, etc.) will be awarded as additional credits are granted. ARRL DX Competition logs from foreign stations may be utilized for these endorsements, subjeet to conditions stated under (2).
6) All contacts must be made with amateur stations working in the authorized amateur bands or with other stations licensed to work amateurs.
7) In cases of eountries where amateurs are licensed in the normal manner, eredit may be claimed only for stations using regular government-assigned call letters. No credit may be claimed for contacts with stations in any countries in which amateurs have been temporarily closed down by special government edict where amateur licenses were formerly issued in the normal manner.
8) All stations contacted must be "land stations" contacts with ships, anchored or otherwise, and aireraft. cannot be counted.
9) All stations must be contacted from the same call area, where such areas exist, or from the same country in cases where there are no call areas. One exeeption is allowed to this rule: where a station is moved from one eall area to another, or from one eountry to another, all contacts umst be made from within a radius of 150 miles of the initial location.
10) Contacts may be made over any period of years from November 15, 1945, provided only that all eontacts be made under the provisions of Rule 9, and by the same station licenser; eontacts may have been made under different call letters in the same area (or country), if the licensee for all was the same.
11) Any altered or forged eonfirmations submitted for CC credit will result in disquaification of the applieant. The eligibility of any DXCC applicant who was ever harred from DXC'(to reapply, and the conditions for such application, shall be determined by the Awards Committee. Any holder of the Century Club Award submitting forged or altered confirmations unust forfeit his right to be considered for further endorsements.
12) Operating ethies: Fair play and good sportsuanship in operating are refuired of all amatern working toward the 13X Contury Cluh Award. In the event of speeific objeetions relative to eontinued poor operating ethies an individual may be disqualified from the DNCC by action of the ARRL Awards Committee.
13) Sufficient postage for the return of confirmations must be forwarded with the application. In order to insure
the safe return of larke batches of confirmations, it is suggested that enough postage be sent to make possible their return by first-elass mail, registered.
14) Deeisions of the ARRL, Awards Committee regarding interpreration of the rules as here printed or later amended shall be final.
15) Address all applications and confirmations to the (${ }^{\circ}$ mmunications 1)epartment. ARRL, 38 La Salle Road, W'est LIartiord 7, Conn.

WAC Award

The WAC award, Worked All Continents, is issued by the International Amaten Radio Union (LIRU) upon proof of contart with each of the six continents. Amateurs in the U.S.A., Possessions and Canada should apply for the award through ARRL, headquarters society of the IARU. Those elsowhere must submit direct to their own IARU member-society. Residents of countries not represented in the Union may apply directly to ARRLL for the award. Two basic types of WAC certificates are issued. One contains no endorsements and is awarded for c.w., or a combination of e.w. and phone contacts; the other is awarded when all work is done on phone. There is a special endorsement to the phone WAC when all of the confirmations submitted clearly indieate that the work was done on two-way s.s.b. The only special band endorsements are for 3.5 and 50 Mc .

Code Proficiency A ward

Many hams can follow the general idea of a contact "by ear" but when pressed to "write it down" they "muff" the copy. The Code Proficiency Award permits earh amateur to prove hinself as a proficient operator, and sets up a system of awards for step-by-step gains in copying proficiency. It enables every amateur to check his code proficiency, to better that proficiency, and to receive a certification of his receiving speed.

This program is a whale of a lot of fun. The League will give a certificate to any licensed radio amateur who demonstrates that he can copy perfectly, for at least one minute, plain-language Continental code at $10,15,20,25,30$ or 35

words per minute, as transmitted during special monthly transmissions from WIAW and W60WP.

As part of the AIRIRL Code Proficiency program W1AW transmits plain-language practice

Awards

material each evening at speeds from 5 to 35 w.p.m. . Ill amateurs are invited to use these transmissions to increase their code-copving ability. Non-atmateurs are invited to utilize the lower speeds, $5,71 / 2$ and $10 \mathrm{w} . \mathrm{p} . \mathrm{m}$., which are tramsmitted for the benofit of persons studying the cole in preparation for the amateur license examination. Refer to any issue of (eST' for details of the praticer schedule.

Rag Chewers Club

The lage (hewers (huh) is designed to encourage friendly contacts and discourage the "hello-good-by" type of (2So. It furthers fraternalism through amateur radio. Membership certificates are awarded.

How To Get in: (1) Chew the rag with a member of the club for at least a solid half hour. This does not mean a half hour spent in trying to get a message over through bad QHAI or QRN, but a solid half hour of conversation or message handling. (2) Report the conversation by card to The Rag C'hewers Club, ARIRL, Communications Department. West Hartford, Conn, and ask the member station you talk with to do the same. When both reports are received you will be sent a membership certificate entitling you to all the privileges of a Ray C"hewer.

How To Stay in: (1) Be a conversationalist on the air instead of one of those tongue-tied infants who don't know any words except "cuagn" or "cul," or "QRU" or "nil." Talk to the fellows you work with and get to know them, (2) Operate your station in accordance with the radio laws and ARRL practice. (3) Otserve rules of courtesy on the air. (4) Sign " KCC" after each call so that others may know you can talk as well as call.

A. 1 Operator Club

The A-1 Operator Club should include in its ranks every good operator. To become a member, one must be nominated by at least two operators who already belong. General keying or voice technique, procedure, copying ability, judgment and courtesy all count in rating eandidates under the club rules detailed at length in Operating an Amateur Radio Station. Aim to make yourself a fine operator, and one of these days you may be pleasantly surprised by an invitation to belong to the A-1 Operator Club, which carries a worth-while certificate in its own right.

Brass Pounders League

Every individual reporting more than a speci-
fied minimum in official monthly traffic totals is given an honor place in the QST listing known as the 13 rass lounders league and a certificate to rerognize his performane is furnished by the SCDI. In addition, a B/'L T'raffic Atradel (medallion) is given to individual amateurs working at their own stations after the third time they "make 13l'l" provided it is duly reported to the SC.M and recorded in Q.バ
The value to amateurs in operator training, and the utility of amatour mossage handling to the members of the fraternity itself as well as to the general public, make messuge-handling work of prime importance to the fraternity. Fun, enjorment, and the feeling of having done something really worth while for one's fellows is accentuated by pride in message files, records, and letters from those served.

Old Timers Club

The Old Timers Clubs is open to anyone who holds an amateur call at the present time, and who held an amateur license (operator or station) 20 -or-more vears ago. Lapses in artivity during the intervening vears are permitted.

If you can qualify as an "Old Timer," send an outline of your ham carcer. Indicate the date of vour first amateur license and your present call. If eligible for the OTC, you will be added to the roster and will rereive a membership certificate.

INVITATION

Amateur radio is capable of giving enjoyment, self-training, social and organization benefits in proportion to what the individual anateur puts into his hobby. All amateurs are invited to berome ARRIL members, to work toward awards, and to accept the challenge and invitation offered in field-organization appointments. Drop a line to ARRL Headquarters for the booklet Operating an Amateur Radio Station, which has detailed information on the field-organization appointments and awards. Accept today the invitation to take full part in all League activities and organization work

CONELRAD COMPLIANCE

The FCC' rules for the Amateur Service concerned with requirements in the event of enemy attack are contaned in the AIRlRL. License Manual as part of the amateur regulations, Sections 12.190 through 12.196. These are the rules for control of electromagnetie radiation, conelrad, to minimize radio navigational aids to an enemy. Read and follow these rules. They concern you,
Amateurs are required to shut down when a Conelrad Radio Alert is indicated. FCC requires monitoring, by some means, of a broadeast station while you operate. liy use of proper equipment, each amateur can make his comelrad compliance routine and almost automatic. You will find descriptions of such devices, most of them quite simple, in this Handbook and in QST'.

Operating Abbreviations and Prefixes

Q SIGNALS

Given brelow are a number of \mathbf{Q} signals whose meanings most often need to he expressed with brevity and clearness in amateur work. (Q abbreviations take the form of questions only when each is sent followed by a question mark.)

QRG Will you tell me my exact frequency (or that of.......)? Your exact freduency (or that of) is kc.
QRII Does my frequency vary? Your frequency varies.
QRI How is the tone of my transmission? The tone of your transmission is..... (1. Good; 2. Variable; 3. Bad).

QRE What is the readability of thy signals (or those of). ? The readability of your signals (or those of.....) is (1. Unreadable; 2. Readable now and then; 3. Readable but with difficulty: 4. Readable; 5. Perfeetly readable).
QRL Are you busy? I am busy (or I am busy with). Please do not interfere.
QRM Are you being interfered with? I an interfered with.
QRN Are you troubled by static? I an being troubled by static.
QRO Must I inerease bower? Increase power.
QRP Must I derratse mower? Jecrease power.
QRQ Shall 1 send faster? Send faster (. words per min.).
QRS Shall I send more slowly? Send more slowly (. . . . w.jp.11.).

QRT Shall 1 stop sending? Stop sending.
QRU Have you any thing for mre? I have nothing for you.
QRV Are you ready? I am ready.
QLW Shall I toll.....that you are calling him on ke.? Plouse inform. that 1 am calling him on......kc.
QRX When will you rad me again? I will call you again at. hours (on. kc.).
QRZ Who is calling tur? lota are being called by..... (on.......kc.).
QSA What is the strength of my signals (or those of)? The strength of your signals (or those of.....) is. (1. Searcely pereceptible; 2. Weak; 3. Fairly gond; 4. (iood; 5 . Very good).
QSB Are my signals fading? Your signals are fading.
QSD Is my keying defective? Your keying is defective.
QSG Shall I send.messages at a time? Send. messages at a time.
QSL Can you acknowledge receipt? I arn acknowledging receipt.
QSM Shall I rowat the last messase which I sent you, or some previous message? Reprat the last message which you sent me [or message(s) number(s)........
QSO Can you communicate with... direct or by relay? I can commmicate with.... direct (or by relay through. . . .).
QSP Will you relay to.... ? I will relay to....
QSV Shall I send a series of Vs on this frequency (orke.)? And a series of V s on this frequency (or......ke.).
QSW Will you send on this frequeney (or on....ke.)? I am going to send on this frequeney (or on ke.).
QSX Will you listen to.....on..... ©c.? I am listening to. on. . . .ke.

QSY Shall I change to transmission on another frequency? Change to transmission on another frequency (or on....kc.).
QS2 Shall I send cach word or group more than once? Send each word or group twice (or. . . tinnes).
QTA Shall I cancel message number....as if it had not been sent? Cancel message number..... as if it had not been sent.
QTB Do you agree with my counting of words? I do not agrer with your counting of words; I will repeat the first letter or digit of each word or group.
QTC How many messages have you to send? I have.... messages for yous (or for.....).
QTII What is your location? My location is.....
QTR What is the exact time? The time is......
Special abbreviations adopted by ARRL:
QST Gencril call precoding a message addressed to all amatmors and ARRE members. This is in effeet "CQ ARRL."
QRRR Oflicial ARRI, "land Sos." A distress call for emergency use only by a station in an emergency situation.

THE R-S-T SYSTEM READABILITY

1 - Unreadable.
2 - Marely readable, occasional words distinguishable.
3 - Readable with considerable diffieulty.
4 - Readable with practicatly no difficulty.
5 - Perfectly readable.

SIGNAL STRENGTH

1 - liaint signals, barcly perceptible.
2 - Very weak signals.
3-Wiak signals.
4 - Fair signals.
5 - loairly good signals.
6 - Ciood signals.
7 - Moderately strong signals.
8 -Strong signals.
9- Extrenely strong signals.

TONE

I Extremely rough hissing note.
2 - Very rough a.f. note, no trace of musicality.
3 - Rourh low-pitched a.e. note, slightly musical.
4- Rather rough a.c. note, moderately musical.
5 - Musically-modulated note.
6 - Modulated note, slight trace of whistle,
7 - Ne:ur d.c. note, smooth ripple.
8 - Good d.c. note, just a trace of ripple.
9 - Purest d.e. note.
If the signal has the characteristie steadiness of erystal control, add the letter \mathbf{X} to the RST report. If there is a chirp. the letter C may be added to so indicate. Similarly for a click, add K. The above reporting system is used on both c.w. and voice, leaving out the "tone" report on voice.

A．R．R．L．COUNTRIES LIST－Official List for ARRL Postwar DXCC

AC3 \qquad Sikkim	に゙G1．．．．．．．．．．．．．．．．．（Sce OX）	d \＆Tohago
AC4．．．．．．．．．．．．．．．．．．．．．．＇l＇ibet	KG．4．．．．．．．．．．．．Guantanamo Bay	VP5．．．．．．．．．．．．．．．．．．．．．．．Jamaica
A（＇5．．．．．．．．．．．．．．．．Ishutan	R（if．．．．．．．．．．．Mariana Islands	g Cayman Istw．）
A1＇2．${ }^{\text {a }}$ ．\cdot ．．．．．．．．．．．．Pakistan		V15．．．．．．．Turks \＆Caicos Islands
BV，（C3）．．．．．．．．．．．．．．．Formosa	KHIf．．．．．．．．．．．Ilawaiian Malands	VP＇．．．．．．．．．．．．．．．．．．．．．Marbados
BY，（C）．．．．．．．．．．．．${ }^{\text {Co．（hina }}$	k．J6．．．．．．．．．．．．Johuston Island	VP7 ．．．．．．．．．．．．Bahama Islands
CES ．．．．．．．．．．．．．．．．．．．．．．Chanchile	Kıi6．．．．．．．．．．．．．${ }^{\text {kioldway Alaska }}$	YP8 ．．．．．．．．．．．Faikiand（Sec Cle9）
Cl\％9，KC4，LU－Z，Vİ日，	KP4．．．．．．．．．．．．．．．Pıerto Ripo	V18，i，U－\％．．．．．．．．．．Soukland Islands
V1P8，\％Ls，etc．．．．．．．．Antaretica	KP6．．Palmyra Ciroup，Jarvis Island	VI＇，LLT\％．．．South Orkney Islands
C19．．．．．．．．．．．．．．．．．．（sice VP8）	KR6．．．．．．．．．．．．Ryukyu latands	VP8，LU－\％，．South Sandwich Islands
C10．－．．．．．．Easter Islamd	ES 413 ．Nerrana Bank \＆Roncador Cay	VP，LC－Z，CE9．．．．．．．．．．．．．．．．．
CLW\％．．．Juan Fernandez Arelipulago	KS4．．．．．．．．．．．．．．Swan Island	South Shetland Islands
C．M， CO ．．．．．．．．．．．．．．．${ }^{\text {Cuba }}$	KS6．．．．．．．．．Amprican Samoa	VP9．．．．．．．．．．．．Bermuda Islands
	KV．．．．．．．．．．．．．Virgin lslands	VQ1．．．．．．．．．．．．．．．．．．．Zanzibar
CN8，CN9．．．．．．．．．．．．Moruero	KW6．．．．．．．．．．．Wake Island	V2 ．．．．．．．．Northern Rhodesia
Ch4．．．．．．．．．．．．．．．．．．．．．．Verde Islands	KX6．．．．．．．．．．．．Marshall Islands	V（83 ．．．．．．Tanganyika Territory
CR5．．．．．．．．．Portuguese Guinea	1．A．．．．．．．．．．．．．．．．．．．Jananalayen	V（．）$\ldots, \ldots \ldots \ldots \ldots \ldots \ldots$ Menya
CR5．．．．．．．．Principe，sao Thome	LA．．．．．．．．．．．．．．．．．Norway	Ve6 ．．．．．．．．．Britisil Somatiland
C166．．．．．．．．．．．．．．．．．Angra	LA ．．．．．．．．．．．．．．．．．－．	V（28．．．．．．．．．．．．．．．Chagos Islands
Cl17．．．．．．．．．．．Mozambique	LU ．．．．．．．．．．．．．Argentina	Ve8．．．．．．．．．．．．．．．Manritius
Cri8．．．．．．．．Goa（Portumuese India）	LL＇\％．．．．．．．．．．．．（See CEO，VP＇8）	Ye8．．．．．．．．．．．Rodrignez Island
CR9．．．．．．．．．．．．．．．．．Matara	LX ．．．．．．．．．．．．．Luxembourg	V49．．．．．．．．．．．．．．．．．．．．．eychrlles
	L／．．．．．．．．．．．．．．．．．．Bulgaria	VR1．．．．．．．British phoenix Islands
C11．．．．．．．．．．．．．．．．．Portugal	M1．．．．．．．．．．．．．San Marino	VR1．．．．．．．．Gilbert \＆Eillice Islands
CT2 ．．．．．．．．Madeira Islands	M14．．．．．．．．．．．．Bahrein lsland	\＆Ocean Island
CX ．．．．．．．．．．．．．．．．．．${ }^{\text {a }}$（＇ruguay	MP4．．．．．．．．．．－trucial omar	VR2 Fanning e Christiji Islands
1）．in ibil ．．．．．．．dermany	OA ．．．．．．．．．．．．．．．．．．．．．．	
1）U．．．．．．．．．Philippine Islands		vhi，．．．．．．．．．．．．．．．． ．Tonga Islands
E．A．．．．．．．．．．．．．．．．．．．．．spain	OE ．．．．．．．．．．．．．．．．Anstria	VR6．．．．．．．．．．．．．${ }^{\text {liteairn Island }}$
EA6．．．．．．．．．．．．Balearic Islands	OH ．．．．．．．．．．．．．．．．．．Finland	Vsı．．．．．．．．．．．．．．．Singayore
E．A8．．．．．．．．．．．Canary Islands	OHO．．．．．．．．．．．．．．．Aland 1slands	VS2 ．．．．．．．．．．．． （See 9112 ）
	OK．．．．．．．．．．．．．．．Czechoslovakia	VS4．．．．．．．．．．．．．．．．．．surawak
EA19．．．．．．．．．．．Rio de Oro		
E．A9 ．．．．．．．．．Spanish Morocco	OQi，0．．．．．．．．．．Belgian（ongo	Vsi．．．．．．．．．．．．．．．．．．．．．．．．ilong Kong
E．An．．．．．．．．．．Spanish Cininea	OX，LiC1．．．．．．．．．．．diremland	Vsa．．．．．．．．．．．．．．．aden \＆Sorotra
EL ．．．．．．．．．．．Republic of Iroland	OY．．．．．．．．．．．．．．．．Ftueroes	Vsa．．．．．．．．．．．．Alaldier flands
LL．．．．．．．．．．．．．．．．．．Litheria	O\％．．．．．．．．．．．．．．．．．．．Denmarrk	Vid．．．．．．．．Sultatme of 0man
1EQ．．．．．．．．．．．．．．．．．．．．．．．． Iran $^{\text {a }}$	PAt，PII ．．．．．．．．．Netherlands	V12．．．．．．．．．．．．．．India
ET2．．．．．．．．．．．．．．．britrea	P．I．．．．．．Netherlands West Indies	V14．．．．．．．．．．Maceadive joslands
E13 ．．．．．．．．．．．．．．．Mthop ia	Prem－．．．．．．．．．．．．Sint Matrten	V1：5．Andaman and Nirolsar Islands
F．．．．．．．．．．．．．．．．．．．France		W ．．．．．．．．．．．．．．．．．．（eek）
FA．．．．．．．．．．．．．．Algeria		
Fl38 ．．．imsterdam \＆St．Paul Islands	PR゙．）．．．．．．．．．Netherlands Borneo	N14．．．．．．．．．．．Mevilla（igedo
F138．．．．．．．．．．${ }^{\text {Comoro Istamds }}$		
F138．．．．．．．．．．．Kergumlen Isiands	PX．．．．．．．．．．．．．．．．．．．．．．Amburra	ХW8 ．．．．．．．．．．．．．．．．
F138．．．．．．．．．．．．．Madagascar	PY ．．．．．．．．．．．．．．．．${ }^{\text {a }}$ Mrazil	ベz ．．．．．．．．．．．．．．．．．．．ßurna
	Pru．．．．．Fernando de Naronha	
F＇C＇（undficial）．．．．．．．．．Corsica	Pra Trinidade de Martin Vaz latmas	HI．．．．．．．．．．．．．．．．．
F1）．．．．．．．．．．．．．．．．．．．．．．．．．．	P＇Z1．．．．．．．Netherlands Giniana	
Fle8．．．．．．．．rronch Cameroons	SL．SM ．．．．．．．．．．．．．sweden	rk．．．．．．．．．．．．．．．．．．．．．．s．aria
11.88.	E1．．．．．．．．．．．．．．．．．Poland	
$1 \mathrm{Li7}$ ．．．．．．．．．．． （madelonpe	sre ．．．．．．．．．．．．．．．．．．．．．．．．Sulan	10 Numagha Rommania
FI8．．．．．．．．．Frenel Indo－（hina	st．．．．．．．．．．．．．．．．．．．．Wigypt	צ．．．．．．．．．．．．．．．．．．．．．${ }^{\text {analvador }}$
1F68．．．．．．．．．．．．．．New（＇aledonia	SV．．．．．．．．．．．．．．．．．．．．．．．．Crite	YU．．．．．．．．．．．．．．．．．．．．．．
F18．．．．．．．．．．Jreneh Somatiland	SV．．．．．．．．．．．．．．．．．．Doderanese	YV ．．．．．．．．．．．．．．．．．．Venezucla
FM17．．．．．．．．．．．．Martinique	sv．．．．．．．．．．．．．．．．．．．．．．．．（ireere	Yig．．．．．．．．．．．．．．．．．．Aves Island
FN．．．．．．．．．．．．．Frenth 1ndia	TA．．．．．．．．．．．．．．．．．．．．．．． Tirırkey $^{\text {a }}$	
F08．．．．．．．．．．．Clipperton Island	IF ．．．．．．．．．．．．．．．．．．．．leclatnd	
F08．．．．．．．French Oreania	MG ．．．．．．．．．．．．．．．．．．． Muatemala $^{\text {a }}$	z132．．．．．．．．．．．．．．．．．．．．．． Gibraltar
P1＇8．．st．Pierre \＆Miquelon Islands	TI ．．．．．．．．．．．．．．．．．．．． （ostar Rica	Zッ3．．．．．．．．．．．．．．．．．．．．．．－（see Vk！
FQ8．．．．．．French Eiquatorial Africa	T19．．．．．．．．．．．．．Coros Island	20t．．．．．．．．．．．．．．．．．．．．．Cyprus
F127 ．．．．．．．．．．．Reunion Lsland	LA1，2，3，4，6．．．．European Russian	Z5．5．．．．．British North Borneo
Pr $7 \cdot \cdots$ ．．．．．．．．Saint Martin	Socialist Federated Soviet Repulife	
PL8，Y， 1 ．New Hebrides	L．A1．．．．．．．．．．．Franz losef Land	Z11 ．．．．．．．．．．．．．．．．．siorra Loone
FW8．．．．Wailis \＆Futuna Islands	LA 0 ．．．Asiatic Russian S．F．S．R．	クロ2．．．．．．．．．．．．．．．．．．．．．．．．．Nigeria
F17．．．．．．．${ }^{\text {rench Guana \＆Inini }}$	U．AB．．．．．．．．．．．．Wrangel Island	Z［D3．．．．．．．．．．．．．．．．．．（iambia
G．．．．．．．．．．．．．．．．．．England		
GC．．．．．．．．．．．．．Channel Islands	UCO．．．．．．．White Russian sisik．	ZI）4．．．．．．．．Gold Coast，Togoland
GI）．．．．．．．．．．．．．．Isle of Man	L116．．．．．．．．．．．．．．．Azerlatijan	Z10．．．．．．．．．．．．．Nyanaland
（iI ．．．．．．．．．Northern I rcland	UF6．．．．．．．．．．．．．．．．．（icorgia	Z1）7．．．．．．．．．．．．．．．．．－．
（1M．．．．．．．．．．．．．．．．Scotland	L66．．．．．．．．．．．．．．．．．Armenia	7178．．．．．．．．Ascension Inland
GW．．．．．．．．．．．．．．．．．．Wales	$1118 . .$. ．．．．．．．．．．Turkoman	\％19 ．．．．．．．．．．Tristan da（＇unha \＆
11A．．．．．．．．．．．．．．．．．．．．Mungary	l18．．．．．．．．．．．．．．．．zher	Gough Islands
IB．．．．．．．．．．．．．．．．Switzerlathd	LJ8．．．．．．．．．．．．．．．．Taturhik	ZF：．．．．．．．．．．．Southern lhhodesia
11C．．．．．．．．．．．．．．．．．．．Ecuador	UL7 ．．．．．．．．．．．．．．．．Kazakh	Zに1 ．．．．．．．．．．．．．．Cook Islands
11C8．．．．．．．．．．Galapagos Islands	C18．．．．．．．．．．．．kirghiz	ZK1．．．．．．．．．．．Manibiki Islands
1115．．．．．．．．．．．．．．． ．iechterstein	UN1．．．．．Karelo－Finnish Republic	
$1114 . .$. ．．．．．．．．．．．．．．Haiti	105．．．．．．．．．．．．．．．Moldavia	\％L ．．．．．．．．．Chatham Islands
$111 . . .$. ．．．．Dominican Republic	U12 ．．．．．．．．．．．．．．．．．．ithuania	ZL．．．．．．．．．．．．． Vermader Islands
	UQ2 ．．．．．．．．．．．Latria	Z1．．．．．．．．．．．．．．．New Zealand
IIkil．．．．．Archipelago of San Andres		ZL，．．．．．．．．．．．．．（eee CW9）
IL and Providencia	VE，VO ．．．．．．．．．．．．．．．．．asda	Z．MG．．．．．．．．．．．．．British Samoa
IIL，．．．．．．．．．．．．．．．．．．．．Korea	Vk．Australia（including Tasmania）	ZM7．．．．．Tokelau（Union）Islands
HR．．．．．．．．．．．．．．．．．．．．．．． ．imanduras		ZP．．．．．．．．．．．．．．．araguay
I1S．．．．．．．．．．．．．．．．．Thailand	VR！\％${ }^{\text {a }}$	N，2，i，b，6．Union of south Arica
11V ．．．．．．．．．．．．．．．Vatican City	VK9．．．．．．．．．．．．．．．．Naurı Island	
HZ ．．．．．．．．．．．．．Saudi Arabia	VK9．．．．．．．．．．．．Norfolk Island	ZN7．．．．．．．．．．．．．．．．．．．Swaziland
I1，I11．．．．．．．．．．．．．．．．．．Italy	Vk0 ．．．．．．．．．．．${ }^{\text {Papua lerritory }}$	\％as．．．．．．．．．．．．．．．．．．．．．Basutoland
I1．．．．．．．．．．．．．．．．．．Trieste	Vk9．．．．．${ }^{\text {arritory of New（ininea }}$	Zx＠．．．．．．．．．．．．．．．Mechuanaland
15．．．．．．．．．．．Italian Somaliland		34．．．．．．．．．．．．．．．．．．．．．．．．．Monaco
1S1． 6 ．．．．．．．．．．．．．．．．．Sardinia	Vkも．．．．．．．．．．．．．．Heard Island	318.
JA，KA．．．．．．．．．．．．．Japan	VKb．．．．．．．．．．．Maequaric Island	318 ¢ X 5 ．．．．．．．．．．．Vietnam
JT1 ．．．．．．．．．．．．．．．．．．Mongolia	VO．．．．．．．．．．．．．．．．．．．（See VE）	457．．．．．．．．．．．．．．．．．．．．．． Ceylon
J）．．．．．．．．．．．．．．．．Jordan	V1＇．．．．．．．．．．British Honduras	4W1．．．．．．．．．．．．．．．．．．．． Yemen
J\％0．．．．．Netherlands New Guinea	V1י2．．．．．．．．．．．．．．．．Anguila	4X4．．．．．．．．．．．．．．．．．．．．．．．．．．． Isracl
K，W ．．．．．United States of Anicrica	V1＇2．．．．．．．．．．．Antigua，Barbuda	5A．．．．．．．．．．．．．．．．．．．．．．．Libya
KA．．．．．．．．．．．．．．．．．．．．．（See JA）	VP＇2．．．．．．．．．．British Virgin lslands	7 （1）（unofficial）．．．．．irep of Guinea
KAb，KGGI ．Bonin \＆Volcano Islands		96：1，\％D4．．．．．．．．．．．．．Ghana
K136．．Baker，Howland \＆American	Vp，．．．．．Granada \＆Dependencies	$91.2{ }^{\text {912 }}$ ．．．．．．．．．．．．．．．．．．．Kuwait
KC4 ．．．．．．．．．．．．．．．．．（See（Fita）		9N1 ．．．．．．．．．．．．．．．．．．Malaya
KC4．．．．．．．．．．．．．．．Navassa lsland	VP2．．．．．．．．．．．．．．．．．．．．．St．Luct．	9N1 ．．．．．．．．．．．．．．．．．．．Nrpal
KC6．．．．．．Wastern Caroline Islands	Vpe．．．St Vincent \＆bependencies	Aldabra Islands
KC6．．．．．．Western Caroline Islands	V13．．．．．．．．．．．．．．．．British Guiana	．．．．．Cambodia

24－OPERATING A STATION

INTERNATIONAL PREFIXES

AAA－ALZ	United States of America	SSN－sT\％	Sudan
AMA－AO\％	Spain	Sl＊A－sU\％	Emypt
Al＇A－AN\％	Pakistan	SV＇A－N\％\％	Gireere
ATA－AW\％	India	TAA－TC\％	Turkey
AXA－AXZ	Commonweatti of Australia	11）A－TI\％	Ginaterama
AYA－AKZ	Argentine Republic	TEA－1F\％	Costa lica
BAA－BZZ	China	TFA－TF\％	leeland
CAA－CLZ	Chile	TGA－T＇（i\％	Guatemala
CFA－CLZ	Canada	THA－TH\％	France and Colonics and Protectorates
CLA－CMZ	Cuba	TIA－TI\％	Costa Rica
CNA－CNZ	Muruceo	T．JA－1Z\％	France and Colonies and Protectorates
COA－COZ	Cuba	U＇AA－（＇）$\%$	Union of Soviet Nocialist Republies
Cl＇A－CP＇Z	Bolivia	URA－C゙1\％	Ukraimian Soviet Sorialist Republic
CQA－C12Z	Portuguese Overseas 1＇rovinces	UC゙A－C゙Z\％	Union of soviet sociadist Republics
CsA－ClZ	l＇ortugal	VAA－VG\％	Canada
CVA－CXZ	Cruguay	VIIA－VN\％	Commonwealth of Australia
C1A－C\％Z	Canada	VOA－VO\％	Canada
DAA－1）MZ	Germany	VPA－V＇S\％	British（＇olonies and l＇rotectorates
DNA－I）（\％Z	Belgian Comgo	VIA－VWZ	India
DRA－DIZ	Bielorussian Soviet Socialist Republic	VXA－V1\％	Canada
DUA－1）\％Z	Republic of the Philippines	V／KA－VZ\％	Commonwealth of Anstralia
LAA－EHZ	Spain	WAA－W\％\％	Conited States of Amerien
E1A－EJZ	Ireland	XAA－XIZ	Mexieo
EKA－EKZ	Union of Soviet Socialist Republics	XJA－XOZ	Canada
ELA－ELZ	Liberia	XPA－X1＇／	Denmark
EMA－EOZ	Union of Soviet socialist Republics	X QA －XR\％	Chile
LIPA－EQZ	Iran	XSA－XS\％	China
LiRA－EIRZ	Union of Soviet socialist Republics	XTA－XT\％	France and Colonies and Protectorates
ESA－ESZ	Lstonia	X1PA－NC\％	Cambodia
ETA－E＇C	Ethiopia	XVA－XVZ	Vict－Nam
EUA－E\％Z	Union of sovict Soeialist Republies	XWA－XWZ	Laos
FAA－FL\％	France and Colonies and Protectorates	XXA－XXZ	Portugucse Overseas Provinces
GAA－G\％Z	Gireat Britain	XYA－XZZ	Burma
HAA－HAZ	Hungarian l＇eople＇s Republic	YAA－YAZ	Afghanistan
11BA－11BZ	Switzerland	YBA－YHZ	Republic of Indonesia
HCA－HDZ	Ecuador	YIA－Y1Z	Iray
HEA－HEZ	Switzerland	YJA－YJ\％	New Hebrides
HFA－HFZ	People＇s Republic of Poland	YKA－YkZ	Syrian Republic
HGA－HGZ	liungarian l＇cople＇s Republic	Y1，A－YLZ	Latvia
H11A－1112	Republic of Haiti	YMA－YMZ	Turkey
H1A－1HZ	1）ominiean lepublic	YNA－YN／	Nicaragua
HJA－HKZ	Republic of Colombia	YOA－YRZ	Roumanian l＇eople＇s Republic
11LA－HMZ	Kiorea	YSA－YSZ	Republic of Ell Sulvador
HNA－HNZ	Irag	YTA－YU\％	Yusosalvia
HOA－H1＇Z	Republic of Panama	YVA－YYZ	Venezuela
11QA－1112Z	Republic of Honduras	YZA－YZZ	Yugoslavia
HSA－HSZ	Thailand	ZAA－\％AZ	Albania
11TA－HTZ	Nicaragua	ZBA－ZJZ	British Colonies and Protertorates
11UA－11UZ	Republic of El Salvador	ZKA－ZMZ	New Zealand
HVA－HVZ	Vatiean City State	ZNA－ZOZ	British Colonies and Protectorates
HWA－HYZ	Franee and Colonies and Protectorates	ZPA－Z1＇Z	Paraguay
HZA－11ZZ	Saudi Arabia	ZQA－ZQZ	British Colonies and l＇rotectorates
IAA－1ZZ	1 taly and Colonies	ZRA－ZUZ	Cnion of South Afriea
JAA－JSZ	Japan	ZVA－ZZZ	Brazil
JTA－JVZ	Mongolian l＇eople＇s Republic	2AA－2LZ	Great Britain
JWA－JXZ	Norway	3AA－3AZ	Monaco
J YA－J YZ	Jordan	3BA－3F\％	Canada
J\％A－IK\％	Netherlands New Guinea	3GA－3GZ	Chile
KAA－kZZ	United States of Ameriea	3HA－3UZ	China
LAA－LNZ	Norway	3VA－3＇Z	＇Tunisia
LOA－LHZ	Argentine Republic	3WA－3WZ	Viet－Nam
LXA－LXZ	Luxembourg	3YA－3YZ	Norway
LYA－LY\％	Lithuania	3ZA－3ZZ	People＇s Republic of Poland
L／KA－LK\％	Reople＇s Republic of Bulgaria	4AA－4CZ	Mexies
MAA－MZZ	Great Britain	4DA－41Z	Republic of the Philippines
NAA－NZZ	United States of America	4JA－41\％	Union of Sovict Socialist Republics
OAA－OC\％	Perı	4MA－4MZ	Venezuela
ODA－ODZ	Lebanon	4NA－40Z	Yugoslavia
OLAA－OE\％	Austria	4PA－4S\％	Ceylon
OFA－OJ\％	Finland	4TA－4＇Z	Peru
OKA－OM\％	Czechoslovakia	4CA－4UZ	United Nations
ONA－OT\％	Belginn and Colonies	$4 \mathrm{VA}-4 \mathrm{~V} /$	Republic of Haiti
OL＇A－OZ\％	Deamark	4WA－4WZ	Yemen
PAA－1］\％	Netherlands	4XA－4XZ	State of Isracl
P．JA－I＇，TZ	Netherlames Antilles	$4 \mathrm{YA}-4 \mathrm{YZ}$	International Civil Aviation Organization
PKA－POZ	Republic of Indonesia	5AA－5AZ	Libya
PPA－PYZ	Brazil	$5 \mathrm{CA} 5 \mathrm{5C} /$	Morocco
PKA－P\％Z	Suriman	5LA－5L\％	Liberia
QAA－（2Z\％	（Service abbreviations）	5PA－5QZ	Denmark
RAA－R\％\％	Union of Soviet Socialist Republies	9AA－9AZ	San Marino
SAA－SMZ	Sweden	9K゙A－9KZ	Kuwait
SNA－SRZ	People＇s Republic of Poland	9NA－9NZ	Nepal
SSA－SSM	Egypt	9SA－9SZ	Saar

Abbreviations

ABBREVIATIONS FOR C.W. WORK

W/K CALL AREAS BY STATES

24-OPERATING A STATION

- Operating an Amateur Radio Station covers the details of practical amateur operating. In it you will find information on Operating Practices, Emergency Communication, ARRL Operating Activities and Awards, the ARRL Field Organization, Handling Messages, Network Organization, "Q" Signals and Ábbreviations used in amateur operating, important extracts from the FCC Regulations, and other helpful material. It's a handy reference that will serve to answer many of the questions concerning operating that arise during your activities on the air.
- Emergency Communications is the "bi. ble" of the Amateur Radio Emergency Corps. Within its eight pages are contained the fundamentals of emergency communication which every amateur interested in public service work should know, including a complete diagrammatical plan adaptable for use in any community, explanation of the role of the American Red Cross and FCC's regulations concerning amateur operation in emergencies. The Radio Amateur Civil Emergency Service (RACES) comes in for special consideration, including a table of RACES frequencies on the front cover.

The two publications described above may be obtained without charge by any Handbook reader. Either or both will be sent upon request.

AMERICAN RADIO RELAY LEAGUE
38 La Salle Road
West Hartford 7, Comnecticut, U. S. A.
Please send me, without charge, the following: OPERATING AN AMATEUR RADIO STATIONEMERGENCY COMMUNICATIONS

Name

(Please Print)
Address

584

Vacuum Tubes and Semiconductors

For the eonvenience of the designer, the re-reiving-type tubes listed in this ehapter are gronped by filament voltages and construetion types (gliss, metal, miniature, etc.). For example, all miniature tubes are listed in Table 1, all metal tubes are in Table 1I, and so on.

Transmitting tubes are divided into triones and tedrodes-pentodes, then listed acerording to rated plate dissipation. This permits direct comparison of ratings of tubes in the same power chassification.

For quick reference, all tubos are listed in numerieal-alphabeteal order in the index. Types having no table reference are either ohsolofe or of little use in amaterur equipment. Base diagrams for these tubes are listed, however.

Tube Ratings

Vacuum tubers are desigued to be operated within definite maximum (and minimum) ratings. These ratings are the maximum safe operating voltages and curronts for the clectrodes, based on inharent limiting factors sueh ats permissible (athode temperature, emission, amb power dissipation in clertrodes.

In the transmitting-tube tables, maximum ratings for dectrode voltage, current and dissipation are given separately from the topieal operating conditions for the recommended elasses of operation. In the rerefving-tutu tablas, thectuse of space limitations, ratings and operating data are combined. Where only one set of eprerating eonditions appears, the positive chetrode voltages shown (plate, serern, ote.) are, in general, also the maximam rated voltages.

For certain air-cooled transmitting tubes, there are two sets of maximum values, one hesignated as CCS (Continuous Commerrial Aorviee) ratings, the other ICAS (Intermittent Cummeroial and Amateur Sorviee) ratings. Continnous Commereial sorvice is defined as that type of service in which long tube life and roliabilits of performatmer under continuous operating
conditions are the prime consideration. Intermittent Commoreial and Amateur Sorviee is defined to inchade the many applications where the transmitter dasign fictors of minimum size, light weight, and maximum power output are more important than long tube life. ICAS ratings are eonsiderably higher tham ('N ratings. They permit the handling of greater power, and although such uso involves some sacrifiee in tube life, the period over which tubes give satisfartory priformance in intermittont servier can be ext remely long.

The phate dissipation values given for transmitting tubes shoud not be excereded during normal operation. In phate modulated amplifier applications, the maximum allewable carrier-rondition plate dissipation is approximately bi pereent of the value listed and will rise to the maximum Value under loo-per-rent sinusoidal modulation.

Typical Operating Conditions

The typical opreating conditions given for transmitiag 1 uhas represent, in general, maximum ICAS ratings where such ratings havo Tren given hey the mathataturer. They do not represent the only pessible mothod of operattion of a parimalat tube type. (ther values of plate voltage, plate current, grid bias, ete., may be used so long as the maximum ratinge for a particular voltage or current are not exereded.

Equivalent Tubes

The equivalent tubes listed in Table VIII are used ocrasionally in amatem service. In addition to the typues listed, other ernivalents are atwilable for sperial purpeses such as serios-heater string operation in TV reocerors. Thase types reguire umusual values of heater voltage (3. 3 . 4.2 , rete.), and have contralled warm-up time chatratoristics to minimizo voltage unbalance during starting. Fixerpt for heater design, these types corresjomed dectrically and mochanically to (i-volt prototyos.

INDEX TO TUBE TABLES

I - Miniature Receiving Tubes. V15
II - 6.3-Volt Metal Receiving Tubos. -19
11I - 6.3-Volt Glass Tuhes with ()etal Bases V20
IV - 6.3-Volt Iock-In I3ase Tubes. V20
V - 1.5 - Volt Iat terv Tubes. V21
VI - IIigh-Voltage I Heater Tubes. V21
VII - Speretial Rereiving Tubes. V21
VIII - Equivalent Tubes \} 2 1

1. - Control and Regulater Tubes. V23
X - Lactifiers. V24
XI - Triode Tramsmitting Tubes V25
XII - Tetrode and l'entode Tramsmitting Tubes. 「28
XIII - Electrostatic ('a hode-Ray Tubos $1: 30$
XIV - Tramsistors. 1:31
XV - Crystal Diodes. V:32

INDEX TO VACUUM－TUBE TYPES
Base－diagram section pages V5－V 14．Classified data pages Vi5－V32．

Type	rage	nase	lage	Base	Tupe lape	Base	T＇V	Pape	13a	Tupe	r＇ape	rave
－A．	Pape	$41)$	2c－22．．．．．．－	4AM	41332．．．．．． 129	Fis． 27	6A318．	15	$9(1)$	$6 B 16$	$\vee 16$	7 CH
01		＋1）		41）	＋1）k6．．．．．．vel	7 CN	$6 \mathrm{AN4}$	V15	71）K	613		9Al？
（1）	123	5136	2 （26）	41313	41：27．．．．．．	713	6 A	V15	7131）	6 BY 8	V16	9FN
0 AB	123	tAJ		1\％ig． 70	＋E27A．．．．．V9	7311	6 A		713J	$6 \mathrm{BY6}$	$V 16$	71.1
0A 4	V23	4	2c36．．．．．．．${ }^{25}$	Fin． 21	＋1116．．．．．V15	7 Ca	6.1			61327	V16	
	123	Fig． 19	2c37．．．．．．．vis	Fik． 21	4X150A ．．．．．V29	Fig． 75	61 Ns	V21	9D．	6 $\mathrm{B} / 8$	V16	9AJ
015	V23	5130	2（39）．．．．．．．V26		4－1506：．．．		6．1．88	$V 15$	91）A	$6{ }^{\circ}+$	516	6BC
0133	V23	4AJ	2（34W．1．．．．V！		4X25013．．．．．V29	1 lk 75			715		25	6 BG
	123	513）	2040．．．．．．．${ }^{25}$	Fig． 11	t－65A．．．．．．${ }^{\text {dy }}$	Fils． 25	$6 \pm$		7 HZ	$6{ }^{6}$	119	62
OCO	123	4 AJ		Fis．j 11	4－125．4．．．．．．V29	513 L	6.1254	15	713 Z		V22	${ }_{7}^{6+}$
	V23	＋AJ	$2(5)$	$8 \mathrm{8CJ}$	4－2500A．．．．．．V29	513 K	6 ± 18.	V15	713 T			$7{ }^{7}$
06		5139	${ }_{21}^{2(52)}$	$8 \mathrm{B13}$	$\begin{gathered} 4000 \\ 4-10100 \therefore \end{gathered}$	513 K	6 A （27（9T	12	8CK	$6{ }^{6}$		8
$1{ }^{1}$		4 BL	2151.	713 N	$4-1010 \text { A.... } 29$		6 A 125	$\vee 15$	${ }^{610}$	$6 \mathrm{CNH}$	$V 24$	${ }_{7}^{9 \times 1}$
02 CH		412		${ }_{6}^{612}$	5A ${ }_{\text {5 }}$	${ }^{91} 1$.		V20	${ }_{\text {\％}}^{\text {613 }}$（1）	$\begin{aligned} & 6 \mathrm{CA5} \\ & 6 \mathrm{CH} \end{aligned}$	V16	8（i）
		49	2104．．．．．．．．vex	7 （1）	5A1P1－7－11，V30	$1+J$	6ARS．	115	91）${ }^{\text {P }}$	$6 C 135 A$	0	8 （i）
1 A3	V15	5 AP	$2 \mathrm{E} 25$. V20	513 J	5AJP1．．．．．V 30	Fig： 78	6A	$\cdots 15$	7（\％	$6 \mathrm{Cl}^{136}$		$7 \mathrm{7M1}$
1 A		4 M		7CK	5AAP11．．．．．V30	$1+{ }^{\text {d }}$	6 A 6	V15	7 x 1	6 CH 361	V16	7ca
$1 \mathrm{~A}+\mathrm{T}$		4 K	$2 \mathrm{E} 30 . . .$. ．$V 15$	$7{ }^{7}$	5AP1－4．．．．．．V30	11A	6As7	${ }^{2}$	$8(31)$	${ }^{6} \mathrm{CDPGG}$	V22	513 T
1A5G		6 X	21：30．．．．．．${ }^{28}$	7 CQ	5ACPP1．．．．．．V30	14；	6As7ca	Y22	8131）		V21	513 T
		61.	21455115	7EW		5 T	6 A ¢8．	$V 15$	913s	6 CL 2.	V16	7131）
1A7C：	V！1	7%	21．N5．．．．．． 115	7FL	5ATP1－11．．．V30	14 V	$6 \mathrm{~A}^{\text {＇}}$		715 T	6 C	V16	7CM
14135		513 F	2 C 5	612		$5{ }^{5}$	6.478	V22	913W	$6{ }^{6} \mathbf{8}$	V16	713 h
I． 1166		711H	25	$51)$	$5 \mathrm{AW4}$ ．．．．．V24	5 T	6ar8a	115	913V	6 Cl 7	V16	9 AJ
HACS		71 H	2 V 2	8 F V	5 Sx	$5{ }^{\circ}$	6AUtG		4 Cd	GCO	V22	910
		6 AR	$2{ }^{3}$	4 Y	5 AZ 4	5^{51}	6405 Cl	V00		6 CO	V16	91F
IAF4	V15	6A？	21	4N		11A	baU6		713 K	$6 \mathrm{Cl18}$		913A
1，11 1^{+5}		6ist	2	$4 \mathrm{Al3}$	$513 \mathrm{P} 14{ }^{30}$	11N	6at＇6	$\vee 15$	7 BK	$6 \cdot 117$		9HW
$1 \mathrm{Al15}$		6AV	$2 \times 2-\mathrm{A} . . .$.	4 AB	53PP7A．．．．．V30	115	6AU7	V22	9 A	6 CH	16	$9{ }^{\circ} \mathrm{C}$
1AJ		6idi	$212 V^{24}$	$4{ }^{\text {A }}$	5（1）1－11．．．．V30	$1+13$	batur		91）	6 CJO		9.4
1 Ax 2		9 Y	2Z2．．．．．．．．V＇24	$4{ }^{13}$	5 PP1A．${ }^{\text {S }}$（130	$1+J$	6at＇8		91）	6CK4 6CK6	V20	8J13
11336		$\begin{aligned} & 36 \\ & 431 \end{aligned}$	$3{ }^{3}{ }^{\text {A2 }}$	91）T		14 J	$6 \mathrm{AV}$	$\begin{aligned} & 94 \\ & 20 \end{aligned}$	5135	6CK6 $\mathbf{B C}$（ 15		88.912
1155		6 H	3A4．．．．．．．．．．vis	71313	5CPlia．．．．v30	14 J	6 A		6C\％	6 CLR	$V 16$	913 V
11370		7%	3 As ，	7 BC	5 5P12．．．．．V30	14 J	6 6 6.	V15	711 T	6Cl．	Y22	912
11386		MAW	3A8（iT ${ }^{\text {a }}$	8AS	51 522．．．．．．${ }_{5}{ }^{29}$	5 BL	6A W7\％		$8{ }^{810}$		$V 16$	9FA
10.3		${ }_{6 \times} 5$		7 1 AN	$\begin{aligned} & 5148 \ldots . . . \text { V21 } \\ & 5158 \end{aligned}$	9．S：	6AW8A 6 AXP	V15	919	6CM6． 6CM7	V16	90\％
10.6		$6{ }_{6}$	3APlA．．．．．．V30	7－1	56P1．．．．．．．v30	11 A	$6 \mathrm{AN5G}$	V24		6 （118	V16	91%
1 C		7%	3134	7 C Y	511P1－4．．．．．V30	11A	$6 \mathrm{~A} \times 6$		76	6CN7	V16	
		4 V	3135	7 AP	51P1A．．．．V30	11ボ	6 A 7	22	9.	BCO_{2}		71）13
11）5ip		5 Y	3137	713 F	$5 \mathrm{SP}{ }^{\text {P／A－4A．．．V30 }}$	115	6 A	V15	9AE	bedx		96：
11） 5 （		512	3324．．．．．．．．V24	Flg． 49	SlP1A－4A．．V30	11 T	6 Azs	115	91．${ }^{\text {D }}$	6cre	V16	7 FA
1074		78	31325		5M1＞1－11．．．．V30	7AN	6134 C		5 S	6CRy	V16	96iJ
$11) 89$		8AJ	3132	Fig． 18	5NP1－4．．．．V30	114	6135		6AS	biss	V16	9 c
10×5	V15	9136	$31327{ }^{-1}$	4 P	$512+G 1 . . .24$	5 T	6 6 6 C		7 7	6）${ }^{\text {che }}$	V16	7 Cli
10		913 C	$\begin{aligned} & 3132 x \\ & 313 P 1-41 . \end{aligned}$	${ }_{1} \mathrm{P}^{1} \mathrm{~A}$	5ltGiA．．．．Yit 5！11 А－4．1．．V30	${ }^{5 T}{ }^{\text {1 }}$	637 638		71）	6CS7	V16	9 CHF
LEta		5.3 $5 Y$	$\begin{aligned} & 3 B P 1-4-11 \ldots . \\ & 3 H P 1 A \\ & 30 \end{aligned}$	${ }_{14}^{14}$	$\begin{aligned} & 5 k 11 \text { - } 4.1 . . \text {. } 30 \\ & 55^{2} 1-4 \end{aligned}$	1＋1 ${ }^{2}$	638	V19	${ }_{713 \mathrm{~K}}^{81}$	6（ふ 6C	V16	$\mathrm{FCV}^{9 \mathrm{C}}$
$\begin{aligned} & 1150 \\ & 1070 \end{aligned}$		54	$3 H P I A \text { V30 }$	1488		${ }^{1+6}$	6 CBA	$V 15$	${ }^{713 \mathrm{~K}}$	$\begin{aligned} & 6 C C 5 \\ & 6 C C \end{aligned}$	V16	7CV
15，1－2－2	V30	11 V	3 （5i	7 AC		$5 T$	GBA\％A	$V 15$	91）	6 CO	v22	96×1
1 F 4		5 K	$3{ }^{6} 6$	7 HW	514GA－G13．V24	5	6 BC 4	V15	91）R	BCN		$9 \mathrm{~F}^{\circ}$
1 156		$6{ }^{6}$	3 － 9 2 ．．．．．．V ${ }^{\text {26 }}$	Fig． 17	51＇P1－11．．．．V30	12 C	fBC＇5	V15	7310	60x	V16	911
11%		6 W		$3{ }^{3}$	533．．．．．．．．V24	51	6BC7	15	9AN	6 615	$V 16$	71W
1176		7AD	$30+\ldots . . .{ }^{20}$	$21)$	54．G．．．．．．Vel	51.	6 BPC 8	V15	9AJ	6 CP 7	V16	9 SH
1 GB －${ }^{\text {d }}$				lig． 31		51	6 Bl 4		Fik． 80	${ }^{61} 75$	V16	911 N
1133－（\％	V 24	3 C	$3 \mathrm{C34}$. ．${ }^{25}$	$3{ }^{\text {3 }}$	5517.	11 N	$6 \mathrm{B134} 4$		${ }^{1} \mathrm{ig}$ 80	6174	V23	5AY
1640＇T		5	3（＇P1 ．．．．．．V30	1 C	5W4GT．．．．．V24	5	（131）50	V20	6CK	61）6		$6{ }^{6}$
1659		6 ${ }^{\text {H }}$	3 N100A ．V 26		5x3．．．．．．．${ }^{-14}$	4 C	$6{ }^{631} 166$	V15	73 K	$6{ }^{6} 7$		7 F
1 c		${ }_{55}{ }^{\text {AB }}$	3176	${ }_{\text {Fla }}^{6313} 30$	5－4G．．．．．．V24	512	63317 613		${ }_{7}^{9 /}$	61）80		8 Cl
11140	121	${ }_{5}^{58}$	3123	Fig． 30	5xpla－11A．${ }^{30}$	14 P	613166 613187	V16	7AA	6		9 CiR
$\begin{aligned} & 11150 \\ & 1116 \mathrm{C} \end{aligned}$	V21	7AA	31）K（1）．．．．．．．vis	$7 \mathrm{Ci4}$	583－6－6T ${ }^{\text {a }}$ ，v24	5	613108	V22	9 FB	6）${ }^{\text {che }}$	$V 16$	
1 J 3	V24	3 C	31）P1A．．．．．V30	1411	5r3WCr	51	613180	116	9 FG	61×0	$V 16$	7CM1
1 K 3	V21	$3{ }^{\circ}$	$311{ }^{2} 7$. ． 30	1411	5） $\mathrm{C-G-GT}$ ．V24	51	61355	V16	732	6118	V16	7cm
1350		6x	31）ス3．．．．．．．－	Fis． 24	5YP1．．．．．．．V30	140	61316	v16	713 T	$61)$ E7	$V 16$	9 HF
$1 \mathrm{J6G}$		7AB	3155	613N	5Z3．．．．．．．．V24	4 C	6BA6		$53^{\circ} \mathrm{T}$	$6{ }^{\text {a }}$／if		
11.4	115	6AR	31.6	7 CJ	574．．．．．．．．．V24	51	6 BCa	V20	513 T	61127	V16	9HF
11.6	V15	710	$31: 2$	813	5－12513．．．．．V29	73M	6 BH 15	$V 16$	9AZ	61185	V17	713\％
1 LA		5A1）	31229．．．．．．．${ }^{2} 28$	$713{ }^{2}$	$6{ }^{\text {d }}$	41	613116	V16	7CM	61）（60	V20	
11.46		7AK	3F．15．．．．．．．V21	7FW	6.4	513	613118	V16	91）	$61) \pm 6$	v20	$513^{\circ} \mathrm{T}$
11.134		5 SA	3EP1．．．．．${ }^{310}$	11 N	6A5GT \ldots－${ }^{\text {62 }} 1$	${ }_{78}^{65}$			${ }^{6 C H}$			81313
11136		7AX	311P7．．．．．．V30	1413		7 C	${ }_{6}^{613} 6$	V16 $V 16$	${ }^{7} \mathrm{CH}$	61025		8JC
11.		${ }_{7} 7 \mathrm{AK}$	31．P7A．${ }^{\text {a }}$	11A	$\begin{aligned} & \text { 6A7. V19 V19 } \\ & \text { 6A8 } \end{aligned}$	8A	633 J	$V 16$	9AN		$V 17$	60 ${ }^{6}$
$\begin{aligned} & 11.8 \\ & 11.1) 5 \end{aligned}$		7AK		11A	6A8．．．．．．．．V19 ${ }^{\text {6．}} 15$	${ }_{50}^{8 C}$	$613 J 8$. 6365	$V 16$	918	61976.	$V 17$	7 EN
1 LJ		4AA	36P4A ．．．．V30	11 N	6A135．．．．．．．－	6 R	613 k 6	V16	$713{ }^{2}$	610 T	V17	91） C
11.1		4 AA	3J11－12．．．v30		6A136G．．．．	7 AU	613 K 7		9AJ	6DW5	V17	9CK
		7 70	3JP1A－11A $\mathbf{3 0}$	14 J	6A137．．．．．．V19	8 N	613 K 7 A		9AJ	$6{ }^{6} 5$		612
	V21	5AG	3K11－4－11．．V＇30	111	6.138	9 AT	6 Bk 73	V16	9AJ	6 E6		713
11.25	V1	7 A 0	31.154.	$6^{6 B 4}$	6AC＇5GT ．．V20	${ }^{60}$	631770	V゙0	8131	6 F		711
1×50	V21	51		61313	6AC6	7AU	63318.	V16	Fig 83	6 EFS		
$1 \times 6 \mathrm{c}$		7AM	3MP1．．．．．．．．V30	12F	6A $77 V^{19}$	8 y	$6 \mathrm{BM5}$		7138	6 E .17		8131
1 PS （iT		$5{ }^{51}$				${ }_{7}^{60} 4$					V17	
10561		${ }_{4}^{64 \%}$		${ }_{12 \mathrm{E}}^{7 \mathrm{AP}}$	6A1）60．．．．	7 AC	613 N6	V16	71）F		V17	7 gl
1 Rs		${ }^{7} \mathrm{AN}^{\prime}$	3RP1A．．．．．．V30	121		91	613 N 8		915R	6 6LIS		7 CV
1×4	V15	7 AV	$3 \mathrm{4}+\ldots . .0 \cdot \mathrm{~V} 15$	713	6AFEG	${ }^{6} \mathrm{C}$	61345.	V16	$9{ }^{\text {＇}}$＇	61.88.		9D1：
155.	V15		3 3PP1－4－7．．．V30		$6 \mathrm{Abp6}$			V22				
15ABG		6 CA 6 CH	3UP1．．．．．．．V30	12 F	6AR7GT．．．	710	${ }^{63826 G T}$	V22	6AM	6－1W6		7．${ }^{\text {7．}}$
1 T 4	V15	6Alr	3WP1－2－ii＇．V30	12 T	6A14．．．．．．．	715 K	613（26013）			6 E25．	V20	7 AC
1 T 5		6 X	$3 \times 100411.2{ }^{26}$		6AF4A．．．．．V15	71 K	60＇L6．．．	V20	6AM	6 FZ 8	V17	9KA
1		6AR		3G	6 A 1	${ }_{7}^{60}$	61367.		9AJ	$6{ }^{6}$	V21	71312
11		$6 B 6$ 715	3－251）3．．．．．．${ }_{3}$	319	6Alig	8AG	$\begin{array}{r}6 \mathrm{BC7} \\ 613 \mathrm{~A} \\ \hline\end{array}$	V16	9AJ	${ }_{6}^{615}$	V10	713R
－V		49	3－501）4．．．．．${ }^{25}$	$21)$	6AC5 ．．．．．．．V15	7131）	$613 \mathrm{R} \times$	V22	9 H	$6{ }_{6}{ }^{\text {d }}$	V19	7 AC
12	V24	9 U		21）	6Acibe	7 F	613 RSA	V16	9 FA	6 F		7E
1 W		5132	3－75Az．．．．．．V26						913 K			
12		${ }^{9} \mathrm{Y}$	$\left.\begin{array}{l} 3-75 A 3 \\ 3-100 \\ 2 \end{array}\right)$	$21)$	6AH4CT ${ }^{\text {6A15G．}}$	（iAP	68387		9133	${ }_{6 F \mathrm{FH}}^{6}$		6AM
$1 \times$		${ }_{9}^{9} \mathrm{Y}$	${ }_{3-1004}^{3-10042 ~ V 26 ~}$	2 D	6A156．．．．．． $\mathrm{V}^{\text {6A5 }}$	${ }_{713} 6$	${ }^{61388}$		${ }_{7 B}^{9}$	6 F 56		
$1{ }^{1} 2$		${ }_{4}{ }^{98}$	3－150A2．．．．．${ }^{-27}$	${ }_{4} \mathrm{BC}$	6．117¢゙TH．．．．－	813F	6 BTx	V16	9F゙5	6 FV 8	V17	9 FR
122		7 C ，${ }^{\text {a }}$	3－15043．．．．．V26	4BC	6AJ4．	$913 \times$	63 U 5.	－	8 Pr	6 G 5.		6 R
－ 3		$41)$	3－200A3．．．． 127	Fig． 28	$6 \mathrm{AJ5}$ ．	$7131)$	61316.		$713{ }^{1}$	6463	V20	
2 A		6H3	${ }_{3-2504}^{3-2504 .} \ldots$ ．${ }^{2} 27$	2N		8 CN,	63348		$9 \mathrm{9FS}$	6145		6R
2 A 6		6 6	3－300A2．．．．．${ }^{2} 27$	4BC	6AK5．．．．．．．v15	731	$63 \mathrm{V8}$		$91 . \mathrm{J}$	6116	V19	
2 A 7		$7{ }^{\circ}$	3－300A3．．．．．．v27	4 BC	6ak6．．．．．．v15	7 BK	6 BW 4	V24	915 J	6118 C		81.
2 APl	V30	111.	4 A 6 C	${ }_{\text {x }} \times$	6Ak7．．．．．	8	6ВW6．		9a．	6 J 4		${ }_{60} 718$
2134		${ }_{7}{ }^{\text {J }}$	4（32．．．．．．．${ }^{\text {（1327 }}$	2 N	6．1k8．．．．．．．． V15 $^{\text {6．5 }}$	${ }_{6}^{9 \%}$	6817.		9 Ac			7 BF
${ }_{2137}$		71）		Fing 31	6A1．6i，${ }^{\text {co．}}$ ，	6AM	61318	V16	911\％	6 J 68		713 H
21322		Fig． 22	$4 \mathrm{C} 300 \mathrm{~A} . . . \mathrm{V} 29$		6．1176T ${ }^{\text {a }}$	8 CH	613×4	V24	513.5	6364		713F
21325	．V24	3 T	$41 \times 1000 \ldots 9$		6AM14．．．．． 115	$913 X$	$6 \mathrm{6PX} 6 \mathrm{GT}$		${ }_{8}^{9813}$		V19	
$213 \mathrm{P} 1-1$	V30	12E	$41021 \ldots . . .{ }^{29}$	5 BK		${ }_{71}^{6 \mathrm{CH}}$		$V 20$	$8 \mathrm{8BJ}$	$6 \mathrm{6J8G}$	．－	${ }^{811}$
	：二	718 H	41023.	${ }_{5 B K}{ }^{\text {b }}$	6．1M8．．．．．．．v21	$9{ }^{9} \mathrm{Y}$	$6 \mathrm{BY5G}$		6－N	6 K 6 G		

V2

VACUUM－TUBE DATA

6K7pe	Pupe liase		Pape Hase							
6 K 7 6 K 8	． 11978	$\begin{aligned} & 7 \mathrm{p} 7 \mathrm{l} \\ & 7 \mathrm{HP4} . \end{aligned}$	$\begin{array}{r} \text { V20 } \\ 10 \\ 115 E \\ \hline \end{array}$	$\begin{aligned} & 1210 v 7 \\ & 1210 \times 8 \end{aligned}$	V18 mJY vix 91IP	$250^{\circ} 5$	$\mathbf{v} 22$ $7 \mathrm{C} V$	89	Pape	$\begin{aligned} & \text { Ras } \\ & 6 \mathrm{l} \end{aligned}$
	V21 71311	7 F	－ 22 7AC	12 w	Y18 911 R		V22 7AC			5 BO
${ }_{6 L}$	Fin 62		V2 BAC	12 W 8	Yix 9JC		5227 CV	9900 Til		41）
${ }_{61.6} 6$	V22 7AC	${ }_{7} 78$	${ }^{120} \mathrm{O}_{8} 813 \mathrm{~W}$	12 D	V18 9JD	25	V22 513 T		12	$21)$
${ }^{\text {PLL6G13 }}$	v19 7s	7 Gb	8 BV	${ }_{12 \mathrm{E} 5 \mathrm{GI}}$	18736	$25{ }^{2}$		1111		（1）
${ }_{6} 66$	7 y	7 Cl	V30 14G	12 EA	V18 713 K	$25 \mathrm{Cl} 1{ }^{\text {2 }}$	122 6AM	$117 \mathrm{LFG1}$		$8{ }^{\text {81）}}$
${ }_{615}{ }^{1}$	$\cdots 19$ 7T	7117	$\checkmark 2281$	12 FC	V18 9FA	2508	－8AF	11717 Gl	24	8 AO
6116	7 S	$7{ }^{\text {JPP1－4－7 }}$	$\cdots 30{ }_{14}^{8131}$	12 F	Y18 78		$\checkmark 225 B T$	$117 \mathrm{N7CT}$	V21	$8 \mathrm{8AV}$
6.117 G	$7 \mathrm{7R}$	7 K 7	120813 F	1215	$5187 \mathrm{7CH}$	25156	V22 5AMT	$117 \mathrm{P7G}$		8AV
6128	$8{ }_{7}^{8 \mathrm{AUS}}$	7 L 7	－ 8 V	12 Ek	Y18 713k	251145	$1227(\mathrm{~V}$	11723．	V4	4， 13
6	6 R	7×7	${ }^{22} 8288 \mathrm{C}$	1214.16	V18 78 FH	$25 \mathrm{~F}^{5} 5$	V18 7cv	11774 GT		5AA
	－ 78.	7117	－8AE	124×6	V217	25 N 0 Cl	52	11786		78
6×7	1988 195813	787	813 L	12 F	5M	25 S	－6M	1501		2 N
	－9T	$7 \mathrm{V7}$	$8 \mathrm{8V}$	1218	H18 9FH1	$25 \mathrm{Sa7G1}$	Y2 PAD	152 TH	Y26	4 BC
${ }_{6} 685$	$6 \mathrm{6O}$	7 VP	V30 14R	$12 F \times 16$	Vi8 73T	25 W 4 GT	V25 ${ }_{\text {＋}}$	152 Tl	$\stackrel{27}{ }$	${ }_{411}^{413}$
${ }_{61}{ }^{618 G}$	8 K	7以7	813 J	${ }^{12 \mathrm{FP}}{ }^{7}$	$1+\mathrm{E}$	$25 W 6 \mathrm{GT}$	v22 74	183		41）
604	98		7AJ	12 FT 6	Y18 783	$25 \times 6 \mathrm{GT}$	79	203		415
685	6	$7{ }^{7} 4$	8182 $5 A B$	12 C 7 G	$122{ }_{7}^{613 \mathrm{~V}}$	25	${ }_{6} \mathrm{EAA}^{\text {a }}$	203－11．		
668	V19 7 V	724	5 AB	$12 \mathrm{G8}$	9 Cz	$25 Z 3$	124 4	205－1）		119．39
614	9R	$8131{ }^{\text {P }}$	14 C	12 GP		25	5AA	211	V26	
$6{ }^{6} 6$	6AW	${ }_{913}^{915}$	7BZ	12116	V182 70		－24 76	212		${ }_{4} 1 \underline{4}$
6187	${ }^{19} 979$	9 T	68．	1211	11 J		2411	$217-\mathrm{C}$		
	v2 gac	10	11）	12 J 5 d	V2 62	26 A	713 K	$227-\mathrm{A}$		${ }^{\text {Ftg．}} 53$
$6 \mathrm{ES4}$	V17 9AC	104	$\sqrt{22} 9 \mathrm{DX}$	12 J	22 7 R	26 A	8134	$2+1 / 13$		Fik． 44
	19 7R	1011	14G	12 K	118 7EK	26 C	713 T	242－13		$4{ }^{4}$
$6 \mathrm{S8}$	V20 8C13	109	$\checkmark 2541$	12 k	Y22 712	$26{ }^{\text {c }}$	713 K	242 －c		41
6 A 47 Cl	V19 8R	12 A 4	$\overline{\mathrm{V} 17}{ }_{9}^{4 \mathrm{AFG}}$	12 LCGG	¢22 75	2610	${ }^{711}$	$249-13$		$1 \% \mathrm{ly} .29$
6 Sl 177	$V 19812$ $V 1988$	12 A 5		12 LbGT	－813U		518	250111		N
$6 \mathrm{S1)} 7$	V20 8N	1246	12178	12 C 27	7 V	282	SAB		126	2 N
6sif7ch	8 N	12 A	7 K	$12 \mathrm{H5}$	Y18 7CV	30	${ }_{4}{ }^{1}$	25.		Fik． 57
$6 \mathrm{6SP} 5$	9196 Al	12 A 135	1788	12 ScG			412	254－1－		Fik． 57
	$\because 1988$	12 A （ 6	$\checkmark 17713 \mathrm{~K}$	12 s （ 7	V22 85	$32 \mathrm{ET} \mathrm{T}_{5}$	118 7cv	$270-\mathrm{A}$		Fita 39
65117	v19 8BK	12 AlD	$V 177 \mathrm{CH}$	12 SF	62 6Al3		82	276		
68117	813 K	12 Ab 6 i	V17 94，	12 SC	V22 7 AZ V 228 BK	33	5 K	$282-$		1 rls .57
65 J 7	1198	12AET	V179A	$12 \mathrm{Sl17}$	－22 813		$51:$	$2 \mathrm{St-1}$		1 c
$6 \mathrm{KK7}$	1198	12 AF 6	177 BK	12 SJ7．	122 8N	35 A 5	V21 6AA	$295-\mathrm{A}$		45
6817 GT	$\checkmark 808180$	124.18	V21 7 CHE	12SK7	－22 8	3513	${ }^{7132}$	3007		2 N
6 SN 7 Cl	V22 V 22313 8131	$12 \mathrm{AH8}$	V21 ${ }^{818 \mathrm{PL}}$	12SS．78T	V22 2131$)$ 81313	${ }_{351}^{351}$	V2 780	$303-\mathrm{A}$		
$6 \mathrm{SN7CT}$	$\checkmark 20831$	12AJ6	17 73T	12sx7ct	V22 8131）	351	\％25 36	304－13		
$6 \mathrm{6SO} \mathrm{GT}$	11988	12A，5	V17 6BT	12 S 27	¢22 80	35	2501	304 TII	127	413C
$6 \mathrm{SN7}$	$\begin{array}{r}1989 \\ V 1988 \\ \hline\end{array}$	12 A （25	$V 179738$	${ }_{12 \mathrm{sm}}$	V22 80	35	${ }^{2}-5138$	304 TL	V27	
6 ST 7	－ 8 82	12 Ar 6	122 713 T	125×7	－813D	3523	4 Z	306 －A		Filc． 69
$6 \mathrm{SU7}$	V2：8BD	12 AT	V17 9A	12 SY 7	V218R	35 ZaG	124 5AA	307－A		Fig．iil
63.7	780	12 AU A	$\square_{25}{ }^{713} \mathrm{~K}$	${ }_{12 \mathrm{Cl}}^{12 \mathrm{C}}$	118 9A	35850	－4 6AD	$30 \mathrm{~S}-\mathrm{H}$		$\mathrm{FH}, 43$
6 T 4.	V17 710K	12 Ac 7 A	$V_{17} 9 \mathrm{~A}$	12 W 6 Cl	V22 78		5 S		126	
6 T	6 R	12 A 56	V22 6CK	12×4	V24 513 S	з6АМз	V24 513Q	3 Cl		Fig． 32
$6{ }_{6} 6$	62				${ }_{7}$	37	54	312 A		Fis． 68
	${ }_{9}^{7} \mathrm{~V}$	12AWo	${ }^{17} 978 \mathrm{Cm}$	1225	${ }_{5}^{7 L}$	39%	55°	312－1．		Pig． 44
61×4	1179 E	12 AW	7 CM	14 A 5	6AA		$41)$	310		
	913	12.104	$4 \mathrm{4CO}$	14 A 7	$V 22 \times{ }^{2}$	402	6AD	$327-13$		Fip 50
6 CHO	1244	12 A 4 CT A	$1{ }^{4} \mathrm{CG}$	14AF7	V22 8AC	41	613	342－13		
	612	12 l	17 9A	14AP1－	12A	42	V22 $\mathrm{il3}$	3i6－A		Fig． 55
$6{ }^{6}$	$\cdots 2078$	12AZ7A	$\checkmark 179 \mathrm{~A}$	$14 \mathrm{B6}$	V22 8W	43	63	$361-$	－	
6 U	V22 9RE	12134	v22 9Ag	144.5	6 AA	45 z	${ }^{41} \mathrm{Am}$	$317-1$ $417-1$		\％
6 6゙8	$\checkmark 17$ 9AE	$12 \mathrm{B4}$	$V 17 \mathrm{gaG}$	14 C	8 V	4525 c	6 AD	＋82－1		$41)$
6 V 3	${ }^{9131}$	12137	$8 \mathrm{8V}$	141	8 V	46	${ }_{5} 5$	483		41）
	$\overline{\mathrm{V} 24} 9 \mathrm{931}$	12137 M	8 V	14187	T2 SAE		513			
6×5	Y0 6AO	12138 CT	－${ }^{81}$	$1+\mathrm{F}$	－8ibiv		50	559		
6V6．	V19 7AC	12313 A6	V22 $7 \mathrm{8CT}$	14117	8		$41)$	575		4AT
$6 \times 7 \mathrm{G}$	V19 785	123D6	v22 713 K	14.57	－ 288 BL	50 A	V22 6AA		v27	Fig．${ }^{2}$
$6 \mathrm{V8}$ ．	V17 9AII	$12 \mathrm{BE6}$	$\checkmark 22 \mathrm{CH}$	$1+27$	V2e XAL	50	V18 713	$717-1$		${ }_{8} 113 \mathrm{~K}^{45}$
$6 \mathrm{~W}+\mathrm{C}$	＋CG	12356	$V 227 \mathrm{HT}$	1417	8AE	50 BK	Y2： 9136			41）
6W5c．	$\overline{-10} 7$	12131178	$\overline{\mathrm{V}} 17^{9} 9 \mathrm{~A}$	1487	$8 \mathrm{8BL}$	5015	v2 7cv			2 D
6 W 7 i	－7R	1213 K 5.	V22 913Q	14.6		50	12278	$801 \mathrm{~A} / 811$	25	41）
$6 \times 1 / 506$	Y24 7CF	1213 K 6	${ }^{222} 713 \mathrm{~T}$	$1+87$	8132	$501)$	V24 5130	803.		\％J
6－569．	$\underline{124} 68 \mathrm{AL}$	123156	${ }^{172} 713 \mathrm{H}$	14	5 AB	50 L 6GT	V22 75	804.		Fif． 61
6×8	9 AK	12318864	运 6AII	15	5 F		7 AJ		V7	
	9AK	1213 （26）	122 6A	1546	9AR	50 Y 6 C	2478	807	12	${ }^{\text {SAW }}$
6130	4 AC		$\checkmark 22$ 6AM	1514	25 Fig 51	50 Y 7 GT	8AN	8071 W	V8	5AW
615	V22 7 7	1213 TB ．	${ }^{17289813}$	${ }_{17}^{164 .}$	${ }_{36}^{913}$	50268	12478	808.		$21)$
616 GA	V20 7 S	121306	V29 71T	172	${ }_{9}{ }^{\text {c }}$ B	51.	SEN	8809.		3 N
61601	V22 78	121314	${ }^{22} 917 \mathrm{~J}$		$6{ }^{3}$	52	5 C	811.	${ }^{2} 6$	3 G
	V24 ${ }_{4}^{813}$	${ }_{1213}^{12137}$	${ }^{17}{ }^{17}{ }^{\text {98F }}$	18	V18 7CC	53	73	811.	${ }^{2} 6$	3 F
674	V24 51	12317 ${ }^{\text {d }}$	V179319	$18 \mathrm{FY6}$	V8781	53		812	${ }^{26}$	3
6.5	6 K	121376	V2 7CM		6 C	56	5 A	81211	－6	36
6	813	121327	$Y 17$ 9A	$190 \cdot 8$	122 91\％	56	54	813.	${ }^{2} 9$	513
7 A 4	，68	12 C	127	19×3	91319	57.	$6{ }^{\circ}$	814.	－8	
7 A 5	－ 22 SAS	12 C	${ }^{2} 2{ }^{2}$	191	93811	57 A	61	815.	V2	813 Y
7 A 6	Y2 7AJ	12×16	V2 以¢	20×1	12	58.	$6{ }^{6}$	816.	124	$4{ }^{1}$
7A7	V2，8V	12 CN	177 CV	$200 \times 6 \mathrm{M}$	811	59.	${ }_{7}{ }^{6}$			3
7 A	V20 80	$12 \mathrm{CR6}$	2715	2146	9As		8 AB	826.	126	7 BO
A1）7	$8{ }^{8}$	12 Cs	${ }^{22} 9711$	2147		70 L 7 CT	8AA	8	V9	5 J
AF7	8 AC	12 ＂188	－9DA	22.	$121{ }^{131}$	${ }_{72}$	41）	829.		${ }_{718}$
7Ad7	8 V	$120^{\circ} 5$	V22 7 CV	$24-4$	5 F	73	4 Y	82913	Tos	${ }^{713 P}$
7 A 17	＇20 8V	12 CL ．	Y2 6AM	$24-1$	125		22 6i9	830.	V2	（1）
${ }_{7}{ }^{\text {AK7 }}$	－20 ${ }_{8}^{8 V}$	120×6	V17 7131	24×11	V30 \％ F Ig． 1	751	20 21	83013	v26	36
14.	yes 5AC	12D）${ }^{\text {a }}$		25×6	8	751	$1{ }^{-26} 217$	831.		
7135	22 6AE	121015	－24 913	$254(569$		77	$6{ }_{6}$			7181
116	Ve 8iV	$121) 17$	229 a	$25 A V 50$	$6 \mathrm{C}^{\mathrm{K}}$	78	$\bigcirc 26$	8833 A	V27	
7117.	V20 8V	129107	177 91\％	25.150	60\％	79.	－611	834.		
7188.	V22 ${ }^{81}$	121）L	V17 911 L	$254 \times 46 \mathrm{~T}$	4 Cd	80．	12440	835.		4 C
75	$\overline{\mathrm{V} 264 A}$	$121)$	V18 9 il	25135	61）	88	413	836	V24	
（6）	NW	121587.	v1s 9Ju	251389	${ }_{8 T}$		$\overline{-2} 4$		V＇28	618 M
717	$\bigcirc 208 \mathrm{~V}$	12175	Y2\％9HN	2513 KJ	930	$83-1$	1－4 41	810		5 J
71：5	V1 8AR	121）T8	V22 9ヵ）	25136818 a	V28 ${ }^{\text {6a }}$	$\times 4 / 68 / 4$	V24 51$)$	841.		$41)$
1：6	－ xw	121）47．	vis 9JX	253666\％「13．	ver baid		69			36

SEMICONDUCTORS

Type	Paoe	Type	Page	Tupe	rage	Type	Itue	Iype	Pape	Type	Page	Type	Page
$1{ }^{1} 3$	V:32	1N6\%	V32	1 N118	V32	2 2:35	V31	2 N 175	V31	2×372	V31	CK768	V31
1×34.	V32	1 N 68 A	132	1 N126	$V 32$	2 243	V*31	2 ± 218	V1	2×374	V31	H 131	V32
1035	V32	1×64 A	Y2	1N127A.	132	2 N 44	V:31	2 N219	V31	2N376	V31	11132	V32
1.038	V\%2	1 N70.1.	V33	1 1128.	V32	$2 N 68$	V131	2×233	V31	$2 \mathrm{NB4}$	$V 31$	11133	132
1 N:3s4	132	1×77 A	V32	1N151	V132	$2{ }^{2} 78$	V\%1	2 N 247	$V 31$	2×111	V31	1134	V32
1 N 39 A	$V 32$	1N81	V33	1 N152	V42	2 NO 4	V:3	2 N 248	V31	$2 \mathrm{~N}+12$	V31	1135	V32
1 N	V32	1 182	V32	$1 \geqslant 153$	132	2 NH	V.31	2×255	V31	2 N 428	V31	H	2
1 Noza	V:32	1N82A	132	1N158	V12	2×104	V 31	2×250	V31	2 N 499	V:31	M15	32
1×54 A	532	1×89	532	1N191	V32	2 N 105	V11	2 C 270	W1	2 N 544	V31	M1500	V32
1×554	V32	1 N90	132	1×192	V12	2×107	V:31	2 N 74	131	2×561	V31	OU71	V31
1 N 56 A	V32	1×91	V32	1 N 19 A a	132	2×169	131	2×242	V31	2ざ586	V31	OC72	V.31
1 N5xA	V32	1×95	V'32	1×274.	V:32	2×123	131	2 N301	131	2 N588	V31	SB100	,
1 Ntio.	V32	1×96	V12	1 N 283	V:32	2 N 131	$V: 31$	2 N301A	V31	2×677	V31	V15	,32
1 N63	V32	1×97	432	1 N294	\%2	$2 \geqslant 132$.	W1	2×306	131	2 Niol	V31	V20	V32
1 N6.	V32	1×98	V32	1×295	132	2×139	V31	2 N 3117	Vi31		V31	V27	Vis
1 N65	- V22	1 N99	Vi32	1×448	\%32	2 \140	V\%1	2×131	V131	2		V 33	V32
1 N66	- V32	1 N100.	5132	1 Nt34	V132	2×155	V31	2N35	V31	2N12		V39	V32
1 N67	- Vi32	1 N116.	V32	1 N636	V132	2×167	V31	2 N 370	V31	A ${ }^{\text {a }}$-1.	V31	$V 47$	V32
1×67 A	- V32	1N117.	532	2 N 34	$V 31$	2N169A	$v 31$	2 N 371	V1	CK722	V31	V 56	V32

VACUUM-TUBE BASE DIAGRAMS

 Bot tom virws are whow throughont. 'Terminal designatione are as follows:

A $=$ inoule	1) = 1prfecting I'late	Is	= Internal Shield	RC: = Kay-Control Filectrode	
$13=1$ 3eam	$\mathbf{F}=$ Filamant	K	$=$ Cathode	Ref = Reflector	
131' = 3aymet \|'in	$F E=$ Focus Elect.	NC	$=\mathrm{No}$ Commection	\$ $=$ Shell	
HS $=$ Ware Sleeve	(: $=$ Grid	I'	= I'late (Anode)	IA = Target	
C $=$ Ext. Coating	$11=\\|$-ater	${ }^{\prime}$	= Starter-Anorle	U $=$ Unit	
Cil. = Collector	IC: = Inturnal Con.	P^{HF}	= 13eam Inates	- = Jas-Type Tube	

 unit typen, sultiscript (1) indicatea fatarmt or
shetl. the No. 1 pin the No. I pin of a metal-type tube in Table Il. with the exception of all triodes. is ahown anomerted to the shedl. the No. 1 pin in the glase (6 ; or ('l') equivalent is ronmerterl to an intermal ahielif.
E.I.A. (R.E.T.M.A.) TUBE BASE DIAGRAMS

2AG

20

2N

27

22

3C

36

3N

$3 T$

4AB

4AC

4AD

4AH
(3) (3)
4AJ

4AM

440

4AT

4B
(2)
4BB
(2)
4BC
(2) (3) (3)

4BO

4BU

$4 C$

4CB
(2)

4 CK

40

$4 E$

$4 F$

46

4 H
(3)
4 J

$4 K$

4 M

$4 P$

4R

45

4V

$4 \times$

$4 Y$

42

5A

5AA
(3) (4) (5) (3)
5AB
(2) (3) (3)
(2) (4)
5AD

TUBE BASE DIAGRAMS

Bottom views are shown. Terminal designations on sockets are given on page V5.

				$5 E^{\circ}$	$5 F$

TUBE BASE DIAGRAMS

Botom views are shown. Terminal designations on sockets are given on page $V 5$.

6AX
(2)
6 B
(2) (4) (3)
6BA

$6 B B$

(2) (4) (3)

6 BH
(2) (3)
6BM

$C_{6 C}^{(3)}$

6CA
(3) (4)

6CC
(2) (4) (5) (5)

6 CH

6 CK
(4) (1)
(3) (3) (3)
6D
(3)
6 E
(2) (3) (5)
$6 F$
(1) (5)
6G
(2)
6 H

6 J

$6 K$

6L

6M

(2) (3)
6R
(3) (4) (3)

$6 S$

$6 T$
(2)

TUBE BASE DIAGRAMS

Bottom views are whown, 'Terminal designalions on sookets are given on fage V.i.

(2) (5)

$70 B$

TUBE BASE DIAGRAMS

lsollom virws arre slumn. 'I'reminal designations on sochets are given on page V5.
1

G2p(4) (5) ${ }^{6 / 4}$	(5) ${ }^{6 r_{1}}$	${ }^{\mathrm{NC}}$ (4) $(5)^{\mathrm{G}_{1}}$	$6_{T_{1}}(4)$ (5) ${ }^{P_{T_{1}}}$	${ }^{K_{t}}$ (4) (5) ${ }^{6 r_{2}}$	G_{r} (4) (5) ${ }^{p_{2}}$
$P_{P}(3)$ F ${ }^{(6)}{ }^{\text {r }}$	$\mathrm{Pr}_{\mathrm{r}_{2}}(3){ }^{(2)} \mathrm{R}_{\mathrm{r}_{1}}$	P 3) 16^{0}	$N_{T} 318$ (6) ${ }^{K_{1}}$	$\mathrm{P}_{\mathrm{T}_{1}}(3) \mathrm{C}^{P_{T_{2}}}$	$\mathrm{Fr}_{\mathrm{T}}(3)$
$2 x^{2}$	$\mathrm{A} \rightarrow 7{ }^{2}$				$\mathrm{K}_{7} 2^{-1} \mathrm{c}^{k_{0}}$
$\mathrm{G}_{\mathrm{T}}(\mathrm{I})^{-(8)} \mathbf{G}_{\mathbf{G}_{3}}$	$s^{(1)}(8)_{k}$	$\mathrm{Nc}(1) \mathrm{C}(8)$	$\mathrm{G}_{\mathrm{T}_{2}}(1)-(8) \mathrm{H}^{2}$	$\mathrm{G}_{\mathrm{T}}\left(\mathrm{D}^{1}(8) \mathrm{H}\right.$	$\mathrm{H}^{(1)}(8)_{\mathrm{H}}$
BAY	8 B	8BA	88D	8BE	8BF

(5) ${ }^{9}$	4) 5^{x}	$G_{1}(4) \quad(5)^{G_{2}}$	k 5^{0}	${ }^{k} \cdot(4)(5)^{a_{1}}$	5. 4.3 (3) ${ }^{\text {Win }}$
)	(3) $\mathrm{H}^{6}{ }^{G_{2}}$	1 ± 56	(3) -1.1	${ }^{P}(3)=15$	(3) $=$ (6^{k}
	$\mathrm{s}^{(2)} \mathrm{I}^{(8)}$				
8 BJ	8BK	6BL	8 BN	880	885

TUBE BASE DIAGRAMS

Butom siews are shown. 'lerminal designations on sochets are given on page bib.

TUBE BASE DIAGRAMS
Botton views are shown. Terminal designations on fockets are given on page V5.

			9AT		
				98F	
			9BM		
				$9 E$	
	 9EF		9EN		

TUBE BASE DIAGRAMS

Bottom views are shown, 'lerminal designations on sockets are given on page V.

9F G					
				$9 K$	

TUBE BASE DIAGRAMS

Bothom views are shown. Terminal designations on sorkete are siven on page V.

IIJ	11 L				
				14 H	14 J
	FIG.I	FIG. 2	FIG. 3	FIG 4	FIG. 5
	FIG. 7	FIG. 8	FIG. 9	FIG. 10	FIG. II
	FiG. 13	FIG. 14		FIG. 16	FIG. 17
	FIG. 19			FIG. 22	FIG. 23
FIG. 24		FIG. 26	FIG. 27		

TUBE BĀSE DIAGRAMS

Botom viens are shown, 'l'erminal designations on sockets are given on page $\mathbf{V} \mathbf{5}$.

FIG 30	FIG 31		FIG 33	 FIG. 34	ᄃ1G 35
FIG. 36	FIG. 37	FIG. 38	FIG. 39	FIG. 40	FIG. 41
FIG. 42	Fig 43		FIG 45	FIG 46	FIG. 47
FIG 48	FIG 49	Fig. 50	FIG 51	FIG 52	FIG 53
FIG 54	FIG. 55	FIG 56	FIG 57	FIG. 58	FIG 59
FIG. 60	FIG. 61	FIG 62	FIG 63	FIG. 64	FIG 65
FIG. 66	FIG. 67	FIG. 68	FIG 69	FIG 70	FIG. 71
				FIG. 76	FIG. 77
FIG. 78	FIG 79	FIG, 80		FIG. 82	FIG 83

TABLE I-MINIATURE RECEIVING TUBES

Type	Name	Base	Fil．or Heater		Capacitances $\mu \mu \mathrm{F}$ ．			$\frac{3}{2}$	릉	$\begin{aligned} & 5 \\ & \text { 曷言 } \end{aligned}$					送		$\begin{aligned} & \frac{5}{3} \\ & 0 . \frac{2}{3} \\ & 30 \end{aligned}$		
			v．	Amp．	c．	Can	${ }^{\text {ref．}}$												
6055	Beam Pwr．Anp．	7BZ	6.3	0.8	9.5	6.3	0.19	250	－8．5	200	310	322	28K	5800	32 s	8 K	3.8		
								250	$270 *$	200	3／9	252	28 K	5800	275	8K	3.6		
6075	Pwr．Amp．Pent．	9 CV	6.3	0.76	10.8	6.5	0.5	300	－7．3	200	10.8	49.52	38k	－	－	5.2 K	17		
6076	Sharp Cut－atf Pent．	TEN	6.3	0.3	5.8	－	0.02	150	560^{*}	100	2.1	1.1	150K	615	－	－			
6 6T8	High μ Dual Triode ${ }^{10}$	90E	6.3	0.3	2.7	1.6	1.6	250	200＊		－	10	10．9K	5500	60				
60W5	8eam Pwr．Amp	9 CK	6.3	1.2	14	9	0.5	200	－22．5	150	2	55	15K	5500	－	－			
GEAB：	Triode Sharp Cur．off Pent．	9AE	6.3	． 45	3	3	1.7	330	－12	－	－	18	5 K	8500	40	－	－		
					5	2.6	02	330	－9	330	4	12	83K	6400	－	$-$	－		
6 E88	High－μ Trioce Shorp Cut－ofl Pant．	90x	6.3	． 75	2.4	36	4.4	33 C	－5	－		2	37K	2700	100	－	－		
					11	4.2	0.1	330	－9	－	7	25	75K	12．5K	－	－	－		
6EH5	Power Pentode	7 CV	6.3	1.2	17	9	． 65	135	0	117	14.5	42	IIK	14．6K	－	3 K	14		
6E58	Dual TriodeSharo Cut．0f Tet．	9DE	6.3	365	3.4	17	1.9	130	－1．2	－	－	15	－	12．5K	34				
6EV5		TEW	6.3	0.2	4.5	2.9	0.035	250	－1	80	0.9	11.5	150K	8800	－				
$6 E 28$	Triple Triode No． 1 Triode Triode No．2\＆3	9 KA	6.3	． 45	2.6	$\begin{aligned} & 1.4 \\ & \hline 1.2 \\ & \hline \end{aligned}$	1.5	330		－	－	4.2	13．6K	4200	57	－	－		
6FME	Duplex Diode Triode	9KR	6.3	． 45	$\begin{aligned} & 2.4 \\ & 2.2 \end{aligned}$	－	－	Max．a．c． voltage $=200$ ．Max．d．c． output current $=5 \mathrm{mo}$ ．											
					1.5	16	1.8	330	－3		－	1	58K	1200	70	－			
6FV6	Sharp Cut．off Telrode	7FO	6.3	2	4.5	3	． 03	125	－1	83	15	10	100K	8700	－	－	－		
6FV8	Truode Pentode	9 9FA	63	． 45	28	1.5	1.8	330	－1	－		14	5K	8K	40	二	－		
					5	2	． 02	330	－1	125	4	12	200 K	6.5 K		－			
6.14	Grounded－Gric Triode	7BP	6.3	0.4	7.5	3.9	0.12	150	$100 *$	－	－	15	4．5K	12 K	55	－	＝		
6J6A \ddagger	Medium－μ At Amp．${ }^{10}$ Dual		6.3	0.45	2.2	0.4	1.6	100	50^{*}	－	－	83°	7．1K	5300	38	－	－		
	Dual Triode Mixer							150	$810 *$	－	－	4.8	10.2 K	1900	Osc．peak volrage $=3 \mathrm{~V}$				
6R8	Triple Diode－Triode	9 E	6.3	0.43	1.5	1.1	2.4	250	－9	－	－	9.5	8．5k	1900	16	10K	0.3		
654 A	Medium．μ Triode	9AC	6.3	0.6	4.2	0.9	2.6	250	－8	－	－	26	3．6K	4500	16	－	－		
674	U．h．f．Triode	70K	6.3	0.225	2.6	0.25	1.7	80	$150 *$	－	－	18	1.86 K	7000	13	－	－		
6TEA：	Triple Diade．High－μ Triode	$9 E$	6.3	0.45	1.6	1	2.2	100	－1	－	－	0.8	54 K	1300	70	－	－		
								250	－3	－	－	1	58 K	1200	70	－	－		
6U8A ${ }_{+}^{+}$	Medium－μ Iriade	9AE	6.3	0.45	2.5	0.4	1.8	150	$56 *$	－	－	18	5K	8500	40	－	－		
	Shard Cut－off Pent．				5	2.6	0.01	250	$68 *$	110	3.5	10	400K	5200	－	－	－		
6 Va	Triple Dioce－Triode	9AH	6.3	0.45	－	－	－	100	－1	－	－	0.8	54 K	1300	70	－	－		
								250	－3	－	－	1	58K	1200	70	－	－		
6X8A＊	Medium－μ Triode	9AK	6.3	0.45	2.0	0.5	1.4	100	100^{*}	－	－	8.5	6.9 K	－	40	－	－		
	Sharp Cut off ${ }^{\text {dent．}}$				4.3	0.7	0.09	250	200^{*}	150	1.6	7.7	750K	－	－	－	－		
1244	Medium．μ Triode	9AG	12.6	0.3	4.9	0.9	5.6	250	－9	－	－	23	2．5K	8000	20	－	－		
			6.3	0.6				250	－125	－	－	4.4	－	－	－	－	－		
12AB5	Beam Pwr．Amp．Al Amp．${ }^{\text {A }}$	$9 E U$	12.8	0.2	8	8.5	0.7	250	－125	250	4．5／7	472	50 K	4100	45^{5}	5K	4.5		
								250	－15	250	5／13	792	60K1	3750	70^{5}	10kb	10		
$12 \mathrm{AC6}$	Remote Cut－oll Pent．	78 C	12.6	0.15	4.3	5	0.005	12.6	0	12.6	0.2	0.55	500k	730	Grid No． 1 Res．33K				
12AD6	Pentagrid Conv．	7CH	12.6	0.15	，	8	0.3	12.6	0	12.6	1.5	0.45	1 meg ．	260					
12407	Dual High．μ T－rode ${ }^{10}$	9A	12.6	0.225	1.87	0.5	1.87	250											
			6.3	0.45	$1.6{ }^{\circ}$	0.45°	1.80		－2	－	－	1.25	62．5K	1600	100	－	－		
12aEGA	Duol Drode－Medium μ Triode	781	12.6	0.15	1.8	1.1	2	12.6	0	－	－	0.75	15K	1000	15	－	－		
12AE7	Iow．μ Dissumiliar Double Triode	9A	12.6	． 45	4.7	． 75	3.9	16	－	－		1.9	31．5K	4000	13	$-$			
					4.2	85	3.4	16	－	－	－	7.5	985	8500	6.4	－	－		
12AF6	R．t．Pent．	78K	12.6	0.15	5.5	4.8	0.006	12.6	0	12.6	0.35	0.75	300 K	1150	－	－	－		
12AJ6	Dual Diode－High．μ Triode	781	12.6	0.15	2.2	0.8	2	12.6	0	－	－	0.75	45 K	1200	55	－	－		
12AL8	Medium．μ Triode	9G5	12.6	0.45	1.5	0.3	12	12.6	－0．9	－	－	0.25	27K	550	15	－	－		
	Tetrode				8	1.1	0.7	12.8	－0．8	$12.8{ }^{\circ 0}$	50＊＊	25	1K	8000		－	－		
12A05	Beam Pwr Amp $\frac{A_{1} \text { Amp．}}{\text { A } B_{1} \text { Amb }}$	782	12.6	0.225	8.3	8.2	0.35	250	－12．5	250	4．5／7	472	52 K	4100	45^{5}	5 K	4.5		
tanas	Beam Pwr Amp AB，Amp．${ }^{3}$							250	－15	250	5／13	792	60 k ＇	37501	70^{5}	10K。	10		
12A57	High－μ Duol ${ }^{\text {－riode }}{ }^{10}$	9A		0.15	${ }^{2.2}{ }^{27}$	0.57	1.57 1.50	100	270^{*}	－	－	3.7	15K	4000	60	，	，		
			6.3	0.3	2.24	$0.4{ }^{\circ}$	1.50	250	200^{*}	－	－	10	10．9K	5500	60	－	－		
12AU7A	Medium－μ Dual Triodelo	9 A	12.6	0.15	1.6	0.57	$\frac{1.57}{1.58}$	100	－8．	－	－	11.8	6.25 K	3100	19.5	－	－		
			6.3	0.3	$1.6{ }^{6}$	$0.35{ }^{\circ}$	1.50	250	－8．5	－	－	10.5	7．7K	2200	17	－	－		
l2Av7	Medium－ヶ Dual Triode ${ }^{10}$	9A	12.6	0.225	3.17	0.57	1.97	100	120^{*}	－	－	－	6.15	6100	37	－			
		9 A	6.3	0.45	3.18	0.46	1.98	150	56°	－	－	18	4．8K	8500	41	－	－		
T2AWG	Sharp Cul aff Pent．	7 CM	12.6	0.15	6.5	1.5	0.025	250	200^{*}	150	2	7	800K	5000	42	－	－		
12AX7	High－$\mu \quad$ A，Amp ${ }^{10}$	9 A	12.6	0.15	$1.6{ }^{\circ}$	0.467	1.77	250	－2	－	－	1.2	62.5 K	1600	100	－	\cdots		
12AX	Duol Triode Class B	9 A	6.3	03	$1.6{ }^{\circ}$	$0.34{ }^{2}$	1.78	300	0	－	－	40^{2}	－	－	14^{5}	16K8	7.5		
12AY7		9A	12.6	015	1.3	0.6	1.3	250	－4	$-$	－	3	－	1750	40	－	－		
Tan 7	Dual Triode ${ }^{10}$ low－level Amp．	94	6.3	03	1.3	0.6	1.3	150	2700°		Plote resis	or $=20 \mathrm{~K}$	Grid resi	tor $=0.1$	meg．V．G	$=12.5$			
12A27A		9A	12.6	0.225	3.17	0.57	1.97	100	270°	－	－	3.7	15K	4000	60	－	－		
12A27a．	high－μ Dual Triode	9 A	6.3	0.45	3.18	0.46	1.98	250	200＊	－	－	10	10．9K	5500	60	－	－		
1284A：	Low．μ Triode	9AG	12.6	0.3	5	1.5	4.8	150	－17．5	－	－	34	1．03k	6300	6.5	－	－		
			12.6	0.3	3.27	0.57	2.87												
128H7A	Medium－μ Dual Triode ${ }^{10}$	94	6.3	0.6	3.24	0.44	$2.6{ }^{\circ}$	250	－10．5	－	－	11.5	5．3K	3100	16.5	－	－		
12816	Sharp Cut－oil Pent．	7BK	12.6	0.15	5.5	4.8	0.006	12.6	－0．65	12.6	0.0005	1.35	500k	1350	－	－	－		
128R7A	Dual Diode－Medium－μ Triode	9CF	12.6	0.225	2.8	1	1.9	100	$270 *$	－	－	3.7	15K	4000	60	－	－		
， $2 \mathrm{ar7a}$	Dual Diode－M．edium－μ Triode	9 Cr	6.3	0.45	2.8	1	1.9	250	200＊	－	－	10	10.9 K	5500	60	－	－		
$128 \mathrm{V7}$	Sharp Cut－off Pent．	98F	12.6 6.3 1.6	0.3	11	3	0.055	250	$68 *$	150	6	25	90K	12K	1100	－	－		
128Y7A：	Sharp Cut－oll Pent．	98F	12.6	0.3	11.1	3	0.055	250	$68 *$	150									
12ay ${ }^{\text {a }}$ ，	Sharp Cu－or Pent．	98	6.3	0.6	1.1	3	0.055	250	$88{ }^{\circ}$	150	6	25	90K	12K	1200	－	－		
12827	High－μ Duol Triodele	9A	12.6	0.3	6.57	0.77	2.57												
12827	High－μ Duol Trioder	9A	6.3	0.6	$6.5{ }^{6}$	0.550	2.50	250	－2	－	－	2.5	31．8K	3200	100	－	－		
12CN5	Pentode	7 CV	12.8	0.45	－	－	0.25	12.6	0	12.6	0.35	4.5	40K	3800	－	－	－		
12 CX 6	Shard Cur－olf Pent．	7BK	12.8	0.15	7.6	6.2	0.05	12.8	0	12.6	1.4	3	40 K	3100	－				
120E8	Diode－Rerole Cut－ott Pent．	fig． 81	12.6	0.2	5.5	5.7	0.006	12.8	－0．8	12.6	0.5	1.3	300 K	1500	－	－	－		
$120 \mathrm{K7}$	Dual Diode－Tetrode	9Hz	12.6	0.5	－	－	－	12.8	0	12.6	1	6	4K	5000	－	3．5K	0.01		
12018	Dual Diode－Tetrode	9 HR	12.6	0.55	12	1.3	－	12.6	－0．5	12.6^{*}	75＊＊	40	480	15K	7.2	3．5k			

V18
TABLE I－MINIATURE RECEIVING TUBES－Continued

Type	Nome	Base	Fin．or Heater		Capocitances $\mu \mu$ ．				高荢	ce	旡	$\frac{8}{4} \frac{0}{2}$			最䓂		$\begin{aligned} & \frac{5}{5} \\ & \text { 흗 } \\ & 30 \\ & 30 \end{aligned}$
			V．	Amp．	c^{\ldots}	Cout	$C_{0 p}$										
12007	Beam Pwr．Pent．	98F	$\begin{array}{r} 12.6 \\ 6.3 \end{array}$	$\begin{aligned} & .3 \\ & .6 \end{aligned}$	10	3.8	0.1	330	－	180	5.6	26	53K	10．5K	－	－	－
120S7A	Duol Diode	950	12.6	． 4	Max．a．c．voltage $=16$ ．Mox．d．c．output curi ent $=5 \mathrm{mo}$ ．												
	Pwr．Tetrode				－	－	－	16	－	16	75	40	480	15K	7.2	800	． 04
12017	High－μ	9 A	12.6	． 15	1.6	． 46	1.7	300	－2	－	－	1.2	62．5K	1600	100	－	－
	Dual Triode		6.3	． 3	1.6	． 34	1.7										
12007	Dual Diode Tetrode	9JX	12．6	． 275	Max，average diode current $=1.0$ mo．												
					11	3.6	． 6	16	－	16	1.5	12	6K	6200	－	2．7K	025
120V7	Dual Diode Triode	9 JY	12.6	． 15	Mox．average diode current $=1.0 \mathrm{ma}$ ．												
					1.3	． 38	1.6	16	－	－	－	0.4	19K	750	14	－	－
120V8	Dual Diode－Terrode	9HR	12.6	0.375	9.0	1.0	12	12.6	18°	－	－	6.82	－	－	7.6	1250	． 005
120W8	Diode	9JC	126	． 45	$\frac{1.6^{7}}{4.4^{4}}$	． 7	1.8	16	0	－	－	1.97	－	2700	9.5	－	－－
	Dissimiliar Dual Traode					$\overline{7}$	3.2					7.5	－	6500	6.4	－	－
120Y8	Sharp Cut off Triode	950	12.6	． 35	2	2	1.5	16	0	－	－	1.2	10K	2000	20	－	－
	Telrode				11	3	． 74	16	－	12.6	2	14	5K	6000	－	－	－
12026	Pwr．Amp．Pent．	78K	12.6	0.175	12.5	8.5	． 25	12.6	－	12.6	2.2	4.52	25K	3800	－	－	－
12EA6	R．f．Pent．	78K	12.6	0.175	11	4	． 04	12.6	－3．4	12.6	1.4	3.23	32K	3800	－	－	\cdots
12EC8	Medium．μ Triode	9FA	12.6	0.225	2.6	0.4	1.7	16	－2．2	－	－	2.4	6K	4700	25	－	－
	Pent．				4.6	2.6	． 02	16	－1．6	12.6	－	． 66	750 K	2000	－	－	\cdots
12E05 \ddagger	Pwr．Amp．Pent．	7CV	12.6	． 45	14	8.5	． 26	150	－4．5	150	11	36^{2}	14 K	8500	－	－	1.5
12EG6	Dual Control Heplode	7CH	12.6	． 15	－	－	－	30	－	12.6	2.4	． 4	150K	800	－	－	－
12EK6	R．F．Pent．	78K	12.6	． 2	10	5.5	． 032	12.6	－4．0	12.6	2	4.4	40K	4200	－	－	－
12EL6	Dual Diode－High－μ Triode	7FB	12.6	0.15	2.2	1	1.8	12.6	0	－	－	0.75	45K	1200	55	－	－
12 EM6	Diode－Tetrode	9 HV	12.6	0.5	－	－	－	12.6	0	12.6	1	6	4K	5000	－	－	－
12F8	Dual Diode－Remote Cut－off Pent．	9 FH	12.6	0.15	4.5	3	0.06	12.6	0	12.6	0.38	1	333K	1000	－	－	－
12FK6	Dual Diode－Low．μ Triode	7B1	12.6	0.15	18	7	1.6	16	0	－		1.3	6.2 K	1200	7.4	－	－
12FM6	Dual Diode－Med．μ Triode	781	12.6	0.15	2.7	1.7	1.7	30	0	－	－	1.8	5．6K	2400	13.5	－	－
12F76	Dual Diode－Triode	781	12.6	0.15	1.8	1.1	2.0	30	0	－	－－	2	7．6K	1900	15	－	－
12H4	General Purpose Triode	70W	12.6	0.15	2.4	0.9	3.4	90	0	－	－	10	－	3000	20	－	－
			6.3	0.3				250	－8	－	－	9	－	2600	20	－	－
12J8	Dual Diode－Tetrode	9GC	12.6	0.325	10.5	4.4	0.7	12.6	0	12.6	1.5	12^{5}	6 K	5500	\cdots	2.7 K	0.02
12K5	Tatrode（Pwr．Amp．Driver）	7EK	12.6	0.45	－	－	－	12.6	－2	12．6＊＊／85＊＊		8	800	7000	5.6	800	0.035
12R5 \ddagger	Beam Pwr．Pent．	7CV	12.6	0.6	13	9	0.55	110	－8．5	110	3.3	40	13K	7000	－	－	－
12U7	Dual Medium．μ Triode 10	94	12.6	0.15	1．67．	0.47	1．57．	12.6	0	－	－	1	12．5K	1600	20	－	－
18FW6	Remote Cul．off Pent．	7 CC	18	0.1	5.5	5	． 0035	150	－	100	4.4	11	250 K	4400	－	－	－
18FX6	Dual Control Heplode	7 CH	18	0.1	－	－	－	150	－	－	－	2.3	400K	－	－	－	－
18FY6	High．μ Triode－Diode	787	18	0.1	2.4	． 22	18	150	－1	－	－7	． 6	77K	1300	100	－	－
25F5	Beam Pwr．Pent．	7CV	25	0.15	12	6	0.57	110	－7．5	110	37	$36 \quad 37$	16 K	5300	－	2.5 K	1.2
32ET5	Beom Pwr．Pent．	7 CV	32	0.1	12	6	． 6	150	－7．5	130	－		21．5K	5500	－	2.8 K	1.2
35B5	Beam Pwr．Amp．	782	35	0.15	11	6.5	0.4	110	－7．5	110	3／7	41^{2}	－－	5800	40s	2.5 K	1.5
5085	Beam Pwr．Amp．	782	50	0.15	13	6.5	0.5	110	-7.5	110	4／8．5	$50{ }^{2}$	14 K	7500	495	2．5K	1.9
5686	Beam Pwr．Pent．	96	6.3	0.35	6.4	8.5	0.11	250	-12.5	250	3^{3}	27^{5}	45K	3100	－	9 K	2.7
5687	Medium．μ Dual Triode ${ }^{10}$	9 H	12.6	0.45	47	0.67	47	120	－2	－	－	36	1.7 K	IIK	18.5	－	－
			6.3	0.9	$4{ }^{4}$	$0.5{ }^{\circ}$	$4{ }^{4}$	250	-12.5	－	－	12.5	3 K	5500	16.5	－	－
5722	Noise Generating Diode	5 CB	63	1.5	－	2.2	－	200	－	－	－	35	－	－	－	－	－
$\begin{aligned} & 5842 / \\ & 417 A \end{aligned}$	High．μ Triode	9 V	6.3	0.3	9.0	1.8	0.55	150	62^{*}	－	0.	26	1．8K	24K	43	－	－
5879	Sharp Cut－ofl Pent．	9AD	6.3	0.15	2.7	2.4	0.15	250	－3	100	0.4	1.8	2 meg．	1000	－	－	－
6386	Medium－μ Dual Triode ${ }^{10}$	BCJ	6.3	0.35	2	1.1	1.2	100	$200 *$	1 －	－	9.6	4．25K	4000	17	－	－
6887	Dual Diode	685	6.3	0.2	Mox．peak inverse plate voltage $=360 \mathrm{~V}$ ．							Mox，d．c．plate current eoch diode $=10 \mathrm{mo}$ ．					
6973	Pwr．Pentode	9 EU	6.3	45	6	6	． 4	440	－15	330	－	－	73K	4800	－	－	－
7258	Sharp Cut－oft	904	12.6	． 195	7	2.4	． 4	330	－	125	3.8	12	170K	7800	一	－	－
	Med．$\cdot \mu$ Triode				2	． 26	1.5	330	－3	－	0	15	4．7K	4500	21	－	－
9001	Sharp Cut－ofl Pent．	780	6.3	0.15	3.6	3	0.01	250	－3	100	0.7	2	1 meg．	1400	－	－	－
9002	U．h．f．Triode	785	6.3	0.15	1.2	1.1	1.4	250	－7	－	－	6.3	11.4 K	2200	25	－	－
9003	Remote Cut－olf Pent．	7BD	6.3	0.15	3.4	3	0.1	250	－3	100	2.7	6.7	700K	1800	－	－	－
9006	U．h．f．Diode	6BH	6.3	0.15						Max，o．c．	voltoge	270．M	x．d．c．ou	tput curr	$\mathrm{t}=5 \mathrm{mo}$		

\＄Controlled heater warm－up charocteristic．
！Oscillator gridleak or screen－dropping resistor ohms
＊Cothode resistor chms．
＊＊Space－chorge grid．

I Per Plate．
${ }^{2}$ Moximum－signol current for full－power oulpur．
3 Values ore for two tubes in push．pull．
－Unless otherwise noted．

No signal phote mo
Effective plate to plate
Triode No． 1.
－Triode No． 2.
－Oscillator grid current ma．
10 Values for each section．
＂Mieromhos．
12 Through 33 K ．

TABLE If-METAL RECEIVING TUBES
Charocteristics given in this table apply to all tubes having type numbers shown, including For "G" and "GT" tubes nat listed (not having mefal caunterperts), see Tables III, V, VI and VIII.

TABLE III－6．3－VOLT GLASS TUBES WITH OCTAL BASES
（For＂G＂and＂GT＂－lype tubes not listed here，see equivalent type in Tables II and Vill；characteristics and connections will be similar）

Typ＊	Nome	Base	Fil．or Heater		Capacitances $\mu \mu$ ．			$\begin{gathered} > \\ \frac{2}{\frac{2}{2}} \frac{2}{9} \\ \frac{9}{3} \end{gathered}$	무여영		$\begin{aligned} & 5 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\frac{0}{2} \frac{0}{2}$			送		$\begin{aligned} & \frac{5}{3} \\ & \frac{1}{3} \\ & 30 \end{aligned}$
			V．	Amp．	C ${ }_{\text {m }}$	Cowt	C_{0}										
6AC5GT	Triode Pwr．Amp．AB Amp．${ }^{4}$	60	6.3	0.4	－	－	－	250	0	－	－	50	36.7 K	3400	125	10ks	8
64076	Triode－Pwr．Amp．Pent．$\quad \frac{\text { Triode }}{\text { Pent．}}$	BAY	6.3	0.85	－	－	－	250	－25	－	－	4	19K	325	6	－	－
								250	－16．5	250	6．5／10．5	34／36	80K	2500	－	7 K	3.2
6AH4GT	Medium－μ Triode	8EL	6.3	0.75	7	1.7	4.4	250	－23	－	－	30	1．78K	4500	8	－	－
6AL7GT	Electron－Ray Indicator	8 CH	6.3	0.15	－	－	－	Outer edge of any of the three illuminated areas displaced $1 / 4 \mathrm{sin}$ ． min ．autward with +5 volts to its eleztrode．Similor inward disp．with -5 volis．No pattern with -6 volts grid．									
6A07GT	Duol Diode－High．μ Triode	8CK	6.3	0.3	2.8	3.2	3	250	－2	\cdots	－	2.3	44K	1600	70	－	－
GAR6	Beam Pent．	680	6.3	1.2	11	7	0.55	250	－22．5	250	5	77	21K	5400	－	－	－
6ARTGT	Duol Diode－Remote Pent．	70E	6.3	0.3	5.5	7.5	0.003	250	－2	100	1.8	7	1.2 meg ．	2500	－	－	－
6A576	low．μ Twin Triode－D．C．Amp．${ }^{1}$	88D	6.3	2.5	6.5	2.2	7.5	135	$250 *$	－	－	125	0．28K	7000	2	－	－
6AUSGT	Beom Pwr．Amp．${ }^{1}$	6CK	6.3	1.25	11.3	7	0.5	115	-20	175	6.8	60	6 K	5600	－	－	－
6AV5GA	Beam Pwr．Amp．${ }^{\text {d }}$	6CK	6.3	1.2	14	7.0	0.5	250	-22.5	150	2.1	55	20K	5500	－	－	－
680597	Beam Pwr．Amp．＊	6CK	6.3	0.9	－	－	－	310	-200°	310	－	90°	－	－	－	－	－
68G6GA	Beam Pwr．Amp．＇	5BT	6.3	0.9	11	6	0.8	250	－15	250	4	75	25K	6000	－	－	－
68176TA	Madium μ Muol Triode ${ }^{1}$	880	6.3	1.5	4.4	0.9	6.0	250	－9	－	－－	40	2150	7000	15	－	－
$\begin{aligned} & 6806 \mathrm{GTB} \\ & 6 \mathrm{CU6} \end{aligned}$	8eam Pwr．Amp．	6AM	6.3	1.2	15	7	0.6	250	-22.5	150	2.1	57	14．5K	5900	－	－	－
68×761	Dual Triode＇	88 D	6.3	1.5	5	3.4	4.2	250	390°	－	－	42	1．3K	7600	10	－	－
6CB5A	8eam Pwr．Amp．＊	8GD	6.3	2.5	22	10	0.4	175	-30	175	6	90	5K	8800	－	－	－
6CD6GA	Beam Pwr．Amp．${ }^{1}$	SBT	6.3	2.5	24	9.5	0.8	175	－30	175	5.5	75	7．2K	7700	－	－	－
6CK4	Low．μ Triode	8.38	6.3	1.25	8.0	1.8	6.5	550	－26	－	－	55	1．0K	6500	6.7	－	－
6 6L5	Beam Pwr．Amp．＊	8 GO	6.3	2.5	20	11.5	0.7	175	－40	175	7	90	6K	6500	－	－	－
$6 \mathrm{CU6}$	Beam Pwr．Amp．${ }^{1}$	6AM	6.3	1.2	15	7	0.55	250	－22．5	150	2.1	55	20K	5500	－	－	－
60G6GT	Beam Pwr．Amp．	75	6.3	1.2	－	－	－	200	180＊	125	8.57	477	28K	8000	－	4K	3.8
60N6	Beam Pwr．Pent．${ }^{\text {a }}$	5BT	6.3	2.5	22	11.5	0.8	125	－18	125	6.3	70	4K	9000	－	－	－
6DN7	Dissimilar Dual Triode	8BD	6.3	0.9	2.2	0.7	4.0	350	－8	－	－	8	9 K	2500	22	－	－
					4.6	1.0	5.5	550	－9．5	－	－	68	2 K	7700	15	－	－
6005	Beam Pwr．Amp．	8．JC	6.3	2.5	23	11	0.5	175	－25	125	5	110	5．5K	10．5K	－	－	－
60068	Beam Pwr．Amp．${ }^{1}$	6AM	6.3	1.2	15	7	0.55	250	-22.5	150	2.4	75	20K	6600	－	－	－
6EA7	Dissimiliar Dual Triode	8BD	6.3	105	2.2	0.6	4	350	－3	－	－	1.5	34K	1950	65	－	－
					6	1.3	8	550	－25	－	－	95	770	6500	5	－	－
6EF6	8eom Pwr．Amp．${ }^{11}$	75	6.3	0.9	11.5	9	0.8	250	－18	250	2	50	－	5000	－	－	－
6EY6	Beam Pwr．Pent．	7AC	6.3	0.68	8.5	7	7	350	-17.5	300	3	44	60K	4．4K	－	－	－
6EZS	Beam Pwr．Pent．	7AC	6.3	0.8	9	7	． 6	350	－20	300	3.5	43	50K	4．1K	－	－	－
6 6H6	Beam Pwr．Pent．	6AM	6.3	1.2	33	8	． 4	770	-22.5	220	1.7	75	12K	6 K	－	－	－
6666	$\text { Beam Pwr. Amp. } \frac{A_{1} \text { Amp. }}{A_{1} \text { Amp. }{ }^{2}}$	75	6.3	0.15	5.5	7	0.5	180	－9	180	2.56	150	175K	2300	－	10K	1.1
								180	－ 12	－	－	11	4．75K	2000	9.5	12K	0.25
6K6GT	Pwr．Amp．Pent．	75	6.3	0.4	5.5	8	0.5	315	－21	250	4／9	25／28	110K	2100	－	9 K	4.5
6S8GT	Triple．Diode－Triode	8 CB	6.3	03	1.2	5	2	250	－2	－	－	－	91 K	1100	100	－	－
65076T	Semi－Remote Pent．	8 H	6.3	0.3	9	7.5	0.0035	250	－2	125	3	9.5	700K	4250	－	－	－
6SL7GT	High $-\mu$ Duol Triode＇	8BD	6.3	0.3	3.4	3.8	2.8	250	－2	－	－	2.3	44K	1600	70	－	－
6SN7GTB	Medium．μ Dual Triode＇	880	6.3	0.6	3	1.2	4	250	－8	－	－	9	77 K	2600	20	－	－
6U6GT	Beam Pwr．Amp．	75	6.3	0.75	－	－	－	200	－14	135	3／13	55／62	20 K	6200	－	3K	5.5
6W6GT	8eam Pwr．Amp．	75	6.3	1.2	15	9	0.5	200	180＊	125	2／8．5	46／47	28 K	8000	－	4 K	3.8
6Y6GA	Beam Pwr．Amp．	75	6.3	1.25	15	1	0.7	200	－14	135	2．2／9	61／66	18．3K	7100	－	2.6 K	6
1635	High－μ Duol Triode	8 B	6.3	0.6	－	－	－	300	0	－	－	6．6／54	－	－	－	12K5	10.4
7027	Beam Pwr．Amp．	8 HY	6.3	0.9	10	7.5	1.5	450	－30	350	19.2	194	－	8000	－	6K5	50
－Cothode resistor－ohms． 1 Per section． 2 Screen tied to plata．		3 Values are for single lube． －Values ore for two tubes in push－pull． s Plote．to－plate volue．							No signal Max．valu Horz．De			－Cath 10 Micr 11 Verl．	mhos． Deflectio	Amp．			

TABLE IV－6．3－VOLT LOCK－IN－BASE TUBES
For other lock－in－base types see Tables V, VI_{1} ，and VII

Typ＊	Nome	Base	Fil．or Heater		Capacitances $\mu \mu f$ ．			$\begin{gathered} \frac{2}{2} \\ \frac{2}{2} \\ \frac{0}{2} \\ 3 \end{gathered}$	芯夏		$\begin{aligned} & \text { g } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	害苋	$\stackrel{\text { E }}{\stackrel{\text { E }}{\circ}}$		$\begin{aligned} & \dot{0} \text { O } \\ & \text { E } \\ & \text { 人 } \\ & \hline 0 \end{aligned}$		
			V．	Amp．	$\mathbf{C}_{\text {in }}$	Cowt	C_{98}										
7AB	Ociode Conv．	84	6.3	0.15	7.5	9	0.15	250	－3	100	3.2	3	50 K	Anode grid 250 Volis max．＇			
7AH7	Remote Cup－off Pent．	8 V	6.3	0.15	7	6.5	0.005	250	250＊	250	1.9	6.8	1 meg ．	3300	－	－	－
7AK7	Sharp Cut－oll Pant．	8 V	6.3	0.8	12	9.5	0.7	150	0	90	21	41	11．5K	5500	－	－	－
787	Remote Cut－ofl Pent．	$8 V$	6.3	0.15	5	6	0.007	250	－3	100	1.7	8.5	750K	1750	－	－	－
767	Sharp Cut－olf Pent．	8 V	8.3	0.15	5.5	6.5	0.007	250	-3	100	0.5	2	2 meg ．	1300	－	－	－
7 7\％	Dual Diode－Pent．	BAE	6.3	0.3	4.6	5.5	0.005	250	$330{ }^{*}$	100	1.6	7.5	700K	1300	－	－	－
7F8	Medium－μ Dual Triode？	$88 W$	6.3	0.3	2.8	1.4	1.2	250	500＊	－	－	6	14．5K	3300	48	－	－
7K7	Dual Diode－High $\mu \mu$ Tri．	$8 B F$	6.3	0.3	2.4	2	1.7	250	－2	－	－	2.3	44K	1600	70	－	－
de resistor－ohms．\quad Through 20K resistor．${ }^{\text {a }}$（ Eoch section．									3 Mieromhos．								

Type	Nome	Best	Fil．or Hecter		Copacthance： $\mu \mu$ ．			$\begin{array}{r} \frac{2}{2} \\ \frac{2}{\frac{1}{2}} \frac{2}{2} \end{array}$	产荢		5	$\frac{0}{2} \frac{0}{2}$	$\stackrel{\stackrel{e}{E}}{\stackrel{\circ}{\circ}}$		道		50033
			V．	Amp．	C．	Conr	$C^{\text {p }}$										
$1476 T$	Pentogrid Conv．	72	1.4	0.05	7	10	0.5	90	0	45	0.7	0.6	600K	Etb A	ade－gr	$=90$	
1H5GT	Diode High－μ Triode	5Z	1.4	0.05	1.1	4.6	1	90	0	－	－	0.15	240K	275	65	－	．
1 N 5	Sharp Cut－oif Pent．	740	1.4	0.05	3	8	0.007	90	0	90	0.35	1.6	1.1 meg．	800	－	－	－
TN5GT	R．i．f Pantode	$5 Y$	1.4	0.05	3	10	0.007	90	0	90	0.3	1.2	1.5 meg．	750	－	－	－
3E6	Sharp Cut－olf Pant．	7 CJ	2.81	0.05	5.5	8	0.007	90	0	90	1.2	2.9	325K	1700	－	－	－

＇Center－tap filament permits 1.4 volt operation．
${ }^{2}$ Misromhos．
table vi－high－voltage heater tubes
See alse Table Vill．

TABLE VII－SPECIAL RECEIVING TUBES

TABLE VIII－EQUIVALENT TUBES
The equivalent tubes Hated in this table are，in general，designed for industrial，military and other special－purpose applicotions．These mubes are generally not directly interchangeable becaute of mechenleal and／or olectrical differences involving besing，heater charecteristics，moximum electrical differences involving besing，h

Type	Equivalent and Table		Base	Epl	1.2	Type	Equivalent and Table		Base	E， 1	1,2
1 K 3	IJ3	x	3 C	1.25	0.2	SFVE	6FV8	－	9FA	4.7	0.6
1LH4	IHSGT	v	540	1.4	0.05	5V4G	5V4GA	X	51	5.0	30
2C39wa	2 C 39	XI	－	5.8	1.03	646	6 N 7	II	78	6.3	0.8
3EAS	$2 \mathrm{FA5}$	1	7EW	2.9	0.45	6A7	$6 A^{8}$	II	7 C	6.3	0.3
31843	305GT	VII	${ }_{6} 8^{-1}$	28	0.05	6AES	$6 \mathrm{K8}$	11	SDU	6.3	0.3
3 V 43	304	1	68 x	28	0.05	6AM8	6AM8A：	1	9 CY	6.3	0.45
40K6	30 Kz	1	7 CM	4.2	0.45	6ANE	6AN8A \ddagger	I	9 DA	6.3	0.45
5EA8	6 EAB	1	94E	4.7	Ch	6405	6AGSA	1	782	6.3	0.45

TABLE VIII－EQUIVALENT TUBES－Continued

Typo	Equivalent and Table		Base	$\mathrm{E}_{1} 1$	$1{ }^{2}$	Type	Equivalent o	Table	Base	$E_{1}{ }^{1}$	$1{ }^{2}$
6AS7GA	6AS7G	III	88D	6.3	2.5	12K8	6 K 8	11	8K	12.6	0.15
6ATA	6AT8A	1	90W	6.3	8.8	1258GT	658GT	III	8CB	12.6	0.15
6 6AU6	6AU6A才	1	78K	6.3	0.3	125A7	65 A 7	11	8R	12.6	0.15
6AU7\％	12AU7A	1	9 A	3.15	0.6	$125 \mathrm{C7}$	6SC7	11	85	12.6	0.15
6AX7！${ }^{\text {S }}$	12AX7	1	9 A	6.3	0.3	125F5	6SF5	II	6 6B	12.6	0.15
6BE8	6BE8A ${ }_{+}$	1	9EG	6.3	0.45	125 F7	6SF7	11	742	12.6	0.15
6806GA／GTA	6BO26GTB	III	6AM	6.3	1.2	125G7	6SG7	1	BBK	12.6	0.15
6BRE	6BR8A	1	9FA	6.3	0.45	125K7	6SH7	11	8BK	12.6	0.15
6C6	617	11	68	6.3	0.3	125 J 7	6SJ7	11	8 N	12.6	0.15
6CB6	6CB6AI	1	7 CM	6.3	0.3	$125 \mathrm{K7}$	6SK7	11	8 N	12.6	0.15
6CD6G	6CD6GA	III	58T	6.3	2.5	12517GT	6SI7GT	III	8BD	12.6	0.15
6CG8	6CG8A！	1	9GF	6.3	0.45	12SN7GT	6SN7GI8	III	3BD	12.6	0.3
${ }^{6} \mathrm{CLB}$	6CIBA \ddagger	1	9FX	6.3	0.45	125N7GTA	6SNTGIB	III	8BD	12.6	0.3
6C5E゙！	6C88	，	9 F	6.3	0.45	12507	6507	11	80	12.6	0.15
6CU8	6AN8	1	9GM	6.3	0.45	12587	65^{87}	1	80	12.6	0.15
6EW6	4EW6	1	7CM	6.3	0.4	12W6GT	6W6GT	III	75	12.6	0.6
656	6J6A！	1	7BF	6.3	0.45	$14 \overline{A 7}$	6SK7	11	8 V	12.6	0.15
6L6GA	616 GB	11	75	6.3	0.9	14 AF7	7AF7	IV	SAC	12.6	0.15
654	654A	1	94 C	6.3	0.6	1486	6SQ7	11	sw	12.6	0.15
6SN7GTA	6SN7GTB	III	8BD	6.3	0.6	1497	6SI7GT	111	AC	12.6	0.15
6SU7GTY	6S17GT	III	880	6.3	0.3	14N7	6SN7GTB	III	BAC	12.6	0.6
678	6T8A！	1	9 C	6.3	C． 45	1407	6 SA7	11	SAL	12.6	0.15
608	6U8A才	1	9AE	6.3	0.45	19C184	6C18A	1	9FX	18.9	0.15
6V6	6V6GTA	11	75	6.3	0.45	25806GA	6BQ6GT8	119	6AM	25	0.3
6 6Y6G	6Y6GA	III	75	6.3	1.25	25BO6GT	6BO6GTB	III	6AM	25	0.3
6Y6GT	6Y6GA	III	75	6.3	1.25	25806GTB：	6BQ6GTB	III	6AM	25	0.3
74.4	615	II	5AS	6.3	0.3	25 C 5	50 C 5	VIII	7 CV	25	0.3
746	6H6	11	7AJ	6.3	0.15	25C6GA	50C6GA	VIII	75	25	0.3
747	65k7	11	8 V	6.3	0.3	$25 \mathrm{CA5}$	6CAS	1	7CV	25	0.3
7B4	6SFS	11	5AC	6.3	0.3	25CD6G	6CD6GA	III	587	25	0.6
785	6K6GT	III	6AE	6.3	0.4	25CD6GA \ddagger	6CD6GA	III	58T	25	0.6
786	6507	11	8w	6.3	0.3	25CD6G \ddagger	6CD6GA	III	5BT	25	0.6
788	648	11	${ }^{8 \times}$	6.3	0.3	25 CU 6	$6 \mathrm{CU6}$	III	6AM	25	0.3
$7 \mathrm{C5}$	6V6	11	6AA	6.3	0.45	25DN6 \ddagger	6DN6	III	58T	25	0.6
7EY6：	6 EY6	III	7AC	7.2	0.6	25EC6！	25CD6GB	VIII	5BT	25	0.6
787	6SL7GT	III	BAC	6.3	0.3	25En5	6EHS	\bar{i}	7 CV	25	0.3
$7 \mathrm{H7}$	6567	11	8 V	6.3	0.3	2516GT	1216GT	VI	75	25	0.3
7NT	6SN7GT	III	8 AC	6.3	0.6	25SA7GT	6SATGT	II	8AD	－	－
707	6SA7	11	8 Al	6.3	0.3	25W6GT	6W6GT	III	75	25	0.3
10EB8：	6E8B	1	90 X	10.5	0.45	35C5	3585	1	7CV	35	0.15
12ABGT	6AB	11	BA	12.6	0.15	3516GT	3585	1	75	35	0.15
$12 \mathrm{AL5}$	6Al5	1	685	12.6	0.15	41	6K6GT	111	68	6.3	0.4
12AT6	6AT6	1	78T	12.6	0.15	42	6 66	11	68	6.3	0.7
12 AU6	6AU6A	1	7BK	12.6	0.15	50A5	1216 GT	VI	64A	50	0.15
12AV5GA！	6AVSGT	III	6CK	12.6	0.6	508K5	68 K 5	1	980	50	0.15
124 V 6	6AV6	1	7BT	12.6	0.15	S0C5	5085	1	7CV	50	0.15
1284	1284A ${ }^{\text {a }}$ 3	1	9AG	12.6	0.3	50C6GA	50C6G	VI	75	50	0.15
12846	68 A6	1	7BK	12.6	0.15	50L6GT	1216 GT	VI	7AC	50	0.15
12847	68A7	1	8 CT	12.6	0.15	75	6SQ7	11	6G	6.3	0.3
128D6	6BD6	1	7BK	12.6	0.15	78	$6 \mathrm{K7}$	II	$6 F$	6.3	0.3
12BE6	6BE6	1	7CH	12.6	0.15	417 A	5842	1	9 V	6.3	0.3
128.6	6BF6	1	7 BT	12.6	0.15	1221	617	11	$6 F$	6.3	0.3
128K5：	6BK5	1	980	12.6	0.6	1223	617	11	78	6.3	0.3
128K6	6BK6	，	78T	12.5	0.15	1631	616GB	11	7AC	12.6	0.45
128 N 6	68N6	I	70E	12.6	0.15	1632	1216GT	VI	75	12.6	0.6
12896GA ${ }_{\text {＋}}$	6BQ6GTB	III	6AM	12.6	0.6	1634	$6 \mathrm{SC7}$	11	85	12.6	0.15
12806GT！	6BQ6GT8	IIt	6AM	12.6	0.6	5591	6AK5	1	78D	6.3	0.15
12806GTB！	6BQ6GT8	III	6AM	12.6	0.6	5654	6AK5	1	78D	6.3	0.175
12876	6 6T6	1	7BT	12.6	0.15	5670	2C51	1	BCJ	6.3	0.35
12806	6BU6	I	787	12.6	0.15	5679	6 H 8	11	7CX	6.3	0.15
$128{ }^{12} 4$	68W／4	\times	901	12.6	0.45	5691	6SL7GT	III	8BD	6.3	0.6
128×7	128Y7A才 ${ }^{\text {a }}$	1	98 F	12.6	0.3	5692	6SN7GT	111	8BD	6.3	0.6
12826；	6876	1	7 CM	12.6	0.15	5725	6A56	1	7 CM	6.3	0.175
12C5	5085	1	7CV	12.6	0.6	5726	6A15	1	6BT	6.3	0.3
12 Cs	688	11	SE	12.6	0.15	5749	6BA6	1	78K	6.3	0.3
12CAS：	6CA5	1	7CV	12.6	0.6	5750	68 E 6	1	7 CH	6.3	0.3
$12 \mathrm{CM6}$	$6 \mathrm{CM6}$	1	9 CK	12.6	0.225	$5751{ }^{13}$	12AX7	1	9A	12.6	0.175
12CR6	${ }_{6}^{6}$ CR6	1	7EA	12.8	0.15	581443	12SN7GT	Vill	9A	12.6	0.175
12Cs5	${ }_{6} 6 \mathrm{CS5}$	1	9CK	12.6	0.6	5871	6V6GTA	II	7AC	6.3	0.9
12C56	6 C 56	1	7CH	12.6	0.15	5881	$616 \mathrm{G8}$	11	7AC	6.3	0.9
12CU5：	6 Cus	1	7CV	12.6	0.6	5910	144	1	6AR	1.4	0.05
$12 \mathrm{Cu6}$	$6 \mathrm{CU6}$	III	6AM	12.6	0.6	5915	6BY6	1	7 CH	6.3	0.3
12085	6D85	1	9GR	12.6	0.6	$5963{ }^{3}$	12AU7A	1	9 A	12.6	0.15
12DF7	12AX7	1	9A	12.6	0.15	5964	616A	1	78F	6.3	0.45
12096 at	6DQ68	III	6AM	12.6	0.6	59653	12AV7	1	9A	12.6	0.225
12DT5	6DT5	1	9HN	12.6	0.6	6046	1266 GT	VI	7AC	25	0.3
12078	6 618	1	90E	12.6	0.15	60573	124×7	1	9 A	12.6	0.15
120W5：	6DW5	1	9 CK	12.6	0.6	6058	6A15	1	6BT	6.3	0.3
12EF6！	6EF6	III	75	12.6	0.45	6059	617	II	98 C	6.3	0.15
$12 \mathrm{G4}$	615	11	686	12.6	0.15	60603	12AT7		9 A	12.6	015
$12 \mathrm{H6}$	6 H 6	11	70	12.6	0.15	6061	6V6GTA	，	9AM	6.3	0.45
12J5GT	6.5	11	60	12.6	0.15	6064	6AM6	1	708	6.3	0.3
12 Cl 9	617	11	7R	12.6	0.15	6065	68H6	1	7 DB	6.3	0.2
12K7GT	6 K 7	11	7 R	12.6	0.15	6086	6AT6	I	7 BT	6.3	0.3

TABLE VIII-EQUIVALENT TUBES-Continued

Type	Equivalent and Table	Base	Ef ${ }^{1}$	It ${ }^{2}$
$6067{ }^{3}$	12AUJA I	9 A	12.6	0.15
6080	6AS7G III	88D	6.3	2.5
6101	$6{ }^{6} 6$ A	7BF	6.3	0.45
6132	6Ch6	98A	6.3	0.75
6136	GAU6A I	7BK	6.3	0.3
62013	12AT7 I	9A	12.6	0.15
6265	6 BH 8 I	7CM	6.3	0.175
$6350{ }^{3}$	128H7A I	9 CZ	12.6	0.3
6485	6A1-6 1	78K	6.3	0.45
6660	6 BAB I	7CC	63	C. 3
6661	68H6 I	7CM	6.3	0.15
6662	68JaA I	7CM	6.3	0.15
6663	6Al5 I	68T	6.3	0.3
6669	6AQ5A I	782	6.3	0.45
6677	6Cls 1	98 V	6.3	0.65

Typ*	Equivalent and Tabla		Base	E. ${ }^{1}$	74 ${ }^{2}$
6678	6U8A!	1	9AE	6.3	0.45
66793	12AT7	1	9A	12.6	0.15
66803	12AU7A	1	9A	12.6	0.15
6681^{3}	12AX7	1	94	12.6	0.15
68293	5965	VIII	9 A	12.6	0.225
6897	2C39	X	-	6.3	1.05
7000	617	II	7R	6.3	0.3
70253	12ax7	VII	9A	12.6	0.15
7137	614	1	7B0	6.3	0.4
7700	617	11	$6 F$	6.3	0.3
EEC8 ${ }^{3}$	12 AT7	1	94	12.8	0.15
EEC823	12AU7A	I	9 A	12.6	0.15
EEC83 ${ }^{3}$	12AX7	I	9 9	12.6	0.15
KT-664	616GB	II	7AC	6.3	1.27
XXD	7AF7	IV	AAC	12.6	0.15

Controlled heater warm-up characteristics.
Filament or heater volfage.
Heater center-topped for operation
af half voltage shown.

TABLE IX-CONTROL AND REGULATOR TUBES

TABLE X-RECTIFIERS-RECEIVING AND TRANSMITTING
See Also Table IX-Control and Regulotor Tubes

Type	Name	Base	Cathode	Fil. or Heater		Max. A.C. Vallage Por Plate	D.C. Output Current Me.	Max. Inverse Peok Voltage	Peak Plate Current Me.	Type
				Volts	Amp.					
$\begin{aligned} & \text { 1G3-GT/ } \\ & \text { 1B3-GT/ } \end{aligned}$	Hall. Wave Rectifier	3 C	Fil.	1.25	0.2	-	1.0	33000	30	HV
1K3/133	Half. Wave Rectifier	3 C	Fil	1.25	0.2	-	0.5	26000	50	HV
1 V 2	Half. Wave Rectifier	90	FH.	0.625	0.3	-	0.5	7500	10	HV
2B25	Half-Wave Rectifer	3 T	Fil	1.4	0.11	1000	1.5	-	9	HV
2×2-A	Hall-Wave Rectifier	4AB	Hr	2.5	1.75	4500	7.5	-	-	HV
1Y2	Half. Wave Rectifier	4AB	Fil	2.5	1.75	4400	5.0	-	-	HV
222/G84	Half-Wave Rectifier	48	Fol.	2.5	1.5	350	50	-	-	HV
3824	Hall. Wave Rectifier	Fig. 49	Fil.	$\frac{5.0}{2.53}$	$\frac{3.0}{3.0}$	--	$\begin{aligned} & 60 \\ & 30 \end{aligned}$	$\begin{aligned} & 20000 \\ & 20000 \end{aligned}$	$\begin{aligned} & \hline 300 \\ & 150 \end{aligned}$	HV
3828	Half.Wave Reclifier	4 P	Fil.	2.5	5.0	-	250	10000	1000	HV
5AU4	Full. Wave Recrifier	57	Fil	5.0	4.5	3003	3503	1400	1075	HV
						4003	3253			
						5004	3254			
SAW4	Full-Wave Recrifier	51	Fil	5.0	4.0	4503	2503	1550	750	HV
						5504	2504			
$\begin{aligned} & \text { 5R4GY } \\ & \text { 5R4GYA } \end{aligned}$	Full. Wove Recrifier	51	Fil.	5.0	2.0	9003	1503	2800	650	HV
						9504	1754			
574	Full-Wave Recti'ter	51	Fil.	5.0	20	450	250	1250	800	HV
SU4G	Full-Wave Rectifier	57	Fil	5.0	3.0	Some as Type 573				HV
5U4GA	Full. Wave Rectifier	51	F.l	50	3.0	3003	2753	1550	900	HV
						4503	2503			
						5504	2504			
sU4GB SASAA	Full-Wave Rectitier	57	Fil	5.0	3.0	3003	3003	1550	1000	HV
						$450{ }^{3}$	2753			
						5504	2754			
5 V 3	Full-Wave Rectifier	51	Hir	5.0	3.8	$\begin{aligned} & 4253 \\ & 5004 \end{aligned}$	350	1400	1200	HV
5V4GA	Full-Wave Rectifier	51	Hre.	5.0	2.0	3753	175	1400	525	HV
5W4GT	Full. Wave Rectilier	57	Fil	5.0	15	350	110	1000	-	HV
5×4G	Full-Wave Rectiliar	50	Fil	5.0	3.0		Same	pe 573		HV
SY3-G-G7	Full. Wave Rectitior	57	Fil.	5.0	2.0		Same	ype 80		HV
5Y4-G-GT	Full-Wave Rectilier	50	F_{1}	5.0	2.0		Some	pe 80		HV
523	Full-Wave Rectilier	4 C	Fil.	5.0	3.0	500	250	1400	-	HV
514	Full-Wave Rectifer	51	Hfr	5.0	2.0	400.	125	1100	--	HV
6AV4	Full-Wave Rectilier	585	Hrr .	6.3	0.95	-	90	1250	250	HV
6AX5GT	Pull-Wave Rectifier	65	Her.	6.3	1.2	450	125	1250	375	HV
68 W 4	Full- Wave Rectutier	901	H_{7}	6.3	0.9	450	100	1275	350	HV
68×4	Full-Wave Rectifier	585	Hir	6.3	0.6	-	90	1350	270	HV
$68 Y 5 \mathrm{G}$	Full. Wave Rectifier	6 CN	Htr	6.3	1.6	3753	175	1400	525	HV
6CA4	Full-Wave Recritier	9 M	Hrs.	6.3	1.0	3503	150	1000	450	HV
$6 \mathrm{DA4}$	Half. Wave Diode	4CG	$\mathrm{H}+\mathrm{r}$	6.3	1.2	- -	155	4400	900	HV
6U4GT	Halt-Wave Rectilier	4CG	Hir.	6.3	1.2	-	138	1375	680	HV
6 V 4	Full-Wave Rectifier	9 M	Hr .	6.3	0.6	350	90	-	-	HV
$6 \times 4 / 6063$		7CF	Ht							
$6 \times 5 \mathrm{GT}$	Full-Wave Recthler	65	Hir	6.3	0.6	4504	70	1250	210	HV
623	Half-Wave Reentier	46	Fil	6.3	03	350	50	-	-	HV
120F5	Full-Wave Rectifier	985	Hr .	6.3	0.9	450				
$120 F 5$	Pul-Wave Rectifier	9 S	Hir.	12.6	0.45	450	100	1275	350	HV
12×4	Full-Wave Rectutier	585	$\mathrm{H} \%$	12.6	0.3	${ }^{6503}$	70	1250	210	
12×4	Full-Wave Recthier	58	Hir	12.6	0.3	9004	70	1250	210	HV
2573	Half-Wave Rectilier	4 G	H / r	25	03	250	So	-	-	HV
2575	Recrifier-Doubler	$6 E$	Hft .	25	0.3	125	100	-	500	HV
2526	Rectilier-Doubler	70	Hir	25	0.3	125	100	-	500	HV
35W4	Half. Wave Rectifier	58Q	H^{\prime}	351	0.15	125	60	330	600	HV
3574GT	Half.Wave Rechifer	5AA	Hfr	35	015	250	100	700	600	HV
3575G	Half.Wave Rectifier	6 AD	Hr .	351	0.15	125	60	--	-	HV
36 AM ${ }^{\text {a }}$	Hall-Wave Rectifier	580	Hrr.	38	01	117	75	365	530	HV
500C4	Hall-Wave Recrilier	580	Hir.	So	0.15	117	100	330	720	HV
50Y6GT	Full-Wave Rectilier	70	Htr	50	0.15	125	85	-	-	HV
50766	Voltage Doubler	70	Hrs.	50	0.3	125	150	-	-	HV
80	Full-Wave Rectilier	4 C	FII.	5.0	2.0	$\begin{aligned} & 350^{3} \\ & 500^{4} \end{aligned}$	$\begin{aligned} & 125 \\ & 125 \end{aligned}$	1400	375	HV
83	Full-Wave Rectifier	4 C	Fil.	5.0	3.0	500	250	1400	800	MV
83-V	Full-Wave Rectifier	4AD	Hir.	5.0	2.0	400	200	1100	-	HV
84/624	Full-Wave Rectifier	50	Hro.	6.3	0.5	350	60	1000	-	HV
$\begin{aligned} & 117 \mathrm{GT} / \mathrm{6} \\ & 117 \mathrm{MFGT} \end{aligned}$	Rectifier. Tetrode	SAO	Hr .	117	0.09	117	75	-	-	HV
117 N7GT	Rectifier.Tetrade	BAV	Hir	117	0.09	117	75	350	450	HV
117P7GT*	Recrifier-Telrode	BAV	Hr	117	0.09	117	75	350	450	HV
11723	Half-Wave Rectifier	4 CB	Hir.	117	0.04	117	90	330	-	HV
816	Hall-Wave Rectilier	4 P	Fil.	2.5	2.0	2200	125	7500	500	MV
336	Half-Wave Rectifier	4 P	Htr.	2.5	5.0	-	-	5000	1000	HV
866-A.AX	Half-Wave Rectifier	4 P	Fil	2.5	5.0	3500	250	10000	1000	MV
8668	Half-Wave Rectifier	4 P	Fil.	5.0	5.0	-	-	8500	1000	MV
866 Jr .	Hall-Wave Rectilier	48	Fil.	2.5	2.5	1250	250^{2}	-	-	MV
972A/372	Hall.Wave Recrifier	4AT	Fil.	5.0	7.5	-	1250	10000	5000	MV
$\begin{aligned} & 1 \text { Tappec } \\ & 2 \text { Per poi } \end{aligned}$	pilat lamps. choke input.			${ }^{3}$ Capoci - Choke i				3 Usin - Obs	y one-hal	ament.

	Maximum Ratings						Cathode		Capacitances			Base	Typical Operation							
Type		$\begin{array}{r} \frac{0}{0} \\ \frac{0}{2} \frac{2}{6} \\ \frac{1}{0} \end{array}$	$\begin{array}{r} \frac{0}{2} \\ \frac{8}{2} \\ \frac{0}{2} \\ \hline \end{array}$	$\begin{aligned} & \text { 믐 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\frac{\stackrel{\pi}{6}}{5}$		C $\mu \mu f$.	$C_{\text {gp }}$ $\mu \mu \mathrm{f}$.	Cout $\mu \mu \mathrm{f}$.			$\begin{array}{r} \text { 券 } \\ \text { 흥 } \\ \hline \end{array}$	$\begin{array}{r} 8 \\ 0.0 \\ \hline 0 . \\ \hline 0 \end{array}$					
958-A	0.6	135	7	1.0	500	12	125	01	06	26	08	580	C.T.O	135	-20	7	1.0	0.035	-	0.6
6J6A ${ }^{\text {+2 }}$	1.5	300	30	16	250	32	6.3	045	22	16	0.4	7BF	C. T	150	-10	30	16	0.35	-	3.5
9002	1.6	250	8	2.0	250	25	6.3	0.15	1.2	1.4	1.1	785	C.T.O	183	-35	7	1.5	-	-	0.5
955	1.6	180	8	20	250	25	6.3	015	10	1.4	06	58C	CTO	183	-35	7	1.5	-	-	0.5
HY114B	1.8	180	12	3.0	300	13	1.4	0.155	10	1.3	1.0	27	C.T.O	183	-30	12	2.0	0.2	-	1.43
HY1148	1.8	18	1	3.0	300	13	1.4	0155	10	1.3	1.0	21	C.P	180	-35	12	25	0.3	-	1.43
$6 F 4$	2.0	150	20	8.0	500	17	6.3	0.225	2.0	1.9	0.6	78R	C.T.O	150	$\begin{array}{r} -15 \\ 550^{*} \\ 2000^{4} \end{array}$	20	7.5	0.2	-	1.8
12 Au7Az	2.75 *	350	12°	3.58	54	18	6.3	03	1.5	1.5	0.5	9 A	C.T.O	350	-100	24	7	-	-	6.0
6026	30	150	30	10	400	24	6.3	02	2.2	13	038	Fig. 16	C.T.O	135	13004	20	9.5	-	-	1.25
HY615 HY-E1148	3.5	300	20	4.0	300	20	6.3	0.175	1.4	1.6	1.2	Fig. 71	C.T.O	300	-35	20	2.0	0.4	-	4.03
													C.P	300	-35	20	3.0	0.8	-	3.53
6C4	5.0	350	25	80	54	18	6.3	015	18	1.6	1.3	686	$\mathrm{C}^{-1.0}$	300	-27	25	7.0	0.35	-	5.5
$2 \mathrm{C36}$	5	1500^{5}	-	-	1200	25	6.3	0.4	1.4	2.4	036	Fig. 21	C.TO ${ }^{10}$	10003	0	9003	-	-	-	2005
$\underline{2 C 37}$	5	350	-	-	3300	25	6.3	0.4	14	1.85	0.02	Fig. 21	CT.O12	150	35004	15	3.6	-	-	0.5
5764	5	$1500^{\text {s }}$	11.5	-	3300	25	6.3	0.4	1.4	1.85	0.02	Fig. 21	CTO^{16}	$1000{ }^{5}$	0	$1300^{\text {s }}$	-	-	-	2003
5675	5	165	30	8	3000	20	6.3	0.135	2.3	1.3	0.09	Fig. 21	G.G.O	120	-8	25	4	-	-	0.05
6N72	5.50	3501	30*	5.06	10	35	63	0.8	-	-	-	88	C.T.Ol1	350	-100	60	10	-	-	14.5
$2 \mathrm{C40}$	6.5	500	25	-	500	36	6.3	0.75	2.1	1.3	0.05	Fig. 11	C.T.O	250	-5	20	0.3	-	-	0.075
5893	8.0	400	40	13	1000	27	6.0	0.33	2.5	1.75	0.07	Fig. 21	C.T	350	-33	35	13	2.4	-	6.5
													${ }^{C \cdot} \cdot{ }^{\text {P }}$	300	-45	30	12	2.0	-	6.5
Gl-6442	8.0	350	35	15	2500	47	6.3	09	5.0	2.3	0.03	-	C-T	350	- 50	35	15	-	-	6.5
6,-6442	8.0	350	3	15	2500	4	6.3	0	5.0	2.3	0.03	-	$\mathrm{C} \cdot \mathrm{P}$	275	-50	35	15	-	-	-
$\begin{aligned} & \text { 2C34/ } \\ & \text { RK342 } \end{aligned}$	10	303	80	20	250	13	6.3	0.8	3.4	2.4	05	Fig. 70	C-T.O	300	-36	80	20	1.8	-	16
${ }_{2} \mathbf{C 4 3}$	12	500	40	-	1250	48	6.3	0.9	2.9	1.7	0.05	Fig. 11	C.T. ${ }^{\text {C }}$	470	-	387	-	-	-	97
6263	13	400	55	25	500	27	6.3	0. 28	2.9	1.7	0.08	-	C. ${ }^{\text {C. }}$	350	-58	40	15	3	-	10
													C. ${ }^{\text {P }}$	320	-52	35	12	2.4	-	8
6264	13	400	50	25	500	40	6.3	0.28	2.95	1.75	0.07	-	C.T	350	-45	40	15	3	-	8
10Y	15	450	65	15	8	8.0	7.5	1.25	4.1	7.0	3.0	4D	$\mathrm{C} \cdot \mathrm{T} \cdot \mathrm{O}$	450	- 100	65	15	3.2	-	19
													C.P	350	-100	50	12	2.2	-	12
HY75A	15	450	90	25	175	9.6	6.3	2.6	18	2.6	1.0	27	C. ${ }^{\text {C. }}$	450	- 140	90	20	5.2	-	26
HYTSA	is									2.6	. 1	21	$C^{\text {C. }}$ -	400	-140	9	20	5.2	-	21
801-A/801	20	600	70	15	60	8.0	7.5	1.25	4.5	6.0	1.5	4D	C.T	600	-150	65	15	4.0	-	25
													C.P	500	-190	55	15	4.5	-	18
													B^{7}	600	-75	130	$320{ }^{\circ}$	3.04	10K	45
T20	20	750	85	25	60	20	7.5	1.75	4.9	5.1	0.7	36	C.T	750	-85	85	18	3.6	-	44
720	2	750	8	25	0	2				5.1	0.7	36	C. \cdot P	750	- 140	70	15	3.6	-	38
TZ20	20	750	85	30	60	62	7.5	1.75	5.3	5.0	0.6	36	C.T	750	-40	85	28	3.75	-	44
													C. P	750	- 100	70	23	4.8	-	38
													B^{7}	800	0	40136	160°	$1.8{ }^{4}$	12 K	70
15E16	20	-	-	-	600	25	55	42	1.4	1.15		Fia. 31		2000	-130	63	18	4.0	-	100
$\begin{aligned} & 25 T \\ & 3-25 \mathrm{~A} 3 \end{aligned}$	25	2000	75	25	60	24	6.3	3.0	2.7	1.5	0.3	36	C.TO	1500	-95	67	13	2.2	-	75
														1000	-70	72	9	1.3	-	47
													B^{7}	2000	-82	1683	270°	0.78	55.5K	110
$\begin{aligned} & 3 C 2 B^{1} \\ & 3 \mathrm{C} 34: \\ & 3-2503 \\ & 246 \end{aligned}$	25	2000	75	25	100	23	6.3	3.0	2.1	1.8	0.1	Fig. 31	$\mathrm{C} \cdot \mathrm{T} \cdot \mathrm{O}$	2000	-170	63	17	4.5	-	100
					60				2.5	1.7	0.4	36		1500	- 110	67	15	3.1	-	75
					150				2.0	1.6	0.2	20		1000	-80	72	15	2.6	-	47
					150				1.7	1.5	0.3	20	B^{7}	2000	-85	16/80	290	1.15	55.5K	110
3 C 24	25	2000	75	713	60	24	6.3	3.0	1.7	1.6	0.2	2D	C.T	2000	-130	63	18	4	-	100
	17	1600	60										C. ${ }^{\text {P }}$	1600	-170	53	11	3.1	-	68
	25	2000	75										ABz^{7}	1250	-42	24130	$270{ }^{\circ}$	3.44	21.4K	112
HK24	25	2000	75	30	60	25	6.3	30	2.5	1.7			C.T	2000	-140	56	18	4.0	-	90
HK24	25	200	75	30	60	25	6.3	30	2.5	1.7	0.4	3 G	$C^{\prime} \cdot \bar{p}$	1500	-145	50	25	5.5	-	60
8025	30	1000	65	-	500	18	63	1.92	2.7	2.8	0.35	4AO	G-M.A	1000	-135	50	4	3.5	-	20
	20		65	20									C. ${ }^{\text {P }}$	800	- 105	40	10.5	1.4	-	22
	30		80	20									C.T	1000	-90	50	14	1.6	-	35
HY31Z2 HY1231Z2	30	500	150	30	60	45		3.5	5.0	5.5	1.9	Fig. 60	C'T	500	-45	150	25	2.5	-	56
							126	1.7					C. ${ }^{\text {P }}$	400	-100	150	30	3.5	-	45
$316 \mathrm{~A}$	30	450	80	12	500	65	20	3.65	1.2	1.6			C.T	450	-	80	12	-	-	7.5
VT-191	30	450	8	12	500	65	20	3.65	1.2	1.6	0.8	-	$\mathrm{C}^{-\cdot} \cdot$	400	-	80	12	-	-	6.5
309	30	1000	125	-	60	50	63	2.5	5.7	6.7	0.9	36	C. ${ }^{\text {C. }}$	-1000	-75	100	25	3.8	-	75
													C. ${ }^{\text {P }}$	750	-60	100	32	4.3	-	55
													B^{7}	1000	-9	40/200	155°	2.78	11.6K	145
1623	30	1000	100	25	60	20	63	2.5	5.7		0.9	36	C.T.O	1000	-90	100	20	3.1	-	75
										6.7			C.P	750	-125	100	20	4.0	-	55
													${ }^{8}$	1000	-40	30/200	230°	4.28	12K	145
									2.7	2.8	0.35		C.T.O	1000	-90	50	14	1.6	-	35
8012	40	1000	80	20	500	18	6.3	2.0	2.7	2.5	0.4	Fig. 54	$C^{\text {C }}$ -	800	- 105	40	10.5	1.4	-	22
Cl-8012-A									2.7	2.5	0.4		GMMA	1000	-135	50	4.0	3.5	-	20
T40	40	1500	150	40	60	25	7.5	2.5	4.5	4.8	0.8	36	C.T.O	1500	-140	150	28	9.0	-	158
140	40	1500	Iso	4	60	2	7.5	2.5	4.5	4.8	0.8	36	C.P	1250	-115	115	20	5.25	-	104
													C.T.O	1500	-90	150	38	10	-	165
TZ40	40	1500	150	45	60	62	7.5	2.5	4.8	5.0	0.8	36	C. ${ }^{\text {P }}$	1250	-100	125	30	7.5	-	116
													${ }^{87}$	1500	-9	2501	285*	$6.0 \pm$	12K	250
$\begin{aligned} & \hline 3-50 A 4 \\ & 35 T \end{aligned}$									4.1		0.3	36	C.T	2000	-135	125	45	13	-	200
3-50D4	50	2000	150	50	100	39	5.0	4.0	2.5	1.8			C.P	1500	-150	90	40	11	-	105
3579									2.5		0.4	2D	B	2000	-40	4/167	255*	4.c*	27.5K	235

I See page V27 for Key to Closs-of-Service obbreviations.

	Maximum Ratings						Cathode		Capacitances			Base	Typical Operation							
Type		$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{6} \frac{0}{0} \end{aligned}$	范				$\frac{\grave{\prime}}{\frac{1}{\circ}}$	$\begin{aligned} & \text { b } \\ & \frac{2}{E} \\ & \frac{1}{E} \end{aligned}$	C $\mu \mu \mathrm{f}$.	$\underset{\mu \mu \mathrm{f}}{\mathbf{C}_{8 \mathrm{p}} .}$	Cow $\mu \mu$.			$\frac{\stackrel{y}{0}}{\frac{0}{2}}$						
HK54	50	3000	150	30	100	27	5.0	5.0	1.9	1.9	0.2	20	C.T	3000	-290	100	25	10	-	250
													C.P	2500	-250	100	20	8.0	-	210
													B ${ }^{\text {P }}$	2500	-85	20150	3609	5.0	40k	275
T55	55	1500	150	40	60	20	7.5	3.0	5.0	3.9	1.2	3G	C.T	1500	-170	150	18	6.0	-	170
													C.P	1500	-195	125	15	5.0	-	145
811	55	1500	150	50	60	160	63	40	5.5	5.5	0.6	3 G	C.T	1500	-113	150	35	8.0	-	170
													C P	1250	-125	125	50	11	-	120
													${ }^{\text {P }}$	1500	-9	20200	$150{ }^{\circ}$	3.08	17.6K	220
812	55	1500	150	35	60	29	63	4.0	53	5.3	0.8	3 G	C.T	1500	-175	150	25	6.5	-	170
													C^{P}	1250	-125	125	25	6.0	-	120
													B^{7}	1500	-45	50'200	232°	4.78	18K	220
826	55	1000	140	40	250	31	7.5	4.0	3.0	2.9	1.1	780	C.T.O	1000	-70	130	35	5.8	-	90
													$C^{\cdot P}$	1000	-160	95	40	11.5	-	70
													G.M.A	1000	-125	65	9.5	8.2	-	25
$\begin{aligned} & \mathbf{8 3 0 8} \\ & 9308 \end{aligned}$	60	1000	150	30	15	25	10	20	50	11	1.8	$3 G$	C.T.O	1000	-110	140	30	7.0	-	90
													C.P	800	-150	95	20	5.0	-	50
													B^{7}	1000	-35	20,280	$270{ }^{\circ}$	6.08	7.6 K	175
811-A19	65	1500	175	50	60	160	63	40	5.9	56	0.7	3 G	C.T	1500	-70	173	40	7.1	-	200
													C.P	1250	-120	140	45	10.0	-	135
													B	1500	-4.5	32313	1709	4.48	12.4k	340
812-A	65	1500	175	35	60	29	6.3	4.0	5.4	5.5	077	36	C T	1500	-120	173	30	6.5	-	190
													C.P	1250	-115	140	35	7.6	-	130
													B^{3}	1500	-48	28310	270^{9}	5.0	132 K	340
5514	65	1500	175	60	60	145	7.5	3.0	78	79	10	480	C.T	1500	-106	175	60	12	-	200
													C.P	1250	-84	142	60	10	-	135
													B^{7}	1500	-4.5	$350{ }^{8}$	88^{8}	6.58	10.5K	400
$\begin{aligned} & 3.75 \mathrm{A3} \\ & 75 \mathrm{TH} \end{aligned}$	75	3000	225	40	40	20	5.0	6.25	27	2.3	03	20	C.T	2000	-200	150	32	10	-	225
													$C^{C \cdot p}$	2000	-300	110	15	6	-	170
													${ }^{\text {P }}$	2000	-90	50225	$350{ }^{\circ}$	38	19.3K	300
$\begin{aligned} & 3.75 A_{2} \\ & 75 \mathrm{TL} \end{aligned}$	75	3000	225	35	40	12	5.0	625	2.6	2.4	04	20	C.T	2000	-300	150	21	8	-	225
													C.P	2000	- 500	130	20	14	-	210
													$\mathrm{AB}_{2}{ }^{7}$	2000	-190	50250	6009	5	18K	350
8005	85												C.T	1500	-130	200	32	7.5	-	220
		1500	200	45	60	20	10	325	64	50	10	3 G	C ${ }^{\text {P }}$	1250	-195	190	28	9.0	-	170
													B^{7}	1500	-70	40310	3109	4.0	10K	300
													C.T	1750	-100	170	19	3.9	-	225
V-70-0	85	1750	200	45	30	-	7.5	3.25	4.5	4.5	1.7	3G	CT	1500	-90	165	19	3.9	-	195
V-70-0	85	1750	200	45	3	-	7.5	3.25	4.5	4.5	1.7	3G	C.P	1500	-90	165	19	3.7	-	185
													C.p	1250	-72	127	16	2.6	-	122
3-100A4													$\frac{C \cdot T}{\text { C.P }}$	3000	-200	165	51	18	-	400
100TH	100	3000	225	60	40	40	5.0	6.3	2.9	20	04	20	$\frac{C^{\prime} \cdot}{}{ }^{7}$	3000	-65	40215	3350	5.08	31 K	650
													$\frac{C \cdot T}{C \cdot p}$	3000	-400	165	30	20	-	400
$\begin{aligned} & \text { 3-100AA2 } \\ & \text { 100TL } \end{aligned}$	100	3000	225	50	40	14	5.0	6.3	2.3	2.0	0.4	20	C.P'M.A	3000	-560	60	2.0	7.0	-	90
													${ }^{\text {P }}$	3000	-185	40,215	640°	6.08	30 K	450
			-	-	150	15.5	50	10.4	2.7	23	035	Fig. 33	C.T	2000	-340	210	67	25	-	315
VI127A	100	3000	-	-	150	15.5	so	10.4	2.7	23	035	Fig. 33	8^{7}	1500	-125	242	44	7.3	3 K	200
									60	145	5.5		C.T	1250	-225	150	18	7.0	-	130
$\begin{aligned} & 211 \\ & 311 \end{aligned}$	100	1250	175	50	15	12	10	325				$4 E$	C.P	1000	-260	150	35	14	-	100
									8.0	9.25	5.0		${ }^{7} 7$	1250	-100	$20 / 320$	4109	8.08	9 K	260
													C.T	3000	-245	165	40	18	-	400
254	100	4000	225	60	-	25	5.0	7.5	2.5	2.7	0.4	2N	$C \cdot p$	2500	-360	168	40	23	-	335
													${ }^{8} 7$	2500	-80	40240	$460{ }^{\circ}$	25	25.2K	420
													C.TO	1350	-180	245	35	11	-	250
8003	100	1500	250	50	30	12	10	325	58	117	3.4	3N	CP	1100	-260	200	40	15	-	167
													B^{\prime}	1350	-100	40490	4830	$10.5{ }^{\text {e }}$	6 K	460
	100	1000	12514	50	2500	100	60	105	70	215	0035	-	G.G.A	800	-20	80	30	6	-	27
$3 \mathrm{Cx1004} 5$	70	600	10014	so	2500	100	6.0	1.05	7.0	2.15	0.035	-	C.P	600	-15	75	40	6	-	18
$\begin{aligned} & \overline{3 \times 100 A 11} \\ & 2 \mathrm{C} 39 \end{aligned}$	100	1000	60	40	500	100	6.3	11	6.5	1.95	003	-	G.1C	600	-35	60	40	5.0	-	20
Gl2C39A ${ }^{\text {a }}$	100	1000		50	500	100	6.3	1.0				-		900	-40	90	30	-	-	40
Gl2C398 ${ }^{\text {1s }}$	70	1000	12514	50	500	100	6.3	1.0	7.0	1.9	0.035	-	CP	600	-150	10014	50	-	-	-
3 C 22	125	1000	150	70	500	40	6.3	20	4.9	24	005	Fig. 17	C.T.O	1000	-200	150	70	-	-	65
													C.TO	1250	-150	180	30	-	-	150
Gl146	125	1500	200	60	15	75	10	3.25	7.2	9.2	3.9	Fig. 56	C.P	1000	-200	160	40	-	-	100
													B^{7}	1250	0	34320	-	-	8.4k	250
													CTO	1250	-150	180	30	-	-	150
GL152	125	1500	200	60	15	25	10	3.25	70	88	40	Fig. 56	C^{P}	1000	-200	160	30	-	-	100
													8^{7}	1250	-40	16320	-	-	8.4 K	250
													C.T	1500	- 105	200	40	8.5	-	215
805	125	1500	210	70	30	4060	10	325	85	65	105	3N	C.P	1250	-160	160	60	16	-	140
													$B^{\text {P }}$	1500	-16	$\sqrt{84 / 400}$	280°	7.08	8.2 K	370
													C.T	2500	-200	200	40	16	-	390
AX9900/ 586615	135	2500	200	40	150	25	63	5.4	5.8	5.5	0.1	Fig. 3	C.P	2000	-225	127	40	16	--	1204
													${ }^{8}$	2500	-90	80330	$350{ }^{\circ}$	148	15.68K	1560
							5.0	12.5					C.T	3000	-300	250	70	27	-	600
3.150 A 152 TH	150	3000	450	85	40	20			5.7	4.8	0.4	4BC	C.P	2500	-350	200	30	15	-	400
							10	6.25					B	2500	-125	40340	3909	160	17 K	600

I See page V27 for Key to Class-ol-Service abbreviations.

						TAB	XI-	-TRIO	E TRA	VS	TTIN	TUB	Con	ved					27	
Type	Maximum Ratings					Cothode			Capacitonces			Base	Typical Operation							
		$\frac{2}{a}$	$\begin{array}{r} \frac{1}{2} \\ \frac{2}{2} \\ \frac{1}{2} \\ \hline \end{array}$				$\begin{aligned} & \stackrel{n}{3} \\ & > \end{aligned}$	$\begin{aligned} & \text { \# } \\ & \frac{0}{6} \\ & \text { E } \end{aligned}$	C. $\mu \mu$.	C_{0}. $\mu \mu \mathrm{f}$.	$\begin{gathered} C_{\mu} \\ \mu f_{i} \end{gathered}$			$\begin{aligned} & \frac{0}{0} \\ & \frac{2}{2} \frac{2}{9} \end{aligned}$	응	$\frac{0}{2}$	$\begin{aligned} & \text { g }{ }^{\frac{1}{2}} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			
$\begin{aligned} & 3.150 A 2 \\ & 152 \mathrm{TL} \end{aligned}$	150	3000	450	75	40	12	5	12.5	4.5	4.4	0.7	4BC	C.T	3000	-400	250	40	20	-	600
							10	${ }^{6} .25$					B^{*}	3000	-260	65335	675°	$3{ }^{\circ}$	20.4 K	700
HF201A	150	2500	200	50	30	18	10-11	4.0	8.8	7.0	1.2	Fig. 15	C.T	2500	-300	200	18	8	-	380
													C. P	2000	-350	160	20	9	-	250
													Br^{7}	2500	-130	60360	4809	8	16 K	600
GL-5C24	160	1750	107	-	-	8	10	5.2	5.6	88	3.3	Fig. 15	A_{1}	1500	-155	107	-	-	$8.2 \mathrm{~K}{ }^{3}$	55
						8	,	S.	5.6	8	3.	Fig. is	$A B_{1}$	1750	-200	3200	3909	\cdots	8 K	240
810	175	2500	300	75	30	36	10	4.5	8.7	4.8	12	2N	C.T	2500	-180	300	60	19	-	575
													C.P	2000	-350	250	70	35	-	380
													G.M.A	2250	-140	100	2.0	4	-	75
													B^{7}	2250	-60	70450	$380{ }^{\circ}$	138	11.6K	725
8000	175	2500	300	45	30	16.5	10	4.5	5.0	6.4	3.3	2N	C-T.O	2500	-240	300	40	18	-	575
													${ }^{\text {C.P }}$	2000	-370	250	37	20	-	380
													G.M.A	2250	-265	100	0	2.5	-	75
													B^{7}	2250	-130	65450	5600	7.90	12k	725
T200	200	2500	350	80	30	16	10	5.75	9.5	79	16	2N	$\frac{C \cdot T}{\text { C. }}$	2500	-280	350	54	25	-	885
$\begin{aligned} & 592 / 15 \\ & 3-200 A 3 \end{aligned}$					150						16	2 N	$\mathrm{C}^{\text {P/ }}$	2000	-260	300	54	23	-	480
	200	3500	250	$\frac{2513}{2513}$		25	10	5.0	36	33	020	Fig. 28	C. ${ }^{\text {C. }}$	3500	-270	228	30	15	-	600
	130	2600	200	2513									C.P	2500	-300	200	35	19	-	375
	200	3500	250	25^{13}									B^{7}	2000	-50	1120500	520	20	8.5K	600
$\begin{aligned} & \text { 4C34 } \\ & \text { HF300 } \end{aligned}$	200	3000	275	60	60 20	23	11-12	4.0	60	6.5	1.4	2N	C.T	3000	-400	250	28	16	-	600
													C•P	2000 3000	-300 -115	${ }^{250}$	${ }_{460}$	17	-	385
													${ }^{\text {B }}$	3000	-115	60360	450*	$13 *$	20K	780
T-300	200	3000	300	-	-	23	11	6.0	6.0	7.0	14	-	C.T	3000	-400	250	28	20	-	600
													C.P	2000	-300	250	36	17	-	385
													$\mathrm{B}^{\text {P }}$	2500	-100	60450	-	7.50	-	7.50
806	225	3300	300	50	30	12.6	5.0	10	6.1	4.2	1.1	2N	C.T	3300	-600	300	40	34	-	780
													C.P	3000	-670	195	27	24	-	460
													${ }^{3}$	3300	-240	80475	$930{ }^{\circ}$	350	16K	1120
$\begin{aligned} & \text { 3-250A4 } \\ & 250 \mathrm{TH} \end{aligned}$	250	4000	350	4013	40	37	5.0	10.5	4.6	2.9	0.5	2N	C.T. 0	2000	-100	357	94	29	-	464
													cro	3000	-150	333	90	32	-	750
													C.P	2000	-160	250	60	22	-	335
														2500	-180	225	45	17	-	400
														3000	-200	200	38	14	-	435
													$A^{\prime} 3^{7}$	1500	0	1220,7001	4609	45°	4.2 K	630
$\begin{aligned} & \text { 3-250A2 } \\ & 250 \mathrm{TL} \end{aligned}$	250	4000	350	3513	40	14	50	105	3.7	3.0	0.7	2N	CJO	2000	-200	350	45	22	-	455
													cro	3000	-350	335	45	29	-	750
														2000	-520	250	29	24	-	335
													C.P	2500	-520	225	20	16	-	400
														3000	- 520	200	14	11	-	435
													$\mathrm{AB}_{2}{ }^{7}$	1500	-40	1200,700	$780{ }^{\circ}$	38*	3.8K	587
$\begin{aligned} & 5867 \\ & \text { AX-9901 } \end{aligned}$	250	1300	'400	80	100	25	5.0	14.1	7.7	5.9	0.18	Fig. 3	C. ${ }^{\text {c }}$	3000	-250	363	69	27	-	840
													$\mathrm{C} \cdot \mathrm{P}$	2500	-300	250	70	28	-	482
													B	3000	-110	5700	4650	32	14.2K	1280
PL-6569:	250	± 630	300	120	30	45								2500	-70	300	85	7520	-	555
							50	145	7.6	3.7	01			3000	-95	300	110	85^{20}	-	710
							So	14	7.6	3.7	01	Fig. 3	GGA	3500	-110	285	90	85^{20}	-	805
														4000	-120	250	50	7020	-	820
														1500	-125	665	115	25	-	700
							so	25					cro	2000	-200	600	125	39	-	900
3-300A3	300	3000	900	6013	40	20			13.5	10.2	0.7	48 C		1500	-200	420	55	18	-	500
304 TH	300	3000	9	8013	40	2			13.5	10.2	0.7	48 C	C.P	2000	-300	440	60	26	-	680
							10	12.5						2500	-350	400	60	29	-	800
													$\mathrm{AB}_{2}{ }^{7}$	1500	-65	1085*	$330{ }^{\circ}$	250	284 k	1000
													$\mathrm{C} \cdot \mathrm{T} \cdot \mathrm{O}$	1500	-250	665	90	33	-	700
													Cro	2000	-300	600	85	36	-	900
							so	25						2000	- 500	250	30	18	-	410
3-30042													C.P	2000	- 500	500	75	52	-	810
$304 \mathrm{TL}^{19}$	300	3000	900	5013	40	12			12.1	8.6	0.8	48 C	C.P	2500	- 525	200	18	11	-	425
														2500	-550	400	50	36	-	; 830
							10	12.5					$A_{B 1}{ }^{7}$	1500	-118	270/572	$236{ }^{\circ}$	0	2.54 K	256
													${ }^{\text {Ab }} 1{ }^{7}$	2500	-230	160/483	480°	0	8.5 K	610
													$\mathrm{AB}_{2}{ }^{7}$	1500	-118	1140*	4909	398	2.7561	1100
													C.T.O	2250	$\frac{-125}{-160}$	445	85	23	-	780
														3000	-160	335	70	20	-	800
833A						35	10	10	12.3	6.3	8.5	Fig. 41	C.P	2500	-300	335	75	30	-	635
	45015	400015			2015								CP	3000	-240	335	70	26	-	800
													B^{7}	3000	-70	100/750	4000	20.	9.5 K	1650
PL.658019	400	400015	350	120	-	45	53	14.5	7.6	3.9	0.1	5BK	G.G.A	4000	-110	350	92	0520	,	1080
PL-6SEO	4	,	S	12	-	4	S	14.5	7.	3.9	0.1	SBK	GGA	2500	-70	350	95	S	-	660
- Calhode ' KEY TO A_{1} $A B_{1}$ $A B_{2}$ ${ }^{B}$ $C \cdot M$ $C \cdot P$ C.T $\mathrm{C} \cdot \mathrm{T} \cdot \mathrm{O}$ $\mathrm{G} \cdot \mathrm{G} \cdot \mathrm{A}$ $\mathrm{G} \cdot \mathrm{G} \cdot \mathrm{O}$ G.G.O	ASS-OF-SE Closs-A, a Class- $A B_{2}$ Class-B pus requency Class-C te Class-C an Grounded	ims ERVICE .I. mod push-pu pushopul sh-pull mult plia legraph mplifergrid os	$\begin{aligned} & \text { ABBREV } \\ & \text { ulator. } \\ & \text { ull o.f. m } \\ & \text { ull a.f. m } \\ & \text { af. mod } \\ & \text { dulated } \\ & \text { dosc. } \\ & \text { asc.C om } \\ & \text { sc. } \end{aligned}$	VIATIO odular odulat dulator. telepho mp.					d.isolation d-modul Values, for both Mc. tor in ol two tub lue. - 0 -grid 000-Mc.	on circ ated am xcept section hms. es in p vols. osc.	uit. p in push ns in pu ush-pull	crrode coo sh.puli.	aci-		Class.B 000.Mc Max. gri Max. ca orced-air 900 Mc No Clas sidebo cludes power.	data in Tabla c.w. osc hode curr ir cooling sed 3300 c.w. ose . 8 data mplifier nd in Tob bias loss.	ble II. on in ent in requir Mc. os availabl ube-op 11-1 grid diss	atts. mo. d. ration sipation,		or single d-through

Type		Maximum Ratings				Cathode		Capocitances			Basp	Typical Operetion										
		$\frac{8}{2}$				$\frac{ \pm}{5}$	$\begin{aligned} & \text { 官 } \\ & \frac{2}{E} \\ & \frac{2}{4} \end{aligned}$	$\underset{\mu \mu \mathrm{f}}{\mathrm{C}_{\mathrm{i}}}$	$C_{\mu \mu}$	$\begin{gathered} C_{\text {out }} \\ \mu \mu \mathrm{f} . \end{gathered}$		$\begin{aligned} & \div 士 \\ & \vdots \\ & 0.5 \\ & 0.5 \end{aligned}$	$\begin{array}{r} 8 \\ \text { 家星 } \\ \hline \end{array}$			흥			$\begin{array}{r} \text { 这 } \\ \text { 든 } \\ 0.5 \end{array}$			$\begin{aligned} & 5 \\ & \frac{2}{5} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
4－65A13	65	3000	10	600	150	6	3.5	8	0.08	2.1	Fig． 25	C．T．O	1500	250	－	－85	150	40	18	3.2	－	165
													3000	250	－	－100	115	22	10	1.7	－	280
												C－P	1500	250	－	－125	120	40	16	3.5	－	140
													2500	250	－	－135	110	25	12	2.6	－	230
												$\mathrm{ABr}_{2}{ }^{\text {b }}$	1800	250	－	－50	50＇250	30^{7}	$180 \cdot$	2.8	206	270
$\begin{aligned} & \text { 4E27/ } \\ & 8001 \end{aligned}$	75	$40<0$	30	750	75	5	7.5	12	0.06	6.5	78M	$C \cdot T$	2000	500	60	－200	150	11	6	1.4	－	230
												C．P	1800	400	60	－130	135	11	8	1.7	－	178
$\begin{aligned} & \text { HK257 } \\ & \text { HK2578 } \end{aligned}$	75	4000	25	750	7514	5	7.5	13.8	0.04	6.7	78M	C． 7	2000	500	60	－200	150	11	6	1.4	－	230
												C．P	1800	400	60	－130	135	11	8	1.7	－	178
PL－6549	75	2000	10	600	175	6	3.5	7.5	0.09	3.4	Fig． 14	C．T	2000	400	70	－125	150	12	5	0.8	－	270
												C．P	2000	400	70	－140	125	15	4	0.7	－	200
												$\mathrm{AB}_{2}{ }^{\text {b }}$	2000	400	70	－85	30／225	0．1／10	$180 \cdot$	0.05	19K	325
828	80	2000	23	750	30	10	3.25	13.5	0.05	14.5	5.3	C．T	1500	400	75	-100	180	28	12	2.2	－	200
												C．P	1250	400	75	－140	160	28	12	2.7	－	150
												$\mathrm{AB}_{1}{ }^{\text {d }}$	2000	750	60	－120	50／270	$2 / 60$	240	0	18．5K	385
$\frac{68169}{6884}$	115	1000	4.5	300	400	6.3	2.1	14	0.085	0.015	Fig． 77	C．T．O	900	300	－	－30	170	1	10	3	－	80
												C．P	700	250	－	－ 50	130	10	10	3	－	45
						26.5	0.52					$A B_{10}{ }^{\circ}$	850	300	－	-15	80／200	0／20	300	0	7K	80
												$A B_{2}{ }^{6}$	850	300	－	－15	80／355	0／25	46°	0.3	3．96K	140
41313	125	2500	20	800	30	10	5	16.3	0.25	14	5BA	C．T．O	1250	300	0	－75	180	35	12	1.7	－	170
													2250	400	0	－155	220	40	15	4	－	375
												C－P	1250	300	0	-180	150	35	13	2.9	－	140
													2000	350	0	－175	200	40	16	4.3	－	300
												$\mathrm{AB}_{2}{ }^{\text {b }}$	2000	750	0	－90	40／315	1．5／58	2304	0.17	16K	455
													2500	750	0	－95	35 360	1．2／55	235^{8}	0.35	17K	650
$\begin{aligned} & 4-125 A^{13} \\ & 4 D^{21} \\ & 6155 \end{aligned}$	125	3000	20	600	120	5	6.5	10.8	0.07	3.1	58K	C．T．O	2000	350	－	－100	200	50	12	2.8	－	275
													3000	350	－	－150	167	30	9	2.5	－	375
												C．P	2000.	350	－	－220	150	33	10	3.8	－	225
													2500	350	－	－210	152	30	9	3.3	－	300
												$\mathrm{AB}^{\text {a }}$	2500	350	－	－43	93／260	0／6	1780	1.0^{7}	22K	400
												$A B_{1}{ }^{+}$	2500	600	－	－96	50／232	0．3／8．5	$192{ }^{\circ}$	0	20.3 K	330
	125	400C	20	750	75	5	7.5	10.5	0.08	4.7	78M	C．T	3000	500	60	－200	167	5	6	1.6	－	375
	12	000	2		1	5	7.5				\％	C	1000	750	0	－170	160	21	3	0.6	－	115
803	125	200 C	30	600	20	10	5	17.5	0.15	29	5J	C．t	2000	500	40	－90	160	45	12	2	－	210
												$C^{\text {C }}$ ．	1600	400	100	－80	150	45	25	5	－	155
7094	125	2000	20	400	60	6.3	3.2	9.0	0.5	1.8	Fig． 12	C． $\mathrm{T}^{\text {P}}$	1500	400	－	-100	330	20	5	4	－	340
												C．P	1200	400	－	－130	275	20	5	5	－	240
												AB_{1}	2000	400	－	－65	60／400	－	1200	0	12K	560
$\frac{4 \times 1504}{4 \times 150 G^{15}}$	150°	1250	12	400	500	6	2.6	15.5	0.03	4.5	Fig． 75	$C \cdot T \cdot O$	1250.	250	－	－90	200	20	10	0.8	－	195
												C．P	1000	250	－	－105	200	20	15	2	－	140
						2.5	6.25	27	0.035	4.5		$\mathrm{AB}_{2}{ }^{\text {b }}$	1250	300	－	－44	475	$0 / 65$	100	0.15	5.6 K	425
$\begin{aligned} & 4-250 A^{13} \\ & 5 D 22 \\ & 6156 \end{aligned}$	$250{ }^{\circ}$	4000	35	600	110	5						C．T．O	2500	500	－	－150	300	60	9	1.7	－	575
													3000	500	－	－180	345	60	10	2.6	－	800
							14.5	12.7	0.12	4.5	58K	C．P	2500	400	－	－200	200	30	9	2.2	－	375
													3000	400	－	－310	225	30	9	3.2	－	510
												$\mathrm{AB}_{2}{ }^{\text {d }}$	2000	300	－	－48	5107	0／26	$198{ }^{\circ}$	5.5	8K	650
												$A B_{10}$	2500	600	－	－110	430^{7}	0．3／13	$180{ }^{\circ}$	0	11.4 K	625
												C．T．O	2000	250	－	－90	250	25	27	2.8	－	410
4×2508	$250{ }^{\circ}$	2000	12	400	175	6	2.1	18.5	0.04	4.7	Fig． 75	C．P．	1500	250	－	－100	200	25	17	2.1	－	250
												$A^{\text {A }}{ }^{\text {d }}$	2000	350	－	－50．	500^{7}	30^{7}	1000	0	8．26K	650
$7034 / 8$	250	2000	12	300		6	2.6					$\mathrm{C} \cdot \mathrm{T} \cdot \mathrm{O}$	2000	250	－	－88	250	24	8	2.5	－	370
4×1504					150			16	0.03	4.4	Fig． 75	C．P	1600	250	－	－118．	200	23	5	3	－	230
$7035 / 13$	250	2000	12	400		26.5	0.58			4.4	Fig． 75	$\mathrm{AB}_{2}{ }^{\text {d }}$	2000	300	－	－50	100／500	0／36	1060	0.2	8.1 K	630
4×1500	250	200	12	400		26.5	0.88					$A B_{1}{ }^{6}$	2000	300	－	－50	100／479	0／36	1000	5	8．76K	580
												C．T	2000	250	－	－90	250	25	27	2.8	，	410
$300 \mathrm{~A}$	300°	2000	12	400	500	6	2.75	29.5	0.04	4.8	－	C．P	1500	250	－	－100	200	25	17	2.1	－	250
												$A^{\text {B }}{ }^{\text {d }}$	2000	350	－	－ 50	500^{7}	30^{7}	1008	0	8．26K	650
4－400A	400＊	4）00	35	600	110	5	14.5	12.5	0.12	4.7	58K	C．T．C．P	4000	300	－	－170	270	22.5	10	10	－	720
												C．T	3000	500	－	－150	700	146	38	11	－	1430
4－1000A	1000	6000	75	1000	－	7.5	21	27.2	． 24	7.6	－	$\mathrm{C} \cdot \mathrm{P}$	3000	500	－	－200	600	145	36	12	－	1390
												AB_{2}	4000	500	－	－60	300／1200	0／95	－	11	7K	3000
													2000	325	－	－ 55	500／2000	－4／60	－	－	2.8 K	2180
$4 \mathrm{CX10004}$	1000	3000	12	350	－	6	12.5	35	． 005	12	－	$A B_{1}$	2500	325	－	－55	500／2000	－4／60	－	－	3.1 K	2920
													3000	325	－	－55	500／1800	9－4＇60	－－	－	3．85K	3360
													2000	400	75	－150	725	44	22	4.1	－	1110
												C．T	2500	500	75	－175	960	64	31	6.8	－	1870
PL． 172	1000	3000	35	600	－	6	7.8	38	． 09	18	－		3000	500	75	－175	900	56	24	4.8	－	2170
													2000	500	75	－110	400,1600	20／90	210	－	2.65 K	1820
												$A B_{1}$	2500	500	75	－110	440／1600	20／85	210＊	－	3．5K	310
													3000	500	75	－115	4401500	10／75	2008	－	4．6K	2680

1 Grid－resistor

${ }^{2}$ 3 Doubler tio 175 Mc ．
${ }^{3}$ Dual tube．Values for both sections，in push－pull．Intarelectrode capacitances，hawever，ore for each section．
－Tripler to 175 Mc ．
${ }^{3}$ Filament limited to intermittent operation．
－Volues are tor two tubes in push－pull．
7 Max．－signal value．
＊Peak grid． tc －grid of．volts．
－Forced－air cooling required
10 Two tubes triode connected，G_{2} to G_{1} through 20K Ω ．Input io G_{2} ． 11 Tripler to 200 Mc ．
${ }^{22}$ Typical Operation at 175 Mc
${ }^{2}$ Lineor－amplifier pube－operation data for single－sideband in Chop． 11
14 KEY TO CIASS．OF．SERVICE ABBREVIATION
$A B_{1}=$ Class $-A B_{1}$ push－pull o．t，modulator．
$A B_{2}=A B_{2}$ push－pull a．l．modulator．
$B=$ Closs -8 push－pull a．f．modulator．
$C \cdot M=$ Frequency multiplier．
$\mathrm{C} \cdot \mathrm{P}=$ Closs -C plate－modulated relephone．
$C \cdot T=$ Class $-C$ telegraph．
$C \cdot T \cdot O=$ Class－C omplifior－ose．
is No Class 8 data availoble．
14HK257B 120 Mc ．full roting．

Type ${ }^{\text {¢ }}$	Heater		Base	Anode No. 2 Voltoge	Anode No. 1 Vollage ${ }^{1}$	Anode No. 3 Voltage	Cut-off Grid Voltoge?	Deflection Avg. Volts DC/Inch	
	Volts	Amp.						$D_{1} \mathrm{D}_{2}$	$\mathrm{D}_{3} \mathrm{D}_{4}$
1EP1-2-11	6.3	0.6	11 V	1000	100/300	-	-14/-42	210/310	240/350
2APIA	6.3	0.6	112	1000	250	-	-30/-90	230	196
2BP1-11	6.3	0.6	12E	2000	300/560	-	-135	270	174
3ACP1-7-11	6.3	0.6	14J	2000	545	4000	-45/-75	180/220	133/163
3AP1-4-906-P1-4-5-11	2.5	2.1	7AN	1500	430	-	$-25 /-75$	114	109
3APIA			7CE						
3BP1-4-11	6.3	0.6	14A	2000	575	-	$-30 /-90$	200	148
3BPIA			14G						
3 CP 1	6.3	0.6	11 C	2000	575	-	$-30 /-90$	124	165
3DP1A-3DP7	6.3	0.6	14H	2000	575	一	$-30 /-90$	220	14
3EP 1-1806-P1	6.3	0.6	IIN	2000	575	-	$-30 /-90$	221	165
3 FP7	6.3	0.6	148	2000	575	4000	$-30 /-90$	250	189
3FP7A			14J					120	105
3GP1-4-5-11	6.3	0.6	111	1500 1500	350 $245 / 437$	-	$\frac{-25 /-75}{-2.5 /-75}$	96/144	84/126
3GP1A-3GP4A	6.3	$\frac{0.6}{0.6}$	114	1500	400/690	- 4000	-30/-90	170/230	125/270
3JP1-2-4-7-11-12	6.3	0.6	14J	2000	400/690	4000	-45/-75	180/220	133/163
3KP1-4-11	6.3	0.6	11 M	2000	320/600	-	-0/-90	100/136	76/104
$3 \mathrm{MPI}^{3}$	6.3	0.6	12F	2000	400/700	-	-126	230/290	220/280
3RPI-4-3RP1A	6.3	0.6	12E	2000	330/620	-	-135	146/198	104/140
35P1-4-7	6.3	0.6	12 E	2000	330/620	-	-28/-135	146/198	104/140
3UP1	6.3	0.6	12F	2000	320/620	-	-126	240/310	232/296
3WP1-2.11	6.3	0.6	12T	2000	330620	-	-60-100	83101	5770
5ABP 1.7.11	6.3	0.6	14.	2000	400/690	4000	$-52-87$	26/34	18/24
5ADP1-7-11	6.3	0.6	14J	1500	300/515	3000	$-34 /-56$	40/50	30.5/37.5
SAJP1	6.3	0.6	Fig. 78	500	400,900	6000	$-30 /-60$	230	230
5AMPI	6.3	0.6	14 U	2500	0/300	-	-34/-56	40/50	20/25
5AP1-1805-P1	6.3	0.6	11A	1500	430	-	-31/-57	93	90
SAP4-1805-P4	6.3	0.6	11 A	1500	430	-	-17.5/-57	93	90
5AQP1	6.3	0.6	14 G	2500	0/300	-	$-34 /-56$	40/50	31.5/38.5
SATP1-2-7-11	6.3	0.6	14V	6000	0/700	-	$-34 /-56$	94/116	34/42
58P1-1802-P1-2-4-5-11	6.3	0.6	11 A	2000	425	-	-20\%-60	84	76
5BPIA	6.3	0.6	11N	2000	450	-	$-20 /-60$$-20 /-60$	84	76
5BP7A	6.3	0.6	11 N	2000	375/560	-		70/98	63/89
5CP1-2-4-5-7-11	6.3	0.6	148	2000	575	4000	$-30 /-90$	92	78
SCP1A			14J						
5CP1B-2B-7B-17B	6.3	0.6	14J	2000	575	4000	$-30 /-90$	92	74
5CP7A-11A-12		0.6	14J		575 425			36	72
5GP1	63	0.6	11A	2000	425	-	-24,-56	84.8	77
5HP1-4	63	0.6	11 N	2000	450	-	$-20-60$	84	76
5JP1A-4A	6.3	0.6	115	2000	333630	4000	-45-105	77/115	77/115
5LPIA-4A	A 3	0.6	117	2000	376633	4000	$-30 \cdot-90$	$83 / 124$	72/108
5MP1-4-5-11	2.5	2.1	7AN	1500	375	-	-15,-45	66	60
SNP 1-4	6.3	0.6	11A	2000	450	一	$-20,-60$	84	76
SRPIA-4A	6.3	0.6	14P	2000	362695	20000	-30, -90	140/210	131/197
SSP1-4	6.3	0.6	14K	2000	363695	4000	$-30 /-90$	74/110	62/94
5UP1-7-11	6.3	0.6	12 E	2000	340360	-	-90	56/77	46/62
SVP7	6.3	0.6	11 N	2000	315562	-	$-20 /-60$	70/98	63/89
$5 \times$ XP 1	6.3	0.6	14P	2000	$\begin{aligned} & 362695 \\ & 362695 \end{aligned}$	20000	$-30 /-90$	140/210	46/68
5XP1A-2A-11A	6.3	0.6	14P	2000		12000	$-45 /-75$	130/159	42/52
$\overline{\text { SYPI }}$	6.3	0.6	140	2000	541/1040	6000	-45/-135	108/162	36/54
7EP4	6.3	C. 6	11 N	3000	546/858	-	$-43 /-100$	106/158	91/137
$7 \mathrm{TPP}^{3}$	6.3	0.6	14G	$\begin{aligned} & 3000 \\ & 6000 \end{aligned}$	810/1200	-	$\begin{aligned} & -36 /-84 \\ & -72 /-168 \end{aligned}$	93/123	75/102
7JP1-P4-P7	6.3	0.6	14R		1620/2400	-		186/246	75/102
TVP1	6.3	0.6	14R	3000	800/1200	-	-84	93/123	
24XH	6.3	0.6	Fig. 1	600	120		-60	0.145	0.16^{5}
902-A	6.3	0.6	8CD	000	150	-	$-30 /-90$	139	117
905	2.5		5BP						
$905 . \mathrm{A}$		2.1	5BR	2000	450	-	$-17.5 /-52.5$	115	97
907			5BP						
908-A	2.5	2.1	7CE	1500	430	-	-25/-75	114	109
913	6.3	0.6	913	500	1000	-	-20/-60	299	221
2002	6.3	0.6	Fig. 1	600	120	-	-	$0.16{ }^{3}$	0.175
2005	2.5	0.6	Fig. 14	2000	1000	200	-35	0.53	$0.56{ }^{3}$
1 Bogey value far foc be adjustable abo 2 Bias lor visual extinc spot Voltage sho from 0 to the hig ${ }^{3}$ Discontinued - Cathode connected s In mm. /volt d.c. - Phosphor characteris	ltoge shou ue shawn undellec e adjusto lue show 7 ee next			Desi	$\begin{array}{cc} \text { Ion } \begin{array}{c} \text { Cala } \\ \ldots \\ \ldots \end{array} \text { Gre } \\ \text { Blue } \\ \text { Whi } \\ \ldots . . . & \text { Blue } \\ \ldots & \text { Blue } \\ \text { Yells } \end{array}$	and persisto medium. een mediu medium ry shart. . hite short long. ort. long. ...	Application Oscilloscape Special osci Television. Pholographi . . .Radar indico . . Oscilloscop . . Radar indica	pes and rad arding of hig	ed traces.

No．	Type	Maximum Ratings				Characterisfics			Typical Operalion Common Emitfer Circuit					
			Collector		Eminar	Neise figure Db．	Input Res． Ohms＇	Freq． Cutoff Mc．	Use	Collector		Power Gain Db．	Output Load R． Ohms	Power Output Mw．
		Diss． Mw．	Ma．	Volls	Ma．					Mo．	Volls			
2N34	PNP	50	50	－25	10	18	1000	0.6	Audio？	－1．0	－6	40	30K	125
2N35	NPN	50	100	25	－10	16	1000	0.8	Audio ${ }^{\text {a }}$	1.0	6	40	30K	125
2N43	PNP	155	－ 50	－45	50	6	－	1.3	Audio	-1.0	－5	39	－	－
2 N 44	PNP	155	－50	－45	50	6	－	1.0	Audio	－1．0	－5	43	－	－
2N6＊	PNP	2500	-1500	－25	1500	－	－	0.4	Audio	－150．0	－ 12	23	100	600
2N78	NPN	75	20	15	-20	12	－	6.0	I．F．R．F．	－	－	30	－	－
2N94	NPN	50	50	20	－	－	－	2.0	I．F．	0.5	6	24	100K	－
2N94A	NPN	50	50	20	－	15	－	5.0	I．F．R．F．	0.5	6	30	100K	－
2N104	PNP	－	－50	－30	50	12	－	0.7	Audio	－1．0	－15	32	－	－
2N105	PNP	35	－15	－25	15	4.5	2300	0.014	Audio	－0．7	－4	42	20 K	－
2N107	PNP	50	－ 10	－12	10	22	700	0.6	－	-1.0	－5	38	30K	－
2N109	PNP	50	－35	－12	35	－	750	－	Audio ${ }^{2}$	－35．0	－4．5	30	200	75
2N123	PNP	100	-150	－20	150	－	－	7.5	Switching	-5.0	－15	－	－	－
2N131A	PNP	100	-100	-30	－	22	－	0.8	Audio	-1.0	－6	－	－	－
2N132A	PNP	130	－10	－12	－	20	1000	1.2	Audio	-1.0	－6	42	30K	－
2N139	PNP	35	－15	－16	15	4.5	500	－	I．F．	-1.0	-9	30	30K	－
2N140	PNP	35	－15	－16	15	－	700	7.0	I．F．R．R．F．	－0．4	－9	27	75K	－
2N155	PNP	8500	－3000	－30	－	－	20	0.3	Audio ${ }^{\text {a }}$	-360.0	－14	30	－	93
2N167	NPN	65	75	30	－	－	－	8.0	I．F．－R．F．	－	－	－	－	－
2N169A	NPN	55	20	25	－20	－	500	5.0	I．F．－R．F．	1.0	5	27	15K	－
2N175	PNP	20	－2	-10	2	6	3570	－	Audio	－0．5	－4	43	－	－
2N218	PNP	35	－15	－16	15	4.5	500	－	I，F．	－ 1.0	－9	30	30K	－
2N219	PNP	35	－15	－16	15	－	700	7.0	I，F，－R，F．	－0．4	－9	27	75K	－
2N233	NPN	50	100	10	－	－	－	2.0	I，F．	－	－	21	－	－
2N247	PNP	35	－10	－35	10	8	－	30.0	R．F．	-1.0	－9	24	－	－
2N248	PNP	30	－	－25	－	－	－	50	R．F．	－	－	－	－	－
2N255	PNP	1500	－3000	－15	－	－	－	0.2	Audio ${ }^{2}$	－ 500.0	－6	27	－	57
2N256	PNP	1500	－3000	-30	－	－	－	0.2	Audio ${ }^{2}$	－ 500.0	－12	27	－	10^{3}
2N270	PNP	150	－75	－12	－75	－	－	－	Audio ${ }^{2}$	－	－12	32	－	500
2N274	PNP	35	－ 10	－35	10	8	－	30.0	R．F．	-1.0	－9	45	－	－
2N292	NPN	65	20	15	－	－	－	6.0	I．F．－R．F．	－	－	25	－	－
2N301	PNP	7500	－ 1000	－20	1000	－	－	－	Audio？	－	-14.4	30	－	123
2N301A	PNP	7500	－ 1000	－30	1000	－	－	－	Audio ${ }^{2}$	－	－14．4	30	－	123
2N306	NPN	50	－	20	－	－	－	0.6	Audio	－	－	－	－	－
2N307	PNP	10000	－1000	－35	－－	－	－	0.3	Audio	－	－	30	－	－
2N331	PNP	200	－200	－30	200	9	－	1.0	Audio	-1.0	－6	44	一	－
2N35 1	PNP	10000	-3000	－40	3000	－	－	－	Audio ${ }^{2}$	－3000	－40	－	－	－
2N370	PNP	80	－ 10	-20	10	－	1750	30.0	R．F．	-1.0	－ 12	12.5	－	－
2N371	PNP	80	-10	－20	10	－	－	30.0	R．F．	-1.0	－12	－	－	－
2N372	PNP	80	-10	－20	10	－	100	30.0	Mixer	-1.0	-12	17	11K	－
2N374	PNP	80	－ 10	－25	10	－	2600	30.0	Conv．	-1.0	－ 12	40	－	－
2N376	FN°	10000	-3000	－30	3000	－	－	－	Audio ${ }^{2}$	－3000	－40	－	－	－
2N384	PNP	120	-10	－30	10	－	30	100.0	R．F．	-1.5	－ 12	15	－	－
2N411	PNP	80	－15	－13	15	－	700	10.0	I．F．R R．F．	－0．6	－9	32	－	－
2 N 412	PNP	80	－15	-13	15	－	700	10.0	I，F．R．F．	－0．6	－9	32	－	－
2N423	PNP	150	-400	-30	400	－	－	17.0	R．F．	－	－	－	－	－
2N499	PNP	－15	－50	－30	50	－	－	250.0	R．F．	－	－－	－	－	－
2N544	PNP	80	－10	-18	10	－	2100	30.0	R．F．	1.0	－ 12	30	－	－
2N554	PNP	－	－3000	－30	3000	－	－	－	Audio	－	－	－	－	－
2N561	PNP	50000	－10000	－80	10000	－	－	－	Audio ${ }^{2}$	500	－28	35	150	10^{3}
2N586	PNP	250	－250	－45	250	－	－	－	Swithing	－	－	－	－	\cdots
2N583	PNP	80	－ 50	－18	50	－	－	200.0	R．F．	－	－	－	－	－
2N677	PNP	50000	－15000	－50	－	－	－	－	Switching	－	－	60	－	－
2N1014	PNP	50000	-10000	-100	10000	－	－	－	Audio	－	－	－	－	－
2N1102	NPN	180	100	40	-100	－	500	－	Audio	－	－	－	－	－
2N1266	PNP	80	－	-10	－	－	二	－	I．F．	－	－	22	二	－
3N25	TET	25	－2	－15	2	－	－	200.0	R．F．	－	－	－	－	－
3N36	TET	30	30	7	－	－	－	50.0	R．F．	－	－	－	－	－
3N37	TET	30	20	7	－	－	－	90.0	R．F．	－	－	－	－	－
AO－1	SB	10	－5	－4．5	－	－	－	30.0	R．F．	－	－	－	－	－
CK722	PNP	180	－10	－22	10	25	800	－	－	-1.0	－8	39	20K	－
CK768	PNP	－	－5	－10	－	－	－	3.5	I．F．－R．F．	-1.0	－6	－	－	－
OC71	PNP	125	－ 10	－15	－	－	－	0.3	Audio	－	－	40	－	－
00^{0672}	PNP	167	－125	－16	－	－	－	0.35	Audio	－	－	34	－	－
\＄8100	S8	10	－5	－4．5	－	－	－	30.0	R．F．	－0．5	－3	－	25K	－

Code for identifying typieal junction transiatora，The leade are marked（0－eollector，B－base，k－emitter and N－interlead ahiehd and metal rase．

Jhe

Catalog Section

H \boldsymbol{H}

In the following pages is a catalog
file of products of the principal manufacturers and the principal distributors who serve the radio field: industrial, commercial, amateur. All firms whose advertising has been accepted for this section have met The American Radio Relay League's rigid standards for established integrity; their products and engineering methods have received the League's approval.

37th EDITION 1960
 \section*{INDEX OF ADVERTISERS}

$\star \quad$ CATALOG SECTION

Th Radia Amateur's Handleok

Page
Collins Radio Co. 35-38
Communications Co., Inc 78
Cosmos Industries, Inc. 83
Editors \& Engineers, Ltd. 91
Eico 77
Eitel-McCullough, lnc. 40, 41
Electric Soldering Iron Co., In 93
Electro-Voice, Inc. (RME) 62,63
Elmar Electronics 81
Erie Resistor Corp. 86
Ft. Orange Radio Distributing Co., Inc. 85
Generol Electric Co. 33
Gonsel Division 51
Hallicrafters Co., The 3-9
Hammarlund Manufacturing Co., Inc. 54
Harrison Radio Corp. 96
Harvey Radio Co 71
Heath Co., The 28-32
Henry Radio Co 65,69
Hudson Radio \& Television Corp. 92
Hy-Gain Antenna Products. 60
Illinois Condenser Co. 95
Illumitronic Engineering 72
Page 94
84
Instructograph Co., The 84
International Crystal Mfg. Co., Inc. 66
International Rectifier Corp. 88
Johnson Co., E. F. 20-25
Lampkin Loboratories, Inc. 61
Meosurements, Div. of McGrow-Edison. 70
Millen Mfg. Co., Inc., The James 64
Mosley Electronics, Inc. 42, 43
Notional Radio Co., Inc. 79
Ohmite Mfg. Co. 39
Penta Laboratories, Inc. 82
Radio Shack Corp 73
RCA Electron Tube Div. 26, 27
Shurite Meters 68
Technical Appliance Corp. 74
Technical Materiel Corp. 46,47
Telcolab Corp. 80
Terminal Radio Corp. 87
United Transformer Corp. 19
Vibroplex Co., Ine 90
Wile, Eugene G 76
World Radio Laborotories 67

The new ideas

in communications are born at...

(h) hallicrafters
 CHICAGO24, ILLINOIS

Export Sales: International Division,
Raythaon Mfg. Ce., Waltham, Mess.
Canada: Gould Sales Co., Montreal, P. Q.

The new ideas in communications are born at . . .

effortless performance!

Beautifully engineered with extra-heavy-duty components, the HT-33A is conservatively rated at the maximum legal limit. You are guaranteed one of the big signals on the band, plus the effortless performance that means so much to efficiency and long life. (Conforms to F.C.D.A. specifications.)
FREQUENCY COVERAGE: Complete coverage of amateur bands; $80,40,20,15,10$ meters.
FEATURES: Rated conservatively at the maximum legal input. Third and fifth order distortion products down in excess of 30 db . Built-in r.f. output meter greatly simplifies tune-up. All important circuits metered. Maximum harmonic suppression obtained through pi-network. Variable output loading. Protection of power supply assured by circuit breaker. HT-33A is a perfect match to Hallicrafters' famous HT-32 in size, appearance and drive requirements.
CIRCUIT DETAILS: This power amplifier utilizes a PL-172 high efficiency pentode operating in class AB 1 or AB 2 . The tube is grid-driven across a non-
meter. Dual scale S-meter. S-meter zero point independent of sensitivity control. S-meter functions with AVC off. Special 10 Mc . position for WWV. Duat conversion. Exclusive Hallicrafters' upperlower sideband selection. Second conversion oscillators quartz crystal controlled. Tee-notch filter. Full gear drive from tuning knob to gang condens-ers-absolute reliability. $40: 1$ tuning knob ratio. Built-in precision 100 kc . evacuated marker crystal. Vernier pointer adjustment. Five steps of selectivity from 500 cycles to 5000 cycles. Precision temperature compensation plus Hallicrafters' exclusive production heat cycling for lowest drift. Direct coupled series noise limiter for improved noise reduction. Sensitivity - one microvolt or less on all amateur bands. 52 ohm antenna input. Antenna trimmer. Relay rack panel. Heaviest chassis in the industry.089 cold rolled steel. Double spaced gang condenser. 13 tubes plus voltage regulator and rectifier. Powerline fuse.

Acclaimed by the most critical!

Now proven superior - vastly superior - is Hallicrafters' exclusive 5.0 mc . quartz crystal filter system. First practical high frequency filter, provides unprecedented rejection of unwanted sideband-50 db. or more-and world's cleatest signal.
Another major advance: Bridged-Tee Modulator, temperature stabilized and compensated.
FEATURES: 5.0 mc , quartz crystal filter-rejection 50 db . or more. Bridged-tee nodulator. C.T.O. direct reading in kilocycles to less than 300 cycles from reference point. 144 watts plate input (P.E.P. two-tone). Five band output ($80,40,20,15,10$ meters). All modes of transmission-CW, AM, S.S.B. Unwanted sideband down 50 db . or more. Distortion products down 30 db . or more. Carrier suppression down 50 db . or more. Both sidebands transmitted on A.M. Precision gear driven C.T.O. Exclusive Hallicrafters patented sideband selection. Logarithmic meter for accurately tuning and car-
inductive resistor, thus assuring the maximum stability under all possible conditions. Band switching is accomplished by one knob which selects the proper inductance value for each band. The output circuit is a pi-network with an adjustable output capacitor, so loads from 40 to 80 ohms may be accommodated. A d.c. milliameter may be switched to various circuits to measure the following: Cathode current, grid current, screen current, plate voltage. and r.f. voltage across the output line for tune-up.
TUBES: (1) PL-172 high power pentode; (2) 3B28 rectifiers; (4) OA2 screen regulators.
FRONT PANEL CONTROLS: Meter selector; Filament switch; High Voltage switch; Bias adjustment; Band switch; Plate tuning; Plate loading.
PHYSICAL DATA: Gray and black steel cabinet (matches HT-32) with brushed chrome knob trim. Size: $83 / 4^{\prime \prime} \times 19^{\prime \prime}$ (relay rack panel). Shipping wt. approx. 130 lbs.
REAR CHASSIS: Co-ax input; co-ax output; filament and bias fuse; cutoff bias relay terminals; screen fuse; ground terminal.

FRONT PANEL CONTROLS: Main tuning knob with $0-100$ logging dial. Pointer reset, antenna trimmer, tee-notch frequency, tee-notch depth, sensitivity, band selector, volume, selectivity, pitch (BFO), response - (upper-lower-sideband AM-CW). AVC on/off, AVC fast/slow, ANL on/off, Cal. on/off, Rec./standby.
TUBES AND FUNCTIONS: 6DC6, R.F. amplifier6BY6. Ist converter-12 BY7A, high frequency os-cillator-6BA6, 1650 kc . i.f. amplifier-12AT7, dual crystal controlled 2nd conversion oscillator-6BA6, 2nd converter-6DC6 51 kc . i.f. amplifier-6BJ7. AM detector, A.N.L., A.V.C.-6BY6 SSBCW de-tector-6SC7 Ist audio amplifier \& B.F.O.-6K6, audio power output - 6BA6, S-meter amplifier 6AU6, 100 kc . crystal oscillator-OA2, voltage reg-ulator- 5 Y 3 , rectifier.
PHYSICAL DATA: $20^{\prime \prime}$ wide, $101 / 2^{\prime \prime}$ high and $16^{\prime \prime}$ deep-Panel size $83 / 4^{\prime \prime} \times 19^{\prime \prime}$-weight approximately 74 lbs. (Conforms to F.C.D.A. specifications.)
rier level adjustment. Ideal CW keying and breakin operation, Push To Talk and full voice control system built in. Phone patch input provided. Keying circuit brought out for teletype keyer.
FRONT PANEL CONTROLS, FUNCTIONS AND CON. NECTIONS: Operation-power off, standby, Mox., Cal., Vox.-P.T.T. Audio level 0-10 R.F. level 0-10. Final tuning 80, 40, 20, 15, 10 meters. FunctionUpper sideband, lower sideband, DSB, CW, Meter compression. Calibration level $0-10$. Driver tuning $0-5$. Band selector-80, 40, 20, 15, 10 meters. High stability, gear driven V.F.O. with dial drag. Microphone con. Key jack. Headphone monitor jack. TUBES AND FUNCTIONS: $\mathbf{2 - 6 1 4 6}$ Power output amplifier. 6CB6 Variable frequency oscillator, 12BY7 R. F. driver. 6AH6 2nd Mixer. 6AH6 3rd Mixer. 6AB4 Crystal oscillator. 12AX7 Voice control. 12AT7 Voice control. 6AL5 Voice control. 12AX7 Audio Amp. 12AU7 Audio amp. and carrier Oscillator. 12AU7 Diode Modulator. 12AT7 Sideband selecting oscillator. 6AH6 1st Mixer. 6AH6 4.95 Mc. Amp. 6AU6 9.00 Mc. Amp. 5R4GY HV Rectifier. 5V4G LV Rectifier. OA2 Voltage Regulator, REAR CHASSIS: Co-ax antenna connector. FSK jack A.C. accessory outlet. Line fuse. Control connector. AC power line cord. Cabinet $20^{\prime \prime}$ wide, $10^{1 / 2 "}$ high, and 17" deep. Approximate shipping weight 86 lbs . (Conforms to F.C.D.A. specifications.)

Hallicrafters brings you an entirely new class

The engineering team that developed the incomparable SX-101 and HT-32
now offers a precision rig that puts single sideband within reach of all

HT-37 Transmitter

The heart of the now-famous HT-32-the needed, basic performance charactertistics-is yours in this precision-engineered new AM/CW/SSB transmitter-and at a price we did not helieve possible when we began designing it! Same power. Same rugged VFO construction, and identical VOX. You'll be amazed at the smooth. distinctive speech quality that's yours for the first time at moderate cost.
FEATURES: 144 watts plate input (P.E.P. twotone): five band output (80, 40, 20, 15. 10 me(ers); all modes of transmission-CW. AM. S.S.B.; unwanted sideband down 40 db . at 1 KC : distortion products down 30 ch . or more; carrier suppression down 50 dh .: modern styling: instant CW Cai. from any mode; both sidebands transmitted on AM; precision V.F.O.; rugged heavy duty deluxe chassis: 52 ohm pi network output for harmonic suppression; dual range meter for accurate tuning and carrier level adjustment; ideal CW heying: full voice control system built in.
FRONT PANEL CONTROLS, FUNCTIONS, CON-

NECTIONS: Operation-(power off, standby, mox, cal, vox); Audio gain; R.F. level: Finai tuning; Function-(upper sideband, lower sideband, DSB. (W); carrier balance; Calibration level; Driver tuning; Band selector V.F.O.; Microphone connector: Key jack.

TUBES AND FUNCTIONS: (2)-6146 Power output amplifiers; 6CB6 Variable frequency oscillator: 12BY7 R.F. driver: 6AH6 1 st Mixer; 6AH6 2nd Mixer; 6AB4 Crystal oscillator: $12 \mathrm{AX7}$ Voice control: 12AT7 Voice control: 6AL5 Voice control: 12AX7 Audio Amplifier: 12AT7 Audio amp and carrier Oscillator; 12AT7 Audio Modulator: (2)-12AT7 Balanced Modulators: SR4GY HV Rectifier: 5V4G I.V Rectifier: OA2 Voltage Regulator.

REAR CHASSIS: Co-ax antenna connector; Line fuse: Control connector: AC power line cord.

PHYSICAL DATA: Matching unit for SX-111; cabinet is gray sted with brushed chrome trim and knobs. Size: $9^{\prime \prime}$ high $\times 191 / 4^{\prime \prime}$ wide $\times 151 / 2^{\prime \prime}$ deep. Shipping weight: approximately 80 lbs.

of SSB equipment

SX-111 Receiver

Here's the receiver youve been waiting for-a real thoroughbred that retains the essential performance characteristics of the renowned SX101. but at a price that can put it in your shack tomorrow! Rugged . . dependable . . . beatifully styled. the new SX-1Il is outstanding evidence that Hallicrafters aim is always to bring you the finest equipment at the lowest possible price.
FREQUENCY COVERAGE: Complete coverage of $80,40,20,15$ and 10 meters in five separate band. Sixth band is tunable to 10 Mc , for crystal calibrator calibration with WWV.
FEATURES: AM CW SSB reception. Dual conversion. Hallicrafler's exclusive selectathe sidehand operation. Crysat-controlled 2nd convertor. Tee-notch filter. Calibrated S-meter. Vernier dial-pointeradjustment. Series noise limiter. Built-in crystal calibrator. Exceptional electrical and mechanical stability. Large slide-rule dial. SENSITIVITY: One microvolt on all bands, with 5 seps of selectivity from 500 to 5.000 c.p.s.
TUNING MECHANISM: New friction-and-gear type with $48: 1$ tuning ration. Virtually eliminates hacklash.
CONTROLS: Tuning: Pointer Reset: Antenna Trimmer: T-notch Frequency: RF Gain: Audio Gain: Band Selector: Function (off on, standby, upper or lower sidehand, calibrate): AVC off /on: BFO off on: ANI off on: Selectivity.
TUBES: IO tubes plus voltage regulator and rectilicr. GDCO RF Amplitier: GBY6 Ist converter: 6Ct Oscillator: 6BA6 2nd converter: 12AT7 Dual crystal second converters: 6 C B6 1650 kc . i.f. amplifier: 6I)C6 i.f. amplifier (50 kc): 6BJ7 AVC-nosise limiter-detector: 12AX7 ist audis) and BFO : $6,1 \mathrm{Q} 5$ Power output: 5 Y 3 rectifier; AO2 Voltage regulator.
POWER SUPPLY: 105.125 volts. $50-60$ cycle AC. PHYSICAL DATA: Size: $183 / 4$ " wide $\times 101 / 4^{\prime \prime}$ deep $\times 83 \%$ high. Attractive gray stecl cabinet with brushed chrome trim. Shipping wt, approximately 40 lh.

Two outstanding speaker values

R-47 SPEAKER

Specially designed for voice and SSB. Flat response from 300102850 c.p.s. Input impedance: 3.2 ohms. Size: $51 / 2^{\prime \prime} \times 51 / 4 " \times 31 / 2^{\prime \prime}$. Wt. 21/2 16.

SX-100 Most versatile receiver of all!

FREQUENCY COVERAGE: $540 \mathrm{kc}-34$ Mc. Band I: $538 \mathrm{kc}-1580 \mathrm{kc}$-Band 2: 1720 kc-4.9 Mc-Band 3: 4.6 Mc-13 Mc-Band 4: $12 \mathrm{Mc}-34 \mathrm{Mc}$. Bandspread dial is calibrated for the $80,40,20$. 15 and 10 meter amateur bands.
TYPE OF SIGNALS: AM-CW-SSB.
FEATURES: Selectable side band operation. "Tee-Notch" Filter-provides a stable nonregenerative system for the rejection of unwanted heterodyne. Also produces an effective steepening of the already excellent 500 Cycles i-f pass band and further increases the effectiveness of the advanced exalted carrier type reception. Notch depth control for maximum null adjustment. Antenna trimmer. Plug-in laboratory type evacuated 100 kc quartz crystal calibrator-included in price. Logging dials for both tuning controls. Full precision gear drive dial system. Second conversion oscillator crystal con-trolled-provides greater stability and additional temperature compensation of high frequency oscillator circuits. Phono jack. Socket for D.C. and remote control.
CONTROLS: Pitch control, reception, standby, phone jack, response control (upper and
lower side band selector), antenna trimmer, notch depth, calibrator on/off, sensitivity, band selector, volume, tuning, AVC on/off noise limiter on/off, bandspread, selectivity.

INTERMEDIATE FREQUENCY: 1650 kc and 51 kc .

AUDIO OUTPUT IMPEDANCE: 3.2/500 ohms: AUDIO POWER OUTPUT: 1.5 watts with 10% or less distortion. POWER SUPPLY: 105/125 V., 50/60 cycle AC.

TUBE COMPLEMENT: 6CB6 R.F, amplifier; 6BY6, 1 stconvertor;6AH6.H.F.oscillator; 6BA6, 2nd converter; 12AT7, Dual crystal second converters; (2) 6BA6, 51 kc and 1650 kc i-f amplifiers; 6BJ7, AVCnoise limiter; 6SC7, Ist audio and BFO; 6K6, Power output; 5Y3, Rectifier; OA2, Voltage regulator; 6C4, i-f amplifier-(51 $\mathrm{kc}) ; 6 \mathrm{AU} 6,100 \mathrm{kc}$ XTAL marker.

PHYSICAL DATA: Gray black steel cabinet with brushed chrome knob trim, patterned silver back plate and red pointers. Piano hinge top. Size $183 / 9^{\prime \prime}$ wide $\times 81 / 2^{\prime \prime}$ high x 103/8" deep. Shipping weight approximately 42 lbs. (U.L. approved)

Complete VHF Station

SR-34 Transmitter/Receiver

GENERAL DESCRIPTION: The SR-34 is designed for either AM or CW and combines complete functions of a two and six meter radio station. 115-V. A.C.. 6-V. D.C., or 12V. D.C. Transistorized power supply. Meets F.C.D.A. matchingfund specifications.

The transmitter is crystal-controlled; up to four crystals may be switch-selected. A fifth position on this switch permits external V.F.O. operation.

The receiver is a double conversion superheterodyne with a quartz crystal controlled second oscillator. Separate oscillator and R.F. sections for each band.

All receiver functions provided-S-meter, B.F.O., ANL. etc. Sensitivities average 1 microvolt on both bands.
FRONT PANEL CONTROLS: Receiver: Band Selector (48.9-54.1 mc., 143.9 to 148.1 mc .): Main Tuning; Sensitivity; Audio Volume; B.F.O. Pitch; Squelch Level; Headphone Jack; AVC On/Off; ANL On/Off; B.F.O. On/Off. Transmitter: Function Switch (P.A., Rec., Cal., AM, CW); Power On/Off; Band Switch; Crystal Selector and V.F.O.; Oscillator Tuning; Doubler Tuning; Tripler Tuning; Final Tuning; Final Loading; Meter Switch.
POWER OUTPUT: 5 to 8 watts AM or CW, 100% mod. negative peak clipping. Rear Apron: Speech input level control; key jack; P.A. speaker terminals; mic, selector (high Z or carbon); mic. input; A.C. and D.C. fuses; power plug.

World's most popular short wave receiver!

MODEL S.38E

Latest model of Hallicrafters' most popular of all short wave receivers! Beautiful new, modern cabinet styling, improved circuitry for superior performance and utmost dependability.
FREQUENCY COVERAGE: Standard broadcast from $540-1650 \mathrm{kc}$., plus three short wave bands from 1650 kc . through 32 mc . Intermediate freq.: 455 kc .
FEATURES: Two-section tuning gang with electrical bandspread; easy-to-read, sliderule overseas dial; oscillator for code reception; built-in $5^{\prime \prime}$ speaker, universal output for headset; rear switch for speaker or headset selection. (U.L. approved)
CONTROLS: Tuning dial. Separate electrical bandspread dial with 0-100 scale. Receive/standby switch. On/off/volume. AM, CW switch. Band selector.
POWER SUPPLY: 1 watt audio power output. $105 / 125$ volts. $50-60$ cycle AC/DC. line cord (S7D 1566) for 220 voli $\mathrm{AC} / \mathrm{DC}$ available.
TUBE COMPLEMENT. Four tubes plus one rectifier: 35W4 rectifier; 50C 5 audio output; 12AU6 amplifier; 12BA6 IF amplifier and B.F.O.; 12BE6 converter.
AUDIO OUTPUT: Five inch PM speaker and universal output for headset.
EXTERNAL CONNECTIONS: Phone tip jacks and terminals for single wire or doublet antenna, switch for speaker or headphones on rear. External antenna provided.
PHYSICAL DATA: Available in gray steel cabinet with silver trim, or blond or mahogany finish with gold trim. Size $127 / \mathbf{s}^{\prime \prime}$ wide $\times 7^{\prime \prime}$ high $\times 9^{1 / 4 "}$ deep. Shipping weight approximately 14 lbs .

New beauty . . . new standards of performance! MODEL 5-107

COVERAGE: Standard Broadcast from $540-1630 \mathrm{kc}$ plus four short wave bands over $2.5-31$ and $48-54.5$ mc . Intermediate frequency; 455 kc . CONTROLS: Main tuning in mc. Separate electrical bandspread with 0-100 logging scale plus calibration for 48-54.5 mc band, receive/standby switch, band selector $540-$ $1630 \mathrm{kc}, 2.5-6.3 \mathrm{mc}, 6.3-16 \mathrm{mc}, 14-31 \mathrm{mc}$, and 48 $54.5 \mathrm{mc}, \mathrm{AM} / \mathrm{CW}$ switch, sensitivity/phono control, noise limiter switch, on/off/volume, two-position tone switch. BAND CHANGE MECHANISM: Five position rotary wafer switch. TUNING ASSEMBLY AND DIAL DRIVE MECHANISM: Separate 2 -section tuning capacitator assemblies for main tuning and band spread tuning. Slide rule dial. Phonograph jack, headphone tip jacks. Bandspread tuning calibrated for $48-54.5 \mathrm{mc}$. ANTENNA IN. PUT IMPEDANCE: Balanced/unbalanced. 50-300 ohms. HEADPHONE OUTPUT IMPEDANCE: Universal impedance. AUDIO OUTPUT: Five inch PM speaker and universal impedance output for
headset. TUBE COMPLEMENT: Seven tubes plus one rectifier: 6C4. Osc.-6BA6, Mixer-(2) 6BA6. i-f amplifier-6H6. Det. AVC and ANL-6SC7. BFO and AF amp.-6K6GT, Output-5Y3GT, rectifier. EXTERNAL CONNECTIONS: speaker/ phones switch and terminals for doublet or single wire antenna on rear. AUDIO POWER OUTPUT: One watt. POWER SUPPLY: 105/125 V., 50/60 cycle. AC. PHYSICAL DATA: Sturdy gray hammertone steel cabinet with brushed chrome trim. Size $133 /{ }^{\prime \prime}$ wide $\times 7^{\prime \prime}$ high x $87 / 8^{\prime \prime}$ deep. Shipping weight approximately $181 / 2 \mathrm{lbs}$. (U.L. approved)

JAMES \mathbb{C} MILIEN MALDEN. MASSACHUSETTS

90921

ONE INCH

INSTRUMENTATION OSCILLOSCOPE

Miniaturized, packaged panel maunting cathode ray ascillascape designed for use in instrumentation in place of the conventional "painter type" moving cail meters uses the I' qube. Panel bezel matches in size and type the standard $2^{\prime \prime}$ square meters. Magnitude, phase displocement, wave shape, elc. are canstantly visible on scape Na. 90901 , 1CP1, less lube $\mathrm{Na} .90911,1 \mathrm{EPI}$, less tube

POWER SUPPLY

 FOR OSCILLOSCOPE750 valts d.c. at 3 ma. and 6.3 valts a.c. of 600 ma. 117 volts 50-60 cycle input. Designed especially far use with No. 90901 and No. 90911 ane inch instrumentation ascillascapes. $45 / 8 \mathrm{in}$. high $\times 1 / 3$ $\times 21 / 2$. Oetal plug for input and output. Entire ossem bly including rectifier is encapsulated. Na. 90202 Power Supply (camplete)

GRID DIP METER

The No, 90651 MILLEN GRID DIP METER is compact and campletely self cantained. The $A C$ power supply is af the "iransfarmer" type. The drum dial has seven calibrated unifarm length scales fram 1.7 MC to 300 MC with generous over laps plus an arbirrary scale far use with special application in ductors. Internal terminal strip permite bottery operation far antenna measurement
Na. 90651 , with iube
Additianal Inductars for Lawer frequencies
Na. $46702-925102000 \mathrm{KC}$
Na. 48703-500 to 1050 KC Na. 46704-32510 600 KC Na. $46705-220$ to 350 KC

TONE MODULATOR

The Na. 90751 Tone Madulatar is o small pockage containing a transistar audio oscillatar and its mercury battery, which plugs into the 'phone jack of a Gric Dip Meter to modulate the signal a opproximately 800 cycles for applicotions re q jiring a modulated signal Dimensions: only $23 / 1 \times 15 / 16 \times 1$ 15/16 in

COMPACT OSCILLOSCOPES

the No. 90923 Oscilloscope is an extremely cam pact ($31 / 2$ inch high) rock ponel type, generol purpose ossilloscape, utilizing the type $3 \times \mathrm{PI}, 3 \times \mathrm{P} 2$ $3 \times P 7$, or $3 \times P 11,3$ inch by $11 / 2$ inch rectangula fuce cathode ray fube. No. 90923 , with tubes.
The No. 90902 , No. 90903 and No. 90905 Rock Panel Oscilloscopes, for two, three and five inch pubes, respectively, ore inexpensive basic units comprising power supply, brilliancy and centering controls, safety features, magnetic shielding, switches, ete. As a transmityer monitor, no additional equipment or occessories are required. The well-known trapezoidal monitaring potterns ore secured by feeding modulated carrier volloge from a pickup laop directly to vertical plotes af the cathode ray tube and audio modulating vallage to horizontal plates. By the addition af such units as sweeps, pulse generators, amplifiers, servo sweeps, etc, all of which can be conveniently and neotly constructed on componion rack panels, the nealy hasis 'scope unit may be expanded lo original basic scope uni may be expanded oo serve any
application.
No. 90902, less fubes
No. 90903 , less tubes

SCOPE AMPLIFIER - SWEEP UNIT

Vertical and harizontal amplifiers along with hard. tube, saw tooth sweep generotor. Complete with power supply maunted an a standord $51 / 4^{\prime \prime}$ rack panel.
No. 90921 , with tubes

FLAT FACE OSCILLOSCOPE

90905-8 5 -inch Rack Mounting Bosic Oseilloscope features include: balanced deflection, front pane! input terminals, rear panel input terminals, astigmatism cantral, blanking input terminols, flat face pre cision talerance Dumant SADP I fube, 1800 or 2500 volts accelerating, good sensitivity, sharp focus, horizontal selector switch, 60 cycle sine wave sweep available, power supply ovailable to operate external equipment, minimum control interaction rugged constructian, light filter. $7 \times 19 \mathrm{in}$. panel. No.90905-B Oscilloscooe, less fubes

J AME S M M LIEN MALDEN. MASSACHUSETTS

90711

ANTENNA BRIDGE

The Millen 90672 Antenna Bridge is an accurape and sensitive bridge for measuring impedances in the range of 5 to 500 ohms (or 20 to 2000 ohms with balun) of radio frequencies up ta 200 mc . The variable element is an especially designed differential variable capacitor capoble of high accuracy and permanency of calibra. tion. Readily driven by No. 90651 Grid Dipper. No. 90672 .

AUDIO CLIPPER

The No. 75016 Audio Clipper is a small plug-in syinmetrical iype alipper with self-contained mer. cury botferies. It moy be used to clip noise for C.W reception as well as for A.M or SSB or it may be used to clip o sine wove input to form a square wove oulput
Dimensions: only $23 / 4 \times 15 / 16 \times 1 / 3 / 6 \mathrm{in}$
No. 75016 , less batteries

BALUNS

The No. 46672 (1 for each amateur band) wound Balun is an accurate 2 to 1 furns ratio high Q auto transformer with the residual pe actances tuned out and with very tight coupling belween the two halves of the total winding. The points of series and parollel resononce are selected so that each Bolun provides on accurote 4 to 1 impedance rotio over the entire band of frequencies far which it was designed. Suitable for use with the No. 90672 Antenno Bridge or medium power tronsmitters.

No. 46672-80/40/20/15/10

50 WATT EXCITER-TRANSMITTER

Modern design includes feotures and shielding for TVI reduction, bandswirching for 4-7-14-21-28 megacycle bands, circuit metering. Conservatively raled for use either os o transmitter or exciter for high power PA stages. 5763 oscillotar.buffer.mul tiplier ond 6146 power amplifier. Rock mounted. No. 90801 , less tubes

VARIABLE FREQUENCY OSCILLATOR

The No. 90711 is o complete iransmitier control unit with 6 SK 7 temperature-compensated, electron coupled oscillotor of exceptional stobility and low drift, a 6SK7 brood-hand buffer or frequency doubler, a 6AG7 funed amplifier which trocks with the oscillator tuning, ond 0 reguloted power supplv. Output sufficient to drive 06146 is avoiloble on 160,80 and 40 meters and reduced output is avoilable on 20 meters. Since the output is isoloted from the oscillator by two stages, zero frequency shift occurs when the oufput load is varied from open circuit to shart circuit. The entire unit is unusually solidly built so that no frequency shift occurs due to vibration. The keying is cleon and free from onnoying chirp, quick drift, iump, ond similor difficulties offen encountered in keying varioble frequency oscillators.

No. 90711 , with tubes

HIGH VOLTAGE POWER SUPPLY

The No. 90281 high voltage power supply hos a d.c. output of 700 volts, with maximum current of 235 ma . In addition, o.c. filament power of 6.3 valts of 4 omperes is olso ovailable so that this power supply is on ideol unit for use with transmitters, such as the Millen No. 90801 , as well os generol loborotory purposes. The power supply uses two No. 816 recti'iers The panel is standord $83 / 4$ " $\times 19$ ' rack mounting No. 90281 , less fubes

HIGH FREGUENCY RF AMPLIFIER

 A physically small unit copoble of o power outputof 70 to 85 watts on "Phane or 87 to 110 wotts of 70 to 85 watts on 'Phane or 87 to 110 wotts on C-W on 20,15,11,10,6 or 2 meter amoteur bands Provision is mode for quick band shift by means of the No. 48000 series VHF plug-in coils The No. 90811 unit uses either on $829-8$ or 3E29.
No. 90811 with 10 meter bond coils,
dess tube

RF POWER AMPLIFIER

This 500 wall amplifier may be used os the bosis of o high power amoteur tronsmitter. The No, 90881 RF power amplifier is wired for use with the populor " 812 A " type tubes. Other popular tubes moy be used. The amplifier is of unusually sturdy mechanical construction, on a $101 / 2^{\prime \prime}$ relay rock panel. Plug in inductors ore furnished for operation of 10, 20,40 or 80 meter amateur bonds. The standard Millen No. 90801 exciter unit is an ideal driver for the No. 90881 RF power amplifier.
No. 90881 , with one set of coils, but
less tubes. . . Woridradiolisioi

JAMES
 MILIEN MALDE.N • MASSACH USETTS

REGULATED POWER SUPPLY

A compact, uncosed, regulated power supply, either for toble use in the laborotory or for incorporation os an integral part of lorger equipment. 250 v.d.c. unregulated af $115 \mathrm{ma} .105 \mathrm{v.d.c}$. requlated at 35 mo. Minus 105 v.d.e. reguloted bias of 4 mo. 6.3 v . o.e. at 4.2 omps

No. 90201 , with fubes

INSTRUMENT DIAL

The No. 10030 is an extremely sfurdy instrument type indicator. Control shaft hos 1 to 1 ratio. Veeder type counter is direct reoding in 99 revolutions and vernier scale permits teodings to 1 port in 100 of a single revolutian. Has built-in dial lack and $1 / 4^{\prime \prime}$ drive shaft coupling. May be used with multi-revolution tronsmitter controls, etc., or through gear reduction mechanism for contral of fractional revolution copocitors, etc., in receivers or laboratory instruments
No. 10030

PHASE-SHIFT NETWORK

A complete and lobaratory aligned pair of phoseshift networks in o single compoct $2^{\prime \prime} \times 17 / 6^{\prime \prime} \times 4$ cose with charocteristics so as to provide a phase shift between the twa networks of $90^{\circ} \pm 1.3^{\circ}$ over o frequency range of 225 cycles to 2750 cycles. Well adopled for use in either single sidebond transmitter or receiver. Possible to obtoin a 40 db suppression of the unwonted sideband. The No 75012 precision odjusted phose-shift network elimi. notes the necessity of complicated laboratory equipment for network adiustment No. 75012

DELAY LINES

No. 34751 -Sealed flexible distributed constonts line. Excellent rise time. 1350 ohms, 22 inches per microsecond or 550 ohms, 50 inches per mu.sec. Delay cut to specifications,
No. 34700 -Hermerically sealed encosed line. Good rise time. $0-0.45 \mathrm{mu} .-\mathrm{sec} .1350$ ohm line or 0.22 mu.sec. 500 ohm line in $1^{\prime \prime} \times 1^{\prime \prime} \times 5 \frac{1}{2^{\prime \prime}}$ in cose. Also lorger siandard cases and coses mode 10 order. Special impedonces 400 to 2200 ohms. No. 34600 -Lumped delay line built to specificotions. Deloys 0.05 mu -sec. to 250 mu -sec. Im pedonce 50 ohms to 2000 ohms

PHOTO MULTIPLIER SHIELDS

 MU-METALThe photo multiplier tube operates most effectively when perfectly shielded. Coreful sludy hos proven that mu-metol provides superior shielding. Millen Mu-Metal shields ore ovailable from stock for the most popular fubes
No. 80801 B for the 1P21, 1P22, 'P2P, 931A No. 80802 B for the $5819,6217,6292,6342$. No. 80802 C for the 6199, 6291, 6467 No. 80802 E for the $6810 \mathrm{~A}, 6903$
No. 80802 F for the 6372
No. 80803J for the $6363, \mathrm{~K} 1197$
No. 80805 M for the 6364

BEZELS FOR

CATHODE RAY TUBES

Standurd types ore of sotin finish block plastic. 5" size hos neoprene support cushion ond green lucite Ifer. $3^{\prime \prime}$ and $2^{\prime \prime}$ sizes hove inlegral custioning No. 80075-5"
No. $80073-3$
No. 80072 - 2 No. 80071 - $1^{\prime \prime}$

CATHODE RAY
 TUBE SHIELDS

For many years we hove specialized in the design and monutocture of mognetic metal shields of nicaloi and mumetol for cathode ray fubes in our own complete equipinent, os well as for opplico. tions of all other principol complete equipment manufacturers. Stock types as well os special designs to customers' specifications promptly ovailable No. 80045 -Nicoloi for SBPI
No. 80055 - Nicoloi for SCP 1
No. 80043 -Nicoloi for 3" Pube
No. 80042 -Nicoloi for $2^{\prime \prime}$ 'iube

SHIELD CASES ALUMINUM

Effertive RF shielding for coils and if onsformers con be provided by Millen Aluminum cons. Availoble in severol sizes from stock
No. $80003-11 / 6^{\prime \prime} \times 11 / 8^{\prime \prime} \times 4$
No. 80004-1 $1 /{ }^{\prime \prime} \times 1 / 46^{\prime \prime} \times 4 \frac{1}{2}$
No. $80005-2^{\prime \prime} \times 2^{\prime \prime} \times 4 \%$
No. $80006-21 / 1^{\prime \prime}$ round $\times 4$
No. $80007-21 / 4$ "round $x 2 \%$ ' open ends

JAMESEMILLEN MALDEN. MASSACHUSETTS

PANEL DIALS

The No. 10035 illuminated panel dial has 12 to 1 rotio; size, $81 / 2 \times 61 / 2^{2}$. Smoll No. 10039 has 8 to 1 ratio; size, $4^{\prime \prime} \times 31 / 4^{\prime \prime}$. Both are of compact mechanical design, eoss to mount ond have totally self-contained mechanism, thus eliminating back of panel interferences. Provision tor mounting and marking auxiliary controls, such es switches, po tentiometers, etc, provided on the No. 10035 Stondard finish, either size, flot black ar! metal. No. 10039
No. 10035

WORM DRIVE UNIT

Cost aluminum frame moy be panel or base mounted. Spring loaded split gears to minimize bock lash. Standard tatio 16 1. Also in 48 I on request No. 10000 -(stote , otio)

DIALS AND KNOBS

Just a few of the many stock types of small dials and knobs ore illustrated helewith. 10007 is $15 / \%^{\prime \prime}$ diameter, 10009 is $23 / 4^{\prime \prime}$ and 10008 is $3 / 2^{\prime \prime}$
No. 10002
No. 10007
No. 10008
No. 10009
No. 10015
No. 10018
No. 10065

RIGHT ANGLE DRIVE
Entremely compact, with provisions for many methods of mounting. Ideal for operatina, potentioneler , witch -., elc., that mus' be located, for short lerrds in remote paits of chassis. No. 10012

HIGH VOLTAGE INSULATED

SHAFT EXTENSION

No. 10061 shaft locks and the No. 39023 insutated high voltage potentiometet extension mountings ore avail ible as a sinale integrated unit-the No. 39n24. Th. proper shaft length is independent of the ponel thickness. The stondard shaft has pro. vision for sctew diver adjustment. Special shafi ariangements ore avalable for industrial applications. Extension shaft and insulated coupling are molded as a sinale unit 10 provide accuracy of alignment und ease of installation. No. 39023, non locking 'ype
No. 39024 , locking lype.

SHAFT LOCKS
In oddition fu the oriainal No. '06esis und No 10061 ㅇDESIGIIED FOR APPUICATION haff locks. we can also furnish such variations as the No. 10062 and No. 10,96 ? for eas thumb operation as illus rated obove. Tha Ne. 1 nobl instontly convarts any plain thatt volume control, condenser, etc from "ploin" to "shaff locked" pype. Easy to mouni in place of reqular mauntines nut
Na. 10060
Na. 10061
Na. 10062
N. 11063

TRANSMISSION LINE PIUG
Antmexpensive, compact, and efficient polystyrene unit for use with the 300 athm ribbon lype poly eth lent prom mi ion lints. Fit into standard Mille No. 3310: (crystal) socket. Pin spacing $1 / 2^{\prime \prime}$ diameter $095^{\prime \prime}$
Na. 37412

DIAL LOCK

Cumpact, eaty ta mount, positive in uction, daes not alt-r dial eetting in operation! Rotatian of knob ' A ' depre finger ' F ' and ' C ' without importing an, rotur molion to Dial. Single hole maunted No. 10750

JAMES O
 MALIEN MALDEN. MASSACHUSETTS

\oplus

TUBE SOCKETS DESIGNED FOR APPLICATION

MODERN SOCKETS for MODERN TUBES! long Floshover path to chassis permits use with transmitting Pubes, 866 rectifiers, etc. Lang leakage path between contacts. Contocts are type proven by hundreds of millions alreody in government, commercial and broodcost service, to be extremely dependable. Sockets may be mounted either with or without metal flange. Mounts in standord size chassis hole. All types have barrier between cantacts and chassis. All but actal and erystal sackets also have borriers between individual contocts in addition.
The No. 33888 shield is for use with the 33008 octol sockel. By its use, the electrostatic isolation of the grid and plote circuits of single-ended metal pubes can be increased to secure greater stability and gain.

The 33087 tube clamp is easy to use, easy to install, effective in function. Avoilable in special sizes for all types of pubes. Single hale mounting. Spring steel, codmium plated.

Covity Socket Contoct Discs, 33446 ore for use with the "Lighthouse" ultro high frequency tube. This set consists of three different size unhordened beryllium copper multifinger contact discs. Heat treating instructions forwarded with each kif for hardening after spinning or forming to frequency requirements.

Voltage regulator dual confoct bayonet socket, 33991 black phenalic insulation and 33992 with low loss mica filled phenalic insulation.
No. 33004-4 Pin Tube Socket
No. 33005-5 Pin Tube Socket
No. 33006-6 Pin Tube Socket
No. 33008-8 Pin Tube Socket
No. 33888 -Shield for 33008.
No. 33087-Tube Clamp.
No. 33002 -Crystal Socket $1 / 4^{\prime \prime} \times .125$
No. 33102-Crystol Socket $487^{\prime \prime} \times .095^{\prime \prime}$ No. 33202-Crystal Sockel $1 / 2^{\prime \prime} \times .125^{\prime \prime}$ No. 33302 -Crystal Socket $.487^{\prime \prime} \times .050^{\prime}$ No. 33446 -Contoct Discs.
No. 33991 -Socket for 991
No. 33992-Socket for 991
No. 33207-829 Socket. .
No. 33305-Acorn Socket
No. 33307 - Miniature Socket and Shield, ceromic.
No. 33309-Noval Socket and Shield, ce5 Pin Socket Eimos
No. 33405-5 Pin Socket Eimos. No. 33407 -Miniofure Socket only, ceromic No. 33409-Novol Socket only, ceramic.

STAND-OFF INSULATORS

Steatite insulators are availoble in a variety of sizes-Listed below ore some of the most popular.

No. 31001 -Stend-off $1 / 2^{\prime \prime} \times 1$ "
No. 31002-Stond-off $1 / 2^{\prime \prime} \times 21 / 2^{\prime \prime}$
No. 31003 -Stand-off $1 / 4^{\prime \prime} \times 2^{\prime \prime}$
No. 31004 -Stand- off $14^{\prime \prime} \times 31 / 2^{\prime \prime}$
No. 31006-Stand-off $9 / 32^{\prime \prime} \times 7 / /^{\prime \prime}$
No. 31007 --Stond-off $3 / 8^{\prime \prime} \times 1^{\prime \prime}$
No. 31011 -Cone $3 / 4^{\prime \prime} \times 1 / 2^{\prime \prime}$ (thon of 5)
No.31012-Cone $1^{\prime \prime} \times 1^{\prime \prime}$
No. 31013-Cone $11 / 2^{\prime \prime} \times 1^{\prime \prime}$
No. 31014 -Cone $2^{\prime \prime} \times 1^{\prime \prime}$
No, 31015 -Cone $3^{\prime \prime} \times 11 / 2$

MALDEN: MASSACHUSETTS

04000 and 11000 SERIES TRANSMITIING CONDENSERS

Another member of the "Designed for Application" series of transmitting varioble air capocitors is the 04000 series with peak voltage ratings of 3000,6000 , and 9000 volis. Pight angle drive, 1-1 ratio. Adjustable drive shaft angle for either vertical or slaping ponels. Siurdy construction, thick, round-edged, polished aluminum plates with $13 / 4^{\prime \prime}$ radius. Constont impedance, heovy current, multiple finger rotor contactor of new design. Available in all narmal capacities.
The 11000 series has $16 / 1$ ratio center drivg and fixed angle drive shaft.

12000 and 16000 SERIES TRANSMITTING CONDENSERS

Rigid heovy channeled aluminum end plates. Isolantite insulation, polished or plain edges. One piece ratar contnct spring and connection lug. Compact, easy ta mount with connector lugs in convenient locations. Some plote sizes os 11000 series obove
The 16000 series has some plate sizes as 04000 series. Also has canstont impedance, heavy current, multiple finger rotor contoctor of new design. Both 12000 and 16000 series availoble in single and double sections and mony copacities and plate spacing

THE 28000-29000 SERIES VARIABLE AIR CAPACITORS
"Designed for Application," double beorings steatite end plotes, codmium or silver ploted bross plates. Single or double section .022" or $.086^{\prime \prime}$ oir gop. End plate size: $19 / 16^{\prime \prime} \times 11 / 16^{\prime \prime}$ Rotor plate rodius: $3 / 4^{\prime \prime}$. Shaff lack, reor shoft extension, special mounting brockets, etc., to meet your requirements. The 28000 series ho semi-circular roter plate shope. The 29000 series hos opproximately stroight frequency line rotor plote shope. Prices quated on request. Mony stock sizes.

NEUTRALIZING CAPACITOR

Designed originally for use in our own No. 90881 Power Amplifier, the No. 15011 dise neutrolizing copocitor hos such unique feolures as rigid channel frame, horizontal or verticol mounting, fine thread over-size lead screw with stop to prevent shorting and rotor lock. Heavy rounded-edged polished oluminum plotes are $2^{\prime \prime}$ diometer. Glazed Steapite insulation.
No. 15011.

PERMEABILITY TUNED CERAMIC FORMS

In oddition to the populor shielded plug-in permeability tuned forms, 74000 series, the 69040 series of ceromic permeobility funed unshielded forms ore ovailoble os standord stock items Winding diameters available from $3 / 16^{\prime \prime}$ to $1 / 2^{\prime \prime}$ and winding space from "',2" 10 $11 / 2^{\prime \prime}$
No. 69041 -(Copper Slug)
No. 69042 -(Iron Core).
No.69043-(Copper Slug)
No. 69044 - (Iron Core).
No. 69045 -(Copper Slug)
No. 69046 - (Iron Core).
No. 69047 -(CopperSlug) No. 69048 - (Iron Core).
No. 69051 -(CopperSlug)
No. 69052 - (Iron Core).
No. 69054 - (Iron Core).
No. 69055 -(Copper Slug)
No. 69056 -(iron Core).
No. 69057 -CopperSlug)
No. 69058 - (iron Core) .
Na. 69061 -(Copper Slug)

JAMESMMMLEN

TRANSMITTING TANK COILS

A full line-oll papulor wattages for all bands Send for special catalag sheet.

TUNABLE COIL FORM

Standord octal base of low lass mica-filled bakelite, polystyrene $1 / 2^{\prime \prime}$ diameter coil form, heavy aluminum shield, iron tuning slug of high frequency rype, suitable for use up to 35 mc . Adiusting serew protrudes through center hole of standard octal socket.

No. 74001 , with iron core
No. 74002 , less iron core.

RF CHOKES

Many hove copied, few hove equalled, and none hove surpassed the genuine originol design Millen Designed for Application series of midget RF Chokes. The more populor styles now in constont production are iliustrated herewith. Special styles and variotions to meet unusual requirements quickly furnished.
figures 1 and 4 illustrate special types of RF chokes available on order. The papular 34300 and 34200 series are shown in figures 2 and 3 respectively,

General Specifications: $2.5 \mathrm{mh}, 250 \mathrm{ma}$ for Pypes $34100,34101,34102,34103,34104$ and 1 mh , 300 mo for types $34105,34106,34107,34108$, 34109.

No. 3410 C
No. 34101
No. 34102
No. 3410 ?
No. 34104

MIDGET COIL FORMS

Made of low loss mica filled brown bokelite. Guide funnel mokes for easy threoding of leods through pins.
No. 45000
No. 45004
No. 45005

OCTAL BASE AND SHIELD
Low loss phenolic base with octal socket plug and oluminum shield can $1,16 \times 17 / 8 \times 3^{1} 516$
No. 74400 .

MINIATURE POWDERED IRON CORE RF INDUCTANCES

The No. J300-Niniofure powdered iran core inductances. 0.107 in dio. $\times 3 / 8 \mathrm{in}$. long. Inductonces from 3.3 microhenries to 2.5 millihenries ${ }^{2} 5 \%$. ElA standard volves plus $25,50,150,250,350$, 500 , and 2500 microhenries Three layer solenoids from 39 io 350 microhenries. $1 / 1 \mathrm{in}$. wide single pi from 360 to 2500 merohenries. Special coils on order.

PHENOLIC FORM
 RF INDUCTANCES

The No. 34300 Inciuctances - Phenolie coil form with axiol leads. Inclucionces from 1 mictohenry 10 2.5. miltirenries 5%. RETMA standord values plus $25,50,150,250,350,500$, and 2500 mi-rohenries. Solenoids from 1 to 16 microhenries. Single pi from 18 to 300 microhenties. Multiple pi for pi from higher inductonces, Forms $\gamma_{\text {ig }} /$ dio. $x \%_{i p}$ in. Iong, higher inductances. Fopms $3^{\prime \prime} 6^{\prime \prime} \times 5 / 6^{\prime \prime}, 1 / 4^{\prime \prime} \times 3 / 4^{14}$, and $1 / 4^{\prime \prime} \times 1^{\prime \prime}$. Special coils on order.

MINIATURE IF TRANSFORMERS
Exiremely high Q-aporo inately 200-Vorioble Coupling- lunder, critical, ond over) with oll od. iustments on top. Small size $1^{1} 16^{\prime \prime} \times 1{ }^{9} 16^{\prime \prime} \times 1 \% /^{\prime \prime}$ iustments on top. Small size con terminal base. Air copacitor tuned. Cails completely enclosed in cup cores. T pped primary and secondary. Rugged construction. Higt electrical stobility.
No. $61455,455 \mathrm{kc}$. Universal Trans. No. $81453,455 \mathrm{kc} . \mathrm{BFO}$
No. $61180,1800 \mathrm{kc}$. Universal Trans
No. $61163,1600 \mathrm{kc}$. BFO

74400

JAMES M MILEEN MALDENDMASSSACHUSETXS

flexible couplings

The Na. 39000 series of Millen "Designed for APplication" flexible coupling units include, in addition to impraved versians af the conventional types, also such exelusive original designs as the No. 39001 insulated universal ioint and the Na, 39006 "slideaction" coupling (in bath steatite and bakelite insulation).
The No. 39006 "slide-action" caupling permits langitudinal shaft matian, eceentric shoft mation and out-af-line operation, as well as angular drive
wirhout backlash 39005 and 390 (high torque) are similar to the Na. 39001 , but are not insulated. The steatite insulated No. 39001 has a special antibacklash pivot and socket grip feature. All of the obove illustrated units are for $1 / /^{\prime \prime}$ shaft and are standord praduction type units. The No. 39016 incorporates fealures which have long been desired in a flexible coupling. No Back losh-Higher Flexi-bility-Higher Breakdown Volrage-Smaller Diam-eter-Shorter length-Higher Alignment Accuracy -Higher Resistance to Mechanical Shock-Solid Insulating Rarrier Diaphragm-Molded as a Single Unit.

CERAMIC PLATE OR

 GRID CAPSSoldering lug and contact one prece. lug ears anneoled and solder dipped to facilitate each combination "mechanical plus soldered" connection of cable.
No. 36001 - $9 / 16^{\prime \prime}$
No. 36002 - ${ }^{\prime} /{ }^{\prime \prime}$
No. 36004-1/4

SNAP LOCK PLATE CAP

For Mobile, Industrial and other applications where tightet than normal grip with multiple finger 360° low resistance contac: is required. Contact selflacking when cap is pressed into position. Insulated snop button at top releases contact grip for easy removal without damage to lube.
No. 36011 - $9 / 16^{\circ}$
No. 36012 - $1 / 6^{\prime \prime}$

SAFETY TERMINAL

Combinalion high valtoge terminal and thru-bushing Topered contact pin fits firmly into conical socket providing large area, low resistance connection. P in is iwivel mounted in cop io prevent iwisting of lead wire
No. 37001 , Black or Red.
No. 37501 , Low loss.

THRU-BUSHING

Efficient, compact, easy to use and neat appearing. Fits $1 / 4$ "hole in chassis. Held in place with a drop of solder or a nick from a erimping lool.
No. 32150

POSTS, PLATES, AND PLUGS

The No. 37200 series, including both insulated and non-insulated binding posis with associated plates and plugs, provide various combinations to meet most requirements. The posts hove captive heads and keyed mounting.
The No. 37291 and No. 37223 are standard in black or red with other colors on special order. No 37201 , No. 37202 , ond No. 37204 and No. 37222 are ovailable in black, red, or low loss. The Na, 37202 is also ovailable in stealite.
No. 37201 -Single plates, pr.
No. 37291 -Single plates (ropered), pr. No. 37202-Dual plates, pr. .
No. 37204 -Double dual plates, pr
No. 37212 -Dual plug.
No. 37222 - Non-insulated binding post, ea. No. 37223-Insulated binding pasts, ea..

STEATITE TERMINAL STRIPS

Terminal and lug are one piece. Lugs are turret type and are free floating so as not to strain L4 ceramic on wide temperature variations. Easy 10 mount with series of round hales. 1400 valt and 3500 valt series.

MINIATUIBITEEID

 are similar. in mont deats evern size of lheir equivalent- in our
 pletr minaturiation is mot paramonat. a combination of atandaral and mitiature component - may powilly be uad to atsantage.
 small siand roil forms from our - fandard catalow,

CODE

AOO Bar knob for $1 / 1^{\prime \prime}$ shaft. $1 / 2^{\prime \prime}$ high by $3 / 4^{\prime \prime}$ long
A006 Fluted black plastic knob with brass insert for $1 / s^{\prime \prime}$ shaft
A007 $1 / 4^{\prime \prime}$ block plastic dial knob with brass insert for $1 / 3^{\prime \prime}$ shatt.

AO1 12 Right ongle drive for $1 / /^{\prime \prime}$ shafts. Single hole mounting.
AO14 $1^{\prime \prime}$ bor dial for $1 / 1^{\prime \prime}$ shoft. $1 / 2^{\prime \prime}$ high. 180° or 280° dials for clockwise of counter-clockwise rotation
AO15 I"fluted knob dial far $1 / 3^{\prime \prime}$ shaff, $1 / 2^{\prime \prime}$ high. Same diol plates
AO17 as no. AO14. $1 / 3^{\prime \prime}$ dinmeter fluted black plastic knob for $1 / 2^{\prime \prime}$ shaft.
AO18 Knob, some os na. A007 except with $3 / \mathbf{a}^{\prime \prime}$ diameter skift
A019 Knob, same as no. A007, but without dial.
A021 Miniature metal index for miniature dials.
A050 Miniature dial lock
A050 Miniature dial lock A 061 Shaft lock for $1 / /^{\prime \prime}$ diameter shoft. $1 / 4^{\prime \prime}-32$ bushing. Nickel plated brass.
A082 Shaft lock with knurled locking nut
A066 Shoft bearing for $1 / 3^{\prime \prime}$ diameter shafts. Nickel plated brass fits $17 / 4^{\prime \prime}$ diameter hole

C円MPDNENTS

CODE

001
E201 Black or red plastic b nding post pla-es for No. E222
E202 Black or red plastic plates for two binding posts spaced $1 / 2^{\prime \prime}$ E212 Block or red plastic plug for two binding posts spoced $1 / 2$ E222 Metal binding post w th jock top
E302A to E306A Steatite ceramie terminal strips. "tho" wide. Terminols spaced $1 / 0^{\prime \prime}$ on centers. Serew type or solder type thru-terminals.
J300-3.3 to J300-2500 Complete line of miniature inductunces 3.3 to 2500 microhenries. $3 / /^{\prime \prime}$ ieng. Diameter $0.1^{\circ} 5^{\prime \prime}$ to $0.297^{\prime \prime}$
MOO1 Insulated universal ioint style flexible coupling for $1 / \mathbf{1}^{\prime \prime}$ dio. shat's.
M003 Solid soupling for $1 / \mathbf{" d}^{\prime \prime}$ did. shofts. Niskel plated brass.
M004 Universal joint style flexible coupling for $1 / \mathbf{N}^{\text {" diameter shofts. }}$ Inverted hubs for short length. Not insulated.
MO05 Universal joint style flexible coupling for $1 / 2^{\prime \prime}$ diometer shafts. Externcl hub for maximum flexibility. Not insulcted.
M006 Universal joint style flexible coupling for $1 / 1^{\prime \prime}$ diometer shafts. Spring finger. Steatite ceromic insulation
M008 Plastic insulated coupling with nickel plated brass insers for
MO17 Plostic insulated flexible couplng for $1 / 2^{\prime \prime}$ diameter shofts. Plostic insulated flexible couplng for $1 /{ }^{12}$ " Iang by $15 / 0^{\prime \prime}$ diameter. Bronze yoke.
MO23 Insulated shoff extension for $1 / 4^{\prime \prime}-32$ bushing ond $1 / 4^{\prime \prime}$ shaft
MO24 locking insulated shaft extension similar to no. M023.
69043 Steotite ceromic coil form. Adjuspowle core. Winding space 1/4" diometer by $13,2^{\prime \prime}$ long. Mounting $4-40$ hole.
69044 Steatite ceramic coil form. Adjustoble core. Winding space $0.187^{\prime \prime}$ diameter by $3 / 16^{" l}$ long. No. $10-32$ mounting.

Maln office AND FACTORY
MALDEN, MASSACHUSETTS, U.S.A.

And Special Units to Your Specifications

UNITED TRANGFORMER GORPORATION

Your best buy!

Johnson Amateur Equipment

... For Full Communication POWER!

VIKING "ADVENTURER" 50 WATT TRANSMITTER—Used to earn first Novice WAC! (Worked All Continents.) Self-contained, effectively TVI suppressed, instant band switch. ing 80, 40, 20, 15, and 10 meters. Operates by crystal or external VFO, An octal power receptacle located on the rear apron provides full 450 VDC of 150 mo , and 6.3 Power receptacle located on the 2 amp, output of supply to power auxiliary equipment such as a VFO, signal manitar, ar madulatar for phone operation. This receptacle also permits using the full output of the supply ta power other equipment when the transmitter is nat operating. Wide range pi-network output handles virtually any antenna without separate antenna tuner, range pi-network output handles virtually any antenna without separate and ers lerystals

Cat. No. 240-181-1.. Kit, .. Amateur Net $\$ 54.95$
SPEECH AMPLIFIER/SCREEN MODULATOR-Designed to provide phone operation for the "Adventurer". High gain -use with either crystal or dynamic micraphanes. Simple installatian-only minor wiring changes necessary in "Adventurer". With tubes.
Cot. No. 250-40. . Kit.
Amateur Net $\$ \mathbf{1 2 . 2 5}$

VIKING "NAVIGATOR" TRANSMITTER/EXCITER—This compact, flexible CW transmilter has enough RF power ta excite mast high powered final amplifiers an CW and AM. 40 watts-bondswitching 160 through 10 meters. Highly stable, built-in VFO is tempera pure compensated and voltage regulated -may also be operated crystal control. Timed sequence keying -effectively TVI suppressed. Pi-netwark antenna load matching from
 Shipping Weight: 27 lbs.
Cat. No. 240-126-1, . Ki
Cat, No. 240-126-2. Wired and tested. Amateur Net $\$ 199.50$

VIKING "CHALLENGER" TRANSMITTER -Ideal for fixed station, emergency, portable or field day use, the "Challenger" is a full size transmitter with three RF stages - designed for fast, easy tuning, excellent stability and plenty of reserve drive. 70 watts phone input 80 through of meters, 120 watts CW input 80 through 10 meters... 85 watts CW input 80 through or meters, 120 watts $C W$ input 80 through 10 meters $\ldots 8$ watts $\mathbb{C W}$ input
on 6 meters! A single $6 D Q 6 A$ buffer drives two husky $6 D Q 6$ bridge neutralized tetrodes in the final amplifier. Hi " Q " wide range pi-netwark output -effectively TVI suppressed and filtered. For crystal or external VFO control. Excellent keying system. With tubes and builtin power supply.
Cat. No. 240-182-1 . Kit...................................... Amateur Net $\$ 114.75$
Cat. No, 240-182-2. Wired and tested. Amateur Net $\$ 154.75$

VIKING "RANGER" TRANSMITTER -This outstanding amateur transmitter will also serve as an RF and audio exciter far high power equipment. As an exciter, it will drive any of the popular kilowatt level tubes. No internal changes necessary to switch tram transmither to exciter operation. Self-contained, 75 watts CW or 65 watts phone input mitter to exciter operation, $16,80,40,20$, 15 , and 10 meters. Extremely stable, builtin VFO or crystal control-effectively TVI suppressed -high gain audio-timed sequence (break-in) keying -adjustable wave shaping. Pi-nefwork antenna load matching from 50 to 500 ohms. Easily assembled - with tubes, less crystals, key and microphone. $151 / 2^{\prime \prime} \times$ $95 / 8^{\prime \prime} \times 14^{\prime \prime}$. Shipping Weight: 54 lbs .
Cat. No. 240-161-1 ..Kit... Amateur Net $\mathbf{\$ 2 2 9 . 5 0}$
Cat. No. 240-161-2 . Wired and tested. Amateur Net $\$ 329.50$

VIKING "VALIANT" TRANSMITTER - Designed tor outstanding fiexibility and performonce. 275 watts input an CW and SSB (P.E.P. with auxiliary SSB exciter), 200 watts AM. Instant bandswitching 160 through 10 meters-operates by builtin VFO or crystal control. Pi-network tank circuit will match antenna loads from 50 to 600 ohms-final tank coil is silver-plated. Other features: TV1 suppressed-timed sequence (break-in) keying—high gain push.fortalk audio system-low level audio clipping-buit-in low poss audio filter-self-contained power supplies. With tubes, less crystals, key, and microphone. Dimensions: $21^{\prime \prime} \times 115 / 8^{\prime \prime} \times 16^{1 / 4}{ }^{\circ}$. Shipping Weight: 83 lbs .
Cot. No. 240-104-1 . . Kit. Amateur Net \$349,50
Cot. No. 240-104-2. . Wired and tested.
Amateur Net $\$ 439.50$

VIKING 'FIVE HUNDRED" TRANSMITTER—Rated a full 600 watts CW . . JU0 watts phone and SSB. (P.E.P. with auxiliary SSB exciter.) All exciter stages ganged to VFO tuning. Two campact units: RF unit small enaugh to ploce on your operating desk beside receiver-power supply/madulator unit moy be placed in any convenient location, Crystal or built-in VFO conlrol-instant bandswitching 80 through 10 meters-TVI sup-pressed-high gain push-to-tolk oudio system-low level audio clipping. Pi-network output circuit with silver-plated finol tonk coil will load virtually any antenno system. With tubes, less crystals, key, ond microphone. Dimensions: RF Unit-21" $\times 115 / 2^{*} \times 161 / 2^{\circ}$. Power Supply-203/8* $\times 153 / 4^{\prime \prime} \times 10 \%{ }^{\circ}$. Tatal Shipping Weight: 200 lbs .
Cat. No. 240-500-1 . . Kit.
Amateur Net $\$ 749.50$
Caf. No. 240-500-2 . Wired and tested.
Amateur Nei $\$ 949.50$

VIKING "THUNDERBOLT" AMPLIFIER - The hotest linear omplifier on the markethondles over 2000 watts P.E.P. ${ }^{*}$ input SSB; 1000 wotts CW; 800 watts AM lineor; in a campletely self-contoined desk-top package. Continuous coverage 3.5 to 30 mcs, instant bondswitching. Moy be driven by the Viking "Novigotor", "Ronger", "Pocemoker", or other unit of comporable output. Drive requirements: oppraximotely ' 10 wotts in Class $A B$: linear, 20 watts Closs C continuous wove. With tubes and built-in power supply. Dimensions: 21 " $\times 115 / \mathrm{g}^{\prime \prime} \times 16^{7 / 16^{\prime}}$. Shipping Weight: 140 lbs .
Cat. No. 240-353-1 . . Kif. Amateur Net $\$ \mathbf{5 2 4 . 5 0}$
Cat. No. 240-353-2 . Wired and tested. Amateur Net \$589.50

VIKING "COURIER" AMPLIFIER-Roted a solid one-holf kilowott P.E.P. input with auxiliary SSB exciter os a Class B lineor omplifier; one-holf kilowott input CW or 200 watts in AM lineor mode. Completely self-contoined desk.top pockoge-moy be driven by the Viking "Novigo:or," 'Ranger," "Pocemoker," or other unit of comporable output. Continusus coveroge 3.5 to 30 mcs. Drive requirements: 5 to 35 watts depending upon mode ond frequency des'red. Pi-network output designed to match 40 to 600 ohm ontenno loods. Fully TVI suppressed. Complete with tubes ond built-in power supply. Dimensions: $151 / 2^{\prime \prime} \times 95 / 9^{\prime \prime} \times 14^{*}$. Shipping Weight: 68 lbs.
Cat. No. 240-352-1 . . Kit. Amateur Net $\$ \mathbf{2 4 4 . 5 0}$ Cat. No. 240-352-2 . Wired and tested Amateur Net $\$ 289.50$

VIKING "6N2" TRANSMITTER - Instant bandswiching on 6 ond 2 meters, this compact VHF tronsmitter is rated of 150 wotts CW ond 100 wotts AM phone. Completely shielded and TVI suppressed, the " 6 N2" moy be used with the Viking "Rong er,"' "Viking I," "Viking II," or similar power supply modulotor combinations copoble of of leost 6.3 VAC at 3.5 omp., 300 VDC of 70 mo ., 300 to 750 VDC of 200 mo . and 30 or more watts audio. Moy be operoted by built-in crystol control or externol VFO with $8-9 \mathrm{me}$. output. With tubes, less crystols, key, and microphone. Dimensions: $1312^{\prime \prime} \times B 3 / 2^{\prime \prime} \times 81 / 2^{\prime \prime}$. Shipping Weight: 14 lbs .
Cat. No. 240-201-1. . Kit.
Amateur Net $\$ 129.50$ Cot. No, 240-201-2 . Wired and tested.

Amateur Net \$169.50

VIKING "6N2" THUNDERBOLT AMPLIFIER - Brond new . . . continuous bondswitched coveroge on 6 and 2 meters. Rated at 1200 watts P.E.P. * input SSB and DSB, Class $A B_{1}$; 1000 wotts $C W$ input Closs C; ond 700 watts input $A M$ linear, Closs $A B_{1}$. Drive requirement opproximotely 5 watts in Class $A B_{1}$ lineor or 6 wotts Class C continuous wave. Effectively TVI suppressed ond filtered-wide ronge pi network output. Outstonding effi-ciency-losses on 2 meters held to opproximotely 5%, instead of common 25% losses experienced in some other 2 meter circuitry, due to unique silver-plated onode and other external metol portions of the 7034 tubes; silver-plated inductors, copocitors, ond switch. With tubes. Dimensions: $21^{\prime \prime} \times 115 / 3^{\prime \prime} \times 16^{7 / 16^{\prime \prime}}$.
Shipping Weight: 140 lbs .
Cal. No. 240-362-1 . Kit
Amateur Net $\mathbf{\$ 5 2 4 . 5 0}$
Cat. No. 240-362-2. Wired and tested
Amateur Net $\$ \mathbf{5 8 9 . 5 0}$

VIKING 'KILOWATI'' AMPLIFIER-Brilliontly designed ond engineered, the Viking "Kilowotf" is the only power ampl fier oyoiloble which will hondle full 2000 wotts SSB *input and 1000 watts CW orrd plote-niadutoted AM! Closs "C" fincl amplifier operotion provides plate cirsuit efficiencies in excess of 70°. Finat amplifier utilizes two 4-400A tetroaes in parallel, bridene neutrolized. Coninuous coverage 3.5 to 30 mc . Excitation requirentents- 30 watts RF ond 10 wotts audio for AM; 10 wotts peak for SSB.
Cat. No. 240.1000. Wired and tested. Amateur Net $\$ 1595.00$ Cat. No. 251-101-1. . Matching accessory desk top, bach and three drower pedestal.
.FOB Corry, Pa. \$132.00
*The FCC permits o moximum of one kilowotl averoge flower input for the omoteur service. In SSB operotion under normol conditions this results in peok envelope power inpuls of 2000 watts or more depending upon individual voice chorocieristics.

The E. F. Johnson Company reserves the right to change prices and specifications without notice and without incurring obligation.

Your best buy!
 Johnson Station Accessories ... For Outstanding PERFORMANCE!

VIKING AUDIO AMPLIFIER -A self-contoined 10 -wo lt speech amplifier complete with power supply. Speech clipping and filtering designed to raise overage modulated carrier level... improves the performance and effectiveness of your AM transmitter Inputs provided for microphone, or line. Complete with tubes. Dimensions: $1378^{\prime \prime} \times 8^{\prime \prime}$ $51 /{ }^{\prime \prime}$. Shipping Weight: 22 Jbs
Cat. Na. 250-33-1.. Kit. Amateur Net $\mathbf{\$ 7 3 . 5 0}$
Cat. No. 250-33-2. Wired and tested. Amateur Net $\$ 99.50$
POWER REDUCER -Provides up to 20 wats continuous dissipation for $100-150$ walt transmitters such as Johnson Viking, Calling 32 V , or others, permitting them to serve os exciters for the Viking "Kilowolt", Completely shielded -equipped with SO -239 cooxiol connectors. Dimensions: $31 / 2$ "long $\times 21 / 4^{\prime \prime}$ diameter.
Cat. No. 250-29. \qquad Amateur Net
$\$ 13.95$
POWER DIVIDER - Provides up to 35 wats continuous dissipation. Designed to provide the proper output looding of the "Pocemoker" SSB Transmitter when used to drive the Viking Kilow ot t Amplifier.
Cat. No. 250.34
. Amateur Net $\$ \mathbf{2 5} .50$

> VIKING "6N2" VFO-Exceptionally stable and compact-designed to replace 8 to 9 ms. crystals in frequency multiplying 6 and 2 meter transmitters, including types using overtone oscillators. Temperature compensated and voltage regulated for minimum drift and high stability. Plexiglas dial calibrated from 144 to 148 mc ., 50 to 51.5 mc , 51.5 to 53 mc .10 to 1 vernier tuning. Complete with tubes and calibrated dial, Dimesion: $4^{\prime \prime} \times 4 \frac{1}{2^{\prime \prime}} \times 5^{\prime \prime}$.
> Cal. No. 240-133-1. . Kit.
> Amateur Net $\$ 34.95$
> Cat. No. 240-133-2, . Wired and tested
> Amateur Net \$54.95

VIKING " 6 N2" CONVERTER - This compact " $6 N 2$ 2" Converter provides instant front panel switching from normal receiver operation to either 6 or 2 meters. Maximum sensitivity and low noise figure- excellent image and I. F. rejection due to double-tuned, overcoupled, interstoge circuits on both 6 and 2 meters. With tubes. Dimensions: $23 / 4 \mathrm{~m} \times$ $5^{*} \times 12$." Shipping Weight: 5 Jbs . Available kit or wired in either $26 \mathrm{ta} 30 \mathrm{mes} ., 28$ to 30 mes., 14 to 18 mes., or 30.5 to 24.5 mes. ranges. Specify range desired.
Kits . Amateur Net $\mathbf{\$ 5 9 . 9 5}$
Wired Models.
Amateur Net \$89.95

MOBILE VFO-Diminutive voriob'e frequency oscillator designed specifically far mobile use. Rugged construction minimizes frequency shift due to road shock and vibration... small size permits steering post mounting. Temperature compensated and voltage regu. lated. Calibrated 75 through 10 meters... 3.75 ta 4 mc . output for 75 meters and 7.05 to 7.45 for 40 to 10 meters. 10.5 mc . output also available for doubling to 15 movers. With pubes. Dimensions: $4^{\prime \prime} \times 41 / 4^{\prime \prime} \times 5^{\prime \prime}$.
Cat. No. 240-152-1. . Kit. Amateur Net $\$ 33.95$
Cat. No. 240-152-2. Wired and tested.
Amateur Net $\$ \mathbf{5 2 . 5 0}$
"WHIPLOAD.6" - Provides high eff ciency bose looking for mobile whips with insect bondswith selection of $75,40,20,15,11$, and 10 meters. On 75 meters a special capacitor with dial scale permits tuning entire band. Covers other bands without tuning. Air-wound coil provides extremely high "Q." Eibre-glass housing protects assembly. Mounts an standard mobile whip.
Cal. No. 250-26. Wired and tested
Amateur Net \$16.95

VIKING "MATCHBOXES" Provides completely integrated antenna matching and switching systems for kilowatt or 275 -wat transmitters. Units complete with builtin directional
 coupler and indicator. Bandswitching 80,40,20,15, and 10 meters. Quickly and easily match transmitter to balanced or unbalanced lines over a wide range of antenna inpedonces will tune out large amounts of capacitive or inductive reactance. No "plugin"" coils or "load-topping" necessary.

275 WATT "MATCHBOX"

Cat. No.

250-23-3. With buili-in Directional Coupler $\&$ Indicator $\mathbf{\$ 8 6 . 5 0}$
250-23 . Less builp-in Directional Coupler 究 Indicator.
.$\$ 54.95$
KILOWATT "MATCHBOX"
Cat. No. Amateur Net

250-30-3. With builtin Directional Coupler Indicator .$\$ 149.50$
250-30. Less builtin Directional Coupler Indicator. $\$ \mathbf{\$ 1 2 4 . 5 0}$
SWR BRIDGE-Meosures standing wove ratios for effective use of a low pass filter and antenna coupler. 52 ohms impedance can be changed to 70 ohms or other value. SO-239 connectors and polarized meter jocks. Dimensions; $41 / 32^{\prime \prime}$ long $\times 25 / 16^{\prime \prime}$ diameter.
Cat. No. 250-24. . Wired and tested. Amateur Net
"SIGNAL SENTRY" - Monitors CW or phone signols on all frequencies 1050 mc . without funing. Energized by transmitter RF. Mutes receiver audia for break-in. May be used os cade practice oscillator with simple circuit modificotion. Requires 250 VDC at 5 mo .; and 6.3 VAC at .6 mp . from receiver or other source. With tubes. Dimensions: $3 \mathrm{~s} / \mathrm{s}^{\mathrm{n}} \times 37 / \mathrm{s}^{\mathrm{n}}$ $\times 33 / 4^{"}$. Shipping Weight: 3 lbs.
Caf. Na. 250-25. . Wired and tested
. Amateur Net \$22.00
CRYSTAL CALIBRATOR - Provides accurate 100 kc . check points to 55 mc . Requires 6.3 volts at .15 amps. and 150.300 volts of 2 ma . With tube, militory-type crystol, power cable and extension leods. Dimensions: $15 / 8^{\prime \prime} \times 2 \frac{1}{2^{*}} \times 1 \frac{1}{2}$. (Over. all height to top of tube is $33 / \mathrm{m}^{\circ}$.)
Cor. Na. 250-28. Wired and rested. Amoteur Net $\$ 17.95$
LOW PASS FILTER-Handles more than 1000 watts RF-provicies 75 db or more attenuation above 54 mc . Insertion loss less thon .25 db . Replaceable Teflon insulated fixed capocitors, SO-239 coaxial connectors. Wired and preituned. Dimensions: $9^{\prime \prime}$ long $\times 25 / 16^{\prime \prime}$ diameter.
Cat. Na. 250-20. . Wired and pre-tuned 52 ohms. Amateur Net $\$ 14.95$ Cat. Na. 250-35. Wired and pre-tuned 72 ohms......... Amateur Net $\$ 14.95$

ATTENUATORS-These T-pad attenuators provide 6 db of ottenuation with required power dissipotion to enable vorious units to serve os exciters for the Viking "Thunderbolt" inear omplifier. Dial instontly cuts oftenuator in or out circuit. Dimensions: $41 / 2^{*} \times 31 / \mathrm{B}^{*}$ $\times 91 / 8{ }^{*}$. Shipping Weight: 2 lbs .
For use with Viking "Ranger" of similar unit. Provision for 75 watt incandescent bulb so unit may be used with Viking II or similar transmitter exciter.
Cot. No. 250-42-1
Cat. No. 250-42-3 For use with HT-32, or similar unit.
Amoteur Net \$21.50 A mateur Net \$21.50

PRE-TUNED BEAMS - Rugged, semi-wide spaced pie-runea beams with bolun motching sections. For 20,15 and 10 meters. Appraximately 9.0 db goin over tuned dipolegreoter than 27 db front-to-back ratio with low SWR. Pottern is uni-directionol, beom width is 55 . No adjustments required. Boom assemblies ore of $2^{\prime \prime}$ galvonized steel fubing, elements are aluminum alloy fubing. Na loading devices needed for flutter dampening or corono discharge.

Cat. Na. (With 3 elements, beam and balun)

Amoteur Nel
138-420-3 20 Meter Beam-20' Baam. 84 lbs. Net Weight.............. $\$ 139.50$
138.415-3 15 Meter Beam-13 $7^{\prime \prime}$ Boam. 53 lbs. Net Weight.......... 110.00

138-410-3 10 Meter Beam-10 Baam. 42 lbs. Net Weight. 79.50

ROTOMATIC ROTATOR - Sofely supports mulriple arrays weighing up to several hundred pounds, even under heovy icing conditions or high wind loading. Rotates 1 RPM -over-all geor reduction 12,000 to 1. Rototor housing is cost oluminum, with 5/18" steel rototing toble. Incluaes desk top control box for outomotic ond occurote ontenno ozimuth beoring.
Cat. Na,
Amateur Net
138-116. With limit switches for 370 rotation-caaxial line
$\$ 354.00$
138-108. Beam swifching relay...
$\$ 22.00$
144-16...8 Conductor cable for rolator, per ft. $\$.26$
"MATCHSTICK"- Fully outomatic, pre-tuned multi-band vertical ontenna system, Bondswitching 80 through 10 meters. Remotely motor driven from operoting position. Easily mounts on roof top or in limited space locotion. Low SWR (less than 2 to 1) oll bands. Impedance: 52 ohms. Complete with 35^{\prime} mast, base, tuning network, relays, control box ond 6 nylon guy ropes. Shipping Weight: 38 lbs.
Cat. No. 137-102.. Pre-funed
Amaleur Net \$129.50

T-R SWITCH—Provides instantaneous high-efficiency electronic ontenno switching. Excellent receiver isolation. Goin: 0 db at 30 mcs.; 6 db ot 3.5 mcs . Rated at 4000 wotts peok power. Instontoneous breok in on SSB, DSB, CW or AM. Will not offect transmission line SWR-provides an effective impedance motch to most receivers through 3 to 30 mc , ronje. With tube, power supply, and provision for RF probe, etc. Dimensions: $4^{3} / 16^{*} \times 43 / 4^{*}$ $\times 5 \mathrm{~m}$ ". Shipping Weight: 5 lbs.
Cat. No. 250-39. . Wired and tested
Amoteur Net $\$ 27.75$
DIRECTIONAL COUPLER AND INDICATOR-Provides continuous reoding of SWR ond relative power in tronsmission line. Coupler may be permonently instolled in 52 ohm cooxial line-handles maximum legal power as specified by FCC. Stondord tip jacks permit use of commerciol multimeter os indicating instrument-reference sheets showing curves supplied for popular multimeter basic ronges. Indicotor is a 0.100 micro-ommeter colibroted in SWR and relative power. Monitors incident or reflected power quickly with Alp of o switch. Coupler dimensions: $81 / 4$ "long $x 25 / 16^{*}$ diometer. Shipping Weight: 2 lbs . Indicotor dimensions: $4^{\prime \prime} \times 41 / 4^{*} \times 41 / 4^{\prime \prime}$. Shipping Weight: 4 lbs.
Cat. No. 250.37. Coupler, Wired ond tested. Amoteur Net \$11.75
Cat. No. 250.38 Indicotor, Wired and tested............. Amateur Net $\$ 25.00$
KEYS AND PRACTICE SETS - Johnson olso monufactures a complete line of semiautomotic, high speed, stondord, heavy duty and proctice keys; code proctice sets and buzzers. See your distributor for complete information.

The E. F. Johnson Company reserves the right to chonge prices ond specificotions without notice and withoul incurring obligotion.

E. F: -Tafinisamin Commpainy

Johnson Components ...TOps for QUALITY!

The E. F. Johnson Company also manufactures a complete line of electronic components for those of you who prefer to design and build your own transmating equipment and accessories. The complete line is covered in Catalog 978 . . . write for your free copy today!

KNOBS AND DIALS - Includes a new group of molded nylon collet knobs available in 13 bright colors; and a distinctive line of matching knobs and dials suitable for use on the finest electronic and electrical equipment. Available with phenolic skirts, etched and anodized aluminum skirts with markings, or flat dial scores engraved and filled. Collet knobs are constructed of tough, shock-proof nylon —designed for use with $1 / \mathrm{s}^{\prime \prime}$ shafts; standard phenolic knobs meet MIL-P-1 4 specifications, and are furnished with heavy brass inserts for $1 / 4^{\prime \prime}$ shafts.

INSULATORS—High quality steatite and porcelain insulators. Heavily glazed surfaces and heavy nickel-plated brass hardware suitable for exposed application. May be supplied with screws and nuts or with jacks to accommodate standard banana plugs. Through-panel and stand-off types. Also antenna insulators, bushings, and feeder insulators.

PILOT LIGHTS-A complete selection of standardized pilot lights. Faceted jewel or wide-angle lucite lens types; enclosed or open body styles; standard bayonet, candelabra, or miniature screw types, and a wide variety of mounting brackets and assembliss. Jewels available in clear, red, green, amber, blue, and opal. All Johnson pilot lights are described in detail in Pilot Light Catalog 750a -send for your copy!

CONNECTORS-A complete line of new nylon connectors is available in addition to standard banana jacks and plugs. Nylon components include insulated solderless tip and banana plugs, tip and banana jacks, tip jack and sleeve assemblies, metal-clad tip jacks, and a 6 -way binding post. In thirteen bright colors-nylon components are designed to operate through an extremely wide temperature range and high relative humidity conditions. (Voltage breakdown up to 11,000 volts.) Solderless nylon plugs are easy to assemble-both plugs and jacks require a minimum amount of mounting space.

VARIABLE CAPACITORS

TYPE "M"—These diminutive capacitors provide the perfect onswer to problems encountered in the design of compact rodio frequency equipment. Bridge-type stator terminal provides extremely low inductance path to both stator supparts. Soldered bearing and heavily anchored stator supports insure extreme rigidity.
TYPE " S "- Midway between types " M " and " K " in size, design is compact and construction rugged. Equipped with DC-200 treated steatite end frame and nickel-plated brass plates-an excellent choice where higher capacity values than provided in " M " types is required in small space.
TYPES "C" AND "D"—Functional favorites built to exacting standards for medium power RF equipment. Dual types have centered rotor connection for balance. End frames tapped for panel mounting. Brackets furnished for chassis mounting.
TYPES "E" AND "F"—Rugged units pravide o large amount of capacity per cubic inch and extremely low capacity to the chassis. Panel or chassis mounting.
TYPE " G "-Neutrolizing capacitors for medium and low-powered stages constructed on the rotor-stator principle. Panel or chassis mounting.
TYPE "J"-Heavy-duty miniature type has wider spacing than most small air variables, yet occupies little more space. Useful for small space plate tank circuits and low power stages where standard miniatures have insufficient plate spacing.
TYPE "K"-Widely used for militory and many commercial applications, the Johnson type "K" features DC-200 impregnated steatite end frames, slotted stator contacts, end extra-rigid soldered plate construction.
TYPE "L"-A superior quality general purpose capacitor embodying important advances in design and construction. The rotor bearing and stator support rods are actually soldered directly to the ceramic (steatite) end frames, making the capacitor virtually vibration-proof.
TYPE "N"-Extremely high voltoge rating in proportion to size requiring a small mounting area. Constont voltage rating throughout full capacity range. These are of the aluminum cup and cylinder type of construction and are supported by a steatite frame with cast aluminum mounting bracket.
TYPE "R"-The rugged Johnson version of a popular standardized capa. citor. Featuring extra heavy steatite stator support insulators and soldered .023" thick brass plates; all metal parts heavily nickel-plated for corrosionresistance.

TYPE "U" - New design-rotor and stotor are precision machined from one piece of solid brass, offering excellent uniformity and outstanding mechanical stobility. Low cost due to automatic production techniques. High torque-to-mass ratio. Excellent, low temperature coefficient.

TYPE "U'

TYPE "T"

TYPE "T'" - Tiny new sub-miniature air variable built to comply with MIL-C. 92 specifications. Excellent mechanical stability, " Q " greater than 3000 at 1 Mc., and high torque-to-mass ratio. Available only in production quantities for commercial applications.

TUBE SOCKETS

Johnson steatite and porcelain tube sockets are available in three grades: Standard, Industrial, and Military. All are manufactured to rigidly controlled specifications, and all are made of only the highest quality materials.
Bayonet Types-include Medium, Jumbo, and Super Jumbo 4 pin models.
Steatite Wafer Types-ovailable in 4, 5, 6, 7, and 8 pin standard sockets as well as Super Jumbo 4 pin, Giant 5 and 7 pin models and VHF transmitting Septar base types.

Miniafure Types-are steatite insulated and available in Miniature 7 and 9 pin models. Matching miniature shields also available.
Special Purpose Types-include sockets for tubes such as the 204A and 849, the 833A, 304TL, 5D21, 705A, and other special types.
For High Power Transmitting Tubes-such as the $4 \times 150 \mathrm{~A}, 4 \times 150 \mathrm{D}, 4 \times 250 \mathrm{~B}, 4 \mathrm{CX} 250 \mathrm{~B}, 4 \times 250 \mathrm{~F}$, 7034, 7035. Available in several designs-with or without screen grid by-pass capacitor. Basic socket molded of low-dielectric loss-factor Kel-F plastic. Contacts are low-resistance silver-plated beryllium copper.

Typical RCA Beam Power Tubes for amateur service

RCA Transmitting Tube Manual TT-4 .2E6 fact-filled pages covering 1.08 RCA power tube types and 13 RCA high-ioltage rectifier types. Available at ycur RCA Industrial Tube Distrikutor. Or send $\$ 1.00$ to RCA Commercial Eng., Sec. A-11-M, Harrison, N. g.

26

RCA HAM TIPS... Written by hams for hams. A regular publication carrying up-to-the-minute articles, and latest "tips" for the shack. Free from your RCA Industrial Tube Distributor.
Popular RCA "High-Perveance" Power Tubes for Transmitter Application

Popular RCA "High.Perveance" Power Tubes for Transmitter Application (listed according to power-input ratings)						
$\begin{gathered} \text { RCA } \\ \text { Type } \end{gathered}$	$\begin{aligned} & \text { Beam Power } \\ & \text { or } \\ & \text { rriode } \end{aligned}$	$\begin{aligned} & \text { Class } \\ & \text { of } \end{aligned}$ Service	Plate Input Watts	Man. DC Plate Volts	Max. freq. For full Input (Mc)	Heater (H) or Filament (F) Volts
5763	Beam Power	$\begin{aligned} & C W \\ & A M \end{aligned}$	$\begin{aligned} & 17 \\ & 15 \end{aligned}$	$\begin{aligned} & 350 \\ & 300 \end{aligned}$	50	$6.0(\mathrm{H})$
6417	Beam Power	Some as RCA. 5763, except for heater voltage				12.6 (H)
2E26	Beam Power	$\begin{aligned} & C W \\ & S S B \\ & A M \end{aligned}$	$\begin{array}{r} 40 \\ 37.5 \\ 27 \end{array}$	$\begin{aligned} & 600 \\ & 500 \\ & 500 \end{aligned}$	125	6.3 (H)
2 E 24	Beom Power	Some as RCA -2E26, but has quick-heating filament				6.3 (F)
6893	Beam Power	Some as RCA.2E26, except for heoter vallage				12.6 (H)
832. ${ }^{\text {a }}$	Beam Power	$\begin{aligned} & C W \\ & A M \end{aligned}$	$\begin{aligned} & 50^{\circ} \\ & 36^{\circ} \end{aligned}$	$\begin{aligned} & 750 \\ & 600 \end{aligned}$	200	$\begin{array}{r} 6.3^{\mathrm{A}}(\mathrm{H}) \\ 12.6^{\circ}(\mathrm{H}) \end{array}$
807	Beam Power	$\begin{aligned} & C W \\ & S S B \\ & A M \end{aligned}$	$\begin{aligned} & 75 \\ & 90 \\ & 60 \end{aligned}$	$\begin{aligned} & 750 \\ & 750 \\ & 600 \end{aligned}$	60	6.3 (H)
1625	Beam Power	Same as RCA. 807 , except for heater voltoge and use of medium.7.pin base				12.6 (H)
6524.	Beam Power	$\begin{aligned} & \text { CW } \\ & \text { SSB } \\ & \text { AM } \end{aligned}$	$\begin{aligned} & 85^{\circ} \\ & 85^{\circ} \\ & 55^{\circ} \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \\ & 500 \end{aligned}$	100	6.3 (H)
6850°	Beom Power	Same as RCA.6524, excepi for heoter voltage				12.6 (H)
6146	Beam Power	$c w$ SSB AM	$\begin{array}{r} 90 \\ 85 \\ 67.5 \\ \hline \end{array}$	$\begin{aligned} & 750 \\ & 750 \\ & 600 \end{aligned}$	60	6.3 (H)
6883	Beam Power	Same os RCA. 6146 , except for heater voltage				12.6 (H)
829-8 ${ }^{\circ}$	Beam Power	$\begin{aligned} & \text { CW } \\ & \text { SSB } \\ & \text { AM } \end{aligned}$	$\begin{array}{r} 120^{\circ} \\ 120^{\circ} \\ 90^{\circ} \end{array}$	$\begin{aligned} & 750 \\ & 750 \\ & 600 \end{aligned}$	200	$\begin{array}{r} 6.3^{4}(\mathrm{H}) \\ 12.6^{\circ}(\mathrm{H}) \end{array}$
${ }^{7270}$	Beam Power	$\begin{aligned} & C W \\ & S S B \\ & A M \end{aligned}$	$\begin{array}{r} 315 \\ 250 \\ 210 \end{array}$	$\begin{aligned} & 1350 \\ & 1350 \\ & 1100 \end{aligned}$	60	6.3 (H)
811.A	Triode	$\begin{aligned} & C W \\ & S S B \\ & A M \end{aligned}$	$\begin{aligned} & 260 \\ & 235 \\ & 175 \end{aligned}$	$\begin{aligned} & 1500 \\ & 1500 \\ & 1250 \end{aligned}$	30	6.3 (F)
812.A	Triode	$\begin{aligned} & C W \\ & A M \end{aligned}$	$\begin{aligned} & 260 \\ & 175 \end{aligned}$	$\begin{aligned} & 1500 \\ & 1250 \end{aligned}$	30	6.3 (F)
8005	Triode	$\begin{aligned} & C W \\ & A M \end{aligned}$	$\begin{aligned} & 300 \\ & 240 \end{aligned}$	$\begin{aligned} & 1500 \\ & 1250 \end{aligned}$	60	10 (F)
$\begin{aligned} & 7034 / \\ & 4 \times 150 \mathrm{~A} \end{aligned}$	Beam Power	$\begin{aligned} & C W \\ & \text { SSB } \\ & \text { AM } \end{aligned}$	$\begin{aligned} & 500 \\ & 630 \\ & 320 \end{aligned}$	$\begin{aligned} & 2000 \\ & 2250 \\ & 1600 \\ & \hline \end{aligned}$	150	6.0 (H)
7094	Beam Power	$\begin{aligned} & C W \\ & S S B \\ & A M \end{aligned}$	$\begin{aligned} & 500 \\ & 400 \\ & 335 \end{aligned}$	$\begin{aligned} & 1500 \\ & 2000 \\ & 1200 \end{aligned}$	60	6.3 (H)
813	Beam Power	$\begin{aligned} & C W \\ & S S B \\ & A M \end{aligned}$	$\begin{aligned} & 500 \\ & 450 \\ & 400 \end{aligned}$	$\begin{aligned} & 2250 \\ & 2500 \\ & 2000 \end{aligned}$	30	10 (F)
8000	Triode	$\begin{aligned} & C W \\ & \text { SSB } \\ & \text { AM } \end{aligned}$	$\begin{aligned} & 750 \\ & 510 \\ & 500 \\ & \hline \end{aligned}$	$\begin{array}{r} 2500 \\ 2750 \\ 2000 \\ \hline \end{array}$	30	10 (F)
833.A	Triode	$\begin{aligned} & \text { CW } \\ & \text { SSB } \\ & \text { AM } \end{aligned}$	$\begin{aligned} & \text { 1000, plus } \\ & 1000 \text {, plus } \\ & 1000 \end{aligned}$	$\begin{aligned} & 3300 \\ & 3300 \\ & 3000 \\ & \hline \end{aligned}$	30	10 (F)
- Twin-typ	- Total for both	- For parallel-heater connection -F			For series heater connection	

Available in a choice of input power ratings up to the legal limit, RCA power tubes are the Amateur's answer for power reliability in virtually every rf and al power application you can name. And remember this: Many RCA power lubes for amateurs do not require expensive air-system sockets.
The quick-reference chart shown here will help you pick the popular RCA types you nced-from more than 90 types of beam power tubes and triodes available for antateur transmitter application. Note that every type listed on this chart has "high-perveance" design...a development that enables you to get the power you want al relatively low plate voltage. And note this, too: Every type is conservatively rated to assure long hours of "solid" QSO's.
Whether you are planning high power or low power, CW or 'phone, AM or SSB-you'll get more watts for your "transmitler dollar" when you design, or when you "retube", with "RCA's".
That's why RCA Power Tubes continue to be top choice among the leading transmitter designers. Your RCA Industrial Tube Distributor handles the complete line.

"SENECA" VHF HAM TRANSMITTER KIT

Beautifully styled and a top performer of highest quality throughout. The "Seneca" is a completely self-contained 6 and 2 meter transmitter featuring a builtin VFO for both 6 and 2 meters, and 4 switch-selected crystal positions, 2 power supplies, 5 radio frequency stages, and 2 dual-triode audio stages. Panel controls allow VFO or crystal control, phone or CW operation on both amateur bands. An auxiliary socket provides for receiver muting, remote operation of amenna relay and remote control of the transmitter such as with the Heathkit VA-1 Voice Control. Features up to 120 watts input on phone and 140 watts on CW in the 6 meter band. Ratings slightly reduced in the 2 meter band. Ideal for ham operators wishing to extend transmission into the $V \mathrm{HF}^{5}$ region. Shag. Wt. 56 Itss .

DX-20 CW TRANSMITTER KIT

Designed exclusively for CW work, the DX- 20 provides the novice as well as the adwanced-class CW operator with a low cost trans niter featuring high operating efficiency. Single-knob bandswitching covers 80, 40, 20, 15 and 10 meters using crystals or an external VFO. li network output circuit matches antenna impedance between 50 and 1,000 ohms. Employs a single 6 DQ 0 A tube in the final amplifier stage for plate power input of 50 wats. A 6 Cl .6 serves as the crystal oscillator. The husk power supply uses a heave duty 5 U 4 GB rectifier and top-quality "potted" transformer for long service life. Easy-to-read panel meter indicates final grid or plate current selected by the panel switch. Complete RF shielding to minimize TV'I interference. Easy-to-build with complete instructions provided. Shag. Wit. 19 lbs.

Mobile Gear...for the Ham on the Go!

"CHEYENNE' MOBILE HAM TRANSMITTER KIT
 All the fun and excitement . . . plus the convenience of mobile

 operation are sours in the all-new Heathkit "Cheyenne" transmitter. 'The neat, compact, and efficient circuitry provides you with high power celpability in mobile operation, with low battery drain using carrier controlled modulation. All necessary power is supplied by the model MP-1 described below. Covers $80,40,20,15$ and 10 meters with up to 90 watts input on phone. Features built-in VIO, modulator, 4 RF stages, with at G146 final amplifier and pi network (coaxial) output coupling. High quality components are used for long service life and reliable operation. along with rugged chassis construction to withstand mobsile vibrations and shock. Thoughtul circuit layout provides for ease of assembly with complete instructions and detailed pictoriad diagrams to insure suceess. A spotting switch is also provided. A specially designed ceramic microphone is included to insure effective modulation with plenty of "punch". Plan now to enjoy the fun of molsile operation by building this superb transmitter. Shpg. Wit. 19 lbs.
"COMANCHE'' MOBILE HAM RECEIVER KIT

Everything you could ask for in modern design mobite gear is provided it the "Comanche" . . . handsome styling, rugged construction, top quality components . . . and, best of all, a price sou can afford. The "Comanche" is an 8 -tube superheterodyne ham bund receiver operating AM, CW and SSB on the 80, 40, 20, 15 and 10 meter amateur bands. A 3 me crystal lattice-type If filter permits the receiver to use single conversion without image interference, and at the same time creates a stecp sided 3 ke flat top IF bandpass characteristic comparable to mechanical tepe filters. The neat, compact and casy-to-assemble circuitry features oustanding sensitivity, stability and selectivity on all bands. Circuit includes an RF stage, converter, 2 IF stages, 2 detectors, noise limiter, 2 audio stages and a voltage regulator. Sensitivity is better than 1 mierovolt on all bands and signal-to-noise ratio is better than 10 db down at 1 microvolt input. One of the finest investments you can make in mobile gear. Shpg. WVt. 19 lbs .

MOBILE SPEAKER KIT

A matching companion speaker for the "Comanche" mobile receiver, 1 Ioused in a rugged steel case with brackets provided for easy installation on fire wall or under dashboard, ctc. Uses 5 PM speaker with 8 ohm voice coil. Measures $5^{\prime \prime} 11 . \times 5^{\prime \prime}$ W. x $21 / 2^{\prime \prime}$ D. Shpg. Wi. 4 lbs .

HEATHKIT MP-\&

$\$ 44^{95}$

MOBILE POWER SUPPLY KIT

This heary duty transistor power supply furnishes all the power reguired to operate both the X1'-1 Transmitter and $\mathbf{M 1 R}-1$ Receiver. It features two 2N442 transistors in a 400 cercle switchine circuit, supplying a full 120 watts of DC power. Under intermittent operation it will deliver up to 150 watts. Kit contains everything required for complete installation, including 12^{\prime} of heavy battery cable, tap-in studs for battery posts, power plug and. 15' of connecting cable. Chassis size is $91 / 26^{\prime \prime} \mathrm{L}, \times 41 / 4^{\prime \prime} \mathrm{W} . \mathrm{x}$ $2^{\prime \prime} \mathrm{H}$. Operates from $12-14$ volt battery source. Circuit convenience provided by self-contained relay which allows push-to-1 alk mobile operation. Shpg. Wit. 8 lbs .

\$g995
 $\$ 11995$

MOBILE BASE MOUNT KIT
The AK-6 Base Mount is designed to hold both transmitter and receiver conveniently at driver's side. Universal mounting bracket has adjustable legs to fit most automobiles. Shpg. W't. 5 Jbs.

POWER METER KIT

This handy unit picks up energy from your mobile antematand indieates when your transmitter is tuned for maximmon output. A variable sensitivity control is provided. Features a strong magnet on a swivel-mount for holding it on a car dashboard or other suitable spot. Has its own antenma or may be connected to existing antenna. Sensitive 200 uat meter, Shpg. Wit. 2 lbs .

"APACHE" HAM TRANSMITTER KIT

The many features and modern styling of the "Apache" will provide you with just about crerything you could ask for in transmitting facilities. Dimphasizing high quality the "Apache" operates with a 150 watt phone input and 180 watt C.W input. In addition to CIW and phone operation, built-in switeh selected cireuitry provides for single-sideband transmission using the SB-10 lxternal adapter. The newly designeel, compact and stable VI'() provides low drift frequency control necessary for $S S B$ transmission. A slide rule type illminated rotating VFO dial with full gear drive vernier tuning provides ample bandsperad and precise frequency settings. The bandswitch allows quick selection of the amateur bands on $80,40,20,15$ and 10 meters. This unit also has adjustable low-level speceh elipping and a low distortion modulator stage employing two of the new 6CA7/EL 34 tubes in push-pull class AB operation. 'Tïne sequence keying is provided for "chirpless" break-in CW operation. 'The inal amplifier is completely shiclded for TVI protection and neutraized for greater stability. A cooling fan is also provided. The formed one-piece cabinet with convenient access hateh provides accessibility to tubes and crystal sockets. Die-cast aluminum knobs and control panel escutcheons add to the attractive styling of the transmitter. Pi network output coupling matehes antenna impedances between 50 and 72 ohms. A "spotting" push button enables the operator to "zero beat" an incoming frequency without putting the transmitter on the air. Equip your ham shack now for top transmitting enjoyment with this outstanding unit. Shpg. Wt. 110 lbs. Shipped motor freight unless otherwise specified.

SINGLE SIDEBAND ADAPTER KIT

Designed as a compatithe plug-in adapuer unit for the TX-1 "Apache" transmitter, hhis unit lets you operate on SSB at a minimum of cost, yet does not atfer the nomat AM and CW functions
 transmitters can be used, utilizing att existing RF circuitry. lixtremely easy woperate and tune, the adapter employs the phatsing method for gencrating a single-sidethand signal, thas allowing operation entirely on fandanental freguencies. The critical andin phase shifa actwork is supplied completely preassembed and wired in a scated phag-in unit. Produces cither at ISB, BSB or DSIS signal. with or without carrice insertion. (Avers 80, 40, 20, 15 and 60 metrer bamds, An casy-th-
 anti-trip circuit is also provided. 10 watt PIEP ouput. ('nwambed side-hand suppression is in excess of 30 dth and carrier suppression is in excess of 40 dh. An $\mathrm{F} 1.84 / 6 \mathrm{~B}$ (25 whe is used for lincar RF output. Shpg. Wit. 12 Ins.
MODIFICACION KIT: Modifies DX-100 and DN-100-B for use with the SB-IO Adapter.
 Model MK-1. Shpg. Wi. | Ib. $\$ 8.95$.

ALL-BAND RECEIVER KIT

A fine recciver for the beginning ham or short wave listener, designed for high circuit efficiency and casy construction. Covers 550 ks to 30 mc in four bands clearly marked on a sliderule dial. Transformer operated power supply. Features include: bandswitch, bandspread tuning, phone-standby-CW switch, phone jack, antenna trimmer, noise eliminator, RF gain control and AF control. Shpg. Wit. 12 lbs.

CABINET: Opt. exira. No. 91-15A. Shpg. Wi. 5 lbs. \$4.95.

"Q" MULTIPLIER KIT

Useful on croweded phone and CW bands, this kit adds selectivity and signal rejection to your reeciver. t'se it with any AM receiver having an $1 F$ frequency belwern 450 and 460 kc that is not A(:-DC type. Provides an effertive " Q " of approximately 4,000 for extremely sharp "prak" or "nall". The Q1-1 is powered from the receiver with which it is used. Shpe. Wit. 3 lbs .

OF DISTINCTIVE QUALITY

ACCESSORY SPEAKER KIT

Handsomely desiened and color styled to math h the "Mohatwh" rectiver this heaty duly $8^{\prime \prime}$ speater with 4.7 ounce magnes provides excellent tone quality. Howsed in attractive $3 / \mathbf{m}^{\prime \prime}$ plywoed cabinet with perforated metal grille. Speaher impedance is 88 ohms. Shpg. Wt. 7 lbs .

"MOHAWK" HAM RECEIVER KIT

Styled to match the "Apache" transmitter the "Mohawk" ham band receiver provides all the functions required for clear, rock-steady recption. Designed especially for ham band operation this 15 -tube receiver features souble conversion with IF's at 1682 kc and 50 kc and covers all the amateur frequencics from 160 through 10 meters on 7 bands with an extra band calibrated to cover 6 and 2 meters usine a converter. Specially designcel for single sideband reception with crestal controlled oscillators for upper and lower sideband selection. . completely preassembled wired and aligned front end eoil bandwiteh assembly assures ease of conseruction and top performance of the linished unit. Other features include 5 selectivity pesitions from 5 ke w 500 (:Ps. bridere 1 -noteh tilter for excellent heterodyne rejection, and a builtin 100 ke crystal calibrater . The set provides a 10 db) signal-to-noise ratio at less than 1 microvelt input. lach ham band is separately calibrated on a retating stide rule dial woprode elear fiequency settines with more than ample bandspread. Front pancl featues S-meter. separate R1: IF and AF gatin controls. T-noteh tuning. I'noteh depth. A.NL.,
 upper-lower sideband. selectivity, phone jack and illuminated gear driven vernier slide rule tuning dial. Attractively styled with dicecast alumimum control knobs and escuteboons. No external alignment equipment is required for precise calibration of the "Mohawk". All adjustments are easily acomplished using the unique method deseribed in the manual. Anoutstanding buy in a communications receiver. Shpy. W't. 66 Ibs. Shipped motor freight maless otherwise specilicd.

HEATHKIT AM-2
$\$ 15^{95}$

REFLECTED POWER METER KIT

'The AM-2 mentsures forwatal and reflected power or samdimg wave ratios. Hatulles a peat pewer of well ower 1 kilowatt of

 required for uperation. 1 'se it ,tho tw matelt impedtoteres
 Shpr. Wit. 3 Ifs.

BALUN COIL KIT

Match unbalanced coaxial lines, fouted on most morlern tounsmiterss. th hatanered lines of cither 75 or 309 ohms intpeolume will this hamby transmitere atcessers, (athahte of homelling peaser inpue up to 200 wats. the B-1 m.as be use with transmitrers athl terivers conering 80) (hromeh 10 meters. No adjutheme required. Shipg. Wit. +th .

HEATHKIT B-1 s895

 supply is buite in and acrannal strip on the reat of the chatas
 117 vole atmennat relay. Shag. Wic. 5 fla.

VFO KIT

Far bolow the cost of aystats to whain the same freducrey cone ernge this variathe frepucney maillator covers 160), 80, +40. 20, 15 and 10 meters with there basic oscillator freguenvers. I'rotieling better than 10 whe aver-
 A.ts, the VF-I is cotorble of driving the most tomedern trammaters. Requires only 250 volts J (:at 1.5 (t) 20 mat, and 6.3 VAC an 10.45 a. H1mminatorle ial reads direct. Shpg. Wi. 7 Ibs

Save I/2 or more...with Heathkits

DX-100-B PHONE AND CW TRANSMITTER KIT
A long standing fivorite in the Heathkit line, the DK-100-B combines modern styling and circuit ingenuty to bring you an exceptionally fine transmitter at an ceonomical price. Panel controls allow VFO or crystal conurol, phone or (:W operation on all amateme bands up 1030 mc . The rugged one-piece formed cabinet features a convenicnt tophewcess hatch for changing erystals ared making other adjuments. The chassis is pumehed to acrept sideband adapter modifications. Featered are a buite-in VFO, modulator, and power supply, complete shiedding to minimize TVI, and a pi network oulput coupling (o mateh impedances from 50 to 72 ohms. KF output is in excess of 100 watts on phote and 120 watts on CW. Band coverage is fron 160 through 10 meters. For operating convenience singleknob bandswitching and illuminated VFO dial on meter face are provited. A pair of 6146 whes in parallel are employed in the output stage modulated by a pair of tif25's. Shpg. Wt. 107 Ilss. Shipped motor freight unless otherwise specitied.

HEATHKIT DX-40
\$6495

DX-40 PHONE AND CW TRANSMITTER KIT

An outstanding buy in its power class the DX- 40 provides both phone and CW operation on 80, 40, 20, 15 and 10 meters. A single 6146 cube is used ia the final amplifier stage to provide full is watt plate power input on CW or controlled carrier modulation peaks up to 80 watts for phone operation. Modulator and power suppiies are built in and single-knob bandswitehing is combined with the pi network output circtit for complete operatirg convenience. Features a I D'Arsonval movement panel meter. A line filter and liberal shielding provides for high stability and minimum IV'I. Provision is made for there erystals casily accessitule through a "trap door" in the back of the calinet. A t-position switch selects any of the three crystals or jack for external VFO. Power for the VFO is available on ther rear apron of the chassis. Basy-to-follow step-by-step instructions let assembly proceed snoothly from start to finish even for an individual who has never built electronic equipment before. Shpg. Wt. 25 lbs .

Free Send now for latest Heathkit Catalog describing in detail over 100 easy-to-assemble kits for the $\mathrm{Hi}-\mathrm{Fi}$ fan, radio ham, boat owner and technician.

HEATH

pioneer in
do-it-yourself electronics

All prices and spectications subject to change without notice. Please include postage on orders to be shipped parcel post. 20% deposit is required on prices are NET F.O. B prices are NET F.O.B. apply to Continental U.S. and Possessions only.

Send latest Free Heathkit Catalog,
COMPANY BENTON HARBOR 9, MICH.
$\left[\begin{array}{l}\square \\ I\end{array}\right)$ a subsidiary of Daystrom, Inc.

NAME

ADDRESS

CITY
ZONE
STATE

QUANTITY	KIT NAME	MODEL NO.	PRICE

Din Trueblood, Witsib, of Goldaboro, N.C. is shown inmalling a cuntomer'n new General Hlectric I'ransiatarized
 an authorized General Electric service technician for iwnway radio for five years. He currently operates single side band with a full kilowatt, when he's not busy selling, in. btalling and matintaining (;-E, (wo-way radia.

Turn your skills into profit installing and

 maintaining G-E Two-Way Mobile RadioThousands of new mohile radio systems are heing installed every yearfor delivery services, salesmen, taxis, gas and electric utilities, industrial and construction vehicles, and many other uses. All these systems require sercice - service your unique background and knowledge can be easily adapted to provide.

Servicing two-way radio can be a full-time vocation, or a profitable sideline. Many highly successful Ceneral Electric mobile radio service stations were founded by licensed radio amateurs, and many now utilize the skills of hams such as yourself on a part-time basis as well as full-time. Working in an authorized C.E: Service Station is also an ideal way in which to prepare for the second or frrst class Commercial Radio Operator's license, required for commercial mobile radio servicing.
G.E two-way radio equipment is designed and built with the serviceman in mind. Ceneral Electric's fanous Progress Line, for example, features interchangeable rack-mounted transmitter, receiver and power supply for fast servicing. C.F.,'s new line of transistorized portable and mobile equipment offers even greater service advantages.
Find out how you can hecome an authorized G.E serviceman. Write National Service Manager, General Electric Company, Communication Prolucts Dept., Section 30, Mountain View Road, Lynchlurg, Virginia.

Progress is Our Most Imporrant Product GENERAL ELECTRIC

 MINNIE CONNECTORS

Complete new family of minature "E's"-altitude-moisture resistant. Sizes 12 to $22-3$ to 48 contacts.

PRIN-CIR CONNECTORS

Receptacles, plugs and adapters with super-reliable gold-plated contacts. From 6 to 22 contacts.

RACK \& PANEL CONNECTORS
Sevenfamilies available for every $\mathrm{K} \& \mathrm{P}$ application. Patented crimp Poke-Homecontacts
All RF series available. including remarkable Subminax. New Quick-Crimp BNC's cut assembly time in half.

in $93 \& 94$ series.

COAXIAL CABLE

Most complete line anywhere of RG-/U polyethylene and Teflon coaxial cables. Miniatures also.

ALL STANDARD AMPHENOL COMPONENTS STOCKED IN DEPTH BY YOUR AUTHORIZED AMPHENOL DISTRIBUTOR...

ask for your copy of catalog ieg!

DISTRIBUTOR DIVISION
BROADVIEW, ILLINOIS

Collins mobile transceiver

Another Collins creative design-the advanced amateur's 80-10 meter transceiver - system engineered for mobile and home operation.

Superior single sideband performance in a variety of installations is assured by the Collins KWM-2 Mobile Transceiver. Engineered for the amateur who desires an 80 through 10 meter mobile transceiver, the KWM-2 design incorporates time-proven and advanced communication concepts.
The Mobile Transceiver provides outstanding frequency stability on fourteen 200 kc bands from 3.4 me to 30.0 mlc . With 175 watts PEP input on SSB. or 160 watts on CW. the KWM-2 provides ample power for dependable amateur communication. Filter type SSB generation, Collins permeability-tuned variable oscillator, crystal-controlled HF double conversion oscillator, vox and anti-trip circuits, and exclusive AIC and RF inverse feedback are among the features of the KWM-2. The Collins Mechanical

Filter. RF amplitier. all tuned circuits. and several tubes perform the dual role of transmitting and receiving. CW break-in and monitoring sidetone circuits are built-in. and all four plugs in the mobile mount connect the KWM-2 automatically. A connector on the rear provides for antenna selection or loading coil selection for mobile operation.
The Collins KWM-2 Mobile Transceiver weighs 18 lbs. 3 Oz . and measures $73 /{ }^{7 \prime \prime} \mathrm{H}$ (including legs),
$143 / 4 \mathrm{~W}$ and $131 / 4 " \mathrm{D}$. Mounts, accessories, and power supplies are available for 12 v de, and 115 v ac operation.

See the KWM-2 now on display at your Collins Distributor. Ask for the colorful KWM-2 brochure with complete specifications.

 TGNTe

The S /Line is a complete station for the advanced amateur. The $32 \mathrm{~S}-1$ Transmitter and $75 \mathrm{~S}-1$ Receiver may be operated separately or as a transceiver in which the receiver controls the transmitter frequency. The 312B-4 Speaker Console integrates the two units further with over-all station control, and control of a directional wattmeter for maximum output efficiency. For the amateur desiring the strongest signal, the 30 S-1 Linear Amplifier provides maximum legal output with greatly simplified operation.

32S-1 Transmitter

The 32S-1 is an SSB or CW transmitter with a nominal output of 100 watts on all amateur hands between 3.5 and 29.7 mc . Input power is 175 watts PEP on SSB or 160 watts on CW.

The transmitter covers 3.5 to 30 mc except for the $5.0-6.5 \mathrm{mc}$ range. Crystal sockets. crystals and bandswitch position are provided for ten 200 kc bands. with the standard amateur configuration equipped as follows: 3.4-3.6, 3.6-3.8, 3.8-4.0; 7.0-7.2.7.2-7.4; 14.014.2, 14.2-14.4:21.0-21.2,21.2-21.4. 21.4-21.6. Crystal sockets and bandswitch positions also are provided for three 200 kc bands between 28 and 29.7 mc . One of these sockets is equipped with a crystal for 28.5 to 28.7 mc . A fourteenth position, corresponding to the WWV position on the receiver, can be used for an additional 200 kc band in the $9.5-15.0 \mathrm{mc}$ range, if desired.
Features which have made Collins amateur SSB equipment famous are incorporated into the $32 \mathrm{~S}-1$,
including Mechanical Filter-type sideband generation; stable, permeability-uned VFO; crystal-controlled HF oscillator: RF inverse feedback for better linearity: atutomatic load control for higher average talk power and protection against flattopping.
For ac operation, the 516F-2 Power Supply is used with the $32 \mathrm{~S}-1$: for 12 v de operation, the $516 \mathrm{E}-1$ used with the KWM-1 and KWM-2 may he used with minor modification.

Specifications

Eallssion: SSB - upper or lower sideband. CWkeyed tone.
power input: 175 watts PEP on SSB. 160 watts on CW.
POWER OUTPUT: 100 watts PEP nominal (slightly lower on 10 meters) into 50 ohms.
ourput impledence: 50 ohmis nominal with not more than approximately 2 to 1 SWR. Impedance match variable $25-100$ ohms.
frequency siability: After warm-up, over-all stability due to temperature, humidity, pressure and voltage variation is 100 cps . Calibration accuracy: 1 kc .
visual dal accuracy: 200 cps on all hands.
electrical dial accuracy: After calibration: 300 cps on all bands.
harmonic and other spurious radiation: Catrier suppression -40 db . Unwanted sideband - 50 db . Oscillator feed-through and/or mixer products -50 db . Second harmonic -50 db . 3 rd order distortion -30 db .

75S-1 Receiver

312B-4 Speaker Console

The 312B-4 (pictured between 75S-1 and 32S-1 below) houses a speaker, and RF directional wattmeter with 200 and 2000 watt scales, and switches for various station control functions.

75S-1 Receiver

The $75 S-1$ provides SSB, CW and AM reception on all amateur bands between 3.5 and 29.7 mc . It is capable of coverage of the entire HF spectrum between 3.5 and 30 mc by selection of the appropriate HF heterodyning crystals.

The standard amateur configuration includes crystal sockets. crystals and bandswitch positions for: 3.43.6, 3.6-3.8, 3.8-4.0; 7.0-7.2, 7.2-7.4; 14.0-14.2, 14.214.4: 21.0-21.2, 21.2-21.4, 21.4-21.6. Crystal sockets and bandswitch positions are also provided for three 200 kc bands between 28 and 29.7 mc . with one of the sockets equipped with a crystal for 28.5 to 28.7 mc . A crystal and bandswitch position is also provided for $14.8-15.0 \mathrm{mc}$ for reception of WWV and WWVH for time and frequency calibration data.

The same standard of excellence and many of the design features of the 75A-4 are incorporated in the 75S-1. These include dual conversion with a crystalcontrolled first heterodyning oscillator: bandpass first IF: stable, permeability-tuned VFO; RF amplifier designed to minimize cross modulation products: Mechanical Filter; excellent AVC characteristics; and both product and diode detector.

New features include the use of only 150 volts on vacuum tube plates, use of silicon diodes in lieu of conventional high vacuum rectifier; and choice of three degrees of selectivity (with optional CW filter).
A power connector at the rear of the $75 \mathrm{~S}-1$ chassis provides for disabling the internal ac power supply so that the 12 v de power supply for the KWM-2 may power the receiver as well as the transmitter.

Specifications

visual dial accuracy: 200 cps on all bands. mifetrical dial accuracy: (after calibration) 300 cps on all bands.

Sensitivity: The CW sensitivity is better than 1 microvolt (with a 50 -ohm dummy antenna) for a 15 db signal-plus-noise-to-noise ratio.
selectivity: 2.1 kc Mechanical Filter for SSB; 0.5 kc Mechanical Filter (not supplied) for CW; 4.0 kc IF transformer passband for AM.
spurious response: Image rejection is more than 50 db. Internal spurious signals below 1 microvolt equivalent antenna input.

30S-1 Linear Amplifier

The $30 \mathrm{~S}-1$ is a completely self-contained, single tube, grounded grid linear amplifier. Requiring 70 to 100 watts driving power (from the $32 \mathrm{~S}-1$ or KWM-2, for example), it provides the full legal power input for SSB (1 kw average) or 1 kw input for CW . The tube used is the Eimac 4CX1000A. The 30S-1 may be used on any frequency between 3.4 and 30 mc .

The 30S-I may be loaded into an antenna without exceeding the legal dc input of 1 kw during tuneup. Front panel switching makes two different power levels immediately available for SSB operation: 100 watts from the exciter alone or the full 1 kw meter average input for SSB. The air blower for the 4CXIOOOA operates quictly - barely audible in a quiet room. The power supply for the 30S-1, which is housed in the lower portion of the cabinet, provides cathode bias voltage, screen voltage and 3000 volts for the $4 C \times 1000 \mathrm{~A}$ plate. Space is provided in this compartment for the $516 \mathrm{~F}-2$ Power Supply.

Extended Frequency Versions of the $S /$ Line

The $32 \mathrm{~S}-1$ and $75 \mathrm{~S}-1$ are available in extended frequency versions, designated the $75 S-2$ and $32 S-2$. The two differ from the original only in that an additional crystal board has been added beneath the chassis. In this board is placed the standard complement of ham band crystals normally received with the equipment. The upper board is left empty so that the amateur may place whatever additional crystals he may desire up to a total of 14. A front panel switch is added to allow switching between the two crystal boards.

32S-I Transmitter

30S-1 Linear Amplifier

Collins

5/ LTONI包 nad

302C-3 Directional Wattmeter- Measures forward and reflected power on 200 and 2000 watt scales. Coupler unit mounts separate from indicator-control box. Power loss and mismatch introduced by the instrument are negligible

B312-1 Directional Coupler - The coupler unit from the 302C-3 for amateurs who desire to utilize an optional meter and switch for a customiced fixed instalation or for a mobile instaltation.

351E Table Mounts - For mounting the S/Line and KWM-2 on planes, hoass, etc. May he fastened to any flat surface. Front clamps attach to the feet of the units for secure hold-down. $351 \mathrm{E}-1$ for $32 \mathrm{~S}-1$. 75S-1: $351 \mathrm{E}-2$ for $312 \mathrm{~B}-4$. $516 \mathrm{~F}-2$; $3511:-3$ for $312 \mathrm{~B}-3$. $351 \mathrm{E}-4$ for KWM-2.

351D-2 Mobile Mount - Provides secure mounting for KWM-2 in most automohiles. Cantilever arms fold out of the way when KWM-2 is removed.
Mating plugs conned power, receive-transmit antenna. noise blanker, antenna and antenna control as KWM-2 slides into place. Cables included.

312B-5 Speaker Console and External PTO-

Used with KWM-2 in fixed station operation to pro-
vide sepatate receiving and transmitting control, and directional wattmeter
399C-1 Speaker and External PTO-Contains speaker and external PT() for separate receiver and transmitter control of KWM-2
136 Series Noise Blankers - Provide effective reduction of impulse-type noise, particularly ignition noise. 136A-1 for 75S-1: 13613-1 for KWM-1: 136B-2 for KWM1-2: $136 \mathrm{C}-1$ for 75A-4.
312B-3 Speaker - Contains at $5^{\prime \prime} \times 7^{\prime \prime}$ speather and connecting cable. Alractively syled to match receiver and transmitter.

516F-2 AC Power Supply- Operates from 115 v atc. $5(0-60$ eps. Provides all voltages for the $325-1$.
516E-1 Power Supply - Operates from 12 v de. Provides all required voltages for the KWM1-2 or $325-1$ and $75 \mathrm{~S}-1$ for mobile or portable operation. Transistorized for maximum efficiency and minimum maintenance. The S16F-2, a 28 v de supply may also be used.
For addresses of Collons dealers or further information and complete specifications on the entire Collins S/line and accessories. write to: Amateur Sales, Collins Radio Company, Cedar Rapids, lowa.

COLLINS

RHEOSTATS-Insure permanently smooth, close control. All-ceramic, vitreous-enameled: $121 / 2,25,50$, $75,100,150,225,300,500,750$, and 1000 -watt sizes.

OHMITE RELAYS-Four stock mod-els-DOS, DO, DOSY, and CRU, in 65 different types. At 115 VAC or 32 VDC, noninductive load, Models DOS and DOSY have a contact rating at 15 amp; Model DO, 10 omp; Model CRU, 5 amp. A wide range of coil aperating voltoges is availoble.

TANTALUM CAPACITORS - Units are ovailoble in three types: subminioture, insulated, wire-type, in eleven sizes. Three sizes of foiltype. New slug-type tantalum capocitors. All feature high performance in minimun spoce and a wide range of capocitance and voltage ratings.
Write for Stock Catalog

POWER RESISTORS-Wire-wound, vitreous-enameled resistors. Stock sizes: $25,50,100,160,200$ walls; volues 1 to 250,000 ohms. "Brown Devil" fixed resistors in 5, 10 , and 20 -wotl sizes; values from 0.5 to 100,000 ohms. Adjustable power resisto:s; quickly odjustable to the value needed. Adjustable lugs can be attached for multitap resistors ond voltage dividers. Sizes 10 to 200 watts, to 100,000 ohms.
R. F. CHOKES - Single-layer. wound on low power factor cores with moistureproof coating. Seven stock sizes, 3 to 520 mc . Two units rated 600 ma ; others, 1000 ma .

TAP SWITCHES-Compact, highcurrent rotary selectars for a-c use. All-ceramic. Self-cleoning, silver-to-silver contacts. Rated at $10,15,25,50$, and 100 amperes.

PRECISION RESISTORS-FOUT types ovailable: molded siliconeceromic, vacuum-impregnated, encapsulated, or metal film. Tolerances to $\pm 0.1 \%$ in $1 / 8,1 / 4,1 / 2$. $3 / 4$, 1 , and 2 -watt sizes, from 0.1 to $2,000,000$ ohms.

VARIABLE TRANSFORMERS-Mod. el VT2, $11 / 2$ amp rating, output voltage, $0-120 \mathrm{~V}-0-132 \mathrm{~V}$; Model VT4, $31 / 2$ amp rating, output voll. oge $0.120 \mathrm{~V}-0.140 \mathrm{~V}$; Model VT8. $71 / 2$ amp rating, output voltoge $0-120 \mathrm{~V}-0.140 \mathrm{~V}$. Input voltage all models, $120 \mathrm{~V}, 60$ cycles. Thirty-five stock models, cased and uncosed.

OHMITE MANUFACTURING COMPANY 3608 Howord Street, Skokie, Illinois

If it weren't for Amateur Radio 25 years ago, there'd be no Eimac tubes today...

Tiwenty-five years a_{g}) WGUF and WGCHE were unhappy with the way final amplifier tules were performing. They decided to do something about it. They founded a company, called their products Eimac tubes and ran their first ad in QST, November, 1931.
What has happened since is reviewed in part on these pages. At Eimac WGUF and WGCHE, and 120 other amateur radio operators are on-the-air getting just as much of a thrill out of their hobby today as they did then and enjoying it much more,

1507 "The only tube the low power man can buy, yet still use effectively at higher power", was the case for the first Eimac tube, the 150T triode, in 1934. It was designed primarily for the amateur and established Eimac tube characteristics for the future-clean, hard vacuums, simplified design, lower driving power, high mutual conductance and superior overload capability.
450t Only two years later in 1936, the state. ment could proudly be made that "practically every major airline uses Eimac tules." The 450'T triode had captured the imagination and fulfilled the critical desires of aviation and was first choice in ground-to-air communications. It featured a new type thoriated tungsten filament ly Eimac ending premature emission failures and guaranteed never to fail because of gas released internally. Later, in 1938, Eimac tubes went into TV service at Station KTSL.
$\mathbf{3 x 2 5 0 0 4 3}$ FM and Eimac tubes were together from the start. By the time Major Armstrong had convinced the world that FM was a great advancement in broadcasting, Eimac tubes were in nearly every experimental FM broadcast station in the nation. The first tubes used were the internal anode triodes. In 1945 the external anode triode $3 \times 2500 \mathrm{~A} 3$ was introduced and subsequently used in the world's most powerful FM transmitter $-50,000$ watts.
304T In $19+0$ the Eimac multi-unit trindes made their debut to provide a high power, low voltage tule with uncommonly low internal resistance which would operate efficiently up to 200 mc . In actual service the tubes operated with as mueh as 20,000 volts on the plate - 10 times the rated voltage. The 304T, four trindes in one, was then and is now acclaimed as a top linear amplifier tube.
vt 127 The Navy held its first sea radar tests in 1939. Generating the power were Eimac 100T triodes. Twn years later when World War II started, this equipment was the prototype of the first radar to see action in the Pacific. Airlorne radar with its demands for smaller antenna meant higher fre${ }_{\text {tuluency operation. The Fimac 15E met all refuire- }}$ ments and made possible 26,000 radar sets used universally by the Navy. Said the Navy, "No other single type of airborne electronic equipment contributed as much." Many of the renowned VT series radar tubes were another Eimac contribution.

4-12EA FARILY (S TUBES) In 1945 Eimac led in power tetrode development with the introduction of the 4-125A as the first of its radial-beam family. These tubes set the standard for the tetrode art and are known for their low driving power requirements, low grid emission, low gridplate capacitances, minimized neutralization requirements and dependable VHF performance.

4x150A Radial-heam power tetrode adrantages in the rugged, compact external anode package was introduced by Eimac in 1946 with the $4 \times 500 \mathrm{~A}$ followed closely by the incomparable $4 \times 150 \mathrm{~A}$. This unique approach enabled smaller, higli power, high frequency equipment and coaxial cavity circuits. The Eimac 4 X150A has since become the most copied of transmitting tubes and father of the modern 4CX250B and 4CX300A.

AMPLIFIER KLYSTRON Despite its reputation in leading tetrode development and manufacture, Eimac saw the shortcomings of grid tubes for IIIFF. in 1948, and started a development program in amplifier klystrons. The result Eimac external-cavity ceramic klystrons - the most extensively used tubes in tropospheric communications. From the initial Pole Vault system to White Alice and NATO, these klystrons are unrivaled.

4С×300А, 4С×250B, 4CX1000A, 4CX5000A

 Ceramic is replacing glass in the Eimac tuhc line-up. Over 40 tube types now have the advantages of the ceramic enve-The dependable tubes of yesteryear have not been forgotten. They are constantly improved. Most of the oldtimers on review here are still available and many are replaceon review here are still available and many are replace-
ments for originals that have finally given in after years and years of service.

EITEL-MCCULLOUGH, INC.
San Carlos, Californla
lope. Its ability to withstand thermal and physical shock has application benefits. Other extras are also built in, such as smaller size without power sacrifice, high temperature and precise tolerance processing.
$\mathbf{x} 626$ Super power, 1.25 megawatts of long-pulse power, at IUIF is now availahle with the Eimac X626. In Ballistic Missile detection and tracking, or interplanetary DX, (this tube holds the record to Venus and back - $56,000,000$ miles), the X 626 is now an impertant part of nur space age.
TWT Now, microwave in the form of ceramic traveling wave tuhes and reflex klystrons. Eimac is engaged in the development and manufacture of new electron devices to propagate the uncrowded spectrum at Super Iligh Frequen. cies and above.

42

Send for this FREE National Catalog to meet your Component Requirements

In addition to the conporimts nomt tipund Blon, Natmeal Rate Co.

 terminal assemblies, and ather electhnic and ciectm-meckantit camit ponents. White for compeoprts catalec tavinin your mptalic applicasions

MIL.SPEC KNOBS

Type KMS. Complete line of standard plastic control knobs made in conformance with MS-915;8. Four basic types (with or without skirt:-), three shaft sizes, gloss or matte finishes, or to your color specifications . . . in all mil-Spec sizes.

CHOKES

R-45 SERIES: Ferrite bead chckes for frequencies from 5 to 200 mc . R-4C SERIES : Ferrite-core chokes, extremely high Q for small size. Fungus-proof varnish impregnation per MIL-V137A. R-25 SERIES: MIL-inductance chokes for hig frequency circuits. Inductance per MLL-C15305A, coil forms per MIL-P-14, impregnation per MIL-V-173A. R-33, R-50, R-60 SERIES: RF coils nolded on phenolic forms per MIL-P-14.

"FLUSH MOUNT" CAPTIVE NUTS

National Exelusive! Flush fi: on both sides of aluminum sheet provides permanent tapped holes. Stainless steel 303 as per MIL-S-853A, passivated finish as per MIL-Pl2011. Idditional types to meet MIL SPECS P-11268, E-5400, and E-16400. Captive studs also available.

PRECISION RIGHTANGLE VERNIER DRIVES

 TYPE PRAD: Right angle drive remote operation of low torque units. TYPE RAD: Right angle drive for ganging capacitors, potentiometers or otner parts in inaccessible locations. TYPE AN: Vernier mechanism for use with any $3 / 16^{\prime \prime}$ National knabs and others. TYPE AVD: Vernier me:hanism similar to type AN except that the cutput shaft is non-insulated.

UNIVERSAL CERAMIC COIL FORMS

 For military and commercial applications. Available in five standard sizes with or without terminal collars. Terminal collars accept up to four terminals per coliar. All materials are in accordance with applicable MIL-SPECS. Preassembled forms to your prints quoted upon request.HR KNOBS
TYPE HRS: Niolded Tenite knobs, grey, black or to specifications. TYPE HRT: Large del.uxe knobs designed for vational's receivers, now available by popular request. TYPE HRB: Band switching knob or other applications where switch is turned to several index positions. TYPE HRM : Small brass knurled knobs. TYPE HRK: Fluted, large black Bakelite knobs. TYPE HRP: Chip resistant black Bakelite knob without pointer. TYPE HRP-P: Same as HRP but with pointer.

SOCKETS, CAPS, TERMINALS
TYPE CIR: Tube sockets of grade L-4 ceramic materials (JAN-1-10 spec.) in four models. TYPE CS : Crystal mounting sockets for crystal holders (JAN-1-10 spec.).
TYPES XM-10, XM-50: Heavy-duty, metal shell sockets for sour-pin tubes. TYPES XLA-7: Low-loss sochet for 6 F 4 and 950 series acorn tubes. TYPE; SPP-3, SPP-9: Plate caps of grade L-4 steatite (JAN-1-10 spec.) with silver or tin plated beryllium copper grips. TYPES GG-8, 12, 24 : Grid grips made in two types, three sizes, variety of materials . . . clip grip, of loop grip . . other specifications also. TERMINAL/ASSEMBLIES: TYPE FWC: InSUlators molded of mica-filled Bakelite. TYPE FWE: Nickel plated brass jacks. TYPE FWA: Nickel plated brass binding posts. TYPE FWT:
 Plugs for stacking. TYPES FWH, FWJ: Terminal assemblies.

Many National Radio Ce. components are made to specitications
For your SPECIAL design or development applications problems, write or cal:

Export: AO AURIEMA, INC., 85 Broad St., New York, N. Y., U.S.A. In Canada: CANADIAN MARCONI CO., 830 Bayview Ave., Toronto. Ont

5100-B

51 SB

PRESENTS 1960's TOP PRODUCTS IN QUALITY AND PERFORMANCE

Grounded Grid Linear Amplifier

 more table epare than at rexiver, ('an be driven be commereial and home-haile excitere in the loo-watt output - lase. Induder R.F. sertion completo with tubers, blewer, filament and bias supply and optional input matrhing unit. Pi-network output circuit for prerise tanimg and loading (1) 80-40-20-15-10 motars.
 banion to the LIPA-I for side-he-side instathation or remote Gation. switching patel removable for remote control. Fiull wave single-phate bridgerertifier with four Pere 816 mereary vapor tahes included. RA.F. filtoring. Heaviduty
 fom for raliable, continuous operation at I KW
 I.PD-M10-2 (ompact, pretmed hamdewithhing :ssom-
 fior. insures maximum input drive on all bathes. Mondel

 Mortel: L-LOON-I and 1,-10001-A. Asembled, maty for ins:allation with instruabore and fittinge.

Medium Powered Transmitter 5100-B

Yommbetcly selferontained including power supply and 1FO. Bathewiteling on the 80-60-20-15-10 meter hands.
 Fxedlent sisk when taved with the Sbsti-ls desmibed hefow, stable VFO areurately calibrated for all amatour himels ineluding 10 meters. Bias system porides complate rutoif under key-up comditions. Fxwellent TVI suppression. Pionctwork output. The 5 oon- 13 makes a superlatively well regulated deiver for a groumded grid class "B" lincal", with output tospare.

Single Sideband Generator 51SB

Fixellent sisk with your present tranmittor. Provides push-to-1ak, waker deactivating eireuit. TVI suppres sion. Complete hatadwitching on 80-40-20-15-10 motors.
 portion has ! 0° phase shitt network, double halanced mondulator, and two class " 1 " R.F. voltage amplifiers. At operating controls on the front pancl. Input impedance EO ohms revistive ; input voltage 1.5-2.0 RS MS om all bands. Montiasalsl3-13 - For uso with B\& ll 5100 -13 from which it derives all operating power.

BARKER \& WILLIAMSON, INC.

Bristol, Pennsylvania

Pi-Nelwork Inductor Assemblies

Integral batumwitehed bi-notwork indurtors for illgho on patalled tube uneration of through 10

 "abneita and optimum " (2 " wor ertire operatime
 Kll on ("W-sisk and 1×1 with 100 , modulation.

 dinn |xwered with rating of 250 watts on $\mathrm{a} M$ phome atal ont watts om CW-Nisk. Max. voltage:

Grid Dip Meter

 usid :s : grid-dip osedatator, signal gemerator, or

 at placio. Mader fion.

T-R Switches

 tratismitter to reerover and vice versat Ideal for
 sate derign eliminates risk of transmitter damage if

 metors. for high signal-to-noise ratio :thed minimum intermodulation affert from lon"al bruadeast atid

 athl :all:atment.

Multi-Position Coax Switches

 Itandles up to I K゙W modulated power, Max. rross-
 Moded an li 2-pule, 2-pmition switch.

Low Pass Filter

 tion throughout Thends. I"ses exchasive Bd
 "onsimention giving gratur attenuation in less spere at lower cost. Xand $42 \overline{5}$ for 52 ohms impedanco. Mordel 420 for 2.5 ohms.

Matchmaster

 as dummy lowd for transmoter tosts, sillit masure
 pobding R.F. Watt meter up lo 125 Watts, higher powers be sampling Intagral sill haridge for matehGug :monats and other lowds to transmitior. Noded

R. F. Filament Chokes

Ised with standard filament tramsformors in

For one or two tube requiring nat more than 1.5 ampe fil. current. Vodel PCom low one on two tubes of ap to:30: amp til, curvell.
CON .. The Model CON Operating Console is an unusual "add a unit" type enclosure used in Point to Point, AirGround, Airport Control Tower, Mobile and Shipboard installations where maximum operating efficiency and equipment flexibility is eequired. The units are made up of standard 19' assemblies which can be used to form straight line, " L ", "U" and many other arrangements.
Bulletin 211
GPR-90 (R-825/URR)...a general purpose communications receiver of the double conversion superheterodyne type covering the frequency range of .5 i to 31 mcs . Stable-selec-tive-accurate-built-in crystal calibrator.......Bulletin 179 GPR-90RX (R-840/URR) ... Provides the same high quality characteristics of the GPR-90 but also permits the use of 10 precisely adjustable crystol positions available from the front panel plus a rear deck input for an external high stability control oscillator or synthesizer. \qquad Bulletin 205
GSB . . . Single Sideband Adapter of the filter slicer type permitting accurate and simple tuning of SSB, AM, CW and MCW. Filter provides aaditional selectivity and pass-band tuning. Upper and lower sidebands are selected by a flip of a switch.
Bullepin 194
SBT-1K ()... Single Sideband Transmitter is a conservatively rated general purpose transmitter providing at least 1 KW PEP from 2-32 mcs.-SSB-ISB-DSB-CW-MCW-FS. Rugged, compact, serviceable, completely bandswitchedideally suited for mobile, marine, fixed station operations. Four models available.
Bullefin 237
GPT-750 () 2 (AN/URT-17A) ...is a fully bandswitched, continuously tunable ($2-32 \mathrm{MC}$) radio transmitter. The building block concept makes this transmitter versatile, easy to install. operate and maintain. Four models available. SSB, ISB, DSB, AM, CW, MCW, FAX, FS. The GPT-750 (12 is ideally suited for fixed station, mokile and shipboard operation.
Bulletin 227
SBT-IKA
GSB

HF/LF communications it's TMC

-ISB•CW•MCW•AM•FS

VOX ($0.330 / F R$) ... a direct reading, high stability, Variable Frequency Oscillator providing continuously variable output over the frequency range of $2-64$ mcs.

Bulletin 134A
XFL-2 .. The TMC Frequency Shift Exciter System, Model XFL- 2 is combined low and high frequency shift system. The system combines the TMC Low Frequency Adapter, Model LFA with TMC Frequency Shift Exciter, Model XFK to provide versatile operation over a wide range of frequencies -1 to 6.9 mes. and 50 to 500 Kcs..................................Bulletin 154 SBT-350 ()... Compact, rugged Radio Transmitter capable of at least 350 watts PEP from $2-32 \mathrm{mcs}$. SSB-ISB-DSB CW-MCW-FS low level AM-completely bandswitchedfive models available..

Bulletin 220
PTE-1 ... Single Sideband Analyzer designed for the specific purpose of tuning and aligning single sideband exciters and transmitters permitting a visual analysis of intermodulation distortion products, hum and noise The PTE-I consists of 3 basic TMC units: Spectrum Analyzer Model FSA (AN/URM116); A VFO TMC Model VOX (0-330/FR) and a Two-tone Generator TMC Model TTG (C-579/URT).........Bulletin 231 GPT-10K (AN/FRT-39) . . . is a conservatively rated general purpose radio transmitter capable of at least 10 KW PEP output from $4-28$ mcs. All power amplifier stages are linear and the final incorporates a ceramic tube for greater efficiency and reliability. All components housed within a single attractive enclosure including sideband exciter-VFO, spectrum analyzer, F.S. Exciter and complete "on the air"' testing circuitry. Bulletin 207B

The TECHNICAL MATERIEL CORP.

SBT-350 B

PTE-1

electron

HEIPFUL CHARTS \& LITERATURE FREE: Write for CONDENSED TUBE CATALOG, information at a glance, rapid tube data reforence tables, 26 pages of condensed information arranged for quick reference. Address your distributor or Amperex direct.

COMMUNICATION
LINDUSTRIAL
RECTIFICATION
SPECIAL PURPOSE
RADIATION DETECTION
AMATEUR
ELECTRO-MEDICAL
SEMICONDUCTORS

A FULL RANGE OF TRANSISTORS AI SEMICONDUCTOR DIODES AVAILAB

Detailed Data Sheets on any of the tubes, and applications engineeri service are yours for the asking.
§The AMPEREX types 6268 and 62 are not only improved versions \mathbf{t} completely interchangeable every respect with the Types $4 C$ and 5C22 respectively. They have minimum guaranteed life of 1,0 hours due to the self-containe self-regulating sources of hydroge
tincludes sensing plate. For therr static control, ordered separate either:
(a) "Water Saver" Thermostat sembly; Cat. No. S-17024, Pri $\$ 5.25$.
(b) "Overload Protection" Thern stat Assembly, Cat. No. S-170: $\$ 5.25$.
**Price on request.
*Price for this tube includes 10 Federal Excise Tax.
Prices subject to change witho notice

RADIATOR CREDIT FOR FORCED AIR-COOLED TUBES	
Tube Type	Users Allowan
889RA	\$20.
891R, 892R	30.
5604	
5667	
6445	- 30
6447	- 30
6757	75
6801	75

ELECTRONIC CORP.
HICKSVILLE, L. I., N. Y.

Type No. Price
BEAM POWER TUBES

COUNTER, DECADE
6370/EIT $\$ 16.50$
DIODE, DAMPER
\#6R3/EY81 . . . $\$ 2.80$
TWIN DIODE
"PREMIUM QUALITY"
\#5726/E91AA . . $\$ 2.10$
DIODE, VTVM
6923/EA52
$\$ 13.00$

IGNITRONS

KLYSTRON, REFLEX

2K25

Type No.
Price

MAGNETRONS

TRIODE-PENTODES

\#6U8
\#6BL8/ECF80 .. 3.80

TRIODE-PENTODE

"PREMIUM QUALITY"
E80CF

PENTODES SUBMINIATURE

6007/5913 $\$ 1.50$ $6008 / 5911: \because 1.50$

RECTIFIERS

\#152A/DY87	- \$2.75
*5AR4/GZ34	. 4.20
\#5R4G-Y	1.90
"6CA4/EZ81	2.10
\#6V4/EZ80	1.50
575A	22.15
673	22.15
8020AX	15.00
RECTIFIERS,	MERCURY
857B	\$235.00
866AX	2.65
8698	150.00
869BL	150.00
872AX	9.90
6508	80.00
6693	25.00
7136	25.00
8008AX	9.90

RECTIFIERS, XENON

 3B28 \$ 7.60 4B32 $\ldots . . .13 .50$VOLTAGE REFERENCE TUBES

OE3/85A1 \ldots.
OG3/85A2 $\ldots 2.50$

VOLTAGE

REFERENCE TUBE
"PREMIUM QUALITY" 5651

Type No.
Price

VOLTAGE REGULATORS

 OA2$\$ 1.75$
OB2 $\because \because . . .11 .90$
90 C 1
$6354 / 150 \mathrm{~B} 2$$\ldots 3.50$
TETRODES

4-125A	\$ 36.00
4-250A	46.50
4-400A	55.00
4 CX 250 B	45.00
4X150A	38.95
4×1500	38.95
$4 \times 250 \mathrm{~B}$	42.50
$4 \times 250 \mathrm{~F}$	42.50
$4 \times 500 \mathrm{~A}$	121.00
6075/AX9907	250.00
6076/AX9907R.	305.00
6079/AX9908	60.00
6155	36.00
6156	46.50
6979	42.50
7527	55.00

TETRODES, BEAM 813

TWIN TETRODES
829B $\$ 18.90$
832A $\quad 15.85$
$5894 / A \times 9903 . \cdot 25.00$
$6252 /$ AX9910 . . 25.00
6939 ….... 14.00
THYRATRONS

THYRATRONS, HYDROGEN
\$6268/AX9911 . . $\$ 32.50$
THYRATRONS, MERCURY
5557/FG17/
967/1701 . . \$ 9.50
 5870/AGR9951. 100.00 6786 . 200.00 AX105/FG105: 53.33

THYRATRONS, XENON 2050
5544
5545
$\$ 1.85$
5545 38.41

TRIODES

Type No.
TRIODES (Con't)
Price

5771/356	\$600.00
5866/AX9900	20.00
5867/AX9901	30.00
5868/AX9902	55.00
5923/AX9904	165.00
5924/AX9904R.	231.00
5924A	275.00
6077/AX9906	1675.00
6078/AX9906R	1900.00
6333	
6445	420.00
6446	305.00
6447	465.00
6756	388.00
-6757.	535.00
6758	173.00
6759	206.00
6800	350.00
6801	505.00
6960	150.00
6961	210.00
7092	125.00
7459	230.00
DX144/EC56	**
DX145/EC57	**
HF200	49.50
HF201A/468	34.50
HF300	40.50
ZB3200	390.00

TRIODES, FRAME GRID \#2ER5 \$ 2.90
\#3ER5 ….. 2.90

5842 ... 18.91

"PREMIUM QU	$T Y^{\prime \prime}$
6977/DM160	\$3.50
TWIN TRIODES	
*4ES8/XCC189	\$4.
-6AQ8/ECC85	2.60
\%6DJ8/ECC88	4.55
6ES8/ECC189	4.55
6J6/ECC91	2.80
9AQ8/PCC85	3.10
\# 12AT7/ECC81	3.05
\#12AU7/ECC82	2.45
F12AX7/ECC83	2.50
\#17EW8/HCC85	2.60
5920/E90CC PQ	2.40
6085/E80CC PQ	3.75
6201 PQ	3.25
6211 PQ	2.40
6360	
6463 PQ	2.95
6922/E88CC	4.75
7062/E180CC	2.40
7119/E182CC	4.15
7316	2.00
E92CC	2.40
TRIODE, GLOW DISCHARGE	
5823/Z900T . . . \$2.50	
TRIGGER TUBES, COLD CATHODE	
Z50T \$2.20	
Z70U 1.95	
Z300T	4.95
28040	

HEPTODE, DUAL CONTROL,
"PREMIUM QUALITY" 6687/E91H $\$ 1.45$
BEAM DEFLECTION TUBE
"PREMIUM QUALITY"
6218/E80T . . . $\$ 15.00$

1960's Biggest Value

 MS13-1 MOIBILE SIDEDSND CONMUNICATOR TRINECEIVER
MSB-1...far advanced in design... priced for fullest value:

Compact... mounts readily under dash complements any modern car. Its attractive gunmetal housing with black and satin aluminum panel shows equally to advantage on any well-appointed operating desk.
Highly stable...non-critical with single knob VFO tuning both transmitter and receiver... with quartz crystal filter to eliminate unwanted sideband.

Every desirable modern feature...
125 watts P.E.P. input . . upper and lower sideband and CW. . . all band operation, 10 through 80 meters . . high stabilitv VFO . . VOX . . . push-to-talk provisions. Receiver sensitivity better than 1 microvolt $\ldots 9 \mathrm{mc}$ band-pass crystal filter for excellent transmitting and receiving selectivity. . . 100 kc crystal calibrator unit available as an accessory...12V DC power supply is transistorized. . . AC supply also available MSB-I is only $5 " \mathrm{H}, 12^{\prime \prime} \mathrm{W}$ and $12^{\prime \prime} \mathrm{D}$, weighs but fifteen pounds less power supply.

Sed MSB-1 at your fionsel distritutor.

Belden Radio and Electronic

Service Rated-Quality Controlled in Easy-to-Use Packages!

One Wire Source for Everything
Electronic and Electrical

Wire for Every Ham Application

ITTS HAMMARLUND... for SSB at its very best!

the ALL-NEW HO-180 for general coverage

An advanced design 18 -tube superheterodyne receiver with full dial coverage from 540 KCS to 30.0 MCS . Bandspread on all amateur bands within frequency range of receiver.
$\$ 429.00$ (oplional clock-timer, $\$ 10.00$)

No amateur receiver has ever gained as fine a reputation as the $H Q-170$. A 17-tube superheterodyne receiver tuning the $6,10,15,20,40,80$ and 160 meter amateur bands.
$\$ 359.00$ (ortional clock-timer, $\$ 10.00$)

Hammarlund slows the way to new standards of performance in SSB with the HQ-170 and HQ-180 receivers. These receivers incorporate the Hammarlund slot filter that allows attenuation up to $(6) \mathrm{db}$ for razor-sharp tuning, selectable sideband, selectable 1F amplifer tuning, separate product detector, BFO control, crystal calibrator, selectable rates of AVC and other advanced features. Pick the one that suits you best. You can't buy better, or be more satisfied than with a Hammarlund SSB receiver...they're tops!

54

$\triangle R R L$ PUBLICATIONS

Ftorehouses of
information
ors
Novices
Old Timers
Students
Engineers

Supplies for the
Active Amcteur

the BEST SELLIR LIST FOR THE RADIO AMATEUR!

ARRL WORLD MAP

Printed in eight colors on heavy map paper with 267 countries ciearly outlined. Continental boundaries, time zones, amateur prefixes, plainly marked. Size 30×40 inches. $\$ 2.00$.

LIGHTNING

 CALCULATORSQuick and accurate enswers with ARRL lightning Calcula:ors! Type A for problems involving frequedcy inductance, capocity. Type B for resistance, voltage, current and power. $\$ 1.25$ each.

QST Although primarily a ham magazine, QST is found on the desks of engineers, technicians and just about everyone in the electronics field. There is something for everyone in QST, from the Novice to the Old Timer. QST and ARRL membership $\$ 5.00$ in U.S.A., $\$ 5.25$ in Canada, $\$ 6.00$ elsewhere.
THE RADIO AMATEUR'S HANDBOOK Internationally recognized, universally consulted. Packed with information essential to the amateur and professional alike. Hundreds of photos, diagrams, charts and tables. $\$ 3.50$ U.S.A., $\$ 4.00$ U.S. Poss. and Canada, $\$ 4.50$ elsewhere; Buckram Edition, $\$ 6.00$ everywhere.

A COURSE IN RADIO FUNDAMENTALS A complete course of study for use with the Radio Amateur's Handbook. Applicable to individual home study or class use. \$1 U.S.A. proper, \$1.25 elsewhere.

HOW TO BECOME A RADIO AMATEUR Tells what amateur radio is and how to get started in this fascinating hobby. Emphasis is given to the needs of the Novice licensee, with three complete simple amateur stations featured. 50 c.

THE RADIO AMATEUR'S LICENISE MANUAL Complete with typical questions and answers to all of the FCC amateur exams-Novice, Technician, General and Extra Class. Continually kept up to date. 50 c
LEARNING THE RADIOTELEGRAPH CODE For those who find it difficult to master the code. Designed to help the beginner. Contains practice material for home study and classroom use. 50 个.

THE ARRL ANTENNA BOOK Profusely illustrated, the Antenna Book includes information on theory and operation of antennas for all amateur bands; simple doublets, multi-element arrays, rotaries, long wires, rhombics, mobile whips, etc. $\$ 2.00$ U.S.A. proper, $\$ 2.25$ elsewhere.
SINGLE SIDEBAND FOR THE RADIO AMATEUR A digest of the best SSB articles from QST. Includes discussions of theory and practical 'how-to-build-it" descriptions of equipment. $\$ 1.50$ U.S.A. proper, $\$ 1.75$ elsewhere.

THE MOBILE MANUAL FOR RADIO AMATEURS It's a collection of articles on tried and tested equipment that have appeared in QST. A "must" for the bookshelf of anyone interested in the installation, maintenance and operation of mobile stations. $\$ 2.50$ U.S.A. proper, $\$ 3.00$ elsewhere.
HINTS AND KINKS If you build equipment and operate an amateur radio station, you'll find this a mighty valuable book in your shack and workshop. More than 300 practical ideas. $\$ 1$ U.S.A. proper, $\$ 1.25$ elsewhere.

QST BINDERS

No need to let your copies of QST rest in a disordered pile. A QST binder will keep them neat and orderly. Eoch holds a one-year file. $\$ 3.00$ (avaitable in U.S. and Possessions only).

SUPPLIES

Active omateurs need these supplies: ARRL Logbook, $50 \not \subset$ U.S.A., $60 \notin$ elsewhere. Mintlog, $30 \notin$ U.S.A., $35 \&$ elsewhere. Radiagram blanks, $35 \not \subset$ per pad postpoid. Message delivery cards, $5 \notin$ eoch stamped, $2 \not \subset$ each unstamped. Members' stotionery, 100 sheets $\$ 1.00 ; 250$ sheets $\$ 2.00$; 500 sheets $\$ 3.00$.

Application for Membership

American Radio Relay League

Administrofive Headquarters: West Harfford, Connectlcut, U. S. A.

American Radio Relay League, West Hartford 7, Comn., U. S. A.

Breing genuincly interested in Amateur Radio, I hereby apply for membership in the American Radio Relay Lague, and enclose $\$ 5.00^{*}$ in payment of one yares dues, $\$ 2.50$ of which is for a subscription to (SST for the same period. |Subseription to (0.ST alone cannot be contered for one year for $\$ 2.50$, since membership and subseription are inseparable.? Please begin my subseription with the issur.

The call of my station is \qquad
The class of my operators lieconse is \qquad

I belong to the following radio societies

Sond my (iorilicate of Membership) \square or Membership (aud \square (Indicate which) to the adderes below:

Name \qquad
\qquad

A bona fide Interestin amoteur radio is the only eseential requirement, but full

voilne membership is pronted only to licensed radio amateure of the
United Siates and Canada. Therefore, if you hove olicense,
please be sure to indicote it above.

> * $\$.00$ in the Linted States and Possessions.
> $\$ 5.25$, U. S. Funds, in Canada.
> $\$ 6.000, \mathrm{U} . \mathrm{S}$. functs, in all ohter countries.

KEEP IT HANDY...

get everything from our largest stocks of station gear and electronic supplies immediate delivery at lowest prices...

ALLIED

gives you every buying advantage

highest trades: Get the absolute most for your old equipment. Tell us what you've got and what you want-we'll come up fast with the best deal anywhere.
reconditioned gear: Large sclection, new set guarantec. Ask for latest list of top reconditioned equipment at lowest prices.

EASIEST TERMS: Available on all orders over $\$ 20$; only $\$ 2$ down up to $\$ 50$; $\$ 5$ down from $\$ 51-200$; only $\$ 10$ down from $\$ 201$ up; up to 24 months to pay. Extra: 15 -day trial on all ham gear.

HAM-TO-HAMHELP

Our staf of over 30 Amateurs goes all-cut to give you all the help you want. You'll like the kind of personal attention Amateurs have enjoyed at Allied for so many years. Get to know:

W8CZE Jack Schneider (Allied's"'Mr. Hom'")

W9BHD
Joe Huffman
(in the Ham Shack)

W9HLA

Joe Gizzi (in the Ham Shock)

WISWHF Jim Sormerville (write to him: for that best deal)

432 mc 13 Flement Beam, \$12.45 220 me 11 Element leam, \$13.95 litme 5 Element leam, $\$ 8.95$ 14ime 10 Flement Beam, $\$ 14.9$; f Meter, 5 Flement Beam, \$18.9.5
6 Meter, \& Filoment Beam, \$32.9.5

For Coupling Energyy Into Space... Anywhere in the Radio Spectiwm

 MONOBANDERS10 Meter, 3 Nibment leam, \$32.95
15 Meter, : Belement Beam, $\$ 3 x .95$
20) Meter, : Elemert Beam, $\mathbf{\$ 6 5 . 9 5}$

(GR)(NI) PIANES

liround l'lane Antenna $25-50 \mathrm{mc}, \$ 32.50$
fircund Plane Antenna 50-ntme, $\$ 21.95$ (iround Plane Anternat $108-501 \mathrm{mc}$, $\$ 14.9$;

MULTI-BAN゙I IOU1HLETS

Doublet for if thru 20 Meters, \$19.95 Dumblet for if thrit 41 Meters, $\$ 29.95$ Derblet for if thra mo Meters, S37.ju

1IAI.OS
Hald for 2 Meters, $\$ 5!5$ Halo for 6 Meters, $\$ 12.95$

MOBILE \& IPORTABI,E TRAP' TRAVEI,ERS

3-Band Loadiner Ciol for 1/3-20
THesccping Hase \& Whip Assembly, \$15.00
Portable Micra-Dipmle Kit, $\$ 9.95$

MLLTI-BAND VERTICALS

Muitiluand Vetrioal for lo-20 Meters. $\$ 21.95$ Multiland Vedrical for lu-10 Meters, $\$ 27.95$ Multiband Tower Vertical for 1o-soM, \$124.50

TIRIBANDERS

3-Fletnont Full size
Tribander for 10, 15. 20.M, \$99.7:
B-Fblement Miniature
Tribancier for $10,1 \overline{5}, 20 \mathrm{M}, \$ 69.95$
2-Flement Miniature
Tribanter for $10,15,20 \mathrm{M}, \$ 49.93$

"The World's Largest Manufacturer of Amateur Communication Antennas"

ROTOBRAKE

Conaplete Rolator, Brake, Wall Map Indieator and ('ontrol [3ux, \$199.93

CITIZENS BANI

JUST THESE TWO METERS - WITH NO ADDITIDNAL CRYSTALS OR FACTORY A[JJUSTMENTS -WILL CHECK FREQUENCY AND MOLULATION ON HUNDREDS OF TRANSMITTERS OPERAIING OA SCORES OF FREQUENCIES. LAMPKIN METERS ARE USED BY NUMEROUS MIJNICIPALITIES-BY MORE THAN 41 STATES - BY THE SERVICE ORGANIZATIONS OF MOST TWO-WAY RADIO MANUFACTLIRERS-AND BY HUNDREDS OF INDEPENDENT MO. BILE-SERVICE E'VGINEERS. THEY ARE GUAFANTEED TO PLEASE YOL', TOO, OR YOUR MDNEY W LL EE REFUNDED.

To learn about contract rates and service arrangements, send for YOUR free copy of HOW TO MAKE MONEY IN MOBILERADIO MAlNTENANCE!

> MAIL COUPON TODAY!

LAMPKIN LABORATORIES, INC. BRADENTON, FLORIDA

THE
 NEW

The design and production of communications receivers today is considerably different than in past years for two principal reasons. Costs have risen precipitously; to manufacture a receiver in the face of this and keep the price reasonable requires good tooling, long runs, and little allowance for error. Secondly, there are greater demands placed on receiver operation than ever before, versatility . . . handling ease . . yes, amateurs have come to ask for parameters of performance almost unheard of in past years.
RME in announcing the nerr 6900 states without equivocation that this receiver performance is unmatched by anything near its price class. The 6900 is engineered to give optimum service for all morles of amateur coramunications - not merely one. Engineered under the supervision of Russ Planck, W9RGH, the 6900 has as many: advanced pioneering ieatures as its ext raordinary namesake, the world famous RME69, which was the first band-switching communications
receiver ever produced - over 20 vears ago and still widely used today.
What makes the 6900 so Hot? First, meticulous attention to details so that every circuit is performing in an optimum manner. Second, an ingenious function selector, the Modemaster. Every circuit in the 6900 is designed to provide high selectivity; frequency stability, sensitivity and low internal noise. Finally, inclusion of all function controls necessary for a mosern communications receiver... vernier control knoi) with overide clutch for fast tuning; RF gain; AF gain; antenna trimmer; band selector, stand-by receive calibrate transmit; ANL; Tnotch filter; calibrate adjustment ; band selector. Whether you operate (${ }^{\prime}$ ' ; SSB; or AM, you will have the almost uncanny feeling the 6900 was designed solely for you - this is the test of a modern communications receiver that we beljeve only murs can meet on the operating desk.

```
-CONTROL5: Ill/\mp@subsup{|}{}{\prime\prime}}\mathrm{ Single Slide Rule Tuning Dial; Logging Scale.
- COVERAGE: 80, 40, 20, 15 and 10 on 5 bands plus 10 to 11 mc for WWV or WWVH.
- Peak Selectivity plus tunable "T"' Notch.
- Internal 100 kc Hermetically Sealed Crystal Calibrator.
- 500-ohm Output.
- Noise Limiter for SSB and CW, AM.
- Separate Detector for Single Sideband.
- 5 Meter Calibrated in 6 db Steps Above 59 for Better Reading.
```


- Improved Fast Attack AVC Circuit.

- Selectable Sidebond.
- Panel of Attractive Grey "Clad-Rex" Vinyl Bonded to Aluminum with Charcoal Trim.
- Front Parel Controls Re-Grouped for Ultimate Operating Ease and Convenience.
- SENSITIVITY: $1 \mathrm{mv} .30 \%$ Modulation for 100 mw output.
- S-N-R: 10 db at 1 mv Inpot.
- SELECTIVITY: $500 \mathrm{cps}, 6 \mathrm{db}$ down, in CW mode.

offers optimum performance on SSB, AM or CW with no compromises

NEW...VERSATILE
Model 6900
MODEMASTER SWITCH

Gives One Hand Knob Control of 5 Distinct Functions

(A) When in the indicated AM position, a full-wave diode detector is used. The IF frequency response curve is 3.5 kc wide at 6 db down and, the $\mathrm{A} \mathrm{V}^{\circ} \mathrm{C}$ system is switched for fast attack/fast decay operation. The AM band width for this area is 3.5 kc .
(8) In this AM position all of the conditions described for function A above remain the same except that the IF response curve is narrowed to 2 ke to reject nearby signals on crowded bands.
(C) In the LSB (Lower Side Band of SSB carrier) position a series of steps occur.

1) The AYC system is switched to a fast attack slow decay performance.
(2) The Beat Frequency Oscillator is turned on and positioned for desired sideband reception.
(3) The second conversion oscillator frequency also shifts for reception of desired sideband while the IF response curve remains the same.
(d) An advanced Product Detector switches in to replace the Diode Detector in all SSB and CW positions.
(D) In the USB (Upper Side Band) the changes cited in function C above also occur but are designed to accommodate the L'pper Side Band.
(F) When switched to the CW position:
(1) The band pass of the IF System is reduced to 500 cycles (.5 ke)
(2) The BFO Injection Control and BFO Pitch Control becomes operational.
(3) The AVC system is changed for optimum when operating under CW conditions.
(4) The second conversion oscillator is positioned for reception of the upper sideband beat note.

See your RME distributor or write to

Dept. HB-60, BUCHANAN, MICH.
63

EXPERIENCED HAMS SAY "MAKE MINE MOSLEY"

FOR EEST-EVER ANTENNA PERFORMANCE!

TRAPMASTER 10-15-20 METER ROTARY AND VERTICAL ANTENNAS

If If's Shown In This Handbook

 HenryHas it:

HENRY gets the new equipment First

 yoU get the world's best Terms!Low Terms Youget the best terms anywhere because Henry finances all the terms with his easy time payment plan. 10% down (or your trade-in accepted as down payment), 20 months to pay.
Long Trades $\begin{aligned} & \text { Henry wants to trade and he trades big. YOU get truly liberal } \\ & \text { allowances on your equipment }\end{aligned}$ allowances on your equipment. 'Tell us what you want to trade. We also pay cash for used equipment.

Complete Stocks

Henry has everything in the amateur equipment field, new or used ... transmitters or receivers, and Henry has the NEW

Low Prices $\begin{aligned} & \text { Henry's large purchasing power means low prices to you. You } \\ & \text { just can't beat our wholesale prices. }\end{aligned}$ 100\% Satisfaction

Henry gives you a guarantee of " 100% satisfaction" or your money back at the end of a 10 day trial.

Write, wire, phone or visit either store today.

The Sun Never Sets orl
International products

for the Novice . . . for the Advanced Amateur . . . A COMPLETE IN-STOCK HAM LINE AT "the house the hams built!!"

PLEASE RUSH ME ON THEYOUR FREE 1960 CATALOC

THE HAMS' NO. 1 GHOICE in clear plastic or metal cases...
 Shurite. METERS

 850 Series
Shown actual size, zero adjuster optional

CLEAR-PLASTIC CASES: One look will make every ham enthusiastic about the modern, expensive-looking 850 series and you will be pleased to find the meters cost only 20 c more than the equivaleni metal cased meter. Equally good news will be the longer, more visible scale arc... the removable front and the availability of zero adjusters on all AC or DC ranges. "

ATIRACTIVE METAL CASES: In cerfain applications-for panel appearance or spestalized service conditions, you may prefer to select from the long-time metal favarites, the basic Models 550 or 950 as illustrated. Although all have been modernized in appearance recently, each continues to fit $25 / 32^{\circ \prime}$ mounting hole. See Catalog 94 covering all iypes, including many with zero adjuster.

CHOICE OF MANY TYPES: AC and DC Ammeters, Milliamefers, Vollmeters ond Resistance Meters. AC meters are double-vane repulsion lype with jeweled bearing. DC are polarized-vare solenoid type, or moving magnet construction. Well over 200 ranges and types. Among the most popular are a 0.3 DC Milliammeter with 500 ohms internol resistance and built-in zero aajuster, and a 0.1 DC Milliammeter with 1,000 ohms internal resistance and zero adjuster, both mony times more sensitive than previous models in this price class.

DEPENDABLE PERFORMANCE: By far the best torque-to-weight ratio in its field gives you a sturdy meter with fast responses and ability to duplicate readings. Molded inner units with internal and external locking nuts assure maximum rigidity. Dials are lithographed on metal so they stay good-looking and easy to read in spite of age and moisture. Accuracy well within the standard 5%
REASONABLE PRICES: Typical of the exceptional values are
the meters illustrated.

Range
0.150 DC Ma

O-150 DC Volts
0.1 DC Ma (with zero adi.)
$0-150$ AC Volts

Models $\mathbf{5 5 0 - 9 5 0}$	Model
$\$ 1.85$	850
2.35	$\$ 2.05$
3.50	2.55
3.60	3.70
	3.80

Other meters are correspondingly low in price. You get the benefit of low costs made possible by large quantity production. -Some models include zero-adjuster in price; others are $35 \$$ extro
GUARANTEED: For one year against defective workmanship and material. Will be repaired or replaced if sent postpaid to the factory with $40 \&$ handling charge.
WIDELY AVAILABLE: Stocked by leading electronic parts distributors for prompt deliveries.

Look for HENRY

Whenever there's outstanding new amateur equipment. . .
priced to represent full and honest value. . .you'll find a HENRY. . Ted or Bob. . . right in the middle!

To prove the point: Here's Ted in the middle of four of Gonset's newest and finest... newest and finest. .

The exclusive, new mobile sideband fransceiver, MSB-1. And G-63, the biggest amateur communications receiver value in the 200 dollar price bracket. At Ted's elbow is the fine-performing, in-big-demand SSB fransmitter/exciter, GSB-100 and Gonset's "more watts per dollar" GSB- 100 linear amplifier.

Place your order with HENRY. . .
for these new Gonset items... or any items in the big Gonset line. Youll find everything in the tremendous Henry stocks... for immediate, over-the-counter delivery or same-day shipment on mail orders. If you can't drop in, just write, wire or phone,

Compare Henry's casiest terms. . .
Only be per 1.00 per year. 20 months or longer to pay. . OnIy 10 down (or your trade-in as down payment).. No finance charges if paid within 90 days.. More flexible financing because the Henrys handle their own financing.

Henry gives you bigger trade-ins
Henry...Ted and Bob... u'ant to trade...will make you truly liberal allowances on your old equipment. Tell them what you want to trade.

"World's Largest Distributors inf Shorf Wrua Raraiunni"

Miegacycle infeter

0.1 Mc to 940.0 Mc

Compact, lightweight and completely portable, these advanced grid-dip meters are extremely useful in determining vesonant frequency of tunod cimuits, antemnas, transmission lines, hy-pass condensers and chokes. Measure inductance and capacitance and can also be used as signal gemerators, wave moters, frequence moters and in many other applications. Arailable in the frequencs ranges indicated. Special potective carrying case call be supplied for eass handling of patial of complete set of degatere Meters.

MODEL 59
(Power Supply)
Power supply unit consists of full-wave rectifier with voltage regulator tube and meter indicating grid current. Designed for use with Oscillators shown below. Dimensions: $\overline{-1 / 5 "}$ " $6-1 / 8^{\prime \prime} \times 7-1 / 2^{\prime \prime}$.

70

harvey AUTHORIEED DISTRIBUTORS

 RGA Tubes and Harvey Service...

 RGA Tubes and Harvey Service... For Double Dependability!

 For Double Dependability!}HARVEY's line of RCA tubes is so complete, that HARVEY can fill virtually any requirement . . . right from stock . . . and deliver at almost a moment's notice.

This is particularly important to AM, FM, and TV Broadcasters, Industrial and Commercial users, Amateurs, and Service-Technicians, all of whom depend on tubes for sustained operation of important electronic equipment.

Write, Wire or Phone for PROMPT HARVEY SERVICE
lisil Ilarmes \om Ilam Radio Cienter. Ther lutest alud
 disples:

air dux

AIR WOUND COIIS

1 KN pl dux

alr Cux BALUN $^{\text {and }}$

Unbalanced coax lines used on most transmitters can be matched to balanced lines of either 75 or 300 ohms impedance by using the B2009 air dux coils. May be used with transmiters and receivers without adjustment over the frequency range of 80 through 10 meters, and will handle power inpuls up to 203 watts.

$$
\begin{array}{ll}
\text { B2009 } & \text { Coil with hardware } \\
\text { MB2009 } & \text { Mounting plate }
\end{array}
$$

Standard Air Dux!

A wide selection is available from Jobbers nationally.

2 new pi dux assemblles The 500 and 1000 watt pi dux assemblies are compact yet conservatively rated. The high frequency coil sections are silver plated for high tank circuit efficiency. A complete techrical sheet is included with each assembly,
\#195-1 500 watt pi dux Assembly
"195-2 1 KW pi cux Assembly

Ullufaltronle hat the most complete Uine of plastic ROD, TUBING and 8HCET.

 SPIRAL WRAP spIRAL COVIIR VINYL BLEEYINO LACING CORD CA部LE CLAMPS

Tha's our business/ We now ispoly a malority of the gir wound ceils used by leoding rguipment manufoctureis

Indented pi dux ${ }^{\text {® }}$

Cat.No.	Di2	TPI	$\begin{aligned} & \text { wire } \\ & \text { Size } \end{aligned}$	Length of COH	L uh.
816A	1	16	18	$3^{3} 16$	18.0
1014 A	$1{ }^{1 / 4}$	14	18	$2^{25} 32$	18.3
1212A	$1^{1} 2$	12	16	$2{ }^{3}{ }_{4}$	18.3
1411 A	$1{ }_{4}^{1}$	11	14	$2^{5} 8$	18.0
1609A	2	9	14	3	18.1
2007A	2^{1} :	7	12	$3{ }_{4}^{1}$	18.0
2406 A	3	6	10	$3^{5} 16$	18.7

vari-pitch pi dux

820 D 10	1	20810	18	3',	18.0
121206	$1^{1}:$	1286	14	$3^{13} 16$	18.6
180806	2	886	12	$4{ }^{18}$	18.1
2008D5	2^{1} :	885	12	$3^{3}{ }_{4}^{4}$	18.2
2408D4	${ }^{*}$	$8 \& 4$	10	$3^{3} 4$	18.6

illumitronic

[^7]
RADIO SHACK DELIVERS

... fast . . . to Boston, Boise or Bombay . . . from one of America's newest, most modern warehouses! Orders received, processed, packed, checked and delivered to shipping department in 20 minutes average time! All orders shipped same day.
UPTO SOO IN HAM GEAR

Hallicrafters, National, Gonset, Collins, Hammarlund or any of the dozens of other names you know and respect as the finest in the field!

FOR

 D
 OWN

AMATEUR NET	MINIMUM DOWN PAYMENT
$\$ 20$ to $\$ 50$	Only $\$ 2$ down
$\$ 50$ to $\$ 200$	Only $\$ 5$ down
$\$ 200$ to $\$ 500$	Only $\$ 10$ down
0ver $\$ 500$ - Write for terms UP TO 24 MONTHS TO PAY	

via a fabulous new Radio Shack Time Payment Plan that lets you buy the ham gear (or any other type of electronic equipment) you've always wanted for as little as $\$ 2$ doun

Fill out the coupon now. We'll quote you the kind of jumbo trade-in allowance we're known for throughout the ham world!

F REE bargain catalogs
12-month subscription
 yours FREE. Page after page, month after month, famous Radio Shack Bargain Catalogs give you first crack at exclusive scoops in ham gear, hi-fi equipment, optical goods, etc. Check coupon now.

GIANT 1960 ELECTRONIC GUIDE

Over $40.1 \%, 0$ items, plus articlos, etc., in the biggest, most costly handhook weive ever produced! 312 book-size $81 / 2 \times 11$ pages crammed with illustrations, encineering data, charts, complete product specifications. Practically an electronics education! Only 35 c .

RADIO SHACK CORPORATION DEPT. RAH-60 730 Commonwealth Avenue, Boston 17, Mass. Please quote allowances on the following equipment I would like to trade:
(Include name, model \#)

Name

Address
City
\square

Send FREE Bargain Catalog
Send 1960 Electronics Buying Guide @ 35c
Cash $\quad \square$ Check $\quad \square$ Money Order

73

...for here is an organization of engineers, technicians and skilled craftsmen devoted to the single purpose of conceiving, developing and manufacturing fine antennas and antenna systems for every military, industrial and home entertainment need.

The Doploc antenna system for tracking orbital bodies, Designed, prcduced and installed by TACO.

TACO telemetering antennas for all commercial and militury needs.

TV antennas and acces. sories available in a va. sories of models.
riet

FM antennas for Unidirectional and omni. directional reception.

WRITE FOR COMPLETE dETAILS, STATING ANTENNAS OF INTEREST.
TECHNICAL APPLIANCE CORPORATION Sherburne, New York
74

FIAMMARLUND FAS IT! And ARROW Has Hammarlund!

Hammarlund Model HQ-145
The HQ-145 is feature-full and warks like a charm. Covers $.54-30 \mathrm{me}$, double conversion from 10.30 mc . Hos crystol filter and the well-known Hommorlund 60 db slat filter. Electrical bondspreod is provided with calibrated mark. ings on the $80,40,20,15$ and 10 meter bonds. Ex. tremely stable, incorparating valtage regulation and temperature compensation.
Amateur Net
$\$ 269.00$
Amateur Net (With Clock)
$\$ 279.00$

Hammarlund Madel HQ- 170
All the best features of the finest SSB converters, plus the best features of the finest amoteur receivers wrapped up in a single, outstanding receiver. Covers the $6,10,15$, 20, 40,80 and 160 meter amateur bands. Separate vernier tuning. Dual and triple conversion 17 - 4 ube superheterodyne. Adjustable 60 db notch filter. If passband tuning. Adjustable AVC.
Amateur Net $\$ 359.00$
Amateur Net (With Clack) $\$ 369.00$
Hammarlund Model HQ. 180
SSB, full coveroge-. 54 to 30 MCS . Band spread cal. for 80, 40, 20, 15 and 10 meter bands. Triple conversion 18 -tube superthet, with ANL and AVC adjustoble 60db notch filter. Separate lineor detector. Tuned If amp. with 7 selectivity positions. Selectable upper, lawer or both side bands. $\pm 2 \mathrm{KCS}$ BFO control. Buils-in 100 KCS xtal cal. Dial scale reset.
Amateur Net
$\$ 429.00$
Amateur Net (With Clock)
$\$ 439.00$

Hammarlund Model HQ-110
Dual conversion, 12 tube superheterodyne. Full coverage af $6,10,15,20,40,80$ and 160 meter amateur bands. Built-in crystal calibrator. Q-multiplier. Separate linear detector for SSB and CW. Seporate stabilized BFO.
Amateur Net
$\$ 249.00$
Amateur Net (With Clock) $\$ 259.00$

Hammarlund Model HQ-100
The hottest, fastest selling general coverage receiver on the market! Continuous tuning from 540 KCS to 30 MCS . Electrical bandspread tuning. Q multiplier for continuously variabie selectivity, 10 -fube superheterodyne with automotic noise limiter.
Amateur Net
Amoteur Net (With Clock)
$\$ 189.00$

AUTHORIZED DISTRIBUTORS OF ELECTRONIC PARTS \& EQUIPMENT

 Arrow's Export Dept. Ships To All Parts Of The World
ARROW \triangle ehictronics, wac.

 65 Cortlandt Street, New York 7, N. Y. - Dlgby 9-4730 525 Jericho Turnpike, Mineola, N. Y. - Ploneer 6-8686

F R E E Send your QSL for FREE HAM BAND CHART
Trade-ins Welcomed Your old equipment is worth money at Arrow. Get Arrow's deal before you buy.

Complete Outfitters

 FOR THE
- Ham
 - Communications

- Electronic Engineers

Eugene G. Wile

218-220 South 11th St.
Philadelphia 7, Pa.
WAlnut 3-1343
Distributors of
Nationally Advertised Lines of
RADIO, TELEVISION and ELECTRONIC Parts

Conservative, highly efficient design plus stability, safety, and excelfent parts quality. Covers 80 thru 40, 20, 15, 11, 10 meters (popular operating bands) with one knob band-switching. 6146 final amplifier for full "clean" 90 W input, protected by clamper tube circuit. 6CL6 Colpitts oscillator, 6AQ5 clamper, 6AQ5 buffer-multiplier, GZ34 rectifier. "Novice limit" calibration on meter keeas novice inside the FCG-required 75W limit. No shock hazard at key. Wide range, hi-efficiency p-retwork matches anternas 50 to 1000 ohms, minimizes harmonics. EXT plate modulation terminals for AM phone modulation with 65 W input. Excellent as basic exciter to drive a power amplifier stage to maximum allowable input of 1 KW . Very effective TVI suppression. Ingenious new "low sithouette" design for complete shielding and "living room" attrac. tiveness. Finest quality, conservatively rated parts, copper-plated chassis, ceramic switch insulation. $5^{\prime \prime} \mathrm{H}, \mathrm{I}^{\prime \prime} \mathrm{W}, 9^{\prime \prime} / 2^{\prime \prime} \mathrm{D}$

NEW UNIVERSAL MODULATOR-DRIVER . . \# 730

 KIT \$49.95 WIRED \$79.95 Cover E-5 \$4.50 \therefore voorb, truly versatile mesinlator at low cost. Can deliver 50 watts inf undistorted aud o sugnal tor phone operation, more than sufficient to modulate 100°. the EICD $\quad 720 \mathrm{CW}$ Transmitte 0° any Xmitter whose RF amplifier has a plate input power of up to 100 W . Multimatch output x im matches most loads between $500-10,003$ ohms. need for plate meter. Low level speeech clipping and filtering syith 'eed tor plate meter. Low level speech clipping and tiltering, with - ir uit. premum qual ty andio power pentodes, indirectly heated - ectifier fllament. Balance \& bias adjust controls. Inputs for crystal -ectifier filament. Balance \& bias adjust controls. Inputs for crystal class B modulation. ECC83; 12AX7 speech amplifier. GAL5 sperch ::IIpper, 6 AN8 amplifier d'iver. $2 \cdot$ EL3 $34 / 6 \mathrm{CA}$? Dower output, EMB4 avet-modulation indicator. GZz34 rectifter. Finest quality. consepDaively rated parts, cupper ptated chassis. $6^{\prime \prime} \mathrm{H}, \mathrm{I}^{4 \prime \mathrm{~W}}$, 8" D.NEW GRID DIP METER 710
KIT \$29.95 WIRED \$49.95 including complete set of coils for full band coverage.
Exceptionally versatile, stable, rugged, compact. Basically a vro With a microammeter in its grid circuit: determires trequency of other oscillators or tuned circults; sensitivity control and phone meter. Ham uses: prefuning and neutraliaing xmitters, powes indication, localing parastit oscintations, antenna adj, corfect ng TVI. $\mathrm{B}+$ neral de-bugging with amitter power off, determining C,L. O. E ectronic servicing uses- alignment of traps, filters. IF's. Deaking compensation networks: as 51 gnal or marker generator 0 eay 10 hold 8 thumb.tune with one hand. Continuous coverage of $400 \mathrm{nc} \cdot 230 \mathrm{mc}$
coroadcast. FM, ham. TV bands) in 8 rarges with p.e.wound colls of (oroadcast. FM, ham. iv bands) in 8 rarges with 0 e. wound cols of
 Brushed satin deep-etched aluminum panel; grey winhle steel case NOW IN STOCK! Compare \& take them home—right distributors in the U.S. and Canada

These world-famous EICO advantages underwrite your complete satisfaction

1. Guaranteed easy step-by-step instructions and pictorial ciagrams. 2. Guaranteed finest quality components. 3. Calitration and service guaranteed for the LIFETIME of your instrument. 4. Advanced engineering: the best that is per-formance-proven integrated with the best of the "latest state of the ari."

In the West add 5\%.
33-00 Northern Blvd.,
Long Island City $1, \mathrm{~N} . \mathrm{Y}$,

78

SX-111 NEW LOW COST RECEIVER-
 repton. complete forrrate of R1. 111.211. 15 and 10 metters i:1 5 suparatle bands plus 6 th band tumable to 10 Ma for W'WV. Lpmer/tower sideband selection. Sensilivits: microcolt on atl bands. 5 slews of selertivity, 506 $\$ 0.5001$ corles. Famous 「um-Noll filter. Cillibraterd Smeter. scries noist limiter. Built-in rystal (calibrator
98F066. NET
249.50

HT-37 - New SSB and AM TRANSMITTER VFO Wilh double reduction dise drive fived T. ('. Sideband suppresson fodb. Tol-100 watts I'E.P. nutput (W) or sils. $17-25$ wats var riar on All phome Two 6l46s in the limat. 3rd and 5th order distortion produr A down 30 dh. Carriter supprasion: fl db. of beller. CAI, ※ystem: Instant ril fosl, siknal From ans Transmission mode Con-
 98F067. NET 450.00

SX-101A-MARK III-7 biand Rereviver 16it-1/1 motior.a. Sider rule dial with (1):1 tuning knob ratio. Full kear dribe. Fuilt-al 101 kr . Crastal etalibrator, Jrexision temperature compensation blus heat eyding for lowast drift serond romwersion oscillat
 one tar or less. Dual conversion. upper-lower side hand seltetion Sulertivity 5 ke lo 5 Khe eveles at 6 db duwn Per-n+6tch tilter. 399.50
985037 . NET 98F037. NET

HT-32A -SSB-AM AND CW XMITTER
 callibration - 2011 recoles all bands. plus e?stal controlled high freq. hellorndomes mexilator. 5 macrestal
 51 (l) or more. (On AM beth sidebands are transmitted. Fuilt-in
 pression. tilturing for control eirruits and XC° pownor line Size : 20 "
 85 1bs
98F043. NET
695.00

5X-100 - \& band Rompirer - duat comsorsion. With $538-158(1 \mathrm{kr}$ and 1.7-3.4 me "owerago. "Lpper-lower" ssif whedion, phes noteh filter re font umwinted helerodynes. siclerivit! variable in 5 steps: 5 ke to
 älibratur. Semsitivity less than 1 ux on all binds. Frimmer compunsaltes for sarions impertamex antennas.
 12 Its
98F034. NET
295.00

HT-33A LINEAR AMPLIFIER-C(omp:an ion unit for Ho - 32 and $\mathrm{HTO}^{\circ}-37$. A fle-172 bentode operating Class Alat provides expellant stability. highor
 parity. 5l-75 ohm resistive input requifes mot tuning or moutralizafion. One knob bandswitehing gil thra 10) metrets. Aletered rirruits include srid. sereen. cathode rum ramt - phter soltater. REF。 output funing indieathor. Viariable pi mot Work sutput
98F061. NET
795.00

MODEL R-47 Matching f" sprakor for islf r 985046 . NET
12.95

Here's the Deal on Trade-ins!

Write to Ham Shack today at Newark--223 West Madison St., Chicago. Ask about Newark's Convenient Time Payment Plan. Your trade-in can serve as down payment. balance in easy monthly payments.

Yours, Free-Big New Catalog!

Here is the biggest Newark Catalog ever! 404 pages packed from cover to cover with the newest and finest equipment in Amateur, Electronics, and Radio-TV. Write for your FREE copy today.

IF GONSET MAKES IT... ELMAR STOCKS IT!

In Northern California... in the Bay Area...long-experienced and newcoming amateurs alike have come to recognize Elnar Electronics as their best source for Gonset products.

As one of the very largest electronic suppliers to amateur. industrial. O.E.M. and R\&D, Elmar stocks the Gonset line in depth-just as they stock over 200 other nationally known lines.

Elmar is one big store where you can expect-and receive-courteous, friendly service. . . here every purchaser. . even the smallest, is ten feet tall!

GET YOUR GONSET MSB-1 MOBILE
 SSB TRANSCEIVER AT ELMAR

 iand CII . . all hamd aperation . . 10 themen so meters . .

Order by mail too ...a complete, well staffed department gives prompt, efficient attention to your mail orders.

Serving the 11 Western States...

Alaska. . . the l'acific Area.
Phone Elmar. . .
TEmplebar 4-3:311

140-11th Street at Madison, Oakland 7, California

INSIST ON PENTA TUBES FOR LONG LIFE, HIGH QUALITY

The reputation of Penta power tubes for uniformly high quality, adherence to specifications, and exceptionally long life is the reason major electronic equipment manufacturers, amateurs and broadcast engineers insist upon them. Exacting quality control and life testing under conditions simulating actual use assure you of maximum performance and durability. Whether your requirements are for the new beam pentodes - for applications where superior linearity and low distortion at high efficiency are critical requirements - the new miniaturized hydrogen thyratrons - or the older conventional types - Penta is your logical source.

PL.6549 Beam Pentode

PL-184 Complefe Socket for PL. 172

ACCESSORIES	Price	
Type	Description	$\$ 6.00$
PL-Cl	Glass Chimney for PL-4-400A and PL-175 SL-184 and suppressor-grid by-pass capacitors	
PL-184A	Socket for PL-172. including chimney and built-in screen-grid by-pass capacitors. Suppressor-grid grounded. Plastic chimney. only, for PL-172	38.75
PL-C184		

PENTALABORATORIES, INC.

312 North Nopal Street, Santa Barbara, California
Sales Representatives in Principal Cifies

You Asked For It... Here It Is! cosmorione "1000"

Learn Code the EASY Way

Beginners, Amateurs and Experts alike recommend the INSTRUCTOGRAPH, to learn code and increase speed.

Learning the INSTRUCTOGRAPH way will give you a decided advantage in qualifying for Amateur or Commercial examinations, and to increase your words per minute to the standard of an expert. The Government uses a machine in giving examinations.
Motor with adjustable speed and spacing of characters on tapes permit a speed range of from 3 to 40 words per minute. A large variety of tapes are available - elementary, words, messages, plain language and coded groups. Also an "Airways" series for those interested in Aviation.

MAY BE PURCHASED OR RENTED

The INSTRUCTOGRAPH is made in several models to suit your purse and all may be purchased on convenient monthly payments if desired. These machines may also be rented on very reasonable terms and if when renting you should decide to buy the equipment the first three months rental may be applied in full on the purchase price.

ACQUIRING THE CODE

It is a well-known fact that practice and practice alone constitutes ninety per cent of the entire effort necessary to "Acquire the Code," or, in other words, learn telegraphy either wire or wireless. The Instructograph supplies this ninety per cent. It takes the place of an expert operator in teaching the student. It will send slowly at first, and gradually faster and faster, until one is just naturally copying the fastest sending without conscious effort.

BOOK OF INSTRUCTIONS

Other than the practice afforded by the Instructograph, all that is required is well directed practice instruction, and that is just what the Instructograph's "Book of Instructions" does. It supplies the remaining ten per cent necessary to acquire the code. It directs one how to practice to the best advantage, and how to take advantage of the few "short cuts" known to experienced operators, that so materially assists in acquiring the code in the quickest possible time. Therefore, the Instructograph, the tapes, and the book of instructions is everything needed to acquire the code as well as it is possible to acquire it.

MACHINES FOR RENT OR SALE

FIRST: It teaches you to receive telegraph symbols words and messages.
SECOND: It teaches you to send perfectly.
THIRD: It increases your speed of sending and receiving after you have learned the code.

With the Instructograph it is not necessary to impose on your friends It is always ready and waiting for you. You are also free from Q.R.M. experienced in listening through your receiver. This machine is just as valuable to the licensed amateur for increasing his speed as to the beginner who wishes to obtain his amateur license.

Postal Card will bRing full partic-

THE INSTRUCTOGRAPH CO.

4707 SHERIDAN ROAD
357 WEST MANCHESTER AVE.
3S7 WEST MANCHESTER AVE.
84

FORTORANGE 904 BROADWAY ALBANY 4 N Y U SA AMATEUR HEADQUARTERS

CĀL̄ ĀL̄́BANY HE 6-8411 Cable Address "Uncledave" NITES 77-5891
BEFORE OR AFTER YOU EARN YOUR TICKET, REMEMBER: COME TO UNCLEDAVE FOR ADVICE-COME TO UNCLEDAVE FOR BEST PRICES ON TOP LINES!

DISC CERAMICON 811

CERAMICON TRIMMER

Electronics Distributor Division ERIE RESISTOR CORPORATION Erie. Pennsylvania ERIE

Talk To Terminal...

about Ham Equipment

... and when you talk with us, in person or by mail, you will discover we have a genuine interest in hams and ham radio. (As a matter of fact, you'll find us steeped in ham radio right up to our earphones.) Whether you're a novice or an oldtimer, you'll enjoy talking with the many hams on our staff -W2FZ, W2AQA, W2BUS, W2JBA, W2MKH, K2VVV, K2VBD, to name a few. They'll show you the top ham equipment values...all name brands in stock, ready for immediate off-shelf delivery to save you time and money:

RCA • Hammarlund • National • Hallicrafters - Gonset • UTC • Johnson • Millen • Triad • Ohmite • Eimac • Shure • Advance • Bud - Stancor • Thordarson • Triplett • Mallory • Astatic • Simpson • Barker \& Williamson - and hundreds of others.

Talk to Terminal
 About Everything in Electronics...

Ham equipment, industrial equipment, high fidelity...Terminal has the fullest selection of name brand products that you'll ever want to see . . . Talk to us first - find out about the dollar-saving advantage of Terminal's "OffShelf Delivery" on ham and industrial materials...ask about our famous "P.D.Q." (Package Deal Quotes) on hi-fi equipment... and when you do talk to us you'll find friendly, informed men who speak your language. One phone call, one order, one source for all your electronic procurements ... You can always depend on Terminal for your best deal.

Talk to Terminal Today...

For Ham Radio...for your career in communications ...pass FCC commercial and amateur code exams and amateur theory exams. Learn code and theory this fast, easy, inexpensive way...study at home with unbreakable phonograph records.

No. 1 - Novice Code Course. You get and keep album of 10 recordings (through 8 w.p.m.), sample FCC type code exams, instruction book, charts to check your receiving accuracy. All for only: $45 \mathrm{rpm} \$ 5.95$, $33^{1 / 3} \mathrm{rpm}$ \$4.95, $78 \mathrm{rpm} \$ 6.95$.
No. 2 - Senior Code Course. Everything in the Novice Course - plus. 22 recordings (through 18 w.p.m.) and typical FCC type code exams for both General and 2nd class commercial telegraph licenses. 45 rpm $\$ 10.50,33^{1 / 3} \mathrm{rpm} \$ 9.50,78 \mathrm{rpm} \$ 11.50$.

No. 3 - Advanced Course. Prepares Novice operators for Amateur General class and Second class commercial licenses, 12 recordings (8 through 18 w.p.m.) plus the complete code book, typical FCC code exams. $45 \mathrm{rpm} \$ 4.95,33^{1 / 3} \mathrm{rpm} \$ 4.95,78 \mathrm{rpm} \$ 5.95$.

No. 4 - Complete Radio Theory Course. Covering the Novice, Technician, Conditional and General classes - all under one cover - with nearly 400 typical FCC type questions. Simple... no technical background required. Also, free, a guide to setting up your ham station. For the amazingly low price of $\$ 3.95$.

No. 5 - Radio Amateur Questions \& Answers License Guide. A "must" if preparing for Novice, Technician or General class exams. Approx. 200 questions \& answers (mostly multiple choice) similar to ones on FCC exams, plus 2 sample FCC type exams. Other questions arranged by subject for easy study. Only 50 ¢ DELUXE CODE PRACTICE OSCILLATOR
In Kit Form or Wired
Produces a pure, steady tone with no clicks or chirps. Built-in 4 inch speaker. Takes several headphones or keys. After code has been learned, the oscillator is easily converted to a fine cw monitor. Has variable tone control \& volume control. Sturdy, grey hammer-tone cabinet.
Kit, with instructions, less tubes (Model CPS-KL) $\$ 11.95$ Kit, complete with tubes (Model CPS.KT) $\$ 13.75$ Completely wired \& tested. less tubes (Model CPS-WL)\$13.15 Completely wired \& tested. with tubes (Model CPS-WT)............ $\$ 14.95$

International Rectifiers SELENIUM -GERMANIUM • SILICON

Ratings: $\mathbf{2 5}$ to 156 valts AC, 50 to $\mathbf{1 . 2 0 0} \mathbf{~ m a}$. DC The widest range in the industry! Designord for Radio, Television. TV booster, UHF converter from 25 to 156 volts AC and up. DC output current 50 to $1,200 \mathrm{M} \mathrm{A}$. Write for appliation information. Bulfetin ER-178-A

Ratings: Q of 1000, 200 PIV DC

Semicap's small size, light weight, high reliability and low power requirements make it quency modutation oscillators and file networks. All-welded hermetically scaled, shock-proof housing. Request Bulletin SR-205,

Ratings: 20 to 160 volts - 100μ a to 11 ma. Ideal components for bias supplies, sensitive relays, computers etc. High resistance, 110 megohms and higher at -10 volts). Excelten lineat forward characteristics. Extremely small low in cost. Encapsulated to resis adverse
environmental extremes. Specify Bulletin $50-18$
a world of difference

All purpose silicon replacement kit of fers radio.TV men simple me.ns of reptatime all existing silicon retilier typers. Ifermetically seated diote ran le wired in or plugged into fuse elip To 160 C; needs no heat sink.

Bulletin 昍 505.

Ratings: 85 to 600 ma - 1500 to 6000 PIY.
Highlv relliable weries of tulke replacement rectifiess

 Yur chatacteristion of silcom on a witle rarge of high voltage applicatems. Complete data: Bullerin SR-209.

Ratings: From 600 milliwatts to 10 watts A complete series in 6 types. Miniature single junction types, multiple junction types and double anode units. 75 d milliwalt and 1 watt typw: Bultetin SR-25, 3.5 and 10 watt types: Bulletin 5R-252, Multiple junctian 5 watt types: SR.253, Double anode types: SR. 254

A direct and unfversal replacement for all existing selenium stacks tul to 500 ma. Eyelet constlution. No "spectal sexkel," conversion hit or chilling required. Espectially suited to the chevated operating temperatures inherent in must 'TV' sets Bulletin TV-500.

Ratings: From 10 C ma. to 50 Amps.
Low forward voltase drop and low leaknge characteristics make this se-ies ideal for an wide variety of powes applications. For stutails re-SR-160, 145 to 52 volts per cell) and Bulletin SR-152, on high curnut density cells.

(Wide range of siliton and selenium types.) Sclf-generating cel's available in stupetard and custom size's. mornated or unmonited. For details on wide selectior of sclenium typers, ser,uest Bulletin PC-649A. siticon solus erlis with elficiencies as high as 10^{-}, Designed to rugged military specifications. Bultetin 5 R-275A.

Never tires the arm . . . never upsets the nerves

SENDING MADE EASIER FOR EVERYBODY

Vibroplex Super DeLuxe

 milun base and ton parts, red rimend jewel mowemerter all V'ibroplay monlels aveilable for left heend operation ll libraplay key はuipped wituke ks coquipped
contacts.

Vibroplex Lightning Bug

"VIBRO-KEYER"

Vibroplex Original

Vibroplex Blue Racer

 (1)

Vibroplex Carrying Case

 hoy, \$6.75.

Conation I ilrablex.
THE VIBROPLEX CO., Inc., 833 Broadway, New York 3, N. Y. W. W. ALswicht, Prenident

IF YOU SEND YOU SHOUID USE THE VIBROFIBX
Buy Vibrionex for the wasives sendind al your life
ennas for MOMPUTERS - RECEIVER FUNDAMENTALS - RF ENERGY GENERATION - RF EEEDBACK - AMPLITUDE MOD ING EQUIP. 18 RADIO TELETYPE TRANSMISSION - SIDEBAND TRAN MISSION - TRANS UTTER DESIGN - TV \& BP io de Converteransmitter Keying - RADIATION, PROPAGATION, ANSMISSION
iS \& LOW PO Half-Wave Horizontal, Half-W, ESe, Ground Ploy ANTENNAS iS \& LOW PO Half-Wave Horizontal, Half-W, we, Ground Plo
$-75-W$. $2-$ Anat Lines to Ant.; Ant. C
ersatile VFO-iYS - VHF \& UHF ANT
Modulator istorized Portable rsatile VFO-IYS - VHF \& UHF
Modulator istorized Portable ter; High Ample. Drive" for 1
W. 304 TL MITERS

J-W. 304 TL MITERS

GET IT

 all!

 all!
 GET IT IN THE 15th EDITION

 RADIOHandloouk
 CENSE MANUAL

 Concise answers commercial radiorelephinations.
all USA comma all USA
operator's

ELEPHONE

 er - Other Xmitter Assemblies - P d Power Supply Circuits - Simple amer Design - Special Power S_{G} cult Constants - Capacitance - 1 - The Grid-Dip Meter - 1-Tube Rents - Constr. of a Coaxial -W Clipper-Ampl.; 200-W 81 - 300-W Phone /C-W Transmit - 100-W Mobile Power Supply

Special Power Supply S/PDR/ G eQ V., 425 Ma .

the "Hams" at HUDSON want to help you

SIART RIGHI!

Joe Prestia, K2GZX

invites you to write or
come in for a chat.

JUST BEGINNING? Then you need friendly, competen hulp to get you started right. The Old.Timers at know YOUR problems! beginners once, themselves-they

Talk to one of our Amateurs, at any of the three

You'll see the latest Ham Gear first at Hudson -one of the world's largest Electronic parts distrib. utors, and New York's component High Fidelity center.

HUOSON Stores listed below. Hell be glad to help you start right, on your "adventure into space." help

TECMNICAL INFO?

We're willing and able to help you with any problem that

QUIPMENT?

HUDSON is famous as one of the largest Distributers
Stocks of All Stant in the country. We've cot comps of
and Standard Brands, all fulvy got complete
Whether you shop over
or whether you order bye counter at any of our stores
speedy, efficient service mail. you can depend on our
received from our HIJGE STOCKS.
PRICES?
Everybody in the Amateur Gane
PRICES better" at HUDSON: Oun nows, by now, that you further! make your hard-earned nationally famous LOW

TRADEINS?

Sure, we'll give you TOP allowance on your old equipment
IME pAYMENTS?
Some of the Standard HAM BRANDS we carry!

RCA
RME
BUD
MILLEN
GONSET
MORROW
COLLINS*
NATIONAL
MULTHELMAC HARVEY-WELLS HAMMARLUND

Glad to ments?
enjoy it NOW-take as you. Buy the gear you need, NCW for it.
E. F. JOHNSON

HALLICRAFTER
MASTER MOBILE BARKER \&

WILLIAMSON
ELECTRONICS
DOW-KEY
ILLUMITRONICS
cUSHCRAFT
NORTH HILLS

HUOSON FREE NOVICE CLASSES held 5 WPM Code our Newark Store. Learn need, to pass your all the Theory you'll Joe Prestia at our Newark Write Manager iatest schedule.
*NEWARK store only
48 West 48th St., N. Y. 36, N. Y., Thafalgar 3-2900
212 Fulton St., N. Y. 7, N. Y., TRafalyar 3-2900

35 William St., Newark 2, N. J., MArket 4.5154

Take the Guesswork out of Soldering Printed Circuits and Laminated Wiring Boards with an

Reduces the Tip Temperature of Soldering Guns to 500° or 600° - the Correct Temperature for Soldering Printed Circuits or Laminated Wiring Boards.

ESICO
GUNCHOKE
FOR ALL WIDELY USED GUNS LIST PRICE - \$2.95

- Now... use your soldering gun for the purposes it was originally intended - quick heating . . . quick cooling.
- Simply plug your soldering gun into GUNCHOKE and GUNCHOKE into outlet. Small . . . compact . . . dependable.

ESICO MODEL "C" LUGER GUN
 - PERFECT BALANCE permits delicate touch for most intricate work.
 - TRANSFORMER built in handle eliminates possibility of tip heaviness.
 - TIP DESIGNS simplify soldering connections inaccessible with other guns.

TIPS ARE LONG AND THIN FOR GETTING INTO DEEP PLACES

KITS OF TIPS
(in plastic vials)
KIT AB: 1 ea. of $A B 1$ through AB6. KIT C: 1 ea. of Cl through C6.

For all soldering jobs. Will not anneal, bend or develop residue, even if left on circuit beyond operating cycle.

Tips C4, C5 and C6 (not shown) are identical in shape to $C 1, C 2$ and $C 3$, but are the same length ($6^{\prime \prime}$) as AB4, $A B 5$ and $A B 6$. Diameters: $C 1$ and $C 4$ $-1 / 8^{\prime \prime} ; C 2$ and $C 5-3 / 16^{\prime \prime} ; C 3$ and C6 $-1 / 4^{\prime \prime} ; P C 1-3 / 4^{\prime \prime}$.

To. Mantillatintors

and Disstributors of

IProdncols Used in Nhorr-Wiaro

Healiac Commeniconion

The Rumo Imateeris Hivbboon is l'ir standard referemee on the techmighe of ligh-ferefuency reatio commemication. Now in its thirts-sesonthammal edition. it is med miversally by radio enginerers and tedmicians as well as by thousands of amateurs and experimenters. I car after year it has sold more widely, and now the Handbook las an anmoal distribution greater than any other techmical handbook in ant field of homan activity. 'To mamofacturers whose intterrity is established and whose products mere the approval of the American Radio Relay I.eagne technical staff, and to distributors who sell these products, we offer use of epace in the Handbook": Catalog Idvertising Section. This section is the standard gnide for amatemr. commercial and goverment burers of short-wave radio repipanent. Partienlarly valuable as a medium through which eomplete data on products can be made easily available to the whole radio enginering and experimenting fielid, it offers an imexpensive method of prodneing and distributiner a catalor imposible to attain by any other means. We solicit inguiries from qualified mamfacturers and distrilmators.

AIDEIETISINA IDEDAIETMENT . . .

Americall IRadio, Helay Leagne WHET IL.IITRFQIEID J. ANN.NEXTIAIT

KNOWN THE WORLD OVER

For nore than a quarter of a century ILLINOIS CONDENSER COMPANY has been foremost in the development of ever greater dependability and longer life in all types of capacitors. Listed below are orily a few of the more popular - and most recently developed ILLINOIS capacitor types.

「echnical literature and catalogs available upon request.

A complete line for low voltage D.C. circuits. Have many advantages including hermetically. sealed Aluminum Cases with patented construction; immersion-proof; excellent life characteristics; low leakage currents; shock and vibrationresistant; ideal for applications requiring minimum size, weight and reliability.

Index

INDEX

INDEX

INDEX

Force, Electromotive
PAGE
Force, Lines of 16
Form, Log 571
Form, Message 57
Fractions, Decimal Equivalents 500
Free-Space Pattern 356
Frequency 16
Frequency Bands, Amateur 14
Frequency Conversion 319
Frequency Convertors (Receiver) 95-97
-requency Measurement
Absorption Frequency Meters 513
Frequency Standards 514
Heterodyne Freuuency Meters 517
Interpolation-Type lrequency Meter 517
WWV and WWVH Schedules 518
Frequency and Phase Modulation 323,324
Narrow-Band leactance-Modulator Unit 326
Deviation Ratio 321
Discriminator 329
Index, Modulation 324
Methods. 325
On V.H.F 420
Principles 32:3
R.F. Amplifiers 328
Reactance Modulator $3: 6$
Reception 330
Transmitter Checking 326
Frequency Multiplication 324
Frequency Multipliers $145,166-167,419$
Frequency Response, Microphone 250
Frequency Shift Keying 331, 33:3
Frequency Spotting 541
Frequency Stability 286
Freguency-Wavelength Conversion 18
lront End Overloading, TV 502
Front-to-Back leatio 355
loull-Wave Bridge Reetifiers 220
Full-Wave Center-「up Rectifiers 219
Pundamental Frequency 17
Fusing 240,543
G
Gain Control 109, 111, 260
"Gamma" Match 374, 378, 454
Ganged Tuning 13:3-94
Gaseous Regulator Tubes 231
$4!5$
Gasoline-Engine-I riven Generators
Generator
Generator
461,495
461,495
Germanium Crystal 80-81, V-32
Grid(i)
Bias $.73,157,235,263$
Capacitor 74,170
Current. (6)
Excitation Mix... 75,157
Keying 245, 251
Leak 74,153
Resistor 65, 74
Suppressor 70
Voltage 6
Grid-Cathode Capacitance 69-70
Grid-Dip Meters 519
Grid-Input Impedance 158
Grid-Leak Detectors 92
Grid Modulation $290,294,302$
Grid-Plate Capacitance 69-70
Grid-Plate Crystal Oscillator 147
Grid-Plate Transconductance (0.3
Grid-Separation Circuit $71-72$
56,369
Ground Effects 356

INDEX

Meter Accuracy $\begin{array}{r}\text { Page } \\ 508 \\ 108\end{array}$	
Meter Installation . ${ }^{\text {a }} 16$.	Mu, Variable . 3 . 71
Meter Anstatation . 16.	Multiband Antennas....... 363, 365
Mieromunere 20	Multimeters . ${ }^{\text {a }}$.
Microfarad and Mieromicrofarad. 24	Multipliers, Frequency 145 , 166-167, 419
Microheury . 27	Multipliers, Voltmeter 507
Mieromho . 19.6 , 63	Multirange Meters . 511
Mirrophones . 2.56	Mutual Conductance 63
Micruvolt . 20	Mutual Inductance . 29
Mirrowaves . 77	
Miller Liffeet . 69	
Milliammeters............................ . 508	
Milliampere . 17,20	N
Millihenry . 26	
Millivolt . 20	N-Type Material . 80
Milliwatt 22	N.F.M. IReception. 3 . ${ }^{\text {a }}$. 325
Minority Carriers.......................... 80	Narrow-13and Frequency Modulation 323, 324
Mixers 94, 95-96, 319, 399	National Electrical Safety Code. 544-545
Mixers, Transistor . 97	National Traffic System 573
Mobile: ${ }^{\text {a }}$	Natural Resonances 54
Amtentss .480-487	Negative licedback. 69, 266
Mohile Monlulators. 477	Negative-Lead Filtering : 227
Powersiuphy . 489	Negative-Resistance Oscillators. 57878
leceivers:	
Mobile (inverter for 3.5-28 Mc. 463	Neutralization.154, 161-163, 397
Crystal-(\%ontrolled Converters for 50 and	Neutral Wire . 23.239
144 Mc.......... 468	Nodes ${ }^{\text {a }}$. 337 , 357
Transistor Mobile Converter. 466	Noise Figures . 88
Transmitters:	Noise Generators . 522
20 -Watt lligh-Frequency Mobile Trans-	Noise-Limiter Cireuits. ${ }^{\text {a }}$. 462
mitter 471	Noise, leceeiver 87-88, 103
(6- and 2 -Meter Mobile Transmitters.... 474	
10-Watt Modulator 478	Noise Reduction ... 103 , 105
Signal Field-Strength Meter 487	Noise Types . 103
Modes of Propagation. 56	Nomenclature, Frequency-Spectrum. 17-18
Modulation, lleterolyning and Beats. 58-59	Nonconductors.. 6.88 .816
Modulation:	Nonlinearity64, 88, 287, 295
Amplitude Modulation. 58,284	Nonradiating Loads. 34.5
(apability . 288	Nonresonant Lines. 339
Cathode Modulation 294	Nonsynchronous Vibrators. 491
(hararteristic. ${ }^{\text {a }}$ 286	Nucleus.................................. 15
(heeking A.M. Phone Operation. 281,296	
Choke-Conpled Modulation, 289	
(lamp-tute. 292	0
Controlled-C arrier sistems 293	
Driving 1'ower . 2505 , 26-4	Off-Center Fed Antenna..................... . 364
Einvelope . 2 : 24	Official Bulletin Station...................... 576
1-requeney Modulation. 3233,420	Official Experimental Station............... 576
(irid Moolulation 2900 , 294, 302	Official Observer . 576
Impedance . 288 , 2935	Official Phone Station........................ 576
Index . 324	Official Relay Station. 576
Linearity . 2868 , 205	Ohm. , 18
Methods. 257 -2906	Ohm's Law . 19 19-20
Monitoring 296, 30:3, 5:38	Ohm's Law for A.C. 34, 36
Narrow-Band lirequency $3 \geq 3$, 324	Ohmmeters. 509
l'errentare of . 2 est	Old Timers Club. 579
Phase Modulation 38.3	One-Element Rotary for 21 Me. 386
Phate Modulation 288 , 301	Open-Circuited Line 338
Phate Supply . 28 .	Open-Wire Line. 340
Power. 2 . 5	Operaling an Amateur Radio Station... $572,573.584$
Screen-Grid Amplifiers. 289	Operating Angle, Amplifier 68
Sircen-Grid Modulation 291	Operating a Station 566-579
Suppressor-Grid Modulation. 293	Operating lias . 155-157
Test Equipment 281, 296, 521, 535	Operating Conditions, R.F. Amplifier-Tube . . 154
Velocity Modulation,77-78	Operating Courtesy . 566
Wave Forms. $2833,285,286,297-301$	Operating Point . 64
Mordulator Tubes 259	Operator License, Amateur 13
Mordulators (see "Radiotelephony") 262	Oscillation. 69, 74-76, 86
"Monimatch". 351,530	Oscillations, Parasitic 162-163
Monitors . $250.250 .252,303,538$	Oseillator Keying . 246
Motorboating . 11:3	Oscillators . 74 766, 86
Moving-Vane Instrument. 507	Audio..... 520
Mu (μ) . 63	Beat-Frequency . 102

INDEX

Radioteletyre 330-334
Radioteletove F.N.K. Converter 332
Radio Wiaces, Propaqation of 393-390
Rag Chewers Club 579
Range, V.H.F. 394
Ratio, Deviation 324
Ratio, Inage
39
Ratio, Impedance
84
84 38
Ratio, Short-C'ircuit Current Transfer
Ratio, Short-C'ircuit Current Transfer
Ratio, Power-Anuplification 66
Ratio, Power Voltage, and Current 41
Ratin, Standing Wave
Ratin, Standing Wave 337. 528 337. 528
Ratio, Voltage-Amplification 262
Ratio, L/(' 64
Reactance. (aparitive 33
Reactance, lnductive 33-34
Reactance Modulator 326
Reactance, Transmission-Line 335
Reactive Power $35-36$
Readability weale 580
Receiver Aligmment $112-114$
Receiver, Communications 87
345
Receiver, Coupling to 5
Receiver Muting $112-114$
Receivers, High-Frequency (See also"V.11.F")$.87-144$
Antemas for 380
Constructional:
Antenna Coupler for Receiving 129
Bonus 21-Mc. Converter 126
Clipper/Filter for C.W'. or Phone 132
I) ('s-50) Double-Conversion Superlet $1: 34$
' Fail-Prcof " Conelrad Narn
31
31
Selective (onverter for 80 and 40 124
Selectoject 128
Simple X Super 115
Transistorized Q Multiplier 141
$2 \times 4+1$ superhet 119
Converters $88-9.3$
High-l'requency Oscillator 97-98
Improving Performance of 114
Noise leduction
10.3
10.3
Radio-Frequency Amplifier 108
Regenerative Detectors 91-92
Selectivity $87,88,106-108$
Sensitivity 87, 110-111
Superheterodyne. 94
400
Tuning 93-94, 111-112, 330
Reception, A.M. and C.W 111-112
reception, N.F.M., F.M. and P.M. 328
321
Rectification 61-62

INDEX

Switching, Meter
page
Symbols for Electrical Quantitics 167
2
2
Symbols, Schematic $8: \stackrel{2}{3}$
synchronoms Vibrators 491
"T" Match to Antennas 374, 378
"T".-Nection Fïlters. 50
T.R.switch $25: 3$
Tank-('ireuit Q 43, 152
Tank ('ircuits, Multiband 154 154
Tank Constants. 15.3
Tape Printer. 330
Telephone lnterference
330
330
Teletspe Code
420, 544
420, 544
Television laterference, Eliminating 19
Temperature Inversion. 395
Termination, line. 335
Tertiary Windiug. 100
T'est ()scillators $5 \geq 0$
Test sigutals. 507
Terrode 70
Tetrode Neutralization 161
Tetronles, heam $7 \frac{1}{6}$
Thermal-Agitation Noise (
Thermionic limission
52:3
Thermusemple
61
61 92
Tickler Coil
Tickler Coil
Time Base 536
Time (onstant 30-31, 102
Time signals. 515
Tire static 461
Tone Control 267
Tools 497-499
Top Loading, Mobile Antenna 45^{2}
Trace, Cathode-Ray 536
Tracing Noise. 462
Tracking 93-94, 109-110
Training Aids 576
Transatlantics. 10
Transeonductance, Grid-Plate. 45
Transfurmer Color Codes.
504-505
504-505
Transtormer Color Codes. $\begin{array}{r}505 \\ 40 \\ \hline-8\end{array}$
Transformer Coupling 46, 65, 258
Transformer, Delta-Matching 360
Transformer Efficiency 38
Transformer, Gamma 374,378
Transtormer, Linear 376
Transformer Power Relationships 338 38
203
203
Transformer, " (${ }^{2}$ "-Section
Transformer, " (${ }^{2}$ "-Section
Transformer Ratio 374,378
Transformerless Power Supplies 238
Transformers: 37-40 100
Air-'Tuned
Air-'Tuned
Auto 40
Constant-Voltage 100
Diode. 228
I.F. 100
Permeability-Tined 100
Plate 100
Triple-Tuned 100
Transistors V. -31
$\mathrm{~V}-31$
Transistor Base Diagrams
Transistor Base Diagrams
520
520
Transistor "Grid-1pplict 100-101

Transistor Power Supplies Page	
Transistor Power Supplies. 494	Twin-Lead. $340-341$
Transistor R.F. Amplifier 108	Two-Tone Te
Transit Time ${ }^{\text {Transmission Lines }}$. ${ }^{\text {a }}$. $77-788$	
Transmission Lines	U
Transmission-Line Construction 340	
Transmission-Line Coupling 151	Ultra-Iligh-Frequencies:
Transmission-Line Feed for Hall-Wave An-	Cavity Resonators. ${ }_{55-57}^{57}$
Transmission Line Losses ${ }_{343}$	Klystrons.... 78
Transmission, Multihop 391-392, 395	"Lighthouse" Tubes 7 7, 39x
Transmit-Receive Switch ${ }^{\text {a }}$ 23	Magnetrons. 78 -79
Transmitters: (see also "Very-High Frequen-	
cies" "Ultrahigh Frequencies" and	Transmission-Line Tanks........................5-57
Constructional:	Traveling-Wave Tubes
al: Medium Power Tetrode Amplifier \qquad 194	Tubes....
Compact 650-Watt Amplifier 201	Velocity Modulation 7 -78
Converting Surplus Transmitters for Nov-	Waveguides $\begin{gathered}\text { Whalance in Transmission } \\ \text { Uines }\end{gathered}$
ice Use......................... 215	Unbalance in Transmission Lines. 341
Grounded-Grid Amplifier (500 Watts) . . 197	Underwriters Code
Remote-Tuned V.F.O. 190	Unsymmetrical Modulation. 285
Self-Contained 500-Watt Transmitter . . 186	Untuned Transmission Lines............... 339
Single 813 Amplifier 191	pward Modulation.
1-Tube 2-Band Transmitter (50 Watts) . 175	
V.F.O. With Differential Keyer 211	V
1-Tube 3-Band Transmitter for the Nov-	
ice (30 Watts) 172	"V"Antennas . 360
4-250As in a 1-Kw. Final 206	VAR . 36
75 Watt 6DQ5 Transmitter (Five Bands). 178	VR Tube Break-In System ${ }^{\text {, }}$ 247
90 Watt All-Purpose Amplifier 182	VR Tubes............................... . . 2.31
Metering . 167	Vackar V.F.O. Circuit. 214
Principles and Design145-218	Vacuum Tubes and Semiconductors ${ }^{\text {a }}$. ${ }^{\text {a }}$
Transverse-Electric and Magnetic Mode 56	(Index to Tables) V-1
"Trap" Antennas... 365	Vacuum-Tube Kevers .
Trapezoidal Pattern... 297-301, 316	Vacuum Tube Principles60-79
Traveling-Wave Tube 79	Vacuum-Tube Voltmeter 511
Trimmer Capacitor . 93	Variable Capacitor
Triodes .62-63	Variable-Frequency Oscillators 145, 147-150
Triode Amplifiers . 163	Variable- μ Tubes . 71
Triode Clippers... $76-77$	Velocity Factor . 342
Triode-Hexode Converter 97	Velocity Microphone 2.57
Tripler, Frequency . 145	Velocity-Modulated Tubes.
Tri-Tet Oscillator . 147	Velocity M dulation . 7 7\%-78
Trophosphere Propagation 303,395396	Velocity of Radio Waves is, 389
Tropospheric Bending 393, 395-396	Vertical Amplifiers . ${ }_{\text {a }}$, 36
Tropospheric Waves 3 . 393	Yertical Angle of Radiation 355
Trouble Shooting (Phone Transmitters)296-303	Yertical Antennas. . .
Trouble Shooting (Reeeivers) 112	Vertical Polarization of Radio Waves 389,448
Trouble Shooting (Speech Equipment) . . . 281, 303	Vcry-High Frequencies (V.II.F.):
Tube Elements . (i0 $^{\text {a }}$	Antenıa Coupler 434
Tube Keyer . 249	Antenna Systems. 4448 -459, 485
Tube Noise . 87	Propagation . 314.4 -399
Tube Operating Conditions, R.F. Amplifier ... 154	Receivers . 3 . 397418
Tube Ratings, Transmitting 155	Construction:
Tubes, Modulator . 262	Crystal-Controlted Converter for 432
Tuned Circuits, Tapped 49	Mc. 411
Tuned Coupling . 152 . 347	Crystal-Controlled Converter for 50 and
Tuned Screen Circuits 420	144 Mc. Mobile I'se. 468
Tuned-Grid Tuned-Plate Circuit 75	Crystal-Controlled Converters for 50 ,
Tuned-Line Tank Circuit ${ }_{56}$	144 and $220 \mathrm{Mc}$.
Tuned Transmission Lines................. 339	Crystal-Controlled Converter for 1296
Tuners, Antenna, Construction of:	Mc.................... 414
Coax-Coupled Matching Circuit 349, 351	I.F. Amplifier and Power Supply. . . . 407
Matching Circuit for High or Low Impedance 352	Preamplifier for 220 Mc. 408
Tuning Indicators . 10 105-106	
Tuning R. F. Amplifiers. 168	
Tuning Receivers . 93 -94	V.H.F. Receiver Design 3397
Tuning Slug . 94	Transmitters . 419 19-447
Turns Ratio . 38	Antenna Couplers. 434
TVI . 420, 546	Construction:
TV Receiver Deficiencies 562,565	High-Power Transmitter for 50 and 144
"Twin-Five" Array . 456	Mc. 421
win-Lamp" Standing-Wave Indicator. ... 535	50-Mc. Amplifier 424

INDEX

mife	E
144-Mc. Driver-Amplifier. 429	Wave Angle $3555,356,358,391$
Simple Transmitters for $\mathrm{sen}^{\text {and }} 144$ Me. $4: 35$	Wave-E"nvelope J'attern284, 2997, 2990, 300, 301
Simple Transmittor for $22(1$ and 420 Mc. 441	Wave liront. 38.3
Triple-Amplifier for 432 M Mc. 446	Wave, Ground . 3691
Mohile Transmitters for 50 and 144 Mc .474	Wate (inde Dimensions 56 5-57
40 Watt Tramsmituer for 2 20 Mr. 44;	Wave Guides . 56
	Wavemeters. 513
	Wave Propagation 380)-396
V.F.O., Varkar C'ircuit 214	Wave, Sine. .17.32
VV Signals . $\mathrm{sim}^{\text {a }}$	Wave, sky 390
Vibrator Power Supplies 4901	Wave Vorm . 17
Virtual Ileight . 390	Wavelength . 17 -18
Voice-Controlled Break-In $3 \geq 0$	Wavelength-Frequency Conversion is
Voice Opreating . 568 -569	Wavelengths, Rmateur 14
Volt. 17	Waves, Complex 17, 37
Volt-Amperes . 36	Waves, Distorted . 64
Volt-Ampere Rating.	Waves, Eleetromagnetic.................. \% $^{\text {W }} 15$
Voltage Amplification 63-64, 6 , 28	Wave Traps. 5 52, 564
Voltage Amplifier . ${ }^{\text {a }}$	Wheelstatic. 461
Voltare Brakdown 23.24 , 2.5	Wide-13and Antomas, V.H.1:............. 458
Voltage Decay . 3 . 30	"Windom" Antenna. 364
Voltage Dividers . 23 30	Wiring Diagrams, Symbols for
Voltage Distribution, Antenna. 361	Wiring, Station 54.3-544
Voltage Drop. 21,230	Wiring, Transmitter 5 5(1-50)
Voltage Giain .65, 20.88	Word Lists for Aecurate Transmission 50.69
Voltage leopy 335.35%	Working DX 5ti9-570
Voltage-Amplification Ratio. 6 d	Working Voltage, Capacitor ${ }^{\text {a }}$, 226
Voltage Multiplier Cireuits 23.38	
Voltage Node 37,3878	WWV and WWVM schedules.............. 518
Voltage-Turns Ratio, Transfumer 38	
Voltage Regulation 2 2 22. 22:3, 2:31	
Voltage-Regulator Interference 461	X
Voltage, Ripple 2 292, 22.4, 2×2	
Voltage Rise	X (Reactance) . 33
Voltage-sitabilized Power Nupplies. . . . ion en 3 ? 31	
Voltmeters. 507, 511,523	
Volume Compression 264	Y
w	" Yagi" Antennas. 449,455
IV Prefixes by states. 5 . 58.3	\mathbf{Z}
W1AW .12, 577, 578	
WAC Award . 的8	Z (1mperlanre) 36
WAs Award . 587	Zener Diodes. 81-82, V-32
Watt .	Kaner kner st
Watt-11our . 23	Z.ero Beat . 92
Watt-Second . 23	Zero-13ias Tuhes. 67

[^0]: Example: A 0.01-mf. caparitor is charged to liso wolts and then allowed to diseharge through "O.l-megohn resistor. How long will it take the roltage to fall to 10 volls? In perventage, $10 / 1.00=6.7^{\prime}$ c. From the chart, the factor corresponding to 6.7% is 2.7 . 'Ihe time constant of the circuit is equal to $(\%=0.01 \times 0.1=$ 0.001 . The titue is therefore $2.7 \times 0.001=$ 0.00227 second, or 2.7 milliseronds.

[^1]: $E_{\mathrm{p}}=$ r.m.s. palue of r.f. plate vollage
 $=\underline{\text { d.c. plate nolts }+ \text { d.c. bias volts }- \text { penk r.f. grid volts }}$ 1.41
 $I_{D}=$ r.m.s. value of r.f. plate current
 $=\frac{\text { rated pover output watts }}{E_{b} ;}$
 $E_{\mathrm{E}}=$ r.m.s. value of grid driring vollage
 $=\frac{\text { peak r.f. grid volts }}{1.41}$
 $I_{\mathrm{g}}=$ r.m.s. value of r.f. grid current
 $=\underline{\text { rated driving power watts }}$

[^2]: * Balance of transformer current caparity consumed by bleeder resistor.

[^3]: ${ }_{2}^{1}$ Voltage across next－stage grid resistor at grid－current point，
 ${ }^{2}$ At 5 volts r．m．s．output．
 3 Cathode－resistor values are for phase－inverter service

[^4]: 1 (avities arr available in the form shown in Fig. 16-294 from Morradian Machine Works, 17.2 E. 23rd St., Lus Angeles. Jrice, \$1. \%) (ath.

[^5]: ${ }^{1}$ Brown - "He Wide-spmead 'lwin-l"ive" CCO, March, 19.0.

[^6]: * See "Corle for l'rotertion Against Lightning," National Bureau of Standurds //andbook $4 f^{\text {, for sale by the Superin- }}$ tendent of 1 ocomments, Washington $2 . j, 1)$. C .

[^7]: EXPORT JEPT.: IS A OORE ST, NTR YORK A N. Y
 CABLE ADDRESS MINTHCRNE - NEV YORK TEL. $100-6272$
 GANADIAN REP.: . ©. $5 \cdots$...

